O'REILLY"

Accumulo

APPLICATION DEVELOPMENT, TABLE DESIGN, AND BEST PRACTICES

Aaron Cordova,
Billie Rinaldi & Michael Wall

vww . allitebooks.cond

http://www.allitebooks.org

O'REILLY"

Accumulo

Get up to speed on Apache Accumulo, the flexible, high-performance
key-value store created by the US National Security Agency (NSA) and
based on Google's Bigtable data storage system. Written by former
NSA team members, this comprehensive tutorial and reference covers
Accumulo architecture, application development, table design, and
cell-level security.

With clear information on system administration, performance tuning, and
best practices, this book is ideal for developers seeking to write Accumulo
applications, administrators charged with installing and maintaining
Accumulo, and other professionals interested in what Accumulo has to
offer. You will find everything you need to use this system fully.

m Get a high-level introduction to Accumulo's architecture and
data model

m Take a rapid tour through single- and multiple-node
installations, data ingest, and query

m Learn how to write Accumulo applications for several use
cases, based on examples

m Dive into Accumulo internals, including information not
available in the documentation

m Get detailed information for installing, administering, tuning,
and measuring performance

m Learn best practices based on successful implementations in
the field

Aaron Cordova, a cofounder of Koverse Inc,, started and led the Apache Accumulo
project as a computer systems researcher at the US National Security Agency.

Billie Rinaldi, a senior technical staff member at Hortonworks, Inc., was a leader
of the NSA computer science research team that implemented Accumulo.

Michael Wall, a graduate of the US Air Force Academy, served as a software
engineer for the NSA and other government agencies. He develops a variety of
applications with Accumulo.

“If you need random access
to large datasets youd
be wise to learn about
Accumulo. And there'sno
better place to start than
with this book.”

—Doug Cutting
Founder of Hadoop

“ Aaron Cordova, Billie
Rinaldi, and Michael Wall
have been leaders in the
Accumulo community
since its inception, and
I can think of no one
more qualified to write
the definitive book on
Accumulo.”

—Jeremy Kepner
MIT Lincoln Laboratory

DATA / DATABASES / SECURITY

US $49.99 CAN $57.99

ISBN: 978-1-449-37418-1

TR
LEIE LTI

vww allitebooks.cond

Twitter: @oreillymedia
facebook.com/oreilly

http://www.allitebooks.org

Accumulo

Application Development,
Table Design, and Best Practices

Aaron Cordova, Billie Rinaldi, and Michael Wall

Beijing + Boston + Farnham - Sebastopol + Tokyo KOA{={|HAE

vww allitebooks.cond

http://www.allitebooks.org

Accumulo: Application Development, Table Design, and Best Practices
by Aaron Cordova, Billie Rinaldi, and Michael Wall

Copyright © 2015 Aaron Cordova, Billie Rinaldi, Michael Wall. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Marie Beaugureau Indexer: WordCo Indexing Services, Inc.
Production Editor: Matthew Hacker Interior Designer: David Futato

Copyeditor: Kim Cofer Cover Designer: Ellie Volckhausen

Proofreader: Eileen Cohen lllustrators: Aaron Cordova and Billie Rinaldi
July 2015: First Edition

Revision History for the First Edition
2015-06-30: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449374181 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Accumulo: Application Development,
Table Design, and Best Practices, the cover image of a yak, and related trade dress are trademarks of
O'Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-449-37418-1
[LST]

vww allitebooks.cond

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449374181
http://www.allitebooks.org

Table of Contents

0] (01 1) {1 S Xiii
(<] - T XV
1. ArchitectureandDataModel.covieiiiiiiiiiiiii it 1
Recent Trends 1
The Role of Databases 2
Distributed Applications 4
Fast Random Access 7
Accessing Sorted Versus Unsorted Data 7
Versions 11
History 12
Data Model 13
Rows and Columns 14
Data Modification and Timestamps 17
Advanced Data Model Components 19
Column Families 19
Column Visibility 22

Full Data Model 26
Tables 27
Introduction to the Client API 28
Approach to Rows 32
Exploiting Sort Order 33
Architecture Overview 34
ZooKeeper 35
Hadoop 35
Accumulo 36

A Typical Cluster 41

vww allitebooks.cond

http://www.allitebooks.org

Additional Features
Automatic Data Partitioning
High Consistency
Automatic Load Balancing
Massive Scalability
Failure Tolerance and Automatic Recovery
Support for Analysis: Iterators
Support for Analysis: MapReduce Integration
Data Lifecycle Management
Compression
Robust Timestamps

Accumulo and Other Data Management Systems
Comparisons to Relational Databases
Comparisons to Other NoSQL Databases

Use Cases Suited for Accumulo
A New Kind of Flexible Analytical Warehouse
Building the Next Gmail
Massive Graph or Machine-Learning Problems
Relieving Relational Databases
Massive Search Applications

Applications with a Long History of Versioned Data

B 111) o PR

Demo of the Shell
The help Command
Creating a Table and Inserting Some Data
Scanning for Data
Using Authorizations
Using a Simple Iterator
Demo of Java Code
Creating a Table and Inserting Some Data
Scanning for Data
Using Authorizations
Using a Simple Iterator
A More Complete Installation
Other Important Resources
One Last Example with a Unit Test
Additional Resources

3 T o Y S

Development Environment
Obtaining the Client Library

42
42
42
43
43
43
44
44
45
45
45
46
46
50
56
56
56
57
57
57
58

59
60
61
61
62
63
63
63
64
68
69
70
71
79
80
80

81
82
83

iv

| Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

Using Maven
Configuring the Classpath
Introduction to the Example Application: Wikipedia Pages
Wikipedia Data
Data Modeling
Obtaining Example Code
Downloading Sample Wikipedia Pages
Downloading All English Wikipedia Articles
Connect
Insert
Committing Mutations
Handling Errors
Insert Example
Using Lexicoders
Writing to Multiple Tables
Lookups and Scanning
Lookup Example
Crafting Ranges
Grouping by Rows
Reusing Scanners
Isolated Row Views
Tuning Scanners
Batch Scanning
Update: Overwrite
Overwrite Example
Allowing Multiple Versions
Update: Appending or Incrementing
Update: Read-Modify-Write and Conditional Mutations
Conditional Mutation API
Conditional Mutation Batch API
Conditional Mutation Example
Delete
Deleting and Reinserting
Removing Deleted Data from Disk
Batch Deleter
Testing
MockAccumulo
MiniAccumuloCluster

B T 1 (=37 SRS

Basic Table Operations
Creating Tables

83
83
84
84
85
88
89
89
90
90
93
95
97
99
100
103
106
108
110
111
111
112
113
116
116
117
118
118
119
121
121
125
126
127
127
129
129
129

131
131
131

vww allitebooks.cond

Table of Contents

| v

http://www.allitebooks.org

Renaming

Deleting Tables

Deleting Ranges of Rows

Deleting Entries Returned from a Scan

Configuring Table Properties

Locality Groups

Bloom Filters

Caching

Tablet Splits

Compacting

Additional Properties

Online Status

Cloning

Importing and Exporting Tables

Additional Administrative Methods
Table Namespaces

Creating

Renaming

Setting Namespace Properties

Deleting

Configuring Iterators

Configuring Constraints

Testing Class Loading for a Namespace
Instance Operations

Setting Properties

Cluster Information

Precedence of Properties

CSeCUHtY APL .. e

Authentication
Permissions
System Permissions
Namespace Permissions
Table Permissions
Authorizations
Column Visibilities
Limiting Authorizations Written
An Example of Using Authorizations
Using a Default Visibility
Making Authorizations Work
Auditing Security Operations
Custom Authentication, Permissions, and Authorization

135
135
135
136
137
138
142
144
145
149
151
156
157
158
159
160
161
162
162
163
164
164
165
165
165
166
171

175
176
177
178
180
181
183
184
184
185
190
193
194
195

vi

| Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.cond

Custom Authentication Example 196
Other Security Considerations 197
Using an Application Account for Multiple Users 198
Network 198
Disk Encryption 198

. Server-Side Functionality and External Clients................coovvviiinnnenn. 201
Constraints 201
Constraint Configuration API 202
Constraint Configuration Example 203
Creating Custom Constraints 205
Custom Constraint Example 205
Iterators 209
Iterator Configuration API 211
Versioninglterator 212
Iterator Configuration Example 213
Adding Iterators by Setting Properties 215
Filtering Iterators 215
Combiners 220
Other Built-in Iterators 228
Thrift Proxy 236
Starting a Proxy 237
Python Example 238
Generating Client Code 240
Language-Specific Clients 241
Integration with Other Tools 242
Apache Hive 242
Apache Pig 248
Apache Kafka 251
Integration with Analytical Tools 255
. MapReduce APL. i i ittt 257
Formats 257
Writing Worker Classes 259
MapReduce Example 259
MapReduce over Underlying RFiles 262
Example of Running a MapReduce Job over RFiles 263
Delivering Rows to Map Workers 264
Ingesters and Combiners as MapReduce Computations 264
MapReduce and Bulk Import 268
Bulk Ingest to Avoid Duplicates 269
Table of Contents | vii

http://www.allitebooks.org

8. TableDesign.oovuiiniiiit it i i e 271

Single-Table Designs 271
Implementing Paging 274
Secondary Indexing 275
Index Partitioned by Term 276
Querying a Term-Partitioned Index 279
Maintaining Consistency Across Tables 283
Index Partitioned by Document 284
Querying a Document-Partitioned Index 287
Indexing Data Types 288
Full-Text Search 295
wikipediaMetadata 295
wikipedialndex 295
wikipedia 296
wikipediaReverseIndex 297
Ingesting WikiSearch Data 297
Querying the WikiSearch Data 299
Designing Row IDs 304
Lexicoders 304
Composite Row IDs 304
Key Size 305
Avoiding Hotspots 305
Designing Row IDs for Consistent Updates 306
Designing Values 307
Storing Files and Large Values 310
Human-Readable Versus Binary Values and Formatters 311
Designing Authorizations 313
Designing Column Visibilities 314
9. Advanced Table Designs.c.overnirinirinneenieeiieriierenneenneennns 317
Time-Ordered Data 317
Graphs 319
Building an Example Graph: Twitter 323
Traversing Graph Tables 325
Traversing the Example Twitter Graph 326
Semantic Triples 329
Semantic Triples Example 329
Spatial Data 334
Open Source Projects 334
Space-Filling Curves 335
Multidimensional Data 337
D4M and Matlab 337
vii | Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

10.

1.

D4M Example
Machine Learning
Storing Feature Vectors
A Machine-Learning Example

Approximating Relational and SQL Database Properties

Schema Constraints
SQL Operations

(11T |5

Tablet Server
Write Path
Read Path
Resource Manager
Write-Ahead Logs
File formats
Caching
Master
FATE
Load Balancer
Garbage Collector
Monitor
Tracer
Client
Locating Keys
Metadata Table
Uses of ZooKeeper
Accumulo and the CAP Theorem

Administration: SetuP. .. .ovvviirii i i i i i i e

Preinstallation
Operating Systems
Kernel Tweaks
Native Libraries
User Accounts
Linux Filesystem
System Services
Software Dependencies
Installation
Tarball Distribution Install
Installing on Clouderas CDH
Installing on Hortonworks’ HDP
Installing on MapR

338
343
343
345
351
351
352

357
357
358
359
360
367
369
373
374
374
375
376
377
377
378
378
379
379
379

383
383
383
384
385
385
385
385
386
387
387
388
394
396

Table of Contents

| ix

12.

Running via Amazon Web Services

Building from Source
Configuration

File Permissions

Server Configuration Files

Client Configuration

Deploying JARs

Setting Up Automatic Failover

Initialization
Running Very Large-Scale Clusters

Networking

Limits

Metadata Table

Tablet Sizing

File Sizing

Using Multiple HDFS Volumes
Security

Column Visibilities and Accumulo Clients

Supporting Software Security

Network Security

Encryption of Data at Rest

Kerberized Hadoop

Application Permissions

Administration: Running..........oviiniiiiiiiii ittt i
Starting Accumulo

Via the start-all.sh Script

Via init.d Scripts
Stopping Accumulo

Via the stop-all.sh Script

Via init.d scripts

Stopping Individual Processes
Starting After a Crash
Monitoring

Monitor Web Service

JMX Metrics

Logging

Tracing
Cluster Changes

Adding New Worker Nodes

Removing Worker Nodes

Adding New Control Nodes

398
399
401
401
402
406
407
409
410
411
411
412
412
413
413
413
416
416
416
417
422
423
424

425
425
425
426
427
427
427
427
428
429
429
433
436
436
438
438
438
439

X

Table of Contents

13.

Removing Control Nodes
Table Operations

Changing Settings

Changing Online Status

Cloning

Import, Export, and Backups
Data Lifecycle

Versioning

Data Age-off

Compactions

Merging Tablets

Garbage Collection
Failure Recovery

Typical Failures

More-Serious Failures

Tips for Restoring a Cluster

Troubleshooting

Performance.............coooiiiiiiiiiiiinnn,
Understanding Read Performance
Understanding Write Performance

BatchWriters
Bulk Loading
Hardware Selection
Storage Devices
Networking
Virtualization

Running in a Public Cloud Environment

Cluster Sizing

Modeling Required Write Performance

Cluster Planning Example
Analyzing Performance
Using Tracing
Using the Monitor
Using Local Logs
Tablet Server Tuning
External Settings
Memory Settings
Write-Ahead Log Settings
Resource Settings
Timeouts
Scaling Vertically

439
440
440
444
444
446
449
449
450
451
453
456
456
456
457
458
461

469
470
471
472
472
473
474
475
475
476
476
477
478
481
481
483
487
488
488
489
491
493
495
496

Table of Contents

| xi

Cluster Tuning 496

Splitting Tables 498
Balancing Tablets 500
Balancing Reads and Writes 501
Data Locality 501
Sharing ZooKeeper 502
A. Shell Commands Quick Reference..............ccovviiiiiiiiiiiiiiiiiia, 505
B. MetadataTable....................ooiiiiiin 5N
(. Data Stored in ZoOKeePer. .. .vvuvreetieii it iie e e eteeeieeeeneenaennns 519
INdeX. ... 523

xii | Table of Contents

Foreword

Apache Accumulo burst onto the database scene in 2011 and has established itself as
the highest-performance open source database in the world. This unprecedented ach-
ievement is a testament to the hard work of the many dedicated developers in the
Accumulo community. Aaron Cordova, Billie Rinaldi, and Michael Wall have been
leaders in the Accumulo community since its inception, and I can think of no one
more qualified to write the definitive book on Accumulo.

The most distinguishing features of the Accumulo database are high performance,
scalability, and flexible security. This book does a thorough job of providing the key
concepts necessary for developers to utilize these features, while also making the
material accessible to a wide audience.

Finally, Aaron, Billie, and Michael have taken great care in creating this text and have
incorporated feedback on its development from the entire community. It has been a
pleasure to watch this book grow and evolve into the impressive volume that it has
become.

—Dr. Jeremy Kepner
MIT Lincoln Laboratory

xXiii

Preface

Goals and Audience

We have designed this book to gather in a single place our community’s collective
knowledge of how best to use Apache Accumulo. This includes some history and
background on the Accumulo project, how to configure and tune an Accumulo
instance, and much about how to write applications using Accumulo. This book
should help you get started with Accumulo, as well as provide a reference for those
already familiar with it.

Those new to distributed applications will find an overview of why data stores such as
Accumulo have become popular in recent years. People looking to write applications
using Accumulo will find detailed information about its API as well as common
design patterns and motivations behind various uses of Accumulo. Administrators of
Accumulo will learn basic through advanced configuration options, including tips for
tuning Accumulo for better performance. Even experienced Accumulo users are
likely to find some information in these pages that they have not encountered before.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Xv

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/accumulobook. Please also see the website we made for this book at
https://accumulobook.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Accumulo: Application Development,
Table Design, and Best Practices by Aaron Cordova, Billie Rinaldi, and Michael Wall
(O'Reilly). Copyright 2015 Aaron Cordova, Billie Rinaldi, Michael Wall,
978-1-449-37418-1”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xvi | Preface

https://github.com/accumulobook
https://accumulobook.com
mailto:permissions@oreilly.com

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv-
‘ »Je ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/accumulo_1e.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xvii

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://bit.ly/accumulo_1e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

We would like to thank our technical reviewers, Josh Elser, Eric Newton, and Christo-
pher Tubbs, without whom this book would have been less accurate and more diffi-
cult to read. We would also like to thank the many people who gave us feedback on
this book, including but not limited to Sterling Foster, Alan Mangan, Jeremy Kepner,
Tessa Cordova, David Barker, Al Krinker, Alex Moundalexis, Clint Green, David
Perry, Christina Wall, and Rebecca Derry.

