
MEV Manifesto
Premium · OCT 6TH, 2022

Jon Charbonneau

https://tatum.delphidigital.io/reports/mev-manifesto/
https://tatum.delphidigital.io/reports-categories/delphi-pro/
https://tatum.delphidigital.io/analysts/jon-charbonneau/
https://tatum.delphidigital.io/analysts/jon-charbonneau/
/var/www/html/wp-content/plugins/wp-mpdf/../../wp-mpdf-themes/jonc@delphidigital.io
https://tatum.delphidigital.io/reports/mev-manifesto/

Table of Contents
Introduction

MEV Supply Chain
Types of MEV
Good vs. Bad MEV?
MEV Utopia vs. Dystopia

Before the Merge
Before Flashbots
MEV-Geth
Bundle Merging – Pre-Megabundles
Bundle Merging – Megabundles
Flashbots Auction & Privacy

The Merge
Mechanics of the Merge
Nakamoto Consensus → Gasper
Miner (Nakamoto Consensus) vs. Validator (Gasper) Censorship

Enshrined Proposer-Builder Separation
Overview
Two-slot Proposer-Builder Separation

MEV-Boost
Overview
Relays
Flashbots Builder – New Profit-Maximizing Algorithm
Choosing a Builder
Relay Trust Assumptions & Liveness Risks

Malfunctioning Relays
Malicious Relays – Block Withholding Attack

Relay & Builder Censorship
Are Maximally-Decentralized Validators Necessary?

Conclusion

Introduction
MEV (Maximal Extractable Value) has been loosely defined as the value that

block proposers can permissionlessly extract by reordering, censoring, or

inserting transactions.

MEV is central to Ethereum block production. As a result, today’s censorship

issues are deeply intertwined with MEV research, and both will be discussed in

this report. If you’d like my far more opinionated takes here, you can see my

https://writings.flashbots.net/research/formalization-mev/

recent article.

This report is more of a factual primer focusing on:

Overview – MEV strategies and their supply chain.

Past – How Ethereum initially reacted to the rise of MEV and built around it.

Present – Ethereum block production changed drastically with the Merge,

and MEV was central in these design decisions.

Future – Ethereum faces many challenges (some old, and some new post-

Merge) that will need to be addressed. I cover this a bit here then plan to

elaborate in the future.

If you at any point require additional background on Ethereum’s mechanics, you

can see my previous report here. Some of its relevant sections have been

incorporated and updated here as applicable.

Just ignore all the times where I said that centralized block production is

inevitable. Whoops. Lately, I’ve been thinking it might be possible to do better.

Here’s my recent addendum to that piece on decentralized block building. It’s

still unclear how this’ll shake out, but I think we’ve got a fighting chance at it.

https://joncharbonneau.substack.com/p/censorship-wat-do?utm_source=profile&utm_medium=reader2
https://members.delphidigital.io/reports/the-hitchhikers-guide-to-ethereum
https://joncharbonneau.substack.com/p/decentralizing-the-builder-role

MEV Supply Chain

The oversimplified Ethereum MEV supply chain looks something like this under

PBS:

User – Express intent to enact some state transition (e.g., swap ETH → USDC).

User Interface – UI allows the user to easily encode their intent into a

transaction the blockchain can understand. This includes the whole app

layer (wallet, smart contract, and dApp UI) working together to express user

intent. This layer decides where to route user transactions (e.g., to the public

mempool or private channels such as Flashbots Protect).

Searcher – Run MEV strategies (e.g., arbitrage, liquidations) and submit

“bundles” of their transaction preferences to builders.

Builder – Aggregate transactions from various sources and construct a

block (previously mining pool operators, but a distinct new role has been

introduced post-Merge).

Validator (Proposer) – Perform consensus duties. Proposers and builders

have historically been the same logical entity by default, but PBS strips

them apart.

Types of MEV

I’ll cover the major categories which encapsulate much of the value captured, but

https://flashbots.mirror.xyz/bqCakwfQZkMsq63b50vib-nibo5eKai0QuK7m-Dsxpo

note a long-tail exists. The largest forms are becoming progressively

commoditized (i.e., most profits get bid to the block producer), while the long-tail

retains a higher margin for searchers.

Atomic Arbitrage

Arbitrage = Buying and selling an asset in different markets (or in derivative

forms) to take advantage of differing prices.

Atomic = Entire transaction sequence successfully executes together, or they all

fail together (no partial execution).

Example – A large ETH buy was just executed on SushiSwap. ETH is now $1,000

on Uniswap, but it’s $1,010 on SushiSwap. MEV searchers can submit bundles to

atomically buy ETH on Uniswap and then sell it on SushiSwap until the arbitrage

is closed. This benefits market efficiency without harming users, and it can

provide riskless profits to extractors.

Statistical Arbitrage

Searchers can also take on risk to probabilistically capture MEV profits when

conducting statistical arbitrage.

Example – ETH is trading at different prices on an Ethereum L1 DEX and a rollup

DEX. Searchers could submit arbitrage transactions across these domains, but

they run the risk that one trade executes while the other leg does not. They no

longer capture a riskless profit from a sequence of transactions executing

atomically. However, you can turn this specific cross-domain stat arb into

(riskless) atomic arb if you control block production across domains.

Liquidity Sniping

This is another specific example of probabilistic MEV capture. Extractors who are

willing and able to effectively manage risk across position sizing and timing will

outcompete here.

