
www.allitebooks.com

http://www.allitebooks.org

OFFICIAL (ISC)2®

GUIDE TO THE

CSSLP®

 CBK®

S E C O N D E D I T I O N

K16532_FM.indd 1 7/18/13 10:04 AM

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blankThis page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

OFFICIAL (ISC)2®

GUIDE TO THE

CSSLP®

 CBK®

S E C O N D E D I T I O N

Edited by
Mano Paul - CSSLP, CISSP

K16532_FM.indd 3 7/18/13 10:04 AM

www.allitebooks.com

http://www.allitebooks.org

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130717

International Standard Book Number-13: 978-1-4665-7133-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.allitebooks.org

v

Contents
Foreword ...xiii
About the Author ..xv
Contributors ..xvii
Introduction ..xx

Domain 1 - Secure Software Concepts ..1

Holistic Security ..4
Implementation Challenges ...4

Iron Triangle Constraints ...5
Security as an Afterthought ..6
Security vs. Usability...6

Quality and Security ...8
Security Profile – What Makes Software Secure? ..8

Core Security Concepts ...10
Design Security Concepts ..16
Risk Management ..18

Terminology and Definitions ..18
Risk Management for Software ..23
Handling Risk ..24
Risk Management Concept: Summary ..28

Security Policies: The ‘What’ and ‘Why’ for Security ...29
Scope of the Security Policies ..29
Prerequisites for Security Policy Development ..30
Security Policy Development Process ..31

Security Standards ..31
Types of Security Standards ..32
Internal Coding Standards ..33
NIST Standards ...34
Federal Information Processing (FIPS) standards ...40

CSSLP_v2.indb 5 6/7/2013 5:40:18 PM

www.allitebooks.com

http://www.allitebooks.org

vi

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

ISO Standards ...42
PCI Standards ..48
Organization for the Advancement of Structured Information Standards (OASIS)50
Benefits of Security Standards ...51

Best Practices ..52
Open Web Application Security Project (OWASP) ...52
Information Technology Infrastructure Library (ITIL) ...54

Software Development Methodologies ...56
Waterfall Model ..56
Iterative Model ..57
Spiral Model ..58
Agile Development Methodologies ..58

Software Assurance Methodologies ..61
Socratic Methodology ...61
Six Sigma (6 σ) ..62
Capability Maturity Model Integration (CMMI) ..62
Operationally Critical Threat, Asset and Vulnerability Evaluation (OCTAVE®)64
STRIDE and DREAD ...65
Open Source Security Testing Methodology Manual (OSSTMM) ..66
Flaw Hypothesis Method (FHM) ...66

Enterprise Application and Security Frameworks ...67
Zachman Framework ..67
Control Objectives for Information and related Technology (COBIT®) ...67
Committee of Sponsoring Organizations (COSO) ..68
Sherwood Applied Business Security Architecture (SABSA) ..68

Regulations, Privacy and Compliance ...69
Significant Regulations and Privacy Acts ...70

Sarbanes-Oxley Act (SOX) ...70
BASEL II ..70
Gramm-Leach-Bliley Act (GLB Act) ...71
Health Insurance Portability and Accountability Act (HIPAA) ...71
Data Protection Act ...71
Computer Misuse Act ...72
Mobile Device Privacy Act..72
State Security Breach Laws ...72

Privacy and Software Development ..73
Data Anonymization ...74
Disposition ..75
Security Models...76

Trusted Computing ..77
Ring Protection ...77
Trust Boundary (or Security Perimeter) ..78
Trusted Computing Base (TCB) ..78

CSSLP_v2.indb 6 6/7/2013 5:40:18 PM

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

Reference Monitor ..81
Acquisitions ...81

Domain 2 - Secure Software Requirements ..93

Sources for Security Requirements ..98
Types of Security Requirements ..98

Core Security Requirements ...101
General Requirements ..121
Operational Requirements ...123
Other Requirements ..126

Protection Needs Elicitation (PNE) ...129
Brainstorming ..130
Surveys (Questionnaires and Interviews) ...131

Policy Decomposition ...133
Data Classification ..136
Subject/Object Matrix ..140

Use Case & Misuse Case Modeling ...140
Requirements Traceability Matrix (RTM) ...143

Domain 3 - Secure Software Design ..155

The Need for Secure Design ..158
Flaws versus Bugs ..159
Architecting Software with Core Security Concepts ...160

Confidentiality Design ..160
Integrity Design ..170

Availability Design ..175
Authentication Design ..177
Authorization Design ..178
Accountability Design ...179

Architecting Software with Secure Design Principles ..180
Least Privilege ..180
Separation of Duties ...182
Defense in Depth ..182
Fail Secure ..183
Economy of Mechanisms..184
Complete Mediation ...185
Open Design ..187
Least Common Mechanisms ...188
Psychological Acceptability ...189
Weakest Link ..190
Leveraging Existing Components ...190
Balancing Secure Design Principles ..191

Other Design Considerations ..192

CSSLP_v2.indb 7 6/7/2013 5:40:18 PM

www.allitebooks.com

http://www.allitebooks.org

viii

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Interface Design ...192
Interconnectivity ...195

Design Processes..197
Attack Surface Evaluation ...197
Threat Modeling ...200

Architectures ...220
Mainframe Architecture ...222
Distributed Computing ...223
Service Oriented Architecture ...225
Rich Internet Applications ..232
Pervasive/Ubiquitous Computing ...233
Cloud Computing ...239
Mobile Applications ..251
Integration with Existing Architectures ..263

Technologies ..265
Authentication ..265
Identity Management ...266
Credential Management ..269
Flow Control ..274
Auditing (Logging) ..277
Trusted Computing ...286
Database Security ...289
Programming Language Environment ..299
Operating Systems ...306
Embedded Systems ...307

Secure Design and Architecture Review ...310

Domain 4 - Secure Software Implementation/Coding327

Who is to be Blamed for Insecure Software? ...330
Fundamental Concepts of Programming ..330

Computer Architecture ...331
Evolution of Programming Languages...334

Common Software Vulnerabilities and Controls ...339
Buffer Overflow ...343
Stack Overflow ...343
Heap Overflow ...344
Injection Flaws ...347
Broken Authentication and Session Management ...354
Cross-Site Scripting (XSS) ...358
Non-persistent or Reflected XSS ...358
Persistent or Stored XSS ..358
DOM based XSS ...359
Insecure Direct Object References ...361

CSSLP_v2.indb 8 6/7/2013 5:40:18 PM

www.allitebooks.com

http://www.allitebooks.org

ix

Contents

Security Misconfiguration ..363
Sensitive Data Exposure ...365
Missing Function Level Checks ...373
Cross-Site Request Forgery (CSRF) ...374
Using Known Vulnerable Components ...378
Unvalidated Redirects and Forwards ...379
File Attacks ..380
Race Condition ..384
Side Channel Attacks ..385

Defensive Coding Practices – Concepts and Techniques..............................388
Input Validation ..388
Canonicalization ..389
Sanitization ..390
Error Handling ...392
Safe APIs ..393
Memory Management ...393
Exception Management ...399
Session Management ...400
Configuration Parameters Management ...400
Secure Startup ...401
Cryptography ..401
Concurrency ...406
Tokenization ..408
Sandboxing ..408
Anti-Tampering ...409

Secure Software Processes ...412
Version (Configuration Management) ..412
Code Analysis ...413
Code/Peer Review ..414

Securing Build Environments ..418

Domain 5 -Secure Software Testing ...433

Quality Assurance ...436
Testing Artifacts ..437

Test Strategy ...437
Test Plan..437
Test Case ...438
Test Script ...438
Test Suite ...438
Test Harness ...438

Types of Software QA Testing ..438
Functional Testing ...439
Non-Functional Testing ..443

CSSLP_v2.indb 9 6/7/2013 5:40:18 PM

www.allitebooks.com

http://www.allitebooks.org

x

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Other Testing ..447
Attack Surface Validation (Security Testing) ...449

Motives, Opportunities and Means ...449
Testing of Security Functionality versus Security Testing ..450
The Need for Security Testing ...450

Security Testing Methods ..451
White Box Testing ..451
Black Box Testing ...452
White Box Testing versus Black Box Testing ..453

Types of Security Testing ...455
Cryptographic Validation Testing..455
Scanning ..456
Fuzzing ...463

Software Security Testing ..465
Testing for Input Validation ...465
Testing for Injection Flaws Controls ..466
Testing for Scripting Attacks Controls ...467
Testing for Non-repudiation Controls ...468
Testing for Spoofing Controls ...468
Testing for Error and
Exception Handling Controls (Failure Testing) ...469
Testing for Privileges Escalations Controls ...470
Anti-Reversing Protection Testing ...470

Tools for Security Testing ...471
Test Data Management ..473

Defect Reporting and Tracking ...475
Reporting Defects ..475
Tracking Defects ..480
Impact Assessment and Corrective Action ...481

Domain 6 - Software Acceptance ...490

Guidelines for Software Acceptance ..496
Benefits of Accepting Software Formally ..498
Software Acceptance Considerations ..498

Completion Criteria ...499
Change Management ...500
Approval to Deploy or Release ...501
Risk Acceptance and Exception Policy ..501
Documentation of Software ..503

Verification and Validation (V&V) ..506
Reviews ...507
Testing...508

Certification and Accreditation (C&A)...510

CSSLP_v2.indb 10 6/7/2013 5:40:18 PM

xi

Contents

Domain 7 - Software Deployment, Operations,
Maintenance, and Disposal ...519

Installation and Deployment ...522
Hardening ...522
Environment Configuration ..523
Release Management ...525
Bootstrapping and Secure Startup ..526

Operations and Maintenance ...528
Monitoring ..532
Incident Management ...539
Problem Management ...550
Change Management ...553
 Backups, Recovery and Archiving ...558

Disposal ..560
End-of-Life Policies ...560
Sun-Setting Criteria ...561
Sun-setting Processes ..561
Information Disposal and Media Sanitization ..563

Domain 8 - Supply Chain and Software Acquisition577

Software Acquisition and the Supply Chain ...582
Acquisition Lifecycle ...583
Software Acquisition Models and Benefits ..585
Supply Chain Software Goals...587
Threats to Supply Chain Software ...588

Software Supply Chain Risk Management (SCRM) ...589
Supplier Risk Assessment and Management ...592
Supplier Sourcing...593
Contractual Controls ...599
Intellectual Property (IP)
Ownership and Responsibilities ...602

Types of Intellectual Property (IP) ...603
Licensing (Usage and Redistribution Terms) ..606

Software Development and Testing ...611
Assurance Requirement Conformance Validation ...611
Code Review ..611

Code Repository Security ..612
Build Tools and Environment Integrity ...613
Testing for Code Security ..614

Software SCRM during Acceptance ...617
Anti-Tampering Resistance and Controls ..617
Authenticity and Anti-Counterfeiting Controls ...618

CSSLP_v2.indb 11 6/7/2013 5:40:18 PM

xii

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Supplier Claims Verification ...618
Software SCRM during Delivery (Handover) ..620

Chain of Custody ...620
Secure Transfer...620
Code Escrows ...620
Export Control and Foreign Trade Data Regulations Compliance ..622

Software SCRM during Deployment (Installation/Configuration)623
Secure Configuration ..624
Perimeter (Network) Security Controls ..624
System-of-Systems (SoS) Security ..624

Software SCRM during
Operations and Maintenance ..625

Runtime Integrity Assurance ..626
Patching and Upgrades ..626
Termination Access Controls ..626
Custom Code Extensions Checks ...627
Continuous Monitoring and Incident Management ...627

Software SCRM during Retirement ...630

Appendix A - Answers to Review Questions ...644

Appendix B - Security Models ..717

Appendix C - Threat Modeling ...723

Appendix D - Commonly Used Opcodes in Assembly ..735

Appendix E - HTTP/1.1 Status Codes and Reason Phrases (IETF RFC 2616)738

Appendix F - Security Testing Tools..740

Index ...755

CSSLP_v2.indb 12 6/7/2013 5:40:18 PM

xiii

Foreword
Foreword to CSSLP CBK Study Guide - Second Edition

Application vulnerabilities rank highest among today’s
security concerns, according to the 2013 (ISC)2 Global
Information Security Workforce Study (GISWS). In fact,
for the third consecutive study, applications topped the list
of threats.

The 2013 GISWS also showed that respondents lacked the awareness
of whether or not a breach was attributed to software; which exemplifies
the need for further analysis, adherence to security best practices, and
software professionals proficient in security.

A clear disconnect exists between the vast acknowledgement that
software needs to be developed securely and tangible measures put in place
to prioritize security in the software development lifecycle. Companies
must stop accepting flawed software as part of doing business. We cannot
maintain this precedence as our world becomes more reliant upon
applications for everyday life, including critical business transactions.

The Certified Secure Software Lifecycle Professional (CSSLP®) was
developed with the goal of bridging the gap between software professionals
and security best practices to ensure that security is built in throughout
every stage of the software development lifecycle.

In a recent article on hot roles, certifications, and skills, David Foote,
CEO of Foote Partners, LLC, said, “CSSLP certification is becoming the
Holy Grail of secure software development.”

CSSLP_v2.indb 13 6/7/2013 5:40:18 PM

The second edition of the Official (ISC)2 Guide to the CSSLP® CBK®
features the addition of a new domain – Supply Chain & Software
Acquisition. This topic was covered throughout various domains of the
CSSLP previously; however, the addition of Supply Chain as a separate
domain dives deeper into this topic, identifying the increased need to
secure the software supply chain.

 (ISC)2 is pleased to offer the Official (ISC)2 Guide to the CSSLP CBK
– Second Edition. This book provides the tools and resources to educate
and deepen your knowledge of security within each phase of the software
lifecycle, covering each of the eight domains of the credential. I believe you
will find this book helpful in your pursuit of the CSSLP certification and
as a reference guide throughout your security career.

(ISC)2’s elite network of professionals enjoy benefits such as:
complimentary access to (ISC)2’s online webinars, one-day conferences
and networking receptions in cities around the world; discounts at industry
conferences; subscription to (ISC)2’s digital magazine – InfoSecurity
Professional; a dedicated member services staff to address your questions
and issues; and much more.

You will also be a member of a highly respected organization that is
dedicated to reaching society and shaping the industry at large through
community goodwill programs such as Safe and Secure Online, academic
scholarships for students, and cutting-edge research – under the (ISC)2

Foundation.

We’re pleased that you’ve chosen to make software security a priority in
your career and wish you success in your journey to becoming a CSSLP.

Sincerely,

W. Hord Tipton, CISSP-ISSEP, CAP
Executive Director
(ISC)²

xiv

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 14 6/7/2013 5:40:18 PM

xv

About the Author

Manoranjan (Mano) Paul is the Software Assurance Advisor
for (ISC)2, the global leader in information security education
and certification. In this role, he represents and advises the
organization on software assurance strategy, training, education
and certification. He is a member of the Application Security
Advisory Board and is the winner of the first Information Security
Leadership Awards (ISLA) as a practitioner in the Americas region.

His information security and software assurance experience includes designing
and developing security programs from compliance-to-coding, security in the
SDLC, writing secure code, risk management, security strategy, and security
awareness training and education.

Mr. Paul is the author of the acclaimed “7 Qualities of Highly Secure Software”
book and is a contributing author for the Information Security Management
Handbook. He has contributed to several security topics for the Microsoft
Solutions Developer Network (MSDN). He has been featured in various
domestic and international security conferences and is an invited speaker and
panelist, delivering talks and keynotes in conferences such as the OWASP AppSec
conferences, SANS, Security Congress, ASIS, CSI, Gartner Catalyst, and SC
World Congress. He holds the following professional certifications – CSSLP,
CISSP, MCSD, MCAD, CompTIA Network+ and the ECSA certification.

Mr. Paul started his career as a shark researcher in the Bimini Biological
Field Station, Bahamas. His educational pursuit took him to the University of
Oklahoma where he received his Business Administration degree in Management
Information Systems (MIS) with various accolades and the coveted 4.0 GPA.
Following his entrepreneurial acumen, he founded and serves as the CEO &

CSSLP_v2.indb 15 6/7/2013 5:40:19 PM

President of SecuRisk Solutions and Express Certifications, companies that
specializes in security training, product development, and consulting. Before
SecuRisk Solutions and Express Certifications, Mano played several roles from
software developer, quality assurance engineer, logistics manager, technical
architect, IT strategist and security engineer/program manager/strategist at Dell
Inc.
Mr. Paul is also the founder of HackFormers, a not-for-profit Christian
organization that has the mission to teach Security, teach Christ and teach
Security in Christ. He is married to Sangeetha Paul, whom he calls the “most
wonderful and sacrificial person in this world” and their greatest fulfillment
comes from spending time with their sons, Reuben and Ittai.

xvi

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 16 6/7/2013 5:40:19 PM

xvii

Contributors

Sharon Hagi, CISSP, CSSLP - Global Strategist and Senior Offering Manager
IBM Security Services. Sharon Hagi is responsible for managing IBM’s key
global strategies, capabilities and offerings for IBM Cloud Security Services. He
also oversees research, planning and design of innovative managed enterprise
services for mobile security and application security.

Sharon’s background in information technology, software engineering and
security spans over 20 years. He began his career at Motorola developing complex
high-performance embedded software for carrier grade networking equipment.
He developed a passion for infusing security into the quality assurance practices
already in place in the Software Development Life-Cycle (SDLC).

The expertise in embedded systems and networking came handy in his next
role, developing plug-and-play driver architecture for advanced firewalls and
network security appliances at Secure Computing Corp. Sharon was a senior
software engineer at Algorithmics (now an IBM company) working on large
scale distributed systems for financial risk management and analytics. He was a
lead software and security architect at 724 Solutions, an early “dot-com” startup
that pioneered mobile banking and mobile commerce distributed software
frameworks. Innovation and concepts that evolved, over a decade later, into
today’s mobile services market.

Sharon joined IBM in 2003. He was a lead information security consultant
and security architect in the Canadian Consulting Practice and the IT Strategy
and Design Consulting Practice. Sharon focused on leading complex projects
and consulting engagements to help customers address a wide range of challenges
including strategic business technology transformations, IT security strategies,
data center strategies, security in cloud computing initiatives, IT supply chain
security and more.

CSSLP_v2.indb 17 6/7/2013 5:40:19 PM

xviii

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Sharon is a recognized cyber security expert. He serves as trusted advisor to
several of Canada’s largest financial institutions and several Fortune 500 rapid-
growth Enterprises.

Sharon is an active volunteer and advisor with the International Information
Systems Security Certification Consortium, Inc., (ISC)2. He was involved in
the concept and on-going development of the Certified Software Security Life-
Cycle Professional (CSSLP) certification.

Sharon is a board member of the International Application Security Advisory
Board (ASAB) and a senior member of the Institute of Electrical and Electronics
Engineers (IEEE) and the Association for Computing Machinery (ACM).

Richard Tychansky, CISSP-ISSEP, CSSLP, CAP, CIPP/G, PMP, CISA, CISM,
CRISC has over 17 years of experience in Information Systems Security
Engineering (ISSE) and secure software design and audit. Notably, the common
thread which runs through all of his professional certifications is accountability
and traceability. Richard is risk-adverse and compliance driven and has the ability
to guide organizations through the never ending maze of regulatory compliance,
international standards, and industry best practice that they face daily. Richard
has excelled at managing cyber security programs; he has tamed organizational
cyber risk portfolios and brought software development projects in on-time
and on-budget by applying technical management techniques such as Earned
Value Management (EVM). Richard is a software entrepreneur, and while with
Identity Dynamics Corporation he managed the development of a prototype
mobile application that provided a secure interface to a system-of-systems in the
Cloud that measured dozens of biometric modalities and geographic location
tags from an international network of full-motion video surveillance cameras.

Richard is an engineering science graduate from the University of Toronto.
He is a member of the Open Web Application Security Project (OWASP),
the International Association for Cryptologic Research (IACR), and ASIS
International. Richard is a charter member of the (ISC)2 Application Security
Advisory Board (ASAB), which is responsible for evangelizing the Certified
Software Security Lifecycle Professional (CSSLP) credential. Currently, Richard
is the ASAB Chair for Supply Chain Software Assurance sub-committee. He
has presented at consecutive ASIS/(ISC)2 Security Congress’ on the silent threat
that organizations face today when they outsource code development and/
or integrate software products into their IT environments. Richard has also
presented at OWASP on secure coding best practices and with the IAPP on
privacy in the Cloud.

CSSLP_v2.indb 18 6/7/2013 5:40:19 PM

xix

Contributors

Don Franke, CISSP, CSSLP, is a senior security analyst at a large financial
institution, and has been designing, developing, and analyzing software for
nearly 20 years. In his career he has worked for several Tech 100 companies,
contracted for the government, spoken at several security conferences, and
volunteers for organizations that provide cyber security awareness and education
for the community. Don also teaches the CSSLP live online class for (ISC)2,
and holds a Master’s Degree in infrastructure assurance from the University of
Texas at San Antonio.
Additional images, tables, illustrations and grammatical edits provided by
Andrew Schneiter.

CSSLP_v2.indb 19 6/7/2013 5:40:19 PM

www.allitebooks.com

http://www.allitebooks.org

xx

Introduction
Official (ISC)2® Guide to the CSSLP® CBK®, Second Edition
In this day and age, when security breaches in software is costing companies
colossal fines and regulatory burdens, developing operationally hacker-resilient
software that is also reliable in its functionality and recoverable when expected
business operations are disrupted, is a must have. The assurance of confidentiality,
integrity and availability is becoming an integral part of software development.

(ISC)2® has a proven track record in educating and certifying information
security professionals and is the global leader in information security. The
Certified Secure Software Lifecycle Professional (CSSLP®) is a testament to
the organization’s ongoing commitment to information security in general
and specifically to software security. A decade from now, it is highly unlikely
that anyone who is involved with software development would do so, without
giving attention to the security aspects of software development. The CSSLP
certification is therefore a must have for all the stakeholders in a software
development project, from the analysts (business, requirements, etc.), to the
designers (architects) and developers (programmers) of code, to management
(project, product, first-line, etc.), to security, operations and supply chain
personnel, including the executives in the boardroom.

The CSSLP takes a holistic approach to secure software development. It
covers the various people, processes and technology elements of developing
software securely throughout the lifecycle of a software development project.
Starting with requirements analysis to final retirement, through design,
implementation, release and operations, the CSSLP covers all of the concepts and
principles necessary to develop secure software. Since software is not developed
and executed in a silo, the CSSLP not only focuses on the security aspects of

CSSLP_v2.indb 20 6/7/2013 5:40:19 PM

xx

Introduction

xxi

Introduction

software development, but it also takes into account the security aspects of
the networks and hosts on which the software will run. Additionally, it takes a
strategic long term view to improve the overall state of software security within
an organization while providing tactical solutions. The CSSLP certification is
vendor agnostic and language agnostic.

The following list represents the domains of the CSSLP common body of
knowledge (CBK®) and some of the high level topics covered in each domain.
A comprehensive list can be obtained by requesting the Candidate Information
Bulletin from the (ISC)2 website at www.isc2.org.

1. Secure Software Concepts
Without a strong foundation, buildings have been known to collapse
and the same is true when it comes to building software. For software
to be secure and resilient against hackers, it must take into account
certain foundational concepts of information security. These include
confidentiality, integrity, availability, authentication, authorization,
accountability, and management of sessions, exceptions/errors, and
configuration parameters. The candidate is expected to be familiar
with these foundational concepts and how to apply them while
developing software. They must be familiar with the principles of risk
management and governance as it applies to software development.
Regulatory, privacy and compliance requirements that impose the
need for secure software and the repercussions of non-compliance
must be understood. Trusted computing concepts that can be applied
in software that is built in-house or purchased are covered and it is
imperative that the candidate is familiar with their applications.

2. Secure Software Requirements
The lack of secure software requirements plagues many software
development projects today. It is crucially important to explicitly
articulate and capture the security requirements that need to be designed
and implemented in the software, for without it, software not only
suffers from poor product quality, but extensive timelines, increased
cost of re-architecture, end-user dissatisfaction and in most cases
security breaches. The internal and external sources of secure software
requirements, along with the processes to elicit these requirements
are covered. Protection needs elicitation using data classification, use
and misuse case modeling, subject-object matrices and sequencing
and timing aspects as it pertains to software development is to be
thoroughly understood. The candidate is expected to be familiar

CSSLP_v2.indb 21 6/7/2013 5:40:19 PM

xxii

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

with these sources and processes that can be used for eliciting secure
software requirements.

3. Secure Software Design
Addressing security early on in the life cycle is not only less costly
but resource- and schedule-efficient as well. Securely designing
software takes into account the implementation of several secure
design principles, such as least privilege, separation of duties, open
design, complete mediation, etc. Threat modeling that is performed
in the design phase of a project is an important activity that helps
in identifying threats to software and the controls that should be
implemented to address the risk. The candidate must be familiar with
the principles of designing software securely, know how to threat
model software and be aware of the inherent security benefits that
are evident or are lacking in different architectures, be it distributed
computing, pervasive computing, cloud or mobile architectures.
Practical knowledge of how to conduct a design and architecture
review with a security perspective is expected.

4. Secure Software Implementation/Coding
Writing secure code is one of the most important aspects of secure
software development. There are several software development
methodologies ranging from the traditional Waterfall model to the
current agile development methodologies. The security benefits and
drawback of each of these methodologies must be understood. Code
that is written without the appropriate implementation of secure
controls is prone to attack. Some of the most common attacks against
software applications today include injection attacks against databases
and directory stores, cross site scripting (XSS) attacks, cross-site request
forgery (CSRF), and buffer overflows. It is important to be familiar
with how a vulnerability can be exploited and what controls can be
implemented to address the risk. The anatomy of the attacks that
exploit the vulnerabilities published by the Open Web Application
Security Project (OWASP) as the Top Ten application security risks
and the CWE/SANS top 25 most dangerous software errors are to
be known, besides threats that are prevalent in cloud computing,
mobile application development and supply chains. Additionally
one is expected to know defensive coding techniques and processes,
including memory management, static and dynamic code analysis,
code/peer review and build/compiler security.

CSSLP_v2.indb 22 6/7/2013 5:40:19 PM

xxiii

Introduction

5. Secure Software Testing
The importance of validating the presence of and verifying the
effectiveness of security controls implemented in software cannot
be over-stated. The reliability, resiliency and recoverability aspect of
software assurance can be accomplished using quality assurance and
security testing. What to test, who is to test and how to test software
for security issues, must be understood. The candidate must be familiar
with the characteristics and differences between black box, white
box and gray box testing and know about the different types of fuzz
testing. One must be familiar with logic testing, penetration testing,
fuzz testing, simulation testing, regression testing and user acceptance
testing that are covered in detail. Upon the successful completion of
functional and security tests, the defects that are determined need to
be tracked and addressed accordingly. The CSSLP candidate is not
expected to know all the tools that are used for software testing, but
one must be familiar with what tests need to be performed and how
they can be performed, with or without tools.

6. Software Acceptance
Before software is released or deployed into production, it is imperative
to ensure that the developed software meets the required compliance,
quality, functional and assurance requirements. The software, that
is built, needs to be validated and verified within the computing
ecosystems, where it will be deployed, against a set of defined
acceptance criteria. Certification and accreditation exercises need to
be undertaken to ensure that the residual risk is below the acceptable
threshold. The CSSLP candidate is expected to be familiar with the
acceptance criteria and processes that need to be followed to assure
that the software being deployed or released is secure.

7. Software Deployment, Operations, Maintenance and Disposal
Upon successful formal acceptance of the software by the customer/
client, the installation of the software must be performed with
security in mind. Failure to do so can potentially render all of the
software security efforts that was previously undertaken to design and
build the software futile. Once software is installed, it needs to be
continuously monitored to guarantee that the software will continue
to function in a reliable, resilient and recoverable manner as expected.
Continuous monitoring, Patch management , Incident management
and Problem management, Configuration management are covered.
The development and enforcement of End-of-Life (EOL) policies that

CSSLP_v2.indb 23 6/7/2013 5:40:19 PM

xxiv

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

define the criteria for disposal of data and software must be known
as improper data and media sanitization can lead to serious security
ramifications.

8. Supply Chain and Software Acquisition
With the increase in the procurement of off-the-shelf (OTS) from
suppliers, it is imperative to understand the security aspects of the
supply chain. The CSSLP candidate is expected to be familiar
with the drivers and risk of the software supply chain. A thorough
understanding of how to evaluate suppliers before selecting them,
along with the contractual and technical controls that need to be in
place prior to procuring software from a supplier is necessary. The
processes that need to be in place such as code inspection, validation of
authenticity and anti-tampering controls, secure exchange and chain
of custody during handover, system-of-systems integration, custom
code extension checks, etc. must be thoroughly understood. The
importance of software escrowing and the security benefits it offers is
covered in detail and the candidate is expected to know the reasons for
software escrowing.

This guide is a valuable resource to anyone preparing for the CSSLP
certification examination and can serve as a software security reference book to
even those who are already part of the certified elite. The Official (ISC)2 guide
to the CSSLP is a must have to anyone involved in software development!

Mano Paul
CSSLP, CISSP, AMBCI, MCAD, MCSD, CompTIA Network+, ECSA

CSSLP_v2.indb 24 6/7/2013 5:40:19 PM

ASK ANY ARCHITECT and they are likely to agree with renowned

author Thomas Hemerken on his famous quote, “the loftier the

building the deeper the foundation must be”. For superstructures

to withstand the adversarial onslaught of natural forces, they must

stand on a very solid and strong foundation. Hack resilient software

is one that reduces the likelihood of a successful attack and mitigates

the extent of damage if an attack occurs. In order for software to be

secure and hack-resilient, it must factor in secure software concepts.

These concepts are foundational and should be considered for

incorporation into the design, development and deployment of

secure software.

1

Domain 1

Secure Software
Concepts

CSSLP_v2.indb 1 6/7/2013 5:40:19 PM

2

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

 ■ Core Concepts of Secure Software
 à Confidentiality, Integrity, Availability
 à Authentication and Authorization
 à Accounting
 à Nonrepudiation

 ■ Security Design Principles
 à Least Privilege
 à Seperation of Duties
 à Defense in Depth
 à Fail Safe
 à Economy of Mechanism
 à Complete Mediation
 à Open Design
 à Least Common Mechanism
 à Psychological Acceptability
 à Weakest Link
 à Leveraging Existing Components

 ■ Privacy
 à Data Anonymization
 à User Consent
 à Disposition
 à Test Data Management

 ■ Governance, Risk, and Compliance (GRC)
 à Regulations and Compliance
 à Intellectual Property
 à Breach Notification
 à Standards
 à Risk Management

 ■ Software Development Methodologies

Topics

CSSLP_v2.indb 2 6/7/2013 5:40:19 PM

3

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

As a CSSLP, you are expected to

 ■ Understand the concepts and elements of what constitutes
secure software.

 ■ Be familiar with the principles of risk management as it
pertains to software development.

 ■ Know how to apply information security concepts to
software development.

 ■ Know the various design aspects that need to be taken into
consideration to architect hack resilient software.

 ■ Understand how policies, standards, methodologies,
frameworks and best practices interplay in the
development of secure software.

 ■ Be familiar with regulatory, privacy, and compliance
requirements for software and the potential repercussions
of non-compliance.

 ■ Understand security models and how they can be used to
architect hacker proof software.

 ■ Know what trusted computing is and be familiar with
mechanisms and related concepts of trusted computing.

 ■ Understand security issues that need to be considered
when purchasing or acquiring software.

This chapter will cover each of these objectives in detail. It is
imperative that you fully understand not just what these secure
software concepts are, but how to apply them in the software that
your organization builds or buys.

Objectives

CSSLP_v2.indb 3 6/7/2013 5:40:20 PM

Holistic Security
A few years ago, security was about keeping the bad guys out of your network.
Network security relied extensively on perimeter defenses such as firewalls,
demilitarized zones (DMZ) and bastion hosts to protect applications and
data that were within the organization’s network. These perimeter defenses
are absolutely necessary and critical, but with globalization and the changing
landscape in the way we do business today, wherein there is a need to allow
access to our internal systems and applications, the boundaries that demarcated
our internal systems and applications from the external ones are slowly thinning
and vanishing. This warrants that the hosts (systems) on which our software
run are even more closely guarded and secured. Having the need to open our
networks and securely allow access now requires that our applications (software)
are hardened as well, in addition to the network or perimeter security controls.

The need is for secure applications running on secure hosts (systems) in
secure networks. The need is for holistic security, which is the first and foremost
software security concept that one must be familiar with. It is pivotal to recognize
that software is only as secure as the weakest link. In this day and age, software
is rarely deployed as a stand-alone business application. It is often complex,
running on host systems that are interconnected to several other systems on
a network. A weakness (vulnerability) in any one of the layers may render all
controls (safeguards and countermeasures) futile. The application, host and
network must all be secured adequately and appropriately. For example, a
Structured Query Language (SQL) injection vulnerability in the application can
allow an attacker to be able to compromise the database server (host) and from
the host, launch exploits that impact the entire network. Similarly an open port
on the network can lead to the discovery and exploitation of unpatched host
systems and vulnerabilities in applications. Secure software is characterized by
the securing of applications, hosts and networks holistically, so there is no weak
link, i.e., no Achilles Heel as depicted in Figure 1.1.

Implementation Challenges
Despite the recognition of the fact that the security of networks, systems and
software is critical for the operations and sustainability of an organization or
business, the computing ecosystem, today seems to be plagued with a plethora
of insecure networks and systems and more particularly insecure software. In
today’s environment where software is rife with vulnerabilities, as is evident in
full disclosure lists, bug tracking databases and hacking incident reports, software

4

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 4 6/7/2013 5:40:20 PM

security cannot be overlooked, but it is. Some of the primary reasons as to why
there is a prevalence of insecure software may be attributed to the following –

 ■ Iron Triangle Constraints
 ■ Security as an Afterthought
 ■ Security versus Usability

Iron Triangle Constraints
From the time a solution to solve a business problem using software is born to
the time that, that solution is designed, developed and deployed, there is a need
for time (schedule), resources (scope) and cost (budget). Resources (people) with
appropriate skills and technical knowledge are not always readily available and are
costly. The defender is expected to play vigilante 24x7, guarding against all attacks
while being constrained to play by the rules of engagement, while the attacker has
the upper hand since the attacker needs to be able to exploit just one weakness
and can strike anytime without the need to have to play by the rules. Additionally,
depending on your business model or type of organization, software development
can involve many stakeholders. To say the least, software development in and
of itself is a resource, schedule (time) and budget intensive process. Adding the

Figure 1.1 – Securing the Network, Hosts and Application Layer

5

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 5 6/7/2013 5:40:23 PM

www.allitebooks.com

http://www.allitebooks.org

need to incorporate security into the software is seen as having the need to do
‘more’ with what is already deemed ‘less’ or insufficient. Constraints in scope,
schedule and budget, the components of the Iron Triangle as shown in Figure
1.2, are often the reasons why security requirements are left out of the software.
If the software development project’s scope, schedule (time), and budget are
very rigidly defined (as is often the case), it gives little to no room to incorporate
even the basic, let alone additional security requirements into the software and
unfortunately what is typically overlooked are elements of software security.

Security as an Afterthought
Developers and management tend to think that security does not add any
business value since it is not very easy to show a one-to-one return on security
investment. Iron triangle constraints often lead to add-on security, wherein
secure features are bolted on and not built into the software. It is important
that secure features are built into the software, instead of being added on at a
later stage, since it has been proven that the cost to fix insecure software earlier
in the software development life cycle (SDLC) is insignificant when compared
to having the same issue addressed at a later stage of the SDLC, as depicted in
Figure 1.3. Addressing vulnerabilities just before a product is released is very
expensive.

Security vs. Usability
Another reason as to why it is a challenge to incorporate secure features in
software is that the incorporation of secure features is viewed as rendering the
software to become very complex, restrictive and unusable. For example, the
human resources organization needs to be able to view payroll data of employees
and the software development team has been asked to develop an intranet web
application that the human resources personnel can access. When the software

Figure 1.2 - Iron Triangle

6

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 6 6/7/2013 5:40:23 PM

development team consults with the security consultant, who is a CSSLP, the
security consultant recommends that such access should be granted to only
those who are authenticated and authorized and that all access requests must
be logged for review purposes. Furthermore, in the true sense of security, the
security consultant advises the software team to ensure that the authentication
requirements involve the use of passwords that are at least fifteen characters
long, requires upper case and lower case characters, and has a mix of alpha-
numeric and special characters, which will need to be reset every thirty days.
Once designed and developed, this software is deployed for use by the human
resources organization. It is quickly apparent that the human resources personnel
are writing their complex passwords down on sticky notes and leaving them in
insecure locations such as their desk drawers or in some cases, even their system
monitors. They are also complaining that the software is not usable since it takes
a lot of time for each access request to be processed, since all access requests are
not only checked for authorization but also audited (logged). There is absolutely
no doubt that the incorporation of security comes at the cost of performance
and usability. This is true if the software design does not factor in the concept
known as psychological acceptability. Software security must be balanced with
usability and performance. We will be covering ‘Psychological Acceptability’ in
detail along with many other design concepts in the Secure Software Design
chapter.

Figure 1.3 – Relative cost of fixing code issues at different stages of the SDLC

7

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 7 6/7/2013 5:40:23 PM

Quality and Security
In a world that is driven by the need and assurance of quality products, it is
important to recognize that there is a distinction between quality and security,
particularly as it applies to software products. Almost all software products go
through a quality assurance (or testing) phase before being released or deployed,
wherein the functionality of the software, as required by the business client or
customer, is validated and verified. Quality assurance checks are indicative of the
fact that the software is reliable (functioning as designed) and that it is functional
(meets the requirements as specified by the business owner). Following Total
Quality Management (TQM) processes like the Six Sigma (6 σ) or certifying
software with ISO quality standards are important in creating good quality
software and achieving a competitive edge in the marketplace, but it is important
to realize that such quality validation and certifications do not necessarily mean
that the software product is secure. A software product that is secure will add
to the quality of that software but the inverse is not always necessarily true.

It is also important to recognize that the presence of security functionality
in software may allow it to support quality certification standards, but it does
not necessarily imply that the software is secure. Vendors often tout the presence
of security functionality in their products in order to differentiate themselves
from their competitors and while this may be true, it must be understood that
the mere presence of security functionality in the vendor’s software does not
make it secure. This is because security functionality may not be configured
to work in your operating environment or when it is, it may be implemented
incorrectly. For example, software that has the functionality to turn on logging
of all critical and administrative transactions may be certified as a quality secure
product, but unless the option to log these transactions is turned on, within
your computing environment, it has added nothing to your security posture.
It is, therefore, extremely important that you verify the claims of the vendors
within your computing environment and address any concerns you may come
across prior to purchase. In other words, trust, but always verify. This is vital
when evaluating software whether you are purchasing it or building it in-house.

Security Profile – What Makes Software Secure?
In order to develop hack-resilient software, it is important to incorporate security
concepts in the requirements, design, code, release and disposal phases of the
SDLC. Security concepts span across the entire life cycle and will need to be
addressed in each phase. Software security requirements, design, development

8

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 8 6/7/2013 5:40:23 PM

and deployment must take into account all of these security concepts. Lack
or insufficiency of attention in any one phase may render the efforts taken in
other phases completely futile. For example, capturing requirements to handle
disclosure protection (confidentiality) in the requirements gathering phase of
your SDLC but not designing confidentiality controls in the design phase of
your SDLC can potentially result in information disclosure breaches.

The makeup of your software from a security perspective is the security
profile of your software and it includes the incorporation of these concepts in
the SDLC. As Figure 1.4 illustrates, some of these concepts can be classified
as core security concepts, while others are general or design security concepts.
However, these security concepts are essential building blocks for secure
software development. In other words, they are the bare necessities that need to
be addressed and cannot be ignored.

The following section will cover these security concepts at an introductory
and definitional level. They will be expanded in subsequent sections within the
scope of each domain.

Figure 1.4 – Security Concepts

9

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 9 6/7/2013 5:40:23 PM

Core Security Concepts

Confidentiality
Prevalent in the industry today are serious incidents of identity theft and data
breaches which can be directly tied to the lack or insufficiency of information
disclosure protection mechanisms. When you log into your personal bank
account, you expect to see only your information and not anyone else’s. Similarly,
you expect your personal information not to be available to anyone who requests
it. Confidentiality is the security concept that has to do with protection against
unauthorized information disclosure. It has to do with the viewing of data.
Not only does confidentiality assure the secrecy of data but it also can help in
maintaining data privacy.

Integrity
In software that is reliable or in other words performs as intended, protecting
against improper data alteration is also known as resilient software. Integrity
is the measure of software resiliency and it has to do with the alternation or
modification of data and the reliable functioning of software.

When you use an online bill payment system to pay your utility bill, you
expect that upon initiating a transfer of payment from your bank to the utility
service provider, the amount that you have authorized to transfer is exactly the
same amount that is debited from your account and credited into the service
provider’s account. Not only do you expect that the software that handles this
transaction to work as it is intended to but you also expect that the amount
you specified for the transaction is not altered by anyone or anything else. The
software must debit from the account you specify (and not any other account)
and credit into a valid account that is owned by the service provider (and not by
anyone else). If you have authorized to pay $129.00, the amount debited from
your account must be exactly $129.00 and the amount credited in the service
provider’s account must not be $12.90 or $1290.00, but $129.00 as well. From
the time the data transaction commences till the time that data comes to rest or is
destroyed, it must not be altered by anyone or any process that is not authorized.

So integrity of software has two aspects to it. First, it must ensure that the
data that is transmitted, processed and stored is as accurate as the originator
intended and secondly, the software performs reliably as it was intended to.

Referential integrity, a database design concept and code signing, which are
both covered later in this book can be used to assure integrity.

10

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 10 6/7/2013 5:40:23 PM

Availability
Availability is the security concept that is related to the access of the software
or the data or information it handles. While the overall purpose of a business
continuity program (BCP) may be to ensure that downtime is minimized and
that the impact upon business disruption is minimal, availability as a concept
is not merely a business continuity concept but a software security concept as
well. Access must take into account the “who” and “when” aspects of availability.
First, the software or the data it processes must be accessible by only those who
are authorized (who) and secondly it must be accessible only at the time (when)
that it is required. Data must not be available to the wrong people or at the
wrong time.

A Service Level Agreement (SLA) is an example of an instrument that can be
used to explicitly state and govern availability requirements for business partners
and clients. Load balancing and replication are mechanisms that can be used to
ensure availability. Software can also be developed with monitoring and alerting
functionality that can detect disruptions and notify appropriate personnel to
minimize downtime, once again ensuring availability.

Authentication
Software is a conduit to an organization’s internal databases, systems and network
and so it is critically important that access to internal sensitive information is
granted only to those entities that are valid. Authentication is a security concept
that answers the question, ‘Are you whom you claim to be?’ It not only ensures
that the identity of an entity (person or resource) is specified according to
the format that the software is expecting it, but it also validates or verifies the
identity information that has been supplied. In other words it assures the claim
of an entity by verifying identity information.

Authentication succeeds identification in the sense that first the person or
process must be identified before it can validated or verified. The identifying
information that is supplied is also known as credentials or claims. The most
common form of credential is a combination of username (or user ID) and
password, but authentication can be primarily achieved in any one or in
combination of the following three factors.

 ■ Knowledge - The identifying information provided in this
mechanism for validation is something that one knows. Examples
of this type of authentication include username and password, pass
phrases, or a Personal Identification Number (PIN).

11

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 11 6/7/2013 5:40:23 PM

 ■ Ownership - The identifying information provided in this
mechanism for validation is something that you own or have. The
identifying information is usually in the form of a number that is
used only once and is referred to as a nonce in security engineering.
Examples of this type of authentication include tokens and smart
cards.

 ■ Characteristic - The identifying information provided in this
mechanism for validation is something you are. The best known
example for this type of authentication is biometrics. The identifying
information that is supplied in characteristic based authentication
such as biometric authentication is digitized representations of
physical traits or features. Blood vessel patterns of the retina,
fingerprints and iris patterns are some common physical features
that are used because they tend to remain stable through the
course of one’s life. Physical actions such as signatures (pressure
and slant) that can be digitized can also be used in characteristic
based authentication.

Multifactor authentication which is the use of more than one factor to
authenticate is considered to be more secure than single factor authentication
where only one of the three factors, knowledge, ownership or characteristic is
used for validating credentials. Multifactor authentication is recommended
for validating access to systems containing sensitive or critical information.
The Federal Financial Institutions Examination Council (FFIEC) guidance
on authentication in an Internet banking environment highlights that the
use of single factor authentication as the only control mechanism in such an
environment is inadequate and additional mitigation compensating controls,
layered security including multifactor authentication is warranted.

Authorization
Just because an entity’s credentials can be validated does not mean that the
entity should be given access to all of the resources that it requests. For example,
you may be able to log into the accounting software within your company, but
you are still not able to access the human resources payroll data, because you
do not have the rights or privileges to access the payroll data. Authorization is
the security concept in which access to objects is controlled based on the rights
and privileges that are granted to the requestor by the owner of the data or
system or according to a policy. Authorization decisions are layered on top of
authentication and must never precede authentication i.e., you do not authorize
before you authenticate, unless your business requirements require you to give

12

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 12 6/7/2013 5:40:23 PM

access to anonymous users (those who are not authenticated), in which case the
authorization decision may be uniformly restrictive to all anonymous users.

The requestor is referred to as the subject and the requested resource is
referred to as the object. The subject may be human or non-human such as a
process or another object. The subject may also be categorized by privilege level
such as an administrative user, manager, or anonymous user. Examples of an
object include a table in the database, a file or a view. A subject’s actions such as
creation, reading, update or deletion (CRUD) on an object is dependent on the
privilege level of the subject. An example of authorization based on the privilege
level of the subject is an administrative user may be able to create, read, update
and delete (CRUD) data but an anonymous user may be allowed to only read
(R) the data, while a manager may be allowed to create, read and update (CRU)
data.

Accountability and Non-repudiation
Consider the following scenario. You find out that the price of a product in the
online store is different from the one in your brick and mortar store and you
are unsure as to how this price discrepancy situation has come about. Upon
preliminary research it is determined that the screen used to update prices of
products for the online store is not tightly controlled and any authenticated
user within your company can make changes to the price. Unfortunately there
is no way to be able to tell who made the price changes since no information
is logged for review upon the update of pricing information. Auditing is the
security concept in which privileged and critical businesses transactions are
logged and tracked. This logging can be used to build a history of events, which
can be used for troubleshooting and forensic evidence. In the scenario above, if
the authenticated credentials of the logged on user who made the price changes
is logged along with a timestamp of the change and the before and after price,
we can build the history of the changes and track it down to the user who made
the change. Auditing is a passive detective control mechanism.

At a bare minimum, audit fields which include who (the subject which may
be a user or process) did what (operations such as create, read, update, delete etc.),
where (the object on which the operation is performed such as a file or table) and
when (timestamp of the operation) along with a before and after snapshot of the
information that was changed must be logged for all administrative (privilege)
or critical transactions as defined by the business. Additionally, newer audit logs
must always been appended to and never overwrite older logs. This could result
in a capacity or space issue based on the retention period of these logs and

13

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 13 6/7/2013 5:40:23 PM

this needs to be planned for. The retention period of these audit logs must be
based on regulatory requirements or organizational policy and in cases where
the organizational policy for retention conflicts with regulatory requirements,
the regulatory requirements must be followed and the organizational policy
appropriately amended to prevent future conflicts.

Non-repudiation addresses the deniability of actions taken by either a user
or the software on behalf of the user. Accountability to ensure non-repudiation
can be accomplished by auditing when used in conjunction with identification.
In the price change scenario, if the software had logged the price change action
and the identity of the user who made that change, you can hold that individual
accountable for their action and the individual has a limited opportunity to
repudiate or deny their action, thereby assuring non-repudiation.

Auditing is a detective control and it can be a deterrent control as well. Since
one can use the audit logs to determine the history of actions that are taken by
a user or the software itself, auditing or logging is a passive detective control.
The fore knowledge of being audited could potentially deter a user from taking
unauthorized actions, but it does not necessarily prevent them from doing so.

It is understood that auditing is a very important security concept which
is often not given the attention it deserves when building software. However,
there are certain challenges with auditing as well that warrant attention and
addressing. They are:

 ■ Performance impact
 ■ Information overload
 ■ Capacity limitation
 ■ Configuration interfaces protection
 ■ Audit log protection

Auditing can have impact on the performance of the software. It was covered
earlier that there is usually a tradeoff decision that is necessary when it comes to
security versus usability. If your software is configured to log every administrative
and critical business transactions, then each time those operations are performed,
the time to log those actions can have a bearing on the performance of the
software.

Additionally, the amount of data that is logged may result in information
overload and without proper correlation and pattern discerning abilities,
administrative and critical operations may be overlooked, thereby reducing the

14

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 14 6/7/2013 5:40:24 PM

security that auditing provides. It is, therefore, imperative to log just the needed
information at the right frequency. A best practice would be to classify the logs
when being logged using a bucketing scheme so that you can easily sort through
large volumes of logs when trying to determine historical actions. An example
of a bucketing scheme can be ‘Informational Only’, ‘Administrative’, ‘Business
Critical’, ‘Error’, ‘Security’ and ‘Miscellaneous’, etc. The frequency for reviewing
the logs need to be defined by the business and this is usually dependent on the
value of the software or the data it transmits, processes and stores to the business.

In addition to information overload, logging all information can result in
capacity and space issues for the systems that hold the logs. Proper capacity
planning and archival requirements need to be predetermined to address this.

Furthermore, the configuration interfaces to turn on or off the audit logs and
the types of logs to audit must also be designed, developed and protected. Failure
to protect the audit log configuration interfaces can result in an attack going
undetected. For example, if the configuration interfaces to turn auditing on or
off is left unprotected, an attacker may be able to turn logging off, perform their
attack and turn it back on once they have completed their malicious activities.
In this case, non-repudiation is not ensured. So it must be understood that the
configuration interfaces for auditing can potentially increase the attack surface
area and non-repudiation abilities can be seriously hampered.

Finally, the audit logs themselves are to be deemed an asset to the business
and can be susceptible to information disclosure attacks. One must be diligent
as to what to log and the format of the log itself. For example, if the business
requirement for your software is to log authentication failure attempts, it is
recommended that you do not log the value supplied for the password that was
used, as the failure may have resulted from an inadvertent and innocuous user
error. Should you have the need to log the password value for troubleshooting
reasons, it would be advisable to hash the password before recording it so that
even if someone gets unauthorized access to the logs, sensitive information is
still protected.

15

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 15 6/7/2013 5:40:24 PM

www.allitebooks.com

http://www.allitebooks.org

Design Security Concepts
In this section we will cover security concepts that need to be considered when
designing and architecting software at a definitional level. We will expand on each
of these concepts in more concrete detail in the Secure Software Design chapter.

 ■ Least Privilege - A security principle in which a person or process
is given only the minimum level of access rights (privileges) that
is necessary for that person or process to complete an assigned
operation. This right must be given only for a minimum amount
of time that is necessary to complete the operation.

 ■ Separation of Duties (or) Compartmentalization Principle-
Also known as the compartmentalization principle, or separation
of privilege, separation of duties is a security principle which states
that the successful completion of a single task is dependent upon
two or more conditions that need to be met and just one of the
conditions will be insufficient in completing the task by itself.

 ■ Defense in Depth (or) Layered Defense - Also known as layered
defense, defense in depth is a security principle where single
points of complete compromise are eliminated or mitigated by the
incorporation of a series or multiple layers of security safeguards
and risk-mitigation countermeasures.

 ■ Fail Secure - A security principle that aims to maintaining
confidentiality, integrity and availability by defaulting to a
secure state, rapid recovery of software resiliency upon design or
implementation failure. In the context of software security, fail
secure is commonly used interchangeably with fail safe, which
comes from physical security terminology.

 ■ Economy of Mechanisms - This in layman terms is the Keep
It Simple principle because the likelihood of a greater number
of vulnerabilities increases with the complexity of the software
architectural design and code. By keeping the software design and
implementation details simple, the attackability or attack surface
of the software is reduced.

 ■ Complete Mediation - A security principle that ensures that
authority is not circumvented in subsequent requests of an object by
a subject, by checking for authorization (rights and privileges) upon
every request for the object. In order words, the access requests by a
subject for an object is completed mediated each time, every time.

16

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 16 6/7/2013 5:40:24 PM

 ■ Open Design - The open design security principle states that the
implementation details of the design should be independent of the
design itself, which can remain open, unlike in the case of security
by obscurity wherein the security of the software is dependent upon
the obscuring of the design itself. When software is architected
using the open design concept, the review of the design itself will
not result in the compromise of the safeguards in the software.

 ■ Least Common Mechanisms - The security principle of least
common mechanisms disallows the sharing of mechanisms that
are common to more than one user or process if the users and
processes are at different levels of privilege. For example, the use
of the same function to retrieve the bonus amount of an exempt
employee and a non-exempt employee will not be allowed. In this
case the calculation of the bonus is the common mechanism.

 ■ Psychological Acceptability - A security principle that aims at
maximizing the usage and adoption of the security functionality
in the software by ensuring that the security functionality is easy
to use and at the same time transparent to the user. Ease of use and
transparency are essential requirements for this security principle
to be effective.

 ■ Weakest Link - This security principle states that the resiliency of
your software against hacker attempts will depend heavily on the
protection of its weakest components, be it the code, service or an
interface.

 ■ Leveraging Existing Components - This is a security principle
that focuses on ensuring that the attack surface is not increased
and no new vulnerabilities are introduced by promoting the reuse
of existing software components, code and functionality.

Often, these concepts are used in conjunction with other concepts or they
can be used independently, but it is important that none of these concepts are
ignored, even if it is deemed as not applicable or in some cases contradictory
to other concepts. For example, the economy of mechanism concept in
implementing a single sign-on mechanism for simplified user authentication
may directly conflict with the complete mediation design concept and necessary
architectural decisions must be taken to address this without compromising the
security of the software. In no situation can they be ignored.

17

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 17 6/7/2013 5:40:24 PM

Risk Management
One of the key aspects of managing security is risk management. It must be
recognized that the goal of risk management spans more than the mere protection
of information technology (IT) assets as it is to protect the entire organization
so that there are minimal to no disruption in the organization’s abilities to
accomplish its mission. Risk management processes include the preliminary
assessment for the need of security controls, the identification, development,
testing, implementation and verification (evaluation) of security controls so that
the impact of any disruptive processes are at an acceptable or risk-appropriate
level. Risk management, in the context of software security, is the balancing
act between the protection of IT assets and the cost of implementing software
security controls, so that the risk is handled appropriately. The second revision
of the special publication 800-64 (SP 800-64) by the National Institute of
Standards and Technology (NIST), entitled ‘Security Considerations in the
Systems Development Life Cycle (SDLC)’ highlights that a prerequisite to a
comprehensive strategy to manage risk to information technology assets is to
consider security during the SDLC. By addressing risk throughout the SDLC,
one can avoid a lot of headaches upon release or deployment of the software.

Terminology and Definitions
Before we delve into the challenges with risk management as it pertains to software
and software development, it is imperative that there is a strong fundamental
understanding of terms and risk computation formulae used in the context of
traditional risk management.

Some of the most common terms and formulae that a CSSLP must be
familiar with are covered in this section. Some of the definitions used in this
section are from NIST Risk Management Guide to Information Technology
Systems special publication 800-30 (SP 800-30).

Asset
Assets are those items that are valuable to the organization, the loss of which
can potentially cause disruptions in the organization’s ability to accomplish its
missions. Some of the other reasons that enforce the need to protect assets today
are regulations, compliance, privacy or the need to have a competitive advantage.

Assets may be tangible or intangible in nature. Tangible assets, as opposed
to intangible assets are those that can be perceived by physical senses. They can
be more easily evaluated than intangible assets. Examples of tangible IT assets

18

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 18 6/7/2013 5:40:24 PM

include networking equipment, servers, the software code and also the data (e.g.,
credit card data, personally identifiable information, etc.) that is transmitted
and stored by your applications. In the realm of software security, data is the
most important tangible asset, second only to people. Examples of intangible
assets include customer loyalty, intellectual property rights such as copyright,
patents, trademarks, and brand reputation. The loss of brand reputation for
an organization may be disastrous and recovery from such a loss may be nearly
impossible. Arguably company brand reputation is the most valuable intangible
asset and the loss of intangible assets may have more dire consequences than the
loss of tangible assets, however, irrespective of whether the asset is tangible or
not, the risk of loss must be assessed and appropriately managed.

Vulnerability
A weakness or flaw that could be accidently triggered or intentionally exploited
by an attacker, resulting in the breach or breakdown of the security policy
is known as a vulnerability. Vulnerabilities can be evident in the process,
the design or in the implementation of the system or software. Examples of
process vulnerabilities include improper check-in and check-out procedures
of software code or backup of production data to non-production systems
and incomplete termination access control mechanisms. The use of obsolete
cryptographic algorithms such as Data Encryption Standard (DES), not
designing for handling resource deadlocks, unhandled exceptions, and hard-
coding database connection information in clear text (humanly readable form)
inline with code are examples of design vulnerabilities. In addition to process
and design vulnerabilities, weaknesses in software are made possible because of
the way in which software is implemented. Some examples of implementation
vulnerabilities are the software accepts any user supplied data and processes it
without first validating it, the software reveals too much information in the event
of an error and not explicitly closing open connections to backend databases.

Threat
Vulnerabilities pose threats to assets. A threat is merely the possibility of an
unwanted, unintended or harmful event occurring. When the event occurs upon
manifestation of the threat, it results in an incident. These threats can be classified
into threats of disclosure, alteration or destruction. Without proper change
control processes in place, a possibility of disclosure exists when sensitive code is
disclosed to unauthorized individuals if they can check out the code without any
authorization. The same threat of disclosure is possible when production data
with actual and real significance is backed up to a developer or test machine,

19

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 19 6/7/2013 5:40:24 PM

when sensitive database connection information is hard-coded inline with code
in clear text, or if the error and exception messages are not handled properly.
Lack of or insufficient input validation can pose the threat of data alteration,
resulting in violation of software integrity. Insufficient load testing, stress
testing and code level testing pose the threat of destruction or unavailability.

Threat Source/Agent
Anyone or anything that has the potential to make a threat materialize is known
as the threat-source or threat-agent. Threat agents may be human or non-human.
Examples of non-human threat-agents in addition to nature that are prevalent
in this day and age are malicious software (malware), such as adware, spyware,
viruses and worms. We will cover the different types of threat-agents when we
cover threat modeling in the Secure Software Design chapter.

Attack
Threat-agents may intentionally cause a threat to materialize or threats can occur
as a result of plain user-error or accidental discovery as well. When the threat-
agent actively and intentionally causes a threat to happen, it is referred to as an
‘attack’ and the threat-agents are commonly referred to as ‘attackers’. In other
words, an intentional action attempting to cause harm is the simplest definition
of an attack. When an attack happens as a result of an attacker taking advantage
of a known vulnerability, it is known as an ‘exploit’. The attacker exploits a
vulnerability causing the attacker (threat agent) to cause harm (materialize a threat).

Probability
Also known as ‘likelihood’, probability is the chance that a particular threat can
happen. Since the goal of risk management is to reduce the risk to an acceptable-
level, the measurement of the probability of an unintended, unwanted or
harmful event being triggered is important. Probability is usually expressed as
a percentile but since the accuracy of quantifying the likelihood of a threat is
mostly done using best guesstimates or sometimes by mere heuristic techniques,
some organizations use qualitative categorizations or buckets, such as High,
Medium or Low to express the likelihood of a threat occurring. Irrespective of
whether a quantitative or qualitative expression, the chance of harm caused by a
threat must be determined or at least understood as the bare minimum.

Impact
The outcome of a materialized threat can vary from very minor disruptions to
inconveniences imposed by levied fines for lack of due diligence, breakdown in
organization leadership as a result of incarceration, to bankruptcy and complete

20

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 20 6/7/2013 5:40:24 PM

cessation of the organization, The extent of how serious the disruptions to the
organization’s ability to achieve its goal is referred to as the impact.

Exposure Factor
Exposure Factor is defined as the opportunity for a threat to cause loss. Exposure
Factor plays an important role in the computation of risk. Although the
probability of an attack may be high, and the corresponding impact severe, if
the software is designed, developed and deployed with security in mind, the
Exposure Factor for attack may be low, thereby reducing the overall risk of
exploitation.

Controls
Security controls are mechanisms by which threats to software and systems can
be mitigated. These mechanisms may be technical, administrative or physical in
nature. Examples of some software security controls include input validation,
clipping levels for failed password attempts, source control, software librarian,
and restricted and supervised access control to data centers and filing cabinets
that house sensitive information. Security controls can be broadly categorized
into countermeasures and safeguards. As the name implies, countermeasures are
security controls that are applied after a threat has been materialized, implying
the reactive nature of this type of security controls. On the other hand, safeguards
are security controls that are more proactive in nature. Security controls do not
remove the threat itself, but are built into the software or system to reduce the
likelihood of a threat being materialized. Vulnerabilities are reduced by security
controls.

However, it must be recognized that improper implementation of security
controls themselves may pose a threat. For example, say that upon the failure
of a login attempt, the software handles this exception and displays the
message ‘Username is valid but the password did not match’ to the end user.
Although in the interest of user experience, this may be acceptable, an attacker
can read that verbose error message and know that the username exists in the
system that performs the validation of user accounts. The exception handling
countermeasure in this case potentially becomes the vulnerability for disclosure,
due to improper implementation of the countermeasure. A more secure way to
handle login failure would have been to use generic and non-verbose exception
handling in which case the message displayed to the end user may just be ‘Login
invalid’.

21

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 21 6/7/2013 5:40:24 PM

Total Risk
Total risk is the likelihood of the occurrence of an unwanted, unintended or
harmful event. This is traditionally computed using factors such as the asset
value, threat, and vulnerability. This is the overall risk of the system, before any
security controls are applied. This may be expressed qualitatively (e.g., High,
Medium or Low) or quantitatively (using numbers or percentiles).

Residual Risk
Residual risk is the risk that remains after the implementation of mitigating
security controls (countermeasures or safeguards).

Calculation of Risk
Risk is conventionally expressed as the product of the probability of a threat-
source/agent taking advantage of a vulnerability and the corresponding impact.
However, estimation of both probability and impact are usually subjective and
so quantitative measurement of risk is not always accurate. Anyone who has
been involved with risk management will be the first to acknowledge that the
calculation of risk is not a black or white exercise, especially in the context of
software security.

However, as a CSSLP, you are expected to be familiar with classical risk
management terms such as Single Loss Expectancy (SLE), Annul Rate of
Occurrence (ARO) and Annual Loss Expectancy (ALE) and the formulae used
to quantitatively compute risk.

 ■ Single Loss Expectancy (SLE) - Single Loss Expectancy (SLE) is
used to estimate potential loss. It is calculated as the product of the
value of the asset (usually expressed monetarily) and the exposure
factor, which is expressed as a percentage of asset loss when a threat
is materialized. See Figure 1.5 for the formula to calculate SLE.

SLE = Asset Value ($) x Exposure Factor (%)

 ■ Annual Rate of Occurrence (ARO) - The Annual Rate of
Occurrence (ARO) is an expression of the number of incidents
from a particular threat that can be expected in a year. This is
often just a guesstimate in the field of software security and thus
should be carefully considered. Looking at historical incident data
within your industry is a good start for determining what the ARO
should be.

Figure 1.5 – Calculation of SLE

22

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 22 6/7/2013 5:40:24 PM

 ■ Annual Loss Expectancy (ALE) - Annual Loss Expectancy (ALE)
is an indicator of the magnitude of risk in a year. ALE is a product
of SLE x ARO. See Figure 1.6 for the formula to calculate ALE.

ALE = Single Loss Expectancy (SLE) x
Annualized Rate of Occurrence (ARO)

The identification and reduction of the Total Risk using controls so that
the Residual Risk is within the acceptable range or threshold, wherein business
operations are not disrupted, is the primary goal of risk management. To reduce
Total Risk to acceptable levels, risk mitigation strategies in total instead of
merely selecting a single control (safeguard) must be considered. For example, to
address the risk of disclosure of sensitive information such as credit card numbers
or personnel health information, mitigation strategies that include a layered
defense approach using access control, encryption or hashing and auditing
of access requests may have to be considered, instead of merely selecting and
implementing the Advanced Encryption Standard (AES). It is also important
to understand that while the implementation of controls may be a decision
made by the technical team, the acceptance of specific levels of residual risk is a
management decision that factors in the recommendations from the technical
team. The most effective way to ensure that software developed has taken into
account security threats and addressed vulnerabilities, thereby reducing the
overall risk of that software, is to incorporate risk management processes into the
software development life cycle itself. From requirements definition to release,
software should be developed with insight into the risk of it being compromised
and necessary risk management decisions and steps must be taken to address it.

Risk Management for Software
It was aforementioned that risk management as it relates to software and software
development has its challenges. Some of the reasons for these challenges are:

 ■ Software risk management is still maturing.
 ■ Determination of software asset values is often subjective.
 ■ Data on the exposure factor, impact, and probability of software

security breaches is lacking or limited.
 ■ Technical security risk is only a portion of the overall state of secure

software.
Risk management is still maturing in the context of software development

and there are challenges that one faces, because risk management is not yet an

Figure 1.6 – Calculation of ALE

23

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 23 6/7/2013 5:40:24 PM

exact science when it comes to software development. Not only is this still an
emerging field, it is also difficult to quantify software assets accurately. Asset
value is often determined as the value of the systems that the software runs on,
instead of the value of the software itself. This is very subjective as well. The value
of the data that the software processes is usually just an estimate of potential loss.
Additionally, due to the closed nature of the industry, wherein the exact terms
of software security breaches are not necessarily fully disclosed, one is left to
speculate on what it would cost an organization should a similar breach occur
within their own organization. While historical data such as the Chronology of
data breaches published by the Privacy Rights Clearing House are of some use to
learn about the potential impact that can be imposed on an organization, they
only date back a few years and there is really no way of determining the exposure
factor or the probability of similar security breaches within your organization.

Software security is also more than merely writing secure code and some of
the current day methodologies of computing risk using the number of threats
and vulnerabilities that are found through source and object code scanning is
only a small portion of the overall risk of that software. Process and people
related risks must be factored in as well. For example, the lack of proper change
control processes and inadequately trained and educated personnel can lead to
insecure installation and operation of software that was deemed to be technically
secure and had all of its code vulnerabilities addressed. A plethora of information
breaches and data loss has been attributed to privileged third parties and
employees who have access to internal systems and software. The risk of disclosure,
alteration and destruction of sensitive data imposed by internal employees and
vendors who are allowed to have access within your organization, is another
very important aspect of software risk management that cannot be ignored.

Unless your organization has a legally valid document that transfers the liability
to another party, your organization assumes all of the liability when it comes to
software risk management. Your clients and customers will look for someone to
be held accountable for a software security breach that affects them, and it will not
be the perpetrators that they would go after but you, whom they have entrusted
to keep them secure and serviced. The “real” risk belongs to your organization.

Handling Risk
Suppose your organization operates an ecommerce store selling products on
the Internet. Today, it has to comply with data protection regulations such
as the Payment Card Industry Data Security Standard (PCI DSS) to protect

24

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 24 6/7/2013 5:40:24 PM

card holder data. Before the PCI DSS regulatory requirement was in effect,
your organization has been transmitting and storing the credit card primary
account number (PAN), card holder name, service code, expiration date of the
card along with sensitive authentication data such as the full magnetic track
data, the card verification code and the PIN, all in clear text (humanly readable
form). As depicted in Figure 1.7, PCI DSS disallows the storage of any sensitive
authentication information even if it is encrypted or the storage of the PAN
along with card holder name, service code and expiration data in clear text. Over
open, public networks such as the Internet, Wireless, Global Systems for Mobile
communications (GSM) or Global Packet Radio Service (GPRS), card holder
data and sensitive authentication data cannot be transmitted in clear text.

Note, although the standard does not disallow transmission of these data in
the clear over closed, private networks, it is still a best practice to comply with
the standard and protect this information to avoid any potential disclosure, even
to internal employees or privileged access users.

As a CSSLP, you advise the development team that the risk of disclosure is
high and it needs to be addressed as soon as possible. The management team
now has to decide on how to handle this risk and they have five possible ways
to address it.

Figure 1.7 – Payment Card Industry Data Security Standard

25

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 25 6/7/2013 5:40:25 PM

www.allitebooks.com

http://www.allitebooks.org

1. Ignore the risk – They can choose to not handle the risk and do
nothing, leaving the software as is. The risk is left unhandled.
This is highly ill-advised because the organization can find itself at
the end of a class action law suit and regulatory oversight for not
protecting the data that its customers have entrusted to it.

2. Avoid the risk – They can choose to discontinue the ecommerce
store, which is not practical from a business perspective because
the ecommerce store is the primary source of sales for your
organization. In certain situations, discontinuing use of the existing
software may be a viable option, especially when the software is
being replaced by a newer product. Risk may be avoided but it
must never be ignored.

3. Mitigate the risk – The development team chooses to implement
security controls (safeguards and countermeasures) to reduce the
risk. They plan to use security protocols such as Secure Sockets
Layer (SSL)/Transport Layer Security (TLS) or IPSec to safeguard
sensitive card holder data over open, public networks. While the
risk of disclosure during transmission is reduced, the residual
risk that remains is the risk of disclosure in storage. You advise
the development team of this risk. They choose to encrypt the
information before storing it. While it may seem like the risk
is mitigated completely, there still remains the risk of someone
deciphering the original clear text from the encrypted text if the
encryption solution is weakly implemented. Moreover, according
to the PCI DSS standard, sensitive authentication data cannot be
stored even if it is encrypted and so the risk of non-compliance
still remains. So it is important that the decision makers who
are responsible for addressing the risk are made aware of the
compliance, regulatory and other aspects of risk, and not merely
yield to choosing a technical solution to mitigate it.

26

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 26 6/7/2013 5:40:25 PM

4. Accept the risk – At this juncture, management can choose to
this accept the residual risk that remains and continue business
operations or they can choose to continue to mitigate it by not
storing disallowed card holder information. When the cost of
implementing security controls outweighs the potential impact of
the risk itself, one can accept the risk. However it is imperative to
realize that the risk acceptance process must be a formal process
and it must be well documented, preferably with a contingency
plan to address the residual risk in subsequent releases of the
software.

5. Transfer the risk – One additional method by which management
can choose to address the risk is to simply transfer it. It must be
understood however that it is the liability that is transferred and
not necessarily the risk itself. This is because your customers are
still going to hold you accountable for security breaches in your
organization and the brand or reputational damage that can
happen upon a breach may far outweigh the liability protection
that your organization receives by way of transference of risk.
Common ways to transfer the risk are by buying insurance
and using disclaimers. Although software security insurance
is not very common, buying insurance works best for the
organization when the cost of implementing the security
controls exceeds the cost of potential impact of the risk itself.
Disclaimers transfer the risk to the end user when they accept the ‘AS-
IS’ clause prior to software installation. When the end user accepts
the ‘AS-IS’ clause in the disclaimer, they are agreeing to installing
and using the software as it is, covering the software publisher
from liability issues arising from unforeseen situations and threats.
Third party assessors usually employ vulnerability assessments and
penetration testing of the software to determine its state of security,
and assist in determining the exploitability of the software. It is
important to recognize that while it may seem like using a third
party to assess the secure capabilities of the software is a means
to transferring the risk to the third party assessor, in reality it is
only a means to demonstrating due diligence and due care as the
liability and risk responsibility still lies with the software publisher.
Whenever a third party is used for attesting the security of your
software, any liability protection requirements must be explicitly
stated and contractually enforceable.

27

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 27 6/7/2013 5:40:25 PM

Risk Management Concept: Summary
As you may know, a picture is worth a thousand words. The risk management
concepts we have discussed so far are illustrated for easier understanding in
Figure 1.8.

Owners value assets (software) and wish to minimize risk to assets. Threat
agents wish to abuse and/or may damage assets. They may give rise to threats
that increase the risk to assets. These threats may exploit vulnerabilities
(weaknesses) leading to the risk to assets. Owners may or may not be aware of
these vulnerabilities. When known, these vulnerabilities may be reduced by the
implementation of controls that reduce the risk to assets. It is also noteworthy to
understand that the controls themselves may pose vulnerabilities leading to risk
to assets. For example, the implementation of fingerprint reader authentication
in your software as a biometric control to mitigate access control issues may
itself pose the threat of denial of service to valid users, if the crossover error rate,
which is the point at which the false rejection rate equals the false acceptance
rate, for that biometric control is high.

Figure 1.8 – Risk Management Concept Flow

28

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 28 6/7/2013 5:40:25 PM

Security Policies:
The ‘What’ and ‘Why’ for Security
Contrary to what one may think it to be, a security policy is more than merely
a written document. It is the instrument by which digital assets that require
protection can be identified. It specifies at a high level ‘What’ needs to be
protected and the possible repercussions of non-compliance.

In addition to defining the assets that the organization deems as valuable,
security policies identify the organization’s goals and objectives and communicate
management’s goals and objectives for the organization.

Recently, legal and regulatory compliance has been evident as an important
driver of information security spending and initiatives. Security policies help in
ensuring an organization’s compliance with legal and regulatory requirements,
if they complement and not contradict these laws and regulations. With a clear
cut understanding of management’s expectations, the likelihood of personal
interpretations and claiming ignorance is curtailed, especially when auditors
find gaps between organizational processes and compliance requirements. It
protects the organization from any ‘surprises’ by providing a consistent basis
for interpreting or resolving issues that arise. The security policy provides the
framework and point of reference that can be used to measure an organization’s
security posture. The gaps that are identified when being measured against a
security policy, a consistent point of reference, can be used to determine effective
executive strategy and decisions.

Additionally security policies ensure non-repudiation, because those who
do not follow the security policy can be personally held accountable for their
behavior or actions.

Security policies can also be used to provide guidance to architect secure
software by addressing the confidentiality, integrity and availability aspects of
software.

Security policies can also define the functions and scope of the security team,
document incident response and enforcement mechanisms, and provide for
exception handling, rewards and discipline.

Scope of the Security Policies
The scope of the information security policy may be organizational or functional.
Organizational policy is universally applicable and all who are part of the

29

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 29 6/7/2013 5:40:25 PM

organization must comply with it, unlike a functional policy which is limited to
a specific functional unit or a specific issue. An example of organizational policy
is the remote access policy that is applicable to all employees and non-employees
that require remote access into the organizational network. An example of a
functional security policy is the data confidentiality policy which specifies the
functional units that are allowed to view sensitive or personal information. In
some cases these can even define the rights personnel have within these functional
units. For example, not all members of the human resources team are allowed to
view the payroll data of executives.

It may be a single comprehensive document or it may be comprised of many
specific information security policy documents.

Prerequisites for Security Policy Development
It cannot be overstressed, that security policies provide a framework for a
comprehensive and effective information security program.

The success of an information security program and more specifically
the software security initiatives within that program is directly related to
the enforceability of the security controls that need to be determined and
incorporated into the software development life cycle (SDLC). A security policy
is the instrument that can provide this needed enforceability. Without security
policies, one can reasonably argue that there are no teeth in the secure software
initiatives that a passionate CSSLP or security professional would like to have
in place. Those who are or who have been responsible for incorporating security
controls and activities within the SDLC know that a security program often
initially faces resistance. You can probably empathize being challenged by those
who are resistant, and who ask questions such as, ‘Why must I now take security
more seriously as we have never done this before?’ or ‘Can you show me where
it mandates that I must do what you are asking me to do?’ Security policies give
authority to the security professional or security activity.

It is, therefore, imperative that security policies that provide authority to
enforce security controls in software are developed and implemented in case
your organization does not already have them. However, the development of
security policies is more than a mere act of jotting a few “Thou shall” or “Thou
shall not” rules in paper. For security policies to be effectively developed and
enforceable requires the support of executive management (top-level support).
Without the support of executive management, even if security policies are
successfully developed, their implementation will probably fail. The makeup of
top-level support must include support from signature authorities from various

30

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 30 6/7/2013 5:40:25 PM

teams and not just the security team. Including ancillary and related teams
(such as legal, privacy, networking, development, etc.) in the development of
the security policies has the added benefit of buy in and ease of adoption from
the teams that need to comply with the security policy when implemented.

In addition to top level support and inclusion of various team’s in the
development of a security policy, successful implementation of the security
policy also requires marketing efforts that communicate the goals of management
through the policy to end-users. End users must be educated to determine security
requirements (controls) that the security policy mandates and those requirements
must be factored into the software that is being designed and developed.

Security Policy Development Process
Security policy development is not a onetime activity. It must be an evergreen
activity, i.e., security policies must be periodically evaluated so that they are
contextually correct and relevant to address current day threats. An example
of a security policy that is not contextually correct is a regulatory imposed or
adopted policy that mandates multi-factor authentication in your software for
all financial transactions, but your organization is not already set up to have
the infrastructure such as token readers or biometric devices to support multi-
factor authentication. An example of a security policy that is not relevant is one
in which the policy requires you to use obsolete and insecure cryptographic
technology such as the Data Encryption Standard (DES) for data protection.
DES has been proven to be easily broken with modern technology, although
it may have been the de facto standard when the policy was developed. With
the standardization of the Advanced Encryption Standard (AES), DES is now
deemed to be an obsolete technology. Policies that have explicitly mandated
DES are no longer relevant and so they must be reviewed and revised.
Contextually incorrect, obsolete and insecure requirements in policies are often
flagged as non-compliant issues during an audit. This problem can be avoided
by periodic review and revisions of the security policies in effect. Keeping the
security policies high level and independent of technology alleviates the need for
frequent revisions.

It is also important to monitor the effectiveness of security policies and
address issues that are identified as part of the lessons learned.

Security Standards
High level security policies are supported by more detailed security standards.
Standards support policies in that adoption of security policies are made possible

31

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 31 6/7/2013 5:40:25 PM

due to more granular and specific standards. Like security policies, organizational
standards are considered to be mandatory elements of a security program and
must be followed throughout the enterprise unless a waiver is specifically granted
for a particular function.

Types of Security Standards
As the Figure 1.9 depicts security standards can be broadly categorized into
Internal or External standards.

Internal standards are usually specific. The coding standard is an example
of an internal software security standard. External standards can be further
classified based on the issuer and recognition. Depending on who has issued the
standard, external security standards can be classified into industry standards or
government standard. An example of an industry issued standard is the Payment
Card Industry Data Security Standard (PCI DSS). Examples of government
issued standards include those generated by the National Institute of Standards
and Technology (NIST). Not all standards are geographically recognized and
enforceable in all regions uniformly. Depending on the extent of recognition,
external security standards can be classified into national and international
security standards. While national security standards are often more focused and
inclusive of local customs and practices, international standards are usually more
comprehensive and generic in nature spanning various standards with the goal
of interoperability. The most prevalent example of internationally recognized
standards is the ISO (International Organization for Standardization) while
examples of nationally recognized standards are the Federal Information

Figure 1.9 - Categorization of Security Standards

32

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 32 6/7/2013 5:40:25 PM

Processing Standards (FIPS) and those by the American National Standards
Institute (ANSI), in the United States of America. It is also noteworthy to
recognize that with globalization impacting the modicum of operations in
the global landscape, most organizations lean more toward the adoption of
international standards over national ones.

It is important to recognize that unlike standards which are mandatory,
guidelines are not. External standards generally provide guidelines to organizations
but organizations tend to designate them as the organization’s standard, which
make them mandatory.

It must be understood that within the scope of this book, a complete and
thorough exposition of each standard related to software security would not be
possible. As a CSSLP, it is important that you are not only familiar with the
standards covered here but also other standards that apply to your organization.
In the following section, we will cover internal coding standards and standards
and special publications published by the following organizations that pertinent
to security professionals as it applies to software.

 ■ National Institute of Standards and Technology (NIST)
 ¤ Special Publications
 ¤ Federal Information Processing Standards (FIPS)

 ■ International Organization for Standardization (ISO)
 ■ Payment Card Industry (PCI)
 ■ Organization for the Advancement of Structured Information

Standards (OASIS)

Internal Coding Standards
One of the most important internal standards that has a tremendous impact on
the security of software is the coding standard. The coding standard specifies the
requirements that are allowed and that need to be adopted by the development
organization or team while writing code (building software). Coding standards
need not be developed for each programming language or syntax but can include
various languages into one. Organizations that do not have a coding standard
must plan to have one created and adopted.

The coding standard not only brings with it many security advantages but
provides for non-security related benefits as well. Consistency in style, improved
code readability and maintainability are some of the non-security related benefits
one gets when they follow a coding standard. Consistency in style can be achieved

33

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 33 6/7/2013 5:40:25 PM

by ensuring that all development team members follow the prescribed naming
conventions, overloaded operations syntax or instrumentation, etc. explicitly
specified in the coding standard. Instrumentation is the inline commenting
of code that is used to describe the operations undertaken by a code section.
Instrumentation also increases code readability considerably. One of the biggest
benefits of following a coding standard is maintainability of code, especially in
a situation when there is a high rate of employee turnover. When the developer
who has been working on your critical software products leaves the organization,
the inheriting team or team member will have a reduced learning time, if the
developer who left had followed the prescribed coding standard.

Following the coding standard has security advantages as well. Software
designed and developed to the coding standard is less prone to error and exposure to
threats, especially if the coding standard has taken into account and incorporated
in it, security aspects when writing secure code. For example, if the coding standard
specifies that all exceptions must be explicitly handled with a laconic error
message, then the likelihood of information disclosure is reduced considerably.
Also, if the coding standard specifics that each try-catch block must include a
finally block as well, where objects instantiated are disposed, then upon following
this requirement, the chances of dangling pointers and objects in memory are
reduced, thereby addressing not only security concerns but performance as well.

NIST Standards
Founded in the start of the industrial revolution in 1901 by the Congress
with a goal to prevent trade disputes and encourage standardization, the
National Institute of Standards and Technology (NIST) develops technologies,
measurement methods and standards to aid U.S. companies in the global market
place. Although NIST is specific to the United States, in outsourced situations,
the company to which software development is outsourced may be required to
comply with these standards. This is often contractually enforced.

NIST programs assist in improving the quality and capabilities of software
used by business, research institutions and consumers. They help secure electronic
data and maintain availability of critical electronic services by identifying
vulnerabilities and cost-effective security measures.

One of the core competencies of NIST is the development and use of
standards. They have the statutory responsibility to set security standards and
guidelines for sensitive Federal systems but these standards are selectively adopted
and used by the private sector on a voluntary basis as well. The computer security

34

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 34 6/7/2013 5:40:25 PM

division information technology laboratory (ITL) periodically publishes bulletins
and the Special Publications 500 (SP 500) and 800 (SP 800) series. While the
SP 500 series are more generic Information Technology related publications,
the SP 800 series was established in order to organize information technology
security publications separately. NIST also includes computer security-related
Federal Information Processing Standards (FIPS). Many of these publications
are of interest to a security professional within the context of software security.
One SP that is noteworthy is the SP 800-64 publication which discusses
security considerations in the Information Systems development life cycle.

This section will introduce the various SP 800 series publications that have
considerable implications for software security.

SP 800-12: An Introduction to Computer Security:
The NIST Handbook
This handbook provides a broad overview of computer security, providing
guidance to secure hardware, software and information resources. It explains
computer security related concepts, cost considerations and inter-relationships
of security controls. Security controls are categorized into management controls,
operational controls and technology controls. A section within the handbook
is dedicated to security and planning in the computer systems life cycle. Figure
1.10 illustrates the breadth of security concepts and controls covered in the
NIST Special Publication 800-12 handbook. The handbook does not specify

Figure 1.10 - SP 800-12 Security Concepts and Controls

35

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 35 6/7/2013 5:40:25 PM

www.allitebooks.com

http://www.allitebooks.org

requirements explicitly but rather discusses the benefits of different security controls
and the scenarios in which they would be appropriately applicable. It provides
advice and guidance without stipulating any penalties for non-compliance.

SP 800-14: Generally Accepted Principles
and Practices for Security IT Systems
Similar to the SP 800-12 handbook in its organization, the SP 800-14 document
provides a baseline that organizations can use to establish and review their IT
security programs. Unlike SP 800-12, this document gives insight into the
basic security requirements that most IT systems should contain, to various
stakeholders, including management, internal auditors, users, system developers
and security practitioners. It provides a foundation that can be used as a point of
reference. The foundation starts with generally accepted system security principles
and moves on to identify common practices that are used for securing IT systems.

SP 800-18: Guide for developing Security
Plans for Federal Systems
Without the appropriate documentation of the information systems protection
requirements and security controls (in place or planned), in an information
security plan, insight into the organizational state of security may be a challenge.
The main objective of information security planning is to improve the protection
of information system resources. The security plan must be periodically
reassessed for contextual correctness and applicability. The SP 800-18 provides a
framework for developing relevant security plans. It contains within a framework
for classifying information assets based on impact to the three core security
objectives, i.e., confidentiality, integrity and availability besides providing system
security plan responsibilities and a sample plan template in its appendix.

36

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 36 6/7/2013 5:40:25 PM

SP 800-27: Engineering Principles for
Information Technology Security
Special Publication 800-27 of the NIST, which is entitled, “Engineering
Principles for Information Technology Security (A baseline for achieving
security),” in Section 3.3 provides various IT security principles as listed below.
Some of these principles are people-oriented, while others are tied to the process
for designing security in IT systems.

 ■ Establish a sound security policy as the “foundation” for design.
 ■ Treat security as an integral part of the overall system design.
 ■ Clearly delineate the physical and logical security boundaries

governed by associated security policies.
 ■ Reduce risk to an acceptable level.
 ■ Assume that external systems are insecure.
 ■ Identify potential trade-offs between reducing risk and increased

costs and decreases in other aspects of operational security. (Ensure
no single point of vulnerability).

 ■ Implement tailored, system security measures to meet organizational
security goals.

 ■ Strive for simplicity.
 ■ Design and operate an IT system to limit vulnerability and to be

resilient in response.
 ■ Minimize the system elements to be trusted.
 ■ Implement security through a combination of measures distributed

physically and logically.
 ■ Provide assurance that the system is, and continues to be, resilient

in the face of expected threats.
 ■ Limit or contain vulnerabilities.
 ■ Formulate security measures to address multiple, overlapping,

information domains.
 ■ Isolate public access systems from mission critical resources (e.g.,

data, processes, etc.).
 ■ Use boundary mechanisms to separate computing systems and

network infrastructures.
 ■ Where possible, base security on open standards for portability

and interoperability.

37

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 37 6/7/2013 5:40:25 PM

 ■ Use common language in developing security requirements.
 ■ Design and implement audit mechanisms to detect unauthorized

use and to support incident investigations.
 ■ Design security to allow for regular adoption of new technology,

including a secure and logical technology upgrade process.
 ■ Authenticate users and processes to ensure appropriate, access

control decisions both within and across domains.
 ■ Use unique identities to ensure accountability.
 ■ Implement least privilege.
 ■ Do not implement unnecessary security mechanisms.
 ■ Protect information while it is processed, in transit, and in storage.
 ■ Strive for operational ease of use.
 ■ Develop and exercise contingency or disaster recovery procedures

to ensure appropriate availability.
 ■ Consider custom products to achieve adequate security.
 ■ Ensure proper security in the shutdown or disposal of a system.
 ■ Protect against all likely classes of attacks.
 ■ Identify and prevent common errors and vulnerabilities.
 ■ Ensure that developers are trained in how to develop secure

software.

SP 800-30: Risk Management Guide for IT
As mentioned earlier, one of the key aspects of security management is risk
management, which plays a critical role in protecting an organization’s
information assets, and its mission from IT related risks. The SP 800-30 guide
starts with an overview of risk management and covers items that are deemed

Figure 1.11 - Risk Mitigation Action Points

38

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 38 6/7/2013 5:40:25 PM

critical success factors for an effective risk management program. The guide also
covers how risk management can be integrated into the systems development
life cycle along with the roles of individuals and their responsibilities in the
process. It describes a comprehensive risk assessment methodology which
includes nine primary steps for conducting a risk assessment of an IT system. It
also covers control categories, cost-benefit analysis, residual risk evaluation, and
the mitigation options and steps that need to be taken upon the completion of a
risk assessment process. As an example, Figure 1.11 illustrates the risk mitigation
action points that are part of the NIST Special Publication 800-30 guide.

SP 800-61 – Computer Security Incident Handling Guide
Threats that used to be short lived and easy to notice have now been replaced
with more advanced persistent threats (APTs) and this warrants the need to
adapt existing incident handling procedures. The SP 800-61 assists organizations
in establishing capabilities and incident handling procedures to efficiently and
effectively handle security threats and breaches that are prevalent and evident
today. It is useful for both established and newly formed incident response teams

SP 800-64: Security Considerations in the
Information Systems Development Life Cycle
Currently in second revision, the SP 800-64 is NIST’s more directly related
publication for a CSSLP because it provides guidance for building security into
the IT systems (or software) development life cycle (SDLC) from the inception
of the system or software. It serves a wide range of audiences of information
systems and information security professionals ranging from system owners,
information owners, developers and program managers.

Building security in as opposed to bolting it on at a later stage enables
organizations to maximize their return on security investment (ROSI) by

 ■ Identifying and mitigating security vulnerabilities and
misconfigurations early in the SDLC where the cost to implement
security controls is considerably lower.

 ■ Bringing to light any engineering or design issues that may require
redesign at a later stage of the SDLC, if security has not been
considered early but is now required.

 ■ Identifying shared security services that can be leveraged which
reduces development cost and time.

 ■ Comprehensively managing risk and facilitating executives to
make informed risk related go/no-go and risk handling (accept/
transfer/mitigate or avoid) decisions.

39

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 39 6/7/2013 5:40:25 PM

In addition to describing security integration into a linear, sequential and
structured development methodology, such as the waterfall software development
methodology, this document also provides insight into IT projects that are not
as clearly defined. This includes: SDLC-based development, such as supply
chain, cross IT platforms (or in some cases, organization), virtualization, IT
facility-oriented (data center, hot sites) developments and the burgeoning service
oriented architectures (SOA). The core elements of integrating security into the
SDLC for non SDLC-based development projects remain the same but it must
be recognized that key success factors for such projects are communications and
documentation of stakeholder relationships apropos to securing the solution.

SP 800-100: Information Security
Handbook: A Guide for Managers
While the SP 800-100 is a must read for management professional who are
responsible for establishing and implementing an information security program,
it can also benefit non-management personnel as it provides guidance from
a management perspective for developers, architects, HR, operational and
acquisition personnel as well. It covers a wide range of information security
program elements, providing guidance on information security governance,
risk management, capital planning and investment control, security planning,
IT contingency planning, interconnecting systems, performance measures,
incident response, configuration management, certification and accreditation,
acquisitions, awareness and training and even security in the SDLC. It is
recommended that as a CSSLP, you are familiar with the contents of this guide.

Federal Information Processing (FIPS) standards
In addition to the various Special Publications NIST produces, they also develop
the Federal Information Processing Standards (FIPS). FIPS publications are
developed to address Federal requirements for:

 ■ interoperability of disparate systems
 ■ portability of data and software and
 ■ computer security

Some of the well-known FIPS publications that are closely related to software
security are

 ■ FIPS 140: Security Requirement for Cryptographic Modules
 ■ FIPS 186: Digital Signature Standard
 ■ FIPS 197: Advanced Encryption Standard

40

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 40 6/7/2013 5:40:25 PM

 ■ FIPS 201: Personal Identity Verification (PIV) of Federal
Employees and Contractors

This section covers these FIPS publications at an introductory level.

FIPS 140: Security Requirement for Cryptographic Modules
The FIPS 140 is the standard that specifies requirements that will need to be
satisfied by a cryptographic module. It provides four increasing qualitative
levels (Level 1 through Level 4) intended to cover a wide range of potential
application and environments. The security requirements cover areas that
are related to secure design and implementation of a cryptographic module,
which include cryptographic module specification, ports and interfaces, roles,
services, and authentication, finite state model, physical security, operational
environment, cryptographic key management, electromagnetic interference/
electromagnetic compatibility (EMI/EMC), self-tests, and design assurance.
Additionally, this standard also specifies that cryptographic module developers
and vendors are required to document implemented controls to mitigate other
(non-cryptographic) attacks (e.g., differential power analysis and TEMPEST).

FIPS 186: Digital Signature Standard (DSS)
FIPS 186: Digital Signature Standard (DSS) specifies a suite of algorithms
that can be used to generate a digital signature. In addition to being used for
detection of unauthorized modifications, digital can also be used to authenticate
the identity of the signatory. The DSS prescribes guidelines for digital signature
generation, verification and validation.

FIPS 197: Advanced Encryption Standard
FIPS 197: Advanced Encryption Security (AES) specifies an approved cryptographic
algorithm to ensure the confidentiality of electronic data. The AES algorithm is a
symmetric block cipher that can be used to encrypt (convert humanly intelligible
plaintext to unintelligible form called cipher text) and decrypt (convert cipher text
to plaintext). This standard replaced the withdrawn FIPS 46-3 Data Encryption
Standard (DES) that prescribed the need to use one of the two algorithms, DES
or Triple Data Encryption Algorithm (TDEA) for data protection, since the AES
algorithm was faster and stronger in its protection of data over the DES algorithm.

41

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 41 6/7/2013 5:40:25 PM

FIPS 201: Personal Identity Verification (PIV)
of Federal Employees and Contractors
The FIPS 201 Personal Identity Verification (PIV) standard was developed in
response to the need to ensure that the claimed identity of personnel (employees
and contractors) who require physical or electronic access to secure and
sensitive facilities and data are appropriately verified. This standard specifies the
architecture and technical requirements for a common identification standard
for Federal employees and contractors.

ISO Standards
The International Organization for Standardization (ISO) is the primary body that
develops International Standards for all industry sectors except electrotechnology
and telecommunications. Electrotechnology standards are developed by
International Electrotechnical Commission (IEC) and telecommunication
standards are developed by the International Telecommunications Union (ITU)
which is the same organization that establishes X.509 digital certificate versions.
ISO in conjunction with IEC (prefixed as ISO/IEC) has developed several
International Standards that are directly related to information security. Unlike
many other standards that are broad in their guidance, most ISO standards are
highly specific. In order to ensure that the standards are aligned to changes in
technology, periodic review of each standard after its publication (at least every
five years) is part of the ISO standards development process.

The ISO standards that are related to information security and software
engineering are covered in this section at a definitional and introductory
level. It is highly recommended that as a CSSLP, you are not only familiar with
these standards but also how they are applicable within your organization.

ISO/IEC 15408 – Evaluating Criteria for
IT Security (Common Criteria)
The ISO/IEC 15408 is more commonly known as the Common Criteria and
is a series of internationally recognized set of guidelines that define a common
framework for evaluating security features and capabilities of Information
Technology security products. The Common Criteria allows vendors to have
their products evaluated by an independent third party against the predefined
evaluation assurance levels (EALs) clearly defined in the standard. It provides
confidence to the owners that the security products they are developing or
procuring meets and implements the minimum security functionality and
assurance specifications, and that the evaluation of the product itself has been

42

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 42 6/7/2013 5:40:25 PM

conducted in a rigorous, neutral, objective, and standard manner. The Common
Criteria can also be used by auditors to evaluate security functionality and
assurance levels and to ensure that all organizational security policies (OSPs)
are enforced, all threats are countered to acceptable levels and that the security
objectives are achieved. It is a standard with multiple parts as listed below –

 ■ ISO/IEC 15408-1:2005 or Part 1 introduces the common criteria
providing the evaluation criteria for IT security as it pertains
to security functional requirements and security assurance
requirements. It introduces the general model that covers the
Protection Profile (PP), the Security Target (ST) and the Target
of Evaluation (TOE) and the relationships between these elements
of the Common Criteria evaluation process as depicted in
Figure 1.12. The Protection Profile (PP) is used to create a set of
generalized security requirements that are reusable. The Security
Target (ST) expresses the security requirements and specifies the
security functions for a particular product or system that is being
evaluation. The ST is what is used by evaluators as the basis of their
evaluations in conformance to the guidelines specified in the ISO/
IEC 15408 standard. The product or system that is being evaluated
is known as the Target of Evaluation (TOE).

Figure 1.12 – Common Criteria Elements

43

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 43 6/7/2013 5:40:26 PM

 ■ ISO/IEC 15408-2:2008 or Part 2 contains the comprehensive
catalog of predefined security functional requirements (SFRs) that
needs to be part of the security evaluation against the TOE. These
requirements are hierarchically organized using a structure of
classes, families and components.

 ■ ISO/IEC 15408-3:2008 or Part 3 defines the security assurance
requirements (SARs) and includes the evaluation assurance levels
(EALs) for measuring assurance of a TOE. There are seven EAL
ratings predefined in Part 3 of the ISO/IEC 15408 standards and a
security product with a higher EAL rating is indicative of a greater
degree of security assurance for that product against comparable
products with a lower EAL rating. Table 1.1 tabulates the seven
EAL ratings and reflects what each EAL rating mean.

The ISO/IEC 15408 Standard and Software Security
The predefined SFRs and SARs defined in the ISO/IEC 15408 standard can
be used to address vulnerabilities that arise from failures in Requirements,
Development and/or in Operations. Software that does not include security
functional or assurance requirements can be rendered ineffective and insecure
even if meets all business functionality. Without security functional and
assurance validation, poor development methodologies and incorrect design can
also lead to vulnerabilities that can easily compromise not just the assurance of
confidentiality, integrity and availability of the software or the information it
handles, but also the business value it provides. Additionally without an active

Table 1.1 - ISO/IEC 15408 Evaluation Assurance Levels

Evaluation
Assurance
Level (EAL) Target Of Evaluation (TOE)

EAL1 Functionally tested

EAL2 Structurally tested

EAL3 Methodically tested and checked

EAL4 Methodically designed, tested and reviewed

EAL5 Semi-formally designed and tested

EAL6 Semi-formally verified design and tested

EAL7 Formally verified design and tested

44

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 44 6/7/2013 5:40:26 PM

evaluation of the security functionality and assurance, software that is designed
and developed to correct specifications, may still be installed and deployed in a
vulnerable state (e.g., admin privileges, unprotected audit logs, etc.) and thereby
render operations insecure.

ISO/IEC 21827:2008 – Systems Security Engineering
Capability Maturity Model® (SSE-CMM®)
The SSE-CMM internationally recognized standard provides guidelines to ensure
secure engineering of systems (and software) by augmenting existing project and
organizational process areas and encompassing all phases in the SDLC in its scope
from concepts definition, requirement analysis, design, development, testing,
deployment, operations, maintenance, and disposal. It also includes guidance
on best practices for interactions with other organizations, acquisitions, and
certification and accreditation (C&A). This model is now the de facto standard
metric for evaluating security engineering practices for the organization or the
customer and for establishing confidence in organizational processes to assure
security. It has close affinity to other CMMs which focus on other engineering
disciplines and is often used in conjunction with them.

ISO/IEC 25000:2005 – Software Engineering Product Quality
The ISO/IEC 25000:2005 provides recommendations and prescriptive guidance
for the use of the new series of International quality standards named Software
product Quality Requirements and Evaluation (SQuaRE). The guidance gives
an overview of the SQuaRE contents, with reference to common models and
definitions as well as the relationship among the documents, providing users a
good understanding of what is needed to design, develop and deploy quality
software products. This guide also contains an explanation of the transition
process between the withdrawn ISO/IEC 9126 and SQuaRE, and also presents
information on how to use the ISO/IEC 9126 series in their previous form.

ISO/IEC 27000:2009 – Information Security Management
System (ISMS) Overview and Vocabulary
This standard aims to provide a common Glossary of Terms and definitions.
It also provides an overview and introduction to the ISMS family of standards
covering

 ■ requirements definition for an ISMS
 ■ detailed guidance to interpret the Plan-Do-Check-Act (PDCA)

processes
 ■ sector-specific guidelines and conformity assessments for ISMS.

45

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 45 6/7/2013 5:40:26 PM

www.allitebooks.com

http://www.allitebooks.org

ISO/IEC 27001:2005 – Information Security
Management Systems Requirements
What the ISO 9001:2000 standards do for quality, the ISO 27001:2005
standard will do for information security. This standard is appropriate for all
types of organizations ranging from commercial companies to not-for-profit
organizations and including the government.

ISO/IEC 27001:2005 specifies the requirements for establishing,
implementing, operating, monitoring, reviewing, maintaining and improving a
documented ISMS. It can be used to aid in:

 ■ formulating security requirements,
 ■ ensuring compliance with external legal, regulatory and compliance

requirements and with internal policies, directives and standards,
 ■ managing security risks cost effectively,
 ■ generating and selecting security controls requirements that will

adequately address security risks,
 ■ identifying existing ISMS processes and defining new ones
 ■ determining the status of the information security management

program
 ■ communicating organizational information security policies,

standards and procedures to other partner organizations and
relevant security information to their customers and also

 ■ enabling the business instead of impeding it.

ISO/IEC 27002:2005/Cor1:2007 – Code of Practice
for Information Security Management
This ISO/IEC 27002 is the replacement for the ISO 17799 standard which
was formerly known as BS 7799. Arguably this is the most well-known security
standard and is intended to provide a common basis and practical guidelines for
developing organizational security standards and effective security management
practices. This standard establishes guidelines and general principles for
initiating, implementing, maintaining, and improving information security
management in an organization. It outlines several best practices of control
objectives and controls in diverse areas of information security management,
ranging from security policy, information security organization, asset
management, HR, physical and environmental security, access control,
communications and operations management, business continuity management,

46

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 46 6/7/2013 5:40:26 PM

incident management, compliance and even information systems acquisition,
development and maintenance.

The control objectives and controls in this standard are intended to address
the findings from the risk assessment. Cor. denotes a Technical corrigendum
which is a document issued to correct a technical error or ambiguity in a
normative document or to correct information that has been outdated, provided
the modification has no effect on the technical normative elements of the
standard it corrects.

ISO/IEC 27005:2008 - Information Security Risk Management
It should be no surprise that that a CSSLP must be familiar with the ISO/
IEC 27005 standard as it is the International Standard for information security
risk management. The basic principle of risk management is to ensure that
organizational risk is reduced to acceptable thresholds and that the residual risk
is at or preferably below that threshold. This standard provides the necessary
guidance for information security risk management and is designed to assist the
implementation of security control to a satisfactory level based on establishing
the scope or context for risk assessment, assessing the risks, making risk based
decisions to treat the identified risks, and communicating and monitoring risk.
The ISO/IEC 30001 standard is currently under development and is expected
to be the likely replacement for or enhancement to the ISO/IEC 27005:2008
international information security risk management standard.

ISO/IEC 27006:2007 – Requirements for
Bodies Providing Audit and Certification of
Information Security Management Systems
This primary goal of this standard is to support accreditation and certification
bodies that audit and certify information security management systems. It
includes in it the competency and reliability requirements that an auditing and
certifying body must demonstrate and also provides guidance on how to interpret
the requirements it contains to ensure reliable and consistent certification of
Information Security Management Systems.

ISO 28000:2007 - Specification for security
management systems for the supply chain
With an increase in the number of off-the-shelf software products developed
using a supply chain, it is important to protect the supply chain processes to assure
the integrity of the software. The ISO 28000:2007 specifies the requirements
for a security management system, including those aspects critical to security

47

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 47 6/7/2013 5:40:26 PM

assurance of the supply chain. These aspects include all activities controlled or
influenced by organizations that impact supply chain security. Additionally, this
standard gives prescriptive recommendations on where and when they have an
impact on security management, including transfer and delivery of software
products along the supply chain.

PCI Standards
Payment Card Industry Data Security Standard (PCI DSS)

With the prevalence of ecommerce and web computing in this day and age,
it is highly unlikely that those who are engaged with business that transmits
and processes payment card information have not already been inundated with
the PCI requirements, more particularly the PCI DSS. Originally developed by
American Express, Discover Financial Services, JCB International, MasterCard

Figure 1.13 - PCI DSS Control Objectives to Requirements mapping

Build and Maintain a Secure Network

Requirement 1: Install and maintain a firewall configuration to protect
cardholder data

Requirement 2: Do not use vendor-supplied defaults for system
passwords & other security parameters

Protect Cardholder Data
Requirement 3: Protect stored cardholder data

Requirement 4: Encrypt transmission of cardholder data across open,
public networks

Maintain a Vulnerability Management Program
Requirement 5: Use and regularly update anti-virus software
Requirement 6: Develop and maintain secure systems and applications

Implement Strong Access Control Measures

Requirement 7: Restrict access to cardholder data by business need-to-
know

Requirement 8: Assign a unique ID to each person with computer
access

Requirement 9: Restrict physical access to cardholder data

Regularly Monitor and Test Networks

Requirement 10: Track and monitor all access to network resources
and cardholder data

Requirement 11: Regularly test security systems and processes

Maintain an Information Security Policy
Requirement 12: Maintain a policy that addresses information security

48

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 48 6/7/2013 5:40:26 PM

Worldwide and Visa, Inc. International, the PCI is a set of comprehensive
requirements aimed at increasing payment account data security. It is regarded
as a multifaceted security standard as it includes requirements not only for the
technological elements of computing such as network architecture and software
design, but also for security management, policies, procedures and other critical
protective measures.

The goal of the PCI DSS is to facilitate organization’s efforts to proactively
protect card holder payment account data. It is comprised of 12 foundational
requirements that are mapped into 6 sections or control objectives as Figure 1.13
illustrates.

If your organization has the need to transmit, process or store the Primary
Account Number (PAN), then PCI DSS requirements are applicable. Certain
card holder data elements such as the sensitive authentication data which is
comprised of the full magnetic strip, the security code and the PIN block are
disallowed from being stored after authorization even if it is cryptographically
protected. Although all of the requirements have a bearing on software security,
the requirement that is directly and explicitly related to software security is
requirement 6 which is the requirement to develop and maintain secure systems
and applications. Each of these requirements are further broken down into

PCI DSS Requirement 6: Develop and maintain secure systems and applications

Requirement
6.1 Ensure that all system components and software have the latest vendor- supplied

security patches installed. Install critical security patches within one month of release.

6.2 Establish a process to identify newly discovered security vulnerabilities (e.g., alert
subscriptions) and update configuration standards to address new vulnerability
issues.

6.3 Develop software applications in accordance with industry best practices (e.g., input
validation, secure error handling, secure authentication, secure cryptography, secure
communications, logging, etc.), and incorporate information security throughout the
software development life cycle.

6.4 Follow change control procedures for all changes to system components.

6.5 Develop all web applications based on secure coding guidelines (such as OWASP) to
cover common coding vulnerabilities in software development.

6.6 For public-facing web applications, address new threats and vulnerabilities on an
ongoing basis and ensure these applications are protected against known attacks
by either reviewing these applications annually or upon change, using manual
or automated security assessment tools or methods, or by installing a web
application firewall in front of the public-facing web application.

Table 1.2 - PCI DSS Requirement 6 and its sub-requirements

49

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 49 6/7/2013 5:40:26 PM

sub-requirements and it is recommended that you become familiar with each
of the 12 foundational PCI DSS requirements if your organization is involved
in the processing of credit card transactions. It is important to highlight
Requirement 6 and its sub-requirements (6.1 to 6.6) because they are directly
related to software development. Table 1.2 tabulates PCI DSS Requirement 6’s
sub-requirement one level deep.

Payment Application Data Security Standard (PA-DSS)
The PA-DSS was created by the Payment Card Industry Security Standards
Council to assist Qualified Security Assessors (QSAs) when conducting
payment application reviews. QSAs can use the PA-DSS to validate that their
payment application that they are assessing is compliant with the PCI DSS,
because it serves as a template to create the report on validation. It used to
be formerly known as the Payment Application Best Practices (PABP).

It must be recognized that traditional PCI DSS compliance may not apply
directly to payment application vendors since most vendors do not store,
process or transmit cardholder data. However, since these payment applications
are used by customers who are also required to be PCI DSS compliant,
payments applications should facilitate and not prevent the customers’ PCI
DSS compliance. Some of the ways in which a payment application can prevent
customer compliance is if the payment application requires the customer to:

 ■ store the magnetic stripe data and/or equivalent data on the chip in
the customer’s network after authorization.

 ■ disable protection features such as anti-virus software or firewalls
in order to get the payment application can work.

Additionally, the use of a PA-DSS compliant application by itself does not
make an entity PCI DSS compliant, since the application must be implemented
into a PCI DSS compliant environment. It is advisable that as a CSSLP, you
familiarize yourself with the scope of the PA-DSS, as published in the standard.

Organization for the Advancement of
Structured Information Standards (OASIS)
The Organization for the Advancement of Structured Information Standards
(OASIS) consortium drives the development, convergence and adoption of open
standards for the global information society. It promotes industry consensus and
produces standards for security, Cloud computing, Service Oriented Architectures
(SOA), Web services, the Smart Grid, etc. The standards offer the potential to
lower cost, stimulate innovation, and protect the right of free choice of technology.

50

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 50 6/7/2013 5:40:26 PM

Some of the standards published by the OASIS which are of interest to
software security include:

 ■ Application Vulnerability Description Language (AVDL)
 ■ Security Assertion Markup Language (SAML)
 ■ eXtensible Access Control Markup Language (XACML)
 ■ Key Management Interoperability Protocol (KMIP) Specification
 ■ Universal Description, Discovery and Integration (UDDI)
 ■ Web Services (WS-*) Security

It is advisable that as a CSSLP, you familiarize yourself with these standards
and how they can be used in the building of hacker-resilient software.

Benefits of Security Standards
Security standards provide a common and consistent basis for building
and maintaining secure software as they enable operational efficiency and
organizational agility. Say all of the software developed in your organization was
developed using the then standard for cryptographic functionality which was
DES and now your organization requires all of your software to use the AES.
In such a scenario, the effort to switch over can be consistently and efficiently
addressed across various software teams in your organization, since there are
no proprietary or non-standard software that requires specialized attention.
Security standards lower the total cost of ownership (TCO) by facilitating ease
of adoption and maintenance, and by increasing operational efficiency and
organizational agility when changes to standards are needed.

Security standards are useful to provide interoperability as well. Today,
we live in a world that is highly interconnected, despite the fact that not all
players in the global marketscape use the same technology and communication
protocols. Interoperability gives vendor independence and allows for these
heterogeneous and disparate systems to communicate with each other using a
common protocol. Such communication needs to be secure as well and security
standards such as WS-Security, Secure Electronic Transmission (SET) are good
examples of standards that not only allow for interoperability but also security.
WS-security is the secure communication protocol of web services.

Security standards can also be leveraged to provide your company with
a competitive advantage, in addition to providing some degree of liability
protection. It is not uncommon to observe that customers are more comfortable
in purchasing products and services from web sites that publicize that they

51

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 51 6/7/2013 5:40:26 PM

are compliant to the Payment Card Industry Data Security Standard (PCI
DSS) requirements, than from those that don’t. Organizations that choose to
knowingly ignore such security standards can be held liable and accountable in
a court of law.

Security standards provide a common baseline for assessments. Most
standards complement best practices and adopting such a standard and
following it can facilitate in formal evaluation and certification of the software
product itself. The ISO 15408 standard provides common criteria (and hence
this standard is also known as the Common Criteria) that can be used to
evaluate a vendor product from not only a functionality perspective but also
an assurance perspective. When evaluating software from several external third
party vendors, it is, therefore, important to request the common criteria rating
of their product, which will give an indication of the assurance (security) and
reliability (functionality) of that product.

Security standards can be used to demonstrate indirectly governance as well,
since they contain security control objectives which when satisfied often address
compliance and regulatory requirements. ISO/IEC 27001 certified ISMS
demonstrates that your system is compliant with many of the information security
requirements as mandated by state, national and international regulations such
as the FISMA, GLBA, HIPAA, EU Safe Harbor and PIPEDA, covered later in
more detail in this chapter.

Best Practices
In addition to standards, there exists several best practices for information
security that are important for a security professional to be aware of. Some of
these best practices have become de facto standards and for all practical purposes,
one can consider them to be standard like in their implementation. Some of
the popular best practices that have a direct bearing on software security are
the Open Web Application Security Project (OWASP) and the Information
Technology Infrastructure Library (ITIL).

Open Web Application Security Project (OWASP)
The Open Web Application Security Project is a worldwide free and open
community that is focused on application security and predominantly web
application security. It can be considered to be the leading best practice for web
application security. All of OWASP undertakings are community focused and
vendor neutral.

52

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 52 6/7/2013 5:40:26 PM

The projects undertaken aim at improving the current state of web application
security and the work and results are openly and freely available to anyone.
OWASP projects can be broadly categorized as development or documentation
projects. The development projects aim at providing the security community
with free tools and the documentation projects help in generating practical
guidance on various aspects of application security in the form of publications
and guides.

One of the most popular publications within OWASP is the OWASP
Top 10, which periodically publishes the Top 10 web application security
risks as depicted in Figure 1.14 and their appropriate protection mechanisms.
Vulnerabilities that are part of the Top 10 and their remediation measures will
be covered in depth in the secure software implementation and secure software
testing chapters of this book.

Some of the most popular guides developed in the OWASP are the
 ■ Development Guide
 ■ Code Review Guide and the
 ■ Testing Guide

The OWASP Development Guide
This is a comprehensive manual for designing, developing and deploying secure
web applications and web services. The target audiences for this guide are
architects, developers, consultants and auditors. This guide covers the various
security controls that software developers should build into the software they
design and develop.

Figure 1.14 - OWASP Top 10 Web Application Security Risks

53

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 53 6/7/2013 5:40:26 PM

The OWASP Code Review Guide
This is a comprehensive manual for understanding how to detect web application
vulnerabilities in the code and what safeguards can be taken to address them.
The guide calls out that for a successful code review process, the reviewer must
be familiar with the following –

 ■ Programming Language (Code)
 ■ Working knowledge of the software (Context)
 ■ End-users (Audience) and
 ■ Impact of the availability of the software to the business or its lack

thereof (Importance)

Conducting code reviews to verify application security is much more cost
effective than having to test the software for security vulnerabilities.

The OWASP Testing Guide
The Testing Guide is a comprehensive manual that covers the procedures and
tools that are necessary to validate software assurance. This Testing Guide can
also be used as part of a comprehensive application security verification. The
target audiences for this guide are software developers, software testers and
security specialists.

Other OWASP Projects
OWASP is currently actively working on several other useful web application
security projects, some of which worth mentioning here are the Application
Security Desk Reference (ASDR), the Enterprise Security Application
Programming Interface (ESAPI) and the Software Assurance Maturity Model
(SAMM). More information about each of these projects can be obtained from
the OWASP website.

It is highly recommended that you are familiar with these guides to be an
effective secure software professional.

Information Technology Infrastructure Library (ITIL)
Although the IT Infrastructure Library (ITIL) has been around for nearly
two decades, it is now gaining acceptance and popularity and is considered
to be the de facto standard for service management. It was developed by the
Central Computer and Telecommunication Agency (CCTA) in the UK. For
an IT organization to be effective, it must be able to deliver to the business,
the expected level of service, even when operating within the constraints of
scope, schedule and budget. Delivering business value by meeting the business

54

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 54 6/7/2013 5:40:26 PM

service level agreements (SLA) is enhanced when the IT organization adopts a
framework that includes best practices and standards on service management.
The ITIL is a cohesive best practice framework that was originally developed in
alignment with the then UK standard for IT Service Management (BS 15000)
which is now ISO/IEC 20000, the first international standard for IT Service
Management. ITIL today is in its third version (commonly known as ITIL
V3) that considers the Lifecycle of a service from initial planning, alignment
to business need to final retirement, unlike its previous versions which were
process focused. ITIL V3 was revised to be aligned with industry best practices
and standards and aptly covers existing Information Security standards, such as
those in the ISO 27000 series. Although, Security Management is no longer a
separate publication in the current version, it must still be recognized that the
security framework guidance in ITIL aligns very closely to information security
standards and this can be leveraged to provide information security services to
the business. As a CSSLP, it is recommended that you are familiar with ITIL and
its relationship to security, especially security in the SDLC.

55

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 55 6/7/2013 5:40:26 PM

Software Development Methodologies
Software development is a structured and methodical process that requires
the interplay of people expertise, processes and technologies. The Software
Development Lifecycle (SDLC) is often broken down into multiple phases that
are either sequential or parallel. In this section, we will learn about the prevalent
SDLC models that are used to develop software. These include:

 ■ Waterfall model
 ■ Iterative model
 ■ Spiral model
 ■ Agile development methodologies

Waterfall Model
The waterfall model is one of the most traditional of software development models
still in use today. It is a highly structured, linear and sequentially phased process
characterized by predefined phases, each of which must be completed before one
can move on to the next phase. Just as water can flow in only one direction down
a waterfall, once a phase in the waterfall model is completed, one cannot go back
to that phase. Winston W. Royce’s original waterfall model from 1970 has the
following phases that are to be followed in order:

Figure 1.15 - Waterfall model

56

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 56 6/7/2013 5:40:26 PM

A. Requirements specification
B. Design
C. Construction (a.k.a. implementation or coding)
D. Integration
E. Testing and debugging (a.k.a. verification)
F. Installation and

G. Maintenance

The waterfall model is useful for large scale software projects because it
brings structure by phases to the software development process. The National
Institute of Standards and Technology (NIST) Special Publication 800-64 REV
1d, covering ‘Security Considerations in the Information Systems Development
Life Cycle’, breaks the linear waterfall SDLC model into five generic phases:
initiation, acquisition/development, implementation/assessment, operations/
maintenance and sunset as depicted in Figure 1.15. Today, there are several other
modified versions of the original waterfall model that include different phases
with slight or major variations, but the definitive characteristic of each is the
unidirectional sequential phased approach to software development.

From a security standpoint, it is important to ensure that the security
requirements are part of the requirements phase. Incorporating any missed
security requirements at a later point in time will results in additional costs and
delays to the project.

Iterative Model
In the iterative model of software development, the project is broken into smaller
versions and developed incrementally, as illustrated in Figure 1.16. This allows
the development effort to be aligned with the business requirements, uncovering
any important issues early in the project and therefore avoiding disastrous
faulty assumptions. It is also commonly referred to as the prototyping model in
which each version is a prototype of the final release to manufacturing (RTM)
version. Prototypes can be built to clarify requirements and then discarded or
they may evolve into the final RTM version. The primary advantage of this
model is that it offers increased user input opportunity to the customer or
business which can prove useful to solidify the requirements as expected before
investing a lot of time, effort and resources. However, it must be recognized
that if the planning cycles are too short, non-functional requirements, especially
security requirements, can be missed and if it is too long, then the project can
suffer from analysis paralysis and excessive implementation of the prototype.

57

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 57 6/7/2013 5:40:26 PM

Spiral Model
The spiral model, as shown in Figure 1.17, is a software development model that
has elements of both the waterfall model and the prototyping model, generally
for larger projects. The key characteristic of this model is that each phase has
a risk assessment review activity. The risk of not completing the software
development project within the constraints of cost and time is estimated and
the results of the risk assessment activity is used to find out if the project needs
to be continued or not. This way, should the success of completing the project
be determined as questionable, then the project team has the opportunity to cut
the losses before investing more into the project.

Agile Development Methodologies
Agile development methodologies are gaining a lot of acceptance today and
most organizations are embracing agile development methodologies for their
software development projects. The agile development methodologies are
built on the foundation of iterative development with the goal of minimizing
software development project failure rates by developing the software in
multiple repetitions (iterations) and small timeframes (called timeboxes). Each
iteration includes the full SDLC. The primary benefit of agile development
methodologies is that changes can be made quickly. It uses feedback that is
driven by regular tests and releases of the evolving software as its primary control
mechanism, instead of planning as in the case of the spiral model.

Figure 1.16 – Iterative model

58

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 58 6/7/2013 5:40:26 PM

The two main agile development methodologies include:
 ■ Extreme Programming (XP) model
 ■ Scrum

The XP model is also referred to as the “people-centric” model of
programming and is useful for smaller projects. It is a structured process as
depicted in Figure 1.18 that storyboards and architects user requirements in
iterations and validates the requirements using acceptance testing. Upon
acceptance and customer approval, the software is released. Success factors for
the XP model are 1) starting with the simplest solutions and 2) communication
between team members. Some of the other distinguishing characteristics of XP
are adaptability to change, incremental implementation of updates, feedback
from both the system and the business user or customer, and respect and courage
for all who are part of the project.

Figure 1.17 – Spiral model

59

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 59 6/7/2013 5:40:27 PM

Another recent, very popular and widely used agile development methodology
is the Scrum programming approach. Scrum approach calls for 30-day release
cycles to allow the requirements to be changed on the fly, if necessary. In Scrum
methodology, the software is kept in a constant state of readiness for release,
as shown in Figure 1.19. The participants in Scrum have pre-defined roles,
which are of two types depending on their level of commitment, i.e., pig roles
(those who are committed, whose bacon is on the line) and chicken roles (those
who are part of the Scrum team participating in the project). Pig roles include
the Scrum master who functions like a project manager in regular projects,
the product owner who represents the stakeholders and is the voice of the
customer, and the team of developers. The team size is usually between 5 and 9
for effective communication. Chicken roles include the users who will use the
software being developed, the stakeholders (the customer or vendor) and other
managers. A prioritized list of high level requirements is first developed which
is known as a Product Backlog. The time, usually about 30 days, that is allowed

Figure 1.18 – Extreme programming model

Figure 1.19 – Scrum

60

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 60 6/7/2013 5:40:27 PM

for development of the product backlog is called a Sprint. The list of tasks to
be completed during a Sprint is called the Sprint Backlog. A daily progress for
a Sprint is recorded for review in the artifact known as the Burn Down Chart.

Which Model Should We Choose?
In reality, the most conducive model for enterprise software development is

usually a combination of two or more of these models. It’s important, however,
to realize that no model, or combination of models, can create inherently
secure software. For software to be securely designed, developed and deployed,
a minimum set of security tasks needs to be effectively incorporated into the
system development process, and the points of building security into the SDLC
model should be identified.

Software Assurance Methodologies
There are several software assurance methodologies that aid in the design,
development, testing and deployment of quality and secure software. These
range from simple methodologies to those more robust and comprehensive that
can be used at different stages of the SDLC. In this section we will discuss the
most popular security methodologies and how they can be leveraged to build
secure software.

Socratic Methodology
The Socratic methodology is a useful technique for addressing issues that
arise from individuals who have opposing views on the need for security in
the software they build. It is a form of cross-examination and is also known as
the Method of Elenchus (Elenchus in ancient Greek means cross-examination)
whose goal is to instigate ideas and stimulate rational thought. The way it works
is that the one with the opposing viewpoint is questioned on their rationale
for their position, often with a negative form of their question itself. The
Socratic methodology in layman’s terms can be referred to as the “Questioning
the Questioner” methodology wherein the questioner is questioned on their
viewpoint, often using their own question itself. For example, if someone was
to challenge the need for encryption as a disclosure protection mechanism and
asks you, “Why is it that I must ensure that data is protected against disclosure
threats?”, instead of giving them reasons such as “the security policy mandates it”
or “the consequence of disclosure can be disastrous” or even that “it is the right
thing to do for our customers”, the Socratic method suggests that, you revert the
question back to the questioner in a negative form, which means, you question
in return “Why is it that you must NOT ensure that data is protected against

61

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 61 6/7/2013 5:40:27 PM

disclosure threats?”. In addition to curtailing opposition to the incorporation
of security in software, the Socratic methodology can also be used to analyze
complex concepts and determine security requirements by asking questions that
instigate ideas and stimulate rational thought.

Six Sigma (6 σ)
Sigma in statistics is used to represent deviation from the norm. Although Six
Sigma is a business management strategy for quality it can be closely related
to security because it is used for process improvement by measuring if a
product (software) or service is near perfect in quality by eliminating defects.
Defects are defined as deviations from specifications (requirements). Near
perfect implies that the process is as close as possible to having zero defects.

For a process to be certified as having Six Sigma quality, it must have at the
maximum 3.4 defects per million opportunities (DPMO) where an opportunity
is defined as a chance for deviation (or non-conformance) to specifications. The
key sub-methodologies by which Six Sigma quality can be achieved are

 ■ DMAIC (Define, Measure, Analyze, Improve and Control) –
which is used for incremental improvement of existing processes
that are below Six Sigma quality and

 ■ DMADV (Define, Measure, Analyze, Design and Verify) – which
is used to develop new processes for Six Sigma products and
services. It can also be used for new versions of the product or
service when the extent of changes are substantially greater than
what incremental improvements can address.

The Six Sigma processes are usually executed by trained professionals who
are certified as Six Sigma green belts or black belts.

It is important to note that a software product may be of Six Sigma quality but
it may still be insecure if the specifications don’t include security requirements.
This further accentuates the importance of ensuring that security requirements
are determined and included in addition to functional specifications.

Capability Maturity Model Integration (CMMI)
Developed by the Software Engineering Institute and based on Total Quality
Management (TQM), like Six Sigma, the Capability Maturity Model Integration
(CMMI) is a process improvement methodology as well, which provides
guidance for quality improvement and point of reference for appraising existing
processes. Simply put, CMMI is a 1-5 rating scale that can be used to rate the

62

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 62 6/7/2013 5:40:27 PM

maturity of the software development processes within one’s organization.

Three areas in which CMMI can be used are development (products),
delivery (services) and acquisition (products and services).

CMMI includes a collection of best practices that one can use to compare
their organizational processes against. When this is done formally, it is referred
to as an appraisal and the Standard CMMI Appraisal Method for Process
Improvement (SCAMPI) incorporates some of the industry best practices
for process improvements. The formal appraisals yield one of the five CMMI
maturity levels that can be indicative of processes ranging from chaotic and ad
hoc to highly optimized within your organization. The five CMMI maturity
levels are

 ■ Initial (Level 1) – Processes are ad hoc, poorly controlled, reactive
and highly unpredictable.

 ■ Repeatable (Level 2) – Also reactive in nature, the processes
are grouped at the project level and are characterized as being
repeatable and managed by basic project management tracking of
cost and schedule.

 ■ Defined (Level 3) – Level 2 maturity level deals with processes at
the project level, but in this level, the maturity of the organizational
processes is established and improved continuously. Processes are
characterized, well understood and proactive in nature.

 ■ Managed Quantitatively (Level 4) – In this level, the premise
for maturity is that what cannot be measured cannot be managed
and so the processes are measured against appropriate metrics and
controlled.

 ■ Optimizing (Level 5) – In this level, the focus is on continuous
process improvements through innovative technologies and
incremental improvements. Organizations with this level of
software development process maturity have the ability to quickly
and effectively adapt to changing business objectives, thereby
allowing the organization to scale.

Incorporation of security into the SDLC is easier and more efficient if the
organizations already have a higher level of process maturity.

63

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 63 6/7/2013 5:40:27 PM

Operationally Critical Threat, Asset and
Vulnerability Evaluation (OCTAVE®)
The Carnegie Mellon Software Engineering Institute (SEI) jointly with the
United States Computer Emergency Readiness Team (US-CERT) developed
OCTAVE which is a risk-based information security strategic assessment
methodology. OCTAVE is an acronym for Operationally Critical Threat, Asset and
Vulnerability Evaluation and it includes a suite of tools, techniques and methods.

OCTAVE provides insight into the organizational risk, and the state of
security and resiliency within the organization. It can be self-directed and supports
cross-functional teams to assess organizational and technical risk and is available
in three flavors; the original OCTAVE for any organization, OCTAVE-S for
smaller organization and OCTAVE-Allegro, which is a streamlined approached
for information security assessment and assurance.

OCTAVE is performed in three phases as depicted in Figure 1.20 and
described below.

 ■ Phase 1: Build asset-based threat profiles – In this phase, the
risk analysis team determines information related items that are
of value (assets) and important to the organization for continued
business operations. The team then prioritizes those assets into
critical assets and describes security requirements for each critical
asset. In the next step, the team identifies potential threats that
can be orchestrated against each critical asset, creating a threat
profile for each asset. This evaluation is conducted to determine
the risk at the organizational level.

Figure 1.20 – Operationally Critical Threats, Assets and Vulnerability Evaluation Phases

64

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 64 6/7/2013 5:40:27 PM

 ■ Phase 2: Identify infrastructure vulnerabilities – In this phase,
the risk analysis team examines infrastructural components
(such as network paths, ports, protocols, etc.) and their level of
resistance against attacks, with the intent to identify weaknesses
(vulnerabilities). This evaluation is conducted to determine the
technical risks.

 ■ Phase 3: Develop security strategy and plans – In this phase, the
risk analysis team makes plans to address threats to and mitigate
vulnerabilities in critical assets that were identified in the first two phases.

A complete and in depth description of OCTAVE is beyond the scope
of this book. As a CSSLP, it is advisable to be familiar with this robust and
comprehensive risk analysis and management methodology.

STRIDE and DREAD
STRIDE is a threat modeling methodology that is performed in the design
phase of software development in which threats are grouped and categorized
into the following six categories.

 ■ Spoofing – Impersonating another user or process
 ■ Tampering – Unauthorized alterations that impact integrity
 ■ Repudiation – Cannot prove the action; deniability of claim
 ■ Information Disclosure – Exposure of information to unauthorized

user or process that impact confidentiality
 ■ Denial of Service – Service interruption that impacts availability
 ■ Elevation of privilege – Unauthorized increase of user or process

rights

DREAD is a risk calculation or rating methodology that is often used in
conjunction with STRIDE, but does not need to be. To overcome inconsistencies
and qualitative risk ratings (such as High, Medium and Low), the DREAD
methodology aims to arrive at rating the identified (and categorized) threats by
applying the following five dimensions.

 ■ Damage potential – What will be the impact upon exploitability?
 ■ Reproducibility – What is the ease of recreating the attack/exploit?
 ■ Exploitability – What minimum skill level is necessary to launch

the attack/exploit?
 ■ Affected users – How many users will be potentially impacted

upon a successful attack/exploit?
 ■ Discoverability – What is the ease of finding the vulnerability that

yields the threat?

65

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 65 6/7/2013 5:40:27 PM

STRIDE and DREAD are covered in depth in the secure software design
chapter of this book.

Open Source Security Testing
Methodology Manual (OSSTMM)
The Institute for Security and Open Methodologies (ISECOM) developed the
Open Source Security Testing Methodology Manual (OSSTMM), which is a
peer-reviewed testing methodology for conducting security tests and how to
measure the results using applicable metrics. It is technically focused and broad
in its evaluation. The primary purpose of this manual is to provide a scientific
methodology for the accurate characterization of security through examination
and correlation of test results in a consistent and reliable way. Secondarily, it
provides guidelines to auditors to perform an assurance audit to show that the
tests themselves were thorough, complete, and compliant and the results of the
test are quantifiable, reliable, consistent and accurately representative of the tests.
The output from a OSSTMM security audit is a report known as the Security
Test Audit Report (STAR), which includes the specific actions conducted in
tests, the corresponding metrics and the state of the strength of controls.

Flaw Hypothesis Method (FHM)
The Flaw Hypothesis Method (FHM) is as the name suggests a vulnerability
prediction and analysis method that uses comprehensive penetration testing to
test the strength of the security of the software. FHM is very useful in the area
of software certification. By simulating attacks (penetration testing), weaknesses
in design (flaws) and coding (bugs) can be uncovered in the current version of
the software, but this can be used to determine security requirements for future
versions of the software as well. There are four primary phases (stages) in the
FHM as described below.

 ■ Phase 1: Hypothesizing potential flaws in the software
from documentation. This documentation can be internal
documentation that describes the software context and working
knowledge (behavior) of the software or it can be externally
published vulnerability reports or lists. One major technique that
is used in this phase of the FHM is the deviational method, in
which deviations from known software behavior (misuse cases) is
used to generate or hypothesize flaws.

 ■ Phase 2: Confirmation of flaws by conducting actual simulation
penetration tests and desk checking tests. Desk checking attests

66

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 66 6/7/2013 5:40:27 PM

program logic by executing program statements using sample data.
The flaws that are exploitable are marked as ‘confirmed’ and those
that are not are marked as ‘refuted’.

 ■ Phase 3: Generalization of confirmed flaws to uncover other
possibilities of weaknesses in the software.

 ■ Phase 4: Addressing the discovered flaws in the software to mitigate
risk by either adding countermeasures in the current version or
designing in safeguards for future versions.

One of the major drawbacks of the FHM is that it can help identify only
known threats, nonetheless this is a very powerful methodology to attest the
security strength of software that has already been deployed or is being developed.

Enterprise Application and
Security Frameworks
Some of the most prominent security frameworks that are related with software
security or associated areas are described in this section.

Zachman Framework
Although it is nearly three decades since the Zachman Framework was formulated
by John Zachman, it is still regarded as a robust enterprise architecture
framework. The goal of the framework is to align Information Technology (IT)
to the business. It is often depicted as a 6 x 6 matrix that factors in six reification
transformations (strategist, owner, designer, builder, implementer, and workers)
along the rows and six communication interrogatives (what, how, where, who,
when and why) as columns. The intersection of the six transformations and the
six interrogatives yield the architectural elements. Using the same interrogative
technique against the reification transformations from a security standpoint view
can be useful in determining the security architecture that needs to be designed.

Control Objectives for Information and
related Technology (COBIT®)
Published by the IT Governance Institute (ITGI), the Control Objectives for
Information and related Technology (COBIT®) is an IT governance framework
with supporting tools that can be used to close gaps between control requirements,
technical issues and business risks. It defines the reasons for IT governance, the
stakeholders and what it needs to accomplish. It enables policy development
and adds emphasis on regulatory compliance. The complete COBIT package
includes the following six publications –

67

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 67 6/7/2013 5:40:27 PM

 ■ Executive summary
 ■ Framework
 ■ Control objectives
 ■ Audit guidelines
 ■ Implementation toolset and
 ■ Management guidelines

Committee of Sponsoring Organizations (COSO)
COSO is a conglomeration of worldwide recognized frameworks that provides
guidance on organizational governance, business ethics, internal controls,
enterprise risk management, fraud and financial reporting. COSO describes
a unified approach for evaluation of internal control systems that have been
designed to provide reasonable assurance. The Enterprise Risk Management
(ERM) COSO framework that emphasizes the importance of identifying and
managing risks across the enterprise is widely adopted and used.

Sherwood Applied Business Security
Architecture (SABSA)
SABSA is a framework for developing risk based enterprise security architectures
and for delivering security solutions that support business initiatives. It is based
on the premise that security requirements are determined from the analysis of
the business requirements. It is a layered model that covers the different phases
of the IT lifecycle from strategy, design, and implementation to operations.
Each layer represent a view of a role played in the SDLC and the associated
security architecture that can be derived from it as tabulated in Table 1.3. It is
compliant with other acclaimed frameworks, standards and methodologies such
as COBIT, ISO 27000 series, and ITIL.

Table 1.3 - SABSA layers

View Security Architecture Level
Business Contextual
Architect Conceptual
Designer Logical
Builder Physical
Tradesman Component
Facilities Manager Operational

68

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 68 6/7/2013 5:40:27 PM

Regulations, Privacy and Compliance
Until a few years ago, organizations that were under regulatory oversight for
software security (more particularly data) breaches were an exception. This
seems to be no longer the case as is evident from the chronology of data breaches
report, published by the Privacy Rights ClearingHouse, which enlists to date
over 300 million or more records that have been breached as a result of software
insecurity. Financial levies and cost of recovery have been so exorbitant in many
cases that it caused disruptions up to total bankruptcy of organizations, not to
mention the loss in stakeholder trust. This has led to the plethora of regulations
and privacy mandates that organizations need to comply with. The cost of non-
compliance combined with the need to regain (in cases where it is lost) or retain
(in cases where it is not yet lost) stakeholder trust have become driving factors
for the organizations to include regulatory and privacy requirements as part of
their governance programs which includes the need to incorporate security in
the SDLC as an integral part of the process.

Regulations and privacy mandates exist primarily to provide a check-and-
balance mechanism to earn stakeholder trust and prevent the disclosure of
personally identifiable, personal health or personal financial information (PII,
PHI, and PFI). Regulatory and privacy requirements need to be determined
during the requirements phase of the SDLC and control mechanisms to ensure
that they are complied with must be factored into the software design, architecture,
development and deployment. It is imperative that software development team
members work closely with the legal and/or privacy teams in your organization
to obtain the list of applicable regulations for your organization.

Covering in detail each and every regulation and privacy requirement that
is necessary to comply with is beyond the scope of this book. In this section,
some of the significant regulations, acts and privacy mandates are introduced.
This is followed by the challenges they invoke and a brief description of how to
ensure that privacy requirements are not ignored and privacy related guidelines
and concerns are addressed when dealing with building secure software. It is
highly advisable that as a CSSLP, you are familiar with each of these significant
regulations and acts as well as any other regulatory, privacy and compliance
requirements that your organization needs to be compliant with.

69

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 69 6/7/2013 5:40:27 PM

Significant Regulations and Privacy Acts
Sarbanes-Oxley Act (SOX)
The Sarbanes-Oxley Act, commonly referred to as SOX is arguably the most
significant of regulations that has a direct impact on security. Also known as the
Public Company Accounting Reform and Investor Protection Act, SOX was
enacted in 2002 to improve quality and transparency in financial reporting and
independent audits and accounting services for public companies. This came on
the heels of major corporate and accounting frauds perpetrated by companies like
Enron, Tyco International and WorldCom and intended to increase corporate
responsibility to its investors.

The SOX Act has 11 titles that mandate specific requirements for financial
reporting and address

1. Public Company Accounting Oversight Board
2. Auditor Independence
3. Corporate Responsibility
4. Enhanced Financial Disclosures
5. Analyst Conflicts of Interest
6. Commission Resources and Authority
7. Studies and Reports
8. Corporate and Criminal Fraud Accountability
9. White-Collar Crime Penalty Enhancements

10. Corporate Tax Returns and
11. Corporate Fraud and Accountability

Two sections under the SOX Act that became prominent and in some
cases contentious in the context of security controls and the Security Exchange
Commissions (SEC) directives that adopted rules to conform with the SOX Act
were Section 302 that covers corporate responsibility for financial controls and
Section 404 that deals with management’s assessment of internal controls. The
strength of the controls is assessed and an internal control report is generated
that describes the adequacy and effectiveness of the disclosed controls.

BASEL II
BASEL II is the European Financial Regulatory Act that was originally developed
to protect against financial operations risks and fraud. It was developed initially to
be an international standard for banking regulators and provide recommendations
on banking regulations and laws.

70

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 70 6/7/2013 5:40:27 PM

Gramm-Leach-Bliley Act (GLB Act)
The Gramm-Leach-Bliley Act (GLB Act) is a financial privacy act that aims to
protect consumers’ personal financial information (PFI) contained in financial
institutions. It is also known as the Financial Modernization Act of 1999, the
GLB Act has the following three main parts to the privacy requirements

1. Financial Privacy Rule – which governs the collection and
disclosure of PFI. Inclusive in its scope are companies that are
non-financial in nature as well.

2. Safeguards Rule – applies only to financial institutions (banks,
credit unions, securities firms, insurance companies, etc.) and
mandates that these institutions design, implement and maintain
safeguards to protect customer information.

3. Pretexting Provisions – of this Act provide protection to
consumers from individuals and companies who falsely pretend
(pretext) a need to obtain PFI.

All three rules are related to software that deals with the collection, processing,
retention and disposal of personal financial information.

Health Insurance Portability and
Accountability Act (HIPAA)
This is another privacy rule but unlike the GLB Act that deals with personal
financial information (PFI), the Health Insurance Portability and Accountability
Act (HIPAA) deals with personal health information (PHI). Instituted by the
Office of Civil Rights (OCR) in 1996, HIPAA protects the privacy of individual
identifiable health information. It was developed to assure patient information
confidentiality and safety.

Data Protection Act
The Data Protection Act of 1998 was enacted to regulate the collection,
processing, holding, using and disclosure of an individual’s private or personal
information. The European Union Personal Data Protection Directive (EUDPD)
in fact declares that personal data protection is a fundamental human right and
requires that personal data that is no longer necessary for the purposes it was
collected in the first place must either be deleted or modified so that it no longer
can identify the individual that the data was originally collected from. Software
that collects, processes, stores and archives personal data must, therefore, be
designed and developed with deletion or de-identification mechanisms. The
Personal Information Protection and Electronics Document Act (PIPEDA) is in
Canada what the EUDPD is in the European Union.

71

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 71 6/7/2013 5:40:27 PM

Computer Misuse Act
This act makes provisions for securing computer material against unauthorized
access and/or modification. Computer misuse such as hacking, unauthorized
access, unauthorized modification of contents, and disruptive activities like the
introduction of viruses are designated as criminal offenses.

Mobile Device Privacy Act
The Mobile Device Privacy Act would require mobile device sellers, manufacturers,
service providers, and app offerors to disclose to consumers the existence of
any monitoring software. The entities would also have to disclose what type of
information is subject to monitoring, who would be collecting or transmitting
the information, and how the information would be used. Additionally, the bill
would require any entity subject to the requirements above to obtain express
consumer consent before the monitoring software collects any information.
Those same entities would also be required to develop information security
policies regarding the information collected.

State Security Breach Laws
The majority of states in the United States of America now have some form of
regulation or bill to deal with security breaches associated with the compromise
of personal information. The one that needs special mention is the California
civil code 1798.82 (commonly referred to as State Bill 1386) which was the
harbinger of its kind. This requires that personal information be destroyed when
it is no longer needed by the collecting entity. It also requires that entities that
do business in the state of California notify the owners of personal information
that their information protection has been breached or reasonably believed to
have been accessed or acquired by someone unauthorized.

Challenges with Regulatory Mandates
While it is necessary for organizations to comply with regulatory and privacy
requirements, it has been observed that such compliance does come with some
challenges. Some of the challenges that organizations face when they need
to comply with regulations and privacy mandates are open interpretations,
auditor’s subjectivity, localized jurisdiction, regional variations, and inconsistent
enforcement.

Most regulations are not very specific but are general and broad in their
description. They don’t call out specific security requirements that need to be
incorporated into the software. This leaves room for different organizations to
interpret the requirements as they see fit for their organization.

72

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 72 6/7/2013 5:40:27 PM

Additionally, an auditor’s experience and knowledge has a lot to do with the
interpretation of the regulatory requirements, since the requirements are usually
generic and broad in nature.

Augmenting the open interpretations issue is the fact that when these
regulations need to be enforced because of non-compliance, the applicability of
these regulations is not universal, internationally or domestically. Jurisdiction is
localized. For example, the European data protection act is much more stringent
and different from that of the U.S. or Asia. Such regional variations can
hamper the flow of business operations and application of security in software
development because one region may have to comply with the regulations while
the other region may not find it needful.

Open interpretation, auditor’s subjectivity, localized jurisdiction and
regional variations make it difficult to enforce these regulations uniformly and
consistently.

Privacy and Software Development
Privacy requirements must be taken into account and deemed as important
as security or reliability requirements when developing secure and compliant
software. Some standards and best practices such as the PCI DSS disallow the
collection of certain private and sensitive information.

Privacy initiatives must consider data privacy and the support from the
business as well. Data classification can help in identifying data that will need
to have privacy protection requirements applied. Categorizing the data into
privacy tiers, based on impact upon disclosure, alteration and/or destruction,
can provide insight into ensuring that appropriate levels of privacy controls are
in place. In order for the privacy program to be effective, some proven strategies
are to establish a privacy policy that is enforceable, gain the support of executive
and top level management as sponsors or champions of enforcement of the
privacy program and educate the people on privacy requirements and controls.

Best practice guidelines for data privacy that need to be included in software
requirements analysis, design and architecture can be addressed if one complies
with the following rules.

 ■ If you don’t need it, don’t collect it.
 ■ If you need to collect it for processing only, collect it only after you

have informed the user that you are collecting their information
and they have consented, but don’t store it.

73

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 73 6/7/2013 5:40:27 PM

 ■ If you have the need to collect it for processing and storage,
then collect it, with user consent, and store it only for an explicit
retention period that is compliant with organizational policy and/
or regulatory requirements.

 ■ If you have the need to collect it and store it, then don’t archive
it, if the data has outlived its usefulness and there is no retention
requirement.

The Acceptably Use Policy (AUP) and login splash screens and banners
displayed when logging in are mechanisms that are commonly used to solicit
user consent by informing users that their personal information is harvested,
and possibly retained, or that they are being monitored when using company
resources. The AUP protects the employer against violators of policy and is a
deterrent to individuals who may be engaged in malicious or nefarious activities
that put their employers at risk.

Additionally, AUPs must be complementary and not contradictory to
information security policies, explicitly stating what users are allowed to
do and what they are not allowed to do. Some examples of acceptable user
behavior include the use of company resources diligently, limiting software to
execute within an IP range, and restriction of trial version software components
to development server instances only. Some examples of unacceptable user
behavior include reverse engineering the software, prohibited resale of Original
Equipment Manufacturer (OEM) individual licenses, surfing porn or hate sites
and sharing illegal software.

Furthermore, when production data is imported into test environments,
protection against disclosure of private information must be taken into account.
Test data lifecycle management is covered later in the Secure Software Testing
chapter of this book.

Data Anonymization
The incidence of Cloud computing combined with the affordability of network
connectivity and data storage space has brought with it an increased growth
in the number of data collectors and holders, who collect and hold private
information. Some forms of private information include personally identifiable
information (PII), personal health information (PHI) and personal financial
information (PFI). This private information needs to be protected as well.

A very important component of protecting private information and assuring
privacy is to assure anonymity. By permanently and completely removing

74

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 74 6/7/2013 5:40:27 PM

personal identifiers from data, anonymity can be assured. Anonymization is
the process of removing private information from the data. Anonymized data
cannot be linked to any one individual account.

Anonymization techniques are useful to assure data privacy. These techniques
include:

1. Replacement.
2. Suppression.
3. Generalization
4. Pertubation

Replacement, also known as substitution, is the anonymization technique in
which identifiable information is substituted with non-identifiable information.
For example, the primary account number of a cardholder is replaced by dummy
data. Suppression, also known as omission, is the anonymization technique in
which identifiable information is omitted from the information being released.
For example, only the last four number of the individual’s social security number
is maintained. Generalization is the anonymization technique in which specific
identifiable information is replaced using a more generalized form. For example,
the date of birth information is replaced by just the year of birth. Pertubation,
also known as randomization, is the anonymization technique that involves
making random changes to the data.

When data is anonymized, it is also very important to make sure that the
any personally identifiable information that is removed from the associated
data cannot be re-associated with the data or the individual. In other words,
data anonymization must provide for unlinkability i.e., the provider of the
information cannot be identified (linked to) to the information that is being
provider. The Onion Routing (Tor) is a platform that software developers can
leverage to architect software with built-in anonymity and privacy, even over
public networks.

It is important to note that while data anonymization assures privacy, it
does not necessarily guarantee total privacy protection, because an attacker can
conduct an inference attack and still be able to glean the identifiable information
by aggregating and correlated related data sets of anonymized data.

Disposition
All software is vulnerable until it and the data it processes, transmits and stores is
disposed in a secure manner. This is particularly of great importance if the data
is sensitive and/or personally identifiable.

75

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 75 6/7/2013 5:40:27 PM

Privacy regulations mandate not only the protection of private information
when it is being transmitted, processed and stored, but also after it has outlived
its usefulness. Appropriate technical, administrative and physical controls needs
to be implemented to safeguard private information against hacker threats. These
controls must assure reasonable safeguards to minimize incidental, and avoid
prohibited uses and disclosure of private information, including the disposal of
such information.
Most privacy regulations requires the implementation of policies and procedures
to address final disposition of private information and/or the sanitization of
electronic hardware and media on which it is stored, before the hardware is
re-provisioned for re-use. For electronic media, overwriting (using software
or hardware products to format media), degaussing (exposing the media to a
strong magnetic field in order to disrupt the recorded magnetic domains), or
destroying the media (disintegration, pulverization, melting, incinerating, or
shredding). Overwriting is also sometimes referred to as formatting or clearing
and degaussing is sometimes referred to as purging. Media and data sanitization
is covered in more detail in the Software Deployment, Operations, Maintenance
and Disposal chapter.

Some privacy regulations also mandate that the workforce personnel,
including volunteers, involved in performing or managing people who perform
disposal activities, receive appropriate training on and follow the correct disposal
policies and procedures.

Security Models
Just as an architectural model is an abstraction of the real building, security
models are a formal abstraction of the security policy which is comprised of the
set of security requirements that needs to be part of the system or software, so
that it is resistant to attack, can tolerate the attacks that cannot be resisted and
can recover quickly from the undesirable state, if compromised. In other words,
it is a formal presentation of the security policy. Security models include the
sequence of steps that are required to develop secure software or systems and
provide the ‘blueprint’ for the implementation of security policies.

Security models can be broadly categorized into confidentiality models,
integrity models, and access control models.

Appendix A covers the well-known security models and it is advisable that
you are familiar with these security models, especially as it pertains to software
security.

76

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 76 6/7/2013 5:40:27 PM

Trusted Computing
The State-of-the-Art Report (SOAR) on Software Security Assurance starts

by accurately stating that the objective of software assurance is to establish a basis
for gaining justifiable confidence that software will consistently demonstrate
desirable properties. These desirable properties can range from quality (error free),
reliability (functioning as designed), dependability (predictable outputs), usability
(non-restrictive in performing what the user expects), interoperability (function
in disparate heterogeneous environments), safety (without harm to user), fault-
tolerance and of course security (resistant to attack, tolerant upon breach and
quick to recover from an insecure state). Consistently demonstrate implies that
these properties are evident each time every time. Justifiable confidence in other
words is ‘Trust’. So a simple layman’s definition of software assurance is that it is
the concept that aims to answer the question, ‘Can the software be trusted?”

The key thing to note is the software assurance is about ‘Trust’ and not
‘security’ which is what software security assurance is about. Security is one of
the various desirable properties, expected of the software under the superset of
‘Trust’. Trusted computing in other words is ensuring software assurance and
in the context of the CSSLP, we focus primarily on software security assurance.

There are certain concepts that a CSSLP must be familiar with in regards
to trusted computing. These include the Ring Protection, Trust Boundary (or
Security Perimeter), Trusted Computing Base (TCB), and Reference Monitor.
Technologies that can be used to assure trust include Trusted Platform Modules
(TPM), code signing and anti-malware technologies which are covered in other
chapters of this book.

Ring Protection
Current day Operating Systems (OSs) employ a security mechanism

known as ring protection. Based on the Honeywell Multics Operating System
architecture, ring protection mechanism can be portrayed as a set of concentric
numbered rings as depicted in Figure 1.21.