Thanks also to GroupLens Research at the University of Minnesota for use of the
MovieLens data set for our examples.

Finally, we would like to thank the Apache Accumulo community—all the developers
and users who have contributed to making Accumulo a fantastically stable, fast, and
useful data store.

xviii | Preface

vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1
Architecture and Data Model

Apache Accumulo is a highly scalable, distributed, open source data store modeled
after Google’s Bigtable design. Accumulo is built to store up to trillions of data ele-
ments and keeps them organized so that users can perform fast lookups. Accumulo
supports flexible data schemas and scales horizontally across thousands of machines.
Applications built on Accumulo are capable of serving a large number of users and
can process many requests per second, making Accumulo an ideal choice for
terabyte- to petabyte-scale projects.

Recent Trends

Over the past few decades, several trends have driven the progress of data storage and
processing systems. The first is that more data is being produced, at faster rates than
ever before. The rate of available data is increasing so fast that more data was pro-
duced in the past few years than in all previous years. In recent years a huge amount
of data has been produced by people for human consumption, and this amount is
dwarfed by the amount of data produced by machines. These systems and devices
promise to generate an enormous amount of data in the coming years. Merely storing
this data can be a challenge, let alone organizing and processing it.

The second trend is that the cost of storage has dropped dramatically. Hard drives
now store multiple terabytes for roughly the same price as gigabyte drives stored gig-
abytes of data a decade ago. Although computer memory is also falling in price, mak-
ing it possible for many applications to run with their working data sets entirely in
memory, systems that store most data on disk still have a big cost advantage.

The third trend is that disk throughput has improved more than disk seek times, for
conventional spinning-disk hard drives. Though solid-state drives (SSDs) have
altered this balance somewhat, the advantage of the sequential read performance of

http://bit.ly/bigtable_paper

conventional hard drives versus random read performance is a large factor in the
design of the systems we'll be discussing.

Finally, we've seen a shift from using one processor to multiple processors as increa-
ses in single-processor performance have slowed. This is reflected in a shift not only
to multithreaded programs on a single server but also to programs distributed over
multiple separate servers.

These trends have caused system and application developers to take a hard look at
conventional designs and to consider alternatives. The question many are asking is:
how should we build applications so we can take advantage of all this data, in light of
current hardware trends, and in the most cost-effective way possible?

The Role of Databases

Conventional relational databases have served as the workhorse for persisting appli-
cation data and as the processing engine for data analysis for many years. With the
advent of the World Wide Web, web applications can be exposed to millions of con-
current users, creating the need for highly scalable data storage and retrieval technol-
ogies. Many applications begin with a single relational database as the storage engine
and gradually reduce the number of features enabled on the database in order to get
better performance and serve more requests per second. Eventually a single database
is just not enough, and applications begin to resort to distributing data among several
database instances in order to keep up with demand. All of the overhead for manag-
ing multiple databases and distributing data to them has to be handled by the
application.

Similarly, databases have also played an important role in analytical applications.
Often a relational database will be at the center of a data warehouse in which records
from operational databases are combined and refactored to support queries that
answer analytical questions. The field of Business Intelligence has grown up around
the capabilities of data warehouses. As more and more data becomes available, the
need for these analytical systems to scale becomes greater. Not only are organizations
collecting and keeping more structured data from operational systems, but interest is
also growing in other types of data thats less well-structured—such as application
logs, social media data, and text documents. The ability to combine all of these data
sets in one place in order to ask questions across them is a compelling use case that is
driving innovation in scalable systems.

Accumulo is unlike some other new distributed databases in that it was developed
with more of a focus on building analytical platforms, rather than simply as the scala-
ble persistence layer for data generated via a web application. The flexibility of the
data model and support for building indexes in Accumulo make analyzing data from
a variety of sources easier. Accumulo also introduces fine-grained access control to

2 | Chapter 1: Architecture and Data Model

make it possible for organizations to confidently protect data of varying sensitivity
levels in the same physical cluster.

Analysis and Column Storage

Many analytical databases take advantage of column-oriented storage rather than
row-oriented storage, which is the primary storage for most databases.

Row-oriented storage is useful for operational applications that need to maintain
some state across multiple fields or multiple rows. When updating multiple fields in a
row, perhaps as part of a transaction, it is convenient to store all the fields that need to
be updated simultaneously together on disk, read them off of disk together into mem-
ory in order to change values as part of a transaction, and write them back to disk
together to maintain a consistent view of the data at all times.

In contrast, analytical applications often do not require any updates to data and are
instead aggregating and summarizing the data. In many cases analytical questions are
designed to calculate some statistic for one or a subset of the fields across all of the
rows. It is inconvenient to store data in row-oriented format because it requires all the
tields of one row to be read before any fields of the next row can be accessed. As a
result, analytical storage engines often store data in column-oriented formats. This
way, all of the data for a particular field across all rows can be found together on disk.
This drastically reduces the time required to read data to answer these types of analyt-
ical questions. Because similarity is a property that compression relies on to reduce
storage size, column-oriented storage also improves the opportunities for compres-
sion because the data values within a single field are often similar to one another.

Accumulo makes it possible to group sets of columns together on disk via a feature
called locality groups so analytical applications can gain these advantages. As part of
Accumulo’s additional focus on analytical applications, its support for locality groups
is more powerful than in some other distributed databases because the names of col-
umns don’t have to be declared beforehand, there is no penalty for a large number of
different column names, and the columns can be mapped to locality groups in any
way desired. We discuss locality groups in depth in “Column Families” on page 19.

Some relational databases have adopted a distributed approach to scaling to meet
demand. In all distributed systems there are trade-offs. Distributed applications
introduce new complexities and failure modes that might not have existed in one-
server applications, so many distributed applications also ensure that the design and
APIs offered are simple to make understanding the behavior of the entire system eas-
ier. In many ways new platforms like Accumulo represent stepping back to look at the
problem and building a data store from the ground up to support these larger work-
loads and the concise set of features they require. The goal of Accumulo, being based
on Googles Bigtable, is to provide a set of features that work well even as data sizes

The Role of Databases | 3

grow into the tens of petabytes—even in the presence of the regular failures expected
of cheaper, commodity-class hardware that is commonly used.

Distributed Applications

To effectively use increasing amounts of available data, a few application design pat-
terns have emerged for automatically distributing data and processing over many
separate commodity-class servers connected via a network, and that vastly prefer
sequential disk operations over random disk seeks. Unlike some distributed systems,
applications that implement these patterns do not share memory or storage, an
approach called a shared-nothing architecture. These applications are designed to han-
dle individual machine failures automatically with no interruption in operations.

Perhaps the most popular of these is Apache Hadoop, which can be used to distribute
data over many commodity-class machines and to run distributed processing jobs
over the data in parallel. This allows data to be processed in a fraction of the time it
would take on a single computer. Hadoop uses sequential I/O, opening and reading
files from beginning to end during the course of a distributed processing job, and
writing output to new files in sequential chunks. A graphical representation of vertical
scaling versus horizontal or shared-nothing scaling is shown in Figure 1-1.

Shared-Nothing Architectures

Some distributed applications are built to run on hardware platforms featuring many
processors and large amounts of shared random-access memory (RAM), and often
connect to a storage area network (SAN) via high-speed interconnects such as Fibre
Channel to access shared data storage.

In contrast, shared-nothing architectures do not share RAM and do not connect to
shared storage, but rather consist of many individual servers, each with its own pro-
cessors, RAM, and hard drives. These systems are still connected to one another via a
network such as Gigabit Ethernet. Often the individual servers are of the more inex-
pensive sort and often include cheaper individual components, such as Serial ATA
(SATA) drives rather than Small Computer System Interface (SCSI) drives.

Technologies that increase the resilience of a single server, such as hardware Redun-
dant Array of Independent Disks (RAID) cards, which allow several hard drives
within a server to be grouped together for redundancy, are unnecessary in a shared-
nothing architecture. These can be replaced with an application layer that tolerates
the failure of entire servers, such as the Hadoop Distributed File System (HDEFS).

4 | Chapter 1:Architecture and Data Model

http://hadoop.apache.org

‘Vertical’ Scaling

g ™
Single Machine
ng ! CPU
Shared
CPU RAM CPU RAM Memory
} CPU
Disk
_ AN Y,
ac
'd v ™
Disk | | Disk | | Shared
Disk
- /

‘Horizontal’ Scaling, Shared-Nothing

CPU || RAM CPU || RAM CPU || RAM

Disk Disk Disk

Figure 1-1. Scaling strategies

Accumulo employs this distributed approach by partitioning data across multiple
servers and keeping track of which server has which partition. In some cases these
data partitions are called shards, as in pieces of something that has been shattered. In
Accumulo’s case, data is stored in tables, and tables are partitioned into tablets. Each
server hosts a number of tablets. These servers are called tablet servers (Figure 1-2).

Some other systems support this type of data partitioning and require that a particu-
lar field within the data be specified for the purpose of mapping a particular row to a
partition. For example, a relational database may allow a table to be split into parti-
tions based on the Date field. All of the rows that have a date value in January might
be in one partition, and the rows with a date value in February in another. This struc-
ture is very sensitive to the distribution of values across rows. If many more rows
have date values in February, that partition will be larger than the other partitions.

Distributed Applications | 5

Tablet Servers

1 O =
AN AN \

Tablet 1 || Tablet 2 -

— Table —

Figure 1-2. Tables are partitioned into tablets and distributed

In contrast, Accumulo does not require you to specify how to partition data. Instead,
it automatically finds good points to use to split the data into tablets. As new data
arrives, a particular single tablet may become larger than the others. When it reaches
a configurable threshold, the tablet is split into two tablets. This way, tablets can be
uniform in size without any intervention from administrators.

Partitions also have to be mapped to particular servers. If responsibility for storage is
coupled with responsibility for processing requests for a particular tablet, movement
of read and write processing for a tablet from one server to another also requires that
the data be moved. This data movement can be expensive. So, rather than coupling
responsibility for reads and writes with the storage of a tablet, Accumulo allows tablet
servers to be responsible for tablets that are stored on another server, at least tem-
porarily. Over time, tablet servers will create local copies of the data in background
operations to avoid reads over the network in response to client requests.

The flexibility in assigning tablets to tablet servers allows Accumulo to be very
responsive to handling individual hardware failures without requiring additional
intervention from applications or administrators. This is crucial to running a large-
scale cluster, because hardware failure becomes a common occurrence with hundreds
or thousands of machines. Instances of Accumulo have been known to run on more
than a thousand servers, hosting trillions of key-value pairs.!

Accumulo includes features that can be used to build a wide variety of scalable dis-
tributed applications, including storing structured or semistructured sparse and
dynamic data, building rich text-search capabilities, indexing geospatial or multidi-

1 R. Sen, A. Farris, and P. Guerra, “Benchmarking Apache Accumulo BigData Distributed Table Store Using Its
Continuous Test Suite” in IEEE International Congress on Big Data, 2013, pp. 334-341.

6 | Chapter1: Architecture and Data Model

mensional data, storing and processing large graphs, and maintaining continuously
updated summaries over raw events using server-side programming mechanisms.

Fast Random Access

Fast random access is important to many applications. Random access implies that
even though the particular element of data that is sought is not known until the time
of execution, the access time for any particular data element is roughly the same. This
is in contrast to sequential access, in which the reads start at the beginning of a set of
data and proceed to read more data until reaching the end. It’s also important that
that access time be fast enough to satisfy application requirements. Many web appli-
cations require that the data requested be accessible in less than one second.

There are several techniques for achieving good random-access performance. Two
popular techniques are hashing and sorting. These techniques are used all the time in
computer applications accessing data held in memory, but they conveniently also
apply to data stored on disk, and even across multiple machines.

Unlike Hadoop jobs, where the data is often unorganized and where each job pro-
cesses most or all of the data, Accumulo is designed to store data in an organized fash-
ion so users can quickly find the data they need or incrementally add to or update a
data set. Accumulo’s role in life is to store key-value pairs, keeping the keys sorted at
all times. This enables applications to achieve fast, interactive response times even
when the data sizes range in the petabytes.

Accessing Sorted Versus Unsorted Data

Imagine a scenario in which you need to catch a flight, and your ticket shows your
flight leaving from gate D5. Suppose that the gates are unordered; that is, gate Al is
right next to F3, which is right next to B2. If you are currently standing at gate B2,
you would have no idea how close you are to D5, and no idea in which direction you
should go to get closer to D5. The only strategy guaranteed to locate gate D5 is to
begin visiting all the gates in the hope that you stumble across D5. This strategy is
fine if you have hours and hours to spend searching. If youre in a hurry, chances are
you will miss your flight. Not only is this too slow to be practical, but it is horribly
inefficient. Every person trying to catch a flight will waste at least several hours and a
lot of effort finding the right gate.

If the gates are sorted in a known order, such as alphabetical and numerical order so
that gate Al is physically next to gate A2 and the last A gate is next to the first B gate,
finding a particular gate is much easier. You know that to find gate D5 you must skip
all the A, B, and C gates, and that if you see E gates you've gone too far. Once you've
found one of the D gates, say D8, you know that your gate is only three gates away. If

Fast Random Access | 7

the next gate you see is D7 or D9, you now know whether to keep going or to turn
around to get to D5.

This is the same way that computers use sorted data. A computer uses an algorithm
known as a binary search to find a key-value pair in a list sorted by key (Figure 1-3).
Binary search works by looking at the key in the middle of the list and comparing
that to the key it wants to find. If the key in the middle of the list is greater than the
key sought, the computer will then search the first half of the list. If the key in the
middle of the list is less than the key sought, the computer will search the second half
of the list.

Whichever half is chosen, the computer again picks the key in the middle and com-
pares that to the key it’s looking for, and based on this comparison it decides in which
direction it must continue searching. This continues until the computer finds an
exact match or determines that the key sought is not in the list.

2: greater than ‘c’

d
3: found ‘e’ (.

find ‘e’ > f
1: less than ‘f’ g

h

j

k

Figure 1-3. An example of binary search

This dramatically reduces the number of keys that must be examined and makes
searching for a particular key faster. How much faster? If it takes 10 milliseconds to
fetch and examine one key, finding a particular key in an unsorted list of a billion

8 | Chapter1: Architecture and Data Model

keys will take an average of 57 days, because the right key could be anywhere—best
case it’s the first one you look at; worst case it’s the last.

If the list is sorted, it only takes an average of 300 milliseconds. If the sorted list has
not a billion key-value pairs, but a trillion, it takes 400 milliseconds—only 30 percent
longer for a 1000x increase in data!

Algorithms that have this kind of performance are said to exhibit logarithmic access
time with respect to the number of data elements, as opposed to linear access time,
because the access time is a function not of the number of data elements but of the
logarithm of the number of elements.

Hashing Versus Sorting

Hashing is a popular technique for organizing data so that a given data element can
be accessed quickly. If we are storing key-value pairs, where each key is associated
with a single value, a hash function applied to the key can be used to determine where
a key-value pair will be stored. Good hash functions map inputs to a range of output
values uniformly. When storing key-value pairs, the key is passed as the input to the
hash function (called hashing the key) and the output hash is used as the address of
the key-value pair in the storage medium. For example, we might decide to store the
key-value pair favoriteColor>red by first hashing the key, favoriteColor, which pro-
duces the value 1004, and so we store that key-value pair in the 1004th slot in
memory.

Lookups designed to retrieve the value of a known key consist of hashing the key,
noting the hash output value and jumping to the place referenced by that hash, and
retrieving the value of the key-value pair. The hash can refer to a location in memory,
on disk, or on a particular machine in a cluster. If we need to look up the value for the
key favoriteColor, we simply hash it to obtain the address 1004 and go directly to the
1004th memory slot to retrieve the key-value pair (Figure 1-4).

In distributed systems hashing is sometimes used to distribute key-value pairs across
machines in a cluster. Hashing has the advantage of not requiring the system to do
anything special to keep the data uniformly spread out across machines. Lookups can
consist of simply hashing the key to find the server on which a key-value pair is
stored, and then hashing again to find the spot within the server that contains the
key-value pair.

