
www.allitebooks.com

http://www.allitebooks.org

Facebook Application
Development with
Graph API Cookbook

Over 90 recipes to create your own exciting Facebook
applications at an incredibly fast pace with Facebook
Graph API

Shashwat Srivastava

Apeksha Singh

[PACK]
PUBLISHING

BIRMINGKAM - MUMBAI

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.allitebooks.com

http://www.allitebooks.org

Facebook Application Development with
Graph API Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2011

Production Reference: 1091111

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-092-8

www.packtpub.com

Cover Image by Siddharth Ravishankar (siddharthr@LNTEBG.com)

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Shashwat Srivastava

Apeksha Singh

Reviewer
Deepak Vohra

Acquisition Editor
Wilson D'Souza

Development Editor
Swapna Verlekar

Technical Editors
Kedar Bhat

Vanjeet D'souza

Merwine Machado

Project Coordinator
Shubhanjan Chatterjee

Proofreader
Linda Morris

Indexer
Rekha Nair

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Shashwat Srivastava has been an avid coder since high school and has acquired
technical proficiency in various programming languages with an experience of over twelve
years. He is a strong advocate of open source tools and hosts his projects at SourceForge. He
has successfully participated in Google Summer of Code programs 2010 and 2011.

Shashwat has graduated as a Bachelor of Electronics and Communication from Delhi College
of Engineering in 2011. During his college days, he has published websites for several clients
including his college library and electronics department.

Currently, he is working as an application developer at Oracle. He actively contributes to
Drupal and has developed modules such as DrupalChat, DXMPP, and Chatroom. His keen
interest lies in web application development and as a result he has built several Facebook
and Twitter applications. Passionate about programming he loves to blog about PHP,
JavaScript, MySQL, Linux, Android, and other insanities at http://www.botskool.com/.
When unplugged, he enjoys playing chess and computer games.

First of all, I need to thank my mother and father for being a constant source
of inspiration and their endless support during the book writing process.
Also, I would like to thank my dear brother Anmol for all the love and care.

A huge thanks to all my friends who have given their valuable inputs on this
book.

Also, I would like to thank the team at Packt Publishing, along with David,
Wilson, Swapna, Shubhanjan, and other editors and reviewers. Without
them you wouldn't be reading this book.

Finally, I want to thank most my friend and co-author, Apeksha, who has
been with me since the beginning. She has put in a lot of efforts and worked
diligently to make sure this book is complete.

Thank you for reading this book. I hope you find it interesting and useful.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.allitebooks.com

http://www.allitebooks.org

Apeksha Singh is a software engineer and an open source hobbyist and enthusiast.
She has recently graduated as a Computer Science Engineer from Jaypee Institute of
Information Technology and has extensive experience in web development and search engine
optimization. She has authored articles and research papers in these fields. She has seven
years of experience in the field of programming and loves data structures.

Obsessed with new technology, Apeksha keeps track of the latest developments in the world
of technology and likes to update others and share her views by blogging at http://www.
botskool.com/. She has also worked in the field of embedded systems and robotics. In
her free time, she reads novels and plays sports such as badminton and tennis. She can be
reached at her personal blog (http://apeksha0701.blogspot.com).

I would like to thank the three most important people in my life, my dad for
being my role model, my mom for all the love and support and my brother
Abhinav for making me believe in myself.

Also, I would like to thank my dear friends for coping with my occasional
absence during the book writing stage and helping me whenever required.
Most important, I would like to thank, my co-author Shashwat Srivastava for
making this dream come true.

A special thanks to the team at Packt Publishing without whom this book
wouldn't have been possible.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Deepak Vohra is a consultant and a principal member of the NuBean.com software
company. Deepak is a Sun Certified Java Programmer and Web Component Developer, and
has worked in the fields of XML and Java programming and J2EE for over five years.

Deepak is the co-author of Pro XML Development with Java Technology, Apress and was the
technical reviewer for WebLogic: The Definitive Guide, O'Reilly Media, and also the technical
reviewer for Ruby Programming for the Absolute Beginner, Course Technology PTR, and
the technical editor for Prototype and Scriptaculous in Action, Manning Publications.
Deepak is also the author of JDBC 4.0 and Oracle JDeveloper for J2EE Development,
Processing XML documents with Oracle JDeveloper 11gh, and EJB 3.0 Database
Persistence with Oracle Fusion Middleware 11g, all books published by Packt Publishing.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books. 

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.allitebooks.com

http://www.allitebooks.org

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Creating a New Facebook Application	 5

Introduction	 5
Downloading PHP-SDK and setting up your environment	 8
Registering a new Facebook application	 10
Configuring a Facebook application	 13
Getting authorization and a valid session for the user	 15
Requesting specific permissions from the user	 17
Logging out a user	 20
Handling navigation in an iFrame Facebook application	 21
Handling form submission in an iFrame Facebook application	 23
Dynamically resizing an iFrame Facebook application	 24
Determining whether a Facebook page has been liked by a user	 27

Chapter 2: Be a part of Social Graph	 31
Introduction	 32
Retrieving a user's information	 34
Liking a post	 36
Commenting on a given post	 38
Setting status message	 41
Deleting a picture, post, or comment of a user	 43
Retrieving the current user's friendlist	 44
Creating a post on the wall of a user's friend	 46
Posting a picture to a specific album of the user	 49
Retrieving the names of the user's friends who have liked a particular
status message	 53
Creating an event	 55
Paging through a user's friends	 57
Searching through a user's feed	 59

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Tagging users in a picture	 60
Adding a subscription for real time updates related to a user object	 63
Creating a callback for handling real time updates	 65
Deleting subscriptions	 69

Chapter 3: Querying Facebook	 73
Introduction	 74
Returning information about a user	 76
Getting the status messages of a user	 78
Retrieving profile pictures of a user's friends	 81
Getting the links posted by a user	 84
Getting the Facebook pages followed by a user	 86
Determining if two users are friends	 89
Retrieving information of a group	 91
Retrieving members of a group	 93
Retrieving friends from a specific friend list	 95
Getting all the messages in a thread	 98
Checking the status of permissions for an application	 100
Getting notifications, and their senders, for the current user	 102
Retrieving video details associated with a user	 104
Getting the five latest photos in which a user has been tagged	 106
Retrieving the latest photos published by a user	 109
Retrieving details of an event	 111
Retrieving details of a user's friends by using the multiquery method	 114

Chapter 4: Using FB Script	 117
Introduction	 117
Getting the current user status and performing session validation	 121
Setting up extended permissions during login	 124
Logging out a user	 126
Resetting the size of iframe	 127
Making a Graph API call	 129
Executing an FQL query	 131
Subscribing to an event change	 133
Unsubscribing to an event change	 135
Retrieving a profile picture using XFBML	 137
Adding bookmarks using XFBML	 139
Authentication and setting up extended permissions using XFBML	 142

Chapter 5: Expressing Yourself	 147
Introduction	 147
Prompting the user to publish a story	 150
Using Dialog to add someone as a friend	 153

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

iii

Table of Contents

Using the OAuth Dialog to request permissions for your application	 157
Prompting the user to send a request to friends	 161
Processing requests sent to the user by friends	 164

Chapter 6: Bringing Facebook to your Website	 169
Introduction	 169
Setting up the Like button on your web page	 170
Adding a Like box	 173
Setting up the Activity Feed plugin	 177
Setting up the Facepile plugin on your web page	 180
Integrating the Live Stream plugin using XFBML	 183
Integrating the Comment box using XFBML	 185
Integrating the Send button using XFBML	 187
Login with Faces	 192

Chapter 7: Connecting Websites to the Social Graph	 195
Introduction	 195
Integrating web pages into the social graph	 196
Integrating audio and video data	 200
Administering your page	 204
Publishing stream updates to the users	 207

Chapter 8: Fiddling with Virtual Currency	 211
Introduction	 211
Setting up the application for Facebook Credits	 212
Setting up an application callback for Facebook Credits	 215
Creating Facebook Credits frontend using JavaScript SDK	 221
Getting the order details	 226
Implementing custom offers	 229
Refunding the order	 233
Developing a "Send a Gift" application and integrating with
Facebook Credits	 236

Chapter 9: Creating Advertisements and Analyzing Metric Data	 251
Introduction	 251
Retrieving impressions of the Like Box plugin	 254
Retrieving a page's stream views and wall posts using batch request	 258
Getting the number of installations of an application using FQL	 261
Getting statistics about visitors using FQL multiquery	 263
Creating a new ad for your Facebook application	 269

Chapter 10: Creating Instant Applications	 275
Introduction	 275
Creating a "Your Good Luck Charm of the Day" Facebook application	 279

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

iv

Table of Contents

Designing a "My Fast Friends" Facebook application	 284
Setting up a photo collage	 292
Building a birthday calendar	 299
Developing an application to classify friends according to the cities
they live in	 308

Chapter 11: Using Facebook Open Graph Beta	 313
Introduction	 313
Setting up your application for using Facebook Open Graph Beta	 314
Defining actions, objects, and aggregations for your application	 317
Customizing the Facebook Auth Dialog box	 325
Requesting permission for publishing to the user's timeline	 328
Defining your web page as a a Facebook graph object	 332
Publishing actions of a user to Facebook	 334

Index	 339

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Preface
With a user base of nearly 800 million people, Facebook is the number one social networking
platform. Applications can be created to interact with this huge user base in various ways both
inside and outside Facebook. These applications, if developed effectively and efficiently, offer
a free medium for promotion and publicity of a product or an organization.

This book focuses on both the concepts and implementations necessary to develop Facebook
applications and provides ready-to-use code for common scenarios faced by a developer while
creating these applications. It incorporates the newly launched Facebook Graph API along
with Facebook Open Graph Beta and also presents the reader with some intuitive ready-to-use
applications. This book guides the reader step-by-step, from start to finish, through various
stages of Facebook application development.

What this book covers
Chapter 1, Creating a New Facebook Application describes the first step towards developing
a Facebook application which includes Facebook application registration process and
downloading its PHP - SDK. Here, we will learn how to set up the environment and perform
basic authentication to begin with Facebook application development process.

Chapter 2, Be a part of Social Graph presents some recipes to perform the most commonly
encountered tasks of application development using the Facebook Graph API through PHP.
Here, we will get accustomed to Facebook objects and connections and ways to use them to
retrieve data.

Chapter 3, Querying Facebook demonstrates how to use the Facebook Query Language to
query Facebook's humongous database for retrieving complex user data.

Chapter 4, Using FB Script shows us how we can access all the features of Graph API using
Facebook JavaScript SDK such as to performing authentication and retrieving user data
directly at the client side.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Preface

2

Chapter 5, Expressing Yourself provides an insight into Facebook Dialogs. Here, we will learn
how to integrate Facebook Dialogs which provide a consistent interface to our applications.
Publishing streams, sending friend requests, requesting permissions and so on will become
seamlessly easy with these Facebook popup boxes.

Chapter 6, Bringing Facebook to your Website introduces us to the all time favorite Social
Plugins. Here we will learn how to integrate Facebook' Social Plugins to a third party
application and connect with the Facebook world from virtually anywhere and anytime.

Chapter 7, Connecting Websites to Social Graph shows the users Facebook Open Graph
and ways to specify structured information about a webpage which determines how it will
be rendered in Facebook. Learn all about Facebook meta tags, their uses, and how to
incorporate them into your own web pages.

Chapter 8, Fiddling with Virtual Currency demonstrates how to integrate and use Facebook
Credits with our application. This chapter will show us how to use Facebook Credits as a
currency to sell our goods and services. It will also teach us how to handle transactions via
Facebook Credits API.

Chapter 9, Creating Advertisements and Analyzing Metric Data talks about Facebook Metrices
and Ads and recipes to retrieve metric data about our applications. Here, we will learn how to
record statistics and understand user interaction with our application.

Chapter 10, Creating Instant Applications houses some readymade exquisite Facebook
Applications. Here we will learn to develop few Facebook Applications right from scratch.

Chapter 11, Using Facebook Open Graph Beta introduces us to the newly launched Facebook
Timeline and Open Graph Beta. Here, we will learn how to create Facebook objects, actions,
and aggregations along with publishing user actions.

What you need for this book
In order to start with Facebook application development you should have a domain name and
web hosting space. Your web server should support PHP which is a server-side language.

Who this book is for
This book is written for Facebook developers ranging from novice to expert. It uses PHP, HTML,
and jQuery, the most commonly used platforms, to build applications in Facebook.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Preface

3

Code words in text are shown as follows: "We use Facebook's in-built XFBML <fb:comments>
tag to add the Comment plugin".

A block of code is set as follows:

<iframe src="http://www.facebook.com/plugins/likebox.php?
 href=http%3A%2F%2Fwww.facebook.com%2FPacktPub&
 width=292&colorscheme=light&show_faces=true&
 allowTransparency="true">
</iframe>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<iframe src="http://www.facebook.com/plugins/likebox.php?
 href=http%3A%2F%2Fwww.facebook.com%2FPacktPub&
 width=292&colorscheme=light&show_faces=true&
 allowTransparency="true">
</iframe>

Any command-line input or output is written as follows:

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Fill in the attributes details
and click on Get Code".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Preface

4

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

1
Creating a New

Facebook Application

In this chapter, we will cover:

ff Downloading PHP-SDK and setting up your environment

ff Registering a new Facebook application

ff Configuring a Facebook application

ff Getting authorization and a valid session for the user

ff Requesting specific permissions from the user

ff Logging out a user

ff Handling navigation in an iFrame Facebook application

ff Handling form submission in an iFrame Facebook application

ff Dynamically resizing an iFrame Facebook application

ff Determining whether a Facebook page has been liked by users

Introduction
If you want to develop applications that connect to the social web, then Facebook is the place
from where you should begin your journey. Over the past six years, Facebook has completely
revolutionized the concept of social networking and transformed the way people interact over
the web with each other. With a more than 800 million user base, this is definitely the place
you won't want to miss.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating a New Facebook Application

6

The social network
Today, Facebook has become the synonym for social networking and it has surpassed its
competitors, such as Myspace and Friendster, by huge margins in the world of the social web.
The structured form, the simulated interaction, and the dedicated platform provide users with
a seamless sharing experience. Facebooking has become the 'key phrase' among people of
all social domains. From college students to the entrepreneurs, from the elite to hoi-polloi,
everyone happens to be a part of a web-based social graph and Facebook connects them all.

What makes Facebook tick?
What is it about Facebook that catapulted it from a member influx of a few thousands
during the first month of its launch in 2004, to a staggering 800 million people by the end
of the decade?

1.	 It's simply cool!: Keep in touch with friends, make groups for entertainment, search
for people, view pictures, send messages, share wall posts, create forums, advertise,
play games, and create applications; name any social activity and Facebook is
already equipped with it. Facebook caters to the needs of virtually everyone and has
everything for its users.

2.	 It's different: Facebook stands out from its competitors, such as Myspace and
Friendster, and has done something which no other social networking site has done
before. It has introduced the concept of page and millions of third-party applications,
hosted both inside and outside Facebook, which gives users a complete social
experience. It has moved beyond the social aspect of strictly being just a site by
allowing being in touch with an always-changing network of friends and colleagues.

3.	 It inspires: Facebook is not just about sharing a similar interest, it's about
networking. It allows users to express themselves, communicate, and assemble
profiles that highlight their talents and experience, and also advertise and market
inexpensively.

4.	 It's not stopping: Facebook has continued to grow from the start. With the
humongous increase in its user base, it has been constantly updating itself with all
the technological changes taking place. Facebook, with the introduction of Graph API,
Open Graph protocol, Facebook Credits, Facebook Ads API, and Social Plugins, has
taken care of the changing technology.

5.	 It's stated everywhere: The popularity of Facebook has been acknowledged
worldwide. A brief look into some of the Facebook statistics, as taken from the official
Facebook page (http://www.facebook.com/press/info.php?statistics)
is as follows:

�� More than 800 million active users
�� People spend over 700 billion minutes per month on Facebook
�� More than 30 billion pieces of content (web links, news stories, blog posts,

notes, photo albums, and so on) shared each month

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

7

�� More than 70 translations available on the site

�� More than 7 million websites have integrated with Facebook, including over
80 of comScore's U.S. Top 100 websites and over half of comScore's Global
Top 100 websites

�� People on Facebook install applications more than 20 million times every
day

What's in it for the developers?
With more than 800 million active users and integration of more than 7 million websites,
Facebook has a lot of potential for the third-party application developers. It is an attractive
platform to promote a particular idea or business and spread it among the millions of users.
Facebook offers its users as potential customers, making it fascinating and potentially
profitable for the developers. The introduction of the Facebook Developers Platform has
provided developers with many new and exciting ways to engage Facebook users. So, the
benefits for the developers are as follows:

ff Make money: Apart from advertising, Facebook allows developers to earn money by
running their applications on other websites.

ff It's free: Developing a Facebook application is exciting and free.

ff Allows collection of data: As part of the application, Facebook allows developers
to collect selected information from their users. For example, you can collect users'
views on a particular interest by using polling.

ff Spreading your word through millions of users: Updates by the Facebook application
on a user's wall is another attractive way to publicize your idea or product. These
updates, when viewed by friends and friends of friends, expose your application
virally to the millions out there.

ff Integrate with Facebook: Facebook social plugins, such as the Likebox and
Recommendation plugin, make it possible to draw more traffic.

ff Building business: An application provides a personalized interface to interact with
people and caters to their specific needs. This, in turn, can help to promote and
facilitate marketing of certain products and services.

ff Advertisement: You can promote Facebook applications easily and efficiently.
Facebook aims at making its advertisers happier and more satisfied. The introduction
of the CPC advertising, which allows its advertisers to take control on the amount that
advertisements generate per click, is by far its boldest and bravest move.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.allitebooks.com

http://www.allitebooks.org

Creating a New Facebook Application

8

Truly dedicated to its developers, Facebook also incorporates a number of key elements in its
Developer's Platform. Its transition from Old REST API to the new, highly efficient, and simpler
Graph API speaks about Facebook's effort to meet the ever increasing needs of its developers,
making it a lot more interesting for them. Supporting multiple SDKs is another effort to make
it more accessible.

Technology is about change and Facebook incorporates those changes even before they are
acknowledged. It changes not just to be better, but to become the best.

In this chapter, we take our first step towards Facebook application development and learn
how to set up an environment for the same. So, let's delve into the Facebook world and see
how we connect to it.

Downloading PHP-SDK and setting up
your environment

Facebook Application Development Platform supports a lot of SDKs for the ease of its
developers. One such SDK is PHP-SDK, which supports all the PHP-based web applications.
PHP-SDK has been released under Open Source License and is hosted at GitHub.

Getting ready
In order to develop, create, and launch a Facebook application, you need to have a
domain name and a web hosting space. From here on, we will refer to this web hosting
space as the server.

Before we begin, we need to make sure that the following two PHP extensions are installed on
our server:

1.	 PHP cURL extension

2.	 PHP JSON extension

PHP cURL extension provides us with a powerful library for making HTTP requests, known as
cURL, and has been specifically designed to fetch data from remote sites. This library is used
to post requests to Facebook servers using Facebook Graph API. Similarly, we need PHP JSON
(JavaScript Object Notation) extension to convert JSON encoded data to PHP arrays for our
logic processing and data mining.

There is an easy way to check for these dependencies. First, create a new file test.php and
upload it to your server. Next, add the following code to it:

<?php
 if (!function_exists('curl_init')) {
 throw new Exception('PHP cURL extension is not present.');
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

9

 if (!function_exists('json_decode')) {
 throw new Exception('PHP JSON extension is not present.');
 }
?>

Now, save this file and run it on your server. If you do not get an error message, it means
everything is fine and you have these extensions already installed. Otherwise, you need
to install the appropriate extension(s) accordingly. Check out the following links for more
information regarding installation of these extensions:

ff PHP cURL: http://php.net/manual/en/curl.installation.php

ff PHP JSON: http://php.net/manual/en/json.installation.php

Now let's set up Facebook PHP-SDK on the server.

How to do it...
Once we have made sure that we have the cURL and JSON extensions installed, we need to
download PHP-SDK. Follow these steps:

1.	 Go to https://github.com/facebook/php-sdk/ and download the latest
stable version of Facebook PHP-SDK in the compressed format.

2.	 Create a new folder on your server where you want to host your Facebook application.
We will call this new folder my_app.

3.	 Extract the content of the archive file on your local computer. Now, go inside the src
folder and you will see a file named facebook.php along with another file. Upload
the facebook.php file to your server inside the my_app directory.

How it works...
The facebook.php file contains a class named Facebook, which helps us to connect to the
Facebook servers and post various requests. This class has inbuilt functions and we simply
need to put them to use.

There's more...
The Facebook PHP SDK is available under Open Source License. So, developers can
contribute to it by filing bugs and suggesting improvements. Also, Facebook offers a number
of developers tools, which can help us in the debug process. These are available at the
URL: http://developers.facebook.com/tools/.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating a New Facebook Application

10

Registering a new Facebook application
What is a Facebook application? Fundamentally, a Facebook application is a code
snippet written by a developer, which extracts Facebook data of the users (who use this
application) and performs some meaningful task on this data. Facebook assigns each
application a unique ID and private key. This helps it to distinguish between various
applications and manage security. To obtain them is the very first step towards creating
a new Facebook application.

Also, for creating an application inside Facebook, we need to specify a Canvas Page. This is
the URL of our application inside Facebook and is of the form: http://apps.facebook.
com/your_canvas_page. The Canvas Page is like a blank canvas within Facebook on
which our application will run. We can populate the Canvas Page by providing a Canvas URL
that contains the HTML, JavaScript, and CSS for our application. The Canvas URL should
point to our server. When a user requests our application, Facebook renders our predefined
Canvas Page. The application content is extracted from the Canvas URL. It is like loading the
application content, from our web server, within an iFrame inside Facebook.

Getting ready
Before we register a new Facebook application, we need to make sure we have verified our
Facebook account. Facebook does this in order to limit spamming. There are two ways to
verify ourselves for a developer account:

1.	 We can confirm our phone number by going to the following URL: http://www.
facebook.com/confirmphone.php.

2.	 Or, we can go to the URL: https://secure.facebook.com/cards.php and add
a credit card to our Facebook account for verification.

How to do it...
The following steps will outline how to register a new Facebook application:

1.	 Go to https://developers.facebook.com/apps and click on the + Create
New App button, present on the top right corner just below the Facebook top bar.

2.	 A pop up, as shown in the next screenshot, will appear. Key in your application name,
accept the terms and conditions of Facebook, and click on Continue:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

11

3.	 Next, you will be redirected to fill in the basic information for this application. Enter
the details such as Description, Contact Email, Privacy Policy URL, Terms of
Service URL, and so on. You can also upload an icon and logo for your application.

4.	 Additionally, you will find your application ID and application Secret. These two form
a very important part of the Facebook application. You must never disclose your
application's secret key to anyone. Refer to the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating a New Facebook Application

12

5.	 In the Roles section, you can add additional users as Administrator, Developer, Tester
or Insights User.

6.	 Next, we need to define our Canvas Page and Canvas URL. For this, click on the
On Facebook tab, present on the left hand side of the page. By default, the Canvas
Settings sub tab will be loaded, as shown in the following screenshot:

7.	 Now, under the Canvas section, type in your desired Canvas Page name. This will
be your application's base URL on Facebook. It will be something similar to: http:
//apps.facebook.com/your_canvas_page. Next, type in your Canvas URL. This
will be the URL from which Facebook will render your application and this URL should
be of your server or domain. It will be something such as: http://www.example.
com/your_application_name/index.php.

8.	 Now, click on Save Changes. That's it. We have registered a new application on
Facebook and done some basic configuration.

How it works...
The application ID and application secret key are unique for every Facebook application. The
application ID and the application secret key are required while requesting any data from
Facebook. These are used to verify that the request is being made from a trusted source.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

13

There's more...
Apart from the basic application configuration, there are some tips given below, which the
developers may find useful.

Secure connection
If your application is going to have secure content, then you can set Secure Canvas URL
in the Canvas section under the On Facebook tab. Typically, this secure version of the
Canvas URL is used by Facebook when your application is accessed by a user over a
secure connection (https).

Sandbox mode
Sandbox mode restricts the access of an application to only its developers. This can be used
by developers in the development and testing phase. You can enable Sandbox mode by going
to the Advanced sub tab, inside the About tab, on the application's settings page.

Resetting an application's secret key
If you feel that your application's secret key has been compromised, then you can easily reset
it. Follow these steps:

1.	 Go to https://developers.facebook.com/apps/ and choose your application
from the list of apps given on the sidebar on the left-hand side.

2.	 Next, go to the application's settings page and click on the reset link present
adjacent to the application's secret key.

In Facebook, the Canvas Page name must be at least seven
characters long, otherwise it gives a validation error.

Configuring a Facebook application
Before we begin writing the code for our application, we need to configure certain settings
in our PHP code in order to make it communicate effectively and securely with the Facebook
servers. Thus, after registration, configuration is the first step that we need to perform.

Getting ready
You should have registered your Facebook application before starting with this. Also, you
should have your application ID and secret key ready. These form an integral part of the
configuration process.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating a New Facebook Application

14

How to do it...
We will assume that we are hosting our application in a directory named my_app on
some server.

Create a new file and name it config.php, and upload it to the my_app directory. Also, copy
the facebook.php file, present in PHP-SDK, in the same directory.

Copy the following code in config.php:

<?php
 require_once 'facebook.php';
 $facebook = new Facebook(array(
 'appId' => 'your_application_id',
 'secret' => 'your_application_secret',
 'cookie' => true,
));
?>

You need to replace your_application_id and your_application_secret in the
preceding code with your Facebook application ID and secret key respectively. Now, save the
file. We will need this file often as we proceed through the application development procedure.

How it works...
In config.php, we have created an instance of our Facebook application by declaring a
new object, $facebook, of the Facebook class. We pass an array with various settings as
an argument to the constructor. These parameters are appId, secret, and cookie. Here,
appId refers to the application ID and secret refers to the secret key that we have obtained
during registration. The cookie value true simply implies that the cookie will be used to store
the session information after authentication.

Usually, a Facebook application consists of various pages and hence there are multiple PHP
files. Instead of specifying the Facebook configuration parameters again and again, we have
created a file named config.php and we will include this file in the rest of our PHP files. This
will make it easy and remove unnecessary duplication of code.

See also
ff The Registering a new Facebook application recipe for information on the

registration process.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

15

Getting authorization and a valid session
for the user

A Facebook application is all about giving its users a personalized experience. That is why
authentication and session verification form an important aspect of a Facebook application
development process. There are two ways to render a Facebook application. One is inside
Facebook and the other is to use it on a third party website. We will show how to get started
with an application inside Facebook.

Getting ready
You should have registered your Facebook application and created config.php.

How to do it...
Add the following code to the top of your PHP file, which contains the application code, and
name it index.php:

<?php
 require_once 'config.php';

 /* Get a valid session */
 $session = $facebook->getSession();
 $me = null;
 if($session) {
 /* Check if session is valid */
 $me = $facebook->api('/me');
 }
 if($me) {
 echo 'User is logged in and has a valid session';
 }
 else {
 echo 'Session expired or user has not logged in yet.
 Redirecting...';
 echo '<script>top.location.href="'. $facebook->getLoginUrl()
.'";</script>';
 }
?>

Now, save this file and run it. An appropriate message will be displayed depending on whether
the session is a valid one or has expired.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating a New Facebook Application

16

How it works...
In our main application file index.php, we first include config.php, which contains
the basic configuration information. To perform authorization, we need to check for the
following things:

1.	 First we check whether a valid user session already exists or not. This has been done
by making a call to the getSession() function. If it returns a null value, it means
either the session has expired or the user has not logged in yet.

2.	 However, if the session exists, we need to check if it is still valid or has expired. For
this, we make a call to the Facebook Graph API URL https://graph.facebook.
com/me. Here, me specifies the session of the active user and making a call to
this returns the information of the current logged in user. If the user's session still
persists, then it does not return a null value and the message User is logged in
and has valid session is displayed, otherwise we will know that a valid session
doesn't exist.

3.	 Upon detection of an invalid session, we redirect the user to a predefined
authorization URL given by the getLoginUrl() function. The Facebook application
login screen will look as shown in the following screenshot:

There's more...
Facebook uses the OAuth 2.0 protocol for authentication and authorization. It involves
three steps:

1.	 User authentication

2.	 App authorization

3.	 App authentication

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

17

In the user authentication step, the user is prompted to login to Facebook if he/she is not
already logged in. It ensures that the user is logged in to Facebook and has a valid session.
App authorization informs the user about the data and capabilities they are providing to an
application. Finally, in the App authentication step, Facebook ensures that the user is giving
the information to the desired application only. After successful App authentication, a user
access token is issued that enables us to access the user's information and take actions on
his/her behalf.

Usually, user authentication and app authorization are handled one after another by
redirecting the user to Facebook OAuth Dialog, discussed in detail in Chapter 6. This dialog
can be invoked by directing the user to this URL: https://www.facebook.com/dialog/
oauth?client_id=YOUR_APP_ID&redirect_uri=YOUR_URL.

After the user logs in and authorizes the application, Facebook redirects the user to the
redirect_uri URL along with a query parameter named code, which contains a Facebook
server generated authorization code.

Finally, the last step consists of application authentication, where we need to pass the
authorization code and application secret to the Graph API token endpoint at this URL:

https://graph.facebook.com/oauth/access_token?

 client_id=YOUR_APP_ID&redirect_uri=YOUR_URL&

 client_secret=YOUR_APP_SECRET&code=THE_SERVER_CODE_FROM_ABOVE

Upon successful validation from Facebook, we receive an access token on behalf of the user,
which we can use to perform various actions on his/her behalf.

This whole process is automatically handled internally by the Facebook class, present in
facebook.php, and we just need to follow the steps discussed in the How to do it section.

Requesting specific permissions
from the user

Facebook incorporates certain security measures to maintain the privacy of its users. There
is a certain set of basic information which is publicly available, but for more information,
we need to take specific permissions from the user. Thus, Facebook includes a multi-level
permission structure. Initially, when a user authorizes any Facebook application, a certain set
of basic permissions are provided to that application for that particular user. However, if we
need to perform actions or retrieve data, which lies outside this basic permission set, then we
need to request for these specific permissions. For example, to publish on a user's wall, you
need to have the publish_stream permission from the user.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.allitebooks.com

http://www.allitebooks.org

Creating a New Facebook Application

18

Getting ready
You should have registered your Facebook application and created config.php.

How to do it...
If the user is accessing our application for the first time and we have not set any extended
permissions, a screen will appear asking for the default access permissions and would look
as shown in the following screenshot:

We can ask the user to grant specific permissions to our application initially when he or
she first uses it. Open index.php and copy the following code at the appropriate location
as shown:

<?php
 require_once 'config.php';

 $session = $facebook->getSession();
 $me = null;
 if($session) {
 try {
 $me = $facebook->api('/me');
 } catch (FacebookApiException $e) {
 }
 }
if($me) {
 echo 'User is logged in and has a valid session';
 }
 else {
 $loginUrl = $facebook->getLoginUrl(array('req_perms' =>
 'publish_stream',));

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

19

 /**Use this code for iframe application*/
 echo '<script> top.location.href="'. $loginUrl .'"; </script>';
 /**Use this code for third party application*/
 //header('Location: '.$loginUrl);
 }
?>

Save the file and run it. A permission screen asking for the required permission will appear
before the user and will be as shown in the following screenshot:

If the user clicks on the Allow button, the application will be authorized to do all the jobs it
has requested for.

How it works...
In the getLoginUrl() function of the Facebook class, we pass an array as an argument.
This array contains an index named req_perms, which stands for requested permissions.
This index can have multiple values if we want to request multiple permissions from the user
simultaneously. For example, to request permission to post on the wall, as well as access
user's photos, use the following code:

$loginUrl = $facebook->getLoginUrl(array('req_perms' =>
 'publish_stream, user_photos',));

After calling this function, we store the output in a variable named $loginUrl. The output is
a dynamically generated URL to which we should redirect the user so that he/she may grant
the necessary permission. As usual, we need to use top.location.href (JavaScript code)
for an iFrame-based application or otherwise use the header() function of PHP.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating a New Facebook Application

20

There's more...
Sometimes you may want to add or delete some extended permissions during the testing
phase of your application. If you have authenticated with Facebook once, you won't be able to
re-authenticate using the preceding code since you'll be detected as a logged in user. There is
a way to achieve this.

1.	 Delete that application from the list of installed applications. For this, log in to
your Facebook account, go to Privacy Settings at the top right. Under the Apps
and Websites section, click on Edit your settings at the right bottom.

2.	 Next, you will see a list of all the installed applications. Simply click the x button next
to the application name to remove it from the user's application list.

3.	 Now modify your code to re-authenticate.

Additionally, you can visit
http://developers.facebook.com/docs/authentication/permissions/.

Logging out a user
At times, we may need to destroy the current session of the user and safely log him/her out of
our Facebook application. Here's how we will do that.

Getting ready
You should have registered your Facebook application and created config.php. Also, the
user should have been logged in and must have a valid and unexpired session.

How to do it...
Add the following code to the PHP code of your Facebook application file index.php:

<?php
 require_once 'config.php';
 $logoutUrl = $facebook->getLogoutUrl(array('next' => 'http://apps.
 facebook.com/[your_app_canvas_name]/',));
?>
<a href ="#" onclick="top.location.href='<?php echo $logoutUrl; ?>';
 return false;">Logout

You need to replace [your_app_canvas_name] according to your Facebook application
URL. If you want to redirect the user to some other URL, then just replace http://apps.
facebook.com/[your_app_canvas_name]/ with the intended URL.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

21

How it works...
The getLogoutUrl() function of the Facebook class returns the URL, to which we should
send the user, in order to log him/her out of the Facebook network. We pass an array as a
parameter to this function. The array has an element named next, which determines where
the user will be redirected after he/she has been successfully logged out of the Facebook
network. We store this formed URL in a variable named $logoutUrl.

Next, we use the JavaScript onclick event to redirect the user to this URL when he/she
clicks on it. We need to use the onclick event because the Facebook application is normally
present in an iFrame. If the application would have been directly run on a third party server
instead of Facebook, then we could have directly set the href parameter equal to the logout
URL without using the JavaScript onclick event.

There's more...
There is also an alternate method to redirect the user. Instead of using the onclick event,
we can also use the target parameter of the hyperlink and set it to _top. This will, in turn,
change the location of the iFrame's parent. It can be implemented as shown in the following
code snippet:

<a href ="<?php echo $logoutUrl; ?>" target = "_top">Logout

Handling navigation in an iFrame
Facebook application

Navigation for applications, which run inside Facebook, has to be handled differently. In a
multi-page based application, which runs inside Facebook, when a user clicks on a hyperlink,
it will be loaded inside the iFrame. Suppose you want to direct the user to an external URL,
in this case, you won't want it to appear in the same iFrame. Thus, navigation becomes
ineffective and has to be implemented efficiently.

Getting ready
You should have registered your application and created config.php.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating a New Facebook Application

22

How to do it...
Suppose we have two files, index.php and about.php. We want to create a hyperlink for
about.php in index.php, as well create a hyperlink to an external site, say www.example.
com. Simply follow these steps:

1.	 Open config.php and add the following highlighted line to it:
<?php
 require_once 'facebook.php';

 $facebook = new Facebook(array(
 'appId' => 'your_application_id',
 'secret' => 'your_application_secret',
 'cookie' => true,
));
 $appBaseUrl = 'http://apps.facebook.com/[your_app_canvas_name]';
?>

2.	 Replace [your_app_canvas_name] accordingly and save the file.

3.	 Now, add the following code to index.php:
<?php
 require_once 'config.php';
?>
<a href='<?php echo $appBaseUrl?>/about.php' target='_top'>
 About Us
External Link

4.	 Save index.php. Also, add some HTML code to about.php. Now run index.php.

How it works...
Suppose our domain name is http://www.example.com and we have uploaded index.
php and about.php inside a directory named my_app. If we specify http://www.
example.com/my_app/ as our Canvas URL in Facebook, then by default when we access
the application base URL, index.php is rendered inside the iFrame. If we wish to open
some other page of our application inside Facebook, we just need to add the name of the file
after the base URL of our application. For example, to open about.php inside Facebook,
we need to go to: http://apps.facebook.com/[your_app_canvas_name]/about.
php. Facebook automatically does this mapping. Whenever you enter a filename after your
application's base URL, Facebook searches for it inside the predefined directory and renders
that file inside its iFrame.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

23

Here we have defined our application's base URL in config.php and while forming
hyperlinks, we just concatenate the filename after this base URL if the file is in the same
directory as index.php, otherwise we can form links accordingly. We have also set the
target attribute of the hyperlink as _top. This makes sure that when we click on it, the
URL of iFrame's parent changes.

Now, when we click on About us, we will be directed to http://apps.facebook.com/
[your_app_canvas_name]/about.php, whereas clicking on External Link will direct us to
the external site www.example.com.

Handling form submission in an iFrame
Facebook application

It's common for an application to display a form to the users and ask them to fill it in. Hence,
form processing is a very important aspect of the Facebook application development and it
turns out that it needs to be done differently again in the case of iFrame-based applications.

Getting ready
You should have registered your application and created config.php.

How to do it...
We will create a form in index.php, which will ask the user to enter his/her favorite movie.
Add the following code to the main application file index.php:

<?php
 require_once 'config.php';
?>
<form method='post' action='http://www.example.com/my_app/process_
form.php' target='_top'>
 <input type='text' name='movie' />
 <input type='submit' value='Submit' />
</form>

Save index.php. Now create a new file, name it process_form.php, and add the following
code to it:

<?php
 if($_POST['movie']) {
 //Do form processing here…
 }
 header('Location: http://apps.facebook.com/[your_app_canvas_name]');
?>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating a New Facebook Application

24

How it works...
In the main application file (index.php), we have created a form, which takes the user's
favorite movie as the input, as shown in the following screenshot:

The important thing to note here is that in the action tag, we need to specify the URL which
will process the data and save it on our server. If we use Facebook's application URL, we will
not get the form data. Here, target is again set to _top so that when we click on it, the
iFrame's parent changes and it gets redirected to: http://www.example.com/my_app/
process_form.php.

process_form.php simply processes the form data and redirects the user to the application
URL, http://apps.facebook.com/[your_app_canvas_name].

Dynamically resizing an iFrame Facebook
application

In an application, which runs in an iFrame inside Facebook, horizontal and vertical scroll
bars may appear in the iFrame if the content exceeds a predefined height and width of the
canvas. Fortunately, Facebook provides a ready to use method to dynamically resize an
iFrame inside it.

Getting ready
You should have registered your Facebook application and created config.php.

How to do it...
Open the main file (index.php) of your application and add the following code to it:

<?php
 require_once 'config.php';
?>
<div id="fb-root"></div>
<script>
 window.fbAsyncInit = function() {
 FB.Canvas.setAutoResize();
 };

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

25

 (function() {
 var e = document.createElement('script'); e.async = true;
 e.src = document.location.protocol +
 '//connect.facebook.net/en_US/all.js';
 document.getElementById('fb-root').appendChild(e);
 }());
</script>

Put your application's content inside a div named fb-root and save the file. Now, when you
will load your application, it will have no scrollbars inside the iFrame.

If our content contains a collage of profile pictures of the current user's friends and has not
been resized, then it will look as shown in the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating a New Facebook Application

26

Here, the highlighted region shows the scrollbar inside the iFrame, which we want to remove.
After, using the resize code, this is how the above content will appear:

How it works...
First, we load the JavaScript SDK using the standard <script> element. Moreover, the most
efficient way to load the SDK in an application is to load it asynchronously so that it does not
block loading of other elements of the application's page. This is particularly important to
ensure fast page loads for users and SEO robots/spiders. Also, we have specified a <div>
element named fb-root within the document. It is important to include a div with this
name; otherwise the JavaScript SDK will not load and report an error.

In the previous code snippet, the function assigned to window.fbAsyncInit is run as soon
as the Facebook JS SDK is loaded. The function contains a line:

FB.Canvas.setAutoResize();

This starts a timer, which keeps on resizing the iFrame every few milliseconds. The default
duration is 100 milliseconds.

There's more...
By default, the timer will keep on running after regular intervals and will keep on resizing
the iFrame. If we want to stop this timer, we can do so by passing false as an argument
as shown:

FB.Canvas.setAutoResize(false);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

27

If we want to change the default interval (100 ms), we can do so by passing an integer as a
parameter to this function as shown:

FB.Canvas.setAutoResize(200);

If there is only one parameter and it is a number, it is
assumed to be the interval.

Parameters
The parameters of FB.Canvas.setAutosize() have been outlined in the following table:

Name Type Description
onOroff Boolean Turn timer on or off. Default is on.
Interval Integer Set the time interval of the timer. Default is 100 ms.

Determining whether a Facebook page
has been liked by a user

If your Facebook application supports its own custom tab, then it becomes imperative to know
whether the user, who opens the tab, is already a fan of your page or not. And if not, then we
can display different content to him/her suggesting doing so. This can tremendously help an
application to gain popularity.

Getting ready
You should have defined your Page Tabs settings present under the On Facebook tab on
the application settings page. Here, we have used a file named tab.php to display the tab
content. Also, you should have created config.php.

How to do it...
The following steps will demonstrate how to determine if a Facebook page has been liked:

1.	 Open tab.php and add the following PHP code to it:
<?php
 Include config.php:
 require_once 'config.php';

2.	 Retrieve and decode the signed_request parameter:
 $decodedSignedRequest = $facebook->getSignedRequest();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.allitebooks.com

http://www.allitebooks.org

Creating a New Facebook Application

28

3.	 Check if the page has been liked by the user:
 if ($decodedSignedRequest['page']['liked'] == 1){
 echo "User like this page";
 }
 else{
 echo "No, User doesn't like this page";
 }
?>

4.	 Save and open your custom tab inside a Facebook page. A screenshot
is shown next:

How it works...
Whenever a user opens our custom tab, Facebook sends us the signed_request
parameter, which contains a sub parameter called page. We can use this parameter to
determine whether the user is a fan of our page/application or not. We don't need to have any
permission from the user for accessing this parameter. Even if the user is using our tab for the
first time, Facebook sends us this parameter with limited information.

We use the inbuilt getSignedRequest() of the Facebook class to retrieve and
decode the signed_request parameter. It is then stored in the PHP array named
$decodedSignedRequest. This $decodedSignedRequest array contains a sub array
with the key page. Next, we check for an element named liked in this sub array. If it is
set to 1, then it means that the current user is a fan of our page. This has been done by
the following code:

if ($decodedSignedRequest['page']['liked'] == 1){
 echo "User like this page";
}
else{
 echo "No, User doesn't like this page";
}

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

29

Finally, we display an appropriate message depending on whether the user has liked the page
or not. In the actual scenario, we can display different content to users using the above code.

There's more...
The same tab of a Facebook application can be used on multiple Facebook pages.

Customizing an application's tab content based on
Facebook page
We can customize the content of an application's tab based on which Facebook page it has
been added to. For this, we need to retrieve the page ID of the current Facebook page. This
can be done by the following code:

<?php
 require_once 'config.php';
 $decodedSignedRequest = $facebook->getSignedRequest();
 print_r($decodedSignedRequest)
 if ($decodedSignedRequest['page']['id'] == 1234){
 echo "Content for a specific Facebook page";
 }
 else{
 echo "Content for other Facebook pages";
 }
?>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

2
Be a part of

Social Graph

In this chapter, we will cover:

ff Retrieving a user's information

ff Liking a post

ff Commenting on a given post

ff Setting a status message

ff Deleting a picture, post, or comment of a user

ff Retrieving a current user's friendlist

ff Creating a post on the wall of a user's friend

ff Posting a picture to a specific album of the user

ff Retrieving the names of the user's friends who have liked a particular
status message

ff Creating an event

ff Paging through a user's friends

ff Searching through a user's feed

ff Tagging users in a picture

ff Adding a subscription for real time updates related to a user object

ff Creating a callback for handling real time updates

ff Deleting subscriptions

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

32

Introduction
Facebook provides its own API for application developers. Facebook API is ever changing and
has a rapid pace of development. Facebook has changed its core development platform and
now it uses Graph API for reading and writing data.

Facebook Graph API
Facebook introduced the Graph API to make application development simpler and easier for
its developers. Facebook Graph API is all about objects and connections. The whole concept
of Open Graph is to put people in the centre of the web and help establish meaningful
connections between them and retrieve information from this setup in an easy manner.

In Facebook Graph API, every object has a unique ID and a lot of connections which
developers can utilize to build successful web applications. The thing that makes Facebook
Graph API so simple and easy is the fact that it provides access to Facebook objects like
events, people, and photos through a consistent and uniform URL. Every object can be
accessed using the URL—https://graph.facebook.com/ID, while for connections we
have https://graph.facebook.com/ID/CONNECTION_TYPE.

Facebook Graph API also has a special identifier named as me, which refers to the
current user. A call to the Graph API at https://graph.facebook.com/me would return
all the information about the current user which is publicly accessible. The authentication
is based on the OAuth 2.0 protocol and makes it simple to connect to Facebook in order to
access user information.

Facebook Graph API supports a variety of features. For example:

ff Authorization

ff Reading

ff Searching

ff Publishing

ff Deleting

ff Analytics

Prerequisites for this chapter
This section will introduce you to the basic configuration that you must do before starting
with the recipes, discussed in this chapter. There are two main prerequisites that need to be
fulfilled before implementing the recipes.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

33

First, you need to create a config.php, and add the following code to it:

<?php
 require_once 'facebook.php';
 /** Create our Application instance. */
 $facebook = new Facebook(array(
 'appId' => 'your_application_id',
 'secret' => 'your_application_secret_key',
 'cookie' => true,
));

Here, facebook.php is the file containing Facebook class and can be downloaded
from GitHub. We have created an object, $facebook, of this class and will use it in
our index.php. You need to provide your application ID and secret key here. For more
information, read the first chapter.

Next, create a file named index.php and add the following code to it:

<?php

Include the configuration file:

 require_once 'config.php';

Get the current user's session using the getSession() function and perform
session validation:

 $session = $facebook->getSession();
 $me = null;
 if ($session) {
 try {
 $me = $facebook->api('/me'); /*Check whether the current
 session is valid by retrieving user information.*/
 } catch (Exception $e) {}
 }
 /* If the current session is invalid or user has not authorized
 the application then redirect to a authorization URL.*/

Redirect the user to the authorization URL if session is not valid:

 if(!($me))
 {
 echo '<script>
 top.location.href="'.$facebook->getLoginUrl
 (array('req_perms' => 'publish_stream',
 'next' => 'http://apps.facebook.com/[your_app_url]
 /',)).'";

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

34

 </script>';
 exit;
 }
?>

Here, we first retrieve a valid session for a user by calling the $facebook->getSession()
function and storing the response in $session variable. Next, we try to retrieve the basic
information of the current user by posting a GET request to https://graph.facebook.
com/me. We use the $facebook->api() function to do so. https://graph.facebook.
com is automatically prefixed by the api() function to its first argument, that is why we have
passed /me as its first argument. The returned data is stored in the $me variable.

Finally, we check whether $me variable is null or not. If it is null, then we need to redirect
the user to the authorization URL in order to get appropriate permission(s) and a valid session
token for the user. To redirect the user, we use JavaScript code. We set top.location.href
to the URL where we want to redirect the user. This URL is given by the function $facebook-
>getLoginUrl(). Also, this function takes array as its argument. The index req_perms is
used to request from the user specific permissions. Multiple permissions can be requested
by separating them a comma. Additionally, the next index specifies where the user will be
redirected after successful authorization and session generation.

Once you have created these two files, you can use them directly in the subsequent recipes.

Retrieving a user's information
Facebook allows us to retrieve the profile information of a user directly by using its Graph API.
However, by default, Facebook limits the extraction to only those fields which are public. For all
the other fields, we need to ask for some extended permissions from the user.

Getting ready
If we want to access the profile information of the user, then we need to make sure that his/
her session is a valid and authenticated one and has not expired. To ensure this, we should
have set up config.php and index.php as explained in the beginning of the chapter.

How to do it...
The following steps will show how to retrieve a user's information:

1.	 Open index.php and append the following code to the end of the file:
<html>
 <body>
 <?php
 $me = $facebook->api('/me');
 print_r($me);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

35

 ?>
 </body>
</html>

2.	 A successful execution of this code will return a JSON object which is converted to
PHP array by the api() function with all the public details of the current logged-in
user. This is how an output may look like:

Array
(
 [id] => 786017563
 [name] => Shashwat Srivastava
 [first_name] => Shashwat
 [last_name] => Srivastava
 [link] => http://www.facebook.com/shashwat12
 [username] => shashwat12
 [gender] => male
 [locale] => en_US
)

How it works...
Facebook Graph API allows us to access its objects through a uniform URL https://graph.
facebook.com/[object_id]. To retrieve the profile information of the current logged-in
user, we need to query the user object of the Graph API as explained as follows:

ff In $me = $facebook->api('/me'), we make a call to the Graph API by using the
api() function.

ff It makes a GET request to https://graph.facebook.com/me to retrieve the
required information. The argument that is passed in the api() function gets
concatenated to https://graph.facebook.com.

ff The /me gets automatically appended and the URL, to which the GET request is
made, becomes https://graph.facebook.com/me.

The me in Facebook terminology refers to the current
authenticated user.

ff The api() function will return all the profile information of the logged-in user and will
store it in the $me variable.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

36

There's more...
The Facebook objects are inter-connected to each other by connections. With every Graph
API object you will have some connections. Connections are also objects that are somehow
related to the current object under introspection. It is just a bridge between one object and
another and tells us how any two given objects are related to each other.

To retrieve all objects which are related to an object with a
particular connection, we just need to make a GET request
to the following URL—https://graph.faceboook.
com/[object_id]/[connection_type].

For example, if you want to get the books listed on the user's profile, you need to make a GET
request to the following URL—https://graph.facebook.com/me/books. However, we
should also keep in mind that in order to retrieve connected objects, we require appropriate
permissions. In this case, we need to have the user_likes or friends_likes permission
for retrieving the list.

Liking a post
Facebook Graph API allows us to programmatically like any given post item for a particular
user. This enables us to take a decision on behalf of the user, thereby providing a better
user experience.

Getting ready
Before we begin, you should have registered your application and set up config.php. You
should know the ID of the post item that you want to like on behalf of the user. Also, you need
to make sure that the user has given the publish_stream permission to the application.