It is the ring number that determines the level of access that is allowed. The
ring number has an inverse relationship with the level of access, i.e., the lower
the ring level the higher the level of access and vice versa. Operations performed
at Ring 0 level are highly privileged and this includes OS kernel functionality
and access. Ring 3 level is where software applications run. Hackers use the
terms ‘root’, ‘owned’, or ‘pwned’ when they successfully exploit vulnerabilities

77

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 77 6/7/2013 5:40:27 PM

and gain the highest level privilege (such as privileges at Ring 0) in the system.
Rootkits operate by gaining Ring 0 level privileges as well.

Trust Boundary (or Security Perimeter)
Trust boundary is the abstract concept that determines the point at which
trust levels change. It is also referred to as the security perimeter. There is a
very clear cut trust boundary at each ring level starting with the outer most
user-land ring level with low trust to the inner most kernel-land ring level that
is highly privileged. The concept of a ‘Trust Boundary’ is not just limited to
ring protection mechanisms. Trust boundaries must be taken into account in
software design and architecture. For example, in architecting software that will
be deployed in an Internet environment, trust at different zones must be factored
into the design and architecture. Security controls in the Internet Zone where
there is lower trust must be much more restrictive than what one can expect in
the Demilitarized Zone (DMZ) or the Intranet Zone. We will revisit this concept
under the context of Threat Modeling in the secure software design chapter.

Trusted Computing Base (TCB)
Even though the etymology of the term ‘Trusted Computing Base’ (TCB) is from
the Trusted Computer System Evaluation Criteria (TCSEC) more commonly
known as the ‘Orange Book’ which is considered by some to be dated, it’s
application in the software security world today is not vestigial by any count.

As described earlier, the security policy is the set of security requirements
that needs to be part of the system or software that makes it resistant to most
attacks, tolerable to attacks that cannot be resisted and quickly recoverable from
an undesirable state, if compromised. The Trusted Computing Base (TCB) is

Figure 1.21 - Ring Protection

78

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 78 6/7/2013 5:40:28 PM

the abstract concept that ensures that the security policy is enforced at all times.
The TCB includes all of the components (hardware, software and firmware) and
mechanisms (process, inter-process communications) and human factors that
provide security, which if failed would result in a security breach or violation.
It is an abstract concept in the sense that software architects and designers must
take into account all the hardware, software and firmware components and their
mechanisms to design secure software. The hardware, firmware and software
elements of a TCB are also referred to as the security kernel.

Two important characteristics for the TCB to be effective and efficient are
that it must be simple and testable. The testability of the TCB means the TCB
can be verified as being functionally complete and correct.

The TCB can ensure that the security policy is enforced by monitoring four
basic functions. These are:

 ■ Process Activation
 ■ Execution Domain Switching
 ■ Memory Protection and
 ■ Input/Output (I/O) operations

Process Activation
In depth discussion of the process activation within a computer is beyond
the scope of this book and in this section, process activation is covered at a
more generic and basic level. Most of us are probably familiar with an online
ecommerce transaction. You add a product to your shopping cart, specify any
discount code if available, verify the total amount and place the order. What
happens behind the scenes is that the software in such a scenario is designed for
calculating the total price of the order using a few functions, such as Function
A, which is used to compute the sub total amount (unit price times quantity
before discounts), Function B which is used to compute the discount amount
(discount percentage times sub total amount) if a discount is available, Function
C which is used to calculate the tax amount (tax percentage times the sub total
price) and Function D which is used to determine the total price (sub total price
minus discount amount plus tax). At the bits and bytes level, these functions are
translated into an executing process (say A, B, C and D) which can be made up
of one or many threads (say A.1 to get unit price, A.2 to get quantity, A.3 to get
the product of unit price and quantity, etc.) respectively. A thread is a single set
of instructions and its associated data. The associated data values (such as unit
price, quantity, discount code, tax percentage, etc.) are loaded into memory when

79

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 79 6/7/2013 5:40:28 PM

the instructions call for them. Each of these process threads are controlled by
the computers’ central processing unit (CPU) that fills its own registers (holding
spaces) with the instructions to execute for the processes to complete. In this case,
in order for the total price (process D) to be determined, the process must be
interrupted by the computation of the tax process (process C), which in turn is
dependent on the computation of the sub total price (process A). In other words,
the instructions for process D in the CPU is to be interrupted by process C which
in turn will need to be interrupted by process A, so that this total operation can
complete. A process is said to be ‘activated’ when it is allowed to interact with the
CPU or in other words, when its own interrupt is called for by the CPU. When
a process no longer needs to interact with the CPU upon the completion of all
of the instructions within that process, that process is said to be ‘deactivated’.

In the context of software security, it is extremely important for the TCB to
ensure that the activation of processes is not circumvented and sabotaged by a
malicious process that can result in a compromise with undesirable effects.

Execution Doman Switching
Software applications are expected to operate at the outer most ring level with the
highest ring number (Ring 3 or user-land) and calls for native operating system
kernel access at the lowest ring number (Ring 0 or kernel-land) must not be
directly allowed. There needs to be a strict dichotomy between kernel-land and
user-land and processes executing in one domain must not be allowed access to
execute in the other domain. Benefits of such an isolation are not only for reasons
of confidentiality and integrity, wherein the OS kernel execution is independent
and contained, protecting against disclosure of sensitive information (such as
cryptographic keys, etc.) or alteration of instruction sequences but also for
availability as applications that crash in the user-land will not affect the stability
of the entire system.

Each process and its set of data values must be isolated from other processes
and the TCB must ensure that one process executing at a particular domain
cannot switch to another domain that requires a different level of trust for
operations to continue and complete, i.e., switching from low trust user-land to
highly privileged kernel-land and back is not allowed.

Memory Protection
Since each execution domain includes instruction sets in CPU registers and data
stored in memory, the TCB monitors memory references to ensure that disclosure,
alteration (contamination) and destruction of memory contents is disallowed.

80

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 80 6/7/2013 5:40:28 PM

Input/Output (I/O) Operations
I/O utilities execute at Ring 1, the ring level closest to the kernel-land. This
allows for the OS to control the access to input devices (e.g., keyboard, mouse)
and output devices (e.g., monitor, printer, disks). When your software needs to
write to the database stored on a disk, the instruction for this operation will have
to be passed from Ring 3 where your software is executing to Ring 1 to request
access to the disk via Ring 2 which is where the OS utilities and disk device
drivers (programs) operate. The TCB ensures that the sequence of cross-domain
communications for access to I/O devices does not violate the security policy.

Reference Monitor
Subjects are active entities that request a resource. Subjects can be human or
non-human such as another program or a batch process. The resources that
are requested are also referred to as Objects. Objects are passive entities and
examples of this include a file, a program, data or hardware. A subject’s access
to an object must be mediated and allowed based on the subject’s privilege
level. This access is mediated by what is commonly known to as the Reference
Monitor. The reference monitor is an abstract concept that enforces or mediates
access relationships between subjects and objects. In layman’s terms, a reference
monitor can be thought of as a traffic cop that monitors the flow of traffic
through an intersection.

Trusted Computing can only be possible when the reference monitor itself is:
 ■ tamperproof (disallowing unauthorized modifications)
 ■ always invoked (so that other processes cannot circumvent the

access checks) and
 ■ verifiable (correct and complete in its access mediation functionality)

Acquisitions
It is not surprising that not all software is built in-house. In fact, a substantial
amount of software within one’s organization is probably developed by a 3rd
party and purchased as commercial off the shelf (COTS) software. A buy vs.
build decision is usually dependent on the time (schedule), resource (scope) and
cost (budget) elements of the iron triangle. Generally when the time to market
is short, the resources available with the appropriate skills are low and the cost
for development is tight, management leans more toward a software acquisition
(buy) decision. Table 1.5 illustrates some of the questions to ask when evaluating
a buy vs. build decision.

81

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 81 6/7/2013 5:40:28 PM

In addition to the iron triangle elements impacting a buy vs. build decision,
two other trends also demonstrate a direct effect on software acquisition over
building it in-house. These are outsourcing and managed services i.e., software-as-
a-service (SaaS). With the abundance of qualified resources at a low cost in lower
cost software development companies around the world, many organizations
jumped on to the ‘outsourcing’ bandwagon and had their software developed by
someone on the other side of the globe, without factoring in the security aspects
that need to be part of outsourcing. When software development is outsourced,
it is critical that the organization is aware of ‘who is writing the software for
them?’ and ‘can the software be trusted?’ Code developed outside the control of
your organization will need to be thoroughly inspected and reviewed for back
doors, Trojans, logic bombs, etc. prior to accepting that software and deploying
it within your organization. Also with the change in the way that software is
sold as a service, instead of buying it as a product and hosting it within your
organization, the software is often hosted as a service externally in a shared
environment that you have little to no control over.

Security considerations in software acquisitions will be covered in depth in the
software acceptance and supply chain security chapter. In this section, we will be
introduced to the reasons for software acquisitions, acquisition mechanisms, and
the security aspects to consider when acquiring software. In essence, irrespective
of whether you buy or you build the software, security assurance requirements
must be part of the process and in no situation can these requirements be ignored.

Table 1.5 - Buy vs. Build decision evaluation

Build Considerations Buy Considerations

Is it part of the overall strategy?

Is it within the organization’s capabilities?

Do we have the people resources to be
successful?

What are the associated risks?

What are the associated advantages?

What is already available to buy?

What is already available to buy?

Does it meet the organization’s
requirements?

What are the associated costs?

Does the vendor have established secure
software development practices?

Are the vendor employees trained?

What other customers have purchased and
are using the software?

What is the maintenance and support
model?

82

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 82 6/7/2013 5:40:28 PM

The following references are recommended to get
additional information on secure software concepts:

 » “The 7 Qualities of Highly Secure Software” book provides a
summarized overview of many of the concepts covered in this
chapter.

 » (ISC)2’s whitepaper on “Software Assurance: A Kaleidoscope of
Perspectives” highlights different perspectives of looking at
software assurance and gives an introduction into the pros and
cons of different software development methodologies.

 » “The Protection of Information in Computer Systems” paper
by Saltzer and Schroeder is recommended to get a better
understanding on secure design principles.

 » For a deeper understanding of some of the ISO and NIST
standards that are applicable to your company, it is advisable to
get those specific standards from the ISO and NIST websites and
be familiar with their guidance.

 » It is highly recommended that you are familiar the details of
some of the software security standards published by the OASIS.
These include AVDL for describing application vulnerabilities
using a uniform method and interoperable format, SAML for
cross-domain federation and token based authentication,
XAMCL for cross-enterprise authorization and access control,
KMIP specifications for interoperable cryptographic solutions,
UDDI for describing, discovery and integration of technical
interfaces, and WS-* for Web services security.

 » Detailed understanding of the requirements mandated by the
PCI DSS and the PA-DSS may be necessary and if your company
handles cardholder data, it is recommended that you read these
standards in detail. Additionally, some of the other publication
documents published by the PCI security standards council may
be of interest to you.

 » To get the detailed understanding of the OSSTMM, download
the latest documents from the ISECOM’s website on OSSTMM.

 » Sweeney’s paper entitled “k-Anonymity: A Model for Protection
Privacy” is a good reference source for understanding privacy
threats and protection controls.

83

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

CSSLP_v2.indb 83 6/7/2013 5:40:28 PM

Summary and Conclusion

In conclusion we have established the fact that software

security can no longer be on the sidelines and that it is

important for security and secure design tenets to be

factored into the software development life cycle. The

interplay between software security and risk management

was demonstrated with special attention given to challenges

in software risk management. Governance instruments such

as policies and standards were covered along with common

methodologies, best practices and framework. We looked

at how abstract security models and trusted computing

concepts (TCB and TPM) impact software security. Finally, we

discussed the reasons for software acquisition, acquisition

mechanisms and the security aspects that need to be part of

the software development life cycle.

84

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 84 6/7/2013 5:40:28 PM

85

Domain 1: Secure Software Concepts 1
Secure Softw

are
Concepts

1. The PRIMARY reason for incorporating security into the software
development life cycle is to protect

A. the unauthorized disclosure of information.
B. the corporate brand and reputation.
C. against hackers who intend to misuse the software.
D. the developers from releasing software with security defects.

2. The resiliency of software to withstand attacks that attempt modify or
alter data in an unauthorized manner is referred to as

A. Confidentiality.
B. Integrity.
C. Availability.
D. Authorization.

3. The MAIN reason as to why the availability aspects of software must
be part of the organization’s software security initiatives is:

A. software issues can cause downtime to the business.
B. developers need to be trained in the business continuity

procedures.
C. testing for availability of the software and data is often ignored.
D. hackers like to conduct Denial of Service (DoS) attacks against

the organization.

4. Developing the software to monitor its functionality and report when
the software is down and unable to provide the expected service to the
business is a protection to assure which of the following?

A. Confidentiality.
B. Integrity.
C. Availability.
D. Authentication.

Review Questions

CSSLP_v2.indb 85 6/7/2013 5:40:29 PM

86

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

5. When a customer attempts to log into their bank account, the customer
is required to enter a nonce from the token device that was issued to
the customer by the bank. This type of authentication is also known
as which of the following?

A. Ownership based authentication.
B. Two factor authentication.
C. Characteristic based authentication.
D. Knowledge based authentication.

6. Multi-factor authentication is most closely related to which of the
following security design principles?

A. Separation of Duties.
B. Defense in depth.
C. Complete mediation.
D. Open design.

7. Audit logs can be used for all of the following EXCEPT

A. providing evidentiary information.
B. assuring that the user cannot deny their actions.
C. detecting the actions that were undertaken.
D. preventing a user from performing some unauthorized operations.

8. Organizations often pre-determine the acceptable number of user
errors before recording them as security violations. This number is
otherwise known as:

A. Clipping level.
B. Known Error.
C. Minimum Security Baseline.
D. Maximum Tolerable Downtime.

9. A security principle that maintains the confidentiality, integrity and
availability of the software and data, besides allowing for rapid recovery
to the state of normal operations, when unexpected events occur is the
security design principle of

A. defense in depth.
B. economy of mechanisms.

CSSLP_v2.indb 86 6/7/2013 5:40:29 PM

87

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

C. fail secure
D. psychological acceptability

10. Requiring the end user to accept an ‘AS-IS’ disclaimer clause before
installation of your software is an example of risk

A. avoidance.
B. mitigation.
C. transference.
D. acceptance.

11. An instrument that is used to communicate and mandate organizational
and management goals and objectives at a high level is a

A. standard.
B. policy.
C. baseline.
D. guideline.

12. The Systems Security Engineering Capability Maturity Model (SSE-
CMM®) is an internationally recognized standard that publishes
guidelines to

A. provide metrics for measuring the software and its behavior, and
using the software in a specific context of use.

B. evaluate security engineering practices and organizational
management processes.

C. support accreditation and certification bodies that audit and
certify information security management systems.

D. ensure that the claimed identity of personnel are appropriately
verified.

13. Which of the following is a framework that can be used to develop
a risk based enterprise security architecture by determining security
requirements after analyzing the business initiatives.

A. Capability Maturity Model Integration (CMMI)
B. Sherwood Applied Business Security Architecture (SABSA)
C. Control Objectives for Information and related Technology

(COBIT®)
D. Zachman Framework

CSSLP_v2.indb 87 6/7/2013 5:40:29 PM

88

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

14. Which of the following is a PRIMARY consideration for the software
publisher when selling Commercially Off the Shelf (COTS) software?

A. Service Level Agreements (SLAs).
B. Intellectual Property protection.
C. Cost of customization.
D. Review of the code for backdoors and Trojan horses.

15. The Single Loss Expectancy can be determined using which of the
following formula?

A. Annualized Rate of Occurrence (ARO) x Exposure Factor
B. Probability x Impact
C. Asset Value x Exposure Factor
D. Annualized Rate of Occurrence (ARO) x Asset Value

16. Implementing IPSec to assure the confidentiality of data when it is
transmitted is an example of risk

A. avoidance.
B. transference.
C. mitigation.
D. acceptance.

17. The Federal Information Processing Standard (FIPS) that prescribe
guidelines for biometric authentication is

A. FIPS 140.
B. FIPS 186.
C. FIPS 197.
D. FIPS 201.

18. Which of the following is a multi-faceted security standard that is
used to regulate organizations that collects, processes and/or stores
cardholder data as part of their business operations?

A. FIPS 201.
B. ISO/IEC 15408.
C. NIST SP 800-64.
D. PCI DSS.

CSSLP_v2.indb 88 6/7/2013 5:40:29 PM

89

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

19. Which of the following is the current Federal Information Processing
Standard (FIPS) that specifies an approved cryptographic algorithm to
ensure the confidentiality of electronic data?

A. Security Requirements for Cryptographic Modules (FIPS 140).
B. Peronal Identity Verification (PIV) of Federal Employees and

Contractors (FIPS 201).
C. Advanced Encryption Standard (FIPS 197).
D. Digital Signature Standard (FIPS 186).

20. The organization that publishes the ten most critical web application
security risks (Top Ten) is the

A. Computer Emergency Response Team (CERT).
B. Web Application Security Consortium (WASC).
C. Open Web Application Security Project (OWASP).
D. Forums for Incident Response and Security Teams (FIRST)

21. The process of removing private information from sensitive data sets is
referred to as

A. Sanitization.
B. Degaussing.
C. Anonymization.
D. Formatting.

CSSLP_v2.indb 89 6/7/2013 5:40:29 PM

90

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

References

“Authentication in an Internet Banking Environment.” Federal Financial Institutions
Examination Council. www.ffiec.gov/pdf/authentication_guidance.pdf (accessed
February 5, 2013).

Information Technology Laboratory (ITL) National Institute of Standards and
Technology. “Federal Information Processing Standards (FIPS) publications.” Current
FIPS. http://www.nist.gov/itl/fipscurrent.cfm (accessed February 5, 2013).

Howard, Michael, and David LeBlanc. Writing Secure Code. 2nd ed. Redmond,
Wash.: Microsoft Press, 2003.

ICS. “ISO Standards.” ISO - International Organization for Standardization. http://
www.iso.org/iso/catalogue_ics (accessed February 5, 2013).

National Institute of Standards and Technology. “NIST Standards.” Special
Publications (800 Series). http://csrc.nist.gov/publications/PubsSPs.html (accessed
February 5, 2013).

Organization for the Advancement of Structured Information Standards (OASIS).
“OASIS Standards.” Standards. https://www.oasis-open.org/standards (accessed
February 5, 2013).

Payment Card Industry (PCI). “PCI Standards.” PCI Security Standards Documents:
PCI DSS. https://www.pcisecuritystandards.org/security_standards/documents.php
(accessed February 5, 2013).

Payment Card Industry (PCI). “PCI Standards.” PCI Security Standards Documents:
PA-DSS. https://www.pcisecuritystandards.org/security_standards/documents.php
(accessed February 5, 2013).

Paul, Mano. “Privacy.” In The 7 Qualities of Highly Secure Software. Boca Raton, FL:
CRC Press, 2012. 93.

Paul, Mano. “Quality #3: Includes Foundational Assurance Elements.” In The 7
Qualities of Highly Secure Software. Boca Raton, FL: CRC Press, 2012. 49-71.

CSSLP_v2.indb 90 6/7/2013 5:40:29 PM

91

Domain 1: Secure Software Concepts 1
Secure Softw

are Concepts

Requirement, Legal. “Federal Information Security Management Act (FISMA)
Implementation Project.” FISMA. http://csrc.nist.gov/groups/SMA/fisma/index.html
(accessed February 5, 2013).

Schneier, Bruce. Secrets and lies: Digital security in a networked world. New York: John
Wiley, 2000.

Slee, Tom. “Data Anonymization and Re-identification: Some Basics Of Data
Privacy.” Whimsley. http://whimsley.typepad.com/whimsley/2011/09/data-
anonymization-and-re-identification-some-basics-of-data-privacy.html (accessed
February 5, 2013).

Sweeney, Latanya. “k-anonymity: A Model for Protecting Privacy.” International
Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10, no. 5 (2002): 557-
570.

“The Common Criteria.” Common Criteria Portal.
http://www.commoncriteriaportal.org (accessed February 5, 2013).

Tipton, Harold F., and Micki Krause. Information security management handbook. 5th
ed. Boca Raton, FL: Auerbach, 2005.

“Trusted Platform Module (TPM).” Trusted Computing Group. http://www.
trustedcomputinggroup.org (accessed February 5, 2013).

Vogel, Valerie. “Guidelines for Data De-Identification or Anonymization.”
Information Security Guide. https://wiki.internet2.edu/confluence/display/itsg2/
Guidelines for Data De-Identification or Anonymization (accessed February 5,
2013).

“What do the HIPAA Privacy and Security Rules require of covered entities when
they dispose of protected health information?.” United States Department of Health
and Human Services. http://www.hhs.gov/ocr/privacy/hipaa/faq/safeguards/575.html
(accessed February 5, 2013).

“Why Security Standards.” Information Systems Security Association (ISSA) August
(2009): 29-32.

CSSLP_v2.indb 91 6/7/2013 5:40:29 PM

http://www.trustedcomputinggroup.org

This page intentionally left blankThis page intentionally left blank

FIRST AND FOREMOST, it is important to establish the fact that
“Without software requirements, software will fail and without
secure software requirements, organizations will.” Without properly
understood and well documented and tracked software requirements,
one cannot expect the software to function without failure or even
meet expectations. It is vital to define and explicitly articulate the
requirements of software that is to be built or acquired. Software
development projects that lack software requirements suffer from a
plethora of issues. These issues include and are not limited to poor
product quality, extensive timelines, scope creep, increased cost to
re-architect missed requirements or fix errors and even customer
or end-user dissatisfaction. Software development projects that
lack security requirements additionally suffer from the threats to
confidentiality, integrity and availability, which include unauthorized
disclosure, alteration and destruction. It is really not a question of
‘if’ but ‘when’, because it is only a matter of time before software
built without security considerations will get hacked, provided the
software is of some value to the attacker.

93

Domain 2

Secure Software
Requirements

93

Domain 2

Secure Software
Requirements

CSSLP_v2.indb 93 6/7/2013 5:40:29 PM

It would be extremely difficult to find a building architect who
would engage in building a skyscraper without a blueprint or a chef
who will bake world famous pastries and cakes without a recipe
that lists out the ingredients. However, we often observe that when
software is built, security requirements are not explicitly stated. The
reasons for such a modus operandi are many. Security is first and
foremost viewed as a non-functional requirement of the software
and in an organization that already has to deal with functional
requirements within the constraints posed by budget, scope and
schedule (iron triangle constraints), security requirements are
usually considered to be an additional expense (impacting budget),
increased non-value added functionality (impacting scope) and time
consuming to implement (impacting schedule). Such an attitude is
what leaves secure software requirements on the sidelines. Secondly,
incorporating security in software is often misconstrued as being an
impediment to business agility instead of the enabler that it is to
produce quality and secure software.

Secure software is characterized by the following quality
attributes:

 ■ Reliability – The software functions as it is expected to.

 ■ Resiliency – The software does not violate any security policy
and is able to withstand the actions of threat agents that are
posed intentionally (attacks and exploits) or accidentally
(user errors).

 ■ Recoverability – The software is able to restore operations
to what the business expects by containing, limiting and
remediating the damage caused by threats that materialize.

94

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 94 6/7/2013 5:40:30 PM

Thirdly, depending on the security knowledge of business
analysts who translate business requirements to functional
specifications, security may or may not make it into the software that
is developed. In certain situations security in software is not even
considered, let alone being ignored. And in such situations, when
a security breach occurs and the abuse of the software is reported,
security is retrofitted and bolted on, instead of having been built in
from the very beginning.

The importance of incorporating security requirements into the
software requirements gathering and design phases is absolutely
critical for the reliability, resiliency and recoverability of software.
When was the last time you noticed security requirements in the
software requirement specifications documents? Explicit software
security requirement such as “The user password will need to be
protected against disclosure by masking it while it is input and hashed
when it is stored” or “The change in pricing information of a product
needs to be tracked and audited, recording the timestamp and the
individual who performed that operation” are usually not found
within the software requirements specifications document. What are
usually observed are merely high-level non-testable implementation
mechanisms and listing of security features such as passwords need
to be protected, Secure Sockets Layer (SSL) needs to be in place or a
web application firewall needs to be installed in front of our public
facing websites. It is extremely important to explicitly articulate
security requirements for the software in the software requirements
specifications documents.

95

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 95 6/7/2013 5:40:30 PM

96

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

 ■ Policy Decomposition

 ■ Internal and External Requirements

 ■ Data Classification and Categorization
 à Data Ownership

 - Data Owner
 - Data Custodian

 à Labeling
 - Sensitivity
 - Impact

 à Types of Data
 - Structured
 - Unstructured

 à Data Life-Cycle
 - Generation
 - Retention
 - Disposal

 ■ Functional Requirements
 à Role and User Definitions (Who)
 à Deployment Environments (Where)
 à Object (What)
 à Activities/Actions (How)
 à Sequencing and Timing (When)

 ■ Operational Requirements
 à How Software is:

 - Deployed
 - Operated
 - Managed

Topics

CSSLP_v2.indb 96 6/7/2013 5:40:30 PM

97

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

As a CSSLP, you are expected to

 ■ Understand the concepts and elements of what constitutes
secure software.

 ■ Be familiar with the principles of risk management as it
pertains to software development.

 ■ Know how to apply information security concepts to
software development.

 ■ Know the various design aspects that need to be taken into
consideration to architect hack resilient software.

 ■ Understand how policies, standards, methodologies,
frameworks and best practices interplay in the
development of secure software.

 ■ Be familiar with regulatory, privacy, and compliance
requirements for software and the potential repercussions
of non-compliance.

 ■ Understand security models and how they can be used to
architect hacker proof software.

 ■ Know what trusted computing is and be familiar with
mechanisms and related concepts of trusted computing.

 ■ Understand security issues that need to be considered
when purchasing or acquiring software.

This chapter will cover each of these objectives in detail. It is
imperative that you fully understand not just what these secure
software concepts are, but how to apply them in the software that
your organization builds or buys.

Objectives

CSSLP_v2.indb 97 6/7/2013 5:40:30 PM

Sources for Security Requirements
There are several sources from which security requirements can be gleaned. They
can be broadly classified into internal and external sources. Internal sources can
be further divided into organizational sources that the organization needs to
comply with. These include policies, standards, guidelines, patterns and practices.
The end user business functionality of the software itself is another internal
source from which security requirements can be gleaned. Just as a business
analyst translates business requirements into functionality specifications for the
software development team, a CSSLP must be able to assist the software teams
to translate functional specifications into security requirements. In the following
section, we will cover the various types of security requirements and discuss
security requirements elicitation techniques from software functionality in more
detail. External sources for security requirements can be broadly classified into
regulations, compliance initiatives and geographical requirements. Equal weight
should be given to security requirements irrespective of whether the source of
that requirement is internal or external.

Business owners, end-users and customers play an important role when
determining software security requirements and they must be actively involved
in the requirements elicitation process. Business owners are the ones who are
responsible for the determination of the acceptable risk threshold, which is the
level of residual risk that is acceptable. Business owners own the risk, as they are
the ones who are ultimately accountable, should there be a security breach in
their software. They should assist the CSSLP and software development teams
in prioritizing the risk and be active in “What is important?” trade-off decisions.
Business owners need to be educated on the importance and concepts of software
security. Such education will ensure that they do not assign a low priority to
security requirements or deem them as unimportant. Furthermore, supporting
groups such as the operations group and the information security group are also
vital stakeholders and are responsible to ensure that the software being built for
deployment or release is reliable, resilient and recoverable.

Types of Security Requirements
Before we delve into mechanisms and methodologies by which we can determine
security requirements, we must first be familiar with the different types of security
requirements. These security requirements need to be explicitly defined and must
address the security objectives or goals of the company. Properly and adequately
defining and documenting security requirements, makes the measurement of

98

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 98 6/7/2013 5:40:30 PM

security objectives or goals, once the software is ready for release or accepted for
deployment, possible and easy. A comprehensive list of security requirements for
software is as tied as hand-to-glove to the core software security concepts, which
is depicted in Figure 2.1.

For each core software security concept, security requirements need to be
determined. In addition, other requirements that are pertinent to software must
be determined as well. The different types of software security requirements that
need to be identified and defined are discussed below and illustrated in Figure
2.2.

Figure 2.1 – Core Software Security Concepts

Figure 2.2 – Types of Software Security Requirements

99

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 99 6/7/2013 5:40:30 PM

These include:
 ■ Core Security Requirements

 ¤ Confidentiality requirements
 ¤ Integrity requirements
 ¤ Availability requirements
 ¤ Authentication requirements
 ¤ Authorization requirements
 ¤ Accountability requirements

 ■ General Requirements
 ¤ Session Management requirements
 ¤ Errors & Exceptions Management requirements
 ¤ Configuration Parameters Management requirements

 ■ Operational Requirements
 ¤ Deployment Environment requirements
 ¤ Archiving requirements
 ¤ Anti-piracy requirements

 ■ Other Requirements
 ¤ Sequencing and Timing requirements
 ¤ International requirements
 ¤ Procurement requirements

In the requirements gathering phase of the software development life cycle
(SDLC), we are only required to identify which requirements are applicable to
the business context and the software functionality serving that context. Details
on how these requirements will be implemented are to be decided when the
software is designed and developed. In this chapter, a similar approach with
respect to the extent of coverage of the different types of security requirements
for software is taken. In the chapter on Secure Software Design, we will cover
in depth the translation of the identified security requirements from the
requirements gathering phase into software functionality and architecture. In
the chapter of Secure Software Implementation, we will learn about how the
identified security requirements can be built into the code to ensure software
assurance.

100

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 100 6/7/2013 5:40:30 PM

Core Security Requirements
Confidentiality Requirements
Confidentiality requirements are those that address protection against the
unauthorized disclosure of data or information that are either private or sensitive
in nature. The classification of data (covered later in this chapter) into sensitivity
levels is often used to determine confidentiality requirements. Data can be
broadly classified into public and non-public data or information. Public data is
also referred to as directory information.

Any non-public data warrants protection against unauthorized disclosure and
software security requirements that provide such protection need to be defined
in advance. Confidentiality protection mechanisms are depicted in Figure 2.3.

Secret writing is a protection mechanism in which the goal is to prevent the
disclosure of the information deemed secret. This includes overt cryptographic
mechanisms such as encryption and hashing or covert mechanisms such as
steganography and digital watermarking. The distinction between the overt and
covert forms of secret writing lies in their objective to accomplish disclosure
protection. The goal of overt secret writing is to make the information humanly
indecipherable or unintelligible even if disclosed whereas the goal of covert secret
writing is to hide information within itself or in some other media or form.

Overt secret writing, also commonly referred to as cryptography includes
Encryption and Hashing. Encryption uses a bi-directional algorithm in which
humanly readable information (referred to as clear text) is converted into humanly

Figure 2.3 – Confidentiality Protection Mechanisms

101

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 101 6/7/2013 5:40:31 PM

unintelligible information (referred to as cipher text). The inverse of encryption
is decryption, which is the process by which cipher text is converted into plain
text. Hashing on the other hand is a one-way function where the original data or
information that needs protection is computed into a fixed length output that
is indecipherable. The computed value is referred to as a hash value, digest or
hash sum. The main distinction between encryption and hashing is that unlike
in encryption, the hashed value or hashed sum cannot be converted back to
the original data and hence the one-way computation. So hashing is primarily
used for integrity (non-alteration) protection, although it can be used as a
confidentiality control, especially in situations when the information is stored
and the viewers of that information should not be allowed to re-synthesize the
original value by passing it through the same hashing function. A good example
of this is when there is a need to store passwords in databases. Only the creator
of the password should be aware of what it is. When the password is stored in
the backend database, its hashed value should be the one that is stored. This
way hashing provides disclosure protection against insider threat agents who
may very well be the database administration within the company. When the
password is used by the software for authentication verification, the user can
supply their password, which is hashed using the same hashing function and
then the hash values of the supplied password and the hash value of the one
that is stored can be compared and authentication decisions can be accordingly
undertaken.

The most common forms of covert secret writing are Steganography and
Digital Watermarking. Steganography is more commonly referred to as invisible
ink writing and is the art of camouflaging or hidden writing, where the information
is hidden and the existence of the message itself is concealed. Steganography
is primarily useful for covert communications and is useful and prevalent in
military espionage communications. Digital watermarking is the process of
embedding information into a digital signal. These signals can be audio, video,
or pictures. Digital watermarking can be accomplished in two ways - visible and
invisible. In visible watermarking, there is no special mechanism to conceal the
information and it is visible to plain sight. This is of little consequence to us from
a security standpoint. However, in invisible watermarking, the information is
concealed within other media and the watermark is used to uniquely identify the
originator of the signal, thereby making it possible for authentication purposes
as well, besides confidentiality protection. Invisible watermarking is however
mostly used for copyright protection, deterring and preventing unauthorized

102

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 102 6/7/2013 5:40:31 PM

copying of digital media. Digital watermarking can be accomplished using
steganographic techniques as well.

Masking is a weaker form of confidentiality protection mechanism in which
the original information is either asterisked or X’ed out. You may have noticed
this in input fields that take passwords. This is primarily used to protect against
shoulder surfing attacks, which are characterized by someone looking over
another’s shoulder and observing sensitive information. The masking of credit
card numbers or social security numbers (SSN), except for the last four digits
when printed on receipts or displayed on a screen is an example of masking
providing confidentiality protection.

Confidentiality requirements need to be defined throughout the information
life cycle from the origin of the data in question to its retirement. It is necessary
to explicitly state confidentiality requirements for non-public data:

 ■ In Transit: When the data is transmitted over unprotected
networks i.e., data-in-motion.

 ■ In Processing: When the data is held in computer memory or
media for processing

 ■ In Storage: When the data is at rest, within transactional systems
as well as non-transactional systems including archives i.e., data-
at-rest.

Confidentiality requirements may also be time bound, i.e., some information
may require protection only for a certain period of time. An example of this
is news about a merger or acquisition. The date when the merger will occur
is deemed sensitive and if stored or processed within internal Information
Technology (IT) systems, it requires protection until this sensitive information
is made public. Upon public press release of the merger having been completed,
information deemed sensitive may no longer require protection as it becomes
directory or public information. The general rule of thumb is that confidentiality
requirements need to be identified based on the classification data is given and
when that classification changes (say from sensitive to public), then appropriate
control requirements need to be redefined.

Some good examples of confidentiality security requirements that should be
part of the software requirements specifications are:

 ■ “Personal health information must be protected against disclosure
using approved encryption mechanisms.”

 ■ “Password and other sensitive input fields need to be masked.”

103

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 103 6/7/2013 5:40:31 PM

 ■ “Passwords must not be stored in the clear in backend systems
and when stored must be hashed with at least an equivalent to the
SHA-256 hash function.”

 ■ “Transport layer security (TLS) such as Secure Socket Layer must
be in place to protect against insider man-in-the-middle (MITM)
threats for all credit card information that is transmitted.”

 ■ “The use of non-secure transport protocols such as File Transfer
Protocol (FTP) to transmit account credentials in the clear to third
parties outside your organization should not be allowed.”

 ■ “Log files must not store any sensitive information as defined by
the business in humanly readable or easily decipherable form.”

As we determine requirements for ensuring confidentiality in the software
we build or acquire, we must take into account the timeliness and extent of the
protection required.

Integrity Requirements
Integrity requirements for software are those security requirements that address
two primary areas of software security viz. reliability assurance and protection or
prevention against unauthorized modifications. Integrity refers not only to the
system or software modification protection (system integrity) but also the data
that the system or software handles (data integrity). When integrity protection
assures reliability, it essentially refers to ensuring that the system or software is
functioning as it is designed and expected to. In addition to reliability assurance,
integrity requirements are also meant to provide security controls that will ensure
that the accuracy of the system and data is maintained. This means that data
integrity requires that information and programs be changed only in a specified
and authorized manner by authorized personnel. While integrity assurance
primarily addresses the reliability and accuracy aspects of the system or data, it
must be recognized that integrity protection also takes into consideration the
completeness and consistency of the system or data that the system handles.

Within the context of software security, we have to deal with both system and
data integrity. Injection attacks such as SQL injection that makes the software act
or respond in a manner not originally designed to is a classic example of system
integrity violation. Integrity controls for data in transit or data at rest need to
provide assurance against deliberate or inadvertent unauthorized manipulations.
The requirement to provide assurance of integrity needs to be defined explicitly
in the software requirements specifications.

104

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 104 6/7/2013 5:40:31 PM

Security controls that provide such assurance include input validation,
parity bit checking and cyclic redundancy checking (CRC) and hashing. Input
validation provides a high degree of protection against injection flaws and
provides both system and data integrity. Allowing only valid forms of input
to be accepted by the software for processing mitigates several security threats
against software (covered in the secure software implementation chapter). In
the secure software design and secure software implementation chapters, we
will cover input validation in depth and the protections it provides. Parity bit
checking is useful in the detection of errors or changes made to data when it
is transmitted. Mathematically, parity refers to the evenness or oddness of an
integer. A parity bit (0 or 1) is an extra bit that is appended to a group of bits
(byte, word or character) so that the group of bits will either have an even or
odd number of 1’s. The parity bit is 0 (even) if the number of 1’s in the input bit
stream is even and 1 (odd) if the number of 1’s in the input bit stream is odd.
Data integrity checking is performed at the receiving end of the transmission,
by computing and comparing the original bit stream parity with the parity
information of the received data. A common usage of parity bit checking is to do
a cyclic redundancy check (CRC) for data integrity as well, especially for messages
longer than one byte (8 bits) long. Upon data transmission, each block of data
is given a computed CRC value, commonly referred to as a checksum. If there is
an alteration between the origin of data and its destination, the checksum sent
at the origin will not match with the one that is computed at the destination.
Corrupted media (CD’s, DVDs) and incomplete downloads of software yield
CRC errors. The checksum is the end product of a non-secure hash function.
Hashing provides the strongest forms of data integrity. Although, hashing is
mainly used for integrity assurance, it can also provide confidentiality assurance
as we covered earlier in this chapter.

Some good examples of integrity security requirements that should be part
of the software requirements specifications are:

 ■ “All input forms and Querystring inputs need to be validated
against a set of allowable inputs before the software accepts it for
processing.”

 ■ “Software that is published should provide the recipient with
a computed checksum and the hash function used to compute
the checksum, so that the recipient can validate its accuracy and
completeness.”

105

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 105 6/7/2013 5:40:31 PM

 ■ “All non-human actors such as system and batch processes need
to be identified, monitored and prevented from altering data as it
passes on systems that they run on, unless explicitly authorized to.”

As we determine requirements for ensuring integrity in the software we build
or acquire, we must take into account the reliability, accuracy, completeness and
consistency aspects of systems and data.

Availability Requirements
Although the concept of availability may seem to be more closely related to
business continuity or disaster recovery disciplines than it is to security, it
must be recognized that improper software design and development can lead
to destruction of the system/data or even cause Denial of Service (DoS). It is,
therefore, imperative that availability requirements are explicitly determined to
ensure that there is no disruption to business operations. Availability requirements
are those software requirements that ensure the protection against destruction of
the software system and/or data, thereby assisting in the prevention against DoS
to authorized users. When determining availability requirements, the Maximum
Tolerable Downtime (MTD) and Recovery Time Objective (RTO) must both
be determined. MTD is the measure of the maximum amount of time that the
software can be in a state of not providing expected service. In other words,
it is the measure of the minimum level of availability that is required of the
software for business operations to continue without unplanned disruptions as
per expectations. But since all software fails or will fail eventually, in addition
to determining the MTD, the RTO must also be determined. RTO is the
amount of time by which the system or software needs to be restored back to
the expected state of business operations for authorized business users, when it
goes down. Both MTD and RTO should be explicitly stated in the Service Level
Agreements (SLA). MTD are sometimes are referred to as Maximum Tolerable
Period of Disruption (MTPD) as the system may cause disruptions and not
downtime to the business. Recovery Point Objective (RPO) also expressed in
units of time is the maximum allowed data or productivity loss when the system
becomes disrupted or down. It is the point in time to which the disaster recovery
personal plans to recover the system to. There are several ways to determine
availability requirements for software. These methods include determining the
adverse effects of software downtime through Business Impact Analysis (BIA) or
stress and performance testing.

BIA must be conducted to determine the adverse impact that the
unavailability of software will have on business operations. This may be

106

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 106 6/7/2013 5:40:31 PM

measured quantitatively such as loss of revenue for each minute the software
is down, cost to fix and restore the software back to normal operations or fines
that are levied on the business upon software security breach. It may also be
qualitatively determined which include loss of credibility, confidence or loss of
brand reputation. In either case, it is imperative to include the business owners
and end-users to accurately determine MTD and RTO as a result of the BIA
exercise. BIA can be conducted for both new and existing versions of software.
In situations when there is an existing version of the software, then stress and
performance test results from the previous version of the software can be used
to ensure high availability requirements are included for the upcoming versions
as well. Table 2.1 tabulates the downtime that will be allowed for a percentage
of availability that is usually measured in units of nines. Such availability
requirements and planned downtime amounts must be determined and explicitly
stated in the SLA and incorporated into the software requirements documents.

In determining availability requirements, understanding the impact of failure
due to a breach of security is vitally important. Insecure coding constructions
such as dangling pointers, improper memory de-allocations and infinite loop
constructs can all impact availability and when requirements are solicited, these
repercussions of insecure development must be identified and factored in. End-
to-end configuration requirements ensure that there is no single point of failure
and this should be part of the software requirements documentation. In addition
to end-to-end configuration requirements, load balancing requirements need to
be identified and captured as well.

Some good examples of availability requirements that have a bearing on
software security are given below and should be part of the software requirements
specifications.

 ■ “The software shall ensure high availability of five nines (99.999%)
as defined in the SLA.”

Table 2.1 – High availability requirements as measures of Nines

107

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

Measurement Availability % Downtime per
Year

Downtime per
Month

Downtime per
Week

Three Nines 99.9% 8.76 hours 43.2 minutes 10.1 minutes

Four Nines 99.99% 52.6 minutes 4.32 minutes 1.01 minutes

Five Nines 99.999% 5.26 minutes 25.9 seconds 6.05 seconds

Six Nines 99.9999% 31.5 seconds 2.59 seconds 0.605 seconds

CSSLP_v2.indb 107 6/7/2013 5:40:31 PM

 ■ “The number of users at any one given point of time who should be
able to use the software can be up to 300 users.”

 ■ “Software and data should be replicated across data centers to
provide load balancing and redundancy.”

 ■ “Mission critical functionality in the software should be restored
to normal operations within 1 hour of disruption; mission essential
functionality in the software should be restored to normal operations
within 4 hours of disruption; and mission support functionality in
software should be restored to normal operations within 24 hours
of disruption.”

Authentication Requirements
The process of validating an entity’s claim is authentication. The entity may
be a person, a process or a hardware device. The common means by which
authentication occurs is that the entity provides identity claims and/or credentials
which are validated and verified against a trusted source holding those credentials.
Authentication requirements are those that verify and assure the legitimacy
and validity of the identity that is presenting entity claims for verification.

In the secure software concepts domain, we learned that authentication
credentials could be provided by different factors or a combination of factors
that include knowledge, ownership or characteristics. When two factors are used
to validate an entity’s claim and/or credentials, it is referred to as two-factor
authentication and when more than two factors are used for authentication
purposes, it is referred to as multi-factor authentication. It is important to
determine first, if there exists a need for two- or multi-factor authentication.
It is also advisable to leverage existing and proven authentication mechanisms
and requirements that call for custom authentication processes should be closely
reviewed and scrutinized from a security standpoint so that no new risks are
introduced in implementing custom and newly developed authentication
validation routines.

There are several means by which authentication can be implemented
in software. Each has its own pros and cons as it pertains to security. In this
section, we cover some of the most common forms of authentication. However,
depending on the business context and needs, authentication requirements need
to be explicitly stated in the software requirements document so that when the
software is being designed and built, security implications of those authentication
requirements can be determined and addressed accordingly. The most common
forms of authentication are

108

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 108 6/7/2013 5:40:31 PM

 ■ Anonymous
 ■ Basic
 ■ Digest
 ■ Integrated
 ■ Client certificates
 ■ Forms
 ■ Token
 ■ Smart cards
 ■ Biometrics

Anonymous Authentication:
Anonymous authentication is the means of access to public areas of your system
without prompting for credentials such as username and password. As the name
suggests, anyone even anonymous users are allowed access and there is no real
authentication check for validating the entity. Although this may be required
from a privacy standpoint, the security repercussions are serious since with
anonymous authentication there is no way to link a user or system to the actions
they undertake. This is referred to as unlinkability and if there is no business need
for anonymous authentication to be implemented, it is best advised to avoid it.

Basic Authentication:
One of the HyperText Transport Protocol (HTTP) 1.0 specifications is basic
authentication which is characterized by the client browser prompting the
user to supply their credentials. These credentials are transmitted in Base-64
encoded form. Although this provides a little more security than anonymous
authentication, Basic authentication must be avoided as well, since the encoded
credentials can be easily decoded.

Digest Authentication:
Digest authentication is a challenge/response mechanism, which unlike Basic
authentication, does not send the credentials over the network in clear text or
encoded form, but instead sends a message digest (hash value) of the original
credential. Authentication is performed by comparing the hash values of what
was previously established and what is currently supplied as an entity claim.
Using a unique hardware property, that cannot be easily spoofed, as an input
(salt) to calculate the digest, provides heightened security, when implementing
Digest authentication.

109

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 109 6/7/2013 5:40:31 PM

Integrated Authentication:
Commonly known as NTLM authentication or NT challenge/response
authentication, like Digest authentication, the credentials are sent as a digest. This
can be implemented as a standalone authentication mechanism or in conjunction
with Kerberos v5 authentication when delegation and impersonation is necessary
in a trusted sub-system infrastructure. Wherever possible, especially in intranet
settings, it is best to use integrated authentication since the credentials are not
transmitted in clear text and it is efficient in handling authentication needs.

Client Certificate-Based Authentication:
Client certificate-based authentication works by validating the identity of the
certificate holder. These certificates are issued to organizations or users by a
certification authority (CA) that vouches for the validity of the holder. These
certificates are usually in the form of digital certificates and the current standard
for digital certificates is ITU X.509 v3. If you trust the CA and you validate
that the certificate that is presented for authentication has been signed by the
trusted CA, then you can accept the certificate and process access requests.
These are particularly useful in an Internet/ecommerce setting, when you cannot
implement integrated authentication across your user base. Digital certificates is
covered in more detail in the Secure Software Design chapter.

Forms Authentication:
Predominantly observed in web applications, Forms authentication requires
the user to supply a username and password for authentication purposes and
these credentials are validated against a directory store which can be the active
directory, a database or configuration file. Since the credentials collected are
supplied in clear text form, it is advisable to first cryptographically protect the
data being transmitted in addition to implementation transport layer security
(TLS) such as SSL or network layer security such as IPSec. Figure 2.4 illustrates
an example of a username and password login box used in Forms authentication.

Figure 2.4 – Forms Authentication

110

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 110 6/7/2013 5:40:31 PM

Token-Based Authentication:
The concept behind token based authentication is pretty straightforward. It is
usually used in conjunction with Forms authentication where a username and
password is supplied for verification. Upon verification, a token is issued to the
user who supplied the credentials. The token is then used to grant access to
resources that are requested. This way the username and password need not be
passed on each call. This is particularly useful in single sign on (SSO) situations.
While Kerberos tickets are restricted to the domain they are issued, Security
Assertion Markup Language (SAML) tokens which are XML representations of
claims an entity makes about another entity is considered the de facto token in
cross-domain federated SSO architectures. We will cover SSO in more detail in
the Secure Software Design chapter.

Smart Cards-Based Authentication:
Smart cards provide ownership (something you have) based authentication.
They contain a programmable embedded microchip that is used to store
authentication credentials of the owner. The security advantage that smart cards
provide is that they can thwart the threat of hackers stealing authentication
credentials from a computer, since the authentication processing occurs on
the smart card itself. However, a major disadvantage of smart cards is that the
amount of information that can be stored is limited to the size of the microchip’s
storage area and cryptographic protection of stored credentials on the smart card
is limited as well.

One Time (dynamic) passwords (OTP) provide the maximum strength
of authentication security and OTP tokens (also known as key fobs) require
two factors, knowledge (something you know) and ownership (something you
have). These tokens dynamically provide a new password at periodic intervals.
Like token based authentication, the user enters the credential information they
know and is issued a PIN that is displayed on the token device such as a Radio
Frequency Identification (RFID) device they own. Since the PIN is not static
and dynamically changed every few seconds, it makes it virtually impossible for
a malicious attacker to steal authentication credentials.

Biometric Authentication:
This form of authentication uses biological characteristics (something you are)
for providing the identity’s credentials. Biological features such as retinal blood
vessel patterns, facial features and fingerprints are used for identity verification
purposes. Since biological traits can potentially change over time due to aging

111

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 111 6/7/2013 5:40:31 PM

or pathological conditions, one of the major drawbacks of biometric based
authentication implementation is that the original enrollment may no longer be
valid and this can yield to DoS to legitimate users. This means that authentication
workarounds need to be identified, defined and implemented in conjunction to
biometrics, and these need to be captured in the software requirements. The
FIPS 201 Personal Identity Verification standard provides guidance that the
enrollment data in systems implementing biometric based authentication needs
to be changed periodically.

Additionally biometric authentication requires physical access which limits
its usage in remote access settings.

Errors observed in biometric based authentication systems are of two types
viz. Type I error and Type II error. Type I error is otherwise known as False
Rejection error where a valid and legitimate enrollee is denied (rejected) access.
It is usually computed as a rate and is referred to as False Rejection Rate (FRR).
Type II error is otherwise known as False Acceptance error where an imposter
is granted (accepted) access. This is also computed as a rate and is referred to as
False Acceptance Rate (FAR). The point at which the FRR equals the FAR is
referred to as the Crossover Error Rate (CER) as depicted in Figure 2.5. CER
is primarily used in evaluating different biometric devices and technologies.
Devices which assure more accurate identity verification are characterized by
having a low Crossover Error Rate.

Some good examples of authentication requirements that should be part of
the software requirements specifications are:

Figure 2.5 – Crossover Error Rate

112

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 112 6/7/2013 5:40:31 PM

 ■ “The software will be deployed only in the intranet environment
and the authenticated user should not have the need to provide
username and password once they have logged on to the network.”

 ■ “The software will need to support single sign on with 3rd party
vendors and suppliers that are defined in the stakeholder list.”

 ■ “Both intranet and Internet users should be able to access the
software.”

 ■ “The authentication policy warrants the need for two- or multi-
factor authentication for all financially processing software.”

Identifying the proper authentication requirements during the early part of
the SDLC helps to mitigate many serious security risks at a later stage. These
need to be captured in the software specifications so that they are not overlooked
when designing and developing the software.

Authorization Requirements
Layered upon authentication, authorization requirements are those that confirm
that an authenticated entity has the needed rights and privileges to access and
perform actions on a requested resource. These requirements answer the question
as to what one is allowed or not allowed to do. To determine authorization
requirements, it is important to first identify the subjects and objects. Subjects
are the entities that are requesting access and Objects are the items that subject
will act upon. A subject can be a human user or a system process. Actions on
the objects also need to be explicitly captured. Actions as they pertain to data or
information that the user of the software can undertake are commonly referred
to as CRUD operations, which stand for Create, Read, Update or Delete data.
Later in this chapter, we shall cover subject-object modeling in more detail as
one of the mechanisms to capture authorization requirements.

Access control models are primarily of the following types
 ■ Discretionary Access Control (DAC)
 ■ Non-Discretionary Access Control (NDAC)
 ■ Mandatory Access Control (MAC)
 ■ Role-Based Access Control (RBAC)
 ■ Resource-Based Access Control

Discretionary Access Control (DAC)
DAC is defined as “a means of restricting access to objects based on the identity
of subjects and/or groups to which they belong. The controls are discretionary in

113

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 113 6/7/2013 5:40:31 PM

the sense that a subject with a certain access permission is capable of passing that
permission (perhaps indirectly) on to any other subject.” DAC restricts access
to objects based on the identity of the subject and is distinctly characterized by
the owner of the resource deciding who has access and their level of privileges
or rights.

DAC is implemented either by using identities or roles. Identity-based access
control means that the access to the object is granted based on the subject’s
identity. Since each identity will have to be assigned the appropriate access
rights, the administration of identity-based access control implementations is
an operational challenge. An often more preferred alternative in cases of a large
user base is to use roles. Role-Based Access Control (RBAC) uses the subject’s
role to determine whether access should be allowed or not. Users or groups of
users are defined by roles and the owner (or a delegate) decides which role is
granted access rights to objects and the levels of rights. RBAC is prominently
implemented in software and is explained in more detail later in this section.

Another means by which DAC is often observed to be implemented is by
using access control lists (ACLs). The relationship between the individuals
(subjects) and the resources (objects) is direct and the mapping of individuals to
resources by the owner is what constitutes the ACLs as illustrated in Figure 2.6.

Non-Discretionary Access Control (NDAC)
NDAC is characterized by the system enforcing the security policies. It does not
rely on the subject’s compliance with security policies. The non-discretionary
aspect is that it is unavoidably imposed on all subjects. It is useful to make sure

Figure 2.6 – Discretionary Access Control and a corresponding Access Control List (ACL)

114

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 114 6/7/2013 5:40:31 PM

that the system security policies and mechanisms configured by the systems
or security administrators are enforced and tamperproof. Non-discretionary
access controls can be installed on many operating systems. Since NDAC does
not depend on a subject’s compliance with the security policy as in the case of
DAC, but is universally applied, it offers a higher degree of protection. Without
NDAC, even if a user attempts to comply with well-defined file protection
mechanisms, a Trojan horse program could change the protection controls to
allow uncontrolled access.

Mandatory Access Control (MAC)
In MAC, access to objects is restricted to subjects based on the sensitivity of the
information contained in the objects. The sensitivity is represented by a label.
Only subjects that have the appropriate privilege and formal authorization (i.e.,
clearance) are granted access to the objects. MAC requires sensitivity labels for all
the objects and clearance levels for all subjects and access is determined based on
matching a subject’s clearance level with the object’s sensitivity level. Examples
of government labels include top secret, secret, confidential, etc. and examples
of private sector labels include high confidential, confidential-restricted, for
your eyes only, etc.

MAC provides multi-level security since there are multiple levels of sensitivity
requirements that can be addressed using this form of access control.

MAC systems are more structured in approach and more rigid in their
implementation because they do not leave the access control decision to the
owner alone as in the case of DAC, but both the system and the owner are used to
determine whether access should be allowed or not. A common implementation
of MAC is rule-based access control. In rule-based access control, the access decision
is based on a list of rules that are created or authorized by system owners who
specify the privileges (i.e., read, write, execute, etc.) that the subjects (users) have
on the objects (resources). These rules are used to provide the need-to-know
level of the subject. Rule-based MAC implementation requires the subject to
possess the “need to know” property which is provided by the owner but in
addition to the owner deciding who possesses “need to know”, in MAC, the
system determines access decisions based on clearance and sensitivity.

Role-Based Access Control (RBAC)
Since the mapping of each subject to a resource (as in the case of DAC) or the
assignment of subjects to clearance levels and objects to sensitivity levels (as in the
case of MAC) can be an arduous task, for purposes of ease of user management,

115

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 115 6/7/2013 5:40:31 PM

a more agile and efficient access control model is role based access control
(RBAC). Roles are defined by job function which can be used for authorization
decisions. Roles define the trust levels of entities to perform desired operations.
These roles may be user roles or service roles. In RBAC, individuals (subjects)
have access to a resource (object) based on their assigned role. Permissions to
operate on objects such Create, Read, Update or Delete are also defined and
determined based on responsibilities and authority (permissions) within the job
function.

Access that is granted to subjects is based on roles. What this mainly provides
is that the resource is not directly mapped to the individual but only to the role.
Since individuals can change over time, while roles generally don’t, individuals
can be easily assigned to or revoked from roles, thereby allowing ease of user
management. Roles are then allowed operations against the resource as depicted
in Figure 2.7.

RBAC can be used to implement all the three types of access control models
i.e., DAC, NDAC and MAC. The discretionary aspect is that the owners need to
determine which subjects need to be granted what role. The non-discretionary
aspect is that the security policy is universally enforced on the role irrespective of
the subject. It is also a form of MAC where the role is loosely analogous to the
process of clearance levels (granting memberships) and the objects requested are
labeled (associated operational sensitivities), but RBAC is not based on multi-
level security requirements.

Figure 2.7 – Role Based Access Control (RBAC)

116

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 116 6/7/2013 5:40:31 PM

RBAC in Relation to Least Privilege and Separation of Duties
Roles support the principle of least privilege, since roles are given just the
needed privileges to undertake an operation against a resource. When RBAC
is used for authorization decisions, it is imperative to ensure that the principle
of Separation of Duties (SoD) is maintained. This means that no individual
can be assigned to two roles that are mutually exclusive in their permissions to
perform operations. For example, a user should not be in a datareader role as
well as a more privileged database owner role at the same time. When users are
prevented from being assigned to conflicting roles, then it is referred to as static
SoD. Another example that demonstrates SoD in RBAC is that a user who is in
the auditor role cannot also be in the teller role at the same time. When users are
prevented from operating on resources with conflicting roles then it is referred
to as dynamic SoD.

RBAC implementations require explicit “role engineering” to determine
roles, authorizations, role-hierarchies and constraints. The real benefit of RBAC
over other access control methods includes the following:

 ■ Simplified subjects and objects access rights administration
 ■ Ability to represent the organizational structure
 ■ Force enterprise compliance with control policies more easily and

effectively.

Role Hierarchies
Roles can be hierarchically organized and when such a parent-child tree structure
is in place, it is commonly referred to as a role hierarchy. Role hierarchies define
the inherent relationships between roles. For example, an admin user may have
read, write and execute privileges, while a general user may have just read and
write privileges and a guest user may only have read privilege. In such a situation,
the guest user role is a subset of the general user role which in turn is a subset of
the admin user role as illustrated in Figure 2.8

In generating role hierarchies, we start with the most common and least
privileged permissions (e.g., read) for all users and then iterate permissions to
be more restrictive (e.g., write, execute), assigning them to roles (guest, user,
administrator) which are then assigned to users. When determining role hierarchy
it is also important to identify contextual and content based constraints and
grant access rights based on “only if” or “if and only if” relationships. Just basing
the access decisions on an if relationships does not provide real separation of

117

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 117 6/7/2013 5:40:31 PM

duties. For example a doctor should be allowed to view the records of a patient,
only if or if and only if that patient whose records are requested for is assigned to
the doctor, not just if the requestor is a doctor.

Roles and Groups
Although it may seem like there is a high degree of similarity between roles and
groups, there is a distinction that make RBAC more preferable for security than
groups. A group is a collection of users and not a collection of permissions. In
a group, permissions can be assigned to both users and groups to which users
are part of. The ability to associate a user directly with permissions in group-
based access control can be the Achilles heel for circumventing access control
checks, besides making it more difficult to manage users and permissions. RBAC
mandates that all access is done only through roles and permissions are never
directly assigned to the users but to the roles and this addresses the challenges
that one can have with group-based access control mechanisms.

Resource-Based Access Control
When the list of all users of your software are not known in advance, as in the
case of a distributed Internet application, then DAC, and MAC implementation
using subject (user) mapping to objects (resources) may not always be possible.
In such situations, access can also be granted based on the resources. Resource
based access control models are useful in architectures that are distributed and
multi-tiered including service oriented architectures. Resource based access
control models can be broadly divided into

Figure 2.8 – Role Hierarchy

118

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 118 6/7/2013 5:40:31 PM

 ■ Impersonation and Delegation Model and
 ■ Trusted Subsystem Model

Impersonation and Delegation Model
Allowing a secondary entity to act on one’s behalf is the principle of delegation.
All of the privileges that are necessary for completing an operation are granted
to the secondary entity. The secondary entity is considered to impersonate the
identity of the primary entity when the complete sets of permissions of the
primary entity are assigned to it. The identity of the primary entity is propagated
to downstream systems. Kerberos uses the delegation and impersonation model
where the user upon successful authentication is granted a Kerberos ticket and
the ticket is delegated the privileges and rights (sets of permission) to invoke
services downstream. The ticket is the secondary entity that acts as if it is the
primary entity by impersonating the user identity.

Trusted Subsystem Model
In a trusted subsystem model, access request decisions are granted based on the
identity of a resource that is trusted instead of user identities. Trusted subsystem
models are predominantly observed in web applications. For example, a user logs
into their bank account using a web browser to transfer funds from one account
to another. The web application identity calls the database to first authenticate
the user supplied credentials. It is not the user identity that is checked but the web
application identity that is trusted and that can invoke the call to the database.
While this simplifies access management it needs to be designed with security in
mind and such architectures need to be layered with additional defense in depth
measures such as transport or network layer security controls.

Irrespective of whether it is user based or resource based access control
models that need to be implemented, authorization requirements need to be
explicitly identified and captured in the software specifications documentation.

Some good examples of authorization requirements that should be part of
the software requirements are:.

 ■ “Access to highly sensitive secret files will be restricted to users
with secret or top secret clearance levels only.”

 ■ “User should not be required to send their credentials each and
every time once they have authenticated themselves successfully.”

 ■ “All unauthenticated users will inherit read-only permissions that
are part of guest user role while authenticated users will default

119

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 119 6/7/2013 5:40:31 PM

to having read and write permissions as part of the general user
role. Only members of the administrator role will have all rights
as a general user in addition to having permissions to execute
operations.”

Accountability Requirements
Accountability requirements are those that assist in building a historical record
of user actions. Audit trails can help detect when an unauthorized user makes a
change or an authorized user makes an unauthorized change, both of which are
cases of integrity violations. Auditing requirements not only help with forensic
investigations as a detective control but can also be used for troubleshooting
errors and exceptions, if the actions of the software are tracked appropriately.

Auditing requirements at the bare minimum must include the following
elements

 ■ the identity of the subject (user or process) performing an action (who)
 ■ the action (what)
 ■ the object on which the action was performed (where)
 ■ the timestamp of the action (when)

What is to be logged (audit trail) and what is not is a decision that is to
be made in discussions with the business managers. As a best practice for
security, all critical business transactions and administrative functions need to be
identified and audited. Some examples of critical business transactions include
the changing of the price of a product, discounts by sales agents, or changing
customer banking information. The business owner should be asked for audit
trail information to be incorporated into the software requirements specification.
Some examples of administrative functionality include authentication attempts
such as logon and logoff actions, adding a user to an administrator role, and
changing software configuration.

Some good examples of accountability requirements that should be part of
the software requirements are:

 ■ “All failed logon attempts will be logged along with the timestamp
and the Internet Protocol address where the request originated.”

 ■ “A before and an after snapshot of the pricing data that changed
when a user updates the pricing of a product must be tracked
with the following auditable fields – identity, action, object and
timestamp.”

120

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 120 6/7/2013 5:40:31 PM

 ■ “Audit logs should always append and never be overwritten.”
 ■ “The audit logs must be securely retained for a period of 3 years.”

General Requirements
Session Management Requirements
Sessions are useful for maintaining state but also have an impact on the secure
design principles of complete mediation and psychological acceptability. Upon
successful authentication, a session identifier (ID) is issued to the user and that
session ID is used to track user behavior and maintain the authenticated state for
that user until that session is abandoned or the state changes from authenticated
to not-authenticated. Without session management, the user/process would be
required to re-authenticate upon each access request (complete mediation) and
this can be burdensome and psychologically unacceptable to the user. Since
valid sessions can be potentially hijacked where an attacker takes control over an
established session, it is necessary to plan for secure session management.

In stateless protocols, such as the HyperText Transport Protocol, session state
needs to be explicitly maintained and carefully protected from brute force or
predictable session ID attacks. In the secure software implementation chapter,
we will be covering attacks on session management in more detail.

Session management requirements are those that ensure that once a session
is established, it remains in a state that it will not compromise the security of the
software. In other words, the established session is not susceptible to any threats
to the security policy as it applies to confidentiality, integrity and availability.
Session management requirements assure that sessions are not vulnerable to
brute force attacks, predictability or Man-in-the-middle hijacking attempts.

Some good examples of session management secure software requirements
that should be part of the requirements specifications are:

 ■ “Each user activity will need to be uniquely tracked.”
 ■ “The user should not be required to provide user credential once

authenticated within the Internet banking application.”
 ■ “Sessions must be explicitly abandoned when the user logs off or

closes the browser window.”
 ■ “Session identifiers used to identify user sessions must not be passed

in clear text or be easily guessable.”

121

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 121 6/7/2013 5:40:32 PM

Errors & Exception Management Requirements
Errors & exceptions are potential sources of information disclosure. Verbose
error messages and unhandled exception reports can result in divulging internal
application architecture, design and configuration information. Using laconic
error messages and structured exception handling are examples of good security
design features that can thwart security threats posed by improper error or
exception management. Software requirements that explicitly address errors and
exceptions need to be defined in the software requirements documentation to
avoid disclosure threats.

Some good examples of error & exception management secure software
requirements that should be part of the requirements specifications are:

 ■ “All exceptions are to be explicitly handled using try, catch and
finally blocks.”

 ■ “Error messages that are displayed to the end user will reveal only
the needed information without disclosing any internal system
error details.”

 ■ “Security exception details are to be audited and monitored
periodically.”

Configuration Parameters Management Requirements
Software configuration parameters and code which makeup the software needs
protection against hackers. These parameters and code usually need to be
initialized before the software can run. Identifying and capturing configuration
settings is vital to ensure that an appropriate level of protection is considered
when the software is designed, developed and more importantly when it is
deployed.

Some good examples of configuration parameters management secure
software requirements that should be part of the requirements specifications are:

 ■ “The web application configuration file must encrypt sensitive
database connections settings and other sensitive application
settings.”

 ■ “Passwords must not be hard-coded in line code.”
 ■ “Initialization and disposal of global variables need to be carefully

and explicitly monitored.”
 ■ “Application and/or Session OnStart and OnEnd events must

include protection of configuration information as a safeguard
against disclosure threats”

122

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 122 6/7/2013 5:40:32 PM

Operational Requirements
Most software issues in production environments can be tied down some
breakdown in operational procedures. Deeper analysis of these issues often reveal
that the root cause was a either incomplete or lacking operational requirements.
This is particularly true in integration projects. Most requirements are tied
to functional uses cases or performance, but requirements such as number
of database connections for concurrent access, interdependencies with other
applications in the computing ecosystem, and shared and computing resources
required are generally missed. Since no software operates in a silo with infinite
resources, it is imperative to identify requirements that impact the most
efficient operations of the software itself. These requirements are referred to as
operational requirements. Developing software for the Cloud or using DevOps
methodologies further drive the need to identify operational requirements, right
in the requirements phase of the software project.

Operational requirements identify the needed capabilities and dependencies
of the software as it serves the business with their intended functionality. To
identify operational requirements, one must have an operational mindset
and start with the Concept of Operations (CONOPS) and then delve into
how the software will operate for the users. This should take into account
interoperability with other systems that the software will interface and interact
with. Additionally, how the software is managed must also be identified as part
of operational requirements as this can have an impact not only to the business
but also to software assurance.

Some good examples of operational requirements that has an impact on
software security and which should be part of the requirements specifications are:

 ■ “Cryptographic keys that are shared between applications should
be protected and maintained using strict access controls.”

 ■ “Data backups and replications must be protected in secure logs
with least privilege implemented.”

 ■ “Patching of software must follow the enterprise patch management
process and changes to production environments must be done
only after all necessary approvals have been granted.”

 ■ “Discovered vulnerabilities in the software, that can impact the
business and the brand, must be addressed and fixed as soon as
possible, after being thoroughly tested in a simulated environment.”

 ■ “Incident management process should be followed to handle security
incidents and root cause of the incidents must be identified.”

123

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 123 6/7/2013 5:40:32 PM

 ■ “The software must be continuously monitored to ensure that it is
not susceptible to emerging threats.”

Deployment Environment Requirements
While eliciting software requirements it is important to also identify and capture
pertinent requirements about the environment in which the software will be
deployed. Some important questions to have answered include:

 ■ Will the software be deployed in an Internet, Extranet or intranet
environment?

 ■ Will the software be hosted in a Demilitarized Zone (DMZ)?
 ■ What ports and protocols are available for use?
 ■ What privileges will be allowed in the production environment?
 ■ Will the software be transmitting sensitive or confidential

information?
 ■ Will the software be load balanced and how is clustering architected?
 ■ Will the software be deployed in a web farm environment?
 ■ Will the software need to support single sign-on (SSO)

authentication?
 ■ Can we leverage existing operating system event logging for

auditing purposes?

Usually production environments are far more restrictive and configured
differently than development/test environments. Some of these restrictions
include ports and protocols restrictions, network segmentation, disabled services
and components. Infrastructure, platform and host security restrictions that can
affect software operations must be elicited. Implementation of clustering and
load balancing mechanisms can also have a potential impact on how the software
is to be designed and these architectural considerations must be identified.
Special attention needs to be given to implementing cryptographic protection
in web farm environments to avoid data corruption issues and these need to
be explicitly identified. Additionally, compliance initiatives may require certain
environmental protection controls such as secure communications to exist.
As an example, the PCI DSS mandates that sensitive card holder data needs
to be protected when it is transmitted in public open networks. Identifying
and capturing constraints, restrictions and requirements of the environment in
which the software is expected to operate, in advance during the requirements
gathering phase, will alleviate deployment challenges later besides assuring that
the software will be deployed and function as designed.

124

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 124 6/7/2013 5:40:32 PM

Archiving Requirements
If the business requires that archives be maintained either as a means for business
continuity or as a need to comply with a regulatory requirement or organizational
policy, the archiving requirement must be explicitly identified and captured. It
is also important to recognize that organizational retention policies, especially
if the information will be considered sensitive or private, do not contradict but
complement regulatory requirements. In situations when there is a conflict
between the organizational policy and a regulatory requirement, it is best advice
to follow and comply with the regulatory requirement. Data or information
may be stored and archived until it has outlived its usefulness or there is no
regulatory or organizational policy requirement to comply with.

During the requirements gathering phase, the location, duration and format
of archiving information must be determined. Some important questions that
need to be answered as part of this exercise are:

 ■ Where will the data or information be stored?
 ■ Will it be in a transactional system that is remote and online or

will it be in offline storage media?
 ■ How much space do we need in the archival system?
 ■ How do we ensure that the media is not re-writable? For example,

it is better to store archives in Read-Only media instead of Read-
Write media.

 ■ How fast will we need to be able to retrieve from archives when
needed? This will not only help in answering the online or offline
storage location question but also help with determining the type
of media to use. For example, for a situation when fast retrieval of
archived data is necessary, archives in tape media is not advisable
because retrieval is sequential and time consuming in tape media.

 ■ How long will we need to store the archives for?
 ■ Is there a regulatory requirement to store the data for a set period

of time?
 ■ Is our archival retention policy contradictory to any compliance or

regulatory requirements?
 ■ In what format will the data or information be stored? Clear text

or cipher text?
 ■ If the data or information is stored in cipher text, how is this

accomplish and are there management processes in place that will
ensure proper retrieval?

125

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 125 6/7/2013 5:40:32 PM

 ■ How will these archives themselves be protected?

It is absolutely essential to ensure that archiving requirements are part of the
required documentation and that they are not overlooked when designing and
developing the software.

Anti-Piracy Requirements
Particularly important for shrink-wrap Commercially-Of-The-Shelf (COTS)

software as opposed to business applications developed in-house, anti-piracy
protection requirements should be identified. Code obfuscation, code signing,
anti-tampering, licensing and IP protection mechanisms should be included as
part of the requirements documentation especially if you are in the business of
building and selling commercial software. Each of these considerations will be
covered in more detail in the secure software implementation chapter, but for
now, in the requirements gathering phase, anti-piracy requirements should not
be overlooked.

Some good examples of anti-piracy requirements that should be part of the
requirements specifications are:

 ■ “The software must be digitally signed to protect against tampering
and reverse engineering.”

 ■ “The code must be obfuscated, if feasible, to deter the duplication
of code.”

 ■ “License keys must not be statically hard-coded in the software
binaries as they can be disclosed by debugging and disassembly.”

 ■ “License verification checks must be dynamic, preferably with
phone-home mechanisms and not be dependent on factors that
the end-user can change.”

Other Requirements
Sequencing and Timing Requirements
Sequencing and timing design flaws in software can lead to what is commonly
known as race conditions or Time of Check/Time of Use (TOC/TOU) attacks.
Race conditions are in fact one of the most common flaws observed in software
design. It is also referred to sometimes as race hazard. Some of the common
sources of race conditions include, but are not limited to the following:

 ■ Undesirable sequence of events, where one event that is follow, in
the program execution order attempts to supersedes its preceding
event in its operations.

126

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 126 6/7/2013 5:40:32 PM

 ■ Multiple unsynchronized threads executing simultaneously for a
process that needs to be completed atomically.

 ■ Infinite loops that prevent a program from returning control to the
normal flow of logic.

If software requirements don’t explicitly specify protection mechanisms
for race conditions, there is a high degree of likelihood that sequencing and
timing attack flaws will result, when designing it. Race windows and Mutex
requirements, which are covered in the Secure Software Implementation chapter,
must be identified as part of security requirements.

International Requirements
In a world that is no longer merely tied to geographical topographies, software
has become a necessary means for global economies to be strong or weak.
When developing software, international requirements need to be factored in.
International requirements can be of two types – legal and technological.

Legal requirements are those requirements that we need to pay attention to
so that we are not in violation of any regulations. For example, a time accounting
system must allow the employees in France to submit their timesheets with a
thirty-hour workweek (which is a legal requirement according to the French
Employment Laws) and not be restrictive by disallowing the French employee to
submit if his total time per week is less than forty hours, as is usually the case in
the United States. This requirement by country must be identified and included
in the software specifications document for the time accounting system.

International requirements are also technological in nature, especially if
the software needs to support multi-lingual, multi-cultural and multi-regional
needs. Character encoding and display direction are two important international
software requirements that need to be determined. Character encoding standards
not only define the identity of each character and its numeric value (also known
as code point) but also how the value is represented in bits. The first standard
character encoding system was ASCII which was a 7 bit coding system that
supported up to 128 characters. ASCII supported the English languages but
it fell short of coding all alphabets of European languages. This limitation led
to the development of the Latin-1 international coding standard, ISO/IEC
646 that was an 8 bit coding system that could code up to 256 characters and
was inclusive of European alphabets. But even the ISO/IEC 646 encoding
standard fell short of accommodating logographic and morphosyllabic writing
systems such as Chinese and Japanese. To support these languages the 16 bit

127

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 127 6/7/2013 5:40:32 PM

Unicode standard was developed that could support 65,536 characters which
was swiftly amended to include 32 bits supporting over 4 billion characters.
The Unicode standard is the universal character encoding standard which is
fully compatible and synchronized with the versions of the ISO/IEC 10646
standard. The Unicode standard supports three encoding forms that make it
possible for the same data to be transmitted as a byte (UTF-8), a word (UTF-
16) or double word (UTF-32) format. UTF-8 is popular for the Hyper Text
Markup Language (HTML) where all Unicode characters are transformed
into a variable length encoding of bytes. Its main benefit is that the Unicode
characters that correspond to the familiar ASCII set have the same byte values
as ASCII, which makes conversion of legacy software to support UTF-8, not
require extensive software rewrites. UTF-16 is popular in environments where
there is a need to balance efficient character access with economical use of
storage. UTF-32 is popular in environments where memory space is not an
issue but fixed width single code unit access to characters is essential. In UTF-32
each character is encoded in a single 32-bit code unit. All three encoding forms
at most require 4 bytes (32 bits) of data for each character. It is important to
understand that the appropriate and correct character encoding is identified and
set in the software to prevent Unicode security issues such as spoofing, overflows
and canonicalization. Canonicalization is the process of converting data that has
more than one possible representation into a standard canonical form. We will
cover canonicalization and related security considerations in more detail in the
secure software implementation chapter.

In addition to character encoding, it is also important to determine display
direction requirements. A majority of the western languages that have their roots
in Latin or Greek, such as English and French, are written and read left to right.
Other languages such as Chinese are written and read top to bottom and then
there are some languages, such as Hebrew and Arabic, that are bidirectional, i.e.,
text is written and read right to left, while numbers are written and read left to
right. Software that needs to support languages in which the script is not written
and read from left to right, must take into account the directionality of their
written and reading form. This must be explicitly identified and included in the
software user interface (UI) or display requirements.

Procurement Requirements
The identification and determination of software security requirements is no less
important when a decision is made to procure the software instead of building
it in-house. Sometimes the requirement definition process itself leads to a buy

128

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 128 6/7/2013 5:40:32 PM

decision. As part of the procurement methodology and process, in addition to
the functional software requirements, secure software requirements must also
be communicated and appropriately evaluated. Additionally it is important to
include software security requirements in legal protection mechanisms such as
contracts and SLAs. The need for software escrow is an important requirement
when procuring software. The Software Acceptance chapter and the Supply
Chain Security chapter will cover these concepts in more detail.

Protection Needs Elicitation (PNE)
In addition to knowing the sources for security requirements and the various types
of secure software requirements that need to be determined, it is also important
to know the process of eliciting security requirements. The determination of
security requirements is also known as protection needs elicitation (PNE). PNE
is one of the most crucial processes in information systems security engineering.
For PNE activities to be effective and accurate, strong communication and
collaboration with stakeholders is required, especially if the stakeholders are
non-technical business folks and end users. With varying degrees of importance
placed on security requirements, combined with individual perceptions and
perspectives on the software development project, PNE activities have been
observed to be a challenge.

PNE begins with the discovery of assets that need to be protected from
unauthorized access and users. The Information Assurance Technical Framework
(IATF) issued by the United States National Security Agency (NSA) is a set of
security guidelines that covers Information Systems Security Engineering (ISSE).
It defines a methodology for incorporation assurance/security requirements for
both the hardware and software components of the system. The first step in the
IATF process is PNE which is suggested to be conducted in the following order:

 ■ Engage the customer
 ■ Information management modeling
 ■ Identify least privilege applications
 ■ Conduct threat modeling and analysis
 ■ Prioritize based on customer needs
 ■ Develop information protection policy
 ■ Seek customer acceptance

PNE activities may be conducted in several ways as Figure 2.9 illustrates.

129

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 129 6/7/2013 5:40:32 PM

Some of the most common techniques to elicit protection needs (security
requirements) include:

 ■ Brainstorming
 ■ Surveys (Questionnaires and Interviews)
 ■ Policy Decomposition
 ■ Data Classification
 ■ Subject-Object Matrix
 ■ Use Case & Misuse Case Modeling

Brainstorming
Brainstorming is the quickest and most unstructured method to glean
security requirements. In this process, none of the expressed ideas on security
requirements are challenged but instead they are recorded. While this may
allow for a quick-and-dirty way to determine protection needs, especially in
rapid application development situations, it is not advised for PNE because
it has several shortcomings. First there is a high degree of likelihood that the
brainstormed ideas don’t directly relate to the business, technical and security
context of the software. This can either lead to ignoring certain critical security
considerations or going overboard on a non-trivial security aspect of the
software. Additionally, brainstorming solutions are usually not comprehensive
and consistent because it is very subjective. Brainstorming may be acceptable to

Figure 2.9 – Protection Needs Elicitation (PNE) Techniques

130

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 130 6/7/2013 5:40:32 PM

determine preliminary security requirements but it is imperative to have a more
structured and systematic methodology for consistency and comprehensiveness
of security requirements.

Surveys (Questionnaires and Interviews)
Surveys are effective means to collect functional and assurance requirements.
The effectiveness of the survey is dependent on how applicable the questions
in the surveys are to the audience that is being surveyed. This means that the
questionnaires are not a one size fits all type of survey. This also means that
both explicitly specified questions as well as open ended questions should be
part of the questionnaire. The benefit of including open ended questions is that
the responses to such questions can yield security related information which
may be missed if the questions are very specific. Questionnaires developed
should take into account business risks, process (or project) risks and technology
(or product) risks. It is advisable to have the questions developed so that they
cover elements of the software security profile and secure design principles. This
way, the answers to these questions can be directly used to generate the security
requirements. Some examples of questions that be asked are:

 ■ What kind of data will be processed, transmitted or stored by the
software?

 ■ Is the data highly sensitive or confidential in nature?
 ■ Will the software handle personally identifiable information or

privacy related information?
 ■ Who are all the users who will be allowed to make alterations and

will they need to be audited and monitored?
 ■ What is the maximum tolerable downtime for the software?
 ■ How quickly should the software be able to recover and restore to

normal operations when disrupted?
 ■ Is there a need for single sign-on authentication?
 ■ What are the roles of users that need to be established and what

privileges and rights (such as create, read, update or delete) will
each role have?

 ■ What are the set of error messages and conditions that you would
need the software to handle when an error occurs?

These questions can be either delivered in advanced using electronic means
or asked as part of an interview with the stakeholders. As a CSSLP, it is expected
that one will be able to facilitate this interview process. It is also a recommended

131

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 131 6/7/2013 5:40:32 PM

practice to include and specify a scribe who records the responses provided by
the interviewee. Like questionnaires, the interview should also be conducted
in an independent and objective manner with different types of personnel.
Additional PNE activities may be necessary, especially if the responses from the
interview have led to new questions that warrant answers. Collaboration and
communications between the responders and the interviewers are both extremely
important when conducting a survey based security requirements exercise.

132

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 132 6/7/2013 5:40:32 PM

Policy Decomposition
One of the sources for security requirements is internal organizational policies
that the organization need to comply with. Since these policies contain in
them high level mandates, they need to be broken down (or in other words
decomposed) into detailed security requirements. However, this process of
breaking high level mandates into concrete security requirements is not limited
only to organizational policies. External regulations, privacy and compliance
mandates can also be broken down to glean detailed security requirements. To
avoid any confusion, for the remainder of this chapter, we will refer all these high
level sources of security requirements as policy documents, regardless of whether
they are internal or external in their origin.

While superficially it may seem as the policy decomposition process may
be pretty simple and straightforward, since policies are high level and open
to interpretation, careful attention is paid to the scope of the policy. This is
to ensure that the decomposition process is objective and compliant with the
security policy, and not merely someone’s opinion. The policy decomposition
process is a sequential and structured process as illustrated in Figure 2.10.

It starts by breaking the high level requirements in the policy documents
into high level objectives which are in turn decomposed into generate security
requirements, the precursors for software security requirement. As an illustration,
consider the following PCI DSS requirement 6.3 example which mandates:

Develop software applications in accordance with PCI DSS and based on
industry best practices, and incorporate information security throughout the
software development life cycle.

Figure 2.10 – Policy Decomposition Process

133

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 133 6/7/2013 5:40:32 PM

This requirement is pretty high level and can be subject to various
interpretations. What is the meaning of incorporating information security
through the SDLC? Additionally, what may be considered as an industry best
practice for someone may not even be applicable to another. This is why the
high level policy document requirement must be broken down into high level
objectives such as:

CFG – Configuration management

SEG – Segregated environments

SOD – Separation of duties

DAT – Data protection

PRC – Production readiness checking and

CRV – Code review

These high level objectives can be used to glean security requirements:

CFG1 – Test all security patches, and system and software configuration
changes before deployment

SEG1 – Separate development/test and production environment

SOD1 – Separation of duties between development/test and production
environments.

DAT1 – Production data (live sensitive cardholder data) are not used
for testing or development.

PRC1 – Removal of test data and accounts before production systems
become active.

PRC2 – Removal of custom application accounts, user IDs, and
passwords before applications become active or are release to customers.

CRV1 - Review of custom code prior to release to production or
customers in order to identify and any potential coding vulnerability.

From each security requirement, one or more software security requirements
can be determined. For example the CFG1 high level objective can be broken
down into several security requirements:

134

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 134 6/7/2013 5:40:32 PM

CFG1.1 – Validate all input on both server and client end

CFG1.2 – Handle all errors using try, catch and finally blocks

CFG1.3 – Cryptographically protect data using 128 bit encryption of
SHA-256 hashing when storing it

CFG1.4 – Implement secure communications using Transport (TLS)
or Network (IPSec) secure communications.

CFG1.5 – Implement proper RBAC control mechanisms.

Decomposition of policy documents is a crucial step in the process of
gathering requirements and an appropriate level of attention must be given to
this process.

135

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 135 6/7/2013 5:40:32 PM

Data Classification
Within the context of software assurance, data or information can be considered
to be the most valuable asset that a company has, second only to its people. Like any
asset that warrants protection, data as a digital asset needs to be protected as well.

Types of Data
Data can be primarily designated as structured data or unstructured data for the
purposes of classification. When data is organized into identifiable structure, it
is referred to as structured data. The best example of structured data is a database
in which all of the information is stored in columns and rows. The organization
of data in an identifiable structure also makes the data contents relatively more
searchable by data type. Unlike structured data, unstructured data has no
identifiable structure. Examples of unstructured data include images, videos,
emails, documents and text. Although the examples of unstructured data may
seem to have a uniform format, all data within the dataset does not necessarily
contain the same structure. While some data can be stored as an image, others
may be stored as a document or in an email.

Labeling
Not all data need the same level of protection as public data require minimal
to no protection against disclosure. Data classification is the conscious effort to
assign labels (a level of sensitivity) to information (data) assets, based on potential
impact to confidentiality, integrity and availability (CIA), upon disclosure,
alteration or destruction. This labeling can then be used for the categorization
of data into appropriate buckets as depicted in Figure 2.11.

 The Special Publication 800-18, published by NIST, provides a framework
for classifying information assets based on impact to the three core security
objectives, i.e., confidentiality, integrity and availability. This is highly qualitative
in nature and the buckets used to classify are tied to impact as High, Medium
and Low. This categorization is then used to determine security requirements
and the appropriate levels of security protection by category.

The main objective of data classification is to lower the cost of data protection
and maximize the return on investment when data is protected. This can be
accomplished by implementing only the needed levels of security controls on
data assets based on their categorization. In other words, security controls must
commensurate with the classification level. For example, there is no point to
encrypt data or information that is to be publicly disclosed or implementing

136

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 136 6/7/2013 5:40:32 PM

full-fledged load balancing and redundancy control for data that has a very
limited adverse effect on organizational operations, assets or individuals. In
addition to lowering the cost of data protections, and maximizing ROI, data
classification can also assist in increasing the quality of risk based decisions. Since
the data quality and characteristics are known upon classification, decisions that
are made to protect them can also be made appropriately.

Data Ownership and Roles
Decisions to classify data, who has access and what level of access, etc. are
decisions that are to be made by the business owner. It is also imperative to
understand that it is the business that owns the data and not the Information
Technology (IT) or the information security organization. This is why the
business owner is also referred to as the data owner. The business/data owner
has the responsibility for the following:

 ■ Ensure that information assets are appropriately classified.
 ■ Validate that security controls are implemented as needed by

reviewing the classification periodically.
 ■ Define authorized list of users and access criteria based on

information classification. This supports the Separation of Duties
principle of secure design.

 ■ Ensure appropriate backup and recovery mechanisms are in place
 ■ Delegate as needed the classification responsibility, access approval

authority, backup and recovery duties to a data custodian.

Figure 2.11 – Data Classification Labeling

137

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 137 6/7/2013 5:40:32 PM

The data custodian is delegated by the data owner and is the individual who
is responsible for the following:

 ■ Perform the information classification exercise.
 ■ Perform backups and recovery as specified by the data owner.
 ■ Ensure records retention is in place according to regulatory

requirements or organizational retention policy.

Data Lifecycle Management (DLM)
The term Information Lifecycle Management (ILM) is commonly referred to
as Data Lifecycle Management (DLM) and the terms are used interchangeably
although a distinction can be made between the two. While DLM products
primarily deals with data attributes such as file types and age of files, ILM
products can usually handle more complex situations, including contents within
the stored data. Often when DLM is mentioned, there is a tendency to see it
from purely a product perspective, it is important to recognize that DLM is not
a product, but a policy based approach, involving procedures and practices, to
protect data throughout the information life cycle: from the time it is created to
the time it is disposed or deleted.

Data classification is usually the first and primary component of DLM.
Once data is organized into appropriate categories (or tiers) appropriate controls
can be applied to protect the confidentiality, integrity and availability of data.

When data is generated (i.e., created) and used (i.e., processed), transmitted,
stored, and archived, appropriate protection mechanisms need to exist.
Additionally, who has access to the data, the level of access (authorization
rights), whether the data will be stored as structured or unstructured data and
the environment (private, public, or hybrid) in which the data will be stored and
used, must be determined.

Secure memory management prevents disclosure of data when data is
processed. Cryptographic protection such as encryption and hashing, in
conjunction with end-to-end secure communication protocols operating
in the transport (e.g., SSL/TLS) or network (e.g., IPSec) layer protects data
when it is transmitted. Data Leakage Prevention (DLP) technologies come in
handy to protect against unauthorized disclosures when data is transmitted.
Database encryption is a control that is useful to protect sensitive or private
data during storage. A common type of DLM solution is Hierarchical Storage
Management (HSM). The hierarchy represents different types of storage media,
ranging from Redundant Array of Inexpensive Disks (RAID) systems, optical

138

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 138 6/7/2013 5:40:32 PM

storage, or tape, solid state drives, etc. From a future accessibility and availability
of data standpoint, heuristically, more critical data that needs to be accessed
more frequently for business transactions must be stored in faster media while
less critical data is stored on slower media. It is also important to note that
portable media are susceptible to theft and so physical security protection
practices need to be in effect. Security requirements when archiving data must
be considered when data is archived. The rules for data retention are determined
by the corporate data retention period which must complement local legal and
legislative procedures. The period of retention must be explicitly identified and
enforced. However, when the data has outlived its usefulness (i.e., no longer
needed for the business operations or continuity), and there is no regulatory
or compliance requirement to retain it, it must be securely disposed. Secure
disposal includes deletion or physically destruction of the data. Additionally, the
media in which the data was stored must be sanitized

Proper implementation of data classification can be effective in determining
security requirements because a one-size-fits-all security protection mechanism
is not effective in today’s complex heterogeneous computing ecosystems. Data
classification can ensure that confidentiality, integrity, and availability security
requirements are adequately identified and captured in the software specifications
documentation.

139

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 139 6/7/2013 5:40:32 PM

Subject/Object Matrix

When there are multiple subjects (roles) that require access to functionality
within the software, it is critical to understand what each subject is allowed to do.
Objects (components) are those items that a subject can act upon. They are the
building blocks of software. Higher level objects must be broken down into more
granular objects for better accuracy of subject-object relationship representations.
For example, the ‘database’ object can be broken down into finer objects such
as ‘data table’, ‘data view’ and ‘stored procedures’ and each of these objects can
now be mapped to subjects or roles. It is also important to capture third party
components as objects in the software requirements specification documents.

A subject-object matrix is used to identify allowable actions between subjects
and objects based on use cases. Once use cases are enumerated with subjects
(roles) and the objects (components) are defined, a subject-object matrix can
be developed. A subject-object matrix is a two-dimensional representation of
roles and components. The subjects or roles are listed across the columns and
the objects or components are listed down the rows. A subject-object matrix
is a very effective tool to generate misuse cases. Once a subject-object matrix
is generated, by inversing the allowable actions captured in the subject-object
matrix, one can determine threats, which in turn can be used to determine
security requirements. In a subject-object matrix, when the subjects are roles, it
is referred to as a role matrix.

Use Case & Misuse Case Modeling
Like data classification, use case modeling is another mechanism by which
software functional and security requirements can be determined. A use case
models the intended behavior of the software or system. In other words, the use
case describes behavior that the system owner intended. This behavior describes
the sequence of actions and events that are to be taken to address a business need.
Use case modeling and diagramming is very useful for specifying requirements.
It can be effective in reducing ambiguous and incompletely articulated business
requirements by explicitly specifying exactly when and under what conditions
certain behavior occurs. Use case modeling is meant to model only the most
significant system behavior and not all of it and so should not be considered a
substitute for requirements specification documentation.

Use case modeling includes identifying actors, intended system behavior (use
cases), and sequences and relationships between the actors and the use cases.

140

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 140 6/7/2013 5:40:33 PM

Actors may be an individual, a role or non-human in nature. As an example, the
individual John, an administrator or a backend batch process can all be actors
in a use case. Actors are represented by stick people and use case scenarios by
ellipses when the use case is diagrammatically represented. Arrows that represent
the interactions or relationships connect the use cases and the actors. These
relationships may be an “includes” or “extends” type of relationship. Figure 2.13
depicts a use case and misuse case of an online ecommerce store. The customer
must first create an account and sign in before placing an order. The customer
need not be authenticated for searching the catalog of products. This sequence
of actions is not represented within the use case itself but this is where a sequence
diagram comes handy. Sequence diagrams usually go hand in hand with use case
diagrams. Preconditions such as a user must be authenticated before placing
an order and that they should be required to sign in again before performing
authenticated user actions, can be used to clarify the scope of the use case and
document any assumptions the use case author has made about the system.

From use cases, misuse cases can be developed. Misuse cases, also known as
abuse cases help identify security requirements by modeling negative scenarios.
A negative scenario is an unintended behavior of the system, one that the system
owner does not want to occur within the context of the use case. Misuse cases
provide insight into the threats that can occur against the system or software. It
provides the hostile users point of view and is an inverse of the use case. Misuse case
modeling is similar to the use case modeling, except that in misuse case modeling,
mis-actors and unintended scenarios or behavior are modeled. Misuse cases may
be intentional or accidental. One of the most distinctive traits of misuse cases is
that they can be used to elicit security requirements unlike other requirements
determination methods that focus on end-user functional requirements.

Figure 2.13 – Example of an Online eCommerce Store Use case and Misuse case

141

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 141 6/7/2013 5:40:33 PM

Misuse cases can be created through brainstorming negative scenarios like
an attacker. A misuse case can also be generated by thwarting the sequence of
actions that is part of the use case scenario. In our online ecommerce store
example, a hacker can impersonate the identity of a legitimate customer by
stealing his user name and/or bruteforce the password. A hacker can also steal
credit card information of the customer and place an order, using the stolen
information. In all of these scenarios, a misuse of intended behavior is what
is observed. Misuse cases must not only take into account adversaries that are
external to the company, but also the insider. A database administrator who
has direct access to unprotected sensitive data in the databases is a potential
insider mis-actor and a misuse case to represent this scenario must be specified.
Auditing can assist in determining insider threats and this must be a security
control that is taken into account when generating misuse cases for mis-actors
that are internal to the company.

Some of the common templates that can be used for use and misuse case
modeling are templates by Kulak and Guiney and by Cockburn. The Secure
Quality Requirements Engineering (SQuaRE) methodology consists of nine
steps that generate a final deliverable of categorized and prioritized security
requirements. The SQuaRE process model tool has been developed by the
United States Computer Emergency Readiness Team (US-CERT).

142

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 142 6/7/2013 5:40:33 PM

Requirements Traceability Matrix (RTM)

The output from the data classification exercise, use and misuse case modeling,
subject-object matrix and other requirement elicitation processes can be tabulated
into the requirements traceability matrix (RTM). A generic RTM is a table of
information that lists the business requirements in the left most column, the
functional requirements that address the business requirements are in the next
column. Next to the functional requirements are the testing requirements. From
a software assurance perspective, a generic RTM can be modified to include
security requirements as well.

RTMs provide the following benefits to software development:
 ■ Ensures that No scope creep occurs, i.e., the software development

team has not inadvertently or intentional added additional features
that were not requested by the user.

 ■ Assures that the design satisfies the specified security requirements.
 ■ Ensures that implementation does not deviate from secure design.
 ■ Provides a firm basis for defining test cases.

By incorporating security requirements in the RTM, the chances of security
functionality being missed out in design are reduced considerably. Specifying
security requirements next to functional requirements also provides the business
with insight into how security functionality maps to the end-user business
requirements. Additionally, requirements documentation also allows for
appropriate resource allocation as needed.

143

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 143 6/7/2013 5:40:33 PM

The following references are recommended to
get additional information on secure software
requirements concepts, methodologies and
template:

 » The “Quality #2: Functionality maps to a Security Plan” chapter in
“The 7 Qualities of Highly Secure Software” book provides a good
reference to developing a security plan.

 » (ISC)2’s whitepaper on “The Ten Best Practices for Secure Software
Development” highlights the top ten essential practices, including
data classification, that must be undertaken in building secure
software.

 » The ISO/IEC 25001 standard provides details about the planning
and management requirements associated with software
product quality requirements and evaluation (SQuaRE).

 » Kulak and Guiney’s book entitled “Use Cases: requirements in
Context” provides insight and templates for developing use
cases and misuse cases.

 » NIST Special Publication (SP 800-18) provides guidance for
the development of security plans, incorporating security
requirements and controls into the plan.

144

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 144 6/7/2013 5:40:33 PM

Summary and Conclusion

In this chapter, we have covered the need for and the
importance of eliciting security requirements early in
the software development life cycle. Sources for security
requirement include both internal organizational policy
documents as well as external regulatory and compliance
requirements. It is also extremely important to engage the
appropriate stakeholders from the business, end-user, IT,
legal, privacy, networking, and software development teams.
There are several types of security requirements that address
the various tenets of software security and the applicability
of each of these types of requirements within the business
context of the software being designed and developed,
must be determined. Protection needs can be elicited using
several methods including brainstorming, surveys, policy
decomposition, data classification, and use and misuse case
modeling. The policy decomposition process is made up of
breaking down high level requirements into granular finer
level software security requirements. Data classification
can help with assuring that appropriate levels of security
controls are assigned to data based on their sensitivity
levels. Use and misuse case modeling, sequence diagrams
and subject-object models can be used to glean software
security requirements. Software security requirements help
ensure that the software that will be designed, developed
and deployed include secure features that make it reliable,
resilient and recoverable.

145

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

CSSLP_v2.indb 145 6/7/2013 5:40:34 PM

146

Official (ISC)2 Guide to the ISSAP CBK: Second Edition

1. Which of the following MUST be addressed by software security
requirements? Choose the BEST answer.

A. Technology used in building the application.
B. Goals and objectives of the organization.
C. Software quality requirements.
D. External auditor requirements.

2. Which of the following types of information is exempt from
confidentiality requirements?

A. Directory information.
B. Personally identifiable information (PII).
C. User’s card holder data.
D. Software architecture and network diagram.

3. Requirements that are identified to protect against the destruction of
information or the software itself are commonly referred to as

A. confidentiality requirements.
B. integrity requirements.
C. availability requirements.
D. authentication requirements.

4. The amount of time by which business operations need to be restored
to service levels as expected by the business when there is a security
breach or disaster is known as

A. Maximum Tolerable Downtime (MTD).
B. Mean Time Before Failure (MTBF).
C. Minimum Security Baseline (MSB).
D. Recovery Time Objective (RTO).

5. The use of an individual’s physical characteristics such as retinal blood
patterns and fingerprints for validating and verifying the user’s identity
if referred to as

Review Questions

CSSLP_v2.indb 146 6/7/2013 5:40:34 PM

147

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

A. biometric authentication.
B. forms authentication.
C. digest authentication.
D. integrated authentication.

6. Which of the following policies is MOST likely to include the
following requirement? “All software processing financial transactions
need to use more than one factor to verify the identity of the entity
requesting access””

A. Authorization.
B. Authentication.
C. Auditing.
D. Availability.

7. A means of restricting access to objects based on the identity of subjects
and/or groups to which they belong, as mandated by the requested
resource owner is the definition of

A. Non-discretionary Access Control (NDAC).
B. Discretionary Access Control (DAC).
C. Mandatory Access Control (MAC).
D. Role based Access Control.

8. Requirements which when implemented can help to build a history of
events that occurred in the software are known as

A. authentication requirements.
B. archiving requirements.
C. accountability requirements.
D. authorization requirements.

9. Which of the following is the PRIMARY reason for an application to
be susceptible to a Man-in-the-Middle (MITM) attack?

A. Improper session management
B. Lack of auditing
C. Improper archiving
D. Lack of encryption

CSSLP_v2.indb 147 6/7/2013 5:40:34 PM

148

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

10. The process of eliciting concrete software security requirements from
high level regulatory and organizational directives and mandates in
the requirements phase of the SDLC is also known as

A. threat modeling.
B. policy decomposition.
C. subject-object modeling.
D. misuse case generation.

11. The FIRST step in the Protection Needs Elicitation (PNE) process is
to

A. engage the customer
B. model information management
C. identify least privilege applications
D. conduct threat modeling and analysis

12. A Requirements Traceability Matrix (RTM) that includes security
requirements can be used for all of the following except

A. ensuring scope creep does not occur
B. validating and communicating user requirements
C. determining resource allocations
D. identifying privileged code sections

13. Parity bit checking mechanisms can be used for all of the following
except

A. Error detection.
B. Message corruption.
C. Integrity assurance.
D. Input validation.

14. Which of the following is an activity that can be performed to clarify
requirements with the business users using diagrams that model the
expected behavior of the software?

A. Threat modeling
B. Use case modeling
C. Misuse case modeling
D. Data modeling

CSSLP_v2.indb 148 6/7/2013 5:40:34 PM

149

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

15. Which of the following is LEAST LIKELY to be identified by misuse
case modeling?

A. Race conditions
B. Mis-actors
C. Attacker’s perspective
D. Negative requirements

16. Data classification is a core activity that is conducted as part of which
of the following?

A. Key Management Lifecycle
B. Information Lifecycle Management
C. Configuration Management
D. Problem Management

17. Web farm data corruption issues and card holder data encryption
requirements need to be captured as part of which of the following
requirements?

A. Integrity.
B. Environment.
C. International.
D. Procurement.

18. When software is purchased from a third party instead of being built
in-house, it is imperative to have contractual protection in place and
have the software requirements explicitly specified in which of the
following?

A. Service Level Agreements (SLA).
B. Non-Disclosure Agreements (NDA).
C. Non-compete Agreements
D. Project plan.

19. When software is able to withstand attacks from a threat agent and
not violate the security policy it is said to be exhibiting which of the
following attributes of software assurance?

A. Reliability.
B. Resiliency.
C. Recoverability.
D. Redundancy.

CSSLP_v2.indb 149 6/7/2013 5:40:34 PM

150

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

20. Infinite loops and improper memory calls are often known to cause
threats to which of the following?

A. Availability.
B. Authentication.
C. Authorization.
D. Accountability.

21. Which of the following is used to communicate and enforce availability
requirements of the business or client?

A. Non-Disclosure Agreement (NDA).
B. Corporate Contract.
C. Service Level Agreements (SLA).
D. Threat model.

22. Software security requirements that are identified to protect against
disclosure of data to unauthorized users is otherwise known as

A. integrity requirements.
B. authorization requirements.
C. confidentiality requirements.
D. non-repudiation requirements.

23. The requirements that assure reliability and prevent alterations are to be
identified in which section of the software requirements specifications
(SRS) documentation?

A. Confidentiality.
B. Integrity.
C. Availability.
D. Accountability.

24. Which of the following is a covert mechanism that assures
confidentiality?

A. Encryption.
B. Steganography.
C. Hashing.
D. Masking.

CSSLP_v2.indb 150 6/7/2013 5:40:34 PM

151

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

25. As a means to assure confidentiality of copyright information, the
security analyst identifies the requirement to embed information
insider another digital audio, video or image signal. This is commonly
referred to as

A. Encryption.
B. Hashing.
C. Licensing.
D. Watermarking.

26. Checksum validation can be used to satisfy which of the following
requirements?

A. Confidentiality.
B. Integrity.
C. Availability.
D. Authentication.

27. A Requirements Traceability Matrix (RTM) that includes security
requirements can be used for all of the following EXCEPT

A. Ensure scope creep does not occur
B. Validate and communicate user requirements
C. Determine resource allocations
D. Identifying privileged code sections

CSSLP_v2.indb 151 6/7/2013 5:40:34 PM

152152

Official (ISC)2 Guide to the CSSLP CBK: Second EditionOfficial (ISC)2 Guide to the CSSLP CBK: Second Edition

References

Allen, Julia H., Sean H. Barnum, Robert J. Ellison, Gary McGraw, and Nancy R.
Mead. Software Security Engineering: A Guide for Project Managers. Upper Saddle
River, NJ: Addison-Wesley, 2008.

Bauer, Friedrich Ludwig. Decrypted Secrets: Methods and Maxims of Cryptology. 4th
rev. and extended ed. Berlin: Springer, 2007.

“FAQ - Basic Questions.” Unicode Consortium. http://www.unicode.org/faq/
basic_q.html (accessed February 6, 2013).

Ferraiolo, David, and Peter Mell. “Operating System Security: Adding to the Arsenal
of Security Techniques.” Computer Security Division, Information Technology
Laboratory.. csrc.nist.gov/publications/nistbul/12-99.pdf (accessed February 6,
2013).

Johnson, Neil F., Zoran Duric, and Sushil Jajodia. Information Hiding: Steganography
and Watermarking - Attacks and Countermeasures. New York, NY: Springer, 2000.

Kossiakoff, Alexander, and William N. Sweet. Systems Engineering Principles and
Practice. Hoboken, N.J.: Wiley, 2003.

McGraw, Gary. Software Security: Building Security in. Upper Saddle River, NJ:
Addison-Wesley, 2006.

Meier, J. D., Alex Mackman, Blaine Wastell, Prashant Banshode, and Chaitanya
Bijwe. “.NET 2.0 Security Guidelines - Exception Management.” Guidance Share.
www .guidanceshare. com/wiki/.NET_2.0_Security_Guidelines_-_Exception_
Management (accessed February 6, 2013).

MITRE. “Operational Requirements.” System Engineering Guide. www.mitre.
org/work/systems_engineering/guide/se_lifecycle_building_blocks/concept_
development/operational_requirements.html (accessed February 6, 2013).

National Institute of Standards and Technology (NIST). “Role Based Access Control
- Frequently Asked Questions.” Computer Security Division, Computer Security
Resource Center . csrc.nist.gov/groups/SNS/rbac/ faq.html (accessed February 6,
2013).

CSSLP_v2.indb 152 6/7/2013 5:40:34 PM

http://www.unicode.org/faq/basic_q.html
http://www.guidanceshare.com/wiki/.NET_2.0_Security_Guidelines_-_Exception_Management
http://www.mitre.org/work/systems_engineering/guide/se_lifecycle_building_blocks/concept_development/operational_requirements.html
http://csrc.nist.gov/publications/nistbul/12-99.pdf

153

Domain 2: Secure Software Requirements

2

Secure Softw
are

Requirem
ents

Seacord, Robert C. “File I/O Secure Programming.” Race Conditions. https://
www.securecoding.cert.org/confluence/download/attachments/3524/07+Race+
Conditions.pdf (accessed February 6, 2013).

“Security Token and Smart Card Authentication.” Information Security Information,
News and Tips - SearchSecurity.com. http://searchsecurity.techtarget.com/tip/Security-
token-and-smart-card-authentication (accessed February 6, 2013).

Solomon, Michael, and Mike Chapple. Information Security Illuminated. Sudbury,
MA: Jones and Bartlett, 2005.

Uhl, Todd. “Operational Requirements - the less exciting stuff....” Geeks with Blogs.
geekswithblogs.net/toddu/archive/2004/09/25/11717.aspx (accessed February 6,
2013).

“What is data life cycle management (DLM)?.” SearchStorage. http://searchstorage.
techtarget.com/definition/data-life-cycle-management (accessed February 6, 2013).

“What is structured data?.” Webopedia.
www.webopedia.com/TERM/S/structured_data.html (accessed February 6, 2013).

“What is unstructured data?.” Webopedia. http://www.webopedia.com/TERM/U/
unstructured_data.html (accessed February 6, 2013).

CSSLP_v2.indb 153 6/7/2013 5:40:35 PM

https://www.securecoding.cert.org/confluence/download/attachments/3524/07+Race+Conditions.pdf
http://www.webopedia.com/TERM/U/unstructured_data.html
http://searchstorage.techtarget.com/definition/data-life-cycle-management
http://www.SearchSecurity.com
http://geekswithblogs.net/toddu/archive/2004/09/25/11717.aspx

This page intentionally left blankThis page intentionally left blank

ONE OF THE MOST IMPORTANT phases in the SDLC is the design
phase. During this phase, software specifications are translated into
architectural blueprints that can be coded during the implementation
(or coding) phase that follows. When this happens, it is necessary for
the translation to be inclusive of secure design principles. It is also
important to ensure that the requirements which assure software
security are designed into the software in the design phase. While
writing secure code is important for software assurance, a majority of
software security issues has been attributed to insecure or incomplete
design. Entire classes of vulnerabilities that are not syntactic or code-
related such as semantic or business logic flaws are related to design
issues. Attack surface evaluation using threat models and misuse case
modeling (covered in the Secure Software Requirements chapter),
control identification, and prioritization based on risk to the business
are all essential software assurance processes that need to be
conducted during the design phase of software development. In this
chapter, we will cover secure design principles and processes, and
learn about different architectures and technologies, which can be
leveraged for increasing security in software. We will end this chapter
by understanding the need for and the importance of conducting
architectural reviews of the software design from a security perspective.

155

Domain 3

Secure Software
Design

CSSLP_v2.indb 155 6/7/2013 5:40:35 PM

 ■ Design Processes
 à Attack Surface evaluation
 à Threat Modeling
 à Control Identification
 à Control Prioritization
 à Documentation

 ■ Design Considerations
 à Encryption, Hashing, and Recovery methods
 à Multifactor Authentication, and Logging
 à Security design principles
 à Interconnectivity
 à Security management interfaces
 à Identity management

 ■ Architecture
 à Distributed computing
 à Service-Oriented architecture
 à Rich Internet Applications
 à Pervasive computing
 à Integration with existing architectures
 à Software as a Service

 ■ Technologies
 à Authentication and Identity Management
 à Credential management (e.g., X.509 and SSO)
 à Flow Control (e.g., proxies, firewalls, middleware)
 à Audit (e.g., syslog, IDS and IPS)
 à Data protection (e.g., DLP, encryption and database security)
 à Computing environment (e.g., programming

languages, virtualization, and operating systems
 à Digital rights Management (DRM)
 à Integrity (e.g., code signing)

 ■ Design and Architecture technical review (e.g., reviewing
interface points and deployment diagram)

156

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Topics

CSSLP_v2.indb 156 6/7/2013 5:40:35 PM

157

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

Objectives

As a CSSLP, you are expected to

 ■ Understand the need for and importance of designing
security into the software.

 ■ Be familiar with secure design principles and how they can
be incorporated into software design.

 ■ Have a thorough understanding of how to threat model
software.

 ■ Be familiar with the different software architectures that
exist and the security benefits and drawbacks of each.

 ■ Understand the need to take into account data (type,
format), database, interface, and interconnectivity security
considerations when designing software.

 ■ Know how the computing environment and chosen
technologies can have an impact on design decisions
regarding security.

 ■ Know how to conduct design and architecture reviews with
a security perspective.

This chapter will cover each of these objectives in detail. It is impera-
tive that you fully understand the objectives and be familiar with how
to apply them to the software that your company builds or procures.

CSSLP_v2.indb 157 6/7/2013 5:40:35 PM

The Need for Secure Design

Software that is designed correctly improves software quality. In addition to
functional and quality aspects of software, there are other requirements that
need to be factored into its design. Some of these other requirements include
privacy-, globalization-, localization- and security-requirements. We learned
in the Secure Software Concepts chapter that software can meet all quality
requirements and still be insecure, warranting the need for explicitly designing
the software with security in mind.

IBM Systems Sciences Institute, in its research work on implementing
software inspections, determined that it was nearly a hundred times more
expensive to fix security bugs once the software is in production than when it
is being designed. The time that is necessary to fix identified issues is shorter
when the software is still in the design phase. The cost savings are substantial
since there is minimal-to-no disruption to business operations. Besides the
aforementioned time and cost saving benefits, there are several other benefits
of designing security early in the SDLC. Some of these include the following:

 ■ Resilient and recoverable software: Security designed into software
decreases the likelihood of attack or errors, which assures resiliency
and recoverability of the software.

 ■ Quality, maintainable software that is less prone to errors: Secure
design not only increases the resiliency and recoverability of
software, but such software is also less prone to errors (accidental
or intentional). In this regard, secure design is directly related
to the reliability aspects of software. It also makes the software
easily maintainable while improving the quality of the software
considerably.

 ■ Minimal redesign and consistency: When software is designed with
security in mind, there is a minimal need for redesign. Using
standards for architectural design of software also makes the
software consistent, irrespective of who is developing it.

 ■ Business logic flaws addressed: Business logic flaws are those, which
are characterized by the software functioning as designed, but the
design itself makes circumventing the security policy possible.
Business logic flaws have been commonly observed in the way
password-recovery mechanisms are designed. In the early days,
when people needed to recover their passwords, they were asked to

158

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 158 6/7/2013 5:40:35 PM

answer a predefined set of questions, for which they had provided
answers that were saved to their profiles on the system. These
questions were either guessable or often had a finite set of answers.
It is not hard to guess the favorite color of a person or provide
an answer from the finite set of primary colors that exists. The
software responds to the user input as designed and so there is
really no issue of reliability. However, because careful thought
was not given to the architecture by which password recovery was
designed, there existed a possibility of an attacker’s brute-forcing or
intelligently bypassing security mechanisms. By designing software
with security in mind, business logic flaws and other architectural
design issues can be uncovered, which is a main benefit of securely
designing software.

Investing the time upfront in the SDLC to design security into the software
supports the “build-in” motif of security, as opposed to trying to “bolt-it-on” at
a later stage. The bolt-on method of implementing security can become very
costly, time consuming, and generate software of low quality characterized by
being unreliable, inconsistent, unmaintainable, prone to errors, and susceptible
to exploitation by hackers.

Flaws versus Bugs
While it may seem like many security errors are related to insecure programming,
a majority of security errors are also architecture-based. The line of demarcation
between when a software security error is based on improper architecture or
when it is due to insecure implementation is not always very distinct, as the error
itself may be a result of both architecture and implementation failure. In the
design stage, since no code is written, we are primarily concerned with design
issues related to software assurance. For the rest of this chapter and book, we will
refer to design and architectural defects that can result in errors as “flaws” and to
coding/implementation constructs that can cause a breach in security as “bugs.”

It is not quite as important to know which security errors constitute a flaw
and which ones a bug, but it is important to understand that both flaws and
bugs need to be identified and addressed appropriately. Threat modeling and
secure architecture design reviews, which will we cover later in this chapter, are
useful in the detection of architecture (flaws) and implementation issues (buys),
although the latter are mostly determined by code reviews and penetration
testing exercises after implementation. Business logic flaws that were mentioned
earlier, are primarily a design issue. They are not easily detectable when reviewing

159

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 159 6/7/2013 5:40:35 PM

code. Scanners and intrusion detection systems (IDS) cannot detect them,
and application-layer firewalls are futile in their protection against them. The
discovery of non-syntactic design flaws in the logical operations of the software is
made possible by security architecture and design reviews. Security architecture
and design reviews using outputs from attack surface evaluation, threat modeling
and misuse cases modeling are very useful in ensuring that the software not only
functions as it is expected to, but that it does not violate any security policy
while doing so. Logic flaws are also known as semantic issues. Flaws are broad
classes of vulnerabilities, which at times can also include syntactic coding bugs.
Insufficient input validation and improper error and session management are
predominantly architectural defects that manifest themselves as coding bugs.

Architecting Software with Core Security Concepts
In addition to designing for functionality of software, design for security tenets
and principles also must be conducted. In the previous chapter, we learned about
various types of security requirements. In the design phase, we will consider
how these requirements can be incorporated into the software architecture and
makeup. In this section, we will cover how the identified security requirements
can be designed and what design decisions are to be made based on the business
need. We will start with how to design the software to address the core security
elements of confidentiality, integrity, availability, authentication, authorization,
and auditing, and then we will look at examples of how to architect the secure
design principles covered in the Secure Software Concepts chapter.

Confidentiality Design
Disclosure protection can be achieved in several ways using cryptographic and
masking techniques. Masking, covered in the Secure Software Requirements
chapter, is useful for disclosure protection when data is displayed on the screen
or on printed forms; but for assurance of confidentiality when the data is
transmitted or stored in transactional data stores or offline archives, cryptographic
techniques are primarily used. The most predominant cryptographic techniques
include overt techniques such as hashing and encryption and covert techniques
such as steganography and digital watermarking as depicted in Figure 3.1. These
techniques were introduced in the Secure Software Requirements chapter and
are covered here in a little more detail with a design perspective.

Cryptanalysis is the science of finding vulnerabilities in cryptographic
protection mechanisms. When cryptographic protection techniques are
implemented, the primary goal is to ensure that an attacker with resources must

160

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 160 6/7/2013 5:40:36 PM

make such a large effort to subvert or evade the protection mechanisms that the
required effort, itself, serves as a deterrent or makes the subversion or evasion
impossible. This effort is referred to as work factor. It is critical to consider the
work factor when choosing a cryptographic technique while designing the
software. The work factor against cryptographic protection is exponentially
dependent on the key size. A key is a sequence of symbols that controls the
encryption and decryption operations of a cryptographic algorithm. Practically,
this is usually a string of bits that is supplied as a parameter into the algorithm
for encrypting plaintext to cipher text or for decrypting cipher text to plaintext.
It is vital that this key is kept a secret.

The key size, also known as key length, is the length of the key that is used in the
algorithm. It is measured usually in bits or bytes. Given time and computational
power, almost all cryptographic algorithms can be broken, except for the one-
time pad, which is the only algorithm that is provably unbreakable by exhaustive
brute-force attacks. This is, however, only true if the key used in the algorithm
is truly random and discarded permanently after use. The key size in a one-time
pad is equal to the size of the message itself and each key bit is used only once
and discarded.

In addition to protecting the secrecy of the key, key management is extremely
critical. The key management life cycle includes the generation, exchange,
storage, rotation, archiving, and destruction of the key as illustrated in Figure 3.2.

From the time that the key is generated to the time that it is completely
disposed (or destroyed) it needs to be protected. The exchange mechanism,
itself, needs to be secure so that the key is not disclosed when the key is shared.
When the key is stored in configuration files or in a hardware security module
(HSM) such as the Trusted Platform Modules (TPM) chip for increased security,

Figure 3.1 – Types of Cryptography

161

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 161 6/7/2013 5:40:36 PM

it needs to be protected using access-control mechanisms, TPM security,
encryption, and secure startup mechanisms, which we will cover in the Software
Deployment, Operations, Maintenance, and Disposal chapter.

Rotation (swapping) of keys involves the expiration of the current key and
the generation, exchange, and storage of a new key. Cryptographic keys need
to be swapped periodically to thwart insider threats and immediately upon
key disclosure. When the key is rotated as part of a routine security protocol,
if the data that is backed up or archived is in an encrypted format, then the
key that was used for encrypting the data must also be archived. If the key is
destroyed without being archived, the corresponding key to decrypt the data
will be unavailable; leading to a denial of service (DoS) should there be a need
to retrieve the data for forensics or disaster recovery purposes.

Encryption algorithms are primarily of two types, symmetric and asymmetric.

Symmetric Algorithms
Symmetric algorithms are characterized by using a single key for encryption
and decryption operations that is shared between the sender and the receiver.
This is also referred to by other names, such as private key cryptography, shared
key cryptography, or secret key algorithm. The sender and receiver need not
be human all the time. In today’s computing business world, the senders and
receivers can be applications or software within or external to the company.

The major benefit of symmetric key cryptography is that it is very fast and
efficient in encrypting large volumes of data in a short period of time. However,
this advantage comes with significant challenges that have a direct impact on the

Figure 3.2 – Key Management Framework

162

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 162 6/7/2013 5:40:36 PM

design of the software. Some of the challenges with symmetric key cryptography
include the following:

 ■ Key exchange and Management: Both the originator and
the receiver must have a mechanism in place to share the key
without compromising its secrecy. This often requires an out-of-
band, secure mechanism to exchange the key information, which
requires more effort and time, besides potentially increasing the
attack surface area. The delivery of the key and the data must be
mutually exclusive, as well.

 ■ Scalability: Since a unique key needs to be used between each
sender and recipient, the number of keys required for symmetric
key cryptographic operations is exponentially dependent on the
number of users or parties involved in that secure transaction. For
example, if Jack wants to send a message to Jill, then they both
must share one key. If Jill wants to send a message to John, then
there needs to be a different key that is used for Jill to communicate
with John. Now between Jack and John, there is also a need for
another key, if they need to communicate. Now if we add Jessie to
the mix, there is a need to have six keys, one for Jessie to communicate
with Jack, one for Jessie to communicate with Jill, and one for
Jessie to communicate with John, in addition to the three keys that
are necessary as mentioned earlier, and depicted in Figure 3.3. The
computation of the number of keys can be mathematically
represented as:

Figure 3.3 – Number of keys in a symmetric key cryptography system

163

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 163 6/7/2013 5:40:36 PM

So if there are 10 users/parties involved, then the number of keys required
is 45 and if there are 100 users/parties involved, then we need to generate,
distribute, and manage 4,950 keys, making symmetric key cryptography not
very scalable.

Non-repudiation not addressed: Symmetric key provides
confidentiality protection by simply encrypting and decrypting the
data. It does not provide proof of origin or non-repudiation.

Some examples of common, symmetric key cryptography algorithms along
with their strength and supported key size are tabulated in Table 3.1. RC2, RC4,
and RC5 are other examples of symmetric algorithms that have varying degrees
of strength based on the multiple key sizes they support. For example, the RC2-
40 algorithm is considered to be a weak algorithm while the RC2-128 is deemed
to be a strong algorithm.

Asymmetric Algorithms
In asymmetric key cryptography, instead of using a single key for encryption and
decryption operations, two keys that are mathematically related to each other are
used. One of the two keys is to be held secret and is referred to as the private key,
while the other key is disclosed to anyone with whom secure communications
and transactions need to occur. The key that is publicly displayed to everyone is
known as the public key. It is also important that it should be computationally
infeasible to derive the private key from the public key. Though there is a private
key and a public key in asymmetric key cryptography, it is commonly known as
public key cryptography.

Both the private and the public keys can be used for encryption and
decryption. However, if a message is encrypted with a public key, it is only the

Table 3.1 – Symmetric Algorithms

164

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Algorithm Name Strength Key Size
DES Weak 56

Skipjack Medium 80

IDEA Strong 128

Blowfish Strong 128

3DES Strong 168

Twofish Very strong 256

RC6 Very strong 256

AES / Rijndael Very strong 256

CSSLP_v2.indb 164 6/7/2013 5:40:36 PM

corresponding private key that can decrypt that message. The same is true when
a message is encrypted using a private key. That message can be decrypted only
by the corresponding public key. This makes it possible for asymmetric key
cryptographic to provide both confidentiality and non-repudiation assurance.

Confidentiality is provided when the sender uses the receiver’s public key
to encrypt the message and the receiver uses the corresponding private key to
decrypt the message, as illustrated in Figure 3.4. For example, if Jack wants to
communicate with Jill, he can encrypt the plaintext message with her public
key and send the resulting cipher text to her. Jill can user her private key that
is paired with her public key and decrypt the message. Since Jill’s private key
should not be known to anyone other than Jill, the message is protected from
disclosure to anyone other than Jill, assuring confidentiality. Now, if Jill wants
to respond to Jack, she can encrypt the plaintext message she plans to send him
with his public key and send the resulting cipher text to him. The cipher text
message can then be decrypted to plaintext by Jack using his private key, which
again, only he should know.

In addition to confidentiality protection, asymmetric key cryptography also
can provide non-repudiation assurance. Non-repudiation protection is known
also as proof-of-origin assurance. When the sender’s private key is used to encrypt
the message and the corresponding key is used by the receiver to decrypt it, as
illustrated in Figure 3.5, proof-of-origin assurance is provided. Since the message
can be decrypted only by the public key of the sender, the receiver is assured that
the message originated from the sender and was encrypted by the corresponding
private key of the sender. To demonstrate non-repudiation or proof of origin,
let us consider the following example. Jill has the public key of Jack and receives
an encrypted message from Jack. She is able to decrypt that message using Jack’s

Figure 3.4 – Confidentiality assurance in Asymmetric key cryptography

165

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 165 6/7/2013 5:40:36 PM

public key. This assures her that the message was encrypted using the private key
of Jack and provides her the confidence that Jack cannot deny sending her the
message, since he is the only one who should have knowledge of his private key.

If Jill wants to send Jack a message and he needs to be assured that no one
but Jill sent him the message, Jill can encrypt the message with her private
key and Jack will use her corresponding public key to decrypt the message. A
compromise in the private key of the parties involved can lead to confidentiality
and non-repudiation threats. It is thus critically important to protect the secrecy
of the private key.

In addition to confidentiality and non-repudiation assurance, asymmetric key
cryptography also provides access control, authentication, and integrity assurance.
Access control is provided since the private key is limited to one person. By
virtue of non-repudiation, the identity of the sender is validated, which supports
authentication. Unless the private-public key pair is compromised, the data
cannot be decrypted and modified thereby providing data integrity assurance.

Asymmetric key cryptography has several advantages over symmetric key
cryptography. These include the following:

 ■ Key exchange and management: In asymmetric key cryptography,
the overhead costs of having to securely exchange and store the
key are alleviated. Cryptographic operations using asymmetric
keys require a public key infrastructure (PKI) key identification,
exchange, and management. PKI uses digital certificates to make
key exchange and management automation possible. Digital
certificates are covered in the next section.

 ■ Scalability: Unlike symmetric key cryptography, where there is
a need to generate and securely distribute one key between each
party, in asymmetric key cryptography, there are only two keys
needed per user; one that is private and held by the sender and
the other that is public and distributed to anyone who wishes to

 Figure 3.5 – Proof-of-Origin assurance in Asymmetric key cryptography

166

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 166 6/7/2013 5:40:36 PM

engage in a transaction with the sender. 100 users will require 200
keys, which is much easier to manage than the 4,950 keys need for
symmetric key cryptography.

 ■ Addresses Non-repudiation: It also addresses non-repudiation
by providing the receiver, assurance of proof of origin. The sender
cannot deny sending the message when the message has been
encrypted using the private key of the sender.

While asymmetric key cryptography provides many benefits over symmetric
key cryptography, there are certain challenges that are prevalent, as well.
Public key cryptography is computationally intensive and much slower than
symmetric encryption. This is, however, a preferable design choice for Internet
environments.

Some common examples of asymmetric key algorithms include Rivest,
Shamir, Adelman (RSA), El Gamal, Diffie-Hellman (used only for key exchange
and not data encryption) and Elliptic Curve Cryptosystem (ECC), which is
ideal for small, hardware devices such as smart cards and mobile devices.

Digital Certificates
The current, internationally recognized, digital certificate standard is ITU
X.509 version 3 (X.509 v3), which specifies formats for the public key, the serial
number, the name of the pair owner, a validity period that indicates the date
range from when and for how long the certificate will be valid, the identifier
of the asymmetric algorithm to be used, the name of the certificate authority
(CA) attesting ownership, the certification version numbers that the certificate
conforms to, and an optional set of extensions, as depicted in Figure 3.6.

Figure 3.6 – ITU X.509 v3 Digital Certificate

167

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 167 6/7/2013 5:40:36 PM

Digital certificates can be used by anyone to verify the authenticity of
the certificate itself because it contains the digital certificate of the certificate
authority.

The different types of digital certificates that are predominantly used in
Internet settings include:

 ■ Personal certificates
 ■ Server certificates
 ■ Extended Validation (EV) certificates and
 ■ Software Publisher certificates

Personal Certificates are used to identify individuals and authenticate them
with the server. Secure email using S-Mime uses personal certificates.
Server Certificates are used to identify servers. These are primarily used for
verifying server identity with the client and for secure communications and
transport layer security. The Secure Sockets Layer (SSL) protocol uses server
certificates for assuring confidentiality when data is transmitted.
Extended Validation (EV) Certificates are to improve user confidence and
reduce Phishing attack threats. With the prevalence in online computing, the
need for increased online identity assurance and browser representation of
online identities gave rise to a special type of X.509 certificate. These are known
as Extended Validation (EV) certificates. Unlike traditional certificates, which
protected information only between a sender and a receiver, EV certificates
also provide assurance that the sites or remote servers that users are connecting
to are legitimate. EV certificates undergo more extensive validation of owner
identity before they are issued and they identify the owners of the sites that users
connect to, and thereby address MITM attacks. Figure 3.7 illustrates an example
of a digital extended validation SSL Server certificate that provides information
about the CA, its validity and fingerprint information.
Software Publisher Certificates are used to sign software that will be distributed
on the Internet. It is important to note that these certificates do not necessarily
assure that the signed code is safe for execution, but are merely informative
in role, informing the software user that the certificate is signed by a trusted,
software publisher’s CA.

Later in this chapter, we will learn about digital certificates in the context
of Public Key Infrastructure (PKI) and Privilege Management Infrastructure
(PMI). It is covered in the Certificate Management section under Technologies.

168

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 168 6/7/2013 5:40:36 PM

Digital Signatures
Certificates hold in them the digital signatures of the CAs that verified and issued
the digital certificates. A digital signature is distinct from a digital certificate. It
is similar to an individual’s signature in its function, which is to authenticate
the identity of the message sender, but in its format it is electronic. Digital
signatures not only provide identity verification, but also ensure that the data or
message has not been tampered with, since the digital signature that is used to
sign the message cannot be easily imitated by someone unless it is compromised.
It also provides non-repudiation.

There are several design considerations that need to be taken into account
when choosing cryptographic techniques. It is therefore imperative to first
understand business requirements pertaining to the protection of sensitive or
private information. When these requirements are understood, one can choose an
appropriate design that will be used to securely implement the software. If there
is a need for secure communications in which no one but the sender and receiver
should know of a hidden message, steganography can be considered in the design.
If there is a need for copyright and IP protection, then digital watermarking
techniques are useful. If data confidentiality in processing, transit, storage and
archives need to be assured, hashing or encryption techniques can be used.

Figure 3.7 – Extended Validation SSL Server Certificate

169

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 169 6/7/2013 5:40:36 PM

Integrity Design
Integrity in the design assures that there is no unauthorized modification of the
software or data. Integrity of software and data can be accomplished using any
one of the following techniques or a combination of the techniques, such as
Hashing (or hash functions), referential integrity design, resource locking, and
code signing (covered in the Secure Software Implementation chapter). Digital
signatures also provide data or message alteration protection.

Hashing (Hash Functions)
Here is a recap of what was introduced about hashing in the Secure Software
Requirements chapter: Hash functions are used to condense variable length
inputs into an irreversible, fixed-sized output known as a message digest or hash
value. When designing software, we must ensure that all integrity requirements
that warrant irreversible protection, which is provided by hashing, are factored
in. Figure 3.8 describes the steps taken in verifying integrity with hashing. John
wants to send a private message to Jessie. He passes the message through a
hash function, which generates a hash value, H1. He sends the message digest
(original data plus hash value H1) to Jessie. When Jessie receives the message
digest, she computes a hash value, H2, using the same hash function that John
used to generate H1. At this point, the original hash value (H1) is compared
with the new hash value (H2). If the hash values are equal, then the message has
not been altered when it was transmitted.

Figure 3.8 – Data Integrity using Hash Functions

170

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 170 6/7/2013 5:40:36 PM

In addition to assuring data integrity, it is also important to ensure that
hashing design is collision free. “Collision free” implies that it is computationally
infeasible to compute the same hash value on two different inputs. Birthday
attacks are often used to find collisions in hash functions. A birthday attack is a
type of brute-force attack which gets its name from the probability that two or
more people randomly chosen can have the same birthday. Secure hash designs
ensure that birthday attacks are not possible, which means that an attacker will
not be able to input two messages and generate the same hash value. Salting the
hash is a mechanism that assures collision free hash values. Salting the hash also
protects against dictionary attacks, which are another type of brute-force attack.
A dictionary attack is an attempt to thwart security protection mechanisms by
using an exhaustive list (like a list of words from a dictionary).

Salt values are random bytes that can be used with the hash function to
avoid collisions and prevent prebuilt dictionary attacks. Let us consider the
following: There is likelihood that two users within a large company have the
same password. Both John and Jessie have the same password, ‘tiger123’ for
logging into their bank account. When the password is hashed using the same
hash function, it should produce the same hashed value as depicted in Figure 3.9.
The password, ‘tiger123’ is hashed using the MD5 hash function to generate a
fixed-sized hash value, ‘68FAC1CEE85FFE11629781E545400C65’.

Even though the user names are different, when the password is hashed, it
can lead to impersonation attacks, since it generates the same output, where
John can login as Jessie or vice versa. Although technically, this is not regarded
as a hash collision since the input is the same, such design flaws can be mitigated
using a salt. By adding random bytes (salt) to the original plaintext before

Figure 3.9 - Unsalted Hash

171

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 171 6/7/2013 5:40:36 PM

passing it through the hash function, the output that is generated for the same
input is made different. This mitigates the security issues discussed earlier. It
is recommended to use a salt value that is unique and random for each user.
When the salt value is ‘1234ABC’ for John and is ‘9876XYZ’ for Jessie, the same
password, ‘tiger123’ results in different hashed values as depicted in Figure 3.10.

Design considerations should take into account the security aspects related
to the generation of the salt, which should be unique to each user and random.

Some of the most common hash functions are the MD2, MD4, and MD5,
which were all designed by Ronald Rivest; the Secure Hash Algorithms family
(SHA-0, SHA-1, SHA-and SHA-2) designed by NSA and published by NIST
to complement digital signatures, and HAVAL. The Ronald Rivest MD series
of algorithms generate a fixed, 128-bit size output and has been proven to be
not completely collision free. The SHA-0 and SHA-1 family of hash functions
generated a fixed, 160-bit sized output. The SHA-2 family of hash functions
includes SHA-224 and SHA-256, which generate a 256-bit sized output and
SHA-384 and SHA-512 which generate a 512-bit sized output. HAVAL is
distinct in being a hash function that can produce hashes in variable lengths
(128 bits - 256 bits). HAVAL is also flexible to let users indicate the number of
rounds (3-5) to be used to generate the hash for increased security. As a general
rule of thumb, the greater the bit length of the hash value that is supported,
the greater the protection that is provided, making cryptanalysis work factor
significantly greater. So when designing the software, it is important to consider
the bit length of the hash value that is supported. Table 3.2 tabulates the different
hash value lengths that are supported by some common hash functions.

Figure 3.10 - Salted Hash

172

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 172 6/7/2013 5:40:37 PM

Another important aspect when choosing the hash function for use within the
software is to find out if the hash function has already been broken and deemed
unsuitable for use. The MD5 hash function is one such example that the US CERT
of the Department of Homeland Security (DHS) considers as cryptographically
broken. DHS promotes moving to the SHA family of hash functions.

Referential Integrity
Integrity assurance of the data, especially in a relational database management

system (RDBMS) is made possible by referential integrity, which ensures that
data is not left in an orphaned state. Referential integrity protection uses
primary keys and related foreign keys in the database to assure data integrity.
Primary keys are those columns or combination of columns in a database table,
which uniquely identify each row in a table. When the column or columns
that are defined as the primary key of a table are linked (referenced) in another
table, these column or columns are referred to as foreign keys in the second
table. For example, as depicted in the Figure 3.11, Customer_ID column in
the CUSTOMER table is the primary key because it uniquely identifies a row
in the table. Although there are two users with the same first name and last

Table 3.2 – Hash functions and supported hash value lengths

Figure 3.11 - Referential Integrity

173

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

Hash Function Hash Value Length (in bits)
MD2, MD4, MD5 128

SHA 160

HAVAL Variable lengths (128, 160, 192, 224, 256)

CSSLP_v2.indb 173 6/7/2013 5:40:37 PM

name, ‘John Smith’, the Customer_ID is unique and can identify the correct
row in the database. Customers are also linked to their orders using their
Customer_ID, which is the foreign key in the ORDER table. This way, all of
the customer information need not be duplicated in the ORDER table. The
removal of duplicates in the tables is done by a process called Normalization,
which is covered later in this chapter. When one needs to query the database to
retrieve all orders for customer John Smith whose Customer_ID is 1, then two
orders (Order_ID 101 and 103) are returned. In this case, the parent table is
the CUSTOMER table and the child table is the ORDER table. The Order_ID
is the primary key in the ORDER table, which, in turn, is established as the
foreign key in the ORDER_DETAIL table. In order to find out the details of
the order placed by customer Mary Johnson whose Customer_ID is 3, we can
retrieve the three products that she ordered by referencing the primary key and
foreign key relationships. In this case, in addition to the CUSTOMER table
being the parent of the ORDER table, the ORDER table, itself, is parent to the
ORDER_DETAIL child table.

Referential integrity ensures that data is not left in an orphaned state. This
means that if the customer Mary Johnson is deleted from the CUSTOMER
table in the database, all of her corresponding order and order details are
deleted, as well, from the ORDER and ORDER_DETAIL tables respectively.
This is referred to as cascading deletes. Failure to do so will result in records
being present in ORDER and ORDER_DETAILS tables as orphans with a
reference to a customer who no longer exists in the parent CUSTOMER table.
When referential integrity is designed, it can be set up to either delete all child
records when the parent record is deleted or to disallow the delete operation of
a customer (parent record) who has orders (child records), unless all of the child
order records are deleted first. The same is true in the case of updates. If for some
business need, Mary Johnson’s Customer_ID in the parent table (CUSTOMER)
is changed, then all subsequent records in the child table (ORDER) should also
be updated to reflect the change, as well. This is referred to as cascading updates.

Decisions to normalize data into atomic (non-duplicate) values and establish
primary keys and foreign keys and their relationships, cascading updates and
deletes, in order to assure referential integrity are important design considerations
that ensure the integrity of data or information.

Resource Locking
In addition to hashing and referential integrity, resource locking can be used to
assure data or information integrity. When two concurrent operations are not

174

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 174 6/7/2013 5:40:37 PM

allowed on the same object (say a record in the database), because one of the
operations locks that record from allowing any changes to it, until it completes
its operation, it is referred to as resource locking. While this provides integrity
assurance, it is critical to understand that if resource locking protection is not
properly designed, it can lead to potential deadlocks and subsequent denial of
service (DoS). Deadlock is a condition when two operations are racing against
each other to change the state of a shared object and each is waiting for the other
to release the shared object that is locked.

When designing software, there is a need to consider the protection
mechanisms that assure that data or information has not been altered in an
unauthorized manner or by an unauthorized person or process, and the
mechanisms need to be incorporated into the overall makeup of the software.

Availability Design
When software requirements mandate the need for continued business
operations, the software should be carefully designed. The output from the
business impact analysis can be used to determine how to design the software
for availability. Destruction and DoS protection can be achieved by proper
coding of the software. Although no code is written in the design phase, in the
software design phase, configuration requirements such as connection pooling,
the use of cursors and looping constructs can be looked at. Coding constructs
that use incorrect cursors and incorrect design of loops can lead to deadlocks
and DoS. When these configurations and constructs are properly designed,
then availability assurance is increased. Replication, Failover and Scalability
techniques can also be used to design the software for availability.

Replication
Special considerations need to be given to software and data replication so
that the MTD and the RTO are both within acceptable levels. A single point
of failure is characterized by having no redundancy capabilities and this can
undesirably affect end-users when a failure occurs. By replicating data, databases
and software across multiple computer systems, a degree of redundancy is
made possible. This redundancy also helps to provide a means for reducing the
workload on any one particular system.

Replication usually follows a master-slave or primary-secondary backup
scheme in which there is one master or primary node and updates are propagated
to the slaves or secondary node either actively or passively. Active/Active
replication implies that updates are made to both the master and slave systems at

175

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 175 6/7/2013 5:40:37 PM

the same time. In the case of Active/Passive replication, the updates are made to
the master node first and then the replicas are pushed the changes subsequently.
When replication of data is concerned, special considerations need to be given
to address the integrity of data as well, especially in active/passive replication
schemes.

Failover
In computing, failover refers to the automatic switching from an active
transactional software, server, system, hardware component or network to a
standby (or redundant) system. Although failover is synonymously used with
switchover, the distinction between the two is that failover is automatic, whereas
switchover is manual, requiring human intervention to switch the operations
from the active to the standby system. In order to assure high availability using
failover techniques, it is imperative that all potential single points of failure are
addressed in the design of the software solution.

Scalability Design
A related concept to availability is scalability. In computing, scalability is the
ability of the system or software to handle increasing (or growing) amount of
work without degradation in its functionality or performance. The two primary
methods of designing for scalability are:

 ■ Vertical scaling (also known as Scaling Up)
 ■ Horizontal scaling (also known as Scaling Out).

Each copy of the software or system is usually referred to as a node, when
discussing scalability.

Vertical scaling means that additional resources are added to the
existing node. It could also be done upgrading the existing node to
handle growing needs. It is usually hardware related. An example of
scaling up is adding additional memory and storage to the existing
application server or increasing the connection pool settings to handle
greater connections to the backend database. Connection pooling is a
database access efficiency mechanism. A connection pool is the number
of connections that are cached by the database for reuse. When your
software needs to support a large number of users, the appropriate
number of connection pools should be configured. If the number of
connection pools is low in a highly transactional environment, then
the database will be under heavy workload, experiencing performance
issues that can possibly lead to denial of service. Once a connection is

176

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 176 6/7/2013 5:40:37 PM

opened, it can be placed in the pool so that other users can reuse that
connection, instead of opening and closing a connection for each user.
This will increase performance, but security considerations should
be taken into account and that is why designing the software from a
security (availability) perspective is necessary.

Horizontal scaling means that newer nodes are added to the existing
node. An example of scaling out would be installing additional copies
of the same software or adding a proxy cache server to the existing
deployment of application and web servers from one to two or more.
It is recommended that the hardware’s scalability limits are determined
and the software or system is design for scalability instead of hardware
capacity. It must be noted that while caching improves performance
by reducing the number of roundtrips to the backend servers, it must
be carefully designed to reduce the likelihood of data disclosure and
integrity issues. If sensitive data is cached on the cache server or on the
client, it can lead to disclosure, if it is not cryptographically protected.
If data that is changed is cached before the change was made, it can lead
to data integrity issues. Secure software design should also determine
and take into account the Time To Live (TTL) settings for the cache
so that the cache is not indefinitely stored after the cache window time
has elapsed. The general rule of thumb is the more critical the data
that is cache, the less the time it should be set to be retained in cache.

Authentication Design
When designing for authentication, it is important to consider multi-factor
authentication and single sign on (SSO), in addition to determining the type of
authentication that is required as specified in the requirements documentation.
Multi-factor or the use of more than one factor to authenticate a principal (user
or resource) provides heightened security and is recommended. For example,
validating and verifying one’s fingerprint (something you are) in conjunction
with a token (something you have) and pin code (something you know) before
granting access provides more defense in depth than merely using a username and
password (something you know). Additionally, if there is a need to implement
SSO, wherein the principal’s asserted identity is verified once and the verified
credentials are passed on to other systems or applications, usually using tokens,
then it is crucial to factor into the design of the software both the performance
impact and its security. While SSO simplifies credential management and
improves user experiences and performance because the principal’s credential

177

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 177 6/7/2013 5:40:37 PM

is verified only once, improper design of SSO can result in security breaches
that have colossal consequences. A breach at any point in the application flow
can lead to total compromise, akin to losing the keys to the kingdom. SSO is
covered in more detail in the technology section of this chapter.

Authorization Design
When designing for authorization, give special attention to its impact on
performance, and to the principles of separation of duties and least privilege. The
type of authorization to be implemented according to the requirements must be
determined as well. Are we going to use roles or will we need to use a resource-
based authorization, such as a trusted subsystem with impersonation and
delegation model, to manage the granting of access rights? Checking for access
rights each time and every time, to enforce the principle of complete mediation,
can lead to performance degradation and decreased user experience. On the other
hand, a design that calls for caching of verified credentials which are used for
access decisions can become an Achilles heel from a security perspective. When
dealing with performance versus security tradeoff decisions, it is recommended
to err on the side of caution, allowing for security over performance. However,
this decision is one that needs to be discussed and approved by the business.

When roles are used for authorization, design should ensure that there are
no conflicting roles that circumvent the separation of duties principle. For
example, a user cannot be in a teller role and also in an auditor role for a financial
transaction. Additionally, design decisions are to ensure that only the minimum
set of rights is granted explicitly to the user or resource, thereby supporting least
privilege. For example, users in the “Guest” or “Everyone” group account should
be allowed only read rights and any other operation should be disallowed.

RBAC is predominantly the way authorization decisions are made in most
applications, but with the incidence in the number of cloud computing software
as a service applications and mobile applications, authorized decisions are being
designed using entitlement management. desiDesigning for authorization can be
accomplished using entitlement management. Entitlement management is about
granular access control. It answers the question “Who is entitled (authorized
or allowed) to perform what operations after they have been authenticated?”
The two primary ways in which entitlements can be designed in software are as
follows:

 ■ The authorization decisions are run as a shared service that the
application leverages for authorization decisions. This is usually

178

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 178 6/7/2013 5:40:37 PM

the case for implementing access control in service based cloud
computing applications.

 ■ The authorization decisions are built into each application or
software that the company publishes. This is usually the case for
applications that run on mobile operating systems. The application
itself runs within a sandbox and its interaction with the underlying
system is through configuring entitlement settings.

The benefit of using an entitlement management service as opposed to
having it bundled into the application itself is that the access control decisions
are centralized and changes in access control policy can be uniformly, universally
and automatically applied across all applications. This also makes the application
itself less complex and simplifies the compliance and audit challenges. However,
the breach of the entitlement management service itself orphans and puts to
risk, all of the applications leveraging that service.

Accountability Design
Although it is often overlooked, design for auditing has been proven to be
extremely important in the event of a breach, primarily for forensic purposes, and
so it should be factored into the design of the software from the very beginning.
Log data should include the ‘who’, ‘what’, ‘where’, and ‘when’ aspects of software
operations. As part of the ‘who’, it is important not to forget the non-human
actors such as batch processes and services or daemons.

It is advisable to log by default and to leverage the existing logging functionality
within the software, especially if it is COTS software. Since it is a best practice to
append to logs and not overwrite them, capacity constraints and requirements are
important design considerations. Design decisions to retain, archive, and dispose
logs should not contradict external regulatory or internal retention requirements.

Sensitive data should never be logged in plaintext form. Say that the
requirements call for logging failed authentication attempts. Then it is important
to verify with the business if there is a need to log the password that is supplied
when authentication fails. If requirements explicitly call for logging the password
upon failed authentication, then it is important to design the software so that
the password is not logged in plaintext. Users often mistype their passwords
and logging this information can lead to potential confidentiality violation and
account compromise. For example, if the software is designed to log the password
in plaintext and user Scott whose password is “tiger” mistypes it as “tigwr”,
someone who has access to the logs can easily guess the password of the user.

179

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 179 6/7/2013 5:40:37 PM

Design should also factor in protection mechanisms of the log, itself;
and maintaining the chain of custody of the logs will ensure that the logs are
admissible in court. Validating the integrity of the logs can be accomplished by
hashing the before and after images of the logs and checking their hash values.
Auditing in conjunction with other security controls such as authentication can
provide non-repudiation. It is preferable to design the software to automatically
log the authenticated principal and system timestamp, and not let it be user-
defined, to avoid potential integrity issues. For example, using the Request.
ServerVariables[LOGON_USER] in an IIS web application or the T-SQL in-
built getDate() system function in SQL Server is preferred over passing a user-
defined principal name or timestamp.

We have learned about how to design software incorporating core security
elements of confidentiality, integrity, availability, authentication, authorization,
and accountability. In the next section, we will learn about architecting software
with secure design principles.

Architecting Software with Secure Design Principles
Some of the common, insecure design issues observed in software are the

following:
 ■ improper implementation of least privilege,
 ■ software fails insecurely,
 ■ authentication mechanisms are easily bypassed,
 ■ security through obscurity,
 ■ improper error handling, and
 ■ weak input validation.

In the following section we will look at some of the design principles pertinent
to architecting secure software. The following principles were introduced and
defined in the Secure Software Concepts chapter. It is revisited here as a refresher
and discussed in more depth with examples.

Least Privilege
Although the principle of least privilege is more applicable to administering
a system, where the number of users with access to critical functionality and
controls is restricted, least privilege can be implemented within software design.
When software is said to be operating with least privilege, it means that only
the necessary and minimum level of access rights (privileges) has been given

180

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 180 6/7/2013 5:40:37 PM

explicitly to it for a minimum amount of time in order for it to complete its
operation. The main objective of least privilege is containment of the damage
that can result from a security breach that occurs accidentally or intentionally.
Some of the examples of least privilege include the military security rule of
“need-to-know” clearance level classification, modular programming, and non-
administrative accounts.

The military security rule of need-to-know limits the disclosure of sensitive
information to only those who have been authorized to receive such information,
thereby aiding in confidentiality assurance. Those who have been authorized
can be determined from the clearance level classifications they hold, such as
Top Secret, Secret, Sensitive but Unclassified, etc. Best practice also suggests
that it is preferable to have many administrators with limited access to security
resources instead of one user with “super user” rights.

Modular programming is a software design technique in which the entire
program is broken down into smaller sub-units or modules. Each module is
discrete with unitary functionality and is said to be therefore cohesive, meaning
each module is designed to perform one and only one logical operation. The
degree of how cohesive a module is indicates the strength at which various
responsibilities of a software module are related. The discreetness of the module
increases its maintainability and the ease of determining and fixing software
defects. Since each unit of code (class, method, etc.) has a single purpose and
the operations that can performed by the code is limited to only that which
it is designed to do, modular programming is also referred to as the Single
Responsibility Principle of software engineering. For example, the function,
CalcDiscount(), should have the single responsibility to calculate the discount
for a product while the CalcSH() function should be exclusively used to calculate
shipping and handling rates. When code is not designed modularly, not only
does it increase the attack surface, but it also makes the code difficult to read and
troubleshoot. If there is a requirement to restrict the calculation of discounts to
a sales manager, not separating this functionality into its own function, such
as CalcDiscount(), can lead potentially to a non-sales manager’s running code
that is privileged to a sales manager. An aspect related to cohesion is coupling.
Coupling is a reflection of the degree of dependencies between modules; i.e.,
how dependent one module is to another. The more dependent one module
is to another, the higher its degree of coupling, and “loosely coupled modules”
is the condition where the interconnections among modules are not rigid or
hardcoded.

181

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 181 6/7/2013 5:40:37 PM

Good software engineering practices ensure that the software modules
are highly cohesive and loosely coupled at the same time. This means that the
dependencies between modules will be weak (loosely coupled) and each module
will be responsible to perform a discrete function (highly cohesive).