Liquidity sniping entails purchasing some asset immediately after it’s listed in a

DEX pair and liquidity is added. The sniper then offloads the position over an

extended period of time, warehousing risk in the interim. In normal conditions,

the asset price will rise significantly from its initial listing price. However, this isn’t

guaranteed – the sniper is taking inventory risk as they offload it.

Frontrunning

Trades create a price impact – that’s why you set some slippage tolerance of

where you’re willing to be filled. However, this opens up the ability to frontrun

your trade.

Example – I want to buy 10 ETH for $10,000, but I set my slippage tolerance to

2%. Searchers can see this in the mempool, then swoop in and take that liquidity

in front of me, causing me to execute at my worst price and getting only 9.8 ETH.

Generalized Frontrunning

This is the attack popularized in Ethereum is a Dark Forest. Generalized

frontrunners can scan the public mempool for any transaction, simulate it with

https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest

their own wallet address swapped in, then frontrun the original transaction with

their own if it’s profitable. This reaches far beyond just simple DEX trading.

Backrunning

Intuitively, it’s the opposite of frontrunning.

Example – After I executed that trade earlier of $10,000 for 9.8 ETH, the price of

ETH on that exchange is now ~$1,020. However, the global market price of ETH is

still sitting at $1,000. Someone can profit by closing this gap – selling ETH right

behind me at a premium until the gap has been closed back to $1,000.

Frontrun + Backrun = Sandwich

Upon seeing a large trade order in the mempool, searchers could submit a

bundle including (1) their frontrun tx, (2) the target tx, then (3) a backrun tx. They

scoop up liquidity, allow the target to push up the price, then immediately sell it

at a markup.

Liquidations

Open market participants are needed to liquidate under-collateralized loans. This

helps to ensure a properly functioning DeFi market.

Example – User borrowed USDC against their ETH on Aave, but the price of ETH

has since fallen. The borrower is now under-collateralized (i.e., USDC value is

approaching the value of their ETH collateral, and is below the protocol’s

collateral requirements). Anyone is able to liquidate this loan – they can pay off

the USDC loan as quickly as possible, claim the ETH collateral, and sell it. Well-

designed protocols can auction off the right to liquidate this position. The loan is

closed, keeping the protocol solvent, and the liquidator earns a profit.

Just-in-Time (“JIT”) Liquidity

TLDR if you’re unfamiliar with Uniswap v3’s concentrated liquidity – LPs provide

liquidity over a specific price range rather than in a pool altogether. LP positions

are represented as NFTs. Range liquidity is far more capital efficient → deeper

liquidity → less price impact from trades → less MEV extracted from users. In fact,

JIT liquidity is one such MEV strategy which actually explicitly benefits user

execution.

Rather than sandwiching a user with trades that push the price up then sell it

after for a profit, an LP could “sandwich” the target trade by minting and burning

narrow ranges of deep liquidity immediately before and after it. This allows the

active LP to jump in at the last second and capture the trade’s fees.

This reduces the fees gained by passive LPs, but it’s explicitly beneficial to user

transactions. Users get better execution with lower slippage. Some argue that

disincentivizing passive LPs leads to less liquidity.

However, note this is incredibly uncommon, with <1% of all of Uniswap v3’s

volume being matched against any JIT liquidity even partially. This only occurs

when a trade would have otherwise received incredibly poor execution relative

to market prices. The “attacker” realizes that they can offer an even better price,

and it’s still worth it for them to capture the fees.

We could see this more frequently though, as Uniswap v3 (or similar

mechanisms) move to cheaper fee environments (e.g., rollups). This JIT “attack” is

pretty gas-inefficient, so reducing the cost to conduct it could make it a bit more

prevalent. There are possibly some ways to prevent it, but the question is should

we even try to? Dan Robinson gave a great rant on the topic at SBC here, and he

argued that we shouldn’t try to prevent it even if we can.

One interesting area to explore here would be new mechanisms that allow LPs to

compete on price movements. Currently, the price that an LP offers has nothing

to do with whether or not their JIT transaction gets included in the block. Ideally,

the LP that offers the most price improvement (quotes the best price) should

outcompete other LPs and sandwichers. This would incentivize more LP

participation and increase trader welfare even further. Uniswap recently

discussed this idea in a JIT blog post.

TWAP (Time-Weighted Average Price) Oracle Manipulation

Multi-block MEV is exacerbated by Ethereum’s shift to PoS. PoW miners can’t

know the next block producer (unless conducting selfish mining), but validators

are now chosen ahead of time.

At the end of epoch N-1, the validators for epoch N are all known (1 epoch = 32

slots = 6.4 minutes). The block producers for epoch N+1 are also generally

known, but are subject to change in rare circumstances of validator balance

changes (e.g., due to slashing).

A validator who knows they will control subsequent blocks (B1 and B2) can

trivially manipulate TWAP price oracles to their benefit. Simple TWAPs such as

Uniswap v2 just record the asset price at the end of each block for N blocks, sum

the asset prices, then divide by N.

https://twitter.com/danrobinson/status/1551371467350085632?s=20&t=tuitMpTRGe5N8gicn-xhZQ
https://twitter.com/danrobinson/status/1551371467350085632?s=20&t=tuitMpTRGe5N8gicn-xhZQ
https://www.youtube.com/watch?v=rbcGjQgbksk
https://uniswap.org/blog/jit-liquidity?utm_source=substack&utm_medium=email

The validator could manipulate oracle prices at the end of B1 and exploit the

resulting MEV opportunities in B2 without competition. For example, many lending

protocols rely on price oracles from DEXs such as Uniswap to provide them the

value of on-chain assets. This can be used to determine the health of

collateralized positions and dictate when liquidations can occur.