How to do it...
In order to easily demonstrate the task, we will take up the most recent item from the current
user's feed and like it. For a better understanding, the code to retrieve the ID of the first feed
item is shown in a separate function getFirstPostId() in the following code snippet:

1.	 Open index.php and append the following lines to the already existing code:
<?php

2.	 Get the ID of the first post in the user's feed:
 function getFirstPostId($feeds) {
 return $feeds['data'][0]['id'];

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

37

 }

 //The id of the post to like
 $id = getFirstPostId($facebook->api('/me/posts'));

3.	 Make a POST request using the api() function:
$like_id = $facebook->api('/'.$id.'/likes', 'POST');
?>

4.	 Upload this edited file to the server in the directory where you have hosted your
Facebook application.

5.	 Now go to the following URL—http://apps.facebook.com/[your_canvas_
name]/. The first post of your feed will be automatically liked by you as shown in the
following screenshot:

How it works...
In index.php, we have first defined a function named getFirstPostId(). As its name
suggests, it returns the ID of the post item from the user's feed. The user's feed is retrieved
by making a GET request to https//graph.facebook.com/me/posts. Once we have the
post ID, we make a POST request to the following URL—https://graph.facebook.com/
[post_id]/likes. To do so, we use the api() function of the Facebook class.

Once the Facebook successfully executes the like request, it returns the ID of the newly
created like object back to us, which we can store in our database for future reference. Here,
this newly generated object's ID is stored in the variable $like_id.

There's more...
If we are using our Facebook application to like a particular object, then a possibility to
unlike it at a later stage is always there. For this, we should store the returned like ID in our
database. This will enable us to provide our users with the option to "dislike" the already liked
posts if they are not happy with it or they change their mind.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.allitebooks.com

http://www.allitebooks.org

Be a part of Social Graph

38

Deleting a like
To delete a particular like, we need to issue a DELETE request to the URL of the form—https:
//graph.facebook.com/[LIKE_ID], where [LIKE_ID] is the ID of the like that has to
be deleted. You can delete a like as shown in the following code snippet:

$facebook->api('/'.$id, 'DELETE');
/* $id is the id of the like to be disliked */

Commenting on a given post
In Facebook, comments make it easier for us to communicate, share, and discuss ideas
with our friends. It allows us to post our opinions in the form of comments on every post
of our friends.

Getting ready
You should have set up config.php and index.php as explained in the beginning of the
chapter. The user must have granted publish_stream permission to your application. Also, you
should know the ID of the post on which you want to comment.

How to do it...
The following steps will demonstrate how to add a comment

1.	 Create a new file named action_comment.php and add the following code to it:
<?php

2.	 Include the configuration file:
 require_once 'config.php';

3.	 Enter the Post ID on which you want to comment on:
 $post_id='[your_post_id]';

4.	 Get the comment from POST array:
 $message = $_POST['message']);

5.	 Post the message by using the api() function:
 $comment_id = $facebook->api('/'.$post_id.'/comments','POST',
 array('message' => $message,));
?>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

39

6.	 Now append the following code in the main application file (index.php). We will use
AJAX to post to action_comment.php for creating a new comment:
<script type="text/javascript"

7.	 Include JQuery library using Google CDN:
 src="https://ajax.googleapis.com/ajax/libs/jquery/
 1.5.0/jquery.min.js"></script>

8.	 Create a text area and button to get the comment:
<textarea id="txtcomment">the comment to be posted</textarea>

<input type="button" id="comment" value="click to post comment" />

<script type="text/javascript">

9.	 Use the ready() function to add the jQuery event:
 $(document).ready(function() {

 $('#comment').click(function() {
 $.post("action_comment.php",
 {message:$('#txtcomment').val()});
 });

 });
</script>

10.	 Now when you will run index.php, you will see a textbox as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

40

11.	 And once you have clicked on the Post Comment button, the comment will be
successfully published on the specified post.

How it works...
In order to post a comment on a particular post, we need to make a POST request to the URL
of the form—https://graph.facebook.com/[POST_ID]/comments, where [POST_ID]
is the ID of the post on which we want to comment. This post request should include message
as a query parameter. The value of the message parameter is the comment which we want to
make on the post.

The index.php has a textbox and button with IDs txtcomment and comment respectively.
We use jQuery to bind the click event of the button. When a user clicks on this button, after
typing in his comment in the textbox, we make an AJAX request to action_comment.php.
We post the text typed by the user in the textbox with the help of the $.post() function. The
first argument of the function is the name of the file to which the request has to be made
and the second argument is the data to be posted in the JSON format. We retrieve the text
typed by the user by using the code—$('#txtcomment').val() and then we post it to
action_comment.php.

In action_comment.php, this posted message is retreived as as $_POST['message'].
Here $post_id is the ID of the post on which we want to comment. Next, we use api()
of the Facebook class to make a POST request along with the user's message. This finally
posts the comment.

There's more...
When a comment is successfully posted, the ID of the newly created comment is returned.
In the above code, this ID is stored in $comment_id. We can store this comment ID in a
database for future reference.

Deleting a comment
We can delete a comment on a particular post on behalf of the user. We should know the ID of
the comment which we want to delete. Once we know this, we can make a DELETE request as
shown in the following code snippet:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

41

$delete = $facebook->api('/'.$comment_id.'', 'DELETE');
/* The comment will be deleted.*/

If the comment is deleted successfully, then 1 will be returned as the response from the
server and stored in $delete.

Setting status message
Facebook Graph API enables us to set a new status update for the user on his/her behalf.
This status update is immediately reflected in the user's feed, thereby improving the popularity
of our application.

Getting ready
For setting a new status message, we should have the publish_stream permission. This
extended permission can be requested from the user when he first visits the application. Also,
you should have set up config.php and acquired a valid session for the current user.

How to do it...
The following steps will show how to set a status message:

1.	 Open index.php of the application and append the following code to it:
<html>
 <body>
 <?php

2.	 Store the status message in a variable:
 $message = 'message we want to set as status update';

3.	 Post the status message by using the api() function:
 $status_id = $facebook->api('/me/feed', 'POST',
 array('message' => $message));
 ?>
 </body>
</html>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

42

4.	 Now, if you will run the Facebook application, you will see that the value of $message
is set as the status message of the current user. The following screenshot explains
what it will look like:

How it works...
First, we store the status message we want to set in the $message variable. Next, we set the
status message by using the api() function of the Facebook class. The api() function takes
the following three arguments:

ff The first argument is concatenated to https://graph.facebook.com to form
a complete URL to which a request has to be made. Here, our argument is /me/
feed and it is appended to https://graph.facebook.com. So the complete URL
becomes https://graph.facebook.com/me/feed.

ff The second argument is a type of request that should be made. Here, POST is
mentioned because we need to make a POST request to set a status message for
the current user.

ff The third argument is an array which contains the parameters that we want to set.
These parameters are then appended to the URL formed as a result of the first
argument. Here, the parameter message specifies the message that we want to set
as the status of the user.

Once the status message is set successfully, the server returns the ID of the newly set status,
and this is stored in $status_id.

There's more...
If we want to post something else, along with the status message, then we can do so by
adding more parameters to the array, which is the third argument of the api() function.
For example, if we want to display a link along with the status message, we need to add the
following index into the array 'link' => 'http://link.to.something'. Thus, the code
will now become:

$status_id = $facebook->api('/me/feed ', 'POST ',
 array('message ' => 'message we want to post ',
 'link' => 'http://link.to.something'));

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

43

This will display the status message along with the link we have mentioned. For a
complete list of arguments, visit this URL—http://developers.facebook.com
/docs/reference/api/post.

Deleting a picture, post, or comment
of a user

Sometimes we may want to delete a picture, post, or comment that has got posted by
mistake or contains some unwanted content. Facebook Graph API allows this to be
done programmatically.

Getting ready
You should have setup config.php and index.php as discussed in the beginning of the
chapter. Also, you should know the ID of the object (picture, comment, and so on), which you
want to delete.

How to do it...
The following steps will show how to delete content added by a user:

1.	 Open index.php and append the following code to the already existing code
of the file:
<html>
 <body>
 <?php

2.	 Enter the object ID which you want to delete:
 $id='[custom_object_id]';

3.	 Send the DELETE request using the api() function:
 $delete = $facebook->api('/'.$id, 'DELETE');
 ?>
 </body>
</html>

How it works...
For deleting any post, we need to make a DELETE request to Facebook. Here, once we
know the ID of the object which has to be deleted, we make a call to the URL of the
form – https://graph.facebook.com/[custom_object_id] and issue a DELETE
request. This has been done by passing them as parameters in the facebook->api()
function through the following line of code:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

44

$delete = $facebook->api('/'.$id, 'DELETE');

Replace [custom_post_id] with the ID of the post you want to delete.

Retrieving the current user's friendlist
Facebook allows its users to create and manage custom friendlists. This gives the users
the option to classify their friends on some basis. We can create a friendlist of our choice
and name it accordingly. For example, we can differentiate between our business and social
contacts by creating two different friendlists for them. To get access to the friendlist of a user
is in many ways important for an application. It allows us to publish and send notifications to
only specific contacts of the user.

Getting ready
You should have set up config.php and index.php as explained in the beginning of the
chapter. Moreover, the application must have requested read_friendlists permission from the
user. Without this, the friendlist of the current user can't be retrieved.

How to do it...
Facebook Graph API provides us with a URL-based interface for retrieving information:

1.	 Open index.php and append the following PHP code:
<?php

2.	 Access the user's friendlist using the api() function and print it:

 $friendlists = $facebook->api('/me/friendlists');
 print_r($friendlists);
?>

This will display all the friendlists of the current user in array format along with the list ID
and name. For a user who has two friendlists, such as school friends and best buddies,
the output could be something as follows:

Array ([data] => Array ([0] =>
 Array ([id] => 10150102062889898
 [name] => school friends)
 [1] => Array ([id] =>
 10150101962859898
 [name] => best buddies)
)
)

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

45

We can use the friendlist ID from the above array to retrieve all the friends belonging to a
particular friendlist.

How it works...
$facebook is an object of the Facebook class declared in config.php. We use the api()
to make a GET request to the URL—https://graph.facebook.com/me/friendlists
and we store the returned data in the variable named $friendlists. The returned data
from the server is in JSON format, which is automatically converted to PHP array by the api()
function. Thus, $friendlists will now contain all the friendlists, along with their IDs and
names, of the current user.

There's more...
Apart from getting the friendlist of the current user, we may at times want to perform some
other operations on friendlists, such as getting its members, deleting it, and so on. We will
show you how to perform some of these operations now.

Getting a friendlist's members
If we know the friendlist's name, then we can easily get its corresponding ID from the
$friendlists PHP array. Once we know the ID of the friendlist, it becomes very easy to
get its members. To get the members of a particular friendlist, copy the following code in
index.php and run it:

<?php
 $friendlist_id = 'xyz'; //Your friendlist id
 $friendlist = $facebook->api('/' . $friendlist_id.
 '/members');
 print_r($friendlist);
?>

We will have to replace friendlist_id with a valid friendlist ID. Here, $friendlist is a
PHP array and it contains the list of all members.

Creating a new friendlist
We need to have manage_friendlists permission for creating a new friendlist. We can
create a new friendlist by adding the following snippets of code:

<?php
 $create = $facebook->api
 ('/me/friendlists?name=childhoodfriends', 'POST');
?>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

46

Here, we have created a new friendlist with the name childhoodfriends. For this, we issue
a POST method to the following URL—https://graph.facebook.com/[User ID]/frien
dlists?name=[FriendListName].

Adding a new member to a friendlist
To add members to a friendlist, we need to issue a POST request to the following URL—
https://graph.facebook.com/[FriendList_ID]/members/[USER_ID]. See
the following code:

<?php
 $add = $facebook->api('/me/'.$friendlist_id.
 '/members/'.$user_id, 'POST');
?>

Deleting a friendlist
To delete a friendlist, all that needs to be done is to issue a DELETE request to the URL
https://graph.facebook.com/[FriendList_ID]. The following code will let
you do so:

<?php
 $delete = $facebook->api('/me/'.$friendlist_id, 'DELETE');
?>

Again, we need to make sure that we have the manage_friendlists permission.

Creating a post on the wall of a user's friend
Many a time, we need to post on the wall of a user's friend to either update them with the
latest development or inform them about what their other friends have been doing. For
example, in a quiz application, we may need to tell the friends what the user has answered
about them. The best way to go about this is to post on their wall. This, in turn, gets reflected
in their feed, thereby increasing the popularity of the application.

Getting ready
To create a post on the wall of a user's friend, first we need to make sure that our application
has acquired publish_stream permission from the current user. Once this permission is given
by the user, then we can post on the wall of any user's friend. The important thing to note here
is that it is not necessary that the user's friend may have given us the required permission or
even added our application. When a user gives an application publish_stream permission, it
means it is authorizing the application to make a post on his/her friend's walls too.

Additionally, you must have created index.php and config.php as explained in the section
at the beginning of this chapter.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

47

How to do it...
The following steps will demonstrate how to create a poste on a friend's wall:

1.	 Open index.php and append the following code to the already existing content:
<html>
 <body>
 <?php

2.	 Create a function to get the Friend ID:
 function getFriendId($name, $friends) {
 foreach($friends['data'] as $friend) {
 if(strcasecmp($name,$friend['name'])==0)
 return $friend['id'];
 }
 return NULL;
 }

3.	 Make a call to the friend's connection object using the api() function:
 $friends = $facebook->api('/me/friends');

4.	 Make a call to the getFriendId() function and store the friend's ID:
 $id = getFriendId('[Friend_Name]',$friends);

5.	 Post the message using the api() function:
 $post_id = $facebook->api('/'.$id.'/feed', 'POST',
 array('message' => 'This post has been made on a
 friend\'s wall',));
 ?>
 </body>
</html>

6.	 If we will now execute index.php, then a message will be posted on the wall of the
current user's friend, whose name is [Friend_Name]. The following screenshot
shows what the message on a friend's wall looks like:

How it works...
For demonstration purposes, we have created a function named getFriendId() which
gives the ID of a user corresponding to his/her name from the list of the current user's friends.
Initially, we get this list of friends by calling the $facebook->api() function. It gets the list
of the current user's friends from this URL—https://graph.facebook.com/me/friends.
We save the response in $friends, which is a PHP array.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.allitebooks.com

http://www.allitebooks.org

Be a part of Social Graph

48

Then, we call the getFriendId() function and retrieve the ID of the user with the name
[Friend_Name]. Once we have the ID of the user's friend, we can post to his/her wall by
using the $facebook->api() function, which takes in three parameters. The first is the
URL to which we make a request; second is the type of the request and third is an array which
contains certain properties in the index such as value format. Here, we make a POST request
to the feed of the user's friend. The value of the message array index becomes the actual
content which is posted on the wall of the user's friend.

There's more...
Although the earlier mentioned code snippet will post on to a user's wall, in practice we may
want to perform this post action dynamically, that is, when a user performs some action, then
as a result we post to his/her friend's wall. To do so, we place the PHP post code in a separate
file named action_post.php; when we want to make a POST request on the wall of the
user's friend, as a result of some action taken by him/her, then we issue an AJAX call through
jQuery to action_post.php:

1.	 Add the following lines of code to action_post.php:
<?php
 //Code for action_post.php

2.	 Include the configuration file:
 require_once('config.php');

3.	 Check if POST data is available, and then post the message using the api() function:
 if($_POST['message']) {
 $status = $facebook->api('/me/feed', 'POST',
 array('message' => $_POST['message'],));
 }
?>

4.	 Next, add the following code to index.php after the code given in the beginning
of the chapter:
<html>
 <head>
 <script type="text/javascript"

5.	 Include the jQuery library using the Google CDN:
 src="https://ajax.googleapis.com/ajax/libs/jquery/
 1.5.0/jquery.min.js"></script>

6.	 Use the ready() function to add the jQuery click event:
 <script type="text/javascript">
 $(document).ready(function() {

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

49

 $('#post').click(function() {
 $.post("action_post.php",
 {message: "Facebooking can be fun! :-)"});
 });
 });
 </script>
 </head>
 <body>

7.	 Create a div on which we will use jQuery's click() event:

 <div id='post'>Post something on my friend's wall!</div>
 </body>
</html>

In index.php, we have used jQuery's click() event for div, which has post ID , to make
an AJAX call to action_post.php. This call is made by the $.post() function. The first
argument is the URL to which the request is made and the second argument is the data which
is posted. This data is in JSON format.

Posting a picture to a specific album
of the user

Using Facebook Graph API, we can programmatically post a picture to any album of the user.
We can use this to create images and post them on behalf of the user.

Getting ready
You should have the album ID to which you want to post the picture. Additionally, you must
have created config.php and index.php as explained in the beginning of this chapter.
Also, the application needs to have the publish_stream permission for posting the picture.

How to do it...
We can upload a picture to an album by following these steps:

1.	 Create a new file and name it as action_postpic.php. Add the code given below
to this file:
<?php

2.	 Include the configuration file:
 require_once 'config.php';

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

50

3.	 Use the realpath() function to return the canonicalized absolute pathname of the
location of the picture:
 $pic = realpath("/home/server_name/path/to/picture.jpg");

4.	 Enter the album ID:
 $album_id='[custom_album_id]';

5.	 Enable the file upload to the Facebook server using the setFileUploadSupport()
function:
 $facebook->setFileUploadSupport("http://" .
 $_SERVER['SERVER_NAME']);

6.	 Get the message to be posted along with the picture and post the picture by using
the api() function:
 $message = ($_POST['message'])?$_POST['message']:
 'This picture looks awesome';
 $pic_id = $facebook->api('/'.$album_id.'/photos', 'POST',
 array('message' => $message ,'source' => '@' . $pic,));
?>

7.	 Next, we append the following code to our main application file (index.php), which
will use jQuery to call action_postpic.php:
<!doctype html>

8.	 Extend the current XML notations to FBML to enable Facebook tags to be used
in the application:
<html xmlns:fb="http://www.facebook.com/2008/fbml">
 <head>
 <script type="text/javascript"

9.	 Include jQuery library using the Google CDN:
 src="https://ajax.googleapis.com/ajax/libs/jquery/
 1.5.0/jquery.min.js"></script>
 </head>
 <body>

10.	 Create a text area for the picture description and a button to post the picture:
 <textarea id="pictext">description of the pic</textarea>

 <input type="button" id="postpic" value="Post Picture" />

 <script type="text/javascript">

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

51

11.	 Use the ready() function to add the jQuery click event:
 $(document).ready(function() {
 $('#postpic').click(function() {
 $.post("action_postpic.php",
 {message: $('#pictext').val()});
 });
 });
 </script>
 </body>
</html>

12.	 Now, upload both the files to the server. Once we run index.php, a textbox asking
for the image description will get displayed as shown in the following screenshot:

If a user clicks on the Post Picture button, then the picture, which is present at home/
server_name/path/to/picture.jpg on the server, will be posted to the user's album.

The picture will be published in the album with ID [custom_album_id]. The following
screenshot shows of a sample picture after it has been published:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

52

If you are not dynamically creating the picture, which has to
be posted to Facebook for the user, then you need to employ a
suitable picture upload mechanism in order to upload pictures
from the user's local computer to your server. Only then you will
be able to post that picture to Facebook on behalf of the user.

How it works...
In index.php, we have a text area with pictext ID, which gives the user an option to
provide the description of the picture being uploaded. This text will appear along with the
picture when it gets posted.

Next, we use jQuery to bind a function to the click event of the postpic button. We use
the $.post() function to make a POST request to action_postpic.php. Here, we have
passed two arguments to the $.post() function. The first one specifies the URL to which the
request is made and the second one specifies the JSON data to be posted. The JSON data
contains an index named message. Its value is the description of the picture, which will be
posted, and will appear along with it.

Now, let us have as look as how the picture gets posted to an existing album. This has been
done in action_postpic.php. First, we need to specify the path of the image which we
want to post. Usually, this path would be of our server where the picture resides. Next, we
have the following line of code:

$pic = realpath("/home/server_name/path/to/picture.jpg ");

This realpath() function removes all symbolic links (such as '/./', '/../', and extra
'/') and returns the absolute pathname which is stored in $pic. Once we have the picture
path, the next step is to upload this picture to Facebook. For this, we need to enable the file
upload, which is disabled by default. This is done by this line of code:

$facebook->setFileUploadSupport("http://" . $_SERVER
 ['SERVER_NAME']);

The setFileUploadSupport actually takes in the server name as the parameter and
makes Facebook ready to allow file uploads.

Now, the final step is to make a POST request through Facebook Graph API. For posting a
picture to an existing album, we need to make a call with the POST method to the following
URL type—http://graph.facebook.com/ALBUM_ID/photos. Assuming that we already
know the album ID where we want the picture to be uploaded to, we make a POST request
with the following line of code:

$pic_id = $facebook->api('/'.$album_id.'/photos', 'POST',
 array('message' => $message ,'source' => '@' . $pic,));

Here, we use the $facebook->api() function to post picture to the Facebook . It has the
following three arguments:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

53

ff The first argument is the URL to which the POST request has to be made.
https://graph.facebook.com is automatically prefixed to this argument.

ff The second argument is the type of request to make. Here, we need to make the
POST type request.

ff The third request is an array which passes additional options. Here the array has
two indexes—message and source. The value of the message becomes the picture
description after it has been posted. The source contains the picture that has to be
uploaded or posted. An important thing to note here is that @ before the path of the
image. This is here to indicate that we want to post the "contents" of the file and not
pass the file name as a string to the source.

After the picture is successfully posted, $pic_id contains the ID of the newly created picture.
We can save this picture ID along with the user ID in our database for future reference.

There's more...
In case we do not know any album ID and still we want to upload the picture, then
we can do so by posting the picture to https://graph.facebook.com/me/photos.
Facebook automatically creates a new album with your application name and uploads
the picture there. To do so, you need to change only the following portion of the code in
action_postpic.php:

$pic_id = $facebook->api('/me/photos', 'POST',
 array('message' => $message ,'source' => '@' . $pic,));

The rest of the code will remain the same.

Retrieving the names of the user's friends
who have liked a particular status message

Sometimes we may want to retrieve details of the people who have liked a particular status of
a user. This can be used to get the top followers of a user based on these interactions.

Getting ready
We should have created config.php and index.php as explained in the beginning of
this chapter. Also, we need to have the ID of the status message on which we want to
perform this operation.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

54

How to do it...
The following steps will retreive the names of the user's friends who have liked a particular
status message:

1.	 To retrieve the likes of a particular status message, we need to add the following
code to the already existing code in index.php, which has been discussed in the
beginning of the chapter:
<html>
 <body>
 <?php

2.	 Enter the status message ID and get the likes using the api() function:
 $status_id='[custom_status_id]'; //Your status id here
 $get_likes = $facebook->api('/' . $status_id . '/likes');

3.	 Print the name of the users who have liked the status message:
 foreach ($get_likes['data'] as $user) {
 echo $user['name'] . '
';
 }
 ?>
 </body>
</html>

4.	 Now, if you will run index.php it will list the names of all the users who have liked
the status message whose ID is [custom_status_id] and will look something
similar to the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

55

How it works...
To retrieve the names of the users who have liked a particular status, we have used the
api() function of the Facebook Graph API. Here, we have made a GET request to https://
graph.facebook.com/STATUS_ID/likes through the $facebook->api() function.
Facebook returns a JSON array containing a list of users who have liked that particular status
message along with their respective user ID and name. This is automatically converted to a
corresponding PHP array by the api() function and stored in $get_likes.

Next, we have used a foreach loop of PHP to print the names of the users who have liked
that particular status message. Once we have the user names along with IDs, we can use this
data to determine the people who are most involved with the user.

Creating an event
Facebook events allow us to let other people know about the upcoming events. These can
be used to organize gatherings, parties with your friends, send an invite for an occasion,
and make last minute plans. We can create an event, attend a previously created event, or
decline the invitation. Using Facebook Graph API, we can easily create new events through our
application for the user.

Getting ready
Creation of an event requires the create_event permission. Also, you should have created
index.php and config.php as explained in the beginning of this chapter.

How to do it...
The following steps will show how to create an event:

1.	 Open index.php and append the following code to the file:
<html>
 <body>
 <?php

2.	 Post the event information using the api() function:
 $event = $facebook->api('/me/events', 'POST',
 array('name' => 'This is a new event',
 'start_time' => '2011-04-01T14:00:00+0000',
 'end_time' => '2011-04-02T14:00:00+0000'));
 ?>
 </body>
</html>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

56

3.	 Now run index.php. The event with the specified date, start_time, and end_
time will be created. A sample screenshot is as follows:

An important thing to note here is that the event's start_
time and end_time should be in ISO-8601 formatted date/
time or UNIX timestamp. Moreover, if it contains a time zone,
which is not recommended, it is converted to Pacific Time
before being stored and displayed.

How it works...
To create a new event, we have to use the $facebook->api() function. It takes in the
following three parameters:

ff The first is the URL to which the request has to be made. For creation of an
event, we need to make a POST request to the connection object /me/events.
https://graph.facebook.com automatically gets prefixed to this, so the
complete URL becomes—https://graph.facebook.com/me/events.

ff The second is the type of request we want to make, which in our case is the
POST request.

ff The third is an array in which we pass the additional properties such as details of the
event, its start time, and end time. name field is used to specify the title of the event
while the start_time and end_time refer to the respective times when the event
will start and end.

More parameters can also be added to the array to specify additional information about the
event such as location, venue, and so on. A complete list of such parameters can be
viewed from the events table provided at http://developers.facebook.com/docs/
reference/api/event/.

An important thing to note here is that in the array where we
pass information of the event, at least two parameters, that
is, event's title and start_time are necessary. If we remove
any of these, then the event will not get created.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

57

There's more...
Apart from creating an event, we may at times want to perform some other operations
on the event object, such as deleting it. The process to delete an already created event
programmatically is explained in the next section.

Deleting an event
To delete an event, all that needs to be done is to issue a DELETE request to the URL of the
form—https://graph.facebook.com/[Event_ID]. This is how it would be done:

<?php
 $event_id = '[event_id_to_be_deleted]';
 $delete = $facebook->api('/me/'.$event_id, 'DELETE');
?>

Moreover, a Facebook event object has a lot of connection objects associated with it. Using
these objects we can easily know the statistics of the event created by us, such as the number
of people attending, event's profile picture, and so on.

Paging through a user's friends
For certain Facebook applications, paging through data is a very important concept and
comes in a lot handier than other features. For example, if we have an application where
we require only a certain number of names of the user's friends to get displayed at a time,
then we need to have a method to access the next page and set limits to the number of data
objects that can be displayed at a time. This is when paging comes into picture.

Getting ready
You should have created index.php and config.php as explained in the beginning of
this chapter.

How to do it...
The following steps will demonstrate paging through a user's friends:

1.	 Create a new file and name it as action_paging.php and save it inside the
Facebook application directory. Next copy the following code in it:
<?php

2.	 Include the configuration file:
 require_once('config.php');

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.allitebooks.com

http://www.allitebooks.org

Be a part of Social Graph

58

3.	 Get the offset value and set the limit of the content to be displayed per page:
 $offset = ($_GET['offset'])?$_GET['offset']:0;
 $limit = 100;
 $friends = $facebook->api('/me/friends?offset=' .
 $offset . '&limit=' . $limit);
 print_r($friends);

4.	 Create a hyperlink for the previous page:
 if($friends['paging']['previous']) {
 echo '
<a target="_top" href="http://apps.facebook.com/
 [your_application_url]/action_paging.php?offset=' .
 ($offset-$limit) . '">Previous';
 }

5.	 Create a hyperlink for the next page:
 if($friends['paging']['next']) {
 echo ' <a target="_top" href="http://apps.facebook.com/
 [your_application_url]/action_paging.php?offset=
 '.($offset+$limit).'">Next';
 }
?>

6.	 Make sure to replace [your_application_url] with the appropriate canvas
name of your application. To execute this code snippet, go to http://apps.
facebook.com/[your_application_url]/action.paging.php after
uploading the file to the server.

How it works...
While accessing Graph API data through the URL, we can add some additional parameters
which can control the total size of the data on a single page and its chronological order. We
have used the limit and offset parameters here to display certain numbers of user's
friends at a time and page through the complete data set.

We pass the offset parameter through the GET request to the action_paging.php. If the
offset parameter has not been set, then we initialize the $offset variable to 0. We do
this by the following line of code:

$offset = ($_GET['offset'])?$_GET['offset']:0;

The limit parameter is used to limit the number of results displayed on a single page.
So, with the combination of offset and limit parameters we can page through the
complete data set displaying certain limited set of data at a time. To create the next and
previous hyperlinks, we add or subtract the $limit variable to the $offset variable
respectively and set this value as the offset parameter along with default URL. The following
lines of code do this:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

59

//Hyperlink code for Previous Link
echo '
<a target="_top" href="http://apps.facebook.com/
 [your_application_url]/action_paging.php?offset=' .
 ($offset-$limit) . '">Previous';
//Hyperlink code for Next Link
echo ' <a target="_top" href="http://apps.facebook.com/
 [your_application_url]/action_paging.php?offset=
 '.($offset+$limit).'">Next';

There's more...
We can also use some other parameters apart from offset and limit. These are until
and since. The value of these parameters should be a UNIX timestamp or any date accepted
by strtotime. For example, check out the following URLs:

ff https://graph.facebook.com/search?until=yesterday&q=orange

ff https://graph.facebook.com/search?until=1299070237&q=orange

The first URL will retrieve all the results until yesterday and the second URL will fetch all the
data prior to the UNIX timestamp 1299070237.

Searching through a user's feed
Facebook enables you to search through a user's feed. We can query for a particular term in
the user's feed.

Getting ready
You should have created index.php and config.php as explained in the beginning
of this chapter.

How to do it...
The following steps will demonstrate how to search through a user's feeds

1.	 Create a file named action_search.php and add the following code to it:
<html>
 <body>
 <?php

2.	 Include the configuration file:
 require_once 'config.php';

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

60

3.	 Enter the search term and search through the user's feeds using the api() function:
 $search_term = 'facebook';
 $results = $facebook->api('me/feed?q='.$search_term);

4.	 Display the messages in which the search term is present:
 foreach ($results['data'] as $result)
 echo $result['message'] . '
';
 ?>
 </body>
</html>

5.	 Upload the file to the application directory and go to http://apps.facebook.
com/[your_application_url]/action_search.php. Here, replace
[your_application_url] with the appropriate canvas name of your application.

How it works...
To search for a particular term in the user's feed, we make a GET request to the URL—https:
//graph.facebook.com/me/feed along with a query parameter q. This parameter is used
to specify our search term. Facebook automatically searches the user's feed according to
this term and returns the result in JSON format. In action_search.php, we have used the
api() function to make the GET request after adding the q query parameter to the URL. This
is done by the following line of code:

$results = $facebook->api('me/feed?q='.$search_term);

The data returned is stored in the $results array. Next, we print the individual messages
from the returned array using the foreach loop.

Tagging users in a picture
Tagging is used to identify different people present in a picture. It is an effective way to
notify and involve user's friends while posting a picture, thereby increasing popularity of your
application. For applications such as Polaroid, Best Friends, and so on, it becomes imperative
to tag user's friends in the picture.

Getting ready
You should have created config.php and index.php as explained in the beginning of
this chapter. You should know the IDs of the users you want to tag in a picture. Generally,
an application dynamically creates a picture and then tags various users in it. If it is not the
case, then you need to implement a suitable upload mechanism and should know the path
where you have uploaded and saved the picture, which you want to post on behalf of the
current user. Additionally, you need publish_stream permission for successfully publishing
the picture.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

61

How to do it...
The following steps will demonstrate how to tag users in a picture:

1.	 Open index.php and append the following code to the bottom of the file:
<?php

2.	 Include the configuration file:
 require_once 'config.php';

3.	 Use the realpath() function to return the canonicalized absolute pathname of the
location of the picture:
 $pic_path = realpath("/home/server_name/public_html/
 path/to/picture.jpg");

4.	 Enter the album ID and enable the file upload to the Facebook server using
setFileUploadSupport() function:
 $album_id='[custom_album_id]';
 $facebook->setFileUploadSupport("http://" .
 $_SERVER['SERVER_NAME']);
 $message = 'This picture looks awesome!';

5.	 Mention the ID of the people to be tagged, and the location of the tag box, and store
it in the $tags array:
 $tags[] = array(
 'tag_uid' => $facebook->getUser(), /*Current user's id*/
 'x' => 0,'y' => 0
);
 $tags[] = array(
 'tag_uid' => 7000678, /*Id of another user to be tagged */
 'x' => 0,'y' => 0
);

6.	 Publish the picture along with the tagged users using the api() function:
 $pic_id = $facebook->api('/'.$album_id.'/photos',
 'POST', array('message' => $message, 'source' =>
 '@' . $pic_path, 'tags' => $tags,));
?>

7.	 Now, if we run index.php we will find that the current user gets tagged in the
picture. The following screenshot is a sample snapshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

62

How it works...
For tagging a particular user in a picture, first we need to successfully publish the picture from
our server to the desired album where we want this picture to be. We first get the absolute
path of the picture on our server by using the realpath() function. You should know the
path where the picture is present on your server. Usually, you would be creating the picture
dynamically by using PHP GD library. Next, we enable the upload and make the Facebook
server ready to handle picture uploads. This has been done by the following line of code:

$facebook->setFileUploadSupport("http://" .
 $_SERVER['SERVER_NAME']);

Now, for tagging the users, we create an array named $tags. This array contains sub-arrays
where each array carries the tag information for a particular user. This sub-array consists of
three indices as listed below:

ff tag_uid: It represents the ID of the user whom we want to tag in the picture

ff x: It represents the percentage from the left edge of the photo and decides the
position of the tag box

ff y: It represents the percentage from the top edge of the tag box and decides the
position of the tag box

So the complete code will look as the following:

$tags[] = array('tag_uid' => $facebook->getUser(),
 'x' => 0,'y' => 0
);

Once we have defined this array and included all the users whom we want to tag, we simply
pass it as an additional argument in the array parameter of the $facebook-api() function
while publishing the picture through the following piece of code:

$pic_id = $facebook->api('/'.$album_id.'/photos',
 'POST', array('message' => $message ,'source' =>
 '@' . $pic, 'tags' => $tags,));

All the users that have been specified in the $tags array will get tagged in the picture that has
been published.

See also
ff For more details on how to upload a picture to a specific album, you should refer to

the Posting a picture to a specific album of the user recipe in this chapter.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

63

Adding a subscription for real time
updates related to a user object

Facebook allows us to subscribe to real time updates for certain objects. This way we don't
need to poll the Facebook servers continually for detecting updates in user data. It saves a lot
of processing time and resources. There are various objects to which we can subscribe:

ff user: Using Facebook user object, we can get notifications when certain properties
and fields of the user change. For example, we can subscribe to a change in a user's
e-mail ID, photos, activities, interests, and so on.

ff permissions: Sometimes a user may change certain permissions which have been
granted to our application. To get notified of a change in permission levels, we can
subscribe to the permission object.

ff page: A page, which has installed our application, at times may change its
public properties. We can subscribe to the page object to get notifications for
these changes.

For each object you can subscribe to some of its properties. Here we will subscribe to the feed
and friends properties of the object user.

Getting ready
You should have registered your application and should have created config.php as
explained in the beginning of this chapter.

How to do it...
We will create a PHP code snippet and use it to post our subscription request to the
Facebook server.

1.	 Create a file named action_subscribe.php and add the following code to it:
<?php

2.	 Include the configuration file:
 require_once 'config.php';

3.	 Specify the arguments needed to post to the authorization URL in the $args array:
 $args = array('grant_type' => 'client_credentials',
 'client_id' => $facebook->getAppId(),
 'client_secret' => $facebook->getApiSecret());

4.	 Initialize cURL using the curl_init() function:
 $ch = curl_init();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

64

5.	 Set the authorization URL by using the curl_setopt() function:
 $url = 'https://graph.facebook.com/oauth/access_token';
 curl_setopt($ch, CURLOPT_URL, $url);

6.	 Set the POST and RETURNTRANSFER method and POSTFIELDS using the curl_
setopt() function:
 curl_setopt($ch, CURLOPT_HEADER, false);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($ch, CURLOPT_POST, true);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $args);

7.	 Use the curl_exec() function to execute the POST request and explode()
function to extract the access token:
 $access_token = explode("=", curl_exec($ch));
 curl_close($ch);
 $access_token = $access_token[1];

8.	 POST the subscription request using the api() function:
 $info = $facebook->api('/' . $facebook->getAppId()
 .'/subscriptions', 'POST', array('access_token' =>
 $access_token, 'object' => 'user', 'callback_url' =>
 'http://www.yoursite.co.in/app/action_callback.php',
 'fields' => 'feed, friends', 'verify_token' =>
 'your_secret_verify _token',));
?>

9.	 Now run this file.

How it works...
For making a subscription request, we first need to get an OAuth access token on behalf of
the application. To do so, we need to make a POST request to the following URL—https://
graph.facebook.com/oauth/access_token. We use PHP CURL library functions to
assist us. We first use curl_init() which initializes and returns a cURL handle.

Next, we set certain options for configuring the request before executing it. We have
configured the following attributes by using the curl_setopt() function:

ff CURLOPT_HEADER: It determines whether or not to include the header in the output

ff CURLOPT_RETURNTRANSFER: It determines whether or not to return the transfer as
a string of the return value of curl_exec() instead of outputting it out directly

ff CURLOPT_POST: It determines whether or not to make a normal HTTP POST request

ff CURLOPT_POSTFIELDS: It contains the data to post when making a POST request

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

65

After this, we use curl_exec() to finally make the POST request and we store the result
in $access_token, after using the explode() function on the returned result. We
have used the explode() function because the data returned is something like access_
token=XXXXXXX and we have to extract the value of the access token. Once we have the
access token we make a POST request using the api() function as follows:

$info = $facebook->api('/' . $facebook->getAppId()
 .'/subscriptions', 'POST', array('access_token' =>
 $access_token, 'object' => 'user', 'callback_url' =>
 'http://www.yoursite.co.in/app/action_callback.php',
 'fields' => 'feed, friends', 'verify_token' =>
 'your_secret_verify _token',));

We make a POST request to the URL of the form—https://graph.facebook.com/
[app_id]/subscriptions. The third argument of this function contains an array, which
is used to configure the subscription we want to make. It has the following attributes:

ff access_token: This contains the access token obtained for the application

This token is different from the access token requested
on behalf of a user for getting a valid session.

ff object: It determines what type of object we want to subscribe to

ff callback_url: It is the URL to which Facebook will post notifications

ff fields: These contain the list of the fields, separated by a comma, to which you
want to subscribe to but not all fields can be subscribed to

ff verify_token: This is the secret token which is used in callback_url for
security purposes

Once we have successfully made our subscription request, Facebook will post notifications to
the specified callback URL.

Creating a callback for handling real
time updates

When we subscribe to any object for real time updates, we need to create a callback URL
where Facebook will ping us whenever the subscribed data gets updated. This URL should
be capable of receiving both HTTP GET (for performing subscription verification) and POST
(for getting change notifications) requests from Facebook.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

66

Getting ready
You should have registered your application and should have the application ID and secret
key ready.

How to do it...
The following steps will deal with creating callbacks:

1.	 Create a PHP file and name it as you want your callback URL to be. We will call it
action_callback.php here. Now add the following code in it:
<?php

2.	 Specify your secret verification token:
 define('VERIFY_TOKEN', 'your_secret_verification_token');

3.	 Retrieve the request method made:
 $method = $_SERVER['REQUEST_METHOD'];

4.	 If this is a GET request, then verify the VERIFY_TOKEN:
 if ($method == 'GET' && $_GET['hub_mode'] == 'subscribe'
 && $_GET['hub_verify_token'] == VERIFY_TOKEN) {
 echo $_GET['hub_challenge'];
 }

5.	 If this is a POST request containing the updates notifications, then save it to a file:
 else if ($method == 'POST') {
 $updates = json_decode(file_get_contents("php://input"),
 true);
 /**Your own code to take action based upon the update
 notification should be put here*/
 $myFile = "log.txt";
 $fh = fopen($myFile, 'a');
 fwrite($fh, 'updates = ' . print_r($updates, true));
 fclose($fh);
 }
?>

6.	 Save this file. Now, if we have mentioned this file as a callback URL for a certain
subscription, then whenever there is any update related to that subscription
Facebook will make subsequent GET and POST requests to this file.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

67

How it works...
Whenever there is any update for an object that we have subscribed to, then Facebook pings
the callback URL, associated with that subscription, and makes two types of requests. The
first is the HTTP GET request to verify the subscription and the next is the POST request for
posting any changes that have taken place to the callback URL. Facebook makes an HTTP
GET to our callback URL with the following parameters: hub.mode, hub.challenge, and
hub.verify_token.

In PHP, dots and spaces in query parameter names are
automatically converted to underscores. For example,
hub.mode gets converted to hub_mode.

These three parameters have been discussed in detail:

ff hub_mode: The string subscribe is passed in this parameter.

ff hub_challenge: It is a random string which we have to print back as an output to
the GET request. Facebook reads this output to cross check that we are following the
proper protocol and have indeed posted back the same challenge.

ff hub_verify_token: We must use the value of this parameter to match against
our private verification token, which we had passed earlier while creating the
subscription. This helps us in indentifying that the request we have received is
indeed from Facebook.

In action_callback.php we first check the type of the request made. This can be
determined by looking at the value of $_SERVER['REQUEST_METHOD'] as shown in
the following code:

$method = $_SERVER['REQUEST_METHOD'];
if ($method == 'GET' && $_GET['hub_mode'] == 'subscribe'
 && $_GET['hub_verify_token'] == VERIFY_TOKEN) {
 echo $_GET['hub_challenge'];
 }

If it is a GET request, we check if our VERIFY_TOKEN matches with the one passed by
Facebook (hub_verify_token). If it does, then we simply return back the value of
hub_challenge. Facebook requires us to do this for verification purposes.

Once, we have returned the challenge to Facebook, it then makes a POST request containing
the update notifications. This we handle in the elseif condition as shown in
the following code:

else if ($method == 'POST') {
 $updates = json_decode(file_get_contents("php://input"),
 true);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

68

/**Your own code to take action based upon the update notification
should be put here*/
 $myFile = "log.txt";
 $fh = fopen($myFile, 'a');
 fwrite($fh, 'updates = ' . print_r($updates, true));
 fclose($fh);
}

We convert the posted JSON data into a PHP array by using thejson_decode() function
and then we store this in $updates. A sample value of $updates may look similar to the
following snippets of code:

Array
(
 [object] => user
 [entry] => Array
 (
 [0] => Array
 (
 [uid] => 786017563
 [id] => 786017563
 [time] => 1300426857
 [changed_fields] => Array
 (
 [0] => friends
)
)
)
)

Now, you must write your own code after this to take action based upon the received
notification. For instance, you may have saved e-mail IDs of users in your database; upon
receiving notification for any change in them, you should again get the updated values by
using the api() function for corresponding users and then save them back in the database.

The received notification just tells about the "changed fields"
for a specific object (such as user). We need to retrieve on our
own the "values" of these "changed fields" by using Facebook
Graph API.

Here, for demonstration purpose's we keep on logging the updates received by Facebook in a
text file named log.txt.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

69

The log.txt should have read, write, and execute (777)
permissions assigned to it.

Deleting subscriptions
Facebook Graph API gives an option to delete subscriptions of our application, if we may find
them redundant. Moreover, we can also delete subscriptions pertaining to a particular object,
user, permissions, or page.

Getting ready
We should have already subscribed to some updates so that we can delete them.

How to do it...
We will create a PHP code snippet and use it to post our subscription deletion request to the
Facebook server:

1.	 Create a file named action_delete_subs.php and add the following code to it:
<?php

2.	 Include the configuration file:
 require_once 'config.php';

3.	 Specify the arguments needed to post to the authorization URL in the $args array:
 $args = array('grant_type' => 'client_credentials',
 'client_id' => $facebook->getAppId(),
 'client_secret' => $facebook->getApiSecret());

4.	 Initialize cURL using the curl_init() function:
 $ch = curl_init();

5.	 Set the authorization URL using the curl_setopt() function:
 $url = 'https://graph.facebook.com/oauth/access_token';
 curl_setopt($ch, CURLOPT_URL, $url);

6.	 Set the POST and RETURNTRANSFER method and POSTFIELDS using the curl_
setopt() function:
 curl_setopt($ch, CURLOPT_HEADER, false);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($ch, CURLOPT_POST, true);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $args);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Be a part of Social Graph

70

7.	 Use the curl_exec() function to execute the POST request and the explode()
function to extract the access token:
 $access_token = explode("=",curl_exec($ch));
 curl_close($ch);
 $access_token = $access_token[1];

8.	 Make the subscription DELETE request using the api() function:
 $delete = $facebook->api('/'. $facebook->getAppId() .
 '/subscriptions', 'DELETE', array('access_token' =>
 $access_token,));
?>

9.	 Save this file and run it. All the subscriptions for our application will get deleted.

How it works...
To delete the subscriptions for our application, we need to make a DELETE request to the
following URL—https://graph.facebook.com/[APP-ID]/subscriptions. Before
we can do that, we need to request an access token for our application. This access token is
different from the "user access token" which we generally use to take action on behalf of the
user. Here, we want to make a change to our application data, which is independent of any
user. Hence, we want an application specific access token. To get this OAuth token, we need
to make a POST request to https://graph.facebook.com/oauth/access_token; we
need our application ID (app-id) and application secret (app-secret).

In order to make this POST request for getting the access token, we use the cURL library
of PHP. $args is an array which contains the arguments that we need to post to the
authorization URL. These arguments are as follows:

ff grant_type: It should be set to client_credentials

ff client_id: It should be set to our application ID

ff client_secret: It should be set to our application secret key

We use curl_init() to initialize the cURL cursor. Next, we use the curl_setopt()
function to set certain options, such as setting the URL to the authorization URL and setting
the method POST to true. Then, we use the curl_exec() function to execute the POST
request and the explode() function to extract the access_token from the returned data.

Once we have a valid access token, we make a DELETE request to Facebook by using the
api() function. Upon successful deletion, 1 is returned as a response from the server
and stored in $delete.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

71

There's more...
If we want to delete a subscription pertaining to a particular object such as user, permission,
or page, we can do so by simply specifying the object parameter in the array. For example, if
we want to delete a subscription for a user object, then we can do so as shown in the following
code snippet:

$delete = $facebook->api('/'. $facebook->getAppId() .
 '/subscriptions', 'DELETE', array('access_token' =>
 $access_token, 'object' => 'user'));

As we have specified the user object, all the subscriptions pertaining to the user object will
get deleted.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

3
Querying Facebook

In this chapter, we will cover:

ff Returning information about a user

ff Getting the status message of a user

ff Retrieving profile pictures of a user's friends

ff Getting the links posted by a user

ff Getting the Facebook pages followed by a user

ff Determining if two users are friends

ff Retrieving information of a group

ff Retrieving members of a group

ff Retrieving friends from a specific friend list

ff Getting all the messages in a thread

ff Checking the status of permissions for an application

ff Getting notifications for the current user and the sender of the notifications

ff Retrieving video details associated with a user

ff Getting the five latest photos in which a user has been tagged

ff Retrieving the latest photos published by a user

ff Retrieving details of an event

ff Retrieving details of a user's friends by using multiquery method

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

74

Introduction
We all are familiar with SQL (Structured Query Language) which provides a convenient way
to query a database containing some relevant information. Facebook has its own SQL like
language for querying its database. It is known as Facebook Query Language, abbreviated
as FQL. While Facebook Graph API provides an easy to use interface, FQL on the other hand
provides more control over what, and how much, data we want to extract.

It provides access to the data exposed by the Graph API through a structured SQL type
interface. Facebook supports a lot of tables which can be queried via FQL to retrieve
meaningful information. Using FQL we can even run some complex queries which can't be
done by using Graph API all alone.

There are a few important points to be noticed in FQL:

ff FQL queries are executed by fetching the URL https://api.facebook.com/
method/fql.query?query=QUERY. We can specify a response format as either
XML or JSON with the format query parameter.

ff FQL queries are always written in this form:
SELECT [fields] FROM [table] WHERE [conditions]

ff Moreover, unlike SQL the FQL FROM clause can have only one table name.

ff Another important thing to note is that the WHERE clause can only have attributes
which are indexable. Each FQL table has certain fields which are marked as *
meaning they are indexable. The query can be run only if we index them by these
fields.

Prerequisites
We need to do some basic configuration before starting with the recipes discussed in this
chapter. Follow these steps:

1.	 First, create a config.php file and add the following code to it:
<?php
 require_once 'facebook.php';
 /** Create our Application instance. */

2.	 Initialize the Facebook application:
 $facebook = new Facebook(array(
 'appId' => 'your_application_id',
 'secret' => 'your_application_secret_key',
 'cookie' => true,
));

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

https://api.facebook.com/method/fql.query?query=QUERY
https://api.facebook.com/method/fql.query?query=QUERY

Chapter 3

75

Here, the Facebook class is defined in facebook.php and can be downloaded from GitHub.
$facebook is an object of this class and we will use it in our index.php file. You need to
provide your application ID and secret key here. For more information, refer to Chapter 1.
Now to continue:

1.	 Create a file named index.php and add the following code to it:
<?php

2.	 Include the configuration file:
 require_once 'config.php';

3.	 Get the current user's session information by using the getSession() function and
then validate the session:
 $session = $facebook->getSession();
 $me = null;
 if ($session) {
 try {
 $me = $facebook->api('/me');
 /*Check whether the current session is valid by
 retrieving user information.*/
 }
 }
 /* If the current session is invalid or user has not authorized
 the application then redirect to a authorization URL.
 If session is invalid redirect the application to the
 authorization URL */
 if(!($me))
 {
 echo '<script>
 top.location.href="'.$facebook->getLoginUrl(
 array('req_perms' => 'publish_stream',
 'next' => 'http://apps.facebook.com/[your_app_url]
 /',)).'";
 </script>';
 exit;
 }

?>

Here, we first retrieve a valid session for the user by calling the $facebook->getSession()
function and storing the response in the $session variable. Next, we try to retrieve the basic
information of the current user by posting a GET request to https://graph.facebook.
com/me. We use the $facebook->api() function to do so. https://graph.facebook.
com is automatically prefixed by the api() function to its first argument, that's why we have
passed/me as its first argument. The returned data is stored in the $me variable.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

76

Finally, we check whether the $me variable is null or not. If it's null, then we need to redirect
the user to the authorization URL in order to get appropriate permission(s) from, and a
valid session token for, the user. To redirect the user, we use JavaScript code. We set top.
location.href to the URL where we want to re-direct the user. This URL is given by the
function $facebook->getLoginUrl(). Also, this function takes array as its argument. The
index req_perms is used to request specific permissions from the user. Multiple permissions
can be requested by separating them using a comma. Additionally, the index next specifies
where the user will be redirected after successful authorization and session generation.

Once you have created these two files, you can use them directly in the subsequent recipes.

Returning information about a user
FQL supports multiple tables with a number of attributes. The Facebook user table can be
queried via FQL to retrieve all the information details of a particular user. For example, a
user's name, relationship status, and other profile information can be easily retrieved provided
we have the necessary permissions.