Modular programming thereby helps to implement least privilege, in
addition to making the code more readable, reusable, maintainable, and easy to
troubleshoot.

 The use of accounts with non-administrative abilities also helps implement
least privilege. Instead of using the “sa” or “sysadmin” account to access and
execute database commands, using a “datareader” or “datawriter” account is an
example of least privilege implementation.

Separation of Duties
When design compartmentalizes software functionality into two or more
conditions, all of which need to be satisfied before an operation can be completed,
it is referred to as separation of duties. The use of split keys for cryptographic
functionality is an example of separation of duties in software. Keys are needed
for encryption and decryption operations. Instead of storing a key in a single
location, splitting a key and storing the parts in different locations, with one
part in the system’s registry and the other in a configuration file, provides more
security. Software design should factor in the locations to store keys, as well as
the mechanisms to protect them.

Another example of separation of duties in software development is related
to the roles that people play during its development and the environment in
which the software is deployed. The programmer should not be allowed to
review his own code nor should a programmer have access to deploy code to
the production environment. We will cover in more detail the separation of
duties based on the environment in the configuration section of the Software
Deployment, Operations, Maintenance, and Disposal chapter.

When architected correctly, separation of duties reduces the extent of
damage that can be caused by one person or resource. When implemented in
conjunction with auditing, it can also discourage insider fraud, as it will require
collusion between parties to conduct fraud.

Defense in Depth
Layering security controls and risk mitigation safeguards into software design

incorporates the principle of defense in depth. This is also referred to as layered

182

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 182 6/7/2013 5:40:37 PM

defense. The reasons behind this principle are two-fold, the first of which is that
the breach of a single vulnerability in the software does not result in complete or
total compromise. In other words, defense in depth is akin to not putting all the
eggs in one basket. Secondarily, incorporating the defense of depth in software
can be used as a deterrent for the curious and non-determined attackers when
they are confronted with one defensive measure over another.

Some examples of defense in depth measures are listed below.
 ■ Use of input validation along with prepared statements or stored

procedures, disallowing dynamic query constructions using user
input to defend against injection attacks.

 ■ Disallowing active scripting in conjunction with output encoding
and input- or request-validation to defend against Cross-Site
Scripting (XSS).

 ■ The use of security zones, which separates the different levels
of access according to the zone that the software or person is
authorized to access.

Fail Secure
Fail secure is the security principle that ensures that the software reliably functions
when attacked and is rapidly recoverable into a normal business and secure state
in the event of design or implementation failure. It aims at maintaining the
resiliency (confidentiality, integrity, and availability) of software by defaulting to a
secure state. Fail secure is primarily an availability design consideration, although
it provides confidentiality and integrity protection as well. It supports the design
and default aspects of the SD3 initiative, which implies that the software or
system is secure by design, secure by default, and secure by deployment. In the
context of software security, “fail secure” can be used interchangeably with “fail
safe” which is commonly observed in physical security.

Some examples of fail secure design in software include the following:
 ■ The user is denied access by default and the account is locked out after

the maximum number (clipping level) of access attempts is tried.
 ■ Not designing the software to ignore the error and resume next

operation. The On Error Resume Next functionality in scripting
languages such as VBScript as depicted in Figure 3.12.

 ■ Errors and exceptions are explicitly handled and the error messages
are non-verbose in nature. This ensures that system exception
information, along with the stack trace, is not bubbled up to the

183

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 183 6/7/2013 5:40:37 PM

client in raw form, which an attacker can use to determine the
internal makeup of the software and launch attacks accordingly to
circumvent the security protection mechanisms or take advantage
of vulnerabilities in the software. Secure software design will
take into account the logging of the error content into a support
database and the bubbling up of only a reference value (such as
error ID) to the user with instructions to contact the support team
for additional support.

Economy of Mechanisms
In the Secure Software Concepts domain, we noted that one of the challenges
to the implementation of security is the tradeoff that happens between the
usability of the software and the security features that need to be designed
and built in. With the noble intention of increasing the usability of software
developers often design and code in more functionality, than is necessary. This
additional functionality is commonly referred to as “bells-and-whistles”. A good
indicator of which features in the software are unneeded “bells-and-whistles” is
reviewing the requirements traceability matrix (RTM) that is generated during
the requirements gathering phase of the software development project. Bells-and-
whistles features will never be part of the RTM. While such added functionality
may increase user experience and usability of the software, it increases the attack
surface and is contrary to the economy of mechanisms, secure design principle,
which states that the more complex the design of the software, the more likely
there is of vulnerabilities. Simpler design implies easy-to-understand programs,
decreased attack surface, and fewer weak links. With a decreased attack surface,
there is less opportunity for failure and when failures do occur, the time needed
to understand and fix the issues is less, as well. Additional benefits of economy of

Figure 3.12 – On Error Resume Next

184

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 184 6/7/2013 5:40:37 PM

mechanisms include ease of understanding program logic and data flows and fewer
inconsistencies. Economy of mechanism in layman’s terms is also referred to as
the KISS (Keep It Simple Stupid) principle and in some instances as the principle
of unnecessary complexity. Modular programming not only supports the principle
of least privilege but also supports the principle of economy of mechanisms.

Taken into account, the following considerations support the designing of
software with the economy of mechanisms principle in mind:

 ■ Unnecessary functionality or unneeded security mechanisms should
be avoided. Since patching and configuration of newer software
versions has been known to security features that were disabled
in previous versions, it is advisable to not even design unnecessary
features, instead of designing them and leaving the features in a
disabled state.

 ■ Strive for simplicity. Keeping the security mechanisms simple
ensures that the implementation is not partial, which could result
in compatibility issues. It is also important to model the data to be
simple so that the data validation code and routines are not overly
complex or incomplete. Supporting complex, regular expressions
for data validation can result in algorithmic complexity weaknesses
as stated in the Common Weakness Enumeration publication 407
(CWE-407).

 ■ Strive for operational ease of use. Single Sign On (SSO) is a good
example that illustrates the simplification of user authentication so
that the software is operationally easy to use.

Complete Mediation
In the early days of web application programming, it was observed that a change
in the value of a QueryString parameter would display the result that was tied
to the new value without any additional validation. For example, if Aidan is
logged in, and the Uniform Resource Locator (URL) in the browser address bar
shows the name value pair, user=aidan, changing the value “aidan” to “reuben”
would display reuben’s information without validating that the logged-on user
is indeed Reuben. If Aidan changes the parameter value to user=reuben, he
can view Reuben’s information, potentially leading to attacks on confidentiality,
wherein Reuben’s sensitive and personal information is disclosed to Aidan.

While this is not as prevalent today as it used to be, similar design issues are
still evident in software. Not checking access rights each time a subject requests
access to objects violates the principle of complete mediation. Complete mediation

185

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 185 6/7/2013 5:40:37 PM

is a security principle that states that access requests need to be mediated each
time, every time, so that authority is not circumvented in subsequent requests.
It enforces a system-wide view of access control. Remembering the results of the
authority check, as is done when the authentication credentials are cached, can
increase performance; however, the principle of complete mediation requires
that results of an authority check be examined skeptically and systematically
updated upon change. Caching can therefore lead to an increased security risk
of authentication bypass, session hijacking and replay attacks, and Man-in-the-
Middle (MITM) attacks. Therefore, designing the software to rely solely on
client-side, cookie-based caching of authentication credentials for access should
be avoided, if possible.

Complete mediation not only protects against authentication threats and
confidentiality threats, but is useful in addressing the integrity aspects of
software, as well. Not allowing browser post-backs without validation of access
rights, or checking that a transaction is currently in a state of processing, can
protect against the duplication of data, avoiding data integrity issues. Merely
informing the user to not click more than once, as depicted in Figure 3.13, is
not foolproof and so design should include the disabling of user controls once a
transaction is initiated until the transaction is completed.

The complete mediation design principle also addresses the failure to protect
alternate path vulnerability. To properly implement complete mediation in
software, it is advisable during the design phase of the SDLC to identify all

Figure 3.13 – Weak design of complete mediation

186

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 186 6/7/2013 5:40:37 PM

possible code paths that access privileged and sensitive resources. Once these
privileged code paths are identified, then the design must force these code paths
to use a single interface that performs access control checks before performing
the requested operation. Centralizing input validation by using a single
input validation layer with a single, input filtration checklist for all externally
controlled inputs is an example of such design. Alternatively, using an external
input validation framework that validates all inputs before they are processed by
the code may be considered when designing the software.

Complete mediation also augments the protection against the weakest link.
Software is only as strong as its weakest component (code, service, interface,
or user). It is also important to recognize that any protection that technical
safeguards provide can be rendered futile if people fall prey to social engineering
attacks or are not aware of how to use the software. The catch 22 is that people
who are the first line of defense in software security can also become the weakest
link, if they are not made aware, trained, and educated in software security.

Open Design
Dr. Auguste Kerckhoff, who is attributed with giving us the cryptographic
Kerckhoff ’s principle, states that all information about the crypto system is
public knowledge except the key, and the security of the crypto system against
cryptanalysis attacks is dependent on the secrecy of the key. An outcome of
the Kerckhoff ’s principle is the open design principle, which states that the
implementation of security safeguards should be independent of the design, itself,
so that review of the design does not compromise the protection the safeguards
offer. This is particularly applicable in cryptography where the protection
mechanisms are decoupled from the keys that are used for cryptographic
operations, and algorithms used for encryption and decryption are open and
available to anyone for review.

The inverse of the open design principle is security through obscurity, which
means that the software employs protection mechanisms whose strength is
dependent on the obscurity of the design, so much so that the understanding of
the inner workings of the protection mechanisms is all that is necessary to defeat
the protection mechanisms. A classic example of security through obscurity,
which must be avoided if possible, is the hard coding and storing of sensitive
information, such as cryptographic keys, or connection strings information
with username and passwords inline code, or executables. Reverse engineering,
binary analysis of executables, and runtime analysis of protocols can reveal these
secrets. Review of the Diebold voting machines code revealed that passwords

187

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 187 6/7/2013 5:40:37 PM

were embedded in the source code, cryptographic implementation was incorrect,
the design allowed voters to vote an unlimited number of times without being
detected, privileges could be escalated, and insiders could change a voter’s ballot
choice, all of which could have been avoided if the design was open for review
by others. Another example of security through obscurity is the use of hidden
form fields in web applications, which affords little, if any protection against
disclosure, as they can be processed using a modified client.

Software design should therefore take into account the need to leave the design
open but keep the implementation of the protection mechanisms independent
of the design. Additionally, while security through obscurity may increase the
work factor needed by an attacker and provide some degree of defense in depth,
it should not be the sole and primary security mechanism in the software.
Leveraging publicly vetted, proven, tested industry standards, instead of custom
developing one’s own protection mechanism, is recommended. For example,
encryption algorithms, such as the Advanced Encryption Standard (AES)
and Triple Data Encryption Standard (3DES), are publicly vetted and have
undergone elaborate security analysis, testing, and review by the information
security community. The inner workings of these algorithms are open to any
reviewer, and public review can throw light on any potential weaknesses. The
key that is used in the implementation of these proven algorithms is what should
be kept secret.

Some of the fundamental aspects of the open design principle are as follows:
 ■ The security of your software should not be dependent on the

secrecy of the design.
 ■ Security through obscurity should be avoided.
 ■ The design of protection mechanisms should be open for scrutiny

by members of the community, as it is better for an ally to find a
security vulnerability or flaw than it is for an attacker.

Least Common Mechanisms
Least common mechanisms is the security principle by which mechanisms common
to more than one user or process are designed not to be shared. Since shared
mechanisms, especially those involving shared variables, represent a potential
information path, mechanisms that are common to more than one user and
depended on by all users are to be minimized. Design should compartmentalize
or isolate the code (functions) by user roles, since this increases the security
of the software by limiting the exposure. For example, instead of having one

188

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 188 6/7/2013 5:40:37 PM

function or library that is shared between members with supervisor and non-
supervisor roles, it is recommended to have two distinct functions, each serving
its respective role.

Psychological Acceptability
One of the primary challenges in getting users to adopt security is that they
feel that security is usually very complex. With a rise in attacks on passwords,
many companies resolved to implement strong password rules, such as
the need to have mixed-case, alpha-numeric passwords which are to be of a
particular length. Additionally these complex passwords are often required to
be periodically changed. While this reduced the likelihood of brute-forcing or
guessing passwords, it was observed that the users had difficulty remembering
complex passwords. Therefore, they nullified the effect that the strong password
rules brought by jotting down their passwords and sticking them under their
desks and, in some cases, even on their computer screens. This is an example of
security protection mechanisms that were not psychologically acceptable and,
hence, not effective.

Psychological acceptability is the security principle that states that security
mechanisms should be designed to maximize usage, adoption, and automatic
application.

A fundamental aspect of designing software with the psychological
acceptability principle is that the security protection mechanisms:

 ■ are easy to use,
 ■ do not affect accessibility, and
 ■ are transparent to the user.

Users should not be additionally burdened as a result of security and the
protection mechanisms must not make the resource more difficult to access than
if the security mechanisms were not present. Accessibility and usability should
not be impeded by security mechanisms, because otherwise, users will elect to
turn off or circumvent the mechanisms, thereby neutralizing or nullifying any
protection that is designed.

Examples of incorporating the psychological acceptability principle in
software include designing the software to notify the user through explicit error
messages and callouts as depicted in Figure 3.14, message box displays and help
dialogs, and intuitive user interfaces.

189

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 189 6/7/2013 5:40:37 PM

Weakest Link
You may have heard of the saying, “A chain is only as strong as its weakest links.”
This security principle states that the resiliency of your software against hacker
attempts will depend heavily on the protection of its weakest components, be it
the code, service or an interface. A breakdown in the weakest link will result in
a security breach.

Another approach to this security related concept is that “A chain is only
as weak as its strongest links.” Irrespective of the approach one takes, what is
important to note is that when designing software, careful attention must be
given so that there are no exploitable components.

A related concept is “Single Point of Failure”. Software must be architected
so that there is no single source of complete compromise. While this is similar
to the Weakest Link principle, the distinguishing difference between the two is
that the weakest link need not necessarily be as a result of a single point of failure
but could be as a result of various weak sources. Usually in software security,
the weakest link is a superset of several single points of failures. When software
is designed with defense in depth, threats arising from weakest links and single
points of failure are mitigated.

Leveraging Existing Components
Service Oriented Architecture (SOA) is prevalent in today’s computing
environment and one of the primary aspects for its popularity is the ability
it provides for communication between heterogeneous environments and
platforms. Such communication is possible because the service oriented
architecture protocols are understandable by disparate platforms, and business
functionality is abstracted and exposed for consumption as contract-based,
application programming interfaces (APIs). For example, instead of each
financial institution writing its own currency conversion routine, it can invoke
a common, currency conversion, service contract. This is the fundamental
premise of the leveraging existing components design principle. Leveraging
existing components is the security principle that promotes the reusability of
existing components.

Figure 3.14 – Callouts

190

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 190 6/7/2013 5:40:37 PM

A common observance in security code reviews is that developers try to
write their own cryptographic algorithms instead of using validated and proven
cryptographic standards such as AES. These custom implementations of
cryptographic functionality are also determined often to be the weakest link.
Leveraging proven and validated cryptographic algorithms and functions is
recommended.

Designing the software to scale using tier architecture is advisable from a
security standpoint, since the software functionality can be broken down into
presentation, business, and data access tiers. The use of a single, data access
layer (DAL) to mediate all access to the backend data stores not only supports
the principle of leveraging existing components but also allows for scaling
to support various clients or if the database technology changes. Enterprise
application blocks are recommended over custom developing shared libraries
and controls that attempt to provide the same functionality as the enterprise
application blocks.

Reusing tested and proven, existing libraries and common components
has the following security benefits:. First, the attack surface is not increased,
and second, no newer vulnerabilities are introduced. An ancillary benefit of
leveraging existing components is increased productivity because leveraging
existing components can significantly reduce development time.

Balancing Secure Design Principles
It is important to recognize that it may not be possible to design for each of
these security principles in totality within your software, and tradeoff decisions
about the extent to which these principles can be designed may be necessary. For
example, while SSO can heighten user experience and increase psychological
acceptability, it contradicts the principle of complete mediation and so a
business decision is necessary to determine the extent to which SSO is designed
into the software or to determine that it is not even an option to consider. SSO
design considerations should also take into account the need to ensure that there
is no single point of failure and that appropriate, defense in depth mitigation
measures are undertaken. Additionally, implementing complete mediation
by checking access rights and privileges, each time and every time, can have
a serious impact on the performance of the software. So this design aspect
needs to be carefully considered and factored in, along with other defense in
depth strategies, to mitigate vulnerability while not decreasing user experience
or psychological acceptability. The principle of least common mechanism may

191

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 191 6/7/2013 5:40:37 PM

seem contradictory to the principle of leveraging existing components and so
careful design considerations need to be given to balance the two, based on the
business needs and requirements, without reducing the security of the software.
While psychological acceptability would require that the users be notified of user
error, careful design considerations need to be given to ensure that the errors and
exceptions are explicitly handled and non-verbose in nature so that internal,
system configuration information is not revealed. The principle of least common
mechanisms may seem to be diametrically opposed to the principle of leveraging
existing components, and one may argue that centralizing functionality in
business components that can be reused is analogous to putting all the eggs in
one basket, which is true. However, proper defense in depth strategies should
be factored into the design when choosing to leverage existing components.

Other Design Considerations
In addition to the core software security design considerations covered earlier,
there are other design considerations that need to be taken into account when
building software. These include the following:

 ■ Interface design
 ■ Interconnectivity

We will cover each of these considerations in the following section.

Interface Design
User Interface
The Clark and Wilson security model, more commonly referred to as the access
triple security model, states that a subject’s access to an object should always be
mediated via a program and no direct subject-object access should be allowed.
A User Interface (UI) between a user and a resource can act as the mediating
program to support this security model. User interfaces design should assure
disclosure protection. Masking of sensitive information, such as a password or
credit card number by displaying asterisks on the screen, is an example of a
secure user interface that assures confidentiality. A database view can also be said
to be an example of a restricted user interface. Without giving an internal user
direct access to the data objects, be they on the file system or the database, and
requiring the user to access the resources using a UI protects against inference
attacks and direct database attacks. Abstractions using user interfaces are also
a good defense against insider threats. The UI provides a layer where auditing
of business-critical and privileged actions can be performed, thereby increasing

192

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 192 6/7/2013 5:40:37 PM

the possibility of uncovering insider threats and fraudulent activities that could
compromise the security of the software.

Application Programming Interfaces (API)
An application programming interface (commonly referred to by its abbreviation
as API), is the technical contract that is published for the communication of
one software component with another or for the software to interact with the
underlying operating system. The interfaces are usually made available a library
and it may include specifications for routines, data structures, object classes and
variables. APIs allow for interoperability of software not only within the same
computing ecosystem but also in disparate and heterogeneous ecosystems.

If these APIs are not secure, it can enable hackers to exploit the software. This
is of particular importance, especially in Software as a Service (SaaS) solutions
as in the case of cloud computing and in social networking applications. The
Top threats to Cloud computing publication by the Cloud Security Alliance
(CSA) lists insecure interfaces and APIs, second in rank, second only to the
abuse and nefarious use of cloud computing resources. Cloud service providers
expose interfaces or APIs for their tenants (clients/customers) and partners to
use and manage provisioning, orchestration and monitoring. The security of
the cloud services is directly related to the security of the APIs they expose.
Social networking sites such as Facebook and Twitter expose access to their
functionality using APIs as well and when you design applications that leverage
or interact with these APIs, it is imperative to ensure that these APIs cannot be
exploited, putting your application at risk.

Security Management Interfaces (SMI)
Security Management Interfaces (SMI) are those interfaces that are used to
configure and manage the security of the software, itself. These are administrative
interfaces with high levels of privilege. SMI are used for user-provisioning tasks
such as adding users, deleting users, enabling or disabling user accounts, as well
as granting rights and privileges to roles, changing security settings, configuring
audit log settings and audit trails, exception logging, etc. An example of an
SMI is the setup screens that are used to manage the security settings of a home
router. Figure 3.15 depicts the SMI for a D-Link home router.

From a security standpoint, it is critical that these SMI are threat modeled,
as well, and appropriate protection designed, since these interfaces are usually
not captured in the requirements explicitly. They are often observed to be the
weakest link, as they are overlooked when threats to the software are modeled..

193

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 193 6/7/2013 5:40:37 PM

The consequences of breaching an administrative interface are usually severe
because the attacker ends up running with elevated privileges. A compromise of
an SMI can lead to total compromise, disclosure, and alteration and destruction
threats, besides allowing attackers to use these as backdoors for installing
malware (Trojan horses, rootkits, spyware, adware, etc.). Not only should strong
protection controls be implemented to protect SMI, but these must be explicitly
captured in the requirements, be part of the threat modeling exercise, and
designed precisely and securely. Some of the recommended protection controls
for these highly privileged and sensitive interfaces are as follows:

 ■ Avoid remote connectivity and administration, requiring
administrators to log on locally.

 ■ Implement data protection in transit, using channel security
protection measures at the transport (e.g., SSL) or network (e.g.,
IPSec) layer.

 ■ Use least privilege accounts, RBAC and entitlement management
services to control access to and functionality of the interfaces.

 ■ Log and audit access to the SMI.

Out-of-Band Interface
Sometimes when the computer is turned off or in sleep or hibernate mode,
an administrator may still need to access and manage that computer. This is
where out-of-band management interfaces come in. Out-of-band management

Figure 3.15 – Router Security Management Interface (SMI)

194

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 194 6/7/2013 5:40:37 PM

interfaces allow an administrator to connect to a computer that is in an inactive or
shutdown state. It is therefore referred to sometimes as Lights Out Management
(LOM) interfaces. A dedicated channel is established with the computer being
managed by invoking the out-of-band remote access connectivity interface.
These interfaces are made available directly from the motherboard (in newer
generation computers) or by using a remote management card that is plugged
into the motherboard. In contrast, in-band interfaces work by having an
management agent run in the computer being managed and the management
controller manages the computer by communicating with the agent. Since these
interfaces are meant to be invoked remotely, it is imperative to ensure that only
authorized personnel and processes can access the remote management card or
interface and invoke necessary services.

Log Interfaces
Logging is a crucial component of auditing and when designing software for
auditing, it is important to consider having interfaces that can turn logging on or
off in different environments (e.g., development, test, production, etc.). These
interfaces should also be designed to configure the kind of events that can be
logged (e.g., application events, operating system events, errors and exceptions,
etc.) and the verbosity of the logs (informational, status, warning, full stack,
etc.). Additionally designing visual interfaces to plot and graphically represent
log data comes handy in discerning patterns and correlating threats. It is also
important to design access control to these log interfaces so that no unauthorized
users can change the configuration settings for logging. Furthermore, as a general
rule, it is recommended that logs are never overwritten and only appended to,
but this can pose a capacity challenge and so the logging verbosity needs to
be carefully planned during the design phase. It is also best advised to avoid
designing interfaces that allow deletion of logs because an attacker can take
advantage of such functionality and use that to delete their actions from the log
files, in an attempt to hide their footprint, after they exploit the software.

Interconnectivity
In the world we live in today, rarely is software developed and deployed in a
silo. Most business applications and software are highly interconnected, creating
potential backdoors for attackers if they are designed without security in mind.
Software design should factor in design consideration to ensure that the software
is reliable, resilient, and recoverable. Upstream and downstream compatibility
of software should be explicitly designed. This is important when it comes
to delegation of trust, single sign on (SSO), token-based authentication, and

195

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 195 6/7/2013 5:40:38 PM

cryptographic key sharing between applications. If an upstream application has
encrypted data using a particular key, there must be a secure means to transfer
the key to the downstream applications that will need to decrypt the data.
When data or information is aggregated from various sources, as is the case
with Mashups, software design should take into account the trust that exists
or which needs to be established between the interconnected entities. Modular
programming with the characteristics of high cohesion and loose coupling help
with interconnectivity design as it reduces complex dependencies between the
connected components, keeping each entity as discrete and unitary as possible.

Interconnectivity is not only observed in software applications, but in
devices as well. The increase in mobile computing with bring your own device
(BYOD) support that companies are moving toward, combined with increased
connectivity, both wired and wireless, an increase in the number of ad hoc
networks is evident. Traditionally what used to be dumb terminals with limited
functionality are being replaced by smart devices that are packed with increased
processing power and functionality. It is therefore imperative to include these
highly interconnected devices as part of the threat profile, especially if you are
engaged in mobile application development. Although, the primary threat to
device based computing is the device getting lost or getting stolen (physical
theft), it must be understood that remote connectivity to the devices can also
lead to disclosure of data. This is crucial to mitigate especially when private or
sensitive data is stored on the client. Undoubtedly, client side data disclosure is
the biggest risk faced by mobile device consumers when their devices are lost or
stolen. In most mobile applications, the protection of the data on the client is
left up to the application itself and so the applications must be design to avoid
storing any sensitive information on the application’s sandboxed environment
itself. The publishers and third party APIs that provide cryptographic services
(encryption and decryption) may have to be considered to assure confidentiality.
When data is stored in a location on the network, the network attached storage
(NAS) device should be protected as well. Only authenticated and authorized
connections to the NAS should be designed and if access is architected to be
restricted by an IP range are designed, special considerations to IP spoofing
threats need to be given. Additionally, all connectivity between the NAS node
and the device itself should be secure to mitigate eavesdropping and Man-in-
the-Middle (MITM) disclosure threats.

196

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 196 6/7/2013 5:40:38 PM

Design Processes
When you are designing software with security in mind, certain security
processes need to be established and completed. These processes are to be
conducted during the initial stages of the software development project. These
include attack surface evaluation, threat modeling, control identification and
prioritization, and documentation. In this section, we shall look at each of these
processes and learn how they can be used to develop reliable, recoverable, and
hack-resilient, secure software.

Attack Surface Evaluation
A software or application’s attack surface is the measure of its exposure of being
exploited by a threat agent i.e., weaknesses in its entry and exit points that a
malicious attacker can exploit to his or her advantage. Since each accessible
feature of the software is a potential attack vector that an intruder can leverage,
attack surface evaluation aims at determining the entry and exit points in the
software that can lead to the exploitation of weaknesses and manifestation of
threats. Often, attack surface evaluation is done as part of the threat modeling
exercise during the design phase of the SDLC. We will cover threat modeling in
a subsequent section. The determination of the software’s “attackability” or the
exposure to attack can commence in the requirements phase of the SDLC, when
security requirements are determined by generating misuse cases and subject-
object matrices. During the design phase, each misuse case or subject-object
matrix can be used as an input to determine the entry and exit points of the
software that can be attacked.

The attack surface evaluation attempts to enumerate the list of features that
an attacker will try to exploit. These potential attack points are then assigned a
weight or bias based on their assumed severity so that controls may be identified
and prioritized. In the Windows operating system, open ports, open Remote
Procedural Call (RPC) end points and sockets, open named pipes, Windows
default and SYSTEM services, active web handler files (active server pages,
Hierarchical Translation Rotation (HTR) files, etc.), Internet Server Application
Programming Interface (ISAPI) filters, dynamic web pages, weak Access Control
Lists (ACLS) for files and shares, etc., are attackable entry and exit points. In the
Linux and *nix operating systems, setuid root applications and symbolic links
are examples of features that can be attacked.

The term, relative attack surface quotient (RASQ), was introduced by
renowned author and Microsoft Cyber Security Program Manager Michael

197

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 197 6/7/2013 5:40:38 PM

Howard to describe the relative attackability” or likely opportunities for attack
against software in comparison to a baseline. The baseline is a fixed set of
dimensions. The notion of the RASQ metric is that, instead of focusing on the
number of code level bugs or system level vulnerabilities, we are to focus on the
likely opportunities for attack against the software and aim at decreasing the
attack surface by improving the security of software products. This is particularly
important to compute for shrink-wrap products, such as Windows OS, to show
security improvements in newer versions; but the same can be determined
for version releases of business applications, as well. With each attack point
assigned a value, referred to as the attack bias, based on its severity, the RASQ
of a product can be computed by adding together the effective attack surface
for all root vectors. A root vector is a particular feature of the OS or software
that can positively or negatively affect the security of the product. The effective
attack surface value is defined as the product of the number of attack surfaces
within a root attack vector and the attack bias. For example, a service that runs
by default under the SYSTEM account and opens a socket to the world is a
prime attack candidate, even if the software is implemented using secure code,
when compared to a scenario wherein the ACLS to the registry are weak. Each
is assigned a bias, such as 0.1 for a low threat and 1.0 for a severe threat.

Researchers Howard, Pincus, and Wing, in their paper entitled “Measuring
Relative Attack Surfaces” break down the attack surface into three formal
dimensions; viz,. targets and enablers, channels and protocols, and access rights.
A brief introduction of these dimensions is given below.

 ■ Targets and Enablers are resources that an attacker can leverage
to construct an attack against the software. An attacker first
determines if a resource is a target or an enabler and in some cases
a target in a particular attack may be an enabler to another kind
of attack and vice versa. The two kinds of targets and enablers are
processes and data. Browsers, mailers, and servers are examples of
process targets and enablers, while files, directories, and registries
are examples of data targets and enablers. One aspect of determining
the attack surface is determining the number of potential process
and data targets and enablers and the likely opportunities to attack
each of these.

 ■ Channels and Protocols are mechanisms that allow for
communication between two parties. The means by which a
sender (or an attacker) can communicate with a receiver (a target)
is referred to as a channel and the rule by which information is

198

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 198 6/7/2013 5:40:38 PM

exchanged is referred to as a protocol. The endpoints of the channel
are processes. There are two kinds of channels, viz.,message-passing
channels and shared-memory channels. Examples of message-
passing channels include sockets, RPC connections, and named
pipes that use protocols such as ftp, http, RPC, and streaming
to exchange information. Examples of shared-memory channels
include files, directories, and registries, which use open-before-read
file protocols, concurrency access control checks for shared objects,
and resource locking integrity rules. In addition to determining the
number and “attackability” of targets and enablers, determining
the attack surface includes the determination of channel types,
instances of each channel type and related protocols, processes,
and access rights.

 ■ Access Rights are the privileges that are associated with each
resource, irrespective of whether it is a target or enabler. These
include read, write, and execute rights which can be assigned
not only to data and process targets such as files, directories, and
servers, but also to channels (which are essentially data resources)
and endpoints (process resources). Table 3.3 is a tabulation of
various root attack vectors to formal dimensions.

Table 3.3 – Mapping RASQ Attack Vectors into Dimensions

199

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

Dimensions Attack Vector
Targets (Process) Services

Active Web handlers

Active ISAPI Filters

Dynamic Web pages

Target (Process), constrained by Access Rights Services running by default

Services running as SYSTEM

Targets (Data) Executable virtual directories

Enabled accounts

Targets (Data), constrained by Access Rights Enabled accounts in admin group

Enabled Guest account

Weak ACLS in File System

Weak ACLs in Registry

Weak ACLs on shares

Enablers (Process) VBScript enabled

JScript enabled

ActiveX enabled

Channels Null sessions to pipes and shares

CSSLP_v2.indb 199 6/7/2013 5:40:38 PM

A complete explanation of computing RASQ is beyond the scope of this
book, but a CSSLP must be aware of this concept and its benefits. Though the
RASQ score may not be truly indicative of a software product’s true exposure
to attack or its security health, it can be used as a measurement to determine
the improvement of code quality and security between versions of software.
The main idea is to improve the security of the software by reducing the RASQ
score in subsequent versions. This can also be extended within the SDLC, itself,
wherein the RASQ score can be computed before and after software testing
and/or before and after software deployment to reflect improvement in code
quality and, subsequently, security. The paper by researchers Howard, Pincus,
and Wing is recommended reading for additional information on RASQ.

Threat Modeling
Threats to software are manifold. They range from disclosure threats against
confidentiality to alteration threats against integrity to destruction threats against
availability, authentication bypass, privilege escalation, impersonation, deletion
of log files, man-in-the-middle attacks, session hijacking and replaying, injection,
scripting, overflow and cryptographic attacks. We will cover the prevalent
attack types in more detail in the Secure Software Implementation chapter.

Threat Sources/Agents
Like the various threats to software, several threat sources/agents exist, as well.
These may be human or non-human.

Human threat agents range from the ignorant user who causes plain, user error
to the organized cybercriminals who can orchestrate infamous and disastrous
threats to national and corporate security. Table 3.4 tabulates the various human
threat agents to software based on their increasing degree of knowledge and the
extent of damage they can cause.

Non-human threat agents include malicious software (Malware) such as
viruses and worms, which are proliferative in nature; spyware, adware, Trojan
horses, and rootkits that are primarily stealthy in nature and ransomware as
depicted in Figure 3.16.

Proliferative malwares, as their names suggest, aim to propagate their malicious
operations to other networks, hosts and applications that are connected to the
victim. Viruses and worms are examples of proliferative malware. Viruses and
worms are the most common forms of proliferative malware.

200

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 200 6/7/2013 5:40:38 PM

Viruses work by infecting a software program or executable and they require
the infected program or host for their malicious operations. Examples of some
well-known viruses include the Melissa virus and the I Love You virus.

A worm on the other hand functions in similar manner like a virus but it does
not necessarily require the infected victim to survive since they can propagate
and infect other systems, networks, hosts or applications. Worms generally do
not require human interaction to propagate, while viruses usually do. Examples
of some well-known worms include the Nimbda Worm, the Sasser Worm, the
SQL Slammer worm and the Samy Worm.

Table 3.4 – Human Threat Source/Agent

201

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

Threat Agent Type Description

Ignorant User The ignorant user is the one that is often the cause of unintentional and plain user
error. Plain user error is also referred to sometimes as plain error or simply user error.
To combat this threat source is simple but requires investment in time and effort. User
education is the best defense against this type of threat agent. Mere documentation
and help guides are insufficient measures, if they are not used appropriately.

Accidental Discoverer An ordinary user who stumbles upon a functional mistake in the software and who is
able to gain privilege access to information or functionality. This user never sought to
circumvent security protection mechanisms in the first place.

Curious Attacker An ordinary user who notices some anomaly in the functioning of the software and
decides to pursue it further. Often an accidental discoverer graduates into being a
curious attacker.

Script Kiddies This type of threat agents are to be dealt with seriously, merely because of their
prevalence in the industry. They are those ordinary users who execute hacker scripts
against corporate assets without understanding the impact and consequences of
their actions. Most elite hackers today were one day script kiddies. A litmus test to the
identification of a script kiddy’s work is that they do not often hide or know how to
hide their footprint on the software or systems they have attacked.

Insider One of the most powerful attackers in this day and age is the insider or the enemy
inside the firewall. These are potentially disgruntled employees or staff member
within the company that has access to insider knowledge. The database administrator
with unfettered and unaudited access to sensitive information directly is a potential
threat source that should not be ignored. Proper identification, authentication,
authorization and auditing of user actions are important and necessary controls
that need to be implemented to deter insider attacks. Auditing can also be used as a
detective control in the cases where insider fraud and attack is speculated.

Organized
Cybercriminals

These are highly skilled malefactors that are paid professionally for using their skills to
thwart security protection of software and systems, seeking high financial gain. They
not only have a deep understanding of software development, but also of reverse
engineering and network and host security controls. They can be used for attacks
against corporate assets as well as are a threat to national security as cyber terrorists.
Malware developers and Advance Persistent Threat (APT) hackers usually fall into this
category as well.

Third Party/Supplier When software is developed outside the purview of one’s company control, then
malicious logic and malicious code (malcode) such as logic bombs and Trojan horses
can be unintentionally or intentional embedded in the software code, as the software
moves through the supply chain. When outsourcing software development, the Foreign
Ownership Control and Influence (FOCI) of the third party or supplier must be determined
and code inspection (review) prior to acceptance must be performed by the acquirer.

CSSLP_v2.indb 201 6/7/2013 5:40:38 PM

Stealthware includes the category of malware that are programmed attempt
to gain control of the system by exploiting weaknesses in the operating system
itself or the software that run on them . They remain hidden (in stealth mode,
and hence their classification) and surreptitiously operate, often without the
knowledge or consent of the victimized system or user. These include spyware,
adware, Trojan horses, and rootkits.

Spyware are used to clandestinely harvest sensitive and private information
and adware work by redirecting users to marketing displays (ads) without user
consent.

In the context of information security, Trojan horses are malicious software
that appear to be innocuous in their functionality, but internally they carry a
malicious payload that aim at circumventing security controls and exploiting
the system or software that they aim to compromise. Trojan horses make it
possible for hackers to remotely connect to the victim, using coverts channels
(backdoors) that they establish and such Trojan horses are referred to as Backdoor
Trojans or Remote Access Trojans (RATs). One form of a backdoor Trojan is a
bot. A bot generally listens for commands from an attacker and when it is part
of a collection of compromised systems, it is called a botnet (network of bots).
Trojans can also be used to install keyloggers, other spyware and adware, or
they can be used to steal information, modify settings and misuse computer
resources.

Authors Hoglund and Butler in their book “Rootkits”, define a rootkit
as “a set (kit) of programs and code that allows an attacker to maintain a
permanent or consistent undetectable access to “root”, the most powerful

Figure 3.16 –Types of Malware

202

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 202 6/7/2013 5:40:38 PM

user on a computer.” It must however be recognized that intrinsically, rootkits
are not a security threat and there are several valid and legitimate reasons for
developing this type of technology. These include using the rootkits for remote
troubleshooting purposes, sanctioned and consented law enforcement and
espionage situations and also monitoring user behavior.Rootkits run either in
user-mode or in kernel-mode. Malicious users and programs usually use rootkits
to modify the Operating System (OS) and masquerade as legitimate programs
such as kernel-loadable modules (*nix OS) or device drivers (Windows OS).
Since they masquerade as legitimate programs, they are undetectable. These
rootkits can be used to install keyloggers, alter log files, install covert channels
and evade detection and removal.

Rootkits are primarily used for remote control or for software eavesdropping.
Hackers and malicious software (malware) such as spyware attempt to exploit
vulnerabilities in software in order to install rootkits in unpatched and
unhardened systems. It is, therefore, imperative that the security of the software
we build or buy does not allow for the compromise of trusted computing by
becoming victims to the malicious use of rootkits.

Blended threats show characteristics of two or more kinds of malware. A
rootkit could be thought of as a blended threat.

Ransomware include the category of malware that impact the availability
concept of security, unlike other types of malware that usually aim at
compromising the security of the system or software. They act by imposing
restrictions on the victim they infect and demand a ransom to be paid in order
to remove the restriction. Historically, a popular technique in ransomware was
that the ransomware would encrypt the contents of the user hard drive an until a
ransom was paid to the malware creator, the hard drive would not be decrypted,
forcing the victim to financial loss. Ransomware is one of the most prevalent
threats in mobile malware as they tend to function by locking the screen on the
mobile devices and not remove the restriction until the demands of the mobile
malware creator is met.

A special class of threat that leverages both human and non-human threat
agents that is prevalent today is Advanced Persistent Threats. Advanced Persistent
Threats (APTs) refer to sophisticated hacking attacks that exploit the software
and system over a long period of time and for the most part go undetected, while
the threat agent (malware) is in the victim’s computing environment. They are
said to be ‘advanced’ because the threat agents behind these attacks are not the

203

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 203 6/7/2013 5:40:38 PM

usual script kiddies, but those who have a full range of intelligence gathering
and intrusion evasion techniques. They are said to be ‘persistent’ because the
threat agents aim at maintaining continued long-term (persistent) access to the
target, in contrast to threats that operate as one-hit quick exploits. Generally
the ‘low-and-slow’ persistent access threats go undetected. Recently APTs have
gained a lot of media attention because these attacks have targeted governments,
companies and political activists. It must be noted that while APTs leverage
malware to perform their attacks, a major component of APTs involve human
operators who are highly skilled, motivated, well-funded and organized.

What is Threat Modeling?
Threat Modeling is a systematic, iterative, and structured security technique that
should not be overlooked during the design phase of a software development
project. Threat modeling is extremely crucial for developing hack-resilient
software. It should be performed to identify security objectives of the software,
threats to the software, vulnerabilities in the software being developed. It
provides the software development team an attacker’s or hostile user’s viewpoint,
as the threat modeling exercise aims at identifying entry and exit points that
an attacker can exploit. It also helps the team to make design and engineering
tradeoff decisions by providing insight into the areas where attention is to be
prioritized and focused, from a security viewpoint. The rationale behind threat
modeling is the premise that unless one is aware of the means by which software
assets can be attacked and compromised, the appropriate levels of protection
(mitigation controls) cannot be accurately determined and applied. Software
assets include the software processes, themselves, and the data they marshal and
process. With today’s prevalence of attacks against software or at the application
layer, no software should be considered ready for implementation or coding
until after its relevant threat model is completed and the threats identified.

Benefits
The primary benefit of threat modeling during the design phase of the project is
that design flaws can be addressed before a single line of code is written, thereby
reducing the need to redesign and fix security issues in code at a later time.
Once a threat model is generated, it should be iteratively visited and updated as
the software development project progresses. In the design phase, threat models
development commences as the software architecture teams identify threats to
the software. The development team can use the threat model to implement
controls and write secure code. Testers can use the threat models to not only
generate security test cases but also to validate the controls that need to be

204

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 204 6/7/2013 5:40:38 PM

present to mitigate the threats identified in the threat models. Finally, operations
personnel can use threat models to configure the software securely so that all
entry and exit points have the necessary protection controls in place. In fact,
a holistic threat model is one that has taken inputs from representatives of the
design, development, testing, and deployment and operations teams.

Challenges
Though the benefits of threat modeling are extensive, threat modeling does
come with some challenges, the most common of which are given below. Threat
modeling:

 ■ Can be a time-consuming process when done correctly.
 ■ Requires a fairly mature SDLC.
 ■ Requires the training of employees to correctly model threats and

address vulnerabilities.
 ■ Is often deemed to not be a very preferential activity. Developers

prefer coding and quality assurance personnel prefer testing over
threat modeling.

 ■ Is often not directly related to business operations and it is difficult
to show demonstrable return on investment for threat models.

Prerequisites
Before we delve into the threat modeling process, let us first answer the question
about what some of the pre-requisites for threat modeling are. For threat models
to be effective within a company, it is essential to meet the following conditions:

 ■ The company must have clearly defined information security
policies and standards. Without these instruments of governance,
the adoption of threat modeling as an integral part of the SDLC
within the company will be a challenge. This is because, when
the business and development teams push back and choose not to
generate threat models due to the challenges imposed by the iron
triangle, the information security organization will have no basis
on which to enforce the need for threat modeling.

 ■ The company must be aware of compliance and regulatory
requirements. Just as company policies and standards function as
internal governance instruments, arming the information security
organization to enforce threat modeling as part of the SDLC,
compliance and regulatory requirements function as external
governance mandates that need to be factored into the software
design addressing security.

205

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 205 6/7/2013 5:40:38 PM

 ■ The company must have a clearly defined and mature SDLC process.
Because the threat modeling activity is initiated during the design
phase of a software development project, it is important that the
company employs a structured approach to software development.
Ad hoc development will yield ad hoc, incomplete and inconsistent
threat models. Additionally, since threat modeling is an iterative
process and the threat model needs to be revisited during the
development and testing phase of the project, those phases need to
be part of the software development life cycle.

 ■ The company has a plan to act on the threat model. The underlying
vulnerabilities that could make the threats (identified through the
threat modeling exercise) materialize must also be identified and
appropriately addressed. Merely completing a threat modeling
exercise does no good in securing the software being designed.
To generate a threat model and not act on it is akin to buying an
exercise machine and not using it but expecting to get fit and in
shape. The threat model needs to be acted upon. In this regard, it
is imperative that the company trains its employees to appropriately
address the identified threats and vulnerabilities. Awareness,
training, and education programs to teach employees how to threat
model software and how to mitigate identified threats are necessary
and critical for the effectiveness of the threat modeling exercise

What Can We Threat Model?
Since threat models require allocation of time and resources and have an impact
on the project life cycle, threat modeling is to be performed selectively, based on
the value of the software as an asset to the company.

We can threat model existing, upcoming versions, new, and legacy software.
It is particularly important to threat model legacy software because the likelihood
that software was originally developed with threat models and security in mind,
and with consideration of present day threats, is slim. When there is a need to
threat model legacy software, it is recommended to do so when the next version
of the legacy software is being designed. We can also threat model interfaces
(application programming interfaces, web services, etc.) and third-party
components. When third-party components are threat modeled, it is important
to notify the software owner/publisher of the activity and gain their approval to
avoid any Intellectual Property (IP) legal issues or violations of end user licensing
agreements (EULAs). Threat modeling third-party software is often a behavioral
or black box kind of testing, since performing structural analysis and inspections

206

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 206 6/7/2013 5:40:38 PM

by reverse engineering COTS components, without proper authorization from
the software publisher, can have serious IP violation repercussions.

Process
As a CSSLP, it is imperative for one to not only understand the benefits, key
players, challenges and pre-requisites in developing a threat model, but one must
also be familiar with the steps involved in threat modeling.

But before we delve into the process of threat modeling, we must first
determine the security objectives that need to be met by the software itself.
This is sometimes referred to as the “Security Vision” for the software in threat
modeling terminology. Security objectives are those high level goals of the
application, which when not met will have an impact on the security tenets of the
software. These include the requirements that impact the core security concepts
such as confidentiality, integrity, availability, authentication, authorization, and
accountability. Some examples of security objectives include:

 ■ Prevention of data theft
 ■ Protection of intellectual property (IP)
 ■ Provide high availability

Figure 3.17 – Threat Modeling Process

207

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 207 6/7/2013 5:40:38 PM

Inputs that can be used to identify security objectives are listed below.
 ■ Internal company policies and standards
 ■ Regulations, compliance and privacy requirements
 ■ Business and functional requirements

The threat modeling process can be broadly broken down into four major
phases as depicted in Figure 3.17. These phases are:

1. Model Application Architecture
2. Identify Threats
3. Identify, Prioritize and Implement Controls
4. Document and Validate

Each phase is further broken into more specific activities.

Model Application Architecture
Diagramming the application is the process of creating an overview of the
application by identifying the attributes of the application. This diagramming
of application architecture includes the following activities.

Identify the Physical Topology.
The physical topology of the application gives insight into where and how the
applications will be deployed. Will it be an internal only application or will it be
deployed in the Demilitarized Zone or will it be hosted in the cloud?

Identify the Logical Topology.
This includes determining the logical tiers (presentation, business, service, and
data) of the application.

 ■ Determine components, services, protocols, and ports that need to
be defined, developed and configured for the application.

 ■ Identify the identities that will be used in the application and
determine how authentication will be designed in the application.

Examples include forms based, certificate based, token based, biometrics,
single sign-on, multi-factor, etc.

Identify Human and Non-Human Actors of the System.
Examples include customers, sales agents, system administrators, database

administrators, etc.

Identify Data Elements.
Examples include product information, customer information, etc.

208

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 208 6/7/2013 5:40:38 PM

Generate a Data Access Control Matrix.
This includes the determination of the rights and privileges that the actors
will have on the identified data elements. Rights usually include Create, Read,
Update or Delete (CRUD) privileges. For each actor the data access control
matrix as depicted in Figure 3.18 must be generated be generated.

 ■ Identify the technologies that will be used in building the application.
 ■ Identify external dependencies.

The output of this activity is an architectural makeup of the application.

Identify Threats
A thorough understanding of how the software will be architected can help
uncover pertinent threats and vulnerabilities. The identification of potential and
applicable threats includes the following activities.

Identify Trust Boundaries
Boundaries help identify actions or behavior of the software that is allowed or
not allowed. A trust boundary is the point at which the trust level or privilege
changes. Identification of trust boundaries is critical to ensure that the adequate
levels of protection are designed within each boundary.

Identify Entry Points
Entry points are those items that take in user input. Each entry point can be a
potential threat source and so all entry points must be explicitly identified and
safeguarded. Entry points in a web application could include any page that takes
in user input. Some examples include the Search page, Logon page, Registration
page, Checkout page, Account Maintenance page, etc.

Figure 3.18 – Data Access Control Matrix

209

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 209 6/7/2013 5:40:38 PM

Identify Exit Points
It is just as important to identify exit points of the application as it is to identify
entry points. Exit points are those items that display information from within
the system. Exit points also include processes that take data out of the system.
Exit points can be the source of information leakage and need to be equally
protected. Exit points in a web application include any page that displays data
on the browser client. Some examples are the Search Results page, Product page,
View Cart page, etc.

Identify Data Flows
Data flow diagrams (DFDs) and sequence diagrams assist in the understanding
of how the application will accept, process, and handle data as it is marshaled
across different trust boundaries. It is important to recognize that a DFD is not
a flow chart but a graphical representation of the flow of data, the backend data
storage elements, and relationships between the data sources and destinations.
Data flow diagramming uses a standard set of symbols.

Identify Privileged Functionality
It is important to identify any functionality that will allow elevation of privilege
or the execution of privileged operations is identified. All administrator functions
and critical business transactions are identified.

Introduce Mis-Actors
The identification of threats begins with the introduction of mis-actors; both
human and non-human mis-actors. Examples of human mis-actors are external
hacker, hacktivist group, a rogue administrator, a fraudulent sales administrator
etc. Examples of non-human mis-actors include an internal running process
that is making unauthorized changes, malware, etc.

Determine Potential and Applicable Threats
During this activity, the intent is to identify relevant threats that can compromise
the assets. It is important that members of architecture, development, test, and
operations teams are part of this activity, in conjunction with security team
members.

The two primary ways in which threats and vulnerabilities can be identified
are:

 ■ Think like an attacker (brainstorming and using attack trees).
 ■ Use a categorized threat list.

210

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 210 6/7/2013 5:40:38 PM

Think Like an Attacker (Brainstorming and Using Attack Trees)
To think like an attacker is to subject the application to a hostile user’s perspective.
One can start by brainstorming possible attack vectors and threat scenarios using
a whiteboard. While brainstorming is a quick and simple methodology, it is not
very scientific and has the potential of identifying non-relevant threats and not
identifying pertinent threats. So another approach is to use an attack tree.

An attack tree is a hierarchical tree-like structure, which has either an attacker’s
objective (e.g., gain administrative level privilege, determine application makeup
and configuration, bypass authentication mechanisms, etc.) or a type of attack
(e.g., buffer overflow, cross site scripting, etc.) at its root node. Figure 3.19 is an
illustration of an attack tree with the attacker’s objective at its root node.

Figure 3.20 depicts an attack tree with an attack vector at its root node.
When the root node is an attack vector, the child node from the root nodes is
the unmitigated or vulnerability condition. The next level node (child node
of an unmitigated condition) is usually the mitigated condition or a safeguard
control to be implemented.

Figure 3.19 - Attack Tree: Attacker’s objective in the root node

Figure 3.20 - Attack Tree: Attack vector in the root node

211

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 211 6/7/2013 5:40:39 PM

One can also use the OWASP Top 10 or the CWE/SANS Top 25 most
dangerous programming errors as a starting point to identify root vectors
pertinent to their application. It is a method of collecting and identifying
potential attacks in a structured and hierarchical manner. It is a method used by
security professionals because it allows the threat modeling team to analyze threats
in finer detail and greater depth. The tree-like structure provides a descriptive
breakdown of various attacks that the attacker could use to compromise the
asset. The creation of attack trees for your company has the added benefit of
creating a reusable representation of security issues, which can be used across
multiple projects to focus mitigation efforts. Developers are given insight into
the types of attacks that can be used against their software and then implement
appropriate safeguard controls, while test teams can use the attack trees to write
test plans. The tests ensure that the controls are in place and effective.

Use Categorized Threat Lists
In addition to thinking like an attacker, another methodology to identify threats
is using a categorized list of threats. Some methodologies, such as the NSA IAM
methodology, OCTAVE risk modeling, and Microsoft STRIDE, have as part of
their methodology a list of threat types or categories that can be used to identify
threats. The OWASP Top 10 and CWE Top 25 most dangerous programming
errors can also be used as a threat list and their applicability determined.

STRIDE is an acronym for a category of threats. Using the STRIDE category
threat list is a goal-based approach to threat modeling because the goals of the
attacker are taken into consideration. Table 3.5 depicts the Microsoft STRIDE
category of threats.

When a category of threats is used, there is a high degree of likelihood that
a particular threat may have cross-correlation with other threats. For example,

Table 3.5 – STRIDE category of threats

212

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Goal Description

S Spoofing Can an attacker impersonate another user or identity?

T Tampering Can the data be tampered with while it is in transit or in
storage or archives?

R Repudiation Can the attacker (user or process) deny the attack?

I Information Disclosure Can information be disclosed to unauthorized users?

D Denial of Service Is denial of service a possibility?

E Elevation of Privilege Can the attacker bypass least privilege implementation
and execute the software at elevated or administrative
privileges?

CSSLP_v2.indb 212 6/7/2013 5:40:39 PM

the elevation of privilege may be as a result of spoofing due to information
disclosure or simply the result of the lack of repudiation controls. In such cases,
it is recommended to use your best judgment when categorizing threats. One can
select the most relevant category or document all of the applicable threat categories
and rank them according to the likelihood of the threat being materialized.

Identify, Prioritize and Implement Controls
Merely cataloging a list of threats provides little assistance to a design team that
needs to decide how to address the threat.

Risks arising from identified threats that need to be mitigated. Mitigation is
accomplished by implementing controls. It is advisable to use standard controls
instead of inventing your own. When mitigation is not possible, the risk can be
accepted if the level of risk is below what is acceptable for the business or the
software can be re-architected to eliminate the threat.

Knowledge of threats and vulnerabilities is worthless unless appropriate
controls are identified to mitigate the threats that can exploit the vulnerabilities.
The identification of controls needs to be specific to each threat. A threat may
be completely mitigated by a single control, or a combination of controls may
be necessary. In instances where more than one control is needed to mitigate a
threat, the defense in depth measures should ensure that the controls complement
rather than contradict one another. It is also important to recognize that the
controls (safeguards and countermeasures) don’t eliminate the threat, but only
reduce the overall risk that is associated with the threat.

Since addressing all the identified threats is unlikely to be economically
feasible, it is important to address the threats that pose the greatest risk first,
before addressing those that have minimal impact to business operations. The
risk ranks derived from the security risk assessment activity (SRA) of the threat
modeling exercise are used to prioritize the controls that need to be implemented.
Quantitative risk ranks are usually classified into qualitative bands such as High,
Medium, or Low, or, based on the severity of the threat, into Severity 1, Severity
2, and Severity 3. These bands are also known as bug bars or bug bands and they
are not just limited to security issues. There are bug bars for privacy, as well. Bug
bars help with prioritizing the controls to be implemented post design.

There are several ways to quantitatively or qualitatively determine the risk
ranking for a threat. These range from the simple, non-scientific, Delphi heuristic
methodology to more statistically sound risk ranking using the probability of
impact and the business impact. The three common ways to rank threats are

213

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 213 6/7/2013 5:40:39 PM

 ■ Delphi ranking
 ■ Average ranking
 ■ Probability x Impact (P x I) ranking

Delphi Ranking
The Delphi technique of risk ranking is one in which each member of the
threat modeling team makes his or her best guesstimate on the level of risk for a
particular threat. During a Delphi risk ranking exercise, individual opinions on
the level of risk for a particular threat are stated and the stated opinions are not
questioned but accepted as stated. The individuals who are identified for this
exercise include both members with skills at an expert level and those who are
not skilled, but the participating members only communicate their opinions to a
facilitator. This is to avoid dominance by strong personalities who can potentially
influence the risk rank of the threat. The facilitator must provide, in advance,
predefined ranking criteria (1 – Critical, 2 – Severe, 3 – Minimal) along with
the list of identified threats, to ensure that the same ranking criteria are used by
all members. The criteria are often based merely on the potential impact of the
threat materializing and the ranking process is performed until there is consensus
or confidence in the way the threats are ranked. While this may be a quick
method to determine the consensus of the risk potential of a threat, it may not
provide a complete picture of the risk and should be used sparingly and only in
conjunction with other risk ranking methodologies. Furthermore, ambiguous or
undefined risk ranking criteria and differing viewpoints and backgrounds of the
participants can lead to the results’ being diverse and the process itself, inefficient.

Average Ranking
Another methodology to rank the risk of the threat is to calculate the average
of numeric values assigned to risk ranking categories. One such risk ranking
categorization framework is DREAD, which is an acronym for Damage
Potential, Reproducibility, Exploitability, Affected Users, and Discoverability.
Each category is assigned a numerical range and it is preferred to use a smaller
range (such as 1 to 3 instead of 1 to 10) to make the ranking more defined, the
vulnerabilities less ambiguous, and the categories more meaningful.

 ■ Damage Potential – ranks the damage that will be caused when
a threat is materialized or vulnerability exploited.

1 = Nothing
2 = Individual user data is compromised or affected
3 = Complete system or data destruction

214

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 214 6/7/2013 5:40:39 PM

 ■ Reproducibility – ranks the ease of being able to recreate the
threat and the frequency of the threat exploiting the underlying
vulnerability successfully.

1 = Very hard or impossible, even for administrators of the
application

2 = One or two steps required; may need to be an authorized user

3 = Just the address bar in a web browser is sufficient, without
authentication

 ■ Exploitability – ranks the effort that is necessary for the threat
to be manifested and the preconditions, if any, that are needed to
materialize the threat.

1 = Advanced programming and networking knowledge, with
custom or advanced attack tools

2 = Malware exists on the Internet, or an exploit is easily performed
using available attack tools

3 = Just a web browser

 ■ Affected Users – ranks the number of users or installed instances
of the software that will be impacted if the threat materializes.

1 = None

2 = Some users or systems, but not all

3 = All users

 ■ Discoverability – ranks how easy it is for external researchers and
attackers to discover the threat, if left unaddressed.

1 = Very hard-to-impossible; requires source code or administrative
access

2 = Can figure it out by guessing or by monitoring network traces

3 = Information is visible in the web browser address bar or in a
form

Once values have been assigned to each category, then the average of those
values is computed to give a risk ranking number. Mathematically, this can be
expressed as shown below.

Figure 3.21 - Use of an Average Ranking to rank various web application threats.

215

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 215 6/7/2013 5:40:39 PM

The average rank and categorization into buckets such as High, Medium, or
Low can then be used to prioritize mitigation efforts.

Probability x Impact (P x I) Ranking
Conventional risk management calculation of the risk to a threat materializing or
to exploiting a vulnerability is performed by using the product of the probability
(likelihood) of occurrence and the impact the threat will have on business
operations, if it materializes. Companies that use risk management principles
for their governance use the formula shown below to assign a risk ranking to the
threats and vulnerabilities.

Risk = Probability of Occurrence X Business Impact

This methodology is relatively more scientific than the Delphi or the
average ranking methodology. For the probability-times-impact (P x I) ranking
methodology, we will once again take into account the DREAD framework.
The risk rank will be computed using the formula given below.

Risk = Probability of Occurrence X Business Impact

Risk = (Rvalue + Evalue + DIvalue) X (Dvalue + Avalue)

Figure 3.23 is an example illustrating the use of the P x I ranking methodology
to rank various web application threats.

From this example, we can see that the Cross-Site Scripting (XSS) threat and
SQL injection threats are high risks, which need to be mitigated immediately,
while the cookie replay and session hijacking threats are of medium risk. There
should be a plan in place to mitigate those as soon as possible. CSRF and audit
log deletion threats have a low risk rank and may be acceptable. To prioritize the

Figure 3.22 – Average Ranking

216

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 216 6/7/2013 5:40:39 PM

efforts of these two, high risk items (SQL injection and XSS), we can use the
computed risk rank (P x I) or we can use either the probability of occurrence
(P) or business impact (I) value. Since both SQL injection and XSS have the
same business impact value of 6, we can use the probability-of-occurrence value
to prioritize mitigation efforts, choosing to mitigate XSS first and then SQL
injection, because the probability-of-occurrence value for XSS is 9, while the
probability-of-occurrence value for SQL injection is 7.

While the Delphi methodology usually focuses on risk from a business
impact vantage point, the average ranking methodology, when using the
DREAD framework, takes into account both business impact (Damage
potential, Affected users) and the probability of occurrence (Reproducibility,
Exploitability, and Discoverability); however, because of averaging the business
impact and probability-of-occurrence values uniformly, the derived risk rank
value does not give insight into the deviation (lower and upper limits) from the
average. This can lead to uniform application of mitigation efforts to all threats,
thereby potentially applying too much mitigation control effort on threats that
are not really certain or too little mitigation control effort on threats that are
serious. The P x I ranking methodology gives insight into risk as a measure of
both probability of occurrence and the business impact independently, as well as
when considered together. This allows the design team the flexibility to reduce
the probability of occurrence or alleviate the business impact independently
or together, once it has used the P x I risk rank to prioritize where to focus its
mitigation efforts. Additionally, the P x I methodology gives a more accurate
picture of the risk. Notice that in the average ranking methodology, both cookie
replay and session hijacking threats had been assigned a medium risk of 2.0. This
poses a challenge to the design team: which threat must one consider mitigating

Figure 3.23 – Probability x Impact (P x I) ranking

217

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 217 6/7/2013 5:40:39 PM

first? However, in the P x I ranking of the same threats, you notice that the
cookie replay threat has a risk score of 24, while the session hijacking threat has
a risk score of 21, based on probability of occurrence and business impact. This
facilitates the design team’s consideration of mitigating the cookie replay threat
before addressing the session hijacking threat.

Document and Validate
The importance of documenting the threat model cannot be underestimated
because threat modeling is iterative and, through the life cycle of the project, the
protection controls to address the identified threats in the threat model need to
be appropriately implemented, validated, and the threat model itself updated.

Threats and controls can be documented diagrammatically or in textual
format. Diagrammatic documentation provides a context for the threats. Textual
documentation allows for more detailed documentation of each threat. It is best
advised to do both. Document each threat diagrammatically and expand on the
details of the threat using textual description.

When documenting the threats, it is recommended to use a template to
maintain the consistency of documenting and communicating the threats. Some
of a threat’s attributes that need to be documented include the type of threat with
a unique identifier, the description, the threat target, attack techniques, security
impact, the likelihood or risk of the threat’s materializing, and, if available, the
possible controls to implement. Figure 3.24 depicts the textual documentation
of an injection attack.

Figure 3.24 – Threat documentation

218

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 218 6/7/2013 5:40:39 PM

Figure 3.25 is an illustration of documenting identifying controls to address
a threat.

Upon documentation of threats and controls, and the residual risk, validation
should be undertaken to ensure the following:

 ■ The application architecture that is modeled (diagrammed) is
accurate and contextually current (up-to-date).

 ■ The threats are identified across each trust boundary and for data
element.

 ■ Each threat has been explicitly considered and controls for
mitigation, acceptance or avoidance have been identified and
mapped to the threats they address.

 ■ If the threat is being accepted, then the residual risk of that threat
should be determined and formally accepted by the business owner.

It is also important to revisit the threat model and revalidate it, should the
scope and attributes of the software application change.

Figure 3.25 - Control Identification

219

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 219 6/7/2013 5:40:39 PM

Architectures
Since business objectives and technology change over time, it is important for
software architectures to be strategic, holistic, and secure. Architecture must be
strategic, meaning that the software design factors in a long-term perspective
and addresses more than just the short-term, tactical goals. This reduces the
need for redesigning the software when the there are changes in business goals
or technology. By devising the architecture of software to be highly cohesive and
loosely coupled, software can be scaled with minimal redesign when changes are
required. Architecture must also be holistic. This means that software design
is not just IT-centric in nature but is also inclusive of the perspectives of the
business and other stakeholders. In a global economy, locale considerations are
an important, architectural consideration, as well. Holistic software achitecture
also means that it factors, not only the people, process, and technology aspects
of design, but also the network, host, and application aspects of software
design. Implementation security across the different layers of the Open Systems
Interconnect (OSI) reference model of ISO/IEC 7498-1:1994 is important so
that there is no weak link from the physical layer to the application layer. Table
3.6 illustrates the different layers of the OSI reference model, the potential
threats at each layer, and what protection control or technology can be leveraged
at each layer. Using IPSec at the network layer (layer 3), Secure Sockets Layer
(SSL) at the transport layer (layer 4), and Digital Rights Management (DRM)
at the presentation layer (layer 6) augments the protection controls that are
designed at the application layer (layer 7) and this demonstrates two, secure
design principles: defense in depth and leveraging existing components.

Finally, software architecture must be not only strategic and holistic, but also
secure. The benefits of enterprise security architecture are many. Some of these
are listed below. Enterprise security architecture:

 ■ Provides protection against security-related issues that may be
related to the architecture (flaws) or implementation (bugs) or both.

 ■ Makes it possible to implement common security solutions across
the enterprise.

 ■ Promotes interoperability and makes it easy for integrating systems
while effectively managing risk.

 ■ Allows for leveraging industry-leading best practices. The OWASP
Enterprise Security Application Programming Interface (ESAPI) is
an example of a toolkit that can be leveraged to uniformly manage

220

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 220 6/7/2013 5:40:39 PM

risks by allowing software development team members to guard
against flaws and bugs.

 ■ Facilitates decision makers to make better and quicker security-
related decisions across the enterprise.

Changes in the hardware computing power have led to shifts in software
architectures from the centralized mainframe architecture to the highly
distributed computing architecture. Today, many distributed architectures,

Table 3.6 – Open Systems Interconnect layers

221

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

Layer # Layer Name Layer Description Threats Protection Controls/Technology

7 Application Describes
the structure,
interpretation
and handling of
information

Flaws, Bugs, Backdoors,
Malware,

Application layer firewalls,
Secure design, coding, testing,
deployment, maintenance,
operations and disposal.

6 Presentation Describes the
presentation of
information, doing
syntax conversions
such as ASCII/EBCDIC

Information leakage
and disclosure of
content

Masking and other
cryptographic controls, RBAC
and content dependent rights,
Liability protection controls
such as ‘forwarding not allowed’,
DRM

5 Session Describes the
handshake between
applications
(authentication, sign
on)

Authentication bypass,
Guessable and weak
session identifiers,
Spoofing, MITM,
Credential theft, Data
disclosure, Bruteforce
attacks

Strong authentication controls,
Unique and random session
ID generation, Encryption
in transmission and storage,
Account lockout clipping levels

4 Transport Describes data
transfer between
applications; provides
flow control, error
detection and
correction (e.g., TCP
and UDP)

Loss of packets,
Fingerprinting and host
enumeration, Open
ports

Stateful inspection firewalls, SSL,
Port monitoring, Flow control

3 Network Describes data
transfer between
networks (e.g.,
Internet Protocol)

Spoofing of routes and
IP addresses, Identity
impersonation

Packet filtering firewalls, ARP/
Broadcast monitoring, Network
edge filters, IPSec

2 Data Link Describes data
transfer between
machines (e.g.,
RJ11-modem, RJ45-
ethernet)

MAC address spoofing,
VLAN circumvention,
Spanning Tree errors,
Wireless attacks

MAC filtering, Firewalls and
segmentation (isolation)
of networks, Wireless
authentication and strong
encryption

1 Physical Describes the
networking hardware
such as network
interfaces and
physical cables, and
the way to transmit
bits and bytes of data
(electrical pulses,
radio waves or light)

Physical Theft, Power
loss, Keyloggers and
other interceptors of
data

Locked perimeters and
surveillance, PIN and password
secured locks, Biometric
authentication, Electromagnetic
shielding, Secure data
transmission and storage

CSSLP_v2.indb 221 6/7/2013 5:40:39 PM

such as the Client/Server model, Peer-to-peer networking, Service Oriented
Architecture (SOA), Rich Internet Applications (RIA), Pervasive computing,
Software as a Service (SaaS), cloud computing and Virtualization, exist and are
on the rise. In the following section, we will look into the different types of
architectures that are prevalent today and how to design software to be secure
when using these architectures.

Mainframe Architecture
Colloquially referred to as the Big Iron, mainframes are computers that are
capable of bulk data processing with great computation speed and efficiency.
The speed is usually measured in Millions of Instructions Per Second (MIPS).
In the early days of mainframe, computing involved tightly coupled mainframe
servers and dumb terminals which were merely interfaces to the functionality
that existed on the high processing, backend servers. All processing, security, and
data protection was the responsibility of the mainframe server, which usually
operated in a closed network with a restricted number of users.

In addition to the increased computational speed, redundancy engineering
for high availability, and connectivity over IP networks, today’s mainframe
computing brings remote connectivity, allowing scores of users access to
mainframe data and functionality. This is possible because of the access interfaces,
including web interfaces that have been made available in mainframes. The
mainframe provides one of the highest degrees of security inherently with an
Evaluation Assurance Level of 5. It has its own networking infrastructure, which
augments its inherent, core, security abilities.

However, with the increase in connectivity, the potential for attack increases
and the security provided by the closed network and restricted access control
mechanisms wanes. Furthermore, one of the challenges surfacing is that
the number of people skilled in the operational procedures and security of
mainframes is dwindling, with people’s retiring or moving toward platforms
that are newer. This is an important issue from a security standpoint because
those who are leaving are the ones who have likely designed the security of
these mainframes and this brain-drain can leave the mainframe systems in an
operationally insecure state.

To address security challenges in the evolving mainframe computing
architecture, data encryption and end-to-end transit protection are important,
risk mitigation controls to implement. Additionally, it is important to design
in the principle of psychological acceptability by making security transparent.

222

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 222 6/7/2013 5:40:39 PM

This means that solutions that require rewriting applications, mainframe Job
Control Language (JCL), and network infrastructure scripts, must be avoided.
The skills shortage problem must be dealt with by employing user education
and initiatives that make a future in mainframe lucrative, especially in relation
to its cross-over with new applications and newer, open platforms such as Linux.

Distributed Computing
Business trends have moved from the centralized world of the mainframe to
the need for more remote access; so a need for distributed computing arose.
Distributed computing architecture is primarily of the following types: Client/
Server and Peer-to-Peer (P2P)

Client/Server
Unlike traditional, monolithic, mainframe architecture where the server does
the heavy lifting and the clients are primarily dumb terminals, in client/server
computing, the client is capable of processing and is essentially a program
that requests service from a server program. The server program may be, in
turn, a client requesting service from other backend server programs. This
distinction is blurring, however, as the mainframe computing model becomes
more interconnected. Within the context of software development, clients that
perform minimal processing are referred to commonly as thin clients, while those
which perform extensive processing are known as fat clients. With the rise in
Software as a Service (SaaS), the number of thin- client deployments is expected
to increase. The client/server model is the main architecture in today’s network
computing. This model makes it possible to interconnect several programs that
are distributed across various locations. The Internet is a primary example of
client/server computing.

When designing applications for operating in a client/server architecture,
it is important to design the software to be scalable, highly available, easily
maintainable, and secure. Logically breaking down the software’s functionality
into chunks or tiers has an impact on the software’s ease of adapting to changes.
This type of client/server architecture is known as N-Tier architecture, where
N stands for the number of tiers the software is logically broken into. 1-Tier
means there is only one tier. All the necessary components of the software, which
include the presentation (user interface), the business logic, and the data layer,
are contained within the same tier, and, in most cases, within the same machine.
When software architecture is 1-Tier, the implementation of the software is
usually done by intermixing client and server code, with no distinct tiering.

223

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 223 6/7/2013 5:40:39 PM

This type of programming is known as spaghetti code programming. Spaghetti
code is complex, with unstructured go-to statements and arbitrary flow. 1-Tier
architecture spaghetti code is highly coupled. This makes it very difficult to
maintain the software. While 1-Tier architecture may be the simplest and easiest
to design, it is not at all scalable, difficult to maintain, and must be avoided,
unless the business has a valid reason for such a design. In a 2-Tier architecture,
the software is functionally broken into a client program and a server program.
The client usually has the presentation and business logic layer while the server
is the backend data or resource store. A web browser (client) requesting the web
server (server) to serve it web pages is an example of 2-Tier architecture. While
this provides a little more scalability than 1-Tier architecture, it still requires
updating the entire software, so changes are all-or-nothing, making it difficult
to maintain and scale. The most common N-Tier architecture is the 3-Tier
architecture, which breaks the software functionality distinctly into three tiers;
the presentation tier, the business logic tier, and the data tier. The benefits of the
3-Tier architecture are as follows:

 ■ Changes in a tier are independent of the other tiers. So if you
choose to change the database technology, the presentation and
business logic tiers are not necessarily affected.

 ■ It encapsulates the internal makeup of the software by abstracting
the functionality into contract-based interfaces between the tiers.

However, this can also make the design complex and if error-reporting
mechanisms are not designed properly, it can make troubleshooting very
difficult. Further, it introduces multiple points of failure, which can be viewed
as a detriment; however, this can be also viewed as a security benefit because it
eliminates a single point of failure.

Peer-to-Peer (P2P)
When one program controls other programs, as is usually the case with client/
server architecture, it is said to have a master and slave configuration. However,
in some distributed computing architecture, the client and the server programs
each have the ability to initiate a transaction and act as peers. Such a configuration
is known as a peer-to-peer (P2P) architecture. Management of these resources
in a P2P network is not centralized, but spread among the resources on the P2P
network uniformly, and each resource can function as a client or a server. File
sharing programs and instant messaging are well known examples of this type
of architecture. P2P file-sharing networks are a common ground for hackers
to implant malware, so when P2P networks are designed, it is imperative to

224

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 224 6/7/2013 5:40:39 PM

include strong access control protection to prevent the upload of malicious files
from sources that are not trusted.

When you are designing software to operate in a distributed computing
environment, security becomes even more important since the attack surface
includes the client, the server, and the networking infrastructure. The following
security design considerations are imperative to consider in distributed
computing:

 ■ Channel Security – As data is passed from the client to the server
and back or from one tier to another, it is necessary to protect the
channel on which the data is transmitted. Transport level protocols
such as SSL or network level protection using IPSec are means of
implementing channel security.

 ■ Data Confidentiality and Integrity – Protecting the data using
cryptographic means such as encryption or hashing is important
to protect against disclosure and alteration threats.

 ■ Security in the Call Stack/Flow – Distributed systems often
rely on security protection mechanisms such as validation and
authorization checks at various points of the call stack/flow. Design
should factor in the entire call stack of software functionality so
that security is not circumvented at any point of the call stack.

 ■ Security Zoning – Zoning using trust boundaries is an important
security protection mechanism. There exists a security boundary
between the client and the server in a client/server distributed
computing architecture, and these trust levels should be determined
and appropriately addressed. For example, performing client-side
input validation may be useful for heightening user experience and
performing, but trusting the client for input validation is a weak
security protection mechanism, as it can be easily bypassed.

Service Oriented Architecture
Service Oriented Architecture (SOA) is a distributed computing architecture,
which has the following characteristics:

 ■ Abstracted Business Functionality – the actual program, business
logic, processes, and the database are abstracted into logical views,
defined in terms of the business operations and exposed as services.
The internal implementation language, inner working of the
business operation or even the data structure is abstracted in the
SOA.

225

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 225 6/7/2013 5:40:39 PM

 ■ Contract-Based Interfaces – Communication (messages) between
the service providing unit (provider agent) and the consuming unit
(requestor agent) is done using messages that are of a standardized
format delivered through an interface. Developers do not need to
understand the internal implementation of the service, as long as
they know how to invoke the service using the interface contract.

 ■ Platform Neutrality - Messages in SOA are not only standardized
but they are also sent in a platform-neutral format. This maximizes
cross-platform operability and makes it possible to operate with
legacy systems. Most SOA implementations use the Extensible
Markup Language (XML) as their choice of messaging because it
is platform-neutral.

 ■ Modularity and Reusability – Services are defined as discreet,
functional units (modular) that can be reused. Unlike applications
that are tightly coupled in a traditional computing environment,
SOA is implemented as loosely coupled network services that work
together to form the application. The centralization of services that
allows for reusability can be viewed on one hand as minimizing
the attack surface, but, on the other, as the single point of failure.
Therefore, careful design of defense in depth protection is necessary
in SOA implementations.

 ■ Discoverability - In order for the service to be available for use,
it must be discoverable. The service’s discoverability and interface
information are published so that requestor agents are made aware
of what the service contract is and how to invoke it. When SOA
is implemented using Web Services technology, this discoverable
information is published using Universal Description, Discovery
and Interface (UDDI). UDDI is a standard published by the
Organization for the Advancement of Structured Information
Standards (OASIS). It defines a universal method for enterprises
to dynamically discover and invoke Web services. It is a registry
of services and could be called the yellow pages of the interface
definition of services that are available for consumption.

 ■ Interoperability – Since knowledge of the internal structure
of the services is not necessary and the messaging between the
provider and requestor agents is standardized and platform-
neutral, heterogeneous systems can interoperate, even in disparate
processing environments, as long as the formal service definition is
adhered to. This is one the primary benefit of SOA.

226

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 226 6/7/2013 5:40:40 PM

Although SOA is often mistakenly used synonymously with Web services
technologies, SOA can be implemented using several technologies. The most
common vendor agnostic technologies used to architect SOA solutions are
Remoting using Remote Procedure Call (RPC), Component Object Model
(COM), Distributed Component Object Model (DCOM), Common Object
Request Broker Architecture (CORBA), Enterprise Service Bus (ESB), Web
services (WS), and REST. To implement SOA in Java, the Java Remote Method
Invocation API can be leveraged. To implement SOA in Microsoft technologies,
the Windows Communication Foundation (WCF) can be leveraged. RPC,
COM, DCOM and CORBA are older interface technologies that facilitated
interoperability and due to their limited use today, it is not covered in this book.

Enterprise Service Bus (ESB)
An ESB is a software architectural pattern that facilitates communication
between mutually interacting software applications. It can be thought of
as a bridge between software applications operating in heterogeneous and
complicated computing environments as depicted in Figure 3.26. It is primarily
used to integrate enterprise applications and term Enterprise Application
Integration (EAI) is frequently used synonymously with ESB. It can be thought
of as a variation of the more familiar and generalized client/server model of
distributed computing, but unlike the client/server model, which allows for both
synchronous and asynchronous messaging, an ESB is exclusively asynchronous
in its design.

Figure 3.26 – Enterprise Service Bus

227

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 227 6/7/2013 5:40:40 PM

From a security standpoint, the benefit of having an ESB interface between
two enterprises is that security functionality can be implemented centrally
and the ESB can act as the reference monitor (traffic cop) between the two
enterprise applications that are integrated. When architected in such manner,
ESB support the principle of complete mediation. Some common examples of
security mediate modules include:

 ■ Authentication modules that can leverage directory services
 ■ Authorization modules that can leverage access management

software and services
 ■ Logging modules that can be used to log message that are input

into and output from the ESB.
 ■ Availability modules that monitor capacity, network flow, etc.
 ■ Validation modules that make sure that perform ingress and egress

filtering of messages that come into or leave the ESB. It can also be
used to guarantee delivery of messages.

 ■ Cryptographic modules that provided encryption, decryption and
hashing services.

It must also be noted that the centralization of security mediation modules
comes with one major challenge. Such a design introduces a single point of
failure. To mitigate this issue, it is advisable to design the ESB with depth in
depth. Furthermore, in an ESB architecture, the Security Zone and Demilitarized
Zone (DMZ) are usually not separated. To address this issue, it is recommended
to have an internal ESB and an external ESB and have them be securely bridged
together.

Web Services
Web services provide platform and vendor neutrality, but it must be recognized
that performance and implementation immaturity issues can be introduced.
If platform and vendor neutrality are not business requirements, then using
COM, DCOM or CORBA implementations along with XML based protocols
for exchanging information such as Simple Object Access Protocol (SOAP) may
be a better choice for performance. However, SOAP was not designed with
security in mind and so can be intercepted and modified while in transit. Web
services are appropriate for software in environments

 ■ where reliability and speed are not assured (for example, the
Internet)

 ■ where managing the requestor and provider agents need to be

228

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 228 6/7/2013 5:40:40 PM

upgraded at once, when deployment cannot be managed centrally
 ■ where the distributed computing components run on different

platforms
 ■ when products from different vendors need to interoperate
 ■ when an existing software functionality or the entire application

can be wrapped using a contract-based interface and needs to be
exposed for consumption over a World Wide Web (WWW).

While SOA brings with it many benefits, such as interoperability and platform/
vendor neutrality, it also brings challenges when it comes to performance and
security. SOA implementation design needs to factor in various considerations.
These include the following:

Secure Messaging
Since SOA messages traverse on networks that are not necessarily within the same
domain or processing environment, such as the Internet, they can be intercepted
and modified by an attacker. This mandates the need for confidentiality, integrity,
and transport level protection. Any one or a combination of the following
methods can be used to provide secure messaging:

 ■ XML Encryption and XML Signature – When an XML protocol
for exchanging information is used, an entire message or portions
of a message can be encrypted and signed using XML security
standards. WS-Security is the Web services security standard that
can be used for securing SOAP messages by providing SOAP
extensions that define mechanisms using XML Encryption
and XML Signature. This assures confidentiality and integrity
protection.

 ■ Implement Transport Layer Security (TLS) – Use SSL/TLS to
secure messages in transit. HyperText Transport Protocol (HTTP)
over SSL/TLS (HTTPS) can be used to secure SOAP messages
that are transmitted over HTTP.

Resource Protection
When business functionality is abstracted as services using interfaces that are
discoverable and publicly accessible, it is mandatory to ensure that these service
resources are protected appropriately. Identification, authentication, and access
control protection are critical to assure that only those who are authorized to invoke
these services are allowed to do so. Services need to be identity-aware, meaning
that the services need to identify and authenticate one another. Identification

229

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 229 6/7/2013 5:40:40 PM

and authentication can be achieved using token-based authentication, the SOAP
authentication header, or transport layer authentication.

Contract Negotiation
The Web Service Description Language (WSDL) is an XML format used to
describe service contracts and allowed operations. This also includes the network
service endpoints and their messages. Newer functionalities in a service can be
used immediately upon electronic negotiation of the contract and invocation,
but this can pose a legal liability challenge. It is therefore recommended that
the contract-based interfaces of the services be pre-defined and agreed upon
between companies that plan to use the services in an SOA solution. However,
in an Internet environment, establishing trust and service definitions between
provider agents (service publisher) and requestor agents (service consumer) are
not always just time consuming processes, but in some cases are impossible. This
is the reason why most SOA implementations depend on the WSDL interface,
which provides the service contract information implicitly. This mandates the
need to protect the WSDL interface against scanning and enumeration attacks.

Trust Relationships
Establishing the trust between the provider and the consumer in an SOA
solution is not a trivial undertaking and it must be carefully considered when
designing the SOA. Although identification and authentication are necessary,
mere identity verification of a service or the service provider does not necessarily
mean that the service, itself, can be trusted. The primary SOA trust models that
can be used to assure the trustworthiness of a service are described below.

 ■ Pairwise Trust Model – In this model, during the time of service
configuration, each service is provided with all of the other services
that it can interact (paired) with. While this is the simplest of trust
models, it cannot scale very well, because the adding of each new
service will require associating or pairing a trust relationship with
every other service, which can be resource intensive and time
consuming.

 ■ Brokered Trust Model – In this model, an independent third party
acts as a middleman (broker) to provide the identity information of
the services that can interact with one another. This facilitates the
distribution of identity information because services need not be
aware of the identity of other services they must interact with, but
simply need to verify the identity of the service broker.

230

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 230 6/7/2013 5:40:40 PM

 ■ Federated Trust Model – In this model, the trust relationship is
established (federated) between two separate companies and/or
organizations within a company. Either a pairwise or brokered trust
relationship can be used within this model, but a pre-definition of
allowed service contracts and invocation protocols and interfaces
is necessary. The location where the federated trust relationship
mapping is maintained must be protected, as well.

 ■ Proxy Trust Model – In this model, perimeter defense devices are
placed between the providers and requestor. These devices act as
a proxy for allowing access to and performing security assertions
for the services. An XML gateway is an example of a proxy trust
device. However, the proxy device can become the single point of
failure if layered defensive protection and least privilege controls
are not in place. An attacker who bypasses the proxy protection
can potentially have access to all internal services, if they are not
designed, developed, and deployed with security in mind.

Representational State Transfer (REST)
REST, as an architectural style, is becoming the predominant web service design
model. REST can be considered as a variant of SOA wherein the services are
really resources (or URIs). This is why REST is also commonly referred to as a
Resource Oriented Architecture (ROA).

REST is a client/server model, in which the requests and responses are built
around transition state of resources.

Although Web services have been predominantly implemented using SOAP,
REST can also be used for implementing Web services. A RESTful Web service
is implemented using REST principles and the HyperText Transfer Protocol
(HTTP) API. The way, RESTful Web services are implemented is as a collection
of resources and each RESTful Web service:

 ■ Has a unique Resource Address or Base URI (e.g., http://isc2.org/
resources/)

 ■ Supports media type of the data supported by the Web service
(e.g., XML, JSON, etc.)

 ■ Uses HTTP Methods for its operations (e.g., GET, PUT, POST,
or DELETE)

Since RESTful Web services run on top of the HyperText Protocol, they are
platform independent. The server can be a Windows Server while the client a
Linux machine or an iOS device. It is also programming language independent.

231

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 231 6/7/2013 5:40:40 PM

http://isc2.org/resources/

The benefit of using REST for client/server transitions is that it promotes
loose coupling between the different services since REST is not strongly typed,
unlike SOAP. REST also differs from SOAP by being less bloated as it does
not require a message header from the service provider for its operations, but
this could have security messages as proof of origin of the request is difficult
to assure. REST is also faster than SOAP as it does not require all the parsing
(XML parsing) that SOAP needs to do for it to work. REST also focuses on
the readability and uses common nouns and verbs (e.g., GET, PUT, POST,
DELETE) for its method calls. Though there are some performance gains in
using REST, it must be understood that REST does not offer any built in security
features and need to be implemented with complementing security technologies
to assure secure operations. For example, tokens for authentication and SSL
(HTTPS) for encryption of data on the wire are necessary for incorporating
security when using RESTful Web services.

Rich Internet Applications
With the ubiquitous nature of the Web and the hype in social networking, it is
highly unlikely that one has not already come across Rich Internet Applications
(RIA). Some examples of RIA in use today are Facebook and Twitter. Rich
Internet Applications bring the richness of the desktop environment and software
onto the Web. A live connection (Internet Protocol) to the network and a client
(browser, browser plug-in, or virtual machine) are often all that is necessary to
run these applications. Some of the frameworks that are commonly used in
RIA are AJAX, Abode Flash/Flex/AIR, Microsoft Silverlight, and JavaFX. With
increased client (browser) side processing capabilities, the workload on the server
side is reduced which is a primary benefit of RIA. Increased user experience and
user control are also benefits that are evident.

RIA has some inherent, security control mechanisms as well. These include
Same Origin Policy (SOP) and sandboxing. The origin of a web application can
be determined using the protocol (http/https), host name, and port (80/443)
information. If two web sites have the same protocol, host name, and port
information, or if the document.domain properties of two web resources are the
same, it can be said that both have the same source or origin. The goal of SOP
is to prevent a resource (document, script, applets, etc.) from one source from
interacting and manipulating documents in another. Most modern day browsers
have SOP security built into them and RIA with browser clients intrinsically
inherit this protection. Rich Internet Applications also run within the security
sandbox of the browser and are restricted from accessing system resources unless

232

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 232 6/7/2013 5:40:40 PM

access is explicitly granted. However, web application threats, such as injection
attacks, scripting attacks, and malware, are all applicable to RIA. With RIA, the
attack surface is increased, which includes the client that may be susceptible
to security threats. If sandboxing protection is circumvented, host machines
that are not patched properly can become victims of security threats. This
necessitates the need to explicitly design web security protection mechanisms for
RIA. Ensure that authentication and access control decisions are not dependent
on client side verification checks. Data encryption and encoding are important
protection mechanisms. To assure SOP protection, software design should
factor in determining the actual (or true) origin of data and services and not just
validate the last referrer as the point of origin.

Pervasive/Ubiquitous Computing
The dictionary definition of the word, “pervade” is “to go through” or “to
become diffused throughout every part of” and, as the name indicates, pervasive
computing is characterized by computing being diffused through every part
of day-to-day living. It is a trend of everyday distributed computing which is
brought about by converging technologies, primarily the wireless technologies,
the Internet, and the increase in use of mobile devices such as smart phones,
PDAs, laptops, etc. It is based on the premise that any device can connect to a
network of other devices.

There are two elements of pervasive computing and these include pervasive
computation and pervasive communication. Pervasive computation implies that
any device, appliance, or equipment which can be embedded with a computer
chip or sensor can be connected as part of a network and access services from and
through that network, be it a home network, work network, or a network in a
public place like an airport, a train station, etc. Pervasive communication implies
that the devices on a pervasive network can communicate with each other over
wired and wireless protocols, which can be found pretty much everywhere in
this digital age.

One of the main objectives of pervasive computing is to create an
environment where connectivity of devices is unobtrusive to everyday living,
intuitive, seamlessly portable, and available anytime and anyplace. This is the
reason why pervasive computing is also known as ubiquitous computing and in
laymen terms, everyday-everywhere computing. Wireless protocols remove the
limitations imposed by physically wired computing and make it possible for such
an “everywhere” computing paradigm. Bluetooth and ZigBee are examples of
two, common, wireless protocols in a pervasive computing environment. Smart

233

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 233 6/7/2013 5:40:40 PM

phones, Personal Digital Assistants (PDA), tablets, smart cars, smart homes, and
smart buildings are some examples of prevalent pervasive computing.

In pervasive computing, devices are capable of hopping on and hopping off
a network anytime, anywhere, making this type of computing an ad hoc, plug-
and-play kind of distributed computing. The network is highly heterogeneous
in nature and can vary in the number of connected devices at any given time. For
example, when you are at an airport, your laptop or smart phone can connect
to the wireless network at the airport, becoming a node in that network, or
your smartphone can connect via Bluetooth to your car, allowing access to your
calendar, contacts, and music files on your smart phone via the car’s network.

To maximize productivity, companies are adopting Bring Your Own
Device (BYOD) and/or Choose Your Device (CYD) initiatives, but it must be
recognized that while the benefits of pervasive computing include the ability to
be connected always from any place, from a security standpoint, it brings with it
some challenges that require attention. This is important because employees are
becoming more and more dependent on smartphones and tablets to do their jobs.

The devices that are connected as part of a pervasive network are not
only susceptible to attack themselves, but they can also be used to orchestrate
attacks against the network where they are connected. This is why complete
mediation, implemented using node-to-node authentication, must be part of
the authentication design. Applications on the device must not be allowed to
directly connect to the backend network, but instead should authenticate to the
device, and the device in turn should authenticate to the internal applications
on the network. Using the Trusted Platform Module (TPM) chip on the
device is recommended over using the easily spoofable Media Access Control
(MAC) address for device identification and authentication. Mobile Device
Management (MDM) is gaining a lot of attention nowadays as it allows one
to set policies governing the use of third party applications on mobile devices.
When designing mobile applications for the company, it is recommended to
leverage MDM capabilities to assure stakeholder trust. Designers of pervasive
computing applications need to be familiar with lower level mobile device
protection mechanisms and protocol.

System designers are now required to design protection mechanisms against
physical security threats, as well. Due to the small size of most mobile computing
devices, they are likely to be stolen or lost. This means that the data stored on
the device itself is protected against disclosure threats using encryption or other

234

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 234 6/7/2013 5:40:40 PM

cryptographic means. Because a device can be lost or stolen, applications on
the device should be designed to have an “auto-erase” capability that can be
triggered either on the device itself or remotely. This means that data on the
device is completely erased when the device is stolen or a condition for erasing
data (e.g., tampering, failed authentication, etc.) is met. The most common
triggering activity is the incorrect entry of the PIN (Personal Identification
Number) more times than the configured number of allowed authentication
attempts. Encryption and authentication are of paramount importance for
protection of data in pervasive computing devices. Biometric authentication is
recommended over PIN-based authentication, as this will require an attacker
to spoof physical characteristics of the owner, significantly increasing his or her
work factor.

Some of the developments in technologies that have promoted the popularity
of pervasive computing include:

 ■ Wireless networking and communications
 ■ Radio Frequency Identification (RFID)
 ■ Location Based Services (LBS)
 ■ Near Field Communications(NFC)
 ■ Sensor networks.

Wireless Networking and Communications
Wireless networking and communications make it relatively easier to
create pervasive computing networks, when compared to its wired network
counterparts. In fact, it can be argued that the assumed that the increase in
wireless network has had a directly proportional impact in the predominance of
pervasive computing networks.

Wireless networks configuration and protocols on which a significant portion
of pervasive computing is dependent are however susceptible to attack, as well.

Most wireless access points are turned on with default manufacturer settings,
which can be easily guessed if not broadcast as the Service Set Identifier (SSID).
The SSID lets other 802.11x devices join the network. Although SSID cloaking,
which means that the SSID is not broadcast, is not foolproof, it increases protection
against unapproved rogue and not-previously-configured devices’ discovering
the wireless network automatically. For a device to connect to the network it
must know the shared secret and this shared secret, authentication mechanism
affords significantly more protection than open network authentication.

235

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 235 6/7/2013 5:40:40 PM

Not only is the wireless network configuration vulnerable, but the protocols,
themselves, can be susceptible to breaches in security. The Wired Equivalent
Privacy (WEP) uses a 40-bit RC4 stream cipher for providing cryptographic
protection. This has been proven to be weak and has been easily broken. Using
Wi-Fi Protected Access (WPA and WPA2) is recommended over WEP in today’s
pervasive computing environments. Attacks against the Bluetooth protocol are
also evident, which include Bluesnarfing, Bluejacking, and Bluebugging, to
name a few.

Other commonly observed wireless vulnerabilities include: eavesdropping
and traffic analysis, wireless Address Resolution Protocol (ARP) spoofing leading
to message interception, disclosure and MITM attacks, message injection or
deletion, and, jamming of wireless access points leading to DoS.

Radio Frequency Identification (RFID)
RFID is a wireless technology that uses radio frequency electromagnetic fields
to transfer data for purposes of automatic identification and tracking. RFID
technology works primarily by using an object which is commonly known as
RFID tag. An RFID tag contains the identifying information and tracking
information in it, that it transmits to a reader. Some of these tags need to be
powered by a battery and are known as battery assisted tags (BATs) while there
are others that require no external battery and are power and read at short ranges
using magnetic fields. Although an RFID tag functions like a barcode, it does
not require a line of sight with the reader and may be embedded within the
tracked object, allowing it for use in stealthy operations.

RFID technology is quickly gaining a lot of adoption as a pervasive
computing technology and careless implementation of RFID technology can
lead to disclosure of sensitive information about users and their locations.
Additionally, these tags can be cloned which poses the threat of impersonation,
or be be disabled leading to a DoS. It is therefore very important to identify
and implement security and privacy controls when software leverages RFID
technology. In addition to classical controls that assure confidentiality, integrity
and availability, RFID software must assure:

 ■ Anonymity by preventing unauthorized identification of users.
 ■ Unlinkability by preventing unauthorized tracing of tags and

linking their communication.
 ■ Location privacy by preventing unauthorized access to user-profile

data.

236

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 236 6/7/2013 5:40:40 PM

Location Based Services (LBS)
Most mobile devices and platforms today come with the hardware and software
capabilities of geolocation. Geolocation makes it possible to determine the actual
geographical location of an object. Although RFID technology can be used
for LBS, there are other technologies besides RFID that provide geolocation
capabilities in software as well. These include Global Positioning Systems (GPS),
Geographic Information Systems (GIS), Network-based Position System,
Control plane location and Global Subscriber Module (GSM) localization.

Mobile devices manufactures publish geolocation APIs that software
developers can invoke to take advantage of geolocation capabilities. While
these service providers have been touting these user experience features as
a differentiator, location based services can bring with it some serious issues
regarding privacy and security. Software developers who write software that
leverage geolocation APIs must ensure that the user is not only notified of being
potentially tracked, but also sought of their consent before leveraging location
tracking functionality in the software. Additionally, the software should be
designed to give the users the option to turn off location tracking as a means
to protect their privacy. Failure to do so, can not only allow an attacker to
track down a user to their actual physical location, but have serious compliance
violation repercussions.

Near Field Communication (NFC)
NFC is a wireless short-range communications technology that allows for close-
range or contactless transactions (e.g., mobile payment, over-the-air ticketing,
etc.) much like RFID technology, the standard on which it is based. A NFC
transmitting device (such as a smart phone), can communicate with other NFC
receiving devices, when it comes in close contact or close range with each other.
For example, with just a touch or by pointing, a user can pay for his bus ticket
without having the need to take out his wallet and swipe his credit card, when
he has the NFC enabled card in his person, or in some cases, even without the
NFC card itself, when the user’s information is stored in his NFC enabled smart
phone. This makes the transfer of application data transfer relatively easy.

Along with the benefits of user convenience and the fast and easy transfer of
application data, there are some security risks that come with NFC technology
that software developers who leverage NFC technology should take into account,
when designing their software.

These threats include:

237

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 237 6/7/2013 5:40:40 PM

 ■ Message interception and manipulation during transmission
 ■ Man-in-the-Middle (MITM) attacks
 ■ Eavesdropping (by those in proximity)
 ■ It must be noted that unlike other long range wireless technologies,

the big benefit of using NFC for communications is that it reduces
the possibility of eavesdropping, because the transmissions are
short range (usually within centimeters of each other).

To mitigate these risks, the software should be designed to first establish
a secure channel between the communication/transaction end-points and if
feasible the end-points must be validated for their authenticity and trust prior
to any transmission.

Sensor Networks
Essentially a sensor network is a collection of several micro-computer detection
stations (or sensor nodes) that collect and transmit information. Historically, the
most prevalent use of sensor networks has been observed in monitoring weather
phenomena but recently with the increase in embedded systems computing
technology, sensor devices and nodes are now being used for home automation
(smart homes), monitoring ground and air traffic and medical devices, and
military surveillance operations.

The limited power and data storage capabilities in these micro-computer
devices pose a challenge to implementing traditional wireless security controls.
Additionally, the channel for communication in sensor networks is unreliable
and it provides no assurance of guaranteed delivery. This can lead to packet
contention and conflicts, latency when the data travels through multiple hops
from one sensor node to another and routing errors. Since these sensor devices
are small in size, they are also susceptible to physical theft when left unattended.

When designing sensor networks or software that is used in these sensor
devices, it is necessary to ensure that data disclosure and alteration threats
are mitigated, especially in military situations. Additionally, it is important
to synchronize the time in all the nodes in the sensor node to avoid data
integrity issues. Although, threats to confidentiality and integrity are observed
in sensor networks, the most notable threat to sensor networks is related to
availability. It is DoS as even simple jamming of the sensor nodes can render
them unavailable for operations. Node takeovers, addressing (routing) protocol
attacks, eavesdropping, traffic analysis and spoofing threats are other threats that
need to be mitigated in sensor network. A well-known spoofing threat that is

238

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 238 6/7/2013 5:40:40 PM

observed in sensor networks is the Sybil attack, where a rogue devices assumes
different identities of a legitimate sensor node on the network.

A layered approach to pervasive computing security is necessary. The
following are some proven best practices that are recommend as protection
measures in a pervasive computing environment:

 ■ Ensure that physical security protections (locked doors, badged
access, etc.) are in place, if applicable.

 ■ Change wireless access point devices’ default configurations and
don’t broadcast SSID information.

 ■ Encrypt the data while in transit using SSL/TLS and on the device.
 ■ Use a shared-secret authentication mechanism to keep rogue

devices from hopping onto your network.
 ■ Use device-based authentication for internal application on the

network.
 ■ Use biometric authentication for user access to the device, if

feasible.
 ■ Disable or remove primitive services such as Telnet and FTP.
 ■ Have an auto-erase capability to prevent data disclosure should the

device be stolen or lost.
 ■ Regularly audit and monitor access logs to determine anomalies.

Cloud Computing
Cloud computing is one of the main architectures in which most applications
are being designed today. Cloud services are on the rise and traditional software
is observed to being redesigned to operate in the cloud.

Cloud computing technologies make it possible for companies to create
measurable, on-demand self-service, rapidly elastic, interoperable and portable
systems and software applications that have broad access and connectivity to a
pool of shared infrastructure and resources.

Cloud computing architecture is a multi-tenant architecture, meaning that
more than one consumer (or tenant as they are referred to in cloud computing),
can leverage software and services that are made available by a cloud service
provider.

Drivers and Benefits
The primary driver for the increased adoption of cloud computing architectures
is cost savings. Prior to the adoption of cloud computing, companies had to

239

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 239 6/7/2013 5:40:40 PM

purchase hardware and software to provide services from their own customers.
This was a capital expense (CapEx) to the company. Now with cloud companies,
companies do not have to resort to the upfront expense of buying resources, but
instead they can rent (or subscribe to) services that are provided by a service
provider. They can then pay for just what they use, much like an individual
would pay for the electricity or water they use to their utilities service provider.
The ‘rent’ or ‘pay-per-use’ model shifts expenditure in the company’s financial
books from CapEx to operating expenses (OpEx) which can be managed more
effectively.

In addition to cost savings, cloud computing also brings interoperability
between disparate systems and support for multiple consumer frontends. Since the
cloud resources are abstracted as services and exposed using APIs, any consumer
that can invoke and meet the service contract published in API can be supported.
The multi-consumer frontend support is also referred to as multi-tenancy.

Cloud computing also promotes device independence as consumers see the
cloud applications and generally lack any insight about the hardware device
on which the service is running). Cloud services are portable, meaning that the
workload can be distributed amongst the various cloud resources. They can be
dynamically provisioned providing for economies of scale and metered, meaning
that the use of the services provided by a cloud resource is measurable.

With the cloud computing architecture gaining more and more traction
within companies, cloud services are becoming a differentiator within many
companies. This differentiation is possible because cloud computing reduces
costs and time to market

 ■ Reduced Cost – Instead of paying high costs for hardware resources
and licensing software, tenants can now use cloud services and
applications on-demand and pay only for the services they use.

 ■ Reduced Time to Market – With the software already available
for use as a service, time and resource (personnel) investment to
develop the same functionality in house is reduced. This, along
with lesser training requirements and reduced testing time makes
it possible for companies to quickly market their products and
services.

 ■ Integrity of Software Versions – With the software being centrally
administered and managed by the service provider, the tenant is
not responsible for patching and version updates, thereby ensuring
versions are not outdated.

240

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 240 6/7/2013 5:40:40 PM

Service Models
Hardware and software resources in cloud computing can be provisioned using
three primary service models. These include

 ■ Infrastructure as a Service (IaaS),
 ■ Platform as a Service (PaaS) and
 ■ Software as a Service (SaaS).

In IaaS, infrastructural components such as networking equipment, storage,
servers and virtual machines are provided as services and managed by the cloud
service provider. In PaaS, in addition to infrastructural components, platform
components such as operating systems, middleware and runtime are also
provided as services and managed by the cloud service provider. In SaaS, in
addition to infrastructural and platform components, data hosting and software
applications are provided as services and managed by the cloud service provider.
SaaS is more directly related to the roles of a software security professional and
is covered in more detail here.

Traditionally, software was designed and developed to be deployed on the
client systems using packagers and installers. Upon installation, the software
files would be hosted on the client system. Patches and updates would then
have to be pushed to each individual client system on which the software was
installed. There is also a time delay between the time that newer features of the
software are developed and the time it is made available to all the users of the
software. Not only is this model of software development time-intensive, but it
is also resource- and cost-intensive.

To address the challenges imposed by traditional software development and
deployment, software is designed today to be available as a service to the end
users or clients. In this model, the end users are not the owners of the software,
but pay a royalty or subscription for using the business functionality of software,
in its entirety or in parts. SaaS is usually implemented using web technologies
and the software functionality is delivered over the Internet. This is why the SaaS
model is also referred to as a Web-based software model, an On-demand model,
or a hosted software model. It can be likened to the client/server model wherein
the processing is done on the server side, with some distinctions. One distinction
is that the software is owned and maintained by the software publisher and the
software is hosted on the cloud service provider’s infrastructure. End user or
client data is also stored in the service provider’s hosting environment.

The multi-tenancy in cloud computing architectures makes it possible for a
single code base to serve multiple tenants. This one-code-base-serving-all feature

241

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 241 6/7/2013 5:40:40 PM

requires administration to be centralized for all tenants and it is the responsibility
of the cloud app service provider to ensure that its software is reliable, resilient,
and recoverable. Some of the well-known examples of SaaS implementations
are Salesforce.com which is a customer relationship management cloud service
solution, Google Docs, and Microsoft’s Hosted Exchange services.

Upon close inspection of all of these three cloud service models one will find
that they all have to do with responsibility or control. The best way to understand
IaaS, PaaS and SaaS is by answering the question, “Who is responsible for (or
who has control) and on what?” as depicted in Figure 3.27.

Types
The four types of cloud are:

 ■ Public cloud
 ■ Private cloud
 ■ Community cloud
 ■ Hybrid cloud

In a public cloud, the cloud service providers provide their services to multiple
tenants that are not related. The tenant has little to no control in managing the
infrastructural, platform or software resources and is completely at the mercy of

Figure 3.27 - IaaS, PaaS, and SaaS – Responsibilities

242

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 242 6/7/2013 5:40:40 PM

http://Salesforce.com

the service provider to assure secure operations. Public clouds have the benefit
of reduced upfront costs because you pay for only what you use, easy to scale to
growing business needs, no maintenance costs but has the risk of lack of control.
Examples of this would include Amazon Elastic Cloud Compute service, Google
AppEngine, IBM Blue Cloud, Sun Cloud, etc.

In contrast to the public cloud, in a private cloud, the cloud service provider
provides cloud services for a single tenant. Private clouds are usually internal
to a company and managed by personnel within the company. This is why
the a private cloud is also known as an internal or corporate cloud. The tenant
has maximum control over the cloud computing resources in a private cloud
but it might be difficult to scale and upfront investment to set up the cloud
infrastructure and platforms are borne by the tenant.

In a community cloud, there is multi-tenancy as is the case with a public
cloud, but the tenants are related entities as in the case of a private cloud. In
this regard, a community cloud functions more or less like “go-in-between”
cloud. The tenants have common requirements and assurance capabilities are
built upon these requirements. The benefits and risks of both private and public
clouds are evident in a community cloud.

Figure 3.28 - Types of Cloud

243

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 243 6/7/2013 5:40:40 PM

A hybrid cloud combines two or more of the above mentioned cloud types.
The assurance mechanisms and controls can be more granularly managed.
For example, proprietary and confidential information can be hosted in the
private cloud, while data that is related to the tenant’s industry can be hosted
and serviced by a community cloud. These four types of clouds are depicted in
Figure 3.28.

Characteristics
The NIST defines cloud computing as a model for enabling convenient, on-
demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction. The five characteristics of the cloud are:

1. On-demand self-service
2. Broad network access
3. Resource Pooling
4. Rapid Elasticity
5. Measured Service

On-Demand Self-Service - means that tenants can provision resources
and take advantage of services provided by the cloud service provider
as and when needed with limited to no interaction on the service
provider’s side.

Broad Network Access - means that for cloud computing, network
connectivity to the backend cloud services and applications is present
with high bandwidth and these services are accessible via a network.

Resource Pooling - means that the hardware and software services
provided by the cloud service provided is in the form of a shared pool
of resources, so that multiple tenants can be serviced.

Rapid Elasticity - means that the shared pooled resources can be
dynamically provisioned for a tenant and taken down when it is no
longer required by that tenant and re-provisioned to another tenant
who needs the cloud service.

Measured Service - means that the services provided by the cloud
service provider is automatically monitored and measured so that the
tenant can be charged for just what they use.

244

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 244 6/7/2013 5:40:40 PM

Security in Cloud Computing
Threats to cloud computing are primarily of the following kinds.

 ■ Data Disclosure, Loss and/or Remanence
 ■ Unauthorized Access
 ■ Man-in-the-Middle and Traffic Hijacking
 ■ Insecure and Proprietary API’s
 ■ Service Interruptions
 ■ Malicious Personnel (Insiders)
 ■ Cloud Abuse
 ■ Nefarious Use of Shared Computing/Technology Resources
 ■ Insufficient Due Diligence / Unknown Risk Profile

Data Disclosure, Loss and/or Remanence
The primary threat in cloud computing is disclosure of data hosted in the cloud
to unauthorized individuals or processes. Unlike in the case of on-premise
computing, where the data owner and the data custodian are usually personnel
that belong to the same company, the protection of data in the cloud is a
challenge because the data owner is the tenant while the data custodian is the
service provider, that may or may not be part of the same company. It is therefore
imperative to verify and validate the data protection and access controls that
the service provider claims. If possible, sensitive and private data should not
be stored in public, community or hybrid clouds, and when it is, it should
be cryptographically protected. When data is encrypted, additional storage
space will need to be planned and key management must be in place. One
aspect of key management that is of importance when designing cryptographic
functionality in the cloud is cryptographic agility, ensuring that the algorithm
can be easily changed when needed and that the key is not hard-coded in the
API itself. Cryptographic agility is covered in more detail in the Secure Software
Implementation chapter.

We learned earlier that some of the key characteristics of cloud services are
resource pooling and rapid elasticity. So when a shared resource (e.g., database
server) that hosted one tenant’s data is re-provisioned to another client, there
is a potential for data remanence and disclosure of the first tenant’s data to
the subsequent tenant. This is because data disposal techniques to assure
confidentiality are limited in the cloud. The classification and labeling data,
along with data loss prevention (DLP) technologies can be useful to mitigate

245

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 245 6/7/2013 5:40:40 PM

data loss/leakage but data disposal strategies are necessary to provide adequate
protection against disclosure threats. Since the hardware resource needs to be
re-provisioned, one cannot resort to magnetic flux degaussing or physically
destroying the storage media. The only option left is overwriting (formatting)
which has the potential of data remanence and eventual disclosure. Media
sanitization is covered in more detail in the Secure Deployment, Operations,
Maintenance and Disposal chapter.

Unauthorized Access
Next only to the assurance of confidentiality, the need to prevent unauthorized
access is of prime importance in cloud computing security. This becomes
critical in a public cloud. Connected services and cloud applications can lead to
unintended outcomes and unauthorized access. The scope of a security breach
is usually not limited to just one tenant, but to all tenants that share the same
pool of resources.

When data and systems are hosted in a shared hosting cloud environment, the
access to data must be controlled and data privacy and data separation become
extremely important. The service provider must be required to demonstrate
the implementation of the Brewer & Nash non-conflict-of-interest Chinese
wall model. This means that access to the data from one tenant should not be
accessible by individuals who would be considered as competitors of that tenant.
This is depicted in Figure 3.29.

Figure 3.29 - Chinese Wall security model in the cloud

246

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 246 6/7/2013 5:40:41 PM

Access Control Lists (ACLs) and system hardening can help in mitigating
threats of unauthorized access. It is also important to note that if Single Sign
On (SSO) is not implemented with security in mind, it can lead to broken
authentication and unauthorized access.

Man-in-the-Middle and Traffic Hijacking
When the infrastructure, platforms and software is not owned and controlled
by the data owner, then the detection of unauthorized changes to them become
harder. This is why cloud computing models are more appealing to an attacker
that has the interest and intent to conduct MITM (hijacking) attacks.

To mitigate the possibility of MITM, proper password rules that enforce
strong passwords and their and management is useful. Strong passwords are
those which are not susceptible to dictionary attacks or that which cannot be
easily guessed. Securely managing user sessions and end-to-end encryption
of the transport channels using SSL/TLS or IPSec also help mitigate MITM
attacks that can lead to session hijacking and replay.

Insecure and Proprietary API’s
Cloud services abstract and encapsulate business functionality into contract
based discoverable and invocable APIs. When these APIs are insecure, scanning
and enumeration attacks, wherein an attacker can invoke restricted APIs, can
be performed. Some examples of insecure APIs include those that use clear text
authentication, inflexible access control, and provide limited monitoring and
auditing capabilities. In addition to determining the security of the APIs, it is
essential to also understand the dependency chain of the APIs so that secure
APIs don’t end up using insecure APIs.

Another important aspect to consider is the use of custom, non-standard,
proprietary APIs of the cloud service provider. This can lead to vendor
dependency and lock-in. This is why it is important to perform a return on
investment (ROI) prior to selecting a cloud service provider who requires you to
use their proprietary APIs.

Service Interruptions
One of the core concepts of information security is availability and cloud
computing has a direct impact on this concept. In the context of minimized
service interruptions and uninterrupted availability, while one may argue that
DoS and Distributed DoS (DDoS) attacks will not have a significant impact
since the processing is distributed in the cloud, one could also argue that the
downtime of the cloud service that is centralized and used by multiple tenants

247

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 247 6/7/2013 5:40:41 PM

can cause a shutdown of business operations for not just one, but all tenants in
the cloud. Centralization of cloud services introduces the potential for a single
point of failure. It is also critical to recognize that in this pay-per-use model of
computing, the liability of not providing services to customers of the tenants
still fall on the tenant.

Furthermore, a thorough understanding of the service provider’s SLA
is necessary because of the measure service characteristic of the cloud. Prior
to choosing a cloud service provider, it is important to estimate the capacity
requirements for growing data needs and understand redundancy and back
requirements. The minimal uptime requirements must be communicated
explicitly to the service provider and agreed upon by the service provider using
a SLA.

Malicious Personnel (Insiders)
The anonymity that is evident in cloud computing architecture, in comparison
to on-premise computing, unfortunately brings with it some latitude and
impunity that can inspire a malicious insider to conduct nefarious activities and
go undetected. Identity management with auditing to assure non-repudiation
is useful to detect insider threat activities and deter some from performing
their nefarious acts. The potential threat agents that are external or internal to
the tenant, as well as the insiders who belong to the service provider, must be
determined.

At no point should the risk profile of the service provider be unknown.
In other words, the internal processes, technologies and people involved in
the development of the service should be, as far as possible, transparent to
the tenant. Administrative controls such as background screening and checks
are vital since cloud service providers have the tendency to use third parties
for their infrastructural, platform and software needs. Since the likelihood of
personally conducting background checks for each service provider’s personnel
or associated third party personnel is a challenge, prior to the selection of a cloud
service provider, it is advisable to request the evidence of assurance from third
party independent testing or common criteria evaluation results. Additionally
asking the service demonstrate internal controls over financial reporting may
be necessary. The Statement on Auditing Standards (SAS) No. 70, commonly
referred to as SAS 70 audit is usually used for this purpose. SAS 70 is now being
replaced by the Statement on Standards for Attestation Engagements (SSAE)
No. 16, which is also known as Reporting on Controls at a Service Organization.
The Cloud Controls Matrix (CCM) that is published by CSA, provides

248

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 248 6/7/2013 5:40:41 PM

fundamental security principles to guide cloud service providers of the controls
that they need to build into their service offerings. It takes a risk based approach
to address cloud threats and vulnerabilities. It can also be used by the tenant
to serve as a common criteria and framework when assessing service providers.

Education and awareness training of both tenant and service provider
personnel is very effective to ensure that cloud resources are not compromised
easily. Skills that are sought for development staff involved in cloud computing
include the contract negotiation, supplier risk assessment, secure development
and secure operations.

Cloud Abuse
Cloud abuse is the leveraging of the cloud infrastructure and/or service to do
something that it was not intended to. Taking advantage of the connectivity
that comes with the cloud, launching a DDoS attack, propagating malware, and
sharing pirated software with relative ease are some examples of cloud abuse. Also
taking advantage of the computing power in the cloud, an attack can abuse the
cloud resource to conduct malicious activities such as discovering the key used
for encryption using a cloud service. Such discovery would be relatively harder
to conduct using a standard isolated computer. Companies need to determine
the use case scenarios (normal behavior of the cloud) for their cloud architecture
they implement so that abuse cases (anomalous and malicious behavior) of the
cloud can be identified and threat modeled.

Nefarious Use of Shared Computing/Technology Resources
The “Top Threats to Cloud Computing” and “Notorious Nine” publication of
the Cloud Security Alliance (CSA) both list among the top threats, the threat of
nefarious use of computing resources and shared technology exploits. Nefarious
use of computing resources includes cracking and/or malicious software
(malware). Hypervisor exploits and cloud bursting are examples of shared
technology issues that need to be addressed.

Cloud bursting is the concept where one has to burst out of an private
(internal) cloud to a public (external) cloud in order to handle spiked demands
and workload, when one runs out of computing resources. Cloud bursting leads
to hybrid clouds.

Cloud isolation technologies that make the Internet Protocol (IP) and Media
Address Control (MAC) addresses of external cloud infrastructures into internal
ones is used in Cloud bursting. This must be carefully planned and designed
to ensure that IP and MAC spoofing is not possible. Communication between

249

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 249 6/7/2013 5:40:41 PM

external and internal clouds need to be secure and protected. Hardening and
sandboxing of the infrastructure is important so that platform and hypervisor
exploits are harder to do.

Insufficient Due Diligence / Unknown Risk Profile
Companies that jump on the bandwagon of cloud computing, solely from
the standpoint of cost savings, without giving considerations to the cloud
environment and the risks that come with it can experience detrimental impact
to their brand and continuity of business operations, in the event of a breach.
It is therefore crucial for companies embracing the cloud to do proper due
diligence. They must understand the contractual terms, including enforcement
of those terms and liability coverage. At no point should the risk profile of
the cloud service provider be unknown, i.e., cloud service provider’s internal
working processes should be transparent to the tenant and not be like a black
box to the tenant. A thorough understanding of the cloud service provider’s
implementation and operational process, personnel know-how and secure
development methodology for cloud applications is required, before signing the
purchase order. Additionally, the techniques and processes, by which the cloud
service provider will ensure that the tenant is not violating any compliance
requirement, must be determined beforehand.

Challenges
Cloud computing does brings with its benefits and threats, some challenges that
are pertinent to information security as well.

Once of the primary challenges with the adoption of cloud computing has
to do with the enforceability of governance, regulations, compliance and privacy
(GRC+P) in the cloud. The uncertainty in enforcing security policies at the
service provider’s site and the inability to support compliance audits in the cloud
are important security considerations that must be addressed. The assurance
responsibilities are shared between the tenant and the service provider, but with
minimal to no governance or regulatory frameworks, the liability lies for the most
part on the tenants side. The tenant is responsible to ensure that appropriate levels
of protection (controls) are in place and effectively operating to protect against
cloud computing threats. Best practices recommendation include establishing
enforceable contracts with the cloud service provider, periodically assessing the
provider’s risk profile, continuous monitoring and conducting verification and
validation activities to attest service provider assurance claims.

Another challenge that is evident in the cloud is related to cyberforensics. The
collection of physical evidence from the cloud virtual environment, using static

250

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 250 6/7/2013 5:40:41 PM

and live forensic tools is a challenge. This is mainly due to the rapid elasticity
characteristic of the cloud. The resources (e.g., disk space, memory, etc.) that
are provisioned to your company today may be provisioned to someone other
tenant in the future which makes it infeasible to retain audit records that are an
important in cyberforensic investigations.

Also not having a full understanding of the underlying infrastructure
in the IaaS service model can make it extremely difficult for a cyberforensic
investigator to collect evidence after a security breach. The content and IDS
logs on both the tenant and service provider’s side must be taken into account
when conducting forensic analysis in the cloud. To effectively handle security
incidents, visualization of physical and logical data locations is necessary.

Additionally, it might be worth mentioning that since the cloud influences
both the government and private industry, a partnership between these two
sectors, may be necessary to effectively address challenges and security concerns
in the cloud.

It is likely that cloud computing is the way IT services will be offered in the
future and if appropriate security considerations is not given when designing
cloud computing architectures and solutions, the benefits that cloud computing
brings could quickly be overturned and be detrimental to the continuity of
business operations.

Mobile Applications
With the prevalence of mobile applications (generally referred to as mobile apps)
in today’s IT computing space, hackers are starting to target the mobile space
and exploit insecure applications and protocols that are operating on mobile
devices (e.g., smartphone, tablets, etc.). There is no shortage of security reports
that publish that the threat landscape is changing, or has already changed, to
include threat agents that aim at compromising mobile app security.

In the pervasive computing section, we learned the importance of
device security and covered threats and controls that come with BYOD and
CYD initiatives in companies. In this section, we will focus on mobile app
architecture and the security risks that arise from insecure design, development
and deployment of mobile apps.

Having an understanding of the mobile app architecture and the type of
data that the mobile app will process, allows us to be able to threat model mobile
apps and identify threat agents and appropriate mitigating controls when
development apps that run on mobile operating systems.

251

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 251 6/7/2013 5:40:41 PM

Architecture
Most mobile apps can be broadly classified into two major categories – thin
clients or thick clients. Thick clients are something referred to as “rich” clients.
Their architecture can be usually broken down into the following components
– Frontend client software, middleware communications and backend support
(or server) infrastructure. Rich clients are those in which the business and data
layer components are hosted on the frontend client device itself. Thin clients
are characterized by having their business and data layer components on the
backend support infrastructure.

Mobile app architectures usually have the following components as part of
their design.

 ■ Client Hardware (Cellular, GPS, Sensor, Touch Screen, Camera, etc.)
 ■ Client Software (Operating System, VM runtime, Mobile Application, etc.)
 ■ Interfaces (NFC, RFID, 802.11x, Bluetooth, etc.)
 ■ Endpoints (App Stores, Web sites/services, Corporate, etc.)
 ■ Carrier Networks (Voice, Data, SMS, etc.)
 ■ Data Storage (Local, Cloud, Flash, Removable, etc.) and
 ■ Data Transmission

Figure 3.30 depicts a generic application architecture for a mobile application.

Figure 3.30 – A generic Mobile Application Architecture

252

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 252 6/7/2013 5:40:41 PM

Types
The different types of mobile apps that are predominantly in use today include:

 ■ Native apps
 ■ Browser based apps
 ■ Rich Internet mobile apps
 ■ Hybrid apps

Native mobile apps are characterized by being installed on the client device
itself. The code is deployed on the client device. They generally have limited to
no connectivity to the backend support infrastructure and so rely extensively
on local databases for their storage needs. Browser based apps are web based
mobile applications that are accessible using browsers (e.g., Safari, Chrome, etc.)
which are installed on the client device itself. They are similar to traditional
desktop web applications. Rich Internet mobile apps are deployed on the client
device but they leverage the backend support infrastructure extensively using
communications technologies. A service layer that is usually implemented using
SOAP or REST is used to communicate between the application on the device
and the backend services provided by the mobile support infrastructure. Hybrid
aps are like a blend between native apps and browser based apps. The app itself
hosts a browser and the user interacts with the app functionality via the browser
hosted within the native app.

Mobile OS
A mobile operating system (commonly referred to as mobile OS) is the software
that runs on digital mobile devices such as smartphones, tablets, and personal
digital assistants (PDAs). It is on top of these mobile OS’ that the mobile
application that is designed by the mobile architect and programmer runs.
Today’s mobile OS augment the features of a personal computer OS with user
experience (e.g., touchscreens, speech recognition, voice recorders, music players,
cameras), cellular radio technologies (e.g., GSM, LTE, CDMA), wireless (e.g.,
WiFi, Bluetooth, NFC), and navigation (e.g., Geolocation, GPS) capabilities.

Most popular mobile operating systems are closed source and proprietary in
nature, but there are some such as the Android OS by Google and Firefox OS by
Mozilla that are open source and popular are well. Examples of popular closed
source propriety mobile OS’ include iOS by Apple, BlackBerry OS by Research
In Motion and Windows Phone OS from Microsoft.

A complete and comprehensive coverage of each mobile OS is beyond the
scope of this book. However, when designing mobile apps, it is imperative

253

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 253 6/7/2013 5:40:41 PM

to recognize that the mobile OS on which the mobile app will run, can have
significant impact on the security of the mobile app itself. It is important to
understand and be familiar with the inherent security capabilities and weaknesses
of the mobile OS to build security within the app itself or use MDM to manage
third party apps on the device. For example, iOS has a multi-tasking feature
known as backgrounding. In iOS backgrounding, iOS takes a screenshot of
the application before minimizing it to run in the background, for reasons of
user experience like quick animation when the application is brought back on.
However, when this occurs, it is important to ensure that no sensitive data that
is presented on the screen is captured in the screenshot.

Security in Mobile Applications
The applicability or non-applicability of threats depends directly on how the
mobile application is architected. For example, unlike in the case of a rich
Internet mobile application, a native mobile application is less susceptible
to attacks that exploit the communication protocols. Browser based mobile
applications are relatively more susceptible to traditional web vulnerabilities in
addition to threats that come with mobile use cases and device weaknesses.

Threats to mobile applications primarily come from malicious humans
and/or malicious programs. Human threat agents come from a range of user
profiles. They range from the careless owners who lose their mobile devices to
the nefarious thief who aims to steal mobile devices and the data it contains.
Uninformed users have also been known to inadvertently install malicious
applications on their devices. Malicious programs range from malware that gets
installed on the client device to malicious scripts that execute on the browsers
operating on mobile devices. Additionally malicious programs that impact
communication protocols and carrier networks such as malicious Short Message
Service (SMS) are observed as well.

Threats to mobile application are primarily of the following kinds.
 ■ Information disclosure
 ■ Mobile Denial of Service (DoS) and Distributed DoS
 ■ Broken Authentication
 ■ Bypassing Authorization
 ■ Improper Session Management
 ■ Client-side Injection
 ■ Jailbreaking and Sideloading
 ■ Mobile Malware

254

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 254 6/7/2013 5:40:41 PM

Information Disclosure
The predominant security concern in mobile applications is disclosure related.
Sensitive or private information can be disclosed due to any one or more of the
following reasons:

Lost or Stolen Devices
The size of mobile devices make them more prone to losing and physical theft.
This is one of the primary reasons for information disclosure. When mobile
apps are architected, it is important to design in “remote wipe” capabilities to
mitigate disclosure threats when the device is lost or stolen.

Insecure Data Storage in Local or Cloud Databases
In addition to the device itself getting stolen, the data stored on the mobile
devices (client-side local storage) is being stolen as well. Local databases on
most mobile operating systems are not mature as their desktop counterparts
when it comes to the confidentiality assurance capabilities such as encryption.
Cloud databases, especially in shared hosting networks, are susceptible to data
leakage due to lack of data separation and data remanence in re-provisioned
hardware resources. Ideally no sensitive data should be stored in unprotected
from locally on the client or on public databases and when it is it must not be
stored indefinitely. Additionally, it is important to identify and protect sensitive
data on the mobile device.

Insufficient Protection of Data Transmission
Lack of end-to-end encryption and data-in-motion cryptographic protection
between the mobile device and the carrier network or between one device and
another, can lead to sniffing and tapping attacks, which, have been known to lead
to information disclosure from mobile applications. Data must be transmitted
only using secure communication channels. Examples of secure communication
channels include TLS, SSL and IPSec.

Broken Cryptography
Custom cryptography and hardcoding of keys in mobile application code are
known to lead to discovery of keys that can lead to decryption of sensitive
ciphertext. To mitigate broken cryptography issue, it is recommended to use
platform provided encryption APIs instead of custom writing your own. In some
cases, it may be necessary to leverage third party encryption APIs to address
inherent weaknesses such as a four digit PIN, in publisher’s encryption such
as keying tied to user’s device password. As part of key management, secure
containers should be leveraged instead of hardcording the key in the app code.

255

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 255 6/7/2013 5:40:41 PM

Side Channel Data Leakage
Side channel data leakage occurs when sensitive and private data from unintended
locations such as web caches, temporary directories, log files, screenshots, etc., is
disclosed to unauthorized individuals and programs. These unintended and non-
common locations are generally referred to as “side channels”. Certain application
actions such as iOS backgrounding in multitasking apps and human actions
such as jail breaking and keystroke logging can lead to side channel disclosure of
information which needs to be kept a secret.

To mitigate side channel data leaks in mobile app, caches must be encrypted
and anti-caching directives for browser-based apps should be used. The
communication channels must be audited to ensure that there is no unintended
leaks. Sensitive information such as credentials should never be logged. Sensitive
information must be removed from the views before the app transitions to the
background as part of the backgrounding process. Additionally keystroke logging
by field must be disabled. It is also recommended to debug the mobile app to
understand the files that are created, written into or modified when the app is run.

Reverse Engineering (Decompilation, Debugging, Disassembly)
By running the mobile application through decompiler, debugger, or disassembler,
sensitive information such as passwords, API keys, and internal architecture of
the mobile application can be reverse engineered.

To mitigate against reverse engineering threats, the app code can be
obfuscated. Also, no sensitive information should be stored in the app binary
and keep proprietary information off the client.

Mobile Denial of Service (DoS) and Distributed DoS (DDoS)
Threats to availability in mobile apps seem to be on the rise and it has been
observed that mobile devices are relatively easy to use as launch pads for mobile
DoS and DDoS attacks. Launching DDoS attacks require significantly lesser
technical and programming skills than traditional DDoS attacks as was evident in
the redesign of the Low Orbit Ion Cannon (LOIC) DoS tool into a PUP which
impacted the Android platform. All that was needed in the redesign of the LOIC
DoS tool was an active web URL LOIC which required zero programing skills.

Mobile DDoS attacks have also been known to take advantage of Carrier
Network functionality, causing congestion and eventual DoS in the carrier network.
The Android.DDoS.1.origin malware disguised itself as a legitimate Google
Play app but in the backend established communication with a server that was
controlled by the hacker. It remained idle, waiting to receive instructions via SMS.

256

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 256 6/7/2013 5:40:41 PM

When the SMS was sent to the infected mobile device, configuration information
of the device such as server and port were identified, to which packets were sent,
crashing the application, flooding the device and the network, causing a DoS.

One of the services that come with mobile application technologies is
push notifications. All major mobile OS’ have push notification as part of the
technology they support. These servers are referred to as Push Notification Servers
(PNS). Push notifications can be used to deliver news, app updates, requests
and prompts to users. However improper design and lack of defense in depth
controls can lead to push notification flooding attacks that impact the availability
concept of security. Push notification services also make it possible to present
a fake message to the user, fooling them to thinking that the mobile malware
they are asked to install is a legitimate update that is pushed to the device.

Broken Authentication
Authentication credentials in mobile application architecture are especially
susceptible to disclosure, theft and replay. Insecure design and insecure code is
the root cause of broken authentication issues in mobile applications. The use of
basic authentication, wherein the credentials are passed in easily decodable Base-
64 encoded form is widely observed in mobile architectures that leverage SOAP
services. Additionally credentials such as password are usually stored in cleartext
on the device itself and presented to the backend services in each request. This
can lead to unauthorized disclosure of sensitive information to anyone who
has access to the device. Furthermore, mobile applications that use static data
such as device universally unique identifiers (UUIDs) or International Mobile
Equipment Identification (IMEI) or subscriber identifiers such as International
Mobile Subscriber Identification (IMSI) as their sole means of authentication
can be easily spoofed. IMEI is used to identify a physical device. IMSI is used to
identify a Subscriber Identification Module (SIM) card on the device.

If credentials are being maintained on the client device, then to mitigate
broken authentication issues, it is recommended to store those credentials only in
cryptographically protected form in secure key stores. Another secure authentication
control is to layer the authentication checking and not depend on a single source
for authentication. Do not use easily determinable or spoofable data (e.g., device
ID/subscribe ID) as the sole authenticator. Also, app design should not shy away
from requiring the use to reauthenticate often because it is better safe now than to
be sorry later, even if this comes at the cost of some frustration on behalf of the user.
Implement the secure design principle of complete mediation and authenticate all
API calls to resources and/or services. Never ignore certificate validation warnings.

257

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 257 6/7/2013 5:40:41 PM

Bypassing Authorization
In addition to broken authentication, authorization issues are also evident
in mobile applications. One common exploit on authorization includes the
exploitation of URL protocol handlers by crafting of a URL which can start
other apps, such as Mail, Phone, Skype, Text, Maps, etc., on the device without
the user’s explicit permission. URL protocol handlers are referred to as URL
schemes in iOS and as intent in the Android platform. Figure 3.31 illustrates
spoofing a user into thinking that they are calling a bank’s number to verify
an account update, while the malicious crafted URL invokes the telephone
application on an iOS device to call a 900 dating service number.

Figure 3.32 also does something similar, but instead of opening the telephone
application on the device and prompting the user to call the number, it opens
the Skype app and without any user consent places the call to the fake number.

These examples leveraged an email vector to send the maliciously crafted
URL, but the same can be performed by HTML iframe injection on vulnerable
websites, that unsuspecting users can navigate to, using the browsers on their
mobile devices. Attackers have also been known to bypass authorization to
nefarious charge payment for apps without user consent when mobile apps
insecurely store the cardholder and payment information on the device itself.

Figure 3.31 – URL Scheme Abuse – Placing Calls with User Consent

258

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 258 6/7/2013 5:40:41 PM

Circumventing licensing checks is another authorization issue evident in mobile
applications.

It is therefore important to ensure that explicit user permissions are requested
and that the mobile app is not designed to make security decisions implicitly
by trusting URL schemes or intent invocation code. Additionally, the app
must be designed to modally check permissions at input boundaries to enforce
authorization rules.

Improper Session Management
Because mobile applications generally tend to operate in heterogenous
environments (e.g., private enterprise networks, public networks, carrier networks,
etc.) management of tokens, both user session tokens and authentication tokens,
is a challenge. The common mechanisms by which a majority of mobile apps
manage sessions are: HTTP cookies, Open Authentication (OAuth) tokens and
SSO authentication services, which are all susceptible to Man-in-the-Middle
(MITM) attacks. The prevalence of session interception attacks have led to the
coinage of the term Man-in-the-Mobile (MITMo). MITMo attacks make it
possible for hackers to intercept and replay session tokens. Since they often
leverage malware installed on the mobile device for interception and replaying
capabilities, MITMo can also be referred to as Malware-In-The-Mobile.

Figure 3.32 – URL Scheme Abuse – Placing Calls without User Consent

259

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 259 6/7/2013 5:40:41 PM

Secure communication channels between devices and between the device
and end-points mitigates some of the session hijacking and replay attacks. Ensure
that tokens (authentication and session) are protected during transmission.
Protection of the carrier network itself and the data that is carried over WiFi and
NFC must be in place. Session token handlers must be configured to run with
minimal privilege levels. Transaction verifications as opposed to just password
verification can be used to alleviate MITMo attacks. In a transaction verification
system, the user will receive a unique code that they need to enter to continue
with the transaction. This unique code is sent using an out-of-band transport
channel (e.g., SMS text messages) to the mobile device and is specifically tied
to a transaction. This way, any malware that attempts to submit a transaction
will fail unless the transaction specific unique code in the SMS text message is
also intercepted and the transaction is active. Furthermore, just as it is in the
case of authentication tokens, the device identifier that can be easily determined
or spoofed should never be used as session tokens. In the same light, the use of
non-persisted session tokens is recommended. When generating session tokens,
it is best recommended to utilize high entropy in its generation, so that these
tokens cannot be easily guess. Finally, ensure that session tokens can be revoked
and abandoned as quickly, especially in the event of a lost or stolen device.

Client-Side Injection
One of the top threats to mobile apps and devices is client-side injection. Client-
side injection attacks are not unique to mobile architectures alone, but it is
certainly very prevalent in mobile apps. Some security researchers feel that when
one thinks about securing mobile apps, one of the first attacks that should be
thought of, second only to lost or stolen devices, is client-side injection. Client-
side injection attacks are essentially code injection attacks which manifest
themselves like Injection Flaws, with one major difference. Unlike Injection
Flaws (e.g, SQL Injection, OS Command Injection, LDAP Injection, etc.), the
code is submitted to the client instead of the server. Client-side code injection
attacks on mobile apps can be thought of as a variant of the Web DOM-based
Cross-Site Scripting (XSS) attacks, where the script that is injected in reflected
back on the client, without getting submitted to the server. Databases that are
hosted on the device itself (e.g, SQLite) can be compromised via client-side
injection attacks. The injected code is not handled properly by the mobile
app, thus leading to code injection. Improper handling of code means that the
injected code is not sanitized and gets interpreted as a command.

A primary mitigating control against client-side injection attacks is input
validation i.e., the user supplied data is sanitized and rendered harmless. If the

260

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 260 6/7/2013 5:40:41 PM

architecture supports it, it is advisable to securely use cloud storage over client-
side databases for storage requirements, which avoids client-side injection attacks
on datastores. User awareness and education go a long way in reducing client-
side injection attacks because an user who is educated to never trust the client
is less likely to be a victim of client-side injection unlike one who isn’t. Mobile
app testers must verify and validate that all input to the app is sanitized and the
output from the app is encoded into their non-executable forms. Designing the
mobile app to leverage browser libraries that provide sanitization, validation and
encoding is recommended as these libraries can be updated with newer validation
rules and all mobile apps that use them can benefit from the change, instead of
having to make changes to each mobile app. The use of prepared statements and
stored procedures for querying and manipulating data is recommended so that
the injected code does not dynamically get concatenated to become part of the
query syntax. It is also advisable to validate all data that is received from or sent
to third party apps and to check for runtime interpretation of the code for errors
or exploits.

Jailbreaking and Sideloading
Almost all mobile OSes are susceptible to being jailbroken. A jailbroken device
is one that is tampered and altered so that it can install apps and software that is
usually not authorized by the hardware device manufacture or the mobile carrier.
The process of tampering the mobile OS is known as jailbreaking. Jailbreaking
exploits security vulnerabilities in the mobile OS itself. Jailbreaking is applicable
to proprietary closed source mobile OSes.

Sideloading on the other hand is observed in open source mobile OSes,
predominantly the Android OS. Sideloading allows the user to install software on
their device without going through the official application distribution methods
such as the Android Market. It is a configuration setting on the Android OS
that the user can set, but when sideloading is allowed, it has certain risks that
come with it.

While jailbreaking and sideloading bring with it some freedom, it brings
with it the potential for far greater risks. The risks include:

 ■ Decreased Stability – This could range from poor memory
management or decreased battery life as jailbroken and sideloaded app
developers generally do not follow good or secure coding practices.

 ■ Voided Warranty – Most mobile device manufactures do not
support jailbroken devices and so should the device require some
hardware repairs, it may not be possible.

261

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 261 6/7/2013 5:40:41 PM

 ■ ‘Bricked’ Device – A bricked device is one that has been made
completely unusable and non-restorable, even with reloading and/
or reinstallation of software. When the jailbreaking exploit is not
fully tested, it can lead to mobile devices getting bricked and the
process is generally referred to as bricking. Bricking impacts the
availability concept of security.

 ■ Lock-Out – Owners of jailbroken devices are usually not allowed
to access the official software distribution stores to get their apps.
Instead they have to depend on alternate digital distribution
centers/apps that are installed on the jailbroken device itself to get
additional software or resort to sideloading. Sideloaded apps don’t
undergo the rigorous the scrutiny and scanning for malware that
is provided in the official application distribution method. Cydia is
an example of an alternative to the Apple App Store.

When a mobile device is jailbroken, there is really no degree of trust that
can be placed on the device itself and rootkits and malware have been known to
not only infect the device itself but turn them into botnets by connecting to a
command and control center and downloading instructions.

Companies should as part of the MDM strategy prohibit the use of jailbroken
devices that connect to and interact with company infrastructure, to mitigate
the risk of malware making their way into the company network. If you do
have the need to jailbreak the device, then it is best advised to change the root
password on the jailbroken device so that it is less exploitable by hackers.

Mobile Malware
Malicious apps in App stores and Market places are on the rise. Development
of mobile malware that compromise weaknesses in NFC, which block updates
to mobile devices, and extort money from victims, clandestinely or coercively
(ransomware), is becoming more and more prevalent. Mobile phone development
kits make it easy for hackers who don’t even know mobile app programming to
develop “do-it-yourself ” (DIY) mobile malware and perform nefarious activities.

Mobile malware is probably the greatest risk posed to jailbroken devices.
Although the legality of jailbreaking has varying opinions, what must be
understood is that the exploits that can be used to jailbreak a device can also be
used to install rootkits and malware on the device. The Ikee worm and the Duh
malware are examples of mobile malware that infected jailbroken mobile devices
running on the iOS platform. Trojan apps can disguise themselves as legitimate
apps and users can be duped into believing that they are installing something
legitimate and innocuous when installing mobile malware.

262

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 262 6/7/2013 5:40:41 PM

Jailbroken devices are particularly more susceptible to mobile malware
because the apps that are installed don’t go through security validation and
verification as the apps that are placed in the official distribution channels (e.g.,
App Store). Sideloaded apps that are installed on the device are tracked as ones
that have ‘Unknown Sources’ and malware can be more easily installed via
sideloading.

Secure Development Guidelines and Design Principles
The Smartphone Secure Development Guidelines for App Developers, published
by the European Network and Information Security Agency (ENISA) provides
some prescriptive guidance for mobile app developers. The main points are
listed below:

 ■ Identify and protect sensitive data on the mobile device
 ■ Handle password credentials securely on the device
 ■ Ensure sensitive data is protected in transit
 ■ Implement user authentication, authorization and session

management correctly
 ■ Keep the backend APIs (services) and the platform (server) secure
 ■ Secure data integration with third party services and applications
 ■ Pay specific attention to the collection and storage of consent for

the collection and use of user’s data.
 ■ Implement controls to prevent unauthorized access to paid for

resources (e.g., wallet, SMS, phone calls, etc.)
 ■ Ensure secure distribution/provisioning of mobile applications
 ■ Carefully check any runtime interpretation of code for errors

A comprehensive coverage of the guidance is beyond the scope of this
book, but it is best advised for a CSSLP to be familiar with secure development
guidelines and design principles as published by ENISA in conjunction with
OWASP.

Integration with Existing Architectures
We have discussed different kinds of software architectures and the pros and
cons of each. Unless we are developing new software, we don’t start designing
the entire solution anew. We integrate with existing architecture when previous
versions of software exist. This reduces rework significantly and supports the
principle of leveraging existing components. Integration with legacy components
may also be the only option available as a time saving measure or when pertinent

263

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 263 6/7/2013 5:40:41 PM

specifications, source code, and documentation about the existing system are not
available. It is not unusual to wrap existing components with newer generation
wrappers. Façade programming makes it possible for such integration. When
newer architectures are integrated with existing ones, it is important to determine
that backward compatibility and security are maintained. Components written
to operate securely in an architecture may wane in its protection when integrated
with another. For example, when the business logic tier that performs access
control decisions in a 3-Tier architecture is abstracted using services interfaces
as part of an SOA implementation, authorization decisions that were restricted
to the business logic tier can now be discovered and invoked. It is, therefore,
critical to make sure that integration of existing and new architectures does not
circumvent or reduce security protection controls or mechanisms and maintains
backward compatibility, while reducing rework.

264

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 264 6/7/2013 5:40:41 PM

Technologies

Holistic security, as was aforementioned, includes a technology component, in
addition to the people and process components. The secure design principle of
leveraging existing components does not apply to software components alone,
but to technologies, as well. If there is an existing technology that can be used
to provide business functionality, it is recommended to use it. This not only
reduces rework but has security benefits, too. Proven technologies have the
benefit of greater scrutiny of security features than do custom implementations.
Additionally, custom implementations potentially can increase the attack
surface. In the following section, we will cover several technologies that can be
leveraged, their security benefits, and issues to consider when designing software
to be secure.

Authentication
The process of verifying the genuineness of an object or a user’s identity is
authentication. This can be done using authentication technologies. In the
Secure Software Concepts chapter, we covered the various techniques by which
authentication can be achieved. These ranged from proving one’s identity using
something one knows (knowledge based), such as username and password/pass-
phrase, to using something one has (ownership based), such as tokens, public key
certificates, smart cards, etc., to using something one is (characteristic based), such
as biometric fingerprints, retinal blood patterns, iris contours, etc. Needing more
than one factor (knowledge, ownership, or characteristic) for identity verification
increases work factor for an attacker significantly and technologies that can
support multi-factor authentication seamlessly must be considered in design.

The Security Support Provider Interface (SSPI) is an implementation of
the IETF RFCs 2743 and 2744, commonly known as Generic Security Service
API (GSSAPI). SSPI abstracts calls to authenticate and developers can leverage
this, without needing to understand the complexities of this authentication
protocol or, even worse, trying to write their own. Custom authentication
implementation on an application-to-application basis is proven not only to be
inefficient, but it can also introduce security flaws and must be avoided. SSPI
supports interoperability with other authentication technologies by providing
a pluggable interface, but it also includes by default the protocols to negotiate
the best security protocol (SPNEGO), delegate (Kerberos), securely transmit
(SChannel), and protect credentials using hashes (Digest).

265

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 265 6/7/2013 5:40:42 PM

Before developers start to write code, it is important that the software
designers take into account the different authentication types and the protocols
and interfaces used in each type.

Identity Management
Authentication and identification go hand in hand. Without identification,
not only is authentication not possible, but accountability is nearly impossible
to implement. Identity Management (IDM) is the combination of policies,
processes, and technologies for managing information about digital identities.
These digital identities may be those of a human (users) or a non-human
(network, host, application, services). User identities are primarily of two types:
insiders (e.g., employees and contractors) and outsiders (e.g., partners, customers,
and vendors). IDM answers the questions, “Who or what is requesting access?”
“How are they or it authenticated?”, and “What level of access can be granted
based on the security policy?”

IDM life cycle is about the provisioning, management, and de-provisioning
of identities as illustrated in Figure 3.33.

Provisioning of identities includes the creation of digital identities. In an
enterprise which has multiple systems, provisioning of an identity in each system
can be a laborious, time consuming and inefficient process, if it is not automated.
Automation of provisioning identities can be achieved by coding business
processes, such as hiring and on-boarding, and this requires careful design. Roles
in a user provisioning system are entitlement sets that span multiple systems and
applications. Privileges that have some meaning in an application are known as

Figure 3.33 – IDM Life Cycle

266

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 266 6/7/2013 5:40:42 PM

entitlements. User provisioning extends RBAC beyond single applications by
consolidating individual system or application entitlements into fewer business
roles, making it easier for a business to manage its users and their access rights.

The management of identities includes the renaming of identities, addition
or removal of roles, the rights and privileges that are associated with those roles,
the changes in regulatory requirements and policies, auditing of successful and
unsuccessful access requests, and synchronization of multiple identities for access
to multiple systems. When identities are renamed, it is imperative to document
and record these changes. It is aso important to maintain the histories of activity
of the identities before they were renamed and map those histories to the new
identity names to assure non-repudiation capabilities.

De-provisioning of identities includes termination access control (TAC)
processes that are made up of the notification of termination and the deactivation
or complete removal of identities. Companies today are required to provide
auditable evidence that access controls are in place and effective. The Sarbanes-
Oxley (SOX) 404 section mandates that an annual review of the effectiveness of
controls must be conducted and this applies to identity and access management
(IAM) controls, as well. Users are given rights and privileges (entitlements)
over time but are rarely revoked of these entitlements when they are no longer
needed. A business needs to be engaged in reviewing and approving access
entitlements of identities and the process is referred to as access certification. For
legal and compliance reasons, it may be required to maintain a digital identity
even after the identity is no longer active and so deactivation may be the only
viable option. If this is the case, software that handles termination access must
be designed to allow “deactivate” only and not allow true “deletes” or “complete
removal”. Deactivation also makes it possible for the identity to remain as a
backup just in case there is a need: however, this can pose a security threat as an
attacker could reactivate a deactivated identity and gain access. The deactivated
identities are best maintained in a backup or archived system that is offline with
restricted and audited access.

Some of the common technologies that are used for IDM are as follows:

Directories
A directory is the repository of identities. Its functionality is similar to that of
yellow pages. A directory is used to find information about users and other
identities within a computing ecosystem. Identity information can be stored and
maintained in network directories or backend application databases and data

267

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 267 6/7/2013 5:40:42 PM

stores. When software is designed to use integrated authentication, it leverages
network directories that are accessed using the Lightweight Directory Access
Protocol (LDAP). LDAP replaced the more complex and outdated X.500 protocol.

Directories are a fundamental requirement for IDM and can be leveraged
to eliminate silos of identity information maintained within each application.
Some of the popular directory products are IBM (Tivoli) directory, Sun ONE
directory, Oracle Internet Directory (OID), Microsoft Active Directory, Novell
eDirectory, OpenLDAP and Red Hat Directory Server.

Metadirectories and Virtual Directories
User roles and entitlements change with business changes and when the identity
information and privileges tied to that identity change, those changes need to be
propagated to systems that use that identity. Propagation and synchronization
of identity changes from the system of record to managed systems are made
possible by engines known as metadirectories. Human Resources (HR), Customer
Records Management (CRM) systems, and Corporate Directory are examples of
system of record. Metadirectories simplify identity administration. They reduce
challenges imposed by manual updates and can be leveraged within software to
automate change propagation and save time. Software design should include
evaluating the security of the connectors and dependencies between identity
source systems and downstream systems that use the identity. Microsoft Identity
Lifecycle Management is an example of a metadirectory.

Metadirectories are like internal plumbing necessary for centralizing identity
change and synchronization, but they usually don’t have an interface that can
be invoked. This shortfall gave rise to virtual directories. Within the context
of an Identity Services-based architecture, virtual directories provide a service
interface that can be invoked by an application to pull identity data and change
it into claims that the application can understand. Virtual directories provide
more assurance than metadirectories because they also function as gatekeepers
and ensure that the data used is authorized and compliant to the security policy.

Designing to leverage identity management processes and technologies is
important because it reduces risk by the following:

 ■ Consistently automating, applying, and enforcing identification,
authentication, and authorization security policies.

 ■ De-provisioning identities to avoid lingering identities past their
allowed time. This protects against an attacker who can use an ex-
employee’s identity to gain access.

268

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 268 6/7/2013 5:40:42 PM

 ■ Mitigating the possibility of a user or application gaining
unauthorized access to privileged resources.

 ■ Supporting regulatory compliance requirements by providing
auditing and reporting capabilities.

 ■ Leveraging common security architecture across all applications.

Credential Management
The Secure Software Concepts chapter covered different types of authentication,
each requiring specific forms of credentials to verify and assure that entities that
requested access to objects were truly whom they/it claimed to be. The identifying
information that is provided by a user or system for validation and verification
is known as credentials or claims. While usernames and passwords are among
the most common means of providing identifying information, authentication
can be achieved by using other forms of credentials, as well. Tokens, certificates,
fingerprints, retinal patterns are some examples of other types of credentials.

Credentials need to be managed and credential management API can be used
to obtain and manage credential information, such as user names and passwords.
Managing credentials encompasses their generation, storage, synchronization,
reset, and revocation.

In this section, we will cover managing passwords, certificates, and single
sign on (SSO) technology.