A more detailed analysis of this topic can be found here.

Good vs. Bad MEV?

MEV is often framed as bad, or at least certain types of MEV are framed as bad

(e.g., frontrunning and sandwiches) vs. others being good (e.g., arbitrage and

liquidations). However, this framing can often be detrimental and simplistic in my

view.

JIT liquidity was one such example – it’s an MEV “attack” which can hurt passive

LPs, but directly benefits users. What’s the right tradeoff to optimize for?

https://eprint.iacr.org/2022/445.pdf

Sandwich attacks can actually be another interesting one. A recent research

paper showed that sandwichers can actually improve network welfare and

improve transaction routing.

The reality is we’re still learning a hell of a lot about MEV and its implications. Gut

reactions may not be the most appropriate courses of action. That doesn’t mean

we should have bad designs which screw users. Rather, we should closely

consider the externalities of these design decisions. Generally be wary of any

silver bullets which claim to “solve” MEV.

Source: H/T Fred for this meme. Check out more dank MEV memes on the Flashbots Collective

here. Optionally read about MEV stuff while you’re there too.

MEV Utopia vs. Dystopia

Armed with a basic understanding, we can now lay out what we’re trying to

https://twitter.com/tarunchitra/status/1549134678036303873?s=20&t=LwsCyFV3tYTe89vVOOYxkQ
https://twitter.com/tarunchitra/status/1549134678036303873?s=20&t=LwsCyFV3tYTe89vVOOYxkQ
https://collective.flashbots.net/t/your-favorite-mev-memes/68/6
https://collective.flashbots.net/t/your-favorite-mev-memes/68/6

achieve here. The below are some proposed goals of Flashbots which I generally

like:

MEV is created either directly or indirectly by user transactions. Ideally, we create

systems where users can benefit from the MEV they generate themselves. This

can be achieved by exposing less unnecessary MEV to be extracted in the first

place, or via direct cashbacks/fee rebates to users. Rebates ≈ better execution.

To the extent MEV leaks out from users, it’s beneficial to direct this toward

validators to fund the chain’s security budget. To keep the validator set

decentralized, this MEV must be easily accessible in a permissionless manner.

Additionally, the potential to capture MEV should scale linearly with percent of

stake-weight (i.e., n% of stake should receive approximately n% of all MEV

captured). Superlinear returns to stake-weight would pose a centralization

vector.

Ideally, independent entities fulfill each role and compete in an open

marketplace. Rent extraction in the middle of the chain should be minimal, with

value accruing to the edges:

We want to avoid high-resourced gatekeepers becoming entrenched and

extracting rent in the middle of the supply chain (e.g., to a dominant single block

builder). This could take the form of a single large entity vertically integrating

throughout the supply chain. They engage in anti-competitive behavior and

increase barriers to entry for new participants:

Before the Merge
The system here has changed significantly over the years, but a brief history

lesson provides necessary context for the current design and its goals.

Before Flashbots

Miners ran clients (primarily Go Ethereum a.k.a. Geth) which produced blocks

with transactions ordered by gas price. Searchers would conduct “Priority Gas

Auctions” (PGAs) to fight for blockspace – sending transactions to the public

mempool and bidding higher back and forth in hopes of their transactions

landing. Failed transactions would still land on-chain, driving up gas prices and

wasting blockspace.

Searchers were unable to express preferences for bundles of transactions which

could execute atomically. For example, to sandwich attack you could try to

submit:

Frontrun transaction with a gas price slightly above the target transaction1.

Backrun transaction with a slightly lower gas price, then hope they all land2.

together

Mining pools were beginning to strike exclusive deals with trading firms to extract

MEV. This risked vertical integration of the block production supply chain.

MEV-Geth

Flashbots developed MEV-Geth (fork of Go Ethereum) to give miners an easy

way to aggregate MEV bids, removing the need to vertically integrate. Providing

the ability for searchers to clearly express complicated preferences via bundles

then enabled an efficient auction, cutting down on the negative externalities of

PGAs.

The Flashbots Auction uses an off-chain first-price sealed-bid auction. Searchers

bid for their bundles to be included, and failed bundles never land on-chain or

pay fees. Bundles can include:

Preference over one or several transactions (can be searcher’s transactions

and/or other users’ transactions in the mempool)

Searcher’s bid – this can be paid to miners via a smart contract call to

block.coinbase.transfer() or via priority fees/tips with their submitted

bundles

The process looks like this:

Searchers send bundles to Flashbots’ MEV-Relay (relay.flashbots.net). 1.

MEV-Relay simulates bundles and then passes them along to all whitelisted2.

miners running MEV-Geth. MEV-Relay also provides DOS protection –

searchers don’t pay for failed bids, so anyone can spam with invalid

bundles.

MEV-Geth selects the most profitable combination of bundles, then fills out3.

the rest of the block with other mempool transactions.

MEV-Geth compares the block, including these bundles vs. a vanilla block4.

with no bundles, then selects the more profitable one.