Getting ready
You should have setup config.php and index.php as explained in the beginning of
the chapter. Also, you cannot access all the fields in the user table. Some require you to
have extended permissions. Thus, the prerequisite is that you should have acquired all the
permissions for accessing required fields from the user, otherwise you will get empty values
for fields against which you don't have extended permissions. For example, to access the
birthday of the user you need to have the user_birthday permission.

The available permissions can be seen from the Facebook permissions table provided at
http://developers.facebook.com/docs/reference/api/permissions/. You just have to choose
the ones required by your application and ask for extended permissions for them.

How to do it...
The following steps will demonstrate how to retrieve information from the user table:

1.	 Open index.php and append the following code to it:
<html>
 <body>
 <?php

2.	 Retrieve a user's information by executing the following FQL query:
 $users = $facebook->api(array('method' => 'fql.query',
 'query' => "SELECT uid, first_name, last_name, sex,
 pic_square FROM user WHERE uid = me() OR uid = 637089897"));

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

77

3.	 Display the result in a table format:
 echo "<table width='70%'>";
 echo "<tr><th align='LEFT'>User Id</th>
 <th align='LEFT'>First Name</th>
 <th align='LEFT'>Last Name</th>
 <th align='LEFT'>Sex</th>
 <th align='LEFT'>Picture</th></tr>";

 foreach ($users as $user) {
 echo "<tr><td>" . $user['uid'] . "</td>
 <td>" . $user['first_name'] . "</td>
 <td>" . $user['last_name'] . "</td>
 <td>" . $user['sex'] . "</td>
 <td></td>
 "</tr>;
 }

 echo "</table>";
 ?>
 </body>
</html>

4.	 Now run index.php and you will get something like this as the output:

How it works...
Facebook FQL has a user table from which we can retrieve information about a user. Here we
run the following query:

SELECT uid, first_name, last_name, sex, pic_square FROM user WHERE uid
= me() OR uid = 637089897

In this we retrieve the user ID, first name, last name, sex, profile picture of the logged in user,
as well as a user with ID 637089897 from the user table.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

78

Using the api() function we make a call to this query. The returned user information gets
stored in the $users PHP variable. Next, using the foreach() PHP loop we print the user's
information one by one.

There's more...
The FQL user table contains another field which is family. However, for retrieving a user's
family's result we need to query the family table instead of the user table. Moreover every
attributes can be returned either as an integer, string, or array. All this information has been
provided in the tables given in the Appendix.

Also, we need to check the permissions table to see which attributes require which
permissions and grant them before querying for them. We can also get the publicly available
attributes for a user, provided we have the user's ID and the necessary permissions.

See also
ff Getting the status message of a user

ff Getting the Links posted by a user

ff Getting the Facebook pages followed by a user

ff Retrieving the latest photos published by a user

Getting the status messages of a user
We can query using FQL to retrieve the status messages of a user, as well as his/her friends.

Getting ready
You should have already set up config.php and index.php as explained in the beginning
of the chapter. Also, to be able to access the status message of a user, the application needs
to have the user_status permission. If we even want to access the status messages of
friends, then we need the friends_status permission as well.

How to do it...
The following steps will demonstrate how to get the status messages of a user:

1.	 Open index.php and append the following code to it:
<html>
 <body>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

79

 Status messages of <?php echo $me['name']; ?> are listed below
 -

 <?php

2.	 Retrieve the status messages of the user by executing the following FQL query:
 $statuses = $facebook->api(array('method' => 'fql.query',
 'query' => "SELECT message FROM status WHERE uid = me()"));

3.	 Display the status messages of the user:
 $i=1;

 echo '<table>';
 foreach ($statuses as $status) {
 echo "<tr><td width = '5%'>" . $i . "</td>
 <td width = '95%'>" . $status['message'] . "</td></tr>";
 $i++;
 }

 echo '</table>';

 ?>
 </body>
</html>

4.	 Run the file. A screenshot of the output of the code would be something like this:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

80

How it works...
In index.php, we use the api() function of the Facebook class in order to execute our FQL
query. In the api() function, we pass an array as an argument. It has two indexes—method
and query. We set the method to fql.query and this indicates that we want to execute an
FQL query by making a GET request to the URL of the form https://api.facebook.com/
method/fql.query?query=QUERY where the FQL query to be executed is given by the
value of the index named query. In an FQL query, we simply select the status messages from
the status table. It has been done through the following FQL query:

SELECT message FROM status WHERE uid = me()

The retrieved status messages are, by default, in reverse chronological order, that is, most
recent ones are present at the top. These are stored in an array named $statuses. We use a
foreach loop to extract one status message, given by $status['message'], at a time and
display it in a new row inside a table.

There's more...
We can also query the status table to return status messages of more than one user.
Suppose, if we want to retrieve the status messages of the current user's friends, we can do
so by executing the following FQL query:

SELECT uid, status_id, message FROM status WHERE uid IN (
 SELECT uid2 FROM friend WHERE uid1 = me())

Here, first the sub-query will be executed—SELECT uid2 FROM friend WHERE uid1 =
me(). It will retrieve all the uids of the friends of the current user from the friend table. Then
corresponding to these uids the values of uid, status_id, and message fields from the
status table will be returned, that is, we will get the status messages of the friends of the
current user.

Moreover, for better optimization we can limit the results to within the last week by querying
like this:

SELECT uid, status_id, message FROM status WHERE uid IN (
 SELECT uid2 FROM friend WHERE uid1= me()) AND
 time > {time_of_last_week}

Here, we need to replace {time_of_last_week} with a suitable Unix timestamp during
that period.

The status table returns the result of either the last 30 days or 50
posts, whichever is more.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

https://api.facebook.com/method/fql.query?query=QUERY

Chapter 3

81

If we want to retrieve just the current status message of the user, then we can do so by
executing an FQL query on the user table instead. The corresponding FQL query will be:

SELECT status FROM user WHERE uid = me()

It extracts the value of the status field from the user table for the current user. The status
field contains the latest status message for the corresponding user ID.

See also
ff Getting the latest five photos in which a user has been tagged

Retrieving profile pictures of a user's friends
Many a time, our application requires the profile pictures of some of the user's friends. For
example, if we have an interface where we want to list a user's friends, then we could use
their profile pictures as well, for providing a better user experience. By using a simple FQL
query, it is possible to retrieve the profile pictures of a user's friends.

Getting ready
You should have already set up config.php and index.php as explained in the beginning
of the chapter.

How to do it...
The following steps will demonstrate how to retrieve friends' profile pictures:

1.	 Open index.php and append the following code to it:
<html>
 <body>
 Profile pictures of friends of <?php echo $me['name']; ?> are
 displayed below (as a collage) -

 <?php

2.	 Retrieve the profile pictures of the user's friends by executing the following FQL query:
 $profile_pics = $facebook->api(array('method' => 'fql.query',
 'query' => "SELECT pic_square, uid FROM user WHERE uid IN (
 SELECT uid2 FROM friend WHERE uid1= me())"));

3.	 Display the profile pictures of the user's friends:
 foreach($profile_pics as $pic) {
 echo '<image src="' . $pic['pic_square'] . '" width="40"
 height="40" />';

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

82

 }
 ?>
 </body>
</html>

4.	 Now run index.php and you will see a collage of all your friends' profile pictures, as
shown in the following screenshot:

How it works...
In order to execute an FQL query, we need to pass two parameters, together as an array, to
the api() function of the Facebook class. The index method should be set as fql.query
to indicate that we want to execute an FQL query and query should contain the actual FQL
query. Let's discuss the FQL query we have executed:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

83

SELECT pic_square, uid FROM user WHERE uid IN (
 SELECT uid2 FROM friend WHERE uid1= me())

This FQL query consists of a sub-query and main query. The sub-query, SELECT uid2 FROM
friend WHERE uid1 = me(), is executed first. In this sub-query, we select all the IDs of the
current user's friends from the friend table. The friend table has two columns—uid1 and
uid2. Each set of values of uid1 and uid2 represents a pair of friends. So, here we set the
uid1 as the uid of the current user and retrieve all the values of the uid2 column present
against this. Once we have these IDs, then in the main query we retrieve the corresponding
profile picture of all the friends of the current user. This we do by querying the user table. It
has a field named pic_square which gives the URL of the profile picture of a user in
square format.

Next, we use the HTML img tag to display these profile pictures. We use foreach loop to
iterate over results and set the returned URL of the profile pictures as the value of the src
attribute in the img HTML tag. You can similarly use these profile pictures in your application
to provide a more personalized experience to the user.

Here, we have executed a nested FQL query to retrieve the profile
pictures of friends of the current user.

There's more...
Instead of using the pic_square field of the user table, we can use also try pic, pic_
small, and pic_big. The profile picture will remain the same as returned by these fields, but
will have different dimensions as is obvious from the field names.

Suppose, we want to sort the profile picture of the user's friends in alphabetical order
according to their name, we can do so by using the ORDER BY clause in the following FQL
query. It is illustrated in the following query:

SELECT pic_square, uid FROM user WHERE uid IN (
 SELECT uid2 FROM friend WHERE uid1= me()) ORDER BY first_name

The ORDER BY clause, by default, just orders the result based on the field specified in
ascending order. Here, it will order it by the first name of the user's friends. If we want it to be
sorted in descending order we need to add DESC in the ORDER BY clause as shown:

SELECT pic_square, uid FROM user WHERE uid IN (
 SELECT uid2 FROM friend WHERE uid1= me())ORDER BY first_name DESC

The query will return the profile pictures after sorting them according to first_name in
descending order alphabetically.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

84

Getting the links posted by a user
Facebook gives us the opportunity to share status, photos, links, and videos. If we want to
retrieve the links a user has posted, then we can do so by using FQL.

Getting ready
You should have already created config.php and index.php as explained in the beginning
of this chapter.

How to do it...
The following steps will demonstrate how to get the links posted by a user:

1.	 Open index.php and append the following code to it:
<html>
 <body>
 Links posted by <?php echo $me['name']; ?>
 are listed below -

 <?php

2.	 Retrieve the links posted by a user by executing the following FQL query:
 $links = $facebook->api(array('method' => 'fql.query',
 'query' => "SELECT owner_comment, title, summary, link_id,
 url FROM link WHERE owner = me()"));

3.	 Display the links posted in a table format:
echo '<table>';
 foreach ($links as $link) {
 echo '<tr><td>' . $link['link_id'] . '</td>
 <td>' . $link['title'] . '</td>
 <td>' . $link['owner_comment'] . '</td>
 <td>' . $link['summary'] . '</td>
 <td>' . $link['url'] . '</td></tr>';
 }
 echo '</table>';
 ?>
 </body>
</html>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

85

4.	 Now, run index.php and all the links by the current user will be retrieved and
displayed in tabular format, as shown in the following screenshot:

These table columns display link ID, title, comment, summary, and URL respectively. We can
use this information about the different links posted by user in various ways in our application.

How it works...
In index.php, we have run the following FQL query:

SELECT owner_comment, title, summary, link_id, url FROM link
 WHERE owner = me()

Here, we have selected the following fields from the link table:

ff owner_comment: It gives the comment the owner has made about the link

ff title: It gives the title of the link which is extracted from the metadata of the site

ff summary: It gives the summary which is usually a small piece of text extracted from
the link

ff link_id: It's the ID of the link as assigned by Facebook

ff url: It's the actual URL

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

86

To actually execute this FQL query, we use the api() function of the Facebook class. In the
api() function, we pass an array as argument with two indexes—method and query. Here,
the method is defined as fql.query which means that we want to execute an FQL query
by posting a GET request to the URL of the form https://api.facebook.com/method/
fql.query?query=QUERY and the query decides the actual FQL query that we want to
execute by posting it to this URL. The result is returned in JSON format from Facebook which is
converted to a corresponding PHP array and stored in $links. After this we use a foreach
loop to print all the links one by one in tabular format.

There's more...
The link table has two indexable fields—link_id and owner, that is, we can use either of
these fields to query the whole table for particular information. Also, if we want to extract the
image linked with a particular link we can do so by using image_urls field. Similarly, we can
use the created_time field to get the time when a particular link was posted by the user.

See also
ff Retrieving the latest photos published by a user

Getting the Facebook pages followed by
a user

Facebook uses the concept of Page for grouping together the similar activities and interests
of users. It has a separate page dedicated for every personal characteristic and activity of
a user. Facebook users like these pages which give an insight into their personality. We can
retrieve the list of Facebook pages liked by a user, in order to know him/her better, which in
turn will help us to give him/her a more personalized experience.

Getting ready
You should have set up config.php and index.php, as explained in the beginning of this
chapter. Also, you should know the ID of the user whose list of liked pages you wish to retrieve.
Usually, you will do this for the current user whose ID can be specified by using the special
identifier me() in the FQL query.

How to do it...
The following steps will demonstrate how to retrieve the pages a user likes:

1.	 Open index.php and append the following code to it:
<html>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

https://api.facebook.com/method/fql.query?query=QUERY
https://api.facebook.com/method/fql.query?query=QUERY

Chapter 3

87

 <body>
 Pages followed by <?php echo $me['name']; ?>
 are listed below -

 <?php

2.	 Retrieve the pages followed by the user by executing the following FQL query:
 $pages = $facebook->api(array('method' => 'fql.query',
 'query' => "SELECT page_id, name, type, pic_square,
 fan_count FROM page WHERE page_id IN (SELECT target_id
 FROM connection WHERE source_id = me()
 AND is_following = 1)",));

3.	 Display the page information in table format:
 echo '<table>';
 echo '<tr><th>Page Name</th>
 <th>Type</th>
 <th>Picture</th>
 <th>Fans</th>
 <th>Page id</th></tr>';

 foreach ($pages as $page) {
 echo '<tr><td>' . $page['name'] . '</td>
 <td>' . $page['type'] . '</td>
 <td><img src = "' . $page['pic_square'] .
 '" /></td>
 <td>' . $page['fan_count'] . '</td>
 <td>' . $page['page_id'] . '</td></tr>';
 }
 echo '</table>';
 ?>
 </body>
</html>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

88

4.	 Once you have added the code to index.php, then it's time to run the code. A
screenshot of a sample output is shown:

How it works...
For retrieving the pages followed by a user, we use a nested FQL query and retrieve the data
from two tables, namely, connections and page. We use the connection table to get the ID
of the pages of which the current user is a fan and is following them. We do this by using the
following sub-query which is highlighted:

SELECT page_id, name, type, pic_square, fan_count
 FROM page WHERE page_id IN (
SELECT target_id FROM connection WHERE source_id = me() AND
 is_following = 1)

We get the values of target_id which are basically the IDs of the pages that the user is
following. Here, in the WHERE clause of the sub-query we set source_id as me(), that is, the
current user's ID and is_following as 1 which ensures that the user is following the pages
being retrieved.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

89

Next, we use these page IDs in the main query to get the following data from the page table:

ff page_id: It is the ID of the retrieved page

ff name: The public name associated with the page

ff type: It identifies the category of the page such as website, organization, movie, and
so on

ff pic_square: It gives the URL of the public picture of the page, which is shaped as a
square

ff fan_count: This gives the total number of followers of the page

The retrieved data is stored in a PHP array, $pages. We use a foreach loop to print all the
pages followed by the user one after another in tabular fashion.

There's more...
The FQL page table can be queried to get information about any page. The only prerequisite
is to know the ID or name of the page. Both the attributes page_id and name are indexable,
that is, we can use them in the WHERE clause of an FQL query.

Determining if two users are friends
Many a time, an application may want to ascertain if any two given users are linked together
as friends or not. We can do so by using FQL in Facebook. It makes it easy to determine this
connection since it has a separate table, friend, especially for this purpose.

Getting ready
You need to set up config.php and index.php, as explained in the beginning of the
chapter. Also, you should have the IDs of both the users on whom you want to perform
this operation.

How to do it...
The following steps will determine if two users are friends:

1.	 Open index.php and append the following code to it:
<html>
 <body>
 <?php

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

90

2.	 The following FQL query will determine if the two users whose IDs have been provided
are friends::
 $check_friends = $facebook->api(array('method' =>
 'fql.query', 'query' => "SELECT uid1, uid2 FROM friend
 WHERE uid1 = me() AND uid2='637089897'"));

3.	 Check if users are friends or not and display the results accordingly:
 if($check_friends)
 echo "Both the users are friends.";
 else
 echo "Users are not friends.";
 ?>
 </body>
</html>

4.	 Save index.php and run it.

5.	 Change the values of uid1 and uid2 in the FQL query. You may want to set them
programmatically. An appropriate message will be displayed depending on whether
the users are friends or not:

How it works...
Here, we have used the friend table in an FQL query to determine whether the users are
friends or not. We do so by executing the following FQL query:

SELECT uid1, uid2 FROM friend WHERE uid1 = me() AND uid2='637089897'

Here, uid1 and uid2 will vary depending on the ID of the users for whom we are running this
query. Both these attributes are indexable. If the query runs successfully and both the users
under inspection turn out to be friends, then the IDs of both will be returned and stored in
$check_friends. A sample value of it could be:

Array ([0] => Array ([uid1] => 786017563 [uid2] => 637089897))

If the users are not friends then a null value is returned. We use an if else condition on
$check_friends to test this and print the results accordingly.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

91

Retrieving information of a group
One of the most important features that Facebook supports is Groups. Groups allow people
with similar interests or backgrounds to connect and share information with each other. A
user may have subscribed to different groups, with each group having some definite purpose.
By using FQL we can retrieve the detailed information of the groups being followed by a user.

Getting ready
You should have already set up config.php and index.php as explained in the beginning
of the chapter. If we want to find out the information of a particular group, then we need to
know the corresponding group ID. Also, if we want to list the groups a user follows, then the
application should have user_groups extended permission. To access the list of groups of
user's friends we should have friends_groups extended permission.

How to do it...
The following steps will demonstrate how to retrieve group information:

1.	 Open index.php and append the following code to it:
<html>
 <body>
 <?php

2.	 Specify the group ID:
 $gid = '116511191758694';
 ?>
 Group information for id <?php echo $gid; ?> created by
 <?php echo $me['name']; ?> is listed below -

 <?php

3.	 Retrieve the group information by executing the following FQL query:
 $groups = $facebook->api(array('method' => 'fql.query',
 'query' => "SELECT name, description, privacy, creator,
 pic_small FROM group WHERE gid='" . $gid . "'",));

4.	 Display the group information in a table format:
 echo '<table>';
 echo '<tr><th>Name</th>
 <th>Description</th>
 <th>Privacy</th>
 <th>Creator</th>
 <th>Picture</th></tr>';

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

92

 foreach ($groups as $group) {
 echo '<tr><td>' . $group['name'] . '</td>
 <td>' . $group['description'] . '</td>
 <td>' . $group['privacy'] . '</td>
 <td>' . $group['creator'] . '</td>
 <td><img src = "' . $group['pic_small'] .
 '" /></td>
 </tr>';
 }
 echo '</table>';
 ?>
 </body>
</html>

5.	 Change the value of the $gid variable with the group ID for which you want to run the
query and retrieve the details. Save and run index.php and you will get something
like this as the output:

How it works...
To retrieve information about a particular group, you must change the value of $gid which
indicates the ID of the group for which you want to retrieve information. We execute the
following FQL query to retrieve information of a group:

SELECT name, description, privacy, creator, pic_small FROM group WHERE
gid=[GID]

Here, [GID] has to be replaced with the value of the $gid variable which we have defined
earlier. Upon successful execution of this query we get the following information about the
group:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

93

ff name: The name of the group whose information we want to retrieve

ff description: The description of the group

ff privacy: The privacy status of the group whether it is OPEN, CLOSED, or SECRET

ff creator: The user ID of the person who has created the group

ff pic_small: The URL of a small photo of the group being queried

The retrieved data is stored in a PHP array called $groups. We use a foreach loop to print
all the pages, followed by the user one after another in tabular fashion.

Retrieving members of a group
Facebook supports an independent group_member table from where all the members of a
particular group can be retrieved.

Getting ready
You should have set up config.php and index.php as explained in the beginning of the
chapter. If we want to find out any information about a particular group, then we need to know
the corresponding group ID. Also, if we want to know the list of groups being followed by a
user, then the application should have user_groups extended permission. To access the list
of groups of user's friends we should have friends_groups extended permission.

How to do it...
The following steps will demonstrate how to retrieve group members:

1.	 Open index.php and append the following code to it:
<html>
 <body>
 <?php

2.	 Specify the group ID:
 $gid = '116511191758694';
 ?>
 Group members for id <?php echo $gid; ?> created by
 <?php echo $me['name']; ?> is listed below -

 <?php

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

94

3.	 Retrieve the group members by executing this FQL query:
 $grp_members = $facebook->api(array('method' => 'fql.query',
 'query' => "SELECT uid, name, pic_square FROM user
 WHERE uid IN (SELECT uid FROM group_member
 WHERE gid='" . $gid . "')",));

4.	 Display the group member information in a tabular format:
 echo '<table width="100%">';
 echo '<tr><th>User Id</th>
 <th>Name</th>
 <th>Profile pic</th></tr>';
 foreach ($grp_members as $grp_member) {
 echo '<tr><td>' . $grp_member['uid'] . '</td>
 <td>' . $ grp_member['name'] . '</td>
 <td><img src = "' . $ grp_member['pic_square'] .
 '" /></td></tr>';
 }
 echo '</table>';
 ?>
 </body>
</html>

5.	 Replace the $gid with the group ID for which you want to retrieve information. Now
save the file and run it. Successful execution of the code will return the user name,
user ID, and profile picture of all the members belonging to a particular group, as
shown in the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

95

How it works...
Here, we have used a nested FQL query which involves group_member and user tables. First,
we get the user IDs of all the members of a particular group. This we do by using the following
sub-query:

SELECT uid FROM group_member WHERE gid='GROUP_ID'

Next, we use all the retrieved IDs of the users to get their name, ID, and profile picture from
the user table. So, the complete query becomes:

SELECT uid, name, pic_square FROM user WHERE uid IN (SELECT uid FROM
group_member WHERE gid='GROUP_ID')

We use the api() function to actually execute the FQL query. It takes an array as an
argument with two indexes method and query. The first index has its value as fql.query
and it means that we want to execute an FQL query. The second index contains the actual FQL
query as its value. The returned result is stored in $grp_members. We use a foreach PHP
loop to print the details of all the users along with their name, ID, and profile picture one
by one.

See also
ff Retrieving information of a group

Retrieving friends from a specific friend list
Facebook provides its users with an option to create friend lists in order to categorize their
friends. For example you can have a friend list named 'office' which contains all your work
colleagues in it. Basically, a friend list allows users to segregate their friends in different
groups. A Facebook application may require targeting only certain sections of a user's friends,
in this case retrieving friends from a specific friend list becomes important.

Getting ready
You should have set up config.php and index.php as explained in the beginning of the
chapter. Also, the application should have read_friendlists permission.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

96

How to do it...
The following steps will retrieve friends from a specific friend list:

1.	 Open index.php and append the following code to it:
<html>
 <body>
 Members and the respective Friendlist to which they belong as
 created by <?php echo $me['name']; ?> are
 listed below -

 <?php

2.	 Retrieve the user's friend list information by using the following FQL query:
 $friendlists = $facebook->api(array('method' => 'fql.query',
 'query' => "SELECT flid, uid FROM friendlist_member
 WHERE flid IN (SELECT flid FROM friendlist
 WHERE owner=me())",));

3.	 Display the friendlist information in a table format:
 echo '<table width="100%">';
 echo '<tr><th ALIGN=LEFT>User Id</th>
 <th ALIGN=LEFT>Friendlist Id</th></tr>';
 foreach ($friendlists as $friendlist) {
 echo '<tr><td>' . $friendlist['uid'] . '</td>
 <td>' . $friendlist['flid'] . '</td></tr>';
 }
 echo '</table>';
 ?>
 </body>
</html>

4.	 Save the file and run it. A successful execution of the code will give us a list of the
different friend lists created by the user, as friend list IDs and the user IDs of their
corresponding members. A screenshot of the output is as follows:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

97

How it works...
Here, we retrieve information using two tables—friendlist and friendlist_member—and thus,
run a nested query. First, we fetch the friend list ID (flid) from the friendlist table for the
current user by using the following query:

SELECT flid FROM friendlist WHERE owner=me()

This returns us the IDs of all the friend lists which have been created by the current user.
Then, for these obtained friend lists we query the friendlist_member table to fetch the user ID
of the members. The complete query then becomes this:

SELECT flid, uid FROM friendlist_member WHERE flid IN (
SELECT flid FROM friendlist WHERE owner=me())

We use Facebook's api() function to make a call to execute this query. The returned
information is stored in the $friendlists variable. We use a foreach PHP loop to print the
ID of all the members of the friend list(s), as well as their corresponding friend list ID to which
they belong.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

98

There's more...
If, at any stage, we want the user's name, along with the user ID of the people belonging to
a particular friend list, then we need to query the user table as well. There are multiple ways
to do this. We can either save the user IDs obtained by querying the friendlist_member table
and then use them to query the user table for their names. Or, we can execute a multiquery,
explained in the last recipe of this chapter.

Getting all the messages in a thread
Facebook has messaging system for all its users which gives them a personalized mail system
experience. They have an inbox where they can receive messages and reply to them. The
messages from each user get stored in threads and thus, different threads are formed when
different users interact. By using FQL we can retrieve the messages that belong to a particular
thread.

Getting ready
You should have set up config.php and index.php as explained in the beginning of the
chapter. Also, the application should have read_mailbox permission and you should know
the thread ID whose messages you want to retrieve.

How to do it...
The following steps will demonstrate how to retrieve all the messages in a thread:

1.	 Open index.php and append the following code to it:
<html>
 <body>
 <?php

2.	 Specify the thread ID:
 $tid = '1892443481437';
 ?>

3.	 Retrieve the messages belonging to the thread by using the following FQL query:
 Messages belonging to the thread <?php echo $tid; ?> are
 listed below -

 <?php

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

99

 $messages = $facebook->api(array('method' => 'fql.query',
 'query' => "SELECT body, author_id FROM message
 WHERE thread_id = '" . $tid . "'",));

4.	 Display the messages in tablular format:
 echo '<table width="100%">';
 echo '<tr><th ALIGN=LEFT>Author Id</th>
 <th ALIGN=LEFT>Message Content</th></tr>';

 foreach ($messages as $message) {
 echo '<tr><td>' . $message['author_id'] . '</td>
 <td>' . $message['body'] . '</td></tr>';
 }
 echo '</table>';
 ?>
 </body>
</html>

5.	 Replace the $tid variable with the thread ID corresponding to which you want to
retrieve the messages. Now, save index.php and run it. Upon successful execution
of the code a list of all the messages belonging to the specified thread ID will be
displayed as shown:

How it works...
Here, we retrieve the message details from Facebook's message table. The query that we
run is SELECT body, author_id FROM message WHERE thread_id = [tid] by which we
retrieve the content of the message as body and the user ID of the person who has created
that message as author_id by querying the message table.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

100

We use the api() function to make a call to execute this query. The retrieved contents gets
stored in the $message variable. We use a foreach PHP loop to print the retrieved message
information in a tabular layout.

There's more...
We can also retrieve individual messages if we know the corresponding message ID. This is
because the message table also has message_id as an indexable field. This can be done by
using the following query:

SELECT body, author_id FROM message WHERE message_id = [MSG ID]

Checking the status of permissions for
an application

A user may grant many extended permissions to an application. Many a time it becomes
necessary to check if the user has granted the application a specific permission or not. We
can easily do this using FQL.

Getting ready
You should have set up config.php and index.php as explained in the beginning of
the chapter. Also, you should know the permissions for which you want to check the status
granted by the user. This can be looked at from the permissions table.

How to do it...
The following steps will check the permission for an application:

1.	 Open index.php and append the following code:
<html>
 <body>
 Permission statuses -

 <?php

2.	 Retrieve the status of permissions by executing the following FQL query:
 $permissions = $facebook->api(array('method' => 'fql.query',
 'query' => "SELECT publish_stream, user_checkins, sms,
 read_mailbox FROM permissions WHERE uid = me()",));

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

101

3.	 Display the permission statuses in tabular format:
 echo '<table width= "50%">';
 foreach ($permissions as $permission) {
 echo '<tr><td>' . 'publish_stream'. '</td>
 <td>' . $permission['publish_stream'] .
 '</td></tr>';
 echo '<tr><td>' . 'user_checkins'. '</td>
 <td>' . $permission['user_checkins'] .
 '</td></tr>';
 echo '<tr><td>' . 'sms'. '</td>
 <td>' . $permission['sms'] . '</td></tr>';
 echo '<tr><td>' . 'read_mailbox'. '</td>
 <td>' . $permission['read_mailbox'] .
 '</td></tr>';
 }
 echo '</table>';
 ?>
 </body>
</html>

4.	 Replace the permissions mentioned in the SELECT clause of the query with the
permissions of your choice. Now, save the file and run it. Upon successful execution
of the code, a list containing the permission statuses will be displayed and will
appear something like this:

5.	 Here 1 stands for permission being granted while 0 implies permission has not been
granted.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

102

How it works...
Facebook contains a permissions table from which we can find the status of certain
permissions given by a particular user. In the code, we run the following query:

SELECT publish_stream, user_checkins, sms, read_mailbox
 FROM permissions WHERE uid = me()

Here, in the SELECT clause we write the names of the queries for which we want to check the
status. We have checked the status for the following permissions:

ff publish_stream: It is required to enable an application to post content, comments,
and so on

ff user_checkins: It provides authorized read access to a user's checkins

ff sms: It enables the application to send and receive messages to and from the user

ff read_mailbox: It enables the application to read a user's Facebook inbox

We can replace these permissions with any of our choice. We run this query through the
api() function of the Facebook class. The status of these permissions, which is either 0 for
not granted and 1 for granted, is returned and stored in $permissions. We use a foreach
PHP loop to print the permission statuses.

Getting notifications, and their senders, for
the current user

Facebook has a very important feature through which it notifies the user whenever his/her
friend interacted with him/her, called the notification section. We can retrieve the notifications
for the current user for our application by using Facebook FQL.

Getting ready
You should have set up config.php and index.php as explained in the beginning of
the chapter.

How to do it...
The following steps will demonstrate how to get the notifications for the current user:

1.	 Open index.php and append the following code to it:
<html>
 <body>
 Notifications for the user <?php echo $me['name'];
 ?> are listed below -

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

103

 <?php

2.	 Retrieve the notification information by executing the following FQL query:
 $notifications = $facebook->api(array('method' =>
 'fql.query', 'query' => "SELECT notification_id,
 body_text,sender_id FROM notification WHERE
 recipient_id=me()",));

3.	 Display the notification and its sender in a table format:
 echo '<table width= "100%">';
 echo '<tr><th ALIGN=LEFT>Notification Id</th>
 <th ALIGN=LEFT>Body</th>
 <th ALIGN=LEFT>Sender Id</th></tr>';
 foreach ($notification as $notification) {
 if($notification['body_text'])
 echo '<tr><td>' . $notification['notification_id'] .
 '</td>
 <td>' . $notification['body_text'] . '</td>
 <td>' . $notification['sender_id'] .
 '</td></tr>';
 }
 echo '</table>';
 ?>
 </body>
</html>

4.	 Save the file and run it. A list of the notifications of the current user will be displayed
in the descending order of the time with the latest appearing at top. A snapshot of the
output of the code is shown in the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

104

How it works...
To retrieve the notifications of the current user we make use of the notification table. Here,
we run the following FQL query:

SELECT notification_id, body_text, sender_id FROM notification
 WHERE recipient_id = me()

The attributes of the SELECT clause may vary depending on our choice and can be looked up
from the notification table. In the previous code, we have retrieved the notification ID, body of
the notification, and the ID of the sender.

The query is executed by making a call to the api() function of the Facebook class. The
information returned gets stored in the $notifications variable. We use a foreach()
loop to iterate through the array and display the obtained results one by one.

An important thing to note here, is that Facebook deletes notifications
that are more than seven days old. Thus, notifications which are only less
than a week old will get displayed.

Retrieving video details associated with
a user

A user may be tagged in a number of videos published on Facebook. To retrieve the
information of the videos associated with a user we can use FQL and fetch the videos in which
the user has been tagged.

Getting ready
You should have set up config.php and index.php as explained in the beginning of the
chapter. Also, you need to have user_photo_video_tags extended permission.

How to do it...
The following steps will retrieve video details in which the user has been tagged:

1.	 Open index.php and append the following code to it:
<html>
 <body>

 Videos in which user <?php echo $me['name']; ?></
 strong> has been tagged are listed below -

 <?php

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

105

2.	 Get the video information pertaining to the current user using the following FQL
query:
 $videos = $facebook->api(array('method' => 'fql.query',
 'query' => "SELECT vid, title, description, thumbnail_link
 FROM video WHERE vid IN(SELECT vid FROM video_tag
 WHERE subject=me())",));

3.	 Display the video details in tabular format:
 echo '<table width= "100%">';
 echo '<tr><th align="LEFT">Video Id</th>
 <th align="LEFT">Title</th>
 <th align="LEFT">Description</th>
 <th align="LEFT">Thumbnail</th></tr>';
 foreach ($videos as $video) {
 echo '<tr><td>' . $video['vid'] . '</td>
 <td>' . $video['title'] . '</td>
 <td>' . $video['description'] . '</td>
 <td><img src="' . $video['thumbnail_link'] . '"
 height="50" /></td></tr>';
 }
 echo '</table>';
 ?>
 </body>
</html>

4.	 Save the file and run the application. A list of the videos, with their details, in
which the current user has been tagged will be displayed as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

106

How it works...
Here, we use a nested query as we have to retrieve the video details from two tables—video_
tag and video. First, we retrieve the ID of all the videos in which a user has been tagged.
This has been done by executing the following query:

SELECT vid FROM video_tag WHERE subject = me()

The next step is to get the video details such as title, description, and so on from the video
table for all the retrieved video IDs. Thus, the complete query becomes:

SELECT vid, title, description, thumbnail_link FROM video
 WHERE vid IN (SELECT vid FROM video_tag WHERE subject = me()

We make a call to Facebook to execute this query by using the api() function of Facebook
class. Upon running the code, the details of all the videos in which the user has been tagged
get stored in the $videos variable. We use a foreach() loop to iterate through the array
and display the obtained video information one by one.

There's more...
In the code, the subject field can even accept the ID of a group or event. In such cases it will
give the ID of the videos belonging to that particular group or event. For example to get the
details of videos associated with a particular group we can simply run the following query:

SELECT vid, title, description, thumbnail_link FROM video
 WHERE vid IN(SELECT vid FROM video_tag WHERE subject=[gid])

Here [gid] has to be replaced with the ID of the group whose videos we want to retrieve.

Getting the five latest photos in which a
user has been tagged

A Facebook user may have his/her own photos, or may appear in someone else's album. In
the latter case, the user is usually tagged or marked in a box and this is reflected as a tagged
picture in his/her profile. By using FQL, we can query Facebook to get the five latest pictures
in which a user has been tagged.

Getting ready
You should have set up config.php and index.php as explained in the beginning of the
chapter. Also, you need to have user_photo_video_tags extended permission.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

107

How to do it...
The following steps will demonstrate how to get the five latest photos of the user:

1.	 Open index.php and append the code given below to it:
<html>
 <body>
 Latest five pictures in which
 <?php echo $me['name']; ?> has been tagged are listed
 below -

 <?php
 $i=0;

2.	 Retrieve the tagged pictures of the user by executing the following FQL query:
 $tagpics = $facebook->api(array('method' => 'fql.query',
 'query' => "SELECT src_small FROM photo WHERE pid IN (
 SELECT pid,created FROM photo_tag WHERE subject = me()
 ORDER BY created DESC)",));

3.	 Display the latest five tagged pictures:
 foreach ($tagpics as $tagpic) {
 echo $tagpic['pid']." ".$tagpic['created'].
 '';
 $i++;
 if($i==5)
 break;
 }
 ?>
 </body>
</html>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

108

4.	 Now save the file and run the application. The five latest pictures, in which the current
user has been tagged, will be displayed as shown in the following screenshot:

How it works...
FQL contains a photo_tag table in which the details of the pictures in which a specific user
has been tagged are present. It contains x and y coordinates of the tag, created time, subject
ID, and so on.

Here, we have written a nested FQL query in which first, by using the photo_tag table we get
the photo ID (pid) of the tagged pictures. We order the pictures by the time they were created
in descending order so that we get the latest pictures first. This was done by the following line
of code:

SELECT pid, created FROM photo_tag WHERE subject = me()
 ORDER BY created DESC

Next, to display the pictures we need to fetch their URL. For this, we query the photo table for
all the picture IDs that we have obtained using the previous query. Thus, the complete query
becomes:

SELECT src_small FROM photo WHERE pid IN (SELECT pid, created
 FROM photo_tag WHERE subject = me() ORDER BY created DESC)

The retrieved picture information gets stored in $tagpics. On traversing this array we simply
display the first five among the obtained pictures using a foreach()PHP loop. They will be
the latest ones as we have ordered them in the descending order of their created time.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

109

There's more...
The subject field present in the photo_tag table does not only refer to the user ID of the
person we are looking for. We can even get the pictures related to a particular event or group.
For this, we simply need to put the corresponding event ID or group ID in the subject field. For
example:

SELECT pid FROM photo_tag WHERE subject=[eid], where [eid] should be replaced
by the ID of an event.

See also
ff Retrieving the latest photos published by a user

Retrieving the latest photos published by a
user

A Facebook user can create photo albums in his/her profile and upload and publish pictures.
By using FQL we can retrieve these photographs published by the user.

Getting ready
You should have set up config.php and index.php as explained in the beginning of the
chapter. Also, you need to have user_photos extended permission.

How to do it...
The following steps will retrieve the latest pictures published by a user:

1.	 Open index.php and append the following code given:
<html>
 <body>
 Latest pictures published by <?php echo $me['name'];
 ?> are shown below -

 <?php

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

110

2.	 Retrieve the latest pictures published by the user by using the following FQL query:
 $pics_published = $facebook->api(array('method' =>
 'fql.query', 'query' => "SELECT src_small, pid FROM photo
 WHERE aid IN (SELECT aid FROM album WHERE owner = me()
 ORDER BY created DESC)ORDER BY created DESC",));

3.	 Display the retrieved pictures:
 foreach ($pics_published as $pic) {
 echo '';
 }
 ?>
 </body>
</html>

4.	 Now run the application file. A series of pictures, which have been recently published
by the user, will get displayed and will look something like this:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

111

How it works...
In the code for retrieving the pictures published by a user, first of all we select the albums
which the user has created. For this we query the album table and order the albums in
descending order of their time of creation, thus, making the recent ones the first in the list. It
has been done by the following FQL query:

SELECT aid FROM album WHERE owner = me() ORDER BY created DESC

Next, we need to retrieve the pictures associated with these albums and display them. Since,
this should contain the latest ones at the top, we order the pictures in the descending order of
their creation time. This is finally achieved through the following complete query:

SELECT src_small, pid FROM photo WHERE aid IN (SELECT aid
 FROM album WHERE owner = me() ORDER BY created DESC)
 ORDER BY created DESC

Here, pid refers to the picture ID whereas src_small is the URL of a particular picture. The
pictures retrieved get stored in a PHP variable $pics_published. We traverse through this
array through the foreach() loop and display the pictures using the HTML img tag.

There's more...
We can always limit the number of pictures that we want to display or retrieve. This can be
easily done by using the LIMIT clause in FQL. For example to retrieve the latest five photos
we can use the LIMIT clause as follows:

SELECT src_small, pid FROM photo WHERE aid IN (SELECT aid FROM album
 WHERE owner = me() ORDER BY created DESC) ORDER BY created DESC
 LIMIT 5

Retrieving details of an event
One of the most amazing features of Facebook is events. Events allow us to schedule some
task at a specific time and invite people and thus, we can share our plans and ideas. We can
use FQL to retrieve the details of any event created by a user.

Getting ready
You should have set up config.php and index.php as explained in the beginning of the
chapter. Also, you need to have user_events extended permission.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

112

How to do it...
The following steps will retrieve the event details:

1.	 Open index.php and append the code given below:
<html>
 <body>
 <?php

2.	 Specify the event id:
 $eid = 153741751357153;
 ?>
 Event information for id <?php echo $eid; ?> created by
 <?php echo $me['name']; ?> is listed below -

 <?php

3.	 Retrieve the details of an event using this FQL query:
 $events = $facebook->api(array('method' => 'fql.query',
 'query' => "SELECT eid, name, description, start_time,
 end_time, location, pic_square FROM event
 WHERE eid = $eid"));

4.	 Display event details in a table format:
 echo '<table width = "100%">';
 echo '<tr><th align="LEFT">Event Id</th>
 <th align="LEFT">Name</th>
 <th align="LEFT">Description</th>
 <th align="LEFT">Location</th>
 <th align="LEFT">Picture</th>
 <th align="LEFT">Start Time</th>
 <th align="LEFT">End Time</th></tr>';
 foreach ($events as $event) {
 echo '<tr><td>' . $event['eid'] . '</td>
 <td>' . $event['name'] . '</td>
 <td>' . $event['description'] . '</td>
 <td>' . $event['location'] . '</td>
 <td><img src = "' . $event['pic_square'] .
 '" /></td>
 <td>' . date("D M j G:i:s T Y", $event
 ['start_time']) . '</td>
 <td>' . date("D M j G:i:s T Y", $event
 ['end_time']) . '</td>
 </tr>';

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

113

 }
 echo '</table>';
 ?>
 </body>
</html>

5.	 Replace $eid with the event ID of your choice. Now run the application file. A list
containing the event detail will get displayed and will appear something like this:

How it works...
FQL contains an event table which stores all the details corresponding to any event which
is uniquely identified by an event ID. Here, we retrieve the following details—event ID, name,
description, start time, end time, and location. This has been done by executing the
following query:

SELECT eid, name, description, start_time, end_time, location,
 pic_square FROM event WHERE eid = [eid]

The [eid] in the query has to be replaced by the ID of the event for which we want to fetch
the details.

We make a call to this query using the api() function of the Facebook class. The returned
information gets stored in the $events variable. Next, using a foreach() PHP loop we print
the obtained event details in a tabular format.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

114

Retrieving details of a user's friends by
using the multiquery method

Many a time, we want to execute multiple FQL queries in our application. If we will use the
fql.query method to do this, then our application will make multiple requests to Facebook
for executing these queries and will hamper performance. We can optimize this by using the
fql.multiquery method which allows us to execute multiple queries together in a single
call to Facebook. This improves performance tremendously and consumes less time.

Getting ready
You should have set up config.php and index.php as explained in the beginning of
the chapter.

How to do it...
The following steps will demonstrate how to retrieve a user's friend's details:

1.	 Open index.php and append the code to it:
<html>
 <body>
 Details of friends of <?php echo $me['name']; ?></
 strong> by using fql.multiquery are shown below -

 <?php

2.	 Define multiple queries in the $multi_queries array:
 $multi_queries = array('query1' => 'SELECT uid2 FROM friend
 WHERE uid1 = me()', 'query2' => 'SELECT name FROM user
 WHERE uid in (SELECT uid2 FROM #query1)',);

3.	 Convert the $multi_queries array to a JSON type array using the json_encode()
function:
 $encoded_multi_queries = json_encode($multi_queries);

4.	 Execute the multiple queries using the fql.multiquery method:
 $results = $facebook->api(array('method' => 'fql.
 multiquery', 'queries' => $encoded_multi_queries));

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

115

5.	 Display the results of the query:
 echo 'Query 1: Uid of friends - ';
 foreach ($results[0]['fql_result_set'] as $result) {
 echo $result['uid2'] . ', ';
 }
 echo '

Query 2: Name of friends - ';
 foreach ($results[1]['fql_result_set'] as $result) {
 echo $result['name'] . ', ';
 }
 ?>
 </body>
</html>

6.	 Save and run the application file. A successful execution of the code will display an
output like this:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Querying Facebook

116

How it works...
In the code, our main aim is to retrieve the user ID and name of the current user's friends and
display them. $multi_queries is a PHP array with two indexes—query1 and query2 which
contain one query each. Thus, we have two set of queries:

ff query1 => SELECT uid2 FROM friend WHERE uid1 = me(): It selects the user ID
of the friends of the current user

ff query2 => SELECT name FROM user WHERE uid in (SELECT uid2 FROM
#query1): It gives the names of the users whose ID has been retrieved in the first
query

We can fetch data from one query and then again use it in another query within the same call.
To reference the results of a former query in any latter query within the same call, we need to
specify its name in the FROM clause, preceded by #. Thus, we have query2 dependent on the
result of query1. Here, with the use of multiquery we are executing both of them in the
same call.

We use the json_encode() function to convert array named $multi_queries to a JSON
data type and we store this in $encoded_multi_queries. For executing the multiquery,
we use the api() function. It takes an array as its argument parameter. In the array, we set
fql.multiquery as the method to indicate that we want to execute multiple queries in the
same call. And, the queries index contains the FQL queries in JSON format which we want
to execute. After execution of the multiquery, the returned information gets stored in the
$results variable. We use a foreach() PHP loop to print the retrieved data from both
the queries.

You can use print_r($results) to understand the structure of
the returned data array.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

4
Using FB Script

In this chapter, we will cover:

ff Getting the current user status and performing session validation

ff Setting up extended permissions during login

ff Logging out a user

ff Resetting the size of iframe

ff Making a Graph API call

ff Executing an FQL query

ff Subscribing to an event change

ff Unsubscribing to an event change

ff Retrieving a profile picture using XFBML

ff Adding bookmarks using XFBML

ff Authentication and setting up extended permissions using XFBML

Introduction
Facebook has its own JavaScript SDK which provides a rich set of features and functionalities
through JavaScript. This relieves the load off the server and makes the application load faster.
The client-side authentication and rendering provides a great user experience as the content
becomes dynamic in nature.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using FB Script

118

Facebook JavaScript SDK comes with a set of predefined functions and XFBML tags. We
can use these functions and XFBML tags in applications which run inside, as well as outside
Facebook. Facebook JavaScript SDK consists of a JavaScript file whose source URL is
http://connect.facebook.net/en_US/all.js. We need to include this JS file in
our application. This file handles all Facebook JavaScript functions as well as parsing and
rendering of XFBML tags. These predefined functions are like normal JavaScript functions and
they provide us with functionalities, such as performing Facebook authentication, making a
Graph API call, executing FQL query, and so on. On the other hand, XFBML tags are like HTML
tags which are parsed and rendered by Facebook JavaScript SDK, such as displaying a profile
picture, login button, bookmark button, and so on.

Prerequisites
This section will introduce you to the basic configuration that you must do before starting with
the recipes discussed in this chapter. The following is a prerequisite that must be fulfilled
before implementing any recipe given in this chapter:

1.	 Create a file index.php and add the following code to it:
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:fb="http://www.
facebook.com/2008/fbml">
<body>

2.	 All the application content will be inside the following div:
<div id="fb-root">
 <!-- Your application content here -->
</div>

3.	 Include jQuery library from Google CDN:
<script type="text/javascript"
 src="https://ajax.googleapis.com/ajax/libs/jquery/
 1.5.2/jquery.min.js">
</script>

4.	 Initialize the application by calling FB.init():
<script type="text/javascript">
window.fbAsyncInit = function() {
 FB.init({
 appId : 'your_app_id',
 status : true,
 cookie : true,
 xfbml : true
 });
/* Your FB JavaScript code here. It will be loaded asynchronously.
*/
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://connect.facebook.net/en_US/all.js
http://connect.facebook.net/en_US/all.js

Chapter 4

119

5.	 Load FB JavaScript SDK asynchronously:
(function() {
 var e = document.createElement('script');
 e.type = 'text/javascript';
 e.src = document.location.protocol +
 '//connect.facebook.net/en_US/all.js';
 e.async = true;
 document.getElementById('fb-root').appendChild(e);
}());
</script>
</body>
</html>

Here, replace your_app_id in the FB.init() function with your own application ID.

In order to use XFBML in your application consistently across all web browsers, we need
to add an XML namespace attribute to the root <html> element of index.php. This is
necessary to render XFBML tags in Internet Explorer.

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:fb="http://www.facebook.com/2008/fbml">

We load the Facebook JavaScript SDK by using the standard <script> element. We
load SDK asynchronously so that it does not hinder the loading of other elements in our
application and this ensures fast page loads for the users. Also, we have specified a <div>
element named fb-root within the document. It is important to include a div with this name
otherwise the JavaScript SDK will not load and report an error. The code for this is as follows:

<div id="fb-root">
 <!-- Your application content here -->
</div>
<script type="text/javascript">
window.fbAsyncInit = function() {
 FB.init({
 appId : 'your_app_id',
 status : true,
 cookie : true,
 xfbml : true
 });
/* Your FB JavaScript code here. It will be loaded asynchronously. */
};
(function() {
 var e = document.createElement('script');
 e.type = 'text/javascript';
 e.src = document.location.protocol +
 '//connect.facebook.net/en_US/all.js';

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using FB Script

120

 e.async = true;
 document.getElementById('fb-root').appendChild(e);
}());
</script>

Facebook JS SDK is available over both regular and SSL connections. Apart from the protocol,
the rest of the URL (//connect.facebook.net/en_US/all.js), used for loading FB
JS SDK over regular or SSL connection, is the same. Depending on the connection type of
our application, we can load FB JS SDK accordingly by appending document.location.
protocol to this URL. The document.location.protocol returns the protocol of the
web page which is either http or https.

As soon as the JavaScript SDK is loaded asynchronously and is ready to use, we initialize our
Facebook application by calling the FB.init() function. Here we pass the following
four parameters:

ff appId: which is the application ID which we get after registering our application with
Facebook

ff status: its true value implies that we can perform a user login status check if
required

ff cookie: it enables the cookies to allow the server to access the session

ff xfbml: allows us to access and parse XFBML tags, if true

Another important thing to note, is that we have called the FB.init() function inside the
function assigned to window.fbAsyncInit. This function, which is assigned to window.
fbAsyncInit, is executed as soon as the JavaScript SDK is loaded asynchronously. Thus,
any code which we want to run after the SDK is loaded, should be placed within this function
after the FB.init() function.

Additionally, we have loaded jQuery by using the following <script> code:

<script type="text/javascript"
 src="https://ajax.googleapis.com/ajax/libs/jquery/
 1.5.2/jquery.min.js">
</script>

We will use jQuery throughout this chapter as it is easy to use and understand, as well as it
makes coding easy.

Facebook JavaScript SDK supports different locales. The locales follow ISO
language and country codes respectively, and are concatenated by
an underscore. For example, en_US in http://connect.facebook.
net/en_US/all.js represents US English. The complete list of Facebook
locales is available in this XML file - https://www.facebook.com/
translations/FacebookLocales.xml.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/country_codes/iso_3166_code_lists/english_country_names_and_code_elements.htm
http://www.iso.org/iso/country_codes/iso_3166_code_lists/english_country_names_and_code_elements.htm
http://connect.facebook.net/en_US/all.js
http://connect.facebook.net/en_US/all.js
http://www.facebook.com/translations/FacebookLocales.xml

Chapter 4

121

Getting the current user status and
performing session validation

Almost always, your application requires performing certain operations for which we need to
have an authenticated and valid user session. By using Facebook JavaScript SDK, we can
check the logged in status of the user and whether the session is still valid or not.