Because these lookups consist of just one step, hashing enables very fast random
access to data. However, because the hash function is designed to spread keys out uni-
formly across the address space, any similarity among keys is lost. For, example if we
wanted to be able to access the values for not just favoriteColor but favoritelceCream
and favoriteMovie, we would have to do three separate lookups because these key-
value pairs would end up being assigned to different places by the hash function.

Accumulo does not rely on hashing for data distribution; it uses sorting instead.

Fast Random Access | 9

Like hashing, sorting data can enable fast random access, but unlike hashing, sorting
can preserve some of the relationships among keys. This way, we can quickly find one
key that we want by doing a binary search, but also any closely related keys by reading
a few additional keys that appear sequentially after the first key. Because disks can
read sequential data much faster than accessing data randomly, the difference
between finding and returning one key versus finding one key and scanning 1,000 of
the keys that follow sequentially is minimal.

This property of sorted data allows application designers to exploit any relationships,
sometimes called locality, in their data by creating keys that group related information
together when sorted (Figure 1-5).

Maintaining asorted set of key-value pairs, especially when distributed across multi-
ple machines, is more work than using hashing. Specifically, you have to maintain an
additional mapping of which machine has which portion of the sorted set. In Accu-
mulo, this mapping is called the metadata table, and Accumulo has a lot of functional-
ity built in to handle the additional work of maintaining this information. We discuss
the metadata table in depth in “Metadata Table” on page 379.

Address Data

key-value: favoriteColor -> red 0

hash(favoriteColor) = 1004

~_

favoriteColor

1004 —~ red

1005

Figure 1-4. Hashing a key to an address

10 | Chapter 1: Architecture and Data Model

vww allitebooks.cond

http://www.allitebooks.org

age 55

binary search

/\ favoriteColor red

faVO r|teCO|Or favoritelceCream mint
favoriteMovie Empire Strikes Back
sequential
SCaﬂ height 6 1’

Figure 1-5. Accessing related keys in sorted data

Versions

The first public open source version of Accumulo is 1.3.

Version 1.4 has been used in production for years on very large clusters.

As of this writing, the latest stable version of Accumulo is 1.6. We will focus this book
on version 1.6, pointing out differences in other versions where appropriate. Version

1.6 includes the following new features and improvements over previous versions:

o Multivolume support (running over multiple HDFS instances)
o Table namespaces

 Conditional mutations

o Partial encryption support

o Pluggable compaction strategies

o Lexicoders (tools for sorting tuples properly)

+ Locality groups in memory

o Service IP addresses

o Support for ViewFS

o Maven plug-in

o Default key size constraint

Versions |

You can find the complete Release Notes for the 1.6 release at the Apache Accumulo
site.

History

Accumulo is one of several implementations based on Google’s Bigtable. The others
include Apache HBase, Hypertable, and Apache Cassandra.

Accumulo has been an open source project since 2011 and has since seen several
releases. A brief history of the project is as follows:

2003
Google publishes a paper describing the Google File System (GES), a distributed
filesystem for storing very large files across many commodity-class servers.

2004
Google publishes a paper describing a simplified distributed programming model
and associated fault-tolerant execution framework called MapReduce.

2006
Google publishes a paper entitled “Bigtable: A Distributed Storage System for
Structured Data”. That same year a team from Yahoo! releases an open source
version called Apache Hadoop.

Fall 2007
An open source implementation of Google’s Bigtable called HBase is started by a
team at the company Powerset.

January 2008
Hadoop becomes a top-level Apache project. HBase becomes a subproject.

At the same time, a team of computer scientists and mathematicians at the US
National Security Agency (NSA) are evaluating the use of various big data tech-
nologies, including Apache Hadoop and HBase, in an effort to help solve the
issues involved with storing and processing large amounts of data of different
sensitivity levels. Authors Billie Rinaldi and Aaron Cordova are part of this team.

July 2008
Powerset is acquired by Microsoft.

After reviewing existing solutions and comparing the stated objectives of existing
open source projects to the agency’s goals, the NSA team begins a new imple-
mentation of Google’s Bigtable. The team focuses on performance, resilience, and
access control of individual data elements. The intent is to follow the design as
described in the paper closely in order to build on as much of the effort and expe-
rience of Google’s engineers as possible.

12 | Chapter 1: Architecture and Data Model

http://bit.ly/accumulo_1_6_0
http://bit.ly/gfs_paper
http://bit.ly/dean-ghemawat
http://bit.ly/bigtable_paper
http://bit.ly/bigtable_paper

The team extends the Bigtable design with additional features that includes a
method for labeling each key-value pair with its own access information, called
column visibilities, and a mechanism for performing additional server-side func-
tionality, called iterators.

May 2009
Version 1.0 of Accumulo is released, but it is not yet publicly available.

May 2010
HBase becomes a top-level Apache project.

September 2011
Accumulo becomes a public open source incubator project hosted by the Apache
Software Foundation.

March 2012
Accumulo graduates to top-level project status. First publicly available release is
1.3.5.

April 2012
Version 1.4 is released.

May 2013
Version 1.5 is released and includes a Thrift proxy, more control over compac-
tions, and table import and export

May 2014
Version 1.6 is released and extends the API to include conditional mutations and
table namespaces.

Data Model

At the most basic level, Accumulo stores key-value pairs on disk (Figure 1-6), keeping
the keys sorted at all times. This allows a user to look up the value of a particular key
or range of keys very quickly. Values are stored as byte arrays, and Accumulo doesn’t
restrict the type or size of the values stored. The default constraint on the maximum
size of the key is 1 MB.

Key Value

Figure 1-6. A simple key-value pair

DataModel | 13

http://bit.ly/accumulo_incubation
http://bit.ly/accumulo_project

Rather than simple keys as shown in Figure 1-6, Accumulo keys are made up of sev-
eral components. Inside the key there are three main components: a row ID, a col-
umn, and a timestamp (Figure 1-7).

Key
Value

row ID Column Timestamp

Figure 1-7. Main components of the key

Rows and Columns

The row ID and column components allow developers to model their data similarly
to how one might store data in a relational database, or perhaps a spreadsheet. One
major difference is that relational databases often have autogenerated row IDs and
rely on secondary indexes for all data access, whereas the row IDs in Accumulo can
contain data that is relevant to an application.

When sorting keys, Accumulo first sorts the data by row ID, then sorts keys with the
same row ID by column, and finally sorts keys with the same row ID and column by
timestamp. Row IDs and columns are sorted in ascending, lexicographical order—
which means, roughly, alphabetical order—byte-by-byte.

The row ID is used to group several key-value pairs into a logical row. All the key-
value pairs that have the same row ID are considered to be a part of the same row.
Row IDs are simply byte arrays. A logical row in Accumulo can consist of more data
than can fit in memory. Values for multiple columns within a row can be changed
atomically.

The ability to modify rows atomically is an important feature for application design-
ers to keep in mind when modeling their data. This means that Accumulo will com-
mit the changes to a particular row all at once, or not at all in the case of a failure.
This allows applications always to have a consistent view of the data in a row, and not
to have to handle cases in which a change is partially applied. (We discuss atomicity
more in “Transactions” on page 47.)

Columns allow a row to contain multiple elements, as in a relational database table.
Each column is mapped to a value. But unlike in a relational database, you don’t have
to declare columns before storing data in them, and not every row has to have the
same columns present. Further, the type of data stored under a particular column
does not have to be the same across rows. Finally, columns do not have a specified
maximum length in which values must fit. (Column names, being part of the key, are

14 | Chapter 1: Architecture and Data Model

by default limited, because the total key is constrained to be less than 1 MB. However,
the values under these columns are not constrained in size by default.)

Accumulo tables can cope with missing or additional columns and changes in the
underlying schema of the data because Accumulo does not make any assumptions
about the schema. If rows imported every day for a month contain 10 columns and
suddenly they now contain 11 columns, Accumulo will not reject a request to store
the new rows; it will simply store them. Applications designed to read from the 10
known columns can continue to do so even with the new rows and simply ignore the
additional column.

This departure from the relational model represents a trade-off. On the one hand, the
flexibility makes storing data much easier. It is easier to store data that does not con-
form to a well-known schema, and it is also easier to store data whose structure
changes over time.

However, whereas applications built on a relational database can rely on the database
to ensure that values conform to specified types and lengths, applications built on
Accumulo cannot assume that value types and lengths conform to any constraints,
unless Accumulo is configured to apply specific constraints to the data. Application
designers can decide whether to implement constraints to be applied by Accumulo at
insert-time or whether to handle varying value types and lengths at read-time in the
application.

For example, we may have a table that we use to store Wikipedia articles. The table
contains some structured data, or metadata, about each article, along with the actual
article text. Individual metadata elements may not be the same from one article to the
next.

Notice that not all the rows in Figure 1-8 have data stored in every column, a prop-
erty known as sparseness. In other systems, missing values must be indicated by stor-
ing a NULL value, which takes up space on disk. In Accumulo, the missing values
simply do not appear in the list of key-value pairs. On disk, this data is laid out as a
long series of sorted key-value pairs.

DataModel | 15

rowid title

Apache Accumulo Apache Accumulo

Apache Hadoop Apache Hadoop

Apache_Thrift

Apache Thrift

BigTable BigTable

pageid

571876229

5919308

10438451

5919973

comment

/* See also */ Added
Column-oriented
DBMS

text

Apache Accumulo is a sorted, distributed
key/value store based on Google's
BigTable. It is a system built on top of
Apache Hadoop, Apache ZooKeeper, and
Apache Thrift. ...

Apache Hadoop is an open source
software framework for storage and large-
scale processing of data-sets on clusters

of commodity hardware. Hadoop is an
Apache top-level project being built ...

Thrift is an interface definition language
and binary communication protocol that is
used to define and create services for
numerous languages ...

BigTable is a compressed, high
performance, and proprietary data
storage system built on Google File

System, Chubby Lock Service, SSTable
(log-structured storage like LevelDB) ...

Figure 1-8. A table consisting of rows and columns

Note that there is no key-value pair in Figure 1-9 for the comment field for Apache
Thrift, for example. Because Accumulo stores data this way, it can handle sparse data
sets very efficiently. Writing a key-value pair that contains a column that doesn’t
appear in any other row is no different from Accumulo’s perspective than storing any

other key-value pair.

If you are coming from a relational database background, it might
be confusing to think of a row in Accumulo as a set of key-value
pairs. Looking at data retrieved in the Accumulo shell, which we
touch on first in “Demo of the Shell” on page 60, a row will actually
be many lines on the screen. Figure 1-8 may be a more familiar

representation of the data, and you can see how it might translate
into Accumulo in Figure 1-9. In this example, a row, defined as a
set of key-value pairs, is analogous to a record in a relational data-
base. Everything with the same row ID contains information about

a given record.

6 |

Chapter 1: Architecture and Data Model

rowid column value
Apache_Accumulo comment /* See also */ Added Column-oriented DBMS
Apache_Accumulo pageid 571876229
Apache_Accumulo text Apache Accumulo is asigpeefi‘ distributed key/value
Apache_Accumulo title Apache Accumulo
Apache_Hadoop pageid 5919308
Apache_Hadoop text e amework for storage o
Apache_Hadoop title Apache Hadoop
Apache_Thrift pageid 10438451
Apache_Thrift text Thrift is an interface definition language and binary ...
Apache_Thrift title Apache Thrift

Figure 1-9. Key-value pairs representing data for various rows and columns

Data Modification and Timestamps

Accumulo allows applications to update and delete existing information. These oper-
ations are essential to developing operational applications. Rather than modifying the
data already written to disk, however, Accumulo handles modifications of this type
via versioning.

The timestamp element of the key adds a new dimension to the well-known two-
dimensional row-column model, and this allows data under a particular row-column
pair to have more than one version (Figure 1-10). By default, Accumulo keeps only
the newest version of a row-column pair, but it can be configured to store a specific
number of versions, versions newer than a certain date, or all versions ever written.

rowid title pageid comment text

Accumulo is a sorted, distributed
kpsmfualie store hased on Gonale's

/" See also */ Added B Apache Accumulo is a sorted,
Apache_Accumulo Apache Accumulo 571876229 Column-oriented distributed key/value store based on

DBMSany town 1 Google's BigTable. It is a system
built on top of Apache Hadoop,
Apache ZooKeeper, and ...

Figure 1-10. A table consisting of rows and columns with multiple versions

DataModel | 17

The set of key-value pairs on disk appears as in Figure 1-11.

rowid column timestamp value
/* See also */ Added Column-
Apache_Accumulo comment 20111001 ee ?ingnted DSMS" umn
Apache_Accumulo pageid 20111001 571876229
Apache Accumulo text 20120301 R s Ko aoreed,
Apache_Accumulo text 20111001 B
Apache_Accumulo title 20111001 Apache Accumulo
Apache_Hadoop pageid 20060314 5919308
Apache Hadoop ~ text 20060314 Apacne Hadoop s an open source
Apache_Hadoop title 20060314 Apache Hadoop
Apache_Thrift pageid 20070213 10438451
Apache_Thrift title 20070213 Apache Thrift

Figure 1-11. Two key-value pairs that represent two versions of data for one row-column
pair

Timestamps are stored as 64-bit integers using the Java long data type. They are sor-
ted in descending order, unlike rows and columns, so that the newest versions of a
row-column pair appear first when scanning down a table. In this way, Accumulo
handles updates by simply storing new versions of key-value pairs. If only the newest
version is retrieved, it appears as if the value has changed.

Timestamps that are assigned to key-value pairs by the tablet server
use the number of milliseconds since midnight, January 1, 1970,
also known as the Unix epoch.

Similarly, deletes are implemented using a special marker inserted in front of any
existing versions. The appearance of a key-value pair with a delete marker is inter-
preted by Accumulo to mean “ignore all versions of this row-column pair older than
this timestamp””

For example, if we wanted to remove the comment for the row identified by
Apache_Accumulo, the Accumulo client library would insert a delete marker with the
Apache_Accumulo row ID and the comment column, and that delete marker would be

18 | Chapter 1:Architecture and Data Model

assigned a timestamp representing the current time by the receiving tablet server.
Subsequent reads of the Apache_Accumulo row would encounter the delete marker
and know to skip any key-value pairs for that row and column appearing after the
delete marker.

To add a comment field back into that row we would simply write a new key-value
pair, which would get a newer timestamp than the delete marker, and so it would be
returned by subsequent scans.

It is possible to specify the timestamp when inserting a new key

into Accumulo, but this should only be done for advanced applica-

“ tions, because timestamps are used in determining the ordering of

\ insertions and deletions. In the typical case in which the timestamp
is not specified by the client, the tablet server that receives the key-
value pair will use the time at which the data arrived as the
timestamp.

Applications that use time information typically store that time
information as the value of a separate column rather than storing it
in the timestamp portion of the key.

Advanced Data Model Components

Accumulos data model includes additional components that help applications ach-
ieve better performance and data protection. These components are extensions to the
basic concept of a column.

Columns are split into three components: a column family, a column qualifier, and a
column visibility.

Most applications will start by simply assigning the names of fields to the column
qualifier. Column families and column visibilities do not have to be populated. When
developers have an idea for how data will be accessed, and for the sensitivity levels of
various columns, these additional components can be used to help optimize and pro-
tect information.

Column Families

Often, applications find that they will access some columns together, and not other
columns. Other times they need to access all of the columns within rows. This is
especially prevalent in analytical applications.

When scanning for only a subset of the columns, it can be useful to change the way
groups of columns are stored on disk so that frequently grouped columns are stored
together, and so that columns containing large amounts of data that are not always
scanned can be isolated.

Advanced Data Model Components | 19

For example, we might have some columns storing relatively small, structured data,
and other columns storing larger values such as text or perhaps media such as
imagery, audio, or video. In the Wikipedia table, the text column stores long text val-
ues. Sometimes our application may need to scan just the structured details about a
user or multiple users and other times will need to scan the user details and the larger
columns containing media content.

To cause related columns to be stored in consecutive key-value pairs in Accumulo,
application designers can place these columns in the same column family. To apply
this to our earlier example, we can choose to put the fext and comment columns
under a column family called content and the other columns under the metadata col-
umn family. If we retrieve the metadata column family, the tablet server can do less
work to read just that one column family than if the individual metadata columns
were scattered throughout each row, interleaved with content columns.

Unlike Bigtable and HBase, Accumulo column families need not be declared before
being used, and Accumulo tables can have a very high number of column families if
necessary.

Although grouping columns into families can make retrieving a single column family
within one row more efficient, it can still be inefficient to read one column family
across multiple rows, because we'll still have to scan over other column families
before accessing the next row. For example, it would be inefficient if we always had to
read the Wikipedia content off of disk when we are only interested in the user details.