Mining pool operator sends the header along to the individual winning5.

miner to attest to it with PoW, giving it weight in the fork choice rule.

Searchers sign the bundles with their private key, enabling them to build a

reputation over time. This isn’t the primary private key used for executing

transactions, and it doesn’t store funds. It’s just used for identity. Better

reputations give searchers higher-priority delivery of their bundles. Searcher

reputation allows the MEV-Relay to better infer which bundles are likely to be

profitable, even without being able to run a full simulation of all transactions.

http://relay.flashbots.net

Flashbots’ MEV-Relay was dominant. However, others (e.g., bloXroute and

Ethermine) also ran smaller relays.

Several trust assumptions exist in this supply chain, including:

Bundle Merging – Pre-Megabundles

Bundle merging is the process by which some aggregator finds the ordering and

number of bundles that optimize profitability.

MEV-Geth’s alpha-v0.1 was pretty bare bones – only one bundle could be

included in a given block. Alpha-v0.2 introduced multiple bundles per block. The

bundle merging process began, giving miners control over the bundles they

wanted to include.

MEV-Geth managed this process for miners by parallelizing it and choosing the

most profitable combination of bundles:

MEV-Relay forwards bundles to miners running MEV-Geth1.

MEV-Geth simulates all bundles alone and figures out their gas prices2.

MEV-Geth places the highest gas price bundle (B1) at the top of the block3.

MEV-Geth tries to merge additional bundles by simulating multiple bundles4.

together one after another, looking for conflicts:

Simulate the second highest gas price bundle (B2) placed after B1

If B2 reverts (e.g., targets same opportunity as B1), then B2 is

discarded

Repeat simulation for B3, B4,…, BN

Bundle merging is a very computationally-demanding process. Each bundle you

attempt to merge requires an additional parallel computing process. For

example, trying to merge up to 3 bundles requires 4 parallel computing

processes:

One creates a block with 0 bundles

One creates a block with 1 bundle

One creates a block with 2 bundles

One creates a block with 3 bundles

At the end, the most profitable block of the 4 is selected. As a result, the median

miner would only merge up to ~3 bundles per block, even though blocks

frequently had >3 profitable bundles.

Note that bundles are actually rank-ordered here by gas price and not overall

bundle profitability. It’s not optimal, but this was chosen because it’s

computationally simpler to do. This put gas-intensive MEV (e.g., liquidations) at a

disadvantage compared to less gas-intensive MEV (e.g., arbitrage).

Consider the following example:

B1 would win the Flashbots Auction because it bid a higher gas price (10,000

gwei), despite the fact that B2 is more profitable overall (9.9 ETH vs. 1 ETH).

Bundle Merging – Megabundles

MEV-Geth’s alpha-v0.4 introduced megabundles – bundles which are merged

before they’re sent to miners. This shifted the merging task upstream from miners

→ allowing more specialized actors such as Flashbots’ MEV-Relay to further

optimize their infrastructure and more efficiently merge bundles, resulting in

higher profits.

This also allowed faster product iteration. Previously, updates would’ve required

coordinating with the large majority of miners who were running MEV-Geth.

Instead, Flashbots could now simply update the MEV-Relay’s megabundle

code.

Megabundles moved a step closer toward outsourcing full-block building under

PBS, but it still had limitations. Megabundles didn’t form entire blocks, and they

still offered no privacy to searchers (relays and miners could still MEV-steal).

Flashbots Auction & Privacy

Flashbots has researched both cryptographic and crypto-economic proposals to

separate block building and proposing (proposer-builder separation, a.k.a. PBS).

To ensure that all block proposers have access to the most profitable builder

blocks, their ability to MEV-steal from builders must be removed by adding

privacy to this relationship. Otherwise, builders would only provide blocks to

large entities that they could trust and monitor (as was the case with PoW mining

pool operators, and would instead be limited to Coinbase, Kraken, etc. in PoS).

Proposals to address this have included:

Enshrined PBS (future Ethereum upgrade) – A permissionless version of1.

PBS built into the Ethereum protocol. First, builders provide only their block

headers to the proposer. Second, the proposer accepts the header with the

highest associated bid. Third, the full block body is only revealed after the

proposer has committed to its header. If the proposer then attempts to

MEV-steal and propose an alternative block, they can be slashed for

double-signing.

MEV-Boost (live) – Interim version of PBS which still includes some trust2.

assumptions in the stack, but removes the need for builders to trust

proposers.

MEV-SGX – Uses trusted hardware to keep block contents private. Builders3.

create blocks, encrypt them, and send them along with decrypted block

headers to miners. If a miner finds a valid PoW solution, this can be input

into their SGX along with the encrypted block to produce a decrypted and

attested block. This design could be used similarly in PoS with some

alterations, but more work is needed.

The Merge

https://ethresear.ch/t/two-slot-proposer-builder-separation/10980
https://boost.flashbots.net/
https://ethresear.ch/t/mev-sgx-a-sealed-bid-mev-auction-design/9677

Mechanics of the Merge

Prior to the Merge, full nodes ran one monolithic client (e.g., Geth) that handled

both:

Execution – Execute every transaction in a block to ensure validity. Take the

pre-state → run transactions → transition to the post-state

Consensus – Verify you’re on the heaviest (highest PoW) chain with the

most work done (i.e., Nakamoto Consensus)

At the Merge, the existing execution layer merged into the Beacon Chain

consensus layer:

Full nodes now run two separate clients under the hood:

Execution client (f.k.a. “Eth1 client”) – Eth 1.0 clients continue to handle

execution. They process blocks, maintain mempools, and manage and sync

state. The PoW stuff got ripped out.