Getting ready
You should have created index.php as mentioned in the beginning of this chapter.

How to do it...
Open index.php and add the following highlighted code inside the function assigned to
window.fbAsyncInit, just after the FB.init() function:

1.	 Initialize the application:
window.fbAsyncInit = function() {
 FB.init({
 appId : 'your_app_id',
 status : true,
 cookie : true,
 xfbml : true
 });
/* Your FB JavaScript code here. It will be loaded asynchronously.
*/

2.	 Retrieve the current user's login session using the FB.getLoginStatus() function:
 FB.getLoginStatus(function(response) {
 if (response.session) {
 alert('We have confirmed that you have a
 valid session.');
 }
 else {
 FB.login(function(response) {
 if (response.session) {
 alert("User is logged in");
 }
 else {
 alert("User is not logged in");
 }
 });

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using FB Script

122

 }
 });
};

3.	 Save and run index.php.

How it works...
Here, after initializing our Facebook application, we make a call to the FB.getLogin
Status() function, which retrieves the current user's login status from the Facebook server.
It takes a callback function as an argument. This callback function receives a JavaScript
array named response, which contains information about the current connection between
the client and the Facebook server. This response array has an element named session
which contains a Boolean type value and can be used to determine whether the user has a
valid session or not. If the user has a valid session, then the code inside the if conditional
statement gets executed which, in turn, displays an alert box with the message shown in the
following screenshot:

If response.session is false, then we know that the session has either expired or doesn't
exist. Thus, we need to prompt the user to login. For this, we make a call to the FB.login()
function. It will first check whether the user is logged on to the Facebook network or not. If not
so, then it will display a Facebook Login dialog box to the user. Once the user successfully logs
on to Facebook, it next checks whether the user has authorized the application or not, that
is, whether the user has allowed the application to access his/her basic information or not.
Again, if it is not so, then it displays the Request for Permission dialog box as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

123

After the user interacts with this dialog box, we again check for the value of response.
session inside the callback function, which is the argument of the FB.login() function.
If the user has authorized the application, then response.session will be set to true
otherwise it will be false. A message is then displayed accordingly.

There's more...
In our code, FB.login() is triggered automatically if the user is not logged in. However, this
function always launches a Facebook pop-up dialog box. This pop up will be blocked by all
modern browsers as it does not have a user event, such as a click on a hyperlink or button,
associated with it and this is deemed as malicious activity by them. To overcome this problem,
instead of calling the FB.Login() function automatically when the user doesn't have a valid
session, we can associate with the onclick() event of a button or hyperlink. This can be
done by the following code snippet:

<input type="button" onclick="FB.login()"
 value="Click to Login" />

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using FB Script

124

See also
ff Authentication and setting up extended permissions using XFBML

Setting up extended permissions
during login

A Facebook application is often required to access the user's profile, to post messages on
his/her wall as well as on his/her friends' wall, to publish pictures, and so on. However, for
security reasons, all these tasks are not allowed by default by Facebook and we need to
request specific permission, known as extended permission, for each task from the user. This
can be easily done at the client side using the Facebook JavaScript SDK.

Getting ready
You should have set up index.php, as explained in the beginning of the chapter.

How to do it...
The following steps will help in setting up extended permissions:

1.	 Open index.php and add a login button inside the div fb-root:
<div id="fb-root">
<!-- Your application content here -->
<input type="button" id="login" value="Click to Login" />
</div>

2.	 Add the following highlighted code just after the FB.init() function. Here, we use
FB.login() function for requesting extended permissions:
/* Your FB JavaScript code here. It will be loaded asynchronously.
*/
$(document).ready(function() {
 $("#login").click(function() {
 FB.login(function(response) {},
 {perms: 'read_stream, publish_stream, offline_access'});
 });
});

3.	 Save the file and run it. When the user launches the application for the first time and
if he/she is already logged in to Facebook, then a dialog box asking for the above
mentioned permissions will get displayed and will look like the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

125

How it works...
For requesting extended permissions, when the user logs in for the first time, we use the
FB.login() function. The first argument of this function is a callback function and the
second argument is optional and is used to modify login behavior. The perms takes a string
as its value which contains extended permissions separated by a comma. Here, it is—read_
stream, publish_stream, offline_access.

We have asked for the read, publish, and offline permissions from the user. If more
permissions are required, then they can be simply looked up from the permission table
given at this link - http://developers.facebook.com/docs/reference/api/
permissions/.

See also
ff Another way to ask for an extended set of permissions is through XFBML. For more

information, refer Authentication and setting up extended permissions using XFBML

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using FB Script

126

Logging out a user
Facebook JavaScript SDK allows to safely logout the current user from Facebook. This is a
must have feature, especially when your application is hosted outside of Facebook. Here is
how we will implement this.

Getting ready
You should have set up index.php as explained in the beginning of the chapter.

How to do it...
The following steps will show how to log out a user:

1.	 Open index.php and add the following code inside the div fb-root:
<input type="button" id="logout" value="Click to Logout" />

2.	 Now, inside the function assigned to window.fbAsyncInit, copy the following
highlighted code right after the FB.init() function. Here, we use the FB.logout()
function to logout a user:
$(document).ready(function() {
 $("#logout").click(function() {
 FB.logout(function(response) {
 // user is now logged out
 alert('User has been successfully logged out.');
 });
 });
});

3.	 Save and run index.php.

How it works...
For logging out a user, we have provided an input button with a logout ID. Next by using
jQuery, we have registered to the click() event and whenever this event is fired, the
callback function inside this is executed.

We make a call to the FB.logout() function inside the callback function. This function
automatically logs out the current user from the Facebook network. It accepts an optional
argument which is also a callback function. This function is invoked when the user has been
successfully logged out. We use this callback function to display an alert message to the user
as shown in the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

127

See also
ff We can also use XFBML tag to provide a logout option for the user. It has been

explained in Authentication and setting up extended permissions using XFBML
recipe.

Resetting the size of iframe
Facebook allows us to set the size of your application's iframe inside which our content
appears. This is useful whenever our content changes, that is, we can change the width
and height of our iframe accordingly. Facebook Javascript SDK comes equipped with this
functionality and we will show you here how to implement it.

Getting ready
You should have set up index.php as explained in the beginning of the chapter.

How to do it...
The following will help reset the size of iframe:

1.	 Open index.php and add the following highlighted code to the div fb-root:
<div id="fb-root">
 <!-- Your application content here -->
 Width(in pixels): <input type="text" id="width" value="640" />
 Height(in pixels): <input type="text" id="height"
 value="480" />

 <input type="button" id="resize" value="Resize iframe" />
</div>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using FB Script

128

3.	 Add the following code after the FB.init() function. Here, we use the FB.Canvas.
setSize() function to set the size of the iframe:
$(document).ready(function() {
 $("#resize").click(function() {
 FB.Canvas.setSize({
 width: $("#width").val(),
 height: $("#height").val()
 });
 });
});

4.	 Save and run index.php.

How it works...
Here, we have used a pair of text type input boxes to demonstrate how to reset the size of the
application's iframe. The two input textboxes with IDs width and height correspond to width
and height of the iframe in pixels respectively. Also, we have an input button with the resize
ID. We have registered to use the click() event of this button with the help of the following
code:

$(document).ready(function() {
 $("#resize").click(function() {
 FB.Canvas.setSize({
 width: $("#width").val(),
 height: $("#height").val()
 });
 });
});

We have used the FB.Canvas.setSize() function inside the callback function of the
$("#resize").click(). This function takes an optional object as the argument which has
two attributes—width and height. These decide the new dimension of the iframe and these
values are in pixels. We use the val() function of the jQuery to get the values of the two
input textboxes.

The maximum value of the width of the iframe is restricted to whatever we
have chosen in our application settings. However, there is no restriction on
the maximum value of the height of the iframe.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

129

There's more...
Also, if we don't pass any argument inside the FB.Canvas.setSize() function and call it,
then the iframe is automatically resized according to the current content size.

Making a Graph API call
We can make Graph API calls to the Facebook server through the JavaScript SDK. This allows
us to build dynamic applications, which can load data directly from Facebook servers to the
user's browser. This improves performance tremendously, in comparison to making all calls
from your server, as all processing and rendering is done on the client side.

Getting ready
You should have set up index.php as explained in the beginning of this chapter.

How to do it...
The following steps will describe a Graph API call:

1.	 Open index.php and add the following code to it just below the FB.init()
function. Specify the content to be posted:
var text = 'This content is posted via the JS SDK';

2.	 Make a Graph API call using the FB.api() function:
FB.api('/me/feed', 'post', { message: text },
function(response) {
 if (!response || response.error) {
 alert('Error occured');
 } else {
 alert('Post ID is ' + response.id);
 }
});

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using FB Script

130

3.	 Save and run the file. An alert box will be displayed as shown in the following
screenshot:

Also, a message will be posted on the current user's wall as shown in the following
screenshot:

How it works...
Here, we have used the FB.api() function of JS SDK to make a Graph API based call. The
syntax of the FB.api() function is the following code snippet:

FB.api(url_path, http_method, query_param, cb_fn);

The various parameters used inside the FB.api() function are as follows:

ff url_path: This signifies the URL of the Graph API object whose properties we want
to access. For example, to access the current user's friends, this should be set as /
me/friends and gets automatically appended to https://graph.facebook.
com.

ff http_method: This is used to mention the type of request which we want to make.
We can either make a POST, GET, or DELETE request to Facebook. This is an optional
field with GET as the default request.

ff query_param: This is also an optional field. It contains the necessary parameters
related to the current query. For example, it can be a message which is to be
published or can even be paging parameters.

ff cb_fn: This is the callback function which is used to handle the response.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

131

In the preceding code, we have published a message given by the text variable to the current
user's wall. For this, we make a call to the FB.api() function as shown in the following
code snippet:

FB.api('/me/feed', 'post', { message: text },
 function(response) { });

Here, we have accessed the Graph API object given by https://graph.facebook.com/
me/feed. As we want to publish the message, a POST request had been made. Also, the
query_param parameter contains the message which we want to publish. We have used the
callback function to notify the user whether the POST request was successful or not.

Executing an FQL query
One way to execute the FQL query is by using the PHP SDK for the Graph API. However, we
can even execute FQL by using the Facebook JavaScript SDK method FB.Data.query. This
makes execution faster without putting any load on your server.

Getting ready
You should have set up index.php as explained in the beginning of the chapter.

How to do it...
Here we retrieve the current user's profile information using the FQL query.

1.	 Open index.php and copy the code given below just after the FB.init() function.
Check the login status of the user by using the FB.getLoginStatus() function:
FB.getLoginStatus(function(response) {
 if (response.session) {
 fqlQuery();
 }
});

2.	 Define the FQL query inside the fqlQuery() function:
function fqlQuery(){
 var query = FB.Data.query('SELECT name, hometown_location,
 sex, pic_square FROM user WHERE uid=me()
 ');

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using FB Script

132

3.	 Print the result:
 query.wait(function(rows) {
 $("#name").html('Your name: ' + rows[0].name + "
" +
 '' +
 "
");
 });
}

4.	 Save the file and run it. If we have a valid user session, then the FQL query will run
and we will get the output as shown in the following screenshot:

How it works...
Here, we use the FB.Data.query() function of Facebook JavaScript SDK to perform a
parameterized FQL query. In the earlier code, first we use the FB.getLoginStatus()
function to check whether the user's session is a valid one or not. This has been done as we
are retrieving the profile information of currently logged in user. If the session is valid, then we
make a call to the fqlQuery() function.

In the fqlQuery() function, we use the FB.Data.query() function to execute the FQL
query. It takes a single argument, which is the query we want to execute, and is in the form of
string. Here, it is the following code snippet:

SELECT name, hometown_location, sex, pic_square FROM user
WHERE uid = me()

This function returns an FB.Data.Query object, which gets stored in the query variable. We
parse this object row by row and display the results accordingly.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

133

Subscribing to an event change
Facebook JavaScript SDK has a beautiful feature known as event subscription, that is,
we can subscribe to any particular event and whenever that event takes place, a callback
function, which has to be specified by us, will be executed. This eliminates the need to use
the traditional loop based mechanism, which checks for the event continually, and we are
automatically notified when a particular event takes place. Suppose we want to subscribe to
an event which gets fired whenever a user logs in. This event is known as auth.login and
can be subscribed to as explained in this recipe.

Getting ready
You should have set up index.php as explained in the beginning of the chapter.

How to do it...
The following steps will demonstrate how to subscribe to an event change:

1.	 Open index.php and add the following highlighted code inside the fb-root div:
<div id="fb-root">
 <button id="login">Login</button>
</div>

2.	 Add the following highlighted code just after the FB.init() function inside the
function assigned to window.fbAsyncInit. Here, we subscribe to the login event
using the FB.Event.subscribe() function:
window.fbAsyncInit = function() {
 FB.init({appId: 'your_application_id', status: true,
 cookie: true, xfbml: true});
 /* All the events have been registered here. */
 FB.Event.subscribe('auth.login', function(response) {
 // do something when the user logs in
 alert('You have logged in.');
 });
};

4.	 Use the ready() function to register the jQuery click() event:
$(document).ready(function() {
 $("#login").click(function() {
 FB.login();
 });
});

5.	 Save index.php and launch the application.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using FB Script

134

How it works...
Here, we have used the FB.Event.subscribe() function to subscribe to the auth.
login event. This function takes two arguments. The first argument is the name of the event
to which we want to subscribe to and the second argument of the function is the callback
function which gets executed when the event mentioned as the first argument takes place.

To demonstrate event subscription, we have used a button with id as login and value as
Login. We have used jQuery to specify a callback function for the click event on this button.
This function in turn calls the FB.login() function.

Now if a user has not logged on to the Facebook network and if he/she clicks on the login
button of this application, then the FB.login() function gets executed. Hence, the Facebook
Login dialog box will appear as shown in the following screenshot:

As soon as the user logs in, the auth.login event will be fired and the following screen
is displayed:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

135

There's more...
You can subscribe to the following events:

Events Description
auth.login This event is fired when a user logs in
auth.logout This event is fired when a user logs out
auth.prompt This event is fired when a user is prompted to log in or register

after clicking on a Like button
auth.sessionChange This event is fired when the user session changes
auth.statusChange This event is fired when the status changes
xfbml.render This event is fired when the FB.XFBML.parse() function

finishes its execution
edge.create This event is fired when the user likes something (through the

fb:like XFBML tag)
edge.remove This event is fired when the user unlikes something (through

the fb:like XFBML tag)
comment.create This event is fired when the user adds a comment (through the

fb:comments XFBML tag)
comment.remove This event is fired when the user removes a comment (through

the fb:comments XFBML tag)
fb.log This event is fired on log message.

Unsubscribing to an event change
If we have earlier subscribed to an event change, then at a later stage it may happen that we
no longer need this functionality. To deal with this we can simply unsubscribe to that event by
using Facebook JavaScript SDK.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using FB Script

136

Getting ready
You should have set up index.php as explained in the beginning of the chapter.

How to do it...
The following steps will show how to unsubscribe to an event change:

1.	 Open index.php and add the following highlighted code inside the fb-root div.
Add login, logout, subscribe, and unsubscribe buttons:
<div id="fb-root">
 <input type="button" id="login" value="Login" />

 <input type="button" id="logout" value="Logout" />

 <input type="button" id="sub" value="Subscribe to auth.login
 event" />

 <input type="button" id="unsub" value="Unsubscribe to
 auth.login event" />

</div>

2.	 Declare jQuery click events for the login, logout, subscribe, and unsubscribe buttons:
<script type="text/javascript">
 $(document).ready(function() {
 var onAuth = function(response) {
 alert('You have logged in.');
 };
 $("#login").click(function() {
 FB.login();
 });
 $("#logout").click(function() {
 FB.logout();
 });
 $("#sub").click(function() {
 FB.Event.subscribe('auth.login', onAuth);
 });
 $("#unsub").click(function() {
 FB.Event.unsubscribe('auth.login', onAuth);
 });
 });
</script>

3.	 Save and run index.php.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

137

How it works...
Here, we have used four input type buttons to demonstrate how to unsubscribe to an event.
We use two buttons with login and logout IDs to login to and logout from Facebook
respectively. We have added FB.login() and FB.logout() functions to the click()
event of these buttons, which handle authentication.

Next, we have assigned a callback function to onAuth. This displays a message to the user
that he/she has successfully logged in. We assign the FB.Event.subscribe() function to
the click() event of the input button with the sub ID.

Finally, to unsubscribe, we have used an input button with the unsub ID. Once the user
clicks on this, the FB.Event.unsubscribe() function is called. This function takes
two arguments. The first argument should be the name of the event, which we want to
unsubscribe, and the second argument should have a callback function, which is exactly
similar to that defined in FB.Event.subscribe().

Retrieving a profile picture using XFBML
For rendering the profile picture of a user, we will need to make a request through Facebook
Graph API and then retrieve it. Facebook JavaScript SDK provides an easier way. We can use
XFBML markup to do this. Here, we just have to write an XFBML tag to render the picture. Also,
we can configure the profile picture being displayed.

Getting ready
You need to set up index.php, as explained in the beginning of the chapter. Also, you should
know UID of the user, whose profile picture you want to render, if he/she is not the current
logged in user.

How to do it...
The following steps will help retrive a profile picture:

1.	 Open index.php and add the following XFBML tags inside the div named fb-root:
Retrieving profile picture of users using XBFML -

2.	 Use the XFBML fb:profile-pic tag to load the profile pictures of the users:
<fb:profile-pic uid="loggedinuser" linked="true"
 size="square">
</fb:profile-pic>
<fb:profile-pic uid="{custom_uid}" linked="true"
 size="square">
</fb:profile-pic>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using FB Script

138

3.	 The first fb:profile-pic XFBML tag will load the profile picture of the current user.
The second fb:profile-pic XFBML tag will load the profile picture of the user
whose UID is {custom_uid}. You can replace this accordingly.

How it works...
Here, we have used the fb:profile-pic XFBML tag to render the profile picture of users.
For XFBML tags to be parsed and rendered, the xfbml attribute of the array, which is passed
as an argument of the FB.init() function, should have been set to true. This has already
been done in index.php in the beginning of the chapter. Also, XFBML tags should be present
inside the div named fb-root. The fb:profile-pic takes the following attributes:

ff uid: This attribute contains the UID of the user whose profile picture has to be
loaded. To display the profile picture of the current user, set the value of this attribute
as loggedinuser.

ff size: It decides the size of the rendered profile picture. The default value is thumb.
Other valid values are small, normal, and square. We can also specify width and
height settings instead. Here, we have set the size as square.

ff linked: It renders the image as a link to the user's profile. Valid values are true or
false. Default is true.

ff width: We can set the width of the image in pixels like we do in the img HTML tag.

ff height: Similarly, we can set the height of the image in pixels.

We can use the above mentioned attributes to render the profile picture of the user
appropriately.

The fb:profile-pic XFBML tag is treated like an img HTML tag by
Facebook JavaScript SDK. Hence, all img attributes are valid and can be
used with this XFBML tag.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

139

Adding bookmarks using XFBML
Facebook has bookmark functionality which enables its users to bookmark most used
and necessary links on the Facebook network. We can use XFBML to provide a user with a
readymade button, which can be used by him/her to bookmark your application. This is an
attractive way to indulge users in your application.

Getting ready
You should have set up index.php as explained in the beginning of the chapter.

How to do it...
The following steps will show how to add bookmarks

1.	 Go to the following URL—http://www.facebook.com/developers/apps.php.

2.	 Next, choose your application from the My Apps section, if it is not selected by
default, and then click on Edit Settings. This will load the settings page of
your application.

3.	 Now, click on the Facebook Integration tab.

4.	 Here, under the Canvas section, there is an attribute named Bookmark URL as
shown in the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://www.facebook.com/developers/apps.php
http://www.facebook.com/developers/apps.php
http://www.facebook.com/developers/apps.php

Using FB Script

140

5.	 Enter the URL, to which the user should be redirected to when he/she clicks on your
application's bookmark. If this is left blank, then the user will be redirected to your
Canvas Page. Here, we have left this field blank as we want the user to be redirected
to your main application page.

6.	 Open index.php and add the following XFBML tag inside the div fb-root:
<fb:bookmark></fb:bookmark>

7.	 Now, if you will run index.php, then you will see the bookmark button. On clicking
on this button, the following message is displayed inside Facebook pop-up box:

8.	 Once, you click on the Add Bookmark button, a link to your application will appear in
your profile menu as shown in the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

141

How it works...
The fb:bookmark XFBML tag renders a bookmark button for our application. If a user clicks
on this button, then a pop-up box for final confirmation is displayed to the user. Once the user
clicks on Add bookmark button, a link to our application will appear in the user's Facebook
navigation menu. The bookmark link to our application can be configured on the settings page
of our application as explained earlier.

A user can bookmark links to multiple applications. These links are then arranged according
to the applications most frequently used by the user and this is automatically calculated and
implemented by Facebook.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using FB Script

142

Authentication and setting up extended
permissions using XFBML

If we use Facebook JavaScript SDK in your application, then we can harness the easy-to-use
authentication functionality provided by XFBML. It is an intuitive way to get users logged in to
your application and requires a limited use of coding. This XFBML authentication button can
be used both on iframe-based applications which run inside Facebook as well as independent
applications which run on third-party websites.

Getting ready
You should have set up index.php, as explained in the beginning of this chapter. Also, you
should have the list of extended permissions ready which you want to request from the user.

How to do it...
The following steps will demonstrate autentication:

1.	 Open index.php and append the following XFBML tag inside the div named fb-
root. Include the XFBML fb:login-button tag and set extended permissions:
<fb:login-button show-faces="false" width="200" max-rows="1"
 autologoutlink="true" perms="read_stream,publish_stream">
</fb:login-button>

2.	 Next, add the following JavaScript code snippet just after the FB.init() function.
Use the FB.Event.subscribe() functions to subscribe to the login and logout
events:
FB.Event.subscribe('auth.login', function(response) {
 // do something when user logs in
 alert('You have authorized and logged in.');
});
FB.Event.subscribe('auth.logout', function(response) {
 // do something when user logs out
 alert('You have logged out.');
});

3.	 Now, launch the application.

How it works...
Here, we have used the fb:login-button XFBML tag which provides end users with
an option to authenticate the application and use it. It also has a provision for requesting
extended permissions from the user. This XFBML tag has the following attributes:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

143

ff show-faces: It decides whether to display the face of friends of users already
connected to this application to him/her. Valid values are true and false.

ff width: This is the width of the login button in pixels. The default value is 200.

ff max-rows: This the maximum number of rows of a profile picture of user's friends
which are displayed below the login button. The default value is 1.

ff perms: It should have a list of extended permissions where each permission is
separated by a comma.

ff autologoutlink: This determines whether to display a logout button to the user in
case he/she has logged in. Valid values are true and false.

We have used this XFBML tag with the following code snippet:

<fb:login-button show-faces="false" width="200" max-rows="1"
 autologoutlink="true" perms="read_stream,publish_stream">
</fb:login-button>

Here, we have set show-faces to false, autologoutlink to true, and perms to
read_stream and publish_stream separated by a comma. We can add more extended
permissions, if necessary.

Initially, when a user opens the application and if he/she has not logged onto the Facebook
network, then the login button appears. On clicking on this Facebook Login dialog box, the
following screen is displayed:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using FB Script

144

After this, if the user has not authorized the application and he/she is opening it for the first
time, then a second dialog box is displayed requesting permissions as shown in the
following screenshot:

We have used the FB.event.subscribe() function here to subscribe to auth.login and
auth.logout events. This function takes two arguments. The first argument is the name of
the event to subscribe to and the second argument is the function to call in return when the
event takes place. Whenever a user logs in (auth.login event) or logs out (auth.logout
event), these callback functions are executed. It displays a message box in each case. You can
replace this with your own code.

When a user finally authorizes the application, the auth.login event is fired and the
following screen is displayed:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

145

Similarly, when a user finally logs out, the auth.logout event is fired and the following
screen is displayed:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

5
Expressing Yourself

In this chapter, we will cover:

ff Prompting the user to publish a story

ff Using Dialog to add someone as a friend

ff Using the OAuth Dialog to request permissions for your application

ff Prompting the user to send a request to friends

ff Processing the requests sent to the user by friends

Introduction
Facebook incorporates many features to make social interactions over the web seamless and
easy for its users. One such feature is the concept of Facebook Dialogs. Dialogs are a way to
help users see and interact with the Facebook environment. Be it a Facebook third-party or
mobile application all developers can use Facebook Dialogs to provide a consistent interface
to end users for performing various tasks on Facebook. These do not require any special
permission and can be easily used and integrated with our application. In this chapter we will
learn how to integrate Facebook Dialogs in our application using Facebook JavaScript SDK

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Expressing Yourself

148

Prerequisites
This section will show how to perform a basic configuration before starting with the recipes
discussed in this chapter:

1.	 Create a new file and name it as index.php. Copy the following code:
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:fb="http://www.
facebook.com/2008/fbml">

 <body>

2.	 All the application content will be inside this div:
 <div id="fb-root">
 <!-- Your application content here -->
 </div>

3.	 Include jQuery library from Google CDN:
 <script type="text/javascript"
 src="https://ajax.googleapis.com/ajax/libs/jquery/1.5.2/
 jquery.min.js"></script>

4.	 Initialize the application by calling FB.init():
 <script type="text/javascript">
 window.fbAsyncInit = function() {
 FB.init({
 appId : 'your_app_id',
 status : true,
 cookie : true,
 xfbml : true
 });

 /* Your FB JavaScript code here.
 It will be loaded asynchronously. */
 };

5.	 This code loads Facebook JavaScript SDK asynchronously:
 (function() {
 var e = document.createElement('script');
 e.type = 'text/javascript';
 e.src = document.location.protocol +
 '//connect.facebook.net/en_US/all.js';
 e.async = true;
 document.getElementById('fb-root').appendChild(e);
 }());
 </script>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

149

 </body>
</html>

6.	 Here, replace your_app_id in the FB.init() function with your own application
ID.

If we want to use XFBML in our application consistently across all web browsers, we need
to add an XML namespace attribute to the root <html> element of index.php. This is
necessary to render XFBML tags in Internet Explorer.

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:fb="http://www.facebook.com/2008/fbml">

We have used the standard <script> element to load the Facebook JavaScript SDK. We load
it asynchronously to ensure fast page loads for the users as this doesn't block the loading
of other elements in the page. Moreover, we need to specify the fb-root div, otherwise the
JavaScript SDK will not load and report an error.

After JavaScript SDK loads itself asynchronously, we initialize our Facebook application by
calling the FB.init() function. It takes the following parameters:

ff appId: the application ID we get after registering our application with Facebook

ff status: a true value implies that we can perform a user login status check if
required

ff cookie: it enables the cookies to allow the server to access the session

ff xfbml: allows us to access and parse XFBML tags, if true

Another important thing to note is that the FB.init() function should be inside the
function assigned to window.fbAsyncInit. This function, which is assigned to window.
fbAsyncInit, is executed as soon as the JavaScript SDK is loaded asynchronously. Thus,
any code which we want to run after the SDK is loaded should be placed within this function
after the FB.init() function.

Additionally, we have also included jQuery by using this <script> code:

<script type="text/javascript"
src="https://ajax.googleapis.com/ajax/libs/jquery/1.5.2/jquery.min.
js"></script>

Now we are ready to begin with Facebook Dialogs.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Expressing Yourself

150

Prompting the user to publish a story
If we want to publish a story or news piece on the wall of the current user by using an already
built interface, we can do so with the help of Facebook Dialogs. It provides us with a ready to
use interface which can be displayed to the user and finally used to publish any post.

Getting ready
You should have created index.php as mentioned in the beginning of this chapter.

How to do it...
The following steps will demonstrate how to publish a story:

1.	 Open index.php and add the following highlighted code inside the div named fb-
root as shown:
<div id="fb-root">
 <input type="button" id="launch" value="Launch" />

</div>

2.	 Next, add the following highlighted code to the function assigned to window.
fbAsyncInit, just after the FB.init() function:
 window.fbAsyncInit = function() {
 FB.init({appId: 'your_app_id', status: true,
 cookie: true, xfbml: true});

 $(document).ready(function() {

3.	 Use the callback function of the click() method for the button launch to display the
Facebook Feed Dialog:
 $("#launch").click(function() {

4.	 Use the FB.ui() function to render the dialog box along with a set of parameters:
 FB.ui({
 method: 'feed',
 name: 'Facebook Feed Dialog',
 link: 'http://developers.facebook.com/docs/
 reference/dialogs/',
 picture: 'http://www.packtpub.com/sites/all/
 themes/pixture_reloaded/images/pp/
 packt-logo.jpg',
 caption: 'Application Development with Graph API',
 description: 'This is Facebook Feed Dialog box and
 is used to post to the wall.',

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

151

 message: 'This message will be posted to your
 wall!'
 },

5.	 Use the callback function of FB.ui() to determine the status of the post and alert
the user:
 function(response) {
 if (response && response.post_id) {
 alert('Post was published.');
 } else {
 alert('Post was not published.');
 }
 });
 });
});
}

6.	 Now save and run index.php.

How it works...
In the preceding code, after initializing our Facebook application, we use the jQuery click
event of the button with ID launch to make a call to the FB.ui() function. For publishing a
story on the current user's wall, we make use of the inbuilt Facebook Feed Dialog. This is done
by FB.ui()which takes a JavaScript object as a parameter. We set the method attribute
as feed, which determines that we want to render the Facebook Feed Dialog box. We can
configure our Facebook Feed Dialog box with the help of the following attributes:

ff app_id: This is an optional field. It refers to your application ID.

ff link: It is the URL of the link attached to this post. This is also an optional field and
may or may not be mentioned.

ff picture: It is the URL of the picture attached to this post. This is also an optional
field.

ff name: It is the name of a link. Again, it is an optional field.

ff caption: It is the caption of the link name and appears beneath it. It is also an
optional field.

ff description: It is the description of the link. Also an optional field.

ff message: It is the message which has to be posted.

ff redirect_uri: It is the URL to which we want to redirect to after the user clicks on
the dialog button.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Expressing Yourself

152

We can even invoke the Facebook Feed Dialog box by directing the user to the following URL—
http://www.facebook.com/dialog/feed. Also, we can specify the attributes by adding
them as query parameters to the URL. The equivalent URL for the dialog is as shown:

http://www.facebook.com/dialog/feed?app_id=your_app_id&link=http://
developers.facebook.com/docs/reference/dialogs/&picture=http://www.
packtpub.com/sites/all/themes/pixture_reloaded/images/pp/packt-
logo.jpg&name=Facebook%20%Feed%20%Dialog&caption=%20Application%20
Development%20with%20Graph%20API&description=This%20is%20Facebook%20
Feed%20Dialog%20box%20and%20is%20used%20to%20post%20to%20the%20
wall.&message=This%20message%20will%20be%20posted%20to%20your%20
wall!&redirect_uri=http://apps.facebook.com/your_app_canvas_name/

Note: We don't need to have any extended permission while using Facebook
Dialogs because, for taking an action the user has to interact with them.

Also, we have an optional callback function to handle the response from the server. We check
if response and response.post_id have valid values and if it's so then our post request
has been processed and we display a message to the user, otherwise we have encountered
an error and we inform the user that the request was not processed.

When a user clicks the Launch button, the Facebook Feed Dialog box appears as shown:

After the user has interacted with the dialog box, the control is returned to the callback
function. If the user clicks the Publish button, then a unique post ID is generated and the
browser is redirected to the URL of the form http://redirect_uri?post_id=your_
generated_post_id. Additionally, the post is published on the user's wall as shown:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

153

In the code, after interacting with the dialog box, a message is shown to the user indicating
whether the post has been published or not. This may vary depending on how we define the
callback function. In the code we have defined the callback function as follows:

function(response) {
 if (response && response.post_id) {
 alert('Post was published.');
 } else {
 alert('Post was not published.');
 }
}

Here, we check whether response and response.post_id exist and if they do then we
display a message confirming that the post has been published.

There's more...
In the Feeds Dialog there are some additional parameters. These are source, action, to, from,
properties, and so on. These may be used to add additional information in the post that has
been made. More about them can be seen at this link: http://developers.facebook.
com/docs/reference/dialogs/feed/

Using Dialog to add someone as a friend
One of the amazing features of Facebook is to search for people and make them friends. We
can directly use Facebook Friends Dialog, if we want to add someone as a friend. It provides
us with an elegant interface where we can send a friend request to someone just with a
mouse click.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Expressing Yourself

154

Getting ready
You should have setup index.php, as explained in the beginning of the chapter.

How to do it...
The following steps will demonstrate how to use Dialog to add friends:

1.	 Open index.php and add the following highlighted code inside the div fb-root as
shown:
<div id="fb-root">
 <input type="button" id="launch" value="Launch" />

</div>

2.	 Next, add the following highlighted code to the function assigned to window.
fbAsyncInit, just after the FB.init() function:
 window.fbAsyncInit = function() {
 FB.init({ appId: 'your_app_id', status: true,
 cookie: true, xfbml: true });
 $(document).ready(function() {

3.	 Use the callback function of the click() method for button launch to display the
Facebook Feed Dialog:
 $("#launch").click(function() {

4.	 Use the FB.ui() function to render the Facebook Friends Dialog box:
 FB.ui({
 method: 'friends',
 id: 'person_id'
 },

5.	 Use the callback function to process the response from Facebook:
 function(response) {
 if (response && response.action) {
 alert('Friend request has been sent.');
 }
 else {
 alert('Friend request has not been sent.');
 }
 });
 });
 });
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

155

6.	 In FB.ui(), you need to replace person_id with the ID of the person whom you
want to add as a friend. Now save and run index.php. A dialog box similar to the
one shown will appear with the profile picture and name of the person whose ID you
have mentioned in the code:

7.	 Now if the user clicks on the Add Friend button, then a friend request will be sent
to the respective person and we display a confirmatory message in an alert box to
the current user notifying him/her about this. Otherwise, we inform the user that the
friend request was not sent.

How it works...
In the code, we have made use of the Facebook Friends Dialog to send a friend request.
For sending a friend request we need to direct the browser to the following URL—http://
www.facebook.com/dialog/friends/?id=friend_id&app_id=your_app_
id&redirect_uri=your_redirect_uri.

To display this dialog box inline within our application we make use of the FB.ui() function
of the Facebook JavaScript SDK. In this function, we have set the method attribute as
friends which indicates that we want to use the Friend Dialog. Also, we can add some more
parameters to configure the Friends Dialog as listed:

ff redirect_uri: This is basically the URL where we have to redirect the user once
he/she clicks any button inside the dialog box. It is, however, not mandatory.

ff app_id: This specifies the application ID. It is required but is automatically specified
by most of the SDKs. For example, in our case we have made use of the FB.init()
function. Thus, we did not define it here explicitly.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Expressing Yourself

156

ff display: This is used to set the display mode. Valid values are page, popup,
iframe, wap, and touch. The default is page on the www subdomain and wap on
the m subdomain. Some of the important display modes are listed as follows:

�� page: In this display mode, the dialogs load in full-page mode with a
Facebook header and footer.

�� popup: This is usually used by external sites and here dialogs are displayed
as browser popups which are limited to 400 px by 580 px.

�� iframe: This display mode renders a dialog over the current page inside a
lightbox iFrame. This mode is not available for all dialogs.

�� touch: This display mode is for smartphones such as iPhone and Android.

�� wap: This display mode loads dialog in plain HTML (without JavaScript) on a
small screen.

ff id: This is the ID or username of the person to whom we want to send the friend
request and thus, is mandatory.

For the FB.ui() method we have passed only the essential parameters as shown:

FB.ui(
 {
 method: 'friends',
 id: 'person_id'
 },
//more code

Next, we use a callback function to analyze the response and notify the user. The returned
data is the action parameter which is set to 1 if the friend request has been sent and the
user is redirected to http://www.example.com/response/?action=1. Otherwise it is
set to 0 and directs the user to http://www.example.com/response/?action=0. This
has been done in the following lines of code:

function(response) {
 if (response && response.action) {
 alert('Friend has been added.');
 } else {
 alert('Friend has not been added.');
 }
 }

Upon successful execution a friend request gets sent to the person whose ID has been
mentioned in the FB.ui() function.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

157

Note: Dialogs are supported only for iframe applications on
Facebook canvas pages.

There's more...
If the person is already a friend of the current user and the application tries to send a friend
request to him/her, then a dialog box saying the user is already a friend will pop up as shown:

However, if the person whom we want to add has already sent us a friend request then the
dialog box will appear and would ask us to either confirm or reject the friend request.

Using the OAuth Dialog to request
permissions for your application

Facebook OAuth Dialog is used to request permissions from the current user for your
application. The user can either accept or deny our request. We can use this dialog box to
request additional extended permissions from the user after they have already used
your application.

Getting ready
ff You should have setup index.php as explained in the beginning of the chapter.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Expressing Yourself

158

How to do it...
The following steps will demonstrate how to use the OAuth Dialog:

1.	 Open index.php and add the following code inside the div with id="launch" as
shown:
<div id="fb-root">
 <input type="button" id="launch" value="Launch" />

</div>

2.	 Add the following code just after the FB.init() function:
<script type="text/javascript">
 window.fbAsyncInit = function() {
 FB.init({appId: 'your_app_id', status: true,
 cookie: true, xfbml: true});
 $(document).ready(function() {

3.	 Use the click() method for the Launch button to display the Facebook OAuth
Dialog:
 $("#launch").click(function() {

4.	 Use the FB.ui() function to render the dialog box:
 FB.ui({
 method: 'oauth',
 scope: 'email,user_birthday',
 response_type: 'token',
 client_id: 'your_app_id',
 redirect_uri: 'http://app.facebook.com/
 app_canvas_name'
 });
 });
 });
};

5.	 Replace your_app_id and app_canvas_name according to your application. In
the scope attribute mention the extended permissions which you want. Now save
this file and launch the application. Upon successful execution a Permission Dialog,
something like the following, will appear:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

159

How it works...
Facebook uses the OAuth protocol for authorizing and authentication. For asking extended
permissions from a user we can use the Facebook OAuth Dialog. We can directly use this
Dialog by sending the user to the URL of the form—http://www.facebook.com/dialog/
oauth/?scope=email,user_birthday&client_id=123050457758183&redirect_
uri=http://www.example.com/response&response_type=token

Alternately, we can use the FB.ui() function to display the dialog box within the application.
Here, it takes a single parameter which is a JavaScript object. In this parameter we set the
method attribute as oauth which specifies that we want to use the OAuth Dialog as shown:

FB.ui({
 method: 'oauth',
 scope: 'email,user_birthday',
 response_type: 'token',
 client_id: 'your_app_id',
 redirect_uri: ' http://app.facebook.com/app_canvas_name'

 });

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Expressing Yourself

160

The OAuth Dialog can have the following parameters:

Meta properties Description
client_id This is the ID of the application. It is mandatory, however, it is

automatically specified by most of the SDKs.
redirect_uri It is the URL to which the user will be redirected to after clicking on the

button inside the Dialog.
state An opaque string used to maintain the application state between the

request and callback. When Facebook redirects the user back to your
redirect_uri, this value will be included unchanged in the response.

response_type It specifies the type of response we have requested for. It could be an
access token or an authorization code or even both.

display It is the mode in which the dialog will appear to the user, be it iframe or
a popup.

scope This contains the permissions which we want the user to grant to
the application. These have to be separated by a comma. The list of
permissions can be seen in the appendix. It is an optional parameter.
If not specified the dialog box will ask the user for the default set of
permissions. It is shown in the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

161

Upon execution of this a series of data gets returned. These could be the following:

Meta properties Description
state Same as explained earlier.
access_token Oauth2.0 access token.
expires_in It specifies the lifetime of the access token.
code OAuth 2.0 authorization code.
error It is an error string which is returned if there is an authorization

error.
error_description It is the error message which gets displayed if there is an error.

Once the code runs successfully and the Permission Dialog box gets displayed to the user, if
the user accepts the permissions and clicks the Allow button he/she gets redirected to the
URL of the form:

http://your_redirect_uri/response?access_token=...&expires_in=3600

And if the user didn't allow then the URL will be like this:

http://your_redirect_uri/response?error=access_denied&error_descripti
on=The+user+denied+your+request

Prompting the user to send a request
to friends

A request in Facebook is a nice way of asking a user's friend to take some action, which
involves both of them, or notify him/her about an update, which again involves both of them.
For example, if the user is sending a gift to his/her friend then we can create a Facebook
request and that friend will automatically be notified by Facebook.

Getting ready
You should have set up index.php as explained in the beginning of the chapter.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Expressing Yourself

162

How to do it...
The following steps will demonstrate how to send a request:

1.	 Open index.php and add the following code to it inside the fb-root div as shown:
<div id="fb-root">
 <input type="button" id="send" value="Send a Request" />

</div>

2.	 Add the following code right after the FB.init() function as shown:
 window.fbAsyncInit = function() {
 FB.init({appId: 'your_app_id', status: true,
 cookie: true, xfbml: true});
 $(document).ready(function() {

3.	 Use the click event of the input type button with the ID send to invoke the dialog box:
 $("#send").click(function() {

4.	 Use the FB.ui() function to render the dialog box:
 FB.ui({
 method: 'apprequests',
 message: 'Try this awesome application?'},

5.	 Use the callback function to alert the user:
 function(response) {
 if (response) {
 $.each(
 response.request_ids,
 function(index, value) {
 alert(index + ': ' + value);
 });
 }
 else {
 alert('Request was not sent');
 }
 });
 });
 });
};

6.	 Now save and launch the application. Click on the Send a Request button. A
Facebook Request Dialog box will be launched as shown:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

163

How it works...
Here, to demonstrate how to send a request we have taken an input type button with the ID
send. When a user clicks on this button a call is made to the FB.ui() function. The first
parameter of this function is a JavaScript object and the second parameter is a callback
function.

In the first parameter we have set the value of the method attribute as apprequests, which
indicates that we want to use the Facebook Request Dialog box. Additionally, we can use the
following parameters to configure our dialog box:

ff message: This is the request in the form of a question which is sent to the user. The
maximum length is 255 characters.

ff to: This is the user ID or username to whom we want to send the request. He/she
must be a friend of the sender. If this is not specified then the user can choose up to
50 recipients otherwise he/she can't choose anyone.

ff data: This optional attribute can be used to pass additional data which we can use
for tracking purposes in our application.

ff title: This is an optional attribute used to set the title of the friend selector dialog.
The maximum length is 50 characters.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Expressing Yourself

164

A request can be of any type ranging from gifts to game invitations. We can use the data
attribute to assign each request a predefined code or tag for our application, that is we can
create a code system for all types of requests that our application will be generating. When a
receiving user accepts this request, we can use this code system to determine how to process
the request, that is, what action should we take on behalf of the user depending upon the
type of the request.

The second parameter of the FB.ui() function is a callback function. When a user selects
multiple friends to send requests to, then each request to a specific friend is assigned to a
unique ID. We can retrieve the ID of all the requests sent out by the current user by using the
response.request_ids, a JavaScript array, which is returned by the callback function. We
use the following code in the callback function:

function(response) {
 if (response) {
 $.each(response.request_ids, function(index, value) {
 alert('Request ' + index + ' id - ' + value);
 });
 }
 else {
 alert('Request was not sent');
 }
}

Here, we use the $.each() function to iterate over all the elements of the array and display
their IDs. We can store these request IDs in our database and when they are processed
(explained in the next recipe, Processing requests sent to the user by friends) we can delete
them. If the request is not sent successfully, then we display an alert message to the user
notifying him/her about this.

See also
ff Processing requests sent to the user by friends

Processing requests sent to the user by
friends

A Facebook user can send an application request to his/her friends. It is the responsibility
of the application to check for new requests for a particular user when he/she interacts with
the application. If the receiving user opens our application we should provide him/her with
an appropriate interface to interact with depending on the type of request. Once the user has
taken an action based on the request we should delete it.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

165

Also, Facebook provides us with a feature known as counter which is a number right next to
our application, if the application has been bookmarked, and appears in the navigation
as shown:

Here, the 7 adjacent to Application Development with Graph API shows the total number of
pending requests or invites of the application for the current user. This counter is maintained
automatically by Facebook.

Getting ready
You should have created index.php and config.php as explained in the beginning of
Chapter 2, Be a part of Social Graph.

How to do it...
The following steps will demonstrate how to process requests sent to the user by friends:

1.	 Open index.php and append the following code to it:
<html>
 <head>
 </head>
 <body>
 <?php
 $requests = $facebook->api('/me/apprequests');
 foreach($requests['data'] as $request) {
 if($request['application']['id'] == $facebook->getAppId())
 {
 echo 'Request ID: ' . $request['id'] . '
';
 echo 'From: ' . $request['from']['name'] . '
';

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Expressing Yourself

166

 echo 'Message: ' . $request['message'] . '
';
 }
 }
 ?>
 </body>
</html>

2.	 Save and run index.php. If the user has received a request then the output will be
something like this:

How it works...
To check whether a user has received any new requests we use the $facebook->api()
function of the Facebook class to make a GET request to the following URL—https://
graph.facebook.com/me/apprequests. If there is any request that has been sent to the
current user, then the server returns it in JSON format. This is converted to a PHP array and
stored in the $requests by api() function. The following is the PHP array:

Array
(
 [data] => Array
 (
 [0] => Array
 (
 [id] => 10150183127604898
 [application] => Array
 (
 [name] => Application Development with Graph API
 [id] => 129525780451736
)

 [to] => Array
 (
 [name] => Apeksha Singh
 [id] => 637089897
)

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

167

 [from] => Array
 (
 [name] => Shashwat Srivastava
 [id] => 786017563
)

 [message] => Try this awesome application?
 [created_time] => 2011-05-15T12:20:08+0000
)
)

Next, we have used a foreach loop to print all the request details using this piece of code:

foreach($requests['data'] as $request) {
 if($request['application']['id'] == $facebook->getAppId()) {
 echo 'Request ID: ' . $request['id'] . '
';
 echo 'From: ' . $request['from']['name'] . '
';
 echo 'Message: ' . $request['message'] . '
';
 }
}

Here, first we check whether the request belongs to our application, or not, by comparing
$request['application']['id'] with $facebook->getAppId() and if these two are
the same then we print the request ID and the request message along with the sender.

We can use these request details to display an interface to the user and prompt him/her to
take action based upon this. For example, if someone has sent the current user a challenge to
beat his/her score given by your application in the form of a request, then you can show this
to the user when he/she comes to your application and then ask him/her to try to score more
than the sender by using your application.

See also
ff Refer to Chapter 2, Be a part of Social Graph

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

6
Bringing Facebook to

your Website

In this chapter, we will cover:

ff Setting up the Like button on your web page

ff Adding a Like box

ff Setting up the Activity Feed plugin

ff Setting up the Facepile plugin on your web page

ff Integrating the Live Stream plugin using XFBML

ff Integrating the Comment box using XFBML

ff Integrating the Send Button using XFBML

ff Login with faces

Introduction
One of the most sought after features of Facebook that has made its popularity increase to
million folds is Facebook's Social Plugins. With the concept of social plugins, Facebook has
made it possible for people to connect with each other, no matter where they are and what
they do. Sharing of comments, data, messages, likes, dislikes, and contents has all become
possible with the concept of social plugins.

The most interesting thing about these plugins is the ease with which they can be installed,
even on a third-party application.

In this chapter, we will learn how to integrate and use the various social plugins made
available by Facebook to us.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing Facebook to your Website

170

Setting up the Like button on your web page
One of the most frequently used and famous social plugins of Facebook is the Like button.
With the Like button, Facebook helps the third-party application developers and websites to
interact with the Facebook platform, share content, and get the advantage of its large user
base. Here, we will learn how to integrate the Like button with our website.

How to do it...
The following steps will demonstrate how to set up a Like button on your web page:

1.	 Open the page of your website, where you want the Like button to be placed, and
copy the following code:
<iframe src="http://www.facebook.com/plugins/like.php?
 href=http%3A%2F%2Fpacktpub.com&
 layout=standard&width=450&show_faces=true&
 action=like&colorscheme=light&font&
 height=80" scrolling="no" frameborder="0"
 style="border:none; overflow:hidden;
 width:450px;height:80px;"allowTransparency="true">
</iframe>

2.	 In this code, replace the href attribute with the URL of the page for which you want
to activate the Like button.

3.	 Now, refresh the page. A Like button will instantly appear on the page at the place
where you have posted the code. It will appear as shown in the following screenshot:

4.	 If a user clicks on the Like button, it will appear as shown in the following screenshot:

5.	 This feed will automatically be posted on the user's profile, who has liked the
particular page. The following screenshot shows you how it will appear:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

171

How it works...
The above code is an iframe source code, which integrates the Like button to our page.
Here, we can set its properties by specifying the following attributes:

ff href: This points to the URL of the page, which we want the user to like and whose
update will be posted on the profile of the user as feeds.

ff layout: It sets the layout of the Like button. The following are three different modes
in which a layout can be set:

�� standard: This is the default Facebook Like button layout in which all the
text appears on the right hand side and the user's profile picture at the
bottom. Its minimum width is 225 pixels and by default is set to 450 pixels.
The default value of the height is 35 pixels without photos and 80 pixels with
photos.

�� button_count: This displays the total number of likes made, to the right of
the button. Its default width and height is 90 and 20 pixels respectively:

�� box_count: This displays the total number of likes above the button. Its
default width and height is 55 and 65 pixels respectively:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing Facebook to your Website

172

ff show_faces: It allows us to display the profile pictures of the users who like the
particular page. If set to true, it will make profile pictures of the users appear at the
bottom of the Like button when they click on it. Otherwise, when false, it disables
this feature. However, this attribute is valid only for the standard layout. Without
the show_faces enabled the Like button will appear, as shown in the following
screenshot:

ff width: It specifies the width of the Like button.

ff action: It specifies the text or verb that will appear with the Like button. It can be
equal to like or recommend. You can set this attribute to the latter if you want
the users to "recommend" your content to others. In a way, the Like button then
transforms into the Recommend button and will appear, as shown in the following
screenshot:

ff font: It decides the font in which the text will appear on the button. Facebook
provides us with the following options: arial, lucida grande, segoe ui, tahoma,
trebuchet ms, and verdana.

ff colorscheme: It decides the color scheme of the Like button. There are two options
for this—light and dark.

ff ref: This attribute is used for for tracking referrals and its value must be less than 50
characters. The value can only consist of alphanumeric characters and the following
punctuation: +, /, =, -, ., :, and _. When we set this ref attribute, it causes two
parameters to be added to the referrer URL, when a user clicks a link from a stream
story about a Like action:

�� fb_ref: This contains our ref parameter which we can use to track how
many users are coming from Facebook.