Password Management
When you use passwords for authentication, it is important to ensure that the
passwords that are automatically generated, by the system, are random and not
sequential or easily guessable. First and foremost, blank passwords should not be
allowed. When users are allowed to create passwords, dictionary words should not
be allowed as passwords because they can be discovered easily by using brute-force
techniques and password-cracking tools. Requiring alpha-numeric passwords
with mixed cases and special characters increases the strength of the passwords.

Passwords must never be hardcoded in clear text and stored in-line with code
or scripts. When they are stored in a database table or a configuration file, hashing
them provides more protection than encryption because the original passwords
cannot be determined. While providing a means to remember passwords is good
for user experience, from a security standpoint, it is not recommended.

Requiring the user to supply the old password before a password is changed,
mitigates automated password changes and brute-force attacks. When passwords

269

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 269 6/7/2013 5:40:42 PM

are changed, it is necessary to ensure that the change is replicated and synchronized
within other applications that use the same password. Password synchronization
fosters SSO authentication and addresses password management problems within
an enterprise network.

When passwords need to be recovered or reset, special attention must be
given to assure that the password recovery request is, first and foremost, a valid
request, This assurance can be obtained by using some form of identification
mechanism that cannot be easily circumvented. Most non-password-based
authentication applications have a question-and-answer mechanism to identify a
user when passwords need to be recovered. It is imperative for these questions and
answers to be customizable by the user. Questions such as “What is your favorite
color?” or “What is your mother’s maiden name” don’t provide as heightened
a protection as do questions that can be defined and customized by the user.

Passwords must have expiration dates. Allowing the same password to be used
once it has expired should be disallowed. One-time passwords (OTP) provide
maximum protection because the same password cannot be reused.

Lightweight Directory Access Protocol (LDAP) technology using directory
servers can be used to implement and enforce password policies for managing
passwords. One password policy for all users or a different policy for each user
can be established. Directory servers can be used to notify users of upcoming
password expirations and they can also be used to manage expired passwords and
account lockouts.

Certificate Management
Authentication can also be accomplished by using digital certificates. Today
asymmetric cryptography and authentication using digital certificates is made
possible by using a Public Key Infrastructure (PKI), as depicted in Figure 3.34.

PKI makes secure communications, authentication, and cryptographic
operations such as encryption and decryption possible. It is the security
infrastructure that uses public key concepts and techniques to provide services
for secure ecommerce transactions and communications. PKI manages the
generation and distribution of public/private key pairs and publishes the public
keys as certificates.

PKI consists of the following components:
 ■ A certificate authority (CA), which is the trusted entity that

issues the digital certificate that holds the public key and related
information of the subject.

270

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 270 6/7/2013 5:40:42 PM

 ■ A registration authority (RA), which functions as a verifier for the
CA before a digital certificate is issued by the CA to the requestor.

 ■ A certificate management system with directories in which the
certificates can be held and with revocation abilities to revoke any
certificates whose private keys have been compromised (disclosed).
The CA publishes the Certificate Revocation Lists (CRLs) which
contain all certificates revoked by the CA. CRLs make it possible
to withdraw a certificate whose private key has been disclosed. In
order to verify the validity of a certificate, the public key of the
CA is required and a check against the CA’s CRL is made. The
Certification Authority, itself, needs to have its own certificates.
These are self-signed, which means that the subject data in the
certificates is the same as the name of the authority who signs and
issues the certificates.

PKI management includes the creation of public/private key pairs, public key
certificate creation, private key revocation and listing in CRL when the private key
is compromised, storage and archival of keys and certificates, and the destruction
of these certificates at end of life. PKI is a means to achieve inter-company trust
and enforcement of restrictions on the usage of the issued certificates.

In addition to using PKI for authentication, X.509 certificates make
possible strong authorization capabilities by providing Privilege Management
Infrastructure (PMI) using X.509 attribute certificates, attribute authorities,
target gateways, and authorization policies as depicted in Figure 3.35.

Figure 3.34 – Public Key Infrastructure (PKI)

271

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 271 6/7/2013 5:40:42 PM

PMI makes it possible to define user access privileges in an environment that
has to support multiple applications and vendors.

Single Sign On (SSO)
SSO makes it possible for users to log into one system and after being authenticated,
launch other applications without having to provide their identifying information
again. It is possible to store user credentials outside of an application and
automatically reuse validated credentials in systems that prompt for them.
However, SSO is usually implemented in conjunction with other technologies.
The two common technologies that make sharing of authentication information
possible are Kerberos and Secure Assertion Markup Language (SAML).

Credentials in a Kerberos authentication system are referred to as tickets.
When you first log in to a system implemented with Kerberos and your password
is verified, you are granted a master ticket, also known as a Ticket Granting Ticket
(TGT), by the Ticket Granting Server (TGS). The TGT will act as proxy for your
credentials. When you need to access another system, you present your master
TGT to the Kerberos server and get a ticket that is specific to that other system.
The second ticket is then presented to the system you are requesting access as
a proof of who you are. When your identity is verified, access is granted to the
system accordingly. All tickets are stored in what is called a ticket cache in the
local system. Kerberos based SSO can be used within the same domain in which
the TGS functions and the TGT is issued. So Kerberos is primarily used in an

Figure 3.35 – Privilege Management Infrastructure (PMI)

272

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 272 6/7/2013 5:40:42 PM

intranet setting. Kerberos-based SSO is easier to implement in an intranet setting
than SSO in an Internet environment.

To implement SSO in an Internet environment with multiple domains,
SAML can be used. SAML allows users to authenticate themselves in a domain
and use resources in a different domain without having to re-authenticate them.
It is predominantly used in a web-based environment for SSO purposes. The
WS-Security specification recommends using SAML tokens for token-based
authentication. SAML tokens can be used to exchange not just authentication
information but also authorization data, user profiles, and preferences and so
is a preferred choice. While SAML tokens are a de-facto standard for making
authentication decisions in SOA implementations, authorization is often
implemented as a custom solution. The OASIS eXtensible Access Control
Markup Language (XACML) standard can be used for making authorization
decisions and is recommended.

A concept related to SSO is federation. Federation extends SSO across
enterprises. In a federated system, an individual can log into one site and access
services at another, affiliated site without having to log in each time or re-establish
an identity. For example, if you use an online travel site to book your flights, your
same identity can be used in an affiliated, vacations-and-tours site to book your
vacation package without having to create an account in the vacations site or
login into it. Federation mainly fulfills a user need for convenience and when it
is implemented, implementation must be done with legal protection agreements
that can be enforced between the two affiliated companies.

Until the SAML 2.0 standard specification was developed, companies that
engaged in federation had to work with three primary protocols; viz., OASIS
SAML 1.0, Liberty Alliance ID-FF 1.1 and 1.2, and Shibboleth. OASIS SAML
primarily dealt with business-to-business federation, while Liberty focused on
the business-to-consumer federation, and Shibboleth focused on educational
institutions that required anonymity when engaging in federation. The Fast
Identity Online (FIDO) Alliance has a two-fold goal. One is to address the
lack of interoperability among strong authentication devices and the other is
to alleviate the problems faced by used with creating and having to remember
multiple usernames and passwords. The FIDO Alliances to aims to develop
a specification that is open, scalable and interoperable with less reliance on
passwords for online authentication purposes. The FIDO Alliance proposed
authentication methodology is to BYOD that is FIDO-enabled and use it for
validating and attesting tokens, that are discovered dynamically at the end-points.

273

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 273 6/7/2013 5:40:42 PM

SAML 2.0 alleviates the challenges of multiprotocol complexity, making it
possible to implement federation more easily. SAML 2.0 makes federation and
interoperability possible with relative ease because the need to negotiate, map,
and translate protocols is no longer necessary. It is also an open standard for
web-based, single sign on service.

While SSO is difficult to implement because trust needs to be established
between the application that performs the authentication and the supported
systems that will accept the authenticated credentials, it is preferred because it
reduces the likelihood of human error. However, the benefits of simplified user
authentication that SSO brings with it must be balanced with the following
concerns about the SSO infrastructure:

 ■ The ability to establish trust between entities participating in the
SSO architecture.

 ■ SSO implementation can be a single point of failure. If the SSO
credentials are exposed, all systems in the SSO implementation are
susceptible to breach. In layman’s terms, the loss of SSO credentials
is akin to losing the key to the entire kingdom.

 ■ SSO implementation can be a source for denial of service (DoS).
If the SSO system fails, all users who depend on the SSO
implementation will be unable to log into their systems, causing
a DoS.

 ■ SSO deployment and integration cost can be excessive.

Flow Control
In distributed computing, controlling the flow of information between processes
on two systems that may or may not be trusted poses security challenges. Several
security issues are related to information flow. Sensitive information (bank
account information, health information, Social Security numbers, credit card
statements, etc.) stored in a particular web application should not be displayed
on a client browser to those who are not authorized to view that information.
Protection against malware such as spyware and Trojans means that network
traffic that carries malicious payload is not allowed to enter the network. By
controlling the flow of information or data, several threats to software can be
mitigated and delivery of valid messages guaranteed. Enforcing security policies
concerning how information can flow to and from an application, independent
of code level security protection mechanisms, can be useful in implementing
security protection when the code, itself, cannot be trusted. Firewalls, proxies,
middleware, and queuing infrastructure and technologies can be used to control

274

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 274 6/7/2013 5:40:42 PM

the rate of data transmission and allow or disallow the flow of information across
trust boundaries.

Firewalls and Proxies
Firewalls, more specifically network layer firewalls, separate the internal network
of a company from that of the outside. They also are used to separate internal
sub-networks from one another. The firewall is an enforcer of security policy at
the perimeter and all traffic that flows through it is inspected. Whether network
traffic is restricted or not is dependent on the predefined rules or security policy
that is configured into the firewall.

The different types of firewalls that exist are packet filtering, proxy, stateful,
and application layer firewall. Each type is covered in more detail in this section.

Packet Filtering
This type of firewall filters network traffic based on information that is contained
in the packet header, such as source address, destination address, network ports,
and protocol and state flags. Packet filtering firewalls are stateless, meaning they
do not keep track of state information. These are commonly implemented using
Access Control Lists (ACLs) which are primarily text-based lines of rules that
define which packets are allowed to pass through the firewall and which ones
should be restricted. They are also known as first generation firewalls. These
are application independent, scalable, and faster in performance but provide
little security because they look only at the header information of the packets.
Because they do not inspect the contents (payload) of the packets, packet filtering
firewalls are defenseless against malware threats. Packet filtering firewalls are also
known as first-generation firewalls.

Proxy
Proxy firewalls act as a middleman between internal trusted networks and the
outside untrusted ones. When a packet arrives at a proxy firewall, the firewall
terminates the connection from the source and acts as a proxy for the destination,
inspects the packet to ascertain that it is safe before forwarding the packet to the
destination. When the destination system responds, the packet is sent to the
proxy firewall, which will repackage the packet with its own source address and
abstract the address of the internal destination host system. Proxy firewalls also
make decisions, as do packet filtering firewalls. But proxy firewalls, by breaking
the connection, don’t allow direct connection between untrusted and trusted
systems. Proxy firewalls are also known as second-generation firewalls.

275

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 275 6/7/2013 5:40:42 PM

Stateful
Stateful firewalls or third-generation firewalls have the capability to track dialog
by maintaining a state and data context in the packets within a state table. Unlike
proxy firewalls, they are not as resource intensive and are usually transparent to
the user.

Application Layer
Because stateless and stateful firewalls look only at a packet’s header and not
at the data content (payload) contained within a packet, application specific
attacks will go undetected and pass through stateless and stateful firewalls. This
is where application layer firewalls or layer 7 firewalls come in handy. Application
layer firewalls provide flow control by intercepting data that originates from
the client. The intercepted traffic is examined for potentially dangerous threats
that can be executed as commands. When a threat is suspected, the application
layer firewall can take appropriate action to contain and terminate the attack or
redirect it to a honeypot for additional data gathering.

One of the two options in Requirement 6.6 of the PCI Data Security
Standard is to have a (web) application firewall positioned between the web
application and the client end point. The other option is to perform application
code reviews. Application firewalls are starting to gain importance and this trend
is expected to continue because hackers are targeting the application layer.

Middleware
A majority of software solutions today is done by integrating various components
of the software, some of which may be developed in-house while others may
be third party components. In order for these components to work efficiently
and securely in concert, they need to be integrated. Middleware components
function as the ‘software glue’ when it comes to integration. Middleware
components facilitate communication and flow between software components.
If these components are not properly architected and managed, they can be
thought of as a single point of failure, with the potential of becoming the source
for a DoS attack. This is why when middleware is part of the software design,
careful attention ought to be given to the control of flow of information and
commands in the software.

Queuing Infrastructure and Technology
Queuing infrastructure and technology are useful to prevent network congestion
when a sender sends data faster than a receiver can process it. Legacy applications
are usually designed to be single threaded in their operations. With the increase

276

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 276 6/7/2013 5:40:42 PM

in rich client functionality and without proper flow control, messages can be lost.
Queuing infrastructure and technology can be used to backlog these messages in
the right order for processing and guarantee delivery to the intended recipients.
Some of the well-known queuing technologies include the Microsoft Message
Queuing (MSMQ), Oracle Advance Queuing (AQ) and the IBM MQ Series.

Auditing (Logging)
One of the most important design considerations is to design the software so it
can provide historical evidence of user and system actions. Auditing or logging
of user and system interactions within an application can be used as a detective
means to find out who did what, where, when, and sometimes how. Regulation
such as Sarbanes Oxley (SOX), HIPAA and PCI DSS require companies to collect
and analyze logs from various sources as means to demonstrate due diligence
and comprehensive security. Information that is logged needs to be processed
to deduce patterns and discover threats. However, before any processing takes
place, it is best practice to consolidate the logs, after synchronizing the time
clocks of the logs. Time clock synchronization makes it possible to correlate
events recorded in the application log data to real-world events, such as badge
readers, security cameras and closed circuit television (CCTV) recordings, etc.
Log information needs to be protected when stored and in transit. System
administrators and users of monitored applications should not have access to logs.
This is to prevent anyone from being able to remove evidence from logs in the
event of fraud or theft. The use of a log management service (LMS) can alleviate
some of this concern. Also, Intrusion Detection Systems (IDS) and Intrusion
Protection Systems (IPS) can be leveraged to record and retrieve activity. In this
section, we will cover auditing technologies, specifically Application Event Logs,
Syslog, IDS, and IPS.

Application Event Logs
Application event data can provide valuable insight for detecting exploitable
vulnerabilities, , unusual and unexpected application behavior, security
incidents, and violations to policy. They can also be used to establish baselines of
performance. Relative to infrastructure data logging, in most software systems,
logging of application event data is either found to be disabled, missing or
poorly configured. When application events are part of the software design,
attention must be given to ensure that the logging is consistent and conforming
to industry standard, so that the logged data can be easily consumed, analyzed,
and correlated for discerning patterns. It is highly recommended that all security
events arising in the application are logged.

277

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 277 6/7/2013 5:40:42 PM

At a bare minimum, application event logging should capture:
 ■ Security breaches
 ■ Critical business processes e.g., order processing, password change, etc.
 ■ Performance metrics e.g., load time, timeouts, etc. and
 ■ Compliance related events

Syslog
When logs need to be transferred over an IP network, syslog protocol can be used.
Syslog is used to describe the protocol, the application that receives and sends,
as well as the logs. The protocol is a client/server protocol in which the client
application transmits the logs to the syslog receiver server (commonly called a
syslog daemon, denoted as syslogd). Although syslog uses the connectionless
User Datagram Protocol (UDP) with no delivery confirmation as its underlying
transport mechanism, syslog can use the connection-oriented Transmission
Control Protocol (TCP) to assure or guarantee delivery. Reliable log delivery
assures that not only are the logs received successfully by the receiver but that
they are received in the correct order. It is a necessary part of a complete security
solution and can be implemented using TCP. It can be augmented by using
cache servers, but when this is done, the attack surface will include the cache
servers and appropriate technical, administrative, and physical controls need to
be in place to protect the cache servers.

Syslog can be used in multiple platforms and is supported by many devices,
making it the de facto standard for logging and transmitting logs from several
devices to a central repository where the logs can be consolidated, integrated,
and normalized to deduce patterns. Syslog is quickly gaining importance in the
Microsoft platforms and is the standard logging solution for Unix and Linux
platforms. NIST Special Publication 800-92 provides resourceful guidance on
Computer Security Log Management and highlights how Syslog can be used for
security auditing, as well. However, Syslog has an inherent security weakness to
which attention must be paid. Data that is transmitted using Syslog is in clear text,
making it susceptible to disclosure attacks. Therefore, transport layer security
measures using wrappers such as SSL wrappers or Secure Shell (SSH) tunnels
must be used to provide encryption for confidentiality assurance. Additionally,
integrity protection using SHA or MD5 hash functions is necessary, to ensure
that the logs are not tampered or tainted while they are in transit or stored.
Syslog-NG (New Generation) is an open source implementation of the syslog
protocol

278

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 278 6/7/2013 5:40:42 PM

Intrusion Detection System (IDS)
IDSes can be used to detect potential threats and suspicious activities. IDSes
can be monitoring devices or applications at the network layer (NIDS) or
host (HIDS) layer. They filter both inbound and outbound traffic and have
alerting capabilities, which notify administrators of imminent threats. One
of the significant challenges with NIDS is that malicious payload data that is
encrypted, as is the case with encrypted viruses, cannot be inspected for threats
and can bypass filtration or detection.

IDSes are not firewalls but can be used with one. Firewalls are your first
line of network or perimeter defense, but they may be required to allow traffic
to enter through certain ports such as port 80 (http), 443 (https) or 21 (ftp).
This is where IDSes can come in handy, as they will provide protection against
malicious traffic and threats that pass through firewalls. Additionally, IDSes are
more useful than firewalls for detecting insider threats and fraudulent activities
that originate from within the firewalls.

IDSes are implemented in one of the following ways:
 ■ Signature-based – Similar to how anti-virus detects malware

threats, signature-based IDSes detect threats by looking for specific
signatures or patterns that match those of known threats. The
weakness of this type of IDS is that new and unknown threats,
whose signatures are not known yet, or polymorphic threats with
changing signatures will not be detected and can evade intrusion
detection. Snort is a very popular and widely used, freely available,
open-source, signature-based IDS for both Linux and Window
OSes.

 ■ Anomaly-based – An anomaly-based IDS operates by monitoring
and comparing network traffic against an established baseline
of what is deemed “normal” behavior. Any deviation from the
normal behavioral pattern causes an alert as a potential threat.
The advantage of this type of IDS is that it can be used to detect
and discover newer threats. Anomaly-based IDSes are commonly
known also as behavioral IDSes.

 ■ Rule-based – A rule-based IDS operates by detecting attacks
based on programmed rules. These rules are often implemented as
IF-THEN-ELSE statements.

When implemented with logging, an IDS can be used to provide auditing
capabilities.

279

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 279 6/7/2013 5:40:42 PM

Intrusion Prevention System (IPS)
Most IDSes are passive and simply monitor for and alert on imminent threats.
Some current IDSes are reactive in operation, as well, and are capable of
performing an action or actions in response to a detected threat. When these
actions are preventive in nature, containing the threat first and preventing it
from being manifested, these IDSes are referred to as Intrusion Prevention
Systems (IPS). An IPS provides proactive protection and is essentially a firewall
that combines network level and application level filtering. Some examples of
proactive IPS actions include blocking further traffic from the source IP address
and locking out the account when brute-force threats are detected.

When implemented with logging, an IPS can be used to provide auditing
capabilities.

Data Loss Prevention (DLP)
The most important asset of a company, second only to its people assets, is
data, and data protection is important to assure its confidentiality, integrity, and
availability.

The chronology of data breaches, news reports, and regulatory requirements
to protect data reflect the prevalence and continued growth of data theft which
cost companies colossal remediation sums and loss of brand. Data encryption
mitigates data disclosure in events of physical theft and perimeter devices such
as firewalls can provide some degree of protection by filtering out threats that
are aimed at stealing data and information from within the network. While
this type of ingress filtration can be useful to protect data within the network, it
does little to protect data that leaves the company’s network. This is where Data
Loss Prevention (DLP) comes in handy. DLP is the technology that provides
egress filtration, meaning it prevents data from leaving the network. Emails with
attachments containing sensitive information are among the primary sources of
data loss when data is in motion. By mistyping the recipient’s email address when
sharing information with a client, vendor, or partner, one can unintentionally
disclose information. A disgruntled employee can copy sensitive data onto an end
point device (such as portable hard drive or USB) and take it out of the network.

DLP prevents the loss of data by not allowing information that is classified
and tagged as sensitive to be attached or copied. Tagging is the process of labeling
information that is classified with its appropriate classification level. This can be
an overwhelming endeavor for companies that have a large amount of information
that needs to be tagged, so tagging requires planning and strategy, along with

280

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 280 6/7/2013 5:40:42 PM

management and business support. The business owner of the data is ultimately
responsible and must be actively engaged either directly or by delegating a data
custodian to work with the IT team, so that data is not only appropriately
classified but also appropriately tagged. DLP brings both mandatory (labeling)
and discretionary (based on discretion of the owner) security into effect.

Successful implementations of DLP bring not only technological protection
but also the assurance that required human resource and process elements
are in place. DLP technology works by monitoring the tagged data elements,
detecting and preventing loss, and remediating should the data leave the network.
Additionally, DLP technology protection includes protecting the gateway as well
as the channel. DLP control is usually applied at the gateway, the point at which
data can leave the network (escape point), at the next logical level from where data
is stored. DLP also includes the protection of data when it is in transit and works
in conjunction with transport layer security (TLS) mechanisms by protecting the
channel. It must be recognized that protecting against data loss by applying DLP
technology can be thwarted if the users (people) are not aware of and educated
about the mechanisms and the impact of sensitive data walking out of the door.
DLP can also be implemented through a corporate security policy that mandates
the shredding of sensitive documents, disallowing the printing of and storing of
sensitive information in storage devices that can be taken out of the company.

We have covered the ways by which DLP can protect the data that is on the
inside from leaving the network, but in today’s world, there is a push toward the
Software as a Service model of computing. In such situations, company data is
stored on the outside in the service provider’s shared-hosted network. When this
is the case, data protection includes preventing data leakage when data is at rest
or stored, as well as when it is being marshaled to and from the SaaS provider.
Cryptographic protection and access control protection mechanisms can be used
to prevent data leakage in SaaS implementations. . SaaS is a maturing trend and
it is recommended that when data is stored on the outside, proper Chinese Wall
access control protection exist, based on the requestor’s authorized privileges, to
avoid any conflict of interest. Transport layer security protection alleviates data
loss while the data is in motion between your company and the SaaS provider.

Virtualization
Virtualization is a software technology that divides a physical resource (such as

a server) into multiple virtual resources called virtual machine (VM). It abstracts
computer resources and reproduces the physical characteristics and behavior of

281

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 281 6/7/2013 5:40:42 PM

the resources. Virtualization facilitates the consolidation of physical resources
while simplifying deployment and administration. Not only can physical
resources (servers) be virtualized, but data storage, networks, and applications can
be virtualized, as well. When virtualization technology leverages a single physical
server to run multiple operating systems, or multiple sessions of a single OS, it is
commonly referred to as platform virtualization.

Storage Area Networks (SAN) are an example of data storage virtualization.

Virtualization is gaining a lot of ground today and its adoption is expected
to continue to rise in the coming years. Some of the popular and prevalent
virtualization products are VMWare, Microsoft Hyper-V, and Xen.

Benefits of virtualization include the following:
 ■ Consolidation of physical (server) resources and thereby reduced cost
 ■ Green computing; reduced power and cooling
 ■ Deployment and administration ease
 ■ Isolation of application, data, and platforms
 ■ Increased agility to scale IT environment and services to the business

Though virtualization aims at reducing cost and improving agility, without
proper consideration of security, these goals may not be realized and the security
of the overall computing ecosystem can be weakened. It is therefore imperative
to determine the security and securability of virtualization before selecting
virtualization products. On one hand, it can be argued that virtualization
increases security because virtual machines are isolated from one another and
dependent on a single host server, making it possible to address physical security
breaches relatively simply when compared to having to manage multiple stand-
alone servers. On the other hand, virtualization can be said to increase the attack
surface because virtualization software known as the hypervisor, as depicted in
Figure 3.36, which controls and manages virtual machines and their access to
host resources, is a software that could potentially have coding bugs and it runs
with privileged access rights, making it susceptible to attack.

Other security concerns of virtualization that require attention include the
need to:

 ■ implement all of the security controls such as anti-virus, system
scans, firewalls, etc., as one would in a physical environment;

 ■ protect not only the VM but also the VM images from being
altered;

282

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 282 6/7/2013 5:40:42 PM

 ■ patch and manage all of the VM appliances;
 ■ ensure protection against jail-breaking out of a VM. It is speculated

that it is possible to attack the hypervisor that controls the VMs
and circumvent the isolation protection that virtualization brings.
Once the hypervisor is compromised, one can jump from (jail
break out of) one VM to another;

 ■ inspect inter-VM traffic by IDS and IPS which themselves can be
VM instances;

 ■ implement defense-in-depth safeguard controls;
 ■ control VM sprawl. VM sprawl is the uncontrolled proliferation of

multiple VM instances. It wastes resources and creates unmonitored
servers that could contain sensitive data and makes troubleshooting
and cleanup of unneeded servers extremely difficult.

Additionally, it is important to understand that technologies to manage VM
security are still immature and currently in development. One such development
is VM security API that makes it possible to help software development teams
leverage security functionality and introspection ability within the virtualization
products. However, performance considerations when using VM API need to
be factored in.

Digital Rights Management (DRM)
Have you ever experienced the situation when you chose to skip over the “FBI
Anti-piracy Warning” screen that appears when you load a Region 1 DVD movie
and found out that you were not allowed to do so, as illustrated in Figure 3.37.

Figure 3.36 – Virtualization

283

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 283 6/7/2013 5:40:43 PM

This is referred to as forward locking and is a liability protection measure against
violators who cannot claim ignorance of the consequences of their violating
act. In this case, it is about copyright infringement and anti-piracy protection.
Forward locking is one example of a protection mechanism’s using technology
that is collectively known as Digital Rights Management (DRM).

DRM refers to a broad range of technologies and standards that are aimed
at protecting intellectual property (IP) and content usage of digital works
using technological controls. Copyright law (covered in detail in the Software
Acceptance chapter) is a deterrent control only against someone who wishes to
make a copy of a protected file or resource (documents, music files, movies, etc.).
It cannot prevent someone from making an illegal copy. This is why technology-
based protection is necessary and DRM helps in this endeavor. DRM is about
protecting digital works and it differs in its function from copyright law. Copyright
law functions by permitting all that which is not forbidden. DRM conversely
operates by forbidding all that which is not permitted.

DRM not only provides copy protection but can be configured granularly to
provide usage rights, and assure authenticity and integrity as well. This is particularly
important when you have the need to share files with an external party over
whom you have no control, such as a business partner or customer, but you still
want to control the use of the files. DRM provides presentation layer (OSI layer
6) security not by preventing an unauthorized user from viewing the file but by
preventing the receiving party from copying, printing or sharing the file even
though he may be allowed to open and view it. One of the most common ways in
which file sharing is restricted is by tying the file to a unique hardware identifier

Figure 3.37 - Forward Locking

284

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 284 6/7/2013 5:40:43 PM

or some hardware property that is not duplicated in other systems. This means
that even though the file may be copied, it is still unusable in an unauthorized
system or by a user who is not authorized. This type of protection mechanism
is evident in music purchased from the iTunes store. Music purchased from the
iTunes store is authorized to be used on one computer and when it is copied over
to another, it does not work unless proper authorization of the new computer is
granted. DRM also assures content authenticity and integrity of a file, because it
provides the ability to granularly control the use of a file.

The three core entities of a DRM architecture includes users, content and
rights. DRM implementation is made possible through the relationships that
exist between these three core entities. Users can create and/or use content and are
granted rights over the content. The user entity can be anyone; privileged or non-
privileged, employee or non-employee, business partner, vendor, customer, etc. It
need not be human, as a system can participate in a DRM implementation. The
content entity refers to the protected resource, such as a music file, a document,
or a movie. The rights entity expresses permissions, constraints, and obligations
that the user entity has over the content entity. The expression of rights is made
possible by formal language, known as Rights Expression Language (REL). Some
examples of REL include the following:

 ■ Open Digital Rights Language (ODRL) – A generalized, open
standard under development that expresses rights using XML.

 ■ eXtensible rights Markup Language (XrML) – Another generalized
REL that is more abstract than ODRL. XrML is more of a meta-
language that can be used for developing other RELs.

 ■ Publishing Requirements for Industry Standard Metadata
(PRISM) – Unlike ODRL and XrML, PRISM can be used to express
rights specific to a task and is used for syndication of print media
content such as newspapers and magazines. This is used primarily
in a business-to-business (B2B) setting where the business entities
have a contractual relationship and the REL portion of PRISM is
used to enforce copyright protection.

It must be recognized that an REL expresses rights, but it has no ability
to enforce the rights. It is therefore critical for a software architect to design
a protection mechanism, be it user supplied data or hardware property, to
restrict or grant usage rights. The entire DRM solution must be viewed from a
security standpoint to ensure that there is no weak link that will circumvent the
protection DRM provides.

285

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 285 6/7/2013 5:40:43 PM

While DRM provides many benefits pertinent to IP protection, it does come
with some challenges, as well. Some of the common challenges are listed below:

 ■ Using a hardware property as part of the expression of rights
generally provides more security and is recommended. However,
as the average life of hardware is not more than a couple of years,
tying protection mechanisms to a hardware property can result in
denial of service when the hardware is replaced. Tying usage rights
over content to a person alleviates this concern, but it is important
to ensure that the individual’s identity cannot be spoofed.

 ■ Using personal data to uniquely identify an individual as part of
the DRM solution could lead to some privacy concerns. The Sony
rootkit music CD is an example of improper design that caused the
company to lose customer trust, suffer several class action lawsuits,
and recall its products.

 ■ DRM not only forbids illegal copying, but it restricts and forbids
legal copying (legitimate backups), as well, thereby affecting Fair
Use.

When you design DRM solutions, you need to take into consideration both
its benefits and challenges and security considerations should be in the forefront.

Trusted Computing
In the secure software chapter, we covered certain trusted computing concepts
such as TCB, Trusted Boundary and Reference Monitor. In this section, we
will focus on some trusted computing technologies that can be used to assure
trust. These technologies include code signing (covered in the Secure Software
chapter), Trusted Platform Modules (TPM), and anti-malware technologies.

Trusted Platform Module (TPM)
Developed by the Trusted Computing Group (TCG), whose mission is to develop
and support open industry specifications for trusted computing across multiple
platform types, the TPM is a specification used in personal computers and other
systems to ensure protection against disclosure of sensitive or private information
as well as the implementation of the specification itself. The implementation
of the specification, currently in version 1.2, is a microcontroller commonly
referred to as the TPM chip usually affixed to the motherboard (hardware) itself.

Although the TPM itself does not control what software runs, the TPM
provides generation and tamper-proof storage of cryptographic keys that can be
used to create and store identity (user or platform) credentials for authentication

286

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 286 6/7/2013 5:40:43 PM

purposes. A TPM chip can be used to uniquely identify a hardware device
and provide hardware-based device authentication. It can be complementary
to smartcards and biometrics and in that sense facilitates strong multifactor
authentication and enables true machine and user authentication by requiring
the presentation of authorization data before disclosing sensitive or private
information.

TPM systems offer enhanced and added security and protection against
external software attack or physical theft because they take into account
hardware-based security aspects in addition to the security capabilities provided
by software. It must however be understood that keys and sensitive information
stored in the TPM chip are still vulnerable to disclosure if the software that is
requesting this information for processing is not architected securely, as has been
demonstrated in the cold boot side channel attack. This further accentuates the
fact that software security is critical to ensure trusted computing. The TPM can
also be leveraged by software developers to increase security in the software they
write by using the TCG’s Trusted Software Stack (TSS) interface specification.
The TCG also publishes the Trusted Server specification (for server security),
Trusted Network Connect architecture (for network security) and the Mobile
Trusted Module (for mobile computing security).

Side channel attacks including the cold boot attack will be covered in the
Software Deployment, Operations, Maintenance and Disposal chapter in this
book.

Anti-Malware
The trustworthiness, which is a composition of the reliability, security and
privacy of a system or software, is put into question by malware and potentially
unwanted programs/software (PUP/S). The cybercrime economy is a very
lucrative proposition to malware developers and this has increased the number
of malware attacks that are observed in the information technology industry.

In order to successfully address the security and business problems caused by
malware, a holistic multi-pronged program is necessary. This includes:

 ■ the implementation of anti-malware engine (technology),
 ■ an educated anti-malware research team (people)
 ■ an update mechanism (process)

Vital to the anti-malware strategy is the client-side anti-malware engine.
This engine is the software that is necessary to detect, contain and remove the

287

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 287 6/7/2013 5:40:43 PM

malware that attempts to compromise a system. The primary functions of this
anti-malware engine are:

 ■ scanning
 ■ detection
 ■ quarantine
 ■ remove and
 ■ restore

The first step in the anti-malware engines is to scan the system. Scanning
helps to monitor different locations on the system, including hard disks,
memory, settings registry, etc. that the malware aims to infect. When the system
is scanned, it is essential to ensure that the high level of performance is not
impacted adversely.

Detection of malware is primarily accomplished using two techniques.
The first is to do pattern matching against what is known as a definition list.
By comparing against the definition list, the anti-malware engine detects and
determines whether the program trying to execute is a PUP/S (malware) or
not. The definition list contains the patterns (also referred to as fingerprints) of
known malware. Certain types of malware (e.g., kernel-mode rootkits) require
expert analysts and may require the assistance from the subject matter experts
(SME) in the anti-malware research team. The second technique is to analyze
the malware behavior (heuristic) and correlate that known malware behaviors.
Heuristics in the context of anti-malware is the set of rules that are necessary to
categorize malware.

The final step in the anti-malware engine is handle any identified malware
so that the infection is quarantined (contained), the malware is removed
(eradicated) and the system or software restored (recovered) to it pre-infection
state. It is important to note that when quarantining or removing a rootkit, the
anti-malware engine cannot trust the operating systems’, API calls. Tunneling
signatures make it possible for the engine to detect inconsistencies that indicate
that the OS is tampered with. They help you to sidestep rootkit modifications.

In addition to the anti-malware engine, it is essential have an educated anti-
malware research team, whose primary purpose is to research the malware detected
by the anti-malware engine. Since many malware come packed, meaning they
are compressed, obfuscated to prevent static analysis and some even encrypted to
hide their internal functionality, the team should be well-versed in conducting

288

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 288 6/7/2013 5:40:43 PM

malware analysis, including unpacking, deobfuscating, decrypting and reverse
engineering the malware. Static analysis inspects the instructions of the malware
to identify and counteract the techniques that is used in its obfuscation. Some
types of malware such as polymorphic ones are not suited for static analysis,
because each time they run, the malware changes itself (fingerprints and/or
behavior). In such situations, dynamic analysis, which examines the malware
behavior by emulating the malware in a virtual machine.

They then make necessary recommendations to update the definition list
with the latest fingerprints that they determine from their analysis.

Finally, the malware definition list needs to be updated, not in an ad hoc
manner but by using a formalized process. Generally it is not enough to simply
remove the malware as their interactions can lead to side effects

It is recommended to incorporate the malware fingerprints update process
as an integral part of existing infrastructure updates process, so that it does not
impact user productivity.

Anti-malware technologies should also allow the security operations team,
insight into the security state of the computing ecosystem. On access protection,
in which the file is scanned before the file is opened, combined with Real Time
protections, that monitors dozens of security checkpoints, are necessary.

Database Security
Just as important as data design is for security is the design of the database
for the reliability, resiliency and recoverability of software that depends on the
data stored in the database. Not only is protection essential when data is in
transit, but also when it is at rest, in storage and archives. Using a biological
analogy, one can call the database that is connected to the network the heart
of the company, and a breach at this layer could prove disastrous to the life
and continuity of the business. Regulations such as HIPAA and GLBA impose
requirements to protect personally identifiable information (PII) when it is
stored, and willful neglect can lead to fines’ being levied, incarceration of officers
of the corporation, and regulatory oversight. The application layer is seen to be
the conduit of attacks against the data stored in databases or data stores, as is
evident with many injection attacks, such as Structured Query Language (SQL)
injection and Lightweight Directory Access Protocol (LDAP) injection attacks,
covered in more detail in the Secure Software Implementation chapter. Using
such attacks, an attacker can steal, manipulate, or destroy data.

289

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 289 6/7/2013 5:40:43 PM

Database security design considerations are critically important because
they have an impact on the confidentiality, integrity, and availability of data.
One kind of attack against the confidentiality of data is the inference attack.
An inference attack is one that is characterized by an attacker gleaning sensitive
information about the database from presumably hidden, and trivial pieces
of information using data mining techniques, without directly accessing the
database. It is difficult to protect against an inference attack, because the trivial
piece of information may be legitimately obtained by the attacker. Inference
attacks often go hand in hand with aggregation attacks. An aggregation attack
is one where information at different, security classification levels, which are
primarily non-sensitive in isolation, end up becoming sensitive information
when pieced together as a whole. A well-known example of aggregation is the
combining of longitudinal and latitudinal coordinates along with supplies-
and-delivery information to piece together and glean possible army locations.
Individually, the longitudinal and latitudinal coordinates are generally not
sensitive. Neither is the supplies-and-delivery information. But when these
two pieces of information are aggregated, the aggregation can reveal sensitive
information through inference. Therefore, database queries that request trivial
and non-sensitive information from various tables within the database must be
carefully designed to be scrutinized, monitored and audited.

Polyinstantiation, database encryption, normalization, and triggers and
views are important, protection design considerations concerning the company’s
database assets.

Polyinstantiation
A well-known, database security approach to deal with the problems of inference
and aggregation is polyinstantiation. Polyinstantiation means that there exist
several instances (or versions) of the database information, so that what is viewed
by a user is dependent on the security clearance or classification level attributes
of the requesting user. For example, many instances of the president’s phone
number are maintained at different classification levels and only users with top
secret clearance will be allowed to see the phone number of the president of the
country, while those with no clearance are given a generic phone number to
view. Polyinstantiation addresses inference attacks by allowing a means to hide
information by using classification labels. It addresses aggregation by allowing
the means to label different aggregations of data separately.

290

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 290 6/7/2013 5:40:43 PM

Database Encryption
Perimeter defenses such as firewalls offer little-to-no protection to stored, sensitive
data from internal threat agents, who have the means and opportunity to access
and exploit data stored in databases. The threat to databases comes not only from
external hackers, but also from insiders who wish to compromise the data, data
which are essentially the crown jewels of an company. In fact, while external
attacks may be seen on the news, many internal attacks often go unpublicized,
even though they are equally, if not more, devastating to a company. Insider
threats to databases warrant close attention, especially those from disgruntled
employees in a layoff economy. Without proper, database security controls, we
leave a company unguarded and solely reliant on the motive of an insider, who
already has the means and the opportunity.

Data-at-rest encryption is a preventive, control mechanism that can provide
strong protection against disclosure and alteration of data, but it is important
to ensure that along with database encryption, proper authentication and
access control protection mechanisms exist to secure the key that is used for the
encryption. Having one without the other is equivalent to locking the door and
leaving the key under the doormat, and this really provides little protection.
Therefore, a proper, database encryption strategy is necessary to implement
database security adequately. This strategy should include encryption, access
control, auditing for security and logging of privilege database operations and
events, and capacity planning.

Encryption not only has an impact on performance but also on data size. If
fields in the database that are indexed are encrypted, then lookup queries and
searches will take significantly longer, degrading performance. Additionally,
most encryption algorithms output fixed, block sizes and pad the input data to
match the output size. This means that smaller-sized input data will be padded
and stored with an increased size and the database design must take this into
account to avoid padding and truncation issues. To transform binary cipher text
to character-type data where encoding is used with encryption, the data size is
increased by approximately one-third its original size, and this should be factored
into design, as well.

Some of the important factors that must be taken into account when
determining the database encryption strategy are listed below. These include, but
are not limited to, the following:

291

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 291 6/7/2013 5:40:43 PM

 ■ Where the data should be encrypted: at its point of origin in the
application or in the database where it resides?

 ■ What should be the minimum level of data classification before it
warrants protection by encryption?

 ■ Is the database designed to handle data sizes upon encryption?
 ■ Is the business aware of the performance impact of implementing

encryption and is the tradeoff between performance and security
within acceptable thresholds for the business?

 ■ Where will the keys used for cryptography operations be stored?
 ■ What authentication and access control measures will be

implemented to protect the key that will be used for encryption and
decryption?

 ■ Are the individuals who have access to the database controlled and
monitored?

 ■ Are there security policies in effect to implement security auditing
and event logging at the database layer in order to detect insider
threats and fraudulent activities?

 ■ Should there be a breach of the database, is there an incident
management plan to contain the damage and respond to the
incident?

Database encryption can be accomplished in one of two ways. These are
 ■ Using native Database Management System (DBMS) encryption or
 ■ Leveraging cryptographic resources external to the database.

In native DBMS encryption, the cryptographic operations including key
storage and management are handled within the database itself. Cryptographic
operations are transparent to the application layer and this type of encryption is
commonly referred to as Transparent Database Encryption (TDE). The primary
benefit of this approach is that the impact on the application is minimal but
there can be a substantial performance impact. When native DBMS encryption
capabilities are used, the performance and strength of the algorithm along with the
flexibility to choose what data can be encrypted must be taken into account.. From
a security standpoint, the primary drawback to using native DBMS encryption
is the inherent weakness that exists in the storage of the encryption key within
the DBMS itself. The protection of this key will be primarily dependent on the
strength of the DBMS access control protection mechanisms, but users who have
access to the encrypted data will probably have access rights to the encryption

292

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 292 6/7/2013 5:40:43 PM

key storage, as well. When cryptographic resources external to the database
are leveraged, cryptographic operations and key storage and management are
offloaded to external cryptographic infrastructure and servers. From a security
standpoint, database architectures that separate encryption processing and key
management are recommended and preferred as such architecture increases the
work factor necessary for the attacker. The separation of the encrypted data from
the encryption keys brings a significant security benefit. When these keys are
stored in hardware security modules (HSM), they increase the security protection
substantially and make it necessary for the attacker to have physical access in
order to compromise the keys. Additionally, leveraging external infrastructure
and servers for cryptographic operations moves the computational overhead away
from the DBMS, significantly increasing performance. The primary drawbacks
of this approach are the need to modify or change applications, monitor and
administer other servers, and communications overhead.

Each approach has its own advantages and disadvantages and when choosing
the database encryption approach, it is important to do so only after fully
understanding the pros and cons of each approach, the business need, regulatory
requirements, and database security strategy.

Normalization
The maintainability and security of a database are directly proportional to its
organization of data. Redundant data in databases not only wastes storage, but
also implies the need for redundant maintenance as well as the potential for
inconsistencies in database records. For example, if data is held in multiple
locations (tables) in the database, then changes to data must be performed in
all locations holding the same data. The change in the price of a product is
much easier to implement if the product price is maintained only within the
product table. Maintaining product information in more than one table in the
database will require implementing changes to product related information in
each table. This can not only be a maintenance issue, but also, if the updates
are not uniformly applied across all tables that hold product information,
inconsistencies can occur leading to loss of data integrity.

Normalization is a formal technique that can be used to organize data so
that redundancy and inconsistency are eliminated. The organization of data is
based on certain rules and each rule is referred to as a “normal form”. There are
primarily three data organization or normalization rules. The database design is
said to be in the normal form that corresponds to the number of rules the design
complies with. A database design that complies with one rule is known to be

293

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 293 6/7/2013 5:40:43 PM

in first normal form, notated as 1NF A design with two rules is known to be
in second normal form, notated as 2NF, and one with compliance to all three
rules is known to be in third normal form, notated as 3NF. Fourth (4NF) and
Fifth (5NF) Normal Form of database design exist, as well, but they are seldom
implemented practically.

Table 3.7 is an example of a table that is in unnormalized form.

First Normal Form (1NF) mandates that there are no repeating fields or
groups of fields within a table. This means that related data are stored separately.
This is also informally referred to as the “No Repeating Groups” rule. When
product information is maintained for each customer record separately instead
of being repeated within one table, it is said to be compliant with 1NF.

Table 3.8 is an example of a table that in is 1NF.

Second Normal Form (2NF) mandates that duplicate data are removed. A
table in 2NF must first be in 1NF. This is also informally referred to as the
“Eliminate Redundant Data” rule. The elimination of duplicate records in each
table addresses data inconsistency and, subsequently, data integrity issues. 2NF
means that sets of values that apply to multiple records are stored in separate
tables and related using a primary key (PK) and foreign key (FK) relationship.
In the previous table, Product_Code is not dependent on the Customer_ID
PK, and so, in order to comply with 2NF, they must be stored separately and
associated using a table.

Tables 3.9 and 3.10 are examples of tables that are in 2NF.

Customer_ID First_Name Last_Name Sales_Rep_ID Product_1 Product_2
1 Paul Schmidt S101 CSSLPEX1 CSSLPEX2
2 David Thompson S201 SSCPEX1 SSCPEX2

Table 3.8 – First Normal Form (1NF)

Table 3.7 – Unnormalized Form

294

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Customer_ID First_Name Last_Name Sales_Rep_ID Product_Code
1 Paul Schmidt S101 CSSLPEX1
1 Paul Schmidt S101 CSSLPEX2
2 David Thompson S201 SSCPEX1
2 David Thompson S201 SSCPEX2

CSSLP_v2.indb 294 6/7/2013 5:40:43 PM

 Third Normal Form (3NF) is a logical extension of the 2NF and for a
table to be in 3NF, it must first be in 2NF. 3NF mandates that data that are
not dependent on the uniquely identifying PK of that table are eliminated
and maintained in tables of their own. This is also referred to informally as the
“Eliminate Non-Key-Dependent Duplicate Data” rule. Since the Sales_Rep_ID
is not dependent on the Customer_ID in the CUSTOMER table, for the table to
be in 3NF, data about the sales representatives must be maintained in its own table.

Tables 3.11 and 3.12 are examples of tables that are in 3NF.

Benefits of normalization include elimination of redundancy and reduction

of inconsistency issues. Normalization yields security benefits, as well. Data
integrity, which assures that the data is not only consistent but also accurate,
can be achieved through normalization. Additionally, permissions for database

Table 3.9 – Customer Table in Second Normal Form (2NF)

Table 3.10– Customer Order Table in Second Normal Form (2NF)

295

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

Customer_ID First_Name Last_Name Sales_Rep_ID
1 Paul Schmidt S101
2 David Thompson S201

Customer_ID Product_Code
1 CSSLPEX1
1 CSSLPEX2
2 SSCPEX1
2 SSCPEX2

Customer_ID First_Name Last_Name
1 Paul Schmidt
2 David Thompson

Sales_Rep_ID Sales_Rep_Name Sales_Rep_Phone
S101 Marc Thompson (202) 529-8901
S201 Sally Smith (417) 972-1019

Table 3.11 – Customer Table in Third Normal Form (3NF)

Table 3.12 – Sales Representative Table in Third Normal Form (3NF)

CSSLP_v2.indb 295 6/7/2013 5:40:43 PM

operations can be granted at a more granular level per table and limited to users,
when the data is organized using normal form. Data integrity in the context of
normalization is the assurance of consistent and accurate data within a database.

It must also be recognized that while the security and database maintainability
benefits of normalization are noteworthy, there is one primary drawback to
normalization, which is degraded performance. When data that is not organized
in a normalized form is requested, the performance impact is mainly dependent
on the time it takes to read the data from a single table, but when the database
records are normalized, there is a need to join multiple tables in order to serve the
requested data. In order to increase the performance, a conscious decision may
be required to denormalize a normalized database. Denormalization is the process
of decreasing the normal form of a database table by modifying its structure
to allow redundant data in a controlled manner. A denormalized database
is not the same as a database that has never been normalized. However, when
data is denormalized, it is critically important to have extraneous control and
protection mechanisms that will assure data consistency, accuracy and integrity. A
preferred alternate to denormalizing data at rest is to implement database views.

Triggers
A database trigger is a special type of procedure that is automatically executed
upon the occurrence of certain conditions within the database. It differs from a
regular procedure in its manner of invocation. Regular, stored procedures and
prepared statements are explicitly fired to run by either a user, an application,
or, in some cases, even by a trigger itself. A trigger, on the other hand, is fired to
run implicitly by the database when the triggering event occurs. Events that fire
triggers may be one or more of the following types:

 ■ Data Manipulation Language (DML) statements that modify
data, such as INSERT, UPDATE and DELETE.

 ■ Data Definition Language (DDL) statements that can be used for
performing administrative tasks in the database, such as auditing
and regulating database operations.

 ■ Error events (OnError).
 ■ System events, such as Start, Shutdown, Restart, etc.
 ■ User events, such as Logon, Logoff, etc.

Triggers are useful not only for supplementing existing database capabilities
but they can also be very useful for automating and improving security protection
mechanisms. Triggers can be used to:

296

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 296 6/7/2013 5:40:43 PM

 ■ Enforce complex business rules such as restricting alterations to the
database during non-business hours or automatically computing
the international shipping rates when the currency conversion rate
changes.

 ■ Prevent invalid transactions.
 ■ Ensure referential integrity operations.
 ■ Provide automated, transparent auditing and event-logging

capabilities. If a critical business transaction that requires auditing
is performed, one can use DML triggers to log the transaction
along with pertinent audit fields in the database.

 ■ Enforce complex security privileges and rights.
 ■ Synchronize data across replicated tables and databases, ensuring

the accuracy and integrity of the data.

Although the functional and security benefits of using triggers are many,
triggers must be designed with caution. Excessive implementation of triggers
can cause overly complex, application logic, which makes the software difficult
to maintain besides increasing the potential attack surface. Also, since triggers
are responsive to triggering events, they cannot perform commit or rollback
operations, and poorly constructed triggers can cause table and data mutations,
impacting accuracy and integrity. Furthermore, when cascading triggers, which
are characterized by triggers’ invoking other triggers, are used, interdependencies
are increased, making troubleshooting and maintenance difficult.

Views
A database view is a customized presentation of data that may be held in one or
more physical tables (base tables) or another view, itself. A view is the output of
a query and is akin to a virtual table or stored query. A view is said to be virtual
because unlike the base tables that supply the view with data, the view itself is
not allocated any storage space in the physical database. The only space that is
allocated is the space necessary to hold the stored query. Because the data in a
view is not physically stored, a view is dynamically constructed when the query
to generate the view is executed. Just like on a base table, DML CRUD (create,
read, update, and delete) operations to insert, view, modify, or remove data,
with some restrictions, can be performed on views. But it must be understood
that operations performed on the view affect the base tables serving the data
and so the same data integrity constraints should be taken into account when
dealing with views.

297

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 297 6/7/2013 5:40:43 PM

Since views are dynamically constructed, data that is presented can be custom-
made for users based on their rights and privileges. This makes it possible for
protection against disclosure so that only those who have the authorization to
view certain types of data are allowed to see those types of data, and that they
are not allowed to see any other data. Not only do views provide confidentiality
assurance, they also support the principle of “need to know”. Restricting access
to predetermined sets of rows or columns of a table increases the level of
database security. Figure 3.38 is an example of a view that results by joining the
CATEGORY, PRODUCT, and ORDER tables.

Views can also be used to abstract internal database structure, hiding the
source of data and the complexity of joins. A join view is defined as one, which
synthesizes the presentation of data by joining several base tables or views.
The internal table structures, relationships, and constraints are protected and
hidden from the end user. Even an end user who has no knowledge of how to
perform joins can use a view to select information from various database objects.
Additionally the resulting columns of a view can be renamed to hide the actual
database naming convention that an attacker can use to his or her advantage
when performing reconnaissance. Views can also be used to save complicated
queries. Queries that perform extensive computations are good candidates to
be saved as views so that they can be repeatedly performed without having to
reconstruct the query each and every time.

Privilege Management
In the context of a database, a privilege is the right (or permission) to perform a
database operation, such as select (read) records, update or alter (write) records
or schema, execute, add (create) user, or delete records, etc..

Permissions are granted to database users, processes, and objects to perform
these operations. Permissions can be granted to a user explicitly or to a role, to
which the user belongs. An example of a user directly getting privileges is when

Figure 3.38 - A database view

298

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 298 6/7/2013 5:40:43 PM

the user Paul is allowed to insert or update the “Book” table in the database. An
example of role based privilege management is when the users Paul and Johnson
are both granted the permission to update the “Book” table because they belong
to the “Author” role.

It is generally not advisable to grant (assign) privileges to a user directly.
Roles are preferred for privilege management as it eases the management of
permissions assigned to users. Within a database, each role must be unique and
different from login (user) names and any other role name. In most database
management systems (DBMS), roles are not contained in the schema. This
makes it possible to drop a user who creates a role without any impact to the
role itself.

When roles are used to manage permissions, the software must be architected
with security principles such as least privilege and separation of duties in mind.
An example of least privilege implementation within the database is using the
“datareader” or “datawriter” role instead of the database owner (“dbo”) role. An
example of separation of duties within the database is that the user Johnson is
not part of both the “Author” and the “Approver” role.

Programming Language Environment
Before writing a single line of code, it is pivotal to determine the programming
language that will be used to implement the design, because a programming
language can bring with it inherent risks or security benefits. In companies with
an initial level of capability maturity, developers tend to choose the programming
language that they are most familiar with or one that is popular and new. It is
best advised to ensure that the programming language chosen is one that is part
of the company’s technology or coding standard, so that the software that is
produced can be universally supported and maintained.

Choosing the appropriate programming language is an important design
consideration. An unmanaged code programming language may be necessary
when execution needs to be fast and memory allocation needs to be explicitly
controlled. However, it is important to recognize that such degrees of total control
can also lead to total compromise when a security breach occurs, and so careful
attention should be paid when choosing an unmanaged code programming
language over a managed code one. One strategy to get the benefits of both
unmanaged and managed code programming languages is to code the software
in a managed code language and call unmanaged code using wrappers only when
needed, with defense in depth protection mechanisms implemented alongside.

299

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 299 6/7/2013 5:40:43 PM

It also must be understood that while managed code programming languages
are less prone to errors caused by the ignorance of developers and or to security
issues, it is no panacea to security threats and vulnerabilities. Irrespective of
whether one chooses an unmanaged or managed code programming language,
security protection mechanisms must be carefully and explicitly designed.

While protection mechanisms such as encryption, hashing, and masking
help with confidentiality assurance, data type, format, range and length are
important design considerations, the lack of which can potentially lead to
integrity violations.

Programming languages have what is known as built-in or primitive data
types. Some common examples of primitive data types are Character (character,
char), Integer (integer, int, short, long, byte), Floating-point numbers (double,
float, real) and Boolean (true or false). Some programming languages also allow
programmers to define their own data type, which is not recommended from a
security standpoint, because it potentially increases the attack surface. Conversely,
strongly typed programming languages do not allow the programmer to define
their own data types to model real objects and this is preferred from a security
standpoint as it does not allow the programmer to increase the attack surface.

The set of values and the permissible operations on that value set are defined
by the data type. For example, a variable that is defined as an integer data type
can be assigned a whole number but never a fraction. Integers may be signed or
unsigned. Unsigned integers are those, which allow only positive values while
signed integers allow both positive and negative values. Table 3.13 depicts the
size and ranges of values dependent on the integer data type.

The reason why the data type is an important design consideration is because
it is not only important to understand the limits that can be stored in memory
for a variable defined as a particular data type, but it is also vital to know of the

Table 3.13 – Integer data type size and ranges

300

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Name
Size Range

(in bits) Unsigned Signed
Byte 8 0 to 255 −128 to +127

int, short, Int16,
Word 16 0 to 65,535 −32,768 to +32,767

long int, Int32,
Double Word 32 0 to 4,294,967,295 -2,147,483,648 to +2,147,483,647

long long 64 0 to 18,446,744,073,709,551,615 −9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

CSSLP_v2.indb 300 6/7/2013 5:40:43 PM

permissible operations on a data type. Failing to understand data type permissible
operations can lead to conversion mismatches and casting or conversion errors
that could prove detrimental to the secure state of the software.

When a numeric data type is converted from one data type to another, it
can either be a widening conversion (also known as expansion) or a narrowing
conversion (also known as truncation). Widening conversions are those where
the data type is converted from a type that is of a smaller size and range to one
that is of a larger size and range. An example of a widening conversion would
be converting an “int” to a “long”. Table 3.14 illustrates widening conversions
without the loss the data.

Not all widening conversions happen without the potential loss of data. In
some cases, not only is data loss evident, but there is a loss of precision, as well.
For example, converting from an Int64 or a Single data type to a Double data
type can lead to loss of precision.

A narrowing conversion on the other hand can lead to loss of information.
An example of a narrowing conversion is converting a Decimal data type to an
Integer data type. This can potentially cause data loss truncation if the value being
stored in the Integer data type is greater than its allowed range. For example,
changing the data type of the variable, “UnitPrice”, that holds the value, $19.99,
from a Decimal data type to an Integer data type will result in storing $19 alone,
ignoring the values after the decimal and causing data integrity issues. Improper
casting or conversion can result in overflow exceptions or data loss. Input length
and range validation using regular expression (RegEx) and maximum length
(maxlength) restrictions, in conjunction with exception management protection
controls, need to be designed to alleviate these issues.

Table 3.14 – Conversions of data types without loss of data

301

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

Type Can be converted without loss of data to
Byte UInt16, Int16, UInt32, Int32, UInt64, Int64, Single, Double, Decimal

SByte Int16, Int32, Int64, Single, Double, Decimal

Int16 Int32, Int64, Single, Double, Decimal

UInt16 UInt32, Int32, UInt64, Int64, Single, Double, Decimal

Char UInt16, UInt32, Int32, UInt64, Int64, Single, Double, Decimal

Int32 and UInt32 Int64, Double, Decimal

Int64 and UInt64 Decimal

Single Double

CSSLP_v2.indb 301 6/7/2013 5:40:43 PM

The two main types of programming languages in today’s world can be classified
into unmanaged or managed code languages. Common examples of unmanaged
code are C/C++ while Java and all .NET programming languages, which include
C# and VB.Net, are examples of managed code programming languages.

Unmanaged code programming languages are those, which have the
following characteristics:

 ■ The execution of the code is not managed by any runtime execution
environment but is directly executed by the operating system. This
makes execution relatively faster.

 ■ Is compiled to native code, which will execute only on the processor
architecture (X86 or X64) against which it is compiled.

 ■ Memory allocation is not managed and pointers in memory
addresses can be directly controlled, which makes these
programming languages more susceptible to buffer overflows
and format string vulnerabilities that can lead to arbitrary code
execution by overriding memory pointers.

 ■ Requires developers to write routines to handle memory allocation,
check array bounds, handle data type conversions explicitly, force
garbage collection, etc., which makes it necessary for the developers
to have more programming skills and technical capabilities.

Managed code programming languages, on the other hand, have the
following characteristics:

 ■ Execution of the code is not by the operating system directly, but
instead, it is by a managed runtime environment. Since the execution
is managed by the runtime environment, security and non-security
services such as memory management, exception handling, bounds
checking, garbage collection, and type safety checking can be
leveraged from the runtime environment and security checks can
be asserted before the code executes. These additional services can
cause the code to execute considerably slower than the same code
written in an unmanaged code programming language.

 ■ Is not directly compiled into native code but is compiled into an
Common Intermediate Language (CIL) and/or bytecode prior to
the creation of the executable. When the executable is run, the
Just-in-Time (JIT) compilation transforms the CIL into native
code that the computer will understand. This allows for platform
independence, as the JIT compiler handles the compilation of the

302

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 302 6/7/2013 5:40:43 PM

CIL or bytecode into native code that is processor architecture
specific.

 ■ Since memory allocation is managed by the runtime environment,
buffer overflows and format string vulnerabilities are mitigated
considerably.

 ■ Time to develop software is relatively shorter since most memory
management, exception handling, bounds checking, garbage
collection, and type safety checking are automatically handled by
the runtime environment.

Common Language Runtime (CLR)
The managed runtime environment in the .NET Framework is the Common
Language Runtime (CLR). It is Microsoft’s implementation of the Common
Language Infrastructure (CLI) standard. It is essentially a virtual machine
that is part of the .Net Framework. It works by converting the programmer’s
source code into a Common Intermediate Language (CIL). This alleviates the
restriction imposed on programmers to choose a particular language for coding
their software. As long as the code will compile into a CIL format, that the CLR
can process, that language can be used for programming.

Then during program execution, the CLR’s Just-In-Time (JIT) compiler
transforms the CIL into machine instructions for execution by the processor.
The CLR also provides other services such as memory management, type safety,
code access security, garbage collection, and exception handling (all of which are
covered in more detail in the Secure Software Implementation chapter).

The CLR of the .Net Framework has its own security execution model separate
that complements the security provided by the operating system on which it is
running. Unlike the traditional principal (user) based security imposed by the
operating system, the CLR has the ability to enforce a security model that is
policy based. This is usually referred to as Code Access Security (covered in more
detail in the Secure Software Implementation chapter). It works by calculating
permissions and evidence based on the attributes of the code (such as URL, Site,
Application Directory, Zone, Strong name, Publisher, Hash, etc.) as opposed to
merely enforcing security decision based on who the user is.

Coverage of the CLR is explicit detail is beyond the scope of this book, but
it is advisable that you are familiar with the security enforcement mechanisms
of the CLR, if you are engaged with software development using the .Net
framework.

303

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 303 6/7/2013 5:40:43 PM

Java Virtual Machine (JVM)
In Java the managed runtime environment is also known as the Java Runtime
Environment (JRE). One of the primary components of the JRE is the Java
Virtual Machine (JVM). In addition to the JVM, Java Package classes (such as
math, lang, util, etc.) and some runtime libraries make up the JRE. It is the JVM
loads and executes Java programs and brings to Java, platform independence,
mobility and security.

The JVM is an implementation of the Java Machine Specification, which
has defined in it, some of the important aspects of the security of the JRE. These
include the

 ■ Java Class file format,
 ■ Java Bytecode language and instruction set,
 ■ Class Loader,
 ■ Bytecode Verifier
 ■ Java Security Manager (JSM)
 ■ Garbage collector.

The Java Class (.class) file defines the format in which Java classes are stored
and accessed in a platform independent manner. The security of the JVM will
mandate that the .class files developed by the programmer are in the Class file
format. Java Bytecode language includes in it the instruction sets necessary to
perform low level machine operations such as push and pop values on and from
the stack, manipulating CPU registers and performing arithmetic and logical
operations. The Class Loader is a Java runtime object that is used to load Java
classes into the JVM. It checks to make sure that the class loaded is not spoofed
or redefined by an attacker. Only after these checks are successful, will the Class
Loader load the class into the JVM, after which the JVM calls the Bytecode
Verifier. Arguably, the Bytecode Verifier is the most important component of
the JVM from a type consistency viewpoint. The Bytecode Verifier checks to
see if the .class files are in the Class file format and double checks to ensure
that there are no malicious instructions in the code that would compromise the
rules of type safety in Java. It can be thought of as the gatekeeper in the JSM. If
the Bytecode type consistency checks are successful, the Bytecode is compiled
Just-in-Time (JIT) to run. If any of the instructions in the code attempts to call
the native operating system, outside the boundary of the application sandbox,
then the JSM monitors these calls and mediates access, allowing or denying
access, based on the configured security policy. During Java program execution,

304

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 304 6/7/2013 5:40:43 PM

objects are instantiated and destroyed in memory. When objects are destroyed
in memory, then that memory space needs to be reclaimed. This is where the
garbage collector of the JVM comes into play, reclaiming unreachable objects
in memory.

Coverage of the JVM is explicit detail is beyond the scope of this book, but
it is advisable that you are familiar with the security enforcement mechanisms
of the JVM, if you are engaged with software development using the Java
programming language.

Compiler Switches
Compiler based protection such as the /GS flag switch and StackGuard
technology help in protection against memory corruption and mitigate buffer
overflows by preventing the execution of malicious and untrusted code. The
common compiler security switch (/GS flag) and technique (StackGuard) is
discussed in this section below.

When the /GS flag is used in compilers that support it, the executable that is
compiled is given the ability to detect and mitigate buffer overflows of the return
address pointer that is stored on the stack memory. When the code compiled
with the /GS flag turned on is run, before the execution of the functions that
the compiler deems susceptible to buffer overflow attacks, space is allocated on
the stack before the return address. On function entry, the allocated space is
loaded with a security cookie that is computed post load of the function. Upon
exiting the function, a helper function is invoked which verifies that the security
cookie value is not altered, which happens when the stack memory space is
overwritten, indicating an overflow. If the security cookie value upon function
exit is determined to be different from what it was when the function was entered,
then the process will simply terminate to avoid any further consequences.

StackGuard is a compiler technique that provides code pointer integrity
checking and protection of the return address in a function from being altered.
It is implemented as a small patch of the GNU gcc compiler and works by
detecting and defeating stack memory overflow attacks. StackGuard works by
placing a known value (referred to as a canary or canary word) prior to return
address on the stack so that should a buffer overflow occur, the first data that
will be corrupted is the canary. When the function exits, the code run to move
the return address to its next instruction location (also known as the tear down
code) checks to make sure that the canary word is not modified before jumping
to the next return address. However, attackers have been known to forge a canary

305

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 305 6/7/2013 5:40:43 PM

by embedding the canary word in their overflow exploit; in order to prevent this
forgery, StackGuard uses two methods to prevent forgery. These include using
either a terminator canary or a random canary. A terminator canary is made
up of common termination symbols for C standard string library functions
such as 0 (null), CR, LF (carriage return, line feed) and -1 (End of File or
EOF) and when the attacker specifies these common symbols in their overflow
string as part of their exploit code (shellcode or payload), the functions will
terminate immediately. A random canary is a 32-bit random number that is set
on function entry (on program start) and maintained only for the time frame
of that function call or program execution. Each time the program starts, a new
random canary word is set and this makes the predictability and forging of the
canary word by an attacker nearly impossible.

Operating Systems
In the secure software concepts chapter, we covered a trusted computing concept
known as ring protection which can be enforced by the operating system itself
to implement software assurance. In this section, we will focus on technologies
that can be leveraged from the operating system to provide justifiable confidence
that the software is secure. Operating Systems technologies that can be used
to implement software assurance include address space layout randomization
(ASLR), Data Execution Prevention (DEP) or Encapsulating Space Protection
(ESP) and code access security (CAS). CAS prevents code from untrustworthy
sources or unknown origins from having run time permissions to perform
privileged operations. CAS also protects code from trusted sources from
inadvertently or intentionally compromising security. It is covered in more
detail in the secure software implementation chapter.

Address Space Layout Randomization (ASLR)
In order for most memory exploits and malware to be successful, the attacker
must be able to accurately identify and determine the memory address where
a specific process or function will be loaded. Due to the principle of locality
(temporal primarily), processes and functions were observed to load in the same
memory locations upon each run. This made it easy for the attackers to discover
the memory location and exploit the process or function by telling their payload
exploit code the memory address of the process or function they wished to
exploit. Address Space Layout Randomization (ASLR) is a memory management
technique that can be used to protect against memory location discovery. It
works by randomizing and moving the function entry points (addresses) in
memory each time the program is run. An executable or dynamic link library

306

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 306 6/7/2013 5:40:44 PM

(dll) can be loaded into any of the 256 memory locations which means that with
ASLR turned on, the attacker has 1 in 256 chances of discovering exactly the
memory address of the process or function they wish to exploit. ASLR protection
is available in both Windows and Linux operating systems and is often used in
conjunction with other memory protection techniques such as Data Execution
Prevention (DEP) or Executable Space Protection (ESP)

Data Execution Prevention (DEP)/Executable Space Protection (ESP)
Data Execution Prevention (DEP) as the name implies protects computers
systems by monitoring software programs from accessing and manipulating
memory in an unsafe manner. It is also known as No-Execute (NX) protection
because it marks the data segments (usually injected as part of a buffer overflow)
as No-Execute that a vulnerable software will otherwise process as executable
instructions. If the software program attempts to execute the code from memory
in an unapproved manner, DEP will terminate the process and close the
program. Executable Space Protection (ESP) is the Unix or Linux equivalent of
the Windows DEP. DEP can be implemented as a hardware-based technology
or as a software-based technology.

Embedded Systems
A generic definition of an embedded system is that it is a computer system
that is a component of a larger machine or system. They are usually present
as part of the whole system and are assigned to perform specific operations.
The specificity of their operations often gives the embedded system increased
reliability over a general multi-purpose system. Embedded systems can respond
to and are governed by events in real time. They are usually standalone devices
but they need not be. Some examples of embedded systems devices range from
the common home appliances, traffic lights, mp3 players, watches, cellular
telephones, and personal digital assistants (PDAs) to highly sensitive industrial
control systems (ICS). ICS are computer controlled systems that have software
running (embedded) in them that is used to monitor and control physical
industrial processes.

The program instructions that are written for embedded systems are
known as firmware and are usually stored in read-only chips or flash memory
chips. If the firmware is stored in a read-only chip, then the embedded system
microcontroller or digital signal processor (DSP) is not programmable by the
end user. It is only expected that in the future, embedded systems development
projects will focus their attention on increasing the security of the firmware

307

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 307 6/7/2013 5:40:44 PM

and of the devices itself. Memory management in embedded systems is critical.
This is because the memory in embedded systems usually holds both the data
and the product’s firmware as well. It is important to leverage a tamper resistant
sensor that can detect and alert when memory is corrupted or altered. The ISO
15408 (Common Criteria) standard and the Multiple Independent Levels of
Security (MILS) standard are two recognized standards that can be leveraged for
embedded systems security. The MILS architecture makes it possible to create a
verified, always invoked and tamperproof application code with security features
that thwart the attempts of an attacker.

Most attacks on embedded systems are primarily disclosure attacks and
so it is essential that the embedded device that stores or displays sensitive and
private information has product design and security controls in place to assure
confidentiality. Nowadays, with embedded devices such as PDAs that handle
personal and corporate data, it is critical to ensure that the PDA device supports
and implements a transport or network layer encryption and/or DRM scheme
protect to protect sensitive and copyrighted information that is transmitted to,
stored on and displayed on these devices. A software technique that is used on
devices today to ensure that private and sensitive information is not disclosed
is to implement auto-erase functionality in the software. This way, when the
necessary credentials to access the device data are not provided and the configured
number of attempts has been superseded, the software will execute an auto-
destruct function that erases all data on the device. In addition to disclosure
threats, embedded systems also face a plethora of other attacks. The small size
and portability often make them the target to side channel attacks (radiation,
power analysis, etc.) and fault injection attacks. This mandates the need to
protect the internal circuitry of the devices with physical deterrent controls such
as seals (epoxies), conformal coatings and tapes that need to be broken before
the device can be opened. The software running on these systems can then be
used to signal physical breach or tampering activities. Another technique that
product designers employ to deter reconnaissance and reverse engineering of the
device itself is that they hide critical signals in the internal board layers.

Another important aspect of many prominent embedded systems today is
the open operating system that runs on the devices. The Microsoft Windows
CE (to an extent) and the Apple iPhone applications are prime examples of open
operating systems that allow third parties to develop software applications that
can run on these devices. When third party applications and software is allowed
to run on these embedded system devices, it is necessary to ensure that a safe

308

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 308 6/7/2013 5:40:44 PM

execution environment is provided to the owner of the device. The third party
applications should be isolated from other applications running on the device
and must be limited from accessing the owner’s private and sensitive data stored
on the device.

All of the security controls that are applicable in pervasive computing are
also applicable to embedded systems. This means that before users are allowed
to use the secure embedded system device, they must first verify their identity
and be authenticated. Multifactor authentication is recommended to increase
security. Additionally, the TPM chip on the device can be used for node-to-node
authentication and provide for the tamper resistant storage of keys and secrets.

With the changes in technologies and the increase in the use of and
dependence on embedded systems for day to day activities, attackers have been
seen to target embedded systems to compromise the security of the device or
the host system that the embedded system is a part of. The threat agents of
embedded systems are usually more sophisticated and skilled than the average
hacker. This is particularly true in the attacks that have been observed against
Supervisory Control And Data Acquisition (SCADA) systems which is a type
of ICS. The increased sophistication of attackers is forcing the defenders to be
equally qualified to address embedded system security threats. SCADA systems
have been implemented to monitor and control physical processes such as the
transportation of oil and gas, electricity and water distribution, traffic lights as
well as military facilities, which makes SCADA systems a primary target for
hackers.

SCADA systems that were thought to be secure have been proven otherwise.
The two main reasons for such placebo sense of security is because in the early
days, when SCADA systems were implemented, the technologies used in their
design and deployment were mostly proprietary in nature. The proprietary
protocols and interfaces promoted the security through obscurity notion which
gave rise to a false sense of security. Secondly, these systems were physically secured
and disconnected. Today, with the adoption of open standards and standardized
solutions, these systems are becoming targets for attackers. Additionally, the
connectivity that has been brought about by the proliferation of the Internet
is also a catalyst in the surge of attacks that are being observed against SCADA
systems that have been brought online.

Furthermore, these systems were not originally designed with security in mind
and basic protection mechanisms like authentication and authorization, to these

309

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 309 6/7/2013 5:40:44 PM

systems is weak, if at all present. The predominant threat to SCADA systems
today is the threat of unauthorized access to the control software embedded in
these systems. The threats may be caused accidentally or intentionally by human
or maliciously by malware such as worms and Trojan horses. Because in most
SCADA systems, the packet control protocol is rudimentary or lacking, anyone
can send a packet to the SCADA device and control it. Attacks on the software
running on SCADA systems tend to be of overflow or injection types. Finally,
physical breaches to SCADA systems by insiders bypasses all the protection that
network perimeter devices such as firewalls provides. This mandates the need
for end-to-end authentication and authorization when implementing SCADA
systems.

Secure Design and Architecture Review
Once software design is complete, before you exit the design phase and enter the
development phase, it is important to conduct a review of the software’s design
and architecture. This is to ensure that the design meets the requirements. Not
only should the application be reviewed for its functionality, but it should be
reviewed for its security, as well. This makes it possible to validate security design
before code is written, thereby affording an opportunity to identify and fix any
security vulnerabilities upfront, minimizing the need for reengineering at a later
phase. The review should take into account the security policies and the target
environment where the software will be deployed. Also, the review should be
holistic in coverage, factoring in the network and host level protections that are
to be in place so that safeguards don’t contradict each other and minimize the
protection they provide. Special attention should be given to the security design
principles and core security concepts of the application to assure confidentiality,
integrity, and availability of the data and of the software itself. Additionally,
layer-by-layer and tier-by-tier analysis of the architecture should be performed
so that defense in depth controls is in place.

310

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 310 6/7/2013 5:40:44 PM

The following references are recommended to get
additional information on secure software design
concepts.

 » “The 7 Qualities of Highly Secure Software” book in the “Includes
Foundational Assurance Elements” quality covers the core security
concepts that need to be built into the software to assure security.

 » NIST special publication 800-27 revision A provides guidance on
Engineering Principles for Information Technology Security as a baseline
for achieving security.

 » NIST special publication 800-92 provides guidance on secure log
management.

 » NIST special publication 800- 95 provides guidance on securing web
services when designing a service oriented architecture.

 » The research paper “Measuring Relative Attack Surfaces” by Howard,
Pincus and Wing, provides more information on the concept of Relative
Attack Surface Quotient (RASQ) computation.

 » More information on threat modeling software can be obtained from
Microsoft’s publication in their Secure Development Lifecycle blog.

 » The IETF RFCs 2743 and 2744 that is commonly referred to as the Generic
Security Service API (GSSAPI) gives guidance and information on how
to implement these APIs as a Security Support Provider Interface.

 » The chapter on “Bluesnarfing” in the Information Security Management
Handbook provides additional information on pervasive computing
threats and controls as it applies to the Bluetooth protocol.

 » (ISC)2’s whitepaper on “Security in the Skies: Cloud computing security
concerns, threats and controls” discusses the different types of clouds,
its characteristics and the controls that need to be designed and
implemented to mitigate the threats in cloud computing.

 » The “Notorious Nine” and “The Top threats to Cloud Computing”
publications by the Cloud Security Alliance (CSA) highlights the most
prevalent threats in cloud computing architectures and provides
recommendations to mitigate those threats.

 » More information on prevalent threats to mobile applications can be
obtained from the OWASP MobiSec project wiki.

 » Microsoft whitepaper “Understanding Anti-Malware Technologies” is
recommended reading as it provides information on the different types
of malware and techniques that can be designed to assure trustworthy
computing.

311

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

CSSLP_v2.indb 311 6/7/2013 5:40:44 PM

Summary and Conclusion

The benefits of designing security into the software
early are substantial and many. When you design
software, security should be in forefront and you should
take into consideration secure design principles to
assure confidentiality, integrity, and availability. Threat
modeling is to be initiated and conducted during
the design phase of the SDLC to determine entry and
exit points that an attacker could use to compromise
the software asset or the data it processes. Threat
models are useful to identify and prioritize controls
(safeguards) that can be designed, implemented (during
the development phase), and deployed. Software
architectures and technologies can be leveraged to
augment security in software. Design reviews from a
security perspective provide an opportunity to address
security issues without its being too expensive. No
software should enter the development phase of the
SDLC until security aspects have been designed into it.

312

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 312 6/7/2013 5:40:44 PM

313

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

1. During which phase of the software development lifecycle (SDLC) is
threat modeling initiated?

A. Requirements analysis
B. Design
C. Implementation
D. Deployment

2. Certificate Authority, Registration Authority, and Certificate
Revocation Lists are all part of which of the following?

A. Advanced Encryption Standard (AES)
B. Steganography
C. Public Key Infrastructure (PKI)
D. Lightweight Directory Access Protocol (LDAP)

3. The use of digital signatures has the benefit of providing which of the
following that is not provided by symmetric key cryptographic design?

A. Speed of cryptographic operations
B. Confidentiality assurance
C. Key exchange
D. Non-repudiation

4. When passwords are stored in the database, the best defense against
disclosure attacks can be accomplished using

A. encryption.
B. masking.
C. hashing.
D. obfuscation.

5. Nicole is part of the ‘author’ role as well as she is included in the
‘approver’ role, allowing her to approve her own articles before it is
posted on the company blog site. This violates the principle of

Review Questions

CSSLP_v2.indb 313 6/7/2013 5:40:45 PM

314

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

A. least privilege.
B. least common mechanisms.
C. economy of mechanisms.
D. separation of duties.

6. The primary reason for designing Single Sign On (SSO) capabilities is
to

A. increase the security of authentication mechanisms.
B. simplify user authentication.
C. have the ability to check each access request.
D. allow for interoperability between wireless and wired networks.

7. Database triggers are PRIMARILY useful for providing which of the
following detective software assurance capability?

A. Availability.
B. Authorization.
C. Auditing.
D. Archiving.

8. During a threat modeling exercise, the software architecture is reviewed
to identify

A. attackers.
B. business impact.
C. critical assets.
D. entry points.

9. A Man-in-the-Middle (MITM) attack is PRIMARILY an expression
of which type of the following threats?

A. Spoofing
B. Tampering
C. Repudiation
D. Information disclosure

10. IPSec technology which helps in the secure transmission of information
operates in which layer of the Open Systems Interconnect (OSI) model?

CSSLP_v2.indb 314 6/7/2013 5:40:45 PM

315

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

A. Transport.
B. Network.
C. Session.
D. Application.

11. When internal business functionality is abstracted into service oriented
contract based interfaces, it is PRIMARILY used to provide for

A. interoperability.
B. authentication.
C. authorization.
D. installation ease.

12. At which layer of the Open Systems Interconnect (OSI) model must
security controls be designed to effectively mitigate side channel
attacks?

A. Transport
B. Network
C. Data link
D. Physical

13. Which of the following software architectures is effective in distributing
the load between the client and the server, but since it includes the
client to be part of the threat vectors it increases the attack surface?

A. Software as a Service (SaaS).
B. Service Oriented Architecture (SOA).
C. Rich Internet Application (RIA).
D. Distributed Network Architecture (DNA).

14. When designing software to work in a mobile computing environment,
the Trusted Platform Module (TPM) chip can be used to provide
which of the following types of information?

A. Authorization.
B. Identification.
C. Archiving.
D. Auditing.

CSSLP_v2.indb 315 6/7/2013 5:40:45 PM

316

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

15. When two or more trivial pieces of information are brought together
with the aim of gleaning sensitive information, it is referred to as what
type of attack?

A. Injection.
B. Inference.
C. Phishing.
D. Polyinstantiation.

16. The inner workings and internal structure of backend databases can be
protected from disclosure using

A. triggers.
B. normalization.
C. views.
D. encryption.

17. Choose the BEST answer. Configurable settings for logging exceptions,
auditing and credential management must be part of

A. database views.
B. security management interfaces.
C. global files.
D. exception handling.

18. The token that is PRIMARILY used for authentication purposes in a
Single Sign (SSO) implementation between two different companies is

A. Kerberos
B. Security Assert Markup Language (SAML)
C. Liberty alliance ID-FF
D. One Time password (OTP)

19. Syslog implementations require which additional security protection
mechanisms to mitigate disclosure attacks?

A. Unique session identifier generation and exchange.
B. Transport Layer Security.
C. Digital Rights Management (DRM)
D. Data Loss Prevention,

CSSLP_v2.indb 316 6/7/2013 5:40:45 PM

317

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

20. Rights and privileges for a file can be granularly granted to each client
using which of the following technologies.

A. Data Loss Prevention (DLP).
B. Software as a Service (SaaS)
C. Flow control
D. Digital Rights Management (DRM) and

21. Which of the following is known to circumvent the ring protection
mechanisms in operating systems?

A. Cross Site Request Forgery (CSRF)
B. Coolboot
C. SQL Injection
D. Rootkit

22. When the software is designed using Representational State Transfer
(REST) architecture, it promotes which of the following good
programming practices?

A. High Cohesion
B. Low Cohesion
C. Tight Coupling
D. Loose Coupling

23. Which of the following components of the Java architecture is primarily
responsible to ensure type consistency, safety and assure that there are
no malicious instructions in the code?

A. Garbage collector
B. Class Loader
C. Bytecode Verfier
D. Java Security Manager

24. The primary security concern when implementing cloud applications
is related to

A. Insecure APIs
B. Data leakage and/or loss
C. Abuse of computing resources
D. Unauthorized access

CSSLP_v2.indb 317 6/7/2013 5:40:45 PM

318

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

25. The predominant form of malware that infects mobile apps is

A. Virus
B. Ransomware
C. Worm
D. Spyware

26. Most Supervisory Control And Data Acquisition (SCADA) systems
are susceptible to software attacks because

A. they were not initially implemented with security in mind
B. the skills of a hacker has increased significantly
C. the data that they collect are of top secret classification
D. the firewalls that are installed in front of these devices have been

breached.

CSSLP_v2.indb 318 6/7/2013 5:40:45 PM

319

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

References

.NET Type Safety. (2010, November 28). Exforsys. Retrieved March 6, 2013, from
http://www.exforsys.com/tutorials/csharp/.-net-type-safety.html

A Safer Online Experience. (n.d.). Microsoft Downloads. Retrieved March 6, 2013,
from bit.ly/12t0lzn

Abd Allah, M. M. (2011). Strengths and Weaknesses of Near Field Communication
(NFC) Technology. Global Journal of Computer Science and Technology, 11(3), 50-56.

Adams, G. (2008, October 8). 21st Century Mainframe Data Security: An Exercise
in Balancing Business Priorities | Enterprise Systems Media. Enterprise Systems Media.
Retrieved March 6, 2013, from http://enterprisesystemsmedia.com/article/21st-
century-mainframe-data-security-an-exercise-in-balancing-business-priorities

Aimonetti, M. (n.d.). Designing for Scalability. Ruby, Rails, MacRuby and
Related to Software Development. Retrieved March 6, 2013, from http://merbist.
com/2011/01/31/designing-for-scalability/

App Sandbox in OS X v10.7 Lion. (n.d.). Mac Developer Library. Retrieved March
6, 2013, from https://developer.apple.com/library/mac/#releasenotes/MacOSX/
WhatsNewInOSX/Articles/MacOSX10_7.html

App States and Multitasking. (n.d.). iOS App Programming Guide. Retrieved March
6, 2013, from http://bit.ly/GGzDpw

Bettini, A., & Price, M. (n.d.). Downloading from a Mobile App Store is Risky
Business. McAfee Labs. Retrieved March 6, 2013, from www.mcafee.com/us/
resources/white-papers/wp-downloading-apps-risky.pdf

Bettini, C. (2009). Location Privacy in RFID Applications. Privacy in Location-Based
Applications Research Issues and Emerging Trends (pp. 127-128). Berlin: Springer.

Bonsor, K., & Fenion, W. (n.d.). How RFID Works. HowStuffWorks “Electronics”.
Retrieved March 6, 2013, from http://electronics.howstuffworks.com/gadgets/high-
tech-gadgets/rfid.htm

CSSLP_v2.indb 319 6/7/2013 5:40:45 PM

http://www.mcafee.com/us/resources/white-papers/wp-downloading-apps-risky.pdf
http://merbist.com/2011/01/31/designing-for-scalability/
https://developer.apple.com/library/mac/#releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_7.html
http://bit.ly/12t0lzn

320

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Booth, D., Hass, H., McCabe, F., Newcomer, E., Champion, M., Ferris,
C., et al. (2004, November 4). Web Services Architecture. World Wide Web
Consortium (W3C). Retrieved March 6, 2013, from http://www.w3.org/TR/ws-
arch/#service_%20oriented_architecture

Box, D. (n.d.). .NET Security: The Security Infrastructure of the CLR. MSDN - the
Microsoft Developer Network. Retrieved March 6, 2013, from http://msdn.microsoft.
com/en-us/magazine/cc188939.aspx

Castillo, C. (2012, February 17). Android DIY DoS App Boosts Hacktivism in
South America. McAfee. Retrieved March 6, 2013, from http://blogs.mcafee.com/
mcafee-labs/android-diy-dos-app-boosts-hacktivism-in-south-america

Chickowski, E. (2010, October 5). ‘Man In The Mobile’ Attacks Highlight
Weaknesses In Out-Of-Band Authentication. Dark Reading. Retrieved March 6,
2013, from http://www.darkreading.com/security/news/227700141/

Cloud Security Alliance warns Providers of â€˜The Notorious Nineâ€™ Cloud
Computing Top Threats in 2013. (2013, February 25). Cloud Security Alliance (CSA).
Retrieved March 6, 2013, from https://cloudsecurityalliance.org/csa-news/ca-warns-
providers-of-the-notorious-nine-cloud-computing-top-threats-in-2013/

Cochran, M. (2008, February 15). Writing Better Code -- Keepin’ it Cohesive. C#
Corner. Retrieved March 6, 2013, from http://www.c-sharpcorner.com/uploadfile/
rmcochran/writing-better-code-keepin-it-cohesive/

Coyle, K. (2003, November 19). The Technology of Rights: Digital Rights
Management. www.kcoyle.net. Retrieved March 6, 2013, from www.kcoyle.net/drm_
basics.pdf

Database Security. (n.d.). Oracle Documentation. Retrieved March 6, 2013, from
http://bit.ly/YZhKJV

Defining Identity Management. (n.d.). Identity And Access Management Solutions from
Hitachi ID Systems. Retrieved March 6, 2013, from http://hitachi-id.com/identity-
manager/docs/identity-management-defined.html

Demman, J. A. (2013, February 11). Client-side injection attacks - Top ten threats
to mobile enterprise security. SearchSoftwareQuality.com. Retrieved March 6, 2013,
from http://searchsoftwarequality.techtarget.com/photostory/2240177843/Top-ten-
threats-to-mobile-enterprise-security/5/Client-side-injection-attacks

Description of the database normalization basics. (n.d.). Microsoft Support. Retrieved
March 6, 2013, from http://support.microsoft.com/kb/283878

CSSLP_v2.indb 320 6/7/2013 5:40:45 PM

http://www.c-sharpcorner.com/uploadfile/rmcochran/writing-better-code-keepin-it-cohesive/
http://www.kcoyle.net/drm_basics.pdf
http://msdn.microsoft.com/en-us/magazine/cc188939.aspx
http://blogs.mcafee.com/mcafee-labs/android-diy-dos-app-boosts-hacktivism-in-south-america
http://SearchSoftwareQuality.com

321

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

Elkstein, M. (n.d.). Learn REST: A Tutorial. Blogger. Retrieved March 6, 2013, from
http://rest.elkstein.org

FAQs: Extended Validation and SSL Certificates. (n.d.). NetworkSolutions. Retrieved
March 6, 2013, from http://www.networksolutions.com/help/ev-certs-faqs.jsp

Failover Cluster. (n.d.). MSDN - the Microsoft Developer Network. Retrieved March 6,
2013, from http://msdn.microsoft.com/en-us/library/ff650328.aspx

Federation, SAML, and Web Services. (Chapter 5). (n.d.). Sun Java System Access
Manager 7.1 Technical Overview. Retrieved March 6, 2013, from http://docs.oracle.
com/cd/E19462-01/819-4669/

Fei, F. (2007, February 10). Managed Code Vs Unmanaged Code?. Visual Studio -
Forum. Retrieved March 6, 2013, from http://social.msdn.microsoft.com/Forums/
en-US/csharpgeneral/thread/a3e28547-4791-4394-b450-29c82cd70f70/

Fogarty, K. (2009, May 13). Server Virtualization: Top Five Security Concerns. CIO.
com. Retrieved March 6, 2013, from http://www.cio.com/article/492605/Server_
Virtualization_Top_Five_Security_Concerns

Gonsalves, A. (2013, January 4). Mobile devices set to become next DDoS attack
tool - CSO Online - Security and Risk . CSO Online - Security and Risk . Retrieved
March 6, 2013, from http://www.csoonline.com/article/725382/mobile-devices-set-
to-become-next-ddos-attack-tool

Grossman, J. (n.d.). Seven Business Logic Flaws that put your Website at Risk.
Whitehat Security. Retrieved March 6, 2013, from https://www.whitehatsec.com/
resource/whitepapers/business_logic_flaws.html

Housley, R., Polk, W., Ford, W., & Solo, D. (n.d.). Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile. IETF
RFC 3280. Retrieved March 6, 2013, from www.ietf.org/rfc/rfc3280.txt

Insecure Handling of URL Schemes in Apple’s iOS. (2010, November 8). SANS
Institute. Retrieved March 6, 2013, from http://software-security.sans.org/
blog/2010/11/08/insecure-handling-url-schemes-apples-ios/

Java and Java Virtual Machine security vulnerabilities and their exploitation
techniques. (2002, September 2). Blackhat Asia. Retrieved March 6, 2013, from
www.blackhat.com/presentations/bh-asia-02/LSD/bh-asia-02-lsd-article.pdf

Johnson, K. (2011, November 2). Common mobile app vulnerabilities.
Carnal0wnage & Attack Research Blog. Retrieved March 6, 2013, from http://
carnal0wnage.attackresearch.com/2011/11/common-mobile-app-vulnerabilities.html

CSSLP_v2.indb 321 6/7/2013 5:40:45 PM

http://www.cio.com/article/492605/Server_Virtualization_Top_Five_Security_Concerns
https://www.whitehatsec.com/resource/whitepapers/business_logic_flaws.html
http://docs.oracle.com/cd/E19462-01/819-4669/
http://social.msdn.microsoft.com/Forums/en-US/csharpgeneral/thread/a3e28547-4791-4394-b450-29c82cd70f70/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://CIO.com

322

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Kaushik, N. (2008, March 21). Virtual Directories + Provisioning = No more
Metadirectory. Talking Identity. Retrieved March 6, 2013, from http://blog.
talkingidentity.com/2008/03/virtual_directories_provisioni.html

Kent, K., & Souppaya, M. (n.d.). Guide to Computer Security Log Management.
NIST SP 800-92. Retrieved March 6, 2013, from csrc.nist.gov/publications/
nistpubs/800-92/SP800-92.pdf

Kohno, T. (2004, May 12). Analysis of an Electronic Voting System. IEEE Xplore.
Retrieved March 6, 2013, from http://bit.ly/ZtfDha

LaPorte, P. (2009, March 20). Emerging Market: Data Loss Prevention Gets SaaS-y.
E-Commerce Times. Retrieved March 6, 2013, from http://www.ecommercetimes.
com/rsstory/66562.html

Logging Cheat Sheet. (n.d.). OWASP. Retrieved March 6, 2013, from https://www.
owasp.org/index.php/Logging_Cheat_Sheet

Logon and Authentication Technologies. (n.d.). Techet. Retrieved March 6, 2013,
from http://technet.microsoft.com/en-us/library/cc780455(WS.10).aspx

Manage Trigger Security. (n.d.). Microsoft Developer Network (MSDN). Retrieved
March 6, 2013, from http://msdn.microsoft.com/en-us/library/ms191134.aspx

Manage your mobile enterprise more efficiently. (n.d.). IBM MobileFirst Management.
Retrieved March 6, 2013, from http://www.ibm.com/mobilefirst/us/en/why-ibm-for-
mobile/manage-and-secure.html

Marshall, A., & Lee, T. (2010). Wireless and Security Issues in Pervasive Computing.
IEEE Explore, Genetic and Evolutionary Computing (ICGEC), 509-512.

McMillan, R. (2010, September 14). Siemens: Stuxnet worm hit industrial systems.
Computerworld. Retrieved March 6, 2013, from http://www.computerworld.com/s/
article/print/9185419/Siemens_Stuxnet_worm_hit_industrial_systems

Meier, J., Mackman, A., Dunner, M., Vasireddy, S., Escamilla, R., & Murukan, A.
(n.d.). Architecture and Design Review for Security. Microsoft Developer Network
(MSDN). Retrieved March 6, 2013, from http://bit.ly/16aQXPU

Messmer, E. (2009, December 22). Virtualization Security remains a Work in
Progress. Network World. Retrieved March 6, 2013, from http://www.networkworld.
com/news/2009/122209-outlook-virtualization-security.html

CSSLP_v2.indb 322 6/7/2013 5:40:45 PM

http://www.ecommercetimes.com/rsstory/66562.html
https://www.owasp.org/index.php/Logging_Cheat_Sheet
http://www.computerworld.com/s/article/print/9185419/Siemens_Stuxnet_worm_hit_industrial_systems
http://www.networkworld.com/news/2009/122209-outlook-virtualization-security.html
http://blog.talkingidentity.com/2008/03/virtual_directories_provisioni.html
http://technet.microsoft.com/en-us/library/cc780455(WS.10).aspx
http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf

323

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

Mobile App Top 10. (n.d.). Application Security Testing. Retrieved March 6, 2013,
from http://www.veracode.com/directory/mobileapp-top-10.html#5

Musthaler, L. (2007, March 12). Entitlement Management, the Next Security Wave.
Network World. Retrieved March 6, 2013, from http://bit.ly/Vdn0cx

Near Field Communication in SmartPhones. (n.d.). Service Centric Network (SNET).
Retrieved March 6, 2013, from bit.ly/VHckoT

Newman, R. C. (2010). Computer Security: Protecting Digital Resources. Sudbury,
Mass.: Jones and Bartlett Publishers.

O’Donnell, A. (n.d.). Is Jailbreaking Your iPhone Safe?. About.com - Internet/
Network Security. Retrieved March 6, 2013, from http://netsecurity.about.com/od/
iphoneipodtouchapps/a/Is-Jailbreaking-Your-iPhone-Safe.htm

O’Neill, D. (1980). The Management of Software Engineering. Parts I-V. IBM
Systems Journal, 19(4), 414-77.

Overview of Out of Band Management. (2009, October 1). TechNet. Retrieved
March 6, 2013, from http://technet.microsoft.com/en-us/library/cc161963.aspx

Panhelainen, A. (n.d.). Security in Integration and Enterprise Service Bus (ESB).
OWASP. Retrieved March 6, 2013, from https://www.owasp.org/images/3/3b/
Security_in_integration_and_ESB-OWASP_20091020.pdf

Paul, M. (n.d.). Security in the Skies: Cloud computing security concerns, threats
and controls. (ISC)2. Retrieved March 6, 2013, from https://www.isc2.org/
uploadedFiles/(ISC)2_Public_Content/Certification_Programs/CSSLP/Cloud%20
computing%20security%20concerns.pdf

Pervasive Computing Program. (n.d.). Information Technology Laboratory. Retrieved
March 6, 2013, from www.itl.nist.gov/pervasivecomputing.html

Pervasive and Mobile Computing. (n.d.). Elseiver. Retrieved March 6, 2013, from
www.journals.elsevier.com/pervasive-and-mobile-computing/

Pettey, C. (2007, April 3). Organizations That Rush to Adopt Virtualization Can
Weaken Security. Gartner Inc.. Retrieved March 6, 2013, from http://www.gartner.
com/newsroom/id/503192

Phelps, J. R., & Chuba, M. (2005, July 29). IBM Targets Security Issues With Its
New Mainframe. Gartner Inc.. Retrieved March 6, 2013, from http://www.gartner.
com/id=483776

CSSLP_v2.indb 323 6/7/2013 5:40:45 PM

https://www.owasp.org/images/3/3b/Security_in_integration_and_ESB-OWASP_20091020.pdf
https://www.isc2.org/uploadedFiles/(ISC)2_Public_Content/Certification_Programs/CSSLP/Cloud%20computing%20security%20concerns.pdf
http://www.gartner.com/newsroom/id/503192
http://www.gartner.com/id=483776
http://netsecurity.about.com/od/iphoneipodtouchapps/a/Is-Jailbreaking-Your-iPhone-Safe.htm
http://About.com
http://bit.ly/VHckoT

324

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Rajmohan., Choudhary, R., & Das, S. (n.d.). Security Challenges in Mobile Enabled
Enterprises. Tata Consultancy Services. Retrieved March 6, 2013, from bit.ly/Zg4FOj

Reed, D. (2003, November 21). Applying the OSI Seven Layer Network Model
to Information Security. SANS. Retrieved March 6, 2013, from www.sans.org/
reading_room/whitepapers/protocols/applying-osi-layer-network-model-information-
security_1309

SDL Threat Modeling Tool. (n.d.). Microsoft Corporation. Retrieved March 6, 2013,
from http://www.microsoft.com/security/sdl/adopt/threatmodeling.aspx

Securing Data at Rest: Developing a Database Encryption Strategy. (n.d.). RSA
Security, Inc.. Retrieved March 6, 2013, from www.rsa.com/products/bsafe/
whitepapers/DDES_WP_0702.pdf

Security in Telecommunications and Information Technology. (n.d.). International
Telecommunications Union (ITU). Retrieved March 6, 2013, from http://www.itu.int/
pub/T-HDB-SEC.03-2006/en

Service Organization Control (SOC) Reports. (n.d.). American Institute of CPAs
(AICPA). Retrieved March 6, 2013, from http://www.aicpa.org/InterestAreas/FRC/
AssuranceAdvisoryServices/Pages/SORHome.aspx

Shuler, R. (n.d.). Mobile Application Architecture Whitepaper. The Shulers. Retrieved
March 6, 2013, from http://www.theshulers.com/whitepapers/mobile_architecture/
index.html

Singhal, A., Winograd, T., & Scarfone, K. (n.d.). Guide to Securing Web Services.
NIST SP 800-95. Retrieved March 6, 2013, from csrc.nist.gov/publications/
nistpubs/800-95/SP800-95.pdf

Sok, P. (n.d.). Pervasive computing and its Security Issues. Slideshare. Retrieved
March 6, 2013, from http://www.slideshare.net/sokphearin/pervasive-computing-
and-its-security-issues

Stanford, V. (2002). Pervasive health care applications face tough security challenges.
IEEE Pervasive Computing, 1(2), 8-12.

Stephens, R. K., Plew, R. R., & Jones, A. (2008). The normalization process. Sams
Teach yourself SQL in 24 hours (4th ed., pp. 61-71). Indianapolis, Ind.: Sams.

Stoneburner, G., Hayden, C., & Feringa, A. (n.d.). Engineering Principles for
Information Technology Security (A Baseline for Achieving Security), Revision

CSSLP_v2.indb 324 6/7/2013 5:40:45 PM

www.sans.org/reading_room/whitepapers/protocols/applying-osi-layer-network-model-informationsecurity_1309
http://www.rsa.com/products/bsafe/whitepapers/DDES_WP_0702.pdf
http://www.itu.int/pub/T-HDB-SEC.03-2006/en
http://www.aicpa.org/InterestAreas/FRC/AssuranceAdvisoryServices/Pages/SORHome.aspx
http://www.theshulers.com/whitepapers/mobile_architecture/index.html
http://csrc.nist.gov/publications/nistpubs/800-95/SP800-95.pdf
http://bit.ly/Zg4FOj

325

Domain 3: Secure Software Design

3

Secure Softw
are D

esign

A. NIST SP 800-27A. Retrieved March 6, 2013, from csrc.nist.gov/publications/
nistpubs/800-27A/SP800-27-RevA.pdf

Syslog. (n.d.). Event and Log Management - Logged. Retrieved March 6, 2013, from
http://www.syslog.org/

The JavaÂ® Virtual Machine Specification. (n.d.). Oracle Documentation. Retrieved
March 6, 2013, from http://docs.oracle.com/javase/specs/jvms/se7/html/index.html

The New Threat Modeling Process - The Security Development Lifecycle . (2007,
October 1). MSDN Blogs. Retrieved March 6, 2013, from http://blogs.msdn.com/b/
sdl/archive/2007/10/01/the-new-threat-modeling-process.aspx

Tomhave, B. (2008). Key management: The key to encryption. EDPACS: The EDP
Audit, Control, and Security Newsletter, 38(4), 12-19.

Top Threats to Cloud Computing V1.0. (n.d.). Cloud Security Alliance (CSA).
Retrieved March 6, 2013, from https://cloudsecurityalliance.org/topthreats/
csathreats.v1.0.pdf

Triggers. (n.d.). Oracle Database Concepts. Retrieved March 6, 2013, from bit.ly/
XNTcUG

Understanding Anti-Malware Technologies. (n.d.). Microsoft Downloads. Retrieved
March 6, 2013, from bit.ly/169tTkz

Vizard, M. (2012, December 27). McAfee Labs Identifies Major Security Threats
for 2013. ITBusinessEdge.com. Retrieved March 6, 2013, from http://www.
itbusinessedge.com/blogs/it-unmasked/mcafee-labs-identifies-major-security-threats-
for-2013.html

Watch, I. T. (2013, February 25). 9 top threats to cloud computing security.
InfoWorld. Retrieved March 6, 2013, from http://www.infoworld.com/print/213428

What is Cache Server?. (n.d.). Whatis.com. Retrieved March 6, 2013, from http://
whatis.techtarget.com/definition/cache-server

What is Sensor Network?. (n.d.). Whatis.com. Retrieved March 6, 2013, from http://
searchdatacenter.techtarget.com/definition/sensor-network

What is Sideloading?. (n.d.). TechTarget - SearchConsumerization.com. Retrieved
March 6, 2013, from http://searchconsumerization.techtarget.com/definition/
sideloading

CSSLP_v2.indb 325 6/7/2013 5:40:45 PM

http://www.itbusinessedge.com/blogs/it-unmasked/mcafee-labs-identifies-major-security-threats-for-2013.html
http://blogs.msdn.com/b/sdl/archive/2007/10/01/the-new-threat-modeling-process.aspx
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
http://searchconsumerization.techtarget.com/definition/sideloading
http://csrc.nist.gov/publications/nistpubs/800-27A/SP800-27-RevA.pdf
http://ITBusinessEdge.com
http://Whatis.com
http://Whatis.com
http://SearchConsumerization.com
http://bit.ly/169tTkz
http://bit.ly/XNTcUG

326

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Williams, J. (2008, April 8). The trinity of RIA security explained. The Register.
Retrieved March 6, 2013, from http://www.theregister.co.uk/2008/04/08/ria_
security/

Xiao, Y. (2007). Security in Distributed, Grid, Mobile, and Pervasive Computing. Boca
Raton: Auerbach Publications.

Zeldovich, N. (n.d.). Securing Untrustworthy Software Using Information Flow
Control. Standford University. Retrieved March 6, 2013, from www.scs.stanford
.edu/~nickolai/papers/zeldovich-thesis-phd.pdf

Zhu, B., Joseph, A., & Sastry, S. (n.d.). A Taxonomy of Attacks on SCADA Systems.
Department of Electrical Engineering and Computer Sciences. Retrieved March 6, 2013,
from http://bit.ly/YOJgY9

CSSLP_v2.indb 326 6/7/2013 5:40:45 PM

http://www.theregister.co.uk/2008/04/08/ria_security/
http://www.scs.stanford.edu/~nickolai/papers/zeldovich-thesis-phd.pdf

327

Domain 4

Secure Software
Implementation/Coding

ALTHOUGH SOFTWARE ASSURANCE is more than just writing secure code,

writing secure code is an important and critical component to ensuring

the resiliency of software security controls. Reports in full disclosure and

security mailing lists are evidence that software written today are rife with

vulnerabilities that can be exploited. A majority of these weaknesses can

be attributed to insecure software design and/or implementation and it is

vitally important that software that is written is first and foremost reliable,

and secondly less prone to attack and resilient when it is. Successful hackers

today are identified as individuals who have a thorough understanding

of programming. It is therefore imperative that software developers

who write code must also have a thorough understanding of how their

code can be exploited, so that they can effectively protect their software

and data. Today’s security landscape calls for software developers who

additionally have a security mindset. This chapter will cover the basics of

programming concepts; delve into topics that discuss common software

coding vulnerabilities and defensive coding techniques and processes;

cover code analysis and code protection techniques and finally discuss

build environment security considerations that are to be factored into the

software that is written.

CSSLP_v2.indb 327 6/7/2013 5:40:45 PM

328

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Topics

 ■ Declarative versus Imperative (Programmatic) Security

 ■ Vulnerability Databases/Lists (e.g., O WASP Top 10, CWE)

 ■ Defensive Coding Practices and Controls
 à Concurrency
 à Configuration
 à Cryptography
 à Output Sanitization (e.g., Encoding)
 à Error Handling
 à Input Validation
 à Logging & Auditing
 à Session Management
 à Exception management
 à Safe APIs
 à Type Safety
 à Memory Management (e.g., locality, garbage collection)
 à Configuration Parameter Management

(e.g., start-up variables, cryptographic agility)
 à Tokenizing
 à Sandboxing

 ■ Source Code and Versioning

 ■ Development and Build environment (e.g., build tools,
automatic build script)

 ■ Code/Peer Review

 ■ Code Analysis (e.g., static, dynamic)

 ■ Anti-tampering Techniques (e.g.. code signing, obfuscation)

CSSLP_v2.indb 328 6/7/2013 5:40:45 PM

329

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

Objectives

As a CSSLP, you are expected to:

 ■ Have a thorough understanding on the fundamentals of
programming

 ■ Be familiar with the different types of software
development methodologies

 ■ Be familiar with common software attacks and means by
which software vulnerabilities can be exploited

 ■ Be familiar with defensive coding principles and code
protection techniques

 ■ Know how to implement safeguards and countermeasures
using defensive coding principles

 ■ Know the difference between static and dynamic analysis of
code

 ■ Know how to conduct a code/peer review

 ■ Be familiar with how to build the software with security
protection mechanisms in place

This chapter will cover each of these objectives in detail. It is
imperative that you fully understand the objectives and be familiar
with how to apply them in the software that your organization builds.

CSSLP_v2.indb 329 6/7/2013 5:40:46 PM

Who is to be Blamed for Insecure Software?
Although it may seem that the responsibility for insecure software lies primarily
on the software developers who write the code, opinions vary and the debate
on who is ultimately responsible for a software breach is ongoing. Holding the
coder solely responsible would be unreasonable since software is not developed
in a silo. Software has many stakeholders as depicted in Figure 4.1 and eventually
all play a crucial role in the development of secure software. Ultimately it is the
organization (or company) that will be blamed for software security issues and
such a state cannot be ignored.

Fundamental Concepts of Programming
Who is a programmer? What is their most important skill? A programmer is
essentially one who uses their technical know-how and skills to solve problems that
the business has. The most important skills a programmer (used synonymously
with a coder) has is problem solving. They use their skills to construct business
problem solving programs (software) to automate manual processes, improving
the efficiency of the business. Programmers use programming languages to write
programs. In the following section we will learn about computer architecture,
types of programming languages and code, and program utilities such as
assembler, compilers and interpreters. We will also briefly learn about input
validation and canonicalization which are two important programming aspects

Figure 4.1 – Software Lifecycle Stakeholders

330

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 330 6/7/2013 5:40:46 PM

Computer Architecture
Most modern day computers are primarily composed of the computer processor,
system memory, and Input/Output (I/O) devices. Figure 4.2 depicts a simplified
illustration of modern day computer architecture.

The computer processor is more commonly known as the central processing
unit (CPU). The CPU is made up of the

 ■ Arithmetic Logic Unit (ALU) which is a specialized circuit that is
used to perform mathematical and logical operations on the data.

 ■ Control unit which acts as a mediator controlling processing
instructions. The control unit itself does not execute any instructions
but instructs and directs other parts of the system such as the
registers to do so.

 ■ Registers which are specialized internal memory holding spaces
within the processor itself. These are temporary storage areas for
instruction or data and they provide the advantage of speed.

Because the CPU registers have only limited memory space, memory is
augmented by system memory and secondary storage devices such as the hard
disks, digital video disks (DVDs), compact disks (CD) and USB keys/fobs. The
system memory is also commonly known as Random Access Memory (RAM).
The RAM is the main component with which the CPU communicates. Input/
Output devices are used by the computer system to interact with external
interfaces. Some common examples of input devices include keyboard, mouse,
etc. and some common examples of output devices include the monitor, printers,
etc. The communication between each of these components is via a gateway
channel that is called the Bus.

Figure 4.2 – Computer Architecture

331

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 331 6/7/2013 5:40:46 PM

The CPU, at its most basic level of operation, processes data based on binary
codes that are internally defined by the processor chip manufacturer. These
instruction codes are made up of several operational codes called Opcodes. These
opcodes tell the CPU what functions it can perform. For a software program to
run, it reads instruction codes and data that are stored in the computer system
memory and performs the intended operation on the data. The first thing that
needs to happen is that the instruction and data are loaded on to the system
memory from an input device or a secondary storage device. Once this happens,
the CPU does the following four functions for each instruction:

 ■ Fetching – The control unit gets the instruction from system
memory. The location of each instruction and data in system
memory is identified by a unique address and the control unit uses
the memory address to get the program instruction. The instruction
pointer is used by the processor to keep track of which instruction
codes have been processed and which ones are to be processed
subsequently. The data pointer keeps track of where the data area in
stored in the computer memory, i.e., it points to the memory address.

 ■ Decoding – The control unit deciphers the instruction and directs
the needed data to be moved from system memory onto the ALU.

 ■ Execution – Control moves from the control unit to the ALU and
the ALU performs the mathematical or logical operation on the data

 ■ Storing – The ALU stores the result of the operation in memory or
in a register. The control unit finally directs the memory to release
the result to an output device or a secondary storage device.

The fetch-decode-execute-store cycle is also known as the machine cycle. A
basic understanding of this process is necessary for a CSSLP because they need
to be aware of what happens to the code that is written by a programmer at the
machine level.

When the software program executes, the program allocates storage space in
memory so that the program code and data can be loaded and processed as the
programmer intended it to be. The CPU registers are used to store the most
immediate data; the compilers use the registers to cache frequently used function
values and local variables that are defined in the source code of the program.
However since there are only a limited number of registers, most programs,
especially the large ones, place their data values on the system memory (RAM)
and use these values by referencing their unique addresses. Internal memory
layout has the following segments: program text, data, stack and heap as depicted

332

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 332 6/7/2013 5:40:46 PM

in Figure 4.3. Physically the stack and the heap are allocated areas on the RAM.
The allocation of storage space in memory (also known as a memory object) is
called instantiation. Program code uses the variables defined in the source code
to access memory objects.

The series of execution instructions (program code) is contained in the
program text segment. The next segment is the read-write data segment which
is the area in memory that contains both initialized and uninitialized global
data. Function variables, local data and some special register values such as the
Execution Stack Pointer (ESP) are placed on the stack part of the RAM. The
ESP points to the memory address location of the currently executing program
function. Variable sized objects and objects that are too large to be placed on the
stack are dynamically allocated on the heap part of the RAM. The heap provides
the ability to run more than one process at a time but for the most part with
software, memory attacks on the stack is most prevalent.

The stack is an area of memory that is used to store function arguments and
local variables and it is allocated when a function in the source code is called
to execute. When the function execution begins, space is allocated (pushed)
on the stack and when the function terminates, the allocated space is removed
(popped off) the stack. This is known as the PUSH and POP operation. The
stack is managed a LIFO (last in, first out) data structure. This means that when
a function is called, memory is first allocated in the higher addresses and used

Figure 4.3 – Memory Layout

333

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 333 6/7/2013 5:40:46 PM

first. The PUSH direction is from higher memory addresses to lower memory
addresses and the POP direction is from lower memory addresses to higher
memory addresses. This is important to understand because the execution stack
pointer moves from higher memory to lower memory addresses and without
proper management, serious security breaches can be evident.

Software hackers often have a thorough understanding of this machine cycle
and how memory management happens, and without appropriate protection
mechanisms in place, they can circumvent higher level security controls by
manipulating instruction and data pointers at the lowest level as is the case with
memory buffer overflow attacks and reverse engineering. These will be covered
later in this chapter under the section about common software vulnerabilities
and countermeasures.

Evolution of Programming Languages
Knowledge of all the processor instruction codes can be extremely onerous on a
programmer, if at all even humanly possible. Even an extremely simple program
would require the programmer to write lines of code that manipulate data using
opcodes, and in a fast paced day and age where speed of delivery is critically
important for the success of business, software programs like any other product
cannot take an inordinate amount of time. To ease programmer’s effort and
shorten the time to delivery of software development, simpler programming
languages that abstract the raw processor instruction codes have been developed.
There are many programming languages that exist today.

Software developers use a programming language to create programs and
they can choose a low-level programming language. A low-level programming
language is a language that is closely related to the hardware (CPU) instruction
codes. It offers little to no abstraction from the language that the machine
understands which is binary codes (0’s and 1’s). When there is no abstraction
and the programmer writes code in 0’s and 1’s to manipulate data and processor
instructions, which is a rarity, it is machine language in which they are coding.
However, the most common low-level programming language today is the
assembly language which offers little abstraction from the machine language
using opcodes. Appendix B has a listing of the common opcodes used in Assembly
language for abstracting processor instruction codes in an Intel 80186 or higher
microprocessor (CPU) chip. Machine language and assembly language are both
examples of low-level programming languages. An assembler converts assembly
code into machine code.

334

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 334 6/7/2013 5:40:46 PM

In contrast, high-level programming languages (HLL) isolate program
execution instruction details and computer architecture semantics from the
program’s functional specification itself. High-level programming languages
abstract raw processor instruction codes into a notation that the programmer
can easily understand. The specialized notation with which a programmer
abstracts low level instruction codes is called the syntax and each programming
language has its own syntax. This way, the programmer is focused on writing
code that addresses business requirements instead of being concerned with
how to manipulate instruction and data pointers at the microprocessor level.
This makes software development certainly simpler and the software program
more easily understandable. It is however important to recognize that with the
evolution of programming languages and integrated development environments
(IDE) and tools that facilitate the creation of software programs, even
professionals lacking the internal knowledge of how their software program
will execute at the machine level are now capable of developing software. This
can be seriously damaging from a security standpoint, because software creators
may not necessarily understand or be aware of the protection mechanisms and
controls that need to be developed and therefore inadvertently leave them out.

Today, the evolution of programming languages have given us goal oriented
programming languages which are also known as very high-level programming
languages (VHLL). The level of abstraction in some of the VHLL have been
so increased that the syntax for programming in these VHLL is like writing in
English. Additionally, languages such as the Natural language offer even greater
abstraction and are based on solving problems using logic based on constraints
given to the program instead of using the algorithms written in code by the

Figure 4.4 – Programming Languages

335

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 335 6/7/2013 5:40:46 PM

software programmer. Natural languages are infrequently used in business
settings and are also known as logic programming languages or constraint-based
programming languages.

Figure 4.4 illustrates the evolution of programming languages starting with
the low-level machine language to the VHLL natural language.

The syntax that a programmer writes their program code in is the source
code. Source code needs to be converted into a set of instruction codes that the
computer can understand and process. The code that the machine understands
is the machine code which is also known as native code. In some cases, instead
of converting the source code into machine code, the source code is simply
interpreted and run by a separate program. Depending on how the program is
executed on the computer, HLL can be categorized into compiled languages and
interpreted languages.

Compiled Languages
The predominant form of programming languages are compiled languages.
Examples include COBOL, Fortran, BASIC, Pascal, C, C++ and Visual Basic.
The source code that the programmer writes is converted into machine code.
The conversion itself is a two-step process as depicted in Figure 4.5 that includes
two sub-processes, viz. compilation and linking.

 ■ Compilation is the process of converting textual source code
written by the programmer into raw processor specific instruction
codes. The output of the compilation process is called the object
code which is created by the compiler program. In short, compiled
source code is the object code. The object code itself cannot be
executed by the machine unless it has all the necessary code files
and dependencies provided to the machine.

 ■ Linking is the process of combining the necessary functions,
variables and dependencies files and libraries required for the
machine to run the program. The output that results from the
linking process is the executable program or machine code/file that
the machine can understand and process. In short, linked object
code is the executable. Link editors that combine object codes are
known as linkers. Upon the completion of the compilation process,
the compiler invokes the linker to perform its function.

There are two types of linking: static linking and dynamic linking.
When the linker copies all functions, variables and libraries needed
for the program to run, into the executable itself, it is referred to

336

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 336 6/7/2013 5:40:46 PM

as static linking. Static linking offers the benefit of faster processing
speed and ease of portability and distribution because the required
dependencies are present within the executable itself. However,
based on the size and number of other dependencies files, the final
executable can be bloated and appropriate space considerations
needs to be taken. Unlike static linking, in dynamic linking only
the names and respective locations of the needed object code files
are placed in the final executable and actual linking does not happen
until runtime when both the executable and the library files are
placed in memory. Though this requires less space, dynamically
linked executables can face issues that relate to dependencies if they
cannot be found at run time. Dynamic linking should be chosen
only after careful consideration to security is given, especially if the
linked object files are supplied from a remote location and are open
source in nature. A hacker can maliciously corrupt a dependent
library and when they are linked at runtime, they can compromise
all programs that are dependent on that library.

Interpreted Languages
While programs written in compiled languages can be directly run on the
processor, interpreted languages have the need for an intermediary host program
to read and execute each statement of instruction line by line. The source code is
not compiled or converted into processor-specific instruction codes. Common
examples of interpreted languages include REXX, PostScript, Perl, Ruby and
Python. Programs written in interpreted languages are slower in execution
speed but they provide the benefit of quicker changes because there is no need
for re-compilation and re-linking as is the case with those written in compiled
languages.

Figure 4.5 - Compilation and Linking

337

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 337 6/7/2013 5:40:46 PM

Hybrid Languages
To leverage the benefits provided by compiled languages and interpreted
languages, there is also a combination (hybrid) of both compiled and interpreted
languages. In this, the source code is compiled into an intermediate stage which
resembles object code. The intermediate stage code is then interpreted as required.
Java is a common example of a hybrid language. In Java, the intermediate stage
code that results upon compilation of source code is known as the byte code.
The byte code resembles processor instruction codes but it cannot be executed
as such. It requires an independent host program that runs on the computer to
interpret the byte code and the Java Virtual Machine (JVM) provides this for
Java. In .Net programming languages, the source code is compiled into what
is known as the Common Intermediate Language (CIL), formerly known as
Microsoft Intermediate Language (MSIL). At run time, the Common Language
Runtime’s (CLR) just in time compiler converts the CIL code into native code,
which is then executed by the machine.

338

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 338 6/7/2013 5:40:46 PM

Common Software Vulnerabilities and Controls
While secure software is the result of a confluence between people, process
and technology, in this chapter, we will primarily focus on the technology and
process aspects of writing secure code. We will learn about the most common
vulnerabilities that result from insecure coding; how an attacker can exploit those
vulnerabilities; understand the anatomy of the attack itself and discuss security
controls that must be put in place (in the code) to resist and thwart actions of
threat agents.

Nowadays most of the reported incidents of security breaches seem to have
one thing in common- they are attacks that exploited some weakness in the
software layer. Analysis of the breaches invariably indicates one of the following
to be the root cause of the breach: design flaws, coding (implementation) issues,
improper configuration and operations, with the prevalence of attacks exploiting
software coding weaknesses.

Vulnerability databases are repositories of discovered and known vulnerabilities
that have been observed to impact computer systems and software. Most of the
vulnerabilities have been found to be the result of deficiencies and defects in
implemented software (e.g., flaws and bugs). These databases include in them, the
name of the vulnerability that can be exploited if not addressed, the description
of the vulnerability, how exploitable it is, the potential impact upon breach and
the mitigation recommendations (i.e., controls) to address the vulnerability.

Some well-known and useful examples of vulnerability databases and tracking
systems are:

 ■ The National Vulnerability Database (NVD) - is a U.S. government
repository of vulnerabilities and vulnerability management data. This
data is represented using the Security Content Automation Protocol
(SCAP) as a interoperable specifications that enable automation of
vulnerability management, security measurement and compliance.
The NVD includes security checklists, security related software flaws,
misconfigurations of products, products affected and impact metrics

 ■ US Computer Emergency Response Team (CERT) Vulnerability
Notes Database - The CERT vulnerability analysis project aims at
reducing security risks due to software vulnerabilities in both developed
and deployed software. In software that is being developed, they focus
on vulnerability discovery and in software that is already deployed,
on vulnerability remediation. Newly discovered vulnerabilities are
added to the Vulnerability Notes Database. Existing ones are updated
as needed.

339

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 339 6/7/2013 5:40:47 PM

 ■ Open Source Vulnerability Database – An independent and open
source database that is created by and for the security community,
with the goal of providing accurate, detailed, current and unbiased
technical information on security vulnerabilities.

Table 4.1 – OWASP Top 10

340

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Application Security Risks Description

1 Injection Injection flaws, such as SQL, OS, and LDAP injection, occur when
untrusted data is sent to an interpreter as part of a command or
query. The attacker’s hostile data can trick the interpreter into
executing unintended commands or accessing unauthorized data.

2 Broken Authentication and
Session Management

Application functions related to authentication and session
management are often not implemented correctly, allowing
attackers to compromise passwords, keys, session tokens, or exploit
implementation flaws to assume other users’ identities.

3 Cross Site Scripting (XSS) XSS flaws occur whenever an application takes untrusted data and
sends it to a web browser without proper validation and escaping. XSS
allows attackers to execute script in the victim’s browser which can hijack
user sessions, deface web sites, or redirect the user to malicious sites.

4 Insecure Direct Object References A direct object reference occurs when a developer exposes a reference
to an internal implementation object, such as a file, directory, or
database key. Without an access control check or other protection,
attackers can manipulate these references to access unauthorized data.

5 Security Misconfiguration Security depends on having a secure configuration defined for the
application, framework, web server, application server, and platform.
All these settings should be defined, implemented, and maintained as
many are not shipped with secure defaults.

6 Sensitive Data Exposure Many web applications do not properly protect sensitive data at rest
or in when it is in motion, with appropriate protection mechanisms
such as encryption/hashing or secure transport mechanisms. When
transport layer protection is limited only to certain operations like
authentication and end-to-end transport layer protection is absent,
sensitive information can be intercepted and disclosed.

7 Missing Function Level When resources are requested by the browser, virtually all web
applications validate resource requests for access rights by
verifying function level access rights, prior to serving up that
request to the User Interface (UI). One kind of well-known check
is the check of the Uniform Resource Locator (URL) access rights
check, which the web application performs before rendering
protected links and buttons. When web applications fail to perform
access control checks attackers will be able to forge requests
and URLs to access these unauthorized functionality and pages.

8 Cross Site Request Forgery (CSRF) A CSRF attack forces a logged-on victim’s browser to send a forged
HTTP request, including the victim’s session cookie and any other
authentication information, to a vulnerable web application. This allows
the attacker to force the victim’s browser to generate requests the
vulnerable application thinks are legitimate requests from the victim.

9 Using Components with Known
Vulnerabilities

Vulnerable components, such as libraries, frameworks, and other
software modules almost always run with full privilege. So, if exploited,
they can cause serious data loss or server takeover. Applications using
these vulnerable components may undermine their defenses and
enable a range of possible attacks and impacts.

10 Unvalidated Redirects and Forwards Web applications frequently redirect and forward users to other pages
and websites, and use untrusted data to determine the destination
pages. Without proper validation, attackers can redirect victims to
phishing or malware sites, or use forwards to access unauthorized pages.

CSSLP_v2.indb 340 6/7/2013 5:40:47 PM

 ■ Common Vulnerabilities and Exposures (CVE) – A dictionary of
publicly known information security vulnerabilities and exposures. It
is free for use and international in scope.

 ■ OWASP Top 10 - The OWASP Top 10 List, in addition to considering
the most common application security issues from a weaknesses or
vulnerabilities perspective, views application security issues from an
organizational risks (technical risk and business impact) perspective
as tabulated in Table 4.1.

 ■ Common Weakness Enumeration (CWE™) – Provides a common
language for describing architectural, design or coding software
security weaknesses. It is international in scope, freely available for
public use and it is intended to provide a standardized and definitive
“formal” list of software weaknesses. Categorizations of software
security weaknesses are derived from software security taxonomies.
The CWE/SANS Top 25 most dangerous programming errors is
shown in Table 4.2.

Table 4.2 – CWE/SANS Top 25 Most Dangerous Programming Errors

341

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

Rank Programming Error CWE ID
1 Failure to preserve web page structure (‘Cross-site Scripting’) CWE-79

2 Improper sanitization of special elements used in a SQL command (‘SQL Injection’) CWE-89

3 Buffer copy without checking size of input (‘Classic Buffer Overflow’) CWE-120

4 Cross-Site Request Forgery (CSRF) CWE-352

5 Improper access control (Authorization) CWE-285

6 Reliance on untrusted inputs in a security decision CWE-807

7 Improper limitation of a pathname to a restricted directory (‘Path traversal’) CWE-22

8 Unrestricted Upload of File with Dangerous Type CWE-434

9 Improper sanitization of special elements used in an OS Command
(‘OS Command Injection’)

CWE-78

10 Missing encryption of sensitive data CWE-311

11 Use of hard-coded credentials CWE-798

12 Buffer access with incorrect length value CWE-805

13 Improper check for unusual or exceptional conditions CWE-754

14 Improper control of filename for include/require statement in PHP program
(‘PHP File Inclusion’)

CWE-98

15 Improper validation of array index CWE-129

16 Integer overflow or wraparound CWE-190

17 Improper exposure through an error message CWE-209

18 Incorrect calculation of buffer size CWE-131

19 Missing authentication for critical function CWE-306

20 Download of code without integrity check CWE-494

21 Incorrect permission assignment for critical resource CWE-732

22 Allocation of resources without limits or throttling CWE-770

23 URL redirection to untrusted site (‘Open Redirect’) CWE-601

24 Use of a broken or risky cryptographic algorithm CWE-327

25 Race condition CWE-362

CSSLP_v2.indb 341 6/7/2013 5:40:47 PM

The CWE/SANS top 25 list of most dangerous programming errors falls
into the following three categories:

 ■ Insecure interaction between components – that includes
weaknesses that relate to insecure ways in which data is sent
and received between separate components, modules, programs,
process, threads or systems.

 ■ Risky resource management – that includes weaknesses that relate
to ways in which software does not properly manage the creation,
usage, transfer or destruction of important system resources.

 ■ Porous defenses – that includes weaknesses that relate to defensive
techniques that are often misused, abused or just plain ignored.

The categorization of the 2009 CWE/SANS top 25 most dangerous
programming errors is shown in Table 4.3.

Table 4.3 – CWE/SANS Top 25 most dangerous programming errors categorization

342

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Category Programming Error Rank CWE ID
Insecure interaction
between components

Failure to preserve web page structure (‘Cross-site
Scripting’)

1 CWE-79

Improper sanitization of special elements used in a SQL
command (‘SQL Injection’)

2 CWE-89

Cross-Site Request Forgery (CSRF) 4 CWE-352

Unrestricted Upload of File with Dangerous Type 8 CWE-434

Improper sanitization of special elements used in an OS
Command (‘OS Command Injection’)

9 CWE-78

Improper exposure through an error message 17 CWE-209

URL redirection to untrusted site (‘Open Redirect’) 23 CWE-601

Race condition 25 CWE-362

Risky resource
management

Buffer copy without checking size of input (‘Classic Buffer
Overflow’)

3 CWE-120

Improper limitation of a pathname to a restricted
directory (‘Path traversal’)

7 CWE-22

Buffer access with incorrect length value 12 CWE-805

Improper check for unusual or exceptional conditions 13 CWE-754

Improper control of filename for include/require
statement in PHP program (‘PHP File Inclusion’)

14 CWE-98

Improper validation of array index 15 CWE-129

Integer overflow or wraparound 16 CWE-190

Incorrect calculation of buffer size 18 CWE-131

Download of code without integrity check 20 CWE-494

Allocation of resources without limits or throttling 22 CWE-770

Porous defenses Improper access control (Authorization) 5 CWE-285

Reliance on untrusted inputs in a security decision 6 CWE-807

Missing encryption of sensitive data 10 CWE-311

Use of hard-coded credentials 11 CWE-798

Missing authentication for critical function 19 CWE-306

Incorrect permission assignment for critical resource 21 CWE-732

Use of a broken or risky cryptographic algorithm 24 CWE-327

CSSLP_v2.indb 342 6/7/2013 5:40:47 PM

It is recommended that you visit the respective web sites for the OWASP
Top 10 list and the CWE/SANS Top 25 list as it is expected that a CSSLP be
familiar with programming issues that can lead to security breaches and how to
address them.

The most common software security vulnerabilities and risks are covered in
the following section. Each vulnerability or risk is first described as to what it
is and how it occurs, followed by a discussion of security controls that can be
implemented to mitigate it.

Buffer Overflow
Historically, one of the most dangerous and serious attacks against software has
been buffer overflow attacks. In order to understand what constitutes a buffer
overflow, it is first important that you have read and understood how program
execution and memory management works. This was covered earlier in this
chapter under the computer architecture section.

A buffer overflow is the condition that occurs when data that is being copied
into the buffer (contiguous allocated storage space in memory) is more than
what the buffer can handle. This means that the length of the data being copied
is equal to (in languages that need a byte for the NULL terminator) or is greater
than the byte count of the buffer. The two types of buffer overflows are:

 ■ stack overflow
 ■ heap overflow

Stack Overflow
When the memory buffer has been overflowed in the stack space, it is known
as stack overflow. When the software program runs, the executing instructions
are placed on the program text segment of the RAM, global variables are placed
on the read-write data section of the RAM and data (local variables, function
arguments), and the ESP register value that is necessary for the function to
complete is pushed on to the stack, (unless the data is a variable sized object in
which case it is placed in the heap). As the program runs in memory, sequentially
it calls each function, and pushes that function’s data on the stack from higher
address space to lower address space, creating a chain of functions to be executed
in the order the programmer intended. Upon completion of a function, that
function and its associated data are popped off the stack and the program
continues to execute the next function in the chain. But how does the program
know which function it should execute and which function it should go to once
the current function has completed its operation? The ESP register (introduced

343

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 343 6/7/2013 5:40:47 PM

earlier) tells the program which function it should execute. Another special
register within the CPU is the Execution Instruction Counter (EIP) which is
used to maintain the sequence order of functions but indicates the address of
the next instruction to be executed. This is the return address (RET) of the
function. The return address is also placed on the stack when a function is called
and the protection of the return address from being improperly overwritten is
critical from a security standpoint. If a malicious user manages to overwrite
the return address to point to an address space in memory, where an exploit
code (also known as payload) has been injected, then upon the completion of
a function, the overwritten (tainted) return address will be loaded into the EIP
register, and program execution will be overflowed, potentially executing the
malicious payload.

The use of unsafe functions such as strcpy() and strcat() can result in stack
overflows, since they do not intrinsically perform length checks before copying
data into the memory buffer.

Heap Overflow
As opposed to a stack overflow, in which data flows from one buffer space into
another, causing the return address instruction pointer to be overwritten, a heap
overflows does not necessarily overflow but corrupts the heap memory space
(buffer), overwriting variables and function pointers on the heap. The corrupted
heap memory may or may not be usable or exploitable. A heap overflow is not
really an overflow but a corruption of heap memory and variable sized objects or
objects too large to be pushed on the stack are dynamically allocated on the heap.
Allocation of heap memory usually requires special function operators such as
malloc() (ANSI C), HeapAlloc() (Windows), new() (C++) and deallocation of
heap memory uses other special function operators such as free(), HeapFree(),
and delete(). Since no intrinsic controls on allocated memory boundaries exist,
it is possible to overwrite adjacent memory chunks if there is no validation of
size, coded by the programmer. Exploitation of the heap space requires a lot
more requirements to be met, than is the case with stack overflow. Nonetheless,
heap corruption can cause serious side effects including denial of service and
exploit code execution and protection mechanisms must not be ignored.

Any one of the following reasons can be attributed to causing buffer overflows:
 ■ Copying of data into the buffer without checking the size of input
 ■ Accessing the buffer with incorrect length values
 ■ Improper validation of array (simplest expression of a buffer) index:

When proper out-of-bounds array index checks are not conducted,

344

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 344 6/7/2013 5:40:47 PM

reference indices in arrays buffers that do not exist will throw an
out of bounds exception and can potentially cause overflows.

 ■ Integer overflows or wraparounds: When checks to ensure that
numeric inputs are within the expect range (maximum and
minimum values) are not performed, then overflow of integers can
occur resulting in faulty calculations, infinite loops and arbitrary
code execution.

 ■ Incorrect calculation of buffer size before its allocation: Overflows
can result if the software program does not accurately calculate
the size of the data that will be input into the buffer space that it is
going to allocate. Without this size check, the buffer size allocated
may be insufficient to handle the data being copied into it.

Irrespective of what causes a buffer overflow or whether a buffer overflow
is on the stack or on the heap memory buffer, the one thing that is common
in software that is susceptible to overflow attacks is that the program does not
perform appropriate size checks of the input data. Input size validation is the
number one implementation (programming) defense against buffer overall
attacks. Double checking buffer size to ensure that the buffer is sufficiently large
to handle the input data copied into it, checking buffer boundaries to make
sure that the functions in a loop don’t attempt to write past the allocated space,
and performing integer type (size, precision, signed/unsigned) checks to make
sure that they are within the expected range and values, are other defensive
implementations of controls in code. Some programs are written to truncate the
input string to a specified length before reading them into a buffer, but when
this is done, careful attention must be given to ensure that the integrity of the
data is not compromised.

In addition to implementation controls, there are other controls, such as
requirements, architectural, build/compile, and operations controls, that can be
put in place to defend against buffer overflow attacks. These include:

 ■ Choose a programming language that performs its own memory
management and is type safe. Type safe languages are those which
prevent undesirable type errors, which result from operations
(usually casting or conversion) on values that are not of the
appropriate data type. Type safety (covered in more detail later
in this chapter) is closely related to memory safety as type unsafe
languages will not prevent an arbitrary integer to be used as a pointer
in memory. Ada, Perl, Java, and .Net programming languages are
examples of languages that perform memory management and/or

345

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 345 6/7/2013 5:40:47 PM

type safe. It is however important to recognize that the intrinsic
overflow protection provided by some of these languages can be
overwritten by the programmer. Also, while the language itself
may be safe, the interfaces that they provide to native code can be
vulnerable to various attacks and when invoking native functions
from such languages, proper testing must be conducted to ensure
that overflow attacks are not possible.

 ■ Use a proven and tested library or framework that include safer
string manipulation functions such as the Safe C String (SafeStr)
library, or the Safe Integer handling packages such SafeInt (C++_
or IntegerLib (C or C++).

 ■ Replace deprecated, insecure and banned API functions that are
susceptible to overflow issues with safer alternatives that perform
size checks before performing its operations. It is recommended
that you familiarize yourself with the banned API functions and
their safer alternatives for the languages you use within your
organization. When using functions that take in the number of
bytes to copy as a parameter (such as the strncpy() or strncat(),
one must be aware that if the destination buffer size is equal to the
source buffer size, you may run into a condition where the string is
not terminated, because there is no place in the destination buffer
to hold the NULL terminator.

 ■ Design the software to use unsigned integers whenever possible
and when signed integers are used, it is important to make sure that
checks are coded to validate both the maximum and minimum
values of the range.

 ■ Leverage compiler security if possible. Certain compilers and
extensions provide overflow mitigation and protection by
incorporating mechanisms to detect buffer overflows into the
compiled (build) code. The Microsoft Visual Studio /GS flag,
Fedora/Red Hat FORTIFY_SOURCE GCC flag and StackGuard
are some examples of this.

 ■ Leverage operating system features such as Address Space Layout
Randomization, which forces the attacker to have to guess the
memory address since its layout is randomized upon each execution
of the program. Another OS feature to leverage is Data Execution
Protection (DEP) or Execution Space Protection (ESP) that
performs additional checks on memory to prevent malicious code
from running on a system. However this protection can fall short

346

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 346 6/7/2013 5:40:47 PM

when the malicious code has the ability to modify itself to seem
like innocuous code. ASLR and DEP/ESP are covered in more
detail later in this chapter under the memory management topic.

 ■ Use of memory checking tools and other tools that surround all
dynamically allocated memory chunks with invalid pages so that
memory cannot be overflowed into that space is a means of defense
against heap corruption. MemCheck, Memwatch, Memtest86,
Valgrind and ElectricFence are some examples of such tools.

Injection Flaws
Considered one of the most prevalent software (or application) security weaknesses,
injection flaws occur when the user supplied data is not validated before being
processed by an interpreter. The attacker supplies data that is accepted as is and
interpreted as a command or part of a command, thus allowing the attacker to
execute commands using any injection vector. Almost any data accepting source
is a potential injection vector if the data is not validated prior to its processing.
Common examples of injection vectors include QueryStrings, Form input and
applets in web applications. Injection flaws are easily discoverable using code
review and scanners, including fuzzing scans, can be employed to detect them.
There are several different types of injection attacks. The most common ones
include:

 ■ SQL injection
 ■ OS Command injection
 ■ LDAP injection and
 ■ XML injection

SQL Injection
This is probably the most well known form of injection attacks as the databases
that store business data are becoming the prime target for attackers. In SQL
injection, attackers exploit the way in which database queries are constructed.
They supply input, which if not sanitized or validated become part of the
(Structured Query Language) query that the databases processes as a command.
Let’s consider an example of a vulnerable code implementation in which the
query command text (sSQLQuery) is dynamically built using the data that is
supplied from text input fields (txtUserID and txtPassword) from the web form.

string sSQLQuery = “ SELECT * FROM USERS WHERE user_id = ‘ ” +
txtUserID.Text + ” ‘ AND user_password = ‘ ” + txtPassword.Text + ” ‘

347

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 347 6/7/2013 5:40:47 PM

If the attacker supplies ‘ OR 1=1 -- as the txtUserID value, then the SQL
Query command text that is generated is as follows:

string sSQLQuery = “ SELECT * FROM USERS WHERE user_id = ‘ ” + ‘
OR 1=1 - - + ” ‘ AND user_password = ‘ ” + txtPassword.Text + ” ‘

This results in SQL syntax as shown below, that the interpreter will evaluate
and execute as a valid SQL command. Everything after the -- in T-SQL is
ignored.

SELECT * FROM USERS WHERE user_id = ‘ ’ OR 1=1 - -

The attack flow in SQL Injection is comprised of the following steps:
1. Exploration by hypothesizing SQL queries to determine if the

software is susceptible to SQL injection
2. Experimenting to enumerate internal database schema by forcing

database errors
3. Exploiting the SQL injection vulnerability to bypass checks or

modify, add, retrieve or delete data from the database

Upon determining that the application is susceptible to SQL injection,
an attacker will attempt to force the database to respond with messages that
potentially disclose internal database structure and values by passing in SQL
commands that cause the database to error. Suppressing database error messages
considerably thwarts SQL injection attacks but it has been proven that this
control measure is not sufficient to completely prevent SQL injection. Attackers
have found a way to go around the use of error messages for constructing their
SQL commands as is evident in the variant of SQL injection, which is known
as blind SQL injection. In blind SQL injection, instead of using information
from error messages to facilitate SQL injection, the attacker constructs simple
Boolean SQL expressions (true/false questions) to iteratively probe the target
database; depending on whether the query was successfully executed or not, the
attacker can determine the syntax and structure of the injection. The attacker
can also note the response time to a query with a logically true condition and
one with a false condition and use that information to determine if a query
executes successfully or not.

OS Command Injection
It works in the same principle as the other injection attacks where the command
string is generated dynamically using input supplied by the user. When the
software allows the execution of Operation System (OS) level commands

348

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 348 6/7/2013 5:40:47 PM

using the supplied user input without sanitization or validation, it is said to be
susceptible to OS Command injection. This could be seriously devastating to the
business if the principle of least privilege is not designed into the environment
that is being compromised. The two main types of OS Command injection are
as follows:

 ■ The software accepts arguments from the user to execute a single
fixed program command. In such cases, the injection is contained
only to the command that is allowed to execute and the attacker
can change the input but not the command itself. Here, the
programming error is that the programmer assumes that the input
supplied by users to be part of the arguments in the command to
be executed will be trustworthy as intended, and not malicious.

 ■ The software accepts arguments from the user which specifies what
program command they would like the system to execute. This is
a lot more serious than the previous case, because now the attacker
can chain multiple commands and do some serious damage to the
system by executing their own commands that the system supports.
Here, the programming error is that the programmer assumes that
the command itself will not be accessible to untrusted users.

An example of an OS Command injection that an attacker supplies as the
value of a QueryString parameter to execute the bin/ls command to list all files
in the ‘bin’ directory is given below:
http://www.mycompany.com/sensitive/cgi-bin/userData.pl?doc=%20%3B%20/bin/ls%20-l

%20 decodes to a space and %3B decodes to a ; and the command that is
executed will be /bin/ls -l listing the contents of the program’s working directory.

LDAP Injection
Lightweight Directory Access Protocol (LDAP) is a protocol that is used to store
information about users, hosts and other objects. LDAP injection works on the
same principle as SQL injection or OS command injection. Unsanitized and
unvalidated input is used to construct or modify syntax, contents and commands
that are executed as an LDAP query. Compromise can lead to the disclosure of
sensitive and private information as well as manipulation of content within the
LDAP tree (hierarchical) structure. Say you have the ldap query (_sldapQuery)
built dynamically using the user supplied input (userName) without any
validation as shown in the example below.

String _sldapQuery = ’’ (cn=’’ + $userName + ’’) ’ ’;

349

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 349 6/7/2013 5:40:47 PM

http://www.mycompany.com/sensitive/cgi-bin/userData.pl?doc=%20%3B%20/bin/ls%20-l

If the attacker supplies the wildcard ‘*”, information about all users listed in
the directory will be disclosed. If the user supplies the value such as ‘’‘’sjohnson)
(|password=*))‘’, the execution of the LDAP query will yield the password for
the user ‘sjohnson’.

XML Injection
XML injection occurs when the software does not properly filter or quote
special characters or reserved words that are used in XML, allowing an attacker
to modify the syntax, contents or commands before execution. The two main
types of XML injection are as follows:

 ■ XPATH injection
 ■ XQuery injection

In XPATH injection the XPath expression that is used to retrieve data from
the XML data store is not validated or sanitized prior to processing and built
dynamically using user supplied input. The structure of the query can thus
be controlled by the user, and an attacker can take advantage of this weakness
by injecting malformed XML expressions, allowing the attacker to perform
malicious operations such as modifying and controlling logic flow, retrieving
unauthorized data and/or circumventing authentication checks. XQuery
injection works the same way as an XPath injection, except that the XQuery
(not XPath) expression that is used to retrieve data from the XML data store is
not validated or sanitized prior to processing and built dynamically using user
supplied input.

Consider the following XML document (accounts.xml) that stores the
account information and pin numbers of customers and a snippet of Java code
that uses XPath query to retrieve authentication information:

<customers>
<customer>

<user_name>andrew</user_name>
<accountnum>1234987655551379</accountnum>
<pin>2358</pin>
<homepage>/home/astrout</homepage>

</customer>
<customer>

<user_name>dave</user_name>
<accountnum>9865124576149436</accountnum>
<pin>7523</pin>

350

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 350 6/7/2013 5:40:47 PM

<homepage>/home/dclarke</homepage>
</customer>

</customers>

The Java code used to retrieve the home directory based on the provided credentials is:

XPath xpath = XPathFactory.newInstance().newXPath();

XPathExpression xPathExp = xpath.compile(“//customers/customer[user_
name/text()=’” + login.getUserName() + “’ and pin/text() = ‘” + login.
getPIN() + “’]/homepage/text()”);

Document doc = DocumentBuilderFactory.newInstance().
newDocumentBuilder().parse(new File(“accounts.xml”));

String homepage = xPathExp.evaluate(doc);

By passing in the value ‘andrew’ into the getUserName() method and the value “’ or ‘’=’”
into the getPIN() method call, the XPath expression becomes

//customers/customer[user_name/text()=’andrew’ or ‘’=’’ and pin/text() = ‘’ or
‘’=’’]/hompage/text()

This will allow the user logging in as ‘andrew; to bypass authentication
without supplying a valid PIN.

Irrespective of whether an injection flaw exploits a database, OS command,
a directory protocol and structure or a document, they are all characterized by
one or more of the following traits:

 ■ User supplied input is interpreted as a command or part of a
command that is executed. In other words, data is misunderstood
by the interpreter as code.

 ■ Input from the user is not sanitized or validated before processing.
 ■ The query that is constructed is generated dynamically using user

supplied input.

The consequences of injection flaws are varied and serious. The most
common ones include:

 ■ disclosure, alteration or destruction of data
 ■ compromise of the Operating System
 ■ discovery of the internal structure (or schema) of the database or

data store
 ■ enumeration of user accounts from a directory store

351

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 351 6/7/2013 5:40:47 PM

 ■ circumventing nested firewalls
 ■ bypassing authentication
 ■ execution of extended procedures and privileged commands

Mitigation and prevention strategies and controls for injection flaws that are
commonly employed are listed below:

 ■ Consider all input to be untrusted and validate all user input.
Sanitize and filter input using a whitelist of allowable characters
and their non-canonical forms. While using a blacklist of
disallowed characters can be useful in detecting potential attacks
or determining malformed inputs, reliance on blacklists solely
can prove to be insufficient as the attacker can try variations and
alternate representation of the blacklist form. Validation must be
performed on both the client and server side or at least on the
server side so that attackers cannot simply bypass client side
validation checks and still perform injection attacks. User input
must be validated for data type, range, length, format, values
and canonical representations. SQL keywords such as UNION,
SELECT, INSERT, UPDATE, DELETE, DROP, etc. must be
filtered in addition to characters such as single-quote (‘) or SQL
comments (--) based on the context. Input validation should be
one of the first lines of defenses in a defense in depth strategy for
preventing or mitigating injection attacks as it significantly reduces
the attack surface.

 ■ Encode output using the appropriate character set, escape special
characters and quote input, besides disallowing meta-characters.
In some cases when the input needs to be collected from various
sources and is required to support free-form text, then the input
cannot be constrained for business reasons, this may be the only
effective solution to preventing injection attacks. Additionally it
provides protection even when some input sources are not covered
with input validation checks.

 ■ Use structured mechanisms to separate data from code.
 ■ Avoid dynamic query (SQL, LDAP, XPATH Expression or

XQuery) construction.
 ■ Use a safe API that avoids the use of the interpreter entirely or

which provides escape syntax for the interpreter to escape special
characters. A well-known example is the ESAPI published by
OWASP.

352

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 352 6/7/2013 5:40:47 PM

 ■ User parameterized queries. Just using parameterized queries
(stored procedures or prepared statements) does not guarantee
that the software is no longer susceptible to injection attacks.
When using parameterized queries, make sure that the design of
the parameterized queries truly accepts the user supplied input as
parameters and not the query itself as a parameter that will be
executed without any further validation.

 ■ Display generic error messages that yield minimal to no additional
information.

 ■ Implement fail safe by redirecting all errors to a generic error page
and logging it for later review.

 ■ Remove any unused functions or procedures from the database
server if not needed. Remove all extended procedures that will
allow a user to run system commands.

 ■ Implement least privilege by using views, and restricting tables,
queries and procedures to only the authorized set of users and/or
accounts. The database users should be authorized to have only the
minimum rights necessary to use their account. Using datareader,
datawriter accounts as opposed to a database owner (dbo) account
when accessing the database from the software is a recommended
option.

 ■ Audit and log the queries that are executed along with their
response times to detect injection attacks, especially the blind
injection attacks.

 ■ To mitigate OS command injection, run the code in a sandbox
environment that enforces strict boundaries between the processes
being executed and the Operating System. Some examples include
the Linux AppArmor, and the Unix chroot jail. Managed code is
also known to provide some degree of sandboxing protection.

 ■ Use runtime policy enforcement to create the list of allowable
commands (whitelist) and reject any command that does not
match the whitelist.

 ■ When having to implement defenses against LDAP injection
attacks, the best method to properly handle user input is to filter or
quote LDAP syntax from user-controlled input. This is dependent
on whether the user input is used to create the Distinguish Name
(DN) or used as part of the search filter text. When the input
is used to create the DN, the backslash (\) escape method can

353

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 353 6/7/2013 5:40:47 PM

be used and when the input is used as part of the search filter,
then the ASCII equivalent of the character being escaped needs
to be used. Table 4.4 lists the characters that need to be escaped
and their respective escape method. It is important to ensure
that the escaping method takes into consideration the alternate
representations of the canonical form of user input.

In the event that the code cannot be fixed, using an application layer firewall
to detect injection attacks can be a compensating control.

Broken Authentication and Session Management
Weaknesses in authentication mechanisms and session management are not
uncommon in software. Areas that are susceptible to these flaws are usually
found in secondary functions that deal with logout, password management,
time outs, remember me, secret question and account updates. Vulnerabilities in
these areas can lead to the discovery and control of sessions. Once the attacker
has control of a session (hijack) they can interject themselves in the middle,
impersonating themselves as valid and legitimate users to both the parties that
are engaged in that session transaction. The Man-in-the-Middle (MITM) attack
as depicted in Figure 4.6 is a classic result of broken authentication and session
management.