Consensus client (f.k.a. “Eth2 client”) – Beacon Chain clients continue to

handle consensus. They track the chain’s head, gossip and attest to blocks,

and receive validator rewards.

Clients receive blocks, execution clients run the transactions, then consensus

clients follow that chain if everything checks out. All execution and consensus

client pairs are interoperable.

Nakamoto Consensus → Gasper

Ethereum swapped out Nakamoto Consensus for Gasper = Casper FFG (the

finality tool) + LMD GHOST (the fork-choice rule) at the Merge.

Safety favoring algorithms (e.g., Tendermint) halt when they fail to receive the

requisite number of votes (⅔ of the validator set here). Gasper is a liveness-

favoring algorithm though, similar to Nakamoto – miners could drop off, and the

chain kept going. The downside was that Nakamoto could only provide

probabilistic finality – you assume after a sufficient number of blocks that a reorg

https://arxiv.org/abs/2003.03052

won’t occur.

Gasper aims to achieve the best of both – it can achieve finality once the

requisite votes are achieved, but it can remain live and continue an optimistic

ledger even if they aren’t (it just won’t finalize).

Gasper achieves finality by checkpointing periodically with sufficient votes. Each

instance of 32 ETH is a functionally separate validator, and there are already

>400,000 Beacon Chain validators (though most are run by shared entities due to

the 32 ETH cap). Epochs consist of 32 slots, with all validators split up and

attesting to one slot within a given epoch (1/32 in each slot). The fork-choice rule

LMD GHOST then determines the current head of the chain based on these

attestations.

The biggest tradeoff of Tendermint vs. Gasper today is validator set limits vs.

finality time:

Tendermint – Small validator set, but fast finality

Gasper – Large validator set, but slow finality (though single-slot finality is an

open area of research)

In Gasper, a new block is added every slot (12 seconds), so epochs are 6.4

minutes. Blocks can become “justified” after one successful epoch, and

“finalized” after two epochs with the requisite votes.

Miner (Nakamoto Consensus) vs. Validator (Gasper)
Censorship

This consensus swap alters the conversation for how censorship can occur on

Ethereum. In case you’ve been living under a rock, that’s a pretty important

discussion at the moment with all the Tornado Cash/OFAC shenanigans going

on. Some framing:

“Weak” censorship = Delayed but eventual inclusion. If, say, 50% of

miners/validators don’t include OFAC transactions, then on average they’ll

get included after 2 blocks (exactly 24 seconds in PoS, and ~24 seconds

under PoW). If 90% censor, they’ll get in after 10 blocks (120 seconds), etc.

“Strong” censorship = Censored transactions aren’t included on-chain. For

both NC and Gasper this requires ~51% of miners/validators (simplifying

here, proposer boost can change the math in Gasper) to not only censor

OFAC transactions for their own blocks, but to also actively ignore all new

blocks which include them. They would build directly competing blocks that

leave blocks with OFAC transactions uncled.

If miners censor – you’re kind of stuck. You could swap the hashing algorithm, but

this hurts everyone and starts your chain security from scratch/makes it easy to

attack again.

If validators censor – you can punish them. This can be done via:

User-activated soft fork (UASF) – The censoring validators are inactivity-

leaked out. In Gasper, you’re penalized for not voting, and stake is burned

rapidly if the chain isn’t finalizing.

Hard fork – Direct social slashing of the censoring validators’ stake to burn

their money.

UASF/slashing would be a rather extreme response to weak censorship. The red

line to cross would likely be if validators conduct strong censorship. Luckily, this

doesn’t appear to be an imminent threat. Validators have seemingly taken the

stance that they’re not obligated to conduct such an attack (yay!).

The imminent censorship threat is weak censorship stemming from the

relay/builder level. Flashbots gets the headlines for censoring (they run the

largest relay and builders), but note that most relays/builders are currently

censoring (they just have less market share).

Enshrined Proposer-Builder Separation

Overview

Miners and validators serve two roles by default:

Build the block1.

Propose it to the rest of the network2.

Block building is what determines how much MEV is captured, and doing this

optimally requires sophistication. If validators are tasked with this, they’ll become

centralized. Sophisticated stakers would be able to extract more MEV → higher

staking yield → increase their validator market share. Unsophisticated validators

are incentivized to unstake and delegate to them (to receive that higher staking

yield).

PBS addresses this – it separates “building” from validators’ responsibilities by

creating a new specialized “builder” role. Builders can try to extract as much MEV

as possible, then bid for the proposer (validator) to select their block. In a

competitive market, builders will bid roughly the full value they can extract → most

value flows to validators.

PBS then isolates the centralizing force of MEV extraction to builders, keeping

validators decentralized. Validator sets require an honest majority, but builders

have much weaker assumptions. In theory – one honest builder can provide

liveness and censorship resistance, and two can provide an efficient market. In

reality though, we should strive for much better than that.

Two-Slot Proposer-Builder Separation

PBS research is still a work in progress, but two-slot PBS could look like this:

Builders commit to block headers along with their bids.1.

Beacon block proposer chooses the winning header and bid. Proposer is2.

paid the winning bid unconditionally, even if the builder fails to produce the

body.