�� fb_source: This tells us the stream type ('home', 'profile', 'search', 'other')
in which the click occurred and the story type ('oneline' or 'multiline'),
concatenated with an underscore.

ff send: It specifies whether to include a Send button with the Like button and works
only with the XFBML version.

Using these attributes, we can customize the Like button as per our choice.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

173

There's more...
Often it becomes cumbersome to hard code and put the value of the href parameter in every
page. This problem can be solved by dynamically generating the URL of the current page and
setting it as the value of the href parameter of the Like button. For doing this, we need to
replace the value of the href parameter with the following code snippet:

<?php echo rawurlencode('http://' . $_SERVER['HTTP_HOST'] .
 $_SERVER['REQUEST_URI']); ?>

The following would be the complete code:

<iframe src="http://www.facebook.com/plugins/like.php?
 href=<?php echo rawurlencode('http://' .
 $_SERVER['HTTP_HOST'] . $_SERVER['REQUEST_URI']);
 ?>&send=true&layout=standard&
 width=450&show_faces=true&action=like&
 colorscheme=light&font&height=80" scrolling="no"
 frameborder="0" style="border:none; overflow:hidden;
 width:450px; height:80px;" allowTransparency="true">
</iframe>

Notice how we have used PHP code to get the URL of the current page and then assign it to
the href parameter. This is a more generic implementation of the Like button.

Also, the Like button gives the users the ability to comment on Facebook through it. For this,
they simply need to hover over the Like button and they will get a comment box as shown in
the following screenshot:

Adding a Like box
Facebook provides another interesting plugin known as the Like box. With the Like box,
we can have many features in one. For example, we can get the recent posts of our page
displayed in it; we can display the list and number of users who have liked that particular
page. Also, we can display the profile pictures of the users who have liked our page and can
even give them the provision to like it.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing Facebook to your Website

174

How to do it...
The following steps will show how to add a Like button:

1.	 Open your web page, where you want this Like box to be to be placed, and copy the
following code:
<iframe src="http://www.facebook.com/plugins/likebox.php?
 href=http%3A%2F%2Fwww.facebook.com%2FPacktPub&
 width=292&colorscheme=light&show_faces=true&
 stream=true&header=true&height=427"
 scrolling="no" frameborder="0" style="border:none;
 overflow:hidden; width:292px; height:427px;"
 allowTransparency="true">
</iframe>

2.	 Replace the href attribute value in the code with the URL of the Facebook page for
which you want the Like box to appear.

3.	 Now, refresh and launch the application. A Like box will appear, just at the place
in your web page where you had pasted this code. It will be similar to the following
screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

175

4.	 We can use this Like box to directly like the page, as well as read the latest posts on
the website.

How it works...
In the code, we just saw, we have used the iframe source code to integrate the Like box.
Here, we simply need to set the URL of the iframe as http://www.facebook.com/
plugins/likebox.php along with some GET attributes. We can customize the Like button
using the following attributes:

ff href: This is used to specify the URL of the Facebook page for the Like button. This
needs to be taken care of as the URL should only be that of a Facebook page and not
any other URL.

ff width: This is used to specify the width of the Like box. By default, it is set to 300
pixels.

ff colorscheme: The color in which we want the Like box to appear. There are two
options for this—light and dark.

ff show_faces: This is used to specify whether we want to display the profile pictures
of the users who have liked our page or not. By default, it is set to true.

ff stream: This is used to specify if we want to have the latest posts taken from the
page's wall or not.

ff header: This is used to specify if we want to display the Facebook header at the top
of the box or not.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://www.facebook.com/plugins/likebox.php

Bringing Facebook to your Website

176

When the header and stream is set to false and show_faces is set to true, the box may
appear, as shown in the following screenshot:

There's more...
We can also make the generation of the Like box dynamic for every page. In that case, we will
not have to hard code the href value on every page in the iframe source code of the Like
box. All we need to do is to simply replace the value of the href parameter with the following
code snippet:

<?php echo rawurlencode('http://' . $_SERVER['HTTP_HOST'] .
 $_SERVER['REQUEST_URI']); ?>

The following would be the complete code:

<iframe src="http://www.facebook.com/plugins/likebox.php?
 href=<?php echo rawurlencode('http://' .
 $_SERVER['HTTP_HOST'] . $_SERVER['REQUEST_URI']); ?>
 &width=292&colorscheme=light&
 show_faces=true&stream=true&header=true&
 height=427" scrolling="no" frameborder="0"
 style="border:none; overflow:hidden; width:292px;
 height:427px;" allowTransparency="true">
</iframe>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

177

Here, the PHP code actually generates the URL of the current page and assigns it to the href
parameter.

Setting up the Activity Feed plugin
Facebook also supports an Activity Feed plugin on which we can get the latest activities that
happen on our page. These can be the shared content of our site by the users on Facebook,
the comments made, likes, and so on. This plugin can be easily integrated using an iframe
source code.

How to do it...
The following steps will demonstrate how to set up the Activity Feed plugin:

1.	 Open the page of your website, where you want this Activity Feed plugin to be, and
copy the following code. Here, we set up the Activity Feed plugin:
<iframe src="http://www.facebook.com/plugins/activity.php?
 site=http%3A%2F%2Fpacktpub.com&width=300&
 height=300&header=true&colorscheme=light&
 font&border_color&recommendations=false"
 scrolling="no" frameborder="0" style="border:none;
 overflow:hidden; width:300px; height:300px;"
 allowTransparency="true">
</iframe>

2.	 In this code, replace the value of site with the domain for which you want the
activities to get displayed for.

3.	 Now, launch the application.

4.	 An Activity Feed dialog box will appear, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing Facebook to your Website

178

How it works...
The code, we just saw, for the Activity Feed Plugin is a simple iframe source code. We can
get this by making the iframe src equal to http://www.facebook.com/plugins/
activity.php. Also, this plugin can be customized by changing the following attributes:

ff site: This is the URL of the domain for which we want the activities to get displayed
for.

ff width and height: This is used to specify the width and height of the plugin with
the default value being 300 pixels.

ff header: The true value will make the Facebook header appear at the top, while
false will render it invisible.

ff colorscheme: This is used to specify in which color scheme we want the plugin to
get displayed. There are two options for this—light and dark.

ff font and border_color: This is used to specify the font in which the text will
appear, as well as the border color of the plugin.

ff recommendations: This, if set to true, will display the recommendations in the
bottom half of the plugin.

ff filter: This is used to specify the URLs for which we want the plugin to get
displayed. For example, if the site parameter is set to www.my_site.com and the
filter parameter was set to /page1/page2, then the activity feed plugin will only
display the activities for www.my_site.com/page1/page2.

ff ref: This attribute is used for tracking referrals. Its value must be less than 50
characters and can only consist of alphanumeric characters, along with the following
punctuation— +, /, =, -, ., :, and _. If we use this ref attribute, it causes two
parameters to be added to the referrer URL when a user clicks a link from a stream
story about a Like action:

�� fb_ref: This contains our ref parameter, which we can use to track how
many users are coming from Facebook.

�� fb_source: This tells us the stream type ('home', 'profile', 'search', 'other')
in which the click occurred and the story type ('oneline' or 'multiline'),
concatenated with an underscore.

There's more...
There is an alternate way of configuring and customizing the Activity Feed plugin.

1.	 Go to the following URL—http://developers.facebook.com/docs/
reference/plugins/activity/.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://www.facebook.com/plugins/activity.php
http://www.facebook.com/plugins/activity.php
http://www.my_site.com
http://www.my_site.com/page1/page2
http://developers.facebook.com/docs/reference/plugins/activity/
http://developers.facebook.com/docs/reference/plugins/activity/

Chapter 6

179

2.	 At the center of this page, you will see an Activity Feed plugin widget generator, as
shown in the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing Facebook to your Website

180

3.	 Fill in the attributes details and click on Get Code. Facebook will automatically
generate a code depending on the values you have specified and it will appear, as
shown in the following screenshot:

4.	 Copy the iframe code and paste it in an appropriate place on your web page, where
you want the plugin to be rendered. Now, if you open your web page in a web browser,
then the Activity Feed plugin will be displayed showing recent activities related to your
web page.

Also, if we want to integrate the recommendations plugin too, along with the Activity plugin,
then all we need to do is to check in the Show Recommendations checkbox in the GUI. This
will set the recommendations attribute to true and allow the activity plugin to display the
recommendations too.

Setting up the Facepile plugin on your
web page

The Facebook Facepile plugin allows us to display the profile pictures of the users who
have liked, or signed up for, a particular page. We can easily set this up for our website by
performing a few basic steps.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

181

How to do it...
The following steps will demonstrate how to set up the Facepile plugin:

1.	 Open your web page, where you want the Facepile plugin to be placed, and copy the
following code:
<iframe src="http://www.facebook.com/plugins/facepile.php?
 href=http%3A%2F%2Fwww.facebook.com%2FbOtskOOl&
 width=200&max_rows=5" scrolling="no"
 frameborder="0" style="border:none; overflow:hidden;
 width:200px;" allowTransparency="true">
</iframe>

2.	 Replace the href value in this code with the URL of the page for which you want to
display the profile pictures.

3.	 Save the file and launch the application. A series of profile pictures of the users, who
have liked the page will appear, as shown in the following screenshot:

4.	 Facepile also allows us to display the users who have signed up for a particular page
or application. To do this, copy the following code:
<iframe src="http://www.facebook.com/plugins/facepile.php?
 app_id=your_app_id&width=200&max_rows=3"
 scrolling="no" frameborder="0" style="border:none;
 overflow:hidden; width:200px;" allowTransparency="true">
</iframe>

5.	 In this code, replace the your_app_id with the ID of the your application.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing Facebook to your Website

182

6.	 Now save the file and launch the application. A list of users, who have signed up for
that particular page or application will appear, as shown in the following screenshot:

How it works...
The Facebook Facepile plugin allows us to display the profile pictures of the users who have
liked, or signed up for, a particular page or application. For this, we have used the iframe
source code. Here, we mention the URL of iframe as http://www.facebook.com/
plugins/facepile.php along with some URL GET parameters. We can set the properties
of Facepile by modifying its following attributes:

ff href: This is used to specify the URL of the page for which we want to display the
profile pictures of the users who have liked it.

ff app_id: If we want to to display the profile pictures of the users who have signed up
for our application, we need to use app_id instead of href and put the application
ID there.

ff max_rows: This is used to specify the maximum rows of faces that can be displayed.
By default, it is set to 1.

ff width: This is used to specify the width of the Facepile plugin. By default, it is set to
200 pixels.

The Facepile plugin only displays the photos of the user's friends who
have liked or signed up for your application or page. So if there are
no friends of the user who have either liked or signed up for the page,
nothing will get displayed.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

183

Integrating the Live Stream plugin using
XFBML

The Facebook Live Stream plugin allows the users to share comments and activities in real
time on your application or site. It even provides us with the option to share it and post it to
Facebook. We can easily integrate it using XFBML in our application. This recipe tells you how
to do it.

Getting ready
You should have set up index.php, as explained in the beginning of Chapter 4.

How to do it...
The following steps will demonstrate the integration of Live Stream plugin:

1.	 Go to the following URL—http://developers.facebook.com/docs/
reference/plugins/live-stream/.

2.	 At the center of the page, you will see a Live Stream plugin widget, which will appear
as shown in the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://developers.facebook.com/docs/reference/plugins/live-stream/
http://developers.facebook.com/docs/reference/plugins/live-stream/

Bringing Facebook to your Website

184

3.	 In the widget, replace the already existing App ID with the ID of the application for
which you want the Live Stream plugin.

4.	 Also, mention the Width and Height. You might leave the other parameters for the
time being.

5.	 Now, click on the Get Code button.

6.	 A box having an XFBML code will get generated and will appear, as shown in the
following screenshot:

7.	 Now, copy the following line from the displayed code—<fb:live-stream event_
app_id="your_app_id" width="400" height="500" xid="" always_post_
to_friends="false"></fb:live-stream> and paste it inside the fb-root
division in index.php.

8.	 Now, run the application. A Live Stream box for the users will appear, as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

185

9.	 Here, the user can type in the text area and share the content and even post it to
Facebook.

10.	 When posted to Facebook, the comment will appear on the user's profile, as shown in
the following screenshot:

How it works...
Here, to display the Live Stream plugin, we have used the XFBML fb:live-stream tag,
which provides the end users with an option to share live contents. We have set its properties
through the Facebook Live Stream widget generator. It has the following attributes:

ff App ID: In this we need to specify the application ID for which we want this Live
Stream plugin to work.

ff Width: This is used to specify the width of the plugin.

ff Height: This is used to specify the height of the plugin.

ff XID: It is a unique ID, which we associate with the Live Stream plugin incase we are
using multiples of live stream boxes on the same page.

ff Via Attribution URL: It is the URL to which the users are redirected when they
click on the application name on a status. By default, it is set to the application's
ConnectURL.

ff Always post to friends: This, when set to true, makes all the posts go to the
corresponding user's profile.

Thus, based on these properties, an XFBML code is generated, which can be easily used in
our application to render the Live Stream box.

Integrating the Comment box using XFBML
The Facebook Comment plugin allow users to comment on our site or application. The
advantage of this plugin is that users can comment from anywhere, our site, or through
Facebook. The comments will remain in sync.

Getting ready
You should have set up index.php, as explained in the beginning of Chapter 4.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing Facebook to your Website

186

How to do it...
The following steps will demonstrate how to integrate a Comment box:

1.	 Go to the following URL—http://developers.facebook.com/docs/
reference/plugins/comments/.

2.	 There, at the center of the page, you will see a Comment plugin widget, as shown in
the following screenshot:

3.	 In the widget, in the URL to comment on field, enter the URL of the site or application
for which you want to have the Comment box.

4.	 Also, mention the Number of posts, Width, and Color Scheme parameters.

5.	 Now, click on the Get Code button.

6.	 A box having an XFBML code will get generated and will appear, as shown in the
following screenshot:

7.	 Now copy the following line from the displayed code—<fb:comments
href="yoursite.com" num_rows="2" width="500"></fb:comments> and
paste it inside the fb-root division in index.php.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://developers.facebook.com/docs/reference/plugins/comments/
http://developers.facebook.com/docs/reference/plugins/comments/

Chapter 6

187

8.	 Now run the application. A Comment box for the users will appear, as shown in the
following screenshot:

9.	 Here, the user can type in the Comment box, share the content, and even post it to
Facebook.

How it works...
We use Facebook's in-built XFBML <fb:comments> tag to add the Comment plugin. The
Comment plugin is added through the following line that is added in the fb-root division ID:

<fb:comments href="yoursite.com" num_rows="2"
 width="500"></fb:comments>

The attributes of the <fb:comments> tag are as follows:

ff href: It is used to specify the URL for the Comments plugin. All news feeds or stories
on Facebook will link to this URL.

ff width: It is used to specify the width of this plugin.

ff num_rows: It is used to specify the number of comments, which have to shown. By
default, it is set to 10.

ff colorscheme: It is used to specify the color in which the plugin has to be displayed.
There are two options—light and dark.

We can use these attributes to render the Comment plugin for our web page.

Integrating the Send button using XFBML
Facebook has recently launched the Send button for its users. This allows them to send
messages and information to a few selected friends of theirs. The messages and feed, along
with the URL, are directly sent to their friend's inbox. There are two ways to render a Send
button. One is along with the Like button, and the other is to have a stand-alone Send button.
Let us see how to integrate the Send button to our web page.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing Facebook to your Website

188

Getting ready
You should have set up index.php, as explained in the beginning of Chapter 4.

How to do it...
We will first look at integrating the Send button with a Like button.

Integrating the Send button with the Like button
1.	 Go to the following URL—http://developers.facebook.com/docs/

reference/plugins/like/.

2.	 Now, at the center of the page, you will see a Like button widget, as shown in the
following screenshot:

3.	 In this widget, you will see the Send Button (XFBML Only) option. Check in the box to
enable the Send Button option.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://developers.facebook.com/docs/reference/plugins/like/
http://developers.facebook.com/docs/reference/plugins/like/

Chapter 6

189

4.	 Now, fill in the required information as per your requirement.

5.	 Click on the Get Code button.

6.	 A box displaying an XFBML code will appear, as shown in the following screenshot:

7.	 Now, copy the following line from the displayed code—<fb:like href="yoursite.
com" send="true" width="450" show_faces="true" font=""></
fb:like> and paste it inside the fb-root division in index.php.

8.	 Replace the href value with the URL you want to send, along with the messages.
Now run the application. A Send button along with the Like button will appear, as
shown in the following screenshot:

9.	 Now, if the user clicks on the Send button, a message box will appear:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing Facebook to your Website

190

10.	 A user can use this message box to send personalized messages to his/her friend.

11.	 The following screenshot shows how a message will appear in the inbox of a user's
friend:

Now, we look at the stand-alone Send button integration.

Integrating a stand-alone Send button
1.	 Go to the following URL—http://developers.facebook.com/docs/

reference/plugins/send/.

2.	 Under the Get a Send button section, you will see a Send button widget, as shown in
the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://developers.facebook.com/docs/reference/plugins/send/
http://developers.facebook.com/docs/reference/plugins/send/

Chapter 6

191

3.	 Enter the required information in this widget and click on the Get Code button. A box
having an XFBML code will get generated, as shown in the following screenshot:

4.	 Now, copy the following text from the displayed code—<fb:send href="yoursite.
com" font=""></fb:send> and paste it in the fb-root division of index.php.

5.	 Replace the href value with the URL, which you want to send, along with the
message. Now run the application. A Send button will appear, as shown in the
following screenshot:

6.	 This Send button can be used in the same way as described earlier. The message will
be sent to the inbox of the user's friend and will have the URL content as mentioned
in the URL to Send text box.

How it works...
For integrating the Send button along with the Like button, we use the <fb:like> XFBML tag
and set the value of send attribute as true. This has been done in the following piece
of code:

<fb:like href="yoursite.com" send="true" width="450"
 show_faces="true" font=""></fb:like>

We render the stand-alone Send button by using the following piece of code:

<fb:send href="yoursite.com" font=""></fb:send>

It can be customized using the following attributes:

ff href: It refers to the URL that is to be sent in the messages

ff font: It is to set the font in which text is to displayed in the plugin

ff colorscheme: This is to set the color scheme of the plugin

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing Facebook to your Website

192

Login with Faces
Facebook provides us with a Login plugin in order to make it easy for its users to log in to a
particular application or third-party website. It also shows the user his/her friends who have
already used this plugin for a particular application or website.

Getting ready
You should have setup index.php, as explained in the beginning of Chapter 4.

How to do it...
The following steps will demonstrate how to login using Faces:

1.	 Go to the following URL—http://developers.facebook.com/docs/
reference/plugins/login/.

2.	 Now, at the center of the page, you will see a Login button widget, as shown in the
following screenshot:

3.	 In this widget, you will see the Show faces option. Check in the box to enable the
Show faces option.

4.	 Now, fill up the required information as per your choices.

5.	 Click on the Get Code button.

6.	 A box displaying an XFBML code will appear, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://developers.facebook.com/docs/reference/plugins/login/
http://developers.facebook.com/docs/reference/plugins/login/
http://developers.facebook.com/docs/reference/plugins/login/
http://developers.facebook.com/docs/reference/plugins/login/

Chapter 6

193

7.	 Now copy the following line from the displayed code—<fb:login-button show-
faces="true" width="200" max-rows="1"></fb:login-button> and paste
it inside the fb-root division in index.php.

8.	 Now, run the application. If the user has not already logged into your application a
Login button will appear, displaying the faces of the user's friends who have already
connected to the application, as shown in the following screenshot:

9.	 If the user now logs in, the button will display the profile pictures of the user, as well
as of his/her friends who have connected to the application.

How it works...
For integrating the Login button, along with the faces, we use the <fb:login-button>
XFBML tag and add to it the show-faces attribute, which we set as true. When set to
true, the show-faces attribute displays the profile pictures of all the user's friends who
have connected to the particular application for which we are integrating this plugin. Other
attributes are as follows:

ff width: It specifies the width of the plugin

ff max-rows: It specifies the maximum number of rows of faces to be displayed

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

7
Connecting Websites

to the Social Graph

In this chapter, we will cover:

ff Integrating web pages into the social graph

ff Integrating audio and video data

ff Administering your page

ff Publishing stream updates to the users

Introduction
Facebook has organised its huge database of 800 million users as a social graph. This graph
consists of unique entities (such as people, photos, and so on) known as objects and these
objects are interrelated to each other by connections such as friends, photo tags, and so on.

We can connect our website(s) to this infinite social graph by using the Facebook Open Graph
protocol. We can do so by converting our web pages into graph objects. This is done by adding
the <meta> tags and a Like button to these pages. After this modification, whenever a user
likes our web page by clicking on the Facebook Like button, a connection is established
between that user and our page just like any other Facebook page. We can even publish
updates to the users who have liked our pages. So these tags, along with the Like button,
allow us to specify structured information about the web page which, in turn, determines how
the web page will be put up on Facebook.

In this chapter, we will learn how, using the Like button, we can make our webpage appear in
the Likes and Interests section of the users' profile.

Now, let's move on and see how we can unify our web pages into the Facebook social graph.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Connecting Websites to the Social Graph

196

Integrating web pages into the social graph
The Facebook Open Graph protocol allows us to specify how to represent our web page on
its network when a user likes our page. This is done with help of the <meta> tags present in
our web page. We can configure them to make our web page appear in relevant Likes and
Interests sections of a Facebook users' profile so that they are able to relate to our web page
in a better manner. Here, we will show you how to do this:

How to do it...
The following steps will demonstrate how to integrate web pages:

1.	 Open your web page, say content.php, and add the following code to it:
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:og="http://ogp.me/ns#"
 xmlns:fb="http://www.facebook.com/2008/fbml">
 <head>
 <title>Packt Publishing</title>

2.	 Add the following <meta> tags which are related to the Facebook Open Graph
protocol:
 <!-- Open graph meta tags will be placed here -->
 <meta property="og:title" content="Chess"/>
 <meta property="og:type" content="sport"/>
 <meta property="og:url"
 content="http://www.yoursite.com/content.php"/>
 <meta property="og:image"
 content="http://www.yoursite.com/chess.jpg"/>
 <meta property="og:site_name" content="Chess"/>
 <meta property="fb:admins" content="786017563,637089897"/>
 <meta property="og:description"
 content="Chess is the gymnasium of the mind."/>
 </head>
 <body>

3.	 Place your web page content here:
 <!-- Your webpage content here -->

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

197

4.	 Also, add the code for the Like button, as explained in the previous chapter, at an
appropriate location in your web page:
 <iframe src="http://www.facebook.com/plugins/like.
 php?href=<?php echo rawurlencode('http://' . $_SERVER
 ['HTTP_HOST'] . $_SERVER['REQUEST_URI']); ?>&
 send=true&layout=standard&width=450&
 show_faces=true&action=like&colorscheme=ligh
 t&font&height=80" scrolling="no" frameborder="0"
 style="border:none; overflow:hidden; width:450px;
 height:80px;" allowTransparency="true"></iframe>
 </body>
</html>

Now, if a user likes this page, it will be displayed on Facebook as shown in the following
screenshot:

How it works...
Here, we have created a web page that is related to a Chess game. We have accordingly
set the <meta> tags (such as thumbnail image, description, title, and so on), as defined by
the Facebook Open Graph protocol. If any Facebook social plugin is present on a web page,
primarily a Like button, and when a user interacts with that plugin, Facebook uses these
<meta> tags to interpret and classify the current page and render it properly on the user's
and his or her friends' feed. In this way, the Facebook Open Graph protocol, with the help of
the <meta> tags, allows us to configure and control how our web pages are classified and
rendered inside Facebook. The Open Graph protocol defines four required properties:

ff og:title: This defines the title of the graph object; for example, Chess.

ff og:type: This specifies the category of the graph object; for example, sport. The
various object types are listed as follows:

�� Activities: This object type group is for the objects related to some sport or
activity in general. The object type can be activity or sport.

�� Businesses: This group corresponds to different types of businesses. It can
take the following values—bar, company, cafe, hotel, and restaurant.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Connecting Websites to the Social Graph

198

�� Groups: Valid values for this are cause, sports_league, and sports_
team.

�� Organizations: This category contains the objects related to different
types of organization. Valid values are band, government, non_profit,
school, and university.

�� People: If the graph object describes a person, the value for the object type
can be actor, athlete, author, director, musician, politician, or
public_figure.

�� Places: If the web page, to be represented as a graph object, describes
a place, the value for object type can be city, country, landmark, or
state_province.

�� Products and Entertainment: This contains the objects corresponding to
entertainment and product industry. The object type can be album, book,
drink, food, game, product, song, movie, or tv_show.

�� Website: If your web page represents a website as a whole, the object type
can be blog, website, or article.

ff og:image: This specifies the URL of the image, which we want to attach with the
graph object. The image must be at least 50 by 50 pixels and have a maximum
aspect ratio of 3:1. PNG, JPEG, and GIF formats are supported. Multiple og:image
tags are allowed in order to associate multiple images to your page.

ff og:url: This specifies the canonical URL of the graph object, which is used as its
permanent ID in the graph; for example, http://www.yoursite.com/sports/
chess/.

Apart from the preceding <meta> tags, Facebook requires two additional fields in order to
establish a successful connection, as a graph object, when a user likes your web page:

ff og:site_name: This is a human-readable name of your website which will be used
by Facebook.

ff fb:admins or fb:app_id: It is a comma-separated list of either Facebook user IDs
or a Facebook Platform application ID that administers this page. It is valid to include
both fb:admins and fb:app_id on your page.

Facebook recommends using the following property as well:

ff og:description: It is a one or two line description of your current web page.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

199

When a user likes your web page, a News Feed story, as shown on preceding page, is
published to Facebook. In this story, og:title links to og:url and og:site_name points
to the website domain. Also, og:image gives the URL of the thumbnail used in the story. The
og:type is used by Facebook to decide the category in which to place your web page and
it appears accordingly on the user's profile page. Here, as we have listed og:type for our
web page as sport, it is listed in the Activities and Interests section of the users' profile, as
shown in the following screenshot:

In this way, the Facebook Open Graph protocol helps us to integrate our web pages in a better
manner to the Facebook network and associate ourselves in a more defined manner to its
millions of users.

There's more...
Usually, web pages have location and contact information associated with them. Here, we will
show you how to define them appropriately with the help of the Facebook Open
Graph protocol.

Defining location information
We can use the Open Graph protocol to define location information for our object. Here, object
can be business, school, organization, and so on. We can provide latitude and longitude
information for our location with the help of the following set of metadata:

<meta property="og:latitude" content="52.4667"/>
<meta property="og:longitude" content="1.9167"/>

We can also represent the same location information in human-readable format with the
following set of metadata:

<meta property="og:street-address" content="32 Lincoln Road"/>
<meta property="og:locality" content=" Birmingham "/>
<meta property="og:region" content="Birmingham"/>
<meta property="og:postal-code" content="B27 6PA"/>
<meta property="og:country-name" content="UK"/>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Connecting Websites to the Social Graph

200

We can modify the properties according to our location in the preceding code.

Defining contact information
If your web page contains contact information, it can be defined with the help of the following
metadata set:

<meta property="og:email" content="contact@packtpub.com"/>
<meta property="og:phone_number" content="+44 121 683 1170"/>
<meta property="og:fax_number" content="+44 121 535 7039"/>

Similarly, we can set our e-mail ID, telephone number, and fax number as shown in the
preceding code.

Defining a custom object type
If you are unable to find a suitable object type, defined by using og:type property, you can
define your own custom object type. Facebook recommends using your own namespace when
defining a custom object type. An example is shown as follows:

<html xmlns:college="http://www.college.edu/ns#" >
 <head>
 <meta property="og:type" content="college:faculty"/>
 </head>

Here, we have used the college namespace for our site, www.college.edu, and the
current page represents the college faculty. Facebook will categorize this object type as
other.

See also
ff Refer to the Integrating audio and video data recipe that follows.

Integrating audio and video data
Many a time, our web page contains audio and video data, which we will want to share on
Facebook when a user likes our page. We can do so with the help of the Facebook Open
Graph protocol. It has a specific set of metadata for this purpose. In this recipe, we will show
you how to integrate audio/video data of your web page into the social graph.

Getting ready
Read the Integrating web pages into the social graph recipe.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

201

How to do it...
The following steps will demonstrate how to integrate audio and video:

1.	 Open your web page, say content.php, and add the following code to it:
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:og="http://ogp.me/ns#"
 xmlns:fb="http://www.facebook.com/2008/fbml">
 <head>

2.	 Add the metadata for the web page:
 <!-- Open graph meta tags will be placed here -->
 <title>Sleep Away</title>
 <meta property="og:title" content="Sleep Away"/>
 <meta property="og:type" content="song"/>
 <meta property="og:url"
 content="http://www.yoursite.com/content.php"/>
 <meta property="og:image"
 content="http://www.yoursite.com/sleep_away.jpg"/>
 <meta property="og:site_name" content="Sleep Away"/>
 <meta property="fb:admins" content="786017563,637089897"/>
 <meta property="og:description"
 content="Watch the video & listen to Bob Acri – Sleep
Away for free."/>

3.	 Next, add the metadata for the audio file present on the web page:
 <meta property="og:audio"
 content="http://www.yoursite.com/sleep_away.mp3" />
 <meta property="og:audio:title" content="Sleep Away" />
 <meta property="og:audio:artist" content="Bob Acri" />
 <meta property="og:audio:album" content="Bob Acri" />
 <meta property="og:audio:type" content="application/mp3" />
 </head>
<body>

4.	 Add your web page content here:
 <!-- Your webpage content here -->

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Connecting Websites to the Social Graph

202

5.	 Also, add the code for the Like button, as explained in Chapter 6, Bring Facebook to
your website, at an appropriate location in your web page:
 <iframe src="http://www.facebook.com/plugins/like.
 php?href=<?php echo rawurlencode('http://' . $_SERVER
 ['HTTP_HOST'] . $_SERVER['REQUEST_URI']); ?>&send=
 true&layout=standard&width=450&sh
 ow_faces=true&action=like&colorscheme=light
 &font&height=80" scrolling="no" frameborder="0"
 style="border:none; overflow:hidden; width:450px;
 height:80px;" allowTransparency="true"></iframe>
 </body>
</html>

When a user likes this page, he or she will get a feed story on his or her wall, as shown in the
following screenshot:

As you can see in the preceding screenshot, the song (audio data) is directly embedded on
the user's wall and music can be directly played from there itself.

How it works...
Here, first we set the metadata for the page as explained in the first recipe of this chapter.
Now, we want to attach metadata for an audio file present on this web page. We have an
audio file named sleep_away.mp3, which we want to post on the user's wall when he or she
likes this page. For this, we need to set the following meta properties:

Meta properties Description
og:audio This contains the path to the audio file which, in this case, is

http://www.yoursite.com/sleep_away.mp3.
og:audio:title This specifies the title of the audio track which, in this case, is

Sleep Away.
og:audio:artist This specifies the name of the artist who, in this case, is Bob

Acri.
og:audio:album This specifies the name of the album of the audio track which,

in this case, is Bob Acri.
og:audio:type This specifies the type of the audio content which, in this case,

is application/mp3.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

203

Now, if a user likes this page, Facebook will use the metadata for the audio given and post it
to his or her wall. The audio track gets embedded on the user's wall and now will be directly
played from there, as shown in the preceding screenshot.

There's more...
Similar to the audio file, we can attach the video file as a graph object to the social graph as
well.

Attaching the video to the social graph
Here, we will show you how to attach the video to the social graph. Add the following code to
the web page:

<meta property="og:video" content="http://www.yoursite.com/my_video.
swf" />
<meta property="og:video:height" content="500" />
<meta property="og:video:width" content="400" />
<meta property="og:video:type"
content="application/x-shockwave-flash" />

In order to enable the video content to be automatically shown on a user's wall when he/she
likes our page, we need to set the following meta properties for our video data:

Meta properties Description
og:video This contains the path to our video file which, in this case, is

http://www.yoursite.com/my_video.swf.
og:video:height This specifies the height of our video file which, in this case, is

500 pixels.
og:video:width Similarly, this specifies the width of our video.
og:video:type This specifies the type of the video content which, in this case,

is application/x-shockwave-flash.

Currently, Facebook supports embedding of video in SWF format only. Also, you should have a
og:image meta tag for the video to be displayed on the user's wall.

See also
ff Refer to the Integrating web pages into the social graph recipe seen earlier in this

chapter.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Connecting Websites to the Social Graph

204

Administering your page
When we convert a web page to a graph object and attach it to the Facebook social graph,
Facebook creates a unique ID for this graph object and provides us with an administration
interface to configure its settings.

How to do it...
The following steps will demonstrate working with the administration interface:

1.	 Open the web page, which you have converted to a graph object and locate the Like
button.

2.	 Beside the Like button, you will see a link titled as Admin Page as shown in the
following screenshot. Click on it:

3.	 Next, you will be redirected to the administrative interface for your current web page
on Facebook as shown in the following screenshot. By default, you will be taken to the
Get Started section, where you can take various actions:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

205

4.	 Additionally, you can click on the Edit Page button, present on the right-hand side, to
further configure different settings such as permissions, administrators, applications,
insights, and so on.

5.	 For changing permissions, click on the Manage Permissions link present in the
sidebar, as shown in the following screenshot:

6.	 Here, we can apply various restrictions based on age, country, and so on. Also, we
can decide whether to show posts made by all users or administrators on the page
wall. We can decide the Default Landing Tab, too. It can be set to Wall, Info, Photos,
and so on.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Connecting Websites to the Social Graph

206

7.	 Apart from this, we can control the posting ability of the page users and moderate
the keywords entered by the users. Additionally, there is a Profanity Blocklist field
which can be set to None, Medium, or Strong. One such configuration is shown in the
following screenshot:

How it works...
Facebook treats the web page-based graph object like any other page and its administrative
interface is similar to that of a Facebook page. With the help of this administrative interface,
you can configure this Facebook page (graph object) which represents your web page on
Facebook. In this way, you can interact with and send updates to the people who have liked
your web page.

Connecting your websites to the social graph brings in more traffic and user
interactions to your website, as there is a high probability of users' friends
also getting involved in your web page based Facebook page.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

207

There's more...
You can also go to the Facebook based administration interface of your web page by going to
your Facebook profile. Search for the Facebook page which represents this page and click on
it, as shown in the following screenshot:

Also, we can use the Facebook URL Linter (http://developers.facebook.com/tools/
lint/) for this. Enter your web page URL on this page and it will show you the Admin URL,
along with other useful information, as shown in the following screenshot:

Publishing stream updates to the users
We can publish updates to the users who have liked our web page. This helps us to notify
the users about the updates related to the topic discussed on the web page and hence, this
opens doors for more traffic.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://developers.facebook.com/tools/lint/

Connecting Websites to the Social Graph

208

How to do it...
The following steps will demonstrate how to publish stream updates:

1.	 Open your web page and locate the Like button. Click on the Admin Page link.

2.	 Next, in the administrative interface, click on the Wall section present on the left-
hand side of the page and enter the update as a status message, as shown in the
following screenshot:

3.	 Now, click on the Share button. The update will automatically appear in the News
Feed of all the users who have liked your web page as shown in the following
screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

209

How it works...
Facebook treats a web page, which is represented as a graph object, like a page and allows
us to publish updates to the users who have liked the web page. The interface provided is
similar to a regular Facebook page; in fact it's identical.

Apart from updates, we can publish links, photos, and videos to the web page. We can even
integrate Facebook applications to this page, thereby increasing flexibility. Hence, Facebook
allows us to connect to our users in various intuitive ways.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

8
Fiddling with

Virtual Currency

In this chapter, we will cover:

ff Setting up the application for Facebook Credits

ff Setting up an application callback for Facebook Credits

ff Creating Facebook Credits frontend using JavaScript SDK

ff Getting the order details

ff Implementing custom offers

ff Refunding the order

ff Developing a "Send a gift" application and integrating with Facebook Credits

Introduction
Facebook has recently introduced its virtual currency known as Facebook Credits. It can be
used to buy digital and virtual goods made available by millions of Facebook applications. This
has taken the concept of social networking to a complete new level. For instance, now you can
gift your friend virtual or real goods right through Facebook on any occasion, say his or her
birthday. Similarly, now you can purchase premium items of your favorite games present as
Facebook applications. All this has been made possible by Facebook Credits. So, now users
don't need to bother about their credit information being stolen by some insecure Facebook
application. They can simply buy some Facebook Credits by using their credit card and then
this virtual currency can be used to purchase items from any Facebook application. This is
good for developers too. Facebook itself handles the tough part, which is the transaction
of real money, and the developers can charge users the virtual currency by using the
Facebook Credits API. The real money equivalence of the virtual money earned by a Facebook
application is then credited back to a fixed account, set up by developers, at regular intervals.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

212

Also, this greatly reduces the time spent by users on purchasing items as there is a uniform
interface across all Facebook applications and once users have set up their credit information
in Facebook, they can easily recharge their credits when they run out of their virtual currency.

Setting up the application for Facebook
Credits

With the Facebook Credits API, we can enable users to use credits as a method of purchasing
digital and virtual goods inside our Facebook application. Also, we don't need to concern
ourselves with transaction handling, which is automatically done by Facebook. So, let's get our
application ready for Facebook Credits.

How to do it...
The following steps will demonstrate how to set up the application:

1.	 Go to the Developer App section (https://developers.facebook.com/apps/).
Click on your application name inside the Recently Viewed block present on the left
hand side.

2.	 Next, click on Edit Settings and then click on the On Facebook tab, present on the
left rail. Finally, click on the Credits sub tab, as shown in the following screenshot:

3.	 Before we can start using Facebook Credits, we need to register our company.
Choose your Company Country and click on Register a company now, as shown in
the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

https://developers.facebook.com/apps/

Chapter 8

213

4.	 You will be presented with a form to sign up your company for Facebook Credits, as
shown in the following screenshot. Fill in the relevant details:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

214

5.	 Once you have registered your company, you will be redirected back to the Facebook
application Credits settings page. Enter your Credits Callback URL as http://www.
yoursite.com/callback.php. This will be used by Facebook while updating an
order, and has been explained in the recipe Setting up an Application Callback for
Facebook Credits of this chapter. Also, set your test users, as shown in the following
screenshot:

How it works...
Here, we have shown how to set up your application for using Facebook Credits. Credits
Callback URL is the URL where Facebook pings to inform us after a user has opted for
an order. We then process the order for the user with the help of Facebook Credits API, as
explained in the recipe Creating Facebook Credits frontend using JavaScript SDK of this
chapter.

Also, we can set up a few test users, which are dummy users, for testing Facebook Credits.
This lets us check, and debug, our online purchasing system, discussed in the Developing
"Send a gift" application and integrating with Facebook Credits recipe, developed with the
help of Facebook Credits.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

215

See also
ff Setting up an Application Callback for Facebook Credits

ff Creating Facebook Credits frontend using JavaScript SDK

ff Developing a "Send a gift" application and integrating with Facebook Credits

Setting up an application callback for
Facebook Credits

Whenever a user does any transaction through Facebook credits, Facebook makes a call to
the callback URL that has been set in the application's Credits settings, as described in the
recipe—Setting up the application for Facebook Credits. Facebook communicates with this
callback URL of your server multiple times, guiding the user through various stages in a buying
process. Thus, configuration of this callback URL is the initial step, which we have to do if we
want to implement credits functionality in our application. Here, we will show you how to set
up your application callback for credits.

Getting ready
You should have enabled your application for Facebook credits as described in the
preceding recipe.

How to do it...
The following steps demonstrate how to set up an application callback:

1.	 Create a new file named callback.php and copy the following code to it.

2.	 First, set your application API key (not application API ID) and application secret as
shown below:
<?php
 $api_key = 'YOUR_APP_API_KEY_HERE';
 $secret = 'YOUR_APP_SECRET_HERE';

3.	 Now, include the main file facebook.php and prepare the array $data for the
return data:
 include_once 'facebook.php';

 $data = array('content' => array());

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

216

4.	 Next, pass signed_request and secret key to the parse_signed_request()
function to authenticate, and make sure that the request is coming from Facebook:
 $request = parse_signed_request($_REQUEST['signed_request'],
 $secret);

5.	 If the request is not from Facebook we quit:
 if ($request == null) {
 exit();
 }

 $payload = $request['credits'];

6.	 Then, retrieve method and order_id, which have been passed from Facebook:
 $func = $_REQUEST['method'];
 $order_id = $payload['order_id'];

7.	 Next, check for the callback method named payment_status_update and if it is
so, then accordingly change the order status to settled:
 if ($func == 'payments_status_update') {
 $status = $payload['status'];

 if ($status == 'placed') {
 $next_state = 'settled';
 $data['content']['status'] = $next_state;
 }

 $data['content']['order_id'] = $order_id;

 }

8.	 If the callback method is payment_get_items, set the item details depending upon
the value of order_info:
 else if ($func == 'payments_get_items') {

 $order_info = stripcslashes($payload['order_info']);

9.	 If order_info is set to 1:
 if ($order_info==1) {	

 $item['title'] = 'Rose';
 $item['price'] = 1;
 $item['description'] = 'This is a rose';
 $item['image_url'] = 'http://www.yoursite.com/images/
 rose.png';

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

217

 $item['product_url'] = 'http://www.yoursite.com/images/rose.
 png';

 }

10.	 If order_info is equal to 2:
 else if($order_info==2) {

 $item['title'] = 'Teddy Bear';
 $item['price'] = 2;
 $item['description'] = 'This is a Teddy Bear';
 $item['image_url'] = 'http://www.yoursite.com/images/teddy.
 png';
 $item['product_url'] = 'http://www.yoursite.com/images/
 teddy.png';

 }

11.	 Next, return the item details in the content key of the array $data:
 $data['content'] = array($item);
 }
 $data['method'] = $func;
 echo json_encode($data);

12.	 Now, define the parse_signed_request() function, which authenticates the
incoming request:
 function parse_signed_request($signed_request, $secret) {
 list($encoded_sig, $payload) = explode('.', $signed_request, 2);

13.	 Next, verify signed_request and the algorithm, which is used to sign the request:
 $sig = base64_url_decode($encoded_sig);
 $data = json_decode(base64_url_decode($payload), true);

 if (strtoupper($data['algorithm']) !== 'HMAC-SHA256') {
 error_log('Unknown algorithm. Expected HMAC-SHA256');
 return null;
 }

 $expected_sig = hash_hmac('sha256', $payload, $secret,
 $raw = true);
 if ($sig !== $expected_sig) {
 error_log('Bad Signed JSON signature!');
 return null;
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

218

 return $data;
 }

 function base64_url_decode($input) {
 return base64_decode(strtr($input, '-_', '+/'));
 }

14.	 In the preceding code, you may want to write your own logic for the items you want to
have in your application. Save this file.

We have used https://github.com/facebook/credits-
api-sample/blob/master/callback.php as a reference for
the preceding code.

How it works...
Whenever any Facebook Credits transaction happens, Facebook communicates and makes
certain requests to this callback URL. The initial step is to verify that the request comes from
Facebook. For this, we verify the value of the signed_request key of the $_REQUEST array,
which contains a base64 and a URL encoded JSON object sent by Facebook whenever a user
accesses our application. We verify by using the parse_signed_request() function, as
shown in the following code snippet:

function parse_signed_request($signed_request, $secret) {
 list($encoded_sig, $payload) = explode('.', $signed_request, 2);
 $sig = base64_url_decode($encoded_sig);
 $data = json_decode(base64_url_decode($payload), true);
 if (strtoupper($data['algorithm']) !== 'HMAC-SHA256') {
 error_log('Unknown algorithm. Expected HMAC-SHA256');
 return null;
 }
 $expected_sig = hash_hmac('sha256', $payload, $secret,
 $raw = true);
 if ($sig !== $expected_sig) {
 error_log('Bad Signed JSON signature!');
 return null;
 }
 return $data;
}

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

https://github.com/facebook/credits-api-sample/blob/master/callback.php
http://developers.facebook.com/docs/authentication/signed_request
http://en.wikipedia.org/wiki/Base64#URL_applications
http://en.wikipedia.org/wiki/Base64#URL_applications

Chapter 8

219

We use the list() function for separating $signed_request into sub arrays named
$sig and $data, which contain signature and data respectively. Next, we decode them by
using base64_url_decode(), a custom function, and json_decode(). Upon decoding,
we check whether $data['algorithm']) is equal to HMAC-SHA256, a type of algorithm,
which is used by Facebook. Next, we calculate the expected signature, $expected_sig, by
using the hash_hmac() function and check if it is equal to the decoded signature, $sig.
Once this is verified, we are ready to communicate back to Facebook.

As soon as a new order request is made to Facebook, it pings this callback URL and sends a
request with the payment_get_items method along with order_info and order_id. The
following table gives a detailed description of order_id and order_info:

Meta properties Description
order_id It is the 64-bit ID of the order. It is uniquely generated by Facebook

every time an order is made.
order_info It is the order information which is provided to Facebook by the

application from the frontend. It is used to uniquely identify the
item which has been ordered.

Once this is passed to the callback URL, we then need to return the requested item
information based on the value of order_info to Facebook. The item information should
be a JSON encoded array and should consist of these seven parameters, as shown in the
following table:

Meta properties Description
item_id It is used to identify each item uniquely. It is not used by Facebook.
title It is the name of the item. It can have a maximum of 50

characters.
description It is the description of the item. It should be less than, or equal, to

175 characters.
image_url It is the URL of the image of the item specified.
product_url It is a permalink to the URL where we display the product to the

user.
price It is the price of the item. It must always be more than 0 credits.
data It is an optional field and may or may not be specified. It can be

used to store additional information about the product.

This has been done in the following lines of code. Here, we have shown the item information
for two different order_info values:

else if ($func == 'payments_get_items') {
 $order_info = stripcslashes($payload['order_info']);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

220

if ($order_info==1) {	
 $item['title'] = 'Rose';
 $item['price'] = 1;
 $item['description'] = 'This is a Rose';
 $item['image_url'] = 'http://www.yoursite.com/images/rose.png';
 $item['product_url'] = ' http://www.yoursite.com/images/rose.
png';
}

else if($order_info==2) {
 $item['title'] = 'Teddy Bear';
 $item['price'] = 1;
 $item['description'] = 'This is a Teddy Bear';
 $item['image_url'] = 'http://www.yoursite.com/images/teddy.png';
 $item['product_url'] = ''http://www.yoursite.com/images/teddy.
png';
}
 $data['content'] = array($item);
}
$data['method'] = $func;
echo json_encode($data);

Once this is done, the user gets prompted with the option to pay. When the user clicks on it
and confirms the payment, Facebook makes a request with the payment_status_update
method to the callback URL and passes status as placed, along with order_info and
the ordered item's information. If the method is payment_status_update and status is
placed, we can next change the status to any of the states mentioned in the following table:

Meta properties Description
settled If the transaction is authorized and can be done. In this case, the

required credit gets deducted from the user's account.
canceled In this case, if the user does not have enough balance, then the

required amount gets added to the user's balance. However, it can't be
spent in the game.

refunded This state can only be initiated by the developer or Facebook, in which
case the entire amount gets refunded to the user, with no additional
charge.

We set status to settled and pass it back to Facebook along with order_id. It has been
done in these lines of code:

if ($func == 'payments_status_update') {
 $status = $payload['status'];
 if ($status == 'placed') {

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

221

 $next_state = 'settled';
 $data['content']['status'] = $next_state;
 }
 $data['content']['order_id'] = $order_id;

}

When Facebook receives this updated data, it completes the transaction deducting the
amount from the user's account and moving the balance to our account. After this, Facebook
once again calls the callback URL with the method as payment_status_update and
status set to settled. It is then that we get to know that the transaction has been
completed successfully and we can the store order details such as order_id in our database
or perform some other operation.

See also
ff Calling Facebook Credits API using JavaScript SDK

Creating Facebook Credits frontend
using JavaScript SDK

We can make Facebook Credits frontend by directly using the JavaScript SDK. In this recipe,
we will use the Facebook Pay Dialog box to handle credits and call it through Facebook's
JavaScript SDK.

Getting ready
You should have created index.php, as mentioned in the Getting ready section given at the
beginning of Chapter 5.

How to do it...
The following steps will demonstrate how to create a Facebook Credits frontend:

1.	 Open index.php and add the following highlighted code inside the div fb-root, as
shown:
<div id="fb-root">
 PURCHASE FROM THE LIST GIVEN BELOW

 Rose
 Teddy Bear

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

222

</div>

2.	 Next, add the following highlighted code to the function assigned to window.
fbAsyncInit, just after the FB.init() function:
 window.fbAsyncInit = function() {
 FB.init({appId: 'your_app_id', status: true, cookie: true,
xfbml: true});
 $(document).ready(function() {

3.	 Use the callback function of the click() method for the above links to display the
Facebook Pay dialog box:
 $("#bdaygift").click(function() {

4.	 Use the FB.ui() function to render the pay dialog box along with a set of
parameters:
 FB.ui(
 {
 method: 'pay',
 credits_purchase: false,
 redirect_uri: 'http://apps.facebook.com/your_app/',
 order_info: 1,
 purchase_type:'item'

 },

5.	 Use the callback function of FB.ui() to determine the status of the order and alert
the user:
 function(response) {
 if (response['order_id']) {
 alert('Your order id is ' + response['order_id']);
 } else {
 alert('Some error occurred.');
 }
 });

 });

6.	 For the item with order_info equal to 2:
 $("#teddybear").click(function() {
 FB.ui(
 {
 method: 'pay',

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

223

 credits_purchase: false,
 redirect_uri: 'http://apps.facebook.com/your_app/',
 order_info: 2,
 purchase_type:'item'

 },

 function(response) {
 if (response['order_id']) {
 alert('order made');
 } else {
 alert('error');
 }
 });
 });
 });
};

7.	 In the preceding code, replace your_app_id with your own application ID. Now,
save and run index.php.

How it works...
In the above code, after initializing our Facebook application, we use the jQuery click event
for links with ID rose and teddybear to make a call to the FB.ui() function. For handling
transactions through Facebook Credits, we make use of the inbuilt Facebook Pay Dialog. This
is done by the FB.ui() function, which takes a JavaScript object as its first parameter. We
set the method attribute as pay, which determines that we want to render the Facebook
Pay Dialog box. We can configure our Facebook Pay Dialog box with the help of the following
attributes:

Meta properties Description
app_id It is an optional field. It refers to your application ID.
redirect_uri It is the URL to which we want to redirect to after the user clicks

on the dialog button.
credits_purchase It can be set to either true or false. It determines whether it

is a credit purchase dialog or not.
order_info This is an internal key and is related to our products' information.
dev_purchase_params These are developer parameters used at different times such

as earning credits, using offers, and so on.
purchase_type This is used to decide which type of purchase is being done.