In addition to session hijacking, impersonation and MITM attacks, these
vulnerabilities can also allow an attacker to circumvent any authentication
and authorization decisions that are in place. In cases when the account being
hijacked is that of a privileged user, it can potentially lead to granting access to
restricted resources and subsequently total system compromise.

Some of the common software programming failures that end up resulting
in broken authentication and broken session management include, but are not
limited to the following:

Table 4.4 – LDAP mitigation character escaping

354

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

User Input used Character(s) Escape Sequence
Substitute

To create DN &, !, |, =, <, >, +,-,’’, ‘ , ; , and comma (,) \
As part of search
filter

(\28
) \29
\ \5c
/ \2f
* \2a

NUL \00

CSSLP_v2.indb 354 6/7/2013 5:40:47 PM

 ■ Allowing more than one set of authentication or session
management controls that allow access to critical resources via
multiple communication channels or paths.

 ■ Transmitting authentication credentials and session IDs over the
network in cleartext.

 ■ Storing authentication credentials without hashing or encrypting
them.

 ■ Hard coding credentials or cryptographic keys in cleartext inline
code, or in configuration files.

 ■ Not using a random or pseudo-random mechanism to generate
system generated passwords or session IDs.

 ■ Implementing weak account management functions that deal with
account creation, changing passwords or password recovery.

 ■ Exposing session IDs in the URL by rewriting the URL.
 ■ Insufficient or improper session timeouts and account logout

implementation.
 ■ Not implementing transport protection or data encryption.

Mitigation and prevention of authentication and session management
flaws require careful planning and design. Some of the most important design
considerations include:

 ■ Using built-in and proven authentication and session management
mechanisms. This supports the principle of leveraging existing
components as well. When developers implement their custom
authentication and session management mechanisms, the
likelihood of programming errors are increased.

Figure 4.6 – Man-in-the-Middle (MITM) Attack

355

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 355 6/7/2013 5:40:47 PM

 ■ Use a single and centralized authentication mechanism that
supports multi-factor authentication and role based access control.
Segmenting the software to provide functionality based on the
privilege level (anonymous, guest, normal, and administrator) is
a preferred option. This not only eases administration and rights
configuration, but it also reduces the attack surface considerably.

 ■ Using a unique, non-guessable and random session identifier to
manage state and session along with performing session integrity
checks. Do not use for the credentials, claims that can be easily
spoofed and replayed. Some examples of these include IP address,
MAC address, DNS or reverse-DNS lookups or referrer headers.
Tamper proof hardware based tokens can also provide a high
degree of protection.

 ■ When storing authentication credentials for outbound
authentication, encrypt or hash the credentials before storing them
in a configuration file or data store that should also be protected
from unauthorized users.

 ■ Do not hard code database connection strings, passwords or
cryptographic keys in cleartext in the code or configuration files.
Figure 4.7 illustrates an example of an insecure and secure way of
storing database connecting strings in a configuration file.

 ■ Identify and verify users at both the source as well as at the end of
the communication channel to ensure that no malicious users have
interjected themselves in between. Always authenticate users only
from an encrypted source (web page).

 ■ Do not expose session ID in URLs or accept preset or timed out
session identifiers from the URL or HTTP Request. Accepting

Figure 4.7 – Insecure and secure ways of storing
connection strings in a configuration file

356

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 356 6/7/2013 5:40:48 PM

session IDs from the URL can lead to what is known as session
fixation and session replay attacks.

 ■ Ensure that XSS protection mechanism are in place and working
effectively as XSS attacks can be used to steal authentication
credentials and session IDs.

 ■ Require the user to re-authenticate upon account update such as
password changes and if feasible, generate a new session ID upon
successful authentication or change in privilege level.

 ■ Do not implement custom cookies in code to manage state. Use
secure implementation of cookies by encrypting them to prevent
tampering and cookie replay.

 ■ Do not store, cache or maintain state information on the client
without appropriate integrity checking or encryption. If you are
required to cache for user experience reasons, ensure that the cache
is encrypted and is valid only for an explicit period of time after
which it will expire. This is referred to as cache windowing.

 ■ Ensure that all pages have a logout link. Don’t assume that the
closing of the browser window will abandon all sessions and client
cookies. When the user closes the browser window, prompt the user
to explicitly log off before closing the browser window. Keep the
design principle of psychological acceptability in mind, when you
plan to implement user confirmation mechanisms. The principle of
psychological acceptability states that security mechanisms should
not make the resource more difficult to access than if the security
mechanisms were not present.

 ■ Explicitly set a timeout and design the software to automatically log
out of an inactive session. The length of the timeout setting must
be inversely proportional to the value of the data being protected.
For example, if the software is marshalling and processing highly
sensitive information, then the length of the timeout setting must
be shorter.

 ■ Implement the maximum number of authentication attempts
allowed and when that number has passed, deny by default and
deactivate (lock) the account for a specific period of time or until
the user follows an out-of-band process to reactivate (unlock) the
account. Implementing throttle (clipping) levels not only prevent
against brute force attacks but also Denial of Service (DoS).

 ■ Encrypt all client/server communications.
 ■ Implement transport layer protection either at the transport layer

(SSL/TLS) or at the network layer (IPSec) and encrypt data even if
it is being sent over a protected network channel.

357

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 357 6/7/2013 5:40:48 PM

Cross-Site Scripting (XSS)
Injection flaws and Cross Site Scripting (XSS) can arguably be considered as the
two most frequently exploitable weaknesses prevalent in software today. Some
experts refer to these two flaws as a “1-2 punch” as shown by the OWASP and
CWE ranking.

XSS is the most prevalent web application security attack today. A web
application is said to be susceptible to XSS vulnerability when the user supplied
input is sent back to the browser client without being properly validated and
its content escaped. An attacker will provide a script (hence the scripting part)
instead of a legitimate value and that script if not escaped before being sent
to the client, gets executed. Any input source can be the attack vector and the
threat agents include anyone who has access to supplying input. Code review
and testing can be used to detect XSS vulnerabilities in software.

The three main types of XSS are:
 ■ Non-persistent or Reflected
 ■ Persistent or Stored
 ■ DOM based

Non-persistent or Reflected XSS
As the name indicates, non-persistent or reflected XSS are attacks in which the
user supplied input script that is injected (also referred to as payload) is not
stored but merely included in the response from the web server, either in the
results of a search or an error message. There are two primary ways in which
the attacker can inject their malicious script. One is that they provide the input
script directly into your web application. The other way is that they can send a
link with the script embedded and hidden in it. When a user clicks the link, the
injected script takes advantage of the vulnerable web server which reflects the
script back to the user’s browser where it is executed.

Persistent or Stored XSS
Persistent or stored XSS is characterized by the fact that the injected script is
permanently stored on the target servers, either in a database, a message forum,
a visitor log or an input field. Each time the victims visit the page that has the
injected code stored in it or served to it from the web server, the payload script
executes in the user’s browser. The infamous Samy Worm and the Flash worm
are well known examples of a persistent or stored XSS attack.

358

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 358 6/7/2013 5:40:48 PM

DOM based XSS
DOM based XSS is an XSS attack in which the payload is executed in the victim’s
browser as a result of DOM environment modifications on the client side. The
HTTP response (or the web page) itself is not modified, but weaknesses in the
client side allows the code contained in the web page client to be modified,
so that the payload can be executed. This is strikingly different from the non-
persistent (or reflected) and the persistent (or stored) XSS versions because in
these cases the attack payload is placed in the response page due to weaknesses
on the server side.

The consequences of a successful XSS attack are varied and serious. Attackers
can execute script in the victim’s browser and:

 ■ steal authentication information using the web application
 ■ hijack and compromise users sessions and accounts
 ■ tamper or poison state management and authentication cookies
 ■ cause Denial of Service (DoS) by defacing the websites and

redirecting users
 ■ insert hostile content
 ■ change user settings
 ■ phish and steal sensitive information using embedded links
 ■ impersonate a genuine user
 ■ hijack the user’s browser using malware

Controls against XSS attacks include the following defensive strategies and
implementations:

 ■ Handle the output to the client only after it is sanitized. In other
words, the output response should be escaped or encoded. This
can be considered as the best way to protect against XSS attacks
in conjunction with input validation. Escaping all untrusted data
based on the HTML context (body, attribute, JavaScript, CSS, or
URL) is the preferred option. Additionally, setting the appropriate
character encoding and encoding user supplied input renders the
payload that the attacker injects as script into text based output
response that the browser will merely treat as a literal and read but
not execute.

 ■ Validating user supplied input with a whitelist also provides
additional protection against XSS. All headers, cookies, URL
querystring values, form fields and hidden fields must be validated.

359

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 359 6/7/2013 5:40:48 PM

This validation should decode any encoded input and then
validate the length, characters, format and any business rules on
the data before accepting the input. Each of the requests that are
made to the server should be validated as well. In .Net, when the
validateRequest flag is configured at the application, web or page
level as depicted in Figure 4.8, any unencoded script tag that is sent
to the server is flagged as a potentially dangerous request to the
server and is not processed.

 ■ Disallow the upload of .htm or .html extensions
 ■ Use the innerText properties of HTML controls instead of the

innetHtml property when storing the input supplied, so that when
this information is reflected back on the browser client, the data
renders the output to be processed by the browsers as literal and as
non-executable content instead of executable scripts.

 ■ Use secure libraries and encoding frameworks that provide
protection against XSS issues. The Microsoft Anti-Cross Site
Scripting, OWASP ESAPI Encoding module, Apache Wicket and
the SAP Output Encoding framework are well known examples.

 ■ The client can be secured by disabling the active scripting option
in the browser so that scripts are not automatically executed on
the browser. Figure 4.7 shows the configuration options for active
scripting in the Internet Explorer browser. It is also advisable to
install add-on plugins that will prevent the execution of scripts on
the browser unless permissions are explicitly granted to run them.
NoScript is a popular add-on for the Mozilla Firefox browser.

 ■ Use the HTTPOnly flag on the session or any custom cookie so
that the cookie cannot be accessed by any client side code or script
(if the browser supports it) which mitigates XSS attacks. However if
the browser does not support HTTPOnly cookie, then even if you
have set the HTTPOnly flag in the Set-Cookie HTTP response
header, this flag is ignored and the cookie may still be susceptible

Figure 4.8 – validateRequest configuration

360

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 360 6/7/2013 5:40:48 PM

to malicious script modifications and theft. Additionally with
the prevalence in Web 2.0 technologies, primarily Asynchronous
JavaScript And XML (AJAX), the XMLHTTPRequest offers read
access to HTTP headers including the Set-Cookie HTTP response
header.

 ■ An application layer firewall can be useful against XSS attacks but
one must recognize that although this may not be preventive in
nature, it is useful when the code cannot be fixed (as in the case of
a third party component).

Insecure Direct Object References
An insecure direct object reference flaw is one wherein an unauthorized user or
process can invoke the internal functionality of the software by manipulating
parameters and other object values that directly reference this functionality. Let
us take a look at an example to elaborate this. A web application is architected to
pass the name of the logged-in user in cleartext as the value of the key ‘userName’
and indicate as to whether the logged in user is an administrator or not, by
passing the value to the key ‘isAdmin’, in the querystring of the URL as shown
in Figure 4.10.

Figure 4.9 – Active Scripting Disabled

361

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 361 6/7/2013 5:40:48 PM

Upon the load of the page, this page reads the value of the userName key
from querystring and renders information about the user whose name was
passed and displays it on the screen. It also exposes administrative menu options
if the isAdmin value is 1. In our example, information about ‘reuben’ will be
displayed on the screen. We also see that Reuben is not an administrator as
indicated by the value of the isAdmin key. Without proper authentication and
authorization checks, an attacker can change the value of the userName key
from ‘reuben’ to ‘jessica’ and view information about Jessica. Additionally by
manipulating the isAdmin key value from 0 to 1, a non-administrator can get
access to administrative functionality when the web application is susceptible to
an insecure direct object reference flaw.

Such flaws can be seriously detrimental to the business. Data disclosure,
privilege escalation, authentication and authorization checks bypass, and
restricted resource access are some of the most common impacts when this flaw
is exploited. This can be exploited to conduct other types of attacks as well,
including injection and scripting attacks.

The most effective control against insecure direct object reference attacks
is to avoid exposing internal functionality of the software using a direct object
reference that can be easily manipulated. The following are some defensive
strategies that can be taken to accomplish this objective:

 ■ Use indirect object reference by using an index of the value or a
reference map so that direct parameter manipulation is rendered
futile unless the attacker also is aware of how the parameter maps
to the internal functionality.

Figure 4.10 – Insecure Direct Object Reference

362

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 362 6/7/2013 5:40:48 PM

 ■ Do not expose internal objects directly via URLs or form parameters
to the end user.

 ■ Either mask or cryptographically protect (encrypt/hash) exposed
parameters, especially querystring key value pairs.

 ■ Validate the input (change in the object/parameter value) to ensure
that the change is allowed as per the whitelist.

 ■ Perform multi access control and authorization checks each and
every time a parameter is changed, according to the principle of
complete mediation. If a direct object reference must be used, it is
important to ensure that the user is authorized before using it.

 ■ Use RBAC to enforce roles at appropriate boundaries and reduce
attack surface by mapping roles with the data and functionality.
This will protect against attackers who are trying to attack users
with a different role (vertical authorization) but not against users
who are at the same role (horizontal authorization)

 ■ Ensure that both context and content based RBAC is in place.
Manual code reviews and parameter manipulation testing can be used to

detect and address insecure direct object reference flaws. Automated tools often
fall short of detecting insecure direct object reference because they are not aware
of what object require protection and what the safe or unsafe values are.

Security Misconfiguration
In addition to patching the operating system with security updates/hotfixes, it is
critically important to harden the applications and software that run on top of
these operating systems. Hardening software applications involves determining
the necessary and correct configuration settings and architecting the software to
be secure by default. We discuss software hardening in more detail in the Secure
Software Deployment, Operations, Maintenance and Deployment chapter. In
this chapter, we will primarily learn about the security misconfigurations that
can render software susceptible to attack. These misconfigurations can occur
at any level of the software stack and lead from data disclosure to total system
compromise. Some of the common examples of security misconfigurations
include:

 ■ Missing software and operating system patches.
 ■ Lack of perimeter and host defensive controls such as firewalls,

filters, etc.
 ■ Installation of software with default accounts and settings.
 ■ Installation of the administrative console with default configuration

settings.

363

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 363 6/7/2013 5:40:48 PM

 ■ Installation or configuration of unneeded services, ports and
protocols, unused pages, and unprotected files and directories

 ■ Not disabling directory listing on the server.
 ■ Not explicitly setting up error and exception handling which

can lead to disclosure of internal application and deployment
architecture via stack traces and verbose error messages.

 ■ Leaving behind any sample applications, which are most likely to
be insecure with security flaws, post installation.

 ■ Deploying tightly coupled applications and system-of-systems.

Effective controls against security misconfiguration issues include elements
that design, develop, deploy, operate, maintain and dispose software in a reliable,
resilient, and recoverable manner. The primary recommendations include:

 ■ Changing any default configuration settings.
 ■ After installation.
 ■ Removing any unneeded or unnecessary services and processes.
 ■ Establishing and maintaining a configuration of the minimum level

of security that is acceptable. This is referred to as the minimum
security baseline (MSB).

 ■ Establishing a process that hardens (locks down) the OS and the
applications that run on top of it. Preferably this should be an
automated process using the established MSB to assure that there
are no user errors.

 ■ Establishing a controlled patching process.
 ■ Establishing a scanning process to automatically detect and report

on software and systems that are not compliant to the established
MSB.

 ■ Handling errors explicitly using redirects and error messages so
that breach upon any misconfiguration does not result in the
disclosure of more information than is necessary.

 ■ Removing any sample applications from production systems after
installation.

 ■ Deploying applications and systems that have a loosely coupled and
highly cohesive architecture, so that security flaws in dependency
components have minimal impact to the overall application or
system.

364

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 364 6/7/2013 5:40:48 PM

Sensitive Data Exposure
Without appropriate confidentiality controls in place software can leak
information about their configuration, state and internal makeup that an
attacker can use to steal information or launch further attacks. Because attackers
usually have the benefit of time and can choose to attack at will, they usually
spend a majority of their time in reconnaissance activities gleaning information
about the software itself.
Some of the primary reasons for sensitive data exposure include:

 ■ Insufficient data-in-motion protection
 ■ Insufficient data-at-rest protection and
 ■ Electronic social engineering

Insufficient Data-in-Motion Protection
Monitoring network traffic using a passive sniffer is a common means by which
attackers steal information when the data is in motion (in transit).

Leveraging transport layer (SSL/TLS) and/or network layer (IPSec) security
technologies augment security protection of network traffic. It is insufficient
to merely use SSL/TLS just during the authentication process, as is observed
to be the case with most software/applications. When a user is authenticated
to a website over an encrypted channel, e.g., https://www.mybank.com, and
then either inadvertently or intentionally goes to its clear text link, i.e., http://
www.mybank.com, with little effort the session cookie can now be observed
by an attacker who is monitoring the network. This is referred to as the Surf
Jacking attack. Lack of or insufficient transport layer protection often results
in a confidentiality breach disclosing data. Phishing attacks are known to take
advantage of this. It can result in session hijacking and replay attacks as well,
once the authenticated victim’s session cookie is determined by the attacker.

Transport layer protection such as SSL can mitigate disclosure of sensitive
information when the data is being traversed on the wire, but this type of
protection does not completely prevent MITM attacks, unless the protection
is end-to-end. In the case of 3-tier web architecture, transport layer protection
needs to be from the client to the web server and from the web server to the
database server. Failure to have end-to-end transport layer protection as shown
in Figure 4.11 can lead to MITM and disclosure attacks in the areas that lack it.

Additionally, when digital certificates are used to assure confidentiality,
integrity, authenticity and non-repudiation, they should be protected, properly
configured and not expired so that they are not spoofed. When certificates are

365

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 365 6/7/2013 5:40:48 PM

spoofed, MITM and phishing attacks are common. It is noteworthy to discuss in
this context that improper configuration of certificates or using expired certificates
cause the browser to warn the end user, but with the user’s familiarity to accept
browser warning prompts, without really reading what they are accepting, this
browser protection mechanism is rendered weak or futile. User education to not
accept expired or lookalike certificates and browser warning prompts can come
in handy to change this behavior and augment software security.

Insufficient Data-at-Rest Protection
Not encrypting data that is being transmitted (data in motion) is a major issue,
but securing stored data (data at rest) against cryptographic vulnerabilities is an
equally daunting challenge. In many cases, the efforts to protect data in motion
are negated when the data at rest protection mechanisms are inadequate or
insecure.

The primary sources of insufficient data-at-rest protection include:
 ■ Local storage
 ■ Browser settings
 ■ Cache
 ■ Backups, logs and configuration files
 ■ Comments in code
 ■ Hardcoded secrets in code
 ■ Unhandled exceptions and error messages
 ■ Backend data stores

 Figure 4.11 – Importance of end-to-end transport layer protection

366

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 366 6/7/2013 5:40:48 PM

Local Storage: Insecure data-at-rest protection can lead to the
manifestation of disclosure threats. It is not only important to store
sensitive data in protected form, but the location of storage should be
taken into account as well, when storing sensitive or private data or
configuration settings. Advancements in technologies are making local
storage more feasible. Traditionally, in HTML technologies, storage
on the client locally was limited to cookies and flash objects that were
highly restricted in storage space. However, now with HTML5, one
can store data locally on the client without the restriction of space as
was the case with cookies. Furthermore, unlike in the case of cookies,
with each request to the server, the local storage data is not sent back
and forth. Local storage brings with it, the benefits of having more
storage space to store data locally and minimized data marshaling
between the between the client and the server.

Since the data that is stored on the client-side can be easily accessed
and modified using scripts (e.g., Javascript, VBScript, etc.), local storage
also poses a security threat. Additionally, mobile apps often store data
(including sensitive data) on the client device and are susceptible to
client-side injection attacks.
Browser Settings: Improper browser directives and headers that is
provided by or sent to the browser can be disclosed using sniffers and
altered. Browser history can be stolen using Cascading Style Sheet
(CSS) hacks with or without using JavaScript or by techniques called
browser caching. Information about sites that a user has visited can be
stolen from a user.

Cache: Although cache can be used to significantly improve
performance and user experience, sensitive information if cached can
be disclosed, breaching confidentiality.

Backups, Logs and Configuration Files: Attackers usually look for
backup and unreferenced files, log files and configuration files that
inadvertently get deployed or installed on the system. These files can
potentially have sensitive information that come in very handy for an
attacker as they attempt to exploit the software.

Comments in Code: Developers generally deem documenting their
code as a non-essential activity but since they are mostly required
to do so, they resort to commenting their code inline as comments.
Without proper education and training, these comments in code can

367

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 367 6/7/2013 5:40:48 PM

reveal more sensitive information than is necessary. Some examples
of sensitive information in comments include database connection
strings, validation routines, production and test data, production and
test accounts, and business logic. Figure 4.12 depicts an example of
code that has sensitive information in its comments.

 Hardcoded Secrets in Code: One the most common security issues
detected in code reviews is the existence of unprotected secrets such as
passwords or keys, hardcoded in the code itself. When these secrets are
not protected either cryptographically and/or using appropriate access
controls, they can be exposed resulting in some serious disclosure
threats.

Unhandled Exceptions and Error Messages: When exceptions are
not handled properly, sensitive information including the internal
structure of the software can be leaked to an attacker.

Backend Data Stores: Data that is persisted in a backend data stores
such as a database or directory needs to be stored in protected form. A
common misconception that exists in many application architectures
is that they rely on data protection on the wire (when the data is in
transit) to assure confidentiality. Data-in-Motion protection, that is
covered in more detail subsequently, protects against sensitive data
exposure when the data is being transmitted but not when it is stored

Figure 4.12– Sensitive information in comments

368

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 368 6/7/2013 5:40:48 PM

unless the data itself is protected. Sensitive data in backend data stores
must be stored in protected form.

Electronic Social Engineering
Not all data disclosure threats are application related. Human trust can be
exploited to reveal sensitive information as well using social engineering
techniques such as:

 ■ Phishing
 ■ Pharming
 ■ Vishing
 ■ SMSishing

Phishing, which is a method of tricking users into submitting their
personal information using electronic means such as deceptive emails
and websites, is on the rise. The term “phishing” is believed to have
its roots from the use of sophisticated electronic lures to fish out a
victim’s personal (financial, login and passwords, etc.) information.
This form of electronic social engineering is so rampant in today’s
business computing that even large organizations have fallen prey to
it. Though these sophisticated electronic lures usually target users en
masse, they can also target a single individual and when this is the case,
it is commonly referred to as “spear phishing”. With the sophistication
of such deceptive attacks to disclose information, attackers have come
up with a variant of phishing, called Pharming.

Pharming is a scamming practice in which malicious code is installed
on a system or server which misdirects users to fraudulent web sites
without the user’s knowledge or consent. It is also referred to as
“phishing without a lure”. Unlike phishing wherein individual users
who receive the phishing lure (usually in the form of an email) are
targets, in pharming a large number of users can be victimized as the
attack does not require individual user actions but systems that can
be compromised. Pharming often works by modification of the local
system host files that redirect users to a fraudulent website even if the
user types in the correct web address. Another popular way in which
Pharming works, which is even more dangerous, is known as domain
name system (DNS) poisoning. In the DNS poisoning pharming
attack, the DNS table in the server is altered to point to fraudulent
web sites even when the request to the legitimate ones is made. With
DNS poisoning, there is no need to alter individual user’s local system

369

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 369 6/7/2013 5:40:48 PM

host files because the modification (exploit) is made on the server
side and all those who request resources from that server will now be
potential victims without their knowledge or consent. Disclosure of
personal information is often the result and in some cases this escalates
to identity theft.

With Voice over IP (VoIP) telephony on the rise, phishing attacks
have a new variant called Vishing. Vishing is made up of two words,
“voice” and “phishing” and is the criminal fradulent activity in which an
attacker steals sensitive information using deceptive social engineering
techniques on VoIP networks.
SMSishing (also sometimes referred to as SMishing) comes from
coining the words “Short Message Service (SMS)” and “phishing”.
With the increase in mobile computing, this variant of social
engineering attacks is observed to be gaining prevalence. In SMSishing
attacks, the attackers sends a message to the victim, as if it originated
from a reputable source (such as the victim’s bank). The SMS message
usually has a message to the victim, stating that they need to call back
to verify some information, with a sense of urgency. When the victim
calls back, they usually hear a recorded message requesting some
personally identifiable and sensitive and information (such as their
bank account information and associated password or PIN). When
such information is provided the message is set up to thank the victim
and then automatically disconnect.

As was aforementioned, the primary vulnerability in electronic
social engineering attacks is not a weakness in technology, but it is
human trust. Secondarily exploitable weaknesses such as no proper
ACLs to host systems and servers, lack of spyware protection that can
modify settings and weaknesses in software code can also result in
significant information disclosure. Phishers and Pharmers attempt to
exploit these weaknesses to masquerade and execute their phishing/
pharming scams.

To mitigate and prevent sensitive data exposure issues, it is important to
ensure that proper security controls such as those listed below are designed and
implemented.

 ■ To prevent the accessibility of data stored in cookies from scripts,
you could set the HTTPOnly flag, which instructs browsers to not
allow Javascript access to the cookies. However, this HTTPOnly
flag option is not available to protect local storage contents as local

370

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 370 6/7/2013 5:40:48 PM

storage by design is intended to be accessed using scripts. So with
local storage, the best approach to ensuring confidentiality is to
avoid storing any sensitive or private information in local storage.

 ■ Using “Private Browsing” mode in browsers and other plugins
or extensions that don’t cache the visited pages. Configure the
browsers to not save history and clear all page visits upon closing
the browser.

 ■ Disable autocomplete features in browser forms that collect
sensitive data.

 ■ Disable caching of sensitive data. However, if sensitive data needs
to be cached, then encrypt the cache and/or explicitly set cache
timeouts (sometimes referred to as cache windows).

 ■ Don’t deploy backup files to production system. For disaster
recovery purposes, sometimes the backup file is deployed by
renaming the file extension to a .bak or a .old extension. Attackers
can guess and forcefully browse to these files and without proper
access control in place, information in these files can be potentially
disclosed.

 ■ Servers need to be hardened so that their log files are protected.
 ■ Installation scripts and change logs should be removed from

production systems and stored in a non-production environment if
it is not required for the software to function.

 ■ Commenting of code must explain what the code does, preferably
for each function, but it must not reveal any sensitive or specific
information. Code review must not ignore the reviewing of
comments in code.

 ■ Static code analysis tools can be leveraged to search for APIs that
are known to leak information. ‘

 ■ If you don’t need to maintain sensitive data, don’t store the collected
data after it is processed. If you need to store the data (data-at-rest),
then protect it by encrypting or hashing it. If the data is encrypted,
maintain the key to decrypt the data separate from the data itself.
If asymmetric cryptography is used for encryption, the public key
can be used in the frontend to encrypt the data and the associated
private key can be set up in the backend data store to decrypt the
data. Relying solely on the automatic backend database encryption
for both encryption and decryption does not prevent injection
attacks. If the data is hashed, use a salt value to mitigate rainbow
table cracking.

371

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 371 6/7/2013 5:40:48 PM

 ■ Stored passwords need to be hashed, but if you have to resort to
encrypting them, then leverage a cryptographic algorithm that is
specifically designed for password protection. Examples of password
protection algorithms include bcrypt, PBKDF2 or scrypt.

 ■ Implement end-to-end channel security to protect the channel using
SSL/TLS or IPSec. It is however important to note that although it
may seem that secure communications (using SSL/TLS or IPSec)
is an effective defense against insufficient transport layer protection
attacks, a simple misconfiguration or partial implementation
can render all other protection mechanisms ineffective. The best
defense against these types of attacks is cryptographic protection
of data (encryption or hashing) so that irrespective of whether the
data is being marshaled over secure communication channels or
not, it is still protected.

 ■ Avoid using Mixed SSL when certain pages are protected using
SSL while others or not, because this can lead to the disclosure of
session cookies from pages that are not. Redirect non-secure pages
(e.g., http) to secure ones (e.g., https).

 ■ Ensure that the session cookie’s secure flag is set. This causes the
browser cookie to be sent only over encrypted channels (HTTPS
and not HTTP) mitigating Surf Jacking attack.

 ■ Cryptographically protect data-at-rest and data-in-motion and use
vetted and proven cryptographic algorithms or hashing functions,
compliant with FIPS 140-2 for cryptographic protection needs.

 ■ Properly configure digital certificates that are unexpired and
unrevoked.

 ■ Educate the users to not overlook warning prompts or accept
lookalike certificates and phishing prompts.

 ■ User awareness and education is the best defense against electronic
social engineering scams. Additionally, SPAM control, disabling
of links in emails and instant messaging (IM) clients, viewing
emails in non-HTML format, transport layer protection (SSL/
TLS), phishing filter plugins and offensive strategies such as
dilution and takedown are other safeguards and countermeasures
against phishing and pharming attacks. Dilution, also known as
“spoofback”, is sending bogus and faulty information to the phisher
with the intent to dilute the real information that the attacker is
soliciting. Takedown on the other hand involves actively bringing
down the phishing/pharming web site as a means to contain the
exposure, but this must be down with proper legal guidance. To

372

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 372 6/7/2013 5:40:49 PM

mitigate Vishing scams, do not trust the caller ID as it can be
easily spoofed and also verify the caller on the other end of the line.
To mitigate SMSishing scams, disable text messaging services, if it
is not required. Do not call back the number that you are asked to
call in the message itself and notify appropriate authorities when
an attack is suspected. “Don’t trust and verify” whenever in doubt.

 ■ Sensitive data and administrative access should be based on the
principle of separation of duties/privileges to reduce insider fraud.
Don’t forget to include internal personnel that have privileged
access to the data (e.g., data architects, database administrators,
etc.) as part of your threat profile.

Missing Function Level Checks
One of the most easily exploitable weaknesses in many applications is the failure
to restrict access to privileged functionalities or URLs. This is also referred to
sometimes as forced access attacks. In some cases, the protection is provided
and managed using configuration settings and code checks. In most cases, the
only protection the software affords is not presenting the function or the URL
of the page to an unauthorized (or anonymous) user. This kind of security by
obscurity offers little to no protection against a determined and skilled attacker
who can guess and/or forcefully browse to these function locations and access
unauthorized functionality. Furthermore, guessing of URLs is made easier if the
URL naming pattern or scheme is predictable, default and/or left unchanged.
Even if the functionality or URL is hidden and never displayed to an unauthorized
user, without proper authentication and access control checks, hidden functions
and URLs can be disclosed and their page functions invoked. Additionally,
automated tools are not usually set up to detect missing function level checks.

Web pages that provide administrative functionality are the primary
targets for such bruteforce attacks, but any function or page can be exploited
if not protected properly. It is therefore imperative to verify the protection
(authentication and authorization checks) of each and every function and URL
but this can be a daunting task, when performed manually, especially if the
application is complex and composed or many functions and pages. The design
principles of complete mediation and least common mechanisms must be
architected into the application.

Role Based Access Control (RBAC) of functions and URLs that denies
access by default, along with requiring explicit grants to users and roles, provides
some degree of mitigation against missing function level checks and failure to
restrict URL access attacks. When access control checks are implemented using

373

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 373 6/7/2013 5:40:49 PM

configuration settings or in code, it is best advised not to hard code these checks
within the application code itself and use an entitlement based access control
mechanism so that these checks can be updated and audited in a relatively easy way.

In situations where the software is architected to accept an ‘action’ parameter
to invoke a function or the ‘URL’ itself as a parameter before granting access (as
in the case of checking the Origin of Referrer), the point at which the access
control check is performed needs to be carefully implemented as well. Access
control checks in the workflow must be performed against the standard canonical
forms of the functions and/or URL, meaning that the URL is decoded and
canonicalized into the standard form before the request for that resource is checked.
Obfuscation of URLs provides some defense against attackers who attempt
forced browsing by guessing the URL. Additionally in cases where the web page
displays are based on a workflow, make sure that before the page is served to be
displayed, proper checks for not just the authorization but also state conditions
are met. Whitelisting valid functions and URLs and validating library files that
are referenced are other recommended prevention and mitigation controls.

Do not rely on client based checks but always perform role based access
control checks in the backend (server side). Implement access control checks
in the business logic (model) layer or controller layer so that the presentation
(view) layer access control, which relies on not displaying the functionality or
page to the user, cannot be bruteforced.

Do not cache web pages containing sensitive information and when these
pages are requested, make sure to check that the authentication credentials
and access rights of the user requesting access are checked and validated before
serving the web page. Authorization frameworks such as the JAAS authorization
framework and the OWASP ESAPI can be leveraged.

Cross-Site Request Forgery (CSRF)
Although the Cross Site Request Forgery (CSRF) attack is unique in the sense
that it requires a user to be already authenticated to a site and possess the
authentication token, its impact can be devastating and is rightfully classified
within the top five application security attacks in both the OWASP Top 10 as
well as the CWE/SANS Top 25. The most popular websites such as ING Direct,
NYTimes.com and YouTube have been proven to be susceptible to this.

In CSRF, an attacker masquerades (forges) a malicious HTTP request as
a legitimate one and tricks the victim into submitting that request. Because
most browsers automatically include HTTP requests, that is, the credentials

374

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 374 6/7/2013 5:40:49 PM

http://NYTimes.com
http://INGDirect.com

(user session cookies, basic authentication information, source IP addresses,
windows domain credentials) associated with the site, if the user is already
authenticated, the attack will succeed in performing what the attack crafted the
request to do. These forged requests can be submitted using email links, zero-
byte image tags (images whose height and width are both 0 pixel each so that
the image is invisible to the human eye), stored in an iFrames (stored CSRF),
URLs susceptible to Clickjacking (where the URL is hijacked and clicking on
an URL that seems innocuous and legitimate actually results in clicking on the
malicious URL that is hidden beneath) and XSS redirects. Forms that invoke
state changing function are the prime targets for CSRF. CSRF is also known by
a number of other names, including XSRF, Session riding attack, sea surf attack,
hostile linking, automation attack and Cross Site Reference Forgery. The attack
flow in a CSRF attack is as follows:

1. User authenticates into a legitimate web site and receives the
authentication token associated with that site.

2. User is tricked into clicking a link that has a forged malicious
HTTP request to be performed against the site that the user is
already authenticated to.

3. Since the browser sends the malicious HTTP request, the
authentication credentials, this request surfs or rides on top of
the authenticated token and performs the action as if it was a
legitimate action requested by the user (now the victim)

Although a pre-authenticated token is necessary for this attack to succeed,
the hostile actions and damage that can be caused from CSRF attacks can be
extremely perilous, limited only to what the victim is already authorized to
do. Authentication bypass, identity compromise and phishing are just a few
examples of impact from successful CSRF attacks. If the user is a privileged user,
then total system compromise is a possibility. When CSRF is combined with
XSS, the impact can be extensive. XSS worms that propagate and impact several
web sites within a short period of time usually have a CSRF attack fueling them.
CSRF potency is further augmented by the fact that the forced hostile actions
appear as legitimate actions (since it comes with an authenticated token) and
thereby may go totally undetected. The OWASP CSRF Tester tool can be used
to generate test cases to demonstrate the dangers of CSRF flaws.

The best defense against CSRF is to implement the software so that it is not
dependent on the authenticated credentials that are automatically submitted by
the browser. Controls can be broadly classified into user controls and developer
controls.

375

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 375 6/7/2013 5:40:49 PM

The following are some defensive strategies that can be employed by users to
prevent and mitigate CSRF attacks:

 ■ Do not save username/password in the browser.
 ■ Do not check the “remember me” option in websites.
 ■ Do not use the same browser to surf the Internet and access

sensitive websites at the same time, if you are accessing both from
the same machine.

 ■ Read standard emails in plain text. Viewing emails in plain text
format shows the user the actual link that the user is being tricked
to click on by rendering the embedded malicious HTML links into
the actual textual link. Figure 4.13 depicts how a phishing email is
shown to a potential victim when the email client is configured to
read email in HTML format and in plain text format.

 ■ Explicitly log off after using a web application.
 ■ Use client-side browser extensions that mitigate CSRF attacks. An

example of this is the CSRF Protector which is a client-side add-on
extension for the Mozilla Firefox browser.

The following are some defensive strategies that can be employed by
developers to prevent and mitigate CSRF attacks:

 ■ The most effective developer defensive control against CSRF is
to implement the software to use a unique session specific token
(called a nonce) that is generated in a random, non-predictable,
non-guessable and/or sequential manner. Such tokens need to be
unique by function, page or the overall session.

 ■ CAPTCHAs (Completely Automated Public Turing test to
tell Computers and Humans Apart) can be used to establish
specific token identifiers per session. CAPTCHA don’t provide

 Figure 4.13 – Reading emails in Plain text

376

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 376 6/7/2013 5:40:49 PM

foolproof defense but it increases the work factor of an attacker
and prevents automated execution of scripts that can exploit CSRF
vulnerabilities.

 ■ The uniqueness of session tokens is to be validated on the server
side and not be solely dependent on client based validation.

 ■ Use POST methods instead of GET requests for sensitive data
transactions and privileged and state change transactions, along
with randomized session identifier generation and usage.

 ■ Use a double-submitted cookie. When a user visits a site, the site
first generates a cryptographically strong pseudorandom value and
sets it as a cookie on the user’s machine. Any subsequent request
from the site should include this pseudorandom value as a form
value and also as a cookie value and when the POST request is
validated on the server side, it should consider the request valid, if
and only if the form value and the cookie value are the same. Since
an attacker can modify form values but not cookie values as per the
same-origin policy, an attacker will not be able to successful submit
a form unless he/she is able to guess the pseudorandom value.

 ■ Check the URL referrer tag for the origin of request before
processing the request. However, when this method is implemented,
it is important to ensure that legitimate actions are not impacted. If
the users or proxies have disabled sending the referrer information
for privacy reasons, legitimate functionality can be denied. Also
it is possible to spoof referrer information using XSS and so this
defense must be in conjunction with other developer controls as
part of a defense in depth strategy.

 ■ For sensitive transactions, re-authenticate each and every time (as
per the principle of complete mediation).

 ■ Use transaction signing to assure that the request is genuine.
 ■ Build in automated log out functionality based on a period of

inactivity and log the user out when that timeframe elapses.
 ■ Leverage industry tools that aid with CSRF defense. OWASP

CSRF Guard and the OWASP ESAPI session management control
provide anti-CSRF packages that can be used for generating,
passing and using unique token per session. Code Igniter which is
a server-side plugin for the PHP MVC framework is another well
known example of a tool that offers CSRF protection.

 ■ Mitigate XSS vulnerabilities as most CSRF defenses can be
circumvented using attacker-controlled scripts.

377

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 377 6/7/2013 5:40:49 PM

Using Known Vulnerable Components
When existing components such as libraries, frameworks, modules, etc.,
are leveraged within the application, one runs the risk of using components
with vulnerabilities that the developer may or may not be aware off. This is
particularly more prevalent in software acquired via the software supply chain
and in open source software development, wherein all the components of the
software application is not developed by personnel, under the strict control of
the company. This issue gets exacerbated because most software components
developed using open source projects don’t develop vulnerability patches to fix
old versions, but instead release new versions with the bug fixes in them. It
must however be recognized that this problem is not limited just to open source
software. The use of deprecated, insecure and banned APIs also fall into this
attack category.

Although one could argue that leveraging existing components does not
introduce any new vulnerabilities, known vulnerabilities in these components
can be exploited, which can lead to disastrous consequences. Not only is the
application using these known vulnerable components exploitable, but every
connected and dependent application that leverages these components is
susceptible as well. Vulnerable functions in libraries and frameworks that can
be directly invoked by the user are relatively more susceptible to being directly
exploited than those which are wrapped using custom code and used deeper in
an application.

To mitigate and prevent attacks that exploit known vulnerabilities in
components, it is best to not use libraries and frameworks with known
vulnerabilities that the developer did not write, but this may not be feasible
due to business drivers. When components that were not developed under your
control are to be used, then it is important to ensure that the components, and
their versions, including any dependencies are not only first identified (known),
but also kept up-to-date. It is also advisable to monitor bug tracking databases
and vulnerability disclosure lists to determine if your application is put at risk,
when a security flaw is detected in the components that you have leveraged
within your application and disclosed to the public. Finally, establishing policies
that govern component use and reuse, determining the validity of licenses,
ongoing maintenance support and end-of-life of these components is necessary
to minimize security and business impacts.

378

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 378 6/7/2013 5:40:49 PM

Unvalidated Redirects and Forwards
Redirection and forwarding users from one location (page) to another either
explicitly on the client or internally on the server side (also known as transfer) is
not uncommon in applications. Redirecting usually targets external links while
forwarding targets internal pages. Scripts can also be used to redirect users from
one document location to another as depicted in Figure 4.14.

 In situations where the target URL is supplied as an unvalidated parameter,
an attacker can specify a malicious URL hosted in an external site and redirect
users to that site. When an attacker redirects a victim to an untrusted site, it is
also referred to as Open Redirects. Once the victim lands on the malicious page
the attacker can phish for sensitive and personal information. They can also
install malware automatically or by tricking users into clicking on masqueraded
installation links. These unvalidated redirects and forwards can also be used by
an attacker to bypass security controls and checks.

Detecting whether the application is susceptible to unvalidated redirects or
forwards can be made possible by performing a code review and making sure
that the target URL is a valid and legitimate one. A server responds a client
request by sending a HTTP response message that includes in its status line the
protocol version, a success or error code, a reason (textual phrase), followed by
header fields that contain server information, metadata information (resource,
payload) and an empty line to indicate the end of the header section and the
payload body (if present). Looking at the HTTP response codes by manually
invoking the server to respond or by spidering the website, one can determine
redirects and forwards. The 3XX series HTTP response codes (300-307) are
the ones that deal with redirection. Appendix C briefly introduces and lists the
HTTP/1.1 status codes and reason phrases.

Figure 4.14 – Changing document location using JavaScript

379

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 379 6/7/2013 5:40:49 PM

Some of the common controls against unvalidated redirects and forwards
include:

 ■ Avoiding redirects and forwards (transfers) if possible
 ■ Use a whitelist target URLS that a user can be redirected to.
 ■ Don’t allow the user to specify the target (destination) URL as a

parameter and if you are required to for business reasons, validate
the target URL parameter before processing it.

 ■ Use an index value to map to the target URL and use that mapped
value as the parameter. This way the actual URL or portions of the
URL is not disclosed to the attacker.

 ■ Architect the software to inform the user using an intermediate
page, especially if the user is being redirected to an external site
that is not in your control. This intermediate page should clearly
inform and warn the user that they are leaving your site. It is
preferable to prompt the user modally before redirecting them to
the external site.

 ■ Mitigate scripts attacks vulnerabilities that can be used to change
document location.

File Attacks
Attacks against software are also prevalent when data is exchanged in files. In
this section, we will cover some of the most common attacks that involve files.
These attacks include:

 ■ Malicious file execution
 ■ Path traversals
 ■ Improper file includes
 ■ Download of code without integrity check

When software is designed and implemented to accept files as input,
unvalidated and unrestricted file uploads could lead to serious compromises of
the security state of the software. Any feature in software that use external object
references (such as URLs and file system references) and which allow the upload
of images (.gif,.jpg,.png, etc.), documents (.docx,.xlsx,.pdf, etc.) and other files,
are potential sources of attack vectors. Insufficient and improper validation
can lead to arbitrary remote and hostile code upload, invocation and execution,
rootkit installations, and complete system compromise. All web application
frameworks are susceptible to malicious file execution if they accept filenames
or files from users.

Malicious file execution attacks can occur in any of the following ways:

380

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 380 6/7/2013 5:40:49 PM

 ■ Accepting user supplied file names and files without validating it.
 ■ Not restricting files to non-executable types.
 ■ Uploading hostile data to the file system via image uploads.
 ■ Using compression or audio streams (e.g., zlib:// or ogg://) that

allow the access of remote resources without the inspection of
internal flags and settings.

 ■ Using input and data wrappers (such as php://input) that accept
input from the request POST data instead of a file.

 ■ Using hostile Document Type Definitions (DTDs) that forces the
XML parser to load a remote DTD and parse and process the
results.

In situations where the software is architected to accept path names and
directory locations from the end user, without proper security controls, attackers
can exploit weaknesses that allow them to navigate to traverse from the intended
file paths to unintended directories and files in the system. Software susceptible
to attacks using canonicalization of file paths such as using “..” or similar
sequences are known to frequently fall prey to path traversal attacks.

Although file attacks are not limited to any one kind of programming
language, programming languages such as PHP that allows remote file includes
(RFI) where the file name can be built by concatenating user supplied input using
file or streams based API, are particularly vulnerable. Breaking the software into
smaller parts of a program (document) and then combining them into one big
program (document) is a common way to build a program. When the location
of the smaller parts of the program is user defined and can be influenced by an
end user, an attacker can point to locations with remote and dangerous files and
exploit the software.

When you download code (or files) without checking if the code is altered,
it can lead to very serious security breaches and repercussions. An attacker can
modify code before you download it. Even locations (sites) that hold files that
you trust and download can be attacked and impersonated using DNS spoofing
or cache poisoning, redirecting users to attacker locations. This is particularly
important when software updates are published using files from trusted locations.
Downloading code and files without integrity checks can lead to the download
of files that have been maliciously altered by an attacker.

Automated scanning can be used to determine sections in code that accept
file names and file paths but are not very efficient in identifying the legitimacy
of parameters that are used in file includes. Static analysis tools can be useful in

381

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 381 6/7/2013 5:40:49 PM

determining banned APIs but they cannot ensure that appropriate validation
is in place. Manual code review is recommended to search for file attack
vulnerabilities.

Controls that prevent and mitigate file attacks are necessary to ensure that
software security when dealing with files and their associated properties is
assured.

The following are recommended controls against malicious file execution
attacks:

 ■ Use a whitelist of allowable file extensions. Ensure that the check
for the valid list of file names takes into account the case sensitivity
of the file name.

 ■ Allow only one extension to a file name. For example, “myfile.exe.
png” should not be allowed.

 ■ Use an indirect object reference map and/or an index for file names.
Cryptographically protecting the internal file name by salting and
hashing the file names can prevent bruteforce discovery of file
names.

 ■ Explicitly taint check. Taint checking is a feature in some
programming languages such as Perl and Ruby that protects
against malicious file execution attacks. Assuming that all values
supplied by the user can be potentially modified and untrusted,
each variable that holds values supplied by an external user is
checked to see if the variable has been tainted by an attacker to
execute dangerous commands.

 ■ Automatically generate a filename instead of using the user supplied
one.

 ■ Upload the files to a hardened staging environment and inspect
the binaries before processing them. Inspection should cover more
than just file type, size, MIME content type or filename attribute
but also inspect the file contents as attackers can hide code in some
file segments that will be executed.

 ■ Avoid using file functions and streams-based APIs to construct
filenames.

 ■ Configure the application to demand appropriate file permissions.
Using the Java Security Manager and the ASP.Net partial trust
implementations can be leveraged to provide file permissions
security.

 ■ The following are recommended controls against path traversal
attacks:

 ■ Use a whitelist to validate acceptable file paths and locations.

382

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 382 6/7/2013 5:40:49 PM

 ■ Limit character sets before accepting files for processing. Examples
include allowing a single “.” character in the filename and
disallowing directory separators such as “/” mitigate path traversal
attacks.

 ■ Harden the servers by configuring them to not allow directory
browsing or contents.

 ■ Decode once and canonical file paths to internal representation
so that dangerous inputs are not introduced after the checks
are performed. Use built-in canonicalization functions that
canonicalize pathname by removing “..” sequences and symbolic
links. Examples include realpath() (C, Perl, PHP), getCanonicalPath
(Java), GetFullPath() (ASP.Net), and abs_path() (Perl).

 ■ Use a mapping of generic values to represent known internal actual
file names and reject any values not configured explicitly.

The following are recommended controls against improper file includes attacks:
 ■ Store library, include and utility files outside of the root or system

directories. Using a constant in a calling program and checking for
its existence in the library or include file is a common practice to
identify files that are approved or not.

 ■ Restrict access to files within a specified directory.
 ■ Limit the ability to include files from remote locations.
 ■ The following are recommended controls against download of

code without integrity check attacks.
 ■ Use integrity checking on code downloaded from remote locations.

Examples include hashing, code signing and authenticode
technologies. These can be used to cryptographically validate the
authenticity of the code publisher and the integrity of the code
itself. Hashing the code before it is downloaded and validating the
hash value before processing the code can be used to determine if
the code has been altered or not.

 ■ To detect DNS spoofing attacks, perform both forward and reverse
DNS lookups. When this is used, be advised that this is only a
partial solution as it will not prevent the tampering of code on the
hosting site or when it is in transit.

 ■ When source code is not developed by you or not available, the use
of monitoring tools to examine the software’s interaction with the
OS and the network can be used to detect code integrity issues.
Some examples of common tools include process debuggers, system
call tracing utilities, and system and process activity monitors (file
monitors, registry monitors, system internals), sniffers and protocol
analyzers.

383

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 383 6/7/2013 5:40:49 PM

Race Condition
In order for race conditions to occur, the following three properties need to be
fulfilled.

1. Concurrency property
2. Shared object property and
3. Change state property

Concurrency property means that there must be at least two threads or control
flows executing concurrently. Shared object property means that the threads
executing concurrently are both accessing the same object, i.e., the object is
shared between the two concurrent flows. Change state property means that at
least one of the control flows must alter the state of the shared object. Only
when all of these conditions are fulfilled, does a race condition occur.

Attackers deliberately look for race conditions because they are often
missed in general testing and exploit them, resulting in sometimes very serious
consequences that range from Denial of Service (deadlocks), to data integrity
issues and in some cases total compromise and control. Easy to introduce but
difficult to debug and troubleshoot, race conditions can occur anywhere in
the code (local or global state variables, security logic, etc.) and in any level of
code (source code, assembly code or object code). It can occur within multiple
threads, processes or systems as well.

Design and implementation controls against race conditions includes
 ■ identifying and eliminating race windows
 ■ performing atomic operations on shared resources.
 ■ using mutex operations.
 ■ selectively using synchronization primitives around critical code

sections to avoid performance issues.
 ■ using multi-threading and thread-safe capabilities and functions

and abstractions on shared variables.
 ■ minimizing the usage of shared resources and critical sections that

can be repeatedly triggered.
 ■ disabling interrupts or signals over critical code sections.
 ■ avoiding infinite loop constructs.
 ■ implementing the principle of economy of mechanisms, keeping

the design and implementation simple, so that there are no circular
dependencies between components or code sections.

 ■ implementing error and exception handling to avoid disclosure of
critical code sections and their operations.

384

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 384 6/7/2013 5:40:49 PM

 ■ performing performance testing (load and stress testing) to
ensure that software can reliably perform under heavy load and
simultaneous resource requests conditions.

Side Channel Attacks
Although not listed as one of the top 10 or top 25 issues plaguing software, side
channel attacks are an important class of attacks that can render the security
protection effectiveness of a cryptosystem futile. They are of importance to us
because attackers can use non-conventional means to discover sensitive and
secret information about our software and even a full-fledged implementation
of the controls determined from the threat model can fall short to provide total
software assurance.

Although side channel attacks are predominantly observed in cryptographic
systems, they are not limited only to cryptography. In the context of
cryptography, side channel attacks are those which use information that is
neither plaintext nor ciphertext from a cryptographic device to discover secrets.
Such information that is neither plaintext nor ciphertext is referred to as side
channel information. A cryptographic device functions by converting plaintext to
ciphertext (encryption) and from ciphertext to plaintext (decryption). Attackers
of cryptosystems were required to either know the ciphertext (ciphertext-only
attacks), or both the plaintext and the ciphertext (known plaintext attacks), or
be able to define what plaintext is to be encrypted and use the ciphertext output
towards exploiting the cryptographic system (chosen plaintext attack). Nowadays
however, most cryptographic devices have or emit additional information from
them that is neither plaintext nor ciphertext. Examples of some common side
channel information include the time taken to complete an operation (timing
information), power consumptions, radiations/emanations, acoustic and fault
information. These makes it possible for an attacker to discover secrets such as
the key and memory contents using all or some of the side channel information
in conjunction with other known cryptanalysis techniques. The most common
classes of side channel attacks are the following:
Timing attacks
In timing attacks, the attacker measure how long each computational operation
takes and uses that side channel information to discover other information about the
internal makeup of the system. A subset of this timing attack is looking for delayed
error messages which is a technique employed in blind SQL injection attacks.

Power Analysis attacks
In power analysis attacks, the attacker measures the varying degrees of power
consumption by the hardware during the computation of operations. For

385

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 385 6/7/2013 5:40:49 PM

example, the RSA key can be decoded using the analysis of the power peaks,
which represent times when the algorithms use multiplications or not.

TEMPEST attacks
Also known as van Eck or radiation monitoring attack, an attacker attempting
TEMPEST attacks uses leaked electromagnetic radiations that can be used
to discover plaintexts and other pertinent information that are based on the
emanations.

Acoustic Cryptanalysis attacks
Much like the power analysis attacks, in acoustic cryptanalysis attacks, the
attacker uses the sound produced during the computation of operations.

Differential Fault Analysis attacks
Differential fault analysis attacks aim at discovering secrets from the system by
intentionally injecting faults into the computational operation and determining
how the system responds to the faults. This is a form of fuzz testing (covered in
the secure software testing chapter) and can also be used to indicate the strength
of the input validation controls in place.

Distant Observation attacks
As the name suggests, distant observation attacks is a shoulder surfing attack,
where the attacker observes and discovers information of a system indirectly
from a distance. Observing through a telescope or using a reflected image off
someone’s eye, eyeglasses, monitor or other reflective devices are some well-
known examples of distant observation attacks.
Cold Boot attacks
In a Cold Boot attack, an attacker can extract secret information by freezing
the data contents of memory chips and the booting up to recover the contents
in memory. Data remanence in the RAM was believed to be destroyed when
the system shut down but the cold boot attack proved traditional knowledge
to be incorrect. This is of importance because not only is this an attack against
confidentiality, it also demonstrates the importance of secure startup.

The following are recommended defensive strategies against side channel
attacks:

 ■ Leverage and use vetted, proven, and standardized cryptographic
algorithms that are known to be less prone to side channel
information leakage.

 ■ Use a system where the time to compute an operation is independent
of the input data or key size.

 ■ Avoid the usage of branching and conditional operational logic

386

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 386 6/7/2013 5:40:49 PM

(IF-THEN-ELSE) in critical code sections to compute operations
as they will have an impact on the timing of each operation. It is
recommended to use simpler and straightforward computational
operations (AND, OR, XOR) to limit the amount of timing
variances that can result and be potentially used for gleaned side
channel timing and power consumption information.

 ■ The most effective protection against timing attacks is to standardize
on the time that each computation will take. This means that each
and every operation takes the same amount of time to complete its
operation however, this could have an impact on performance. A
fixed time implementation is not very efficient from a performance
standpoint, but makes it difficult for the attacker to conduct timing
attacks. Adding a random delay is also known to increase the
work factor of an attacker. Also standardizing on the time needed
to compute a multiplication or an exponentiation can leave the
attacker guessing as to what operation was undertaken.

 ■ Balancing power consumption independent of the type of operation
along with reducing the signal size are useful controls to defend
against power analysis attacks.

 ■ Adding noise is a known and proven control against acoustic
analysis.

 ■ Physical shielding provides one of the best defenses against
emanation or radiation security such as TEMPEST attacks.

 ■ Double encryption, which is characterized by running the
encryption algorithm twice and outputting the results only if both
the operations match, is a recommended control against differential
fault analysis. This works on the premise that the likelihood of a
fault occurring twice is statistically small and insignificant.

 ■ Physical protection of the memory chips, preventing memory
dumping software from execution, not storing sensitive information
in memory, scrubbing and overwriting memory contents that are
no longer needed periodically or at boot time (using a destructive
Power-On Self-Test) and using the Trusted Platform Module
(TPM) chip are effective controls against Cold Boot attacks. It
is important to know that the TPM chip can prevent a key from
being loaded into memory, but it cannot prevent the key from
being discovered once it is already loaded into memory.

387

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 387 6/7/2013 5:40:49 PM

Defensive Coding Practices –
Concepts and Techniques
We started this chapter with the premise that secure software is more than just
writing secure code, however implementing controls in code can have a huge
impact on the resiliency of the software against hacker threats. The moment a
single line of code is written, the attack surface has potentially increased and so
it important to recognize that the attack surface of the software code is not only
evaluated but also reduced. Some examples of attack surface reduction related
to code are:

 ■ reducing the amount of code and services that are executed by default.
 ■ reducing the volume of code that can be accessed by untrusted users.
 ■ limiting the damage when the code is exploited.

Determining the RASQ before and after the implementation of code can
be used to measure the effectiveness of the attack surface reduction activities.
Defensive coding practices and techniques are used in reducing the attack
surface and assuring the reliability, resiliency and recoverability of software. In
this following section, we will learn about the most common defensive coding
practices and techniques.

Input Validation
While it is important to trust, it is even more important to verify. This is the
underlying premise behind input validation. When it comes to software, we
must in fact consider all input as evil and validate all user input.

Input validation is the verification process that ensures the data that is
supplied:

 ■ for processing is of the correct data type and format
 ■ falls within the expected and allowed range of values
 ■ is not interpreted as code as is the case with injection attacks (covered

later in this chapter)
 ■ does not masquerade in alternate forms that bypass security controls

How to Validate?
Regular expressions (RegEx) can be used for validating input. A listing of
common RegEx patterns is provided in the Secure Software Testing chapter.
This process of verification can be achieved using filtration techniques.

388

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 388 6/7/2013 5:40:49 PM

Filtering user input can be accomplished using either a whitelist or a blacklist.
A whitelist is a list of allowable good and non-malicious characters, commands
or data patterns that are allowed. For example, the application will allow only
‘@’ and ‘.com’ in the email field. Items in a whitelist are known and usually
deemed to be non-malicious in nature. On the other hand, a blacklist is a list
of disallowed characters, commands or data patterns that are considered to be
malicious. Examples include the single quote (‘), SQL comment (- -) or a
pattern such as (1=1).

Where to Validate?
The point at which the input is validated is also critically important. Input can
be validated on the client or on the server or on both. It is best recommended
that the input is validated both on the client (frontend) as well as on the server
(backend) if the software is a Client/Server architected solution. Minimally, server
side validation must be performed. It is also insufficient to validate input solely on
the client side as this can be easily bypassed and afford minimal to no protection.

What to Validate?
One can validate pretty much for anything from generic whitelist and blacklist
items to specific business defined patterns. When validating input, the supplied
input must at a bare minimum be validated for:

 ■ data type
 ■ range
 ■ length
 ■ format
 ■ values
 ■ alternate representations of a standard (canonical) form.

Canonicalization
Canonicalization is the process of converting data that has more than one possible
representation to conform to a standard canonical form. Since canonicalization
is a difficult word for some people to pronounce, it has been abbreviated as
C14N (there are 14 characters between the first letter C and the last letter
N). Although canonicalization is predominantly evident in Internet related
software, canonicalization can be used to convert any data into its standard
forms and approved formats. In XML, canonicalization is used to ensure that
the XML document adheres to the specified format. The canonical form is the
most standard or simplest form.

389

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 389 6/7/2013 5:40:49 PM

URL encoding to IP address translations are well known applications
of canonicalization. Canonicalization also has international implications
as it pertains to character sets or code pages such as ASCII, Unicode, etc.
(covered under the International requirements section of the Secure Software
Requirements chapter). It is therefore imperative that the appropriate character
set and output locale are set in the software to avoid any canonicalization issues.
From a security standpoint, canonicalization has an impact on input filtration.
When filters (RegEx) are used to validate that the canonical or standard form
of the input are part of a blacklist, they can be potentially bypassed when an
alternate representation of the canonical form is passed in, if the validate check
occurs before the canonicalization process is complete. It is recommended to
decode once and canonicalize inputs into the internal representation before
performing validation to ensure that validation is not circumvented. An example
of canonicalization is depicted in Figure 4.15.

Sanitization
Sanitization is the process of converting something that is considered dangerous
into its innocuous form. Both inputs and outputs can be sanitized.

Input sanitization is the process of transforming the data that is supplied by
the user before it is processed. Input sanitization can be accomplished using any
one of the following methods:

 ■ Stripping: Removing harmful characters from user supplied input
 ■ Substitution: Replacing user supplied input with safer alternatives
 ■ Literalization: Using properties that render the user supplied input

to be treated as a literal form.

Stripping, Replacement and Literalization are covered here. An example for
stripping is as follows:

Say for example, the attacker supplies the following text in an input form
field.

<script>alert(‘XSS probe test’);</script>

Figure 4.15 – Canonicalization of URL

390

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 390 6/7/2013 5:40:49 PM

By stripping the potentially harmful characters such as ‘<’, ‘>’, ‘(‘, ‘)’, ‘’’, ‘;’
and ‘/’, the attacker’s input becomes

scriptalertXSS probe testscript

which is not executed.

An example for substitution is as follows:
Say for example, the attacker supplies the following text in an input form

field.

‘ Or 1=1 --

By replacing the single quote quote (‘), with a double quote (‘’), the
attacker’s input ends up becoming

“ Or 1=1 --

which will cause a SQL syntax error.

An example for literalization is as follows:
For input sanitization in web applications, a common technique that is

used includes the conversion of the input into its innerText form, instead of its
innerHTML form. This renders the input to be non-executable and treats the
user-supplied input as a literal when it is processed and reflected on the client.

Output sanitization is usually performed by encoding (sometimes referred to
as encoding) the data before it is presented to the client. Much like the replacement
technique of input sanitization, output encoded involves the conversion of the
user supplied input by encoding the values that are supplied with their entity
form, so that the malicious script is escaped. The two predominant methods of
encoding in web applications include

 ■ HTML entity encoding
 ■ URL encoding

In HTML entity encoding, the meta-characters and HTML tags are
encoded to (substituted with) their corresponding character entity references.
For example, in HTML entity encoding, the character ‘<’ is encoded to its
corresponding HTML equivalent, which is ‘<’ and ‘>’ is encoded to “>”.

In Url Encoding, encoding is applied to parameters and values that
are transmitted as part of the HTTP Query (URL). Characters that are not
permitted in the URLs can be encoded into their Unicode Character set code.
For example, in URL encoding, the character ‘<’ is encoded to its corresponding
URL equivalent which is “%3C” and ‘>’ is encoded to “%3E.”

391

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 391 6/7/2013 5:40:50 PM

Sometimes, input sanitization may not be feasible due to some business
reason, at which time, it is best to sanitize the output before it is sent to the
client.

When sanitization is performed, it is critically important to make sure that
the integrity of the data is maintained. For example, if O’Shea is the value
supplied as the last name of a user, by replacing the single quote with double
quotes, the value will change to O’’Shea which is not accurate. Additionally,
the number of times, data is encoded can have an impact on the response that
is output to the client. For example, double encoding (encoding the input
once and encoding the encoded input again before it is output) can have some
undesirable behavior. For example, if the user supplier the value “AT&T”,
encoding it once would result in “AT&T” as & is the encoded form
of the ampersand symbol. Now when that encoded text is encoding again, it will
result in “AT&amp;T” and the browser will display “AT&T” instead
of “AT&T”, which is inaccurate.

Error Handling
Input validation and output error handling can be regarded as two of the most
basic and effective protection mechanisms that can be used to mitigate a lot
of software attacks. Error messages are one of the first sources an attacker will
look to determine the information about the software. Without proper handling
of input and the response generated from that input in the form of an error
message, sensitive information can be leaked. Validate all input to prevent an
attacker from forcing an error by using an input (type, value, range, length, etc.)
that the software is not expecting.

The error messages must be non-verbose and explicitly specified in the
software. An example of a verbose error message would be displaying ‘User
ID did not match’ or ‘Password is incorrect’, instead of using the non-verbose
or laconic equivalent such as ‘Login invalid’. Additionally upon errors, the
software is to fail to a more secure state. Organizations are tolerant of user errors
which are inevitable, permitting a pre-determined number of user errors before
recording it as a security violation. This pre-determined number is established
as a baseline and is referred to in operations as clipping level. An example of this
is, after three failed incorrect PIN entries, your account is locked out until an
out of band process unlocks it or a certain time period has elapsed. The software
should never fail insecure which would be characterized by the software allowing
access after three failed incorrect PIN entries.

392

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 392 6/7/2013 5:40:50 PM

 ■ Use non-verbose error messages with just the needed information.
System generated errors with stack information and code paths
must be abstracted into generic user friendly error messages that
are laconic, with just the needed information.

 ■ Use an index of the value or reference map. An example of using
indices would be to use a Globally Unique Idenfiers (GUID) that
map to internal errors but it is the GUID alone that is displayed to
the user, informing the user to contact the support line for more
assistance. This way, the internal error details are not directly
revealed to the end user or to the attacker who could be using them
in their reconnaissance efforts as they plan to launch other attacks.

 ■ It is recommended as a best practice to redirect errors and exceptions
to a custom and default error handling location and depending
on the context of where the user has logged in (remote or local),
appropriate message details can be displayed.

Safe APIs
One of the top 10 threats to cloud computing software and systems, according
to the published Cloud Security Alliance report, was the nefarious use of
APIs. Software today is mostly developed using and leveraging application
programming interfaces (API). APIs make the internal functionality of a software
function accessible to external callers (other entities and code functions). They
abstract the internal function details and as long as the caller meets the interface
requirements, they can invoke and benefit from the processing of the function.
Interfaces are useful to implement the design principle of leveraging existing
components. Threat modeling should identify APIs as potential entry points.
Banned and deprecated APIs that are susceptible to security breaches should be
avoided and replaced with secure counterparts.

When interfaces are used to access administrative features, web services,
or other third party components, it is essential to ascertain that proper
authentication is in place. It is also important to audit the access and user/system
actions that are performed upon the invocation of privileged functions exposed
by the interfaces. When confidentiality of sensitive information (usernames,
passwords, connection string, keys) is required, CryptoAPI Next Generation
(CNG) can be used. When an application’s internal APIs are opened up to
third-party developers, necessary protection mechanisms need to be in place.

Memory Management
We covered the importance of memory management under the section on
computer architecture and buffer overflow attacks. The following are other

393

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 393 6/7/2013 5:40:50 PM

important memory management concepts that a CSSLP must be familiar with,
to assist in the implementation of security controls appropriately.

Locality of Reference
The locality of reference, also known as the principle of locality, is the principle
that subsequent data locations that are referenced when a program is run are
often predictable and in proximity to previous locations based on time or space.
This is primarily to promote the reuse of recently used data and instructions.
The main types of locality of reference that are prevalent are temporal, spatial,
branch and equidistant locality.

Temporal (or time based) locality means that the same memory locations
that are recently accessed are more likely to be referenced again in the near
future. Spatial (or space based) locality means that memory locations that are
nearby recently accessed memory locations are more likely to be referenced in
the near future. Branch locality means that on the basis of the prediction of
the memory manager, the processor uses branch predictors (such as conditional
branching) to determine the location of the memory locations that will be
accessed in the near future. Equidistant locality is somewhere halfway between
spatial and branch locality and uses simple functions (usually linear) that look
for equidistant locations of memory to predict which location will be accessed
in the near future.

An understanding of the principle of locality is important since appropriate
protection of memory can be implemented to avoid memory buffer overflow
attacks.

Dangling Pointers
Dangling pointers are those pointers which do not point to a valid object of
the appropriate type in memory. These occur when the object that the pointer
was originally referencing was deleted or de-allocated without the pointer value
being modified. This is also referred to commonly as a memory leak and the
previous memory object becomes unreachable while still taking upp memory
space. Dangling pointers reference the memory location of the de-allocated
memory and when that de-allocated memory location is loaded with some
other data, unpredictable results including system instabilities, segmentation
and general protection faults can potentially occur. Additionally if an attacker
can take advantage of the dangling pointer, serious overflow attacks can result.
Dangling pointers differ from wild pointers in the sense that the wild pointers
are used prior to being initialized but they have been known to result in similar
erratic, unpredictable and dangerous results as dangling pointers.

394

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 394 6/7/2013 5:40:50 PM

Garbage Collection
A memory leak occurs when the memory buffer object that is allocated to hold
some variable becomes unreachable. This can occur if the processing threads are
not optimized or due to bad programming. This is why memory needs to be
managed. Once processing threads are terminated, allocated memory resources
must be released and reclaimed for reuse.

The reclaiming of memory is made possible automatically by what is referred
to as garbage collection, in computer programming. The main goal of garbage
collection is to reduce memory leaks i.e., reclaiming unreachable memory
objects. Requiring programmers to manually manage memory can not only
result in software optimization issues but also render the software exploitable.
This is why garbage collection is important.

Although garbage collection is automatically enforced, it can be invoked in
code by the programmer. However, it must be recognized that garbage collection
is non-deterministic in nature. In other words, a call to garbage collection
functionality (e.g., System.gc()) does not mean that the garbage collection
routine will happen when that line of code is executed. Instead, it is merely a
hint to the processor that garbage collection must be performed.

Garbage collection can have and usually has an impact on performance
because a lag time (latency) is experience between the time, objects references
are de-allocated and when the object is reclaimed. To address, the latency issue,
in some newer operating systems such as the Apple iOS, garbage collection is
being deprecated by what is referred to as automatic reference counting (ARC).
Reference counting can be thought of as a way of garbage collection wherein
each object in memory keeps a count of the number of pointer references to it.
Each time a reference to the object is made, the reference count is incremented.
Whenever, a reference to the object is destroyed, then the reference count is
decremented. When that count comes to zero, that object is then considered
to be garbage which can then be de-allocated and reclaimed. The advantage of
ARC over traditional garbage collection, is that reference counting guarantees
that objects are destroyed and reclaimed as soon as they become unreachable
i.e., their reference counts come to zero.

Improper management of memory can lead to abnormal memory allocations
that can eventually lead to a DoS attack. This happens when the memory space
is filled with objects that are then destroyed by the attacker’s exploit code. The
garbage collector then goes into overdrive, stopping other processing threads,
while it tries to reclaim the memory space, leading to a DoS attack. Frequently

395

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 395 6/7/2013 5:40:50 PM

subjecting the garbage collector to go into overdrive in its function can result in
the system coming to a halt and this attack technique is referred to as fast death.
In fast death, the system memory resources are exhausted. Contrary to a fast
death is the slow death in which the attacker requests additional memory that
the garbage collector has to invoke, but they do so at a rate that is not quite as
severe to throw an out-of-memory exception. In slow death, the CPU cycles are
stolen, when memory is being occupied.

Type Safety
Type safe code cannot access memory at arbitrary locations out of the range
of memory address space that belongs to the object’s publicly exposed fields.
It cannot access memory locations it is not authorized to access. When the
code is type safe, the runtime is given the ability to isolate assemblies from
one another. Type safe code accesses types only in explicitly defined (casted/
converted) and allowed formats. Buffer overflow vulnerabilities are found to
be prevalent in unmanaged non-type safe languages such as C and C++. Type
safety is an important consideration when choosing between a managed and
unmanaged programming language. Parametric polymorphism or Generics that
allows a function or data type to be written generically so that it can handle
values identically without depending on their type is a means to make a language
more expressive while maintaining full type safety.

Code Access Security
Unlike in the case of an unmanaged code environment, in a managed code
environment, when a software program is run, it is automatically evaluated
to determine the set of permissions that need to be given to the code during
runtime and based on what permissions are granted, the program will execute as
expected or throw a security exception. The security settings of the host computer
system on which the program is run decides the permissions sets that the code is
granted. Code access security (CAS) prevents code from untrustworthy sources
or unknown origins from having run time permissions to perform privileged
operations. CAS also protects code from trusted sources from inadvertently or
intentionally compromising security. In order to implement CAS, the code must be
generated by a programming language that can produce verifiable type-safe code.

In addition to type safety, CAS concepts include the following:
 ■ Syntax Security (Declarative and Imperative)
 ■ Security Actions
 ■ Secure Class Libraries

396

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 396 6/7/2013 5:40:50 PM

Syntax Security (Declarative and Imperative)
CAS can be implemented in the code itself. The two ways in which it is
implemented in code syntax includes declarative and imperative security. In the
context of CAS, declarative security syntax means that the permissions are defined
as security attributes in the metadata of the code as shown in Figure 4.16. The
scope of the security attributes that define the allowed security actions (requests,
demands and overrides) can be at the level of the entire assembly, a class or at
the member level. Imperative security on the other hand is implemented using
new instance of the permission object inline in code as shown in Figure 4.17.
The security action of demands and overrides are possible in imperative security,
but imperative security cannot be used for requests. Imperative security is handy
when the runtime permissions that are to be granted to the code are not known
before it is run in which case the permissions cannot be declaratively defined as
security attributes of the code.

In addition to declarative syntax security to implement CAS, declarative
security is also a container managed approach to security. In this context, the
main objective is to make the software portable, flexible and less expensive to
deploy and the security rules are configured outside the software code as part
of the deployment descriptor. Often this is server (container) based and the
server configuration settings for authentication and authorization are used to
protect the resource from unauthorized access. It is usually an all-or-nothing
kind of security. Since it is usually set up and maintained by the deployment

Figure 4.16 – Declarative Code Access Security

397

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 397 6/7/2013 5:40:50 PM

personnel and not the developer, declarative security allows programmers to
ignore the environment in which they write their software, and updates to the
software do not require refactoring the security model. Programmatic security
on the other hand is a component managed approach to security and much like
the imperative CAS implementation, programmatic security works by defining
the security rules in the component or code itself. This allows for a granular
approach to implementing security and can be used to apply business rules
when the all-or-nothing declarative container based security cannot support the
needed rules. Programmatic security is defined by the developer. If code reuse
is a needed requirement, then programmatic component based security that
customizes code with business and security rules is not recommended. In such
cases, declarative container based security is preferred which also leverages non-
programmers and deployment personnel to enforce security policies.

Security Actions
The permissions to be granted are evaluated by the runtime when code is loaded
into memory. The three categories of security actions that can be performed are
request, demands and overrides. Requests are used to inform the runtime about
the permissions that the code needs in order for it to run. It cannot be used to
influence the runtime to grant the code more permissions that what it should be
granted. Demands are used in code to assert permissions and help protect resources
from callers. Overrides are used in code to override default security behavior.

Figure 4.17 – Imperative Code Access Security

398

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 398 6/7/2013 5:40:50 PM

Secure Class Libraries
Distinctive of a secure class library is that it uses security demands to ascertain
that the callers of the libraries have the permissions to access the functionality
and resources it exposes. Code that does not have the necessary runtime
permissions to access the secure class libraries will not be allowed to access the
libraries resources. Additionally, even if code has the runtime permissions to call
secure class libraries, if that code is in turn called by malicious code, then the
malicious code (which is now the caller) will not be allowed to access the secure
class libraries or its resources.

Exception Management
Exceptions are inevitable when dealing with software. While errors may be a
result of user ignorance or software breakdown, exceptions are software issues
that are not handled explicitly when the software behaves in an unintended or
unreliable manner. An example of user error is that the user mistypes his user
ID when trying to log in. Now if the software was expecting the user ID to be
supplied in a numeric format and the user typed in alpha characters in that
field, the software operations will result in a data type conversion exception. If
this exception is not explicitly handled, it would result in informing the user
of this exception and in many cases disclose the entire exception stack. This
can result in information disclosure potentially revealing the software’s internal
architectural details and in some cases even the data value. Figure 4.18 discloses
how an unhandled exception reveals a lot of sensitive information including the
internal makeup of the software.

Figure 4.18 – Improper Exception handling

399

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 399 6/7/2013 5:40:50 PM

Handle all exceptions preferably with a common approach.

All exceptions must be explicitly handled. If the programming language
allows for try-catch-finally constructs then there must be a catch all exception
block.

Additionally, an important exception management feature that can be
leveraged during the compilation and linking process is to use the Safe Security
Exception Handler (/SAFESEH) flag in systems that support it.

When the /SAFESEH flag is set, the linker will produce the executable’ s safe
exception handlers table and write that information into the program executable
(PE). This table in the PE is used to verify safe (or valid) exceptions by the OS.
When an exception is thrown, the OS will check the exception handler against
the safe exception handler list that is written in the PE and if they do not match,
the OS will terminate the process.

Session Management
Just because someone is authenticated and authorized to access system resources
does not mean that security controls can be lax after an authenticated session
is established, because a session can be hijacked. Session hijacking attacks
happen when an attacker impersonates the identity of a valid user and interjects
themselves into the middle of an existing session, routing information from the
user to the system and from the system to the user through them. This can lead
to information disclosure (confidentiality threat), alteration (integrity threat)
or a denial of service (availability threat). It is also known as a man-in-the-
middle (MITM) attack. Session management is a security concept that aims
at mitigating session hijacking or MITM attacks. It requires that the session is
unique by the issuance of unique session tokens and it also requires that user
activity is tracked so that someone who is attempting to hijack a valid session
is prevented from doing so. Controls to implement in code to manage sessions
are covered under the Broken Authentication and Session Management section
in this chapter.

Configuration Parameters Management
Software is made up of code and parameters that need to be established for it
to run. These parameters may include variables that need to be initialized in
memory for the software to start, connection strings to databases in the backend
or cryptographic keys for secrecy to just name a few. These configuration
parameters are part of the software makeup. They are to be considered an asset
just as the operational software itself and they need to configured properly and

400

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 400 6/7/2013 5:40:50 PM

protected as well. What good is it to lock the doors and windows of your house
when you leave the key under the mat on the front porch? In the context of secure
software, configuration parameters management means that the parameters that
make up the software are managed and protected so that they are less prone to
exploitation. Two main configurable parameters include startup variables and
cryptographic keys and each are covered in this section below under the topics,
secure startup and cryptographic agility.

Secure Startup
It is important to recognize that software that is written can be secure by default
in design and implementation, but without adequate levels of protection to
protect the integrity of the software when it begins to execute, can thwart the
assurance of the software. It is therefore imperative to ensure that the software
startup process itself is secure. Usually during the bootstrapping process of the
startup phase, environment variables and configuration parameters are initialized.
These variables and parameters need to be protected from disclosure, alteration
or destruction threats. Bootstrapping security is covered in more detail in the
software deployment, operations and maintenance and disposal chapter. Secure
startup prevents and mitigates side channel attacks such as the Cold Boot attack.

Cryptography
The impact of cryptographic vulnerabilities can be extremely serious and
disastrous to the business, ranging from disclosure of data that brings with it
fines and oversight (regulatory and compliance) to identity theft of customers,
reputational damage and in some cases complete bankruptcy.

When it comes to cryptographically protecting information, the predominant
flaw in software is the lack of encryption of sensitive data. Attackers typically
go after weaknesses that are the easiest to break. When data that needs to be
cryptographically secure is stored as plaintext, the work factor for an attacker to
gain access to and view sensitive information is virtually non-existent, as they
don’t have the need to break the cryptography algorithm or determine the key
needed to decrypt. However if the data is encrypted, then the work factor for
an attacker is relatively higher. But it must be recognized that encrypting the
data without appropriately securing the key storage makes the cryptographic
protection futile as the attackers don’t necessarily have to break the cryptography
algorithm itself but can find the keys and use the key to decrypt ciphertext to
cleartext leading to disclosure

Other insecure cryptographic vulnerabilities are primarily comprised of the
following:

401

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 401 6/7/2013 5:40:50 PM

 ■ the use of a weak or custom developed unvalidated cryptographic
algorithm for encryption and decryption needs.

 ■ the use of older cryptographic application programming interfaces
(APIs)

 ■ insecure and improper key management which is comprised of
unsafe key generation, unprotected key exchange, improper key
rotation, unprotected key archival and key escrow, improper key
destruction, and inadequate and improper protection measures
that ensure the secrecy of the cryptographic key when it is stored.
A common example is storing the cryptographic key along with
the data in a backup tape.

 ■ inadequate and improper storage of the data (data at rest) that
needs to be cryptographically secure. Storing the sensitive data in
plaintext or as unsalted ciphertext (which can be bruteforced) are
examples of this.

 ■ insufficient access control that give users direct access to unencrypted
data or to cryptographic functions that can decrypt ciphertext and/
or to the database where sensitive and private information is stored.

 ■ violation of least privilege giving users elevated privileges allowing
them to perform operations they should not be allowed to and lack
of auditing of cryptographic operations.

Prevention and mitigation techniques to address insecure cryptography
issues can be broadly classified into the following:

 ■ Data at rest protection controls
 ■ Appropriate algorithm usage
 ■ Cryptographic Agility
 ■ Secure key management
 ■ Adequate access control and auditing

The sources for data-at-rest disclosure threats and some of the associated
controls was covered under the Sensitive Data Exposure topic, in this chapter.It
is covered again here to reinforce its importance. Other data-at-rest protection
controls includes:

 ■ encrypting and storing the sensitive data as ciphertext, at the onset.
 ■ storing salted ciphertext versions of the data to mitigate bruteforce

cryptanalysis attacks.
 ■ not allowing data that is deemed sensitive to cross trust boundaries

from safe zones into unsafe zones (as determined by the threat
model)

402

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 402 6/7/2013 5:40:50 PM

 ■ separating sensitive from non-sensitive data (if feasible) using
naming conventions and strong types. This makes it easier to detect
code segments where data used is unencrypted when it needs to be.

Appropriate algorithm usage means that:
 ■ the algorithm used for encryption and decryption purposes is not

custom developed.
 ■ the algorithm used for encryption and decryption purposes is a

standard (such as the AES) and not a historically proven weak
one (such as DES). AES is comprised of three block ciphers,
each with a block size of 128 bits and key sizes of 128, 192, 256
bits (AES-128,AES-192 and AES-256), which is adopted from
a larger collection originally published as Rijndael. A common
implementation of AES in code is to use the RijndaelManaged class
but it must be understood that the use of the RijndaelManaged
class does not necessary make one compliant to the FIPS-197
specification for AES unless the block size and feedback size (when
using the Cipher Feedback (CFB) mode) are both 128 bits each.

 ■ older cryptography APIs (CryptoAPI) are not used and replaced
with the Cryptography API: Next Generation (CNG). CNG is
intended to be used by developers to provide secure data creation
and exchange over non-secure environments such as the Internet
and is extremely extensible because of its cryptography agnostic
nature. It is recommended that the CSSLP be familiar with CNG
features and its implementation.

 ■ the design of the software takes into account the ability to
quickly swap cryptographic algorithms as needed. Cryptographic
algorithms that were considered to be strong in the past have been
proven to be ineffective in today’s computing world and without
the ability to quickly swap these algorithms in code, the application
can experience downtime that impacts the availability tenet of
security.

Cryptographic agility means that the application is architected to reference
the cryptographic algorithm or hashing function outside the application code
itself, so that it can be easily swapped, when required.

One of the predominant flaws of cryptographic protection implementation
in code is the use of unvalidated and custom developed or weak cryptographic
algorithms for encryption and decryption or non collision free hashing
functions for hashing purposes. The recommendation to address this concern

403

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 403 6/7/2013 5:40:50 PM

was to use vetted, tested and proven standardized algorithms. However, in the
cryptanalysis cat-and-mouse game, cryptanalysts work equally hard to break
secure algorithms that the cryptographers have been coming up with. It is no
surprise that cryptographic algorithms that were once deemed secure are now
proven to be broken and some have even made into banned lists. Table 4.5 is
a tabulation of some cryptographic algorithms and hashing functions that are
banned by the SDL (Security Development Lifecycle) at Microsoft and their
recommended alternatives.

Code containing cryptographic algorithms which were once considered
secure but now determined to be insecure and found listed in a banned list
needs to be reviewed and updated. This is not an easy task unless the code has
been designed and implemented to be cryptographically agile or agnostic of the
cryptographic algorithm. Cryptographic agility is the ability of the code to be
able to switch from insecure algorithms to approved ones with ease, because the
way in which the code is constructed is agnostic of the algorithm to provide
cryptographic operations (encryption, decryption, and/or hashing). This means
that a specific algorithm or the way it can be used is not hard-coded inline code
and so replacing algorithms does not require code changes, rebuild, regression
testing, updates (patches and service packs) and redeployment. Code that is
cryptographically agile is characterized by maintaining the specification of the
algorithm or hashing function outside the application code itself. Configuration
files at the application or machine level are usually used to implement this.
Additionally, even when the algorithm is specified in a configuration file,
the implementation of the algorithm should be abstract within the code.
Coding just the abstract type of the algorithm (e.g., SymmetricAlgorithm or
AsymmetricAlgorithm) instead of a specific algorithm (e.g., RijndaelManaged
or RSACryptoServiceProvider) provides greater agility. In addition to the benefit

Table 4.5 – SDL banned and acceptable/recommended cryptographic algorithms

404

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Type of
Algorithm Banned Algorithm

Acceptable or
Recommended
Algorithm

Symmetric DES, DESX, RC2, SKIPJACK, SEAL,
CYLINK_MEK, RC4 (<128bit)

3DES (2 or 3), RC4
(>=128bit), AES

Asymmetric RSA (<2048bit), Diffie-
Hellman(<2048bit)

RSA(>=2048bit),Diffie-
Hellman(>=2048bit),
ECC(>=256bit)

Hash
(including
HMAC usage)

SHA-0 (SHA), SHA-1, MD2, MD4,
MD5

SHA-2 (includes: SHA-256,
SHA-384, SHA-512)

CSSLP_v2.indb 404 6/7/2013 5:40:50 PM

of quick and easy replacement of algorithms, cryptographic agility can be used
to improve performance when newer and more efficient Cryptography API
Next Generation (CNG) implementations are leveraged.

CNG is the replacement to the CryptoAPI and is very extensible and
cryptographically agnostic in nature. It was developed to give developers the
ability to enable users to create and exchange documents and data in a secure
manner over non-secure environments such as the Internet. The main features
of CNG include:

 ■ A new cryptographic configuration system that supports better
cryptographic agility.

 ■ Abstraction for key storage and separation of the storage from the
algorithm operations.

 ■ Process isolation for operations with long-term keys.
 ■ Replaceable random number generators.
 ■ Better export signing support.
 ■ Thread-safety throughout the stack
 ■ Kernel-mode cryptographic API.

Cryptographically agile code however poses some challenges. Cryptographic
agility is observed to work better with non-persisted transient data than persisted
data. Persisted (stored) data that is in encrypted with an algorithm that is being
replaced may not be recoverable once the algorithm is replaced. This can also
lead to a denial of service to legitimate users, when authentication relies on
comparative matching of computed hashes, and the account credentials are
stored after being computed using a hashing function that has been replaced.
It is recommended that is in such situations, the original hashing function is
stored as metadata along with the actual hash value. Additionally, it is important
to plan for the storage size of the outputs as the algorithm used to replace the
insecure one can yield an output with a different size. For example, the MD5
hash is always 128 bits in length, bit the SHA-2 functions can yield a 256 bit
(SHA-256), 384 bit (SHA-384) or 512 bit (SHA-512) bit length output and if
storage is not planned for allocated in advance, the upgrade may not even be a
possibility

Secure key management means that the
 ■ generation of the key uses a random or pseudo random number

generator (RNG or PRNG) and is random or pseudo-random in
nature.

405

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 405 6/7/2013 5:40:50 PM

 ■ exchange of keys is done securely using out-of-band mechanisms
or approved key infrastructure that is secure as well.

 ■ storage of keys is protected, preferably in a system that is not the
same as that of the data, whether it is the transactional system or
the backup system.

 ■ rotation of the key where one key is replaced by another follows the
appropriate process of first decrypting data with the old key that
will be replaced and then encrypting data with the new key that is
replacing the old key. Not following this process sequentially has
been proven to cause a DoS, especially in archived data, because
data that was encrypted with an older key cannot be decrypted by
the new key.

 ■ archival and escrowing of the key is protected with appropriate
access control mechanisms and preferably not archived in the same
system as the one that contains the encrypted data archives. When
keys are escrowed, it is important to maintain the different versions
of keys.

 ■ destruction of keys ensures that once the key is destroyed, it will
never again be used. It is critically important to ensure that all
data that was encrypted using the key that is to be destroyed is
decrypted before the key is destroyed permanently.

Adequate access control and auditing means that for both internal and external
users, access to the cryptography keys and data is

 ■ granted explicitly
 ■ controlled and monitored using auditing and periodic reviews.
 ■ not inadvertently thwarted by weaknesses such as insecure

permissions configurations.
 ■ contextually appropriate and protected, irrespective of whether the

encryption is one-way or two-way. One-way encryption context
implies that only the user or recipient needs to have access to the
key, as in the case of PKI. Two-way encryption context implies
that the encryption can be automatically performed on behalf of
the user, but the key must be available so that plaintext can be
automatically recoverable by that user.

Concurrency
Earlier we learned that in order for race conditions to occur, there should be
multiple threads operating concurrently against a shared object, and each thread
attempting to change the state of that shared object. Concurrency (simultaneous
operations) is a primary property in TOC/TOU attacks.

406

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 406 6/7/2013 5:40:50 PM

Some of the prevalent protection measures against race conditions or TOC/
TOU attacks are:

 ■ Avoid race windows
 ■ Atomic operations
 ■ Mutual Exclusion (Mutex)

A race window is defined as the window of opportunity when two concurrent
threads race against one another trying to alter the same object. The first step
in avoiding race conditions is to identify race windows. Improperly coded
segments of code that access objects without proper control flow can result in
race windows. Upon identification of race windows, it is important to fix them
in code or logic design to mitigate race conditions. In addition to addressing
race windows, atomic operations can also help prevent race condition attacks.

Atomic operations means that the entire process is completed using a single
flow of control and that concurrent threads or control flow against the same
object is disallowed. Single threaded operations are a means to ensure that
operations are performed sequentially and not concurrently. However, such
design comes with a cost on performance and it must be carefully considered by
weighing the benefits of security over performance.

Race conditions can also be eliminated by making two conflicting processes
or race windows, mutually exclusive of each other. Race windows are referred to
as critical sections because it is critical that two race windows don’t overlap one
another. Mutual Exclusions or Mutex can be accomplished by resource locking,
wherein the object that is accessed is locked and does not allow any alteration
until the first process or threat releases it. Resource locking provides integrity
assurance. Say for example in the case of an online auction, Jack bids on a
particular item and Jill who is also interested in that same item places a bid as
well. Both Jack and Jill’s bids should be mutually exclusive of one another and
until Jack’s bid is processed entirely and committed to the backend database,
Jill bid’s operation should not be allowed. The backend record that holds the
item information must be locked from any operations until Jack’s transaction
commits successfully or is roll-backed in the case of an error.

407

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 407 6/7/2013 5:40:50 PM

Tokenization
Many industry standards and regulations prevent the storage of sensitive
information after it has been used in a transaction. For example, the PCI DSS
prevents the storage of the primary account number (PAN) of the card holder in
the retailer’s point-of-sale (POS) systems on in a data store after it has been used
in a transaction. Many companies have resorted to cryptographically protecting
(encrypting) the card holder information and implementing end-to-end
encryption solutions which are expensive. Another alternative is tokenization.

Tokenization is the process of replacing sensitive data with unique
identification symbols that still retain the needed information about the data,
without compromising its security. It aims at minimizing the amount a data a
business needs to store while facilitating compliance with industry standards
and regulations.

In the case of the PCI DSS example, the PAN would be converted into random
or pseudo-random values (or tokens). The token would typically contain only
the last four digits of the actual card number and the other numbers are replaced
with alphanumeric characters that represent cardholder information and data
specific to the transaction underway. Tokenization is usually implemented as
a service and the service provider is responsible for issuing the token value and
at the same time bears the responsibility to keep the sensitive card holder data
protected. Since the token is not the PAN, it cannot be used outside the context
of the specific unique transaction.

Although tokenization is usually evident in protecting card holder
information, its application can be extended to protect the confidentiality of
any sensitive data, including banking transactions, medical records, criminal
records, stock trading, and voter registrations. Tokenization makes it harder for
hackers to steal sensitive information as theft of the token data itself does not
directly reveal the underlying sensitive information that was tokenized.

Sandboxing
In the context of computer security, sandboxing refers to the security mechanism
that prevents software running on a system from accessing the host operating
system. The sandbox creates a separation from the host operating system so that
untested, untrusted and unverified code and programs, especially those that are
published by third parties can be run. It tightly controls the resources in the host
system from getting compromised. Unless permissions are explicitly granted,
the software program that is being sandbox will have minimal to no access to the
underlying operating system.

408

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 408 6/7/2013 5:40:50 PM

Sandboxing is an example of the principle of least privilege. Running code in
a sandbox (or jail) restricts the access that the code has on other system resources.
The Unix chroot jail, AppArmor and SELinux are some known examples of OS-
level sandboxing. The application’s interaction with the system can be set using
entitlements which override the application’s sandbox. Code signing (covered
under Anti-Tampering techniques) ensures the integrity and authenticity of the
software code, besides giving the code the runtime permissions needed to access
the host’s sandboxed operating system.

Anti-Tampering
Anti-tampering techniques assure integrity assurance and protection against
unauthorized and malicious alterations of the software code and/or the data.
Some of the well-known anti-tampering techniques include obfuscation,
protection against reverse engineering and code signing.

Obfuscation
The code (source or object) needs to be protected from unauthorized
modifications to assure reliable operations and integrity of the software. Source
code anti-tampering assurance can be achieved using obfuscation. Obfuscation
of the source code is the process of making the code obscure and confusing
using a special program called the obfuscator so that even if the source code
is leaked to or stolen by an attacker, the source code is not easily readable and
decipherable. This process usually involves complicating the code with generic
variable names, convoluted loops, conditional constructs and renaming textual
and symbols within the code to meaningless character sequences. Obfuscated
code is also known as shrouded code. Obfuscation is not only limited to source
code, it can be used for object code as well. When object code is obfuscated, it
acts as a deterrent to reverse engineering.

Anti-Reversing Techniques
Reverse engineering or reversing is the process of gleaning information about
the design and implementation details of the software from object code. It is
analogous to going back (reverse) in the software development life cycle. It
can be used for legitimate purposes such as understanding the blueprint of the
software, especially in cases where the documentation is not available, but has
legal ramifications if the software does not belong to the reverser. From a security
standpoint, reverse engineering can be used for security research and to determine
vulnerabilities in published software. However, skillful attackers are also known
to reverse engineer and crack software, circumventing security protections such

409

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 409 6/7/2013 5:40:50 PM

as license restrictions implemented in code. They can also tamper and repackage
software with malicious intent. This is why anti-tampering protection of object
code is necessary. Besides using obfuscation as a deterrent control against reverse
engineering, object code or executables can be also be protected from being
reverse engineered using other anti-tampering protection mechanisms such as
removing symbolic information from the Progam Executable (PE) and embedding
anti-debugger code. The removal of symbolic information involves the process
of eliminating any symbolic information such as class names, class member
names, names of global instantiated objects, etc., and other textual information
from the program executable by stripping them out before compilation or
using obfuscation to rename symbols into meaningless sequences of characters.
Embedding anti-debugger code means a user or kernel level debugger detector
is included as part of the code and it detects the presence of a debugger and
terminates the process when one is found. The IsDebuggerPresent API and
SystemKernelDebuggerInformation API are examples of common APIs that can
be leveraged to implement anti-debugger code.

Code Signing
Code signing is the process of digitally signing the code (executables, scripts,
etc.) with the digital signature of the code author. In most cases, code signing is
implemented using private and public key systems and digital signatures. Each
time code is built, it can be signed, or code can be signed just before deployment.
Developers can generate their own key or use a key that is issued by a trusted
CA for signing their code. When developers don’t have access to the key for
signing their code, they can sign it at a later phase of the development life cycle,
just before deployment, and this is referred to as delayed signing. Delayed signing
allows development to continue. When code is signed using the code author’s
digital signature, a cryptographic hash of that code is generated. This hash is
published along with the software when it is distributed. Any alteration of the
code will result in a hash value that will no longer match the hash value that was
published. This is how code signing assures integrity and anti-tampering.

Code signing is particularly important when it comes to mobile code. Mobile
code is code that is downloaded from a remote location. Examples of mobile
code include Java applets, ActiveX components, browser scripts, Adobe Flash,
and other web controls. The source of the mobile code may not be obvious.
In such situations, code signing can be used to assure the proof of origin or its
authenticity. Signing mobile code also gives the runtime (not the code itself)
permission to access system resources and ensures the safety of the code by

410

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 410 6/7/2013 5:40:50 PM

sandboxing. Additionally, code signing can be used to ensure that there are no
namespace conflicts and to provide versioning information when the software
is deployed.

Code signing assures the authenticity of published code (especially mobile
code) besides providing integrity and anti-tampering protection.

411

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 411 6/7/2013 5:40:50 PM

Secure Software Processes
Software assurance is a confluence of secure processes and technologies
implemented by trained and skilled people who understand how to design,
develop and deploy secure software. In addition to writing secure code, there are
certain processes that must be conducted during the implementation phase that
can assure the security of the software. These include:

 ■ Versioning (Configuration Management)
 ■ Code analysis
 ■ Code/Peer review

Version (Configuration Management)
Configuration management has a direct impact on the state of software assurance
and is applicable as part of development as well as deployment. Configuration
management as it applies to deployment is covered in more detail in the software
deployment, operations, maintenance and disposal chapter. In this chapter, we
will cover the importance of configuration management as it pertains to code
development and implementation, more particularly source code versioning or
version control.

Versioning or version control of software not only ensures that the
development team is working with the correct version of code, but also gives the
ability to rollback to a previous version should there be a need to. Additionally,
software versioning provides the ability to track ownership and changes of code.
If each version of the software is tracked and maintained, determining and
analyzing the attack surface for each version can give insight into the RASQ and
the overall trend of software security. Version control can reduce the incidences
of a condition known as regenerative bugs, where previously fixed bug reappear
(are regenerated). This is known to occur when bug fixes are inadvertently
overwritten when the correct version of code is not used.

From a security standpoint, it is important to ensure that the versioning uses
what is called file locks or reserved checkouts. This means that when the code is
checked out by someone for changes, no one else can make changes to the code
until it has been checked in. Most current software development integrated
development environments (IDE) include in them the ability to do versioning.
Well known examples of version control software include: Visual SourceSafe
(VSS), Concurrent Versions System (CVS), StarTeam and Team Foundation
Server (TFS).

412

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 412 6/7/2013 5:40:50 PM

Code Analysis
Code analysis is the process of inspecting the code for quality and weaknesses
that can be exploited. It is primarily accomplished by two means; static and
dynamic.

Static code analysis involves the inspection of the code without executing the
code (or software program). This analysis can be performed manually by what is
called a code review or in an automated manner using tools. Any code, irrespective
of whether it is source code, bytecode or object code, can be analyzed. Tools
that are used to perform static source code analysis are commonly referred to as
source code analyzers, and tools that are used to analyze intermediate bytecode
are known as bytecode scanners. Tools used to analyze object code statically are
referred to as binary analyzers or binary code scanners. Source code analyzers
predominantly use pattern matching against a known list of vulnerability syntax
and data flow/model analysis against known sets of data to detect vulnerabilities.
Binary code scanners function like static source code analyzers a well, but use
disassembly, prior to pattern mattern and data analysis against executable
code. The primary advantage that a binary code analyzer has over static code
analyzers is that it can detect vulnerabilities and code inefficiencies that have
been introduced by the compiler, since it is inspecting the compiled object code,
after the compilation process. It also has the ability to look into libraries that are
linked during the compilation process.

The benefits of performing static code analysis are that errors and
vulnerabilities can be detected early and addressed before the deployment of
the software. Nowadays, static code analysis functionality is being provided as
part of the integrated development environment (IDE) itself. This helps in the
detection of security bugs early in the lifecycle, during the development phase
itself, besides providing immediate feedback to the development staff that learn
from the feedback and overtime, develop more secure code. Additionally static
code analysis does not require the need for a simulated production environment
and can be performed in the development or testing environment. Expecting
a high degree of software assurance by merely using static code analysis tools
should be approached with caution as there is a likelihood of high degree of false
positives and false negative observed in most tools. These tools should be used
as an aid to the security analyst, so that they can focus on insecure code sections
and address security bugs more effectively.

Dynamic code analysis is the inspection of the code when it is being executed
(run as a program). Just because the code compiles without any errors which can

413

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 413 6/7/2013 5:40:51 PM

be analyzed using static code analysis, it does not mean that it will run without
any errors. Dynamic code analysis can be performed to ascertain that the code
is reliably functioning as expected and is not prone to errors or exploitation.
In order to accurately perform dynamic analysis, a simulated environment
that mirrors the production environment where the code will be deployed is
necessary. Tools used for dynamic code analysis are known as dynamic code
analyzers and they can be used to determine how the program will run as it
interacts with other processes and the operating system itself.

Code/Peer Review
One way to statically inspect the code is to perform code review. A code review is
also referred to as a peer review when peers from the development team are part
of the code review process. A code review can be performed manually or using
tools. It is a systematic evaluation of the source code with the goal of finding out
syntax issues and weaknesses in the code that can impact the performance and
security of the software. Semantic issues such as business logic and design flaws
are usually not detected in a code review, but a code review can be used to validate
the threat model generated in the design phase of the software development
project. Tools can be used to automate and identify vulnerabilities quickly but
they must not be done in lieu of manual human review.

When a code review is conducted for security reasons, the code must at a
bare minimum be inspected for the following:

 ■ Insecure code
 ■ Inefficient code

Insecure code is code that has exploitable weaknesses in it. Common insecure
code implementations include:

Injection flaws
Check for code that makes injection attacks possible. Examples include the
lack of input validation or the dynamic construction of queries which accept
user supplied data without proper validation or sanitization. Code review must
check to ensure that proper input validation is in place.

Non-repudiation Mechanisms
Code review should ensure that auditing is properly implemented and that the
authenticity of the code and the user or system actions are not disputable. If
delayed signing is not the case, checks to make sure that the code is correctly
signed should be undertaken as part of the review.

414

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 414 6/7/2013 5:40:51 PM

Spoofing Attacks
Check for code that makes spoofing attacks possible. This check should ensure
that session identifiers are not predictable, passwords are not hard-coded,
credentials are not cached and code that allows changes to the impersonation
context is not implemented.

Errors and Exception Handling
Code review must check to make sure that errors when reported don’t reveal
more information than is necessary and that the software fails securely when
errors occur. Code should be implemented to handle exceptions. The check for
the presence of try-catch-finally blocks must also check to make sure that objects
created in code are destroyed in the finally blocks.

Cryptographic Strength
Code that uses non-standard or custom cryptographic algorithms are considered
weak and must be avoided. Algorithms must not be hard-coded as they will
impair the cryptographic agility of the software. The use of Random Number
Generators (RNG) and Pseudo-Random Number Generators (PRNG) must be
validated. Keys must not be hard-coded either and code review should ensure
that cryptographic protections are strong to avoid any cryptanalytic attacks.

Unsafe and Unused Functions and Routines in Code
The code must be reviewed to ascertain that deprecated and banned APIs are not
used. Also any unused functions in code should be removed. Explicit checks for
Easter eggs and bells-and-whistles in code must be performed. A good way to
determine if the code is required is to use the requirements traceability matrix.

Reversible Code
Reversible code is code that can be used to determine the internal architecture
and design, and implementation details of software functionality. Code must
be reviewed to check for debugger detectors and any symbolic and textual
information that can aid a reverse engineer should be removed.

Privileged Code
Privileged code is code that violates the principle of least privilege. As part of
the code review, checks must be performed to ensure that code that requires
administrative rights to execute are explicitly controlled and monitored.

Additionally, the code should also be reviewed for:

415

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 415 6/7/2013 5:40:51 PM

Maintenance Hooks
Maintenance hooks are intentionally introduced, seemingly innocuous code
that is implemented to primarily provide for maintenance needs. They are
implanted to ease troubleshooting and better support. Maintenance hooks can
be used to impersonate a user who is experiencing issues with the software to
recreate the issue as a way to troubleshoot the issue. They can also function
as a back door and allow developers access to privileged systems (usually in a
production environment) even if they are not granted authorization rights to
those systems. They are to be considered critical or privilege code because they
usually provide administrative access with unrestricted rights. However, these
maintenance hooks should not be deployed into the production environment
because an attacker could easily take advantage of the maintenance hook and
gain back door entry into the system, often circumventing all security protection
mechanisms.

Logic Bombs
Logic bombs are serious code security issues as they can be placed in the code
and go undetected if a code review is not performed. Based on the logic (such
as a condition or time), a logic bomb can be triggered to go off to perform
some malicious and unintended operation when that logic is met. Logic bombs
are implanted by an insider who has access to the source code. Disgruntled
employees who feel wronged by their employers have been known to implant
logic bombs in their code as a means of revenge against their employers. A
logic bomb not only causes destruction of data, it can also disrupt or bring the
business to a complete halt. They have been used for extortion scams as well
where the publisher of code threatens the subscriber that they will trigger the
logic bomb in code unless the subscriber agree to the terms of the publisher.
When the software code is not directly developed and controlled by you, as in
the case of an outsourcer or third party, code review to determine logic bombs
becomes extremely critical. It is also important to note that to deactivate a trial
piece of software after a certain period of time has elapsed (the condition), which
was communicated in advance, is not regarded as a logic bomb because it is non-
malicious and functions as intended.

The review of the code must also identify code that is inefficient as they
can have a direct impact on the security of the software. Making an improper
system call and infinite loop constructs are some examples of inefficient code
that can lead to system compromise, memory leaks, resource exhaustion and
denial of service, impacting the core confidentiality, integrity and availability

416

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 416 6/7/2013 5:40:51 PM

tenets of software security. Specifically, code should be reviewed to eliminate
the following inefficiencies:

Timing and Synchronization Implementations
Race conditions in code that can result in covert channels and resource deadlocks
can be identified using a code review. It is important to make sure that the code
is constructed to be executed in a mutually exclusive (Mutex) manner so timing
and synchronization issues can be avoided. This is particularly important if the
code is written to alter the state of a shared object simultaneously.

Cyclomatic Complexity
Cyclomatic complexity is a measure of the number of linearly independent
paths in a program. It is a software metric that is used to find out the extent
of decision logic within each module of the code. Highly cohesive and loosely
coupled code will have little to no circular dependencies and will thus be less
complex. The results of determining the cyclomatic complexity can be used
as an indicator of the software design as it pertains to the design principle of
economy of mechanisms and least common mechanisms.

It is also important to recognize that the code review process is a structured
and planned activity and must be conducted in a constructive manner. First
and foremost, it is the code and not the coder that is being reviewed and so
mutual respect of all team members who are part of the code review is critically
important. It is recommended that explicit roles and responsibilities are assigned
to the participants of the code review. Moderators who facilitate the code review
must be identified. A CSSLP is expected to function in this manner. It is also
important to identify who the reviewers of the code will be and appoint a scribe
who will be responsible to record the minutes of the code review meeting so that
action items that arise from it are not left unaddressed. Informing the reviewer
about the code that is going to be reviewed in the code review meeting in advance
and securely giving them access to the code is advised, so that the reviewers come
prepared to the meeting. As a means to demonstrate separation of duties, the
programmer who wrote the code should not also be the moderator or the scribe.
They are to participate in the code review with a mindset to accept action items
that need to be addressed. The findings of the code review are to be communicated
as constructive feedback rather than criticisms of the programmer’s coding style
or ability. Leveraging the coding standards and internal policies and external
regulatory and compliance requirements to prioritize and handle code review
findings is recommended.

417

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 417 6/7/2013 5:40:51 PM

Securing Build Environments
Source code that is written by the programmer needs to be converted into a
form that the machine can understand. This conversion process is generically
referred to as the build process. The integrity of the build environment where
the source code is converted into object code is important. The integrity of the
build environment can be assured by:

 ■ Physically securing access to the systems that build code.
 ■ Using access control lists (ACLs) that prevent access to unauthorized

users.
 ■ Using version control software to assure that the code built is of

the right version.
 ■ Build automation is the process of scripting or automating the tasks

that are involved in the build process. It takes the manual activities
performed by the build team members on a daily basis and automates
them. Some of these build activities include: compiling source
code into machine code, packaging dependencies, deployment
and installation. When build scripts are used for build automation
process, it is important to make sure that security controls and
checks are not circumvented, when using these build scripts.

Additionally, it is important to ensure that legacy source code can be built
without errors. This mandates the need to maintain the legacy source code, the
associated dependency files that need to be linked and the build environment
itself. Since most legacy code has not been designed and developed with security
in mind, it is critical to ascertain that the secure state of the computing ecosystem
is not reduced when legacy source code is rebuilt and redeployed.

During the build process, the security of the software can be augmented
using features in the build tools and automated build scripts. The main kinds of
build tools to get code ready for deployment are packagers, and packers.

Packagers are used to build software so that the software can be seamlessly
installed without any errors. They make sure that all dependencies and resources
that are necessary for the software to run are part of the software build. The Red
Hat Package Manager (RPM) and the Microsoft Installer (MSI) are examples
of packagers. When software is packaged, it is important to ensure that no new
vulnerabilities are introduced.

Packers are used to compress executables primarily for the purpose of
distribution and to reduce secondary storage requirements. Packed executables

418

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 418 6/7/2013 5:40:51 PM

reduce the time and bandwidth required by users who download code and
updates. Software executables that are packed need to be unpacked with the
appropriate unpacker and when proprietary and unpublished packers are used
for packing the software executable, they provide some degree of protection
against reverse engineering. Packed executables pose more challenges to a reverse
engineer and is deterrent in nature, but they do not prevent reversing efforts.
Packing software can also be used to obfuscate the contents of the executable.
It is also important to recognize that attackers, especially malware writers, use
packers to pack their malware programs because the packers transform the
executables appearance to evade signature-based malware detection tools, but
do not affect its execution semantics in any way.

419

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 419 6/7/2013 5:40:51 PM

The following references are recommended to get
additional information on secure software
concepts:

 » “The 7 Qualities of Highly Secure Software” book in the “Is Balanced”
quality tabulates the controls that mitigate common threats.

 » (ISC)2’s whitepaper on “Code (In)Security” provides a framework
to identify insecure code issues and lists the controls that need to
be implement to mitigate the risks that arise from these insecure
code issue.

 » The software assurance materials published in the Build Security
In website, maintained by the United States Department of
Homeland Security (DHS) is an excellent reference source for
building security into the software that is developed.

 » The “Writing Secure Code” book provides some good guidance
for developing hacker resilient software.

 » It is highly recommended that you are familiar with the Hacking
Exposed series of books as it pertains to software security.

 » The article “TMI Syndrome in Web Applications” published in
Certification Magazine provides good reading material for the
various sources of information leakage in web applications.

 » NIST publication on Engineering Principles for Information
Technology Security is a vital reference source that should be
understood to architect secure software.

420

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 420 6/7/2013 5:40:51 PM

Summary and Conclusion

While programmers primarily function as problem solvers for the
business, the software that they write can potentially become
the problem for the business, if it is written without a thorough
understanding of how their programs run or without any security
protections mechanisms in place. A fundamental understanding of
programming utilities such as the assembler, compiler, interpreters
and computer architecture is essential so that code is first reliable
and secondly resilient and recoverable when attacked. There are
several different types of software development methodologies and
each have their benefits and disadvantages. Choosing a software
development methodology must factor in the security advantages
or lack thereof.

It is important to be familiar with common coding vulnerabilities
that plague software and have a thorough understanding of how
an attacker will try and exploit the software, so that the code that is
written has security protection controls implemented in it. Some of
the basic characteristics of secure code are illustrated in Figure 4.18.

 Secure software development processes include versioning, code
analysis and code review. Source code version control is necessary to
track owners and changes to the code besides providing the ability
to rollback to previous versions if needed. Code can be analyzed
either statically or dynamically and it is advisable that both static and
dynamic analysis is conducted before code is deployed or released
after it is tested. Statically reviewing the code involves checking
the code for insecure and inefficient code issues, either manually
as a code (or peer) review or using automatically using tools.

421

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

CSSLP_v2.indb 421 6/7/2013 5:40:51 PM

Attack surface reduction, code access security, container (declarative)
vs. component (programmatic) security, cryptographic agility, memory
management, exception management, anti-tampering mechanisms,
and interface coding security are other important security concepts
that cannot be ignored while writing secure code. Maintaining the
integrity of the build environment and process and knowing how
to leverage the features of packagers, compilers (switches) and
packers to augment the security protection in code is important.

Figure 4.18 – Secure Code Characteristics

422

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 422 6/7/2013 5:40:52 PM

423

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

1. Software developers writes software programs PRIMARILY to
A. create new products
B. capture market share
C. solve business problems
D. mitigate hacker threats

2. The process of combining necessary functions, variables and
dependency files and libraries required for the machine to run the
program is referred to as

A. compilation
B. interpretation
C. linking
D. instantiation

3. Which of the following is an important consideration to manage
memory and mitigate overflow attacks when choosing a programming
language?

A. Locality of reference
B. Type safety
C. Cyclomatic complexity
D. Parametric polymorphism

4. Assembly and machine language are examples of
A. natural language
B. very high-level language (VHLL)
C. high-level language (HLL)
D. low-level language

5. Using multifactor authentication is effective in mitigating which of the
following application security risks?

A. Injection flaws
B. Cross-Site Scripting (XSS)
C. Buffer overflow
D. Man-in-the-Middle (MITM)

Review Questions

CSSLP_v2.indb 423 6/7/2013 5:40:52 PM

424

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

6. Impersonation attacks such as Man-in-the-Middle (MITM) attacks in
an Internet application can be BEST mitigated using proper

A. Configuration Management.
B. Session Management.
C. Patch Management.
D. Exception Management.

7. Implementing Completely Automated Public Turing test to tell
Computers and Humans Apart (CAPTCHA) protection is a means
of defending against

A. SQL Injection
B. Cross-Site Scripting (XSS)
C. Cross-Site Request Forgery (CSRF)
D. Insecure cryptographic storage

8. The findings of a code review indicate that cryptographic operations
in code use the Rijndael cipher, which is the original publication of
which of the following algorithms?

A. Skipjack
B. Data Encryption Standard (DES)
C. Triple Data Encryption Standard (3DES)
D. Advanced Encryption Standard (AES)

9. Which of the following transport layer technologies can BEST mitigate
session hijacking and replay attacks in a local area network (LAN)?

A. Data Loss Prevention (DLP)
B. Internet Protocol Security (IPSec)
C. Secure Sockets Layer (SSL)
D. Digital Rights Management (DRM)

10. Verbose error messages and unhandled exceptions can result in which
of the following software security threats?

A. Spoofing
B. Tampering
C. Repudiation
D. Information disclosure

CSSLP_v2.indb 424 6/7/2013 5:40:52 PM

425

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

11. Code signing can provide all of the following EXCEPT

A. Anti-tampering protection
B. Authenticity of code origin
C. Runtime permissions for code
D. Authentication of users

12. When an attacker uses delayed error messages between successful and
unsuccessful query probes, he is using which of the following side
channel techniques to detect injection vulnerabilities?

A. Distant observation
B. Cold boot
C. Power analysis
D. Timing

13. When the code is not allowed to access memory at arbitrary locations
that is out of range of the memory address space that belong to the
object’s publicly exposed fields, it is referred to as which of the following
types of code?

A. Object code
B. Type safe code
C. Obfuscated code
D. Source code

14. When the runtime permissions of the code are defined as security
attributes in the metadata of the code, it is referred to as

A. imperative syntax security
B. declarative syntax security
C. code signing
D. code obfuscation

15. When an all-or-nothing approach to code access security is not possible
and business rules and permissions need to be set and managed more
granularly inline code functions and modules, a programmer can
leverage which of the following?

A. Cryptographic agility
B. Parametric polymorphism
C. Declarative security
D. Imperative security

CSSLP_v2.indb 425 6/7/2013 5:40:52 PM

426

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

16. An understanding of which of the following programming concepts
is necessary to protect against memory manipulation buffer overflow
attacks? Choose the BEST answer.

A. Error handling
B. Exception management
C. Locality of reference
D. Generics

17. Exploit code attempt to take control of dangling pointers which
A. are references to memory locations of destroyed objects.
B. is the non-functional code that that is left behind in the source.
C. is the payload code that the attacker uploads into memory to

execute.
D. are references in memory locations that are used prior to being

initialized.

18. Which of the following is a feature of most recent operating systems
(OS) that makes it difficult for an attacker to guess the memory address
of the program as it makes the memory address different each time the
program is executed?

A. Data Execution Prevention (DEP)
B. Executable Space Protection (ESP)
C. Address Space Layout Randomization (ASLR)
D. Safe Security Exception Handler (/SAFESEH)

19. When the source code is made obscure using special programs in order
to make the readability of the code difficult when disclosed, the code is
also known as

A. object code.
B. obfuscated code.
C. encrypted code.
D. hashed code.

20. The ability to track ownership, changes in code and rollback abilities is
possible because of which of the following configuration management
processes?

A. Version control
B. Patching
C. Audit logging
D. Change control

CSSLP_v2.indb 426 6/7/2013 5:40:52 PM

427

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

21. The MAIN benefit of statically analyzing code is that
A. runtime behavior of code can be analyzed.
B. business logic flaws are more easily detectable.
C. the analysis is performed in a production or production-like

environment.
D. errors and vulnerabilities can be detected earlier in the life cycle.

22. Cryptographic protection includes all of the following EXCEPT

A. encryption of data when it is processed.
B. hashing of data when it is stored.
C. hiding of data within other media objects when it is transmitted.
D. masking of data when it is displayed.

23. Replacing the Primary Account Number (PAN) with random or
pseudo-random symbols that are uniquely identifiable and still assuring
privacy is also known as

A. Fuzzing
B. Tokenization
C. Encoding
D. Canonicalization

24. Which of the following is an implementation of the principle of least
privilege?

A. Sandboxing
B. Tokenization
C. Versioning
D. Concurrency

CSSLP_v2.indb 427 6/7/2013 5:40:52 PM

428

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

References

“2011 CWE/SANS Top 25 Most Dangerous Software Errors.” CWE - Common Weakness
Enumeration. cwe.mitre .org/top25 (accessed February 19, 2013).

“ARC Overview.” Mac Developer Library. http://developer.apple.com/library/mac/#releasenotes/
ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html (accessed February
19, 2013).

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, & Tools. 2nd
ed. Reading, Mass. [etc.: Addison-Wesley, 2007.

Amies, Alex, Pan Xia Zou, and Yi Shuai Wang. “Automate development and management of
cloud virtual machines.” developerWorks. http://www.ibm.com/developerworks/cloud/
library/cl-automatecloud/index.html (accessed February 19, 2013).

Anley, Chris, and Jack Koziol. The Shellcoder’s Handbook: Discovering and Exploiting Security
Holes. 2nd ed. Indianapolis, IN: Wiley Pub., 2007.

Bar-El, Hagai. “Introduction to Side Channel Attacks.” Discretix. gauss.ececs.uc.edu/Courses/
c653/lectures/SideC/intro.pdf (accessed February 19, 2013).

Blum, Richard. Professional Assembly Language. Indianapolis, IN: Wiley, 2005.

Cannings, Rich, Himanshu Dwivedi, and Zane Lackey. Hacking Exposed Web 2.0: Web 2.0
Security Secrets and Solutions. New York: McGraw-Hill, 2008.

Cannings, Rich, Himanshu Dwivedi, and Zane Lackey. Hacking Exposed Web 2.0: Web 2.0
Security Secrets and Solutions. New York: McGraw-Hill, 2008.

Clark, Mike. Pragmatic Project Automation: How to Build, Deploy, and Monitor Java Apps.
Lewisville, Tex.: Pragmatic, 2004.

Mitre. “Common Attack Pattern Enumeration and Classification.” CAPEC. capec.mitre.org
(accessed February 19, 2013).

Cowan, Crispin, Perry Wagle, Carlton Pu, Steve Beattie, and Jonathan Walpole. “Buffer
overflows: Attacks and Defenses for the vulnerability of the decade.” In Foundations of
intrusion tolerant systems. Los Alamitos, Calif.: IEEE Computer Society, 2003. 227-237.

Eilam, Eldad, and Elliot J. Chikofsky. Reversing: Secrets of Reverse Engineering. Indianapolis, IN:
Wiley, 2005.

“Entitlement Key Reference.” Mac Developer Library. https://developer.apple.com/
library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/
EntitlementKeyReference.pdf (accessed February 19, 2013).

CSSLP_v2.indb 428 6/7/2013 5:40:52 PM

http://www.ibm.com/developerworks/cloud/library/cl-automatecloud/index.html
http://developer.apple.com/library/mac/#releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/EntitlementKeyReference.pdf
http://cwe.mitre.org/top25
http://capec.mitre.org
http://gauss.ececs.uc.edu/Courses/c653/lectures/SideC/intro.pdf

429

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

Farley, Jim. Java Enterprise in a nutshell. 3rd ed. Sebastopol, Calif.: O’Reilly, 2006.

Foster, James C.. Buffer Overflow Attacks: Detect, Exploit, Prevent. Rockland, MA: Syngress, 2005.

Gauci, Sandro. “Surf Jack - HTTPS will not save you.” EnableSecurity. enablesecurity.
com/2008/08/11/surf-jack-https-will-not-save-you (accessed February 19, 2013).

Halderman, J. Alex, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A.
Calandrino, Ariel J. Feldman, Jacob Applebaum, and Edward W. Felten. “Lest we remember:
Cold boot attacks on encryption keys..” Center for Information Technology Policy. https://
citp.princeton.edu/research/memory/ (accessed February 19, 2013).

Hatch, Brian, James B. Lee, and George Kurtz. Hacking Exposed: Linux Security Secrets and
Solutions.. New York: Osborne/McGraw-Hill, 2001.

Howard, Michael, and David LeBlanc. Writing Secure Code. 2nd ed. Redmond, Wash.: Microsoft
Press, 2003.

Howard, Michael, and Steve Lipner. The Security Development Lifecycle: SDL, a Process for
Developing Demonstrably More Secure Software. Redmond, Wash.: Microsoft Press, 2006.

Internet Engineering Task Force (IETF). “Hypertext Transfer Protocol -- HTTP/1.1.” RFC 2616.
www.ietf.org/rfc/rfc2616.txt (accessed February 19, 2013).

“Improper Output Handling.” The Web Application Security Consortium (WASC). http://
projects.webappsec.org/w/page/13246934/Improper%20Output%20Handling (accessed
February 19, 2013).

Jegerlehner, Roger. “Intel Assembler 80x86 Code Table.” http://www.jegerlehner.ch. www.
jegerlehner.ch/intel (accessed February 18, 2013).

Kohno, Tadayoshi, Niels Ferguson, and Bruce Schneier. Cryptography Engineering: Design
Principles and Practical Applications. Indianapolis, IN: Wiley Pub., inc., 2010.

Litchfield, David. The Database Hackerâ€™s Handbook: Defending Database Servers. Indianapolis,
IN: Wiley Pub., 2005.

Lo, Chia-Tien Dan, Witawas Srisa-an, and J. Morris Chang. “Security Issues in Garbage
Collection.” CrossTalk - The Journal of Defense Software Engineering. www.crosstalkonline.
org/storage/issue-archives/2005/200510/200510-0-Issue.pdf (accessed February 19, 2013).

McClure, Stuart, Joel Scambray, and George Kurtz. Hacking Exposed 7: Network Security Secrets &
Solutions. New York: McGraw-Hill, 2012.

Morrison, Jonathan. “Preventing Race Conditions in Code That Accesses Global Data.” It Goes
To Eleven. http://blogs.msdn.com/b/itgoestoeleven/archive/2009/11/11/preventing-race-
conditions-in-code-that-accesses-global-data.aspx (accessed February 19, 2013).

“National Vulnerability Database (NVD).” NIST. nvd.nist.gov (accessed February 19, 2013).

“OSVDB: The Open Source Vulnerability Database.” OSVDB. http://www.osvdb.org (accessed
February 19, 2013).

CSSLP_v2.indb 429 6/7/2013 5:40:52 PM

http://www.crosstalkonline.org/storage/issue-archives/2005/200510/200510-0-Issue.pdf
http://enablesecurity.com/2008/08/11/surf-jack-https-will-not-save-you
http://nvd.nist.gov

430

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

“OWASP Code Review Guide.” OWASP. https://www.owasp.org/images/2/2e/OWASP_Code_
Review_Guide-V1_1.pdf (accessed February 19, 2013).

“OWASP Developer Guide.” OWASP. https://www.owasp.org/index.php/Guide_Table_of_
Contents (accessed February 19, 2013).

“OWASP Top 10 Application Security Risks.” OWASP. https://www.owasp.org/index.php/
Category:OWASP Top Ten Project (accessed May 16, 2013).

Ogorkiewicz, Maciej, and Piotr Frej. “Analysis of Buffer Overflow Attacks.” WindowSecurity.
com. http://www.windowsecurity.com/articles/Analysis_of_Buffer_Overflow_Attacks.html
(accessed February 19, 2013).

PCI Security Standards Council. “PCI DSS Tokenization Guidelines.” Payment Card Industry
Data Security Standard (PCI DSS). https://www.pcisecuritystandards.org/documents/
Tokenization_Guidelines_Info_Supplement.pdf (accessed February 19, 2013).

Paul, Mano. “Phishing: Electronic Social Engineering.” Certification Magazine. http://www.
certmag.com/read.php?in=3594 (accessed February 19, 2013).

Paul, Mano. “TMI Syndrome in Web Applications.” Certification Magazine. http://www.
certmag.com/read.php?in=3408 (accessed February 19, 2013).

Scambray, Joel, Mike Shema, and Caleb Sima. Hacking Exposed: Web Applications. 2nd ed. New
York: McGraw-Hill, 2006.

Schneier, Bruce. “Security Pitfalls in Cryptography.” Schneier on Security. http://www.schneier.
com/essay-028.html (accessed February 19, 2013).

Schneier, Bruce. Applied Cryptography: Protocols, Algorithms, and Source Code in C. 2nd ed. New
York: Wiley, 1996.

“Security in the .NET Framework.” Microsoft Solutions Developer Network (MSDN). http://
bit.ly/YkxlBc (accessed February 19, 2013).

Shiel, Sam . “A Translation-Facilitated Comparison Between the Common Language
Runtime and the Java Virtual Machine.” Electronic Notes in Theoretical Computer Science
(ENTCS) 141, no. 1 (2005): 35-52.

“Source Code Analysis Tools.” OWASP. www.owasp.org/index.php/Source_Code_Analysis_Tools
(accessed February 19, 2013).

Sullivan, Bryan. “Cryptographic Agility.” Microsoft Solutions Development Network (MSDN).
msdn.microsoft.com/en-us/magazine/ee321570.aspx (accessed February 19, 2013).

Toll, David C., Sam Weber, Paul A. Karger, Elaine R. Palmer, and Suzanne K. McIntosh.
“Tooling in Support of Common Criteria Evaluation of a High Assurance Operating
System.” Build Security In. https://buildsecurityin.us-cert.gov/bsi/961-BSI.html (accessed
February 19, 2013).

“Web Hacking Incident Database (WHID).” The Web Application Security Consortium
(WASC). http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-
Databasev (accessed February 19, 2013).

CSSLP_v2.indb 430 6/7/2013 5:40:52 PM

https://www.owasp.org/images/2/2e/OWASP_Code_Review_Guide-V1_1.pdf
https://www.owasp.org/index.php/Guide_Table_of_Contents
https://www.pcisecuritystandards.org/documents/Tokenization_Guidelines_Info_Supplement.pdf
http://www.certmag.com/read.php?in=3594
http://www.certmag.com/read.php?in=3408
http://www.schneier.com/essay-028.html
http://msdn.microsoft.com/en-us/magazine/ee321570.aspx
http://WindowSecurity.com

431

Domain 4: Secure Software Implementation/Coding

4

Secure Softw
are

Im
plem

entation/Coding

Webb, Warren. “Hack This: Secure Embedded Systems .” EDN: Information, News, & Business
Strategy for Electronics Design Engineers. http://edn.com/design/systems-design/4334084/
Hack-this-secure-embedded-systems (accessed February 19, 2013).

Tech Target. “What is sandbox?.” SearchSecurity.com. http://searchsecurity.techtarget.com/
definition/sandbox (accessed February 19, 2013)

Tech Target. “What is Tokenization?.” SearchSecurity.com. http://searchsecurity.techtarget.com/
definition/tokenization (accessed February 19, 2013).

Zeller, Wiliam, and Edward W. Felten. “Cross-Site Request Forgeries: Exploitation and
Prevention.” Center for Information Technology Policy. http://bit.ly/XKVe50 (accessed
February 19, 2013).

“Binary Code Scanners.” Software Assurance Metrics And Tool Evaluation (SAMATE). http://
samate.nist.gov/index.php/Binary_Code_Scanners.html (accessed February 19, 2013).

CSSLP_v2.indb 431 6/7/2013 5:40:52 PM

http://edn.com/design/systems-design/4334084/Hack-this-secure-embedded-systems
http://searchsecurity.techtarget.com/definition/sandbox
http://searchsecurity.techtarget.com/definition/tokenization
www.SearchSecurity.com
www.SearchSecurity.com

This page intentionally left blankThis page intentionally left blank

433

Domain 5

Secure Software
Testing

JUST BECAUSE SOFTWARE ARCHITECTS design software with a
security mindset and developers implement security by writing
secure code, it does not necessarily mean that the software is secure.
It is imperative to validate and verify the functionality and security of
software and this can be accomplishe by quality assurance testing
which should include testing for security functionality and security
testing. Security testing is an integral process in the secure software
development life cycle. The results of security testing have a direct
bearing on the quality of the software. Software that has undergone
and passed validation of its security through testing is said to be of
relative higher quality than software that hasn’t.

In this chapter, what to test, who is to test and how to test for
software security issues will be covered. The different types of
functional and security testing that must be performed will be
highlighted and criteria that can be used to determine the type of
security tests to be performed will be discussed. Security testing is
necessary and must be performed in addition to functional testing.
Testing standards such as the ISO 9126 and methodologies such
as the OSSTMM and SSE-CMM that were covered in the secure
software concepts chapter can be leveraged when security testing
is performed.

CSSLP_v2.indb 433 6/7/2013 5:40:53 PM

434

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Topics

 ■ Testing Artifacts (e.g., strategies, plans, cases)
 à Testing for Security and Quality Assurance
 à Functional Testing (e.g., logic)
 à Nonfunctional Testing

 » Reliability
 » Performance
 » Scalability

 à Security Testing (e.g., white box and black box)
 à Environment (e.g., interoperability, test harness)

 » Bug tracking
 » Defects
 » Errors and Vulnerabilities

 à Attack Surface Validation
 à Standards (e.g., ISO, OSSTMM, SEl)

 ■ Types of Testing
 à Penetration
 à Fuzzing (e.g., generated, mutated)
 à Scanning (e.g., vulnerability, content, privacy)
 à Simulation (e.g., environment and data)
 à Failure

 » Fault Injection
 » Stress Testing
 » Break Testing)

 à Cryptographic validation (e.g., PRNG)
 à Regression
 à Continuous (e.g., synthetic transactions)

 ■ Impact Assessment and Corrective Action

 ■ Test Data Lifecycle Management
 » Privacy
 » Dummy Data
 » Referential Integrity

CSSLP_v2.indb 434 6/7/2013 5:40:53 PM

435

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

Objectives

As a CSSLP, you are expected to

 ■ Be familiar with the different kinds of testing artifacts.

 ■ Understand the importance of security testing and how it
impacts the quality of software.

 ■ Have a thorough understanding of the different types
of functional and security testing and the benefits and
weaknesses of each.

 ■ Be familiar with how common software security
vulnerabilities (bugs and flaws) can be tested.

 ■ Understand how to track defects and address test
findings.

 ■ Know about test data management and how test data
should be managed for software assurance.

This chapter will cover each of these objectives in detail. It is
imperative that you fully understand the objectives and be familiar
with how to apply them in the software that your organization
builds or procures. The CSSLP is not expected to know all the tools
that are used for software testing, but must be familiar with what
tests need to be performed and how they can be performed. In the
last section of this chapter, we will cover some common tools that
are used for security testing, but this is primarily for informational
purposes only. Appendix B describes some common tools that can be
used for security testing, more particularly application security tests.

CSSLP_v2.indb 435 6/7/2013 5:40:53 PM

Quality Assurance
In many organizations, the software testing teams are rightfully referred to as
quality assurance (QA) teams. QA of software can be achieved by testing its
reliability (functionality), recoverability, resiliency (security), interoperability
and privacy. Figure 5.1 illustrates the categorization of the different types of
software quality assurance testing.

Reliability implies that the software is functioning as it is expected by the
business or customer. Since software is generally complex, the likelihood that all
functionality and code paths will be tested is less and this can lead to the software
being attacked. Resiliency is the measure of how strong the software is to be able
to withstand attacks, when an attacker is attempting to compromise it. Non-
intentional and accidental user errors can cause downtime. Software attacks can
also cause unavailability of the software. Software that is not highly resilient
to attack will be susceptible to compromise such as injection threats, denial of
service (DoS), data theft, memory corruption, etc. and when this occurs, the
ability of the software to be able to recover its operations should also be tested.
Recoverability is the ability for the software to restore itself to an operational state
after downtime which can be caused accidentally or intentionally. Interoperability
testing validates the ability of the software to function in disparate environments.
Privacy testing is conducted to check that personally-identifying information

Figure 5.1 – Software Quality Assurance Testing Types

436

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 436 6/7/2013 5:40:53 PM

(PII), personal health information (PHI), personal financial information (PFI)
and any information that is exclusive to the owner of the information, is assured
confidentiality and no intrusion.

The results of these various types of testing can provide insight into the
quality of software. However, as established in the secure software concepts
chapter, software that is of high quality may not necessarily mean that it is
secure. Software that performs efficiently to specifications may not have adequate
levels of security controls in place. This is why security testing (covered later)
is necessary and since security is another attribute of quality, as is privacy and
reliability, software that is secure can be considered as being of relatively higher
quality and testing can validate this.

Testing Artifacts
Before we delve into the different types of software QA testing, it is important to
know the different types of testing artifacts and their importance in the process
of assuring that the software is not only of high quality but also secure.

Test Strategy
The test strategy outlines the testing approach that will be undertaken. It is the
main instrument that is used to inform and communicate testing issue with
members (e.g., project managers, testers, developers, management, etc.) of the
software development team. It also includes information about the testing goals,
methods, time needed, test environment configuration and needed resources.
It describes the types of tests that are to be performed and the success/fail
criteria at a high level. The strategy is high level in nature and is developed from
conceptual design documents. In addition to functional design documents, it is
highly advisable that in the formulation of a test strategy, the data classification,
threat model, subject/object matrix, access control lists, etc. are considered, to
assure security besides quality.

Test Plan
While the test strategy has in it the high level types of tests, the test plan is much
more granular document that details the testing approach systematically. The
test plan is more or less the workflow that a tester would perform. A test plan is
used to ensure and verify that the software is reliable i.e., meeting requirements,
both functional and assurance (security) requirements. The three primary
components of a test plan includes: test requirements (or responsibility), test
methods and test coverage.

437

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 437 6/7/2013 5:40:53 PM

Test Case
A test case takes the test requirements from the test plan and defines measurable
conditions to validate that the requirements are indeed being met as expected.
Generally a test case contains a unique identifier, a reference to the requirements
specification that is being validated, any preconditions that need to be met,
actions (also known as test steps), test inputs and expected results (when the test
steps are completed). In addition to functional test cases, security test cases need
to be defined as well.

Test Script
While a test case answers the question “What tests am I going to perform?”,
a test script answers the question “How am I going to perform the tests?” It is
essentially the procedures that the tester will undertake to perform the test. Test
scripts are developed using the test case, and for each test case, one or more test
scripts need to be developed. It is therefore imperative to ensure that security
requirements are part of the test plan from which security test cases can be
defined and these security test cases are then in turn

Test Suite
Test cases don’t exist in silos but in groups and a collection of test cases makes up
a test suite. It is usually organized logically by section, such as functional tests,
performance tests, etc. It is important to ensure that if such grouping exists, then
the section for attesting the security of the software is not missed or overlooked.

Test Harness
All the components that are necessary to conduct software testing are collectively
referred to as a test harness. This includes the testing tools, test data samples,
testing configurations, test cases and test scripts. Alternatively a test harness
can be used as a test stub to simulate functionality and services that are still
in development or not available in the test environment. In this respect, test
harnesses are an important component of simulation testing. Test harnesses
promote the principle of leveraging existing components as it can be reused by
multiple projects, once it is set up.

Types of Software QA Testing
In the following section, the different types of testing for software quality
assurance will be covered. It is important that you are familiar with the definition
of these tests and what they are used for.

438

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 438 6/7/2013 5:40:53 PM

Functional Testing
Software testing is performed to primarily attest the functionality of the software
as expected by the business or customer. Functional testing is also referred to as
reliability testing. We test to check if the software is reliable, a.k.a. is functioning
as it is supposed to, according to the requirements specified by the business owner.

Unit Testing
Although unit tests are not conducted by software testers but by the developers,
it is the first process to ensure that the software is functioning properly, according
to specifications. It is performed during the implementation phase (coding) of
the SDLC. It is performed by breaking the functionality of the software into
smaller parts and each part is tested in isolation from the other parts for build
and compilation errors as well as functional logic. If the software is architected
with modular programming in mind, conducting unit tests are easier because
each of the features would already be isolated as discreet units (high cohesiveness)
and have few dependencies (loose coupling) with other units.

In addition to functionality validation, unit testing can be used to find
Quality of Code (QoC) issues as well. By stepping through the units of code
methodically one can uncover inefficiencies, cyclomatic complexities and
vulnerabilities in code. Some common examples of code that are inefficient
include dangling code, code in which objects are instantiated but not destroyed,
and infinite loop constructs that cause resource exhaustion and eventually DoS.
Within each module, code that is complex in logic with circular dependencies
on other code modules (not being linearly independent) is not only a violation
of the least common mechanisms design principle, but is also considered to
be cyclomatically complex (covered in the secure software implementation
chapter). Unit testing is useful to find out the cyclomatic complexities in code.
Unit testing can also help uncover common coding vulnerabilities such as hard
coding values and sensitive information such as passwords and cryptographic
keys inline code.

Unit testing can start as soon as the developer completes coding a feature.
However, software development is not done in a silo and there are usually many
developers working together on a single project. This is especially true with the
current day agile programming methodologies such as extreme programming
(XP) or Scrum. Additionally, a single feature that the business wants may be
split into multiple modules and assigned to different developers. In such a
situation, unit testing can be a challenge. For example, the feature to calculate

439

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 439 6/7/2013 5:40:53 PM

the total price can be split into different modules; one to get the shipping
rate (getShippingRate()), one to calculate the Tax (calcTax()), another to get
the conversion rate for international orders (getCurrencyConversionRate()),
and one to compute any discounts (calcDiscount) offered. Each of these
modules can also be assigned to different developers and some modules may be
dependent on others. In our example, the getShippingRate() is dependent on
the completion of the getCurrencyConversionRate() and before its operation
can complete, it will need to invoke the getCurrencyConversionRate() method
and expect the output from the getCurrencyConversionRate() method as
input into its own operation. In such situations, unit testing one module
that is related or dependent on other modules can be a challenge, particularly
when the method that is being invoked has not yet been coded. The developer
who is assigned to the code the getShippingRate() method has to wait on the
developer who is assigned the getCurrencyConversionRate() for the unit test of
getShippingRate() to be completed. This is where drivers and stubs can come
in handy. Implementing drivers and stubs is a very common approach to unit
testing. Drivers simulate the calling unit while stubs simulate the called unit. In
our case, the getShippingRate() method will be the driver, because it calls the
getCurrencyConversionRate() method which will be the stub. Drivers and stubs
are akin to mock objects that alleviate unit testing dependencies. Drivers and
stubs also mitigate a very common coding problem, which is the hard coding of
values inline code. By calling the stub, the developer of the driver does not have the
need to hard code values within the implementation code of the driver method.
This helps with the integrity (reliability) of the code. Additionally, drivers and
stubs programming eases the development with 3rd party components when the
external dependencies are not completely understood or known ahead of time.

Unit testing also facilitates collective code ownership in agile development
methodologies. With the accelerated development efforts and multiple software
teams collectively responsible for the code that is released, unit testing can help
in identifying any potential issues raised by a programmer on the shared code
base before it is released.

 Unit testing provides many benefits. Some of these include the ability to:
 ■ validate functional logic.
 ■ find out inefficiencies, complexities and vulnerabilities in code,

because the code is tested after being isolated into units, as opposed
to it being integrated and tested as a whole. It is easier to find the
needle in the haystack when the code is isolated into manageable
units and tested.

440

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 440 6/7/2013 5:40:53 PM

 ■ automate testing processes by integrating easily with automated
build scripts and tools.

 ■ extend test coverage.
 ■ enable collective code ownership in agile development.

Logic Testing
Logic testing validates the accuracy of the software processing logic. Most
developers are very intelligent and good ones tend to automate recurring tasks
by leveraging and reusing existing code. In this effort, they tend to copy code
from other libraries or code sets that they have written. When this is done, it is
critically important to validate the implementation details of the copied code
for its functionality and logic. For example, if code that performs the addition
of two numbers is copied to multiply two numbers, the copied code needs to
validated to make sure that the sign within the code that multiples two numbers
is changed from ‘+’ to ‘x’ as shown in Figure 5.2. Line by line manual validation
of logic or step by step debugging (which is a means to unit test) ensure that the
code is not only reliably functioning, but also provides the benefit of extended
test coverage to uncover any potential issues with the code.

Logic testing also includes the testing of predicates. A predicate is something
that is affirmed or denied of the subject in a proposition in logic. Software which
has a high measure of cyclomatic complexity must undergo logic testing before
being shipped or released. If the processing logic of the software is dependent on
user input, logic testing must not be ignored or avoided.

Boolean predicates return a true or false depending on whether the software
logic is met or not. Logic testing is usually performed by negating or mutating
(varying) the intended functionality. Variations in logic can be created by

Figure 5.2 – Unit Testing for Logic Validation

441

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 441 6/7/2013 5:40:53 PM

applying operators (‘AND’, ‘OR’, ‘NOT EQUAL TO’, ‘EQUAL TO’, etc.) to
Boolean predicates. The source of Boolean predicates can be one of more of the
following:

 ■ Functional requirements specifications like UML diagrams, RTM,
etc.

 ■ Assurance (security) requirements
 ■ Looping constructs (for, foreach, do while, while)
 ■ Preconditions (if-then)

Testing for blind SQL Injection is an example of logic testing in addition to
being a test for error and exception handling.

Integration Testing
Just because unit testing results indicate that the code tested is functional
(reliable), resilient (secure) and recoverable, it does not necessarily mean that
the system itself will be secure. The security of the sum of all parts should also
be tested. When individual units of code are aggregated and tested, it is referred
to as integration testing. Integration testing is the logical next step after unit
testing to validate the software’s functionality, performance and security. It helps
to identify problems that occur when units of code are combined. If individual
code units have successfully passed unit testing, but fail when they are integrated,
then it is a clear cut indication of software problems upon integration. This is
why integration testing is necessary.

Regression Testing
Software is not static. Business requirements change and newer functionality
is added to the code as newer versions are developed. Whenever code or data
is modified, there is a likelihood for those changes to break something that
was previously functional. Regression testing is performed to validate that the
software did not break previous functionality or security and regress to a non-
functional or insecure state. It is also known as verification testing.

Regression testing is primarily focused on implementation issues over design
flaws. A regression test must be written and conducted for each fixed bug or
database modification. It is performed to ensure that:

 ■ it is not merely the symptoms of bugs that are fixed but that the root
cause of bugs is addressed.

 ■ the fixing of bugs does not inadvertently introduce any new bugs
or errors.

442

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 442 6/7/2013 5:40:53 PM

 ■ the fixing of bugs does not make old bugs that were once fixed recur.
 ■ modifications are still compliant with specified requirements.
 ■ unmodified code and data have not been impacted.

It is not only functionality that needs to be tested, but the security of the
software as well. Sometimes implementation of security itself can deny existing
functionality to valid users. An example of this is that a menu option that was
previously available to all users is no longer available upon the implementation
of role based access control of menu options. Without proper regression testing,
legitimate users will be denied functionality. It is also important to recognize
that data changes and database modification can have side effects, reverting
functionality or reducing the security of the software and so this needs to be
tested for regression as well.

Adequate time needs to be allocated for regression testing. It is recommended
that a library of tests are developed which includes a predefined set of tests that
are to be conducted before the release of any new version. The challenge with
this approach is determining what tests should be part of the predefined set.
At a bare minimum tests that involve boundary conditions and timing should
be included. Determining the Relative Attack Surface Quotient (RASQ) for
newer versions of software with the RASQ values of the software before it was
modified can be used as a measure to determine the need for regression testing
and the tests that need to be run.

Usually, the software quality assurance teams are the ones who perform
regression testing but since the changes that need to be made are often code
related, changes that need to be made are costly and project timelines can
be affected. It is, therefore, advisable that regression testing be performed by
developers, after integration testing, for code related changes and also performed
in the testing phase before release.

Non-Functional Testing
In addition to testing for the functional (reliable) aspects of the software, software
testing must be performed to assure the non-functional aspects of the software.
Non-functional testing covers testing for the recoverability and environmental
aspects of the software. These tests are conducted to check if the software will be
available when required and that it has appropriate replication, load balancing,
interoperability and disaster recovery mechanisms functioning properly.
Recoverability testing validates that the software meets the customer’s Maximum
Tolerable Downtime (MTD) and Recovery Time Objective (RTO) levels.

443

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 443 6/7/2013 5:40:53 PM

Performance testing (load testing, stress testing) and scalability testing are
examples of common recoverability testing, which are covered in the following
section.

Performance Testing
Testing should be conducted to ensure that the software is performing to the
SLA and expectations of the business. The implementation of secure features can
have a significant impact on performance and this must be taken into account.
Having smaller cache windows, complete mediation, and data replication are
examples of security design and implementation features that can adversely
impact performance. However, performance testing is not performed with the
intent of finding vulnerabilities (bugs or flaws) but with the goal of determining
bottlenecks that are present in the software. It is used to find and establish a
baseline for future regression tests (covered later in this chapter). The results
of a performance test can be used to tune the software to organizational or
established industry benchmarks. Bottlenecks can be reduced by tuning the
software. Tuning is performed to optimize resource allocation. You can tune
the software code and configuration, the Operating System or the hardware.
Examples of configuration tuning include setting the connection pooling limits
in a database server, setting the maximum number of users allowed in a web
server or setting time limits for sliding cache windows.

The two common means to test for performance are load testing and stress
testing the software.

Load Testing
In the context of software quality assurance, load testing is the process of
subjecting the software to volumes of operating tasks or users until it cannot
handle any more, with the goal of identifying the maximum operating capacity
for the software. Load testing is also referred to as longevity or endurance or
volume testing. It is important to understand that load testing is an iterative
process. The software is not subjected to maximum load the very first time a load
test is performed. The software is subjected to incremental load (tasks or users).
Generally the normal load is known and in some cases the peak (maximum)
load is known as well. When the peak load is known, load testing can be used
to validate it or determine areas of improvement. When the peak load is not
already known, load testing can be used to find it by identifying the threshold
limit at which the software no longer meets the business SLA.

444

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 444 6/7/2013 5:40:53 PM

Stress Testing
If load testing is to determine the zenith point at which the software can operate
with maximum capacity, stress testing is taking that test one step further. It is
mainly aimed to determine the breaking point of the software, i.e., the point
at which the software can no longer function. In stress testing, the software
is subjected to extreme conditions such as maximum concurrency, limited
computing resources, or heavy loads.

It is performed to determine the ability of the software to handle loads beyond
its maximum capabilities and is primarily performed with two objectives. The
first is to find out if the software can recover gracefully upon failure, when the
software breaks. The second is to assure that the software operates according to
the design principle of failing securely. For example, if the maximum number
of allowed authentication attempts has been passed, then the user must be
notified of invalid login attempts with a specific non-verbose error message,
while at the same time, that user’s account needs to be locked out, as opposed
to automatically granting the user access, even if it is only low privileged guest
access. Stress testing can also be used to find timing and synchronization issues,
race conditions, resource exhaustion triggers and events and deadlocks.

Scalability Testing
Scalability testing augments performance testing. It is a logical next step from
performance testing the software. Its main objectives are to identify the loads
(which can be obtained from load testing) and to mitigate any bottlenecks that
will hinder the ability of the software to scale to handle more load or changes in
business processes or technology. For example, if order_id, which is the unique
identifier in the ORDER table, is set to be of an integer type (Int16), with the
growth in the business, there is a high likelihood that the orders that are placed
after the order_id has reached the maximum range (65535) supported by the
Int16 datatype will fail. It may be wiser to set the datatype for order_id to be a
long integer (Int32) so that the software can scale with ease and without failure.
Performance test baseline results are usually used in testing for the effectiveness
of scalability. Degraded performance upon scaling implies the presence of some
bottleneck that needs to be addressed (tuned or eliminated).

Environment Testing
Another important aspect of software security assurance testing includes

the testing of the security of the environment itself in which the software
will operate. Environment testing needs to verify the integrity of not just the

445

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 445 6/7/2013 5:40:53 PM

configuration of the environment but also that of the data. Trust boundaries
demarcate one environment from another and end-to-end scenarios need to be
tested. With the adoption of Web 2.0 technologies, the line between the client
and server is thinning and in cases where content is aggregated from various
sources (environments) as in the case of Mashups, testing must be thorough to
assure that the end user is not subject to risk. Interoperability testing, simulation
testing and Disaster Recovery (DR) testing are important verification exercises
that must be performed to attest the security aspects of software.

Interoperability Testing
When software operates in disparate environments, it is imperative to verify
the resiliency of the interfaces that exist between the environments. This is
particularly important if credentials are shared for authentication purposes
between these environments as is the case with single sign-on. The following is
a list of interoperability testing that can be performed to verify that:

 ■ security standards (such as WS-Security for web services
implementation) are used,

 ■ complete mediation is effectively working to ensure that
authentication cannot be bypassed,

 ■ tokens used for transfer of credentials cannot be stolen, spoofed
and replayed, and

 ■ authorization checks post authentication are working properly.

It is also important and necessary to check the software’s upstream and
downstream dependency interfaces. For example, it is important to verify that
there is secure access to the key by which a downstream application can decrypt
data that was encrypted by an application upstream in the chain of dependent
applications. Furthermore, tests to verify that the connections between dependent
applications are secure are to be conducted.