Committee of attesters confirm the winning header.3.

Builder reveals the winning body.4.

Separate committees of attesters elect the winning body (or vote that it was5.

absent if the winning builder withholds it).

Unconditional payment – removes the need for proposers to trust builders. Once

the proposer commits to a block header, they’re guaranteed to be paid (even if

the builder withholds the block body or sends an invalid one).

Commit-reveal scheme – removes the need for builders to trust proposers. It

does this by removing validators’ ability to MEV-steal. If builders were to share

block bodies at the start, then another builder or the proposer could swap out

juicy MEV transactions to capture them for themselves.

This is the type of trust that the MEV-Relay placed in mining pool operators –

miners saw the bundle contents, so they could steal them. You could only send

bundles to mining pools that could be trusted and monitored. This trust wouldn’t

scale to a decentralized validator set, so validators must commit to the header

without knowing the block contents. If they try to MEV-steal after seeing the

block body, their original signature can be presented → proposer is slashed for

double-signing.

MEV-Boost

Overview

PBS is already here though – MEV-Boost is the stepping stone solution.

By default, proposers receive public mempool transactions directly into their

execution clients → package them into a block → send them to their consensus

client → broadcast them to the network.

Alternatively, validators can run MEV-Boost (sidecar software) to query for

outsourced block building. The process then looks similar to enshrined PBS,

except there’s a doubly-trusted “relay” sitting between proposers and builders.

Note that validators still retain the option to use their own execution client to

build blocks locally.

MEV-Boost patches two main shortcomings of MEV-Geth:

Solo-staker participation – As discussed, you could only send bundles to1.

https://ethresear.ch/t/mev-boost-merge-ready-flashbots-architecture/11177

mining pool operators that can be trusted and monitored. This doesn’t scale

to the full Ethereum validator set. MEV-Boost instead provides full blocks to

proposers, who commit to the block header before the block body is

revealed. This removes the need to trust them.

Client diversity – MEV-Geth was a Geth fork which nearly all miners ran.2.

MEV-Boost is instead a sidecar piece of software which is interoperable

with all consensus and execution clients.

Note that MEV-Boost is neutral infrastructure. It doesn’t censor transactions or

sandwich trades. It simply allows proposers to outsource building:

Validators – Free to run MEV-Boost or not. Free to use it alongside

whichever clients they wish. Free to connect to as many or as few relays as

they wish. MEV-Boost is effectively a relay aggregator that chooses the

most profitable bid from the proposer’s selected relays.

Relays – Free to be run with whichever limitations or strategies they wish

(e.g., censoring/non-censoring, “fair” ordering/max-profit, etc.). Relays can

accept blocks from builders as they wish.

Builders – Free to run whichever strategies they please and send blocks to

any relay that’s willing to accept their blocks.

MEV-Boost will continue to iterate and ship new features over time, moving it

closer to enshrined PBS. One such goal could be to transition this process into a

gossip protocol. However, it doesn’t currently work this way because it requires

further changes to the gossip network for the client, and the goal was to launch

while keeping MEV-Boost as simple as possible.

Relays

Relays are intermediaries which are trusted by both proposers and builders. They

receive builder blocks and escrow them before sending them to the proposer.

For a given relay, the process can look like this:

Source: EigenLayer

A note on some terminology that may be confusing. This “relay” is different from

the “MEV-Relay” (also commonly referred to as simply “the relay”) referenced

earlier under PoW.

The “relay” in the context of MEV-Boost is used to relay blocks from the

builder to the proposer

The “MEV-Relay” accepted bundles from searchers to forward them to

miners

However, nothing changed from the searcher perspective of bundle submission

here. The Flashbots builder hosts all the same endpoints as the PoW MEV-Relay

API. The original URL for MEV-Relay (relay.flashbots.net) now just points to the

Flashbots builder.

Flashbots Builder – New Profit-Maximizing Algorithm

Searchers still send and simulate atomic bundles as they had before, and they

can use the same bidding strategies in the auction process. There are some

exciting changes though, as the Flashbots builders run new and improved

merging algorithms.

Recall that in PoW, bundles were inserted at the top of the block, displacing

transactions at the bottom of the block as needed. For a bundle to be profitable,

it had to have a higher effective gas price than the transactions it would displace

https://writings.flashbots.net/writings/searching-post-merge/
https://writings.flashbots.net/writings/searching-post-merge/
https://relay.flashbots.net/

at the bottom of the block.

More profitable transactions/bundles will still generally be favored by the block-

building algorithm in PoS Ethereum. Transaction/bundle profitability is

determined by fee per gas used, priority fee, and direct validator payments.

The new Flashbots builder algorithm is designed to produce the most profitable

block possible. The practical implications include:

Algorithm now ranks and includes bundles optimizing for overall block

profit (no longer based on effective gas price).

Bundle ordering by effective gas price is no longer guaranteed.

Top-of-block execution is no longer guaranteed.

Other transactions (e.g. from the mempool) may land between separate

bundles (but not between transactions within a given bundle). For example:

Searcher A has bundle with transactions A1, A2

Searcher B has bundle with transactions B1, B2

Mempool has transactions M1, M2

Block may be built with the following ordering: A1, A2, M1, M2 , B1, B2

Block may not be built with the following ordering: A1, M1, A2, M2 , B1, B2

So bundles remain atomic, but they no longer need to be ordered directly one

after the other at the top of the block.