Over here we have set it to item.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

224

After making these configurations, we are all set to use Facebook Credits. Now, if we run
index.php, we will be asked to choose an item to purchase as shown in the
following screenshot:

When the user clicks on any of these items' names, Facebook pings the callback URL, which
we have defined in our application's Credits settings, with the method set as payment_get_
items. Now, corresponding to the order_info value of the clicked item, the callback file
retrieves the item's fields, such as its description, price, and so on, and returns it back to
Facebook. This information is then displayed in the Pay dialog box and it will appear as shown
in the following screenshot:

Along with this, it also displays the available credits in the user's account at the bottom-left
corner. If the user has a sufficient balance and clicks on the buy button, a screen confirming
the purchase appears, and the item's price gets deducted from the available credits of the
user, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

225

When the user clicks on Okay, the callback function of the FB.ui() function is called along
with order ID that has been generated by Facebook for this order. If the order is successful, an
alert box is displayed, as shown in the following screenshot:

Also, when the user clicks the OK button, then Facebook again pings our callback URL with
the method as payment_status_update and status as settled. It is then that we know
the transaction has been completed successfully.

There's more...
If the user does not have sufficient credits in his account, then Facebook automatically
acknowledges this and provides the user with a series of payment options, as shown in the
following screenshot:

The user can now enter his/her credentials, buy the credits, and can then make the purchase
as desired.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

226

Getting credits without purchase
If the user does not want to purchase any item, and rather only wants to buy some credits,
then this can be done simply by making credit_purchase, inside the FB.ui() function, as
false. Also, we need not mention any other attribute such as order_info. The code for this
is as follows:

FB.ui(
 {
 method: 'pay',
 credits_purchase: true,
 });

Upon running this code, a pay dialog box with the following options for payment will appear:

Now, the user can select from any of these options and buy the credits as desired.

Getting the order details
Facebook allows us to retrieve the order details of credit purchased by a user. We can use
Facebook Graph API for this purpose and retrieve the details, such as the person who has
purchased the particular item, the time, and so on.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

227

Getting ready
You should know the order ID of whose information you want to retrieve. Also, you should have
registered your application and should have created config.php, as explained in the Getting
ready section in the beginning of Chapter 2.

How to do it...
The following steps will demonstrate how to retrieve the order details:

1.	 Create a file named action_get_order.php and add the following code to it:
<?php

2.	 Include the configuration file:
 require_once 'config.php';

3.	 Specify the arguments that need to be posted to the authorization URL in the $args
array:
 $args = array('grant_type' => 'client_credentials',
 'client_id' => $facebook->getAppId(),
 'client_secret' => $facebook->getApiSecret());

4.	 Initialize cURL using the curl_init() function:
 $ch = curl_init();

5.	 Set the authorization URL by using the curl_setopt() function:
 $url = 'https://graph.facebook.com/oauth/access_token';
 curl_setopt($ch, CURLOPT_URL, $url);

6.	 Set the POST and RETURNTRANSFER method and POSTFIELDS using the curl_
setopt() function:
 curl_setopt($ch, CURLOPT_HEADER, false);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($ch, CURLOPT_POST, true);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $args);

7.	 Use the curl_exec() function to execute the POST request and the explode()
function to extract the access token:
 $access_token = explode("=", curl_exec($ch));
 curl_close($ch);

 $access_token = $access_token[1];

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

228

8.	 GET the order details using the api() function:
 $order_id='your_order_id';
 $orderinfo = $facebook->api('/'.$order_id,'GET',array
 ('access_token' => $access_token,));
 print_r($orderinfo);
?>

9.	 Enter your order ID in place of your_order_id and save the file. Now run it.

How it works...
For retrieving details of an order made using Facebook Credits, we first need to get an
OAuth access token on behalf of the application. This is necessary, as an order made is
an application's connection and it does not correspond to any particular user. To get the
application's access token, we need to make a POST request to the following URL – https://
graph.facebook.com/oauth/access_token. We use the functions of the PHP cURL
library to assist us. We first use curl_init(), which initializes and returns a cURL handle.

Next, we set certain options for configuring the request before executing it. We have
configured the following attributes by using the curl_setopt() function:

Meta properties Description
CURLOPT_HEADER It determines whether or not to include the header in the

output.
CURLOPT_RETURNTRANSFER It determines whether or not to return the transfer as a

string of the return value of curl_exec(), instead of
outputting it directly.

CURLOPT_POST It determines whether or not to make a normal HTTP POST
request.

CURLOPT_POSTFIELDS It contains the data to post when making a POST request.

After this, we use curl_exec() to finally make the POST request and we store the result
in $access_token, after using the explode() function on the returned result. We have
used the explode() function because the data returned is something like this—access_
token=XXXXXXX, and we have to extract the value of the access token.

Once we have the access token, we make a GET request to the URL of the form—https://
graph.facebook.com/[order_id] by using the api() function, as follows:

$orderinfo = $facebook->api('/'.$order_id, 'GET', array('access_token'
=> $access_token,));

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

https://graph.facebook.com/oauth/access_token
https://graph.facebook.com/oauth/access_token

Chapter 8

229

After we have successfully made our request, Facebook will return the order details, such as
the order ID, buyer, sender, price, status, application name, country, and purchase time. It will
look as shown in the following screenshot:

See also
ff The Getting ready section in the beginning of Chapter 2

Implementing custom offers
Facebook allows us to earn credits by completing certain offers. This is most beneficial when
we do not want to pay from our own account.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

230

Getting ready
You should have created index.php as mentioned in the beginning of Chapter 5.

How to do it...
The following steps will demonstrate the implementation of custom orders:

1.	 Open index.php and add the following highlighted code inside the div named fb-
root as shown:
<div id="fb-root">

 Earn Credits through
 Offers

</div>

2.	 Next, add the following highlighted code to the function assigned to window.
fbAsyncInit, just after the FB.init() function:
 window.fbAsyncInit = function() {
 FB.init({appId: 'your_app_id', status: true, cookie: true,
 xfbml: true});

 $(document).ready(function() {

3.	 Use the callback function of the click() method for the previous links to display the
Facebook Pay Dialog:
 $("#earncredit").click(function() {

4.	 Use the FB.ui() function to render the pay dialog box, along with a set of
parameters :
 FB.ui(
 {
 method: 'pay',
 credits_purchase: true,
 dev_purchase_params: {"shortcut":"offer"}
 });

 });
 });
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

231

5.	 Replace your_app_id in the previous code with your application ID. Now run the
code. A screen will appear, as shown in the following screenshot:

6.	 Now, if you will click on the option Earn Credits through offers, a screen displaying
the list of offers by TrialPay will appear and would be similar to the following
screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

232

The user can now click on any of these offers, complete them, and the corresponding credits
will get added to his/her account.

How it works...
Here, first of all we initialize our Facebook application using the FB.init() function of the
Facebook JS SDK. Next, we use the jQuery click event of div with ID earncredit to make
a call to the FB.ui() function. We make use of the Facebook Pay Dialog box to render the
offers. This is done by the FB.ui() function, which takes a JavaScript object as a parameter.
We set the method attribute as pay, which determines that we want to render the Facebook
Pay Dialog box.

To render offers for earning credits, the main attribute that needs to be set is
dev_purchase_params. It requires a JSON object and we make it equal to
{"shortcut":"offer"} in order to tell Facebook to render the TrialPay offers, which will
help us earn credits. This has been done in the following lines of code:

FB.ui(
 {
 method: 'pay',
 credits_purchase: true,
 dev_purchase_params: {"shortcut":"offer"}
 });

Once we have set these attributes, we simply need to run the code and complete the offers
available to earn Facebook Credits.

There's more...
The method just mentioned allows us to earn the credits by completing certain offers. There is
another way by which we can get credits. This is done by integrating DealSpot in
our application.

Integrating DealSpot
DealSpot offers the customers credits in exchange for completing certain advertisement
offers. DealSpot relies on a set of in-game icons that rotate, based on offers, and
automatically hides from the customers if no offers are available.

To integrate DealSpot, copy the code given next, in your application:

<?php
 require_once 'config.php';
 $info = $facebook->api('/me?fields=third_party_id');
?>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

233

<script type="text/javascript" src="http://assets.tp-cdn.com/static3/
js/api/payment_overlay.js"></script>
<script type="text/javascript">

 TRIALPAY.social.render_dealspot_swf({
 "id" : "trialpay_dealspot",
 "app_id" : "<?php print $facebook->getAppId()?>",
 "onOfferUnavailable" : "TRIALPAY.social.delete_dealspot_swf",
 "mode" : "fbpayments",
 "sid" : "<?php print $info['third_party_id']?>"
 });
</script>

For integrating DealSpot into your application, we require the following parameters:

ff app_id: It is your Facebook application ID. We have retrieved it in the previous code
using <?php print $facebook->getAppId()?> and assigned it to app_id.

ff sid: It is the customer's unique third party ID. Facebook has associated a unique
third party identifier with every user. This is when developers have to share
information with some legitimate third party. It had been retrieved by making a call
to the Facebook Graph API in $info = $facebook->api('/me?fields=third_
party_id');.

ff onOfferUnavailable: It collapses the DealSpot swf if no offers are available. You
can call your own function when no offers are available by replacing TRIALPAY.
social.delete_dealspot_swf with your own function's name.

Refunding the order
Sometimes, it may happen that a user has placed an order, but we are unable to process
the order due to some problem that might have occurred unexpectedly. In such a case, the
developer needs to refund the money to the user. In this recipe, we will learn how to refund
an order.

Getting ready
You should know the ID of the order whose payment you want to refund. Also, you should have
registered your application and should have created config.php, as explained in the Getting
ready section in the beginning of Chapter 2.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

234

How to do it...
The following steps will demonstrate how to refund the order:

1.	 Create a file named action_update_order.php and add the following code to it:
<?php

2.	 Include the configuration file:
 require_once 'config.php';

3.	 Specify the arguments needed to post to the authorization URL in the $args array:
 $args = array('grant_type' => 'client_credentials',
 'client_id' => $facebook->getAppId(),
 'client_secret' => $facebook->getApiSecret());

4.	 Initialize cURL using the curl_init() function:
 $ch = curl_init();

5.	 Set the authorization URL by using the curl_setopt() function:
 $url = 'https://graph.facebook.com/oauth/access_token';
 curl_setopt($ch, CURLOPT_URL, $url);

6.	 Set the POST and RETURNTRANSFER method and POSTFIELDS using the curl_
setopt() function:
 curl_setopt($ch, CURLOPT_HEADER, false);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($ch, CURLOPT_POST, true);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $args);

7.	 Use the curl_exec() function to execute the POST request and the explode()
function to extract the access token:
 $access_token = explode("=", curl_exec($ch));
 curl_close($ch);

 $access_token = $access_token[1];

8.	 POST the order refund request using the api() function:
 $order_id='your_order_id';
 $info = $facebook->api('/'.$order_id,'POST',array('access_token'
 => $access_token,'status'=> 'refunded','message'=> ' We are
 refunding the order due to delivery failure',));
 print_r($info);
?>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

235

8.	 Enter order id, whose payment you want to refund, in place of your_order_id
and save the file. Now run it. Upon successful execution, it returns 1, which gets
stored in $info, and refunds the credits charged from the user for that particular
order ID.

How it works...
For refund of the payment, related to an order made using Facebook Credits, we first need to
get an OAuth access token on behalf of the application. This is necessary, as an order made
is an application's connection. To get the application's access token, we need to make a POST
request to the following URL (https://graph.facebook.com/oauth/access_token).
We use PHP cURL library functions to assist us. We first use curl_init(), which initializes
and returns a cURL handle.

Next, we set certain options for configuring the request before executing it. We have
configured the following attributes by using the curl_setopt() function:

Meta properties Description
CURLOPT_HEADER It determines whether or not to include the header in the

output.
CURLOPT_RETURNTRANSFER It determines whether or not to return the transfer as a

string of the return value of curl_exec(), instead of
outputting it directly.

CURLOPT_POST It determines whether or not to make a normal HTTP POST
request.

CURLOPT_POSTFIELDS It contains the data to post when making a POST request.

After this, we use curl_exec() to finally make a POST request and we store the result in
$access_token, after using the explode() function on the returned result. We have used
the explode() function because the data returned is – access_token=XXXXXXX and we
have to extract the value of the access token and store it in $access_token.

$access_token = explode("=", curl_exec($ch));
curl_close($ch);
$access_token = $access_token[1];

Once we have the access token, we make a POST request to the URL of the form (https://
graph.facebook.com/[order_id]) using the api() function, as shown in the following
code snippet:

$order_id='your_order_id';
$info = $facebook->api('/'.$order_id,'POST',array('access_token' =>
$access_token,'status'=> 'refunded','message'=> ' We are refunding the
order due to delivery failure',));

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

https://graph.facebook.com/oauth/access_token

Fiddling with Virtual Currency

236

While updating the status of an order, we need to mention certain parameters. These are
listed in the following table:

Meta properties Description
order_id It is the ID of the order whose status we want to update.

This should be known to the developer beforehand.
access_token This is the application's access token as status change

requires application control.
status The status of the order to which we want to move it from its

present status. This could be settled, refunded or canceled.
message This will contain the message which we pass along with the

update.
refund_funding_source It is a Boolean value. Its value is true if we want to refund

the source of payment such as credit card, Paypal, and so
on or false if we refund credits.

refund_reason This is an optional field where we might specify the reason
for the refund or status change.

params It is an optional JSON-encoded dictionary {'comment' => }.

Once we have successfully executed this code, the payment made, with respect to the order
ID, will get refunded to the user's account.

Developing a "Send a Gift" application and
integrating with Facebook Credits

Facebook credit provides a safe and easy payment method to pay for digital and virtual goods.
It helps developers maximize their revenue and improves their operational efficiency as they
do not have to worry about the payment method anymore. Here, we will develop a Facebook
application and integrate it with Facebook Credits.

Getting ready
You should have created callback.php as mentioned in the recipe Setting up an
Application Callback for Facebook Credits of this chapter. Also, you should have created
config.php as mentioned in the Getting ready section in the beginning of Chapter 2. We will
use the MySQL database to store gifts and order details. So, you need to create a database,
named db_gifts, and a corresponding username and password for it.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

237

How to do it...
The following steps will demonstrate how to develop a "Send a Gift" application:

1.	 Create a table gifts inside the db_gifts database using the SQL code given next:
CREATE TABLE IF NOT EXISTS `gifts` (
 `serial` int(11) NOT NULL auto_increment,
 `name` text NOT NULL,
 `image_url` text NOT NULL,
 `price` int(11) NOT NULL,
 `description` text NOT NULL,
 PRIMARY KEY (`serial`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=11 ;

2.	 Now insert the values inside the gifts table using the following SQL insert
statement:
INSERT INTO `gifts` (`serial`, `name`, `image_url`, `price`,
`description`) VALUES
(1, 'Chocolates', 'http://www.url_for_gift1.com/gift1.jpg',
1, 'Delicious pack of Cadbury chocolates having more than 10
different varieties'),
(2, 'Teddies', 'http://www.url_for_gift2.com/gift2.jpg', 3, 'Gift
a pair of cute teddy bears wishing happy birthday'),
(3, 'Cake', 'http://www.url_for_gift3.com/gift3.jpg', 5,
'Delicious home-made cake available in all the flavours'),
(4, 'Mug', 'https://www.url_for_gift4.com/gift4.jpg', 1, 'Gift a
Coffee Mug saying happy birthday'),
(5, 'Ring', 'http://www.url_for_gift5.info/gift5.jpg', 10, 'Gift a
platinum ring to your loved one'),
(6, 'Card', 'http://www.url_for_gift6.com/gift6.jpg', 2, 'Wish
happy birthday through cards'),
(7, 'Balloons', 'http://www.url_for_gift7.com/gift7.jpg', 1,
'Birthday Balloons'),
(8, 'Clock', 'http://www.url_for_gift8.com/gift8.jpg', 5, 'Gift a
Wall Clock'),
(9, 'bouquet', 'http://www.url_for_gift9.com/gift9.jpg', 3, 'Send
flowers with good wishes');

3.	 Create a new index.php file.

4.	 Include the file config.php. Now, using Facebook Graph API, extract the user's
friend list into an array and change its name attribute to label:
<?php
 require_once 'config.php';
 $friends = $facebook->api('/me/friends');
 foreach($friends['data'] as &$friend) {

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

238

 $friend['label'] = $friend['name'];
 unset($friend['name']);
 }
?>

5.	 Now, add the external JavaScript files and the CSS stylesheet needed for using jQuery
and jQuery UI widgets and themes:
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:fb="http://www.
facebook.com/2008/fbml">
<head>
 <script type="text/javascript" src="https://ajax.googleapis.com/
 ajax/libs/jquery/1.5.2/jquery.min.js"></script>
 <script type="text/javascript" src="https://ajax.googleapis.com/
 ajax/libs/jqueryui/1.8.13/jquery-ui.min.js"></script>
 <link href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.3/
 themes/u
 i-lightness/jquery-ui.css" rel="stylesheet" type="text/css" />
</head>
<body>

6.	 Add the following divs:
 <div id="fb-root">
 <div class="ui-widget">

7.	 Now, define the div tabs as shown:
 <div id="tabs">

 Choose a Friend
 Choose a Gift

8.	 Inside the div tabs, define a div tabs-1, as shown next:
 <div id="tabs-1">
 <p><label for="friend">Choose a friend: </label>
 input id="friend" />
 <input type="hidden" id="selected_friend" /></p>
 </div>

9.	 Next, define another div tabs-2, as shown:
 <div id="tabs-2">
 <p><table width="100%" border="0">
 <tr>
 <?php

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

239

10.	 Connect to the MySQL database and select all the gifts from the database table
named gifts:
 $con = mysql_connect("localhost",
 "your_username","your_password");
 if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }

 mysql_select_db("botskoco_order", $con);

 $result = mysql_query("SELECT * FROM gifts");
 $i=0;
 while($row = mysql_fetch_array($result))
 {

11.	 Display the gifts in a tabular format, as shown next:
 echo '<td width="33%" align="center"><img src="'
 . $row['image_url'] . '" id="gift_' .
 $row['serial'] . '" height="100" width="100"
 class="gifts"/>
' . $row['name'] . '</td>';
 $i++;
 if($i%3==0)
 echo '</tr><tr>';
 }
 mysql_close($con);
 ?>
 </tr>
 </table>
 </div>
 </div>
 </div>
 </div>

12.	 Load Facebook JavaScript SDK to define the functionalities:
 <script type="text/javascript">
 window.fbAsyncInit = function() {

13.	 Initialize the application using JavaScript's FB.init() function:
 FB.init({appId: 'your_app_id', status: true, cookie: true,
 xfbml: true});

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

240

14.	 Inside the document.ready function, define the callCredit() function:
 $(document).ready(function() {
 var callCredit = function(id) {

15.	 Use FB.ui() for displaying the Facebook Pay Dialog box:
 FB.ui(
 {
 method: 'pay',
 credits_purchase: false,
 redirect_uri: 'http://apps.facebook.com/your_app/',
 order_info:id,
 purchase_type:'item'
 },

16.	 Define the callback function for FB.ui():
 function(response) {
 if (response['order_id']) {

 $("#tabs").append('<div id="tabs-3">Your order id is
 - ' + response['order_id'] + '.
Your gift will
 be delivered to your friend, ' + $('#friend').val()
 + ', within 2 days.
Thanks for using our
 service.</div>');
 $("#tabs").tabs('add', '#tabs-3', 'Order Details');
 $("#tabs").tabs('select',2);
 } else {
 alert('Sorry, some error occurred. Please try
 placing order again.');
 }
 });
 };

17.	 Define the user interface using jQuery UI:
 $("#selected_friend").val(0);
 $("#tabs").tabs();
 $("[id^='gift']").click(function() {
 if($("#selected_friend").val()!=0)
 callCredit($(this).attr('id').split('_')[1]);
 else
 alert('Please choose a friend first');
 });
 var friends = <?php echo json_encode($friends['data']); ?>;
 $("#friend").autocomplete({
 source: friends
 });

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

241

 $("#friend").bind("autocompleteselect",
 function(event, ui) {
 $("#selected_friend").val(ui.item.id);
 $("#tabs").tabs('select',1);
 });
 });
 };

18.	 Add the code to load FB-JS SDK asynchronously:
 (function() {
 var e = document.createElement('script');
 e.type = 'text/javascript';
 e.src = document.location.protocol +
 '//connect.facebook.net/en_US/all.js';
 e.async = true;
 document.getElementById('fb-root').appendChild(e);
 }());
 </script>
 </body>
</html>

19.	 Save this file.

20.	 Now we will make certain changes to the callback.php file, which we had created
in the second recipe. Open it and make the changes that are highlighted next. Here,
we have replaced the if ($func == 'payments_get_items') condition block
with the following code:
else if ($func == 'payments_get_items') {
 $order_info = stripcslashes($payload['order_info']);

 $con = mysql_connect("localhost","botskoco_order","order");
 if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }

 mysql_select_db("botskoco_order", $con);

21.	 Retrieve the items' information dynamically from the database:
 $row = mysql_fetch_array(mysql_query("SELECT * FROM gifts
 WHERE serial=" . $order_info));
 $item['title'] = $row['name'];
 $item['price'] = $row['price'];

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

242

 $item['description'] = $row['description'];
 $item['image_url'] = $row['image_url'];
 $item['product_url'] = 'http://apps.facebook.com/your_app/';
 mysql_close($con);
 $data['content'] = array($item);
}

22.	 Save the edited callback.php file and now run index.php. A sample screenshot
is shown next:

23.	 Type the name of a friend to whom you want to send the gift, in the Choose a friend
textbox. A drop down list will appear from which you can select the name of your
friend. As soon as you select the friend, you will be redirected to the second tab,
where you will see a list of the available gifts, as shown next:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

243

24.	 Next, click on the gift which you want to send. A pay dialog box, showing you the price
of the item, will appear as shown next:

25.	 Click on the buy button if you want to send the gift. A dialog box confirming that the
purchase was successful will appear and the equivalent credits will get deducted
from your account:

26.	 As soon as you click on the Okay button, another tab will appear right next to the
Choose a Gift tab, providing you the order details, as shown in the next screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

244

How it works...
Here, we have created a database table named gifts for storing the details of the gifts. It
contains the following fields:

ff serial: This is our unique ID for every gift.

ff name: This is the name of the gift displayed to the user.

ff image_url: This contains the URL of the gift image.

ff price: This is the gift price expressed in Facebook credits.

ff description: This contains a relevant description for the gift.

We store all our gift details in this table by executing SQL queries given in the previous
section.

The frontend of our application contains three sections as listed next:

ff Friend selection

ff Gift selection

ff Order details

For designing the frontend interface, we have used jQuery UI library and jQuery UI theme
named UI Lightness. We have used jQuery UI widget – Tabs to render our three sections.
Additionally, we have used a jQuery UI widget named AutoComplete to ease and automate
the process of friend selection. Let's discuss the HTML and PHP code now.

First we need to provide the user with an interface to select his/her friends to whom a gift
shall be sent. For this we make a GET request by using Facebook Graph API to the URL –
http://www.graph.facebook.com/me/friends and store the names and IDs of the
current user in the array named $friends. This has been done in this line of code:

$friends = $facebook->api('/me/friends');

The $friends array will be similar to this, having two attributes (name and id):

{
 "data": [
 {
 "name": "Apeksha Singh",
 "id": "32553"
 },
 {
 ..
 },
 ..
]
}

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

245

Next, we need to set this list of friends as an input to the jQuery UI AutoComplete widget.
However, the jQuery UI AutoComplete widget needs an attribute named label or a value in
the input data for rendering the friend selector. Thus, we change the name attribute of the
previous friends' array and rename it as label. This has been done in the following lines:

foreach($friends['data'] as &$friend) {
 $friend['label'] = $friend['name'];
 unset($friend['name']);

The unset() function deletes the array key, which is passed to it. Next, we have used the
Tabs widget to render the different sections on the page. For this, we have used the following
HTML structure to define the various tabs:

<div id="tabs">

 Choose a Friend
 Choose a Gift

 <div id="tabs-1">
 <!-- Content of first section here -->
 </div>
 <div id="tabs-2">
 <!-- Content of second section here -->
 </div>
</div>

The elements here will be used as the name of the different tabs, and when a user clicks
on these tabs, then the relevant content will be displayed, as defined by various sub div tags,
tabs-1 and tabs-2, inside the div named tabs. The third tab is generated dynamically. We
will discuss it later.

The div tabs-1 contains the following code:

<label for="friend">Choose a friend: </label>
<input id="friend" />
<input type="hidden" id="selected_friend" />

Here, the input field with ID friend will be used to load the selector, as discussed later, and
input field with id selected_friend, which is also a hidden type input field will contain the
uid of the selected Facebook friend of the current user.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

246

The div tabs-2 contains the following code:

<table width="100%" border="0">
 <tr>
 <?php
 $con = mysql_connect("localhost","username","password");
 if (!$con) {
 die('Could not connect: ' . mysql_error());
 }
 mysql_select_db("db_gifts", $con);
 $result = mysql_query("SELECT * FROM gifts");
 $i=0;
 while($row = mysql_fetch_array($result)) {
 echo '<td width="33%" align="center">
 <img src="' . $row['image_url'] . '" id="gift_'
 . $row['serial'] . '" height="100" width="100"
 class = "gifts"/>
' . $row['name'] . '</td>';
 $i++;
 if($i%3==0)
 echo '</tr><tr>';
 }
 mysql_close($con);
 ?>
 </tr>
</table>

Here, we have dynamically generated an HTML table for displaying the gifts stored in the
database. First, we establish a connection to the MySQL database by using the mysql_
connect() function. Next, we connect to a database named db_gifts by using the mysql_
select_db() function. After this we use mysql_query() along with the mysql_fetch_
array() function and print the results, row by row, in the form of an HTML table.

Now, let's discuss the JavaScript code. First we have initialized our Facebook application by
using the FB.init() function:

<script type="text/javascript">
window.fbAsyncInit = function() {
 FB.init({
 appId: 'your_app_id',
 status: true,
 cookie: true,
 xfbml: true
});

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

247

Next, we define the callCredit() function, which is called whenever a user clicks on a gift,
in the following code:

$(document).ready(function() {
 var callCredit = function(id) {
 FB.ui(
 {
 method: 'pay',
 credits_purchase: false,
 redirect_uri: 'http://apps.facebook.com/your_app/',
 order_info: id,
 purchase_type: 'item'
 },

It takes a single parameter named ID, which is the gift ID. This function, in turn, loads the
Facebook Pay Dialog box by calling the FB.ui() function with the following parameters:

Meta properties Description
method We set it equal to pay. This is used to render the Facebook Pay

Dialog.
credits_purchase It takes in a Boolean value. It can be set to either true or

false. It determines whether it is a credit purchase dialog or not.
redirect_uri It is the URL to which we want to redirect to after the user clicks

on the dialog button.
order_info This is an internal key and is related to our products'

information.
purchase_type This is used to decide which type of purchase is being done.

Over here we have set it to item.

Next, we have shown the callback function of FB.ui(), which is inside the callCredit()
function:

function(response) {
 if (response['order_id']) {
 $("#tabs").append('<div id="tabs-3">Your order id is - ' +
 response['order_id'] + '.
Your gift will be delivered to your
 friend, ' + $('#friend').val() + ', within 2 days.
Thanks for
 using our service.</div>');
 $("#tabs").tabs('add', '#tabs-3', 'Order Details');
 $("#tabs").tabs('select',2);
 } else {
 alert('Sorry, some error occurred. Please try placing
 order again.');
 }
});
 };

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Fiddling with Virtual Currency

248

When callCredit() is called and the purchase turns out to be successful, then the if
condition in the callback function will be executed. Here, we use the append() function of
jQuery to dynamically add a new tab, which will display the information of the newly created
order. The div tabs-3 is appended inside div tabs. Next, we call the tabs() function of
jQuery UI to add a new tab with the content of the div tabs-3 and the name of the tab is
Order Details. After this, we again call the tabs() function with the first parameter as
select and second parameter as 2. This brings the tab with index 2, which is the (newly
added) third tab, in focus. In the else condition, we display an error message to the user
requesting him/her to again place the order.

 $("#selected_friend").val(0);
 $("#tabs").tabs();

Here, we have set the value of div selected_friend as 0 and the tabs() function renders
all the tabs based on the div tabs.

 $("[id^='gift']").click(function() {
 if($("#selected_friend").val()!=0)
 callCredit($(this).attr('id').split('_')[1]);
 else
 alert('Please choose a friend first');
 });

All the images of the gifts have their ID in the form of gift_id, where id is the gift id. In the
previous code, we have selected all the divs whose id start with gift and are registered to
their click event:

 var friends = <?php echo json_encode($friends['data']); ?>;
 $("#friend").autocomplete({
 source: friends
 });

Here, we first convert the $friends['data'] array, as explained earlier, to the JSON format
by using the json_encode() function. And then we store this JSON data into the JavaScript
variable friends. Next, we call the autocomplete() function of jQuery UI and specify the
source to be friends, which contains the JSON data of the Facebook friends of the current
user. Hence, the jQuery UI's AutoComplete widget is loaded in the div friend.

 $("#friend").bind("autocompleteselect", function(event, ui) {
 $("#selected_friend").val(ui.item.id);
 $("#tabs").tabs('select',1);
 });
 });
 };
</script>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

249

Finally, we have registered to the autocompleteselect event, which happens when a user
chooses a friend and then we store the corresponding id of the selected friend in the div
selected_friend by using the val() function. Next, we switch to the second tab by using
the tabs() function, where the gifts get displayed as previously described.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

9
Creating

Advertisements and
Analyzing Metric Data

In this chapter, we will cover:

ff Retrieving impressions of the Like Box plugin

ff Retrieving a page's stream views and wall posts using Batch Request

ff Getting the number of installations of an application using FQL

ff Getting statistics about visitors using FQL multiquery

ff Creating a new advertisement for your Facebook application

Introduction
Facebook Insights is a free service by Facebook which provides its page owners, platform
developers, and third-party website administrators with analytics and statistics about their
pages, applications, and websites respectively. This enables the developers to understand
how users are interacting with their content, and helps them to keep up with the latest
changing trends. So, with the help of Facebook Insights we can get in-depth information about
traffic and user data. This helps developers to formulate their business strategy in a more
efficient and productive manner.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Advertisements and Analyzing Metric Data

252

Facebook records various statistics for our application, such as daily impressions, number of
active users, number of likes received, and so on. These metrics can be retrieved from either
the Facebook table named insights or the Facebook Graph objects having an insights type
connection. The insights table and connection contains statistics about applications, pages,
and domains. Facebook application developers can export this metric data with the help of
Facebook Graph API or Facebook Query Language, as will be discussed in this chapter. These
metrics are collected and updated over a certain period which can vary from day, week, and
month to year.

Additionally, Facebook also provides us with an Insight Dashboard where a developer can view
and export some of the most common metrics related to his/her application, page, or domain.
The Insight Dashboard can be accessed at http://www.facebook.com/insights/.

Also, Facebook provides us with an option to display an advertisement on our application
by which we can increase its popularity. In this chapter, we will show you how to retrieve the
details of the various metrics for your application or third-party website. Additionally, we will
also show you how to create custom advertisements.

Prerequisites
First, we will create a basic layout. The recipes discussed in this chapter will contain code
based on this. We need to create two files as will be illustrated. Follow these steps:

1.	 Create a config.php file and add the following code to it:
<?php
 require_once 'facebook.php';
 /** Create our Application instance. */

2.	 Initialize the Facebook application:
 $facebook = new Facebook(array(
 'appId' => 'your_application_id',
 'secret' => 'your_application_secret_key',
 'cookie' => true,
));

Here, a Facebook class is defined in facebook.php and can be downloaded from
GitHub. $facebook is an object of this class and we will use it in index.php. You
need to provide your application ID and secret key here. For more information, read
the first chapter.

3.	 Next, create a file named index.php and add the following code to it:
<?php

4.	 Include the configuration file we just defined:
 require_once 'config.php';

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://www.facebook.com/insights/

Chapter 9

253

5.	 Get the current user's session information by using the getSession() function and
then perform session validation:
 $session = $facebook->getSession();
 $me = null;
 if ($session) {
 try {
 $me = $facebook->api('/me');
 /* Check whether the current session is valid by
 retrieving user information.*/
 }
 catch (Exception $e) {
 }
}
/* If the current session is invalid or user has not
 authorized the application then redirect to a
 authorization URL.*/

6.	 If the session is invalid redirect the application to the authorization URL:
if(!($me)) {
 echo '<script>
 top.location.href="'
 . $facebook->getLoginUrl(
 array(
 'req_perms' => 'read_insights',
 'next' =>
 'http://apps.facebook.com/[your_app_url]/',
)
)
 . '";
 </script>';
 exit;
}
?>

Here, we first retrieve a valid session for the user by calling $facebook->getSession()and
storing the response in a $session variable. Next, we try to retrieve the basic information
of the current user by posting a GET request to https://graph.facebook.com/me,
we use the $facebook->api() function to do so. https://graph.facebook.com is
automatically prefixed by an api() function to its first argument, that's why we have passed/
me as its first argument. The returned data is stored in the $me variable.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Advertisements and Analyzing Metric Data

254

Finally, we check whether the $me variable is null or not. If it's null, then we need to redirect
the user to the authorization URL in order to get appropriate permission(s) from, and a
valid session token for, the user. To redirect the user, we use JavaScript code. We set top.
location.href to the URL where we want to re-direct the user. This URL is given by the
function $facebook->getLoginUrl(). Also, this function takes array as its argument. The
index req_perms is used to request from the user-specific permissions. Multiple permissions
can be requested by separating them with a comma. Additionally, the index next specifies
where the user will be redirected after successful authorization and session generation.

Once you have created these two files, you can use them directly in the subsequent recipes.

Retrieving impressions of the Like Box
plugin

Facebook allows us to retrieve information about our various Social Plugins programmatically.
We can retrieve the impressions of our Like Box by using the Facebook Graph API. Here, we
will see how to do so.

Getting ready
You should have created index.php and config.php as mentioned in the beginning of
this chapter. Also, you should have provided read_insights extended permission to the
application.

How to do it...
The following steps will demonstrate how to retrieve impressions of the Like Box plugin:

1.	 Open index.php and append the following code to create an output table:
<table border='1'>
 <tr>
 <th>metric</th>
 <th>end_time</th>
 <th>period</th>
 <th>value</th>
 </tr>

2.	 Next, add your application ID here:
 <?php

 $app_id = 'your_app_id_here';

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

255

3.	 Now, use the api() function to make a GET request:
 $insights = $facebook->api('/' . $app_id . '/insights/
 application_widget_fan_views');

4.	 Format the output in tabular form:
 foreach ($insights['data'] as $metric) {
 foreach ($metric['values'] as $row) {
 $date = new DateTime($row['end_time']);
 echo "
 <tr>
 <td>{$metric['name']}</td>
 <td>{$date->format('Y-m-d')}</td>
 <td>{$metric['period']}</td>
 <td>{$row['value']}</td>
 </tr>";
 }
 }
 ?>
</table>

5.	 Now save the file and run it. Upon running it you will get an output displaying the daily
impressions of your application Like Box, as shown below:

How it works...
The analytical details of all applications corresponding to a Facebook developer are stored in
the insights table and can be extracted, or exported, from it. Facebook has defined various
metrics for different types of analytical data. For example, the number of impressions of
the Like Box is given by the metric named application_widget_fan_views. Here, we
have used the Facebook Graph API to get this information. In order to extract the details we
need to make a GET request to the URL of the form https://graph.facebook.com/
[application_id]/insights/[metric_name] where [application_id] and
[metric_name] are configurable.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Advertisements and Analyzing Metric Data

256

To make the GET request via the Facebook Graph API, we use the api() function of
Facebook class as shown:

$insights = $facebook->api('/' . $app_id . '/insights/application_
widget_fan_views');

The api() function defaults to a GET request when only a single argument is passed to
it. This argument contains a portion of the URL, to which the GET request is made, and is
automatically appended to https://graph.facebook.com. $insights and stores the
response from the server in the form of a PHP array. Next, we use nested the foreach loops
to print the received data in tabular format, as shown:

foreach ($insights['data'] as $metric) {
 foreach ($metric['values'] as $row) {
 $date = new DateTime($row['end_time']);
 echo "
 <tr>
 <td>{$metric['name']}</td>
 <td>{$date->format('Y-m-d')}</td>
 <td>{$metric['period']}</td>
 <td>{$row['value']}</td>
 </tr>";
 }
}

We use the DateTime PHP class to format the end_time dates in 'Y-m-d' format before
displaying them. The final output is a table which contains the metric name, end_time date,
metric period, and metric value. Here, metric period refers to the length of the period during
which the metric was collected and can take values such as day, week, month, or lifetime.

All periods may not be available for every metric.

Similarly, metric value contains the value of the desired metric.

The response from Facebook, which is stored in $insights, contains
paging URLs previous and next which allows us to page through the
whole data set for a particular metric.

There's more...
We can also create a chart to represent the metric.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

257

Using the Google Chart API to create a chart for a given metric
Here, we will use the Google Chart API to do so. We will dynamically generate a bar chart to
show the impressions of the Like Box on a daily basis with the help of the following code:

<?php
 require_once 'config.php';
 $app_id = 'your_app_id';
 $insights = $facebook->api('/' . $app_id . '/insights/
 application_widget_fan_views');
 foreach ($insights['data'] as $metric) {
 foreach ($metric['values'] as $row) {
 $date = new DateTime($row['end_time']);
 $y_axis_data[] = urlencode($row['value']);
 $x_axis_data[] = urlencode($date->format('Y-m-d'));
 }
 }
 $y_axis_data = implode(",", $y_axis_data);
 $x_axis_data = implode("|", $x_axis_data);
?>
<img src='<?php echo 'http://chart.apis.google.com/chart?chxl=1:|' .
 $x_axis_data . '&chxt=y,x&chbh=a&chs=300x225&cht=bvg&chco=A2C180&chd
 =t:' . $y_axis_data . '&chtt=Like+box+impressions'; ?>' />

The output of the code will be like this:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Advertisements and Analyzing Metric Data

258

Here, we have used the Google Chart API which returns a chart image in response to a URL
GET request. All the information regarding the bar chart has been passed as part of the URL
to the Google server. The base URL is http://chart.apis.google.com/chart and we
have added the following GET parameters to it:

ff chxl: This is used to define custom labels on any axis. Here, we defined custom
labels on the X-axis to print the date.

ff chxt: This represents the axes to show on the chart.

ff chbh: This decides the width of the bars in the chart. The value a means that the
bars will be resized in such a manner that all the bars fit in the specified chart
dimension.

ff chs: This represents the dimension of the chart.

ff cht: This represents the type of the chart.

ff chd: This represents the chart data.

ff chco: This decides the color for the individual bars.

ff chtt: This represents the title of the chart.

Finally, we use the img tag to embed the chart in our webpage.

Retrieving a page's stream views and wall
posts using batch request

If we want to extract significant data from the Facebook API, we can batch together all the
queries and then make a single request, instead of making multiple HTTP requests. Here, we
will show you how to extract daily stream views and wall posts of a Facebook page using this
batch API.

Getting ready
You should know the ID of your Facebook page whose information you want to retrieve. Also,
you should have created config.php and index.php as explained in the beginning of this
chapter.

How to do it...
The following steps will demonstrate a batch request:

1.	 Open index.php and add the following code to it:
<?php

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

259

2.	 Define the page ID:
 $page_id = 'your_page_id';

3.	 Define an array in which we will store all the requests:
 $batch = array();

4.	 Store your request in the form of the array as shown:
 $batch[] = array(

 'method' => 'GET',
 'relative_url' => "/$page_id/insights/page_stream_views",
);

5.	 Similarly, store the second request:
 $batch[] = array(
 'method' => 'GET',
 'relative_url' => "/$page_id/insights/page_wall_posts",
);

6.	 Make a batched request by using the api() function as shown:
 $insights = $facebook->api('/', 'POST',
 array(
 'batch' => json_encode($batch),
));

7.	 Decode and display the data received:
 foreach ($insights as $insight) {
 print_r(json_decode($insight['body']));
 }
?>

How it works...
Usually, when we use the Facebook Graph API, we make a request to an object of the
Facebook Graph on a specific URL and this is accomplished with a single HTTP request. But,
if we want to collect multiple data in the Facebook Graph then instead of making multiple
HTTP requests again and again we can use the batch API. Here, we define all our requests
collectively and then make a batched request. It is more efficient and saves time.

Batching allows us to pass instructions for several operations in a single HTTP request. These
operations are then processed in parallel by Facebook if the operations are independent,
otherwise they are processed sequentially. After the processing is complete, Facebook returns
the collective response back to the user in a single HTTP request.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Advertisements and Analyzing Metric Data

260

For batching, Facebook expects a JSON encoded array of HTTP requests. In our code we have
declared a PHP array $batch. Next, we append our requests to this array one by one as its
elements. Each request is an array and contains the following parameters:

ff method: This defines the type of HTTP method; for example GET, PUT, POST, DELETE,
and so on.

ff relative_url: This is the portion of the URL which is appended to https://
graph.facebook.com.

ff body: It is used in POST and PUT requests and should be formatted as a raw body
string. This is an optional field.

We prepare the PHP array for the batched request using the following code:

$batch[] = array(
 'method' => 'GET',
 'relative_url' => "/$page_id/insights/page_stream_views",
);

$batch[] = array(
 'method' => 'GET',
 'relative_url' => "/$page_id/insights/page_wall_posts",
);

Here, we have defined two separate GET requests for metrics—page_stream_views and
page_wall_posts. These two metrics provide us with the daily impressions of page stream
and wall posts respectively.

Next, to make a batched request, we convert this PHP array to a JSON array by using the
json_encode() function. And finally we use the api() function to make a POST request
to the Facebook Graph API endpoint at https://graph.facebook.com with a parameter
key batch which contains this JSON encoded PHP array as its value. This is done with the
following code:

$insights = $facebook->api('/', 'POST',
 array(
 'batch' => json_encode($batch),
));

The data returned by Facebook is in JSON format and we decode the body portion of all
requests by using json_decode(). Then we display the body, as a PHP array, of each
request by using the print_r() function with the following code:

foreach ($insights as $insight) {
 print_r(json_decode($insight['body']));
}

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

261

The output array will look like this:

Developers can store this locally or export the array for data analysis and mining.

Getting the number of installations of an
application using FQL

We can use the Facebook insights table to query for the number of installations of our
application up to a specified date. Here, we will show you how to do it.

Getting ready
You should have created index.php and config.php as mentioned in the beginning of
this chapter. Also, you should have provided read_insights extended permission to the
application.

How to do it...
The following steps will demonstrate how to get the number of installations of an application:

1.	 Open index.php and append the following code to it:
<?php

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Advertisements and Analyzing Metric Data

262

2.	 Write a query to retrieve the number of installations of the application:
 $results = $facebook->api(
 array(
 'method' => 'fql.query',
 'query' =>"SELECT metric,value FROM insights WHERE
 object_id = [object_id] AND
 metric = 'application_installed_users' AND
 end_time = end_time_date('2011-05-26') AND
 period = period('lifetime')",
)
);

3.	 Display the result:
 foreach($results as $result) {
 echo $result[metric] .'='.$result[value];
 }

?>

4.	 Replace the [object_id] in the previous code with your application ID. Now save
the file. Upon running we will get an output showing us the number of users who have
installed our application. It will be something like this:

How it works...
To find out the number of installations of our application we query the insights Facebook
table for the application_installed_users metric. Here, we have done this by using
FQL. We use the api() function of the Facebook class in order to execute our FQL query.
In the api() function, we pass an array as an argument. It has two indexes—method and
query. We set the method to fql.query and this indicates that we want to execute an FQL
query by making a GET request to the URL of the form https://api.facebook.com/
method/fql.query?query=QUERY where the FQL query to be executed is given by the
value of the index named query. In the FQL query, we simply select the number of users who
have installed our application by selecting the application_installed_users from the
insights table. It has been done using the following FQL query:

SELECT metric,value FROM insights WHERE
 object_id = [object_id] AND

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

https://api.facebook.com/method/fql.query?query=QUERY

Chapter 9

263

 metric = 'application_installed_users' AND
 end_time = end_time_date('2011-05-26') AND
 period = period('lifetime')

So, the complete code for calling the api() function looks like this:

$results = $facebook->api(
 array(
 'method' => 'fql.query',
 'query' =>"SELECT metric,value FROM insights WHERE
 object_id = [object_id] AND
 metric = 'application_installed_users' AND
 end_time = end_time_date('2011-05-26') AND
 period = period('lifetime')",
)
);

The retrieved result is stored in the $results array. Its structure will look like this:

Array
(
 [0] => Array
 (
 [metric] => application_installed_users
 [value] => 116
)

)

Next, we use a foreach loop to extract the value of the number of installed users and display
it accordingly.

Getting statistics about visitors using FQL
multiquery

We can retrieve statistical information corresponding to the visitors who use our application
such as their cities, countries, age, gender, and so on. Here, we will do so by using the FQL
multiquery method.

Getting ready
You should have created index.php and config.php as mentioned in the beginning of
Chapter 3, Querying Facebook. Also, you should have provided read_insights extended
permission to the application.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Advertisements and Analyzing Metric Data

264

How to do it...
The following steps will demonstrate how to acquire visitor statistics:

1.	 Open index.php and append the following code to it:
<?php
 $app_id = "your_app_id";

2.	 Declare the array for executing multiple queries:
 $multi_queries = array();

3.	 Select the user related metric from the insights table:
 $multi_queries[] = "SELECT metric,value FROM insights
 WHERE object_id=$app_id
 AND metric='application_active_users_gender'
 AND end_time=end_time_date('2011-05-26')
 AND period=period('day')";

 $multi_queries[] = "SELECT metric,value FROM insights
 WHERE object_id=$app_id
 AND metric='application_active_users_age'
 AND end_time=end_time_date('2011-05-26')
 AND period=period('day')";

 $multi_queries[] = "SELECT metric,value FROM insights
 WHERE object_id=$app_id
 AND metric='application_active_users_country'
 AND end_time=end_time_date('2011-05-26')
 AND period=period('day')";

 $multi_queries[] = "SELECT metric,value FROM insights
 WHERE object_id=$app_id
 AND metric='application_active_users_city'
 AND end_time=end_time_date('2011-05-26')
 AND period=period('day')";

 $multi_queries[] = "SELECT metric,value FROM insights
 WHERE object_id=$app_id
 AND metric='application_active_users_locale'
 AND end_time=end_time_date('2011-05-26')
 AND period=period('day')";

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

265

4.	 Convert the $multi_queries array to a JSON data type:
 $multi_queries = json_encode($multi_queries);

5.	 Execute the multiquery by using the api() function and display the results:
 $results = $facebook->api(array('method' => 'fql.multiquery',
 'queries' => $multi_queries));

 foreach($results as $result) {
 echo '
Table for metric - ' . $result
 [fql_result_set][0][metric] . '

<table
 width="100%" border="1">';
 foreach($result[fql_result_set][0][value] as $key => $value) {
 echo "<tr><td width='50%'>$key</td><td width='50%'>$value
 </td></tr>";
 }
 echo '</table>
';
 }

?>

In the code replace your_app_id with the ID of your Facebook application.

6.	 Now, save the file and run. An output screen, something like the following, will appear
showing you the metrics mentioned in the code:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Advertisements and Analyzing Metric Data

266

The active users arranged country-wise are listed:

Similarly, the metric application_active_users_city lists the active users
city-wise as shown:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

267

Division of the application's active users based on locale is as shown:

How it works...
In the previously mentioned code, we have retrieved the visitor statistics of the application
such as the country to which the active users of the application belong, their gender, locale,
and so on. For extracting this information, we used the insights table of FQL. Here, five
different queries have been run simultaneously in a single HTTP request and thus, we have
made use of FQL multiquery. $multi_queries is a PHP array with five indexes which contain
one query each. Thus, we have these five set of queries:

ff SELECT metric,value FROM insights WHERE object_id=$app_id AND
metric='application_active_users_gender' AND end_time=end_time_
date('2011-05-26') AND period=period('day'): retrieves the gender
information of all the active users of the application.

ff SELECT metric,value FROM insights WHERE object_id=$app_id AND
metric='application_active_users_age' AND end_time=end_time_
date('2011-05-26') AND period=period('day'): retrieves the age range of
all the active users of the application.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Advertisements and Analyzing Metric Data

268

ff SELECT metric,value FROM insights WHERE object_id=$app_id AND
metric='application_active_users_country' AND end_time=end_time_
date('2011-05-26') AND period=period('day'): gives the country of the
active users of the application.

ff SELECT metric,value FROM insights WHERE object_id=$app_id AND
metric='application_active_users_city' AND end_time=end_time_
date('2011-05-26') AND period=period('day'): gives the cities of the active
users of the application.

ff SELECT metric,value FROM insights WHERE object_id=$app_id AND
metric='application_active_users_locale' AND end_time=end_time_
date('2011-05-26') AND period=period('day'): retrieves the locale of all
the active users.

Each of the mentioned queries has been formulated using the insights table of FQL. The
insights table contains the following parameters:

ff object_id: refers to the ID of the object for which we want to retrieve the
information. It is an indexable field.

These objects can be the IDs of pages, applications, as well as domains
with 30 or more connections.

ff metric: refers to the information which we want to retrieve. For example, in the code
we have used the metrics application_active_users_gender, application_
active_users_country, and so on. It is an indexable field.

ff end_time: refers to the end of the period during which the metrics were collected. It
is expressed as Unix time. It is also an indexable field.

All values for the end_time should be specified as midnight, Pacific
Daylight Time. Also, we can use another function, end_time_date()
for the end_time field. It takes a date string in YYYY-MM-DD format and
returns the appropriate value for end_time.

ff period: It refers to the length of the period during which the metrics were collected,
in seconds. It is also an indexable field.

The period value is different for different metrics. To specify these we
need to look up the insights table given in the appendix. Also, we can
use the period() function for the period field. It takes one of the four
strings as a parameter, day, week, month, lifetime.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

269

ff value: It refers to the value of the respective metric.

Thus, to formulate a single query we simply need to select the metric, its value, and specify
the name of the metric, end time, the ID of the object for which we want to select it, and
period from the insights table. It will be something like this:

SELECT metric, value FROM insights
 WHERE object_id = your_object_id
 AND metric = your_metric_name
 AND end_time = your_end_time
 AND period = period_value

Thus, after forming the queries by using this format we make use of multiquery to execute all
of them in the same call.