To help avoid reading data unnecessarily from disk, application designers can choose
to assign column families to a locality group. Locality groups are stored in separate
contiguous chunks of data on disk so that an application that is only scanning over
column families in one locality group doesn’t need to read data from any other local-
ity groups. This gives Accumulo more of a columnar-style storage that is amenable to
many analytical access patterns.

Applying locality groups to our earlier example, we can choose to put the content col-
umn family in one locality group and the metadata column family in another locality
group. Before we assigned column families to locality groups, a scan configured to
read only the metadata columns would still end up reading the content columns off
of disk (Figure 1-12), and tablet servers would filter them out, returning only the data
requested.

20 | Chapter 1: Architecture and Data Model

vww allitebooks.cond

http://www.allitebooks.org

rowid column family column qualifier timestamp value
Apache_Accumulo content comment 20111001 /ool ¥ Added Column-eriented
Apache_Accumulo content text 20120301 Aecumiiois asoried, dstributed keylvalue
Apache_Accumulo metadata pageid 20111001 571876229
Apache_Accumulo metadata title 20111001 Apache Accumulo
Apache_Hadoop content text 20060314 Ao e e oo
Apache_Hadoop metadata pageid 20060314 5919308
Apache_Hadoop metadata title 20060314 Apache Hadoop
Apache_Thrift content text 20070213 Tt anintertage geinition language and
Apache_Thrift metadata pageid 20070213 10438451
Apache_Thrift metadata title 20070213 Apache Thrift

Figure 1-12. Reading over one column family still requires filtering out other column
families

Once we assign the content column family to its own locality group, Accumulo will
begin to store this textual content in a separate section on disk (Figure 1-13). Now
when we read just the columns containing Wikipedia metadata, we don’t have to read
all of the text for each article off of disk.

Accumulo allows the assignment of column families to locality groups to change over
time. New data written to Accumulo will always be written to disk according to the
current assignment of column families to locality groups. Any data written prior to
the change in assignment will need to be reprocessed before the benefit of the new
locality groups is realized. Accumulo will reprocess data on disk automatically via a
process called compaction, but compactions can also be forced as necessary. Using
compactions to get previously written data to reflect changes in locality group assign-
ments is described in “Locality Groups” on page 138.

Advanced Data Model Components | 21

File on disk
. . . column column .
Logloal Table View rowid family qualifier TTestamp value
o
g Apache_Accumulo metadata pageid 20111001 571876229
N column column =
rowid . . timestamp value
family qualifier (O]
‘E:. Apache_Accumulo metadata title 20111001 Apache Accumulo
Apache_Accumulo content comment 20111001 "% **s =
8 Apache Hadoop metadata pageid 20060314 5919308
Apache_Accumulo content text 20120301 -
-
=1 Apache Hadoop metadata title 20060314 Apache Hadoop
Apache Accumulo metadata pageid 20111001 571876229 &
@
[m] Apache Thrift ~ metadata pageid 20070213 10438451
Apache_Accumulo metadata tite 20111001 Apache
P - Accurmulo
Apache_Thrift metadata title 20070213 Apache Thrift
Apache_Hadoop content text 20060314 eeiEmnmmgees
Apache_Hadoop metadata pageid 20060314 5919308
Apache_Hadoop metadata title 20060314 Apache Hadoop column column
Q rowid . .. timestamp value
=] family qualifier
Apache_Thrift content text 20070213 Q
(O] Apache_Accumulo content comment 20111001
=
Apache_Thrift metadata pageid 20070213 10438451 =
o Apache_Accumulo content text 20120301
Q
Apache_Thrift metadata title 20070213 Apache Thrift =]
| Apache_Accumulo content text 20060314
-
c
.g Apache_Hadoop content text 20070213
Q
O

Figure 1-13. Column families in different locality groups are stored together on disk

Column Visibility

Accumulos focus on supporting analysis of data from several different sources has
resulted in an additional component to the Bigtable data model called column visibil-
ity. The column visibility component is designed to logically isolate certain types of
data based on sensitivity, by associating each value with a security label expression.
This enables data to be protected from unauthorized access and for data sets of differ-
ing sensitivity to be stored in the same physical tables.

This feature is designed to reduce the amount of data movement that needs to occur
when an organization decides that an application or an analytical process is allowed
to look at two data sets. Imagine the case in which two data sets had to be stored in
two physically separate systems for security reasons, called system A and system B. If
one day an organization decides that it needs to join these data sets to answer an ana-
Iytical question, the data from one system would have to be physically moved into the
other system, say A into B, if there happens to be enough room. And the users of sys-
tem B would have to be denied access to it while the data from system A resides there,
if not all of them are also authorized to read data from system A. Or perhaps a third
system will need to be stood up to handle the combination of this data, requiring that

22 | Chapter 1: Architecture and Data Model

new hardware be acquired, software installed, and the data from both system A and
system B to be copied to the new system. That process could take months.

If the data is already all stored together physically, and protected with column visibili-
ties, then granting access of a single analytical application to both data sets is trivial.
While the analytical process is running, users authorized to read only one type of data
or another can continue to submit queries against the system without ever seeing
anything they aren’t authorized to see.

In our example, we might decide that the data residing under the comment and pageid
columns does not need to be exposed to applications that allow the public to read the
article text and titles (Figure 1-14), and so we can decide to protect the data in these
columns using the column visibility component of the key.

metadata content
rowid
title pageid comment text
Apache Accumulo is a sorted, distributed
/* See also */ Added key/value store based on Google's
Apache_Accumulo Apache Accumulo 571876229 Column-oriented BigTable. It is a system built on top of
DBMS Apache Hadoop, Apache ZooKeeper, and
Apache Thrift. ...

Apache Hadoop is an open source
software framework for storage and large-
Apache_Hadoop Apache Hadoop 5919308 scale processing of data-sets on clusters
of commodity hardware. Hadoop is an
Apache top-level project being built ...

Thrift is an interface definition language
10438451 and binary communication protocol that is
used to define and create services for
numerous languages ...

Apache_Thrift Apache Thrift

BigTable is a compressed, high
performance, and proprietary data
BigTable BigTable 5919973 storage system built on Google File
System, Chubby Lock Service, SSTable
(log-structured storage like LevelDB) ...

Figure 1-14. Two columns are deemed viewable by internal applications and users

The way we protect these values is by populating the column visibility components
with security label expressions, sometimes called simply security labels. Security label
expressions consist of one or more tokens combined by logical operators &, repre-
senting logical AND, and [, representing logical OR. Subexpressions can be grouped
using parentheses.

In our simple example here, we are using just single-token expressions in our column
visibility. On disk these key-value pairs now look like Figure 1-15.

Advanced Data Model Components | 23

rowid colun:nn colu.n.m °.°.'“!‘?'" timestamp value
family qualifier visibility
Apache_Accumulo content text public 20120301 Accumulo s & sorted, clstibuted key/value store
Apache_Accumulo metadata comment internal 20111001 /* See also */ Added Column-oriented DBMS
Apache_Accumulo metadata pageid internal 20111001 571876229
Apache_Accumulo metadata title public 20111001 Apache Accumulo
Apache_Hadoop content text public 20060314 B
Apache_Hadoop metadata pageid internal 20060314 5919308
Apache_Hadoop metadata title public 20060314 Apache Hadoop
Apache_Thrift content text public 20070213 T et dofon enaunge and by
Apache_Thrift metadata pageid internal 20070213 10438451
Apache_Thrift metadata title public 20070213 Apache Thrift

Figure 1-15. Individual key-value pairs are labeled with column visibilities

Column visibilities are an extremely fine-grained form of access control. Sometimes
the term cell-level is used when discussing Accumulo’s ability to allow every value to
have its own security label, which is stored in the column visibility element of the key.
The term cell-level is used to contrast the granularity of Accumulo’s security model
with row-level or column-level security in which one can control access to all the data
in a row or all the data in a column. It is not often the case that any one raw data set
requires that each column of each row to have a different column visibility. Usually
some combination of row-level or column-level access control will suffice, which col-
umn visibilities can support just as well.

But because a common application on Accumulo involves building secondary
indexes, perhaps across several types of data of differing sensitivity levels, each key-
value pair in an index will end up needing a specific column visibility based on the
row and column from which it originated. Applications that use these types of
indexes are very powerful because they allow different views of the data to be com-
posed on the fly, according to the access level of the user performing the query.

For example, a user with only the public access token can scan this table and will only
see the data with the public token in the column visibility portion of the key
(Figure 1-16).

24 | Chapter 1: Architecture and Data Model

rowid ﬁgﬁ:‘yﬂ :::irf'i]:r zg:::::; timestamp value
Apache_Accumulo content text public 20120301 Accurmlo is a sorted, distributed key/value stors .
Apache_Accumulo metadata title public 20111001 Apache Accumulo
Apache_Hadoop content text public 20060314 [l ol orioninainta
Apache Hadoop metadata title public 20060314 Apache Hadoop
Apache_Thrift content text public 20070213 Tt e nteriaes definfion lenguags and ey
Apache_Thrift metadata title public 20070213 Apache Thrift

Figure 1-16. View of only public data in the table

A user with both the public and internal access tokens will see all of the data in the
table when doing a scan (Figure 1-17).

rowid i:lli::‘yn ::I’;Ti‘:i‘:r ;g:::::; timestamp value
Apache_Accumulo content text public 20120301 Aceumulo s & serted, distibuted key/value store -
Apache_Accumulo metadata comment internal 20111001 I See also / Added Column-oriented DBMS
Apache_Accumulo metadata pageid internal 20111001 571876229
Apache_Accumulo metadata title public 20111001 Apache Accumulo
Apache_Hadoop content text public 20060314 A et o e Sovare
Apache_Hadoop metadata pageid internal 20060314 5919308
Apache_Hadoop metadata title public 20060314 Apache Hadoop
Apache_Thrift content text public 20070213 T an slertoce definiton navage and by
Apache_Thrift metadata pageid internal 20070213 10438451
Apache_Thrift metadata title public 20070213 Apache Thrift

Figure 1-17. View of all of the data in the table

Advanced Data Model Components | 25

A user or application with only the internal access token will only see the data with a
column visibility containing the internal token (Figure 1-18).

rowid colun:nn culu.n.m ".°.'“!‘?" timestamp value
family qualifier visibility
Apache_Accumulo metadata comment internal 20111001 I" See also */ Added Column-orented DBMS
Apache_Accumulo metadata pageid internal 20111001 571876229
Apache_Hadoop metadata pageid internal 20060314 5919308
Apache_Thrift metadata pageid internal 20070213 10438451

Figure 1-18. View of only internal data in the table

Because column visibilities are used to filter data after specific rows
and columns have been selected for a scan, table designers should
“ be careful not to design an application that relies too heavily on fil-
\ tering, because this will impact read performance.

The assignment of access tokens to applications, individual users, or groups of users
is typically handled outside of Accumulo by a central user-management system,
although access tokens can be restricted in conjunction with Accumulo or using only
Accumulo if desired.

We discuss using column visibilities in designing applications in depth in “Column
Visibilities” on page 184.

Full Data Model

Now that we've discussed all of the components of the Accumulo data model we can
show the full model containing all components of the key, with the components of the
column broken out (Figure 1-19).

26 | Chapter 1: Architecture and Data Model

Key

Column _ Value
row ID Timestamp

Family Qualifier | Visibility

Figure 1-19. Accumulo key structure

Not all of the components must be used. At the very least, you can choose to use only
the row ID and value portions of the key-value pair. In this case Accumulo will oper-
ate like a simple key-value store. Many applications start with rows and columns, and
apply the use of additional components as designs are optimized.

Developers should consider carefully the components of the key that their application
requires when designing tables.

Tables

When stored in Accumulo, key-value pairs are grouped into tables. You can apply
some settings at the table level to control the behavior and management of the data.
The key-value pairs within tables are partitioned into tablets and distributed automat-
ically across multiple machines in a cluster.

Each table begins life as a single tablet, spanning all possible keys. Once data is writ-
ten to a table and it reaches a certain size threshold, the tablet server hosting it finds a
good point in the middle of the tablet and splits it into two tablets.

When a tablet server does this it always splits a tablet on a row boundary, guarantee-
ing that the data for each row is fully contained within one tablet and therefore
resides on exactly one server. This is important to allowing consistent updates to be
applied atomically to the data in an individual row.

For example, as our Wikipedia table grows, it will eventually be split along a row
boundary into two tablets (Figure 1-20).

Tables | 27

Two new tablets

Spli rowid column - column value
plit on row boundary family qualfier P
column column Apache_Accumulo content comment 20111001
rowid . . timestamp value
family qualifier
Apache_Accumulo content text 20120301
Apache_Acoumulo content comment 20111001 e "
Apache_Accumulo content text 20120301 e ..~"' Apache_Accumulo metadata pageid 20111001 571876229
Apache Accumulo metadata pageid 20111001 571876229 Apache Accumulo metadata title 20111001 Apache
Accumulo
Apache
Apache_Accumulo metadata title 20111001 Accurnulo
Apache_Hadoop content text 20060314 R
Apache_Hadoop content text 20080314 =mmanmmnmee
Apache_Hadoop metadata pageid 20060314 5819308
Apache_Hadoop metadata pageid 20060314 5919308
Apache_Hadoop metadata title 20060314 Apache Hadoop
ca
Apache_Hadoop metadata title 20060314 Apache Hadoop
Apache_Thrift content text 20070213
Apache_Thrift content text 20070213
Apache_Thrift metadata pageid 20070213 10438451
i Apache_Thrift metadata pageid 20070213 10438451
Apache_Thrift metadata title 20070213 Apache Thrift
Apache_Thrift metadata title 20070213 Apache Thrift

Figure 1-20. Splitting a tablet into tablets

Accumulo takes care of distributing responsibility for tablets evenly across tablet
servers. A single tablet server can host several hundred tablets or more
simultaneously.

We discuss the splitting process more in depth in “Splits” on page 365.

Introduction to the Client API

Accumulo provides application developers with a client library that is used to locate
and communicate with tablet servers for writing data, and reading one or more key-
value pairs.

Rather than providing a query language such as SQL, Accumulo provides developers
with a simple API and a high degree of control over data layout, so that by designing
tables carefully, many concurrent user requests can be satisfied very quickly with a
minimal amount of work done at read time. Accumulos read API is simple and
straightforward.

As you would expect from a key-value store, clients can provide a key and look up the
associated value, if it exists. Instead of returning one value, however, clients can opt to
scan a range of key-value pairs beginning at a particular key. The performance differ-

28 | Chapter 1: Architecture and Data Model

ence between looking up and retrieving a single value versus scanning, say, a few hun-
dred kilobytes of key-value pairs is fairly small, because the cost of reading that
amount of data sequentially is dominated by the disk seek time.

This pattern allows clients to design rows such that the data elements required for a
given request can be sorted near one another within the same table. Because rows
may not all have the same columns, applications can be designed to take advantage of
whatever data is available, potentially discovering new information in new columns
along the way.

The ability to discover new information via scanning is valuable for applications that
want to combine information about similar subjects from different sources that may
not contain the same information about each subject.

Furthermore, it is up to the application to interpret the columns and values retrieved.
Some applications store simple strings or numbers, while others store serialized pro-
grammatic objects. Some applications store map tile images in values and assemble
the tiles retrieved into a user-facing web interface, the way Google Maps uses
Bigtable.

Accumulo is written in Java and provides a Java client library. Clients in other lan-
guages can communicate with Accumulo via the provided Thrift proxy. All clients use
three basic classes to communicate with Accumulo:

BatchWriter

All new inserts, updates, and deletes are packaged up into Mutation objects and
given to a BatchWriter. A Mutation object contains a set of changes to be
applied to a single row. The batch writer knows how the table is split into tablets
and which servers the tablets are assigned to. Using this information, the batch
writer efficiently groups Mutation objects into batches to increase write through-
put. Batch writers send batches of Mutation objects to various tablet servers. The
batch writer is multithreaded, and the trade-off between latency and throughput
can be tuned. See Figure 1-21.