Disaster Recovery (DR) Testing
An important aspect of environment testing is the ability of the software to
restore its operation after a disaster happens. DR testing verifies the recoverability
of the software. It also uncovers data accuracy, integrity and system availability
issues. DR testing can be used to gauge the effectiveness of error handling and
auditing in software as well. Does the software fail securely and how does it
report errors upon downtime? Is there proper logging of the failure in place?
These are important questions to answer using DR testing. Failover testing is
part of disaster testing and the accuracy of the tests is dependent on how close

446

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 446 6/7/2013 5:40:54 PM

a real disaster can be simulated. Since this can be a costly proposition, proper
planning, resource and budget allocation is necessary and testing by simulating
disasters must be undertaken for availability assurance.

Simulation Testing
The effectiveness of least privilege implementation and configuration
mismatches can be uncovered using simulation testing. A common issue faced
by software teams is that the software functions as desired in the development
and test environments but fails in the production environment. A familiar and
dangerous response to this situation is that the software is configured to run
with administrative or elevated privileges. The most probable root cause for such
varied behavior is that the configuration settings in these environments differ.
When production systems cannot be mirrored, assurance can still be achieved
by simulation testing. By simulating the configuration settings between these
environments, configuration mismatch issues can be determined. Additionally,
the need to run the software in elevated privileges in the production environment
can be determined and appropriate least privilege implementation measures can
be taken.

It is crucially important to test data issues as well, but this can be a challenge.
It may be necessary to test cascading relationships but data to support that
relationship may not be available in the test environment. Simulation tests for
data is covered in more detail under the Test Data Management section in this
chapter.

Other Testing
Privacy Testing

Software should be tested to assure privacy. For software that handles
personal data, privacy testing must be part of the test plan. This should include
the verification of organizational policy controls that impact privacy. It should
also encompass the monitoring of network traffic and the communication
between end-points to assure that personal information is not disclosed. Tests
for the appropriateness of notices and disclaimers when personal information is
collected must also be conducted. This is critically important when collecting
information from minors or children and privacy testing of protection data,
such as the age of the child and parental controls, cannot be ignored in such
situations. Both Opt-in and Opt-out mechanisms need to be verified. The
privacy escalation response mechanisms upon a privacy breach must also be
tested for accuracy of documentation and correctness of processes.

447

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 447 6/7/2013 5:40:54 PM

User Acceptance Testing (UAT)
Prior to software release, during the software acceptance phase, the end user needs
to be assured that the software meets their specified requirements. This can be
accomplished using user acceptance testing (UAT) which is also known as end
user testing or smoke testing. UAT must be the penultimate step before software
is released. It is a gating mechanism used to determine if the software is ready
for release or not and can help with security, because it gives the opportunity
to prevent insecure software from being released into production or to the end
user. Additionally, it brings the benefit of extending software testing to the end
users as they are the ones who perform the UAT before accepting it. The results
of the UAT are used to provide the end user with confidence of the software’s
reliability. It can also be used to identify design flaws and implementation bugs
that are related to the usability of the software.

Prerequisites of UAT include the following:
 ■ The software must have exited the development (implementation)

phase
 ■ Other quality assurance and security tests such as unit testing,

integration testing, regression testing, software security testing,
etc. must be completed.

 ■ Functional and security bugs need to be addressed.
 ■ Real world usage scenarios of the software are identified and test

cases to cover these scenarios are completed.

UAT is generally performed as a black box test which focuses primarily on
the functionality and usability of the application. It is most useful if the UAT
test is performed in an environment that most closely simulates the real world
or production environment. Sometimes UAT is performed in a real production
environment post deployment to get a more accurate picture of the software’s
usability. However, when this is the case, the test should be conducted within an
approved change window with the possibility of rolling back.

The final step in the successful completion of an UAT is a go/no go decision,
best implemented with a formal sign off. The decision is to be captured in writing
and is the responsibility of the signature authority representing the end users.

448

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 448 6/7/2013 5:40:54 PM

Attack Surface Validation (Security Testing)

While functional testing is done to make sure that the software does not fail
during operations or under pressure, security testing is performed with the intent
of trying to make the software fail. Security testing is a test for the resiliency of
software. It is testing that is performed to see if the software can be broken.
It differs from stress testing (covered earlier), in the sense that stress testing is
primarily performed to determine the software’s recoverability, while security
testing is conducted to attest the presence and effectiveness of the security controls
that are designed and implemented in the software. It is to be performed with a
hostile user (attacker or blackhat) mindset. Good security testers are focused on
one thing and one thing only, which is to break the software by circumventing
any protection mechanisms in the software. Typically, attackers often think out-
of-the-box as a norm and are usually very creative, finding new ways to attack
the software, while learning from and improving their knowledge and expertise
from each experience. Security testing begins with creating a test strategy of
high risk items first, followed by low risk items. The threat model from the
design phase that was updated during the implementation phase can be used to
determine critical sections of code and software features.

Motives, Opportunities and Means
In the physical security world, for an attack to be successful there needs to be a
confluence of three aspects, viz. motive, opportunity and means. The same is true
in the information security space as depicted in Figure 5.3. For cybercrime to

Figure 5.3 – Motive, Opportunity and Means

449

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 449 6/7/2013 5:40:54 PM

be proven in a court of law, the same three aspects of crime are determined. The
motive of the attacker is usually tied to something that the attacker seeks to gain.
This could range from just being recognized (fame) amongst peers, revenge from
a disgruntled employee or money. The opportunity for an attacker is directly
related to the connectivity of the software and the vulnerabilities that exist in it.
The expertise of and tools that are available to the hacker are the means by which
they can exploit the software. Security testing can address two of the three aspects
of crime. It can do little about the motive of an attacker, but the opportunities
and means by which an attacker can exploit the software can be determined by
security testing.

Testing of Security Functionality versus Security Testing
It is also important to distinguish between the testing of security functionality
and security testing. Security testing is testing with an attacker perspective to
validate the ability of the software to withstand attack (resiliency), while testing
security functionality (authentication mechanisms, auditing capabilities, error
handling, etc.) in software is meant to assure that the functionality of protection
mechanisms are working properly. Testing security functionality is not necessarily
the same as security testing.

Though security testing is aimed at validating software resiliency, it can also be
performed to attest the reliability and recoverability of software. Since integrity of
data and systems is a measure of its reliability, security testing that validates data
and system integrity issues attest software reliability. Security testing can validate
controls such as fail secure mechanisms, proper error and exception handling, etc.
are in place and are working properly to resume its functional operations as per
the customer’s MTD and RTO, which is a measure of the software’s recoverability.
Security testing is also indicative of due diligence due care measures that the
organization takes to develop and release secure software for its customers.

The Need for Security Testing
Security testing should be part of the overall SDLC process and engaging the
testers to be part of the process early on is recommended. They should be allowed
to assist in threat modeling exercises and be participants in the review of the threat
model. This gives the software developer team an opportunity to discover and
address prospective threats and gives the software testing team an advantage to
start developing test scripts early on in the process. Architectural and design issues,
weaknesses in logic, insecure coding, effectiveness of safeguards and countermeasures,
and operational security issues can all be uncovered by security testing.

450

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 450 6/7/2013 5:40:54 PM

Security Testing Methods
Security testing can be accomplished using a white box approach or a black box
approach. In this section we will cover the two approaches in more detail.

White Box Testing
Also known by other names such as glass box or clear box testing, white box testing
is a security testing methodology that is performed based on the knowledge
of how the software is designed and implemented. It is broadly known as full
knowledge assessment, because the tester has complete knowledge of the software.
It can be used to test both the use case (intended behavior) as well as the misuse
case (unintended behavior) of the software and can be conducted at any time
post development of code, although it is best advised to do so while conducting
unit tests. In order to perform white box security testing, it is imperative to first
understand the scope, context and intended functionality of the software so that
the inverse of that can be tested with an attacker’s perspective.

Inputs to the white box testing method include architectural and design
documents, source code, configuration information and files, use and misuse
cases, test data, test environments and security specifications. White box
testing of code requires access to the source code. This makes it possible to
detect embedded code issues such as Trojans, logic bombs, impersonation
code, spyware, backdoors, etc. that are implanted by insiders. These inputs are
structurally analyzed to ensure that the implementation of code follows design
specifications, and whether security protection mechanisms or vulnerabilities
exist. White box testing is also known as structural analysis. Data/information

Figure 5.4 – White Box security testing

451

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 451 6/7/2013 5:40:54 PM

flow, control flow, interfaces, trust boundaries (entry and exit points),
configuration, error handling, etc. are methodically and structurally analyzed
for security. Source code analyzers can be used to automate some of the source
code testing. The output of a white box test is the white box test report which
includes defects (or incidents), flaws and deviations from design specifications,
change requests and recommendations to address security issues. The white box
security testing process is depicted in Figure 5.4.

Black Box Testing
If white box testing is full knowledge assessment, black box testing is the opposite
of that. It is broadly known as zero knowledge assessment, because the tester has
very limited to no knowledge of the internal working of the software being
tested. Architectural or design documents, configuration information or files,
use and misuse cases or the source code of the software is not available to or
known by the testing team that is conducting black box testing. The software is
essentially viewed as a “black box” that is tested for its resiliency by determining
how it responds (outputs) to the tester’s input as illustrated in Figure 5.5. While
white box testing is structural analysis of the software’s security, black box testing
is behavioral analysis of the software’s security.

Black box testing can be performed before deployment (pre-deployment) or
periodically once it is deployed (post-deployment). Depending on when black
box testing is conducted, its objectives are different. Pre-deployment black box
testing is used to identify and address security vulnerabilities proactively, so that
the risk of the software getting hacked is minimized. Post-deployment black box
testing is used for two reasons. First, it helps to find out vulnerabilities that exist
in the deployed production (or actual runtime environment) and second it can

Figure 5.5 – Black Box testing

452

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 452 6/7/2013 5:40:54 PM

be used to attest the presence and effectiveness of the software security controls
and protection mechanisms. Because identifying and fixing security issues
early on in the life cycle is less expensive, it is advisable to conduct black box
testing pre-deployment, but doing so will not give insight into actual runtime
environment issues and so when pre-deployment black box tests are conducted,
an environment that mirrors or simulates the deployed production environment
should be used.

Black box testing is performed using different tools. The common
methodologies by which black box testing is accomplished with tools are

 ■ fuzzing
 ■ scanning
 ■ penetration testing

White Box Testing versus Black Box Testing
As we have seen, security testing can be accomplished using either a white
box approach or a black box approach. Each methodology has its merits and
challenges. White box testing can be performed early in the SDLC processes,
thereby making it possible to build security into the software. It can help developers
to write hack resilient code as vulnerabilities that are detected can be identified
precisely, in some cases to the exact line of code. However, white box testing may
not cover code dependencies (services, libraries, etc.) or 3rd party components. It
provides little insight into the exploitability of the vulnerability itself and so may
not present an accurate risk picture. Just because the vulnerability is present,
it does not mean that it will be exploited as compensating controls may be in
place that white box testing may not uncover. On the other hand, black box
testing can attest the exploitability of weaknesses in both simulated and actual
production systems. The other benefit of black box testing is that there is no
need for source code and the test can be conducted both before (pre) and after
(post) deployment. The limitation of black box testing is that the exact cause
of vulnerability may not be easily detectable and the test coverage itself can be
limited to the scope of the assessment.

The following section covers different criteria that can be used to determine
the type of approach to take when validating software security. These include:

Root Cause Identification
When vulnerability is detected, the first and appropriate course of action that
must be taken is to determine and address the root cause of the vulnerability.
Root Cause Analysis (RCA) of software security is easier when the source code is

453

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 453 6/7/2013 5:40:54 PM

available for review. Black box testing can provide knowledge about the symptoms
of vulnerabilities, but with white box testing, the exact line of code that causes the
vulnerability can be determined and handled so that fixed bugs don’t resurface in
subsequent version releases.

Extent of Code Coverage
Since white box testing requires access to source code and each line of code can
be analyzed for security issues, it provides greater code coverage than does black
box testing. When complete code coverage is necessary, white box testing is
recommended. Software that processes highly sensitive information and which is
mission critical in nature must undergo complete code analysis for vulnerabilities.

Number of False Positives and False Negatives
When a vulnerability is reported and in reality it isn’t a true vulnerability, it is
referred to as a false positive result of security testing. On the other hand, when
a vulnerability that exists goes undetected in the results of security testing, it is
said to be a false negative. The number of false positives and false negatives are
relatively higher in black box testing than in white box testing because black
box testing looks at the behavior of the software as opposed to its structure and
normal or anomalies of behavior may not be known.

Logical Flaws Detection
It is important to recognize that logical flaws are not really implementation bugs,
syntactic in nature, but are design issues and semantic in nature. So white box
testing using just source code analysis cannot help uncover these flaws, however,
since in white box testing, other contextual artifacts such as the architectural and
design documents, configuration information, etc. are present, it is relative easier
to find logical flaws using white box testing over black box testing.

Deployment Issues Determination
Since source code should not be available in the production environment, white
box testing is done in the development or test environments, unlike black box
testing, which can be done in a production or production-like environment.
The attestation of deployment environment resilience and discovery of actual
configuration issues in the environment where the software will be deployed is
possible with black box testing. Both data and environment issues need to be
covered as part of the attestation activity.
Table 5.1 tabulates the comparison between the white box and black box security
testing methodologies.

454

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 454 6/7/2013 5:40:54 PM

So then, what kind of testing is “best” to assure the reliability, resiliency
and recoverability of software? The answer is “it depends”. For determining
syntactic issues early on in the SDLC, white box testing is appropriate. If the
source code is not available and testing needs to be performed with a true hostile
user perspective, then black box testing is the choice. In reality however, it is
usually a hybrid of the two approaches, also referred to as gray box or translucent
box that is performed to validate security protection mechanisms in place. For
a comprehensive security assurance assessment, the hybrid gray box approach
is recommended, in which white box testing is conducted pre-deployment in
development and test environments and black box testing is performed pre- and
post- deployment as well in production-like and actual production environments.

Types of Security Testing
Cryptographic Validation Testing
Cryptographic validation includes the following attestation:

Standards Conformance
Confirmation that cryptographic modules conform to prescribed standards such
as the Federal Information Processing Standards (FIPS) 140-2 and cryptographic
algorithms used are standard algorithms such as AES, RSA, DSA etc. is necessary.

Table 5.1 – Comparison between White Box and Black Box security testing

455

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

 White Box Black Box
Also known as Full knowledge assessment Zero knowledge assessment
Assesses the software’s Structure Behavior

Root Cause identification
Can identify the exact line of
code or design issue causing
the vulnerability

Can analyze only the
symptoms of the problem and
not necessarily the cause

Extent of code coverage
possible

Greater; the source code is
available for analysis

Limited; not all code paths
may be analyzed

Number of False positives and
false negatives

Less; contextual information is
available

High; since normal behavior is
unknown, expected behavior
can also be falsely identified
as anomalous

Logical flaws detection
High; design and architectural
documents are available for
review

Less; limited to no design and
architectural documentation
is available for review

Deployment issues
identification

Limited; assessment is
performed in pre-deployment
environments

Greater; assessment can be
performed in pre- as well as
post-deployment production
or production-like simulated
environment.

CSSLP_v2.indb 455 6/7/2013 5:40:54 PM

FIPS 140-2 testing is conducted against a defined cryptographic module and
provides a suite of conformance tests to four security levels, from the lowest
security to the highest security. Knowledge of the details of each security level is
beyond the scope of this book but it is advisable that the CSSLP be familiar with
the FIPS 140-2 requirements, specifications and testing as published by NIST.

Environment Validation
The computing environment in which cryptographic operations occur must be
tested as well. The ISO/IEC 15408 Common Criteria (CC) evaluation can be
used for this attestation. CC evaluation assurance levels don’t directly map to the
FIPS 140-2 security levels and a FIPS 140-2 certificate is usually not acceptable
in place of a CC certificate for environment validation.

Data Validation
FIPS 140-2 testing considers data in unvalidated cryptographic systems and
environments as data that is not protected at all, i.e., as unprotected cleartext. The
protection of sensitive, private and personal data using cryptographic protection
should be validated for confidentiality assurance.

Cryptographic Implementation
The way in which the seed values needed for cryptographic algorithms should
be checked is so that they are random and not easily guessable. The uniqueness,
randomness and strength of identifiers (such as Session ID) can be determined
using phase space analysis and resource and time permitting, these tests need to
be conducted. White box tests to make sure that cryptographic keys are not hard
code inline code in clear text should be conducted. Additionally, key generation,
exchange, storage, retrieval, archival and disposal processes must be validated as
well. The ability to decrypt cipher text data when keys are cycled must be checked
as well.

Scanning
I once asked one of my students, “Why do we need to scan our networks and
software for vulnerabilities”, and his response, while amusing was profound. He
said, “If we don’t, someone else would.” When there is very limited or no prior
knowledge about the software makeup, its internal working or the computing
ecosystem in which it operates, black box testing can start by scanning the
network as well as the software for vulnerabilities. Network scans are performed
with the goal of mapping out the computing ecosystem. Wireless access points
and wireless infrastructure scans must also be performed. These scans help
determine the devices, fingerprint operating system, identify active services

456

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 456 6/7/2013 5:40:54 PM

(daemons), determine open/closed ports, find used protocols and interfaces,
detect web server versions, etc. that make up the environment in which the
software will run.

The process of determining an operating system version is known as OS
fingerprinting. OS fingerprinting is possible because each operating system has
a unique way it responds to packets that hit the TCP/IP stack. An example of
OS fingerprinting using the Nmap (Network Mapper) scanner is illustrated in
Figure 5.6.

There are two main means by which an OS can be fingerprinted – active
and passive. Active OS fingerprinting involves the sending of crafted, abnormal
packets to the remote host and analyzing the responses from the remote host. If
the remote host network is monitored and protected using intrusion detection
systems, active fingerprinting can be detected. The popular Nmap tool uses
active fingerprinting to detect OS versions. Unlike active fingerprinting, passive
OS fingerprinting does not contact the remote host. It captures traffic originating
from a host on the network and analyzes the packets. In passive fingerprinting,
the remote host is not aware that it is being fingerprinted. Tools such as Siphon
that was developed by the HoneyNet project and P0f use passive fingerprinting
to detect OS versions. Active fingerprint is fast and useful when there are large

Figure 5.6 – Fingerprinting Operating System

457

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 457 6/7/2013 5:40:54 PM

number of hosts to scan, however it can be detected by IDS and IPS. Passive
fingerprinting is relatively slower and best used for single host systems, especially
if there is historical data. Passive fingerprinting can also go undetected since
there is no active probe of the remote host being fingerprinted.

A scanning technique that can be used to enumerate and determine server
versions is known as banner grabbing. Banner grabbing can be used for legitimate
purposes such as for inventorying the systems and services on the network,
but an attacker can use banner grabbing to identify network hosts that have
vulnerable services running on them. The File Transfer Protocol (FTP) port 21,
Simple Mail Transfer Protocol (SMTP) port 25 and Hypertext Transfer Protocol
(HTTP) port 80 are examples of common ports that are used in banner grabbing.
By looking at the Server field in a HTTP response header, upon request, one
can determine the web server and its version. This is a very common web server
fingerprinting exercise when black box testing web applications. Tools such as
Netcat or Telnet are used in banner grabbing. Figure 5.7 depicts banner grabbing
a web server version using Telnet.

Scanning can be used to:
 ■ map the computing ecosystems, infrastructural and application

interfaces.
 ■ identify server versions, open ports and running services.
 ■ inventory and validate asset management databases.
 ■ identify patch levels.
 ■ prove due diligence due care for compliance reasons.

Figure 5.7 – Banner grabbing web server version

458

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 458 6/7/2013 5:40:54 PM

It should be noted that while many organizations have include scanning
as part of their risk management program, the periodicity of performing these
scans have usually been on an bi-annual or annual basis which in essence create
a false sense of security, even if it meets compliance requirements. The criticality
of the software, its content and the data that is processed by the software are the
factors that should be used to determine the frequency of the scans. In some
cases, daily scans may be necessary.

The three primary types of scanning include: scanning for vulnerabilities,
scanning content for threats and scanning for assuring privacy.

Vulnerability Scanning
When scanning is performed with the goal of detecting and identifying
security flaws and weaknesses in the software and/or network, it is referred to as
vulnerability scanning. The vulnerability scan report that results from this type
of scan can be used by development teams, operations teams and management
to mitigate identified and confirmed vulnerabilities. Vulnerability scanning can
also be used to validate readiness for audit compliance.

Compliance with the PCI DSS requires that organizations must periodically
test their security systems and processes by scanning for network, host and
application vulnerabilities in the card holder data environment. The scan
report should not only describe the type of vulnerability but also provide risk
ratings and recommendations on how to fix the vulnerabilities. Figure 5.8 is an
illustration of a sample vulnerability scan report for PCI compliance.

Most vulnerability scanners use pattern matching (much like a signature-based
IDS) against a database of vulnerabilities to detect and identify vulnerabilities.
If careful attention is not given to maintain the vulnerability database list with
new vulnerability signatures, then the scan report will give a false sense of

Figure 5.8 – PCI scan report sample

459

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 459 6/7/2013 5:40:55 PM

security. Additionally, signature-based vulnerability scanners cannot detect new
and emerging threats that are not part of the vulnerability database list that is
being scanned for.

In addition to network and port scanning, software applications can be
scanned as well. Software scanning can be either static or dynamic. Static scanning
includes scanning the source code for vulnerabilities; dynamic scanning means
that the software is scanned when the software is running i.e., in an operational
runtime. Static scanning using source code analyzers is usually performed during
the code review process in the development phase, while dynamic scanning is
performed using crawlers and spidering tools during the testing phase of the SDLC.

Content Scanning
Advancements in technologies have led to adaptation and shift in the way
attackers think about attacking software. The Melissa macro-virus which packed
within what seemed to be an innocuous Microsoft Word document a malicious
script (macro), malware packed executables that can lead to malicious file
execution attacks, image tag injection with HTML content and scripts that can
lead to XSS and clickjacking attacks, unsanitized Mashup content and HTML5
tag abuse attacks are some examples of how the content can be used as an attack
vector. This is why content scanning is necessary. Content scanning technologies
analyze the content within the document (web pages, files, etc.) for malicious
content that can exploit unprotected systems. Some content scanners are capable
of even analyzing the traffic that is transmitted over secure channels like SSL/
TLS and when doing so, they function more or less like a MITM proxy, by
capturing encrypted traffic, decrypting it, and analyzing it and re-encrypting it
before retransmission. It is important to ensure that content scanners perform
deep inspection of both inbound and outbound content.

Privacy Scanning
Privacy scanning is starting to become the norm instead of the exception it used
to be a decade ago, due to privacy regulations that mandate the protection of
private (personal) information. Privacy scanning helps in detecting potential
issues that violate privacy policies and end-user trust.

When the software collects or process private information, it is essential
to scan the software to attest the assurance of non-disclosure and privacy.
Additionally, when content containing private information is scanned, the
scanning technology itself should not violate any end-user privacy requirements
or regulations.

460

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 460 6/7/2013 5:40:55 PM

Penetration Testing (Pen-Testing)
Vulnerability scanning is passive in nature, meaning we use it to detect the presence
of weaknesses and loopholes that can be exploited by an attacker. On the other
hand, penetration testing is active in nature, because it goes one step further
than vulnerability scanning does. The main objective of penetration testing is
to see if the network and software assets can be compromised by exploiting the
vulnerabilities that were determined by the scans. The subtle difference between
vulnerability scans and penetration testing (commonly referred as pen-testing) is
that a vulnerability scan identifies issues that can be attacked, while penetration
testing measures the resiliency of the network or software by evaluating real
attacks against those vulnerabilities. In penetration testing, attempts to emulate
the actions of a potential threat agent (hacker, malware, etc.) are performed. In
most cases, pen-testing is done after the software has been deployed, but this need
not necessarily be the case. It is advisable to perform black box assessments using
penetration testing techniques before deployment for the presence of security
controls and after deployment to ensure that they are working effectively to
withstand attacks. When penetration testing is performed post deployment, it
is important to recognize that “rules of engagement” need to be followed and
the penetration test itself is methodically conducted. The rules of engagement
should explicitly define the scope of the penetration test for the testing team,
irrespective of whether they are internal team or an external security service
provider. Definition of scope includes restricting IP addresses, the software
interfaces that can be tested, etc. Most importantly, the environment, data,
infrastructural and application interfaces that are not-in-scope must be identified
prior to the test and communicated to the pen-testing team and during the
test monitoring must be in place to assure that the pen-testing team does not
go beyond the scope of the test. The technical guide to information security
testing and assessment, published as Special Publication (SP) 800-115 by the
National Institute of Standards and Technology (NIST), provides guidance on
conducting penetration testing. The Open Source Security Testing Methodology
Manual (OSSTMM) covered in the secure software concepts chapter is known
for its prescriptive guidance on the activities that need to be performed before,
during and after a penetration test, including the measurement of results. When
conducted post-deployment, penetration testing can be used as a mechanism to
certify the software (or system) as part of the Validation and Verification (V&V)
activity inside of Certification and Accreditation (C&A). V&V and C&A are
covered in the software deployment, operations, maintenance and disposal
chapter.

461

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 461 6/7/2013 5:40:55 PM

Generically the pen-testing process includes the following steps:
1. Reconnaissance (Enumeration and Discovery) - Enumeration

techniques (covered under scanning) such as fingerprinting,
banner grabbing, port and services scans, vulnerability scanning,
can be used to probe and discover the network layout and the
internal workings of the software within that network. WHOIS,
ARIN and DNS lookups along with web based reconnaissance
are common techniques used for enumerating and discovering
network infrastructure configurations.

2. Resiliency Attestation (Attack and Exploitation) - Upon
completion of reconnaissance activities, once potential
vulnerabilities are discovered, the next step is to try to exploit those
weaknesses. Attacks can be varied ranging from brute forcing of
authentication credentials, escalation of privileges to administrator
(root) level privileges, deletion of sensitive logs and audit records,
disclosure of sensitive information, alteration/destruction of data
to causing Denial of Service (DoS) by crashing the software or
system.

3. Removal of Evidence (Cleanup activities) and Restoration -
Penetration testers often establish back doors, turn on services,
create accounts, elevate themselves to administrator privileges,
load scripts, and install agents and tools in target systems. Post
attack and exploitation, it is important that any changes that
were made in the target system or software for conducting the
penetration test are removed and the original state of the system
is restored. Not cleaning up and leaving behind accounts, services
and tools, and not restoring the system, leaves it with an increased
attack surface and any subsequent attempts to exploit the software
are made easy for the real attacker. It is therefore essential to not
exit from the penetration testing exercise until all cleanup and
restoration activities have been completed.

4. Reporting and Recommendations - The last phase of penetration
testing is to report on the findings of the penetration test. This
report should include not only technical vulnerabilities covering
the network and software, but also include non-compliance with
organization policy, and weaknesses in organizational processes
and people know-how. Merely identifying, categorizing and
reporting vulnerabilities is important, but it adds greater value
when the findings of the penetration test result in a plan of

462

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 462 6/7/2013 5:40:55 PM

action and milestones (POA&M) and mitigation strategies. The
POA&M is also referred to as a management action plan (MAP).
Some examples of POA include updating policies and processes,
redesigning the software architecture, patching and hardening,
defensive coding, user awareness and deployment of security
technologies and tools. When choosing a mitigation strategy, it is
recommended to compare the POA&M against the operational
requirements of the business and balance the functionality
expected with the security that needs to be in place and use the
computed residual risk to implement them.

The penetration test report has many uses as listed below. It can be used
 ■ to provide insight into the state of security
 ■ as a reference for corrective action
 ■ to define security controls that will mitigate identified vulnerabilities
 ■ to demonstrate due diligence due care processes for compliance
 ■ to enhance SDLC activities such as security risk assessments, C&A

and process improvements.

Fuzzing
Fuzzing, which is also known as fuzz testing or fault injection testing, is a brute
force type of software testing in which faults (random and pseudo-random input
data) are injected into the software and its behavior observed. It is a test whose
results are indicative of the extent and effectiveness of input validation. Fuzzing
can be used not only to test applications and their programming interfaces
(APIs), but also protocols and file-formats. It is used to find coding defects
and security bugs that can result in buffer overflows that cause remote code
execution, unhandled exceptions and hanging threads that cause DoS, state
machine logic faults and buffer boundary checking defects. The data that is used
for fuzzing is commonly referred to as fuzz data or fuzzing oracle.

Although fuzzing is a very common methodology of black box testing, not
all fuzz tests are necessarily black box tests. Fuzzing can be performed as a white
box test or a black box test. In black box fuzzing, the software is sent fuzz data
and the symptoms and behavior of the software is analyzed. There is no insight
of the internal workings of the software and so there is no guarantee that all
actual code paths were covered as part of this type of test. White box fuzzing
is sending fuzz data with verification of all code paths. When there is zero
knowledge of the software and debugging the software to determine weaknesses
is not an option, black box fuzzing is used and when information about the

463

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 463 6/7/2013 5:40:55 PM

makeup of the software (like target code paths, configuration, etc.) is known,
white box fuzzing is performed.

Based on how the test fuzz data is created, fuzzers can be broadly classified
into the following types: Generation-based fuzzers and Mutation-based fuzzers.
Fuzz data can either be generated (synthesized) or mutated. The two main
techniques in which fuzz data is created is by recursion or replacement. In
recursive fuzzing, the fuzz data is created by iterating (recursion) through all
possible combinations of a set. In replacive fuzzing, the fuzz data is created by
replacing values from a set of values.

Generation-Based Fuzzing (Smart Fuzzing)
In generation-base fuzzing, the specifications (format) of how the input is
expected by the software is programmed into the fuzz tool to create fuzz data by
introducing anomalies to the known data content, structures (e.g., checksums,
bit flags and offsets), messages and sequencing. In other words, there is
foreknowledge of the data format/protocol and the fuzz data is generated from
scratch based on the specification/format. This is why generation-based fuzzing
is also referred to as smart fuzzing or intelligent fuzzing.

A majority of successful fuzzers operate as generation-based fuzzer and is
preferred because they have a detailed understanding of the format or protocol
specifications that is being tested. Generation-based fuzzer have relatively
greater code coverage is more thorough in its testing approach, but it can be time
consuming as the fuzzer has to first import the known data format or structure
and then generate variations based on those. This is why appropriate amount of
time should be allocated in the project plan when smart fuzzing is part of the
test strategy. The main shortcoming of this fuzzing method is fuzzing is based
on known formats and structures and so test coverage for new or proprietary
protocols is limited or non-existent.

Mutation-Based Fuzzing (Dumb Fuzzing)
Unlike generation-based fuzzing, in mutation-based fuzzing, there is no
foreknowledge of the data format or protocol specifications and so the fuzz
data is created by corrupting (mutating) existing data samples (if they exist) by
recursion or replacement. This is done randomly and blindly and so mutated
fuzzing is also referred to as dumb fuzzing. This can be dangerous leading to denial
of service, destruction and complete disruption of the software’s operations, and
so it is recommended to perform dumb fuzzing in a simulated environment as
opposed to the production environment.

464

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 464 6/7/2013 5:40:55 PM

Software Security Testing
We have covered so far the various types of software testing for quality assurance
and the different methodologies for security testing. In the following section,
security testing as it is pertinent to software security issues will be covered. We will
learn about the different types of tests and how they can be performed to attest
the security of code that is developed in the development phase of the SDLC.

Before we start testing for software security issues in code, one of the first
questions to ask is whether the software being tested is new or a version release.
If it is a version release, we must check to ensure that the state of security has not
regressed to an insecure state than what it was in its previous version. This can be
accomplished by conducting regression tests (covered earlier) for security issues.
The introduction of any newer side effects that impact security and the use of
banned or unsafe APIs in previous versions should specifically be tested for.

For software revisions, regression testing must be conducted and for all
versions, new or revisions, the following security tests must be performed, if
applicable, to validate the strength of the security controls. Using a categorized list
of threats as a template of security testing is effective in ensuring comprehensive
coverage of the varied threats to software. The NSA IAM threat list and STRIDE
threat lists are examples of categorized threat lists that can be used in security
testing. Ideally, the same threat list that was used when threat modeling the
software will be the threat list that is used for conducting security tests as well.
This way security testing can be used to validate the threat model.

Testing for Input Validation
Most software security vulnerabilities can be mitigated by input validation. Buffer
overflows, Injection flaws, scripting attacks, etc. can be effectively reduced if the
software just performs validation of input before accepting it for processing.

In a Client/Server environment, it is best recommended to perform the input
validation tests for both the client and the server. Client side input validation
tests are more a test for performance and user experience than it is for security.
If you only have the time or resource to perform input validation tests on either
the client or the server, make sure that validation of input happens on the server
side for sure.

Attributes of the input such as its range, format, data type, and values
must all be tested. When these attributes are known, input validation test can
be conducted using pattern matching expression and/or fuzzing techniques

465

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 465 6/7/2013 5:40:55 PM

(covered earlier). Regular Expression (RegEx) can be used for pattern matching
input validation. Some common examples of RegEx patterns are tabulated in
Table 5.2. Tests must be conducted to ensure that the white-list (acceptable list)
of input is allowed while the black-list (dangerous or unacceptable) of input
is denied. Not only must the test include the validation of the white lists and
black lists, but must also include the anti-tampering protection of these lists.
Since canonicalization can be used to bypass input filters, both the normal and
canonical representations of input should be tested. When the input format
is known, smart fuzzing can be used otherwise dumb fuzzing using random
and pseudo-random inputs values can be used to attest the effective of input
validation.

Testing for Injection Flaws Controls
Since injection attacks take the user-supplied input and treat it as a command or
part of a command, input validation is an effective defensive safeguard against
injection flaws. In order to perform input validation tests, it is first important
to determine the sources of input and the events in which the software will
connect to the backend store or command environment. These sources can
range from authentication forms, search input fields, hidden fields in web

Table 5.2 – Commonly used regular expressions (RegEx)

466

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Regular Expression Validates Description Example

^[a-zA-Z’’-’\s]{1,20}$ Name

Allows up to 20 uppercase and
lowercase characters and some
special characters that are com-
mon to some names.

John Doe
O’ Hanley

Johnson-Paul

^([0-9a-zA-Z]([-\.\w]*[0-9a-
zA-Z])*@([0-9a-zA-Z][-\w]*[0-9a-
zA-Z]\.)+[a-zA-Z]{2,9})$

E-mail Validates an e-mail address.
mpaul@isc2.org

user@mycompany.com

^(ht|f)tp(s?)\:\/\/
[0-9a-zA-Z]([-.\w]*[0-9a-
zA-Z])*(:(0-9)*)*(\/?)([a-zA-Z0-9\-
\.\?\,\’\/\\\+&%\$#_]*)?$

URL Validates a Uniform Resource
Locator (URL) http://www.isc2.org

(?!^[0-9]*$)(?!^[a-zA-Z]*$)^([a-
zA-Z0-9]{8,15})$ Password

Validates a strong password.
It must be between 8 and 15
characters, contain at least one
numeric value and one alpha-
betic character, and must not
contain special characters.

^(-)?\d+(\.\d\d)?$ Currency

Validates currency format. If
there is a decimal point, it re-
quires 2 numeric characters after
the decimal point.

289

CSSLP_v2.indb 466 6/7/2013 5:40:55 PM

pages, Querystrings in the URL address bar and more. Once these sources are
determined, then input validation tests can be used as a test to ensure that the
software will not be susceptible to injection attacks. There are other tests that
need to be performed as well. These include the test to ensure that

 ■ parameterized queries that are not susceptible to injection
themselves are used.

 ■ dynamic query construction is disallowed.
 ■ error messages and exceptions are explicitly handled so that

even boolean queries (used in blind SQL injection attacks) are
appropriately addressed.

 ■ non-essential procedures and statements are removed from the
database.

 ■ database generated errors don’t disclose internal database structure.
 ■ parsers that prohibit external entities are used. External entities is a

feature of XML which allows developers to define their own XML
entities and this can lead to XML injection attacks.

 ■ white-listing that allows only alphanumeric characters is used
when querying LDAP stores.

 ■ developers use escape routines for shell command instead of custom
writing their own.

Testing for Scripting Attacks Controls
Scripting attacks are possible when user supplied input is executed on the client
because of lack of output sanitization. Tests to validate controls that mitigate
scripting attacks should be performed. These include the test to ensure that

 ■ Output is sanitized by escaping or encoding the input before it is
sent to the client.

 ■ Requests and inputs are validated using a current and contextually
relevant whitelist that is updated with the latest script attack
signatures and their alternate forms.

 ■ Scripts cannot be injected into input sources or the response.
 ■ Only valid files with approved extensions are allowed to be uploaded

and processed by the software.
 ■ Secure libraries and safe browsing settings cannot be circumvented.
 ■ Software can still function as expected by the business if active

scripting configuration in the browser settings is disabled.
 ■ State management items such as cookies are not accessible from

client side code or script.

467

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 467 6/7/2013 5:40:55 PM

Testing for Non-repudiation Controls
The issue of non-repudiation is enforceable by proper session management and
auditing. Test cases should validate that audit trails can accurately determine the
actor and their actions. It must also ensure that misuse cases generate auditable
trails appropriately as well. If the code is written to automatically perform
auditing, then tests to assure that an attacker cannot exploit this section of
the code should be performed. Security testing should not fail to validate that
user activity is unique, protected and traceable. Tests cases should also include
verifying the protection and management of the audit trail and the integrity of
audit logs. NIST Special Publication 800-92 provides guidance on the protection
of audit trails and the management of security logs. The confidentiality of the
audited information and its retention for the required period of time should be
checked as well.

Testing for Spoofing Controls
Both network and software spoofing test cases need to be executed. Network
spoofing attacks include Address Resolution Protocol (ARP) poisoning, IP
address spoofing and Media Access Control (MAC) address spoofing. On the
software side, user and certificate spoofing tests along with phishing tests and
verification of code that allows impersonation of other identities as depicted
in Figure 5.9 need to be performed. Testing the spoofability of the user and/or
certificate along with verifying the presence of transport layer security can attest
secure communication and protection against Man-in-the-middle (MITM)
attacks. Cookie expiration testing along with verifying that authentication
cookies are encrypted must also be conducted.

The best way to check for defense against phishing attacks is to test users for
awareness of social engineering techniques and attacks.

Figure 5.9 – Code that impersonates the authenticating user

468

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 468 6/7/2013 5:40:55 PM

Testing for Error and
Exception Handling Controls (Failure Testing)
Software is prone to failure due to accidental user error or intentional attack. Not
only should software be tested for quality assurance so that it does not fail in its
functionality, but failure testing for security must be performed. Requirement
gaps, omitted design and coding errors can all result in defects that cause the
software to fail. Testing to determine if the failure is a result of multiple defects
or if a single defect yields multiple failures must be performed. Software security
failure testing includes the verification of the following security principles:

Fail Secure (Fail safe)
Tests to verify if the confidentiality, integrity and availability of the software or
the data it handles when the software fails must be conducted. Special attention
should be given to verifying any authentication processes. Test cases to attest
the proper functioning of account lockout mechanisms and denying access by
default when the configured number of allowed authentication attempts has
been exceeded must be conducted.

Error and Exception Handling
Errors and Exception handling tests include testing the messaging and
encapsulation of error details. Tests conducted should attempt to make the
software fail and when the software fails; error messages must be checked to
make sure that they do not reveal any details that are not necessary. Assurance
tests to verify that exceptions are handled and the details are encapsulated using
user-defined messages and redirects must be performed. If configuration settings
allow displaying the error and exception details to a local user but redirects a
remote user to a default error handling page, then error handling tests simulating
the user to be local on the machine as well as if they are coming from a remote
location must be conducted.

Figure 5.10 – Reference identifier used to abstract actual error details

469

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 469 6/7/2013 5:40:55 PM

If the errors and exceptions are logged and only a reference identifier for that
issue is displayed to the end-user as depicted in Figure 5.10, then tests to assure
that the reference identifier mapping to the actual error or exception is protected
need to be performed as well.

Testing for Buffer Overflow Controls
Since the consequences of buffer overflow vulnerabilities are extremely serious,
testing to ensure defense against buffer overflow weaknesses must be conducted.
Buffer overflow defense tests can be both black box as well as white box in
nature. Black box testing for overflow defense can be performed using fuzzing
techniques. White box testing includes verifying

 ■ that the input is sanitized and its size validated
 ■ bounds checking of memory allocation is performed
 ■ conversion of data types from one are explicitly performed
 ■ banned and unsafe APIs are not used
 ■ that code is compiled with compiler switches that protect the stack

and/or randomize address space layout.

Testing for Privileges Escalations Controls
Testing for elevated privileges or privilege escalation is to be conducted to verify
that the user or process cannot get access to more resources or functionality
than they are allowed to. Privilege escalation can be either vertical or horizontal
or both. Vertical escalation is the condition wherein the subject (user or process)
with lower rights gets access to resources that are to be restricted to subjects with
higher rights. An example of vertical escalation is a non-administrator gaining
access to administrator or super user functionality. Horizontal escalation is the
condition wherein a subject gets access to resources that are to be restricted to
other subjects at their same privilege level. An example of horizontal escalation
is an online banking user being able to view the bank accounts of other online
banking users.

Insecure direct object reference design flaws and coding bugs with complete
mediation can lead to privilege escalation thus parameter manipulation checks
need to be conducted to verify that privileges cannot be escalated. In web
applications both POST (Form) and GET (QueryString) parameters need to
be checked.

Anti-Reversing Protection Testing
Testing for anti-reversing protection is particularly important for shrink wrap
commercially off the shelf (COTS) software but even in business applications,

470

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 470 6/7/2013 5:40:55 PM

tests to assure anti-reversing should be conducted. The following are some of the
tests that are recommended.

 ■ Testing to validate the presence of obfuscated code is important.
Equally important is the testing of the processes to obfuscate and
de-obfuscate code. The verification of the ability to de-obfuscate
obfuscated code, especially if there is a change in the obfuscation
software, is critically important.

 ■ Binary analysis testing can be used to check if symbolic (class
names, class member names, names of instantiated global objects,
etc.) and textual information that will be useful to a reverse
engineering is removed from the program executable.

 ■ White box testing can be used to verify the presence of code that
detects and prevents debuggers by terminating the executing
program flow. User level and kernel level debugger APIs such as the
IsDebuggerPresent API and SystemKernelDebuggerInformation
API can be leveraged to protect against reversing debuggers and
testing should verify their presence and function. Tests should
attempt to attach debuggers to executing programs and see how
the program responds. Figure 5.11 depicts how the Skype program
is not compatible with debuggers like SoftICE.

Tools for Security Testing
It is not important for a CSSLP to have a thorough understanding of how each
security tool can be used, but they must be familiar with what the tool can be
used for and how they can impact the overall state of software security. Some of
the common security tools include:

 ■ Reconnaissance (Information Gathering) tools
 ■ Vulnerability scanners

Figure 5.11 - Program incompatibility with debugger warning

471

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 471 6/7/2013 5:40:55 PM

 ■ Fingerprinting tools
 ■ Sniffers / Protocol analyzers
 ■ Password crackers
 ■ Web security tools - Scanners, Proxies and Vulnerability

Management
 ■ Wireless security tools
 ■ Reverse engineering tools (Assembler and Disassemblers, Debuggers

and Decompilers)
 ■ Source code analyzers
 ■ Vulnerability exploitation tools
 ■ Security oriented Operating Systems
 ■ Privacy testing tools

It is recommended that you are familiar with some of the common tools that
are described in Appendix B.

472

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 472 6/7/2013 5:40:55 PM

Test Data Management
Data that is specifically identified for use in tests is referred to as test data. Not only
should input test data be identified but data that is expected to be output after
normal operations of the software should be as well. Identifying expected output
test data helps to confirm if the requirements are being met by the software.
While some data may be used for requirements verification and confirmation
purposes, others can be used to attest the error and exception handling abilities
that are architected in the software when the software encounters random and
unexpected inputs.

The quality of test data is directly related to the quality of the test itself and so
test data needs to be managed. Due to the challenges in generating good quality
test data, a problem that is commonly observed in majority of test environments
is that it houses either entire datasets or snapshots of data that are exported from
production environments. When, production data is migrated to the testing
environments that are less controlled, it can lead to confidentiality and privacy
that can lead to compliance and regulatory violations.

Production data must never be imported into and processed in test
environments. For example, payroll data of employees or credit card data of real
customers should never be available in the test environments. It is advisable to
use dummy data by creating it from scratch in the test or simulated environment.
In cases where production data needs to be migrated to maintain referential
integrity between sets of data, then one option is to import only non-confidential
information and the other is to obfuscate/mask the data that is being imported.

Related to dummy data is the concept of synthetic transactions. Synthetic
transactions refer to transactions that serve no business value. Querying order
information of a ‘dummy’ customer is an example of a synthetic transaction.
Synthetic transactions can be passive or active. Passive synthetic transactions are
not stored (or maintained) and do not have any residual impact to the system
itself. It is usually a one-time transaction. The above mentioned example is an
example of a passive synthetic transaction. However if the query for finding
orders of a ‘dummy’ customer is processed and stored within the application,
it would constitute an active synthetic transaction. An example of an active
synthetic transaction is a ‘dummy’ order is placed by a ‘dummy’ customer and
the order is stored and maintained within the system itself. In this example, it
is essential to ensure that the ‘dummy’ order which is placed and stored is not
processed at a later date as it can have an impact on the financial subsystem

473

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 473 6/7/2013 5:40:55 PM

of the software. The usage of active synthetic transactions requires one to give
attention to setting up the data and environment in such a manner that it does
not impact the production environment.

Test data management solutions can aid in the creation of referentially intact
data subsets of production data. This alleviates some of the concerns that come
with the creation of quality test data and its management in test environments.
These solutions automatically discover data relationships by analyzing and
capturing table attributes. Once those attributes are captured, they are then
stored in a data model within the test data management software. Now the test
data management solution can generate dummy data using the data model or
it can extract data from the production environment using a defined subset
criteria. An example of a subset criterion is “Data that is not older than one fiscal
quarter.” The defining of subset criteria is sometimes referred to as subsetting.
After subsetting, extraction rules, that are often augmented with database
queries (e.g., SQL WHERE claueses), is defined. Careful attention must be
given when defining extraction rules to ensure that they do not violate any
referential integrity rules. The extraction rules can be configured to not extract
any private or sensitive data, but if that is not feasible, then upon extraction, all
sensitive and private must either be obfuscated or masked. The techniques used
in test data management is illustrated in Figure 5.12.

It is also important to ensure that the extraction rules take into account,
the storage space that is available in the test environment, so that the extraction

Figure 5.12 – Test Data Management Approaches

474

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 474 6/7/2013 5:40:55 PM

process does not end up extracting a large subset of data that cannot be imported
into the test environment, due to size limitations.

The benefits of having a test data management is that it can:
 ■ Keep data management costs low with smaller sets of data that

require less storage and fewer computing resources.
 ■ Assure confidentiality of sensitive data.
 ■ Assure privacy of information by not importing or masking private

information.
 ■ Reduce the likelihood of insider threats and frauds.

Defect Reporting and Tracking
Coding bugs, design flaws, behavioral anomalies (logic flaws), errors, faults and
vulnerabilities all constitute software defects as depicted in Figure 5.13 and once
any defect is suspected and/or identified, it needs to be appropriately reported,
tracked and addressed, prior to release. In this section, we will focus on how to
report and track software defects. In the following section, we will learn about
how these defects can be addressed based upon the potential impact they have
and what corrective actions can be taken.

Software defects need to be first reported and then tracked. Reporting
defects must be comprehensive and detailed enough to provide the software
development teams the information that is necessary to determine the root
cause of the issue, so that they can address it.

Reporting Defects
The goal of reporting defects is to ensure that they get addressed. Information
that must be included in a defect report is:

Defect Identifier (ID)
A unique number or identifier must be given to each defect report so that each
defect can be tracked appropriately. Don’t try to clump multiple issues into one

Figure 5.13 – Software Defects

475

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 475 6/7/2013 5:40:56 PM

defect. Each issue should warrant its own defect report. Most defect tracking
tools have an automated means to assign a defect ID when a new defect is
reported.

Title
Provide a concise yet descriptive title for the defect. For example, ‘Image upload
fails’

Description
Provide a summary of the defect to elaborate on the defect title you specified.
For example, you can say, ‘When attempting to insert an image into a blog, the
software does not allow the upload of the image and fails with an error message’.

Detailed Steps
If the defect is not reproducible then the defect will not get fixed. This is the
reason why detailed steps as to how the defect can be reproduced by the software
development team is necessary. For example, it is not sufficient to say that the
‘Upload’ feature does not work. Instead, it is important to list out the steps
taken by the tester, such as:

 ■ Provided username and password and clicked on ‘Log in’.
 ■ Upon successful authentication, clicked on ‘New blog’.
 ■ Entered blog title as ‘A picture is worth a thousand words’ in ‘Title’

field.
 ■ Entered description as ‘Please comment on the picture you see’ in

the ‘Description’ field.
 ■ Clicked on the ‘Upload image’ icon.
 ■ Clicked on the ‘Browse’ button in the ‘Image Upload’ pop up

screen.
 ■ Browsed to the directory and selected the image to upload and

clicked ‘Open’ in the ‘Browse Directory’ pop up window.
 ■ The ‘Browse Directory’ windows closed and the ‘Image Upload’

pop up screen got focus.
 ■ Clicked on the button ‘Upload’ in the ‘Image Upload’ pop up

screen.
 ■ An error message was shown stating that the upload directory

could not be created and the Upload failed.

476

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 476 6/7/2013 5:40:56 PM

Expected Results
It is important to describe what the expected result of the operation is so that the
development teams can understand the discrepancy from intended functionality.
The best way to do this is to tie the defect ID with the requirement identifier
in the Requirements Traceability Matrix (RTM). This way any deviations from
intended functionality as specified in the requirements can be reviewed and
verified against.

Screenshot
If possible and available, a screenshot of the error message should be attached.
This proves very helpful to the software development team for the following
reasons:

 ■ It provides the development team members a means to visualize
the defect symptoms that the tester reports.

 ■ It assures the development team members that they have successfully
reproduced the same defect that the tester reported.

An example of a screenshot is depicted in Figure 5.14. Note - if the screenshot
image contains sensitive information, it is advisable to not capture the screenshot
in the first place. If however, a screenshot is necessary, then appropriate security
controls such as masking of the sensitive information in the defect screenshot
or role based access control should be implemented to protect against disclosure
threats.

Type
If possible, it is recommended to categorize the defect based on whether it is a
functional issue or an assurance (security) one. You can also sub-categorize the
defect. Figure 5.15 is an example of categories and sub-categories of software
defects.

Figure 5.14 - Defect Screenshot

477

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 477 6/7/2013 5:40:56 PM

This way, pulling reports on the types of defects in the software is made
easy. Furthermore, it makes it easy to find out the security defects that are to be
addressed prior to release.

Environment
Capturing the environment in which the defect was evident is important. Some
important considerations to report on include:

 ■ Was it in the test environment or was it in the production
environment?

 ■ Was the issue evident only in one environment?
 ■ Was the issue determined in the intranet, extranet or Internet

environment?
 ■ What is the Operating System and the service pack on which

the issue was experienced? Are systems with other service packs
experiencing the same issue?

 ■ Was this a web application issue and if so, what was the web
address?

Build Number
The version of the product in which the defect was determined is an important
aspect in defect reporting. This makes it possible to compare versions and see
if the defect is universal or specific to a particular version. From a security
perspective, the build number can be used to determine the RASQ between
versions, based on the number of security defects that are prevalent in each
version release.

Figure 5.15 – Defect Types

478

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 478 6/7/2013 5:40:56 PM

Tester Name
The individual who detected the defect must be specified so that the development
team members know whom they need to contact for clarification or further
information.

Reported On
The date and time (if possible) as to when the defect was reported needs to be
specified. This is important in order to track the defect throughout its life cycle
(covered later in this chapter) and determine the time it takes to resolve a defect,
as a means to identify process improvement opportunities.

Severity
This is to indicate the tester’s determination of the impact of the defect. This may
or may not necessarily be the actual impact of the defect, however it provides
the remediation team with additional information that is necessary to prioritize
their efforts. This is often qualitative in nature and some examples of severity
types are:

 ■ Critical – the impact of the defect will not allow the software to be
functional as expected. All users will be affected.

 ■ Major – Some of the expected business functionality has been
affected and operations cannot continue, since there is no work-
around available.

 ■ Minor – Some of the expected business functionality has been
affected but operations can continue because a work-around is in
place.

 ■ Trivial – Business functionality is not affected but can be enhanced
with some changes that would be nice to have. UI enhancements
usually fall into this category.

Priority
The priority indicator is directly related to the extent of impact (severity) of
the defect and is assigned based on the amount of time within which the defect
needs to be addressed. It is a measure of urgency and supports the availability
tenet of software assurance. Some common examples of priority include, Mission
Critical (0-4 hours), High (>4-24 hours), Medium (>24-48 hours) and Low
(>48 hours).

Status
Every defect that is reported automatically starts with the ‘New’ status and as
it goes through its life cycle the status is changed from ‘New’ to ‘Confirmed’,

479

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 479 6/7/2013 5:40:56 PM

‘Assigned’, ‘Work-in-progress’, ‘Resolved/Fixed’, ‘Fix verified’, ‘Closed’,
‘Reopened’, ‘Deferred’, etc.

Assigned to
When a software defect is assigned to a development team member so that is can
be fixed, the name of the individual who is working the issue must be specified.

Tracking Defects
Upon the identification and verification of a defect, the defect needs to be
tracked so that it can be addressed accordingly. It is advisable to track all defects
related to the software in a centralized repository or defect tracking system.
Centralization of defects makes it possible to have a comprehensive view of the
software functionality and security risk. It also makes it possible to ensure that
no two individuals are working on the same defect. A defect tracking system
should have the ability to support the following requirements:

 ■ Defect documentation – All required fields from a defect report must
be recorded. In situations where additional information needs to be
recorded, the defect tracking system must allow for the definition
of custom fields.

 ■ Integration with Authentication Infrastructure – A defect tracking
system that has the ability to automatically fill the authenticated user
information by integrating with the authentication infrastructure
is preferred to prevent user entry errors. It also makes it possible to
track user activity as they work on a defect.

 ■ Customizable Workflow – A software defect continues to be a defect
until it has been fixed or addressed. Each defect goes through
a life cycle, an example of which is depicted in Figure 5.16. As
the software defect moves from one status to another, workflow
information pertinent to that defect must be tracked and, if
needed, customized.

 ■ Notification – When a software defect state moves from one status
to another, it would be necessary to notify the appropriate personnel
of the change so that processes in the SDLC are not delayed. Most
defect tracking systems provide a notification interface that is
configurable with whom and what to notify upon status change.

 ■ Auditing capability – For accountability reasons, all user actions
within the software defect tracking system must be audited and
the software defect tracking system must allow for storing and
reporting on these auditable information in a secure manner.

480

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 480 6/7/2013 5:40:56 PM

Impact Assessment and Corrective Action
Testing findings that are reported as defects needs to be addressed. We can
use the priority (urgency) and severity (impact) levels from the defect report
to address software defects. High impact, high risk defects are to be addressed
first. When agile or extreme programming methodologies are used, identified
software defects need to be added to the backlog. Risk management principles
(covered in the Secure Software Concepts chapter) can be used to determine
how the defect is going to be handled. Corrective actions have a direct bearing
on the risk. These can include one or more of the following:

 ■ Fixing the defect (mitigating the risk),
 ■ Deferring the functionality (not the fix) to a latter version

(transferring the risk)
 ■ Replacing the software (avoiding the risk)

Knowledge of security defects in the software and ignoring the risk can have
serious and detrimental effects when the software is breached. All security defects
must be addressed and preferably mitigated.

Additionally, it is important to fix the defects in the development environment,
attest the solution in the testing environment, and verify functionality in the
UAT environment and only then release (promote) the fix to production
environments as illustrated in Figure 5.17.

Figure 5.16 - Defect Life Cycle

481

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 481 6/7/2013 5:40:56 PM

Figure 5.17 – Fixing defects environment and process

The following references are recommended to get
additional information on secure software testing
concepts and techniques:

 » (ISC)2 whitepaper entitled “Assuring Software Security Through
Testing: White, Black and somewhere in between.” provides
some excellent guidance on attesting software assurance, and
covers the different types of testing as it pertains to security and
functionality.

 » SP 800-92 published by NIST provides guidance on log
management and insight into how to protect audit trails and
ensuring the management of security logs.

 » The MSDN article on ‘Generating Test Data for Database by
Using Data Generators’ gives insight into leveraging the existing
Integrated Development Environments to generate test data as
a means to manage test data.

482

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 482 6/7/2013 5:40:56 PM

Summary and Conclusion

Security testing validates the resiliency, recoverability

and the reliability of software, while functionality

testing is primarily focused only on the reliability and

secondarily on the recoverability aspects of software.

It is imperative to complement functionality testing

with security testing of software. Security testing can

be used to determine the means and opportunities by

which software can be attacked. Both white box and

black box security testing are employed to determine

the threats to software. Knowledge of how to test

for common software vulnerabilities such as failures

in input validation, output encoding, improper error

handling, least privilege implementation, use of unsafe

programming libraries and interfaces, etc. is important.

Various tools are used to conduct security testing. Both

functional and security defects need to be reported,

tracked through their life cycle and addressed using

risk management principles. Fixing defects must never

be performed directly in the production environment

and proper change management principles must be

employed to promote fixes from development and test

environments into the UAT and production environment.

483

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

CSSLP_v2.indb 483 6/7/2013 5:40:56 PM

484

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

1. The ability of the software to restore itself to expected functionality
when the security protection that is built in is breached is also known
as

A. redundancy.
B. recoverability.
C. resiliency.
D. reliability.;

2. In which of the following software development methodologies does
unit testing enable collective code ownership and is critical to assure
software assurance?

A. Waterfall
B. Agile
C. Spiral
D. Prototyping

3. Which of the secure design principles is promoted when test harnesses
are used?

A. Least privilege
B. Separation of duties
C. Leveraging existing components
D. Psychological acceptability

4. The use of IF-THEN rules is characteristic of which of the following
types of software testing?

A. Logic
B. Scalability
C. Integration
D. Unit

Review Questions

CSSLP_v2.indb 484 6/7/2013 5:40:57 PM

485

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

5. The implementation of secure features such as complete mediation and
data replication needs to undergo which of the following types of test
to ensure that the software meets the service level agreements (SLA)?

A. Stress
B. Unit
C. Integration
D. Regression

6. Tests that are conducted to determine the breaking point of the software
after which the software will no longer be functional is characteristic
of which of the following types of software testing?

A. Regression
B. Stress
C. Integration
D. Simulation

7. Which of the following tools or techniques can be used to facilitate the
white box testing of software for insider threats?

A. Source code analyzers
B. Fuzzers
C. Banner grabbing software
D. Scanners

8. When very limited or no knowledge of the software is made known to
the software tester before she can test for its resiliency, it is characteristic
of which of the following types of security tests?

A. White box
B. Black box
C. Clear box
D. Glass box

9. Penetration testing must be conducted with properly defined

A. rules of engagement.
B. role based access control mechanisms.
C. threat models.
D. use cases.

CSSLP_v2.indb 485 6/7/2013 5:40:57 PM

486

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

10. Testing for the randomness of session identifiers and the presence of
auditing capabilities provides the software team insight into which of
the following security controls?

A. Availability.
B. Authentication.
C. Non-repudiation.
D. Authorization.

11. Disassemblers, debuggers and decompilers can be used by security
testers to PRIMARILY determine which of the following types of
coding vulnerabilities?

A. Injection flaws.
B. Lack of reverse engineering protection.
C. Cross-Site Scripting.
D. Broken session management.

12. When reporting a software security defect in the software, which of
the following also needs to be reported so that variance from intended
behavior of the software can be determined?

A. Defect identifier
B. Title
C. Expected results
D. Tester name

13. An attacker analyzes the response from the web server which indicates
that its version is the Microsoft Internet Information Server 6.0
(Microsoft-IIS/6.0), but none of the IIS exploits that the attacker
attempts to execute on the web server are successful. Which of the
following is the MOST probable security control that is implemented?

A. Hashing
B. Cloaking
C. Masking
D. Watermarking

14. Smart fuzzing is characterized by injecting
A. truly random data without any consideration for the data

structure.
B. variations of data structures that are known.

CSSLP_v2.indb 486 6/7/2013 5:40:57 PM

487

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

C. data that get interpreted as commands by a backend interpreter.
D. scripts that are reflected and executed on the client browser.

15. Which of the following is the MOST important to ensure, as part
of security testing, when the software is forced to fail x? Choose the
BEST answer.

A. Normal operational functionality is not restored automatically.
B. Access to all functionality is denied.
C. Confidentiality, integrity and availability are not adversely

impacted.
D. End users are adequately trained and self help is made available

for the end user to fix the error on their own.

16. Timing and synchronization issues such as race conditions and
resource deadlocks can be MOST LIKELY identified by which of the
following tests? Choose the BEST answer.

A. Integration
B. Stress
C. Unit
D. Regression

17. The PRIMARY objective of resiliency testing of software is to
determine

A. the point at which the software will break.
B. if the software can restore itself to normal business operations.
C. the presence and effectiveness of risk mitigation controls.
D. how a blackhat would circumvent access control mechanisms.

18. The ability of the software to withstand attempts of attackers who
intend to breach the security protection that is built in is also known as

A. redundancy.
B. recoverability.
C. resiliency.
D. reliability.;

19. Drivers and stub based programming are useful to conduct which of
the following tests?

CSSLP_v2.indb 487 6/7/2013 5:40:57 PM

488

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

A. Integration
B. Regression
C. Unit
D. Penetration

20. Assurance that the software meets the expectations of the business as
defined in the service level agreements (SLAs) can be demonstrated by
which of the following types of tests?

A. Unit
B. Integration
C. Performance
D. Regression

21. Vulnerability scans are used to
A. measure the resiliency of the software by attempting to exploit

weaknesses.
B. detect the presence of loopholes and weaknesses in the software.
C. detect the effectiveness of security controls that are implemented

in the software.
D. measure the skills and technical know-how of the security tester.

22. In the context of test data management, when a transaction which
serves no business purpose is tested, it is referred to as what kind of
transaction?

A. Non-synthetic
B. Synthetic
C. Useless
D. Discontinuous

23. As part of the test data management strategy, when a criteria is applied
to export selective information from a production system to the test
environment, it is also referred to as

A. Subletting
B. Filtering
C. Validation
D. Subsetting

CSSLP_v2.indb 488 6/7/2013 5:40:57 PM

489

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

References

“Ajax and Mashup Security.” OpenAjax Alliance. www.openajax.org/whitepapers/Ajax%20
and%20Mashup%20Security.php#Dont_Insert_Untrusted_HTML_Content_Without_
Sanitizing (accessed February 16, 2013).

“Analyzing Malware Packed Executables.” IT Security Magazine - Hakin9. http://hakin9.org/
analyzing-malware-packed-executables/ (accessed February 16, 2013).

Brown, Jeremy. “Fuzzing for Fun and Profit.” Exploits Database by Offensive Security. http://
www.exploit-db.com/papers/12965/ (accessed February 16, 2013).

Cannings, Rich, Himanshu Dwivedi, and Zane Lackey. Hacking Exposed Web 2.0 Web 2.0 Security
Secrets and Solutions. New York: McGraw-Hill, 2008.

“Cloud Web Security: HTTPS/SSL Content Scanning .” Spamina Cloud Email & Web Security.
http://www.spamina.com/eng/whitepapers.php?pob=Whitepaper_Cloud_Web_Security (accessed
February 16, 2013).

Cox, Kerry, and Christopher Gerg. “Anatomy of an Attack: The Five Ps.” In Managing security
with Snort and IDS tools. Sebastopol, CA: O’Reilly, 2004. 53-68.

Edwards, John. “The Essential Guide to Vulnerability Scanning .” ITSecurity.com. www.
itsecurity.com/features/essential-guide-vulnerability-scanning-060508/ (accessed February 16,
2013).

Eilam, Eldad, and Elliot J. Chikofsky. Reversing: Secrets of Reverse Engineering. Indianapolis, IN:
Wiley, 2005.

Gallagher, Tom, Bryan Jeffries, and Lawrence Landauer. Hunting Security Bugs. Redmond, Wash.:
Microsoft Press, 2006.

“Generating Test Data for Databases by Using Data Generators.” MSDN â€“ the Microsoft
Developer Network. http://msdn.microsoft.com/en-us/library/dd193262(v=vs.100).aspx
(accessed February 16, 2013).

Herzog, Pete. “Open Source Security Testing Methodology Manual (OSSTMM).” ISECOM -
Institute for Security and Open Methodologies. http://www.isecom.org/research/osstmm.html
(accessed February 16, 2013).

Howard, Michael, and David LeBlanc. Writing Secure Code. 2nd ed. Redmond, Wash.: Microsoft
Press, 2003.

CSSLP_v2.indb 489 6/7/2013 5:40:57 PM

http://www.openajax.org/whitepapers/Ajax%20and%20Mashup%20Security.php#Dont_Insert_Untrusted_HTML_Content_Without_Sanitizing
http://hakin9.org/analyzing-malware-packed-executables/
http://msdn.microsoft.com/en-us/library/dd193262(v=vs.100).aspx
http://ITSecurity.com

490

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Kelley, Diana. “Black box and White box testing: Which is Best?.” SearchSecurity.com. http://
searchsecurity.techtarget.com/tip/Black-box-and-white-box-testing-Which-is-best (accessed
February 16, 2013).

Krishnankutty, Harish, and Ravi Illimattathil. “Enhancing Test Effectiveness Through Test Data
Management.” Building Tomorrow’s Enterprise. www.infosys.com/IT-services/independent-
validation-testing-services/white-papers/Documents/test-data-management.pdf (accessed
February 16, 2013).

Kaminski, Gary. “Logic Mutation Testing of Software Programs.” Lecture, GMU Software
Engineering Seminar Series from George Mason University, Fairfax, June 12, 2008.

Meier, J.D, Carlos Farre, Prashant Bansode, Scott Barber, and Dennis Rea. “Performance Testing
Guidance for Web Applications.” MSDN â€“ the Microsoft Developer Network. http://msdn.
microsoft.com/en-us/library/bb924375.aspx (accessed February 16, 2013).

Mueffelmann, Kurt. “How Privacy Scanning Can Keep Your Company Out of the Regulatory
Minefield.” IAPP - international Association of Privacy Professionals. https://www.
privacyassociation.org/publications/how_privacy_scanning_can_keep_your_company_out_of_
the_regulatory_minefield (accessed February 16, 2013).

Neystadt, John. “Automated Penetration Testing with White-Box Fuzzing.” MSDN â€“ the
Microsoft Developer Network. http://msdn.microsoft.com/en-us/library/cc162782.aspx (accessed
February 16, 2013).

“OWASP Testing Guide.” OWASP - Open Web Application Security Project. https://www.owasp.
org/index.php/OWASP_Testing_Project (accessed February 16, 2013).

“OWASP Testing Guide Appendix C: Fuzz Vectors.” OWASP - Open Web Application Security
Project. https://www.owasp.org/index.php/OWASP_Testing_Guide_Appendix_C:_Fuzz_Vectors
(accessed February 16, 2013).

Oracle. “Oracle Test Data Management Pack.” TechNetwork. www.oracle.com/technetwork/oem/
pdf/511875.pdf (accessed February 16, 2013).

Petersen, Bente. “Intrusion Detection FAQ: What is p0f and what does it do?.” SANS. http://
www.sans.org/security-resources/idfaq/p0f.php (accessed February 16, 2013).

Piliptchouk, Denis. “WS-Security in the Enterprise.” ONJava.com. http://onjava.com/lpt/a/5614
(accessed February 16, 2013).

Rogers, Larry. “Cybersleuthing: Means, Motive, and Opportunity.” Software Engineering
Institute. http://www.sei.cmu.edu/library/abstracts/news-at-sei/securitysum00.cfm (accessed
February 16, 2013).

Scarfone, Karen, Murugiah Souppaya, Amanda Cody, and Angela Orebaugh. “http://csrc.nist.
gov/publications/nistpubs/800-115/SP800-115.pdf .” NIST - National Institute of Standards and
Technology. csrc.nist.gov/publications/nistpubs/800-115/SP800-115.pdf (accessed February 16,
2013).

CSSLP_v2.indb 490 6/7/2013 5:40:57 PM

https://www.privacyassociation.org/publications/how_privacy_scanning_can_keep_your_company_out_of_the_regulatory_minefield
https://www.owasp.org/index.php/OWASP_Testing_Project
http://www.oracle.com/technetwork/oem/pdf/511875.pdf
http://msdn.microsoft.com/en-us/library/bb924375.aspx
http://csrc.nist.gov/publications/nistpubs/800-115/SP800-115.pdf
http://csrc.nist.gov/publications/nistpubs/800-115/SP800-115.pdf
www.SearchSecurity.com
www.ONJava.com

491

Domain 5: Secure Software Testing 5
Secure Softw

are Testing

Payment Card Industry (PCI). “Security Scanning Procedures.” PCI DSS. https://www.
pcisecuritystandards.org/security_standards/documents.php (accessed February 16, 2013).

U.S. Department of Homeland Security (DHS). “Security Testing.” Build Security In. https://
buildsecurityin.us-cert.gov/bsi/articles/best-practices/testing.html (accessed February 16, 2013).

“Security threats: Content Scanning.” Websense.com . http://www.websense.com/content/
support/library/web/v75/triton_web_help/sc_traffic_scanning.aspx#623422 (accessed February
16, 2013).

Shah, Shreeraj. “Top 10 HTML5 threats and attack vectors.” Net-Security.org. http://www.net-
security.org/article.php?id=1656 (accessed February 16, 2013).

“Software Testing Artifacts.” Wikipedia. http://en.wikipedia.org/wiki/Software_testing#Testing_
artifacts (accessed February 16, 2013).

Sundmark, Thomas, and Dinesh Theerthagiri. “Phase Space Analysis of Session Cookies.” IDA.
www.ida.liu.se/~TDDD17/oldprojects/2008/ projects/9.pdf (accessed February 16, 2013).

“Synthetic Transactions.” Toolbox.com. it.toolbox.com/wiki/index.php/Synthetic_Transactions
(accessed February 16, 2013).

“Top 100 Software Testing Interview Questions.” Guru99.com. http://www.guru99.com/
software-testing-interview-questions.html (accessed February 16, 2013).

“Unit Testing.” MSDN - the Microsoft Developer Network. http://msdn.microsoft.com/en-us/
library/aa292197(VS.71).aspx (accessed February 16, 2013).

“What is Macro Virus?.” SearchSecurity TechTarget.com. http://searchsecurity.techtarget.com/
definition/macro-virus (accessed February 16, 2013).

Yarochkin, Fedor V. , Ofir Arkin, Meder Kydyraliev, Shih-Yao Dai, Yennun Huang, and Sy-Yen
Kuo. “Xprobe2++: Low Volume Remote Network Information Gathering Tool.” Sourceforge.net.
xprobe.sourceforge.net/xprobe-ng .pdf (accessed February 16, 2013).

Zalewski, Michal. Silence on the Wire: a Field Guide to Passive Reconnaissance and Indirect Attacks.
San Francisco: No Starch Press, 2005.

CSSLP_v2.indb 491 6/7/2013 5:40:57 PM

https://www.pcisecuritystandards.org/security_standards/documents.php
http://www.websense.com/content/support/library/web/v75/triton_web_help/sc_traffic_scanning.aspx#623422
http://www.ida.liu.se/~TDDD17/oldprojects/2008/projects/9.pdf
http://www.guru99.com/software-testing-interview-questions.html
http://en.wikipedia.org/wiki/Software_testing#Testing_artifacts
http://msdn.microsoft.com/en-us/library/aa292197(VS.71).aspx
http://searchsecurity.techtarget.com/definition/macro-virus
http://it.toolbox.com/wiki/index.php/Synthetic_Transactions
http://Net-Security.org
www.Websense.com
www.Toolbox.com
www.Guru99.com
www.TechTarget.com
http://xprobe.sourceforge.net/xprobe-ng.pdf

This page intentionally left blankThis page intentionally left blank

493

Domain 6

Software Acceptance

493

Domain 6

Software Acceptance

HAVE YOU EVER experienced the situation where you are unsure about the
operations of a particular software in your computing environment due to
lack of pertinent documentation? Or have you had the need to configure the
software to run with elevated or administrative privileges after its installation,
just to make it work? These situations are far too familiar today but they can be
easily avoided if there was a formal software acceptance process in place.

Before accepting software for deployment into the production environment
or release to the customers, it is important to ensure that software that has
been developed or acquired meets required compliance, quality, functional and
assurance (security) requirements. In today’s security landscape, considerations
when accepting software must go beyond mere functionality and take into
account security as well. Verification and validation (V&V) of only the business
functionality to accept software for release can prove insufficient and backfire
from a security standpoint. It is also critically important to understand the impact
that the accepted software will have on the existing computing ecosystem,
irrespective of whether it has been developed (built) or procured (bought) and
integrated. Security requirements need to be verified and security controls
(safeguards and countermeasures) validated by internal and/or independent
third party security testing. Software must not be deployed or released until it
has been certified and accredited that the residual risk is within the acceptable
risk threshold as established by the business owner. Additionally, in the cases
where software is procured from an external software publisher, certain non-
technical protection mechanisms need to be in place as acceptance criteria and
these must be validated and verified as well.

In this chapter, we will cover software acceptance for software that is
developed in-house. The Supply Chain Security chapter will focus primarily of
software acceptance when acquiring software from a supplier.

CSSLP_v2.indb 493 6/7/2013 5:40:57 PM

494

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Topics

 ■ Pre-Release and Pre-Deployment
 à Completion Criteria

 » Documentation
 » DRP
 » BCP

 ■ Risk Acceptance
 à Exception Policy
 à Sign-off

 ■ Post-Release
 à Validation and Verification

 » FIPS
 » Common Criteria

 à Independent Testing
 » Third Party

CSSLP_v2.indb 494 6/7/2013 5:40:58 PM

495

Domain 6: Software Acceptance

6

Softw
are A

cceptance

Objectives

As a CSSLP, you are expected to

 ■ Understand the importance of pre- and post-deployment/
release acceptance criteria and how it relates to software
assurance.

 ■ Be familiar with build considerations that need to be validated
and verified prior to acceptance for deployment/release.

 ■ Understand the need to measure the impact of the software
that will be deployed into the existing computing ecosystem
and existing processes.

 ■ Know the difference between certification and accreditation
(C&A) and understand how V&V can be used for C&A.

This chapter will cover each of these objectives in detail. It
is imperative that you fully understand not just what software
acceptance means but how it applies to the software that your
organization builds or buys.

CSSLP_v2.indb 495 6/7/2013 5:40:58 PM

Guidelines for Software Acceptance
Software acceptance is the life cycle process of officially or formally accepting new
or modified software components, which when integrated form the information
system. Acceptance criteria must be predefined with respect to the following
categories: Functionality, Performance, Quality, Safety, Privacy and Security.
Objectives of software acceptance include

 ■ Verification that the software meets specified functional and
assurance requirements

 ■ Verification that the software is operationally complete and secure
as expected

 ■ Obtaining the approvals from the system owner
 ■ Transference of responsibility from the development team or

company (vendor) to the system owner, support staff and operations
personnel if the software is deployed internally.

It must however be highlighted that just because software is engineered
with security in mind, it does not necessarily imply that the software will be
secure when it is released or deployed into what is most often a heterogeneous
computing environment. Rarely is software deployed in a stand-alone setting.

Some of the guiding principles of software that is ready for release from a
security viewpoint are given below. Software accepted for deployment or release
must

 ■ be secure by design, default and deployment;
 ■ complement existing defense in depth protection;
 ■ run with least privilege;
 ■ be irreversible and tamper-proof;
 ■ isolate and protect administrative functionality and security

management interfaces; and
 ■ have non-technical protection mechanisms in place.

The mantra for defense in depth commonly referred to as the SD3 initiatives
for software security ensure that the software is not only secure in design and
by default but also in deployment. Software that does not complement existing
defense in depth principles must not be accepted for deployment. For example,
if you have certain ports and protocols disabled for security reasons in your
computing environment, the introduction of new software must not require

496

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 496 6/7/2013 5:40:58 PM

the already disabled ports and protocols to be enabled, unless proper security
controls are designed to address the increased attack surface area, when doing
so. Software accepted should be able to run without having the need to run with
elevated privileges. By default, the principle of least privilege must apply.

Reverse engineering protection mechanisms with contractual enforcement
must be verified to ensure that competitors and hackers are deterred from
figuring out the internal design and architectural details of the software itself,
which will allow them to circumvent any protective mechanisms that are built
in. Unfortunately, what is prevalent in the industry today to deter reversing
are ineffective click-through End User Licensing Agreements (EULA) with a
“You shall not modify, translate, reverse engineer, decompile or disassemble
the Software” clause as depicted in Figure 6.1. The EULA is usually presented
upon installation as a splash screen or upon login as login banners. Software
manufacturers deem the clicking of the EULA’s “I AGREE” to be contractually
binding and the Digital Millennium Copyright Act (DMCA) considers some
instances of reverse engineering as criminal offenses, but this is a deterrent control
and is not preventative in nature. Reverse engineering protection is increased by
code obfuscation and anti-tampering techniques, which must be verified in the
software before being accepted for release. Reverse engineering is also known as
reversing or reverse code engineering (RCE).

Administrative functionality and security management interfaces (SMIs)
need to be validated as being accessible only to those individuals that have the
need for them; to a small subset of users whose actions are also audited and
reviewed periodically.

Figure 6.1 – Example of a EULA (for Opera 10)

497

Domain 6: Software Acceptance

6

Softw
are A

cceptance

CSSLP_v2.indb 497 6/7/2013 5:40:58 PM

Additionally, software must not only first meet functional requirements but
it must also include all applicable technical security protection mechanisms
(architected using secure design principles and developed including elements of
the security profile) and have non-technical protection mechanisms such as legal
protections and escrow in place before being considered ready for deployment
or release.

Benefits of Accepting Software Formally
The incorporation of a formal software acceptance process based on security
is extremely vital in the deployment or release of secure software. This is the
final checkpoint to discover the existence of missed and unforeseen security
vulnerabilities and to validate the presence of security controls that will address
known threats. By validating that security requirements are included in the
design (for software built in-house) or in the request for proposals (for COTS
software) and verifying that they have been addressed ensures that security
does not need to be bolted on at a later stage post release. It not only ensures
that software security issues are proactively addressed and that the software
developed is operationally hack-resilient, but that the software is compliant with
applicable regulations as well. The software acceptance process helps to maintain
the secure computing ecosystems by ensuring that new software products has
achieved a formally defined level of quality and security. Software not meeting
these requirements will not be approved for release into the secure computing
ecosystem.

Legal and escrow mechanisms that are validated as part of the software
acceptance process also ensure that the software publisher or acquirer are
protected. In a nutshell, software acceptance can assure that the software is of
high quality, reliable (functioning as it is expected to) and secure from risks.

Software Acceptance Considerations
We have established the fact that a formal software acceptance must be in place,
irrespective of how insignificant one may feel this process to be. So what are
some of the activities that need to be performed during the software acceptance
phase? Depending on whether the software is built in-house or bought from an
external software publisher, software acceptance considerations that need to be
taken into account vary. In this section, we will first learn about what one needs
to consider when building software in-house before certifying the software as
ready for deployment/release. Software acceptance consideration when buying
software from an external supplier is covered in depth in the Supply Chain
Security chapter.

498

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 498 6/7/2013 5:40:58 PM

Some of the major items to consider before accepting software that is built
in-house for deployment/release are illustrated in Figure 6.2. They are described
in more detail in this section.

Completion Criteria
Functional and security requirements should have been captured in the
requirements gathering phase of the SDLC and at this stage in the SDLC
they need to be validated and verified as complete. Completion criteria for
functionality and software security with explicit milestones must be defined
well in advance. As a CSSLP, you are particularly interested in the milestones
pertinent to security besides functionality. Some examples of security related
milestones include, but are not limited to the following:

 ■ generation of the of the requirements traceability matrix that
includes security requirements besides functional requirements in
the requirement phase;

 ■ completion of the threat model during the design phase;
 ■ review and sign-off on the security architecture at the end of the

design phase;
 ■ review of code for security vulnerabilities after the development

phases;
 ■ completion of security testing at the end of the application testing

phase; and
 ■ completion of documentation before the deployment phase

commences.

Figure 6.2 – Software acceptance considerations when building software

499

Domain 6: Software Acceptance

6

Softw
are A

cceptance

CSSLP_v2.indb 499 6/7/2013 5:40:58 PM

Each of these milestones must include the actual deliverable (such as RTM,
Threat model, Security architecture design, Code review report, Security test
report, etc.) that can be tracked. The existence and accuracy of these deliverables
need to be verified. At the end of the requirements phase, the software
requirements traceability matrix must include the security requirements as well.
The threat model should be complete with documented threat lists and associated
countermeasures. The architecture review sign-off before code is written should
include the various components of the security profile and principles of secure
design. Verification of these components and principles must be conducted
before acceptance. Code review for security issues must be conducted and
the issues that were identified in the review need to be fixed and tested for in
the testing phase. Achievement of these milestones is indicative of the state of
security in software that is built. If any of these milestones are not completed,
then serious thought needs to be given as to whether or not the software is ready
for deployment/release and appropriate risk-based actions need to be taken.

Change Management
Change management is a subset of configuration management. Changes to the
computing environment and redesign of the security architecture can potentially
introduce new security vulnerabilities, thereby increasing risk. Necessary support
queues and processes for the software that is to be deployed/released should be
established.

Newer versions of software need to be approved, tracked and validated to
ensure that the current state and level of security in the software has not been
reduced. If this is the first version of the software being deployed, then it must be
recorded in the asset management database. If this a version release, then the asset
management database must be updated before accepting the software for release.

Changes should not be allowed unless the appropriate authorities formally
approve the change. Authorities should refrain from approving any change
requests if they have not been communicated as to what the residual risk is and
if they don’t totally understand the repercussions resulting from the change.
Change requests should be approved based on risk and not on the grounds of
schedule pressures, as is often observed to be the case.

All changes need to be formally requested by the software development
organization which is usually done through the Program Management Office
(PMO). It must then be evaluated for approval or rejection by members of the
Configuration/Change Board (CCB).

500

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 500 6/7/2013 5:40:58 PM

As part of the software acceptance process, it must be verified that
 ■ change requests are evaluated for impact on the overall security of

the software;
 ■ the asset management database is updated with the new/updated

software information; and
 ■ the change is requested formally, and evaluated and approved by

appropriate signatory authorities.

Approval to Deploy or Release
It cannot be overstressed that without approvals, no change should be allowed to
the production computing environment. Before any new installation of software,
a risk analysis needs to be conducted and the residual risk determined. The results
of the risk analysis along with the steps taken to address it (mitigate or accept)
must be communicated to the business owner. The authorizing official must be
informed of the residual risk. The approval or rejection to deploy/release must
include recommendations and support from the security team. Ultimately it is
the authorizing official (AO) who is responsible for change approvals.

The software acceptance process should validate that approvals are not
merely a ‘check’ in the checkbox kind of activity but that it includes review and
oversight through an established governance process for maximum effectiveness.
Approvals must be documented and retained.

Risk Acceptance and Exception Policy
Since the likelihood of ‘Zero’ or ‘No’ risk is utopian, risk that remains after the
implementation of security controls (residual risk) needs to be determined first.
The best option to address total risk is to mitigate it so that the residual risk
falls below the business defined threshold in which case the residual risk can be
accepted. Risk must be accepted by the business owner and not by officials in
the IT department.

For consistency reasons, it is advisable to use the same template when
accepting the risk. A risk acceptance template must include at least the following
elements – Risk, Actions, Issues and Decisions (RAID). The ‘Risk’ section is
used to inform the business the probability of an unfavorable security situation
occurring that can lead to disclosure, alteration or destruction outcomes. Since
it is the business owner that accepts the risk, the description in this section
must be void of technical jargon. It must be explanatory in describing the risk
to the business. The ‘Actions’ section in the risk acceptance document assists
the IT and software development management teams by informing them the

501

Domain 6: Software Acceptance

6

Softw
are A

cceptance

CSSLP_v2.indb 501 6/7/2013 5:40:58 PM

steps that have been taken and the steps that are to be taken. The ‘Issues’ section
provides the development teams with the technical details of how the threats to
the software can be realized and the ‘Decisions’ section provides management
and the authorizing official the options to consider when accepting the risk. An
example of a RAID risk acceptance template is illustrated in Figure 6.3.

How residual risk is handled depends on factors such as time and resources.
In situations when you don’t have the time or resource to mitigate the risk,
it is best to transfer or avoid the risk. Risk transference can be achieved by
transferring the risk to someone else, e.g., an insurance company. Risk avoidance
can be achieved by discontinuing the use of the software.

However, in certain situations, the risk that is observed is not as a result of
security vulnerabilities in the software but due to non-compliance with a new
policy that is instituted to address the changing security landscape. You also
may not have the option to discontinue the use of the newly discovered non-
compliant software, which means you cannot avoid the risk of non-compliance.

Figure 6.3 - Risk Acceptance Template example

502

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 502 6/7/2013 5:40:58 PM

For example a very critical to the business, legacy software cannot comply with the
newly instituted 256 bit cipher strength Advanced Encryption Standard (AES)
for cryptographic functionality, because it supports a maximum of 40 bit cipher
strength. In such situations when you cannot mitigate, transfer or avoid the risk,
the best option is to accept the risk with a documented exception to policy. An
exception to policy must, however, be allowed, if and only if there exists contingency
plans with explicit dates specified to address the risk. It is also advisable that the
members of the exception review board include subject matter experts from
different teams, such as the business (client or customer), software development
team, networking team, legal team, privacy team, and the security team.

Accepting risk with an exception to policy has certain benefits. The first and
foremost is that business operations are not disrupted. Secondly, the exception
to policy and risk documentation can be used as an audit defense when external
auditors determine that your organization is not compliant with policy.

The software acceptance process must ensure that risk management
processes are thoroughly followed; that risk is within acceptable thresholds; and
an exception to policy exists, if needed, before the software can be deployed or
released.

Documentation of Software
Often overlooked or paid light attention to, documenting what the software is
supposed to do, how it is architected, how it is to be installed, what configuration
settings need to be preset, how to use it and administer it is extremely important
for effective, secure and continued use of the software. Some of the primary
objectives for documentation are to make the software deployment process easy
and repeatable, and to ensure that operations are not disrupted and the impact
upon changes to the software is understood.

Although documentation is a key deliverable at the end of the SDLC pre-
deployment process, it is best advised to commence and complete documentation
at each phase. Unfortunately, this is often the most overlooked part of the
SDLC and without appropriate documentation software must not be accepted
for deployment or release.

A fundamental consideration for software acceptance is the existence and
completeness of software related documentation.

Table 6.1 tabulates some of the types of documents that need to be verified
as complete.

503

Domain 6: Software Acceptance

6

Softw
are A

cceptance

CSSLP_v2.indb 503 6/7/2013 5:40:58 PM

Table 6.1 – Types of Documents

504

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Document Type Assurance Aspect

RTM Are functionality and security aspects
traceable to customer requirements and
specifications?

Threat Model Is the threat model comprehensively
representative of the security profile and
addressing all applicable threats?

Risk Acceptance Document Is the risk appropriately mitigated,
transferred or avoided? Is the residual risk
below the acceptable level? Has the risk been
accepted by the AO with signatory authority?

Exception Policy Document Is there an exception to policy and if so is it
documented? Is there a contingency plan in
place to address risks that do not comply with
the security policy?

Change Requests Is there a process to formally request
changes to the software and is this
documented and tracked? Is there a control
mechanism defined for the software so
that only changes that are approved at
the appropriate level can be deployed to
production environments.

Approvals Are approvals (risk, design and architecture
review, change, exception to policy, etc.)
documented and verifiable? Are appropriate
approvals in place when existing documents
like BCP, DRP, etc. need to be redrafted?

BCP or DRP Is the software incorporated into the
organizational BCP or DRP? Does the DRP
not only include the software but also the
hardware on which it runs? Is the BCP/DRP
updated to include security procedures
that need to be followed in the event of a
disaster?

Incident Response Plan (IRP) Is there a process and plan defined for
responding to incidents (security violations)
because of the software?

Installation Guide Are steps and configuration settings
predefined to ensure that the software can
be installed without compromising the
secure state of the computing ecosystem?

User Training Guide/Manual Is there a manual to inform users how they
will use the software?

CSSLP_v2.indb 504 6/7/2013 5:40:59 PM

What is documented should clearly articulate the functionality and security
of the software code so that it allows for maintainability by the support team.
It is advisable to include members from the support team to participate in
observatory roles during the development and testing phases of the SDLC
so that they are familiar with the operations of the software, which they are
expected to support.

It is important to not just document the first version of the software but
subsequent version releases as well. This ensures that changes to the software are
traceable back to requirements and customer requests.

To ensure that there are no disruptions to operations, critical software must
be included in the Business Continuity Plan (BCP) or Disaster Recovery Plan
(DRP). The incorporation of new software into the existing BCP/DRP is directly
proportion to the importance of that software to the business.

It is also imperative to ensure that the Incident Response Plan (IRP) is
available to the operations team, as well. The IRP should include instructions
on how to handle an unfavorable event resulting from a software breach. The
effectiveness of an incident response plan is dependent on user awareness and
training on how to respond in the event or suspicion of a security incident.
Training takes documentation to the people. The dos and don’ts for incident
response are covered in more detail in the Software Deployment, Operations,
Maintenance and Disposal chapter.

505

Domain 6: Software Acceptance

6

Softw
are A

cceptance

CSSLP_v2.indb 505 6/7/2013 5:40:59 PM

Verification and Validation (V&V)
The Capability Maturity Model (CMM) for Software defines verification and
validation (V&V) as the following. Verification is defined as the process of
evaluating software to determine whether the products of a given development
phase satisfies the conditions imposed at the start of the phase. In other words,
verification ensures that the software performs as required and expected to.
Validation is the process of evaluating software during or at the end of the
development process to determine whether it satisfies specified requirements.
In other words validation ensures that the software meets required specifications.
The major objective of the software V&V process is to ensure that the software
is reliable and that no unintended behavior is observed or can be forced.

Usually verification and validation go hand in hand and the difference
between the two is primarily definitional and matter more to a theorist than to
a practitioner. Broadly, V&V refer to all activities that are undertaken to ensure
that the software is functioning and secured as required. V&V is a required step
in the software acceptance process, irrespective of whether the software is built
in-house or procured (acquired).

V&V is not an ad hoc process. It is a very structured and systematic approach
to evaluate the software technical functionality. It can be performed by the
organization or by an independent 3rd party. Irrespective of who performs the
V&V exercise, the evaluation is basically divided into two main activities which
are review, including inspection, and testing as illustrated in Figure 6.3.

Figure 6.3 – Verification and Validation activities

506

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 506 6/7/2013 5:40:59 PM

V&V should check for the presence of security protection mechanisms to
ensure confidentiality, integrity of data and system, availability, authentication,
authorization, auditing, secure session management, proper exception handling
and configuration management. In some cases, the software may be required
to comply with certain external regulations and compliance initiatives (e.g.,
FIPS, PCI DSS or Common Criteria) and in such situation, a proper and
comprehensive V&V of these requirements is essential. The request for Common
Criteria evaluation assurance levels (EAL) must be in place when procuring
software and the EAL claimed by the vendor must be verified. It is important
to note that it is not sufficient to simply check for the existence of security
features, but the V&V process must verify the correct implementation of the
security features that are present. It is superfluous to have a security feature in
the software that is accepted but which is or needs to be disabled when deployed
in the production environment or released. V&V can be used for C&A of the
software. The following section covers each of the V&V activities in more detail,
followed by a discussion on C&A.

Reviews
At the end of each phase of the SDLC, reviews need to be conduct to ensure that
the software performs as expected and meets business specifications. This can be
done informally or formally.

Informal reviews usually do not involve a review panel or board and can be
as simple as a developer reviewing their own design and code. This is usually
performed as needed unlike a formal review which is regarded to be a milestone
in the SDLC.

The formal review process includes the presentation of the materials to a
review panel or board for approval before proceeding to the next phase of the
life cycle. Reviews must not be a mere check-in-the-box exercise wherein the
panel simply checks an approval box to proceed to the next phase. The most
effective reviews are observed when the personnel who are directly involved
in the development of the software present the inner working design and
instrumentation of the software to a review panel and answer any questions that
the panel has for them. The review panel is appointed by the acquirer of the
software who has the authority to make a go/no-go decision and should include
at least one member from the team responsible for software assurance.

Informal review may include review of the design and of the code. However,
formal reviews must include design and code review. One such formal inspection

507

Domain 6: Software Acceptance

6

Softw
are A

cceptance

CSSLP_v2.indb 507 6/7/2013 5:40:59 PM

process is the Fagan inspection process, which is a highly structured process
with several steps that are to be followed to determine defects in development
results, such as specifications, design and code. In addition to the review of
the functionality design, a security design review (using threat models, misuse
cases, etc.) must be performed. Design reviews are conducted at the end of
the design phase with the goal to detect any architectural flaw that would
require redesign before code is created. Design reviews help in the validation of
software. Code reviews happen at the end of the development phase and involve
line-by-line review of the code and step-by-step inspection (sometimes also
called walkthrough) of software functionality and assurance capabilities. This is
performed with the intent to detect bugs and errors. Code reviews are usually
conducted amongst peers from development and quality assurance teams and
so is also referred to as peer review. Code reviews help in the verification of
software. Automated code review scanners and data flow tracers can be used to
augment more manual and structured inspection processes.

It is important to recognize that merely completing checklists with proper
verification of existence and validation of proper implementation is insufficient
to ensure software assurance. Checklists may help with compliance but they don’t
necessarily secure. All items in the checklist used that address the functionality
and assurance aspect of the software must be verified and validated.

The use of tools (code review scanners, vulnerability scanners, etc.) to evaluate
software security is useful from a prioritization standpoint, but careful attention
must be paid to false positive and false negatives. Solely relying on tools in lieu
of manual V&V checks is not advised because tools cannot completely emulate
human experience and decision making capabilities. True indication of security
maturity implies that the tool is part of a more holistic security program and not
just the sole measure to secure software.

Testing
As a key activity in the V&V process, testing can help demonstrate that the

software truly meets the requirements and determine any variances or deviations
from what is expected using the actual results from the test. It also includes
testing to determine the impact upon system integration. The different kinds of
tests that are conducted as part of V&V are:

 ■ Error detection tests
 ■ Acceptance tests
 ■ Independent (Third Party) tests

508

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 508 6/7/2013 5:40:59 PM

Error Detection Tests
Error detection tests include unit and component level testing. Errors may be
flaws (design issues) or bugs (code issues). In addition to validation tests to
ensure that the software satisfies the specified requirements, verification testing
must be performed to ascertain the following at a minimum:

 ■ proper handling of input validation using fuzzing,
 ■ proper output responses and filtration,
 ■ proper error handling mechanisms,
 ■ secure state transitions and management,
 ■ proper handling of load and tests,
 ■ resilience of interfaces,
 ■ temporal (race conditions) assurance checks,
 ■ spatial (locality of reference) assurance and memory management

checks, and
 ■ secure software recovery upon failures.

Acceptance Tests
Acceptance tests are used to demonstrate if the software is ready for its intended
use or not. Software that is deemed ready should not only be validated for all
functional requirements but also be validated to ensure that is meets assurance
(security) requirements. This test cannot be overlooked or ignored and is
a necessary milestone prior to acceptance of the software for deployment or
release. Sometimes when software is released in increments, the acceptance test
will include in addition to the incremental acceptance test, also a regression test
as part of the systems integration testing activity.

The impact upon integration of the different software components for the
system can be determined by regression and/or simulation testing. Regression
testing is performed to ensure that the software is backward compatible and that
the software does not introduce any new risks to the computing environment.
Regression testing involves rerunning previously defined and run acceptance
tests and verifying that the results are as expected. Simulation testing gives
insight into configuration mismatches and data discrepancy issues and must be
performed in an environment that mirrors the environment where the accepted
software will be deployed.

Once software is accepted, any changes to the software must be formally
validated and verified. Impacts to existing processes, such as business continuity,

509

Domain 6: Software Acceptance

6

Softw
are A

cceptance

CSSLP_v2.indb 509 6/7/2013 5:40:59 PM

disaster recovery, and incident response must also be determined and the
maintenance and support model revisited and revalidated.

Independent (Third party) tests
When V&V activities are conducted by development staff and security teams,
one of the major issues that is experienced is the lack of objectivity of the staff.
This is where independent third party testing can come in handy.

Independent third party testing of software functionality and assurance is
the process in which the software is reviewed, verified and validated by someone
other than the developer of the software. This is commonly also referred to as
Independent Verification & Validation (IV&V). The independent part of this
type of testing is that the IV&V party can be neutral and objective in reporting
their findings and they have no stake in the success or failure of the software.
All IV&V reviews and tests are formal by nature and rules of engagement must
be established in advance and formalized in the form of a contract or legally
enforceable agreement.

IV&V is very helpful in validating vendor claims and assists with the
compliance oversight process as it transfers the liability inherent from the
software risks to the third party that conducts the reviews and tests, should a
breach occur once the software has been accepted on grounds of the findings
from the IV&V.

If IV&V is undertaken, then it is important for you to be aware of the
checklists and tools that the third party uses. It is also important that you are
fully aware of how the independent third party conducted their V&V process.

Certification and Accreditation (C&A)
As aforementioned, V&V activities help with C&A. The ISO/IEC 27006:2007
standard specifies requirements and provides guidance for bodies providing
audit and certification of an information security management system (ISMS)
and is primarily intended to support software accreditation.

Certification is the technical verification of the software functional and
assurance levels. Certification in other words is a set of procedures that assess
the suitability of software to operate in a computing environment, by evaluating
both the technical and non-technical controls based on predefined criteria
(e.g., Common Criteria). Security certification considers the software in the
operational environment. At the minimum, it will include assurance evaluation
of the following:

510

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 510 6/7/2013 5:40:59 PM

 ■ User rights, privileges and profile management
 ■ Sensitivity of data and application and appropriate controls
 ■ Configurations of system, facility and locations
 ■ Interconnectivity and dependencies and
 ■ Operational security mode

Accreditation is management’s formal acceptance of the system after an
understanding of the risks to that system rating in the computing environment.
It is management’s official decision to operate a system in the operational
security mode for a stated period and is the formal acceptance of the identified
risk associated with operating the software.

Software must not be accepted as ready for release unless it is certified and
accredited. At the completion of the V&V process, the evaluator can rate the
software on functional and assurance requirements. Once software is rated by
an evaluator, it is easier to make a determination as to whether the software is to
be accepted or not.

The following references are recommended to get
additional information on software assurance
concepts:

 » ISO standard 15408 gives guidance on evaluation criteria of
IT security.

 » NIST Special Publication 500-234 serves as a reference
source for software verification and validation process.

 » ISO standard 27006 gives guidance on the security
techniques and requirements for bodies provide audit and
certification of information security management system.

511

Domain 6: Software Acceptance

6

Softw
are A

cceptance

CSSLP_v2.indb 511 6/7/2013 5:40:59 PM

Summary and Conclusion

In this chapter, we have learned that before software

that is built or bought is labeled as ready for deployment

or release, it needs to be formally accepted. Benefits

of a formal software acceptance process include the

validation of security requirements and the verification

of security controls, ensuring that software is not only

operationally hack-resilient but also compliant with

applicable regulations. Prior to the acceptance of

software, there are many things that are to be taken

into consideration. When building software, some of

these considerations include: the satisfaction of the

predefined completion criteria, establishment of the

change management process, approvals to deploy or

release, risk acceptance and exceptions to policy, and

the completeness of pertinent documentation. When

buying software, the incorporation of software assurance

requirements in the procurement methodology must

be an important consideration. Intellectual property

protection means using patents, copyrights, and

trademarks, and legal protections using instruments

such as contracts and agreements need to be factored

in as well, before accepting the software as ready

512

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 512 6/7/2013 5:40:59 PM

for deployment/release. When purchasing software,

another protection mechanism that needs to be

validated is software escrowing which protects both the

licensor (software publisher) and the licensee (software

purchaser), Additionally software validation and

verification (V&V) activities must be undertaken for any

software that is being accepted, irrespective of whether

it is built of bought. V&V activities can be performed by

the organization or by an independent third party neutral

and objective party. They are broadly categorized into

reviews (design and code) and testing (error detection

and acceptance) and also include regression, simulation

and integration testing which attest that the acceptance

of the software will not reduce the existing state of

operational security and helps with evaluating the

technical functional and assurance levels (certification)

and also provides management with the residual risk

levels, allowing them to accept (accreditation) or reject

the software. The most important thing to remember is

that without a formal software acceptance process, the

likelihood that the software will be functionally reliable

and at the same time operationally secure is bleak.

513

Domain 6: Software Acceptance

6

Softw
are A

cceptance

CSSLP_v2.indb 513 6/7/2013 5:41:00 PM

514

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

1. Your organization has the policy to attest the security of any software
that will be deployed into the production environment. A third party
vendor software is being evaluated for its readiness to be deployed.
Which of the following verification and validation mechanism can be
employed to attest the security of the vendor’s software?

A. Source code review
B. Threat modeling the software
C. Black box testing
D. Structural analysis

2. To meet the goals of software assurance, when accepting software, the
acquisition phase MUST include processes to

A. verify that installation guides and training manuals are provided.
B. assess the presence and effectiveness of protection mechanisms.
C. validate vendor’s software products.
D. assist the vendor in responding to the request for proposals.

3. The process of evaluating software to determine whether the products
of a given development phase satisfies the conditions imposed at the
start of the phase is referred to as

A. verification
B. validation
C. authentication
D. authorization

4. When verification activities are used to determine if the software is
functioning as it is expected to, it provides insight into which of the
following aspects of software assurance?

A. Redundancy
B. Reliability
C. Resiliency
D. Recoverability

Review Questions

CSSLP_v2.indb 514 6/7/2013 5:41:00 PM

515

Domain 6: Software Acceptance

6

Softw
are A

cceptance

5. When procuring software the purchasing company can request the
evaluation assurance levels (EALs) of the software product which is
determined using which of the following evaluation methodologies?

A. Operationally Critical Assets Threats and Vulnerability Evaluation®

(OCTAVESM)
B. Security Quality Requirements Engineering (SQUARE)
C. Common Criteria
D. Comprehensive, Lightweight Application Security Process

(CLASP)

6. The FINAL activity in the software acceptance process is the go/no go
decision that can be determined using

A. regression testing.
B. integration testing.
C. unit testing.
D. user acceptance testing.

7. Management’s formal acceptance of the system after an understanding
of the residual risks to that system in the computing environment is
also referred to as

A. patching.
B. hardening.
C. certification.
D. accreditation.

8. You determine that a legacy software running in your computing
environment is susceptible to Cross Site Request Forgery (CSRF)
attacks because of the way it manages sessions. The business has the
need to continue use of this software but you do not have the source
code available to implement security controls in code as a mitigation
measure against CSRF attacks. What is the BEST course of action to
undertake in such a situation?

A. Avoid the risk by forcing the business to discontinue use of the
software.

B. Accept the risk with a documented exception.
C. Transfer the risk by buying insurance.
D. Ignore the risk since it is legacy software.

CSSLP_v2.indb 515 6/7/2013 5:41:00 PM

516

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

9. As part of the accreditation process, the residual risk of a software
evaluated for deployment must be accepted formally by the

A. board members and executive management.
B. business owner.
C. information technology (IT) management.
D. security organization.

CSSLP_v2.indb 516 6/7/2013 5:41:00 PM

517

Domain 6: Software Acceptance

6

Softw
are A

cceptance

References

Baschab, John, and Jon Piot. “Check Vendor References.” In The Executive’s Guide to
Information Technology. Hoboken, N.J.: John Wiley & Sons, 2003. 431-438.

Carmelo. “NIST/ITL Special Publications 500 Series.” Information Technology
Laboratory (ITL). http://www.itl.nist.gov/lab/specpubs/sp500.htm (accessed February
9, 2013).

Conner, Marcia L., and James G. Clawson. Creating a Learning Culture: Strategy,
Technology, and Practice. Cambridge, UK: Cambridge University Press, 2004.

Eilam, Eldad, and Elliot J. Chikofsky. “Obfuscation Tools.” In Reversing: Secrets of
Reverse Engineering. Indianapolis, IN: Wiley, 2005. 345.

Howard, Michael, and David LeBlanc. “Security Principles to Live By.” In Writing
Secure Code. 2nd ed. Redmond, Wash.: Microsoft Press, 2003. 51-53.

“ISO/IEC 27006:2007 - Information Technology -- Security Techniques --
Requirements for Bodies providing Audit and Certification of Information Security
Management Systems.” ISO - International Organization for Standardization. http://
www.iso.org/iso/catalogue_detail?csnumber=42505 (accessed February 9, 2013).

Stackpole, Cynthia Snyder. “Requirements Traceability Matrix.” In A Project
Manager’s Book of Forms a Companion to the PMBOK Guide.. Hoboken: John Wiley
& Sons, 2011. 29.

Software Engineering Institute (SEI). “What is the difference between Verification and
Validation?.” Capability Maturity Model Integration (CMMI) Models. http://www.
sei.cmu.edu/cmmi/start/faq/models-faq.cfm (accessed February 9, 2013).

CSSLP_v2.indb 517 6/7/2013 5:41:00 PM

http://www.sei.cmu.edu/cmmi/start/faq/models-faq.cfm

This page intentionally left blankThis page intentionally left blank

519

Domain 7

Software Deployment, Operations,
Maintenance, and Disposal

ONCE SOFTWARE HAS BEEN formally accepted by the customer or client,
it is ready to be installed or released but the installation and deployment
process itself needs to be performed with security in mind. Just because
software was designed and developed with security in mind, it does not
necessarily mean that it will also be deployed with security controls in place.
All of the software assurance efforts in designing and building the software
can be rendered futile if the deployment process does not take into account
security. In fact, it has been observed that software face hiccups when it is
installed and decisions such as allowing the software to run with elevated
privileges or turning off the monitoring and auditing functionality adversely
impact the overall security of the software.

Once software is deployed, it needs to be monitored to guarantee that the
software will continue to function in a reliable, resilient and recoverable
manner. Ongoing operations and maintenance include addressing incidents
impacting the software and patching the software to mitigate its chances
of being exploited by hackers and malware threats

Finally there is a need to identify the software and conditions under which
software needs to be disposed or replaced because insecure and improper
disposal procedures can have serious security ramifications.

In this chapter we will cover the security aspects that one needs to bear
in mind, when dealing with the last stage of the SDLC comprised of the
deployment, operations, maintenance and disposal of software.

CSSLP_v2.indb 519 6/7/2013 5:41:00 PM

520

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Topics

 ■ Installation and Deployment
 à Bootstrapping

 » Key Generation
 » Access
 » Management

 à Configuration Management
 » Elevated Privileges
 » Hardening
 » Platform change

 à Release Management (e.g., version control)
 ■ Operations and Maintenance

 à Monitoring
 » Metrics
 » Audits
 » SLA

 à Incident Management
 à Problem Management

 » Root Cause Analysis
 » Vulnerability tracking
 » User Support

 à Change Management (e.g., patching)
 à Backup, Recovery and Archiving (e.g., retention cycles)

 ■ Software Disposal

 ■ Retirement

 ■ End of Life policies

 ■ Decommissioning

CSSLP_v2.indb 520 6/7/2013 5:41:00 PM

521

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

Objectives

As a CSSLP, you are expected to

 ■ Understand the importance of secure installation and
deployment.

 ■ Be familiar with secure startup or bootstrapping concepts

 ■ Know how to hardening the software and hardware to assure
trusted computing.

 ■ Be familiar with configuration management concepts and
how they can impact the security of the software.

 ■ Understand the importance of continuous monitoring.

 ■ Know how to manage security incidents

 ■ Understand the need to determine the root cause of problems
that arise in software as part of problem management.

 ■ Know what it means to patch software and how patching
can impact the state of software security.

 ■ Be aware of sun-set criteria that must be used to determine
and identify software that must comply with end of life (EOL)
policies.

This chapter will cover each of these objectives in detail. We
will learn about security considerations that must be taken during
installation and deployment, followed by discussing security
processes such as continuous monitoring, incident and problem
management and patching to maintain operationally hack resilient
software. Finally we will learn about what it means to securely replace
or remove old, unsupported, insecure software. It is imperative that
you fully understand the objectives and be familiar with how to apply
them in the software that your organization deploys or releases.

CSSLP_v2.indb 521 6/7/2013 5:41:01 PM

Installation and Deployment
When proper installation and deployment processes are not followed, there is
a high likelihood that the software and the environment in which the software
will operate can lack or have a reduced level of security. It is of prime importance
to keep security in mind before and after software is installed. Without the
necessary pre- and post-installation software security considerations, expecting
software to be operationally hack-resilient is a far-fetched objective.

Software needs to be configured so that security principles such as least
privilege, defense in depth, separation of duties, etc., are not be violated or
ignored during the installation or deployment phase. According to ITIL, the goal
of configuration management is to enable the control of the infrastructure by
monitoring and maintaining information on all the resources that are necessary
to deliver services.

Some of the necessary pre- and post-installation configuration management
security considerations include:

 ■ Hardening
 ■ Environment Configuration
 ■ Release Management
 ■ Bootstrapping and Secure Startup

Hardening
Even before the software is installed into the production environment, the host
hardware and operating system needs to be hardened. Hardening includes the
processes of locking down a system to the most restrictive level so that it is
secure. These minimum (or most restrictive) security levels are usually published
as a baseline that all systems in the computing environment must comply to.
This baseline is commonly referred to as a Minimum Security Baseline (MSB).
A MSB are set up to comply with the organizational security policies and help in
supporting the organization’s risk management efforts. Hardening is effective in
its defense against vulnerabilities that result from insecure, incorrect or default
system configurations.

Not only is it important to harden the host operating system by using
MSB, updates and patches, but it is also critically important to harden the
applications and software that run on top of these operating systems. Hardening
of software involves the setting the necessary and correct configuration settings
and architecting the software to be secure by default. In this section, we will

522

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 522 6/7/2013 5:41:01 PM

primarily learn about the security misconfigurations that can render software
susceptible to attack. These misconfigurations can occur at any level of the
software stack and lead from data disclosure directly or through an error message
to total system compromise.

Some of the common examples of security misconfigurations include:
 ■ Hard coding credentials and cryptographic keys inline code or in

configuration files in cleartext.
 ■ Not disabling the listing of directories and files in a web server.
 ■ Installation of software with default accounts and settings.
 ■ Installation of the administrative console with default configuration

settings.
 ■ Installation or configuration of unneeded services, ports and

protocols, unused pages, and unprotected files and directories.
 ■ Missing software patches.
 ■ Lack of perimeter and host defensive controls such as firewalls,

filters, etc.
 ■ Enabling tracing and debugging can lead to attacks on

confidentiality assurance. Trace information can contain security
sensitive data about the internal state of the server and workflow.
When debugging is enabled, errors that occur on the server side can
result in presenting the entire stack trace data to the client browser.

Although the hardening of host OS is usually accomplished by configuring
the OS to a MSB and patch updates (patching is covered later in this chapter),
hardening software is more code centric and in some cases more complex,
requiring additional effort. Examples of software hardening include:

 ■ Removal of maintenance hooks before deployment.
 ■ Removal of debugging code and flags in code.
 ■ Modifying the instrumentation of code to not contain any sensitive

information. In other words, removing unneeded comments
(dangling code) or sensitive information from comments in code.

Hardening is a very important process in the installation phase of software
development and proper attention must be given to it.

Environment Configuration
Pre-installation checklists are useful to ensure that the needed parameters required
for the software to run are appropriately configured, but since it is not always

523

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 523 6/7/2013 5:41:01 PM

possible to statically identify dynamic issues, checklists provide no guarantee
that the software will function without violating the security principles with
which it was designed and built.

A common violation of least privilege that is observed is that in order for the
software to function it is granted administrative rights when installed. Enabling
disabled services, ports and protocols so that the software can be installed to
run is an example of defense in depth violations. When operations personnel
allow developers access to production systems to install software, this violates
the principle of separation of duties. If one is lax about the security principles
with which the software was designed and built, during the installation phase,
then one must not be surprised when that software gets hacked.

When software that worked without issues in the development or test
environment no longer functions as expected in the production environment, it
is indicative of a configuration management issue with the environments. Often
the way that this problem is dealt with is in an insecure manner. The software
is granted administrative privileges to run in a production environment upon
installation and this could have serious security ramifications. It is therefore
imperative to ensure that the development and test environment match the
configuration makeup of the production environment and simulation testing
identically emulates the settings (including the restrictive settings) of the
environment in which the software will be deployed post acceptance.

Additional configuration considerations include:
 ■ Test and default accounts need to be turned off.
 ■ Unnecessary and unused services need to be removed in all

environments.
 ■ Access rights need to be denied by default and granted explicitly

even in development and test environments just as they would be
managed in the deployed production environment.

Configuration issues are also evident in disparate platforms or when
platforms are changed. Software that is developed to run in one platform are
observed to face hiccups when the platform changes. The x86 to x64 processor
architecture change has forced software development organizations to rethink
the way they have been doing software development so that they can leverage
the additional features in the newer platform. It has also mandated the need
in these organizations to publish and support software in different versions so
that it will function as expected in all supported platforms. Figure 7.1 is an

524

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 524 6/7/2013 5:41:01 PM

example to illustrate how the .Net Framework 4.0 software has to be published
and supported for the x86, IA64 and x64 platforms.

Release Management
Once hardware and software resources are hardened and the environment
configured for secure operations, the software needs to be properly released
into the operating computing environment. In other words, the software
when released should be released in a formal and controlled manner. Release
management is the process of ensuring that all changes that are made to the
computing environment are planned, documented, thoroughly tested and
deployed with least privilege, without negatively impacting any existing business
operations, customers, end-users or user support teams.

A breakdown in release management that is evident in software today is that
software defects (bugs) that were previously fixed reappear. Improper versioning
or version management is the primary reason for fixed bugs to reappear. It is
also possible that regenerative bugs can results from improper configuration
management. Say for example, during the user acceptance testing phase of the
software development project, it was determined that there were some bugs that
needed to be fixed. Proper configuration management would mandate that the
fix happens in the development environment, which is then promoted to the test
environment where the fix is verified and then promoted to the user acceptance
testing environment where the business can retest the functionality and ensure
that the bug is fixed. But sometimes, the fix is made in the user acceptance
testing environment and then deployed to the production environment upon
acceptance. This is a configuration management issue as the correct process to
address the fix is not followed or enforced. The fix is never retrofitted in the
development and test environments and subsequent revisions of the software
will yield in the reappearance of bugs that were previously fixed. It is therefore
extremely important that versioning, backups, check-in and check-out practices
are all managed as part of the release management process. These need to be

Figure 7.1 – Software publication for different platforms

525

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 525 6/7/2013 5:41:01 PM

maintained and documented in what is generally referred to as the software
configuration management plan (SCMP).

It is also important to ensure that the software is built for “release” and
not for “debug”. When software is compiled for debugging purposes (which is
usually the case in development environment), the debug information is usually
stored in a separate file that is known as the program database file. The program
database (.pdb) file should not be deployed into the IT computing (production)
environment as it holds debugging and project state information. Although the
program database file is used to incrementally link the debug configuration of
the program during runtime, an attacker can use it to discover the internal
workings of the software and exploit it during operations.

To manage software configuration management properly, one of the first
things to do is to document and maintain the configuration information in
a formal and structured manner. Most organizations have what is called a
Configuration Management Database (CMDB) that records and consists of
all the assets in the organization. The ISO/IEC 15408 (Common Criteria)
requirements mandates that the implementation, documentation, tests,
project related documentation, tools including build tools are maintained in a
configuration management system (CMS). Changes to the security levels must
be documented and the MSB must be updated with the latest changes. Without
proper software configuration management, managing software installations
and releases/deployment is made into a very arduous undertaking and more
importantly potentially insecure.

Bootstrapping and Secure Startup
Upon the installation of software, it is also important to make certain that the
software startup processes do not in any way adversely impact the confidentiality,
integrity or availability of the software. When a host system is started, the
sequences of events and processes that self-start the system to a preset state is
referred to as booting or bootstrapping. Booting processes in general are also
sometimes referred to as the Initial Program Load (IPL). This includes the
Power-on self-test (POST), loading of the operating system and turning on any
of the needed services and settings for computing operations. The Power-on
self-test (POST) is the first step in an IPL and is an event that needs to be
protected from being tampered so that the Trusted Computing Base (TCB) is
maintained. The system’s Basic Input/Output System (BIOS) has the potential
to overwrite portions of memory when the system undergoes the booting
process. To ensure that there is no information disclosure from the memory, the

526

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 526 6/7/2013 5:41:01 PM

BIOS can perform what is known as a destructive memory check during POST,
but this is a setting that can be configured in the system and can be overridden
or disabled. It is also important to recognize that the protecting the access to the
BIOS using the password option provided by most chip manufacturers is only
an access management control and it provides no integrity check as does the
secure startup process.

Secure startup refers to all the processes and mechanism that assure the
environment’s TCB integrity when the system or software running on the
system starts. It is usually implemented using the hardware’s Trusted Platform
Module (TPM) chip that provides heightened tamperproof data protection
during startup. The TPM chip can be used for storing cryptographic keys and
provide identification information from mobile devices for authentication and
access management. Physically the TPM chip is located on the motherboard.
It stores actor specific unique measurements that are used for creating a system
fingerprint within the boot process. The unique fingerprint remains unchanged
unless the system has been tampered with. Therefore, the TPM fingerprint
validation can be used to determine the integrity of the system’s bootstrapping
process. Once the fingerprint is verified, the TPM can also be used for disk
cryptographic functions, specifically disk decryption of secure startup volumes
before handing over control to the operating system. This protection alleviates
some of the concerns around data protection in the event of physical theft.

Interruptions in the host bootstrapping processes can lead to unavailability
of the systems and other security consequences. Side channel attacks such as the
cold boot attack (covered in the secure software implementation/coding chapter)
have demonstrated that the system shutdown and bootstrapping process can
be circumvented and sensitive information can be disclosed. The same is true
when it comes to software bootstrapping as well. Software is often architected to
request for a set of self-start parameters which need to be available and/or loaded
into memory when the program starts. The parameter can be supplied as input
from the system, a user, the code when coded inline or from global configuration
files. Startup events such as Application_OnStart or Session_OnStart events are
used in web applications to provide software bootstrapping. Malicious Software
(Malware) threat agents such as spyware and rootkits are known to interrupt the
bootstrapping process and interject themselves as the program loads.

527

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 527 6/7/2013 5:41:01 PM

Operations and Maintenance
Once the software is installed, it is operated to provide services to the business
or end users. Released software needs to be monitored and maintained as well.
Software operations and maintenance need to take into account the assurance
aspects of reliable, resilient and recoverable processing. Since total security
(100% security) signified by no risk is utopian and non-achievable, all software
that is deployed has a level of residual risk that is usually below the acceptable
threshold as defined by the business stakeholders unless the risk has been formally
accepted. Despite best efforts, software deployed can still have unknown security
and privacy issues. Even in software where software assurance is known at release
time, due to changes in the threat landscape, computing technologies, etc., the
ability (resiliency) of the software to withstand new threats and attack may not
be sufficient. Furthermore, design and technologies that were deemed secure
in the earlier day are no considered to be no longer secure as is evident with
banned cryptographic algorithms and banned APIs. The resiliency of software
must always be above the acceptable risk level/threshold as depicted in Figure
7.2. The point at which the software’s ability to withstand attacks falls below the
acceptable threshold is the point when risk avoidance measures such as a version
release must be undertaken.

Continuing to operate without mitigating the risk in the current version
and delaying the implementation of the next version is the time when the
software is most vulnerable to attack. This is where operations security comes
into effect. Operations security is about staying secure or keeping the resiliency
levels of the software above the acceptable risk levels. It is the assurance that the
software will continue to function as is expected to in a reliable fashion for the
business, without compromising its state of security by monitoring, managing
and applying the needed controls to protect resources (assets).

These resources can be broadly grouped into hardware, software, media, and
people resources. Examples of hardware resources include:

 ■ networking devices such as switches, routers, firewalls, etc.
 ■ communication devices such as phones, fax, PDA, VoIP devices,

etc.
 ■ computing devices such as servers, workstations, desktops, laptops,

etc.
Software resources are of the following type:

528

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 528 6/7/2013 5:41:01 PM

 ■ In-house developed software
 ■ External third party software
 ■ Operating system software and
 ■ Data.

All non-public data needs to be protected, whether they are transactional
or stored in backups, archives, log files, and the like. Examples include an
organization’s proprietary information, customer information, and supplier or
vendor information. Examples of media resources are USB, tapes, hard drives,
optical CD/DVD etc.

People resources are comprised of employees and non-employees (contractors,
consultants), etc. Figure 7.3 illustrates the different types of operations security
controls.

Figure 7.2 – Software Resiliency Levels over Time

Figure 7.3 - Types of Operations Security Controls

529

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 529 6/7/2013 5:41:01 PM

 ■ Detective Controls are those that can be used to build a historical
evidence of user and system/process actions. They are directly
related to the reliability aspect of software assurance. If the software
is not reliable, i.e., not functioning as expected, those anomalous
operations must be tracked and reviewed. These controls are usually
passive in nature. Auditing (logging), intrusion detection systems
(IDS) are some examples of detective software operations controls.

 ■ Preventive Controls are those which make the success of the
attacker difficult as its goal is to prevent the attack actively or
proactively. They are directly related to the resiliency aspect of
software assurance. They are useful to mitigate the impact of an
attack and at the same time contain and limit the consequences
of a successful attack. Input validation, output encoding, bounds
checking, patching, intrusion prevention systems (IPS), etc. are
some examples of preventive software operations controls.

 ■ Deterrent Controls are those, which don’t necessarily prevent an
attack nor are they merely passive in nature. Their aim is to dissuade
an attacker from continuing their attack. They fall somewhere in
between detective and preventive control but can function as either.
For example, auditing can be deterrent control when the users of
the software are aware of being audited. In such situations auditing
can be used to deter an attacker away and can serve as a preventive
control as well, preventing any further action. At the same time,
the audit logs generated from auditing can be used as a detective
control to determine what happened where, when and by whom.

 ■ Corrective Controls are those which aim to provide the recoverability
of software assurance. This means that when software fails either
due to accidental user ignorance issues or due to being intentionally
attacked, the software should have the necessary controls to
bounce back into the normal operations state by use of corrective
controls. Load balancing, clustering, failover of data and systems,
etc. are some examples of corrective software operations controls.

 ■ Compensating Controls are those controls that must be
implemented when the prescribed software controls as mandated
by a security policy or requirement cannot be met due to legitimate
technical or documented business constraints. Usually applied
when compliance is not achieved but compensating controls must
not be considered as a shortcut to compliance. Compensating
controls must sufficiently mitigate the risk associated with the
security requirement. The PCI DSS prescribes that compensating
controls must satisfy all of the following criteria.

530

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 530 6/7/2013 5:41:02 PM

 ¤ Meet the intent and rigor of the original requirement
 ¤ Provide a similar level of defense as the original requirement
 ¤ Be part of a defense in depth implementation so that other

requirements are not adversely impacted.
 ¤ Be commensurate with additional risk imposed by not

adhering to the requirement.
Requirements, constraints and objectives, where compensating controls are

needed must be identified and the controls need to be defined, documented,
validated, maintained and assessed periodically for their effectiveness. Figure 7.4
is an example of how the PCI DSS expects the documentation of compensating
controls.

In addition to understanding the types of controls, a CSSLP must also be
familiar with some of the ongoing activities that are useful to ensure that the
software stays secure. These include:

 ■ Monitoring
 ■ Incident Management
 ■ Problem Management
 ■ Change Management including Patch and Vulnerability

Management
 ■ Backup, Recovery and Archiving

Figure 7.4 – PCI DSS Compensating Controls Worksheet

531

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 531 6/7/2013 5:41:02 PM

In the following section, we will learn about each of these operations
security activities in more detail. As a CSSLP you are expected not only to be
familiar with the concepts covered in this section, but be also able to function
in an advisory role to the operations personnel who may or may not have a
background in software development of ancillary disciplines that are related to
software development.

Monitoring
The premise behind monitoring is that what is not monitored cannot be
measured and what is not measured cannot be managed. One of the defender’s
dilemma is that the defender has the role of playing vigilante all the time while the
attacker has the advantage of attacker at will anytime. This is where continuous
monitoring can be helpful. As part of security management activities pertinent
to operations, continuous monitoring is critically important.

Why Monitor?
Monitoring can be used to:

 ■ Validate compliance to regulations and other governance
requirements.

 ■ Demonstrate due diligence and due care on the part of the
organization towards its stakeholders.

 ■ Provide evidence for audit defense.
 ■ Assist in forensics investigations by collecting and providing the

requested evidence if tracked and audited.
 ■ Determine that the security settings in the environment are not

below the levels prescribed in the minimum security baselines.
 ■ Assure that the confidentiality, integrity and availability aspects of

software assurance are not impacted adversely.
 ■ Detect insider and external threats that are orchestrated against

the organization.
 ■ Validate that the appropriate controls are in place and working

effectively.
 ■ Identify new threats such as rogue devices and access points that are

being introduced into the organization’s computing environment.
 ■ Validate the overall state of security.

What to Monitor?
Monitoring can be performed on any system, software or their processes. It is
important to first determine the monitoring requirements before implementing

532

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 532 6/7/2013 5:41:02 PM

a monitoring solution. Monitoring requirements need to be solicited from the
business early on in the software development life cycle. Besides using the business
stakeholders, to glean monitoring requirements, governance requirements
such as internal and external regulatory policies can be used. Along with the
requirements, associated metrics that measure actual performance and operations
should be identified and documented. When the monitoring requirements are
known, the software development team has the added benefit of assisting with
operations security, because they can architect and design their software to either
provide information useful for monitoring themselves or leverage APIs of third
party monitoring devices such as IDS and IPS.

Any operations that can have a negative impact on the brand and reputation
of the organization, when it does not function as expected, must be monitored.
This could include any operations that can cause a disruption to the business
(business continuity operations), and/or operations that are administrative,
critical and privileged in nature. Additionally systems and software that operate
in environments that are of low trust such as in a DMZ must be monitored.

Even physical access must be monitored, although it may seem like there is
little to insignificant overlap with software assurance. This is because software
assurance deals with data security issues and physical devices that handle, transport
or store these data, if left unmonitored can be susceptible to disclosure, alteration
and destruction attacks, resulting in serious security breaches. The PCI DSS as
one of its requirements mandates that any physical access to cardholder data
or systems that house cardholder data must be appropriately restricted and the
restrictions periodically verified. Physical access monitoring using surveillance
devices such as video cameras is recommended. The surveillance data that is
collected must also be reviewed and correlated with the entries and exit of
personnel into these restricted areas. This data must be stored for a minimum of
three months unless regulatory requirements warrant a higher archival period.
The PCI DSS also requires that access is monitored and tracked regularly.

Ways to Monitor
The primary ways in which monitoring is accomplished within organizations
today is by

 ■ Scanning
 ■ Logging
 ■ Intrusion detection

533

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 533 6/7/2013 5:41:02 PM

Scanning to determine the makeup of the computing ecosystem and to
detect newer threats in the environment is important. It is advisable that you
familiarize yourself with the concepts pertinent to scanning that was covered
in the secure software testing chapter. Logging and tracking user activities are
critical in preventing, detecting or mitigate data compromise impacts. The
National Computer Security Center (NCSC) in their publication “A Guide to
Understanding Audits in Trusted Systems” prescribes the following reasons to
be the five core security objectives of audit mechanisms such as logging and
tracking user activities. It states that the audit mechanism should:

 ■ Make it possible to review access patterns and histories and the
presence and effectiveness of various protection mechanisms
(security controls) supported by the system.

 ■ Make it possible to discover insider and external threat agents and
their activities that attempt to circumvent the security control in
the system or software.

 ■ Make it possible to discover the violations of least privilege
principle. When an elevation of privilege occurs (e.g., change from
programmer to administrator role), the audit mechanisms in place
should be able to detect and report on that change.

 ■ Be able to act as a deterrent against potential threat agents. This
requires that the attacker is made aware of the audit mechanisms
in place.

 ■ Be able to contain and mitigate the damage upon violations of the
security policy, thereby providing additional user assurance.

Intrusion Detection Systems are used to monitor potential attacks and
threat that the organizational systems and software are subjected to. As part
of monitoring real threats that come into the network, it is not uncommon
to see the deployment of bastion hosts in a IDS implementation. The name
bastion host is said to be borrowed from the medieval times where the fortresses
were built with bastions or projections out of the wall that allowed soldiers to
congregate and shoot at the enemy. In computing, a bastion host is a fortified
computer system that is completely exposed to external attack and illegal entry.
It is deployed on the public side of the DMZ as depicted in Figure 7.5. It is not
protected by a firewall or screened router. The deployment of bastion hosts must
be carefully designed as insecure design of these can lead to easy penetration by
external threat agents into the internal network. The bastion hosts need to be
hardened and any unnecessary services, protocols, ports, programs and services

534

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 534 6/7/2013 5:41:02 PM

need to be disabled before it is deployed. Firewalls and routers themselves can be
considered as bastion hosts, but other types of bastion hosts include DNS, Web
servers, and mail servers.

Bastion hosts can be used in both a deterrent as well as in a detective manner.
They provide some degree of protection against script kiddies and curious
non-serious attackers. It is important that the bastion hosts are configured to
record (log) all security related events and that the logs themselves are protected
from tampering. When bastion hosts have logging enabled they can be used to
find out the threats that are coming into the network. In such situations, they
assist in detective functions. A bastion host can also function as a honeypot. A
honeypot is a monitored computer system that acts as a decoy and which has no
production value in it. When bastion hosts function as a honey, they are useful
for several reasons, including:

 ■ Distracting attackers away from valuable resources within the
network. In this case, the bastion host is also a deflective control,
because it deflects the threat agent away from valuable resources.

 ■ Acting as warning systems.
 ■ Conducting research on newer threats and attacker techniques.

A honeypot functions as an enticer because it lures an attacker who is
looking forward to breaking into your network or software. Enticement is not
necessarily illegal and the evidence collected from these honeypots may or may

Figure 7.5 – Bastion Hosts

535

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 535 6/7/2013 5:41:02 PM

not be admissible in a court of law. Entrapment on the other hand, which is
characterized by encouraging someone to commit a crime when they originally
had no intentions of committing, is illegal and the evidence is not admissible in
a court of law. This means that bastion hosts must undoubtedly be monitored
but this must be performed without active solicitation of someone to come
and attest the security of your network and using the evidence collected against
them, should they break in.

Metrics in Monitoring
Two other important operations security concepts related to monitoring are metrics
and audits. Metrics are measurements information. These must be identified
beforehand and clearly defined. Monitoring can then be used to determine if
the software is operating optimally and securely to the levels as defined in the
metrics definition. The Service Level Agreement often contains these metrics
but metrics are not just limited to SLAs. An example of an availability metric
would be the uptime and downtime metric. The acceptable number of errors
and security weaknesses in the released version of the software is another metric
that indicates the quality of the software. Metrics are not only useful to measure
the actual state of security, but it can be useful to make information decisions
that can potentially improve the overall state of security.

Not so long ago, in the time when regulations and compliance initiatives
did not mandate secure software development, the case to have organizations
adopt secure software processes as part of their software development efforts
was always a challenge. The motivators that were used to champion security
initiatives in software development was fear, uncertainty and doubt (FUD),
but this was not very effective. Telling management that something disastrous
(fear) could happen that could cause the organization great damage (doubt)
anytime (uncertainty) was not often well received and security teams earned
the reputation of being naysayers and traffic cops, impeding the business.
Organizations that were willing to accept high levels of risk often ignore security
in the SDLC and those which were more paranoid sometimes ended up with
overly excessive implementations of security in their SDLC. Metrics takes the
FUD out of decision making and provides insight into the real state of security.
Metrics also give the decision makers a quantitative and objective view of what
their state of security is. Key performance indicators (KPI) are metrics that are
used by organizations to measure their progress toward their goals and security
metrics must be part of the organization’s KPI.

536

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 536 6/7/2013 5:41:02 PM

The quality of decisions made is directly proportional to the quality of metrics
that are used in decision making. Good metrics help facilitate comprehensive
secure decisions and bad metrics don’t. So what make a metric, a good metric or
a bad metric? Characteristics of good metrics include:

 - Consistency
 - Quantitative
 - Objectivity
 - Relevance
 - Inexpensive

 ■ Consistency implies that no matter how many times the metric
is measured, each time the results from the same data sets must
be the same or at least equivalent. There should not be significant
deviations between each measurement.

 ■ Quantitative means that the metric is precise and expressed in
terms of a cardinal number or as a percentage. A cardinal number
is one that expresses the count of the items being measured as
opposed to an ordinal number which expresses the position of
where something is. “The number of injection flaws in the payroll
application is 6” is an example of a metric expressed in terms of a
cardinal number. “65% of the 30 application security vulnerabilities
that were measured can be protected by input validation” is an
example of a metric expressed as a percentage. Each of these is
better than expressing the same ordinally in terms of a high,
medium, or low or similar qualitative or relative terms.

 ■ Objectivity implies that irrespective of who the person is that is
collecting the metric data, the results would be indicative of the real
state of affairs. It should be that the numbers (metric information)
tell the story and not the other way around. Metrics that are not
objective but which depend on the subjective judgment of the
one conducting the measurement is really not a metric at all but a
rating.

 ■ Contextually Specific metrics makes it not only possible to make
informed and applicable decisions, but it also allows for determining
trending information. By determining the number of security
defects in different versions of a particular application, it gives
insight into whether the security of the application is increasing
or decreasing and also provides the ability to compute the RASQ

537

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 537 6/7/2013 5:41:02 PM

between the versions. Good metrics are usually expressed in more
than one unit of measurement and the different units provide the
context of what is being measured. For example, it is better to
measure “the number of injection flaws in the payroll application”
or “the number of injection flaws per thousand lines of code
(KLOC)” instead of simply measuring “the number of injection
flaws in an application.

 ■ Inexpensive metric implies that the metric is usually collected
using automated means which is generally less expensive than
using manual means to collect the same information.

In contrast, the characteristics of bad metrics are opposite to that of good
metrics as tabulated comparatively in Table 7.1.

Although it is important to use good metrics, it is also important to recognize
that not all bad metrics are useless. This is particularly true, when qualitative and
subjective measurements are used in conjunction with empirical measurements
because comparative analysis may provide insight into conditions that may not
be evident from just the cardinal numbers.

Audits for Monitoring
Audits are monitoring mechanisms by which an organization can attest the
assurance aspects (reliability, resiliency and recoverability) of the network,
systems and software that they have built or bought. It is an independent review
and examination of system records and activities. An audit is conducted by an
auditor whose responsibilities include the selection of events to be audited on the
system, setting up of the audit flags which enable the recording of those events
and analyzing the trail of audit events. Audits must be conducted periodically
and can give insight into the presence and effectiveness of security and privacy
controls. They are used to determine the organization’s compliance with the
regulatory and governance (policy) requirements and report on violations of the

Table 7.1 – Characteristics of Metrics

538

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Attribute Good Metrics Bad Metrics
Collection Consistent Inconsistent

Expressed Quantitatively (Cardinal or %) Qualitatively (Ratings)

Results Objective Subjective

Relevance Contextually Specific Contextually Irrelevant

Cost Inexpensive (Automated) Expensive (Manual)

CSSLP_v2.indb 538 6/7/2013 5:41:02 PM

security policies. In and of itself, the audit does not prevent any incompliance
but is detective in nature. Audits can be used to find out insider attacks and
fraudulent activities. They are effective to determine the implementation and
effectiveness of security principles such as separation of duties and least privilege.
Audits have become mandatory for most organizations in this day and age. They
are controlled by regulatory requirements and a finding of non-compliance can
have serious repercussions for the organization.

Some of the reasons as to what periodic audits of software can be used for
are given below:

 ■ Determine that the security policy of the software is met.
 ■ Assure data confidentiality, integrity and availability protections.
 ■ Make sure that authentication cannot be bypassed.
 ■ Ensure that rights and privileges are working as expected.
 ■ Check for the proper function of auditing (logging).
 ■ Determine if the patches are up-to-date or not.
 ■ Find out if the unnecessary services, ports, protocols and services

are disabled or removed.
 ■ Reconcile data records when they are maintained by different

people or teams.
 ■ Check the accuracy and completeness of transactions that are

authorized.
 ■ Physical access to systems with sensitive data is restricted to only

authorized personnel.

Incident Management
While continuous monitoring activities are about tracking and monitoring
attempts that could potentially breach the security of systems and software,
incident management activities are about the proper protocols to follow and the
steps to take when a security breach (or incident) occurs.

The first revision of the NIST Special Publication on Computer Security
Incident Handling Guide (SP 800-61) prescribes guidance on how to manage
computer security incidents effectively. Starting with the detection of the
incident, which can be accomplished by monitoring, using incident detection
and prevention systems (IDPS) and other mechanisms, the first step in incident
response is to determine if the reported or suspected incident is truly an incident
or not. If it is a valid incident, then the type of the incident is determined.

539

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 539 6/7/2013 5:41:02 PM

Upon the determination of valid incidents and the type of the incident, steps
to minimize the loss and destruction and to correct, mitigate, remove and
remediate exploited weakness must be undertaken so that computing services
can be restored as expected by the business. Clear procedures to assess the
current and potential business impact and risk must be established along with
the implementation of effective and efficient mechanisms to collect, analyze and
report incident data. Communication protocols and relationships to report on
incidents both to internal teams and to external groups must also be established
and followed. In the following section, we will learn about each of these activities
in incident management, in more detail. As a CSSLP you are not only expected
to know what an constitutes an incident but also how to respond to one and
advise your organization to do the same.

Events. Alerts, and Incidents
In order to determine if a security incident has truly occurred or not, it is first
important to define what constitutes an incident. Failure to do so can lead to
potential misclassification of events and alerts as incident and this could be costly.
It is therefore imperative to understand the difference and relationship between

 ■ Events,
 ■ Alerts and
 ■ Incidents.

Any action that is directed at an object which attempts to change the state
of the object is an event. In other words, an event is any observable occurrence
in a network, system or software. When events are found, further analysis is
conducted to see if these events match patterns or conditions that are being
evaluated using signature based pattern matching or anomalous behavioral
analysis. When events match preset conditions or patterns, they generate alerts
or red flags. Events that have negative or detrimental consequences are adverse
events. Some examples of adverse events include flooded networks, rootkit
installations, unauthorized data access, malicious code executions or business
disruptions. Alerts are flagged events that need to be scrutinized further to
determine if the event occurrence is an incident. Alerts can be categorized into
incidents and adverse events can be categorized into security incidents if they
violate or threaten to violate the security policy of the network, system or software
applications. Events, alerts and incidents have a pyramidal relationship which
means that are more events than are alerts and more alerts than are incidents.
It is on incidents and not events or alerts that management decisions are made.
It can be said that the events represent raw information and the system view

540

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 540 6/7/2013 5:41:02 PM

of things happening, alerts give a technical or operational view and incidents
provide the management view. Events generate alerts which can be categorized
into incidents and this relationship is depicted in Figure 7.6.

Types of Incidents
There are several types of incidents and the main security incidents include the
following:

 ■ Denial of Service (DoS): Purportedly the most common type
of security incident, DoS is an attack that prevents or impairs
an authorized user from using the network, systems or software
applications by exhausting resources.

 ■ Malicious Code: This type of incident has to do with code based
malicious entities such as viruses, worms and Trojan horses that
can successful infect a host.

 ■ Unauthorized Access: Access control related incidents refers
to those wherein a person gains logical or physical access to the
network, system or software applications, data or any other IT
resource, without being granted the explicit rights to do so.

 ■ Inappropriate Usage: Inappropriate usage incidents comprise
of those in which a person violates the acceptable use of system
resources or company policies. In such situations the security team
(CSSLP) is expected to closely work with personnel from other
teams such as (Human Resources (HR), Legal or in some cases
even Law enforcement),

Figure 7.6 – Relationships between Events, Alerts and Incidents

541

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 541 6/7/2013 5:41:02 PM

 ■ Multiple Component: Multiple component incidents are those
which encompass two or more incidents. For example, a SQL
Injection exploit at the application layer, allowed the attacker to
gain access and replace system files with malicious code files by
exploiting weaknesses in the web application that allowed invoking
extended stored procedures in the insecurely deployed backend
database. Another example of this is when a malware infection
allows the attacker to have unauthorized access to the host systems.

The creation of what is known as a diagnosis matrix is also recommended.
A diagnosis matrix is helpful to lesser experienced staff and newly appointed
operations personnel because it lists incident categories and the symptoms
associated with each category. It can be used to provide advice on the type of
incident and how to validate it.

Incident Response Process
There are several phases to the incident response process, spanning from initial
preparation to post-incident analysis. Each phase is important and must be
thoroughly defined and followed within the organization as a means to assure
operations security. The major phases of the incident response process are
preparation, detection and analysis, containment, eradication and recovery, and
post-incident analysis as depicted in Figure 7.7.

Figure 7.7 - Incident Response Phases

542

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 542 6/7/2013 5:41:02 PM

Preparation
During the preparation phase, the organization aims to limit the number of
incidents by implementing controls that were deemed necessary from the
initial risk assessments. Nowadays regulations (such as FISMA, PCI DSS, etc.)
mandate that organizations must create, provision and operate a formal incident
response plan.

The following are recommendations of activities to perform during this
phase.

 ■ Establish incident response policies and procedures.
 ■ Create and train an incident response team (IRT) that will be

responsible to respond and handle the incident.
 ■ Perform periodic risk assessments and reduce the identified risks

to an acceptable level so that they are effective in reducing the
number of incidents.

 ■ Create a Service Level Agreement (SLA) that documents the
appropriate actions and maximum response times.

 ■ Identify additional personnel, both internal and external to the
organization that may have to be called to address the incident.

 ■ Acquire tools and resources that the IRT personnel can use.
The effectiveness of incident response is tied closely to the tools
and resources they have readily available when responding to an
incident. Some common examples include contact lists, network
diagrams, backup configurations, computer forensic software, port
lists, security patches, encryption software and monitoring tools.

 ■ Conduct awareness and training on the security policies and
procedures and how they are related to actions that are prescribed
in the Incident Response Plan (IRP).

Detection and Analysis
Without the ability to detect security breaches, the organization will not be
aware of incidents before or when they occur and if the incident is disruptive
and unknown, appropriate actions that have to be taken would not be and this
could be very detrimental to the reputation of the organization.

One of the first activities performed in incident management is to look at
the logs or audit trails that have been captured in the IDPS. The logs hold raw
data. The log analysis process is made up of the following steps:

 ■ Collection,
 ■ Normalization,

543

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 543 6/7/2013 5:41:02 PM

 ■ Correlation and
 ■ Visualization.

Automation of log analysis may be needed to select events of interest that
can be further analyzed. Logging, reporting and alerting are all part of the
information gathering activity and is the first step in incident analysis.

Collection
The different types of logs that should collected for analysis includes:

 ■ Network and Host Intrusion Detection Systems (NIDS and
HIDS) logs

 ■ Network Access Control Lists (ACL) logs
 ■ Host logs such as OS system messages such logon success and

failure information, system errors, etc. that are written locally on
the host or as configured by administrators.

 ■ Application (Software) logs that provide information about
the activity and interactions between users/processes and the
applications.

 ■ Database logs. These are difficult to collect and often require auditing
configurations in the database so that database performance is not
adversely impacted. They serve as an important source for security
related information and need to be protected with great care,
because databases can potentially house intellectual property and
critical business data.

It is critical to ensure that that the logs themselves cannot be tampered with
when the data is being collected or transmitted. Cryptographic computation of
the hash value of the logs before and after it is processed provides anti-tampering
and integrity assurance

Normalization
The quality of the incident handling process is dependent on the quality of the
incident data that is collected. Organizations must be able to identify data that
is actionable and pertinent to the incident instead of working with all available
data that is logged. This is where normalization can be helpful. Normalization
is also commonly referred to as parsing the logs to glean information from it.
Regular expressions are handy in parsing the log data. The collected logs must
be normalized so that redundant data is eliminated, especially if the logs are
being aggregated from various sources. It is also very important to ascertain that

544

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 544 6/7/2013 5:41:02 PM

the timestamp of the logs are appropriately synchronized so the log analysis
provides the true sequence of actions that were conducted.

Correlation
Log analysis is performed to correlate the events to threats or threat agents.
Some examples of log correlation are discussed here. The presence of “waitfor
delay” statements in your log must be correlated against SQL statements that
were run in the database to determine if an attacker was attempting blind SQL
injection attacks. If the logs indicate several “failed login” entries, then this must
be correlated with authentication attempts that were either brute-forced (threat)
or tried by a hacker (threat agent). The primary reason for the correlation of logs
with threat or threat agent is to deduce patterns. Secondarily, it can be used to
determine the incident type.

It is important to note that the frequency of the log analysis is directly related
to the value of the asset whose logs are being analyzed. For example, the logs of
the payroll application may have to be reviewed and analyzed daily but the logs
from the training application may not be.

Visualization
There is no point to analyzing the logs to detect malicious behavior or correlate
occurrences to threats, if that correlated information is not useful to address
the incident. Visualization helps in depicting the incident information in
user-friendly and easy-to-understand format. The use of graphical constructs
is common to communicate patterns and trends to technical, operations,
management personnel, and decision makers.

The following are recommendations of activities to perform during this
phase.

 ■ Continuously monitoring using monitoring software and IDPS
that can generate alerts from events they record. Some examples
of monitoring software include anti-virus, anti-spyware, and file
integrity checkers.

 ■ Provide mechanisms for both external parties and internal
personnel to report incidents. Establishing a phone number and/or
email that assure anonymity is useful to accomplish this objective.

 ■ Ensure that the appropriate level of logging is enabled. Activities
on all systems must be logged to defined levels in the minimum
security baseline and crucial systems/software should have
additional logging in place. For example, the verbosity of logs for

545

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 545 6/7/2013 5:41:02 PM

all systems must be set to log at an ‘informational’ level while that
for the sales or payroll application must log at a ‘full details’ level.

 ■ Since incident information can be recorded in several places, to
get a panoramic view of the attacks against your organization,
it is a best practice to use centralized logging and create a log
retention policy. When aggregating logs from multiple sources, it
is important to synchronize the clocks of the source devices so that
there are no timing issues introduced. The log retention policy is
helpful because it can help detect repeat occurrences.

 ■ Profile the network, systems and software so that any deviations
from the normal profile are alert as behavioral anomalies that
should warrant attention. Understanding the normal behavior
also provides the team members the ability to recognize abnormal
operations more easily.

 ■ Maintain a diagnosis matrix and use a knowledge base of
information that is useful to incident handlers. They act as a quick
reference source during critical times of containing, eradicating
and recovering activities.

 ■ Document and timestamp all steps taken from the time of the
incident being detected to its final resolution. This could serve as
evidence in a court of law if there is a need for legal prosecution of
the threat agent. The ancillary benefit documentation provides is
that it facilitates the incident handlers less prone to handling the
incident incorrect and subsequently more systematic and efficient.
Since the documentation can be used as evidence, it is also critical
to make sure that the incident data itself is safeguarded from
disclosure, alteration or destruction.

 ■ Establish a mechanism to prioritize the incidents before they are
handled. Incidents should not be on a first-come first-serve basis.
Incidents must be prioritized based on the impact the incident has
to business and accordingly addressed. It is advisable to establish
written guidelines on how quickly the incident response team
must respond to an incident but it is also important to establish
an escalation process to handle situations when the team does not
respond within the times prescribed in the SLA.

Containment, Eradication and Recovery
Upon the detection and validation of a security incident, the first course of
action that needs to be taken is that the incident is contained to limit any further

546

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 546 6/7/2013 5:41:02 PM

damage or additional risks. Examples of containment includes shutting down
the system, disconnecting the affected systems from the network, disabling ports
and protocols, turning off services, taking the application offline, etc. Deciding
how the incident is going to be contained is critical. Inappropriate ways of
containing the security incident can not only prevent tracking the attacker
but it can also contaminate the evidence being collected, which will render it
inadmissible in a court of law, should the attacker be taken to court for their
malicious activities.

Containment strategies must be based on the type of the incident since
each type of incident may require a different strategy to limit its impact and it
is a best practice for organizations to identify a containment strategy for each
listed incident in the diagnosis matrix. Containment strategy can range from
immediate shutdown to delayed containment. Delayed containment is useful
to collect more evidence by monitoring the attacker’s activity, but this can be
dangerous, because the attacker may have the opportunity to elevate privilege
and compromise additional assets. Even when a highly experienced IRT, that
is capable of monitoring all attacker’s activity and terminating attacker access
instantaneously, is available, the high risks posed by delayed containment may
not make it an advisable strategy. Willingly allowing a known compromise to
continue can have legal ramifications and when delay containment is chosen
as the strategy to execute, it must first be communicated to and determined as
feasible by the legal department.

Criteria to determine the right containment strategy includes the following:
 ■ Potential impact and theft of resources
 ■ The need to preserve evidence. The ways in which the collected

evidence will be and is preserved must be clearly documented.
Discussions on how to handle the evidence must happen with the
organization’s internal legal team and external law enforcement
agencies and their advice followed. What evidence to collect
must also be discussed? Any volatile data such as list of network
connections, processes, login sessions, open files, network interface
configurations and memory contents must be collected carefully
with tainting or damaging the evidence that can render it
inadmissible in a court of law. In some cases, an snapshot of the
original disk may need to be made since forensic analysis could
potentially alter the original. It such situations, it is advisable that
a forensic backup instead of a full system backup is performed

547

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 547 6/7/2013 5:41:02 PM

and that the disk image is made in sanitized write-once or write-
protectable media for forensics and evidentiary purposes.

 ■ Availability of service such as continued network access, services
provided to external stakeholders, etc.