We use the json_encode() function to convert the array named $multi_queries to a
JSON data type and we store this in $multi_queries. For executing the multiquery, we use
the api() function. It takes an array as its argument parameter. In the array, we set fql.
multiquery as the method to indicate that we want to execute multiple queries in the same
call. The queries index contains the FQL queries in JSON format which we want to execute.
This is achieved by the following block of code:

$multi_queries = json_encode($multi_queries);
$results = $facebook->api(array('method' => 'fql.multiquery',
 'queries' => $multi_queries));

After execution of the multiquery, the returned information gets stored in the $results
variable. We use foreach() PHP loops to print the retrieved data from all the queries in
a table.

You can use print_r($results) to understand the structure of the
returned data array.

Creating a new ad for your Facebook
application

Facebook provides us with the opportunity to publicize our Facebook application once it is
ready. We can reach a targeted user base by creating relevant advertisements. Here, we will
show you how to create an ad for your Facebook application.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Advertisements and Analyzing Metric Data

270

How to do it...
The following steps will demonstrate how to create an ad:

1.	 Go to http://www.facebook.com/advertising/. Now, click on the Create an
Ad button at the top-right corner, as shown:

2.	 Another screen titled as Design Your Ad will pop up which will look like the following
screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://www.facebook.com/advertising/
http://www.facebook.com/advertising/

Chapter 9

271

3.	 Fill in the required information (such as Destination, Type, URL, Body, Image, and so
on), as shown in the previous screenshot. A preview will be generated simultaneously
to show what your ad will look like. Next, click on the Continue button.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Advertisements and Analyzing Metric Data

272

4.	 Another screen will appear which is titled as Targeting where you can choose whom
to serve the advertisement for your application based on Location, Demographics,
Interests, and Connections on Facebook. You will also be shown an estimated user
base based upon particular criteria. It will look like the following screenshot:

5.	 Now fill in the Targeting details according to your preferences and click on Continue.
You will see a third screen like the following:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

273

6.	 Here, you can specify your pricing scheme and budget. Once you have filled in all
the necessary details, you can see your advertisement by clicking on the Review Ad
button. A screenshot is shown:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Advertisements and Analyzing Metric Data

274

7.	 You can edit your ad by clicking on the Edit Ad button. If everything is fine you may
place your order by clicking on the Place Order button and your advertisement will
get deployed.

How it works...
We created a Facebook advertisement for an application by completing a few basic steps.
First we need to design the advertisement. In this we need to mention parameters like:

ff Destination: In this you need to choose from the drop down menu the application
for which you need to create an advertisement

ff Type: It has to be Facebook Ads for creating an advertisement

ff URL: Is the URL to which the users should get directed to when they click on your
advertisement

ff Title: Is the title which will appear in your Facebook ad

ff Body: It will contain the description which you want to put in your ad

After completion of the design phase we next enter the Targeting section of the
advertisement. Here, we need to specify our target audience such as their Age,
Demographics, Country, and so on. Apart from this, a box showing us the Estimated Reach
which is the approximate number of people this ad will reach, depending on our values
entered, is also shown on the top-right corner.

Then, comes the Campaign, Pricing and Scheduling section where we specify the Currency,
Budget, Click per Ads value, and so on.

On completion of these three sections we get to review our ad. If everything seems fine we can
place the order and get our advertisement running.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

10
Creating Instant

Applications

In this chapter, we will cover:

ff Creating a "Your Good Luck Charm of the Day" Facebook application

ff Designing a "My Fast Friends" Facebook application

ff Setting up a photo collage

ff Building a birthday calendar

ff Developing an application to classify friends according to the cities they live in

Introduction
In this chapter, we will show how to create Facebook applications from scratch.

Getting ready
First, we will create a basic layout. The applications discussed in this chapter will contain code
based on this layout. We need to create two files as shown in the following steps:

1.	 Create a config.php file and add the following code to it:
<?php
 require_once 'facebook.php';
 /** Create our Application instance. */

2.	 Initialize the Facebook application:
 $facebook = new Facebook(array(
 'appId' => 'your_application_id',

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

276

 'secret' => 'your_application_secret_key',
 'cookie' => true,
));

Here, we have included facebook.php, which contains the Facebook class and
can be downloaded from GitHub. $facebook is an object of this class and we will
use it in index.php. You need to provide your application ID and secret key here. For
more information, read the first chapter.

3.	 Create a file named index.php and add the following code to it:
<?php

4.	 Include the configuration file config.php that we defined earlier:
 require_once 'config.php';

5.	 Get the current user's session information by using the getSession() function and
then perform session validation:
 $session = $facebook->getSession();
 $me = null;
 if ($session) {
 try {
 $me = $facebook->api('/me');
 /*Check whether the current session is valid by
 retrieving user information.*/
 }
 catch (Exception $e) {
 }
 }
 /* If the current session is invalid or user has not authorized
 the application then redirect to a authorization URL.*/

6.	 If the session is invalid, redirect the application to the authorization URL:
 if(!($me)) {
 echo '<script>
 top.location.href="'
 . $facebook->getLoginUrl(
 array(
 'req_perms' => 'publish_stream',
 'next' =>
 'http://apps.facebook.com/[your_app_url]/',
)
)
 . '";
 </script>';
 exit;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

277

 }
?>

7.	 Load jQuery from Google CDN:
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:fb="http://www.facebook.com/2008/fbml">
 <head>
 <script type="text/javascript" src=
"https://ajax.googleapis.com/ajax/libs/jquery/1.5.2/jquery.min.
js">
 </script>
 </head>

8.	 Create div with fb-root set as id for displaying the application content:
 <body>
 <div id="fb-root">
 <!-- Your application content here -->

 </div>

9.	 Initialize the application by calling FB.init():
 <script type="text/javascript">
 window.fbAsyncInit = function() {
 FB.init({
 appId : '<?php echo $facebook->getAppId(); ?>',
 status : true,
 cookie : true,
 xfbml : true
 });
 $(document).ready(function() {

 });
 };

10.	 Load the Facebook JavaScript SDK asynchronously:
 (function() {
 var e = document.createElement('script');
 e.type = 'text/javascript';
 e.src = document.location.protocol +
 '//connect.facebook.net/en_US/all.js';
 e.async = true;
 document.getElementById('fb-root').appendChild(e);
 }());
 </script>

 </body>
</html>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

278

Here, we first retrieve a valid session for the user by calling $facebook->getSession()
and storing the response in the $session variable. Next, we try to retrieve the basic
information of the current user by making a GET request to https://graph.facebook.
com/me. We use the $facebook->api() function to do so. https://graph.facebook.
com is automatically prefixed by the api() function to its first argument, that's why we have
passed /me as its first argument. The returned data is stored in the $me variable.

Finally, we check whether $me is null and if it is so we redirect the user to the authorization
URL in order to get appropriate permission(s) from, and a valid session token, for the user. We
use JavaScript code to redirect the user and set top.location.href to the desired URL.
This URL is given by the function $facebook->getLoginUrl(), which takes an array as
its argument. The index req_perms is used to request specific permissions from the user.
Multiple permissions can be requested by separating them with commas. Additionally, the
index next specifies where the user will be redirected after successful authorization and
session generation.

In order to use XFBML in your application consistently across all web browsers, we need
to add an XML namespace attribute to the root <html> element of index.php. This is
necessary to render the XFBML tags in Internet Explorer.

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:fb="http://www.facebook.com/2008/fbml">

To load the Facebook JavaScript SDK, we use the standard <script> element. We load it
asynchronously so that it does not hinder the loading of other elements in our application
and this ensures fast page loads. Also, we have specified a <div> element named fb-root
within the document. It is important to include div with this name, otherwise the JavaScript
SDK will not load and reports an error. The code for this is shown next:

<div id="fb-root">
 <!-- Your application content here -->
</div>
<script type="text/javascript">
 window.fbAsyncInit = function() {
 FB.init({
 appId : 'your_app_id',
 status : true,
 cookie : true,
 xfbml : true
 });
/* Your FB JavaScript code here. It will be loaded asynchronously. */
 };
 (function() {
 var e = document.createElement('script');
 e.type = 'text/javascript';

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

279

 e.src = document.location.protocol +
 '//connect.facebook.net/en_US/all.js';
 e.async = true;
 document.getElementById('fb-root').appendChild(e);
 }());
</script>

As soon as the JavaScript SDK is loaded asynchronously and is ready to use, we initialize our
Facebook application by calling the FB.init() function. Here we pass four parameters:

Meta properties Description
appId This is the application ID which we get after registering our application

with Facebook.
status A true value implies that we can perform a user login status check if

required.
cookie It enables the cookies to allow the server to access the session.
xfbml It allows us to access and parse XFBML tags, if set to true.

The FB.init() function is called inside the function assigned to window.fbAsyncInit.
This function, which is assigned to window.fbAsyncInit, is executed as soon as the
JavaScript SDK is loaded asynchronously. Thus, any code that we want to run after the SDK is
loaded should be placed within this function after the FB.init() function.

Additionally, we have loaded jQuery by using the <script> code:

<script type="text/javascript"
src="https://ajax.googleapis.com/ajax/libs/jquery/1.5.2/jquery.min.
js"></script>

Creating a "Your Good Luck Charm of the
Day" Facebook application

In this recipe, we will create a Facebook application called "Your Good Luck Charm of the Day".
It will forecast the name of the user's friend who will bring him/her good luck. The friend will
be selected randomly. Let's begin creating this application.

Getting ready
You should have created config.php and index.php as mentioned in the beginning of
this chapter.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

280

How to do it...
The following steps will describe the creation of the application:

1.	 Open index.php and add the following code before the <html> tag. Get the user's
friends' details by using the api() function:
<?php
 $friends = $facebook->api('/me/friends');

2.	 Choose a friend as a Good Luck Charm of the Day randomly:
 $rand_key = array_rand($friends['data']);
 $random_friend = $friends['data'][$rand_key];
?>

3.	 Add the following highlighted code inside fb-root. This will display the name and
profile picture of the randomly selected friend:
 <div id="fb-root">
 <h2>Your Good Luck Charm for today is
 <?php echo $random_friend['name']; ?>
 </h2>

 <img src='https://graph.facebook.com/<?php echo $random_
friend['id']; ?>/picture?type=large' />
 </div>

4.	 Now, use the FB.ui() function, inside $(document).ready(), to prompt the user
to post this on his/her friend's wall:
 $(document).ready(function() {
 FB.ui({
 method: 'feed',
 name: 'Good Luck Charm of the day',
 link: 'http://apps.facebook.com/[your_app_url]/',
 picture: 'http://yourwebsite.com/images/app.PNG',
 caption: 'Find who brings Good Luck to you today',
 description: 'Today\'s Lucky Charm for you is
 <?php echo $random_friend['name']; ?>.',
 message: 'My Good Luck Charm of the day is
 <?php echo $random_friend['name']; ?>.',
 to: '<?php echo $random_friend['id']; ?>'
 },

5.	 Define the response function:
 function(response) {
 if (response && response.post_id) {

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

281

 alert('Post was published.');
 } else {
 alert('Post was not published.');
 }
 });
 });

6.	 Now, save the file and run it. A screen showing the Good Luck Charm for you will be
displayed and will look like this:

7.	 Along with it, a Feed Dialog Box will pop up asking you to publish or skip the feed. It
will look like this:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

282

Now you can share the post or skip it according to your choice.

How it works...
Here, for finding the Good Luck Charm of a user, we first extract all the friends of the user
and then choose one friend randomly. This we do by making a GET request to the https://
graph.facebook.com/me/friends by using the Facebook Graph API via the api()
function. The response is stored in $friends. The following line of code accomplishes this
task:

$friends = $facebook->api('/me/friends');

Next, we randomly choose a friend of the user. We use the array_rand() function which
picks up a random key from the $friends array. Corresponding to this random key, there is a
sub-array which contains the name and id parameters of a user who is a friend of the current
user. We store this sub-array, which contains the details of our randomly selected user, in
$random_friend. This is done by the following code:

$rand_key = array_rand($friends['data']);
$random_friend = $friends['data'][$rand_key];

We display the name of the user's friend and also his/her picture inside a div named fb-
root. The profile picture of the user can be retrieved from the following URL https://
graph.facebook.com/[user_id]/picture?type=large. Here, we set the query
parameter type to large in order to get a big profile picture of the user's friend.

 <div id="fb-root">
 <h2>Your Good Luck Charm for today is
 <?php echo $random_friend['name']; ?>.
 </h2>

 <img src='https://graph.facebook.com/<?php echo $random_
friend['id']; ?>/picture?type=large' />
 </div>

Also, we prompt the user to post on his/her friend wall. For this we make use of the Facebook
Feed Dialog Box. This is done by the FB.ui() function which takes a JavaScript object as a
parameter. We set the method attribute as feed, which determines that we want to render
the Feed Dialog Box. We can configure our Facebook Feed Dialog Box with the help of the
following attributes:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

283

Meta properties Description
picture The URL of the picture attached to this post. This is also an optional

field.
link The link attached to this post. Here we have linked it to our application.
name The name of the link. This is an optional field.
caption The caption of the link name and it appears beneath it. This is an

optional field.
description The description of the link. Also an optional field.
message The message which has to be posted.
to This contains the ID, or username, of the person on whose wall we

want to post this feed.

We have rendered the Facebook Feed Dialog Box by using the following code:

FB.ui({
 method: 'feed',
 name: 'Good Luck Charm of the day',
 link: 'http://apps.facebook.com/[your_app_url]/',
 picture: 'http://yoursite.com/images/app.PNG',
 caption: 'Find who brings Good Luck to you today',
 description: 'Today\'s Lucky Charm for you is
 <?php echo $random_friend['name']; ?>.',
 message: 'My Good Luck Charm of the day is
 <?php echo $random_friend['name']; ?>.',
 to: '<?php echo $random_friend['id']; ?>'
},

Additionally, we define the response function to handle the response of the post inside the
FB.ui() function as shown:

function(response) {
 if (response && response.post_id) {
 alert('Post was published.');
 } else {
 alert('Post was not published.');
 }
});

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

284

Designing a "My Fast Friends" Facebook
application

Here, we will create a Facebook application which will list the top five fast friends of the
current user. This application will dynamically create a photo which will contain a profile
picture of all top five friends. It will tag these friends in the newly created photo and publish
the photo in the user's album.

Getting ready
You should have already created config.php and index.php as explained in the beginning
of this chapter. Additionally you need to have the publish_stream and user_photos
extended permission.

Also, we have used a TrueType font named Turn Tablz in this application. Download any such
font from the internet. There are several sites which give TrueType fonts for free. Download
a font of your choice from such a website. The TrueType font file will have a .ttf extension.
Place this .ttf file in the same folder in which index.php and config.php are present.

How to do it...
The following steps will demonstrate how to create this application:

1.	 Open index.php and add the following PHP code before the <html> code. First,
we define a function named cmp() to compare the number of mutual friends of the
user:
<?php
 function cmp($a, $b) {
 if ($a['no'] == $b['no']) {
 return 0;
 }
 return ($a['no'] > $b['no']) ? -1 : 1;
}

2.	 Next, retrieve the friends of the user by using the api() function:
 $friends = $facebook->api('/me/friends');

3.	 Now, we loop through all the friends of the user, one at a time, and retrieve the array
containing the list of their mutual friends by using FQL:
 foreach ($friends['data'] as $friend) {
 $result = $facebook->api(array(
 'method' => 'fql.query',
 'query' => "SELECT uid1 FROM friend

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

285

 WHERE uid2={$friend['id']}
 AND uid1 IN (SELECT uid2 FROM friend
 WHERE uid1=me())"
));

4.	 Count the number of mutual friends and store the result in the $mutual_friends
array:
 $mutual_friends[] = array('id' => $friend['id'],
 'no' => count($result), 'name' => $friend['name']);
 }

5.	 Sort $mutual_friends array (in descending order):
 usort($mutual_friends, 'cmp');

6.	 Create a 500 x 500 px image:
 $image = imagecreatetruecolor(500, 500);

7.	 Create a color identifier for the orange color:
 $orange = imagecolorallocate($image, 0xFF, 0x8c, 0x00);

8.	 Create a new image from a JPEG file named app2_bg.jpg which will be used as
background image:
 $bg = imagecreatefromjpeg('./app2_bg.jpg');

9.	 Set the image as a tile image for filling the background:
 imagesettile($image, $bg);

10.	 Fill the background:
 imagefilledrectangle($image, 0, 0, 499, 499, IMG_COLOR_TILED);

11.	 Specify the path of the TTF font file:
 $font_file = './TURNBB__.TTF';

12.	 Write text to the image using the TTF font:
 imagefttext($image, 20, 0, 105, 50, $orange, $font_file,
 'My Fast Friends');

13.	 Write the top five fast friends in a rank wise manner:
 for($i=0;$i<5;$i++) {
 imagefttext($image, 13, 0, 10, (100+($i*80)), $orange,
 $font_file, 'Rank #' . ($i+1) . ':');

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

286

14.	 Print their names:
 imagefttext($image, 13, 0, 250, (100+($i*80)), $orange,
 $font_file, $mutual_friends[$i]['name']);

15.	 Retrieve and merge their profile pictures into the main image:
 $frnd_pic = $facebook->api('/' . $mutual_friends[$i]['id'] .
 '/?fields=picture&type=square');
 $frnd = imagecreatefromstring(file_get_contents
 ($frnd_pic['picture']));
 imagecopymerge($image,$frnd,150,(80+($i*80)),0,0,50,50,100);

16.	 Add the friend's information to the $tags array which will be used later for tagging:
 $tags[] = array(
 'tag_uid' => $mutual_friends[$i]['id'],
 /*Current user's id*/
 'x' => (150/5),
 'y' => ((80+($i*80))/5)
);
 }

17.	 Save the main image as a PNG image:
 imagepng($image, './img/' . $me['id'] . '.png');

18.	 Use the realpath() function to return the canonicalized absolute pathname of the
location of the image:
 $pic = realpath("/home/path/to/your/app/img/" . $me['id'] .
 '.png');

19.	 Enable the file upload to the Facebook server using setFileUploadSupport():
 $facebook->setFileUploadSupport("http://" .
 $_SERVER['SERVER_NAME']);

20.	 Post the picture by using the api() function:
 $pic_id = $facebook->api('/me/photos', 'POST',
 array('message' => 'My Fast Friends',
 'source' => '@' . $pic,
 'tags' => $tags));

21.	 Free the memory which is associated with the image:
 imagedestroy($image);
?>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

287

22.	 Place the following code given in fb-root and render the image:
<img src="./img/<?php echo $me['id']; ?>.png" />

23.	 Save the file. Also, create a folder named img inside the application directory and set
its permission as 777.

24.	 Now run the file. A screen displaying the top most friends of the user will appear and
will look something like the following:

The friends of the user will automatically get tagged, as shown in the screenshot and
a new album named My Fast Friends will get created in the user's profile.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

288

How it works...
Here, to decide the top five fast friends of a user we have used the concept of mutual friends.
We find the mutual friends between the current user and his friends, one at a time, and then
we store this in an array and rank them accordingly. To find out the mutual friends of the user
we make use of an FQL query:

SELECT uid1 FROM friend WHERE uid2={$friend['id']} AND uid1 IN (SELECT
uid2 FROM friend WHERE uid1=me())

We run this query for all the friends of the current user and the response contains an array of
user IDs of the mutual friends of the specified two users. We run this FQL query on all user's
friends with the help of the foreach loop as shown:

$friends = $facebook->api('/me/friends');
foreach ($friends['data'] as $friend) {
 $result = $facebook->api(array(
 'method' => 'fql.query',
 'query' => "SELECT uid1 FROM friend
 WHERE uid2={$friend['id']}
 AND uid1 IN (SELECT uid2 FROM friend
 WHERE uid1=me())"));

Here, first we retrieve all the friends of the current user by using the Facebook Graph API and
making a call to https://graph.facebook.com/me/friends. We store the returned
data in $friends. Then we run a loop through all the friends of the user, and run the
discussed FQL query to retrieve the mutual friends by using the api() function. The result is
stored in the $result array.

Next, we count the number of mutual friends between each of the user's friends and him/her
using the count() function and store this information, using a custom defined sub-array, in
an array named $mutual_friends as shown:

$mutual_friends[] = array('id' => $friend['id'], 'no' =>
count($result), 'name' => $friend['name']);

Our custom sub-array contains three keys:

ff id: contains the friend ID

ff no: contains the total number of mutual friends between the friend having a unique
ID and the current user

ff name: contains the friend's name

Now, to ascertain the top five fast friends we make use of the usort() function to which we
pass the array $mutual_friends as the first argument, and a self defined function cmp(),
to compare two elements of an array, as the second argument as shown:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

289

function cmp($a, $b) {
 if ($a['no'] == $b['no']) {
 return 0;
 }
 return ($a['no'] > $b['no']) ? -1 : 1;
}
usort($mutual_friends, 'cmp');

The cmp() function compares the number of mutual friends for two different elements in the
array $mutual_friends and the usort()function sorts the $mutual_friends array in
the descending order based on the number of mutual friends.

Once we have this sorted array with us we create a photo which will display all the top five fast
friends of the current user. For this we made use of the PHP GD library. It gives us the ability
to create and manipulate image files in different formats in PHP. We create the image with the
help of the following code:

$image = imagecreatetruecolor(500, 500);
$white = imagecolorallocate($image, 0xFF, 0xFF, 0xFF);
$orange = imagecolorallocate($image, 0xFF, 0x8c, 0x00);
$bg = imagecreatefromjpeg('./app2_bg.jpg');
imagesettile($image, $bg);
imagefilledrectangle($image, 0, 0, 499, 499, IMG_COLOR_TILED);
$font_file = './TURNBB__.TTF';
imagefttext($image, 20, 0, 105, 50, $orange, $font_file, 'My Fast
Friends');

First we create a new image of size 500 x 500 px by using the imagecreatetruecolor()
function. It takes the width and height of the image as its arguments. After this we use
the imagecolorallocate() function to create resource identifiers for the orange color.
Also, we create an image from a file present on the server, app2_bg.jpg, with the help of
imagecreatefromjpeg(). It takes the path of the JPEG file as its argument. We set this
newly created image as the tile with which we will fill the background of our original image by
using the imagesettile() function. We fill the background of our original image by using
the imagefilledrectangle() function. This function takes the following arguments:

Meta properties Description
image Defines the image resource on which this function will be applied.
x1 The x-coordinate of the starting point from where the rectangle will begin.

y1 The y-coordinate of the starting point from where the rectangle will begin.
x2 The x-coordinate of the end point to where the rectangle will end.
y2 The y-coordinate of the end point to where the rectangle will end.
color Defines the fill color to be used.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

290

We have passed IMG_COLOR_TILED as the last argument of the discussed function. This
tells PHP to use the tile image, as defined by imagesettile(), for filling up the rectangle.

We use the imagefttext() function to display our desired text message on the photo. This
function takes the following arguments:

Meta properties Description
image Represents an image resource.
size The font size in points.
angle The angle in degrees, with 0 being left-to-right reading text. Higher

values represent a counter-clockwise rotation.
x The x-coordinate from where the basepoint of the first character

(roughly the lower-left corner of the character) will start.
y The y-coordinate which sets the position of the font's baseline, not

the very bottom of the character.
color The index of the desired color for the text.
fontfile The path to the TrueType font you wish to use.
text The actual text to be inserted into the image.

Next, we print the rank of all the top five fast friends, along with their profile picture and name
on the photo. Here, for text we have used Turn Tablz font. We use a for loop to print this
as shown:

for($i=0;$i<5;$i++) {
 imagefttext($image, 13, 0, 10, (100+($i*80)), $orange,
 $font_file, 'Rank #' . ($i+1) . ':');
 imagefttext($image, 13, 0, 250, (100+($i*80)), $orange,
 $font_file, $mutual_friends[$i]['name']);
 $frnd_pic = $facebook->api('/' . $mutual_friends[$i]['id'] . '/?fiel
ds=picture&type=square');
 $frnd = imagecreatefromstring(file_get_contents($frnd_
pic['picture']));
 imagecopymerge($image,$frnd,150,(80+($i*80)),0,0,50,50,100);
 $tags[] = array(
 'tag_uid' => $mutual_friends[$i]['id'],
 /*Current user's id*/
 'x' => (150/5),
 'y' => ((80+($i*80))/5)
);

}
imagepng($image, './img/' . $me['id'] . '.png');

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

291

We use the imagefttext() function to print the rank and name of all of the five friends.
Also, we retrieve the URL of their profile picture with the help of the api() function of
the Facebook Graph API by making a GET request to https://graph.facebook.com/
user_id?fields=picture&type=square. We have set the query parameter fields to
picture and type to square. This means that we are requesting the URL of the square type
profile picture of the user with the user ID user_id from Facebook. Once we get the URL from
Facebook, then we use file_get_contents()to retrieve the image from this URL. Next,
we pass this content to imagecreatefromstring() which creates an image from it. After
this we use the imagecopymerge() function to merge the profile picture of each user to the
main image at an appropriate location. This function takes the following parameters:

Meta properties Description
dst_im The destination image link resource.
src_im The source image link resource.
dst_x The x-coordinate of the destination point.
dst_y The y-coordinate of the destination point.
src_x The x-coordinate of the source point.
src_y The y-coordinate of the source point.

src_w The source width.
src_h The source height.
pct The level of alpha transparency for true color images.

For tagging the users, we create an array named $tags. This array contains sub-arrays where
each sub-array carries the tag information for a particular user. This sub-array consists of
three indices as listed:

Meta properties Description
tag_uid The ID of the user whom we want to tag in the picture.
x The percentage from the left edge of the photo and decides the

position of the tag box.
y The percentage from the top edge of the tag box and decides the

position of the tag box.

For each user we create a dynamic set of this sub-array containing a unique tag_uid and x
and y coordinates. After looping through the top five friends, we save the final image using the
imagepng() function. The first argument is the image identifier and the second argument
specifies the path where to save the file. Here, we have saved the generated image to the img
folder present in the root application directory. This img folder should have 777 permission
assigned to it.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

292

Finally, we post this photo in the user's album along with all his/her top five fast friends
tagged in the photo. To do so, first we get the absolute path of the photo saved on our server
by using realpath(). Next, we enable the upload and make the Facebook server ready to
handle picture uploads. This has been done by the following line of code:

$pic = realpath("/home/path/to/your/app/img/" . $me['id'] . '.png');
$facebook->setFileUploadSupport("http://" . $_SERVER['SERVER_NAME']);

The last step includes calling the $facebook-api() function with a POST request and
passing an array to it, as its third argument, which contains the photo specific details
(message, source of photo, and tag information) as shown:

$pic_id = $facebook->api('/me/photos', 'POST', array('message' => 'My
Fast Friends' ,
 'source' => '@' . $pic,
 'tags' => $tags));
imagedestroy($image);
?>
<img src="./img/<?php echo $me['id']; ?>.png" />

After this we use the imagedestroy() function to free the memory associated with the main
image identifier and finally we display this image to the user by using the HTML img tag.

Setting up a photo collage
This Facebook application will create an exquisite collage of pictures of the current user which
are picked randomly from his/her albums. Also, it will create a new album in the user's profile
and post the collage generated in it.

Getting ready
You should have created index.php and config.php as mentioned in the beginning
of this chapter. Also, you should have provided user_photos extended permission to
the application. Additionally, download a TrueType font of your choice as explained in the
Designing a "My Fast Friends" Facebook application recipe.

How to do it...
The following steps will demonstrate how to set up a photo collage:

1.	 Open index.php and add the following PHP code before the <html> code. Here,
first we define the width and height of each picture for the collage:
<?php
 $cell_height = 140;
 $cell_width = 180;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

293

2.	 Create a new image of appropriate dimensions by using the
imagecreatetruecolor() function for the entire collage:
 $image = imagecreatetruecolor(3*$cell_width+40,
 3*$cell_height+110);

3.	 Create color identifiers for white and orange colors:
 $white = imagecolorallocate($image, 0xFF, 0xFF, 0xFF);
 $orange = imagecolorallocate($image, 0x00, 0x00, 0x00);

4.	 Create a new background image from the JPEG file app3a.jpg :
 $bg = imagecreatefromjpeg('./app3a.jpg');

5.	 Set the image as a tile image for filling the background:
 imagesettile($image, $bg);

6.	 Fill the image:
 imagefilledrectangle($image, 0, 0, 3*$cell_width+40,
 3*$cell_height+110, IMG_COLOR_TILED);

7.	 Specify the path of the TTF file:
 $font_file = './TURNBB__.TTF';

8.	 Write text to the image using the specified font:
 imagefttext($image, 30, 0, 90, 3*$cell_height+80, $white,
 $font_file, 'Photo Collage');

9.	 Create an empty array for handling the merged photos:
 $merged_photos = array();

10.	 Retrieve all the albums of the user using the api() function:
 $albums = $facebook->api('/me/albums');

11.	 Select random photos from different albums for creating a 3 x 3 matrix:
 for($count=0;$count<9;$count++) {
 do {
 $album = $albums['data'][array_rand($albums['data'])];
 $photos = $facebook->api('/' . $album['id'] .'/photos');
 $photo = $photos['data'][array_rand($photos['data'])];
 } while(in_array($photo['id'],$merged_photos));
 $merged_photos[] = $photo['id'];

12.	 Store the width and height of the retrieved images:
 $width = $photo['images'][1]['width'];
 $height= $photo['images'][1]['height'];

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

294

13.	 Create an empty image of a size equal to each cell:
 $image_p = imagecreatetruecolor($cell_width, $cell_height);

14.	 Create an image from the photos retrieved:
 $image_o = imagecreatefromjpeg($photo['images'][1]['source']);

15.	 Copy all the retrieved photos to a fixed size:
 imagecopy($image_p, $image_o, 0, 0, 0, 0, $width, $height);
 $des_x = (10*(($count%3)+1)+(($count%3)*$width));
 $des_y = (10*(floor($count/3)+1)+(floor($count/3)*
 $cell_height));

16.	 Merge the copied image using the imagecopymerge() function to the main image
and destroy the original and copied images:
 imagecopymerge($image,$image_p,$des_x,$des_y,0,0,$cell_width,
 $cell_height,100);
 imagedestroy($image_p);
 imagedestroy($image_o);
 }

17.	 Save images to a file using the imagepng() function:
 imagepng($image, './img/' . $me['id'] . '.png');

18.	 Use the realpath() function to return the canonicalized absolute path name of the
location of the image:
 $pic = realpath("/home/server/public_html/cookbook/img/" .
 $me['id'] . '.png');

19.	 Enable file upload to the Facebook server by using the setFileUploadSupport()
function:
 $facebook->setFileUploadSupport("http://" . $_SERVER
 ['SERVER_NAME']);

20.	 Post the picture to the user's album:
 $pic_id = $facebook->api('/me/photos', 'POST', array(
 'message' => 'Photo Collage', 'source' => '@' . $pic,
));

21.	 Free the memory which is associated with the image:
 imagedestroy($image);
?>

22.	 Place the following code inside fb-root and render the image:
<img src="./img/<?php echo $me['id']; ?>.png" />

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

295

23.	 Save the file. Also, create a folder named img inside the application directory and set
its permission as 777.

24.	 Now run the file. A collage containing random pictures from the user's albums will be
displayed and will look something like this:

Along with this the a new album will be created titled Photo Collage and the collage
will get posted in this album.

How it works...
The first task to do while creating a photo collage is to define the dimensions of it. Here, we
have generated a 3 x 3 photo matrix where each photo in the matrix will be 180 x 140 px. This
has been done in the following lines of code:

$cell_height = 140;
$cell_width = 180;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

296

Next, we use the imagecreatetruecolor() function to create an image for the entire
collage, and $image is our image resource identifier for this image, as shown:

$image = imagecreatetruecolor(3*$cell_width+40,
 3*$cell_height+110);

After this we define some color identifiers, image to be used as background, font file and text
to be written on the image as shown:

$white = imagecolorallocate($image, 0xFF, 0xFF, 0xFF);
$black = imagecolorallocate($image, 0x00, 0x00, 0x00);
$bg = imagecreatefromjpeg('./app3a.jpg');
imagesettile($image, $bg);
imagefilledrectangle($image, 0, 0, 3*$cell_width+40,
 3*$cell_height+110, IMG_COLOR_TILED);
$font_file = './TURNBB__.TTF';
imagefttext($image, 30, 0, 90, 3*$cell_height+80, $white,
 $font_file, 'Photo Collage');

In this code, we set the resource identifiers for white and orange colors by using the
imagecolorallocate() function. Then we create an image, which will be used as the
background image, from an already existing image on our server named app3a.jpg. We
pass the path of the JPEG image as an argument to this function. Next, we set this newly
created image as the tile with which we will fill the background of our original image by
using the imagesettile() function. We fill the background of our original image by using
imagefilledrectangle(). This function takes the following arguments:

Meta properties Description
image The image resource on which this function will be applied.
x1 The x-coordinate of the starting point from where the rectangle will

begin.
y1 The y-coordinate of the starting point from where the rectangle will

begin.
x2 The x-coordinate of the end point to where the rectangle will end.
y2 The y-coordinate of the end point to where the rectangle will end.
color The fill color to be used.

In our code, we have passed IMG_COLOR_TILED as the last argument of this function. This
tells PHP to use the tile image, as defined by the $bg image resource identifier, for filling up
the rectangle.

After this we write the name of our application, Photo Collage, on the bottom of the image by
using the imagefttext() function. This function takes the following arguments:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

297

Meta properties Description
image Represents an image resource.
size The font size in points.
angle The angle in degrees, with 0 being left-to-right reading text. Higher

values represent a counter-clockwise rotation.
x The x-coordinate from where the basepoint of the first character

(roughly the lower-left corner of the character) will start.
y The y-coordinate which sets the position of the font's baseline, not the

very bottom of the character.
color The index of the desired color for the text.
fontfile The path to the TrueType font you wish to use.
text The actual text to be inserted into the image.

Next, we retrieve random pictures from the albums of the user and make the collage as
shown:

$merged_photos = array();
$albums = $facebook->api('/me/albums');
for($count=0;$count<9;$count++) {
 do {
 $album = $albums['data'][array_rand($albums['data'])];
 $photos = $facebook->api('/' . $album['id'] .'/photos');
 $photo = $photos['data'][array_rand($photos['data'])];
 } while(in_array($photo['id'],$merged_photos));
$merged_photos[] = $photo['id'];

In the code, first we use the Facebook Graph API to access http://graph.facebook.
com/me/albums, retrieve all the albums of the current user and store in $albums. Next,
for each photo cell we first choose a random album and then a random picture in that
particular album by using the array_rand() function. Also, we create an empty array named
$merged_photos which represents the photos already present in the collage. Next, we run
the code to pick up a photo randomly inside a do while loop with the evaluation condition
being that the photo ID is already present in the $merged_photos array. If it so, then we
keep on choosing another picture randomly. This ensures that we don't put the same photo
more than once in our photo collage. After choosing a unique photo we add its ID to the
$merged_photos array so that when the loop runs next time we have the ID of all the photos
already picked up.

After selecting a unique photo, we crop it to the fixed size of our predefined photo cell in the
collage matrix. For this we first store the width and height of the selected photo as shown:

 $width = $photo['images'][1]['width'];
 $height= $photo['images'][1]['height'];

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

298

Now, we create two images with image identifiers as $image_p and $image_o where the
former represents an empty image with its dimension the same as the photo cell and the
latter represents the actual image from Facebook. By using the imagecopy() function
we copy the selected photo to the $image_p image resource identifier and this image has
dimensions as that of our predefined photo cell. Next, we use imagecopymerge() to merge
this image to the main image at the appropriate coordinates. Finally, we free the memory
allocated to the image identifiers by using imagedestroy(). All this is performed using the
following lines of code:

$image_p = imagecreatetruecolor($cell_width, $cell_height);
 $image_o = imagecreatefromjpeg($photo['images'][1]['source']);
 imagecopy($image_p, $image_o, 0, 0, 0, 0, $width, $height);
 $des_x = (10*(($count%3)+1)+(($count%3)*$width));
 $des_y = (10*(floor($count/3)+1)+(floor($count/3)*$cell_height));
 imagecopymerge($image,$image_p,$des_x,$des_y,0,0,$cell_width,
 $cell_height,100);
 imagedestroy($image_p);
 imagedestroy($image_o);

Now, by using the imagepng() function we save the image inside a folder named img,
present in the application directory, on our server. We then upload this image to the Facebook
server. For this we use api() and finally the image is posted as shown:

imagepng($image, './img/' . $me['id'] . '.png');
$pic = realpath("/home/botskoco/public_html/cookbook/img/" . $me['id']
. '.png');
$facebook->setFileUploadSupport("http://" . $_SERVER['SERVER_NAME']);
$pic_id = $facebook->api('/me/photos', 'POST', array(
 'message' => 'photo collage', 'source' => '@' . $pic,
));
imagedestroy($image);
?>

Finally we display the photo collage to the user by using the HTML img tag as shown:

<img src="./img/<?php echo $me['id']; ?>.png" />

See also
For more information on how to post a picture to an album you may refer to the How to post a
picture to a specific album of the user recipe in Chapter 2

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

299

Building a birthday calendar
This Facebook application will provide users with a calendar which will show the birthdays of
all their friends for a specific month. Here, we will illustrate, step-by-step, how to make this
application.

Getting ready
You should have created index.php and config.php as mentioned in the beginning of
this chapter. Also, you should have provided friends_birthday extended permission to
the application. Additionally, download a TrueType font of your choice as explained in the
Designing a "My Fast Friends" Facebook application recipe.

How to do it...
The following steps will demonstrate how to create a birthday calendar:

1.	 Open index.php and append the following code after the HTML <body> tag. Create
a combo box to enable users to select a month:
<?php if(!isset($_REQUEST['selection'])) : ?>
<form name="myForm"
onsubmit="http://apps.facebook.com/[your_app_url]/ ">
 <select size="1" name="selection">
 <option value="1"> Jan </option>
 <option value="2"> Feb</option>
 <option value="3"> Mar </option>
 <option value="4"> Apr </option>
 <option value="5"> May</option>
 <option value="6"> Jun </option>
 <option value="7"> Jul </option>
 <option value="8"> Aug</option>
 <option value="9"> Sep </option>
 <option value="10"> Oct</option>
 <option value="11"> Nov </option>
 <option value="12"> Dec </option>
 </select>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

300

2.	 Create a submit button:
 <input type="submit" name="submit" value="Go !" />
</form>
<?php
 exit;
 endif;
?>
<?php

3.	 Store the submitted month in the $month variable:
 $month = $_REQUEST['selection'];

4.	 Use FQL to retrieve the birthdays of all friends of the user:
 $friends = $facebook->api(array('method' => 'fql.query',
 'query' => "SELECT birthday_date, name, uid, pic_square FROM
 user WHERE uid IN (SELECT uid2 FROM friend WHERE uid1= me())"));

5.	 Create an empty array $ordered_friends:
 $ordered_friends = array();

6.	 Loop through the $friends array:
 foreach($friends as $friend){
 if(isset($friend['birthday_date'])){

7.	 Split birthdays into dates, months, and years:
 $dt = split("/",$friend['birthday_date']);

8.	 Check for the month matching with the one entered by the user and store the
corresponding friend's birthday:
 if($dt[0] == $month){
 $ordered_friends[ltrim($dt[1],'0')][] = $friend;
 }
 }
 }

9.	 Retrieve the number of days present in the month selected:
 $last_day = date("d", strtotime("-1 day",
 strtotime(date("Y-" . ($month+1) . "-01"))));

10.	 Set the background image and colors for the text to be written on the background:
 $image = imagecreatetruecolor(450, 700);
 $white = imagecolorallocate($image, 0xFF, 0xFF, 0xFF);
 $orange = imagecolorallocate($image, 0xF5, 0xA9, 0x53);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

301

11.	 Create a background image from an already existing file, app2_bg.jpg on the
server:
 $bg = imagecreatefromjpeg('./app2_bg.jpg');

12.	 Set the image as a tile image for filling the background:
 imagesettile($image, $bg);

13.	 Fill the image:
 imagefilledrectangle($image, 0, 0, 450, 700, IMG_COLOR_TILED);
 imagedestroy($bg);

14.	 Provide the path of the TTF file:
 $font_file = './TURNBB__.TTF';
 imagefttext($image, 16, 0, 15, 50, $orange, $font_file,
 'Friends Birthday Calender');
 imagefttext($image, 16, 0, 150, 80, $orange, $font_file,
 date("F", strtotime(date("Y-" . ($month) . "-01"))));
 $day = 1;

15.	 Copy the user's friends' images to their respective birthdays in the calendar:
 for($i=0;$i<ceil($last_day/5);$i++) {
 for($j=0;$j<5&&$day<=$last_day;$j++,$day++) {
 imagefilledrectangle($image, 30+($j*80), 100+($i*80),
 30+($j*80+70), 100+($i*80+70), $white);
 imagefttext($image, 22, 45, 40+($j*80+15), 150+($i*80+15),
 $orange, $font_file, $day);
 if(count($ordered_friends[$day])) {
 for($col=1;count($ordered_friends[$day])>($col*$col);
 $col++);
 $side = 50;
 $cell_side = floor($side/$col);
 for($count=0;$count<count($ordered_friends[$day]);$count++)
 {
 $image_p = imagecreatetruecolor($cell_side, $cell_side);
 $image_o = imagecreatefromstring(file_get_contents(
 $ordered_friends[$day][$count]['pic_square']));
 imagecopyresized($image_p, $image_o, 0, 0, 0, 0,
 $cell_side, $cell_side, $side, $side);
 $des_x = 30+($j*80)+(5*(($count%$col)+1)+(
 ($count%$col)*$cell_side));
 $des_y = 100+($i*80)+(5*(floor($count/$col)+1)+
 (floor($count/$col)*$cell_side));
 imagecopymerge($image,$image_p,$des_x,$des_y,0,0,
 $cell_side,$cell_side,100);
 imagedestroy($image_p);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

302

 imagedestroy($image_o);
 }
 }
 }
 }

16.	 Save the image file on the server:
 imagepng($image, './img/' . $me['id'] . '.png');

17.	 Retrieve the image from the server and post it to the user's album:
 $pic = realpath("/home/botskoco/public_html/cookbook/img/" .
 $me['id'] . '.png');
 $facebook->setFileUploadSupport("http://" .
 $_SERVER['SERVER_NAME']);
 $pic_id = $facebook->api('/me/photos', 'POST',
 array('message' => $message);

18.	 Free the memory which is associated with the image:
 imagedestroy($image);
?>

19.	 Place the following code inside fb-root and render the image:
<img src="./img/<?php echo $me['id']; ?>.png" />

20.	 Save the file and run it. A screen displaying the combo box will appear and would be
something like the following:

21.	 Now, if we select any month from the drop down and click on the Go button we will be
shown a calendar having user's friends' birthdays falling into that month as shown:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

303

How it works...
In this application, we display the profile pictures, date-wise, of all the friends whose birthdays
lie in the month selected by the user. Initially, we provide the user with the option to choose a
month for which he or she wants the birthday calendar to be displayed. We do this by creating
a form which contains a combo box providing a drop down menu to the users with all the
months of a year. This has been done via the following lines of code:

<?php if(!isset($_REQUEST['selection'])) : ?>
<form name="myForm" onsubmit="http://apps.facebook.com/[your_app_
url]">
 <select size="1" name="selection">
 <option value="1"> Jan </option>
 <option value="2"> Feb</option>
 <option value="3"> Mar </option>
 <option value="4"> Apr </option>
 <option value="5"> May</option>
 <option value="6"> Jun </option>
 <option value="7"> Jul </option>
 <option value="8"> Aug</option>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

304

 <option value="9"> Sep </option>
 <option value="10"> Oct</option>
 <option value="11"> Nov </option>
 <option value="12"> Dec </option>
 </select>
 <input type="submit" name="submit" value="Go !" />
</form>
<?php
 exit;
 endif;
?>
<?php
$month = $_REQUEST['selection'];

Here, we first check whether the user has already chosen a month or not and if not we display
a form to him/her. When the user selects a particular month and clicks on the Submit button,
the form gets submitted and we store the selected month in $month variable. We now run an
FQL query to retrieve the birthday of all the friends of the users falling in this selected month.
It is done by making a call to the api() function as shown:

$friends = $facebook->api(array(
 'method' => 'fql.query',
 'query' => "SELECT birthday_date, name, uid, pic_square FROM user
 WHERE uid IN (SELECT uid2 FROM friend
 WHERE uid1= me())"));

We pass an array as an argument to the api() function. In this array the method parameter
is set to fql.query which specifies that we want to run an FQL query. The query parameter
contains the actual query. The data returned is stored in $friends.

Next, we create an empty array $ordered_friends to store the information of only those
friends whose birthday falls in the month selected by the user. For this we first split the
birthday of each friend using the split() function into days, months, and years with the
following code:

$dt = split("/",$friend['birthday_date'])

Then we check the month of this birthday with that requested by the user. If the months
match we remove the preceding zeroes from the dates by using the ltrim() function and
store it in the $ordered_friends array as shown:

if($dt[0] == $month){
 $ordered_friends[ltrim($dt[1],'0')][] = $friend;
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

305

After this, we calculate the total number of days present in the month selected by the
user. For this we retrieve the first day of the next month and subtract "1 day", by using the
strtotime() function, from it and again form a date from this new timestamp as shown:

$last_day = date("d", strtotime("-1 day", strtotime(date(
 "Y-" . ($month+1) . "-01"))));

Now, we create our main image on which we will print the calendar and merge
profile picture of all friends present in the $ordered_friends array. We use the
imagecreatetruecolor() function for creating our main image. Additionally, we use the
imagecolorallocate() function to create color identifiers for various colors that we will
use in our image as shown in the following:

$image = imagecreatetruecolor(450, 700);
$white = imagecolorallocate($image, 0xFF, 0xFF, 0xFF);
$orange = imagecolorallocate($image, 0xF5, 0xA9, 0x53);

Then, we create a background image by using the imagecreatefromjpeg() function.
We set this image as a tile to fill up the background of the main image by using the
imagesettile() function. We then use imagefilledrectangle() to fill up the
background of the main image with this tile image. It takes the following arguments:

Arguments Description

image Defines the image resource on which this function will be applied.
x1 The x-coordinate of the starting point from where the rectangle will begin.
y1 The y-coordinate of the starting point from where the rectangle will begin.
x2 The x-coordinate of the end point to where the rectangle will end.
y2 The y-coordinate of the end point to where the rectangle will end.
color Defines the fill color to be used.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

306

After this we use our TTF font to write text on the birthday calendar using the
imagefttext() function. This function takes the following arguments:

Arguments Description
image An image resource, returned by one of the image creation functions, such as

imagecreatetruecolor().
size The font size to use, in points.
angle The angle in degrees, with 0 being left-to-right reading text. Higher values

represent a counter-clockwise rotation. For example, a value of 90 would
result in bottom-to-top reading text.

x The coordinates given by x and y will define the basepoint of the first character
(roughly the lower-left corner of the character). This is different from the
imagestring(), where x and y define the upper-left corner of the first
character. For example, "top-left" is 0,0.

y The y-coordinate: This sets the position of the font's baseline, not the very
bottom of the character.

color The index of the desired color for the text.
fontfile The path to the TrueType font you wish to use.
text Text to be inserted into the image.

So the overall code becomes:

$bg = imagecreatefromjpeg('./app2_bg.jpg');
imagesettile($image, $bg);
imagefilledrectangle($image, 0, 0, 450, 700, IMG_COLOR_TILED);
imagedestroy($bg);
$font_file = './TURNBB__.TTF';
imagefttext($image, 16, 0, 15, 50, $orange, $font_file,
 'Friends Birthday Calender');
imagefttext($image, 16, 0, 150, 80, $orange, $font_file, date
 ("F", strtotime(date("Y-" . ($month) . "-01"))));

Next, we draw cells by using the imagefilledrectangle() function corresponding to all
the days for the selected month. We use a nested for loop to ensure that each row contains
five cells in the birthday calendar. Additionally, we print the date at an angle of 45 degrees, by
using the imagefttext() function, on each cell as shown:

for($i=0;$i<ceil($last_day/5);$i++) {
 for($j=0;$j<5&&$day<=$last_day;$j++,$day++) {
 imagefilledrectangle($image, 30+($j*80), 100+($i*80),
 30+($j*80+70), 100+($i*80+70), $white);
 imagefttext($image, 22, 45, 40+($j*80+15), 150+($i*80+15),
 $orange, $font_file, $day);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

307

For each day we check whether any friend of the user has a birthday and if it so we print the
profile picture of all such friends with appropriate x and y coordinates as shown:

 if(count($ordered_friends[$day])) {
 for($col=1;count($ordered_friends[$day])>($col*$col);$col++);
 $side = 50;
 $cell_side = floor($side/$col);
 for($count=0;$count<count($ordered_friends[$day]);$count++) {
 $image_p = imagecreatetruecolor($cell_side, $cell_side);
 $image_o = imagecreatefromstring(file_get_contents(
 $ordered_friends[$day][$count]['pic_square']));
 imagecopyresized($image_p, $image_o, 0, 0, 0, 0,
 $cell_side, $cell_side, $side, $side);

Here, we count the total number of friends who share the same birthday, because then we
will have to show more than one profile pictures in a cell. This requires us to resize the profile
pictures accordingly to a smaller size. The new size is calculated and stored in $cell_side.
We retrieve the profile pictures by using the imagecreatefromstring() and file_get_
contents() functions. After this, we resize the profile picture of all friends, who share the
same birthday, using imagecopyresized(). After resizing the image we merge it with
the appropriate location on the main image whose x and y coordinates are represented by
$des_x and $des_y respectively, as shown:

 $des_x = 30+($j*80)+(5*(($count%$col)+1)+(
 ($count%$col)*$cell_side));
 $des_y = 100+($i*80)+(5*(floor($count/$col)+1)+(floor(
 $count/$col)*$cell_side));
 imagecopymerge($image,$image_p,$des_x,$des_y,0,0,$cell_side,
 $cell_side,100);
 imagedestroy($image_p);
 imagedestroy($image_o);
 }
 }
 }
}

Finally, we use the imagecopymerge() function to merge the resized profile picture with the
main image. After the loop execution is over our main image is ready and we save it using the
imagepng() function as shown:

imagepng($image, './img/' . $me['id'] . '.png');

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

308

Now, we can post this image in the user's album. We do so by using api() as shown:

$pic = realpath("/home/botskoco/public_html/cookbook/img/" . $me['id']
. '.png');
$facebook->setFileUploadSupport("http://" . $_SERVER['SERVER_NAME']);
$pic_id = $facebook->api('/me/photos', 'POST', array('message' =>
$message
);

Finally, we free the associated memory with image resource identifier and render the image
with the following code:

imagedestroy($image);
?>
<img src="./img/<?php echo $me['id']; ?>.png" />

Now, the user will see a customized birthday calendar for the month requested by him/her as
output and it will be posted as an image in his/her album as well.