Introduction to the Client APl | 29

Mutations Applied

N column column
rowid " e timestamp value
family qualifier

F* See alss " Added

Apache_Accumulo content comment 20111001 ., 0 W0 bams

Batch of Mutations

Apache Ascumalo s 8

Apache_Accumulo content text 20140215 sored ciskiuiad knyrsion
4
: | Apache Accumulo metadata pageid 20111001 571876229
column column ;
rowid , e timestamp value 2 Apache
family qualifier h Apache_Accumulo metadata title 20111001 Accurnulo
Apache_Accumulo content text ~ Apache_Hadoop content text 20060314
Apache Hadoop metadata pageid 20060314 5919308
rowid column - column o e value Apache_Hadoop ~ metadata tile 20060314 Apache Hadoop
family qualifier
Theift is an interface
Apache_Thrift content text 20070213 definition languags and
Apache_Zookeeper content text - binary
Apache_Thrift metadata pageid 20070213 10438451
Apache_Zockeeper metadata pageid - 26039352
Apache_Thrift metadata title 20070213 Apache Thrift
Apache_Zook tadata tith Apache
pache_Zookeeper metadal itle - Zookeeper 3
4| Apache_Zookeeper content text 20140215

Apache_Zookeeper metadata pageid 20140215 26039352

Apache

Apache Zookeeper metadata title 20140215 Zookeeper

Figure 1-21. Writing mutations

Scanner

Key-value pairs are read out of a table using a Scanner object. A scanner can start
at the beginning of a table or at a particular key, and can stop at the end of the
table or a given key. After seeking to the initial key, scanners proceed to read out
key-value pairs sequentially in key order until reaching the end of the table or the
specified ending key. Scanners can be configured to read only certain columns.
Additional configuration for a scanner can be made to apply additional logic
classes called iterators, and specific options to iterators, to alter the set of key-
value pairs returned from a particular scanner. See Figure 1-22.

30 | Chapter 1: Architecture and Data Model

vww allitebooks.cond

http://www.allitebooks.org

Scanner Client

Scan row
‘Apache_Hadoop’

One lookup

sequential scan
of one row

key-value pairs
returned to client

Scan Performed

column

rowid o
family

Apache_Accumulo content

Apache_Accumulo content
Apache_Accumulo metadata
Apache_Accumulo metadata
Apache_Hadoop content
Apache_Hadoop metadata
Apache Hadoop metadata
Apache_Thrift content
Apache_Thrift metadata
Apache_Thrift metadata
Apache_Zookeeper content

Apache_Zookeeper metadata

Apache_Zookeeper metadata

column
qualifier

comment

text

pageid

title

text

pageid

title

text

pageid

title

text

pageid

title

timestamp value

20111001

20140215 =

20111001 571876229
Apache

20111001 Accurmulo

20060314 sou

20080314 5919308

20080314 Apache Hadoop

Thiftis an interface
20070213 dafinition language and
binary

20070213 10438451

20070213 Apache Thrift

20140215 -

20140215 26039352
Apache

20140215 Zookeeper

Figure 1-22. Scanning one row

BatchScanner

When multiple ranges of keys are to be read from a table, a BatchScanner can be
used to read the key-value pairs for the ranges using multiple threads. The ranges
are grouped by tablet server to maximize the efficiency of communication
between threads and tablet servers. This can be useful for applications whose
design requires many individual scans to answer a single question. In particular,
tables designed for working with time series, secondary indexes, and complex
text search can all benefit from using batch scanners. See Figure 1-23.

Introduction to the Client APl | 31

Batch Scan Performed

N column column
rowid timestamp value

Multiple lookups family qualitier

n Dara"el Apache_Accumulo content comment 20111001

Apache_Accumulo content text 20140215

BatCh SCﬂnner Cllent Apache_Accumulo metadata pageid 20111001 571876229

Apache Accumulo metadata ftitle 20111001 Apache

e " Accumulo
. Scan rows s PRESE Apache_Hadoop content text 20060314
{*Apache_Accumulo’,
‘Apache_Hadoop Y DTN Apache_Hadoop metadata pageid 20060314 5919308
‘Apache_Thrift’, .. o Tl)
. B Apache_Hadoop metadata title 20060314 Apache Hadoop
Apache_ZooKeeper}
. Trrift 5 an interfa
and fetch only v Apache Thrift content text 20070213 asintionens
. ., . binary
‘metadata:title’ column
\ Apache_Thrift metadata pageid 20070213 10438451
a
Apache_Thrift metadata title 20070213 Apache Thrift
Apache_ZooKesper content text 20140215
.. Apache_ZooKeeper metadata pageid 20140215 26039352
A

Apache
ZooKeeper

Apache_ZooKeeper metadata title 20140215

Figure 1-23. Scanning a batch of rows

More detail on developing applications using Accumulos API is found in the chapters
beginning with Chapter 3.

Approach to Rows

Accumulo takes a slightly different approach to rows in the client API than do some
other implementations based on Bigtable, such as HBase. Accumulos read API is
designed to stream key-value pairs to the client rather than to package up all the key-
value pairs for a row into a single unit before returning the data to the user.

This is often less convenient than working with data on a row-by-row basis, and
applications that want to work with entire rows can do additional configuration to
assist with this, as described in “Grouping by Rows” on page 110. The upside is that
rows in an Accumulo table can be very large and do not need to fit in the memory of
the tablet server or the client. Working with key-value pairs can come in handy when
row IDs are coming from external data and the number of columns per row may be
unknown or may vary widely, as can happen when building secondary indexes.

32 | Chapter 1: Architecture and Data Model

Exploiting Sort Order

The trick to taking full advantage of Accumulo’s design is to exploit the fact that
Accumulo keeps keys sorted. This requires application designers to determine a way
to order the data such that most user queries can be satisfied with one or a small
number of scans, each consisting of a lookup into a table to return one or more
sequential key-value pairs.

A single scan is able to perform this lookup and return one or even hundreds of key-
value pairs, often in less than a second, even when tables contain trillions of key-value
pairs. Applications that understand and use this property can achieve subsecond
response times for most user requests without having to worry about performance
degrading as the amount of data stored in the system increases dramatically.

This sometimes requires creative thinking in order to discover a key design that
works for a particular application. A good example of this is the way Google describes
the row ID of its WebCrawl table in the Bigtable paper. In this table, the intent is to
provide users with the ability to look up information about a given website, identified
by the hostname. Because hostnames are hierarchical and because users may want to
look at a specific hostname or all hostnames within a domain, Google chose to trans-
form the hostname to support these access patterns by reversing the order in which
domain name components are stored under the row ID, as shown in Table 1-1.

Table 1-1. Google’s WebCrawl row design
Row ID
com.google.analytics
com.google.mail
com.google.maps
com.microsoft
com.microsoft.bing
com.microsoft.developers
com.microsoft.search
com.microsoft.www
com.yahoo

com.yahoo.mail

Introduction to the Client APl | 33

com.yahoo.search

com.yahoo.www

Achieving optimal performance also depends on the ability to satisfy user requests
without having to filter out or ignore a large amount of key-value pairs as a part of
the scan.

Because developers have such a high degree of control over how data is arranged,
there are a wide variety of options for designing tables. We cover these in depth in
Chapter 8.

Architecture Qverview

Accumulo is a distributed application that depends on Apache Hadoop for storage
and Apache ZooKeeper for configuration (Figure 1-24).

e N
Accumulo

A vy

' ™

Hadoop

ZooKeeper
HDFS MapReduce

Figure 1-24. Accumulo architecture

Because Accumulo is based on Google’s Bigtable, as HBase is, it uses some of the same
names for components that Bigtable does, but there are some differences (Table 1-2).

Table 1-2. Accumulo and HBase Bigtable naming conventions

Apache Accumulo Bigtable Apache HBase
Tablet Tablet Region

Tablet Server Tablet Server Region Server
Minor Compaction Minor Compaction Flush

34 | Chapter 1: Architecture and Data Model

Major Compaction

(Full) Major Compaction

Merging Compaction

Major Compaction

Minor Compaction

Major Compaction

Write-Ahead Log Commit Log Write-Ahead Log

HDFS GFS HDFS

Hadoop MapReduce MapReduce Hadoop MapReduce

MemTable MemTable MemStore

RFile SSTable HFile

ZooKeeper Chubby ZooKeeper
ZooKeeper

ZooKeeper is a highly available, highly consistent, distributed application in which all
data is replicated on all machines in a cluster so that if one machine fails, clients read-
ing from ZooKeeper can quickly switch over to one of the remaining machines. Zoo-
Keeper plays the role for Accumulo of a centralized directory and lock service that
Google’s Chubby provides for Bigtable. In addition, write replication is synchronous,
which means clients wait until data is replicated and confirmed on all machines
before considering a write successful. In practice, ZooKeeper instances tend to con-
sist of three or five machines.

Accumulo uses ZooKeeper to store configuration and status information and to track
changes in the cluster. ZooKeeper is also used to help clients begin the process of
locating the right servers for the data they seek.

Hadoop

In the same way that Google’s Bigtable stores its data in a distributed filesystem called
GFS, Accumulo stores its data in HDFS. Accumulo relies on HDFS to provide persis-
tent storage, replication, and fault tolerance. Having a separate storage layer allows
Accumulo to balance the responsibility for serving portions of tables independently
of where they are stored, although data tends to be served from the same server on
which it is stored.

Like Accumulo, HDFS is a distributed application, but one that allows users to view a
collection of machines as a single, scalable filesystem. HDFS files can be very large, up
to terabytes per file. HDFS automatically breaks these files into blocks—by default 64
MB or 128 MB in size depending on the version of HDFS—and distributes these
blocks across the cluster uniformly. In addition, each block is replicated on multiple

Architecture Overview | 35

http://static.googleusercontent.com/media/research.google.com/en/us/archive/chubby-osdi06.pdf

machines (Figure 1-25). The default replication factor is three in order to avoid losing
data when one machine or even an entire rack of servers becomes unavailable. Usu-
ally, one replica is written to the local hard drive, another to another machine in the
same rack, and a third to a machine in another rack. This way, even the loss of an
entire rack won’t cause data loss.

' ™\

~\

HDFS [NameNode

/!
~

DataNodes

ROPee0

Block 1 Block 2

File

Figure 1-25. Hadoop Distributed File System

Accumulo

An Accumulo instance consists of several types of processes running on one to thou-
sands of machines.

Analogous to HDEFS files, Accumulo tables can be very large in size, up to tens of tril-
lions of key-value pairs or more. Accumulo automatically partitions these into tablets
and assigns responsibility for hosting tablets to servers called tablet servers
(Figure 1-26).

However, unlike HDFS block replicas, Accumulo tablets are assigned to exactly one
tablet server at a time. This allows one server to manage all the reads and writes for a
particular range of keys, enabling reads and writes to be highly consistent because no
synchronization has to occur between tablet servers. When a client writes a piece of
information to a row, clients reading that row immediately after the write will see the
new information.

Typically, a server will run one tablet server process and one HDFS DataNode process
(Figure 1-27). This allows most tablets to have a local replica of the files they
reference.

36 | Chapter 1: Architecture and Data Model

~

Accumulo [Master

vy
~

Tablet Servers

EJORJUELIL)

. ~ N \ J

AN N \

Tablet 1|[Tablet 2 -

Table ——

Figure 1-26. Accumulo

As a result, a tablet server can host a tablet whose file replicas are all located on other
servers. This situation does not prevent the tablet’s data from being read and is usu-
ally temporary, because any time a tablet server performs compaction of a tablet’s
files, it will by default create one local replica of each new file. Over time, a tablet
tends to have one local replica for each file it references.

Accumulo Tablet Server Processes

R0O0000
E)FEEm)) ()

HDFS DataNode Processes

Figure 1-27. Typical process distribution

Architecture Overview | 37

Tablet servers

Tablet servers host a set of tablets and are responsible for all the writes and reads for
those tablets. Clients connect directly to tablet servers to read and write data. Tablet
servers can host hundreds or even thousands of tablets, each consisting of about 1 GB
of data or more. Tablet servers store data written to these tablets in memory and in
files in HDEFS, and handle scanning data for clients, applying any additional filtering
or processing the clients request.

Master

Every Accumulo cluster has one active master process that is responsible for making
sure all tablets are assigned to exactly one tablet server at all times and that tablets are
load-balanced across servers. The master also helps with certain administrative oper-
ations such as startup, shutdown, and table and user creation and deletion.

Accumulo’s master can fail without causing interruption to tablet servers and clients.
If a tablet server fails while the master is down, some portion of the tablets will be
unavailable until a new master process is started on any machine. When the new
master process starts, it will reassign any tablets that do not have a tablet server
assignment.

It is possible to configure Accumulo to run multiple master processes so that one
master is always running in the event that one fails. Whichever process obtains a
master ZooKeeper lock first will be the active master, and the remaining processes
will watch the lock so that one of them can take over if the active master fails.

Garbage collector

The garbage collector process finds files that are no longer being used by any tablets
and deletes them from HDFS to reclaim disk space.

A cluster needs only one garbage collector process running at any given time.

Monitor

Accumulo ships with an informative monitor that reports cluster activity and logging
information into one web interface (Figure 1-28). This monitor is useful for verifying
that Accumulo is operating properly and for helping understand and troubleshoot
cluster and application performance. “Monitor Web Service” on page 429 gives
descriptions of the information displayed by the monitor.

38 | Chapter 1: Architecture and Data Model

AccuMuLo OVERVIEW

Overview AccumuLo Master NaueNooE JosTracker f ZooKEEPER

Master Server Disk Used 2.66T | | Unreplicated Capacity ~ 17.60T | | RunningJobs 0 | [SeRver Mope | CLrents
Tablet Servers 9% of Used DFS. 100.00% | | % Used 1550% | | MapTasks 0/80 | | nebula2:2181 standalone 54
Logger Servers Tables 3 | | Corrupt Blocks 0| | Reduce Tasks 0/80

Garbage Collector Tablet Servers 10 | | Live Data Nodes 10 | | Trackers 10

Tables Dead Tablet Servers 0 | | Dead Data Nodes 0 | | Blacklisted 0

Recent Traces Tablets 1.03K | | Xceivers 1.23K

Documentation Entries 20.498

T Lookups 9.38K

ML Uptime 1h 51m

[enable auto-refresh]

Ingest (Entries/s) Scan (Entries/s)
650000 800
600000 500
550000
400
500000
450000 260
400000 [
15:00 15:30 15:00 15:30
Ingest (MB/s) Scan (MB/s)
85 0.05
80 0.04
75
0.03
70
0.02
65
60 0.01
55 0.00
15:00 15:30 15:00 15:30
Load Average Scan Sessions
85 3.0
80 2.5
2.0
55
15
50
1.0
4 0.5
40 0.0
15:00 15:30 15:00 15:30
Minor Compactions Major Compactions
40 31.25
31.00
30
30.75
. - HIH l H
30.25
10
30.00
0 29.75
15:00 15:30 15:00 15:30
Index Cache Hit Rate Data Cache Hit Rate
1.0 1.25
.00 --t PR & . -
S ERIT T e
0.50 . *
0.25 . .
S IS S T S ST 2o o
15:00 15:30 14:40 14:50 15:00 15:10 15:20 15:30

Figure 1-28. Monitor Ul

Client

Accumulo provides a Java client library for use in applications. Many Accumulo cli-
ents can read and write data from an Accumulo instance simultaneously. Clients
communicate directly with tablet servers to read and write data (Figure 1-29). Occa-
sionally, clients will communicate with ZooKeeper and with the Accumulo master for

Architecture Overview | 39

certain table operations, but no data is sent or received through ZooKeeper or the
master.

'd ™\

Accumulo [Master

05000

[ZooKeeper

N
A

>

[Client J[Client J [Client J

Figure 1-29. Accumulo clients

Thrift proxy

As of version 1.5, Accumulo provides an optional Thrift proxy that can be used to
develop clients in languages other than those that run on the Java Virtual Machine
(JVM). These other clients can connect to the Thrift proxy, which communicates
with the Accumulo cluster and allows data to be read and written by these other
clients.

Accumulo versions 1.4 and older use logger processes to record
each new write in an unsorted write-ahead log on disk that can be
used to recover any data that was lost from the memory of a failed
tablet server. Accumulo 1.5 no longer has dedicated logger pro-
cesses. The write-ahead logs are written directly to files in HDFS.

40 | Chapter 1: Architecture and Data Model

vww allitebooks.cond

http://www.allitebooks.org

A Typical Cluster

A typical Accumulo cluster consists of a few control nodes and a few to many worker
nodes (Figure 1-30).