 ■ Time and resources needed to execute the strategy
 ■ The completeness (partial containment or full containment) and

effectiveness of the strategy
 ■ The duration (temporary or permanent) and criticality (emergency

or workaround) of the solution.
 ■ The possibility of the attack to cause additional damage when

the primary attack is contained. For example, disconnecting
the infected system could trigger the malware to execute data
destruction commands on the system to self-destruct causing
system compromise.

Incident data and information is privileged information and not “water-
cooler” conversation material. The information must be restricted to only the
authorized personnel and the principle of need-to-know must be strictly enforced.

Upon the containment of the incident, the steps necessary to remove and
eliminate components of the incident must be undertaken. Eradication steps
can be performed standalone as a step in and of itself or it may be performed
during recovery. It is important to enforce that any fixes or steps to eradicate the
incident is steps only after appropriate authorization is granted. When dealing
with licensed or third party components or code, the steps to eradicate the
incident must be preceded by ensuring that appropriate contractual requirements
as to which party has the rights and obligations to make and redistribute security
modifications is present and documented in the associated SLA.

Recovery mechanisms aim to restore the resource (network, system or
software application) back to its normal working state. These are usually OS or
application specific. Some examples include restoring systems from legitimate
backups, rebuilding services, restoration of compromised accounts and files with
correct ones, patch installations, password changes and enhanced perimeter
controls. Recovery process must also include a heightened degree of monitoring
and logging in place to handle repeat offenders.

Post-Incident Analysis
One of the most important steps in incident response process that can easily be
ignored is the post-mortem analysis of the incident. Lessons learned activities

548

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 548 6/7/2013 5:41:02 PM

must produce a set of objective and subjective data regarding each incident.
These must be completed within a certain number of days of the incident and
can be used to achieve closure. For incident that had minimal to low impact to
the organization, the lessons learned meetings can be conducted periodically.
This is important because a “lesson-learned” activity can:

 ■ Provide the data necessary to identify and address the problem at
its root.

 ■ Help identify security weaknesses in the network, system or
software.

 ■ Help identify deficiencies in policies and procedures.
 ■ Be used for evidentiary purposes.
 ■ Be used as reference material in handling future incidents.
 ■ Serve as training material for newer and lesser experienced IRT

members, and
 ■ Help improve the security measures and the incident handling

processes itself so that future incidents are controlled.

Maintaining an incident database with detailed information about the
incident that occurred and how it was handled is a very useful source of
information for incident handler.

Additionally if the organization is required to communicate the findings of
the incident externally either to those affected by the incident, law enforcement
agencies, vendors, or to the media, then it is imperative that the post-incident
analysis is conducted prior to that communication. Figure 7.8 taken from
Computer Security Incident Handling Guide special publication (SP 800-
61) illustrates some of the outside parties that may have to be contacted and
communicated when security incidents occur within the organization.

In order to limit the disclosure of incident related sensitive information to
outside parties, that could potentially cause more damage than the incident
itself, appropriate communication protocols need to be followed. This means
that a communication guidelines are established in advance and a list of internal
and external point of contacts (POCs) along with backup for each are identified
and maintained. No communication to outside parties must be made without
the IRT discussing the issue with the need-to-know management personnel,
legal department and the organization’s public affairs office POC. Only the
authorized POC should them be authorized to communicate the incident to
their associated parties. Additionally, only the pertinent information about the

549

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 549 6/7/2013 5:41:02 PM

incident that is deemed applicable to the party receiving the information must
be disclosed.

Not all incidents require a full-fledged post-incident analysis but at a bare
minimum the following, which is referred to as the 5Ws need to be determined
and reported on:

 ■ What happened?
 ■ When did it happen?
 ■ Where did it happen?
 ■ Who was involved? and
 ■ Why did it happen?

It is the ‘Why’ that we are particularly interested in, since it can provide
us the insight into the vulnerabilities in our networks, systems and software
applications. Determining the reasons as to why the incident occurred in the
first place is the first step in problem management.

Problem Management
Incident management aims at restoring service and business operations as quickly
as possible, whereas problem management is focused on improving the service
and business operations. When the cause of an incident is unknown, there it is
said to be a problem.

Figure 7.8 – Incident Response Communication – Outside Parties

550

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 550 6/7/2013 5:41:03 PM

The goal of problem management is to determine and eliminate the root
cause of the and in doing so it improves the service that IT provides to the
business because the same issue so not be repeated again. For example, it is
observed that the software does not respond and hangs repeatedly after it has
run for a certain period of time. This causes the software to be extremely slow
or unavailable to the business. As part of addressing this issue, the incident
management perspective would be to repeatedly reboot the system each time the
software hangs so that the service can be restored to the business users within the
shortest time possible. The problem management perspective would be in fact
not quite so simple. This problem of resource exhaustion and eventual DoS will
need to be evaluated to determine as to what could be causing the problem. The
root cause of the incident could be anything. The configuration settings of the
system on which the software is run may be restricting the software to function;
the code may be having extensive native API and memory operations call; or the
host system has been infected by malicious software that is causing the resource
exhaustion. Suppose it was determined that the calls to memory operations
in the code was the reason as to why this incident was happening, problem
management would continue beyond just identification of the root cause until
the root cause has been elimination. Insecure memory calls is now the known
error and it needs to be addressed. In this case, the code would need to be
fixed with the appropriate coding constructs or throttling configuration and the
system may have to be upgraded with additional memory to handle the load.

The objective in problem management after the fixing of the identified root
cause is to make sure that the same problem does not occur again. Avoidance
of repeated incidents is one of the two main critical success factors (CSFs) of
problem management. The other is to minimize the adverse impacts of incidents
and problems on the business.

Problem management begins with notification and ends with reporting as
illustrated in Figure 7.9.

A permanent fix or a temporary workaround needs to be identified and
implemented when a problem is found or reported. A workaround is implemented
when a permanent fix is not yet available. It is put into effect to minimize the
effects of the problem, until the permanent fix is available. It is a means to
continue business operations by supporting existing users. When the root cause
of the problem is identified, workarounds become known errors. In other words,
a known error is problem for which the root cause is known or understood,
and for which there is an identified temporary workaround or permanent fix.

551

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 551 6/7/2013 5:41:03 PM

Upon notification of the incident, root cause analysis (RCA) steps are taken
to determine the reason for the problem. RCA is performed to determine ‘Why’
the problem occurred in the first place. It is not just asking the question, ‘Why
the problem happened?” once but repeatedly and systematically until there are
no more reasons (or causes) that can be answered. A litmus test to classify an
answer as the root cause is when the condition identified as the root cause is fixed,
the problem will no longer exist. Brainstorming using fishbone diagrams instead
of ad hoc brainstorming and rapid problem resolution (RPR) problem diagnosis
are common techniques that are used to identify root cause. Fishbone diagrams
are also known as Ishikawa diagrams or cause and effect diagrams. Fishbone
diagrams help the team to graphically identify and organize possible causes of a
problem (effect) and using this technique, the team can identify the root cause
of the problem. When brainstorming using fishbone diagrams, the RCA process
can benefit if categories are used. These categories when predefined help the
team to focus on the RCA activity appropriately. Some examples of categories
that can be used are People (awareness, training or education. etc.), Process
(non-existent, ill-defined, etc.), Technology, Network, Host, Software (coding,
3rd party component, API, etc.), Environment (Production, Development,
Test, etc.). Figure 7.10 is an example of a Fishbone diagram used for RCA. In the

Figure 7.9 – Problem Management Process Flow

552

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 552 6/7/2013 5:41:03 PM

RPR problem diagnosis, a step by step approach to identifying the root cause is
taken in three phases which includes discovery, investigation and fixing. RPR is
fully aligned with ITIL.

RCA can give us insight into systemic weaknesses, software coding errors,
insecure implementation of security controls, improper configurations, improper
auditing and logging, etc. When RCA is performed, it is important to identify
and differentiate the symptoms of the incident from the underlying reason as to
why the problem occurs in the first place. Incident management treats symptoms
while problem management addresses the core of the problem. In this regard,
an important aspect of problem management includes vulnerability tracking. In
other words, the determined root cause of the vulnerability needs to be tracked,
mitigated using appropriate controls (patches) and verified. This is usually
done as part of a patch and vulnerability management program. For security
incidents, without activity logs, determining the root cause of an incident could
be very difficult.

When the root cause is identified, solutions (temporary workarounds or
permanent fixes) are determined to be implemented, after initiating a request
for change. Outputs of the problem management process include workarounds
(to support existing users), known errors, updated problem information,
management information and request for changes. Once the solution is
implemented, it should also be monitored with reporting.

Change Management
After the root cause is identified, workarounds (if needed), recovery and
resolution of the problem are then determined. A request for change is then

Figure 7.10 – Root Cause Analysis using Fishbone Diagram

553

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 553 6/7/2013 5:41:03 PM

initiated. It must also be recognized that problem management often result in
changes to internal processes, procedures, or the infrastructure. According to
the Build Security In Maturity Model, the overall goal of configuration and
vulnerability management is change management.

When change is determined to be a necessity upon undertaking problem
management activities, the change management processes and protocols should
be followed as published by the organization. At no time must the need to
resolve the problem supersede or force the organization to circumvent the
change management process. The appropriate request for change must be made
after the root cause is identified even if the solution to the problem is not a
permanent fix but just a workaround. Only authorized changes should be allowed
and rogue unauthorized changes should be detected and addressed. Following
the implementation of the change, it is important to track the vulnerability
and monitor the problem resolution to ensure that it was effective and that the
problem does not happen again and finally report on the process improvement
activities. Patching which is a subset of change management is covered in the
next section.

Patch and Vulnerability Management
Business applications and systems software are prone to exploitation and as newer
threats are discovered and orchestrated against software, there is a need to fix the
vulnerabilities that make the attacks possible. In such situation the software is
not completely removed but instead additional pieces of code that address the
vulnerability or problems (also known as bugs) are developed and deployed.
These additional pieces of code that are used to update or fix existing software
so that the software is not susceptible to any bugs are known as patches and
patching is the process of applying these updates or fixes. Patches can be used to
address security problems in software or simply provide additional functionality.
Patching is a subset of hardening.

Patches are often made available from vendors in one of two ways. The most
common mechanisms are:

 ■ Hotfix or Quick Fix Engineering (QFE) - A hotfix is a functional
or security patch that needs to provide by the software vendor or
developer. It usually includes no new functionality or features and
makes no changes to the hardware or software. They are usually
related to the Operating System itself or to some related platform
component (e.g., IIS, SQL Server, etc.) or product (MS Word, MS

554

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 554 6/7/2013 5:41:03 PM

Outlook, etc). Nowadays the term QFE is being used in place of a
hotfix. The benefit of using a hotfix (of QFE) is that it allows the
organization to apply the fix one at a time or selectively.

 ■ Service Pack - Usually a roll up of multiple hotfixes (or QFEs),
a service pack is an update to the software that fixes known
problems and in some cases provides additional enhancements and
functionality as well. Periodic software updates are often published
as service packs and newer product versions should incorporate
all previously published service packs to ensure that there are no
regression issues, particularly those related to security. The benefit
of using a service pack is that multiple hotfixes (or QFEs) can be
applied more efficiently because it eliminates the need to have to
apply each fix one at a time.

Although the process of patching is viewed to be a reactive process, patch and
vulnerability management is the security practice developed to prevent attacks
and exploits against software and IT systems proactively. Applying a patch after
a security incident has occurred is costly and time consuming. With a well-
defined patch and vulnerability management process in place, the likelihood of
exploitation and the efforts to respond and remediate incidents will be reduced,
thereby adding greater value and savings to the organization.

Although the benefits of an enterprise patch and vulnerability management
program is many, there are some challenges that come with patching. The main
challenge with patching is that the applied patch could potentially cause a
disruption of existing business processes and operations. If the application of the
patch is not planned and properly tested, it could lead to business disruptions
and in order to test the patch before it is deployed, an environment that
simulates the production environment must be available. Lack of a simulated
environment combined with lack of time, budget and resources are patching
challenges that must be addressed. Since making a change (such as installing a
patch), has the potential of breaking something that is working, both upstream
and downstream dependencies of the software being patch must be considered.
Architecture, DFD and threat model documentation that gives insight into the
entry and exit points and dependencies can be leveraged to identify systems and
software that could be affected by the installation of the patch. Additionally, the
test for backward compatibility of software functionality must also be conducted
post-installation of patches. Furthermore, patches that are not tested for their
security impact can potentially revert configuration settings from a secure into an

555

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 555 6/7/2013 5:41:03 PM

insecure state. For examples, ports that were disabled get enabled or unnecessary
services that were removed are reinstalled along with the patch installation. This
is why patches must be validated against the minimum security baselines. The
success of the patching process must be tested and post-mortem analysis should
be conducted. The minimum security baseline must be updated with successful
security patches.

It is important to recognize that not all vulnerabilities have a patch associated
with it. A more likely case is that many software security vulnerabilities are
addressed by a single patch. This is important because as part of the patch and
vulnerability management process, the team responsible for patching must know
which vulnerabilities are addressed by patches installed. As part of the patch
management process, not only must vulnerabilities alone be monitored, but
remediation measures and threats as well. Vulnerabilities could be design flaws,
coding bugs or misconfigurations in software that weaken the security of the
system. The three primary ways to remediate are the installation of the software
patch, adjusting configuration settings or removal of the affected software.
Software threats usually take the form of malware (e.g., worms, viruses, rootkits,
Trojan horses, etc.) and exploit scripts, but they can be human in nature. There
is no software patch for human threats but the best proactive defense in such
situations is user awareness, training and education.

Timely application of the patch is also an important consideration in the
patch and vulnerability management process. If the time frame between the
release of the patch and its installation is large, then it gives an attacker the
advantage of time because they can reverse engineer how the patch will work,
identify vulnerabilities that will or will not be addressed by the patch or those
that will be introduced as a result of application the patch and write exploit code
accordingly. Ironically, it has been observed that the systems and software are
most vulnerable shortly after a patch is released.

It is best advised to follow a documented and structured patching process.
Some of the necessary steps that need to be taken as part of the patching process
include:

 ■ Notifying the users of the software or systems about the patch
 ■ Testing the patch in a simulated environment so that there is no

backward compatibility or dependencies (upstream or downstream)
issues.

 ■ Documenting the change along with the rollback plan. The

556

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 556 6/7/2013 5:41:03 PM

estimated time to complete the installation of the patch, criteria to
determine the success of the patch and the rollback plan must be
included as part of the documentation. This documentation needs
to provide along with a change request to be closely reviewed by the
change advisory board (CAB) team members and their approvals
obtained before the patch can be installed. This can also double
as an audit defense as it demonstrates a structured and calculated
approach to addresses changes within the organization.

 ■ Identifying maintenance windows or the time when the patch is to
be installed must be performed. The best time to install the patch
is when there is minimal disruption to the normal operations of
the business but with most software operating in a global economy
setting, identifying the best time for patch application is a challenge
today.

 ■ Installing the patch
 ■ Testing the patch post-installation in the production environment

is also necessary. Sometimes a reboot or restart of the system
where the patch was installed is necessary to read or load newer
configuration settings and fixes to be applied. Validation of
backward compatibility and dependencies also needs to be
conducted.

 ■ Validating that the patch did not regress the state of security and
that it leaves the systems and software in compliance with the
minimum security baseline.

 ■ Monitoring the patched systems so that there are no unexpected
side effects upon the installation of the patch.

 ■ Conducting post-mortem analysis in case the patch had to be
rolled back and using the lessons learned to prevent future issues.
If the patch was successful, the minimum security baseline needs
to be accordingly updated.

Special publication 800-40 published by NIST prescribes the following
recommendations:

1. Establish a patch and vulnerability group (PVG).
2. Continuously monitor for vulnerabilities, remediations, and

threats.
3. Prioritize patch applications and use phased deployments as

appropriate.

557

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 557 6/7/2013 5:41:03 PM

4. Test patches prior to deployment.
5. Deploy enterprise-wide automated patching solutions.
6. Use automatically updating applications as appropriate.
7. Create an inventory of all information technology assets.
8. Use standardized configurations for IT resources as much as

possible.
9. Verify that vulnerabilities have been remediated.

10. Consistently measure the effectiveness of the organization’s patch
and vulnerability management program, and apply corrective
actions as necessary.

11. Train applicable staff on vulnerability monitoring and remediation
techniques.

12. Periodically test the effectiveness of the organization’s patch and
vulnerability management program.

Patch and vulnerability management is an important maintenance activity
and careful attention must be given to the patching process to assure that
software is not susceptible to exploitation and that security risks are addressed
proactively for the business.

 Backups, Recovery and Archiving
The continuity of business without disruptions is an important factor of secure
software operations. Not only must the data be available but also the system itself.
Improper and insecure operations can render the data and system unavailable,
to authorized personnel and processes, impacting business operations Some
of the operational activities that assure uninterrupted business operations and
continuity include backups, recovery and archiving.

In addition to regularly scheduled backups, when patches and software
updates are made, it is advisable to perform a full backup of the system that is
being changed. It is also crucial that the integrity and restorability of the backup
(especially if it is data backups) is verified. This is important because if the patch
or update has consequences that were unforeseen, unintended or unexpected,
then you have a means to restore business operations with minimal impact.
Additionally when a system has been infected by malware such as Trojan horses
and spyware, the only option left for assuring continued integrity, may be to
completely format and reinstall the software accompanied with restoring the
data from a secure, trusted and verified backup.

558

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 558 6/7/2013 5:41:03 PM

Recovery procedures must be controlled as well. Only those with need-to-
know privileges should be authorized to retrieve and restore backups. This is
particularly important when data that is being restored is private or sensitive in
nature. Just because data is cryptographically protected (encrypted) in the data
store does not mean that one can be lax about who has the authorization to
perform data recovery and restoration operations, because the key that is used
to encrypt the data may be exposed.

The same kind of backup and recovery protections that need to be in place
for transactional systems should be applied against archives. Archives can come
in handy in user support, especially for past customers. Integrity of archives
can be accomplished using hashing and proper key management needs to be
in place to make the cryptographically protected data in archives usable upon
recovery. How long the archives are to be retained is a matter of regulatory
requirements and organizational retention policies. When archives need to be
removed, then secure operations to dispose the data securely and sanitize the
media in which the software and associated data is stored must be undertaken.
Furthermore, archives must be treated as a valuable asset of the company and
only those who have the permissions to handle them should be allowed to do so.
This is particularly important to maintain chain of custody and assure that the
archives are not tampered with during forensic investigations.

559

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 559 6/7/2013 5:41:03 PM

Disposal
As was covered earlier that the ability of the software to withstand attacks
decreases over a period of time, due to either the discovery of newer threats and
exploits or changes in technological advancements that provide greater degree
of security protection. It is therefore important to not forget about security once
the software is deployed and in an operations or maintenance mode. As long
as the software is operational, there is always going to be an amount of residual
risk to deal with and all software is vulnerable until it is disposed in a secure
manner. Disposal is also referred to sometimes as retirement, sun-setting, or
decommissioning. In this section, we will learn about the criteria and processes
that must be considered and undertaken to securely dispose or decommission
software and the associated data.

End-of-Life Policies
The first requirement in secure disposal of software and its related data and
documents is that there is an End-of-Life (EOL) policy that is established. The
Risk Management Guide for Information Technology Systems published by the
NIST as Special Publication 800-30 (SP 800-30) prescribes that risk management
activities need to be performed for system components that will be disposed
or replaced to ensure that the hardware and software are properly disposed.
Additionally it is important to make sure that residual data is appropriately
handled and that system migration is conduction in not just a systematic manner
but in a secure manner as well. In order to manage risk during the disposal
phase, it is essential that we have an EOL policy developed and followed. For
COTS software, the EOL policy beings with the formal notification of End-of-
Sale (EOS) date and its goal is to provide customer with needed information to
confidently plan their migration to replacement technologies. The EOL policy
must provide the conditions in which systems and software must be securely
disposed and provide guidance on how to accomplish this objective.

An EOL Policy must in general contain:
 ■ Sun-setting criteria.
 ■ A notice of all the hardware and software that are being discontinued

or replaced.
 ■ The duration of support for technical issues from the date of sale

and how long that would be valid after the notice of disposal has
been published.

560

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 560 6/7/2013 5:41:03 PM

 ■ Recommendation and alternatives for migration and transition
along with the versions or products of software that will be support
in the future.

 ■ The duration of time when maintenance releases, workarounds
and patches and upgrades will be released and supported.

 ■ Contract renewal terms in cases of licensed or third party software.

Sun-Setting Criteria
Sun-setting criteria provide guidance as to when a particular product (software
or the hardware on which the software runs) must be disposed or replaced.
There are several sun-setting criteria for software. We will focus primarily on
sun-setting criteria for software alone as listed below in this section.

 ■ Newer threats and attacks against software are discovered and the
risks they bring cannot be mitigated to the acceptable levels defined
by the organization, due to technical, operational or management
constraints.

 ■ Contractual agreements to continue to use the software have come
to an end and the cost of maintaining and using the software is
prohibitive to the business.

 ■ The software has reached its end of warranty period.
 ■ The software has reached its end of product support, especially

COTS.
 ■ The software has reached its end of vendor support.
 ■ The software is no longer compatible with the architecture of the

hardware. Platform/architecture change such as the change from
x86 processor architecture to the x64 processor architecture is an
example of this.

 ■ Software that can provide the same functionality but in a more
secure fashion is available as new products, upgrades or versions
releases.

Sun-setting Processes
As a general rule, software or software related technologies that are deemed
insecure but which have no means to mitigate the risk to the acceptable levels of
the organization must be sun-set as soon as it is possible. However, this may not
be an easy task as it may seem. In compliance with the organization’s EOL policy,
appropriate EOL processes must be established. EOL processes are the series of
technical and business milestones and activities, which when complete make the

561

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 561 6/7/2013 5:41:03 PM

hardware or software obsolete and no longer produced, sold, improved, repaired,
maintained or supported. It also ensures that any related artifacts such as data in
media, code and documents in the case of software are securely disposed.

Just as the deployment of software is governed by a plan and necessary
approvals from the change control or change advisory board, so also is disposal.
The steps to follow as software is sun-set are:

 ■ Have a replacement if that is needed before disposing software.
The replacement software must be already built or bought,
tested, and deployed in the operational environment before the
previous software is retired, so that data and system migration and
verification can be operationally viable.

 ■ Obtain the necessary approvals from the authorized officials.
 ■ Update the Asset Inventory Database and Configuration

Management Database (CMDB) with information related to the
software being sun-set and the one replacing it (if that is the case).

 ■ Shut down services and adjust or remove any monitoring that was
in place for the software being sun-set. When software that is
monitored and configured to automatically create trouble tickets
upon failure or unavailability of services is sun-set, the failure to
adjust or remove monitoring and ticket generation can lead to a lot
of unnecessary trouble tickets generated and wasted time.

 ■ Ensure that termination access control (TAC) processes are
performed to de-provision digital identities and user accounts. If
the software is being replaced by another, then it is important to
explicitly set access control for the new software and not just copy
and migrate the access control information and rights from the old
to the new.

 ■ Archive the software and associated data offline. This may be
mandated as part of a regulatory or internal policy requirement,
Archiving the software and data also allows for a reload of data
if the migration process fails and the data is corrupted during the
migration process.

 ■ Don’t just uninstall but securely delete the software and data.
Uninstalling software may not be sufficient to provide total removal
of the software and software assurance. Sometimes, the uninstall
scripts does not remove all the directories and files, or registry
entries that were created when the software was installed. In some
cases, the uninstall process and scripts generate an uninstall log file

562

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 562 6/7/2013 5:41:03 PM

which is left behind on the system. This log file can have sensitive
information such as version information, location of configuration
and code files, default settings, etc. which in the hands of an attacker
can be useful to profile your software and its operations. If you
build software that use packagers for generating the installation
packages (.msi, .rpm, etc.) or scripts, it is important to attest that
the uninstallation scripts that come with the packagers don’t leave
any residue when executed. This is why the software must be
securely deleted and not just uninstalled. Secure delete includes
additional manual steps that are taken post the uninstall process
to ensure that there are no software related information of the
software being sun-set, left behind on the system. This can include
manual cleanup and deletion of the registry entries, directories and
file. It also includes the secure disposal of residual or remnant data
from storage media (covered in the next section).

Information Disposal and Media Sanitization
The importance of information disclosure protection cannot be overstressed
when software that processed and stored that information in some media, is
being discontinued. Just as software disposal steps are taken to ensure that
software assurance is maintained, an important part in that process is to also
ensure that the media that stored the information is also sanitized or destroyed
appropriately. Sanitization is the process of removing information from media
such that data recovery and disclosure is not possible. It also includes the removal
of classified labels, marking and activity logs related to the information. It is
not the media itself but the information recorded in it that needs protection.
It is therefore important to first think in terms of information confidentiality
assurance and then by the type of media when selecting the best method to
sanitize or destroy information and associate media.

Information is primarily stored in one of the following two types of media.
 ■ Hardcopy or physical representation of information. Examples

include paper printouts (e.g., internal memoranda, software
architecture and design documents, and printed software code),
printer and facsimile ribbons, drums and platens. Usually this type
of media is uncontrolled and without appropriate media protection
methods, information can be susceptible to unauthorized
individuals and dumpster divers.

 ■ Softcopy or electronic representation of information where the
information is stored in the form of bits and bytes. Examples of

563

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 563 6/7/2013 5:41:03 PM

this type of media include hard drives, RAM, read-only memory
(ROM), disks, memory devices, mobile computing devices,
networking equipment, etc.

Depending on the type of media, and future plans for the media, different
sanitization techniques can be used. The three most common means of media
sanitization include:

 ■ Clearing
 ■ Purging and
 ■ Destroying

Disposal is the act of discarding media without giving any considerations
to sanitization. This is often done by recycling of hardcopy media when no
confidential information is present in them. Disposal is technically not a type of
sanitization but it is however still a valid approach to handle media containing
non-confidential information.

Clearing is the process of sanitizing media by using software or hardware
products that overwrite logical (e.g., file allocation tables) and addressable storage
space on the media with non-sensitive random data. Clearing however does not
guarantee that the data in the media has been successfully and securely erased
and when data remains as residual information, the condition is referred to as
data remanence. Clearing by overwriting cannot however be used for media that
is either damaged or the Write-Once Read-Many (WORM) type.

Purging is the process of sanitizing media by rendering the data into an
unrecoverable state. Common methods to purge data in magnetic media are
degaussing and executing the Secure Erase command in ATA drives. Degaussing
is process of reducing the magnetic flux of the media to virtual zero by applying
a reverse magnetizing field. This will rendered the drive permanently unusable
since the track location information stored in the drives between data sectors
will be affected as well, when subject to a powerful reversed magnetic field.

Destroying or Destruction is the process of ensuring that the media can no
longer be reused as originally intended and the recovery of data from the media
is virtually impossible or prohibitively costly. There are many ways in which
media can be destroyed. Media that contains information that is classified and
labeled as highly sensitive is best protected if it is completely destroyed. Upon
the destruction of media with highly sensitive information, it is important
to validate and verify that media is not susceptible to a laboratory attack. A
laboratory attack is one where specially trained and skilled threat agents use
non-standard resources and systems to perform data recovery on media outside

564

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 564 6/7/2013 5:41:03 PM

of their normal operating settings. The different techniques that can be used for
physically destroying media for sanitization purposes are:

 ■ Disintegration is the act of separating the media into component
parts.

 ■ Pulverization is the act of grinding the media into a power or dust.
 ■ Melting is the act of changing the state of the media from a solid

into liquid by using an extreme application of heat.
 ■ Incineration or Burning is the act of completely burning the

media into ashes.
 ■ Shredding is the act of cutting or tearing the media into small

particles. The shred size is an important consideration when
choosing a shredder or a shredding service (if outsourced), because
the shred size should be small enough to provide a reasonable
assurance that information cannot be reconstructed from the
shredded output.

Knowing the type of sanitization method that should be used is important.
If data is backed up on optical storage media such as compact disks (e.g.,
CD-ROM, CD-R), optical disks (DVD) and WORM types, then physical
destruction using either pulverization, shredding or burning is recommended.
Figure 7.11 is an adaptation from NIST’s special publication 800-88 entitled
the Guidelines for Media Sanitization. It illustrates the data sanitization and
decision flow. It is important to recognize that the last steps in the sanitization
process are to validate that information reconstruction or recovery is not possible
and to document the steps taken and the results from it.

Figure 7.11 – Data Sanitization and Decision Flow

565

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 565 6/7/2013 5:41:04 PM

The following references are recommended to get
additional information on secure software deployment,
operations and maintenance, and disposal concepts.

 » SP 800-40 published by NIST provides guidance on creating a
patch and vulnerability management program.

 » SP 800-61 published by NIST provides guidance on incident
management focusing on computer security incident handling.

 » Gartner research has published some documents on Security
Patch Management which provides best practice guidance for
establishing an enterprise patch management program.

 » The Software Security Framework (SSF) of the Build Security
In Maturity Model (BSIMM) provides some good guidance
for secure operations (such as penetration testing, software
configuration, configuration management and vulnerability
management) during deployment.

 » SP 800-88 published by NIST provides guidelines for secure
disposal focusing on media sanitization.

 » The ITIL framework documentation on Problem Management
provides good material for understanding the problem
management domain with emphasis on root cause analysis.

566

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 566 6/7/2013 5:41:04 PM

Summary and Conclusion

In this chapter, we learned about the importance of security
during the final stages of the SDLC. Security consideration during
installation and deployment, operations and maintenance and
disposal are all important.

After software is accepted for deployment or release, the
installation and deployment activity should not ignore the security
aspects of software. Prior to deploying software, it is imperative
that the host operating systems and the computing network
in which the software will operate is locked down or hardened.
Following the hardening process, the installation of the software
must not violate the principle of least privilege. When software
starts, the booting process must also be resilient to common or
side channel attacks. The startup variables and configuration
parameters must be guarded to protect against attacks that
impact the confidentiality or integrity of software. Without a
proper and well-defined configuration management process
in place, the likelihood or regenerative bugs in software is high.

During the operations phase of SDLC, continuous monitoring
of software is important to ensure the goal of operations security,
which is to make certain that software remains secure. Knowing
how to monitor software is just as important as why it should be
monitoring. Scanning, logging and intrusion detection systems
are common ways to monitor and monitoring can not only
validate the state of security, but also provides insight on the
state of compliance to security policies. Metrics can be used as
a tool to provide management and operations team members,
information about the real state of security affairs within the
organizations. Periodic audits are useful to validate compliance.
Incident management is useful to restore services and software
functionality. The incident response process requires careful
planning and is comprised of the following phases: preparation,

567

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

CSSLP_v2.indb 567 6/7/2013 5:41:04 PM

detection and analysis, containment, eradication and recovery,
and post-incident analysis. The analysis of software audit logs
can provide valuable support and information to detect both
insider and external threats attempted against the software. The
goal of problem management is to improve the service. Root
cause analysis is a very important means to answer as to ‘Why’ the
problem occurred in the first place so that the core issue can be
resolved once and for all. Patch and vulnerability management
is a necessary ongoing activity during the maintenance phase
of the SDLC. Patching can adversely impact the state of software
security if the patch is not tested in an environment that simulates
production environment. Patches can be delivered as a single
hotfix or as service pack. Patches must be tested for backward
compatibility issues, upstream and downstream dependencies
impact and regression of security features.

Software is not secure until it or its data and related components
have been completely removed from the computing environment.
Security cannot be ignored during the disposal stage of the
software life cycle. EOL policies must be established and sun-
setting criteria understood as part of the software disposal process.
Along with the disposal or replacement of software, it is also
important to securely address the information that was processed
and stored by the software. Secure disposal of information is
dependent on the type of media that contains it and the need
for the media to be reused or not. Additionally depending on
whether the information will leave the organization’s control or
not, determines how the information and media containing it
must be disposed. The primary protection methods against data
remanence are clearing (overwriting), purging (degaussing) and
destroying.

Software must be monitored, operated, maintained and
disposed with security in mind so that the reliability, resiliency and
recoverability of software can be guaranteed and the stakeholders
can be assured of their trust in your organization.

568

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 568 6/7/2013 5:41:04 PM

569

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

1. When software that worked without any issues in the test environments
fails to work in the production environment, it is indicative of

A. inadequate integration testing.
B. incompatible environment configurations.
C. incomplete threat modeling.
D. ignored code review.

2. Which of the following is not characteristic of good security metrics?
A. Quantitatively expressed
B. Objectively expressed
C. Contextually relevant
D. Collected manually

3. Removal of maintenance hooks, debugging code and flags, and
unneeded documentation before deployment are all examples of
software

A. hardening.
B. patching.
C. reversing.
D. obfuscation.

4. Which of the following has the goal of ensuring that the resiliency
levels of software is always above the acceptable risk threshold as
defined by the business post deployment?

A. Threat modeling.
B. Code review.
C. Continuous monitoring.
D. Regression testing.

5. Logging application events such as failed login attempts, sales price
updates and user roles configuration for audit review at a later time is
an example of which of the following type of security control?

A. Preventive
B. Corrective
C. Compensating
D. Detective

Review Questions

CSSLP_v2.indb 569 6/7/2013 5:41:04 PM

570

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

6. When a compensating control is to be used, the Payment Card Industry
Data Security Standard (PCI DSS) prescribes that the compensating
control must meet all of the following guidelines EXCEPT

A. Meet the intent and rigor of the original requirement.
B. Provide an increased level of defense than the original requirement.
C. Be implemented as part of a defense in depth measure.
D. Must commensurate with additional risk imposed by not adhering

to the requirement.

7. Versioning, back-ups, check-in and check-out practices are all important
components of

A. Patch management
B. Release management
C. Problem management
D. Incident management

8. Software that is deployed in a high trust environment such as the
environment within the organizational firewall when not continuously
monitored is MOST susceptible to which of the following types of
security attacks? Choose the BEST answer.

A. Distributed Denial of Service (DDoS)
B. Malware
C. Logic Bombs
D. DNS poisoning

9. Bastion host systems can be used to continuously monitor the security
of the computing environment when it is used in conjunction with
intrusion detection systems (IDS) and which other security control?

A. Authentication.
B. Authorization.
C. Archiving.
D. Auditing.

10. The FIRST step in the incident response process of a reported breach
is to

A. notify management of the security breach.
B. research the validity of the alert or event further.
C. inform potentially affected customers of a potential breach.
D. conduct an independent third party evaluation to investigate the

reported breach.

CSSLP_v2.indb 570 6/7/2013 5:41:04 PM

571

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

11. Which of the following is the BEST recommendation to champion
security objectives within the software development organization?

A. Informing the developers that they could lose their jobs if their
software is breached.

B. Informing management that the organizational software could
be hacked.

C. Informing the project team about the recent breach of the
competitor’s software.

D. Informing the development team that there should be no injection
flaws in the payroll application.

12. Which of the following independent process provides insight into the
presence and effectiveness of security and privacy controls and is used
to determine the organization’s compliance with the regulatory and
governance (policy) requirements?

A. Penetration testing
B. Audits
C. Threat modeling
D. Code review

13. The process of using regular expressions to parse audit logs into
information that indicate security incidents is referred to as

A. correlation.
B. normalization.
C. collection.
D. visualization.

14. The FINAL stage of the incident management process is to
A. detection.
B. containment.
C. eradication.
D. recovery.

15. Problem management aims to improve the value of Information
Technology to the business because it improves service by

A. restoring service to the expectation of the business user.
B. determining the alerts and events that need to be continuously

monitored.
C. depicting incident information in easy to understand user friendly

format.
D. identifying and eliminating the root cause of the problem.

CSSLP_v2.indb 571 6/7/2013 5:41:04 PM

572

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

16. The process of releasing software to fix a recently reported vulnerability
without introducing any new features or changing hardware
configuration is referred to as

A. versioning.
B. hardening.
C. patching.
D. porting.

17. Fishbone diagramming is a mechanism that is PRIMARILY used for
which of the following processes?

A. Threat modeling
B. Requirements analysis.
C. Network deployment.
D. Root cause analysis.

18. As a means to assure the availability of the existing software functionality
after the application of a patch, the patch need to be tested for

A. the proper functioning of new features.
B. cryptographic agility.
C. backward compatibility.
D. the enabling of previously disabled services.

19. Which of the following policies needs to be established to securely
dispose software and associated data and documents?

A. End-of-life.
B. Vulnerability management.
C. Privacy.
D. Data classification.

20. Discontinuance of a software with known vulnerabilities with a newer
version is an example of risk

A. mitigation.
B. transference.
C. acceptance.
D. avoidance.

21. Printer ribbons, facsimile transmissions and printed information when
not securely disposed are susceptible to disclosure attacks by which of
the following threat agents? Choose the BEST answer.

A. Malware.
B. Dumpster divers.
C. Social engineers.
D. Script kiddies.

CSSLP_v2.indb 572 6/7/2013 5:41:05 PM

573

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

22. System resources can be protected from malicious file execution attacks
by uploading the user supplied file and running it in which of the
following environment?

A. Honeypot
B. Sandbox
C. Simulated
D. Production

23. As a means to demonstrate the improvement in the security of code
that is developed, one must compute the relative attack surface quotient
(RASQ)

A. at the end of development phase of the project.
B. before and after the code is implemented.
C. before and after the software requirements are complete.
D. at the end of the deployment phase of the project.

24. Modifications to data directly in the database by developers must be
prevented by

A. periodically patching database servers.
B. implementing source code version control.
C. logging all database access requests.
D. proper change control management.

25. Which of the following documents is the BEST source to contain
damage and which needs to be referred to and consulted with upon
the discovery of a security breach?

A. Disaster Recovery Plan.
B. Project Management Plan.
C. Incident Response Plan.
D. Quality Assurance and Testing Plan.

CSSLP_v2.indb 573 6/7/2013 5:41:05 PM

574

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

References

Cannon, J. C.. Privacy: What Developers and IT Professionals Should Know.
Boston: Addison-Wesley, 2005.

Colville, Ronni J.. “Recommendations for Security Patch Management
.” Technology Research | Gartner Inc.. http://www.gartner.com/
DisplayDocument?doc_cd=161535 (accessed February 11, 2013).

“Deployment: Configuration Management and Vulnerability Management
(CMVM).” The Building Security In Maturity Model (BSIMM). http://
bsimm.com/online/deployment/cmvm/ (accessed February 11, 2013).

Egan, Mark, and Tim Mather. The Executive Guide to Information Security:
Threats, Challenges, and Solutions. Indianapolis: Addison-Wesley, 2004.

Fernandes, Allen. “Operations Security.” Global Information Assurance
Certification. www.giac.org/cissp-papers/272.pdf (accessed February 11,
2013).

Fry, Chris, and Martin Nystrom. Security Monitoring: Managing Risks on your
Network. 1 ed. Cambridge, MA: O’Reilly, 2009.

Grimes, Roger A.. Professional Windows Desktop and Server Hardening.
Indianapolis, IN: Wiley, 2006.

Howard, Michael, and Steve Lipner. The Security Development Lifecycle: SDL,
a process for developing demonstrably more Secure Software. Redmond, Wash.:
Microsoft Press, 2006.

Howard, Michael, and David LeBlanc. Writing Secure Code for Windows Vista.
Redmond, Wash.: Microsoft, 2007.

Howard, Michael, and David LeBlanc. Writing Secure Code. 2 ed. Redmond,
Wash.: Microsoft press, 2009.

“ITIL.” IT Infrastructure Library. http://www.itil-officialsite.com (accessed
February 11, 2013).

CSSLP_v2.indb 574 6/7/2013 5:41:05 PM

http://www.gartner.com/DisplayDocument?doc_cd=161535

575

Domain 7: Software Deployment, Operations, Maintenance, and Disposal

7

Softw
are D

eploym
ent, O

perations,
M

aintenance, and D
isposal

Jaquith, Andrew. Security Metrics: replacing Fear, Uncertainty, and Doubt.
Upper Saddle River, NJ: Addison-Wesley, 2007.

Kissel, Richard. Guidelines for Media Sanitization. Gaithersburg, MD:
National Institute of Standards and Technology (NIST), 2006.

Litchfield, David, Chris Anley, John Heasman, and Bill Grindlay. The Database
Hacker’s Handbook: Defending Database Servers. Indianapolis, IN: Wiley, 2005.

Mell, Peter, and Tiffany Bergeron. Creating a Patch and Vulnerability
Management Program. 2 ed. Gaithersburg, MD: National Institute of
Standards and Technology (NIST), 2005.

Scardelis, Jim. “Release Management.” TechNet. http://technet.microsoft.com/
en-us/magazine/2006.09.insidemsft.aspx (accessed February 11, 2013).

Williams, Branden. “The Art of Compensating Control.” Secure
Business Growth. https://www.brandenwilliams.com/brwpubs/
TheArtoftheCompensatingControl.pdf (accessed February 10, 2013).

CSSLP_v2.indb 575 6/7/2013 5:41:05 PM

https://www.brandenwilliams.com/brwpubs/TheArtoftheCompensatingControl.pdf
http://technet.microsoft.com/en-us/magazine/2006.09.insidemsft.aspx

This page intentionally left blankThis page intentionally left blank

GARTNER’S MAVERICK RESEARCH which is designed to spark new

and unconventional insights, indicated in their October 2012 special

report that by 2017, IT supply chain integrity will one of the top three

security related concerns by global 2000 IT leaders. The report defines

supply chain integrity as the “process of managing an organization’s

internal capabilities, as well as its partners and suppliers, to ensure all

elements of an integrated solution are of high assurance.” It goes on

to state that the need for integrity in the IT supply chain is no longer

optional, but mandatory, irrespective of whether the software solution

or service is developed in-house or purchased from a third party.

With the growing complexity of business, IT solutions and systems

are developed and assembled from a large number of providers, often

from different geographical locations. This introduces a potential

for a large number of threats and software developed in the supply

chain needs to assure trust and confidence that is will function as

the end user expects it to, without any malicious logic or function.

577

Domain 8

Supply Chain and
Software Acquisition

577

Domain 8

Supply Chain and
Software Acquisition

CSSLP_v2.indb 577 6/7/2013 5:41:05 PM

Additionally these supply chain issues are not limited to the software

alone but to hardware as well, as hardware suppliers are outsourcing

their design to original equipment manufacturer (OEM) suppliers and

contractors, in addition to manufacturing. Even the software-based

elements with hardware such as firmware and drivers, are under the

threat of exploitability. Furthermore, these outsourced suppliers and

contractors are being observed of outsourcing themselves adding to

the complexity of managing the supply chain securely.

According to Reuters, a leaked White House report exonerated

the Chinese telecommunication giant, Huawei, of spying on behalf

of the Chinese government, however, the same report found

vulnerabilities in the company’s networking equipment which could

put its customers at risk. The networking equipment was found to

be plagued with insecure software, and rife with malware such as

backdoors, created by vendors (suppliers) who outsource part or all

of their software development to other suppliers, located in politically

hostile regions of the world.

From these news reports, we can see that both hardware and

software are at risk when they are not produced under the scrutiny

and control of a company. In this book, however, we will primarily

focus on the security risks associated with software as opposed to

the hardware. When software is developed outside the purview of

a company’s control, it introduces the potential for several risks that

can adversely impact the business brand, operations and financial

outlook.

578

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 578 6/7/2013 5:41:05 PM

Thomas Friedman, in his bestselling book, “The World is Flat: A

brief history of the Twenty-first Century” lists Supply-Chaining and

Outsourcing as two of the ten flatteners. He defines Supply-Chaining

as a method of collaborating horizontally – among suppliers, retailers,

and customers – to create value. According to the 2012/2013 IT

Outsourcing Statistics report published by Computer Economics, the

two most widely outsourced functions are Web/e-commerce systems

and software (or application) development.

This supply chain and software acquisition domain focuses on

managing risk in the software supply chain, when acquiring software

from 3rd party, be it via outsourcing or offshoring or from a managed

service provider.

579

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 579 6/7/2013 5:41:05 PM

580

 ■ Supplier Risk Assessment
 à Code Reuse
 à Intellectual Property
 à Legal Compliance

 ■ Supplier Sourcing
 à Contractual Integrity Controls
 à Vendor Technical Integrity Controls
 à Managed Services
 à Service Level Agreements (SLAs)

 ■ Software Development and Test
 à Technical Controls
 à Code Testing and Verification
 à Secuirty Testing Controls
 à Software Requirements Verification and Validation

 ■ Software Delivery, Operations, and Manitenance
 à Chain of Custody
 à Publishing and Dissemination Controls
 à Systems-of-Systems Integration
 à Software Authenticity and Integrity
 à Product Development and Sustainment Controls
 à Monitoring and Incident Management
 à Vulneability Management

 ■ Supplier Transitioning

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Topics

CSSLP_v2.indb 580 6/7/2013 5:41:05 PM

581

As a CSSLP, you are expected to

 ■ Be familiar with the various components, drivers and risks
of a software supply chain.

 ■ Know how to evaluate suppliers for software development
and related services.

 ■ Understand legal issues and know the contractual controls
that need to be in place before procuring software.

 ■ Know the technical controls that need to be in place when
procuring software.

 ■ Know the processes that need to be in place to assure
software security during development and testing.

 ■ Know the processes that need to be in place to assure
software security during delivery, operations, maintenance/
sustainment.

 ■ Know the secure exchange and transitioning mechanisms
when procuring software from a vendor.

 ■ Know what software escrow constitutes and the protection
it affords to the involved parties.

This chapter will cover each of these objectives in detail. It
is important that you are not only aware of the various concepts
covered in this chapter but also understand how to apply these
concepts when it comes to procuring software from a supplier.

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

Objectives

CSSLP_v2.indb 581 6/7/2013 5:41:06 PM

Software Acquisition and the Supply Chain
Software development, which historically was predominantly an in-house
activity performed by employees and trusted contractors within a company, is
now slowly augmented or replaced with open source repositories or off-the-shelf
(OTS) software that is developed by third party vendors or service providers,
whose identity, location and trustworthiness is questionable and for the most
part unknown. The channel that is used to distribute software and services from
its source to the destination end consumer is known as a ‘software supply chain.’

In this book, the term ‘software supply chain’ is used to cover both software
producers and service providers. Although the term ‘vendor’ describes a specific
entity within the software supply chain and the term ‘supplier’ describes an entity
that produces software components for a vendor, this distinction is irrelevant
with regard to software assurance and to keep things simple, this book uses the
term ‘suppliers’ to cover both vendors and suppliers. Furthermore, the industry
tends to often use vendors and suppliers interchangeably. The term ‘acquirer’
is used to describe the final end user/consumer of the software that purchases
products and services from suppliers.

While software acquisition has the benefits of readily available software and
appropriately skilled resources who work for the software vendor, it does come
with costs of customization which is invariably required, vendor dependence
and the need for legal protection mechanisms such as contracts and service level
agreements (SLAs) and Intellectual Property (IP) protection mechanisms such
as copyright, trademarks and patents.

Additionally, if security requirements are not explicitly stated prior to
purchase, there is a high degree of likelihood that the software product you buy
to deploy in-house does not meet the security requirements. When was the last
time you saw a request for proposal (RFP) with security requirements explicitly
stated? Not only must security requirements be explicitly communicated to the
software vendor in advance but it must be verified as well. Unfortunately, in
most cases, when software is acquired, evaluation of the acquired software is on
the functionality, performance and integration abilities of the software and not
necessarily on security. And even in cases where the vendor claims security in
their software as a differentiating factor, these claims are seldom verified within

582

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 582 6/7/2013 5:41:06 PM

the organization’s computing ecosystem, prior to its purchase. It is important to
trust your suppliers but it is even more imperative for secure software assurance
that their claims are verified.

Constituents of a software supply chain include the products, processes and
the people or participants involved. Products include the software or service
itself and the data that is handled by the software or service. Processes include
product flows and software development activities that range from requirements
analysis to retirement, risk management, logistics and materials management,
configuration management, intellectual property management, export licensing,
and procurement services. The people resources consist of requirements
personnel, acquisition managers, assurance personnel supporting acquisition
manager, procurement decision makers including project and program managers,
integration personnel, prime contractors and sub-contractors, and suppliers.
Figure 8.1 illustrates the potential paths that software can take in a supply chain.

Acquisition Lifecycle
The supply chain can be broken down into distinct phases within the acquisition
lifecycle. These phases are namely, planning, contracting, development &
testing, acceptance, deployment, operations & monitoring, transitioning, and
retirement as depicted in Figure 8.2.

 ■ Planning involves conducting an initial risk assessment to determine
the functional and assurance needs, followed by the development

Figure 8.1 – Potential Software Supply Chain Paths

Source: Software Assurance in Acquisition: Mitigating Risks to the Enterprise

583

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 583 6/7/2013 5:41:06 PM

of an acquisition strategy and/or plan. The plan should not only
cover the requirements (needs that were determined as part of
the initial risk assessment) to be met, but also specify evaluation
criteria. Evaluation criteria must include the following categories –
Organization, People, Processes and Technology.

 ■ Contracting involves the issuance of an advertisement to source
suppliers, evaluation of the supplier and their responses (proposal
to meet requirements), contract negotiations, supplier selection
and contract award.

 ■ Development & Testing involves the implementation of reliable,
resilient and recoverable code and attestation of security controls.

 ■ Acceptance involves the definition of acceptance criteria,
verification and validation activities including independent third
party testing, issuance of the purchase order (PO), the acquirer
acceptance, and contract closure.

 ■ Delivery involves the establishment of code escrow agreements, if
needed and communicating and attesting compliance with export

Figure 8.2 - Acquisition Lifecycle phases

584

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 584 6/7/2013 5:41:06 PM

control and federal trade data regulations, in addition to secure
transfer. Secure transfer involves the protection of the delivery
channels and processes so that the software is not only free of being
tampered but authentic in its origin when it is transitioned from
one supplier to another or to the acquirer.

 ■ Deployment involves the installation and configuration of the
software with least privilege and secure defaults, besides configuring
perimeter defense controls and validating the components of
integrated systems once deployed.

 ■ Operations & Monitoring involves the enforcement of the
contract work schedule and follow-on post-deployment support,
establishment of change or configuration control procedures as
part of assurance case management (transitioning to operations),
performing runtime integrity checks, patching and upgrades,
implementing termination access controls, checking custom code
extensions and continuous monitoring including the detection and
handling of security incidents.

 ■ Retirement involves the activities that help mitigate or avoid
information disclosure risks. Decommission of the software,
including termination access controls and disposal of the data are
carried on in this phase.

Software Acquisition Models and Benefits
Software can be acquired in one or more of the following ways: direct purchase,
Original Equipment Manufacturer (OEM) licensing, partnering (alliance) with
the software vendor, outsourcing and managed Services. The predominant
models in which supply chain software or services are acquired are outsourcing
and managed services.

Outsourcing
Software outsourcing involves the subcontracting of software development and
related services to a third party. It splits services and development activities
into components that are subcontracted and performed in the most efficient
and cost-effective way. The third party supplier may be a software development
company that is domestic or foreign. When the third party supplier is from a
foreign land, it is referred to as offshoring. Offshoring is primarily considered
and chosen by a company, in order to gain the benefits of lower labor costs, tax
incentives and access to intellectual capital.

585

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 585 6/7/2013 5:41:06 PM

Just as software is usually a component of a larger IT system, so also each
supplier in a software supply chain is often just another vendor in a chain of
suppliers. This can be represented as a collection of steps (or staircases) where
each step holds a different supplier.

As software is handed over from one supplier to another, the responsibility
for protection the software shifts as well. This phenomenon of shifting
responsibilities and losing of control from one supplier to another in a supply
chain is referred to as software provenance. Figure 8.3 depicts the software supply
chain staircase and provenance points.

Managed Services
Managed services make it possible to take resource intensive business operations
and services and move it under the management of experienced companies that
specialize in such operations or services. This allows the company that leverages
suppliers who provide managed services solutions to focus on their core business
strategy.

These managed services can range from non-security related services
such as software development and subscription services, as in the case of
cloud computing, to specific security services such as information security
risk management, vulnerability assessments and penetration testing, incident
management and forensics, anti-virus and content filtering services, and data
archival solutions. As-a-Service solutions, be it Platform-as-a-Service (PaaS),
Infrastructure-as-a-Service (IaaS) and Software-as-a-Service (SaaS) are examples
managed services solutions that are prevalent in today’s computing environment.
The primary instrument by which managed services are procured, delivered and
enforced today is by using Service Level Agreements (SLAs). The main benefits
of acquiring software using outsourcing & offshoring and/or a managed services
supplier are:

 ■ Cost savings and tax incentives for the acquirer, as variable costs
that are incurred in-house development can be converted to
fixed cost of services that are procured and reported as operating
expenses.

 ■ Increased operational efficiency, as the acquirer can focus on its
core business operations.

 ■ Access to skilled and experienced supplier staff, who specialize in
the services they provide.

 ■ Objectivity and neutrality as the supplier can provide an
independent perspective to the services they render.

586

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 586 6/7/2013 5:41:06 PM

 ■ Forced adoption of common standards that facilitates global
collaboration, so that interactions between interfaces are frictionless.

However, it must be recognized that with these benefits come risks as well.
Software supply chain risk management is covered in more detail throughout
the rest of this chapter.

Supply Chain Software Goals
Although it is recognized that defending against every possible threat in the
supply chain is not feasible, it is imperative that at each entity of the supply
chain, the goals of conformance, trustworthiness, and authenticity are met to
assure the primary goal of predictable execution and minimize the risk of a
security breach. Predictable execution ensures that the software demonstrates
justifiable confidence that it functions reliably as expected.

 ■ Conformance ensures that the software is planned and undergoes
a systematic set of activities to conform to the requirement
specifications, standards and best practices.

 ■ Trustworthiness ensures that the software does not have
vulnerabilities that are maliciously or accidently introduced into the
code. In other words, the software functions reliably assuring trust.

 ■ Authenticity ensures that the materials used in the production of
the software is not counterfeited, pirated or in violation of any
intellectual property rights.

Figure 8.3 - Software Supply Chain Staircase

587

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 587 6/7/2013 5:41:07 PM

In fact, it can be observed that when software meets the goal of conformance,
trustworthiness, and authenticity, it will also meet the goal of predictable
execution (integrity) as depicted in Figure 8.4.

A supplier’s customer may not be the final end user and so each supplier in
the supply chain has the opportunity and must be responsible to ensure that
development and delivery processes and flows meet the above mentioned goals.

Threats to Supply Chain Software
An attack that introduces and exploits vulnerabilities in the supply chain process
is referred to as a supply chain attack. Software products, software delivering a
service (as in the cloud), custom product or embedded software in hardware are
all susceptible to supply chain attacks. A software supply chain attack results
either in the modification of software logic/file(s) or the insertion of additional
logic/file(s) into the software. The most potential and predominant threat in the
software supply chain, that often goes undetected, is the tampering of software to
introduce malicious software (malware) in code, during or after the development
of the software. However, there are many other threats that are possible against
the product (software or service), processes and flows and people as listed below.

Product/Data Threats:
 ■ Tampering of the code to circumvent existing security controls.
 ■ Unauthorized disclosure, alteration, corruption, and/or deletion/

destruction of data.
 ■ Diversion and/or re-routing of data causing disruptions and delays.
 ■ Code sabotage by intentionally implanting vulnerabilities and

malicious logic.
 ■ Counterfeiting by substitution of legitimate products and/or data

with similar but bogus ones.
 ■ Piracy and theft of intellectual property rights by reverse engineering

executable code.

Processes/Flow Threats:
 ■ Bypass of legitimate flows and surreptitious diversion of legitimate

channels to pirated ones.
 ■ Insecure code transfer that does not maintain chain of custody.
 ■ Violation of export control requirements.
 ■ Improper configuration of software allowing undocumented

modifications and operational misuse.

588

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 588 6/7/2013 5:41:07 PM

People Threats
 ■ Undetected placement of a malicious threat agent (hacker, criminal,

adversary) inside the company. This is referred to as a “insider
threat” or “pseudo-insider threat”.

 ■ Social engineering insiders to commit fraud or perjury (i.e.,
subornation)

 ■ Concerns related to Foreign Ownership and Control or Influence
(FOCI). These concerns range from nation-state sponsored hackers
to individuals who are willing to do nefarious acts because of their
affinity to hostile countries.

Software Supply Chain Risk Management (SCRM)
The saying “A chain is only as strong as its weakest link” is very accurate when
it comes to software supply chain security. A weakness or breakdown in any one
process throughout the supply chain can be detrimental to the entire supply
chain. Software supply chain risks can be introduced at any component of the
supply chain and inherited by subsequent components.

Traditional methods of reducing vulnerabilities in code, using secure
software development practices, while necessary, falls short of assuring one of
justifiable confidence that the software is authentic and reliably functioning, in

Figure 8.4 – Software Supply Chain Risk Management Goals

589

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

Conformance

Trustworthiness

Authenticity

Predictable
Execution
(Integrity)

CSSLP_v2.indb 589 6/7/2013 5:41:07 PM

a global supply chain, where the software development and delivery processes
are distributed.

Risks to software arise from threats that are introduced in one or more ways
into the supply chain, either during the development and testing phases or
during its deployment, operations and maintenance phases. Some of these ways
are listed below:

 ■ Insufficient validation and sourcing of suppliers.
 ■ Contractual language does not take into account security

requirements.
 ■ Unintentional design defects and coding errors that allow for

exploitable vulnerabilities.
 ■ Introduction of malicious logic code by unauthorized parties after

the software is developed.
 ■ Failure in logistics management resulting in distribution of code

without adequate access control checks.
 ■ Improper code publishing processes that do not assure authenticity

of code origin.
 ■ Inadequate configuration controls leading to insecure installation

and deployment.
 ■ Failure in vulnerability and patch management processes that

introduces risk during operations.
 ■ Inadequately trained personnel that fail to communicate

assurance requirements to the supplier and/or attest the existence
and effectiveness of technical controls in the acquired software.

Managing risks in the software supply chain includes the management of the
risk arising from the supplier itself and their software development and delivery
processes. It is important to know the different types of controls that must be in
place throughout the software supply chain life cycle.

Software Supply chain risk management begins with rigorous processes
performed initially to identify and analyze software assurance risks. It is
followed by validation and verification of contractual and technical controls
prior to acquisition. It is extended after acquisition by continuous assessment of
software risks until ultimate decommissioning of the software code and related
components, and the disposal of associated data.

Software supply chain controls must at the bare minimum demonstrate the
following security principles:

590

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 590 6/7/2013 5:41:07 PM

 ■ Least Privilege: Personnel who have access to the code and data
are given the minimum set of rights for a minimum amount of
time, based on their job privileges.

 ■ Separation of Duties: Access to code and data is restricted so that
tampering, unilateral control, collusion and fraud are improbable.

 ■ Location Agnostic Protection: The protection mechanisms are
effective, irrespective of the location where the software or service
is produced. In other words, it is not the place where production
occurs that determines the extent and effectiveness of the controls,
but the implementation or lack thereof of the secure software
development and delivery processes. This is also sometimes referred
to as the security principle of persistent protection.

 ■ Code Inspection: Secure development lifecycle processes are in
place to detect and identify the presence of malicious logic in code.

 ■ Tamper Resistance and Evidence: The code and data is
protected with technical controls such as hashing and certificate
of authenticity so that unauthorized alterations are disallowed
and when performed evident and restorable to its pristine state.

 ■ Chain of Custody: The transfer of products from one supplier to
another must be controlled, authorized, transparent and verifiable.

It must also be recognized that while there is greater risk in outsourcing
security services over non-security related services, the risk of acquiring non-
security related services could be substantial as well.

Furthermore, while the responsibility for secure computing is shared between
the acquirer and the service provider in a supply chain, ownership and liability
upon a successful security breach is retained on the acquirer’s end. A company
cannot adopt an “out of sight, out of mind” approach and ignore dealing with
security issues, assuming that software assurance is delegated and deferred to the
supplier. The company must ensure that it has implemented appropriate levels
of contractual and technical controls that can be enforced using the service level
agreements and that it has the competencies to fulfill its responsibility.

Some of the questions that are relevant when it comes to managing software
chain risks are:

 ■ Does the supplier have a security development lifecycle (SDL)?
 ■ Is the supplier location where the code is developed secure?
 ■ Is the data secure when it is processed, transmitted between

suppliers, and stored?

591

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 591 6/7/2013 5:41:07 PM

 ■ Is the communication between the suppliers secure?
 ■ Can the supplier assure that the software or service produced is

authentic and tamper-proof?
The rest of this chapter covers the controls and how they should be applied

and attested of their effectiveness.

Supplier Risk Assessment and Management
The relationships between the acquirer and the supplier and the relationships
between different suppliers, influences the level of control and risk. It is therefore
important to understand the relationships between the parties so that supply
chain threats are addressed using appropriate effective controls.

In software supply chain, there are two primary kinds of relationships – work-
for-hire (subcontracting or staff augmentation) and licensing relationships.

Acquirers can:
 ■ subcontract the development of the software from other suppliers.

This kind of relationship is referred to as ‘subcontracting work-
for-hire’ relationship and the acquirer owns the software delivered.

 ■ work collaboratively with staff from other suppliers augmenting
their own. This kind of relationship is referred to as ‘staff
augmentation work-for-hire’ relationship.

 ■ license software from another supplier or obtain the software from
open source software (OSS) repositories. This kind of relationship
is referred to as ‘arm’s length licensing’ relationship.

It must be noted that each supplier in the supply chain can also have similar
relationships with other suppliers in the supply chain.

Supplier risk management begins with the sourcing of suppliers and takes
into account the intellectual property ownership and responsibilities involved,
when acquiring software and services from a supplier.

592

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 592 6/7/2013 5:41:07 PM

Supplier Sourcing
Supplier sourcing begins with the identification of suppliers that can create the
products required by the acquirer. This includes performing an evaluation of
the supplier before selecting them. Additionally, as part of the sourcing process,
in addition to evaluating the supplier, their responses to solicitations must be
evaluated as well. Evaluation of the supplier involves evaluating the vendor’s
accountability, their security practices, how they protect intellectual property,
their secure storage and transfer practices and their security track record in
managing vulnerabilities and incidents, besides protection against malware.
Once a supplier is identified then contractual controls need to be established.

Supplier Evaluation (Pre-Qualification Assessment)
Pre-qualification of the supplier includes the assessment of the supplier’s

 ■ Organization
 ¤ financial history.
 ¤ conflicts of interests and foreign ownership and control or

influence (FOCI).
 ¤ compliance with security policies, regulatory and privacy

requirements.
 ¤ service level agreements (SLAs).
 ¤ past performance in supporting other customers.

 ■ People
 ¤ security knowledge, experience, and training.

 ■ Processes
 ¤ security development lifecycle processes.
 ¤ security track record (vulnerability/patch management

processes).

Financial History
A supplier that is not financially sound would not be able to allocate resources
appropriately to address software defects and vulnerabilities. Additionally,
financial situations such as mergers, lawsuits, losses and sell-offs can adversely
impact the supplier’s ability to support the acquirer, in a secure manner. Though
it is difficult to predict the future financial state of a supplier, this is nevertheless
an important risk factor that cannot be ignored.

593

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 593 6/7/2013 5:41:07 PM

Competing/Conflicts of Interests and
Foreign Ownership and Control or Influence (FOCI)
The supplier’s organizational must be determined to ensure that there is no
conflicting situations or competing interests that can introduce software threats.
Additionally, any hostile foreign influence, control or ownership with malicious
intent must be determined to avoid putting the acquirer of the software or
service at risk.

It must be noted that while the place (location) where the software is
developed can pose a risk, especially if it is under the control and influence of
hostile foreign entities, the risk that results due to lack of security development
lifecycle processes in any supplier (domestic or foreign) can be far greater.
Paying attention to the place where the software or service is produced, is not
as impactful in improving the security state of the software, as focusing on the
processes used in developing the software or service.

Compliance with Security Policies, Regulatory and Privacy Requirements
Assessing a supplier’s compliance with its own security policies or externally
imposed regulatory or privacy requirements can provide insight into how
the supplier would treat the acquirer’s security policies, regulatory and
privacy requirements. Additionally, it is necessary to evaluate, if the supplier
is knowledgeable about the applicable industry standards and regulatory
requirements that the acquirer needs to comply with.

Service Level Agreements (SLAs)
SLAs are formal agreements between a supplier and a recipient of the supplier’s
products and/or services. They may include incentives and penalties, in which
case they are deemed to be more in the nature of contracts. When sourcing
suppliers, a review of the supplier’s SLA is crucial and necessary to ensure that
the supplier can incorporate security features into the software products they
develop, and also be able to support and maintain their products post-acquisition.

SLAs are “requirements-dependent” and “requirements-based.” Being
requirements-dependent implies that the SLAs must include the requirements
of the business. For example, a payroll system cannot suffer downtime, unlike a
non-critical human resources training system. Being requirements-based means
that, without clearly defined requirements, determination of actual service levels
in the formulation of the SLA will be inaccurate.

594

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 594 6/7/2013 5:41:07 PM

Data classification exercises can be useful in determining requirements. For
example, by classifying information based on criticality to the business, the
maximum tolerable downtime (MTD) and recovery time objective (RTO) can
be determined, which in turn can be used to determine and define the availability
conditions of the SLA. SLAs drafted with a time to respond provision, such
as “severity 1 incidents will warrant a 1-4 hour workaround” and “severity 2
incidents will be serviced within 4-24 hours,” are not uncommon.

SLAs have a direct bearing on the total cost of ownership (TCO) because
they can be used to ensure acceptable levels of support and maintenance provided
by the supplier. Although SLAs are often observed to be closely related to the
availability tenet of security, SLAs can address other elements of the security
profile, including confidentiality and integrity.

Additionally, the SLAs must define and include key performance
indicators (KPIs) to evaluate the performance on the SLA. When KPIs are
evaluated and managed, they can provide insight into the effectiveness and
efficiencies of the supply chain processes as it pertains to assuring trust and
software security. They can be used to assure that acquirer of a consistent
high level of service when the target expectations are defined and set to be
measured against. The ongoing identification of weaknesses and risks, when
monitoring KPIs gives the ability to the supplier to continuously improve
their products and services, as expected by the acquirers. Often targets
(bonuses and penalties) are set on KPI performance to positively or negatively
motivate the suppliers that meet or don’t meet these KPI requirements. Table
8.1 tabulates several common SLA metrics associated with what they cover.

Past Performance in Supporting Other Customers
The past performance of the supplier must be evaluated to understand how the
supplier would perform after delivery of their product. You can request a list of
customer references of the supplier and request their permission to interview
existing customers to validate the supplier’s claims. You may also determine if
the supplier is willing to undergo an independent third party assessment.

Security Development Lifecycle Processes
The supplier’s software engineering processes must be investigated to ensure
that they have structured processes, which allows for the incorporation of
security into the software or service they build. By understanding the supplier’s
SDL process and how security is addressed through the different phases,
one can get an insight into the secure state of the software one is procuring.

595

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 595 6/7/2013 5:41:07 PM

Some questions to ask the supplier are:
 ■ How is the software development process structured?
 ■ What are the artifacts generated?
 ■ Will the software development process be outsourced and if so,

what checks and balances exist that require validation?
 ■ Do you have a threat modeling process, and is there a threat model

for the software you are designing?
 ■ What kind of reviews (design, architecture, code, security) do you

conduct?
 ■ How is the software tested against functional and security

requirements?
 ■ What are the protection mechanisms in place to ensure that only

authorized individuals can access the code?
 ■ Has the software been certified and attested as secure by an

independent third party?
 ■ How current and accurate is the documentation that comes with

the software?

Table 8.1 - SLA Metrics Categories and Coverage

596

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

SLA Metric Category Coverage

Performance Reliability in the functionality of the
software, i.e., is the software doing what it is
supposed to do?

Disaster Recovery and
Business Continuity

Speed of recovery of the software to a
working state so that business disruptions
are addressed.

Issues Management The number of issues (security) that have
been addressed or deferred for future
releases. How many bugs have been fixed?
How many remain? How many are to be
moved to the next version?

Incident Response Promptness in responding to security
incidents. This is dependent on risk factors
such as discoverability, reproducibility,
elevated privileges, numbers of users
affected, and damage potential.

Vulnerability Management
(Patch and Release Cycle)

Frequency of patches that will be released
and applied and the measurement as
to whether the process is followed as
expected.

CSSLP_v2.indb 596 6/7/2013 5:41:07 PM

Personnel Security Knowledge, Experience and Training
Close attention should be given to ensure that those who will be responsible for
developing the software solution and incorporating security into the software
are adequately qualified and familiar with new generation and current threats.
The acquirer should explicitly state the competencies and knowledge areas that
the supplier personnel must demonstrate, besides assessing the capability of
the supplier to effective train their development staff on secure development
practices. Lack of security training is evident by the lack of integrated security
processes in the software development lifecycle (SDLC). Furthermore, personnel
who have privileged access to code and data should be screened and checked for
criminal history, particularly felony charges involving computer crime.

Some questions to ask are:
 ■ What is your training program and the frequency in which your

employees (and non-employee personnel) are trained in the latest
security threats and controls to address threats?

 ■ What is your background checks and screening process before
onboarding employees?

Security Track Record (Vulnerability/Patch Management Processes):
The supplier’s support and maintenance model must be reviewed to ensure that
the supplier will be able to support, maintain, and release patches in time when
security vulnerabilities are discovered in their software.

In today’s computing environment, the acquirers must require the suppliers
to demonstrate their capability to:

 ■ collect input on vulnerabilities from varied sources such as
vulnerabilities databases (e.g., OWASP Top 10, NVDB, OSVDB
etc.), bug tracking lists, researchers and customers,

 ■ analyze the applicability of the vulnerabilities,
 ■ articulate the discovered vulnerabilities using common

terminologies with references to relevant specifications (e.g., CWE,
CVSS, etc.),

 ■ provide remediation within acceptable timeframes to fix the
vulnerabilities, and

 ■ provide calling rosters (points of contacts) and escalation plans to
promptly address the vulnerabilities.

 ■ show that they are not a supplier with a track record of being
unresponsive to software vulnerabilities poses the risk of not
mitigating and patching vulnerabilities before an attacker exploits

597

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 597 6/7/2013 5:41:07 PM

the weaknesses in the software, and must be avoided. An important
consideration in this regard is to determine the Service Level
Agreement (SLA) to fix vulnerabilities.

Response Evaluation
In addition to evaluating the supplier’s organization, people, process maturity
and technology, it is equally important to evaluate the response made by
suppliers as it relates to the assurance capabilities of the software or service they
produce. This evaluation gives the acquirer another way to evaluate the security
knowledge of supplier personnel.

The most common means by which acquirers advertise their need to source
suppliers is by issuing a request for proposal (RFP), information (RFI) and, in
some cases, a quote (RFQ). Regardless of whether your organization is in the
commercial, private, or government sector, when it comes to procuring software
or services from suppliers, issuance of an RFP is the de-facto method in software
acquisition.

The issuance of an RFP itself has a significant impact on the assurance
capabilities of the product being procured. If the security requirements are not
explicitly stated in the solicitation advertisement, it is less likely that the software
or service product that is procured will be secure. So it is critical that, as part
of the supply chain process, the methodology employed in procuring software
is carefully scrutinized to ensure that security requirements are included and
implemented appropriately.

The following are some guidelines that can be used to effectively issue RFPs
and evaluate supplier responses. Acquirers begin by preparing what is generally
referred to as a work statement.

 ■ It is important to articulate and describe, what constitutes
trustworthy software along with an understanding of security
requirements needed to develop an assurance plan. An assurance
plan addresses the development and maintenance of an assurance
case for software. An assurance case contains the required security
requirements and the evidence needed to prove that the acquirer
requirements are met.

 ■ It is vital to ensure that security requirements are explicitly stated
with measurement criteria in the RFP in addition to the functional
requirements. By clearly defining requirements, those participating
in the RFP process will be clear on what your expectations are,
leaving little room for guesswork.

598

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 598 6/7/2013 5:41:08 PM

 ■ The time to respond to an RFPs must be finite and explicitly specified.
This time must be adequate for suppliers to make a proposal, but
at the same time, it must not be inordinate. Provisions for late
offers must be explicitly defined and stated, if allowed. This way,
timely responses are tied directly to the specified requirements, and
security vulnerabilities arising from changing requirements (scope
creep) are reduced.

 ■ Evaluation criteria must be predefined and the evaluation process
must be explicitly stated in the RFP. Some examples of evaluation
criteria that are commonly observed in RFPs is how well the
responses demonstrate:

 ¤ An understanding of the requirements (both functional and
assurance)

 ¤ A solution concept
 ¤ Experiences of personnel
 ¤ Valid references from past performance
 ¤ Resources, cost, and schedule considerations
 ¤ Intellectual property ownership and responsibilities

It is important to use the same evaluation criteria and rank the responses using
the same scoring mechanism, for all supplier responses, so that the evaluation is
fair, uniform, and consistent. Additionally, it is advisable to include evaluators
from various teams (e.g., software development, networking, operations, legal,
privacy, security) so that adequate and appropriate subject matter expertise
(SME) is present, when evaluating the proposals.

Contractual Controls
Without a written agreement in place, an acquirer should not engage in any
software development and acquisition activity with any supplier. The written
agreement is usually in the form of a contract, which should explicitly specify
the expectations of both the acquirer and the supplier. Additionally, the contract
language should specify the terms and conditions and consequences of non-
compliance when the contract is breached.

Contracts protect a company from liabilities that may arise against the
company. These are legally binding agreements, which means that the terms
and conditions will hold up in a court of law, and violators of the terms and
conditions can be penalized. These terms and conditions should be specific,
tailored and testable.

599

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 599 6/7/2013 5:41:08 PM

The contractual language should specify at the bare minimum:

 ■ Applicable regulations and standards
 ■ Software development procedures (life cycle activities)
 ■ Personnel qualifications and training required to assure

trustworthiness.
 ■ Security controls specifying secure coding and configuration

requirements (e.g., input validation, encoding, secure libraries
and frameworks, safe application programming interfaces (APIs),
authentication and access checks, session management, error
handling, logging and auditing, interconnectivity, encryption,
hashing, load balancing, replication, secure configuration, log
management, etc.)

 ■ Requirements to assure integrity of the development- (e.g., code
repositories, access control, version control, etc.) and distribution-
(e.g., chain of custody, secure transfer of code and storage, etc.)
environments

 ■ Right to conduct security code reviews within a stipulated
timeframe after receipt of software from the supplier, the scope of
the review and the methodology to address security issues that are
found.

 ■ Testing terms to verify and validate security controls, including
terms of self-testing and independent third party testing and
assessment methodologies (e.g., black-box, white-box testing)

 ■ Legalities of code ownership and responsibilities to protect
intellectual property.

 ■ Acceptance criteria.
 ■ Certification & Accreditation (C&A) processes and documentation.
 ■ Commitment to correct code errors and vulnerabilities within the

agreed period of time.
 ■ Supplier’s issues and vulnerability management (patch and release

cycle) processes and timeframes
 ■ Malicious code warranties
 ■ Software or service reliability guarantees
 ■ Certification of originality

600

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 600 6/7/2013 5:41:08 PM

In the world of software, anything can go wrong at any time and there
are many unforeseen situations that can arise. For example, the installation of
your software in a client system may require a certain configuration of the host
operating system. Such configuration settings, however, has been known to put
the client system in a state of compromise. Although it is not your software that
is vulnerable, the state of security of the system has been reduced and upon
breach, you can be held liable for the breach. This is where disclaimers come in
as a protective means. Disclaimers provide software companies legal protection
from liability claims or lawsuits that are unforeseen. When selling or purchasing
software, carefully attention must be paid to disclaimers. Disclaimers protect the
software publisher by informing the purchaser that the software is sold “AS IS”.
They transfer the risks from the publisher to the acquirer and for any unfortunate
security incident that arises as a result of using the software, the publisher
will not be held legally accountable. A prevalent application of disclaimers
today is in the context of web applications, when a popup message appears,
informing the user that they are leaving the website they are on to another
website that they have linked to. Figure 8.5 is an example of a disclaimer popup.

Unlike disclaimer-based protection, wherein there exists only a one-
sided notification of terms, contracts require that both parties engaged in the
transaction mutually agree to abide by any terms in the agreement. It is essential
to have contracts in place not only when your purchase software products, but
also when you outsource the development of your software or service to a third
party. However, it is crucial to ensure that the contractual terms and conditions
do not contradict the local law (law of the land), where the supplier is based and
operates.

Figure 8.5 – Example of a Disclaimer

601

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 601 6/7/2013 5:41:08 PM

Although it is possible for the acquirer to transfer the risk to the supplier
using appropriate contractual language, it is important to recognize that the
responsibility still lies on the part of the acquirer to inspect the software for
the presence of vulnerabilities. Each recipient in the supply needs to test the
trustworthiness of the distribution channel or site as well. Software supply chain
security is therefore a shared responsibility between the supplier(s) and the
acquirer.

Intellectual Property (IP)
Ownership and Responsibilities
In a software supply chain, one of the fundamental aspects of software assurance
is intellectual property (IP) protection. The World Intellection Property
Organization (WIPO) defines IP as the creations of the mind. These include
inventions, literary and artistic works including software programs, symbols,
names, images, and designs that are used in commerce. Protection of the IP is
necessary to ensure that the owner of the software does not lose their creative

Table 8.2 - Generic Software Acceptance Criteria

Generic Software Acceptance Criteria
(a) The Supplier shall provide all operating system, middleware, and application software to the
Acquirer security configured by Supplier in accordance with the FAR requirement based on 44 USC 3544
(b) (2) (D) (iii).
(b) The Supplier shall demonstrate that all application software is fully functional when residing on the
operating system and on middleware platforms used by the Acquirer in its production environment,
configured as noted above.
(c) The Supplier shall NOT change any configuration settings when providing software updates unless
specifically authorized in writing by the Acquirer.
(d) The Supplier shall provide the Acquirer with software tools that the Acquirer can use to continually
monitor software updates and the configuration status.
(e) At specified intervals by the Buyer, the Supplier shall provide the Acquirer with a comprehensive
vulnerability test report for the suite of applications and associated operating system and middleware
platforms used by the Acquirer in its production environment, configured as noted above.
(f) The Acquirer and Supplier agree to work together to establish appropriate measures to quantify and
monitor the supplier’s performance according to the contract requirements. Specific guidance should
include types of measures to be used, measures reporting frequency, measures refresh and retirement,
and thresholds of acceptable performance.
(g) The Supplier shall provide all operating system, middleware, and application software to the
Acquirer free of common vulnerabilities as specified by the Common Vulnerabilities and Exposures
(CVE®)—The Standard for Information Security Vulnerability Names that can be retrieved from http://
cve.mitre.org/
(h) The Supplier shall provide all operating system, middleware, and application software to the
Acquirer free of common weaknesses as specified in the Common Weakness Enumeration, A
Community-Developed Dictionary of Software Weakness Types that can be retrieved from http://cwe.
mitre.org/

602

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 602 6/7/2013 5:41:08 PM

http://cwe.mitre.org/

works and/or competitive advantage. The ownership of intellectual property
and the responsibilities of the supplier and the acquirer in protecting it must be
explicitly articulated in the contract agreements.

Exhaustive coverage of IP protection topics is beyond the scope of this book,
so in the following section, we will cover the different types of IP followed by
a discussion on the various types of licensing (usage and redistribution) terms
when dealing with software that is acquired from a supplier. It is advisable for
you to work closely with the legal team when consulting on IP-related areas.

Types of Intellectual Property (IP)
IP is primarily of two types (industrial protection and copyright), and the most
common software-related IP categories are depicted in Figure 8.6. Industrial
property can be categorized into those types that foster innovation, design
and creation of technology (e.g., inventions and trade secrets) and those that
foster fair competition and protect consumers by giving them the ability to
distinguish one product or service from another, and make informed decisions
(e.g., trademarks). Copyright is used to protect authors of literary and artistic
works and software programs and services are classified under this category.

Inventions (Protected by Patents)
As the strongest form of IP protection, patents protect an invention by exclusively
granting rights to the owner of a novel, useful, and non-obvious idea that offers a
new way of doing something or solving a problem. Patents are given to the owner
for a specified period of time (usually about 20 years), after which, the patent
protection expires and the invention enters into the public domain. This means
that after the patent protection time has elapsed, the original owner no longer
has exclusive rights to the invention. The rights that are granted to the owner
ensure that the invention cannot be commercially made, used, distributed, or
sold without the owner’s consent. Upon mutual agreement, the owner can grant
permission to license to use or sell the invention to other parties. The invention
may be a product or a process and is patentable as long as it meets the following
conditions:

 ■ It must be of practical use.
 ■ It must be novel, with at least one new characteristic that is non-

existent in the domain of existing knowledge (technical field). In
other words, there must be no prior-art.

 ■ It must demonstrate an inventive step.

603

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 603 6/7/2013 5:41:08 PM

 ■ It must be compliant with the law and deemed as acceptable in a
court of law, usually in the country of origin and filing, since the
jurisdiction for patents is not international, although they may be
recognized worldwide.

Besides providing recognition of one’s creativity and reward for inventions
that are marketable, patents encourage innovation to determine better and
newer ways of solving problems. The debate on the patentability of software-
related inventions is ongoing. In some countries, software is deemed patentable,
whereas in others it is not. This becomes particularly important when software
or services is developed by suppliers in countries, where they cannot be patented.
It is advisable to review the patentable guidelines for the country in which you
file the software patent and to consult with an IP legal representative. However,
software designs, algorithms and program code may be protected using copyright.

Trade Secret
A trade secret is inclusive of any confidential business information that provides a
company with a competitive advantage. It can be a design, formula, instrument,
method, pattern, practice, process, or strategy, as well as supplier or client lists
that bear the following characteristics:

 ■ The information must not be generally known, readily accessible,
or reason- ably ascertainable.

 ■ It must have commercial value that is lost or reduced should the
information be disclosed.

 ■ It must be protected by the holder of the information through
confidentiality agreements.

Examples of well-known trade secrets include the formula for carbonated
beverages, and Microsoft Windows operating system code. Even your software
code may need to be protected as a trade secret if disclosure of the code will
result in an unfair loss of your competitive advantage. The entire software code
may need to be protected as a trade secret, or perhaps just portions of your
code. Access control checks to code repositories in supplier locations become
important to protect trade secrets.

It is also important to recognize that just because your software is deployed in
object code form, it does not imply that trade secret protection is automatically
in effect. Non-disclosure agreements (NDAs) are legally enforceable and must
be in place with development personnel in the supplier’s company, however it
must be recognized that NDAs may not be enforceable universally. Additionally,

604

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 604 6/7/2013 5:41:08 PM

protection against reverse engineering should be designed and implemented
within the software because reverse engineering can yield knowledge about the
design and inner workings of the software and is, therefore, a potential threat to
the confidentiality of trade secrets.

Trademark
Trademarks are distinctive signs that can be used to identify the manufacturer
uniquely from others who produce a similar product. When this is for a service,
it is referred to as a service mark. The manufacturer can be a specific person or
an enterprise. The trademark can be a word, letter, phrase, numeral, drawing,
three-dimensional sign, piece of music, vocal sound, fragrance, color, symbol of
design, or combinations of these. Trademarks grant owners exclusive rights to
use them to identify goods and services or to authorize others to use them in
return for monetary remuneration for a period of time. The period of protection
varies, but trademarks can be renewed indefinitely.

The protection of trademarks from infringement is based on the need to
clarify the source of the goods or service exclusively to a particular supplier,
but by definition, a trademark enjoys no protection from disclosure, because
only when a trademark is disclosed can the consumers associate that trademark
to the goods or services supplied by the company. On the other hand, before
disclosure of a trade- mark, a company may need to protect the confidentiality
of the trademark until it is made public, in which case it would be deemed a
trade secret.

Figure 8.6 - Software Related Intellectual Property

605

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

Intellectual Property

Industrial Property Copyright

Innovative Fair
Competition

Literary &
Artistic

Inventions
(Patents)

Trade
Secret Trademark Software

Programs

CSSLP_v2.indb 605 6/7/2013 5:41:08 PM

When people start to associate the name of the software with the functionality
that the software provides, it is best to protect it with a trademark. By acquiring
a trademark on the name of the software means that, that name can only be
used exclusively by the manufacturer who trademarked it. This helps to avoid
confusion with the consumers of that software. Also, acquiring a trademark
gives the ability to pursue statutory remedies where there is an infringement of
the trademark.

Copyright
Unlike Patents that protect the idea itself, copyright protects the expression of
an idea. It gives rights to the creator of literary and artistic works. It includes
the protection of technical drawings, such as software design and architecture
specifications, that expresses the solution concept. While granting the creator
with the exclusive rights to use, copyright also grants the creator rights to
authorize or prohibit the use, reproduction, public performance, broadcasting,
translation, or adaptation of their work to others. Creators can also sell their
rights for payments referred to as royalties.

Like patents, copyrights also have an expiration, which is nationally defined
and usually extends even beyond the death of the creator, usually for about 50
years, as a means to protect the creator’s heirs. Unauthorized copying, illegal
installations and piracy of software are direct violations of the copyright laws
against a creator. Except for materials in the public domain, all software is
copyright protected.

Peer-to-peer-based torrents’ unauthorized sharing of copyrighted information
also constitutes copyright violations. To protect against copyright infringement,
it is advisable to design and develop your software so that it actively solicits
acceptance of terms of use and licensing by presenting the EULA with “I accept”
functionality. It must, however, be recognized that the EULA acceptance may
only deter copyright infringement and not prevent it.

Licensing (Usage and Redistribution Terms)
A software license is a legal instrument that governs the use and/or redistribution
of software. Figure 8.7 illustrates the different types of software licenses.

Some licenses are based on the number of users that will use the software and
others are based on the number of systems on which the on licensed software
can run.

While some licenses are not time-bound, most software has restrictions on
the time allowed for use (also known as Fixed Term Licenses) and usage past

606

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 606 6/7/2013 5:41:08 PM

that allowed timeframe would constitute a copyright violation. When fixed
term licenses are designed into the software, it is important to verify that the
enforcement controls to validate the date and time cannot be easily bypassed.
In other words, if the software is architected to check if the system time alone
is greater than the allowed timeframe, then someone can reset their system time
to be lesser than the allowed timeframe and continue using the software for a
prolonged timeframe or perpetually. Additionally, if the time to hardcoded into
the software, then reverse code engineering techniques such as byte patching
(changing instruction sets of the program at the byte level), and repacking of
the software program can be used to invalidate and bypass license and expiration
date checks easily. Most companies publish their software as shareware, which
means that a trial version is distributed without payment in advance for trial
purposes. Shareware is therefore also referred to as “try before you buy,” software,
demoware, or trialware. Once the set period of time (validity period) for the
demoware has passed, payment for the software is required to avoid copyright
infringements. The software can be designed to have functionality that would
render the software non-functional once the validity period has passed. While
this is needed to ensure discontinuance of use of the software after the trial
period term, it could also backfire and cause a denial of service (DoS) to valid
customers if it is exploited. Careful thought and design needs to be factored into
the concept of validity periods in software.

Some companies have resorted to publishing their software with limited
functionality, instead of the full-fledged functionality. “Try before you buy”
licenses are restrictive in functionality.

Additionally, some licenses are not global in scope and bound by territory
in which case usage and/or redistribution outside the stipulated territories
would constitute a copyright violation. When outsourcing software, territorial
restrictions on usage and/or redistribution must be determined and understood.

Software licenses can be primary grouped into the following categories based
on its accessibility to source code:

 ■ Closed source.
 ■ Open source.

Closed Source
When source code is not available to the acquirer, it is referred to as closed
source software. For the most part, closed source software are proprietary to the
company producing it and it is also sometimes referred to as Off-the-shelf (OTS)

607

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 607 6/7/2013 5:41:08 PM

software because proprietary software can be purchased off-the-shelf as in the
case of Commercial off-the-shelf (COTS), Government off-the-shelf (GOTS),
Modified or Modifiable off-the-shelf (MOTS), or licensed when bundled with
the hardware that is purchased. When software is licensed as a bundle with
the hardware, it is referred to as Original Equipment Manufacturer (OEM)
software.

COTS software is software that is ready-made and available for sale “as-is” to
the general public. These are designed to installed and integrated with existing
components. Examples of COTS software include operating systems, and office
processing software. GOTS software is software that is typically developed
within a government agency by their staff. It also comprises of software that
is developed exclusively for the government using government funds from the
agency that requires it. Government agencies prefer GOTS because they can
directly control what goes into the software and how and how-often it can be
changed.

MOTS software is usually a COTS product whose source code is modifiable.
In other words, the MOTS software allows customization by the acquirer or a
supplier in the supply chain. When used for military purposes, MOTS software
is generally referred to as Military off-the-shelf software. While the modification
of source code possibility promotes adaptable solutions for the acquirer, it is
important to recognize any terms and conditions that can be stipulated when
modifying the software. For example, who controls the modification, how and
how-often the modifications can be made are all important considerations.

The distinctive trait of proprietary software is that the software supplier
(publisher) often reserves some or all of the licensing rights, but ownership of the
software and its copies remain with the publisher (and that is why it is referred
to as proprietary). The rights of usage and redistribution are published and
communicated usually in the form of an end user licensing agreement (EULA).
Acceptance of the license is mandatory prior to usage and redistribution of the
software.

The advantage of proprietary software is that its mass production reduces its
overall cost to the acquirer, but the disadvantage is that the manufacturer owns
the software. The proprietary nature of this kind of software usually requires
the source code to, not be publicly available, although in some situations, the
supplier (commercial entity) may package and support open source software (as
in the case of Linux distributions).

608

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 608 6/7/2013 5:41:08 PM

Open Source
Unlike closed source software, in which the source code is protected and not
available for scrutiny, open source software is software whose source code is
available under a copyright license that permits acquirers and users to study,
change, and improve the software, as well as redistribute it in modified or
unmodified form. A free open source license implies that the software code can
be inspected, modified and redistributed, without any cost and it is different from
freeware, which is copyrighted software that is available for use, free of charge
for an unlimited time. Acceptance of the free open source license is optional
for use, study and modification, but if the user chooses to redistribute the open
source software, then the user must abide by the terms of the software license,
be it permissive or copyleft. Permissive licenses impose minimal requirements
on how the software is redistributed and BSD and MIT licenses fall under this
category. Copyleft licenses have reciprocity or share-alike requirements, which
requires that all subsequent users receive the same rights of freedom that is given
to the user that studies, uses and modifies the source code. GNU General Public
License (GPL) is an example of copyleft licenses.

When a supplier produces software and services, the licensing terms of usage
and/or redistribution needs to be known by the acquirer. This is particularly
important if the software is produced using open source software, because the
level of control on who develops the software, who owns the software and what
rights they have on the software is of critical importance to ensure that the
acquirer does not violate any licensing terms. An important observation when
dealing with open source software is that the establishment and/or enforcement

Figure 8.7 – License Types

609

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 609 6/7/2013 5:41:09 PM

of contracts between related parties may not be possible. Since a community
of developers usually develop open source software, trust and accountability
between the acquirer and the supplier is questionable as contractual controls
that an acquirer establishes with the supplier, may or may not be applicable
and/or enforceable. Permissive licenses give pretty much, anyone in the supply
chain, a free reign to modify the source code, which can lead to implantation of
malicious code and logic within the software prior to redistribution.

On one hand, the ability to look into the source code levels the playing field
for the defender as they can find vulnerabilities in the code, but at the same time,
on the other hand, the attacker also has the advantage of studying the source
code that is open and accessible, and write tailored exploits or modify the source
code to give rise to new threats that exploits the vulnerabilities in the code.
Furthermore, when the open source software is reused (code reuse) by several
entities, the exploitation of one entity can result in the exploitation of all entities
that use that same software. It is therefore imperative to establish a controlled
process that evaluates and inspects the open source software components prior
to usage. The community supporting the open source software must also be
investigated of their capabilities to support and their software engineering
practices vetted to determine their ability to address security issues when found.
A strategy to ensure the security of the open source software or components
of it, when it comes to procuring community open source software is that the
recipient of the software in the supply chain should to get the source code, review
it and build it in-house prior to deployment and usage and/or redistribution.

610

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 610 6/7/2013 5:41:09 PM

Software Development and Testing

Though supply chain risk management begins in the planning phase of the
acquisition life cycle, it spans the entire acquisition life cycle. The activities
that are undertaken during the development and testing phases are arguably
of significant importance because malicious actors who have access to the
source code can implant malicious logic and code that can go undetected and
cause serious damage after the software is deployed, if the code is not tested
for security characteristics. Supply chain risk management in the development
and testing phase involves the validation of conformance to requirements, code
review, access control of code repositories, assuring integrity of the build tools
and environment, and testing for secure code.

Assurance Requirement
Conformance Validation
Acquirers must mandate that the suppliers identify and describe the
evidence of controls they build in to the software. Suppliers should be
able to demonstrate conformance to the assurance case stated in the work
statement of an acquisition advertisement. Conformance to stated security
requirements must be validated and verified and this can be accomplished
using regression tests, penetration tests and certification & accreditation
activities. It must be recognized that assurance does not simply mean the
absence of software defects but the presence of demonstrable evidence that
verifies the existence of security controls in software code and components,
and their effectiveness in the function of mitigating security threats. The
supplier should be able to provide evidence to back up their assurance claims.

Code Review
One of the most important security testing processes that validates and verifies
the integrity of the software code, components and configurations, in a software
supply chain, is the security code review. It is also referred to as peer review. The
software is inspected to detect the presence of vulnerable and exploitable coding
patterns such as lack of input validation, lack of output encoding, dynamic
construction of queries, direct parameter manipulation references, use of insecure
APIs, non-malicious maintenance hooks, etc. Additionally, the review is very
useful in detecting the presence of malicious code and logic that is implanted by
a threat agent, who has access to the code, at any point in the supply chain. One

611

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 611 6/7/2013 5:41:09 PM

of the best ways to detect malicious code and logic embedded in the software is
by conducting a code review.

Malicious code and logic includes malware such as embedded backdoors,
logic bombs, Trojan horses, that are implanted in the code. These security code
reviews should therefore cover all aspects of the delivered software, including
code, components, and configurations.

These reviews can be manual or automated in nature. Automated code
reviews are popular as they can be relatively more scalable and have extensive
code coverage than manual ones. However, it is imperative that automated code
reviews are performed in conjunction with manual code reviews, as automated
code reviews tend to generate a lot of false positives and false negatives.

Some recommended strategies for security code reviews to be effective are:
 ■ Perform a code review on changed/modified code before approving

it to be checked back into the version control system.
 ■ Perform a code review on exercised code paths.
 ■ Partner with the development team members of the supplier.

When teams work together in performing code reviews, they are
more likely to discover non-obvious sematic logic issues in addition
to syntactic code weaknesses and threats.

 ■ Document the detected vulnerable code issues and malicious
threats in code in an issue tracking database so that they can be
tracked and remediated appropriately.

Code Repository Security
When software is developed by several suppliers in a supply chain, access to
code repositories that house the software code, components and configurations
must be restricted to ensure that only authorized changes can be made to the
code. These code repositories are also known as source code control systems or
configuration management systems.

Developers should have access only to the version of code necessary
to complete their responsibilities for only the time period that they need to
complete their operation. In other words, least privilege must be enforced on
a need-to-know basis. Source code control systems can provide such granular
levels of access control.

Identity management with auditing in place can provide accountability and
so any code changes that are made and checked back into the code repositories
must be traceable and identifiable to individuals who are making the change.

612

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 612 6/7/2013 5:41:09 PM

Functionality within the code must be tied to specific requirements, and
so changes to code should be traceable to the requirements traceability matrix
(RTM). This is important because such tracking back to a RTM minimizes
unnecessary code functions such as Easter eggs and bells-and-whistles, that can
potentially increase the attack surface. Changes to code must be managed and
performed only after the request to change the code is formally approved. All
change logs must be preserved for future review and analysis, and maintained for
the duration it is necessary to support forensic purposes. The logs files should list
the name of the code file or functionality within the code (where), the person
checking out and checking in the files (who), timestamp (when) and the type
and details of the change (what).

In addition to access control to the source code, the servers that hold these
code repositories should be protected as well. For the most part, these servers are
hosted within data centers with physical security and disaster recovery in place.
However, with the move toward cloud computing and virtualization, physical
security control of data centers may not be sufficient. Hardening of the servers
to mitigate remote theft and tampering, least privilege configuration of these
servers, and access control lists (ACLs) are necessary in addition to physical
security and disaster recovery controls.

It is also important to recognize that source code can be copied and maintained
in other code repositories, especially when static source code analysis need to be
performed. In such situation, the test systems that house the source code need
to be tightly controlled as well and only authorized personnel should be granted
access to these test systems.

Versioning or version control should be a feature of code repositories.
Change or configuration management must be tracked to ensure that previously
fixed security bugs in code are not overwritten and that the code is stable and
predictable in its operations. Furthermore, maintaining and managing a list of
all code assets, including those that are developed in-house of by a 3rd party is
useful for troubleshooting code issues in the supply chain.

Build Tools and Environment Integrity
In computing, software build refers to the process of converting source code
into an executable program (or binary code). In compiled programming
languages, the build process involves compilation of source code, linking to run-
time libraries and dependencies and packaging binary code using build tools
(or utilities). Some examples of build tools include Make (for Unix), Ant (for
Apache), NAnt (for .Net), and Maven (for Java).

613

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 613 6/7/2013 5:41:09 PM

The software build process is a very important process in the development
and delivery of secure supply chain software. One can go through rigorously
identifying and implementing security controls, but if the integrity of the build
process is questionable, and the build tools and environment not protected,
then the confidence of pristine untampered code is not assured and all efforts
previously undertaken to protect the assurance of the software can be nullified.
A threat agent who has access to source code, build tools and build environment
can modify the code at build time to thwart security controls in code or inject
malware or malcode into the build processes. It is therefore imperative to protect
the build process, build tools and environment.

The build environment should only have a limited number of owners and
actions on build scripts that are used for automation purposes, should be also
tracked and maintain within a secure code repository. All software build activity
should be traceable to the individual that made the change. When service
accounts are used in the automated build process, the individual that owns the
service account and/or the one with the authorization to execute the automated
build scripts should be tracked.

Testing for Code Security
It is advisable to create a library of tests that can be run after each hand-off of
the software by the suppliers in the supply chain. This makes security testing
repeatable and gives the potential for automation, providing heightened
assurance when these tests are conducted and their results analyzed, periodically.

Security testing tools improve the quality and security of the developed
and delivered software. While some tools analyze software requirements and
design models, others analyze source code and/or executables. The existence
and effectiveness of security controls in software can be attested using security
testing tools. Good security testing tools not only detect and identify the classes
of security weaknesses in software, but they also report fewer false positions and
indication the exact source of the vulnerability, sometimes to the exact line of
code as in the case of a security static source code analyzer.

The most common security testing tools that are used for detection inadvertent
vulnerable or intentional malicious code are listed here. Figure 8.8 shows some
of the most common tools used for testing the security of the software.

 ■ Static Source Code Analyzers crawl through the source code and
examines them to find out weaknesses that can lead to exploitable
vulnerabilities. They are one of the last lines of defense to reduce

614

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 614 6/7/2013 5:41:09 PM

vulnerabilities during development. The extent to which source
code has been tested is measured in terms of what is known
as code coverage. Good static source analysis tools should give
the ability to configure the degree of code coverage but have
complete code coverage turned on by default. bugScout, Clang
Static Analyzer, CodeCenter, CodeSecure, Coverity SAVETM ,
FindBugs, FindSecurityBugs, Rational AppScan Source Edition,
Rough Auditng Tool for Security (RATS), Source Code Analyzer
(Fortify), HP QAInspect are examples of some static source code
analyzers.

 ■ Static Byte Code Scanners detect vulnerabilities in the byte code.
FindBugs, FxCop, Gendarme, and Moonwalker are examples of
some static byte code scanners.

 ■ Static Binary Code Scanners detect vulnerabilities through
disassembly and pattern recognition. The primary benefit of static
binary code scanners is that you don’t need to have the source
code for analysis which makes it a very viable option for attesting
software integrity in a supply chain, as source code may not be
available in proprietary supply chain software. Another advantage
of static binary code scanners is that it gives one the ability to detect
vulnerabilities that are created by the compiler itself. Additionally,
binary code scanners can be used to test the security of library
function code or other dependency code that is delivered and
available only as a binary. IDA Pro, SecurityReview (Veracode),
and Microsoft’s CAT.NET are examples of some static binary code
scanners.

 ■ Dynamic Vulnerability Scanning Tools scan networks and
software applications for exploitable weaknesses at runtime, when
the software is operational.

Network vulnerability scanners provide system patch and
configuration auditing besides scanning the network for discovering
vulnerabilities. By scanning and monitoring network traffic,
operating systems and technologies can be fingerprinted and web
server names and versions can be identified (banner grabbing).
Additionally, vulnerable browsers, unpatched systems, out of date
certificates can be detected using network vulnerability scanners.
Nessus, Core Impact, NeXpose, QualysGuard, GFI LanGuard,
and SAINT are some examples of network vulnerability scanners.

615

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 615 6/7/2013 5:41:09 PM

Web application vulnerability scanners are tools used to
automatically scan and detect web application vulnerabilities such
as injection flaws, scripting issues, session mismanagement, cookie
poisoning and theft, request forgeries, framework vulnerabilities,
weak cryptographic functions, hidden form field manipulation,
fail open authentication and information disclosure threats that
storing sensitive information in unencrypted cache and/or verbose
comments that can be viewed on the client browser. BurpSuite,
w3af, Nikto, Paros proxy, AppScan, HP WebInspect, Samurai
Web Testing Framework (Samurai WTF) are some examples of
Web application vulnerability scanners.

 ■ Malware Detection and Combat Tools are used to discover
the presence of malicious software (malware) or malicious code
(malcode), such as computer viruses, worms, Trojan horses,
spyware, adware, logic bombs, backdoors, in code, scripts, or
content and remove them. They do this by first creating a reference
baseline of your system and then detecting the presence of malware
by scanning for malware and monitoring anomalous executions
that deviate from the baseline. Malware scanners attempt to
proactively detect vulnerabilities so that malware infestation
is minimized. Most malware scanners use signature files and
heuristics to detect malware. Malware writers are aware of these
detection techniques and so they disguise their malware or write

Figure 8.8 - Security Testing Tools

616

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 616 6/7/2013 5:41:09 PM

polymorphic malware to not match the signatures looked for as a
means to evade detection. Anti-malware programs combat malware
either by detecting and removing malware or by functioning as
a real-time protection system, disallowing the infection of the
malware in the first place. Microsoft Baseline Security Analyzer
(MBSA), Microsoft Process Explorer (formerly Sysinternals), Trend
Micro’s HiJackThis, Microsoft’s Malicious Software Removal Tool
(MSRT), SUPERAntiSpyware, Malwarebyte’s Anti-Malware
(MBAM) are examples of malware detection and combat tools.

 ■ Security Compliance Validation Tools are used to determine
how well an prescribed security plan is compliant with regulatory
or privacy mandates. Predominantly these tools have to do with
information disclosure threats, particularly financial and health
data security breaches, but they are not limited to just these types
of breaches. Often these tools are in the form of questionnaires and
manually executed. The PCI DSS Self-Assessment Questionnaire
(SAQ) is an example of a security compliance validation tool that
measures compliance with PCI DSS security requirements to
protect cardholder account information.

Software SCRM during Acceptance
Anti-tampering resistance controls, and authenticity and anti-counterfeiting
controls need to be verified to manage software supply chain risks during the
acceptance phase of the acquisition lifecycle. Prior to acceptance, it is vital to
verify the supplier claims and attest the existence and effectiveness of the security
controls in the software.

Anti-Tampering Resistance and Controls
When software is published and disseminated in a supply chain, it is important
to make sure that it cannot be tampered and when it is tampered, it must be
reversible. In other words, no unauthorized modifications must be allowed
but if for some reason anti-tampering controls are circumvented, then the
modifications must be reversible. Anti-tampering controls can be achieved
by cryptographically hashing the code (or code signing). Before transfer or
exchange, the cryptographic hash value of the software must be computed.
If the software is tampered during transit or exchange, the cryptographically
computed hash value after it is transferred or exchanged, will not match the
previously computed hash value.

617

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 617 6/7/2013 5:41:09 PM

Authenticity and Anti-Counterfeiting Controls
Authenticity and anti-counterfeiting controls are one of the most important
elements of software assurance in a supply chain.

With a plethora of counterfeited and pirated software prevalent in our
industry, when software is transferred or exchanged in a supply chain, it must
assure authenticity of origin and anti-counterfeiting control. In other words, the
receiving entity in the supply chain must be able to validate that the software
code or components came from a trusted (authentic) source in the chain of
suppliers. The risk of counterfeit software can also be greatly minimized, if the
software is purchased only from trusted (authorized) software publishers or
resellers.

Attesting the genuineness of the software and its pedigree (sometimes also
referred to as development background/lineage) is a challenge in software that
is developed by multiple suppliers, especially if it contains millions of lines of
code (LOC). Code signing can provide this genuineness of pedigree confidence.
As part of the code signing process, the software publisher digitally signs the
software and the recipient, prior to execution, verifies the digital signature of the
publisher. Counterfeit software would lack the digital signature of the software
publisher. Software publishers can also leverage license-checking technologies
and online product registration to validate genuineness of software and take
advantage of notification technologies to inform acquirers of counterfeit
software and license violations. Additionally, if technically feasible, software
publishers can implement a “whitelist” of software applications whose program
executions are pre-authorized and any deviations from the whitelist are blocked
from execution. This whitelist serves as the list of authentic software.

Supplier Claims Verification
Never take the supplier’s claims for granted. Always verify their claims.
Verification of assurance (security) starts with first determining if there are any
known vulnerabilities in the software produced by the supplier. Full disclosure
lists and security bug tracking lists can help in this regard. Verifying claimed
security features in the supplier software could also be achieved by black box
testing, if the source code is not available. This is usually the only way to attest
third party software, if you do not own the software and/or have access to the
source code, since reverse engineering the object code, not owned by you, could
have legal ramifications. You must conduct black box tests against software that
you have not yet purchased only after you have communicated to the vendor

618

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 618 6/7/2013 5:41:09 PM

your intent to do so and legally received their approval. It is always advisable to
have an independent third party perform this assurance check so that there is
objectivity and neutrality. To avoid potential security issues after release, assurance
checks are extremely critical steps that cannot be overlooked or taken lightly.

It is also important to be aware that merely checking a list of checkboxes
that the supplier claims as security controls in the software, without validation
of their existence and verification of their effectiveness is not a certain means
to attest supplier claims. Checklists in and of themselves don’t secure. If the
supplier claims that the software supports strong encryption, ask them to define
‘strong’ instead of assuming what they mean. What they mean by ‘strong’ may
in fact not even meet your organizational policy requirements or it may be
incompliant with industry standards. Verify that the cryptographic functionality
in the software is indeed ‘strong’, meeting your organizational requirements and
compliant with industry standards.

619

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 619 6/7/2013 5:41:09 PM

Software SCRM during Delivery (Handover)
Publishing and dissemination controls include maintaining chain of custody
and secure transfer. Additionally, code escrows and export controls regarding
foreign trade data and data regulations need to be communicated and attested
of compliance when software is transitioned from one supplier to another or to
the ultimate acquirer.

Chain of Custody
As software code or components moves from supplier to supplier in a software
supply chain, it is extremely important to make sure that the chain of custody is
controlled, until the software reaches the final user or acquirer of the software.
Controlling the chain of custody of the software means that each change to the
software and handoff is authorized, transparent and verifiable.

 ■ Authorized means that the modification to the software is requested
and permission to change the software is given in writing.

 ■ Transparent means that the requestor of the change and the entity
that is making the change knows about the change being made.
In other words, no hidden or unknown changes are being made to
the software.

 ■ Verifiable means that the change that is made to the software
can be attested against the request for the change and that no
unauthorized or unrequested changes are made.

Secure Transfer
In addition maintaining chain of custody of the software, it is imperative
that the code is transferred and exchanged securely as well. When software
is handed from one supplier to another in the supply chain, it should be
securely transferred i.e., protected in transit. Protection in transit can be
achieved using session encryption and end-to-end authentication. Not only
should the software code be protected but the contents being transmitted
should be as well. Using encryption technologies that operate in the
transport layer (e.g., TLS, SSL) or network layer (e.g., IPSec) is advised.

Code Escrows
When it comes to acceptance of software developed in a supply, consideration
must be given to code escrow in addition to the legal protection mechanisms
that need to exist. Code escrow is the activity of having a copy of the source code

620

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 620 6/7/2013 5:41:09 PM

of the implemented software in the custody of a mutually agreed upon neutral
third party known as the escrow agency or party. There are three parties involved
in an escrow relationship: the acquirer (licensee or purchaser), the publisher
(licensor or seller or supplier), and the escrow agency, as depicted in Figure 8.9.

This can be regarded as a form of risk transference by insurance, because it
insures the licensee continued business operations, should the licensor be no
longer alive (in case of a sole proprietorship), go out of business, or file for
bankruptcy (in case of a Corporation). Code escrow guards against loss of use of
mission-critical software associated with supplier (vendor/publisher) failure. It is
also important to understand that code escrow protects the licensor in guarding
their IP rights as long as the supplier wishes to retain the rights. The licensee
cannot purchase the software or reverse engineer the software to write their own.
Determination of whether such a breach has occurred can be established by
comparing the software to the copies and versions that are held in escrow.

What is escrowed is dependent upon the escrow agreement. It is usually
only the source code that is escrowed and so is commonly known as source code
escrow. However, it is advisable that versions of both source and object code is
escrowed along with appropriate documentation for each version.

One of the main failures in code escrow situations is not the fact that the
code (source and/or object) is not escrowed properly, but in the verification and
validation processes after the code has been escrowed.

Verification and validation should minimally include the following:

Figure 8.9 - Code Escrow

621

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 621 6/7/2013 5:41:09 PM

 ■ Retrieval Verification: Can the processes to retrieve the code from
the escrow party be followed? Do you have the evidence to prove
validity of your identity when requesting retrieval of the escrow
versions, and is it protected against spoofing threats? Are there
change and version control mechanisms in place that protect the
integrity of the versions that are held in escrow, and is the check-
out/check-in process audited?

 ■ Compilation Verification: Can the source code be compiled to
executable (object) code without errors? Do you have a development
and test environment with all applicable dependencies, escrowed as
well, in addition to the code, so that you can compile the source
code that is retrieved from escrow?

 ■ Version Verification: Does the source code version that is escrowed
match the version of the object code that is implemented in your
environment?

Notably, code escrow agreements are usually applicable to custom software
that the supplier specifically develops for the acquirer. However in some
situations, the source code of COTS may be escrowed and released under a free
software or open source license when the original developer (supplier) no longer
continues to develop that software or if stipulated fund-raising conditions are
met. This model is referred to as the ransom model of software publishing and
the software is known as ransomware. When software is developed in a supply
chain, the applicability of ransomware must be determined, and if applicable
agreed upon.

Export Control and Foreign Trade
Data Regulations Compliance
The acquirer and the supplier are both responsible to comply with any regulatory
requirements pertaining to export control and foreign trade (customs) regulations.
Overseas or foreign suppliers must be required to provide export control and
foreign trade data protection assurance in a timely and professional way. Before
the supplier delivers the software, the supplier should obtain the necessary export
licenses, unless the acquirer is required to apply for those licenses.

Preferably before the delivery of the software or services, the supplier must
inform the acquirer of any applicable export control and foreign trade regulatory
requirements in the countries of export and import. But if these requirements
are not communicated in advance, within a set period of time after delivery of
the software or service, these requirements need to be communicated to the

622

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 622 6/7/2013 5:41:09 PM

acquirer. If the software or service is going to be resold, then re-export control
and regulations need to be communicated and understood as well. For each
software or service, some of the applicable requirements includes, but not
limited to the:

 ■ Export Control Classification Number (ECCN)
 ■ Export list numbers
 ■ Commodity code classification for foreign trade statistics
 ■ Country of origin

The World Customs Organization (WCO) has developed the SAFE
framework of standards. The goals of the SAFE framework includes:

 ■ Establishing standards that provide supply chain security
promoting certainty and predictability

 ■ Enabling integrated supply chain management for all modes of
transport

 ■ Enhancing the role, functions and capabilities of Customs
 ■ Promoting the seamless movements of goods through secure

international trade supply chains.

Additionally, the SAFE framework aims to strengthen
 ■ Cooperation between Customs administrations to improve their

capability to detect high-risk deliveries (Customs-to-Customs)
 ■ Partnerships between Customs and Businesses (Customs-to-

Business)

The Customs-to-Customs and Customs-to-Business strategies are generally
referred to as the two pillars of the WCO SAFE framework.

Software SCRM during Deployment
(Installation/Configuration)

Only after verifying and validating the evidence of assurance controls in the
software, and the formal acceptance of the software, must it be securely deployed.
Secure deployment first determines the operational readiness of the software.
Operational Readiness Reviews (ORR) include configuring the software to
be operational ready and resilient to hacker threats, establishing applicable
perimeter defense controls and ensuring the security of the software o during
integration of systems including the validation of reused code components,
interfaces and interdependencies.

623

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 623 6/7/2013 5:41:10 PM

Secure Configuration
When software is installed or integrated in the acquirer’s computing ecosystem,
it should be not only be secure by design, but it must be configured to be secure
by default and secure in deployment. Suppliers must be required to provide with
their software, the secure configuration settings along with the details of risk
when those settings are not set. Leaving it to the end-user to configure security
is usually insufficient in assuring confidence of secure operations. When the
software is secure by default, it means that the installation of the software can be
performed without any additional configuration changes needed to secure the
software. To be secure in deployment implies that the secure configurations are
maintained and updated with relevant patches, and the software is continuously
monitored and audited for malicious users, content and attacks.

If feasible and applicable, suppliers must be required to adhere to Security
Content Automation Protocol (SCAP) specifications. For continued protection
using automation, it is best advised to ensure that the configuration and
modifications of code and code repositories can be expressed in machine-
readable form and compliant with SCAP specifications.

Perimeter (Network) Security Controls
Perimeter defense controls continue to be necessary in a software supply chain.
As software moves from supplier to supplier, it is important to ensure that
unauthorized individuals are cannot tap into a supplier’s network and tamper
the software. This is where firewalls, secure communications protocols, and
session management come in handy. What types of firewalls (or application
gateways) are used by the supplier and how are they monitored/managed is
an important question to answer. However with outsourcing/offshoring and a
move toward cloud computing, the perimeter that once defined the boundary
of an a company is thin or practically non-existent and in an supply chain, this
problem becomes even more aggravated and the potential for threat increases
proportionally with the number of suppliers in the supply chain.

System-of-Systems (SoS) Security
Software acquisition, which used to primarily involve the development and
delivery of a standalone system is now inclusive of provisioning technical
capabilities from various suppliers who create code or components that are
integrated within a larger System-of-Systems (SoS). Weaknesses in code and lack
of security controls and secure configurations in any of the software products
and services pose the risk of a security breach to all SoS participants. SoS is made
up of independent systems that are usually acquired separately and integrated to

624

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 624 6/7/2013 5:41:10 PM

operate as a unit. On one hand, SoS’ are characterized by having a high degree of
connectivity (interconnections) and interdependencies between several systems
that are integrated, while on the other they also are known for the limited or
lack of control. The acquirer or owner of an SoS has very little to no control over
or knowledge of security risks of each supplier contributing to the various code
or components of an SoS. Operational risks are therefore higher with increased
connectivity and reduced acquisition controls in today’s computing world,
especially when proprietary off-the-shelf software and open source components
are used as system components.

All the suppliers that participate in creating software components for a
SoS must be required to prove that the components they produced underwent
an attack surface analysis using secure development processes such as threat
modeling, secure coding and security testing. When existing components from
varied sources are integrated to create a SoS, architectural design reviews from a
security viewpoint is usually a challenge. This is why the acquirer must perform
system integration tests, not just from a functionality perspective, but also from
an assurance perspective.

Furthermore, reused code or components that were individually and
independently secure may now be exposed to inputs (both good and bad)
that it may not be able to handle appropriately upon component assembly.
Unvalidated input can lead to vulnerabilities such as injection attacks,
overflow attacks and parameter manipulation attacks. Fuzz testing or fuzzing
can be very useful in determining how the components when assembled
together function in handling inputs and how the respond to faulty situations.

Testing the interfaces and interdependencies between components in an SoS
helps to reveal single points of failure or weak links that can render the entire
SoS exploitable. It is also necessary to determine how components including
data, in a SoS are shared, as systems and the data they process and transmit can
be compromised when there are no end-to-end security protections in place.

Software SCRM during
Operations and Maintenance
Operations and maintenance (sustainment) supply chain risk management
includes assuring reliable functioning (integrity) of the software when it
is operational. It also includes patching and upgrades, termination access
controls, custom code extension checks, continuous monitoring and incident
management.

625

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 625 6/7/2013 5:41:10 PM

Runtime Integrity Assurance
In addition to providing anti-tampering and authenticity assurance prior
to installation, code signing also provides runtime permissions to the
code at runtime, when the code is trusted and so it functions as a runtime
integrity control as well. Another technology that provides runtime
integrity verification and assurance is the Trusted Platform Module (TPM).
Since TPM is a hardware component that can be used in conjunction with
signed code (operation systems, applications and add-on components), it
augments runtime integrity by assuring the authenticity of both hardware
and software components. However, it must be recognized that if the code is
not signed, the TPM checks for authenticity may not be effective as expected.

Patching and Upgrades
Over time, newer exploitable vulnerabilities in software are discovered. This
is particularly elevated with the shifting of responsibilities from the original
developer (supplier) to the new development team, or integrator, or the final
acquirer. Software provenance also includes changes in the responsibility for
ongoing development of newer version or hotfixes (patches) for the software.
To ensure that the software can continue to function reliably with acceptable
resilience and recoverability, discovered vulnerabilities must be tracked, managed
and resolved as quickly as possible. But since complete avoidance of risk by
removing the vulnerable software, is not feasible, especially if the software is
a component in a larger SoS, one has to resolve to patching (updating) the
software with hotfixes to address the vulnerabilities or upgrading to a version
that is more secure. . It is important for each supplier in the supply chain to have
a formal patch management enterprise wide process to track, manage and resolve
vulnerabilities in a timely manner. If patches are published by one supplier to
another in the supply chain, then a reputable and secure update process must
be in place. This should include update notifications prior to patching, a secure
repository from where to get the patch, publication of valid checksums and
hashes for verification after patching, publication of test validation suites to
determine the effectiveness of the patch, and a mechanism to report post-
patching findings.

Termination Access Controls
One of the most overlooked security issues in the supply chain is the correct
implementation of termination access controls. Development staff should
be revoked of any access to the software if they are terminated or if they
change roles that do not require them to have continued access. Disgruntled

626

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 626 6/7/2013 5:41:10 PM

employees (usually those who are terminated) are a serious threat agent that can
implant logic bombs and malicious code in software, especially if appropriate
termination access control protection is lacking. Additionally, once software is
handed over from one supplier to another or to the acquirer, only the receiving
party’s personnel should be allowed to access and/or modify the software code,
components and configuration.

Custom Code Extensions Checks
Over time, software that is acquired is no longer sufficient to address changing
business needs, and customization of the software by writing custom code and
integrating with other software components or systems (as in the case of SoS’)
becomes necessary.

When customization of software is undertaken, it is absolutely critical to
make sure that the custom code written to extend the existing functionality
of the software also follows secure development practices and the interfaces
when integrating are secure. The added functionality must undergo threat
modeling, the custom code must be reviewed for inadvertently embedded and/
or intentionally implanted vulnerabilities and malcode, and the integrated
components or systems must undergo system integration testing. Chain of
custody when integrating with additional components and systems must be
maintained. It is also necessary to catalog and secure the added code, components
and configurations in code repositories, and grant access to these repositories on
a “need-to-know” basis only.

Continuous Monitoring and Incident Management
Periodic testing and evaluation of the software supply chain’s products, processes
and people involved, is necessary to provide insight into the effectiveness of
security controls that are planned, designed, implemented, deployed or inherited.
This is the primary objective of continuous monitoring activities. Continuous
monitoring also helps to determine the impacts of planned or unplanned
activities to the assurance of the software or SoS besides helping to validate
the performance of suppliers against their SLAs. Furthermore, continuous
monitoring is useful to identify the unintentional or intentional introduction of
exploitable vulnerabilities. Scanning (vulnerability, network, operating systems),
penetration testing, and intrusion detection systems are useful to monitor the
software and operational environment in a supply chain.

A patch or an upgrade can inadvertently relax the configuration settings in
the operating environment, or a hacker could intentionally reverse engineer,

627

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 627 6/7/2013 5:41:10 PM

tamper and repackage the software with malware such as Trojan horses and
rootkits, that will go undetected, and result in security incidents (breaches), if
the software is not monitored and attested periodically.

The periodicity of monitoring activities is dependent on the criticality of the
software to the business as well as regulations that the company needs to comply
with. The PCI DSS mandates periodic scanning for malware threats, however,
it is advisable to conduct vulnerability, network and operating environment
scans for anti-tampering, authenticity, and anti-counterfeiting controls, at each
handoff of the software from one supplier to the next, in a supply chain.

When penetration tests are performed as part of a continuous monitoring
activity, the penetration test must take into account, both external and internal
attack scenarios.

Intrusion detection systems should be configured to detect intrusions not only
on the software itself, but on code repositories as well. When pattern matching
intrusion detection systems are used, the continuous monitoring activity must
first import the latest signatures in their canonical and non-canonical forms
and have them configured as part of the check, since malware writers tend to
obfuscate and write polymorphic malware to avoid detection. When behavioral
intrusion detection systems are used to detect anomalies, then the continuous
monitoring process must validate the software against a pre-configured or pre-
learned baseline of normal-behavior set that is tightly controlled.

Monitoring and analyzing network traffic can also lead to the detection of
malware infestation, especially if ports and protocols that are not supposed to be
open and communicating are found to be.

Since the robustness of a continuous monitoring strategy is tied to the
active participation and involvement of owners (information security owners,
data owners, business owners), executive management and authorizing officials,
architects, operations team members, assurance team members and security
control providers, development of an effective continuous monitoring strategy
in a supply chain, where these roles and responsibilities shift as the software is
transferred, becomes a daunting challenge.

Automation of continuous monitoring activities makes the process, not
only efficient, but also consistent and cost-effective. Although automation tools
and techniques, such as SCAP, help in automating the continuous monitoring
process, it must be recognized that automation can be primarily used to evaluate
and test some (not all) technical security controls. Management and operational
controls are not easily automated.

628

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 628 6/7/2013 5:41:10 PM

Security incidents that are identified as a result of the monitoring must
fixed if the acquirer has access and the rights to modify the source code or
communicated to the supplier if the supplier is responsible for fixing security
defects. These incidents need to be fixed as soon as possible to reduce the risk of
the software being exploited.

629

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 629 6/7/2013 5:41:10 PM

Software SCRM during Retirement
Retirement of software is one of the most overlooked of activities in the software
development lifecycle, be it for in-house developed software or for supply chain
software. Retirement of software includes decommissioning (or deletion) of the
software from operations, but also disposal of the data processed, transmitted or
stored by the software, if the data is no longer needed for business operations, or
if there is no regulatory requirement to maintain the data. In other words, data
disposal should ensure that there is no data remanence.

When acquirers fail to establish end-of-life decommissioning or disposal
requirements or rules, the likelihood of unauthorized access and disclosure
threats increases considerably. Partial reuse of components and termination access
control, are examples of software retirement. Media sanitization, overwriting
(formatting) data, disk degaussing, physical destruction, removal of sensitive
information and cryptographic keys, are some mechanisms for the disposal of
data. If there is a need to continue keeping the data for use by software that
replaces the decommissioned software, then the data has to be securely migrated
and validated for usability and assurance, especially if suppliers outside the
purview of your control develop the replacing software.

It is also noteworthy to recognize that decommission of software need
not have to wait till the retirement or disposal phase of the SDLC. It can be
undertaken anytime during or after prototyping, design, research & development
and during the operations/maintenance phase.

Table 8.2 illustrates the software supply chain risk management processes (or
activities) throughout the acquisition life cycle.

630

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 630 6/7/2013 5:41:10 PM

Acquisition Lifecycle Phase Supply Chain Risk Management (SCRM) Activity

Planning
(Initiation)

•	 Perform an initial risk assessment to determine
assurance requirements (protection needs
elicitation)

•	 Develop acquisition strategy and formulate plan
with evaluation criteria

Contracting •	 Include SCRM as part of the acquisition
advertisement (RFP, RFQ, etc.)
Develop contractual and technical controls
requirements

•	 Perform Supplier Risk Assessment (Supplier
Sourcing)

•	 Evaluate Supplier Responses
•	 Establish Intellectual Properties (IP) ownership

and responsibilities
•	 Negotiate and award contract

Development & Testing •	 Evaluate conformance to assurance
requirements

•	 Conduct code reviews
•	 Ensure security of code repositories
•	 Ensure security of built tools and environment
•	 Conduct security testing

Acceptance •	 Validate anti-tampering resistance and controls
•	 Verify authenticity (code signing) & anti-

counterfeiting controls
•	 Verify supplier claims

Delivery
(Handover)

•	 Maintain Chain of Custody
•	 Secure transfer
•	 Enforce code escrows (if required)
•	 Comply with export control & foreign trade data

regulations

Deployment
(Installation/Configuration)

•	 Configure the software securely
•	 Implement perimeter (network) defense controls
•	 Validate System-of-Systems (SoS) security

Operations & Monitoring •	 Check runtime integrity assurance controls
•	 Patch & Upgrade
•	 Implement termination access controls
•	 Check custom code extensions
•	 Continuously monitor software/supplier
•	 Manage security incidents

Retirement
(Decommissioning / Disposal)

•	 Decommission (delete) or replace software
•	 Dispose data to avoid risk of data remanence

Table 8.3 - Software Supply Chain Risk Management Processes

631

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 631 6/7/2013 5:41:10 PM

The following references are recommended to
get additional information on software assurance
in the supply chain:

 » (ISC)2’s whitepaper on “Software Security in a Flat World”

 » ISO 28000 standard specifies the requirements for a security
management system including those aspects critical to security
assurance of the supply chain.

 » The Department of Homeland Security (DHS) Software
Assurance (SwA) Forum publications and appendices on
security in acquisitions and mitigating risks to the enterprise.
The appendices have questionnaires and contractual language
samples that are worth knowing about.

 » The Software Assurance Forum for Excellence in Code (SAFECode)
publications on supply chain integrity.

 » The Open Web Application Security Project (OWASP) Secure
Software Contract Annex provides a sample of contractual
language when acquiring software and services.

 » The Computer Economics IT Outsourcing Statistics reports

 » The National Institute of Standards and Technologies (NIST)
Software Assurance Metrics And Tools Evaluation (SAMATE)
project recommendations.

632

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 632 6/7/2013 5:41:10 PM

Summary and Conclusion

In today’s computing environment, seldom are software
solutions developed by a single company, but a chain of
suppliers, who are for the most part geographically diverse,
are developing the software solution in its entirety or just
some parts of the software, which is then integrated. This
puts a burden on the acquirer and end-user of the software,
to protect the products, processes and people involved
in the software supply chain. Outsourcing and managed
services solutions are on the increase and the threat of
unauthorized disclosures, insider threats, tampering,
implantation of malicious logic and malcode, counterfeiting,
piracy, surreptitious channels, fraud and FOCI concerns are
prevalent in software developed and delivered using a supply
chain. It is therefore crucial to incorporate assurance activities
throughout the acquisition life cycle beginning with supplier
risk assessment to identify the protection needs and sourcing
suppliers in the planning phase. Contractual controls and IP
ownership and responsibilities are to be established during
the contracting phase. Conformance validation to supply
chain security requirements and technical controls such as
code reviews, access controls to code repositories and the
build tools and build environment are necessary activities
during the development phase. During the testing phase,
attestation of secure code characteristics and detection of
embedded code issues that are inadvertently introduced
or intentionally implanted into the code, is a necessity to
assure the integrity of the software developed and delivered
via the supply chain process. When the supply chain
software is published and disseminated, anti-tampering and
authenticity controls such as code signing must be designed.
Secure transfer and chain of custody during transfer of the

633

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 633 6/7/2013 5:41:10 PM

software must be in place. It is also important to verify the
claims made by the suppliers by validating the presence
and effective implementation of security controls within
the code, prior to software acceptance. Deployment of
the software should be done with taking into account
secure-by-default and secure-in-deployment principles.
Perimeter defense controls should be established on the
network of each supplier in the supply chain to prevent
unauthorized access and data privacy and separation in
shared hosting networks must be validated. The software
should also be securely configured and each component
of a SoS must be scrutinized prior to integration to ensure
the confidence that the software will function reliably as
expected. Operationally, the software needs to be hacker-
resilient, which can be achieved by run-time integrity
assurance using code signing and TPM technologies,
patching and upgrades, termination access controls,
continuous monitoring and incident management. When
customization of code is necessary to address changing
business and assurance needs, the customization to extend
code functionality using consumable interfaces need to
be carefully designed and implemented to not allow the
possibility of a weak link in the entire supply chain. Finally,
escrowing code as assurance for the acquirer to continue
business operations and as assurance for the supplier in
protecting their IP rights is an important aspect of supplier
to acquirer transitioning. During this transitioning phase, in
addition to the code escrow, communicating and staying
compliant with export control and federal trade data
regulations is critical. Finally at the end of the acquisition life
cycle, it is important to securely decommission or replace
the software and dispose or migrate the data as part of
the retirement process to avoid risks of insecure software.

634

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 634 6/7/2013 5:41:11 PM

1. The increased need for security in the software supply chain is
PRIMARILY attributed to

A. cessation of development activities within a company.
B. increase in the number of foreign trade agreements.
C. incidences of malicious code and logic found in acquired software.
D. decrease in the trust of consumers on software developed within

a company.

2. Which phase of the acquisition life cycle involves the issuance of
advertisements to source and evaluate suppliers?

A. Contracting
B. Planning
C. Development
D. Delivery (Handover)

3. Predictable execution means that the software demonstrates all the
following qualities EXCEPT?

A. Authenticity
B. Conformance
C. AuthorizationTrustworthiness

4. Which of the following is a process threat in the software supply chain?
A. Counterfeit software
B. Insecure code transfer
C. Subornation
D. Piracy

5. In the context of the software supply chain, the principle of persistent
protection is also known as

A. End-to-end encryption
B. Location agnostic protection
C. Locality of reference
D. Cryptographic agility

635

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

Review Questions

CSSLP_v2.indb 635 6/7/2013 5:41:11 PM

6. In pre-qualifying a supplier, which of the following must be assessed to
ensure that the supplier can provide timely updates and hotfixes when
an exploitable vulnerability in their software is reported?

A. Foreign ownership and control or influence
B. Security track record
C. Security knowledge of the supplier’ s personnel
D. Compliance with security policies, regulatory and privacy

requirements.

7. Which of the following can provide insight into the effectiveness and
efficiencies of the supply chain processes as it pertains to assuring trust
and software security?

A. Key Performance Indicators (KPI)
B. Relative Attack Surface Quotient (RASQ)
C. Maximum Tolerable Downtime (MTD)
D. Requirements Traceability Matrix (RTM)

8. Which of the following contains the security requirements and the
evidence needed to prove that the acquirer requirements are met as
expected?

A. Software Configuration Management Plan
B. Minimum Security Baseline
C. Service Level Agreements
D. Assurance Plan

9. The difference between disclaimer-based protection and contracts-
based is that

A. Contracts-based protection is mutual.
B. Disclaimer-based protection is mutual
C. Contracts-based protection is done by one-sided notification of

terms
D. Disclaimer-based protection is legally binding.

10. Software programs, database models and images on a website can be
protected using which of the following legal instrument?

A. Patents
B. Copyright
C. Trademarks
D. Trade secret

636

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 636 6/7/2013 5:41:11 PM

11. You find out that employees in your company have been downloading
software files and sharing them using peer-to-peer based torrent
networks. These software files are not free and need to be purchase
from their respective manufacturers. You employee are violating

A. Trade secrets
B. Trademarks
C. Patents
D. Copyrights

12. Which of the following legal instruments assures the confidentiality
of software programs, processing logic, database schema and internal
organizational business processes and client lists?

A. Standards
B. Non-Disclosure Agreements (NDA)
C. Service Level Agreements (SLA)
D. Trademarks

13. When source code of Commercially Off-The-Shelf (COTS) software
is escrowed and released under a free software or open source license
when the original developer (or supplier) no longer continues to develop
that software, that software is referred to as

A. Trialware
B. Demoware
C. Ransonware
D. Freeware

14. Improper implementation of validity periods using length-of-use
checks in code can result in which of the following types of security
issues for legitimate users?

A. Tampering
B. Denial of Service
C. Authentication bypass
D. Spoofing

15. Your organization’s software is published as a trial version without any
restricted functionality from the paid version. Which of the following
MUST be designed and implemented to ensure that customers who
have not purchased the software are limited in the availability of the
software?

637

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 637 6/7/2013 5:41:11 PM

A. Disclaimers
B. Licensing
C. Validity periods
D. Encryption

16. When must the supplier inform the acquirer of any applicable export
control and foreign trade regulatory requirements in the countries of
export and import?

A. Before delivery (handover)
B. Before code inspection.
C. After deployment.
D. Before retirement.

17. The disadvantage of using open source software from a security
standpoint is

A. Only the original publisher of the source code can modify the
code.

B. Open source software is not supported and maintained by mature
companies or communities.

C. The attacker can look into the source code to determine its
exploitability.

D. Open source software can only be purchased using a piece-meal
approach.

18. Which of the following is the most important security testing process
that validates and verifies the integrity of software code, components
and configurations, in a software security chain?

A. Threat modeling
B. Fuzzing
C. Penetration testing
D. Code review

19. Which of the following is LEAST likely to be detected using a code
review process?

A. Backdoors
B. Logic Bombs
C. Logic Flaws
D. Trojan horses

638

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 638 6/7/2013 5:41:11 PM

20. Which of the following security principle is LEAST related to the
securing of code repositories?

A. Least privilege
B. Access Control
C. Auditing
D. Open Design

21. The integrity of build tools and the build environment is necessary to
protect against

A. spoofing
B. tampering
C. disclosure
D. denial of service

22. Which of the following kind of security testing tool detects the presence
of vulnerabilities through disassembly and pattern recognition?

A. Source code scanners
B. Binary code scanners
C. Byte code scanners
D. Compliance validators

23. When software is developed by multiple suppliers, the genuineness of
the software can be attested using which of the following processes?

A. Code review
B. Code signing
C. Encryption
D. Code scanning

24. Which of the following must be controlled during handoff of software
from one supplier to the next, so that no unauthorized tampering of
the software can be done?

A. Chain of custody
B. Separation of privileges
C. System logs
D. Application data

639

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

CSSLP_v2.indb 639 6/7/2013 5:41:11 PM

25. Which of the following risk management concepts is demonstrated
when using code escrows?

A. Avoidance
B. Transference
C. Mitigation
D. Acceptance

26. Which of the following types of testing is crucial to conduct to
determine single points of failure in a System-of-systems (SoS)?

A. Unit
B. Integration
C. Regression
D. Logic

27. When software is handed from one supplier to the next, the following
operational process needs to be in place so that the supplier from whom
the software is acquirer can no longer modify the software?

A. Runtime integrity assurance
B. Patching
C. Termination Access Control
D. Custom Code Extension Checks

640

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 640 6/7/2013 5:41:11 PM

641

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

References

Eilam, Eldad, and Elliot J. Chikofsky. "Obfuscation Tools." Reversing: Secrets of
Reverse Engineering. Indianapolis, IN: Wiley, 2005. 345. Print.

Ellison, Robert J., John B. Goodenough, Charles B. Weinstock, and Carol Woody.
Evaluating and Mitigating Software Supply Chain Security Risks. Rep. Software
Engineering Institute (SEI), May 2010. Web. 7 Nov. 2012. <http://www.sei.cmu.
edu/reports/10tn016.pdf>.

Gartner. Maverick Research. Gartner Says IT Supply Chain Integrity Will Be
Identified as a Top Three Security-Related Concern by Global 2000 IT Leaders by 2017.
Gartner, 18 Oct. 2012. Web. 07 Nov. 2012. <http://www.gartner.com/it/page.
jsp?id=2202715>.

Howard, Michael, and David LeBlanc. "Security Principles To Live By." Writing
Secure Code. 2nd ed. Redmond, WA: Microsoft, 2003. 51-53. Print.

Howard, Michael, and Matthew Coles. "SAFECode Security Development Lifecycle
(SDL)." Proc. of Software Assurance (SwA) Forum. SAFECode and Department of
Homeland Security, 12 Sept. 2011. Web. 7 Nov. 2012. http://1.usa.gov/U8mVmu

"ISO/IEC 27006:2011 - Information Technology -- Security Techniques --
Requirements for Bodies Providing Audit and Certification of Information Security
Management System." iso.org. International Organization for Standardization (ISO),
06 Aug. 2012. Web. 07 Nov. 2012. <www.iso.org/iso/home/store/catalogue_ics/
catalogue_detail_ics.htm?csnumber=59144>.

"ISO 28000:2007 Specification for Security Management Systems for the Supply
Chain." iso.org. International Organization for Standardization, 17 Dec. 2010. Web.
06 Nov. 2012. <http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.
htm?csnumber=44641>.

"IT Outsource Spending on the Rise: Report." Eweek.com, 09 Oct. 2012. Web. 06
Nov. 2012. <http://www.eweek.com/c/a/IT-Management/IT-Outsource-Spending-
on-the-Rise-Report-515990/>.

Kassner, Michael. "10 Ways to Detect Computer Malware." TechRepublic, 25 Aug.
2009. Web. 07 Nov. 2012. <http://www.techrepublic.com/blog/10things/10-ways-
to-detect-computer-malware/970>.

CSSLP_v2.indb 641 6/7/2013 5:41:11 PM

http://iso.org
http://iso.org
http://Eweek.com

642

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Kissel, Richard L., Kevin M. Stine, Matthew A. Scholl, Hart Rossman, Jim Fahlsing,
and Jessica Gulick. "Security Considerations in the System Development Lifecycle."
Nist.gov. NIST Special Publications 800-64 Rev 2., 16 Oct. 2008. Web. 07 Nov.
2012. <http://www.nist.gov/manuscript-publication-search.cfm?pub_id=890097>.

Patton, Carole. "Buyers Turning Toward Software Escrow Plans."" Info World
9.43 (1987): 57-58. Web. 7 Nov. 2012. http://books.google.com/books?id=_
z4EAAAAMBAJ

Paul, Mano. Software Security In a Flat World. Publication. International Information
Systems Security Certification Consortium (ISC)2, n.d. Web. 7 Nov. 2012. <http://
bit.ly/RHZS3m>.

Shoemaker, Dan. "Building Security into the Business Acquisition Process." Https://
buildsecurityin.us-cert.gov. Department of Homeland Security, 06 Apr. 2007.
Web. 06 Nov. 2012. <https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/
acquisition/896-BSI.html> .

Simpson, Stacy, ed. “The Software Supply Chain Integrity Framework”. Publication.
SAFECode and Department of Homeland Security, 21 July 2009. Web. 7 Nov.
2012. <http://bit.ly/rPumm>.

Simpson, Stay, ed. “Software Integrity Controls - An Assurance-Based Approach to
Minimizing Risks in the Software Supply Chain”. Issue brief. SAFECode, 14 June
2010. Web. 7 Nov. 2012. <http://bit.ly/bPJc1d>.

Sniderman, Brad. "Trademarks and Software - When Should Developer’s Safeguard Their
Work with the Use of Trademark Protection?" MacTech 12.10 (n.d.): n. pag. MacTech.
Web. 07 Nov. 2012. <http://www.mactech.com/articles/mactech/Vol.12/12.10/
TrademarkIssues/index.html>.

"Software Assurance in Acquisition and Contract Language" Acquisition &
Outsourcing Volume I (Version 1.2). Software Assurance Pocket Guide Series. Build
Security In. Department of Homeland Security National Cyber Security Division, 18
May 2012. Web. 07 Nov. 2012. <http://1.usa.gov/h66tcQ>.

"Software Assurance (SwA) in Acquisition: Mitigating Risks to the Enterprise." Software
Assurance Pocket Guide Series. Build Security In. Department of Homeland Security
National Cyber Security Division, 22 Oct. 2008. Web. 07 Nov. 2012. <http://1.usa.
gov/UwjFSr>.

Stackpole, Cynthia. "Requirements Traceability Matrix." A Project Manager's Book of
Forms: A Companion to the PMBOK Guide. Hoboken, NJ: Wiley, 2009. 29. Print.

CSSLP_v2.indb 642 6/7/2013 5:41:11 PM

http://books.google.com/books?id=_z4EAAAAMBAJ
https://buildsecurityin.us-cert.gov/
http://Nist.gov

643

Domain 8: Supply Chain and Software Acquisition

8

Supply Chain and
Softw

are A
cquisition

WCO SAFE Framework of Standards. Publication. World Customs Organization
(WCO), June 2007. Web. 7 Nov. 2012. <http://bit.ly/OlPRLl>.

Weihua, Gan. “Empirical Analysis on Supply Chain of Offshore Software Outsourcing
from China Perspective”. Proc. of Service Operations and Logistics, and Informatics,
2007. SOLI 2007. IEEE, 27 Aug. 2007. Web. 7 Nov. 2012. <http://bit.ly/RET0oS>.

"What Is Intellectual Property?" WIPO - World Intellectual Property Organization,
n.d. Web. 06 Nov. 2012. <http://www.wipo.int/about-ip/en/>.

"What Is Non-disclosure Agreement (NDA)?" searchsecurity.techtarget.com, Apr.
2005. Web. 06 Nov. 2012. < http://bit.ly/PWnDru>.

CSSLP_v2.indb 643 6/7/2013 5:41:11 PM

http://searchsecurity.techtarget.com

Domain 1 - Secure Software Concepts
1. The PRIMARY reason for incorporating security into the software

development life cycle is to protect

A. the unauthorized disclosure of information.
B. the corporate brand and reputation.
C. against hackers who intend to misuse the software.
D. the developers from releasing software with security defects.

Answer Is: B

Rationale / Answer Explanation:
When security is incorporated in to the software development life cycle,
confidentiality, integrity and availability can be assured and external hacker
and insider threat attempts thwarted. Developers will generate more
hack-resilient software with fewer vulnerabilities, but protection of the
organization’s reputation and corporate brand is the primary reason for
software assurance.

2. The resiliency of software to withstand attacks that attempt modify or
alter data in an unauthorized manner is referred to as

A. Confidentiality.
B. Integrity.
C. Availability.
D. Authorization.

644

Appendix A

Answers to
Review Questions

CSSLP_v2.indb 644 6/7/2013 5:41:12 PM

Answer Is: B

Rationale / Answer Explanation:
When the software program operates as it is expected to, it is said to be
reliable or internally consistent. Reliability is an indicator of the integrity
of software. Hack resilient software are reliable (functioning as expected),
resilient (able to withstand attacks) and recoverable (capable of being restored
to normal operations when breached or upon error).

3. The MAIN reason as to why the availability aspects of software must
be part of the organization’s software security initiatives is:

A. software issues can cause downtime to the business.
B. developers need to be trained in the business continuity procedures.
C. testing for availability of the software and data is often ignored.
D. hackers like to conduct Denial of Service (DoS) attacks against

the organization.

Answer Is: A

Rationale / Answer Explanation:
One of the tenets of software assurance is ‘availability’. Software issues can
cause software unavailability and downtime to the business. This is often
observed as a denial of service (DoS) attack.

4. Developing the software to monitor its functionality and report when
the software is down and unable to provide the expected service to the
business is a protection to assure which of the following?

A. Confidentiality.
B. Integrity.
C. Availability.
D. Authentication.

Answer Is: C

Rationale / Answer Explanation:
Confidentiality controls assures protection against unauthorized disclosure.
Integrity controls assures protection unauthorized modifications or alterations.
Availability controls assures protection against downtime/denial of service
and destruction of information.
Authentication is the mechanism to validate the claims/credentials of an entity.
Authorization has to do with rights and privileges that a subject has upon
requested objects.

645644

Appendix A

Answers to
Review Questions

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 645 6/7/2013 5:41:12 PM

5. When a customer attempts to log into their bank account, the customer
is required to enter a nonce from the token device that was issued to
the customer by the bank. This type of authentication is also known
as which of the following?

A. Ownership based authentication.
B. Two factor authentication.
C. Characteristic based authentication.
D. Knowledge based authentication.

Answer Is: A

Rationale / Answer Explanation:
Authentication can be achieved in one or more of the following ways. Using
something one knows (knowledge based), something one has (ownership
based) and something one is (characteristic based). Using a token device
is ownership based authentication. When more than one way is used for
authentication purposed, it is referred to as multifactor authentication and
is recommended over single factor authentication.

6. Multi-factor authentication is most closely related to which of the
following security design principles?

A. Separation of Duties.
B. Defense in depth.
C. Complete mediation.
D. Open design.

Answer Is: B

Rationale / Answer Explanation:
Having more than one way of authentication provides for a layered defense
which is the premise of the defense in depth security design principle.

7. Audit logs can be used for all of the following EXCEPT

A. providing evidentiary information.
B. assuring that the user cannot deny their actions.
C. detecting the actions that were undertaken.
D. preventing a user from performing some unauthorized operations.

Answer Is: D

Rationale / Answer Explanation:
Audit log information can be a detective control (providing evidentiary

646

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 646 6/7/2013 5:41:12 PM

information), a deterrent control when the users knows that they are being
audited but it cannot prevent any unauthorized actions. When the software
logs user actions, it also provides non-repudiation capabilities because the
user cannot deny their actions.

8. Organizations often pre-determine the acceptable number of user
errors before recording them as security violations. This number is
otherwise known as:

A. Clipping level.
B. Known Error.
C. Minimum Security Baseline.
D. Maximum Tolerable Downtime.

Answer Is: A

Rationale / Answer Explanation:
The pre-determined number of acceptable user errors before recording the
error as a potential security incident is referred to as clipping level. For
example, if the number of allowed failed login attempts before the account
is locked out is 3, then the clipping level for authentication attempts is 3.

9. A security principle that maintains the confidentiality, integrity and
availability of the software and data, besides allowing for rapid recovery
to the state of normal operations, when unexpected events occur is the
security design principle of

A. defense in depth.
B. economy of mechanisms.
C. fail secure
D. psychological acceptability

Answer Is: C

Rationale / Answer Explanation:
Fail secure principle prescribes that access decisions must be based on
permission rather than exclusion. This means that the default situation
is lack of access, and the protection scheme identifies conditions under
which access is permitted. The alternative, in which mechanisms attempt to
identify conditions under which access should be refused, presents the wrong
psychological base for secure system design. A design or implementation
mistake in a mechanism that gives explicit permission tends to fail by
refusing permission, a safe situation, since it will be quickly detected. On

647

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 647 6/7/2013 5:41:12 PM

the other hand, a design or implementation mistake in a mechanism that
explicitly excludes access tends to fail by allowing access, a failure which
may go unnoticed in normal use. This principle applies both to the outward
appearance of the protection mechanism and to its underlying implementation.

10. Requiring the end user to accept an ‘AS-IS’ disclaimer clause before
installation of your software is an example of risk

A. avoidance.
B. mitigation.
C. transference.
D. acceptance.

Answer Is: C
Rationale / Answer Explanation:
When an “AS-IS” disclaimer clause is used, the risk is transferred from the
publisher of the software to the user of the software.

11. An instrument that is used to communicate and mandate organizational
and management goals and objectives at a high level is a

A. standard.
B. policy.
C. baseline.
D. guideline.

Answer Is: B
Rationale / Answer Explanation:
Policies are high level documents that communicate the mandatory goals and
objectives of company management. Standards are also mandatory but is not
quite as high level as policy. Guidelines provide recommendations of how
to implement a standard. Procedures are usually step by step instructions of
how to perform an operation. A baseline is one that has the minimum levels
of controls or configuration that needs to be implemented.

12. The Systems Security Engineering Capability Maturity Model (SSE-
CMM®) is an internationally recognized standard that publishes
guidelines to

A. provide metrics for measuring the software and its behavior, and
using the software in a specific context of use.

B. evaluate security engineering practices and organizational
management processes.

648

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 648 6/7/2013 5:41:12 PM

C. support accreditation and certification bodies that audit and
certify information security management systems.

D. ensure that the claimed identity of personnel are appropriately
verified.

Answer Is: B

Rationale / Answer Explanation:
The evaluation of security engineering practices and organizational
management processes are provided as guidelines and prescribed in the
Systems Security Engineering Capability Maturity Model (SSE-CMM®).
The SSE-CMM is an internationally recognized standard that is publishes
as ISO 21827.

13. Which of the following is a framework that can be used to develop
a risk based enterprise security architecture by determining security
requirements after analyzing the business initiatives.

A. Capability Maturity Model Integration (CMMI)
B. Sherwood Applied Business Security Architecture (SABSA)
C. Control Objectives for Information and related Technology

(COBIT®)
D. Zachman Framework

Answer Is: B

Rationale / Answer Explanation:
SABSA is a proven framework and methodology for Enterprise Security
Architecture and Service Management. SABSA ensures that the needs of
your enterprise are met completely and that security services are designed,
delivered and supported as an integral part of your business and IT
management infrastructure.

14. Which of the following is a PRIMARY consideration for the software
publisher when selling Commercially Off the Shelf (COTS) software?

A. Service Level Agreements (SLAs).
B. Intellectual Property protection.
C. Cost of customization.
D. Review of the code for backdoors and Trojan horses.

Answer Is: B

Rationale / Answer Explanation:

649

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 649 6/7/2013 5:41:12 PM

All of the other options are considerations for the software acquirer
(purchaser).

15. The Single Loss Expectancy can be determined using which of the
following formula?

A. Annualized Rate of Occurrence (ARO) x Exposure Factor
B. Probability x Impact
C. Asset Value x Exposure Factor
D. Annualized Rate of Occurrence (ARO) x Asset Value

Answer Is: C

Rationale / Answer Explanation:
Single Loss Expectancy is the expected loss of a single disaster. It is computed
as the product of asset value and the exposure factor. SLE = Asset Value x
Exposure Factor.

16. Implementing IPSec to assure the confidentiality of data when it is
transmitted is an example of risk

A. avoidance.
B. transference.
C. mitigation.
D. acceptance.

Answer Is: C

Rationale / Answer Explanation:
The implementation of IPSec at the network layer helps to mitigate threats
to the confidentiality of transmitted data.