Developing an application to classify friends
according to the cities they live in

In this application a user will be able to classify all of his/her friends according to the cities in
which they currently reside.

Getting ready
You should have already created index.php and config.php as mentioned in the
beginning of the third chapter. Additionally, you should also provide friends_location and
user_location extended permission to the application.

How to do it...
The following steps will demonstrate the creation of this application:

1.	 Open index.php and append the following code after the HTML <body> tag. Select
the location, name, user ID, and profile picture of the user's friends by using FQL:
<?php
 $friends = $facebook->api(array('method' => 'fql.query',
 'query' => "SELECT current_location, name, uid, pic_square
 FROM user WHERE uid IN (SELECT uid2 FROM friend WHERE uid1=
 me())"));

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

309

2.	 Create an empty array, $cities, to maintain a count of the number of users in a city:
 $cities = array();

3.	 Create another empty array $cities_frnds to store the city wise friends'
information:
 $cities_frnds = array();

4.	 Loop through the $friends array:
 foreach($friends as $friend) {

5.	 Check, if for the current friend's city, whether an index exists in $cities array and if
so increment its count by one:
 if(isset($friend['current_location']['city'])) {
 if (array_key_exists($friend['current_location']
 ['city'],$cities)) {
 $cities[$friend['current_location']['city']]++;
 }

6.	 Otherwise create a new key and initialize it to 1:
 else {
 $cities[$friend['current_location']['city']] = 1;
 }

7.	 Store the city-wise friends' information in $cities_frnds:
 $cities_frnds[$friend['current_location']['city']][] =
 array('name' => $friend['name'], 'pic_square' =>
 $friend['pic_square']);
 }
 }

8.	 Sort the cities in descending order using the arsort() function:
 arsort($cities);
?>

9.	 Place the code given below inside fb-root:
<?php
 echo '<table width="100%" border="1">';
 foreach($cities as $key => $value) {

10.	 Display the result in a table:
 echo '<tr><td width="15%">' . $key . '</td>
 <td width="15%">' . $value . '</td>
 <td width="70%">';
 foreach($cities_frnds[$key] as $city_frnd) {
 echo "";
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

310

 echo '</td></tr>';
 }
 echo '</table>'
?>

11.	 Now save and run the file. A list will appear on the screen containing the city name,
the number of friends in that particular city, and profile pictures of the users who
share the same city:

How it works...
In this application, we have classified user's friends according to their current residing
location. To retrieve the current location and the city of each user's friend we use the FQL
query over the user table. To execute the FQL query we use the api() function which
contains an array as an argument. This array has a key named method which we set to
fql.query. This denotes that we want to execute an FQL query. Similarly, the value of the
key query contains the actual FQL query to be executed. We store the returned data in the
$friends variable as shown:

 $friends = $facebook->api(array(
 'method' => 'fql.query',
 'query' => "SELECT current_location, name, uid, pic_square FROM user
 WHERE uid IN (SELECT uid2 FROM friend
 WHERE uid1= me())"
));

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 10

311

Next, we create two more arrays, $cities to store the count of users in each city and
$cities_frnds to store the city wise friends information. For this we have the
following code:

$cities = array();
$cities_frnds = array();

Now, we loop through all the elements in the $friends array by using the foreach loop
and we check whether, for the current friend's city, an index exists in $cities array and if so
we increment its count by one. Otherwise we create a new key for the current friend's city and
initialize its value to 1. We also store the friend's details in the form of a sub array with his/her
city as key in $cities_frnds. The complete code for this is shown:

foreach($friends as $friend) {
 if(isset($friend['current_location']['city'])) {
 if (array_key_exists($friend['current_location']['city'],$cities))
{
 $cities[$friend['current_location']['city']]++;
 }
 else {
 $cities[$friend['current_location']['city']] = 1;
 }
 $cities_frnds[$friend['current_location']['city']][] =
array('name' => $friend['name'], 'pic_square' => $friend['pic_
square']);
 }
}

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Instant Applications

312

Finally, we use the arsort() function to sort the $cities array in the descending order so
that the city having the maximum number of users appears at the top. The final result is then
displayed inside a table as shown:

arsort($cities);
echo '<table width="100%" border="1">';
foreach($cities as $key => $value) {
 echo '<tr><td width="15%">' . $key . '</td>
 <td width="15%">' . $value . '</td>
 <td width="70%">';
 foreach($cities_frnds[$key] as $city_frnd) {
 echo "";
 }
 echo '</td></tr>';
}
echo '</table>'
?>

The table contains the profile pictures of all friends grouped city-wise in descending order, that
is, the city having the maximum number friends as their current location is displayed at
the top.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

11
Using Facebook Open

Graph Beta

In this chapter, we will cover:

ff Setting up your application for using Facebook Open Graph Beta

ff Defining actions, objects, and aggregations for your application

ff Customizing the Facebook Auth Dialog box

ff Requesting permission for publishing to the user's timeline

ff Defining your web page as a Facebook graph object

ff Publishing actions of user to Facebook

Introduction
Recently, Facebook has come up with an innovative way to make its users feel more at
home. With the introduction of Open Graph Beta and Timeline, Facebook has changed the
concept of social interaction. Now, to share our activities with others, we don't need to like
corresponding objects/pages. We can tell people exactly what we are doing at a particular
moment. It may be simply reading an article on a website, or listening to music from an online
store or virtually anything. The best part is that it gives others the ability to interact with the
same content instantaneously. This is a wonderful opportunity for Facebook developers giving
them the ability to virally spread their content on Facebook. We will show you how to capitalize
on this idea in this chapter.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using Facebook Open Graph Beta

314

With Open Graph Beta, Facebook has introduced the concept of actions and objects. Actions
are basically verbs which define your lifestyle such as cook, read, listen, dance, and so on,
whereas Objects are the nouns which are associated with those verbs. For example food,
article, news, and music respectively, in response to the actions defined above. The sole
purpose to define these is to make others know what exactly your end users are doing on
your application. Aggregation displays the data, related to action and object, of an application
specific to a user after filtering based on specified criteria.

Setting up your application for using
Facebook Open Graph Beta

In this recipe, we will show you how to integrate your website with Facebook Open Graph Beta.
This will help us to post the user actions on your website to Facebook. Here, the user actions
refer to the activities that an end user might perform on your website. For example, reading an
article, listening to a song, and so on.

How to do it...
The following steps will help set up your application for using Facebook Open Graph Beta:

1.	 Go to the following URL: http://developers.facebook.com/.

2.	 Click on the Apps tab present on the Facebook top bar navigation:

3.	 Next, click on the Create New App button present on the right corner.

4.	 You will be presented with a pop up asking you for the App Display Name and App
Namespace. It will appear as shown in the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://developers.facebook.com/

Chapter 11

315

5.	 Enter a suitable display name and namespace for your application. Now, check the I
agree to the Facebook Platform Policies checkbox and click on Continue.

6.	 You may be prompted with a Facebook Security Check dialog box. Complete the
CAPTCHA and click on Submit, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using Facebook Open Graph Beta

316

7.	 Next, the page containing the basic settings of the application will load:

8.	 You will notice that the App Display Name and App Namespace are already
populated with the values you had entered earlier. Also, our unique App ID and App
Secret will be shown.

9.	 Fill in the Contact Email and App Domain fields. Also, expand the Website tab and
enter your Site URL. You may also set a suitable Logo and Icon.

10.	 Click on Save Changes. If everything is fine, you will see a message, as shown in the
following screenshot, at the top of the page:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 11

317

Thus, we are done with the initial step of integrating our website with Facebook.

How it works...
The first step in integration of any third-party website or page with the Open Graph Beta
of Facebook is to create a new custom application. Initially, we mention the display name
and namespace of our application as Article Reader and article_reader respectively. The
App Display Name is the name which appears to the application users, whereas the App
Namespace is a unique machine name of your application which is used to manage the app's
actions and objects.

Next, we mention the domain name and the base URL of the website which we want to
integrate with Facebook. This enables Facebook to track down the actions that a user
performs on our website.

See also
ff Defining actions, objects, and aggregations for your application

Defining actions, objects, and aggregations
for your application

The actions, objects, and aggregations form an integral part of Facebook Open Graph Beta.
Here, we will show you how to define them.

Getting ready
You should have created an application as explained in Setting up your application for using
Facebook Open Graph Beta recipe.

How to do it...
The following steps will demonstrate how to define actions, objects, and aggregations:

1.	 Go to https://developers.facebook.com/apps. Locate your application and
click on the Edit App button present on the top right-hand side.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

https://developers.facebook.com/apps
https://developers.facebook.com/apps
https://developers.facebook.com/apps

Using Facebook Open Graph Beta

318

2.	 Next, click on the Open Graph tab present on the left sidebar. By default, the Getting
Started option will get selected in the sub menu and the corresponding page will load
as shown in the following screenshot:

3.	 Here, mention our application's action (read) in the first textbox next to the People
can label. Also, mention the object (article) corresponding to this action in the
second textbox. Click on the Get Started button.

4.	 Next, we will be directed to Edit your Action Type page, where we can configure our
newly created action. It will appear as shown in the following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 11

319

5.	 The Past Tense label contains a drop-down list box. Choose via Article Reader from
it. Click on Save Changes and Next.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using Facebook Open Graph Beta

320

6.	 Next, we will be directed to the Edit your Object Type page. Here, we enter sample
values for Title, Image, and Description of our newly created object type—article.
This allows us to preview how our objects will appear in the Facebook news feed.
Also, under the Advanced section, we change the meta tag for our object type. Now,
click on Save Changes and Next button:

7.	 Finally, we are directed to Create an Aggregation page. It will look as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 11

321

8.	 Set the value of the Sort By label as Most Recently Read and Aggregation Title as
Most Recently read Articles. Click on Save and Finish.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using Facebook Open Graph Beta

322

9.	 Now, you will be redirected to the Open Graph Dashboard and it will appear, as
shown in the following screenshot:

10.	 Click on the Preview link of the Most Recently read Articles aggregation. A pop up
will appear.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 11

323

11.	 Click on the Add New button under the Preview Objects section. A pop up like this
will appear:

12.	 Enter a suitable title and description for the dummy object. Also, provide a valid
image URL and click on the Save Changes button. Similarly, create another dummy
object and finally the aggregation preview dialog box will look as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using Facebook Open Graph Beta

324

13.	 Click on the Add New button under the Preview Actions section. A pop up will
appear:

14.	 Choose one of the dummy articles created earlier in the Article section and click on
the Create button. Similarly, create another preview action corresponding to the other
dummy object and finally your aggregation preview dialog box will look as shown in
the following screenshot:

15.	 Click on the Close button.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 11

325

How it works…
Here, we define a new action named read. We configure this action on the Edit your Action
Type page. Similarly, we create a new object named article and this object is related to the
action read. We configure this object as shown in the previous section.

Finally, we create an aggregation where the data is sorted by the most recently performed
read actions. We also add the preview data for this aggregation. We do so by creating two
dummy objects and creating corresponding actions for them. This preview data of the
aggregation is used in various places such as in the Add to Timeline plugin, Auth Dialog box,
and so on.

See also
ff Customizing the Facebook Auth Dialog box

Customizing the Facebook Auth Dialog box
We can make the Facebook Auth Dialog user-friendly and more appealing by configuring it as
explained in this recipe. This includes setting up the logo, content, description, and
other properties.

Getting ready
You should have created your application as described in the previous two recipes.

How to do it...
The following steps will help customize the Facebook Auth Dialog box:

1.	 Go to https://developers.facebook.com/apps. Locate your application and
click on the Edit App button present on the top right-hand side.

2.	 Next, click on the Basic | Auth Dialog on the left sidebar.

3.	 Set the Headline as Article Reader.

4.	 Set the Description as An application for reading articles.

5.	 Provide the Privacy Policy URL and Terms of Service URL. Also, provide the landing
URL where the user should be directed after authorization is complete. This can be
the home page of your website.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

https://developers.facebook.com/apps
https://developers.facebook.com/apps

Using Facebook Open Graph Beta

326

6.	 Under the Authenticated Referrals section, add the publish_actions permission in
the User & Friend Permissions textbox. Finally, the page will look as shown in the
following screenshot:

7.	 Click on the Preview Referral Dialog link to see the preview of the Auth Dialog:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 11

327

8.	 Click on the Close button. Finally, click on the Save Changes button.

How it works...
Here, we can configure various properties of the Auth Dialog which determines its layout. We
can use the following properties to theme the Auth Dialog box:

ff Logo: We can upload a logo for our application.

ff Headline: This is a one line description of our application.

ff Description: This is a longer description of our application. It is shown under the
About this app section.

ff Privacy Policy URL: It is the URL to the privacy policy.

ff Terms of Service URL: It is the URL to the terms of service.

ff Add Data to Profile URL: The URL to which the user should be later on directed to for
engagement and action publishing.

ff Explanation for Permissions: If our application requires extended permissions other
than e-mail and publish_actions, a second Auth dialog screen will appear after
the user authorizes the initial Auth Dialog. The text here is used to explain why we
need the additional permissions.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using Facebook Open Graph Beta

328

ff Default Activity Privacy: This field is used to set the Auth Dialog with a default
application action visibility setting. By default, this value is None, which means
our application specific actions published will follow the user's default privacy
permissions. Valid values are: None, Friends, Me only, or Public. The user can
change the Activity Privacy on the Auth Dialog.

After setting the values of the above fields, we next specify the permission to be requested
by the Auth Dialog in the Authentication Referrals section. In order to use Open Graph, we
request for the publish_actions permission.

In order to request the publish_actions permission, make sure that an
aggregation is defined and populated with some preview data, as explained in
the Defining actions, objects, and aggregations for your application recipe.

Finally, we preview the Auth Dialog box before saving the changes.

See also
ff Requesting permission for publishing to the user's timeline

Requesting permission for publishing to the
user's timeline

In order to publish application specific actions to a user's timeline, we need to request the
publish_actions permission from the user. This can be easily accomplished with the help
of the Add to Timeline (Beta) plugin.

Getting ready
We should have created our application for our website as defined in the Setting up your
application for using Facebook Open Graph Beta recipe.

How to do it...
The following steps will demonstrate a request for permission:

1.	 Open index.php and copy the following code to it:
<html xmlns="http://www.w3.org/1999/xhtml"dir="ltr"
lang="en-US" xmlns:fb="https://www.facebook.com/2008/fbml">
 <head>
 </head>
 <body>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 11

329

 <div id="fb-root"></div>
 <script src="http://connect.facebook.net/en_US/all.js">
 </script>
 <script>
 FB.init({
 appId:'your_app_id', cookie:true,
 status:true, xfbml:true, oauth:true
 });
 </script>
 <fb:add-to-timeline></fb:add-to-timeline>
 </body>
</html>

2.	 Replace the your_app_id in the code above with your application ID. Now save and
run this file. A screen, as shown in the following screenshot, will appear:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using Facebook Open Graph Beta

330

3.	 On clicking on the Add to Timeline button, the following Auth Dialog box loads:

4.	 Next, if the user clicks on the Log In and Add to Facebook button, then the
application gets the authorization and finally the following screen appears:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 11

331

How it works...
The publish_actions allows us to publish application specific actions to the user's
timeline. The easiest way to request this permission is by using the Add to Timeline plugin.

We use the fb:add-to-timeline XFBML tag of FB JavaScript SDK in order to render this
plugin. This plugin has two display modes—box and button. We can configure the plugin with
the help of the following attributes:

ff data-show-faces: This specifies whether to show faces underneath the login
button.

ff data-mode: This defines the mode of the plugin—box and button. The default mode
is box.

ff data-perms: It is a comma separated list of extended permissions.

When a user clicks on the Add to Timeline button, the user is present with an Auth Dialog
box informing about the application and requesting the permission to access the timeline of
the user.

If the extended permissions are specified, then a second dialog box loads (after the initial
auth dialog box) requesting these permissions from the user.

There's more...
If we want to use the button display mode, along with an extended permission publish
stream, then the XFBML tag will be:

<fb:add-to-timeline data-show-faces="true" data-mode="button" data-
perms="publish_stream" />

It will appear as shown in the following screenshot:

See also
ff Defining your web page as a a Facebook graph object

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using Facebook Open Graph Beta

332

Defining your web page as a a Facebook
graph object

In this recipe, we will show you how, with the help of various meta tags, you can define a web
page as an object of Facebook Open Graph Beta.

Getting ready
You should have configured your application to be used with Facebook Open Graph Beta, that
is, you should have set up objects, actions, and aggregation. If you haven't already done so,
refer to the all the recipes discussed earlier in this chapter.

How to do it...
The following steps will demonstrate how to define your web page as a Facebook graph object:

1.	 Go to https://developers.facebook.com/apps. Locate your application and
click on the Edit App button present on the top right-hand side.

2.	 Next, go to the Open Graph | Dashboard, present on the left sidebar, as shown in the
following screenshot:

3.	 Now, under the Object Types section, click on the Get Code link on the right-hand
side corresponding to the Article object. A pop up will appear:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

https://developers.facebook.com/apps

Chapter 11

333

4.	 This pop-up box contains sample meta tags for the article object of our application.
Copy this code.

5.	 Open the web page which you want to define as an object, say index.php. Paste
this code in the head section of the page as shown:
<head prefix="og: http://ogp.me/ns# fb: http://ogp.me/ns/fb#
article_reader: http://ogp.me/ns/fb/your_app_name#">
 <meta property="fb:app_id"
 content="your_app_id" />
 <meta property="og:type"
 content="your_app_namespace:your_object_name" />
 <meta property="og:url"
 content="http://your_web_page_url"/>
 <meta property="og:title"
 content="your_object_title" />
 <meta property="og:description"
 content="your_object_description." />
 <meta property="og:image"
 content="http://your_object_image_url " />
</head>

6.	 These meta tags help Facebook interpret this web page as an object of Facebook
Open Graph Beta.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using Facebook Open Graph Beta

334

How it works...
Facebook uses certain meta tags to determine whether a web page is an object of its Open
Graph. These meta tags are used to specify values of some parameters through which
Facebook categorizes a web page into an object. These object-specific meta properties are
as follows:

Meta properties Description
fb:app_id This is the application id to which our web page refers to.
og:type This defines the type of the object the current web page is.
og:image This is the image which will be associated with the current object

when published/ previewed in the Facebook news feed. It will
appear in news feeds, ticker, and timeline.

og:description This is the description of the current object.
og:url This is the URL of the current web page.

After adding these meta tags to our web page, we can associate an action to it, as defined in
the next recipe—Publishing actions of a user to Facebook.

See also
ff Publishing actions of a user to Facebook

Publishing actions of a user to Facebook
Facebook Open Graph Beta gives us the capability to publish actions to Facebook whenever a
user interacts with our Facebook Open Graph objects. Here, we will show you how to publish
actions.

Getting ready
You should have configured your application to be used with Facebook Open Graph Beta, that
is, you should have set up objects, actions, and aggregation. If you haven't already done so,
refer to the all the recipes discussed earlier in this chapter.

How to do it...
The following steps will demonstrate how to publish user actions:

1.	 Open index.php and add the following code to it:
<html xmlns="http://www.w3.org/1999/xhtml" dir="ltr"
lang="en-US" xmlns:fb="https://www.facebook.com/2008/fbml">

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 11

335

2.	 Add the following meta tags, in order to define this web page as an article to
Facebook:
 <head prefix="og: http://ogp.me/ns# fb: http://ogp.me/ns/fb#
 article_reader: http://ogp.me/ns/fb/article_reader#">
 <meta property="fb:app_id"
 content="your_app_id" />
 <meta property="og:type"
 content="article_reader:article" />
 <meta property="og:url"
 content="http://yoursite.com/index.php" />
 <meta property="og:title"
 content="The title of the article" />
 <meta property="og:description"
 content="The description of the article." />
 <meta property="og:image"
 content="http://yoursite.com/image1.png" />
 </head>

3.	 Next, add the content of your article:
 <body>
 <div id="fb-root"></div>
 <div id="teaser">Some teaser about the article here.
 Read full article

</div>
 <div id="full-content" style="display: none">Full Content
 Here</div>

4.	 Include FB JS SDK and jQuery:
 <script src="http://connect.facebook.net/en_US/all.js"></script>
 <script type="text/javascript"
 src="https://ajax.googleapis.com/ajax/libs/jquery/
 1.5.2/jquery.min.js"></script>

5.	 Next, add the FB.init() function:
 <script>
 FB.init({
 appId:'149958728435181', cookie:true,
 status:true, xfbml:true, oauth:true
 });

6.	 Add the readArticle() function which will publish the read action to Facebook for
the current object:
 function readArticle()
 {
 $('#teaser').hide();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using Facebook Open Graph Beta

336

 $('#full-content').show();
 FB.api('/me/article_reader:read' +
 '?article=http://yoursite.com/index.php','post',
 function(response) {
 if (!response || response.error) {
 alert('Error occured');
 } else {
 alert('Post was successful! Action ID: ' +
 response.id);
 }
 });
 }
 </script>

 <fb:add-to-timeline></fb:add-to-timeline>
 </body>
</html>

7.	 Save the code and run it. A screen similar to the following screenshot will appear:

8.	 Click on the Read full article link. A pop up, displaying the message that the post has
been successful along with action ID, will appear:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 11

337

9.	 Also, the action will be published to Facebook and will appear on the ticker of the
user and friends, as shown in the following screenshot:

How it works...
Here, first we have added some meta tags in order to define the current web page as a
Facebook object. This we do with the help of the following code:

<meta property="fb:app_id"
 content="your_app_id" />
<meta property="og:type"
 content="article_reader:article" />
<meta property="og:url"
 content="http://yoursite.com/index.php" />
<meta property="og:title"
 content="The title of the article"
 />
<meta property="og:description" content="The description of
 the article." />
<meta property="og:image"
 content="http://yoursite.com/image1.png" />

The meta tag fb:app_id is used to specify the application ID. Similarly, the meta tags
og:type, og:url, og:title, og:description, and og:image correspond to object type,
object URL, object title, object description, and object image respectively.

After this, we include the content of the article inside the div full-content and have
marked it as hidden. Also, we have a teaser div which contains the short description of the
whole article along with a link to read the full content.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Using Facebook Open Graph Beta

338

When the user clicks on this link to read the full article, the JavaScript function
readArticle() is called. This function hides the short description of the article and shows
its full content with the help of the following code:

function readArticle()
 {
 $('#teaser').hide();
 $('#full-content').show();
 FB.api('/me/article_reader:read' +
 '?article=http://yoursite.com/index.php','post',
 function(response) {
 if (!response || response.error) {
 alert('Error occured');
 } else {
 alert('Post was successful! Action ID: ' +
 response.id);
 }
 });
 }

Also, after showing the full content to the user, we publish the action read for the current
article on behalf of the active logged in user.

To publish an action on Facebook, we need to make a POST request to the following URL –
https://graph.facebook.com/me/YOUR_APPNAMESPACE:action. Along with this, we
need to specify some additional parameters such as the Object URL and the access token. So
the complete URL becomes:

https://graph.facebook.com/me/YOUR_APPNAMESPACE:action?object=OBJE
CT_URL&access_token=ACCESS_TOKEN

To make this POST request, we make use the FB.api() function of FB JS SDK. It takes the
following three parameters:

ff The first parameter is appended to the URL—https://graph.facebook.com and
then a request is made to the complete URL. Here, the value of this parameter is '/
me/article_reader:read' + '?article=http://yoursite.com/index.
php'.

ff The second parameter is the type of request. For example, GET or POST request.
Here, it is post request.

ff The third parameter is the callback function which we use to inform the user about
the final outcome, that is, whether the action was published successfully or not.

If the action is published successfully to Facebook, then it appears in the ticker of the current
user and his/her friends.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Index
Symbols
$cities array 312
$decodedSignedRequest array 28
$.each() function 164
$events variable 113
$facebook 252
$facebook->api() function 56, 75, 166, 278
$facebook-api() function 292
$facebook->getLoginUrl() 76, 278
$facebook->getSession() function 34, 75,

278
$friends array 244, 282
$me variable 34
$multi_queries array 114
$.post() function 52
$_REQUEST array 218
<div> element 119
<fb:comments> tag 187
<fb:login-button> XFBML tag 193
<html> element 119
<meta> tags 197
<script> element 26, 119, 149
 XFBML

using, for Send button integration 187-190

A
access_token 236
action attribute 172
actions

defining 317-324
working 325

action tag 24
Activity Feed plugin

about 177
configuring 178, 180

customizing 178, 180
working 178

ad
creating, for Facebook application 269-274
working 274

Add bookmark button 141
Add New button 324
Add to Timeline (Beta) plugin 328
Add to Timeline button 330
Add to Timeline plugin 325, 331
administration interface, page

Facebook URL Linter 207
log in 207
working with 204-206

Admin URL 207
aggregations

defining 317-324
working 325

Allow button 19
api() function 68, 75, 78, 113, 116, 166, 228,

256, 310
append() function 248
app_id attribute 151, 182, 223
appId, meta properties 279
app_id parameter 155
application callback setup, Facebook Credits

about 215
canceled, meta properties 220
Data 219
Description 219
image_url 219
item_id 219
Price 219
product_url 219
refunded, meta properties 220
setting up, steps 215

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

340

settled, meta properties 220
steps 215-218
Title 219
working 218-221

application, Facebook
birthday calendar, building 299
Body parameter 274
city-based friends classification application,

developing 308
configuring 13, 14
creating from scratch 275-279
destination parameter 274
My Fast Friends, creating 284
new ad, creating 269-274
photo collage, setting up 292
Title parameter 274
type parameter 274
URL parameter 274
working 14, 274
Your Good Luck Charm of the Day, creating

279-281
application permission status

checking 100, 101
permissions table, working 102

application setup, Facebook Credits
Callback URL, working 214
steps 212

application setup, for Open Graph Beta
steps 314-317
working 317

application specific actions, publishing to
user timeline

publish_actions permission, requesting 328-
331

Apps tab 314
arguments, imagefilledrectangle() function

color 305
image 305
x1 305
x2 305
y1 305
y2 305

arguments, imagefttext() function
angle 290, 306
color 290, 306
fontfile 290, 306
image 290, 306

size 290, 306
text 290, 306
x 290, 306
y 290, 306

array_rand() function 297
to 282

arsort() function 312
attributes, XFBML tag

autologoutlink 143
max-rows 143
perms 143
show-faces 143
width 143

audio data
integrating 200-203
meta properties 202

Auth Dialog box
theming, properties used 327, 328

authentication
obtaining, in Facebook 17

auth.login event 134, 135, 144
auth.logout event 135, 145
authorization

obtaining, in Facebook 15, 17
working 16, 17

auth.prompt event 135
auth.sessionChange event 135
auth.statusChange event 135
autocomplete() function 248
autocompleteselect event 249

B
batch request

using, for page’s stream views retrival 258,
259

using, for page’s wall post retrival 258, 259
working 259, 260

birthday calendar
about 299
building 299-302
working 303-308

bookmark functionality 139
bookmarks

adding, XFBML used 139, 140
working 141

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

341

border_color attribute, Activity Feed plugin
178

box_count attribute 171
button_count attribute 171
button display 331

C
callCredit() function 240, 247
canceled 220
Canvas Page 10
Canvas URL 10
caption attribute 151
cb_fn parameter, FB.api() function 130
chco 258
chd 258
chs 258
cht 258
chtt 258
chxl 258
chxt 258
city-based friends classification application

creating 308-310
working 310, 312

click() event 49, 128, 137, 151
click() method 154, 222
client_id parameter, OAuth Dialog 160
cmp() function 289
college namespace 200
colorscheme attribute 172
colorscheme attribute, Activity Feed plugin

178
comment

deleting 43
Comment box

integrating, XFBML used 185-187
working 187

comment.create event 135
comment.remove event 135
cookie, meta properties 279
count() function 288
Create an Ad button 270
Create button 324
create_event permission 55
Create New App button 314
Credits Callback URL 214
credits_purchase 223

cURL 8
curl_exec() function 70, 227
curl_init() function 227
CURLOPT_HEADER attribute 64, 228
CURLOPT_POST attribute 64, 228
CURLOPT_POSTFIELDS attribute 64, 228
CURLOPT_RETURNTRANSFER attribute 64,

228
curl_setopt() function 64, 69, 235
current user’s friendlist

$facebook , working 45
deleting 46
members, obtaining 45
new friendlist, creating 45
new member, adding 46
retrieving 44, 45

current user status
obtaining 121-124

custom offers
about 229, 230
DealSpot, integrating 232
DealSpot integration, parameters 233
implementing 230-232
working 232

D
data-mode attributes 331
data-perms attributes 331
data-show-faces attributes 331
DateTime PHP class 256
description attribute 151
dev_purchase_params 223
display parameter, OAuth Dialog 156, 160
document.ready function 240
downloading

PHP-SDK 8

E
edge.create event 135
edge.remove event 135
Edit App button 325, 332
Edit your Action Type page 318
event change

subscribing to 133-135
unsubscribing 135, 136
working 137

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

342

event details
retrieving 111, 112
working 113

events
auth.login 134, 135
auth.logout 135, 145
auth.prompt 135
auth.sessionChange 135
auth.statusChange 135
click() 126, 137
comment.create 135
comment.remove 135
edge.create 135
edge.remove 135
eventclick() 49
eventonclick 21
fb.log 135
onclick() 123
xfbml.render 135

events, Facebook
creating 55, 56
deleting 57
working 56

event subscription 133
explode() function 64, 70, 228, 235
extended permission

about 124
authenticating, XFBML 142-145
setting up 124
setting up, XFBML 142-145
working 125

F
Facebook

about 5, 6
application, configuring 13
application, creating from scratch 275
benefits, for developers 7
events, creating 55
Facebook Dialogs 147
features 6
Graph API 32
Facebook Insights 251
JavaScript SDK 117
page liking by user, determining 27
pages followed by user, obatining 86

querying 74
social plugins 169

Facebook Auth Dialog box
customizing 325-328
working 327, 328

Facebook class 17, 75, 262, 276
Facebook Credits

about 211
application callback, setting up 215
application setup 212
frontend, creating 221
obtaining, without purchase 226

Facebook Credits frontend
creating, JavaScript SDK 221-223
meta properties 223
working 223-225

Facebook Dialogs
about 147
prerequisites 148, 149
story, publishing 150

Facebook Graph API
about 32
features 32
prerequisites 32-34
URL 16

Facebook graph object
web pages, defining 332-334

Facebook Insights
about 251
prerequisites 252, 253

Facebook Open Graph Beta. See Open Graph
Beta

Facebook page
application’s tab based content, customizing

29
liking by user, determining 27
signed_request parameter 28
working 28

Facebook Query Language. See FQL
Facebook social graph

web pages, unifying 195
Facebook URL Linter

URL 207
fb:profile-pic
fb:height attribute 138
fb:linked attribute 138
fb:size attribute 138

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

343

fb:uid attribute 138
fb:width attribute 138
FB.api() function

about 130, 338
parameters 130

FB.Canvas.setAutosize() parameter 27
FB.Canvas.setSize() function 128
FB.Data.query() function 132
FB.event.subscribe() function 144
FB.Event.subscribe() function 134, 137, 142
FB.Event.unsubscribe() function 137
FB.getLoginStatus() function 121, 122, 131,

132
FB.init() function

about 121, 133, 149, 222, 279, 335
cookie parameters 120
xfbml parameters 120

fb.log event 135
FB.login() function 122, 123, 134
FB.logout() function 126
fb:profile-pic XFBML tag

height attribute 138
FB.ui() function 283
FB.XFBML.parse() function 135
features, Facebook 6
features, Facebook Graph API

analytics 32
authorization 32
deleting 32
publishing 32
reading 32
searching 32

Feed Dialog Box, configuring
caption 283
description 283
link 283
message 283
name 283
picture 283
to 283

file_get_contents() function 307
filter attribute, Activity Feed plugin 178
font and border_color attribute, Activity Feed

plugin 178
font attribute 172

font attribute, Activity Feed plugin 178
foreach() loop 111, 311
foreach() PHP loop 78, 113
form submission

handling, in iFrame Facebook application 23,
24

FQL
about 74
application permission status, checking 100
event details of user friends retrieving, multi-

query method used 114
event details, retrieving 111
friends retrieving, from specific friend list 95,

96
group information, retrieving 91
group members, retrieving 93
important points 74
message, obtaining in thread 98
notification, retrieving 102
prerequisites 74-76
user associated video details, retrieving 104
user following pages, obtaining 86
user friendship, determining 89
user information, returning 76
user posted link, obtaining 84, 85
user published photos, retrieving 109
user’s friend profile pictures, retrieving 81
user status message, obtaining 78
user tagged photos, obtaining 106

FQL multiquery
visitors statistics, obtaining 263-269

fql.multiquery method 114
FQL query

executing 131, 132
working 132

fqlQuery() function 131, 132
fql.query method 114
FQL user table

retrieving 78
friend details, user

retrieving, multiquery method used 114, 116
friend request

processing 164-167
sending, by user 161-164
sending, Facebook Dialog used 153-155

FROM clause 74

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

344

G
Get Code button 192
getFriendId() function 47, 48
getLoginUrl() function 16, 19
GET parameters

chbh 258
chco 258
chd 258
chs 258
cht 258
chtt 258
chxl 258
chxt 258

getSession() function 16, 33, 75, 253
getSignedRequest() 28
Getting Started option 318
Google Chart API

using, for chart creation 257, 258
Graph API call

making 129
working 130, 131

group information
FQL query, executing 92
retrieving 91, 92

group members
retrieving 93, 94
working 95, 97

H
hash_hmac() function 219
header attribute, Activity Feed plugin 178
header() function 19
height attribute, Activity Feed plugin 178
height attributes 138
href attribute

colorscheme attribute, using 191
font attribute, using 191
href attribute, using 191
layout, specifying 171

href parameter 21, 173
href value 181
href value attribute 182
http_method parameter, FB.api() function

130

hub_challenge parameter 67
hub_mode parameter 67
hub_verify_token parameter 67

I
id parameter 156
iFrame Facebook application

about 21
dynamically resizing 24-27
FB.Canvas.setAutosize() parameter 27
JavaScript SDK, working 26
navigation, handling 22
working 22

iframe size
resetting 127
working 128

imagecolorallocate() function 305
imagecopy() function 298
imagecopymerge() function 307
imagecreatefromjpeg() function 305
imagecreatetruecolor() function 305
imagedestroy() function 292
imagefilledrectangle() function

about 306
arguments 289, 305

imagefttext() function
about 306
arguments 290, 306

imagepng() function 298, 307
imagesettile() function 305
img attributes 138
img HTML tag 138
img tag 83
index method 82
Insight Dashboard 252

J
JavaScript SDK

about 26, 118
prerequisites 118-120
source URL 118

json_decode() function 68
json_encode() function 114, 116, 248, 260,

269

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

345

K
key named method 310

L
layout attribute 171
Like box

about 173
adding 174, 175
working 175-177

Like Box plugin
chart creating, Google Chart API used 257,

258
impressions, retrieving 254-256
working 255, 256

Like button
about 170
setting up, on your web page 170

Like button, integrating with websites
action attribute, specifying 172
colorscheme, specifying 172
font attribute, specifying 172
href attributes, specifying 171
layout attibutes, specifying 171
ref scheme, specifying 172
sendscheme, specifying 172
show_faces attribute, specifying 172
steps 170
width attribute, specifying 172
working 171-173

LIMIT clause 111
link attribute 151
link table

link_id field 85
owner_comment field 85
summary field 85
title field 85
url field 85

list() function 219
Live Stream plugin

about 183
integrating, XFBML used 183
working 185

Log In and Add to Facebook button 330
login plugin

about 192

max-rows attribute 193
using 192, 193
width attribute 193
working 193

M
Manage Permissions link 205
max_rows attribute 182
max-rows attribute 193
Message 236
message attribute 151
meta properties, audio data

og:audio:album 202
og:audio:artist 202
og:audio:title 202
og:audio:type 202

meta properties, Facebook Credits frontend
app_id 223
credits_purchase 223
dev_purchase_params 223
order_info 223
purchase_type 223
redirect_uri 223

meta properties, imagecopymerge() function
dst_im 291
dst_x 291
dst_y 291
pct 291
src_h 291
src_im 291
src_w 291
src_x 291
src_y 291

meta properties, order
access_token 236
CURLOPT_HEADER 235
CURLOPT_POST 235
CURLOPT_POSTFIELDS 235
CURLOPT_RETURNTRANSFER 235
Message 236
order_id 236
refund_funding_source 236
refund_reason 236
Status 236

meta properties, order details
CURLOPT_HEADER 228

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

346

CURLOPT_POST 228
CURLOPT_POSTFIELDS 228
CURLOPT_RETURNTRANSFER 228

meta properties, video data
og:video:height 203
og:video:type 203
og:video:width 203

method attribute 163
multiple application installation

FQL, using 261, 262
working 262, 263

multiquery method
using, for details retrieving 114, 115
working 116

my_app directory 14
My Fast Friends application

color, meta properties 289
creating 284-287
image, meta properties 289
working 288-291
x1, meta properties 289
x2, meta properties 289
y1, meta properties 289
y2, meta properties 289

mysql_connect() function 246
mysql_fetch_array() function 246
mysql_select_db() function 246

N
name attribute 151
new Facebook application

about 10
application ID, working 12
application secret key, working 12
developer account, verifying for 10
registering 10-12
sandbox mode 13
secret key, resetting 13
secure connection 13
working 12

notification, user
obtaining 102-104

O
OAuth Dialog

meta properties 161

parameters 160
uisng, for application permission 160
using, for application permission request

157-161
objects

defining 317-324
working 325

object-specific meta properties
fb:app_id 334
og:description 334
og:image 334
og:type 334
og:url 334

offset parameter 58
og:audio:title, meta properties 202
og:audio

album, meta properties 202
artist, meta properties 202

og:audio, meta properties 202
og:audio:title, meta properties 202
og:audio:type, meta properties 202
og:description property 198
og:image property 198
og:site_name property 198
og:title property 197
og:type property 197
og:url property 198
og:video:height, meta properties 203
og:video, meta properties 203
og:video:type, meta properties 203
og:video:width, meta properties 203
onclick() event 21, 123
Open Graph Beta

about 313, 314
application, setting up 314

Open Graph tab 318
order

refunding 233, 234
status, updating 236
working 235, 236

order details
about 226
configuring, curl_setopt() function used 228
retrieving, steps 227, 228
working 228, 229

order_id property 219, 236
order_info property 219, 223

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

347

P
page

about 63
administration interface 204

Page Tabs settings 27
parameters, OAuth Dialog

client_id 160
display 160
redirect_uri 160
response_type 160
state 160

Params 236
parse_signed_request() function 216, 218
payment_status_update method 220
period() function 268
permissions 36, 63
photo collage

about 292
setting up 292-295
working 295-298

PHP cURL extension 8, 9
PHP JSON (JavaScript Object Notation) exten-

sion
about 8
installation 9

PHP-SDK
downloading 8
facebook.php file, working 9
setting, on server 9

PHP-SDK, downloading
environment, setting up 8

picture
deleting 43

picture attribute 151
post

comments, placing 38-40
creating, on user’s friends wall 46-48
creating, on user’s friend wall 47
deleting 43
link, deleting 38
linking 36, 37

post, commenting on
comments, deleting 40

posted link, user
obtaining 84

post request 338

prerequisites, Facebook Dialogs
appID parameter 149
basic configuration, performing 148
cookie parameter 149
status parameter 149
xfbmlparameter 149

prerequisites, Facebook Graph API 32-34
prerequisites, FQL 74-76
print_r($results) 116
print_r() function 260
profile picture

retrieving, XFBML used 137, 138
profile pictures of friends, user

retrieving 81-83
property, Facebook

fb:admins 198
og:description 198
og:site_name 198

property, Open Graph protocol
og:image 198
og:title 197
og:type 197, 198
og:url 198

publish_actions permission
about 328
requesting, for publishing to user’s time line

328, 330
working 331

published photos, of user
retrieving 109
working 111

publish_stream permission 102
purchase_type 223

Q
query_param parameter 131
query_param parameter, FB.api() function

130
query variable 132

R
readArticle() function 335, 338
read_mailbox permission 102
ready() function 51
realpath() function 52, 62, 294
real time updates, handling

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

348

callback, creating 65, 66, 68
working 67, 68

recommendations attribute, Activity Feed
plugin 178

recommendations plugin 180
redirect_uri attribute 151, 223
redirect_uri parameter 155
redirect_uri parameter, OAuth Dialog 160
ref attribute 172
ref attribute, Activity Feed plugin 178
refunded 220
refund_funding_source 236
refund_reason 236
req_perms 76
Request for Permission dialog box 122
response_type parameter, OAuth Dialog 160
retrieve method 216
RETURNTRANSFER method 234

S
Save Changes button 323
scope parameter, OAuth Dialog 160
SELECT clause 104
Send a Gift application

developing 236-241
frontend, sections 244
integrating, with Facebook Credits 238-242
meta properties 247
working 244-249

send attribute 172
Send button

customizing, attributes used 191
integrating, stand-alone Send button 190,

191
integrating, with Like button 188-190
integrating, XFBML used 187-190
working 191

session validation
performing 121-124

setFileUploadSupport() function 61, 294
settled 220
show_faces attribute 172, 193
Show faces option 192
signed_request key 218
signed_request parameter 28
site attribute, Activity Feed plugin 178

size attributes 138
sms permission 102
social graph

video data, attaching 203
web pages defining, Facebook Open Graph

protocol used 199
web pages, integrating 196-199

split() function 304
SQL 74
standard attribute 171
state parameter, OAuth Dialog 160
Status 236
status message

likes by friends, retrieving 53, 55
setting 41, 42
working 42

status, meta properties 279
story, publishing

Facebook Feed Dialog box, working 151-153
steps 150

stream updates
publishing, to user 208, 209

strtotime() function 305
Structured Query Language. See SQL
subscriptions

deleting 69, 70

T
tabs() function 248
tagged photos, of user

obtaining 106, 108
photo_tag table, working 108, 109

tag_uid, meta properties 291
target attribute 23
target parameter 21
thread messages

about 98
obtaining 98, 99
working 99

Timeline 313

U
uid attributes 138
unset() function 245
user

about 63

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

349

data parameter 163
Facebook Feed Dialog box, configuring 151-

153
friend profile pictures, retrieving 81
friend request, sending 161-164
information, returning 76, 77
links posted, obtaining 84-86
logging out 126, 127
message parameter 163
notification, obtaining 102-104
sent friend request, processing 164-167
status messages, obtaining 78, 80
story, publishing 150
title parameter 163
to parameter 163
usergetLoginUrl() function, working 19
usergetLogoutUrl() function, working 21
userlogging out 20
userspecific permissions, requesting 17-19
userstatus message likes by friends, retrieving

53, 55
user actions, publishing to Facebook

starting with 334
steps 334-337
working 337, 338

user album
picture, posting 49-53

user_birthday permission 76
user_checkins permission 102
user following pages

retrieving 86-88
working 88

user friendship
determining 89, 90
working 90

user information
retrieving 76, 77
returning 76, 77
user table, working 77

user object-related real time updates
attributes configuring, curl_setopt() function

used 64
subscription, adding 63, 64
working 64, 65

users
tagging, in picture 60-62

user’s feed

searching through 59
working 60

user’s friend profile pictures
retrieving 81

user’s friends
paging through 57-59

user’s information
about 34
retrieving 34, 35
working 35, 36

user status message, obtaining
about 78
api() function, working 80
steps 78

usort() function 288

V
val() function 128, 249
valid user session

obtaining, in Facebook 15
working 16, 17

video data
attaching, to social graph 203
integrating 200-203
meta properties 203

video details, of user
retrieving 104, 105
video_tag table, working 106

visitor statistics
end_time parameter 268
metric parameter 268
object_id parameter 268
obtaining, FQL multiquery used 263-267
period parameter 268
value parameter 269
working 267-269

W
web page

Facepile plugin, setting up 180-182
Facepile plugin, working 182
Like button, setting up 170

web page definition, as Facebook graph
object

steps 332, 333
working 334

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

350

web pages
integrating, into social graph 196-199

web pages defining, Facebook Open Graph
protocol used

contact information, defining 200
custom object type, defining 200
local information, defining 199, 200

WHERE clause 74, 89
width attribute 172, 182, 193
width attribute, Activity Feed plugin 178
width attributes 138
window.fbAsyncInit function 149

X
XFBML

bookmarks, adding 139, 140
extended permissions, setting up 142-145
profile picture, retrieving 137, 138
using, for Comment box integration 185-187
using, for Live Stream plugin integration 183-

185
xfbml attribute 138
xfbml, meta properties 279
xfbml.render event 135
XFBML tag

attributes 142
x, meta properties 291

Y
y, meta properties 291
Your Good Luck Charm of the Day application

creating 279-282
working 282, 283

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Thank you for buying
Facebook Application Development with
Graph API Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Flash Facebook Cookbook
ISBN: 978-1-84969-072-0 Paperback: 388 pages

Over 60 recipes for integrating the Flash applications
with the Graph API and Facebook

1.	 Work with the key Graph API objects and
their social connections, using the Facebook
ActionScript 3 SDK

2.	 Create new Checkins at Facebook Places and plot
existing Checkins and Facebook Places on Flex
mapping components

3.	 Upload image files or generated images to
Facebook

4.	 Packed full of solutions using a recipe-based
approach

Facebook Graph API
Development with Flash
ISBN: 978-1-84969-074-4 Paperback: 324 pages

Build social Flash applications fully integrated with the
Facebook Graph API

1.	 Build your own interactive applications and games
that integrate with Facebook

2.	 Add social features to your AS3 projects without
having to build a new social network from scratch

3.	 Learn how to retrieve information from Facebook's
database

4.	 A hands-on guide with step-by-step instructions
and clear explanation that encourages
experimentation and play

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Flash Game Development by
Example
ISBN: 978-1-84969-090-4 Paperback: 428 pages

Build 9 classic Flash games and learn game
development along the way

1.	 Build 10 classic games in Flash. Learn the
essential skills for Flash game development

2.	 Start developing games straight away. Build your
first game in the first chapter

3.	 Fun and fast paced. Ideal for readers with no
Flash or game programming experience

4.	 The most popular games in the world are built in
Flash

CryENGINE 3 Cookbook
ISBN: 978-1-84969-106-2 Paperback: 324 pages

Over 90 recipes written by Crytek developers for creating
third-generation real-time games

1.	 Begin developing your AAA game or simulation
by harnessing the power of the award winning
CryENGINE3

2.	 Create entire game worlds using the powerful
CryENGINE 3 Sandbox

3.	 Create your very own customized content for use
within the CryENGINE3 with the multiple creation
recipes in this book

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Creating a New Facebook Application
	Introduction
	Downloading PHP-SDK and setting up
	your environment
	Registering a new Facebook application
	Configuring a Facebook application
	Getting authorization and a valid session
	for the user
	Requesting specific permissions
	from the user
	Logging out a user
	Handling navigation in an iFrame
	Facebook application
	Handling form submission in an iFrame
Facebook application
	Dynamically resizing an iFrame Facebook application
	Determining whether a Facebook page
	has been liked by a user

	Chapter 2: Be a part of
Social Graph
	Introduction
	Retrieving a user's information
	Liking a post
	Commenting on a given post
	Setting status message
	Deleting a picture, post, or comment
	of a user
	Retrieving the current user's friendlist
	Creating a post on the wall of a user's friend
	Posting a picture to a specific album
	of the user
	Retrieving the names of the user's friends
	who have liked a particular status message
	Creating an event
	Paging through a user's friends
	Searching through a user's feed
	Tagging users in a picture
	Adding a subscription for real time
	updates related to a user object
	Creating a callback for handling real
	time updates
	Deleting subscriptions

	Chapter 3: Querying Facebook
	Introduction
	Returning information about a user
	Getting the status messages of a user
	Retrieving profile pictures of a user's friends
	Getting the links posted by a user
	Getting the Facebook pages followed by
a user
	Determining if two users are friends
	Retrieving information of a group
	Retrieving members of a group
	Retrieving friends from a specific friend list
	Getting all the messages in a thread
	Checking the status of permissions for
an application
	Getting notifications, and their senders, for the current user
	Retrieving video details associated with
a user
	Getting the five latest photos in which a user has been tagged
	Retrieving the latest photos published by a user
	Retrieving details of an event
	Retrieving details of a user's friends by
using the multiquery method

	Chapter 4: Using FB Script
	Introduction
	Getting the current user status and
performing session validation
	Setting up extended permissions
during login
	Logging out a user
	Resetting the size of iframe
	Making a Graph API call
	Executing an FQL query
	Subscribing to an event change
	Unsubscribing to an event change
	Retrieving a profile picture using XFBML
	Adding bookmarks using XFBML
	Authentication and setting up extended
permissions using XFBML

	Chapter 5: Expressing Yourself
	Introduction
	Prompting the user to publish a story
	Using Dialog to add someone as a friend
	Using the OAuth Dialog to request
permissions for your application
	Prompting the user to send a request
to friends
	Processing requests sent to the user by friends

	Chapter 6: Bringing Facebook to your Website
	Introduction
	Setting up the Like button on your web page
	Adding a Like box
	Setting up the Activity Feed plugin
	Setting up the Facepile plugin on your
web page
	Integrating the Live Stream plugin using
XFBML
	Integrating the Comment box using XFBML
	Integrating the Send button using XFBML
	Login with Faces

	Chapter 7: Connecting Websites to the Social Graph
	Introduction
	Integrating web pages into the social graph
	Integrating audio and video data
	Administering your page
	Publishing stream updates to the users

	Chapter 8: Fiddling with
Virtual Currency
	Introduction
	Setting up the application for Facebook Credits
	Setting up an application callback for
Facebook Credits
	Creating Facebook Credits frontend
using JavaScript SDK
	Getting the order details
	Implementing custom offers
	Refunding the order
	Developing a "Send a Gift" application and
integrating with Facebook Credits

	Chapter 9: Creating Advertisements and Analyzing Metric Data
	Introduction
	Retrieving impressions of the Like Box
plugin
	Retrieving a page's stream views and wall posts using batch request
	Getting the number of installations of an
application using FQL
	Getting statistics about visitors using FQL multiquery
	Creating a new ad for your Facebook
application

	Chapter 10: Creating Instant Applications
	Introduction
	Creating a "Your Good Luck Charm of the Day" Facebook application
	Designing a "My Fast Friends" Facebook
application
	Setting up a photo collage
	Building a birthday calendar
	Developing an application to classify friends according to the cities they live in

	Chapter 11: Using Facebook Open Graph Beta
	Introduction
	Setting up your application for using
Facebook Open Graph Beta
	Defining actions, objects, and aggregations for your application
	Customizing the Facebook Auth Dialog box
	Requesting permission for publishing to the user's timeline
	Defining your web page as a a Facebook
graph object
	Publishing actions of a user to Facebook

	Index