Control nodes include:

One, three, or five machines running ZooKeeper

Ideally, two machines running HDFS NameNode processes, one active, one for
failover

One to two machines running Accumulo master, garbage collector, and/or moni-
tor

For Hadoop 1, an optional machine running a Hadoop job tracker process if
MapReduce jobs are required

For Hadoop 2, an optional machine running a YARN resource manager process
if MapReduce jobs are required

Each worker node typically includes:

One HDFS DataNode process for storing data

One tablet server process for serving queries and inserts

For Hadoop 1, an optional Hadoop task tracker for running MapReduce jobs
For Hadoop 2, an optional YARN node manager for running MapReduce jobs

The logger process mentioned in Accumulo versions 1.4 and earlier
would have typically run on each worker node.

In addition, applications require one to many processes using the Accumulo client
library to write and read data.

Architecture Overview | 41

ZooKeeper j (Worker j ------ (Worker]

ZooKeeper j (Worker j

ZooKeeper]

NN N

~
HDFS
NameNode
- vy
')
HDFS
NameNode
b J

(Master]

(Monitor / GC]

((JobTracker)] (Worker j ------ (Worker J

Figure 1-30. A typical cluster

Additional Features

In addition to the features already described, Accumulo provides more features to
help you build scalable applications running on large clusters. Not all of these are
unique to Accumulo, but the combination of these features is likely unique.

Automatic Data Partitioning

Accumulo tables can be very large, up to petabytes in size. You can tune the tablet-
splitting process, but you don’t have to worry about choosing a good key on which to
partition because Accumulo automatically finds good split points.

High Consistency

Accumulo provides a highly consistent view of the data. Tablets are assigned to
exactly one tablet server at a time. An update to a particular key’s value is
immediately reflected in subsequent reads because those updates and reads go to the
same server.

42 | Chapter 1: Architecture and Data Model

Other NoSQL systems allow writes for a particular key to happen on more than one
server, and consistency is achieved via communication between these servers.
Because this communication is not instantaneous, these systems are considered even-
tually consistent. One advantage of eventually consistent systems is that a single
instance of the database can run over geographically disparate data centers, and
writes to some servers can continue even if those servers cannot communicate with
all of the other servers participating in the cluster.

An Accumulo instance is designed to be deployed within a single data center and to
provide a highly consistent view of the data. One advantage of high consistency is
that application logic can be simplified.

Automatic Load Balancing

The Accumulo master automatically balances the responsibility for serving tablets
across tablet servers. When one tablet server has more tablets than another, the mas-
ter process will instruct the overloaded tablet server to stop serving a tablet and
instruct the underloaded tablet server to begin hosting that tablet.

Massive Scalability

Accumulo is considered a horizontally scalable application, meaning that you can
increase the capabilities of the system by adding more machines, rather than by
replacing existing machines with bigger, more capable machines (vertical scaling).
New machines joining an Accumulo cluster begin participating in the cluster very
quickly, because no data movement is required for these new machines to start host-
ing tablets and the reads and writes associated with them.

Accumulo can also work well at large scale, meaning on clusters consisting of thou-
sands of machines hosting petabytes of data.

A major benefit to building on Accumulo is that an application can be written and
deployed on a small cluster when the amount of data and the number of concurrent
writes and reads is low. As data or read-write demand grows, the Accumulo cluster
can be expanded to handle more data and reads without an application rewrite.

Many distributed systems today are built to scale from one server to many. Accumulo
may be one of the most scalable data stores out there. As of version 1.6, Accumulo is
capable of running across multiple instances of HDFS with different HDFS NameNo-
des. This means that Accumulo can be configured to support more update operations
than can be accommodated by a single HDFS instance.

Failure Tolerance and Automatic Recovery

Like Hadoop, Accumulo is designed to survive single server failures and even the fail-
ure of a single rack. If a single Accumulo tablet server fails, the master process notes

Additional Features | 43

this and reassigns its tablets to the remaining tablet servers. Accumulo clients auto-
matically manage the failover from one tablet server to another. Application develop-
ers do not need to worry about retrying their operations simply because a machine
fails.

In a large cluster these types of failures are commonplace, and Accumulo does a lot of
work to minimize the burden on application developers as well as administrators so
that a single instance running on thousands of machines is tractable.

Support for Analysis: Iterators

Storing large amounts of data and making it searchable is only part of the solution to
the problem of taking full advantage of big data. Often data needs to be aggregated,
summarized, or modeled in order to be fully understood and utilized. Accumulo pro-
vides a few mechanisms for performing analysis on data in tables.

One of these mechanisms, Accumulo iterators, enable custom aggregation and sum-
marization within tablet servers to allow you to maintain result sets efficiently and
store the data at a higher level of abstraction. They are called iterators because they
iterate over key-value pairs and allow developers to alter the data before writing to
disk or returning information to users.

There are various types of iterators that range from filtering to simple sums to main-
taining a set of statistics. These are covered in “Iterators” on page 209.

Developers have used iterators to incrementally update edge weights in large graphs
for applications such as social network analysis or computer network modeling. Oth-
ers have used iterators to build complex feature vectors from a variety of sources to
represent entities such as website users. These feature vectors can be used in
machine-learning algorithms like clustering and classification to model underlying
groups within the data or for predictive analysis.

Support for Analysis: MapReduce Integration

Beyond iterators, Accumulo supports analysis via integration with the popular
Hadoop MapReduce framework. Accumulo stores its data in HDFS and can be used
as the source of data for a MapReduce job or as the destination of the output from a
MapReduce job. MapReduce jobs can either read from tablet servers using the Accu-
mulo client library, or from the underlying files in which Accumulo stores data via
the use of specific MapReduce input and output formats.

In either case, Accumulo supports the type of data locality that MapReduce jobs
require, allowing MapReduce workers to read data that is stored locally rather than
having to read it all from remote machines over the network.

We cover using MapReduce with Accumulo in depth in Chapter 7.

44 | Chapter 1: Architecture and Data Model

Data Lifecycle Management

Accumulo provides a good degree of control over how data is managed in order to
comply with storage space, legal, or policy requirements.

In addition, the timestamps that are part Accumulo’s key structure can be used with
iterators to age data off according to a policy set by the administrator. This includes
aging off data older than a certain amount of time from now, or simply aging off data
older than a specific date.

Timestamps can also be used to distinguish among two or more versions of otherwise
identical keys. The built-in VersioningIterator can be configured to allow any
number of versions, or only a specific number of versions, to be stored. Google’s orig-
inal Bigtable paper describes using timestamps to distinguish among various versions
of the Web as it was crawled and stored from time to time.

With this built-in functionality in the database, work that otherwise must be done in
a batch-oriented fashion involving a lot of reading and writing data back to the sys-
tem can be performed incrementally and efficiently.

We cover age-off in depth in “Data Age-off” on page 450.

Compression

Accumulo compresses data by default using several methods. One is to apply a com-
pression algorithm such as GZip or LZO to blocks of data stored on disk. The other is
a technique called relative-key encoding, in which the shared prefixes of a set of keys
are stored only once, and the following keys only need express the changes to the ini-
tial key.

Compressing data in this way can improve I/O, because reading compressed data and
doing decompression can be faster than reading uncompressed data and not doing
decompression. Compression also helps offset the cost of the block replication that is
performed by HDFS.

The Bigtable paper describes two types of compression. One compresses long com-
mon strings across a large window, and the other does compression over small win-
dows of data. These types of custom compression are not implemented in Accumulo.

Robust Timestamps

When Accumulo tablet servers are assigning timestamps to key-value pairs, Accu-
mulo ensures that the timestamps are internally consistent. Accumulo only assigns
new timestamps that are later than the most recent timestamp for a given tablet. In
other words, timestamps assigned by a tablet server are guaranteed to increase.

Additional Features | 45

This addresses the inevitable situation in which some servers in the cluster have
clocks that are off and are applying timestamps from the future to keys. If these keys
were transferred to another server, newly written data would be treated as older than
existing data. It would be very confusing for users not to see the data they expect. It
would be an even more critical problem in the Accumulo metadata that keeps track of
tablets and their files. Entire data files could be lost if this problem were allowed to
occur. Thus, Accumulo only assigns new timestamps that are later than the most
recent timestamp for a given tablet.

It is also possible to use a one-up counter for timestamps by configuring a table with
a time type of logical instead of the default time type of milliseconds since the UNIX
epoch (Midnight UTC on January 1, 1970). In either case, tablet servers ensure that a
newly written key-value pair is never stamped with a timestamp that precedes the
most recent timestamp for the key’s tablet. This does not, however, prevent arbitrary
user-assigned timestamps from being written to a table.

Accumulo and Other Data Management Systems

Application developers and systems engineers face a wide range of choices for man-
aging their data today. Often the differences among these options are subtle and
require a deep understanding of technologies’ capabilities as well as the problem
domain. To help in deciding when Accumulo is or isn’t a good fit for a particular pur-
pose, we compare Accumulo to some other popular options.

Comparisons to Relational Databases

Relational databases, by far the most popular type of database in use today, have been
around for several decades and serve a wide variety of uses. Understanding the rela-
tive strengths and weaknesses of these systems is useful for determining how and
when to use them instead of Accumulo.

saL

One of the strengths of relational databases is that they implement a set of operations
known as relational algebra codified in Structured Query Language (SQL). SQL
allows users to perform rich and complex operations at query time, including set
intersection, joins, aggregations, and sorting. Relational databases are heavily opti-
mized to perform these operations at query time.

One challenge of using SQL is that of performing this work at query time on a large
amount of data. Relational Massively Parallel Processing (MPP) databases approach
this by dividing the work to perform SQL operations among many servers. The
approach taken by Accumulo is to encourage aggressive precomputation where
possible, often using far more storage to achieve the space-time trade-off, in order to

46 | Chapter 1: Architecture and Data Model

http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Unix_time

minimize the work done at query time and maintain fast lookups even when storing
petabytes of data.

Space-Time Trade-off and Cheap Space

In computer science, the space-time trade-off refers to the fact that you can use more
space to store the results of computation in order to reduce the time required to get
answers to users. Conversely, you can save space by waiting until users ask and com-
puting answers on the fly.

Over the past decade the cost of storage has dropped dramatically. As a result, Accu-
mulo applications tend to precompute as much as possible, often combining into one
table data that would be stored as two or more tables in a relational database.

When applications are designed to support answering analytical questions about enti-
ties of interest, it is common to precompute the answer for all entities periodically, or
to update the answers via iterators when new raw data is ingested, so that queries can
consist of a simple, very fast lookup.

Transactions

Many relational databases provide very strong guarantees around data updates, com-
monly termed ACID, for Atomicity, Consistency, Isolation, and Durability.

ACID

Atomicity
Either all the changes in a transaction are made or none is made. No partial
changes are committed.

Consistency
The database is always in a consistent state. This means different things in differ-
ent contexts. For databases in which some rows can refer to others, consistency
means that a referenced row must exist.

Isolation
Each transaction is made independent of other transactions. Changes appear the
same whether done serially or concurrently.

Durability
Changes are persistent and survive certain types of failure.

In relational databases these properties are delivered via several mechanisms. One
such mechanism is a transaction, which bundles a set of operations together into a

Accumulo and Other Data Management Systems | 47

logical unit. Transactions are important for supporting operational workloads such as
maintaining information about inventory, keeping bank accounts in order, and track-
ing the current state of business operations. Transactions can contain changes to mul-
tiple values within a row, changes to values in two or more rows in the same table, or
even updates to multiple rows in multiple tables. These types of workloads are con-
sidered online transaction processing (OLTP).

Accumulo guarantees these ACID properties for a single mutation (a set of changes
for a single row) but does not provide support for atomic updates across multiple
rows. Nor does Accumulo maintain consistent references between rows. Row isola-
tion for reads can be obtained by enabling the feature for a particular scanner (see
“Isolated Row Views” on page 111).

Normalization

If you store multiple copies of the same data in different places, it can be difficult to
ensure a high degree of consistency. You might update the value in one place but not
the other. Therefore, storing copies of the same values should be avoided.

Values that don’t have a one-to-one relationship to each other are often divided into
separate tables that keep pointers between themselves. For example, a person typically
only has one birth date, so you can store birth date in the same table as first name and
other one-to-one data (Figure 1-31).

But a person may have many nicknames or favorite songs. This type of one-to-many
data is stored in a separate table (Figure 1-32). There is a well-defined process, called
normalization, for deciding which data elements to put into separate tables. There are
several degrees to which normalization can be applied, but it typically involves break-
ing out data involved in one-to-many or many-to-many relationships into multiple
tables and joining them at query time.

Another group of workloads is termed online analytical processing (OLAP). Rela-
tional databases have been used to support these kinds of workloads as well. Often
analysis takes the approach of looking at snapshots of operational data, or simply may
bring together reference data that doesn't require updates but requires efficient read
and aggregation capabilities. Because these data snapshots are no longer updated,
there is no opportunity for the data to become inconsistent, and the need for normal-
ization is diminished.

Because OLAP workloads require fewer updates, tables are often precombined, or
denormalized, to cut down on the operations that are carried out a query time
(Figure 1-33). This is another example of the space-time trade-off, whereby an
increase in storage space used reduces the time to get data in the format requested.

48 | Chapter 1: Architecture and Data Model

ID

1001

1002

1003

1004

Name

Bob Jones 1978-04-01

Fred Smith 1965-11-02

Wei Chang 1983-12-06

David Garcia 1976-09-09

Date of
Birth

Figure 1-31. A table containing a one-to-one relationship

Anymore

Nickname ID
Bobby 1001
Bobarino 1001
Favorite Song ID
Rock the Casbah 1001
The Times Tt?ely are 1002
a Changin
I Ain't Marching 1002

A

ID Name Date of Birth
1001 Bob Jones = 1978-04-01
1002 Fred Smith 1965-11-02
1003 = Wei Chang 1983-12-06

1004 David Garcia 1976-09-09

Figure 1-32. An example of normalization

Accumulo and Other Data Management Systems

49

ID Name Date of Birth Nickname Favorite Song
1001 Bob Jones 1978-04-01 Bobby Rock the Casbah
1001 Bob Jones 1978-04-01 Bobarino Rock the Casbah

1002 Fred Smith 1965-11-02

The Times They are a
Changin’

I Ain't Marching
Anymore

1003 Wei Chang 1983-12-06

1003 Wei Chang 1983-12-06

1004 | David Garcia 1976-09-09

Figure 1-33. An example of denormalization

In the example in Figure 1-33 of denormalizing data for analysis, it is easy to see how
you would want a system like Accumulo that is highly scalable, employs compression
of redundant data, and handles sparse data well.

Accumulo does not implement relational algebra. Accumulo provides ACID guaran-
tees, but on a more limited basis. The only transactions allowed by Accumulo are
inserts, deletes, or updates to multiple values within a single row. These transactions
are atomic, consistent, isolated, and durable. But a set of updates to multiple rows in
the same table, or rows in different tables, do not have these guarantees.

Accumulo is therefore often used for massive operational workloads that can be per-
formed via single-row updates, or for massive OLAP workloads.

Comparisons to Other NoSQL Databases

Accumulo belongs to a group of applications known as NoSQL databases. The term
NoSQL refers to the fact that these databases support data access methods other than
SQL and is short for Not SQL or Not Only SQL—although the engineer who coined
the term NoSQL, Carlo Strozzi, has expressed that it may be more appropriate to call
these applications nonrelational databases.

2 “NoSQL Relational Database Management System: Home Page.” Strozzi.it. 2 October 2007. Retrieved 29
March 2010.

50 | Chapter 1: Architecture and Data Model

vww allitebooks.cond

http://www.allitebooks.org

Rather than using SQL for creating queries to fetch data and perform aggregation,
Accumulo provides a simplified API for writing and reading data. Departing from the
relational model and SQL has two major implications: increased flexibility in how
data is modeled and stored, and the fact that some operations that other databases
perform at query time are instead applied when data is written. In other words,
results are precomputed so that query-time operations can consist solely of simple,
fast tasks.

Compared to other NoSQL databases, Accumulo has some features that make it espe-
cially dynamic and scalable.

Data model

NoSQL it's a somewhat nebulous term, and is applied to applications as varied as
Berkley DB, memcached, Bigtable, Accumulo, MongoDB, Neo4j, Amazon’s Dynamo,
and others.

Some folks have grouped distributed software systems into categories based on the
data model supported. These categories can consist of the following:

Pure key-value
o Riak

o Dynamo

o memcached

Columnar (Bigtable)
« Bigtable

o Accumulo
« HBase

o Cassandra

Document
» MongoDB

o CouchDB

Graph
o Neod;j

Some of these applications have in common a key-value data model at a high level.
Accumulos data model consists of key-value pairs at the highest level, but because of
the structure of the key it achieves some properties of conventional two-dimensional,

Accumulo and Other Data Management Systems | 51

flat-record tables, columnar and row-oriented databases, and a little bit of hierarchy
in the data model via column families and column qualifiers.