17. The Federal Information Processing Standard (FIPS) that prescribe
guidelines for biometric authentication is

A. FIPS 140.
B. FIPS 186.
C. FIPS 197.
D. FIPS 201.

Answer Is: D

Rationale / Answer Explanation:
Personal Identity Verification (PIV) of Federal Employees and Contractors
is published as FIPS 201 and it prescribes some guidelines for biometric
authentication.

650

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 650 6/7/2013 5:41:12 PM

18. Which of the following is a multi-faceted security standard that is
used to regulate organizations that collects, processes and/or stores
cardholder data as part of their business operations?

A. FIPS 201.
B. ISO/IEC 15408.
C. NIST SP 800-64.
D. PCI DSS.

Answer Is: D

Rationale / Answer Explanation:
The PCI DSS is a multifaceted security standard that includes requirements
for security management, policies, procedures, network architecture, software
design and other critical protective measures. This comprehensive standard
is intended to help organizations proactively protect customer account data.

19. Which of the following is the current Federal Information Processing
Standard (FIPS) that specifies an approved cryptographic algorithm to
ensure the confidentiality of electronic data?

A. Security Requirements for Cryptographic Modules (FIPS 140).
B. Peronal Identity Verification (PIV) of Federal Employees and

Contractors (FIPS 201).
C. Advanced Encryption Standard (FIPS 197).
D. Digital Signature Standard (FIPS 186).

Answer Is: C

Rationale / Answer Explanation:
The Advanced Encryption Standard (AES) specifies a FIPS-approved
cryptographic algorithm that can be used to protect electronic data. The
AES algorithm is a symmetric block cipher that can encrypt (encipher) and
decrypt (decipher) information. Encryption converts data to an unintelligible
form called ciphertext; decrypting the ciphertext converts the data back into
its original form, called plaintext. The AES algorithm is capable of using
cryptographic keys of 128, 192, and 256 bits to encrypt and decrypt data in
blocks of 128 bits.

20. The organization that publishes the ten most critical web application
security risks (Top Ten) is the

A. Computer Emergency Response Team (CERT).
B. Web Application Security Consortium (WASC).
C. Open Web Application Security Project (OWASP).
D. Forums for Incident Response and Security Teams (FIRST)

651

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 651 6/7/2013 5:41:12 PM

Answer Is: C

Rationale / Answer Explanation:
The Open Web Application Security Project (OWASP) Top Ten provides
a powerful awareness document for web application security. The OWASP
Top Ten represents a broad consensus about what the most critical web
application security flaws are.

21. The process of removing private information from sensitive data sets is
referred to as

A. Sanitization.
B. Degaussing.
C. Anonymization.
D. Formatting.

Answer Is: C

Rationale / Answer Explanation:
Anonymization is the process of removing private information from the data.
Anonymization techniques such as replacement, suppression, generalization
and pertubation are useful to assure data privacy. It is important that you
are familiar with these techniques. Sanitization has to do with inputs and
outputs as a defensive control and includes techniques such as escaping and
encoding. Degaussing and Formatting are information and media sanitization
techniques and they are not selective of what they remove/dispose.

Domain 2 - Secure Software Requirements

1. Which of the following MUST be addressed by software security
requirements? Choose the BEST answer.

A. Technology used in building the application.
B. Goals and objectives of the organization.
C. Software quality requirements.
D. External auditor requirements.

Answer Is: B

Rationale / Answer Explanation:
When determining software security requirements, it is imperative to
address the goals and objectives of the organization. Management’s goals and
objectives need to be incorporated into the organizational security policies.
While external auditor, internal quality requirements and technology are
factors that need consideration, compliance with organizational policies
must be the foremost consideration.

652

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 652 6/7/2013 5:41:12 PM

2. Which of the following types of information is exempt from
confidentiality requirements?

A. Directory information.
B. Personally identifiable information (PII).
C. User’s card holder data.
D. Software architecture and network diagram.

Answer Is: A

Rationale / Answer Explanation:
Information that is public is also known as directory information. The
name ‘directory’ information comes from the fact that such information can
be found in a public directory like a phone book, etc. When information
is classified as public information, confidentiality assurance protection
mechanisms are not necessary.

3. Requirements that are identified to protect against the destruction of
information or the software itself are commonly referred to as

A. confidentiality requirements.
B. integrity requirements.
C. availability requirements.
D. authentication requirements.

Answer Is: C

Rationale / Answer Explanation:
Destruction is the threat against availability as disclosure is the threat against
confidentiality and alteration being the threat against integrity.

4. The amount of time by which business operations need to be restored
to service levels as expected by the business when there is a security
breach or disaster is known as

A. Maximum Tolerable Downtime (MTD).
B. Mean Time Before Failure (MTBF).
C. Minimum Security Baseline (MSB).
D. Recovery Time Objective (RTO).

Answer Is: D

Rationale / Answer Explanation:
Maximum Tolerable Downtime (MTD) is the maximum length of time
a business process can be interrupted or unavailable without causing the
business itself to fail. Recovery Time Objective (RTO) is the time period in
which the organization should have the interrupted process running again,

653

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 653 6/7/2013 5:41:12 PM

at or near the same capacity and conditions as before the disaster/downtime.
MTD and RTO are part of availability requirements. It is advisable to set the
RTO to be lesser than the MTD.

5. The use of an individual’s physical characteristics such as retinal blood
patterns and fingerprints for validating and verifying the user’s identity
if referred to as

A. biometric authentication.
B. forms authentication.
C. digest authentication.
D. integrated authentication.

Answer Is: A

Rationale / Answer Explanation:
Forms authentication has to do with usernames and passwords that are
input into a form (like a web page/form). Basic authentication transmits the
credential s in Base64 encoded form while digest authentication provides
the credentials as a hash value (also known as a message digest). Token based
authentication uses credentials in the form of specialized tokens which
is often used with a token device. Biometric authentication uses physical
characteristics to provide the credential information.

6. Which of the following policies is MOST likely to include the
following requirement? “All software processing financial transactions
need to use more than one factor to verify the identity of the entity
requesting access””

A. Authorization.
B. Authentication.
C. Auditing.
D. Availability.

Answer Is: B

Rationale / Answer Explanation:
When two factors are used to validate an entity’s claim and/or credentials,
it is referred to as two-factor authentication and when more than two
factors are used for authentication purposes, it is referred to as multi-factor
authentication. It is important to determine first, if there exists a need for
two- or multi-factor authentication.

7. A means of restricting access to objects based on the identity of subjects
and/or groups to which they belong, as mandated by the requested
resource owner is the definition of

654

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 654 6/7/2013 5:41:12 PM

A. Non-discretionary Access Control (NDAC).
B. Discretionary Access Control (DAC).
C. Mandatory Access Control (MAC).
D. Role based Access Control.

Answer Is: B

Rationale / Answer Explanation:
Discretionary access control (DAC) is defined as “a means of restricting
access to objects based on the identity of subjects and/or groups to which
they belong.” The controls are discretionary in the sense that a subject with
a certain access permission is capable of passing that permission (perhaps
indirectly) on to any other subject. DAC restricts access to objects based on
the identity of the subject and is distinctly characterized by the owner of the
resource deciding who has access and their level of privileges or rights.

8. Requirements which when implemented can help to build a history of
events that occurred in the software are known as

A. authentication requirements.
B. archiving requirements.
C. accountability requirements.
D. authorization requirements.

Answer Is: C

Rationale / Answer Explanation:
Accountability requirements are those that assist in building a historical
record of user actions. Audit trails can help detect when an unauthorized
user makes a change or an authorized user makes an unauthorized change,
both of which are cases of integrity violations. Auditing requirements not
only help with forensic investigations as a detective control but can also be
used for troubleshooting errors and exceptions, if the actions of the software
are tracked appropriately. When auditing is combined with identification, it
provides for accountability.

9. Which of the following is the PRIMARY reason for an application to
be susceptible to a Man-in-the-Middle (MITM) attack?

A. Improper session management
B. Lack of auditing
C. Improper archiving
D. Lack of encryption

Answer Is: A

655

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 655 6/7/2013 5:41:12 PM

Rationale / Answer Explanation:
Easily guessable and non-random session identifiers can be hijacked and
replayed if not managed appropriately and this can lead to MITM attacks.

10. The process of eliciting concrete software security requirements from
high level regulatory and organizational directives and mandates in
the requirements phase of the SDLC is also known as

A. threat modeling.
B. policy decomposition.
C. subject-object modeling.
D. misuse case generation.

Answer Is: B

Rationale / Answer Explanation:
The process of eliciting concrete software security requirements from high
level regulatory and organizational directives and mandates is referred to as
policy decomposition. When the policy decomposition process completes,
all the gleaned requirements must be measurable components.

11. The FIRST step in the Protection Needs Elicitation (PNE) process is
to

A. engage the customer
B. model information management
C. identify least privilege applications
D. conduct threat modeling and analysis

Answer Is: A

Rationale / Answer Explanation:
IT is there for the business and not the other way round. The first step
when determining protection needs is to engage the customer followed by
modeling the information and identifying least privilege scenarios. Once
an application profile is developed, then we can undertake threat modeling
and analysis to determine the risk levels which can be communicated to the
business to prioritize the risk.

12. A Requirements Traceability Matrix (RTM) that includes security
requirements can be used for all of the following except

A. ensuring scope creep does not occur
B. validating and communicating user requirements
C. determining resource allocations

656

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 656 6/7/2013 5:41:12 PM

D. identifying privileged code sections

Answer Is: D

Rationale / Answer Explanation:
Identifying privileged code sections is part of threat modeling and not part
of a RTM.

13. Parity bit checking mechanisms can be used for all of the following
except

A. Error detection.
B. Message corruption.
C. Integrity assurance.
D. Input validation.

Answer Is: D

Rationale / Answer Explanation:
Parity bit checking is primary used for error detection but it can be used for
assuring the integrity of transferred files and messages.

14. Which of the following is an activity that can be performed to clarify
requirements with the business users using diagrams that model the
expected behavior of the software?

A. Threat modeling
B. Use case modeling
C. Misuse case modeling
D. Data modeling

Answer Is: B

Rationale / Answer Explanation:
A use case models the intended behavior of the software or system. In other
words, the use case describes behavior that the system owner intended. This
behavior describes the sequence of actions and events that are to be taken
to address a business need. Use case modeling and diagramming is very
useful for specifying requirements. It can be effective in reducing ambiguous
and incompletely articulated business requirements by explicitly specifying
exactly when and under what conditions certain behavior occurs. Use case
modeling is meant to model only the most significant system behavior and
not all of it and so should not be considered a substitute for requirements
specification documentation.

657

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 657 6/7/2013 5:41:12 PM

15. Which of the following is LEAST LIKELY to be identified by misuse
case modeling?

A. Race conditions
B. Mis-actors
C. Attacker’s perspective
D. Negative requirements

Answer Is: A

Rationale / Answer Explanation:
Misuse cases, also known as abuse cases help identify security requirements by
modeling negative scenarios. A negative scenario is an unintended behavior
of the system, one that the system owner does not want to occur within the
context of the use case. Misuse cases provide insight into the threats that
can occur against the system or software. It provides the hostile users point
of view and is an inverse of the use case. Misuse case modeling is similar
to the use case modeling, except that in misuse case modeling, mis-actors
and unintended scenarios or behavior are modeled. Misuse cases may be
intentional or accidental. One of the most distinctive traits of misuse cases is
that they can be used to elicit security requirements unlike other requirements
determination methods that focus on end-user functional requirements.

16. Data classification is a core activity that is conducted as part of which
of the following?

A. Key Management Lifecycle
B. Information Lifecycle Management
C. Configuration Management
D. Problem Management

Answer Is: B

Rationale / Answer Explanation:
Data classification is the conscious effort to assign a level of sensitivity to data
assets, based on potential impact upon disclosure, alteration or destruction.
The results of the classification exercise can then be used to categorize the data
elements into appropriate buckets. Data classification is part of information
lifecycle management.

17. Web farm data corruption issues and card holder data encryption
requirements need to be captured as part of which of the following
requirements?

A. Integrity.
B. Environment.

658

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 658 6/7/2013 5:41:12 PM

C. International.
D. Procurement.

Answer Is: B

Rationale / Answer Explanation:
When determining requirements it is important to elicit requirements that are
tied to the environment in which the data will be marshaled or processed.
Viewstate corruption issues in web farm settings where all the servers were
not configured identically or lack of card holder data encryption in public
networks have been observed when the environmental requirements were
not identified or taken into account.

18. When software is purchased from a third party instead of being built
in-house, it is imperative to have contractual protection in place and
have the software requirements explicitly specified in which of the
following?

A. Service Level Agreements (SLA).
B. Non-Disclosure Agreements (NDA).
C. Non-compete Agreements
D. Project plan.

Answer Is: A

Rationale / Answer Explanation:
SLAs should contain the levels of service expected for the software to provide
and this becomes crucial when the software is not developed in-house.

19. When software is able to withstand attacks from a threat agent and
not violate the security policy it is said to be exhibiting which of the
following attributes of software assurance?

A. Reliability.
B. Resiliency.
C. Recoverability.
D. Redundancy.

Answer Is: B

Rationale / Answer Explanation:
Software is said to be reliable when it is functioning as expected to. Resiliency is
the measure of the software’s ability to withstand an attack. When the software
is breach, its ability to restore itself back to normal operations is known as the
recoverability of the software. Redundancy has to do with high availability.

659

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 659 6/7/2013 5:41:12 PM

20. Infinite loops and improper memory calls are often known to cause
threats to which of the following?

A. Availability.
B. Authentication.
C. Authorization.
D. Accountability.

Answer Is: A

Rationale / Answer Explanation:
Improper coding constructs such as infinite loops and improper memory
management can lead to denial of service and resource exhaustion issues,
which impacted availability.

21. Which of the following is used to communicate and enforce availability
requirements of the business or client?

A. Non-Disclosure Agreement (NDA).
B. Corporate Contract.
C. Service Level Agreements (SLA).
D. Threat model.

Answer Is: C

Rationale / Answer Explanation:
SLAs should contain the levels of service expected for the software to provide
and this becomes crucial when the software is not developed in-house.

22. Software security requirements that are identified to protect against
disclosure of data to unauthorized users is otherwise known as

A. integrity requirements.
B. authorization requirements.
C. confidentiality requirements.
D. non-repudiation requirements.

Answer Is: C

Rationale / Answer Explanation:
Destruction is the threat against availability as disclosure is the threat against
confidentiality and alteration being the threat against integrity.

23. The requirements that assure reliability and prevent alterations are to be
identified in which section of the software requirements specifications
(SRS) documentation?

660

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 660 6/7/2013 5:41:12 PM

A. Confidentiality.
B. Integrity.
C. Availability.
D. Accountability.

Answer Is: B

Rationale / Answer Explanation:
Destruction is the threat against availability as disclosure is the threat against
confidentiality and alteration being the threat against integrity.

24. Which of the following is a covert mechanism that assures
confidentiality?

A. Encryption.
B. Steganography.
C. Hashing.
D. Masking.

Answer Is: B

Rationale / Answer Explanation:
Encryption and Hashing are overt mechanisms to assure confidentiality.
Masking is an obfuscating mechanism to assure confidential. Steganography
which is hiding information within other media is a cover mechanisms
to assure confidentiality. Steganography is more commonly referred to as
invisible ink writing and is the art of camouflaging or hidden writing, where
the information is hidden and the existence of the message itself is concealed.
Steganography is primarily useful for covert communications and is useful
and prevalent in military espionage communications

25. As a means to assure confidentiality of copyright information, the
security analyst identifies the requirement to embed information
insider another digital audio, video or image signal. This is commonly
referred to as

A. Encryption.
B. Hashing.
C. Licensing.
D. Watermarking.

Answer Is: D

Rationale / Answer Explanation:
Digital watermarking is the process of embedding information into a digital
signal. These signals can be audio, video, or pictures.

661

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 661 6/7/2013 5:41:12 PM

26. Checksum validation can be used to satisfy which of the following
requirements?

A. Confidentiality.
B. Integrity.
C. Availability.
D. Authentication.

Answer Is: B

Rationale / Answer Explanation:
Parity bit checking is useful in the detection of errors or changes made to
data when it is transmitted. A common usage of parity bit checking is to
do a Cyclic Redundancy Check (CRC) for data integrity as well, especially
for messages longer than one byte (8 bits) long. Upon data transmission,
each block of data is given a computed CRC value, commonly referred to
as a checksum. If there is an alteration between the origin of data and its
destination, the checksum sent at the origin will not match with the one
that is computed at the destination. Corrupted media (CD’s, DVDs) and
incomplete downloads of software yield CRC errors.

27. A Requirements Traceability Matrix (RTM) that includes security
requirements can be used for all of the following EXCEPT

A. Ensure scope creep does not occur
B. Validate and communicate user requirements
C. Determine resource allocations
D. Identifying privileged code sections

Answer Is: D

Rationale / Answer Explanation:
Identifying privileged code sections is part of threat modeling and not part
of a RTM.

Domain 3 - Secure Software Design
1. During which phase of the software development lifecycle (SDLC) is

threat modeling initiated?

A. Requirements analysis
B. Design
C. Implementation
D. Deployment

Answer Is: B

662

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 662 6/7/2013 5:41:12 PM

Rationale / Answer Explanation:
Although it is important to visit the threat model during the development,
testing and deployment phase of the software development lifecycle (SDLC),
the threat modeling exercise should commence in the design phase of the
SDLC.

2. Certificate Authority, Registration Authority, and Certificate
Revocation Lists are all part of which of the following?

A. Advanced Encryption Standard (AES)
B. Steganography
C. Public Key Infrastructure (PKI)
D. Lightweight Directory Access Protocol (LDAP)

Answer Is: C

Rationale / Answer Explanation:
PKI makes it possible to securely exchange data by hiding or keeping secret
a private key on one system while distributing the public key to the other
systems participating in the exchange.

3. The use of digital signatures has the benefit of providing which of the
following that is not provided by symmetric key cryptographic design?

A. Speed of cryptographic operations
B. Confidentiality assurance
C. Key exchange
D. Non-repudiation

Answer Is: D

Rationale / Answer Explanation:
Non-repudiation and proof of origin (authenticity) is provided by the
certificate authority (CA) attaching its digital signature, encrypted with the
private key of the sender, to the communication that is to be authenticated,
and this attests the authenticity of both the document and the sender.

4. When passwords are stored in the database, the best defense against
disclosure attacks can be accomplished using

A. encryption.
B. masking.
C. hashing.
D. obfuscation.

663

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 663 6/7/2013 5:41:12 PM

Answer Is: C

Rationale / Answer Explanation:
An important use for hashes is storing passwords. The actual password should
never be stored in the database. Using hashing functions, you can store the
hash value of the user password and use that value to authenticate the user.
Because hashes are one-way (not reversible), they offer a heightened level of
confidentiality assurance.

5. Nicole is part of the ‘author’ role as well as she is included in the
‘approver’ role, allowing her to approve her own articles before it is
posted on the company blog site. This violates the principle of

A. least privilege.
B. least common mechanisms.
C. economy of mechanisms.
D. separation of duties.

Answer Is: D

Rationale / Answer Explanation:
Separation of duties or sometimes it is referred to as separation of privilege
is the principle that it is better to assign tasks to several specific individuals
so that no one user has total control over the task themselves. It is closely
related to the principle of least privilege which is the ideas that minimum
amount of privilege is granted for the minimum (shortest) amount of time
to individuals with a need to know.

6. The primary reason for designing Single Sign On (SSO) capabilities is
to

A. increase the security of authentication mechanisms.
B. simplify user authentication.
C. have the ability to check each access request.
D. allow for interoperability between wireless and wired networks.

Answer Is: B

Rationale / Answer Explanation:
The design principle of economy of mechanism states that one must keep the
design as simple and small as possible. This well known principle deserves
emphasis for protection mechanisms because design and implementation
errors that result in unwanted access paths will not be noticed during normal

664

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 664 6/7/2013 5:41:12 PM

use. As a result, techniques such as line-by-line inspection of software that
implements protection mechanisms are necessary. For such techniques to be
successful, a small and simple design is essential. SSO support this principle
by simplifying the authentication process.

7. Database triggers are PRIMARILY useful for providing which of the
following detective software assurance capability?

A. Availability.
B. Authorization.
C. Auditing.
D. Archiving.

Answer Is: C

Rationale / Answer Explanation:
All stored procedures could be updated to incorporate auditing logic;
however a better solution is to use database triggers. You can use triggers
to monitor actions performed on the database tables and automatically log
auditing information.

8. During a threat modeling exercise, the software architecture is reviewed
to identify

A. attackers.
B. business impact.
C. critical assets.
D. entry points.

Answer Is: D

Rationale / Answer Explanation:
During threat modeling, the application is dissected into its functional
components. The development team analyzes the components at every
entry point and traces data flow through all functionality to identify security
weaknesses.

9. A Man-in-the-Middle (MITM) attack is PRIMARILY an expression
of which type of the following threats?

A. Spoofing
B. Tampering
C. Repudiation
D. Information disclosure

665

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 665 6/7/2013 5:41:12 PM

Answer Is: A

Rationale / Answer Explanation:
Although it may seem that a MITM attack is an expression of the threat of
repudiation, and it very well could be, it is PRIMARILY a spoofing threat. In
a spoofing attack, an attacker impersonates a different person and pretends
to be a legitimate user of the system. Spoofing attack is mitigated through
authentication so that adversaries cannot become any other user or assume
the attributes of another user. When undertaking a threat modeling exercise,
it is important to list all possible threats, regardless of whether they have
been mitigated so that you can later generate test cases where necessary. If
the threat is not documented, there is a high likelihood that the software
will not be tested for those threats. Using a categorized list of threats (such
as STRIDE which is an acronym of Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service and Elevation of Privilege) is
useful to list all possible threats.

10. IPSec technology which helps in the secure transmission of information
operates in which layer of the Open Systems Interconnect (OSI) model?

A. Transport.
B. Network.
C. Session.
D. Application.

Answer Is: B

Rationale / Answer Explanation:
Although software security has specific implications on layer 7, the application
of the OSI stack, the security at other levels of the OSI stack is also important
and should be leveraged to provide defense in depth. The seven layers of the
OSI stack are Physical (layer 1), Data Link (layer 2), Network (layer 3),
Transport (layer 4), Session (layer 5), Presentation (layer 6) and Application
(layer 7). SSL and IPSec can be used to assure confidentiality for data in
motion. SSL operates at the Transport Layer (layer 4) and IPSec operates at
the Network Layer (layer 3) of the OSI model.

11. When internal business functionality is abstracted into service oriented
contract based interfaces, it is PRIMARILY used to provide for

A. interoperability.
B. authentication.

666

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 666 6/7/2013 5:41:12 PM

C. authorization.
D. installation ease.

Answer Is: A

Rationale / Answer Explanation:
A distinctive characteristic of SOA is that the business logic is abstracted
into discoverable and reusable contract based interfaces to promote
interoperability between heterogeneous computing ecosystems.

12. At which layer of the Open Systems Interconnect (OSI) model must
security controls be designed to effectively mitigate side channel attacks?

A. Transport
B. Network
C. Data link
D. Physical

Answer Is: D

Rationale / Answer Explanation:
Side channel attacks use unconventional means to compromise the security
of the system and in most cases require physical access to the device or system.
Therefore, to mitigate side channel attacks, physical protection can be used.

13. Which of the following software architectures is effective in distributing
the load between the client and the server, but since it includes the
client to be part of the threat vectors it increases the attack surface?

A. Software as a Service (SaaS).
B. Service Oriented Architecture (SOA).
C. Rich Internet Application (RIA).
D. Distributed Network Architecture (DNA).

Answer Is: C

Rationale / Answer Explanation:
RIAs require Internet Protocol (IP) connectivity to the backend server. Browser
sandboxing is recommended since the client is also susceptible to attack now,
but it is not a requirement. The workload is shared between the client and the
server and the user experience and control is increased in RIA architecture.

14. When designing software to work in a mobile computing environment,
the Trusted Platform Module (TPM) chip can be used to provide
which of the following types of information?

667

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 667 6/7/2013 5:41:12 PM

A. Authorization.
B. Identification.
C. Archiving.
D. Auditing.

Answer Is: B

Rationale / Answer Explanation:
Trusted Platform Module (TPM) is the name assigned to a chip that can
store cryptographic keys, passwords, or certificates. It can be used to protect
mobile devices besides personal computers. It is also used to provide identity
information for authentication purposes in mobile computing. It also assures
secure startup and integrity. The TPM can be used to generate values used
with whole disk encryption such as the Windows Vista’s BitLocker. It is
developed to specifications of the Trusted Computing Group.

15. When two or more trivial pieces of information are brought together
with the aim of gleaning sensitive information, it is referred to as what
type of attack?

A. Injection.
B. Inference.
C. Phishing.
D. Polyinstantiation.

Answer Is: B

Rationale / Answer Explanation:
An inference attack is one in which the attacker combines information that
is available in the database with a suitable analysis to glean information that
is presumably hidden or not as evident. This means that individual data
elements when viewed collectively can reveal confidential information. It
is therefore, possible to have public elements in a database reveal private
information by inference. The first thing to ensure is that the database
administrator does not have direct access to the data in the database and
that the administrator’s access of the database is mediated by a program
(the application) and audited. In situations, where direct database access is
necessary, it is important to ensure that the database design is not susceptible
to inference attacks. Inference attacks can be mitigated by polyinstantiation.

16. The inner workings and internal structure of backend databases can be
protected from disclosure using

A. triggers.
B. normalization.

668

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 668 6/7/2013 5:41:13 PM

C. views.
D. encryption.

Answer Is: C

Rationale / Answer Explanation:
Views provide a number of benefits with regard to security. They abstract
the source of the data being presented, keeping the internal structure of
the database hidden from the user. Furthermore, views can be created on a
subset of columns in a table. This capability can allow users granular access
to specific data elements. Views can also be used to limit access to specific
rows of data as well.

17. Choose the BEST answer. Configurable settings for logging exceptions,
auditing and credential management must be part of

A. database views.
B. security management interfaces.
C. global files.
D. exception handling.

Answer Is: B

Rationale / Answer Explanation:
Security Management Interfaces (SMI) are administrative interfaces for your
application which have the highest level of privileges on the system and can
do tasks such as:

 ■ Users provisioning - adding/deleting/enabling users accounts.
 ■ Granting rights to different user roles.
 ■ System restart.
 ■ Changing system security settings.
 ■ Accessing audit trails, user credentials, exception logs.

Although SMIs are often not explicitly stated in the requirements, and
subsequently not threat modeled, strong controls such as least privilege and
access controls must be designed and built in when developing SMI because
the compromise of a SMI can be devastating, ranging from complete
compromise, installing backdoors, to disclosure, alteration and destruction
(DAD) attacks on audit logs, user credentials, exception logs, etc. SMI need
not be deployed always with the default accounts that is set by the software
publisher, although it is often observed to be.

18. The token that is PRIMARILY used for authentication purposes in a
Single Sign (SSO) implementation between two different companies is

669

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 669 6/7/2013 5:41:13 PM

A. Kerberos
B. Security Assert Markup Language (SAML)
C. Liberty alliance ID-FF
D. One Time password (OTP)

Answer Is: B

Rationale / Answer Explanation:
Federation technology is usually built on a centralized identity management
architecture leveraging industry standard identity management protocols
such as SAML, WS Federation (WS-*) or Liberty Alliance. Of the three
major protocol familier associated with federation, SAML seems to be
recognized as the de facto standard for enterprise to enterprise federation.
SAML works in cross domain settings while Kerberos tokens are useful only
within a single domain.

19. Syslog implementations require which additional security protection
mechanisms to mitigate disclosure attacks?

A. Unique session identifier generation and exchange.
B. Transport Layer Security.
C. Digital Rights Management (DRM)
D. Data Loss Prevention,

Answer Is: B

Rationale / Answer Explanation:
The syslog network protocol has become a de facto standard for logging
program and server information over the Internet. Many routers, switches
and remote access devices will transmit system messages, and there are syslog
servers available for Windows and UNIX operating systems. TLS protection
mechanisms such as SSL wrappers are needed to protect syslog data in
transmit as they are transmitted in the clear. SSL wrappers like stunnel
provide transparent SSL functionality.

20. Rights and privileges for a file can be granularly granted to each client
using which of the following technologies.

A. Data Loss Prevention (DLP).
B. Software as a Service (SaaS)
C. Flow control
D. Digital Rights Management (DRM) and

670

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 670 6/7/2013 5:41:13 PM

Answer Is: D

Rationale / Answer Explanation:
Digital Rights Management (DRM) solutions give copyright owners control
over access and use of the copyright protected material. When users want to
access or sue digital copyrighted material, they can do so on the terms of the
copyright owner.

21. Which of the following is known to circumvent the ring protection
mechanisms in operating systems?

A. Cross Site Request Forgery (CSRF)
B. Coolboot
C. SQL Injection
D. Rootkit

Answer Is: D

Rationale / Answer Explanation:
Rootkits are known to compromise the operating system ring protection
mechanisms and masquerade as a legitimate operating system taking siege
of it.

22. When the software is designed using Representational State Transfer
(REST) architecture, it promotes which of the following good
programming practices?

A. High Cohesion
B. Low Cohesion
C. Tight Coupling
D. Loose Coupling

Answer Is: D

Rationale / Answer Explanation:
Since REST is a client/server model, in which the requests and responses
are built around transition state of resources, it promotes loose coupling
between the client and server.

23. Which of the following components of the Java architecture is primarily
responsible to ensure type consistency, safety and assure that there are
no malicious instructions in the code?

A. Garbage collector
B. Class Loader

671

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 671 6/7/2013 5:41:13 PM

C. Bytecode Verfier
D. Java Security Manager

Answer Is: C

Rationale / Answer Explanation:
Bytecode Verifier is the most important component of the JVM from a type
consistency viewpoint. The Bytecode Verifier checks to see if the .class files
are in the Class file format and double checks to ensure that there are no
malicious instructions in the code that would compromise the rules of type
safety in Java.

24. The primary security concern when implementing cloud applications
is related to

A. Insecure APIs
B. Data leakage and/or loss
C. Abuse of computing resources
D. Unauthorized access

Answer Is: D

Rationale / Answer Explanation:
Although the nefarious use of APIs, shared technologies issues that can be
abused and unauthorized access of data and software hosted in the cloud, the
primary security concern is related to data disclosure, which includes leakage
and/or loss.

25. The predominant form of malware that infects mobile apps is

A. Virus
B. Ransomware
C. Worm
D. Spyware

Answer Is: B

Rationale / Answer Explanation:
Ransomware that locks screens on mobile devices is on the rise and
predominantly observed in mobile apps that don’t implement sufficient
protection controls.

26. Most Supervisory Control And Data Acquisition (SCADA) systems
are susceptible to software attacks because

672

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 672 6/7/2013 5:41:13 PM

A. they were not initially implemented with security in mind
B. the skills of a hacker has increased significantly
C. the data that they collect are of top secret classification
D. the firewalls that are installed in front of these devices have been

breached.

Answer Is: A

Rationale / Answer Explanation:
Most SCADA systems were not originally designed with security in mind
and basic protection mechanisms like authentication and authorization, to
these systems is weak, if at all present.

Domain 4 - Secure Software Implementation/Coding

1. Software developers writes software programs PRIMARILY to

A. create new products
B. capture market share
C. solve business problems
D. mitigate hacker threats

Answer Is: C

Rationale / Answer Explanation:
IT and software development teams function to provide solutions to the
business. Manual and inefficient business processes can be automated and
made efficient using software programs.

2. The process of combining necessary functions, variables and
dependency files and libraries required for the machine to run the
program is referred to as

A. compilation
B. interpretation
C. linking
D. instantiation

Answer Is: C

Rationale / Answer Explanation:
Linking is the process of combining the necessary functions, variables and
dependencies files and libraries required for the machine to run the program.

673

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 673 6/7/2013 5:41:13 PM

The output that results from the linking process is the executable program
or machine code/file that the machine can understand and process. In short,
linked object code is the executable. Link editors that combine object codes
are known as linkers. Upon the completion of the compilation process, the
compiler invokes the linker to perform its function. There are two types of
linking: static linking and dynamic linking.

3. Which of the following is an important consideration to manage
memory and mitigate overflow attacks when choosing a programming
language?

A. Locality of reference
B. Type safety
C. Cyclomatic complexity
D. Parametric polymorphism

Answer Is: B

Rationale / Answer Explanation:
Code is said to be type safe if it only accesses memory resources that do not
belong to the memory assigned to it. Type safety verification takes place
during the Just In Time (JIT) compilation phase and prevents unsafe code
from becoming active. Although you can disable type safety verification, it
can lead to unpredictable results. The best example is that code can make
unrestricted calls to unmanaged code, and if that code has malicious intent,
the results can be severe. Therefore, the framework only allows fully trusted
assemblies to bypass verification. Type safety is a form of “sandboxing”.
Type safety must be one of the most important considerations in regards to
security when selecting a programming language.

4. Assembly and machine language are examples of

A. natural language
B. very high-level language (VHLL)
C. high-level language (HLL)
D. low-level language

Answer Is: D

Rationale / Answer Explanation:
A programming language in which there is little to no abstraction from the
native instruction codes that the computer can understand is also referred
to as low-level language. There is no abstraction from native instruction
codes in machine language. Assembly languages are the lowest level in the

674

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 674 6/7/2013 5:41:13 PM

software chain, which makes it incredibly suitable for reversing. It is therefore
important to have an understanding of low-level programming languages to
understand how an attacker will attempt to circumvent the security of the
application at its lowest level.

5. Using multifactor authentication is effective in mitigating which of the
following application security risks?

A. Injection flaws
B. Cross-Site Scripting (XSS)
C. Buffer overflow
D. Man-in-the-Middle (MITM)

Answer Is: D

Rationale / Answer Explanation:
As a defense against a Man-in-the-Middle (MITM) attacks, authentication
and session management needs to be in place. Multifactor authentication
provides greater defense than single factor authentication and is recommended.
Session identifiers that are generated should be unpredictable, random and
non-guessable.

6. Impersonation attacks such as Man-in-the-Middle (MITM) attacks in
an Internet application can be BEST mitigated using proper

A. Configuration Management.
B. Session Management.
C. Patch Management.
D. Exception Management.

Answer Is: B

Rationale / Answer Explanation:
Internet application means that the ability to manage identities as would
be possible in an Intranet application is not easy or in some cases infeasible.
Internet applications also use stateless protocols such as HTTP or HTTPS
and this requires the management of user sessions.

7. Implementing Completely Automated Public Turing test to tell
Computers and Humans Apart (CAPTCHA) protection is a means
of defending against

A. SQL Injection
B. Cross-Site Scripting (XSS)
C. Cross-Site Request Forgery (CSRF)
D. Insecure cryptographic storage

675

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 675 6/7/2013 5:41:13 PM

Answer Is: C

Rationale / Answer Explanation:
In addition to assuring that the requestor is a human, CAPTCHA’s are useful
mitigating CSRF attacks. Since CSRF is dependent on a pre-authenticated
token to be in place, using CAPTCHA as the anti-CSRF token is an effective
way of dealing with the inherent XSS problems regarding anti-CSRF tokens
as long as the CAPTCHA image itself is not guessable, predictable or re-
served to the attacker.

8. The findings of a code review indicate that cryptographic operations
in code use the Rijndael cipher, which is the original publication of
which of the following algorithms?

A. Skipjack
B. Data Encryption Standard (DES)
C. Triple Data Encryption Standard (3DES)
D. Advanced Encryption Standard (AES)

Answer Is: D

Rationale / Answer Explanation:
Advanced Encryption Standard (FIPS 197) is published as the Rijndael
cipher. Software should be designed in such a way that you should be able
to replace one cryptographic algorithm with a stronger one, when needed,
without much rework and recoding. This is referred to as cryptographic
agility.

9. Which of the following transport layer technologies can BEST mitigate
session hijacking and replay attacks in a local area network (LAN)?

A. Data Loss Prevention (DLP)
B. Internet Protocol Security (IPSec)
C. Secure Sockets Layer (SSL)
D. Digital Rights Management (DRM)

Answer Is: C

Rationale / Answer Explanation:
SSL provides disclosure protection, and protection against session hijacking
and replay at the transport layer (layer 4) while IPSec provides confidentiality
and integrity assurance operating in the network layer (layer 3). DRM
provides some degree of disclosure (primarily IP) protection and operates in

676

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 676 6/7/2013 5:41:13 PM

the presentation layer (layer 6), and data loss prevention (DLP) technologies
prevent the inadvertent disclosure of data to unauthorized individuals,
predominantly who are external to the organization.

10. Verbose error messages and unhandled exceptions can result in which
of the following software security threats?

A. Spoofing
B. Tampering
C. Repudiation
D. Information disclosure

Answer Is: D

Rationale / Answer Explanation:
Information disclosure is primarily a design issue and therefore is a language-
independent problem, although with accidental leakage, many newer high-
level languages can worsen the problem by providing verbose error messages
that might be helpful to attack in their information gathering (reconnaissance)
efforts. It must be recognized that there is a tricky balance between providing
the user with helpful information about errors, and preventing attackers from
learning about the internal details and architecture of the software. From a
security standpoint, it is advisable to not disclose verbose error messages and
still provide the users with a helpline to get additional support.

11. Code signing can provide all of the following EXCEPT

A. Anti-tampering protection
B. Authenticity of code origin
C. Runtime permissions for code
D. Authentication of users

Answer Is: D

Rationale / Answer Explanation:
Code signing can provide all of the following. Anti-tampering protection
assuring integrity of code, Authenticity (not authentication) of code origin
and runtime permissions for the code to access system resources. The
primary benefit of code signing is that it provides users with the identity of
the software’s creator, which is particularly important for mobile code i.e.,
that is downloaded from a remote location over the Internet.

12. When an attacker uses delayed error messages between successful and
unsuccessful query probes, he is using which of the following side
channel techniques to detect injection vulnerabilities?

677

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 677 6/7/2013 5:41:13 PM

A. Distant observation
B. Cold boot
C. Power analysis
D. Timing

Answer Is: D

Rationale / Answer Explanation:
Poorly designed and implement systems are expected to be insecure, but
most well-designed and implemented systems also have subtle gaps between
their abstract models and their physical realization due to the existence
of side channels. A side channel is a potential source of information flow
from a physical system to an adversary, beyond what is available via the
conventional (abstract) model. These range from subtle observation of timing,
electromagnetic radiations, power usage, analog signals, acoustic emanations,
etc. The use of non-conventional and specialized techniques along with
physical access to the target system to discover information is characteristic
of side channel attacks. The analysis of delayed error messages between
successful and unsuccessful query is a form of timing side channel attack.

13. When the code is not allowed to access memory at arbitrary locations
that is out of range of the memory address space that belong to the
object’s publicly exposed fields, it is referred to as which of the following
types of code?

A. Object code
B. Type safe code
C. Obfuscated code
D. Source code

Answer Is: B

Rationale / Answer Explanation:
Code is said to be type safe if it only accesses memory resources that do not
belong to the memory assigned to it. Type safety verification takes place
during the Just In Time (JIT) compilation phase and prevents unsafe code
from becoming active. Although you can disable type safety verification, it
can lead to unpredictable results. The best example is that code can make
unrestricted calls to unmanaged code, and if that code has malicious intent,
the results can be severe. Therefore, the framework only allows fully trusted
assemblies to bypass verification. Type safety is a form of “sandboxing”.
Type safety must be one of the most important considerations in regards
to security when selecting a programming language and phasing out older
generation programming languages.

678

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 678 6/7/2013 5:41:13 PM

14. When the runtime permissions of the code are defined as security
attributes in the metadata of the code, it is referred to as

A. imperative syntax security
B. declarative syntax security
C. code signing
D. code obfuscation

Answer Is: B

Rationale / Answer Explanation:
There are two types of security syntax; namely, declarative security and
imperative security. Declarative syntax address the “what” part of an action,
whereas imperative syntax tries to deal with the “how” part. When security
requests are made in the form of attributes (in the metadata of the code),
it is referred to as declarative security. It does not precisely define the steps
as to how the security will be realized. When security requests are made
through programming logic within a function or method body, it is referred
to as imperative security. Declarative security is an “all-or-nothing” kind of
implementation, while imperative security offers greater levels of granularity
and control, because the security requests runs as lines of code intermixed
with the application code.

15. When an all-or-nothing approach to code access security is not possible
and business rules and permissions need to be set and managed more
granularly inline code functions and modules, a programmer can
leverage which of the following?

A. Cryptographic agility
B. Parametric polymorphism
C. Declarative security
D. Imperative security

Answer Is: D

Rationale / Answer Explanation:
When security requests are made in the form of attributes, it is referred to
as declarative security. It does not precisely define the steps as to how the
security will be realized. Declarative syntax actions can be evaluated without
running the code because attributes are stored as part of an assembly’s
metadata while the imperative security actions are stored as Intermediary
Language (IL). This means that imperative security actions can be evaluated
only when the code is running. Declarative security actions are checks before
a method is invoked and are placed at the class level, being applicable to all

679

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 679 6/7/2013 5:41:13 PM

methods in that class, unlike imperative security. Declarative security is an
“all-or-nothing” kind of implementation, while imperative security offers
greater levels of granularity and control, because the security requests runs as
lines of code intermixed with the application code.

16. An understanding of which of the following programming concepts
is necessary to protect against memory manipulation buffer overflow
attacks? Choose the BEST answer.

A. Error handling
B. Exception management
C. Locality of reference
D. Generics

Answer Is: C

Rationale / Answer Explanation:
Computer processors tend to access memory in a very patterned way. For
example, in the absence of branching, if memory location X is accessed at
time t, there is a high probability that memory location X+1 will also be
accessed in the near future. This kind of clustering of memory references
into groups is referred to as locality of reference. The basic forms of locality
of reference are temporal (based on time), spatial (based on address space),
branch conditional) and equidistant (somewhere between spatial and branch
using simple linera functions that look for equidistant locations of memory
to predict which location will be accessed in the near future). While this is
good from a performance vantage point, it can lead to an attacker predicting
memory address spaces and causing memory corruption and buffer overflow.

17. Exploit code attempt to take control of dangling pointers which

A. are references to memory locations of destroyed objects.
B. is the non-functional code that that is left behind in the source.
C. is the payload code that the attacker uploads into memory to

execute.
D. are references in memory locations that are used prior to being

initialized.

Answer Is: A

Rationale / Answer Explanation:
A dangling pointer, also known as a stray pointer, occurs when a pointer
points to an invalid memory address. This is often observed when memory

680

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 680 6/7/2013 5:41:13 PM

management is left to the developer. Dangling pointers are usually created in
one of two ways: an object is destroyed (freed) but the reference to the object
is not reassigned and is later used or a local object is popped from the stack
when the function returns but a reference to the stack allocated object is still
maintained. Attackers write exploit code to take control of dangling pointers
so that they can move the pointer to where their arbitrary shell code is injected.

18. Which of the following is a feature of most recent operating systems
(OS) that makes it difficult for an attacker to guess the memory address
of the program as it makes the memory address different each time the
program is executed?

A. Data Execution Prevention (DEP)
B. Executable Space Protection (ESP)
C. Address Space Layout Randomization (ASLR)
D. Safe Security Exception Handler (/SAFESEH)

Answer Is: C

Rationale / Answer Explanation:
In the past, the memory manager would try to load binaries at the same
location in the linear address space each time the program was run. This
behavior made it easier for shell coders by ensuring that certain modules of
code would always reside at a fixed address and could be referenced in exploit
code using raw numeric literals. The Address Space Layout Randomization
(ASLR) is a feature in newer operating systems (introduced in Windows
Vista) which deals with this predictable and direct referencing issue. ASLR
makes the binary load in random address space each time the program is run.

19. When the source code is made obscure using special programs in order
to make the readability of the code difficult when disclosed, the code is
also known as

A. object code.
B. obfuscated code.
C. encrypted code.
D. hashed code.

Answer Is: B

Rationale / Answer Explanation:
Reverse engineering is used to infer how a program works by inspecting it.
Code obfuscation which makes the readability of code extremely difficult
and confusing, can be used to deter reverse (not prevent) engineering attacks.
Obfuscating code is not detective or corrective in its implementation.

681

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 681 6/7/2013 5:41:13 PM

20. The ability to track ownership, changes in code and rollback abilities is
possible because of which of the following configuration management
processes?

A. Version control
B. Patching
C. Audit logging
D. Change control

Answer Is: A

Rationale / Answer Explanation:
The ability to track ownership, changes in code and rollback abilities is possible
because of versioning which is a configuration management processes. Release
management of software should include proper source code control and
versioning. A phenomenon known as “regenerative bugs” is often observed
when it comes to improper release management processes. Regenerative
bugs are fixed software defects that reappear in subsequent releases of the
software. This happens when the software coding defect (bug) is detected in
the testing environment (such as user acceptance testing) and the fix is made
in that test environment and promoted to production without retrofitting it
into the development environment. The latest version in the development
environment does not have the fix and the issue reappears in subsequent
versions of the software.

21. The MAIN benefit of statically analyzing code is that
A. runtime behavior of code can be analyzed.
B. business logic flaws are more easily detectable.
C. the analysis is performed in a production or production-like

environment.
D. errors and vulnerabilities can be detected earlier in the life cycle.

Answer Is: D

Rationale / Answer Explanation:
The one thing that is common in all software is source code and this source
code needs to be reviewed from a security perspective to ensure that security
vulnerabilities are detected and addressed before the software is released into
the production environment or to customers. Code review is the process of
systematically analyzing the code for insecure and inefficient coding issues.
In addition to static analysis, which reviews code before it goes live, there are
also dynamic analysis tools, which conduct automated scans of applications
in production to unearth vulnerabilities. In other words, dynamic tools test
from the outside in, which static tools test from the inside out. Just because

682

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 682 6/7/2013 5:41:13 PM

the code compiles without any errors, it does not necessarily mean that it
will run without errors at runtime. Dynamic tests are useful to get a quick
assessment of the security of the applications. It comes in handy when source
code is not available for review as well.

22. Cryptographic protection includes all of the following EXCEPT

A. encryption of data when it is processed.
B. hashing of data when it is stored.
C. hiding of data within other media objects when it is transmitted.
D. masking of data when it is displayed.

Answer Is: D

Rationale / Answer Explanation:
Masking does not use any overt cryptography operations such as encryption,
decryption, or hashing or covert operations such as data hiding as in the case
of steganography to provide disclosure protection.

23. Replacing the Primary Account Number (PAN) with random or
pseudo-random symbols that are uniquely identifiable and still assuring
privacy is also known as

A. Fuzzing
B. Tokenization
C. Encoding
D. Canonicalization

Answer Is: B

Rationale / Answer Explanation:
Tokenization is the process of replacing sensitive data with unique
identification symbols that still retain the needed information about the
data, without compromising its security.

24. Which of the following is an implementation of the principle of least
privilege?

A. Sandboxing
B. Tokenization
C. Versioning
D. Concurrency

Answer Is: A

683

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 683 6/7/2013 5:41:13 PM

Rationale / Answer Explanation:
Sandboxing is an example of the principle of least privilege. Running code
in a sandbox (or jail) restricts the access that the code has on other system
resources.

Domain 5 - Secure Software Testing
1. The ability of the software to restore itself to expected functionality

when the security protection that is built in is breached is also known
as

A. redundancy.
B. recoverability.
C. resiliency.
D. reliability.;

Answer Is: B

Rationale / Answer Explanation:
When the software performs as it is expected to, it is said to be reliable. When
errors occur, the reliability of software is impacted and the software needs to
be able to restore itself to expected operations. The ability of the software to
be restored to normal expected operations is referred to as recoverability. The
ability of the software to withstand attacks against its reliability is referred to
as resiliency. Redundancy is about availability and reconnaissance is related
to information gathering as in fingerprinting/footprinting.

2. In which of the following software development methodologies does
unit testing enable collective code ownership and is critical to assure
software assurance?

A. Waterfall
B. Agile
C. Spiral
D. Prototyping

Answer Is: B

Rationale / Answer Explanation:
Unit testing enables collective code ownership. Collective code ownership
encourages everyone to contribute new ideas to all segments of the project.
Any developer can change any line of code to add functionality, fix bugs,
or re-factor. No one person becomes a bottleneck for changes. The way
this works is for each developer that work in concert (usually more in agile

684

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 684 6/7/2013 5:41:13 PM

methodologies than the traditional model) create unit tests for his/her code
as it is developed. All code that is released into the source code repository
includes unit tests. Code that is added, bugs as they are fixed, and old
functionality as it is changed will be covered by automated testing.

3. Which of the secure design principles is promoted when test harnesses
are used?

A. Least privilege
B. Separation of duties
C. Leveraging existing components
D. Psychological acceptability

Answer Is: D

Rationale / Answer Explanation:
Test harnesses promote the principle of leveraging existing components as it
can be reused by multiple projects, once it is set up.

4. The use of IF-THEN rules is characteristic of which of the following
types of software testing?

A. Logic
B. Scalability
C. Integration
D. Unit

Answer Is: A

Rationale / Answer Explanation:
IF-THEN rules are constructs of logic and when these constructs are used
for software testing, it is generally referred to as logic testing.

5. The implementation of secure features such as complete mediation and
data replication needs to undergo which of the following types of test
to ensure that the software meets the service level agreements (SLA)?

A. Stress
B. Unit
C. Integration
D. Regression

Answer Is: A

685

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 685 6/7/2013 5:41:13 PM

Rationale / Answer Explanation:
Tests that assure that the service level requirements are met is characteristic
of performance testing. Load and stress testing are types of performance
tests. While stress testing is testing by starving the software, load testing is
done by subjecting the software to extreme volumes or load.

6. Tests that are conducted to determine the breaking point of the software
after which the software will no longer be functional is characteristic
of which of the following types of software testing?

A. Regression
B. Stress
C. Integration
D. Simulation

Answer Is: B

Rationale / Answer Explanation:
The goal of stress testing is to determine if the software will continue to
operate reliably under duress or extreme conditions. Often the resources
that the software needs is taken away from the software and the software’s
behavior observed as part of the stress test.

7. Which of the following tools or techniques can be used to facilitate the
white box testing of software for insider threats?

A. Source code analyzers
B. Fuzzers
C. Banner grabbing software
D. Scanners

Answer Is: A

Rationale / Answer Explanation:
White box testing or structural analysis is about testing the software with
prior knowledge of the code and configuration. Source code review is a type
of white box testing. Embedded code issues such as Trojan horses, logic bomb
etc. that are implanted by insiders can be detected using source code analyzers.

8. When very limited or no knowledge of the software is made known to
the software tester before she can test for its resiliency, it is characteristic
of which of the following types of security tests?

686

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 686 6/7/2013 5:41:13 PM

A. White box
B. Black box
C. Clear box
D. Glass box

Answer Is: B

Rationale / Answer Explanation:
In black box or behavioral testing, test conditions are developed on the
basis of the program’s or system’s functionality; that is, the tester requires
information about the input data and observed output, but does not know
how the program or system works. The tester focuses on testing the program’s
behavior (or functionality) against the specification. With black box testing,
the tester views the program as a black box and is completely unconcerned
with the internal structure of the program or system. In white box or
structural testing, the tester knows the internal program structure such as
paths, statement coverage, branching, and logic. White box testing is also
referred to as clear box or glass box testing. Gray box testing is a software
testing technique that uses a combination of black box and white box testing.

9. Penetration testing must be conducted with properly defined

A. rules of engagement.
B. role based access control mechanisms.
C. threat models.
D. use cases.

Answer Is: A

Rationale / Answer Explanation:
Penetration testing must be controlled and not ad hoc in nature with properly
defined rules of engagement.

10. Testing for the randomness of session identifiers and the presence of
auditing capabilities provides the software team insight into which of
the following security controls?

A. Availability.
B. Authentication.
C. Non-repudiation.
D. Authorization.

Answer Is: C

687

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 687 6/7/2013 5:41:13 PM

Rationale / Answer Explanation:
When session management is in place, it provides for authentication and
when authentication is combined with auditing capabilities, it provides non-
repudiation i.e., the authenticated user cannot claim broken sessions and
intercepted authentication and deny their user actions due to the audit logs
recording their actions.

11. Disassemblers, debuggers and decompilers can be used by security
testers to PRIMARILY determine which of the following types of
coding vulnerabilities?

A. Injection flaws.
B. Lack of reverse engineering protection.
C. Cross-Site Scripting.
D. Broken session management.

Answer Is: B

Rationale / Answer Explanation:
Disassemblers, debuggers and decompilers are utilities that can be used for
reverse engineering software and software tester should have these utilities in
their list of tools to validate protection against reversing.

12. When reporting a software security defect in the software, which of
the following also needs to be reported so that variance from intended
behavior of the software can be determined?

A. Defect identifier
B. Title
C. Expected results
D. Tester name

Answer Is: C

Rationale / Answer Explanation:
Knowledge of the expected results along with the defect information can be
used to determine the variance between what the results need to be and what
is deficient.

13. An attacker analyzes the response from the web server which indicates
that its version is the Microsoft Internet Information Server 6.0
(Microsoft-IIS/6.0), but none of the IIS exploits that the attacker
attempts to execute on the web server are successful. Which of the
following is the MOST probable security control that is implemented?

688

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 688 6/7/2013 5:41:13 PM

A. Hashing
B. Cloaking
C. Masking
D. Watermarking

Answer Is: B

Rationale / Answer Explanation:
Detection of web server versions is usually done by analyzing HTTP
responses. This process is known as banner grabbing. But administrator
can change the information that gets reported and this process is known
as cloaking. Banner cloaking is a security through obscurity approach to
protect against version enumeration.

14. Smart fuzzing is characterized by injecting
A. truly random data without any consideration for the data

structure.
B. variations of data structures that are known.
C. data that get interpreted as commands by a backend interpreter.
D. scripts that are reflected and executed on the client browser.

Answer Is: B

Rationale / Answer Explanation:
The process of sending random data to test security of an application is
referred to as “fuzzing” or “fuzz testing.” There are two levels of fuzzing:
dumb fuzzing and smart fuzzing. Sending truly random data, known as dumb
fuzzing, often doesn’t yield great results and has the potential of bringing the
software down, causing a Denial of Service (DoS). If the code being fuzzed
requires data to be in a certain format but the fuzzer does not create data in
that format, most of the fuzzed data will be rejected by the application. The
more knowledge the fuzzer has of the data format, the more intelligent it can
be at creating data. These more intelligent fuzzers are known as smart fuzzers.

15. Which of the following is the MOST important to ensure, as part
of security testing, when the software is forced to fail x? Choose the
BEST answer.

A. Normal operational functionality is not restored automatically.
B. Access to all functionality is denied.
C. Confidentiality, integrity and availability are not adversely

impacted.
D. End users are adequately trained and self help is made available

for the end user to fix the error on their own.

689

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 689 6/7/2013 5:41:13 PM

Answer Is: C

Rationale / Answer Explanation:
As part of security testing, the principle of failsafe must be assured. This
means that confidentiality, integrity and availability are not adversely
impacted when the software fails. As part of general software testing, the
recoverability of the software i.e., restoration of the software to normal
operational functionality is an important consideration, but it need not
always be an automated process.

16. Timing and synchronization issues such as race conditions and
resource deadlocks can be MOST LIKELY identified by which of the
following tests? Choose the BEST answer.

A. Integration
B. Stress
C. Unit
D. Regression

Answer Is: B

Rationale / Answer Explanation:
Race conditions and resource exhaustion issues are more likely to be identified
when the software is starved of the resources that it expects as is done during
stress testing.

17. The PRIMARY objective of resiliency testing of software is to
determine

A. the point at which the software will break.
B. if the software can restore itself to normal business operations.
C. the presence and effectiveness of risk mitigation controls.
D. how a blackhat would circumvent access control mechanisms.

Answer Is: C

Rationale / Answer Explanation:
Security testing must include both external (blackhat) and insider threat
analysis and it should be more than just testing for the ability to circumvent
access control mechanisms. The resiliency of software is the ability of the
software to be able to withstand attacks. The presence and effective of risk
mitigate controls increases the resiliency of the software.

690

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 690 6/7/2013 5:41:13 PM

18. The ability of the software to withstand attempts of attackers who
intend to breach the security protection that is built in is also known as

A. redundancy.
B. recoverability.
C. resiliency.
D. reliability.;

Answer Is: C

Rationale / Answer Explanation:
Resiliency of software is defined as the ability of the software to withstand
attacker attempts.

19. Drivers and stub based programming are useful to conduct which of
the following tests?

A. Integration
B. Regression
C. Unit
D. Penetration

Answer Is: C

Rationale / Answer Explanation:
In order for unit testing to be thorough, the unit/module and the
environment for the execution of the module need to be complete. The
necessary environment includes the modules that either call or are called by
the unit of code being tested. Stubs and drivers are designed to provide the
complete environment for a module so that unit testing can be carried out. A
stub procedure is a dummy procedure that has the same input/output (I/O)
parameters as the given procedure. A driver module should have the code
to call the different functions of the module under test with appropriate
parameter values for testing. In layman’s terms, the driver module is akin to
the caller and the stub module can be seen as the callee.

20. Assurance that the software meets the expectations of the business as
defined in the service level agreements (SLAs) can be demonstrated by
which of the following types of tests?

A. Unit
B. Integration
C. Performance
D. Regression

691

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 691 6/7/2013 5:41:13 PM

Answer Is: C

Rationale / Answer Explanation:
Assurance that the software meets the expectations of the business as defined
in the service level agreements (SLAs) can be demonstrated by performance
testing. Once the importance of the performance of an application is known,
it is necessary to understand how various factors affect the performance.
Security features can have an impact on performance and this must be
checked to ensure that service level requirements can be met.

21. Vulnerability scans are used to
A. measure the resiliency of the software by attempting to exploit

weaknesses.
B. detect the presence of loopholes and weaknesses in the software.
C. detect the effectiveness of security controls that are implemented

in the software.
D. measure the skills and technical know-how of the security tester.

Answer Is: B

Rationale / Answer Explanation:
A vulnerability is a weakness (or loophole) and vulnerability scans are used
to detect the presence of weaknesses in software.

22. In the context of test data management, when a transaction which
serves no business purpose is tested, it is referred to as what kind of
transaction?

A. Non-synthetic
B. Synthetic
C. Useless
D. Discontinuous

Answer Is: B

Rationale / Answer Explanation:
Synthetic transactions refer to transactions that serve no business value.
Querying order information of a ‘dummy’ customer is an example of a
synthetic transaction. They are not necessarily useless.

23. As part of the test data management strategy, when a criteria is applied
to export selective information from a production system to the test
environment, it is also referred to as

692

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 692 6/7/2013 5:41:13 PM

A. Subletting
B. Filtering
C. Validation
D. Subsetting

Answer Is: B

Rationale / Answer Explanation:
The defining of subset criteria to export only certain kinds of information
from the production environment to the test environment is also known as
subsetting

Domain 6 - Software Acceptance
1. Your organization has the policy to attest the security of any software

that will be deployed into the production environment. A third party
vendor software is being evaluated for its readiness to be deployed.
Which of the following verification and validation mechanism can be
employed to attest the security of the vendor’s software?

A. Source code review
B. Threat modeling the software
C. Black box testing
D. Structural analysis

Answer Is: C

Rationale / Answer Explanation:
Since third party vendor software is often received in object code form, access
to source code is usually not provided and structural analysis (white box) or
source code analysis is not possible. Also looking into the source code or
source-code look alike by reverse engineering without explicit permission
can have legal ramifications. Additionally, without documentation on the
architecture and software makeup, a threat modeling exercise would most
likely be incomplete. License validation is primarily used for curtailing
piracy and is a component of verification and validation mechanisms. Black
box testing or behavioral analysis would be the best option to attest the
security of third party vendor software.

2. To meet the goals of software assurance, when accepting software, the
acquisition phase MUST include processes to

A. verify that installation guides and training manuals are provided.
B. assess the presence and effectiveness of protection mechanisms.
C. validate vendor’s software products.
D. assist the vendor in responding to the request for proposals.

693

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 693 6/7/2013 5:41:13 PM

Answer Is: B

Rationale / Answer Explanation:
To maintain the confidentiality, integrity and availability of software and the
data it processes, prior to the acceptance of software, vendor claims of security
must be assessed not only for their presence but also their effectiveness within
your computing ecosystem.

3. The process of evaluating software to determine whether the products
of a given development phase satisfies the conditions imposed at the
start of the phase is referred to as

A. verification
B. validation
C. authentication
D. authorization

Answer Is: A

Rationale / Answer Explanation:
Verification is defined as the process of evaluating software to determine
whether the products of a given development phase satisfies the conditions
imposed at the start of the phase. In other words, verification ensures that
the software performs as required and designed to. Validation is the process
of evaluating software during or at the end of the development process
to determine whether it satisfies specified requirements. In other words
validation ensures that the software meets required specifications.

4. When verification activities are used to determine if the software is
functioning as it is expected to, it provides insight into which of the
following aspects of software assurance?

A. Redundancy
B. Reliability
C. Resiliency
D. Recoverability

Answer Is: B

Rationale / Answer Explanation:
Verification ensures that the software performs as required and designed to
which is a measure of the software’s reliability.

5. When procuring software the purchasing company can request the
evaluation assurance levels (EALs) of the software product which is
determined using which of the following evaluation methodologies?

694

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 694 6/7/2013 5:41:13 PM

A. Operationally Critical Assets Threats and Vulnerability Evaluation®

(OCTAVESM)
B. Security Quality Requirements Engineering (SQUARE)
C. Common Criteria
D. Comprehensive, Lightweight Application Security Process

(CLASP)
Answer Is: C

Rationale / Answer Explanation:
The common criteria (ISO 15408) is a security product evaluation
methodology with clearly defined ratings, such as Evaluation Assurance
Levels (EALs). In addition to assurance validation, the common criteria also
validates software functionality for the security target. EALs rating assure the
owner of the assurance capability of the software/system and so the common
criteria is also referred to as an owner assurance model.

6. The FINAL activity in the software acceptance process is the go/no go
decision that can be determined using

A. regression testing.
B. integration testing.
C. unit testing.
D. user acceptance testing.

Answer Is: D

Rationale / Answer Explanation:
The end users of the business have the final say on whether the software
can be deployed/released or not. User acceptance testing (UAT) is used to
determine the readiness of the software for deployment to the production
environment or release to an external customer.

7. Management’s formal acceptance of the system after an understanding
of the residual risks to that system in the computing environment is
also referred to as

A. patching.
B. hardening.
C. certification.
D. accreditation.

Answer Is: D

Rationale / Answer Explanation:
While certification is the assessment of the technical and nontechnical

695

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 695 6/7/2013 5:41:13 PM

security controls of the software, accreditation is a management activity that
assures that the software has adequate levels of software assurance protection
mechanisms.

8. You determine that a legacy software running in your computing
environment is susceptible to Cross Site Request Forgery (CSRF)
attacks because of the way it manages sessions. The business has the
need to continue use of this software but you do not have the source
code available to implement security controls in code as a mitigation
measure against CSRF attacks. What is the BEST course of action to
undertake in such a situation?

A. Avoid the risk by forcing the business to discontinue use of the
software.

B. Accept the risk with a documented exception.
C. Transfer the risk by buying insurance.
D. Ignore the risk since it is legacy software.

Answer Is: B

Rationale / Answer Explanation:
When there are known vulnerabilities in legacy software and there is not
much you can do to mitigate the vulnerabilities, it is recommended that the
business accepts the risk with a documented exception to the security policy.
When accepting this risk, the exception to policy process must ensure that
there is a contingency plan in place to address the risk by either replacing
the software with a new version or discontinuing its use (risk avoidance).
Transferring the risk may not be a viable option for legacy software that is
already in your production environment and one must never ignore the risk
or take the vulnerable software out of the scope of an external audit.

9. As part of the accreditation process, the residual risk of a software
evaluated for deployment must be accepted formally by the

A. board members and executive management.
B. business owner.
C. information technology (IT) management.
D. security organization.

Answer Is: B

Rationale / Answer Explanation:
Risk must always be accepted formally by the business owner.

696

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 696 6/7/2013 5:41:13 PM

Domain 7 -
Software Deployment, Operations, Maintenance, and Disposal

1. When software that worked without any issues in the test environments
fails to work in the production environment, it is indicative of

A. inadequate integration testing.
B. incompatible environment configurations.
C. incomplete threat modeling.
D. ignored code review.

Answer Is: B

Rationale / Answer Explanation:
When the production environment does not mirror the development or test
environments, software that works fine in non-production environments
are observed to experience issues when it is deployed into the production
environment. This stresses the need for simulation testing.

2. Which of the following is not characteristic of good security metrics?

A. Quantitatively expressed
B. Objectively expressed
C. Contextually relevant
D. Collected manually

Answer Is: D

Rationale / Answer Explanation:
A good security metric is expressed quantitatively and is contextually accurate.
Irrespective of how many times the metrics is collected, the results are not
significantly variant. Good metrics are usually collected in an automated
manner so that the collector’s subjectivity does not come into effect.

3. Removal of maintenance hooks, debugging code and flags, and
unneeded documentation before deployment are all examples of
software

A. hardening.
B. patching.
C. reversing.
D. obfuscation.

Answer Is: A

697

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 697 6/7/2013 5:41:13 PM

Rationale / Answer Explanation:
Locking down the software by reducing the attack surface of the software
by removing unneeded code and documentation is referred to as software
hardening. Before hardening the software, it is crucially important to harden
the operating system of the host on which the software program will be run.

4. Which of the following has the goal of ensuring that the resiliency
levels of software is always above the acceptable risk threshold as
defined by the business post deployment?

A. Threat modeling.
B. Code review.
C. Continuous monitoring.
D. Regression testing.

Answer Is: C

Rationale / Answer Explanation:
Operations security is about staying secure or keeping the resiliency levels
of the software above the acceptable risk levels. It is the assurance that the
software will continue to function as is expected to in a reliable fashion
for the business, without compromising its state of security by monitoring,
managing and applying the needed controls to protect resources (assets).

5. Logging application events such as failed login attempts, sales price
updates and user roles configuration for audit review at a later time is
an example of which of the following type of security control?

A. Preventive
B. Corrective
C. Compensating
D. Detective

Answer Is: D

Rationale / Answer Explanation:
Audit logging is a type of detective control. When the users are made aware
that their activities are logged, audit logging could function as a deterrent
control, but it is primarily used for detective purposes. Audit logs can be
used to build the sequence of historical events and give insight into who
(subject such as user/process) did what (action), where (object) and when
(timestamp).

698

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 698 6/7/2013 5:41:14 PM

6. When a compensating control is to be used, the Payment Card Industry
Data Security Standard (PCI DSS) prescribes that the compensating
control must meet all of the following guidelines EXCEPT

A. Meet the intent and rigor of the original requirement.
B. Provide an increased level of defense than the original requirement.
C. Be implemented as part of a defense in depth measure.
D. Must commensurate with additional risk imposed by not adhering

to the requirement.

Answer Is: B

Rationale / Answer Explanation:
PCI DSS prescribes that the compensating control that is used must provide
a similar level, not increased level of defense as the original requirement.

7. Versioning, back-ups, check-in and check-out practices are all important
components of

A. Patch management
B. Release management
C. Problem management
D. Incident management

Answer Is: B

Rationale / Answer Explanation:
It is extremely important that versioning, backups, check-in and check-out
practices are all managed as part of the release management process.

8. Software that is deployed in a high trust environment such as the
environment within the organizational firewall when not continuously
monitored is MOST susceptible to which of the following types of
security attacks? Choose the BEST answer.

A. Distributed Denial of Service (DDoS)
B. Malware
C. Logic Bombs
D. DNS poisoning

Answer Is: C

Rationale / Answer Explanation:
Logic Bombs can be planted by an insider and when the internal network is
not monitored, the likelihood of these are much higher.

699

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 699 6/7/2013 5:41:14 PM

9. Bastion host systems can be used to continuously monitor the security
of the computing environment when it is used in conjunction with
intrusion detection systems (IDS) and which other security control?

A. Authentication.
B. Authorization.
C. Archiving.
D. Auditing.

Answer Is: D

Rationale / Answer Explanation:
IDS and auditing are both detective types of controls which can be used to
continuously monitor the security health of the computing environment.

10. The FIRST step in the incident response process of a reported breach
is to

A. notify management of the security breach.
B. research the validity of the alert or event further.
C. inform potentially affected customers of a potential breach.
D. conduct an independent third party evaluation to investigate the

reported breach.

Answer Is: B

Rationale / Answer Explanation:
Upon the report of a breach, it is important to go into a triaging phase in
which the validity and severity of the alert/event is investigated further. This
reduces the number of false positives that are reported to management.

11. Which of the following is the BEST recommendation to champion
security objectives within the software development organization?

A. Informing the developers that they could lose their jobs if their
software is breached.

B. Informing management that the organizational software could
be hacked.

C. Informing the project team about the recent breach of the
competitor’s software.

D. Informing the development team that there should be no injection
flaws in the payroll application.

Answer Is: D

700

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 700 6/7/2013 5:41:14 PM

Rationale / Answer Explanation:
Using security metrics over Fear, Uncertainty and Doubt (FUD) is the
best recommendation to champion security objectives within the software
development organization.

12. Which of the following independent process provides insight into the
presence and effectiveness of security and privacy controls and is used
to determine the organization’s compliance with the regulatory and
governance (policy) requirements?

A. Penetration testing
B. Audits
C. Threat modeling
D. Code review

Answer Is: B

Rationale / Answer Explanation:
Periodic audits (both internal and external) can be used to assess the overall
state of security health of the organization.

13. The process of using regular expressions to parse audit logs into
information that indicate security incidents is referred to as

A. correlation.
B. normalization.
C. collection.
D. visualization.

Answer Is: B

Rationale / Answer Explanation:
To normalize logs means that duplicate and redundant information is
removed from the logs after the time is synchronized for each log set and the
logs are parsed to deduce patterns that are identified in the correlation phase.

14. The FINAL stage of the incident management process is to

A. detection.
B. containment.
C. eradication.
D. recovery.

Answer Is: D

701

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 701 6/7/2013 5:41:14 PM

Rationale / Answer Explanation:
The incident response process involves preparation, detection, analysis,
containment, eradication and recovery. The goal of incident management is
to restore (recover) service to normal business operations.

15. Problem management aims to improve the value of Information
Technology to the business because it improves service by

A. restoring service to the expectation of the business user.
B. determining the alerts and events that need to be continuously

monitored.
C. depicting incident information in easy to understand user friendly

format.
D. identifying and eliminating the root cause of the problem.

Answer Is: D

Rationale / Answer Explanation:
The goal of problem management is to identify and eliminate the root
cause of the problem. All of the other definitions are related to incident
management. The goal of incident management is to restore service while
the goal of problem management is to improve service.

16. The process of releasing software to fix a recently reported vulnerability
without introducing any new features or changing hardware
configuration is referred to as

A. versioning.
B. hardening.
C. patching.
D. porting.

Answer Is: C

Rationale / Answer Explanation:
Patching is the process of applying updates and hot fixes. Porting is the
process of adapting software so that an executable program can be created
for a computing environment that is different from the one for which it was
originally designed (e.g. different processor architecture, Operating System
or third party software library)

702

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 702 6/7/2013 5:41:14 PM

17. Fishbone diagramming is a mechanism that is PRIMARILY used for
which of the following processes?

A. Threat modeling
B. Requirements analysis.
C. Network deployment.
D. Root cause analysis.

Answer Is: D

Rationale / Answer Explanation:
Ishikawa diagrams or fish bone diagrams are used to identify the cause and
effect of a problem and are used commonly to determine the root cause of
the problem.

18. As a means to assure the availability of the existing software functionality
after the application of a patch, the patch need to be tested for

A. the proper functioning of new features.
B. cryptographic agility.
C. backward compatibility.
D. the enabling of previously disabled services.

Answer Is: C

Rationale / Answer Explanation:
Regression testing of patches are crucial to ensure that there were no newer
side effects and that all previous functionality as expected were still available.

19. Which of the following policies needs to be established to securely
dispose software and associated data and documents?

A. End-of-life.
B. Vulnerability management.
C. Privacy.
D. Data classification.

Answer Is: A

Rationale / Answer Explanation:
End-of-life (EOL) policies are used for disposing code, configuration and
documents based on organizational and regulatory requirements.

703

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 703 6/7/2013 5:41:14 PM

20. Discontinuance of a software with known vulnerabilities with a newer
version is an example of risk

A. mitigation.
B. transference.
C. acceptance.
D. avoidance.

Answer Is: D

Rationale / Answer Explanation:
When a software with known vulnerabilities is replaced with a secure version,
it is an example of avoiding the risk. It is not transference, because the new
version may not have the same risks. It is not mitigation since no controls
are implemented to address the risk of the old software. It is not acceptance,
since the risk of the old software is replaced with the risk of the newer version.
It is not ignorance, because the risk is not left unhandled.

21. Printer ribbons, facsimile transmissions and printed information when
not securely disposed are susceptible to disclosure attacks by which of
the following threat agents? Choose the BEST answer.

A. Malware.
B. Dumpster divers.
C. Social engineers.
D. Script kiddies.

Answer Is: B

Rationale / Answer Explanation:
Dumpster divers are threat agents that can steal information from printed
media (printer ribbons, facsimile transmission and printed paper).

22. System resources can be protected from malicious file execution attacks
by uploading the user supplied file and running it in which of the
following environment?

A. Honeypot
B. Sandbox
C. Simulated
D. Production

Answer Is: B

704

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 704 6/7/2013 5:41:14 PM

Rationale / Answer Explanation:
Preventing malicious file execution attacks takes some careful planning
during the architectural and design phases of the SDLC, through to
thorough testing. In general, a well-written application will not use user-
supplied input in any filename for any server-based resource (such as images,
XML and XSL transform documents, or script inclusions), and will have
firewall rules in place preventing new outbound connections to the Internet
or internally back to any other server. However, many legacy applications
continue to have a need to accept user supplied input and files without the
adequate levels of validation built in. When this is the case, it is advisable
to separate the production environment and upload the files to a sandbox
environment before the files can be processed.

23. As a means to demonstrate the improvement in the security of code
that is developed, one must compute the relative attack surface quotient
(RASQ)

A. at the end of development phase of the project.
B. before and after the code is implemented.
C. before and after the software requirements are complete.
D. at the end of the deployment phase of the project.

Answer Is: B

Rationale / Answer Explanation:
In order to understand if there is an improvement in the resiliency of the
software code, the RASQ, which attempts to quantify the number and kinds
of vectors available to an attacker, needs to be computer before and after
code development is completed and the code is frozen.

24. Modifications to data directly in the database by developers must be
prevented by

A. periodically patching database servers.
B. implementing source code version control.
C. logging all database access requests.
D. proper change control management.

Answer Is: D

Rationale / Answer Explanation:
Proper change control management is useful to provide separation of duties
as it can prevents direct access to backend databases by developers.

705

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 705 6/7/2013 5:41:14 PM

25. Which of the following documents is the BEST source to contain
damage and which needs to be referred to and consulted with upon
the discovery of a security breach?

A. Disaster Recovery Plan.
B. Project Management Plan.
C. Incident Response Plan.
D. Quality Assurance and Testing Plan.

Answer Is: C

Rationale / Answer Explanation:
An Incident Response Plan (IRP) must be developed and tested for
completeness as it is the document that one should refer to and follow in the
event of a security breach. The effectiveness of an IRP is dependent on the
awareness of users on how to respond to an incident and increased awareness
can be achieved by proper education and training.

Domain 8 - Supply Chain and Software Acquisition
1. The increased need for security in the software supply chain is

PRIMARILY attributed to

E. cessation of development activities within a company.
F. increase in the number of foreign trade agreements.
G. incidences of malicious code and logic found in acquired software.
H. decrease in the trust of consumers on software developed within

a company.

Answer Is: C

Rationale/Answer Explanation:
Although there is an increase in the offshoring and outsourcing activities,
complete cessation of software development activities within a company
is not usually the case. Increase in foreign trade agreements has opened
up markets, but this is not the primary driver for the increased need for
security in the software supply chain. Software developed within a company
is likely to be more trusted that ones that are developed outside the purview
of a company’s control. An observable increase of malicious code and logic
implanted in software that is acquired has made the need for security in the
supply chain no longer optional.

2. Which phase of the acquisition life cycle involves the issuance of
advertisements to source and evaluate suppliers?

706

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 706 6/7/2013 5:41:14 PM

A. Contracting
B. Planning
C. Development
D. Delivery (Handover)

Answer Is: A

Rationale/Answer Explanation:
After the planning, and before the development phase of the acquisition life
cycle is the sourcing of suppliers, evaluating their responses and issuance of
a contract award to the winning supplier.

3. Predictable execution means that the software demonstrates all the
following qualities EXCEPT?

A. Authenticity
B. Conformance
C. Authorization
D. Trustworthiness

Answer Is: C
Rationale/Answer Explanation:
The three goals of software supply chain includes conformance ,
trustworthiness and authenticity.

4. Which of the following is a process threat in the software supply chain?

A. Counterfeit software
B. Insecure code transfer
C. Subornation
D. Piracy

Answer Is: B
Rationale/Answer Explanation:
Counterfeit and pirated software are product threats. Subornation is a people
threat. Transferring code without appropriate security controls is indicative
of a breakdown in the process and is deemed a process threat.

5. In the context of the software supply chain, the principle of persistent
protection is also known as

A. End-to-end encryption
B. Location agnostic protection

707

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 707 6/7/2013 5:41:14 PM

C. Locality of reference
D. Cryptographic agility

Answer Is: B
Rationale/Answer Explanation:
End-to-end encryption and Crytographic agility are concepts that are tied to
cryptography to assure protection against unauthorized disclosure. Locality
of reference is a memory management concept. Location agnostic protection,
means that the security of the software is not dependent on where (location)
it is developed, but instead, it is dependent on the maturity of the software
development practices. This is the one concept that is related to the software
supply chain.

6. In pre-qualifying a supplier, which of the following must be assessed to
ensure that the supplier can provide timely updates and hotfixes when
an exploitable vulnerability in their software is reported?

A. Foreign ownership and control or influence
B. Security track record
C. Security knowledge of the supplier’ s personnel
D. Compliance with security policies, regulatory and privacy

requirements.

Answer Is: B

Rationale/Answer Explanation:
While all of the option choices need to be evaluated, the supplier’s past
performance (track record) can be used to determine if the supplier is capable
of providing timely updates and hotfixes.

7. Which of the following can provide insight into the effectiveness and
efficiencies of the supply chain processes as it pertains to assuring trust
and software security?

A. Key Performance Indicators (KPI)
B. Relative Attack Surface Quotient (RASQ)
C. Maximum Tolerable Downtime (MTD)
D. Requirements Traceability Matrix (RTM)

Answer Is: A

Rationale/Answer Explanation:
RASQ is computed to determine the attackability of software. MTD is a
business continuity and disaster recovery concept. RTMs are used to trace

708

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 708 6/7/2013 5:41:14 PM

deviations from expected functionality. When KPIs are evaluated and
managed, they can provide insight into the effectiveness and efficiencies of the
supply chain processes as it pertains to assuring trust and software security.

8. Which of the following contains the security requirements and the
evidence needed to prove that the acquirer requirements are met as
expected?

A. Software Configuration Management Plan
B. Minimum Security Baseline
C. Service Level Agreements
D. Assurance Plan

Answer Is: D

Rationale/Answer Explanation:
An assurance plan addresses the development and maintenance of an
assurance case for software and the assurance case contains the required
security requirements and the evidence needed to prove that the supplier
meets the assurance needs of the acquirer.

9. The difference between disclaimer-based protection and contracts-
based is that

A. Contracts-based protection is mutual.
B. Disclaimer-based protection is mutual
C. Contracts-based protection is done by one-sided notification of

terms
D. Disclaimer-based protection is legally binding.

Answer Is: A

Rationale/Answer Explanation:
Unlike disclaimer-based protection, wherein there exists only a one-sided
notification of terms, contracts require that both parties engaged in the
transaction mutually agree to abide by any terms of the agreement. Contracts
are legally binding.

10. Software programs, database models and images on a website can be
protected using which of the following legal instrument?

A. Patents
B. Copyright

709

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 709 6/7/2013 5:41:14 PM

C. Trademarks
D. Trade secret

Answer Is: B

Rationale/Answer Explanation:
Patents protect an idea while copyrights protect the expression of an idea.
Software programs, database models and images on a website are expressions
of an idea. Trade secrets ensures that the company has a competitive
advantage and is not disclosed while trademarks are disclosed to uniquely
identify a manufacturer.

11. You find out that employees in your company have been downloading
software files and sharing them using peer-to-peer based torrent
networks. These software files are not free and need to be purchase
from their respective manufacturers. You employee are violating

A. Trade secrets
B. Trademarks
C. Patents
D. Copyrights

Answer Is: D

Rationale/Answer Explanation:
Peer-to-peer torrent’s unauthorized sharing of copyrighted information such
as a software or music files constitutes copyright violations.

12. Which of the following legal instruments assures the confidentiality
of software programs, processing logic, database schema and internal
organizational business processes and client lists?

A. Standards
B. Non-Disclosure Agreements (NDA)
C. Service Level Agreements (SLA)
D. Trademarks

Answer Is: B

Rationale / Answer Explanation:
Non-Disclosure agreements assure confidentiality of sensitive information
such as software program, processing logic, database schema and internal
organizational business processes and client lists.

710

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 710 6/7/2013 5:41:14 PM

13. When source code of Commercially Off-The-Shelf (COTS) software
is escrowed and released under a free software or open source license
when the original developer (or supplier) no longer continues to develop
that software, that software is referred to as

A. Trialware
B. Demoware
C. Ransomware
D. Freeware

Answer Is: C
Rationale/Answer Explanation:
In some situations, the source code of COTS may be escrowed and released
under a free software or open source license when the original developer
(supplier) no longer continues to develop that software or if stipulated fund-
raising conditions are met. This model is referred to as the ransom model of
software publishing and the software is known as ransomware.

14. Improper implementation of validity periods using length-of-use
checks in code can result in which of the following types of security
issues for legitimate users?

A. Tampering
B. Denial of Service
C. Authentication bypass
D. Spoofing

Answer Is: B

Rationale / Answer Explanation:
If the validity period set in software is not properly implemented, then
legitimate users can be potentially denied service. It is therefore imperative
to ensure that the duration and checking mechanism of validity periods is
properly implemented.

15. Your organization’s software is published as a trial version without any
restricted functionality from the paid version. Which of the following
MUST be designed and implemented to ensure that customers who
have not purchased the software are limited in the availability of the
software?

A. Disclaimers
B. Licensing

711

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 711 6/7/2013 5:41:14 PM

C. Validity periods
D. Encryption

Answer Is: C

Rationale / Answer Explanation:
Software functionality can be restricted using validity period as is often
observed in the ‘try-before-you-buy’ or ‘demo’ versions of software. If is
recommended to have a stripped down version of the software for the demo
version and if feasible, it is advisable to include the legal team to determine
the duration of the validity period (especially in the context of digital
signatures and Public Key Infrastructure solutions).

16. When must the supplier inform the acquirer of any applicable export
control and foreign trade regulatory requirements in the countries of
export and import?

A. Before delivery (handover)
B. Before code inspection.
C. After deployment.
D. Before retirement.

Answer Is: A
Rationale/Answer Explanation:
Prior to the delivery of the software, the supplier must provide the acquirer
with all applicable export compliance requirements.

17. The disadvantage of using open source software from a security
standpoint is

A. Only the original publisher of the source code can modify the
code.

B. Open source software is not supported and maintained by mature
companies or communities.

C. The attacker can look into the source code to determine its
exploitability.

D. Open source software can only be purchased using a piece-meal
approach.

Answer Is: C
Rationale/Answer Explanation:
Some open source software are supported and maintained by very well
established companies and communities and they don’t necessarily have

712

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 712 6/7/2013 5:41:14 PM

to be purchased as components alone and integrated. Some open source
software offer entire enterprise solutions which don’t require a piece-meal
approach. Open source software is modifiable and while insight into how
the software is architected can be viewed by the acquirer, an attacker also
has the advantage of looking into the software and writing tailored exploits
against it.

18. Which of the following is the most important security testing process
that validates and verifies the integrity of software code, components
and configurations, in a software security chain?

A. Threat modeling
B. Fuzzing
C. Penetration testing
D. Code review

Answer Is: D

Rationale / Answer Explanation:
Threat modeling primarily addresses the design aspects of software and
fuzzing and penetration testing usually deals with the software after it
deployed, the integrity of the code can be determined using code review.

19. Which of the following is LEAST likely to be detected using a code
review process?

A. Backdoors
B. Logic Bombs
C. Logic Flaws
D. Trojan horses

Answer Is: C

Rationale / Answer Explanation:
Logic flaws or semantic issues are design related and can be detected using
threat modeling. Backdoors, logic bombs and Trojan horses are code or
syntactic issues are primarily detected using a code review process. When
acquirer software from a supplier, it is imperative that a code review process is
in place to detect malicious code that arises from the presence of backdoors,
logic bomb and Trojan horses implanted in the code.

20. Which of the following security principle is LEAST related to the
securing of code repositories?

713

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 713 6/7/2013 5:41:14 PM

A. Least privilege
B. Access Control
C. Auditing
D. Open Design

Answer Is: D

Rationale / Answer Explanation:
Developers should only have access to the version of code necessary to
complete their responsibilities for only the time period that they need to
complete their operation. In other words, least privilege must be enforced
on a need-to-know basis. Source code control systems (or code repositories)
can provide such granular levels of access control. Identity management with
auditing in place can provide accountability and so any code changes that
are made and checked back into the code repositories must be traceable
and identifiable to individuals who are making the change. This reduces the
likelihood of malicious code implanted into the code.

21. The integrity of build tools and the build environment is necessary to
protect against

A. spoofing
B. tampering
C. disclosure
D. denial of service

Answer Is: B

Rationale / Answer Explanation:
If the integrity of the build process is questionable, and the build tools and
environment not protected, then the confidence of pristine untampered code
is not assured and all efforts previously undertaken to protect the assurance
of the software can be nullified.

22. Which of the following kind of security testing tool detects the presence
of vulnerabilities through disassembly and pattern recognition?

A. Source code scanners
B. Binary code scanners
C. Byte code scanners
D. Compliance validators

Answer Is: B

714

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 714 6/7/2013 5:41:14 PM

Rationale / Answer Explanation:
Source code and byte code scanners detect the presence of vulnerabilities
in source or byte code form of code while binary code scanners have
to disassemble the object code form while analyzing executables for
vulnerabilities. Compliance validators primarily use an interview format to
detect non-compliance.

23. When software is developed by multiple suppliers, the genuineness of
the software can be attested using which of the following processes?

A. Code review
B. Code signing
C. Encryption
D. Code scanning

Answer Is: B
Rationale / Answer Explanation:
Code signing is the process of encrypting the hash value of software with the
publisher’s (or supplier’s) private key. This creates a unique digital signature
which can be used to attest the genuineness of the software .Encryption
alone cannot provide such pedigree attestation. Code review and code
scanning are primarily detective in nature and are used to detect the presence
of vulnerabilities in the software and not proof of origin or authenticity.

24. Which of the following must be controlled during handoff of software
from one supplier to the next, so that no unauthorized tampering of
the software can be done?

A. Chain of custody
B. Separation of privileges
C. System logs
D. Application data

Answer Is: A

Rationale / Answer Explanation:
As software code or components moves from supplier to supplier in a
software supply chain, it is extremely important to make sure that the chain
of custody is controlled, until the software reaches the final user or acquirer
of the software, so that unauthorized tampering of the software is mitigated.

25. Which of the following risk management concepts is demonstrated
when using code escrows?

A. Avoidance
B. Transference

715

Appendix A: Answers to Review Questions A
A

ppendix A

A
nsw

ers to Review
 Q

uestions

CSSLP_v2.indb 715 6/7/2013 5:41:14 PM

C. Mitigation
D. Acceptance

Answer Is: A

Rationale / Answer Explanation:
Code escrows can be regarded as a form of risk transference by insurance,
because it insures the licensee continued business operations, should the
licensor be no longer alive (in case of a sole proprietorship), go out of
business, or file for bankruptcy (in case of a Corporation).

26. Which of the following types of testing is crucial to conduct to
determine single points of failure in a System-of-systems (SoS)?

A. Unit
B. Integration
C. Regression
D. Logic

Answer Is: B

Rationale / Answer Explanation:
Integration testing is useful to test the interfaces and interdependencies
between components that are integrated in an SoS to reveal single points of
failure or weak links that can render the entire SoS exploitable.

27. When software is handed from one supplier to the next, the following
operational process needs to be in place so that the supplier from whom
the software is acquirer can no longer modify the software?

A. Runtime integrity assurance
B. Patching
C. Termination Access Control
D. Custom Code Extension Checks

Answer Is: C

Rationale / Answer Explanation:
Once software is handed over from one supplier to another or to the acquirer,
only the receiving party’s personnel should be allowed to access and/or
modify the software code, components and configuration.

716

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 716 6/7/2013 5:41:14 PM

717

Appendix B

Security Models

In this section we will be covering the popular security models listed below, with
special attention given to how they apply to software security.

 ■ Confidentiality Models
 ¤ Bell-LaPadula (BLP)

 ■ Integrity Models
 ¤ Biba
 ¤ Clark and Wilson

 ■ Access Control Models
 ¤ Brewer and Nash

Bell-LaPadula (BLP) Confidentiality Model
If disclosure protection is the primary concern, one must consider the BLP
confidentiality model in their software design. Bell-LaPadula is a confidentiality
model which defines the notion of a secure state, i.e., access (read only, write
only or read and write) to information is permitted based on rules and the
classification of the information itself.

BLP rules can be specified using properties. The three properties are simple
security property that has to do with read access, the star (*) security property
that has to do with write access and the strong star security property that has to
do with both read and write access capabilities.

The Simple Security property states that if you have ‘read’ capability, you
can read data at your level of secrecy or at a lower level of secrecy, but you must
not be allowed to read data at a higher level of secrecy. This is commonly known
as the “No Read Up” rule of BLP.

CSSLP_v2.indb 717 6/7/2013 5:41:14 PM

718

The Star (*) Security property states that if you have ‘write’ capability, you
can write data at your level of secrecy or at a higher level of secrecy without
compromising its value, but you must not be allowed to write data at a lower
level of secrecy. Writing to a level you can’t read creates a type of denial of service
covert channel because you can’t read what you write.

The Strong Star Security property states that if you have both ‘read’ and
‘write’ capabilities, you can read and write data only at your level of secrecy
and that you must not be allowed to read and write to levels of higher or lower
secrecy.

Say that the completion of your data classification exercise has yielded the
following classification in decreasing order of protection needs, viz. Top Secret
> Secret > and Unclassified.

BLP confidential model will mandate that some who is allowed to view
only Restricted information is not permitted to read information classified as
Top Secret (“no read up”) and at the same time, they are not allowed to write at
the Unclassified level (“no write down”) as depicted in Figure B.1. BLP is often
simplified in its description as the security model that enforces the “no read up”
and “no write down” security policy.

BLP has a strong impact on software design. When a thread executing at
a lower priority level is prevented from accessing (reading) a thread executing

Figure B.1 – Bell-LaPadula Confidentiality Model

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 718 6/7/2013 5:41:14 PM

719

at a higher priority level or modifying (writing to) a thread executing at a
lower priority level, it is operating in accordance with the rules of the BLP
confidentiality model.

Biba Integrity Model
While the BLP model deals primarily with confidentiality assurance, the Biba
Integrity model was the first to address modification or alteration protection.
The BLP model has to do more with ‘read’ capability and the Biba model has to
do more with ’write’ capability. Like the BLP model, the Biba model also have
the simple security property and the star (*) security property and so it can be
deemed to be the integrity equivalent of the BLP model.

The Simple Security property states that if you have read capability, you
can read data at your level of accuracy or from a higher level of accuracy, but
you must not be allowed to read data from a lower level of accuracy. Allowing a
read down operation can result in the risk of contaminating the accuracy of the
your data.

The Star (*) Security policy states that if you have write capability, you can
write data at your own level of accuracy or to a lower level of accuracy, but you
must not be allowed to write data at a higher level of accuracy. Allowing a write
up operation can result in the risk of possibly contaminating the data that exists
at the higher level.

Figure B.2 - Biba Integrity Model

Appendix B: Security Models

B

A
ppendix B

Security M
odels

CSSLP_v2.indb 719 6/7/2013 5:41:15 PM

720

Say that the completion of your data classification exercise has yielded the
following classification in decreasing order of protection needs, viz. Top Secret >
Secret > and Unclassified. The Biba Integrity model will mandate that some who
is allowed to view only Secret information is not permitted to read information
classified as Unclassified (“no read down”) and at the same time, they are not
allowed to write at the Top Secret level (“no write up”). Biba is often simplified
in its description as the security model that enforces the “no read down” and “no
write up” security policy.

Additionally, the accuracy of data is supported in the Biba model. Say the
database has to be designed to hold the value of the mathematical pi. Then
depending on the level of accuracy, the value can be maintained with higher
degrees of precision as depicted in Figure B.2. Improper read down or write up
can lead to contamination of the value, which the Biba Integrity model aims to
protect against.

In addition to the simple security and the star (*) security property, Biba
adds a third property, unique to the Biba security model that is known as the
invocation property. The invocation property states that subjects cannot send
messages (invoke services) to objects with higher integrity.

Clark and Wilson Integrity Model
Like the Biba integrity model, the Clark and Wilson model is an integrity model
as well. It not only focuses on unauthorized subjects making modifications to
objects but it also addresses integrity aspects of authorized personnel making
unauthorized changes. For example, an authenticated employee on your
network (authorized personnel) should not be able to make changes to his own
salary information and give himself a bonus (unauthorized changes) without
being challenged. The Clark and Wilson model is even more exhaustive in the
sense that in addition to addressing integrity goals, it also aims at addressing
consistency goals by maintaining internal and external consistency by defining
well-formed transactions.

Let’s take for example that customers are allowed place orders for your
company’s products over the web using the company online ecommerce store.
Once the customer confirms their order submission, the software is designed
to first add the customer to the database and then generate an order tied to
the customer that is recorded in the customer order table. Order details (the
products your customer selected) are then subsequently added to the order
detail table in the database and are referenced to the customer order table using

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 720 6/7/2013 5:41:15 PM

721

the order id. Say that while the order details are being added to the database,
the database connection pools are maxed out and the transaction fails. If your
software is designed and developed in accordance with the Clark and Wilson
security model, then you can expect the software to rollback the order entry
when the order details fails, to ensure that data consistency is ensured. The
Clark and Wilson model is also known as an access triple model. The access
triple model ensures that access of a subject to an object is restricted and allowed
only through a trusted program (which can be your software) as depicted in
Figure B.3. For example, all database operations are allowed only through a
software program or application (which preferably is audited) and no direct
database access is allowed. The user subject-to-program & program-to-object
(data) binding creates a form of separation of duties that ensures integrity.

Brewer and Nash Model
Brewer and Nash model is an access control security model that was developed
to ensure that the Chinese Wall security policy is met. The Chinese Wall security
policy is a set of rules that allow individuals to access proprietary data as long
as there is no conflict of interest, i.e., no subjects can access objects on the
other side of a wall that is defined with two subjects as depicted in Figure B.4.
The motivation for this model came from the need to avoid exposing sensitive
information about a company to its competitor, especially in settings where the
same financial consultant is providing services to both competing organizations.
In such a situation, the access rights of the individual must be dynamically
established based on the data that the individual has previously accessed.

Figure B.3 - Clark and Wilson Access Triple Model

Appendix B: Security Models

B

A
ppendix B

Security M
odels

CSSLP_v2.indb 721 6/7/2013 5:41:15 PM

722

The Brewer and Model Chinese Wall security model is very applicable in
today’s software landscape. With an increase in Software as a Service (SaaS)
solutions, the need for a definitive wall to exist between your organization’s data
and your competitor’s data is a mandatory requirement. For example, if you use
a Customer Relationship Management (CRM) SaaS solution, such as salesforce.
com to manage your customer and prospective client list, and your sensitive data
is hosted in a shared environment, then there needs to be a wall that is defined
to prevent your competitor who is also using the same SaaS CRM solution
from accessing your sensitive information and vice versa. If access to competitor
information is allowed, then a conflict of interest situation is created and this is
what the Brewer and Nash model aims to avoid. The Brewer and Nash model
is not only an access control model but is also considered to be an information
flow model.

The security models covered so far are by no means an exhaustive list of all
information security models that exists today. There are other security models
such as the non-interference model, state-machine models, the Graham-
Denning model and the Harrison-Ruzzo-Ullman Result model that as a security
professional, it is advisable for you to be familiar with, so that your role as a
CSSLP is most effective.

Figure B.4 – Chinese Wall Security Model

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 722 6/7/2013 5:41:15 PM

http://salesforce.com

723

Appendix C

Threat Modeling

In order to explain the threat modeling process, we will take a more practical
approach of defining, modeling, and measuring the threats of a web store for a
fictitious company named Zion, Inc., that has the following requirements:

Zion, Inc. is in the business of selling and renting Zii game consoles, games,
and accessories. Lately, it has been losing market share to online competitors
who are providing a better customer experience than Zion’s brick and mortar
establishments. Zion, Inc,. wants to secure its #1 market leader position for gaming
products and services. The company plans to provide a secure, uninterrupted,
and enhanced user experience to its existing and prospective customers. Zion,
Inc., has contracted your organization to perform a threat modeling exercise for
its online strategy. You are summoned to provide assistance and are given the
following requirements:

 ■ Customers should be able to search for products and place their
orders using the web store or by calling the sales office.

 ■ Prior to a customer’s placing an order, a customer account needs
to be created.

 ■ Customer must pay with a credit card or debit card.
 ■ Customers must be logged in before they are allowed to personalize

their preferences.
 ■ Customers should be able to write reviews of only the products

they purchase.
 ■ Sales agents are allowed to give discounts to customers.
 ■ Administrators can modify and delete customer and product

information.

CSSLP_v2.indb 723 6/7/2013 5:41:15 PM

724

Your request for pertinent documentation yields the following statements
and requirements:

 ■ The web store will need to be accessible from the Intranet as well
as the Internet.

 ■ The web store will need to be designed with a distributed
architecture for scalability reasons.

 ■ User will need authenticate to the web store with the user account
credentials which in turn will authenticate to the backend database
(deployed internally) via a web services interface.

 ■ User account information and product information will need to
be maintained in a relational database for improved transactional
processing.

 ■ Credit card processing will be outsourced to a third-party processor.
 ■ User interactions with the web store will need to be tracked.
 ■ The database will need to backed up periodically to a third-party

location for disaster recovery (DR) purposes.
 ■ ASP.Net using C# and the backend database can be either Oracle

or Microsoft SQL Server.
We will start threat modeling Zion, Inc.’s web store by first defining the

threat model. This includes identifying the assets and security objectives and
creating an overview of the application.

Before we dive into the process of threat modeling, we must first identify the
security objectives (vision).

Identify security objectives (vision)
For Zion, Inc.’s web store, from the requirements, we can glean the following
objectives:

 ■ Objective 1: Secure #1 market leader position for gaming products
and services.

 ■ Objective 2: Provide secure service to existing and prospective
customers.

 ■ Objective 3: Provide uninterrupted service to existing and
prospective customers.

 ■ Objective 4: Provide an enhanced user experience to existing and
prospective customers.

Objective 1 and Objective 4 are both more business objectives than they
are security objectives, so while they are noted, we don’t really address them
as part of the threat model. However, Objective 2 and Objective 3 are directly

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 724 6/7/2013 5:41:15 PM

725

related to security. To provide a secure service (Objective 2), the web store
must take into account the confidentiality, integrity, and availability of data,
ensure that authentication, authorization, and auditing are in place and that
sessions, exceptions, and configurations are properly managed. To provide
uninterrupted services (Objective 3), the web store will have high availability
requirements defined in the needs statement and SLA, which will be assured
through monitoring, load balancing, replication, disaster recovery, and business
continuity and recoverable backups.

Although the loss of customer data and downtime can cause detrimental and
irrecoverable damage to the brand name of Zion, Inc., for this threat model, we
will focus primarily on tangible assets, which include customer data, product
data, and the application and database servers.

Once the security objectives are identified and understood, we threat model
the software. This includes the following phases with specific activities inside
each phase as shown in Figure C.1.

1. Model Application Architecture
2. Identify Threats
3. Identify, Prioritize and Implement Controls
4. Document and Validate

Figure C.1 – Threat Modeling Process (Phases and Activities)

Appendix C: Threat Modeling

C

A
ppendix C

Threat M
odeling

CSSLP_v2.indb 725 6/7/2013 5:41:15 PM

726

Phase 1 – Model Application Architecture
This phase includes the diagramming of the application attributes and it includes
the following activities.

Identify the physical topology.
Zion, Inc’s web store will be deployed as an Internet-facing application in the
DMZ with access for both internal and external users. Physically, the application
will be entirely hosted on an application server hosted in the DMZ, with access
to a database server that will be present internally as depicted in Figure C.2.

Identify the logical topology.
Zion, Inc’s web store will be logically designed as a distributed client/server
application with distinct presentation, business, data, and service tiers as depicted
in Figure C.3. Clients will access the application using their web browsers on
their desktops, laptops, and mobile devices.

Figure C.2 – Physical topology

Figure C.3 – Logical topology

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 726 6/7/2013 5:41:16 PM

727

Determine components, services, protocols, and ports that need to be
defined, developed, and configured for the application.
Users will connect to the web application over port 80 (using http) or over port
443 (using https). The web application will connect to the SQL server database
over port 1433 (using TCP/IP). When the users use a secure transport channel
protocol such as https over 443, the SSL certificate is also deemed a component
and will need to be protected from spoofing threats. Figure C.4 illustrates the
components, services, protocols, and ports for Zion, Inc’s web store.

Identify the identities that will be used in the application and determine
how authentication will be designed in the application.
User will authenticate to the web application using forms authentication
(user name and password) which in turn will authenticate to the SQL Server
2008 database (deployed internally) via a web services application using a web
application identity as depicted in Figure C.5.

Figure C.4 – Components, Services, Protocols and Ports

Figure C.5 – Identities

Appendix C: Threat Modeling

C

A
ppendix C

Threat M
odeling

CSSLP_v2.indb 727 6/7/2013 5:41:16 PM

728

Identify human and non-human actors of the system.
The requirements state that:

 ■ Customers should be able to search for products and place their
orders using the web store or by calling the sales office.

 ■ Sales agents are allowed to give discounts to customers
 ■ Administrators can modify and delete customer and product

information.
 ■ The database will need to backed up periodically to a third-party

location for disaster recovery (DR) purposes.

This helps us identify three human actors of the system: customers, sales
agents and administrators as depicted in Figure C.6. Non-human actors (not
shown in the figure) can include batch processes that back up data periodically
to the third-party DR location.

Identify data elements.
Some of Zion, Inc’s web store data elements that need to be modeled for threats
of disclosure, alteration, and destruction include customer information (account
information, billing address, shipping address, etc.), product information
(product data, catalog of items, product pricing, etc.), order information (data of
order, bill of materials, shipping date, etc.), and credit card information (credit
card number, verification code, expiration month and year, etc.). Since the web
store will be processing credit card information, customer card data information
will need to be protected according to the PCI DSS requirements.

Figure C.6 – Actors

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 728 6/7/2013 5:41:16 PM

729

Generate a data access control matrix.
The data access control matrix gives insight into the rights and privileges
(Create (C), Read (R), Update (U) or Delete (D)) that the actors will have
on the identified data elements as depicted in Figure C.7. The same should be
performed for any service roles in the application.

Identify the technologies that will be used in building the application.
Customer requirements stated that the web application will need to be in ASP.
Net using C# while there was a choice of database technology between Oracle
and Microsoft SQL Server. Figure C.8 depicts the choosing of the Internet
Information Server as the web server to support ASP.Net technology and the
choosing of the SQL Server as the backend database. Whether ASP.Net will
use the .Net 3.5 or .Net 4.0 framework, and if the SQL server will be the latest
version or a prior version are important determinations to make at this point to
leverage security features within these frameworks or products.

Figure C.7 – Data Access Control Matrix

Figure C.8 – Technologies

Appendix C: Threat Modeling

C

A
ppendix C

Threat M
odeling

CSSLP_v2.indb 729 6/7/2013 5:41:16 PM

730

Identify external dependencies.
External dependencies include the credit card processor and the third-party
backup service provider as depicted in Figure C.9. The output of this activity is
the architectural makeup of the application.

Phase 2 – Identify Threats
In order to identify potential applicable threats, we will conduct the following
activities on the Zion, Inc. application.

Identify trust boundaries.
A trust boundary is the point at which the trust level or privilege changes. For
the Zion, Inc’s web store, trust boundaries exist between the external (Internet)
and the DMZ and between the DMZ and the internal (Intranet) zones.

Identify entry points.
Entry points are those items that take in user input. Each entry point can be a
potential threat source and so each must be explicitly identified and safeguarded.
Entry points in a web application could include any page that takes in user input.
Some of the entry points identified in the Zion, Inc’s web store include the following:

 ■ Port 80 / 443
 ■ Logon Page
 ■ User Preferences Page
 ■ Product Admin Page

Identify exit points.
Exit points are those items that display information from within the system.
Exit points also include processes that take data out of the system. Exit points
can be the source of information leakage and need to be equally protected. Some
of the exit points identified in the Zion, Inc’s web store include the following:

Figure C.9 – Dependencies

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

CSSLP_v2.indb 730 6/7/2013 5:41:16 PM

731

 ■ Product Catalog Page
 ■ Search Results Page
 ■ Credit card verification processes
 ■ Backup processes

Identify data flows.
Data flow diagrams (DFDs) and sequence diagrams assist in understanding how
the application will accept, process, and handle data as it is marshaled across
different trust boundaries. Some of the data flows identified in Zion, Inc’s web
store include the following:

 ■ Anonymous user browses product catalog page Adds to Cart
Creates Account Submits Order

 ■ User Logs In Updates Preferences User Logs Out
 ■ Administrator Logs In Updates Product Information

Identify privileged functionality.
Code that allows elevation of privilege or the execution of privileged operations
is identified. All administrator functions and critical business transactions are
identified.

Introduce Mis-Actors
For Zion, Inc’s threat model, both internal and external threat agents are
introduced. Some applicable mis-actors include rogue DBA, uneducated users,
external hacker, and any batch processes that make updates automatically.

Determine potential and applicable threats.
Although an attack-tree methodology could have been applied to determine
potential and applicable threats, it was determined that using a categorized
threat list would be more comprehensive. The STRIDE threat list was used for
this exercise and the results tabulated as shown in Table C.1.

Table C.1 – Threat identification using STRIDE threat list

Appendix C: Threat Modeling

C

A
ppendix C

Threat M
odeling

STRIDE List Identified Threats

Spoofing - Cookie Replay
 - Session Hijacking
 - CSRF

Tampering - Cross Site Scripting (XSS)
 - SQL Injection

Repudiation - Audit Log Deletion
 - Insecure Backup

Information Disclosure - Eavesdropping Verbose Exception
 - Output Caching

Denial of Service - Website Defacement

Elevation of Privilege - Logic Flaw

CSSLP_v2.indb 731 6/7/2013 5:41:16 PM

732

Phase 3 – Identify, Prioritize and Implement Controls
The three common ways to rank threats are

 ■ Delphi ranking
 ■ Average ranking
 ■ Probability x Impact (P x I) ranking

Both average ranking and P x I ranking methodologies to rank threats were
followed and the results tabulated for Zion, Inc’s. The Delphi ranking exercise was

Table C.2 – Average ranking

Table C.3 – P x I ranking

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Threat D R E A DI Average Rank
(D+R+E+A+DI)/ 5

SQL Injection 3 3 2 3 2 2.6 (High)

XSS 3 3 3 3 3 3.0 (High)

Cookie Replay 3 2 2 1 2 2.0 (Medium)

Session Hijacking 2 2 2 1 3 2.0 (Medium)

CSRF 3 1 1 1 1 1.4 (Medium)

Verbose Exception 2 1 2 3 1 1.8 (Medium)

Brute Forcing 2 1 1 3 2 1.8 (Medium)

Eavesdropping 2 1 2 3 2 2.0 (Medium)

Insecure Backup 1 1 2 1 2 1.4 (Medium)

Audit Log Deletion 1 0 0 1 3 1.0 (Low)

Output Caching 3 3 2 3 3 2.8 (High)

Website Defacement 3 2 1 3 2 2.2 (High)

Logic Flaws 1 1 1 2 1 1.2 (Low)

Probability of
Occurrence (P)

Business
Impact (I)

P I Risk

Threat R E DI D A (R+E+DI) (D + A) P x I

SQL Injection 3 2 2 3 3 7 6 42

XSS 3 3 3 3 3 9 6 54

Cookie Replay 2 2 2 3 1 6 4 24

Session Hijacking 2 2 3 2 1 7 3 21

CSRF 1 1 1 3 1 3 4 12

Verbose Exception 1 2 1 2 3 4 5 20

Brute Forcing 1 1 2 2 3 4 5 20

Eavesdropping 1 2 2 2 3 5 5 25

Insecure Backup 1 2 2 1 1 5 2 10

Audit Log Deletion 0 0 3 1 1 3 2 06

Output Caching 3 2 3 3 3 8 6 48

Website Defacement 2 1 2 3 3 5 6 30

Logic Flaws 1 1 1 1 2 3 3 06

High: 41 to 60; Medium: 21 to 40; Low: 0 to 20

CSSLP_v2.indb 732 6/7/2013 5:41:17 PM

733

conducted but because of its non-scientific approach to risk, the findings were
not deemed useful. Table C.2 shows the threat ranks using the average ranking
methodology. Table C.3 shows the risk rank based on P x I ranking methodology.

After the threats are prioritized, your findings and the threat model are
submitted to the organization. Based on this threat model, appropriate controls
are identified for implementation to bring the security risk of Zion, Inc’s web
store within acceptable thresholds, as defined by the business. (See Table C.4)

Phase 4 – Document and Validate
Threats and controls can be documented diagrammatically or in textual format.
Zion, Inc’s threats are documented diagrammatically as depicted in Figure C.10.
An example of textually documenting the SQL injection threat is tabulated in
Table C.5.

Upon documentation of threats and controls, and the residual risk, we would
validate the Zion, Inc. threat model to ensure that:

 ■ The application architecture that is modeled (diagrammed) is
accurate and contextually current (up-to-date).

 ■ Threats are identified across each trust boundary and for data
element.

Table C.4 – Control Identification

Appendix C: Threat Modeling

C

A
ppendix C

Threat M
odeling

Threat (P x I rank) Controls
XSS (54) Encode output; Validate request; Validate input;

Disallow script tags; Disable active scripting

Output Caching (48) Don’t cache credentials; Complete mediation

SQL Injection (42) Use parameterized queries; Validate input; Don’t
allow dynamic construction of SQL

Website Defacement (30) Load balancing and DR; Disallow URL redirection

Eavesdropping (25) Data encryption; Sniffers detection; Disallow rogue systems;

Cookie Replay (24) Cookieless authentication; Encrypt cookies to avoid tampering

Session Hijacking (21) Use random and non-sequential Session identifiers; Abandon
sessions explicitly; Auto Log off on browser shutdown

Verbose Exception (20) Use non-verbose error message; Trap, record
and handle errors; Fail secure

Brute Forcing (20) Don’t allow weak passwords; Balance psychological
acceptability with strong passwords

CSRF (12) Use unique session token; Use referrer origin
checks; Complete mediation

Insecure Backup (10) Data encryption; SSL (transport) or IPSec
(network) in-transit protection; ACLs

Audit Log Deletion (06) Don’t allow direct access to the database; Implement
Access Triple security model; Separation of privilege

Logic Flaws (06) Design reviews

CSSLP_v2.indb 733 6/7/2013 5:41:17 PM

734

 ■ Each threat has been explicitly considered and controls for
mitigation, acceptance or avoidance have been identified and
mapped to the threats they address.

 ■ The residual risk of that threat is determined and formally accepted
by the business owner, if the decision to accept the risk is made.

It is also important to revisit the threat model and revalidate it, should
the scope and attributes of the Zion Inc’s web store (application) change.

Figure C.10 – Diagrammatically documents threats

Table C.5 – Textual documentation of a SQL Injection threat

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Threat Description Injection of SQL commands

Threat targets - Data access component
 - Backend database.

Attack techniques - Attacker appends SQL commands to user name,
which is used to form an SQL query.

Security Impact - Information Disclosure.
 - Alteration.
 - Destruction (Drop table, procedures, delete data etc.).
 - Authentication bypass.

Safeguard controls
to implement

 - Use a regular expression to validate the user name.
 - Disallow dynamic construction of queries using

user supplied input without validation.
 - Use parameterized queries.

Risk - High

CSSLP_v2.indb 734 6/7/2013 5:41:17 PM

735

Appendix D

Commonly Used
Opcodes in Assembly

TRANSFER Opcodes
Name Description Syntax

MOV Move (copy) MOV Dest,Source

XCHG Exchange XCHG Op1,Op2

STC Set Carry STC

CLC Clear Carry CLC

CMC Complement Carry CMC

STD Set Direction STD

CLD Clear Direction CLD

STI Set Interrupt STI

CLI Clear Interrupt CLI

PUSH Push onto stack PUSH Source

PUSHF Push flags PUSHF

PUSHA Push all general registers PUSHA

POP Pop from stack POP Dest

POPF Pop flags POPF

POPA Pop all general registers POPA

CBW Convert byte to word CBW

CWD Convert word to double CWD

CWDE Convert word extended double CWDE

IN Input IN Dest, Port

OUT Output OUT Port, Source

CSSLP_v2.indb 735 6/7/2013 5:41:17 PM

736

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

ARITHMETIC Opcodes
Name Description Syntax

ADD Add ADD Dest,Source

ADC Add with Carry ADC Dest,Source

SUB Subtract SUB Dest,Source

SBB Subtract with borrow SBB Dest,Source

DIV Divide (unsigned) DIV Op

IDIV Signed Integer Divide IDIV Op

MUL Multiply (unsigned) MUL Op

IMUL Signed Integer Multiply IMUL Op

INC Increment INC Op

DEC Decrement DEC Op

CMP Compare CMP Op1,Op2

SAL Shift arithmetic left SAL Op,Quantity

SAR Shift arithmetic right SAR Op,Quantity

RCL Rotate left through Carry RCL Op,Quantity

RCR Rotate right through Carry RCR Op,Quantity

ROL Rotate left ROL Op,Quantity

ROR Rotate right ROR Op,Quantity

LOGIC Opcodes
Name Description Syntax

NEG Negate (two-complement) NEG Op

NOT Invert each bit NOT Op

AND Logical and AND Dest,Source

OR Logical or OR Dest,Source

XOR Logical exclusive or XOR Dest,Source

SHL Shift logical left SHL Op,Quantity

SHR Shift logical right SHR Op,Quantity

MISCELLANEOUS Opcodes
Name Description Syntax

NOP No operation NOP

LEA Load effective address LEA Dest, Source

INT Interrupt INT Nr

CSSLP_v2.indb 736 6/7/2013 5:41:17 PM

737

Appendix D: Commonly Used Opcodes in Assembly

D

A
ppendix D

A

ssem
bly O

pcodes

JUMPS (General) Opcodes
Name Description Syntax

CALL Call subroutine CALL Proc

JMP Jump JMP Dest

JE Jump if Equal JE Dest

JZ Jump if Zero JZ Dest

JCXZ Jump if CX Zero JCXZ Dest

JP Jump if Parity (Parity Even) JP Dest

JPE Jump if Parity Even JPE Dest

RET Return from subroutine RET

JNE Jump if not Equal JNE Dest

JNZ Jump if not Zero JNZ Dest

JECXZ Jump if ECX Zero JECXZ Dest

JNP Jump if no Parity (Parity Odd) JNP Dest

JPO Jump if Parity Odd JPO Dest

JUMPS Unsigned (Cardinal) Opcodes
JA Jump if Above JA Dest

JAE Jump if Above or Equal JAE Dest

JB Jump if Below JB Dest

JBE Jump if Below or Equal JBE Dest

JNA Jump if not Above JNA Dest

JNAE Jump if not Above or Equal JNAE Dest

JNB Jump if not Below JNB Dest

JNBE Jump if not Below or Equal JNBE Dest

JC Jump if Carry JC Dest

JNC Jump if no Carry JNC Dest

JUMPS Signed (Integer) Opcodes
JG Jump if Greater JG Dest

JGE Jump if Greater or Equal JGE Dest

JL Jump if Less JL Dest

JLE Jump if Less or Equal JLE Dest

JNG Jump if not Greater JNG Dest

JNGE Jump if not Greater or Equal JNGE Dest

JNL Jump if not Less JNL Dest

JNLE Jump if not Less or Equal JNLE Dest

JO Jump if Overflow JO Dest

JNO Jump if no Overflow JNO Dest

JS Jump if Sign (= negative) JS Dest

JNS Jump if no Sign (= positive) JNS Dest

CSSLP_v2.indb 737 6/7/2013 5:41:17 PM

738

Appendix E

HTTP/1.1 Status Codes and
Reason Phrases (IETF RFC 2616)

The status code element is a three-digit integer result code of the attempt to
understand and satisfy the request. The reason phrase exists for the sole purpose
of providing a textual description associated with the numeric status code, out
of deference to earlier Internet application protocols that were more frequently
used with interactive text clients. A client should ignore the content of the
reason phrase. The reason phrases listed are only recommendations and may be
replaced by local equivalents without affecting the protocol.

 The first digit of the status code defines the class of response. The last two
digits do not have any categorization role. There are five values for the first digit:

 ■ 1xx: Informational - Request received, continuing process
 ■ 2xx: Success - The action was successfully received, understood,

and accepted
 ■ 3xx: Redirection - Further action must be taken in order to

complete the request
 ■ 4xx: Client Error - The request contains bad syntax or cannot be

fulfilled
 ■ 5xx: Server Error - The server failed to fulfill an apparently valid

request
HTTP status codes are extensible. HTTP applications are not required to

understand the meaning of all registered status codes, though such understanding
is obviously desirable. However, applications must understand the class of any
status code, as indicated by the first digit, and treat any unrecognized response
as being equivalent to the x00 status code of that class, with the exception that
an unrecognized response must not be cached. For example, if an unrecognized

CSSLP_v2.indb 738 6/7/2013 5:41:17 PM

739738

status code of 431 is received by the client, it can safely assume that there was
something wrong with its request and treat the response as if it had received a
400 status code.

For a complete understanding of the status codes and their response phases,
it is recommended that you consult the IETF RFC 2616 publication.

Appendix E: HTTP/1.1 Status Codes and Reason Phrases (IETF RFC 2616) E
A

ppendix E
Status Codes and Reason Phrases

Response Class Status Code Reason Phrase
1xx: Informational -
Request received, continuing process

100 Continue
101 Switching protocols

2xx: Success -
The action was successfully received,
understood, and accepted

200 OK
201 Created
202 Accepted
203 Non-Authoritative
204 No Content
205 Reset Content
206 Partial Content

3xx: Redirection -
Further action must be taken in
order to complete the request

300 Multiple Choices
301 Moved Permanently
302 Found
303 See Other
304 Not Modified
305 Use Proxy
307 Temporary Redirect

4xx: Client Error -
The request contains bad
syntax or cannot be fulfilled

400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Time-out
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 URI Too Long
415 Unsupported Media Type
416 Request range not satisfiable
417 Expectation Failed

5xx: Server Error -
The server failed to fulfill an
apparently valid request

500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Time-out
505 HTTP Version not supported

CSSLP_v2.indb 739 6/7/2013 5:41:17 PM

740

Appendix F

Security Testing Tools

A list of common security testing tools is discussed in this section. This is by
no means an all-inclusive list of security tools and the tools that are applicable
to your organizational requirements need to be identified and used accordingly.

Reconnaissance (Information Gathering) Tools
 ■ Ping: By sending Internet Control Message Protocol (ICMP) Echo

request packets to a target host and waiting for an ICMP response,
the network administration utility Ping can be used to test
whether a particular host is reachable across an Internet Protocol
(IP) network or not. It can also be used to measure the round-trip
time for packets sent from the local host to a destination computer,
including the local host’s own interfaces. More information can be
obtained at http://ftp.arl.mil/~mike/ping.html

 ■ Traceroute (Tracert): Traceroute (or Tracert in Windows) can be
used to determine the path (route) taken to a destination host by
sending Internet Control Message Protocol (ICMP) Echo Request
messages to the destination with incrementally increasing Time
to Live (TTL) field values. Traceroute utilizes the IP protocol
TTL field and attempts to elicit an ICMP TIME_EXCEEDED
response from each gateway along the path to the destination
host. It can also be used to determine which hosts in the route
are dropping the packets so that they can be addressed if feasible.
Visual traceroute programs that map the network path a packet
takes when transmitted is now available.

CSSLP_v2.indb 740 6/7/2013 5:41:18 PM

741740

Appendix F: Security Testing Tools

F

A
ppendix F

Security Testing Tools

 ■ WHOIS: A query/response protocol that is widely used for querying
databases in order to determine the registrant or assignee of
Internet resources, such as a Domain name, an IP address block,
or an autonomous system number.

 ■ Domain Information Groper (dig): A Linux/Unix command, dig
is a flexible tool for interrogating DNS name servers. It performs
DNS lookups and displays the answers that are returned from the
name server(s) that were queried. More information can be obtained
at http://linux.about.com/od/commands/l/blcmdl1_dig.htm

 ■ netstat: A is a command-line tool that displays network statistics
(and hence the name) such as connections (both incoming and
outgoing), routing tables, and a number of network interface
statistics. It is available on Unix, Unix-like, and Windows NT-
based operating systems. More information can be obtained at
http://www.netstat.net/

 ■ Telnet: A network protocol and is commonly used to refer to an
application that uses that protocol. The application is used to
connect to remote computers, usually via TCP port 23. Most often,
you will be establishing a connection (telneting) to a UNIX like
server system or a simple network device such as a switch. Once a
connection is established, you can then log in with your account
information and execute commands remotely on that computer.
The commands you use are operating system commands, and not
telnet commands. In most remote access situations, telnet has been
replaced by SSH for improved security across untrusted networks.
However, telnet continues to be used for remote access today and
remains a solid network troubleshooting tool as well. Telnet is also
used in banner grabbing. More information can be obtained at
http://www.telnet.org

Vulnerability Scanners
 ■ Network Mapper (Nmap): An extremely popular, free and open

source network exploration and security auditing tool. It uses raw
IP packets to determine the hosts that are available on the network
and can be used to fingerprint operating systems, determine
application services (name and version) running on the hosts, and
identify the types of packet filters and firewalls that are in use. It
runs on all major operating systems including Windows, Linux
and Mac OS X and comes in both a command-line as well as
bundled with a GUI and result viewer called Zenmap. The Nmap

CSSLP_v2.indb 741 6/7/2013 5:41:18 PM

742

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

suite additionally includes a Ncat which is a flexible data transfer,
redirection and debugging tool and Ndiff, a utility for comparing
scan results. More information can be obtained at http://nmap.org

 ■ Nessus: A very popular vulnerability scanner that is implemented
with a Client/Server architecture. It has a graphical interface,
and over 20000 plugins that scan for several vulnerabilities. Both
UNIX and Windows versions are available. Salient features include
remote and local (authenticated) security checks and a proprietary
scripting language called Nessus Attack Scripting Language
(NASL) that allows security testers to write their own plugins.
More information can be obtained at http://www.nessus.org

 ■ Retina: A commercial vulnerability assessment scanner developed
by eEye, a company known for security research. It functions
like other vulnerability scanners and scans for systems aiming
to detect and identify vulnerabilities in them. Both network
and web vulnerability scanners are available in eEye’s product
offering. By employing signature pattern matching, intelligence
inference engines, and context-sensitive vulnerability checks, site
analysis, application vulnerabilities such as input validation, poor
coding practices, weak configuration management, and threats in
source code, scripts, directory content, etc can be evaluated and
determined. More information can be obtained at http://www.
eeye.com

 ■ SAINT®: A network scanner which scans the network to determine
any weaknesses that will allow an attacker to gain unauthorized
access, disclose sensitive information or create a denial of service
in the network. Additionally, it gives the ability to remediate
vulnerabilities. Other product offerings help with vulnerability
management and penetration testing. More information can be
obtained at http://www.saintcorporation.com

 ■ GFI LANguard: A commercial network security scanner for
Windows, which scans Internet Protocol (IP) address to determine
active hosts (running machines) on the network. It can also
fingerprint the Operating System (OS), detect service pack
versions, and identify missing patches, USB devices, open shares,
open ports, running services, groups, users and passwords that are
incompliant with password policies. The built-in patch manager
can be used for installing missing patches as well. More information
can be obtained at http://www.gfi.com/lannetscan

CSSLP_v2.indb 742 6/7/2013 5:41:18 PM

http://www.eeye.com

743

Appendix F: Security Testing Tools

F

A
ppendix F

Security Testing Tools

 ■ QualysGuard® Web Application Scanner (WAS): An on demand
scanner, The QualysGuard® WAS automates web application
security assessment, enabling organizations to assess, track and
remediate web application vulnerabilities. It works by crawling
web applications and identifies web application vulnerabilities as
those in the OWASP Top 10 list and Web Application Security
Consortium Threat Classification (WASC TC). It uses both
pattern recognition as well as behavioral analysis to identify and
verify vulnerabilities. It can also be used to detect sensitive content
in HTML based on user setting and for conducting authenticated
and non-authenticated scanning tests. The QualysGuard WAS is
one of the suite of security products that is offered by Qualys. The
others include products for PCI compliance, policy compliance
and vulnerability management. More information can be obtained
at http://www.qualys.com

 ■ IBM Internet Scanner formerly Internet Security Systems (ISS):
The IBM Internet Scanner can identify over 1300 types of network
devices, including desktops, servers, routers/switches, firewalls,
security devices and application routers. Upon identification of the
devices, the scanner can also analyze device configurations, patch
levels, OSes, and installed applications that are susceptible to threats
and prioritize remediation tasks preemptively. It identifies critical
assets and can be used to prevent the compromise of confidentiality,
integrity and availability of critical business information. More
information can be obtained at http://www.ibm.com/iss

 ■ Microsoft Baseline Security Analyzer (MBSA): MBSA can be used
to detect common security misconfigurations and missing security
updates on computer systems. Built on the Windows Update Agent
and Microsoft Update infrastructure, MBSA ensures consistency
with other Microsoft management products including Microsoft
Update (MU), Windows Server Update Services (WSUS),
Systems Management Server (SMS), System Center Configuration
Manager (SCCM) 2007, and Small Business Server (SBS). Used
by many leading third party security vendors and security auditors,
MBSA on average scans over 3 million computers each week. Join
the thousands of users that depend on MBSA for analyzing their
security state. More information can be obtained at http://www.
microsoft.com/mbsa

CSSLP_v2.indb 743 6/7/2013 5:41:18 PM

http://www.microsoft.com/mbsa

744

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Fingerprinting Tools
 ■ P0f v2: P0f version 2 (P0f v2) is a resourceful, passive, OS

fingerprinting tool that identifies the OS of a target host by merely
analyzing captured packets. It does not generate any additional
traffic, direct or indirect, or perform any name lookups, ARIN
queries or any probes. It can also be used to detect the presence of
a firewall, the use of Network Address Translation (NAT) or the
existence of a load balancer. More information can be obtained at
http://lcamtuf.coredump.cx/p0f.shtml

 ■ XProbe-NG or XProbe2++: A low volume, remote, network
mapping and analysis tool that can be used for active OS
fingerprinting. Using a signature engine and fuzzy signature
matching process, a network traffic minimization algorithm,
and module sequence optimization, this tool has been proven to
successfully fingerprint an OS, even when the target host systems
are behind protocol scrubbers. Additionally, XProbe2++ can be
used to detect and identify HoneyNet systems that attempt to
mimic actual network systems by responding to fingerprinting
with packets that match certain OS signatures. More information
can be obtained at http://xprobe.sourceforge.net

Sniffers / Protocol Analyzers
 ■ Wireshark (formerly Ethereal): A very popular open source sniffer

and network protocol analyzer for both wired and wireless networks.
It sniffs detailed information about the packets transmitted on the
network interfaces being configured for capture. Wireshark can
be used to determine traffic generated by protocols used in your
network or application, examine security problems, and learn about
the internals of the protocol. More information can be obtained at
http://www.wireshark.org

 ■ Tcpdump and WinDump: Freely distributed under a BSD license,
Tcpdump is another popular packet capture and analyzing tool. As
the name suggests it can be used to intercept and dump TCP/IP
packets transmitted in the network. It works on almost all major
Unix and Unix like OSes (Linux, Solaris, BSD, Mac OS X, HP-
UX and AIX) as well as on a Windows version called WinDump.
Tcpdump uses the libpcap library and WinDump uses WinPcap
for capturing packets. More information can be obtained at http://
www.tcpdump.org and http://www.winpcap.org/windump

CSSLP_v2.indb 744 6/7/2013 5:41:18 PM

745

Appendix F: Security Testing Tools

F

A
ppendix F

Security Testing Tools

 ■ Ettercap: A very popular tool for conducting MITM attacks on
a LAN, Ettercap is a sniffer/interceptor and logging tool that
supports active and passive analysis of protocols including ones
that implement encryption such as SSH and HTTPS. It can be
used for data injection, content filtering, OS fingerprinting, and
it supports plugins. More information can be obtained at http://
ettercap.sourceforge.net

 ■ DSniff: A very popular password sniffer, DSniff is not just one tool
but a collection of network auditing and penetration testing tools.
These tools can be used for passively monitoring networks (dsniff,
filesnarf, mailsnarf, msgsnarf, urlsnarf and webspy) for password,
sensitive files, emails, etc., spoofing (arpspoof, dnsspoof and macof)
or actively conducting MITM attacks against redirected SSH and
HTTPS sessions. More information can be obtained from http://
monkey.org/~dugsong/dsniff

Password Crackers
 ■ Cain & Abel: Although Cain & Abel is an extremely powerful and

popular password sniffing and cracking tool that uses dictionary,
brute-force and cryptanalysis to discover passwords, even
encrypted ones, it is much more. It can record VoIP conversations,
recover wireless network keys, decode scrambled passwords, reveal
password boxes, uncover cached passwords and analyze routing
protocols. Currently it is solely available in a Windows version.
It can also be used for ARP Poison Routing (APR) which makes
it possible to sniff even on switched LANs and MITM attacks.
The new version also ships routing protocols authentication
monitors and routes extractors, dictionary and brute-force crackers
for all common hashing algorithms and for several specific
authentications, password/hash calculators, cryptanalysis attacks,
password decoders and some not so common utilities related to
network and system security. More information can be obtained at
http://www.oxid.it

 ■ John the Ripper: A free and open source software, John the Ripper
is another powerful, flexible and fast multi-platform password hash
cracker. Available in multiple flavors, it is primarily used to identify
weak passwords and a tester can use this to verify compliance
with strong password policies. It can be used to determine various
crypt(3) password hash types supported in Unix versions, Kerberos
and Windows LM hashes. With a wordlist, John the Ripper can be

CSSLP_v2.indb 745 6/7/2013 5:41:18 PM

746

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

used for dictionary brute-force attacks. More information can be
obtained at http://www.openwall.com/john/

 ■ THC Hydra: A very fast network logon cracker that can be used
to attest the strength of a remote authentication service. Unlike
many other password crackers that are restricted in the number of
protocols they can support, THC supports multi-protocols. The
current version supports 30+ protocols some of which are Telnet,
FTP, HTTP, HTTPS, HTTP-Proxy, SMB, SMBNT, MS-SQL,
MySQL, REXEC, RSH, RLOGIN, SNMP, SMTP-AUTH,
SOCKS5, VNC, POP3, IMAP, ICQ, LDAP, Postgress and Cisco.
More information can be obtained at http://freeworld.thc.org/thc-
hydra/

 ■ L0phtcrack: One of the premier password cracking tools,
L0phtcrack is a password audit and recovery tool for Windows
and Unix passwords. It uses a scoring metric to assess the quality
of passwords by measuring them against current industry best
practices for password strength. It support pre-computed password
hashes and can be used for password and network auditing from a
remote interface. It also has the ability to schedule a password audit
scan that is configurable based on the organization’s auditing needs.
More information can be obtained at http://www.l0phtcrack.com

 ■ RainbowCrack: Unlike brute force crackers that generate and
match hashes of plaintext on the fly to discover a password,
RainbowCrack is a brute force hash cracker that uses rainbow
tables of pre-computed hash values for discovering passwords. This
works on the principle of time-memory tradeoff which basically
means that memory use can be reduced at the cost of slower
program execution or vice versa. By pre-computing hash values
and storing them in a table (known as rainbow table), this table
can be used to lookup values that match in determining the actual
password. During the pre-computation phase, all plaintext/hash
pairs for a particular hash function, character set and plaintext
length are computed and the results stored in a rainbow table.
This can be time consuming initially but once the hashes are pre-
computed, then cracking can be significantly faster as it primarily
works by looking up and comparing values. More information can
be obtained at http://project-rainbowcrack.com/

CSSLP_v2.indb 746 6/7/2013 5:41:18 PM

http://freeworld.thc.org/thc-hydra/

747

Appendix F: Security Testing Tools

F

A
ppendix F

Security Testing Tools

Web Security Tools: Scanners, Proxies
and Vulnerability Management

 ■ Nikto2: An open source application and web server scanner, Nikto2
performs comprehensive tests against web servers for detecting
dangerous files, Common Gateway Interfaces (CGIs), determining
outdated web server version and potential vulnerabilities in them.
It can also be used to identify installed web servers and applications
that run on them, besides having the ability to check for server
configuration items such as multiple index files and HTTP
Server options settings. Although it is not a very stealthy tool and
is often evident in IDS logs, Nikto2 is a powerful and fast web
security scanner that uses Libwhisker (a Perl module geared toward
HTTP testing) and provides support for anti-IDS methods that
can be used to test your IDS. It also supports plugins for other
vulnerability scanners such as Nessus. More information can be
obtained at http://www.cirt.net/nikto2

 ■ Paros: Written in Java, Paros is a web application vulnerability
assessment proxy that intercepts and proxies HTTP and HTTPS
data between the web server and the browser client. This makes
it possible view and edit HTTP/HTTPS messages, cookie and
form fields on-the-fly. Besides, web application scanning for
common web application attacks like SQL injection and Cross-
Site Scripting (XSS), it can also be used for spidering web sites and
performing MITM attacks. It comes with a web traffic recorder
and hash calculator to assist vulnerability assessment testing. More
information can be obtained at http://www.parosproxy.org

 ■ WebScarab-NG (New Generation): A Web application
intercepting proxy tool that is supported as an OWASP Project.
Similar in function to the Paros proxy, it can be used to analyze
and modify request from the browser or client to the web server.
It can be used by anyone who wishes to understand the internals
of their HTTP/HTTPS application and can be used by testing
teams to debug and identify web application issues besides giving
a security specialist a tool to help identify vulnerabilities in their
implemented web applications. The current version supports a
floating tool bar that stays on top of the client window and the
ability to annotate conversations and has the ability to provide
feedback to the user. More information can be obtained at http://
www.owasp.org/index.php/OWASP_WebScarab_NG_Project

CSSLP_v2.indb 747 6/7/2013 5:41:18 PM

748

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

 ■ Burp Suite: Written in Java, Burp Suite is an integrated platform
that can be used to test the resiliency of web applications. It provides
the ability to combine manual and automated testing techniques
to analyze, scan, attack and exploit web applications. All tools in
the suite use the same robust framework that is used for handling
HTTP requests, scanning, spidering, persistence, authentication,
proxying, sequencing, decoding, logging, alternating, comparisons
and extensibility. More information can be obtained at http://
www.portswigger.net/suite/

 ■ Wikto: Written in Microsoft .Net, Wikto is one of the power tools
that checks for flaws in Web servers. In its functioning, it is very
similar to Nikto2, but has some unique features such as the back-
end miner and integration with Google that can be used in the
assessment of the Web servers. More information can be obtained
at http://www.sensepost.com/research/wikto/

 ■ HP WebInspect: A popular Web application security assessment
tool, HP WebInspect is built on Web 2.0 technologies that provide
fast scanning capabilities and broad coverage for common and
emerging web application threats. It uses innovative assessment
techniques, such as simultaneous crawl and audit (SCA), and
concurrent application scanning for faster scans with accurate
results. More information can be obtained at http://www.hp.com/
go/securitysoftware

 ■ IBM Rational AppScan: This product suite has a list of products
that makes it easy to integrate security testing throughout the
application development lifecycle thereby providing security
assurance early on in the development phase. Using multiple
testing techniques, AppScan offers both static and dynamic
security testing and can scan for many common vulnerabilities,
such as XSS, HTTP response splitting, parameter tampering,
hidden field manipulation, backdoors/debug options, buffer
overflow, etc. There is a developer edition that automates security
scanning for non-security professionals and a tester edition which
integrates web application security testing into the QA process.
More information can be obtained from http://www-01.ibm.com/
software/awdtools/appscan/

 ■ WhiteHat Sentinel: A Software-as-a-Service (SaaS) scalable Website
vulnerability management platform that is offered as a subscription
based service. It leverages technology with its advanced scanning

CSSLP_v2.indb 748 6/7/2013 5:41:18 PM

http://www.hp.com/go/securitysoftware
http://www-01.ibm.com/software/awdtools/appscan/

749

Appendix F: Security Testing Tools

F

A
ppendix F

Security Testing Tools

technologies and complements that with human testing. It has the
ability to integrate with some Web Application Firewalls (WAFs)
and can be used to protect web applications from attackers. More
information can be obtained at http://www.whitehatsec.com

Wireless Security Tools
 ■ Kismet: A versatile and powerful 802.11 Layer 2 wireless network

detector, sniffer, and IDS which works with any wireless card that
supports raw monitoring (rfmon) mode and with the appropriate
hardware, it can sniff 802.11 a/b/g and n network traffic as well.
It is a passive sniffer that collects packets and detects standard
named networks. It is commonly used for finding wireless access
points (wardriving). It can also be used to discover WEP keys,
decloak hidden networks and SSIDs and infer the presence of non-
beaconing networks via data traffic that it sniffs. More information
can be obtained at http://www.kismetwireless.net

 ■ NetStumbler: A Windows only tool that is used to detected
Wireless Local Area Networks (WLANs) and sniff 802.11 a/b and
g network traffic. It can be used to attest correct configuration
of your wireless network and find areas where the wireless signals
are attenuated. It can also be used to detect interfering wireless
networks and rogue access points installed within or in proximity
to your network. Like Kismet, it is can also used for wardriving.
More information can be obtained at http://www.netstumbler.com

 ■ Aircrack-ng: A 802.11 suite of tools as listed below that can be
used to attest the strength of a wireless defense or its lack thereof.
It is used primarily for cracking WEP and WPA-PSK keys by
recovering the keys once enough data packets have been captured.
The set of tools within the Aircrack-ng suite for auditing wireless
networks includes a multi-purpose tool aimed at attacking clients
as opposed to the Access Point (AP) itself (airbase-ng), a WEP/
WPA/WPA2 captured files decryptor (airdecap-ng), a WEP
Cloaking remover (airdecloak-ng), a script that allows installation
of wireless drivers (airdriver-ng), a tool to inject and replay wireless
frames (aireplay-ng), a wireless interface monitoring mode enabler
and disabler (airmon-ng), a tool to dump and capture raw 802.11
frames (airodump-ng), a tool to pre-compute WPA/WPA2
passphrases in a database to use later with aircrack-ng (airolib-ng),
a wireless card TCP/IP server which allows multiple applications
to use a wireless card (airserv-ng), a virtual tunnel interface creator

CSSLP_v2.indb 749 6/7/2013 5:41:18 PM

750

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

(airtun-ng), a packet forger that can be used in injection attacks
(packetforge-ng) and more. More information can be obtained at
http://www.aircrack-ng.org/

 ■ KisMAC-ng: A popular free and open source wireless stumbling and
security tool for the Mac OS X. Originally developed in Germany,
but with the introduction of the StGB §202c law in Germany
that distribution of security software was a punishable offense, it
had to find a place out of Germany for continued development. Its
advantage over other wireless stumblers is that it uses monitor mode
and passive scanning for detecting and sniffing wireless packets.
Most major wireless cards and chipsets are supported. It also offers
Pcap (Packet capture) format import and logging, decryption and
can be used for some deauthentication attacks. More information
can be obtained at http://kismac-ng.org/

Reverse Engineering Tools (Assembler and
Disassemblers, Debuggers and Decompilers)

 ■ ILDASM and ILASM: The Microsoft Intermediate Language
Disassembler (ILDASM) takes a portable executable (PE) file
that contains Microsoft Intermediate Language (MSIL) code and
outputs a text file that can be used as an input into its companion
tool, the Microsoft Intermediate Assembler (ILASM). Metadata
attribute information of the MSIL code can be determined and
running a PE through ILDASM can help identify missing runtime
metadata attributes. The text file output from ILDASM can then
be edited to include any missing metadata attributes and this can
be input into the ILASM tool to generate a final executable. The
ILDASM and ILASM tools can be used by a reverse engineer to
understand the internal workings of a PE for which the source code
is not available. More information can be obtained by searching
for ILDASM and/or ILASM at http://msdn.microsoft.com

 ■ OllyDbg: A 32-bit assembler level analyzing debugger for Microsoft
Windows. Emphasis on binary code analysis makes it particularly
useful in cases where source is unavailable. OllyDbg features
an intuitive user interface, advanced code analysis capable of
recognizing procedures, loops, API calls, switches, tables, constants
and strings, an ability to attach to a running program, and good
multi-thread support. OllyDbg is shareware, free to download
and use but no source code is provided. More information can be
obtained at http://www.ollydbg.de

CSSLP_v2.indb 750 6/7/2013 5:41:18 PM

751

Appendix F: Security Testing Tools

F

A
ppendix F

Security Testing Tools

 ■ IDA Pro: Considered to be the de-facto standard for host code
analysis and vulnerability research, IDA Pro is a commercial
interactive Windows and Linux multi-processer disassembler and
debugger that can also be programmed. It can also be used for
COTS product validation and privacy protection analysis. More
information can be obtained at http://www.hex-rays.com/idapro/

 ■ .Net Reflector: A tool that enables you to easily view, navigate, and
search through the class hierarchies of .NET assemblies, even if
you don’t have the code for them. With it, you can decompile and
analyze .NET assemblies in C#, Visual Basic, and MSIL. This is
useful for understanding the internal working of a .Net assembly
and can be used for security research and vulnerability assessment.
It supports add-ins that can be configured which makes .Net
Reflector a powerful tool in the arsenal of tools needed for security
testing .Net applications. More information can be obtained at
http://www.red-gate.com/products/reflector/

Source Code Analyzers
 ■ IBM Ounce 6: IBM’s acquisition of Ouncelabs added to their

security product suite Ounce 6, which is a source code analyzing
solution for vulnerabilities and threat exposures in software. By
integrating into the Software Development Lifecycle, Ounce 6
helps to ensure data privacy, document compliance efforts, and
assures the security of outsourced code. More information can be
obtained at http://www.ouncelabs.com/products/

 ■ Fortify Software: Both a static and dynamic source code analyzer.
The source code analyzer component examines the applications
source code for exploitable vulnerabilities and can be used during
the development phase of the SDLC to catch security issues early.
The program trace analyzer component identifies vulnerabilities
that can be found when the application is running and can be used
during the software testing or QA phase. The real-time analyzer
monitors deployed applications, identifying how and when the
application is being attacked. It provides detailed information about
the internals of the application that identifies the vulnerabilities
that are being exploited. This can be used while the application is
in production to determine security weaknesses that were missed
during development. The company also has an on demand SaaS
offering. More information can be obtained at http://www.fortify.
com/products/

CSSLP_v2.indb 751 6/7/2013 5:41:18 PM

http://www.fortify.com/products/

752

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

Vulnerability Exploitation Tools
 ■ Metasploit Framework: A popular tool in the hands of any security

researcher or penetration tester. It provides useful information and
tools for penetration testers, security researchers, and IDS signature
developers. This project was created to provide information on
exploit techniques and to create a functional knowledgebase
for exploit developers and security professionals. The tools and
information on this site are provided for legal security research and
testing purposes only. More information can be obtained at http://
www.metasploit.com/

 ■ CANVAS: Developed by Immunity, CANVAS is a comprehensive
commercial exploitation framework that makes available hundreds
of exploits, including Zero day exploits, along with its exploitation
system. It also provides a development framework for penetration
testers and security researchers. More information can be obtained
at http://www.immunitysec.com

 ■ CORE IMPACT: The security testing software solutions from
CORE IMPACT provide a comprehensive approach to assessing
organizational readiness when facing real-world security threats.
They can be used to proactively expose vulnerabilities, measure
operational risk and assure security effectiveness across various
information systems. They can be used for penetration testing
and they come with a plethora of professional exploits. More
information can be obtained at http://www.coresecurity.com

 ■ Browser Exploitation Framework (BeEF): A very popular and
modular framework that can be easily integrated with the browser.
It can be used to demonstrate the impact of browser and Cross-
site Scripting (XSS) issues in real-time. Current modules include
Metasploit, port scanning, keylogging, The Onion Routing (TOR)
detection and more. More information can be obtained at http://
www.bindshell.net/tools/beef

 ■ Netcat and Socat: Deemed the Swiss army knife for network
security, Netcat is a simple utility that reads and writes data across
TCP and UDP network connections. It has a built-in port scanner
and is a feature rich debugging and exploration tool that can create
almost any kind of connection, including port binding to accept
incoming connections. A similar tool to Netcat is Socat, which
extends Netcat to support other socket types, SSL encryption,
SOCKS proxies and more. More information can be obtained at
http://netcat.sourceforge.net/

CSSLP_v2.indb 752 6/7/2013 5:41:18 PM

753

Appendix F: Security Testing Tools

F

A
ppendix F

Security Testing Tools

Security-Oriented Operating Systems
 ■ BackTrack: A Linux-based penetration testing OS that aids

security professionals and penetration testers to perform security
assessments. It can be installed on the hard drive as the primary
OS or can be booted from a LiveDVD or even a USB key fob
(or thumb drive). BackTrack has been customized down to every
package, kernel configuration, script and patch solely for the
purpose of the penetration tester. It has a variety of security and
forensic tools that are pre-installed and it is very popular amongst
renowned penetration testers. More information can be obtained
at http://www.backtrack-linux.org/

 ■ Knoppix-NSM: Dedicated to providing a framework for individuals
wanting to learn about Network Security Monitoring (NSM) or
who want to quickly and reliably deploy NSM in their network.
It is now succeeded by Securix-NSM. More information can be
obtained at http://www.securixlive.com/knoppix-nsm/

 ■ Helix: A customized distribution of the Knoppix Live Linux CD.
Helix is more than just a bootable live CD. You can still boot
into a customized Linux environment that includes customized
Linux kernels, excellent hardware detection and many applications
dedicated to Incident Response and Forensics. More information
can be obtained at http://www.e-fense.com/helix

 ■ OpenBSD: A free multi-platform Berkeley Software Distribution
(BSD) based UNIX like OS that emphasizes portability,
standardization, correctness, proactive security and integrated
cryptography. With a track record of minimal security bugs in the
default install, it is said to be one of the most proactive secure OSes.
One of their greatest accomplishment is developing OpenSSH and
the packet filtering firewall tool (PF). More information can be
obtained from http://www.openbsd.org

 ■ Bastille: Bastille is not actually an OS, but a security hardening
script for “locking down” an operating system, proactively
configuring the system for increased security and decreasing its
susceptibility to compromise. Bastille can also assess a system’s
current state of hardening, granularly reporting on each of the
security settings with which it works. Bastille currently supports
the Red Hat (Fedora Core, Enterprise, and Numbered/Classic),
SUSE, Debian, Gentoo, and Mandrake distributions, along with
HP-UX and Mac OS X. Bastille’s focuses on letting the system’s

CSSLP_v2.indb 753 6/7/2013 5:41:18 PM

754

Official (ISC)2 Guide to the CSSLP CBK: Second Edition

user/administrator choose exactly how to harden the operating
system. In its default hardening mode, it interactively asks the
user questions, explains the topics of those questions, and builds a
policy based on the user’s answers. It then applies the policy to the
system. In its assessment mode, it builds a report intended to teach
the user about available security settings as well as inform the user
as to which settings have been tightened. More information can be
obtained at http://bastille-linux.sourceforge.net/

Privacy Testing Tools
 ■ The Onion Router (Tor): A system for using the Internet

anonymously. It is free software and a network of virtual tunnels
that allows people and groups to defend against network surveillance
and provides anonymity online. It helps by anonymizing web
browsing and publishing, instant messaging, remote login and other
applications that use the TCP protocol. Tor provides protection
by bouncing communications around a distributed network of
relays all around the world, which prevent anyone watching the
Internet connection from learning the site you visit or your physical
location. Using Tor, one can build new applications with built-in
anonymity, safety and privacy features and attest the assurance of
privacy and anonymity in their applications that run over TCP.
More information can be obtained at http://www.torproject.org/

 ■ Stunnel – Universal SSL wrapper: A program that allows you to
encrypt arbitrary TCP connections inside SSL and is available on
both Unix and Windows. Stunnel can allow you to secure non-
SSL aware daemons and protocols (like POP, IMAP, LDAP, etc.)
by having Stunnel provide the encryption, requiring no changes to
the daemon’s code. It can be used for verification of confidentiality
assurance when sensitive data is transmitted in the network. More
information can be obtained at http://www.stunnel.org/

CSSLP_v2.indb 754 6/7/2013 5:41:18 PM

This page intentionally left blankThis page intentionally left blank

	Front Cover
	Contents
	Foreword
	About the Author
	Contributors
	Introduction
	Domain 1: Secure Software Concepts
	Domain 2: Secure Software Requirements
	Domain 3: Secure Software Design
	Domain 4: Secure Software Implementation/Coding
	Domain 5: Secure Software Testing
	Domain 6: Software Acceptance
	Domain 7: Software Deployment, Operations, Maintenance, and Disposal
	Domain 8: Supply Chain and Software Acquisition
	Appendix A: Answers to Review Questions
	Appendix B: Security Models
	Appendix C: Threat Modeling
	Appendix D: Commonly Used Opcodes in Assembly
	Appendix E: HTTP/1.1 Status Codes and Reason Phrases (IETF RFC 2616)
	Appendix F: Security Testing Tools