Choosing a Builder

Searchers would ideally connect to every available builder to maximize their

inclusion rate. A profitable bundle is of no use if the builder you sent it to loses

the auction.

However, searchers need to trust the builders they’re connected to. Builders

have a clear view of the bundles submitted to them, and are able to abuse this

(frontrun, censor, MEV-steal, leak data, etc.).

So there’s a balance for searchers between choosing many builders to maximize

bundle inclusion, and choosing only one builder to minimize trust assumptions.

For builders to maximize inclusion over time, they need a mix of:

Building the most profitable blocks

Using a relay that many proposers are connected to – if the current

proposer isn’t running MEV-Boost and connected to the relays that the

builder sends blocks to, then block profitability doesn’t matter

Searchers should also consider more idiosyncratic builder differences. One

builder’s algorithm may result in slightly higher inclusion rates for certain

strategies, some may not allow front-running, others may censor bundles with

OFAC transactions, etc.

Relay Trust Assumptions & Liveness Risks

Enshrined PBS removes the need for relays due to the “unconditional” nature of

the payment via the in-protocol auction as described earlier.

For now though, relays exist, and they must be selected carefully. Proposers and

builders use whichever relays they deem trustworthy and effective. MEV-Boost

provides some strict improvements to trust assumptions in “stage 1 PBS”

(outsourcing partial block production in PoW), but relays are still trusted in

several ways:

Builders – Trust relays to pass along their block if it’s the most profitable

valid block. Dishonest relays could choose a less profitable block (e.g., from

their in-house builder), leak the block information, and MEV-steal.

Proposers – Trust relays to accurately assess builder blocks, send the most

profitable valid block, escrow the block until the proposer signs it, reveal the

block body upon the proposer’s commitment to its header, then pay the

proposer accordingly.

The relay is also of course trusted and competing on overall performance (e.g.,

uptime and latency).

Malfunctioning Relays

Remember that the relay interacts with the proposer in two steps:

Provide the proposer with their bid and block header1.

After the proposer has signed the block header, the relay provides the full2.

block body

In the example below, RM = relay which is either malfunctioning or malicious. Let’s

see what happens if they fail at either stage:

Step 1 failure – The relay goes offline. Validator may propose a block from1.

another relay or build it locally. If this is less profitable than what RM could

have provided, the validator and builder who made the actual most-

profitable block will lose out on some money, but that’s it.

Step 2 failure – The validator is forced to have an empty slot. Proposing an2.

alternative block at this point would mean the validator has double signed,

and they could be slashed for doing so.

The second case is the really bad one, so that’s the one we’re more concerned

about. Validators can always fall back to local block production if all relays go

offline (or if they don’t have a relay listed in their MEV-Boost configuration).

Concretely, the risk is that:

Validator is connected to RM (not necessarily exclusively),1.

RM is the highest bidding relay, so the validator selects its block, and2.

RM sent the block header which the validator signed initially, but then it fails3.

to reveal and publish the entire block

We’ve already seen this happen with bloXroute recently. Their relay

malfunctioned for several hours, directly causing 88 proposers to miss their slots.

So malfunctioning relays are bad, but they’re still not the end of the world for two

reasons:

It’s likely that a given relay isn’t always the highest bidder1.

They can rectify the issue once they realize it 2.

Similarly, bloXroute had issues with sending invalid blocks to proposers due to

https://twitter.com/eyalmarkov/status/1572616363054612486
https://discord.com/channels/638409433860407300/1012038992881012736/1026574783690850364

the fact that their relay wasn’t simulating blocks from known builders. 15

proposers missed their slots. bloXroute has rectified these issues – they repaid

proposers for their missed slots, and have started to simulate transactions. This

highlights the very-real risk though.

Malicious Relays – Block Withholding Attack

However, a popular malicious relay is of greater concern. If RM is connected to

many subsequent validators, then intentionally conducting a block withholding

attack will result in a complete liveness failure of the Ethereum network. Neither

of the mitigating factors for malfunctioning relays apply:

Malicious relay can lie and always bid the highest – this is a free attack as1.

they aren’t committed to paying the proposer until they reveal the full block

Malicious relay will intentionally continue the attack, not rectify it2.

There are simple local solutions for validators – track recent performance of the

relays you’ve used, and disconnect if something is wrong. This may be useful for

large validators (e.g., Coinbase) who propose many blocks and have recent data,

but it doesn’t do much for smaller validators who propose very infrequently. It

also doesn’t help any other validators if only Coinbase realizes the problem and

disconnects.

So we need a global solution, of which there exist two leading ideas:

Relay Monitor – A trusted third party monitors all relays. If RM withholds blocks,

provides invalid ones, or pays proposers less than they had initially bid – the

monitor can alert all proposers “remove RM now.“ It wouldn’t have the power to

make validators connect to some other relay, so the worst a malfunctioning or

malicious relay monitor could do is cause validators to fall back to local block

production, not miss slots. Flashbots recently announced they would issue a

grant to develop such a relay monitor.

https://github.com/flashbots/mev-boost/issues/142
https://twitter.com/bertcmiller/status/1577482340812566528?s=20&t=qtFcpIoIyTB5kSzWbgEtzg
https://twitter.com/bertcmiller/status/1577482340812566528?s=20&t=qtFcpIoIyTB5kSzWbgEtzg

Whenever MEV-Boost calls submitBlindedBlock to a relay, it also sends a request

to the relay monitor including:

The SignedBuilderBid
The relay it originated from

The submitBlindedBlock body

The relay monitor also requests the payload from the relay, allowing it to check

whether:

The payload is withheld

The block matches the bid

If the relay monitor observes any issues, it will propagate this to all proposers.