Apache Accumulo, Apache Cassandra, and Apache HBase share this basic Bigtable
data model.

Other NoSQL data stores, such as MongoDB and CouchDB, are considered to be
document-oriented stores because they store JavaScript Object Notation (JSON)-like
documents natively.

Neo4;j is a graph-oriented database whose data model consists of vertices and edges.

Choosing which data model is most appropriate for an application is probably the
first and foremost factor one should consider when choosing a NoSQL technology.
There is some flexibility in applying the data model because, for example, a key-value
store can be made to store graph data and because a document-based data model is
sort of a superset of the key-value model.

Key ordering

Some NoSQL databases use hashing to distribute their keys to servers. This makes
lookups simple for clients but can require some data to be moved when machines are
added to or removed from the cluster. It can also make scanning across a sequential
range of keys more difficult or impossible.

Because Accumulo maintains its own dynamic mapping of keys to servers it can very
quickly handle machines joining or leaving the cluster, with no data movement and
minimal interruption to clients. In addition, the key space is partitioned dynamically
and automatically so that the data is distributed evenly throughout the cluster.

Tight Hadoop integration

Many NoSQL databases have their own storage mechanism. Accumulo uses HDEFS.
This offers several advantages:

o Accumulo can use the output of MapReduce jobs without having to move large
amounts of data. Accumulo can also serve as the source of input data for MapRe-
duce jobs. This allows Hadoop clusters to be used for mixed workloads.

o+ Accumulo benefits from the significant work done by the Hadoop community to
make HDFS resilient, scalable, and stable.

 Because Hadoop is becoming the de-facto standard for large data processing in
many organizations, Accumulo reduces the cost of acquiring a scalable, low-
latency query capability by building on existing investment in Hadoop.

52 | Chapter 1: Architecture and Data Model

High versus eventual consistency

Some NoSQL databases are designed to run over geographically distributed data cen-
ters and allow data to be written in more than one place simultaneously. This results
in a property known as eventual consistency, in which a value read from the database
may not be the most up-to-date version.

Accumulo is designed to run within a single data center and provides a highly consis-
tent view of the data at all times. This means that users are guaranteed to always see
the most up-to-date version of the data, which simplifies application development.

When comparing NoSQL databases, you may want to consider which trade-offs have
been made in the design. In particular, much attention has been paid to the CAP the-
orem, which states that in designing a distributed database, you can choose to pro-
vide at most two of the following properties: high Consistency, Availability, and
Partition-tolerance (hence CAP). A good treatment of this concept is in “Brewer’s
Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Serv-
ices” by Seth Gilbert and Nancy Lynch.

See “Accumulo and the CAP Theorem” on page 379 for a discussion on the choices
made in the Accumulo design with respect to the CAP Theorem.

Column visibility and access control

Organizations are turning to Accumulo in order to satisfy stringent data-access
requirements and to comply with legal and corporate requirements and policies.

Most databases provide a level of access control over the data. Accumulos column
visibilities are often more fine-grained and can be used to implement a wide variety
of access-control scenarios.

HBase in particular has implemented Accumulo’s column visibilities—including the
same types of security label expressions as Accumulo as well as a different mode of
access involving attaching access-control lists (ACLSs) to cells.

One important note is that HBase includes a NOT operator (!) that can make it impos-
sible to allow users to view the data using a subset of all their tokens, because they
could remove a token used as part of a NOT expression to protect data. See the Accu-
mulo mailing list for the thread “NOT” operator in visibility string”

For example, suppose there were multiple cells with the following labels:

kvpairl: private

kvpair2: (private | admin) & !probationary

kvpair3: admin
To query Accumulo’s key-value pairs, the user must always provide a list of authoriza-
tion tokens to use for the query. Accumulo’s built-in ColumnVisibilityFilter deter-
mines whether a particular set of tokens is sufficient to view a particular key-value

Accumulo and Other Data Management Systems | 53

http://bit.ly/gilbert_lynch
http://bit.ly/gilbert_lynch
http://bit.ly/gilbert_lynch
http://bit.ly/accumulo_mailing_list
http://bit.ly/accumulo_mailing_list

pair. Each user has a maximum set of tokens he is allowed to use for queries. It is not
uncommon for applications developed on Accumulo to allow users to issue queries
with a subset of their allowed tokens in order to see data as it would be viewed at dif-
ferent visibility levels. For example, a user with both the private and admin tokens
might choose to query the data with just the private token. This helps with publishing
data to other groups of users that are granted different authorization tokens.

In the presence of the NOT operator, applications cannot allow users to view the data
with any fewer than all of their tokens, because removing a token from a query would
increase the number of key-value pairs visible to the user, amounting to an elevation
of privilege. In the preceding example, imagine issuing a query with the private and
probationary tokens versus a query with just the private token.

Another important note is that HBase does not consider the security label expression
to be a part of the key portion of the data model, as Accumulo does. This implies a
model in which a key-value pair at one visibility level can be overwritten with a dif-
ferent visibility level. In Accumulo’s visibility model, you can store multiple values at
different visibility levels for the same row and column, because the visibility is con-
sidered part of the key. It is not possible to overwrite one visibility with another less
restrictive visibility.

HBase’s implementation is also a bit different from Accumulo’s in that it utilizes cop-
rocessors since HBase doesn’t have a construct like Accumulo iterators. There may be
performance differences as a result.

MongoDB has recently added a feature called redact as part of its Aggregation Frame-
work that can be used to filter out subdocuments based on a flexible set of expres-
sions. It appears likely that Accumulos filtering logic could also be implemented in
this framework.

Iterators

Accumuloss iterators allow application developers to push some computation to the
server side, which can result in a dramatic increase in performance depending on the
operations performed. HBase provides a mechanism called coprocessors, which exe-
cute code and can be triggered at many places. Unlike coprocessors, iterators operate
in only three places, are stackable, and are an integral part of the data processing
pipeline since much of the tablet server’s core behavior is implemented in built-in
system iterators.

Iterators are applied at scan time, when flushing memory to disk
(minor compaction), and when combining files (major
compaction).

54 | Chapter 1: Architecture and Data Model

http://bit.ly/hbase_cell_security
http://bit.ly/hbase_cell_security
http://bit.ly/redact_operator
http://bit.ly/redact_operator

Because iterators can be used much like MapReduce map or combine functions, iter-
ators can help execute analytical functionality in a more streamlined and organized
manner than batch-oriented MapReduce jobs. Developers looking to efficiently create
and maintain result sets should consider iterators as an option.

Dynamic column families and locality groups

As mentioned in “Column Families” on page 19, Accumulo can have any number of
column families, and column families can be assigned arbitrarily to locality groups.
Accumulo does not require column families to be declared before they can be used.
Accumulo stores key-value pairs together on disk according to how their column
families are mapped to locality groups within a single file, rather than using separate
files or directories to separate the data, which keeps file management overhead con-
stant. Furthermore, changes can be made to how the data is stored on disk by reconfi-
guring locality groups on the fly, without changing how data is modeled in the
Accumulo key.

In contrast, HBase requires column families to be declared beforehand, and each col-
umn family is stored in a separate directory in HDFS, which drastically limits the
flexibility of column family usage. Because column families are mapped to HDFS
directories in HBase, they must consist of printable characters, whereas in Accumulo
they are arbitrary byte arrays. Because every column family is a separate storage
directory in HBase, in practice it is reccommended that tables have fewer than 10 col-
umn families total (see Lars George’s HBase: The Definitive Guide [O’Reilly]). Each
column family in HBase is effectively in its own locality group, and multiple families
cannot be grouped together.

File handle resources are limited per server, and the overall number of files and direc-
tories in HDEFS is limited by the capacity of the NameNode, so having the number of
files be dependent on your specific data model rather than on the overall amount of
data becomes a consequence that every application must consider. Accumulo applica-
tion designers do not have to consider this problem because Accumulo does not have
this limitation.

HBase requires that at least one column family be declared per table, and every key-
value pair inserted must specify a column family, whereas Accumulo does not require
the column family portion of the key to be filled out. It can be left blank, even if col-
umn qualifiers or other parts of the key are filled out.

Support for very large rows

Accumulo does not assume that rows must fit entirely in memory. Key-value pairs are
streamed back to the client in batches, and it’s possible for the client to fetch a portion
of a row first and to stream the rest of the row in separate batches.

Accumulo and Other Data Management Systems | 55

http://shop.oreilly.com/product/0636920014348.do

An example of an application design that may require arbitrarily large rows is in the
use of tables to store secondary indexes for document search, where the row ID is
used to store search terms that may be mapped to many document IDs stored in col-
umn qualifiers. The row corresponding to a common search term would be especially
large, because that term is likely to appear in a large number of documents.

Parallelized BatchScanners

In addition to being able to scan over a single range of key-value pairs, Accumulo
provides a BatchScanner in its client API that can be used to fetch rows from multi-
ple places in a table simultaneously in multiple threads. This is also useful for applica-
tions performing queries using secondary indexes.

Namespaces

Accumulo tables can be assigned to a namespace, which enables them to be config-
ured and managed as a group. This makes it easier to have multiple groups of people
managing tables in the same cluster. See “Table Namespaces” on page 160 for details.

Use Cases Suited for Accumulo

Accumulo’s design represents a set of objectives and technical features different from
those in data management systems such as filesystems and relational databases.
Application and system designers need to understand how these features work
together. We present here a few applications that could leverage Accumulo’s strengths.

A New Kind of Flexible Analytical Warehouse

In attempts to build a system to analyze all the data in an organization by bringing
together many disparate data sources, three problems can easily arise: a scalability
problem, a problem managing sparse dynamic data, and security concerns.

Accumulo directly addresses all three of these with horizontal scalability, a rich key-
value data model that supports efficiently storing sparse data and that facilitates dis-
covery, and fine-grained access control. An analytical data warehouse built around
Accumulo is still different from what one would build around a relational database.
Analytical results would be aggressively precomputed, potentially using MapReduce.
Many types of data could be involved, including semistructured JSON or XML, or
features extracted from text or imagery.

Building the Next Gmail

The original use case behind Bigtable was for building websites that support massive
scale in two dimensions: number of simultaneous users and amount of data managed.
If your plan is to build the next Gmail, Accumulo would be a good starting point.

56 | Chapter 1: Architecture and Data Model

Massive Graph or Machine-Learning Problems

Features such as iterators, MapReduce support, and a data model that supports stor-
ing dimensional sparse data make Accumulo a good candidate for creating, maintain-
ing, storing, and processing extremely large graphs or large sets of feature vectors for
machine-learning applications.

MapReduce has been used in conjunction with Accumulo’s scan capabilities to effi-
ciently traverse graphs with trillions of edges, processing hundreds of millions of
edges per second.

Some machine-learning techniques, especially nonparametric algorithms such as k-
nearest neighbors, are memory-based and require storing all the data rather than
building a statistical model to represent the data. Keeping or “remembering” all the
data points is what is meant by “memory-based,” not that the data all lives in RAM.
Accumulo is able to store large amounts of these data points and provides the basic
data selection operations for supporting these algorithms efficiently. See “Machine
Learning” on page 343 for more on this.

In addition, for predictive applications that use models built from slowly changing
historical data, Accumulo can be used to store historical data and make it available
for query, and to support building models from this data via MapReduce. Accumulo’s
ability to manage large tables allows users to use arbitrarily complex predictive mod-
els to score all known entities and store their results for fast lookup, rather than hav-
ing to compute scores at query time.

Relieving Relational Databases

Because relational databases have performed well over the past several decades, they
have become the standard place for putting all data and have had to support a wide
variety of data management problems. But as database expert Michael Stonebraker
and others have argued, trying to have only one platform can result in challenges
stemming from the difficulty of optimizing a single system for many use cases.

Accumulo has been used to offload the burden of storing large amounts of raw data
from relational databases, freeing them up for more specialized workloads such as
performing complex runtime operations on selected subsets or summaries of the
data.

Massive Search Applications

Google has used Bigtable to power parts of its primary search application. Accumulo
has features such as automatic partitioning, batch scanning, and flexible iterators that
can be used to support complex and large-scale text search applications.

Use Cases Suited for Accumulo | 57

http://bit.ly/big_graph_experiment
http://bit.ly/stonebraker_cetintemel
http://bit.ly/stonebraker_cetintemel
http://bit.ly/caffeine_bigtable

Applications with a Long History of Versioned Data

Wikipedia is an application with millions of articles edited by people around the
world. Part of the challenge of these types of massive-scale collaborative applications
is storing many versions of the data as users edit individual elements. Accumulo’s data
model allows several versions of data to be stored, and for users to retrieve versions in
several ways. Accumulo’s scalability makes having to store all versions of data for all
time a more tractable proposition.

58 | Chapter 1: Architecture and Data Model

CHAPTER 2
Quick Start

Now that you have a basic understanding of Accumulo, this chapter should get you
up and running. We will work through a couple of different install options and then
work through a few examples. The accumulo-quickstart installation should be suit-
able for use with examples throughout the rest of this book.

The quickest method to get started with Accumulo is to use the MiniAccumuloClus
ter. It is a minimal version of Accumulo that starts ZooKeeper and runs against the
local filesystem instead of starting up HDFS. It provides a testing and experimenta-
tion environment that is close to that of a full-blown Accumulo installation, but
without the initial configuration overhead. The MiniAccumuloCluster is great for
writing automated tests and for experimenting with approaches. It will not scale to
large data, but it is perfect for getting started.

The example project we will use is based on the Instamo Archetype, which is an
Accumulo contrib project.

Our example includes a maven pom.xml file with populated dependencies. It also
contains ShellExample, MapReduceExample, and ExampleAccumuloUnitTest classes
that illustrate running different types of client code. Code run against a MiniAccumu
loCluster works the same as code that runs against a full Accumulo installation.

To get started, make sure you have Java 1.7 installed and Apache Maven 3.0.4 or
greater. See http://maven.apache.org/ if you need to install Maven. Now, clone the Git
repository that contains all source for this book:

git clone https://github.com/accumulobook/examples

Change to the quickstart directory. Let’s get started.

59

http://accumulo.apache.org/contrib.html
http://maven.apache.org/

Demo of the Shell

We will begin with a look at how to use the shell. From the quickstart directory, run
the following:

mvn clean compile exec:exec -Pshell

The shell profile that is selected with the -Pshell option runs the main() method of
the ShellExample class. This starts a ZooKeeper process, an Accumulo master pro-
cess, two Accumulo TabletServer processes, and an Accumulo shell client. You will be
presented with an interactive shell that looks something like this:

[INFO] Scanning for projects...

[INFO]

50T =10

[INFO] Building Mini Accumulo Cluster Example 0.0.1-SNAPSHOT

50T =10

[INFO]

[INFO] --- maven-clean-plugin:2.4.1:clean (default-clean) @ mini-accumulo-
cluster-example ---

[INFO] Deleting /Users/accumulobook/src/accumulo-book/sourcecode/chapter2/mini-
accumulo-cluster-example/target

[INFO]

[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @ mini-
accumulo-cluster-example ---

[debug] execute contextualize

[WARNING] Using platform encoding (UTF-8 actually) to copy filtered resources,
i.e. build is platform dependent!

[INFO] Copying 1 resource

[INFO]

[INFO] --- maven-compiler-plugin:2.0.2:compile (default-compile) @ mini-accumulo-
cluster-example ---

[INFO] Compiling 3 source files to /Users/accumulobook//src/accumulo-book/
sourcecode/chapter2/mini-accumulo-cluster-example/target/classes

[INFO]

[INFO] --- exec-maven-plugin:1.2.1:exec (default-cli) @ mini-accumulo-cluster-
example ---

---- Initializing Accumulo Shell

Starting the MiniAccumuloCluster in /var/folders/2y/
n91zgm2x101fxgmon40xvfvwO000gn/T/1425610595980-0

Zookeeper is localhost:24968

Instance is minilInstance

[main] INFO org.apache.accumulo.minicluster.impl.MiniAccumuloClusterImpl -
Starting MAC against instance miniInstance and zookeeper(s) localhost:24968.

Shell - Apache Accumulo Interactive Shell
- version: 1.6.2

- instance name: miniInstance
- instance id: de5cdObe-b63b-458a-aleb-6cad5e360350

60

| Chapter2: Quick Start

- type 'help' for a list of available commands

root@miniInstance>

The default prompt on the shell shows the current Accumulo user, root, and the cur-
rent Accumulo instance name, minilnstance.