Circuit Breaker – This serves a similar function of alerting proposers to

disconnect from relays, but it’s run as part of the Beacon node rather than relying

on a trusted third party. Proposers just watch for some threshold of recent slots

being missed since the last valid block, in which case they fall back to local block

production. This differs from the relay monitor in that it entirely cuts off

outsourced block production for the proposer, not just one relay.

The best solution of course is enshrined PBS – relays are no longer needed, and

the unconditional payment would make this attack prohibitively expensive for

builders to conduct. It may even be possible to implement a crude form of PBS

simply by adding a new transaction type to Ethereum which allows builders to

offer proposers this unconditional payment, as Phil has proposed previously.

Summing up where are now vs. enshrined PBS:

https://hackmd.io/@ralexstokes/BJn9N6Thc
https://twitter.com/phildaian

Relay & Builder Censorship

Now we’ll finally chat a bit about all the headlines. We discussed validator

censorship earlier, but that’s not the problem right now. Censorship is currently

stemming from relays and builders.

Recall that the MEV-Relay only sent bundles to the miner in PoW. They were

never sent full blocks. Flashbots never included OFAC-blacklisted transactions in

these bundles, but it didn’t really matter because miners could just include them

anywhere else in the block.

This is very different from the function of “relays” in MEV-Boost, which send full

blocks to validators that they blindly commit to. The full block body is only

revealed after the proposer has committed to it. As currently constructed, the

proposer is unable to do anything if the block revealed is censoring.

 However, full block

outsourcing now introduces serious censorship risk – proposers who accept

blocks from censoring relays will be de facto censoring. They no longer retain the

ability to append transactions in the way that miners did. If a censoring

relay/builder is the most profitable, then the proposer is forced to choose

between being:

Economically rational – accepting the highest value block, even if censored

Altruistic – accepting a lower value block which does not censor

To be clear, this risk was known when Flashbots was building MEV-Boost.

However, the Ethereum community gave a clear objective that the validator set

needed to remain decentralized. As mentioned, this full-block commit-reveal

scheme was needed to ensure that relays don’t have to trust validators in the

way that a handful of mining pools could be. Otherwise, you’d end up with a

centralized validator set. So this censorship vector was deemed a necessary

tradeoff.

So is it game over? Will relays and builders just censor forever? I don’t think so.

We can save her.

I expressed some of my stronger personal thoughts in that article I referenced

https://joncharbonneau.substack.com/p/censorship-wat-do?utm_source=profile&utm_medium=reader2

earlier, but the reality is this is still very open research. I’ll have more to come

here.

Are Maximally-Decentralized Validators Necessary?

Now that we understand the risks imposed by relays and builders, let’s circle

back to validators. Today’s MEV-Boost censorship issues arise due to the need to

remove trust in proposers. This allows for the possibility of having a bajillion

validators participating. But is that necessary? Zaki has noted this tension

r e c e n t l y :

The primary goal of decentralized validators is to provide censorship resistance.

Decentralization is more a means to an end than some inherently great property.

However, we see today that you can still easily have censorship even with

decentralized validators.

If validators were limited to large entities that relays/builders could trust, today’s

issues would be avoided. As in PoW, relays could just send them full blocks in

the clear, and validators would be free to append additional, otherwise censored

transactions. If Coinbase misbehaves and starts stealing MEV from the relays,

then they’d simply be cut off.

Even a smaller set of validators (ballpark ~100 in Tendermint usually) can still be

held accountable by the same mechanisms described earlier. If they’re clearly

conducting strong censorship, the community can always fall back to a UASF /

hard fork to punish them.

The flip-side as I mentioned is that these aren’t necessarily mutually exclusive.

Changes to the base layer and supporting infrastructure could bring back

proposers’ agency to force in censored transactions without needing to trust

them.

However, these solutions are difficult, and they’re not live today. The message is

simply that decentralized validators aren’t a panacea in isolation.

That’s really the heart of the issue here. The weak censorship we see today hasn’t

arisen due to the shift from PoW → PoS. It’s here because of Ethereum’s desire to

support a decentralized validator set which doesn’t need to be trusted.

Ultimately, this tension will need to be resolved through better mechanism

design if it’s to be successful.

Conclusion
Thoughtful protocol and app-layer design can certainly minimize unnecessary

MEV exposure and return value to users. However, I’d be skeptical of any silver

bullets claiming to “solve” MEV. MEV exists, and ignoring it doesn’t solve anything.

Left unchecked, it can introduce perverse incentives. The core protocol needs to

be built with these incentives in mind.

This discussion is deeply intertwined with that around censorship resistance,

including new vectors for censorship at the relay and builder levels. There are

many ways to fight this threat though, and that should be front of mind for all

researchers and developers.

Personal note – apologies for the long delay between reports. This report is only a

brief primer – MEV has a bunch of fascinating areas of open research, and I’ve

fallen down a bit of a rabbit hole lately. Following MEV reports will hopefully

come a bit quicker.

delphi-5882-f313c8

	Delphi Digital
	MEV Manifesto