If your shell is idle for too long (60 minutes by default), you will
receive an Authorization Timeout when you try to enter com-
mands. You just need to enter the user’s password again. As set in
the ShellExample.java file, the password is pass1234.

The help Command

Start by running the help command. This command will show all available com-
mands. To see more information about a specific command, run help command (for
example, run help delete to learn more about the delete command). See Appen-
dix A for more information on the shell commands.

The shell also supports history and tab completion.

Creating a Table and Inserting Some Data

Now that you know how to get help on shell commands, let’s create a table and insert
some data. Because Accumulo is a schemaless database, all you need is the table
name. The schema will evolve as you insert data. So let’s create a table a named tablel
by using the createtable command:

root@miniInstance> createtable tablel
root@miniInstance tablel>

Notice that the prompt changed and now shows you the current table, tablel.

The table is currently empty, so we need to insert some data. We will use the insert
command. We introduce the Accumulo data model in “Data Model” on page 13, so
let’s insert some example data using the insert row column_family column_quali
fier value -1 column_visibility -ts timestamp shell command:

insert "bob jones" "contact" "address" "123 any street" -1 "billing"

insert "bob jones" "contact" "city" "anytown" -1 "billing"

insert "bob jones" "contact" "phone" "555-1212" -1 "billing"

insert "bob jones" "purchases" "sneakers" "$60" -1 "billing&inventory"
insert "fred smith" "contact" "address" "444 main st." -1 "billing"

insert "fred smith" "contact" "city" "othertown" -1 "billing"

Demo of the Shell | 61

insert "fred smith" "purchases" "glasses" "$30" -1 "billing&1inventory"
insert "fred smith" "purchases" "hat" "$20" -1 "billing&inventory"

Generally it is best to let Accumulo manage the timestamps on its
keys. Setting timestamps explicitly should be left to advanced use
cases, because it can result in unexpected behavior if you are not
very familiar with how the key’s timestamp is used in Accumulo.

Scanning for Data

Once you get data into Accumulo, you need to view it. We will use the scan com-
mand, so run:

scan

Wait, didn’t we just insert data? Why did the scan not return anything? The data we
entered included column visibilities with the -1 switch, but the root user does not
have authorizations to view those. A user in Accumulo can write data with any
authorizations (unless it has been prohibited by configuring the VisibilityCon
straint—see “Authorizations” on page 183), but viewing records requires authoriza-
tion. Keep this in mind whenever you don't see data you thought you inserted.

A user’s current authorizations can be viewed with the getauths command. Running
getauths now will show an empty list. Assign the necessary authorizations with the
following:

setauths -u root -s inventory,billing
Run another getauths. to ensure that you set them correctly. The result should be:
billing,inventory

Notice that the auths are now sorted. You should now see all records with another
scan:

root@miniInstance tablel> scan

bob jones contact:address [billing] 123 any street

bob jones contact:city [billing] anytown

bob jones contact:phone [billing] 555-1212

bob jones purchases:sneakers [billing&inventory] $60
fred smith contact:address [billing] 444 main st.

fred smith contact:city [billing] othertown

fred smith purchases:glasses [billing&inventory] $30
fred smith purchases:hat [billing&1inventory] $20

You may have noticed that the timestamp is not displayed. Even though we didn’t add
one on insert, they are there. Use the -st or --show-timestamps switch to see them:

bob jones contact:address [billing] 1425611200186 123 any street
bob jones contact:city [billing] 1425611200286 anytown

62 | Chapter2: Quick Start

bob jones contact:phone [billing] 1425611200318 555-1212

bob jones purchases:sneakers [billing&inventory] 1425611200354 $60
fred smith contact:address [billing] 1425611200385 444 main st.

fred smith contact:city [billing] 1425611200417 othertown

fred smith purchases:glasses [billing&inventory] 1425611200455 $30
fred smith purchases:hat [billing&inventory] 1425611200488 $20

If you want to view just the records for one row ID, use the -r switch. This will limit
the results to one row ID:

root@miniInstance tablel> scan -r "bob jones"

bob jones contact:address [billing] 123 any street

bob jones contact:city [billing] anytown

bob jones contact:phone [billing] 555-1212

bob jones purchases:sneakers [billing&inventory] $60

Using Authorizations

By default, the shell scan command will use all of the current user’s granted authori-
zations. Use the -s switch to limit the scan authorizations:

root@miniInstance tablel> scan -s billing

bob jones contact:address [billing] 123 any street

bob jones contact:city [billing] anytown

bob jones contact:phone [billing] 555-1212

fred smith contact:address [billing] 444 main st.

fred smith contact:city [billing] othertown
We did not insert any records with only the inventory visibility, so you would not see
any results using just that authorization.

Using a Simple Iterator

We have briefly discussed Accumulo’s iterators. One built-in iterator is the GrepItera
tor, which searches the key and the value for an exact string match. The shell’s grep
command sets up this iterator and uses it during the scan:

root@miniInstance tablel> grep town

bob jones contact:city [billing] anytown
fred smith contact:city [billing] othertown

Demo of Java Code

Now let’s do the same things, but this time using Java code instead of shell com-
mands. The Java code to perform these operations exists in the JavaExample class of
quickstart. It connects to any specified running Accumulo instance and does not start
up its own MiniAccumuloCluster.

Demo of JavaCode | 63

http://accumulo.apache.org/1.6/apidocs/index.html?org/apache/accumulo/core/iterators/user/GrepIterator.html
http://accumulo.apache.org/1.6/apidocs/index.html?org/apache/accumulo/core/iterators/user/GrepIterator.html

For this exercise, leave the Accumulo shell example running, and we will connect to
its MiniAccumuloCluster using Java code. If you stopped it, restart it with the follow-
ing command:

mvn compile exec:exec -Pshell

You will need to know the ZooKeeper and instance information the ShellExample
used to start up. It is output just before the shell starts up, something like this:

---- Initializing Accumulo Shell

Starting the MiniAccumuloCluster in /var/folders/2y/
n91lzgm2x101fxgmIn40xvfvwe000gn/T/1425610595980-0
Zookeeper 1s localhost:11272
Instance is minilnstance
We need this information to connect to the running Accumulo instance. To facilitate
copying and pasting the following examples, set an environment variable for the Zoo-
Keeper port with something like this:

export ZKPORT=11272

Be sure to use the correct port number.

Creating a Table and Inserting Some Data

Take a look at the JavaExample.java file in src¢/main/java/com/accumulobook/macex-
ample. Much of the code is for parsing arguments and selecting which command to
run. The relevant code that uses the Accumulo client API will be highlighted here.

All commands that will be run here need to get a reference to the Accumulo
Connector. Using the instance name and the location of the running ZooKeeper, the
code to get this Connector is in the getConnection() method of JavaExample class.
All the Command classes extend the AbstractCommand class, which provides a setCon
nection() method that the JavaExample uses to set each Command’s Connector. Here
is what the code looks like for the getConnection() method. The instance and zoo
keepers fields are set based on command-line parameters when the code is executed:

public Connector getConnection() throws AccumuloException,
AccumuloSecurityException {
Instance 1 = new ZooKeeperInstance(instance, zookeepers);
Connector conn = i.getConnector(user, new PasswordToken(password));
return conn;

}

Using this Connector inside some Java code, let’s create a table. For this part of the
quickstart, the table will be called table2. From the terminal where you started the
shell, you can run the tables command, and you should not see a table2 table. Let’s
create that table now. In a new terminal window at the quickstart directory, run the
following:

64 | Chapter2: Quick Start

http://bit.ly/accumulo_connector

mvn clean compile exec:exec -Dtable.name=table2 -Dinstance.name=miniInstance \
-Dzookeeper.location=1localhost:SZKPORT -Pjava:create

Be sure to replace the instance.name and zookeeper.location values with what was
displayed when the ShellExample started. If this hangs for more than 15 seconds or
so after outputting “Running create command,” your ZooKeeper location may be

wrong. Once execution is complete, you should be able to run tables from the shell
in the other window and see table2.

The Connector has access to TableOperations, which is used to perform table opera-
tions (see Chapter 4). We use the createTable() method to create the table. Here is
the code example from the CreateCommand run() method:

public void run() throws AccumuloException, AccumuloSecurityException,

TableExistsException {

System.out.println("Creating table " + table);

if (connection.tableOperations().exists(table)) {
throw new RuntimeException("Table " + table + " already exists");

} else {
connection.tableOperations().create(table);
System.out.println("Table created");

}

On line 3, we check to ensure that the table does not already exist. This is not techni-
cally necessary, because a TableExistsException will be thrown, but this pattern of

checking for existence before creating a table enables us to do something different if
we wanted.

Now let’s insert some data. As in the shell example, we will do this one row at time.
Later, you will see how to batch up inserts, or mutations, and execute them together.
Here is the first row. When copying and pasting, remember to change the
instance.name and zookeeper.location values:

mvn clean compile exec:exec -Drow.id="bob jones" \

-Dcolumn.family=contact \

-Dcolumn.qualifier=address \

-Dauths=billing \

-Dvalue="123 any street" \

-Dtable.name=table2 \

-Dinstance.name=miniInstance -Dzookeeper.location=localhost:SZKPORT -Pjava:insert

The -D switches are simply setting system properties that get
passed to the JavaExample class as arguments.

Demo of Java Code | 65

From the shell, you can now change to the table2 table by running table table2, and
then you can run scan. If your user has the billing authorization, you should see the
record. If you don’t see any records, use getauths and setauths for the root user as
we showed earlier to ensure that the billing authorization is present.

We will look at how to handle authorizations with Java in the next section.

Again using the Connector object, here is the code that inserts data:

public void run() throws TableNotFoundException, MutationsRejectedException {
System.out.println("Writing mutation for " + rowId);
BatchWriter bw = connection.createBatchWriter(table, new BatchWriterConfig());
Mutation m = new Mutation(new Text(rowId));
m.put(new Text(cf), new Text(cq), new ColumnVisibility(auths), timestamp,
new Value(val.getBytes()));
bw.addMutation(m);
bw.close();

}

A BatchWriter is created from the Connector. A Mutation is constructed with the
row ID for a new key-value pair. There are multiple put methods for Mutation with
different signatures to define the rest of the key-value pair. The Mutation is added to
the BatchWriter. You could also add multiple mutation objects to a batch writer,
which is a more typical usage that saves the overhead of creating a new BatchWriter
as well as batching together data to amortize network communication overhead.
When the batch writer is closed or flushed, the added mutations are sent to
Accumulo.

Here are commands you can copy and paste to insert the rest of the sample data. Each
of these commands needs the instance name and ZooKeeper location updated. There
is also a batch script explained after these commands that may be easier to use:

mvn clean compile exec:exec -Drow.id="bob jones" \

-Dcolumn. family=contact \

-Dcolumn.qualifier=city \

-Dauths=billing \

-Dvalue="anytown" \

-Dtable.name=table2 \

-Dinstance.name=miniInstance -Dzookeeper.location=1localhost:SZKPORT -Pjava:insert

mvn clean compile exec:exec -Drow.id="bob jones" \

-Dcolumn. family=contact \

-Dcolumn.qualifier=phone \

-Dauths=billing \

-Dvalue="555-1212" \

-Dtable.name=table2 \

-Dinstance.name=miniInstance -Dzookeeper.location=1localhost:SZKPORT -Pjava:insert

mvn clean compile exec:exec -Drow.id="bob jones" \
-Dcolumn. family=purchases \

66 | Chapter2: Quick Start

http://bit.ly/accumulo_batchwriter
http://bit.ly/accumulo_mutation

-Dcolumn.qualifier=sneakers \

-Dauths=billing\&inventory \

-Dvalue="\%60" \

-Dtable.name=table2 \

-Dinstance.name=miniInstance -Dzookeeper.location=1localhost:SZKPORT -Pjava:insert

mvn clean compile exec:exec -Drow.id="fred smith" \

-Dcolumn. family=contact \

-Dcolumn.qualifier=address \

-Dauths=billing \

-Dvalue="444 main st." \

-Dtable.name=table2 \

-Dinstance.name=miniInstance -Dzookeeper.location=1localhost:SZKPORT -Pjava:insert

mvn clean compile exec:exec -Drow.id="fred smith" \

-Dcolumn. family=contact \

-Dcolumn.qualifier=city \

-Dauths=billing \

-Dvalue="othertown" \

-Dtable.name=table2 \

-Dinstance.name=miniInstance -Dzookeeper.location=1localhost:SZKPORT -Pjava:insert

mvn clean compile exec:exec -Drow.id="fred smith" \

-Dcolumn. family=purchases \

-Dcolumn.qualifier=glasses \

-Dauths=billing\&inventory \

-Dvalue="\$30" \

-Dtable.name=table2 \

-Dinstance.name=miniInstance -Dzookeeper.location=1localhost:SZKPORT -Pjava:insert

mvn clean compile exec:exec -Drow.id="fred smith" \

-Dcolumn. family=purchases \

-Dcolumn.qualifier=hat \

-Dauths=billing\&inventory \

-Dvalue="\%20" \

-Dtable.name=table2 \

-Dinstance.name=miniInstance -Dzookeeper.location=1localhost:SZKPORT -Pjava:insert

The bash script is quickstart/bin/insert-all.sh. It runs all these commands for you but
allows you to pass in the instance name, ZooKeeper location, and table name values
once at the beginning. Run it as follows from the quickstart directory, replacing the
parameters with the correct values for your running shell:

./bin/insert-all.sh miniInstance "localhost:SZKPORT" table2

You can run these mutations multiple times but still end up with
only eight key-value pairs. The reason is that Accumulo defaults to
keep only the most recent version of each key by configuring the
VersioningIterator on every new table. Even if the same data is
inserted multiple times, you will only see one version of each key-
value pair.

Demo of JavaCode | 67

If you don’t see eight key-value pairs, check your auths again with getauths and
make sure you see billing and inventory. Assuming you didn’t stop the shell after run-
ning the shell demo, tablel and table2 should now have exactly the same data.

Scanning for Data

Now let’s use some Java code to scan all the rows. Run the following, and all the rows
will be printed:

mvn clean compile exec:exec -Dtable.name=table2 -Dinstance.name=minilInstance \
-Dzookeeper.location=1localhost:$ZKPORT -Pjava:scan

You will see output like the following:

Running scan command
Scanning table2
Scanning with all user auths
Scanning for all rows
Results ->
bob jones contact:address [billing] 1425613612825 false 123 any street
bob jones contact:city [billing] 1425613620377 false anytown
bob jones contact:phone [billing] 1425613627653 false 555-1212
bob jones purchases:sneakers [billing&inventory] 1425613634458 false $60
fred smith contact:address [billing] 1425613640651 false 444 main st.
fred smith contact:city [billing] 1425613646562 false othertown
fred smith purchases:glasses [billing&inventory] 1425613652640 false $30
fred smith purchases:hat [billing&inventory] 1425613659394 false $20

Here is the code that is run in the ScanCommand:

System.out.println("Scanning " + table);
Authorizations authorizations = null;
if ((null != auths) && (!auths.equals("SCAN_ALL"))) {
System.out.println("Using scan auths " + auths);
authorizations = new Authorizations(auths.split(","));
} else {
System.out.println("Scanning with all user auths");
authorizations = connection.securityOperations().getUserAuthorizations(user);
}
Scanner scanner = connection.createScanner(table, authorizations);
if ((null != row) && (!row.equals("SCAN_ALL"))) {
System.out.println("Scanning for row " + row);
scanner.setRange(new Range(row));
} else {
System.out.println("Scanning for all rows");
}
System.out.println("Results ->");
for (Entry<Key,Value> entry : scanner) {
System.out.println(" " + entry.getKey() +

+ entry.getValue());
}

68

| Chapter2: Quick Start

On line 10, we create a Scanner object from the Connector. This Scanner is what
scans Accumulo and returns an Iterable of results. We iterate over those results on
line 18 and print out the Accumulo Key and Value. The toString() method of the
Key outputs the key’s timestamp by default. There is also a toStringNoTime()
method on Key if we want to model the shell example more closely. That is left as an
exercise for the reader.

This scan does not limit the results; everything is returned just as in running the scan
command in the Accumulo shell. Let’s see how we could limit the results to just the
bob jones row. Run the following:

mvn clean compile exec:exec -Dtable.name=table2 -Drow="bob jones" \
-Dinstance.name=miniInstance -Dzookeeper.location=1localhost:SZKPORT -Pjava:scan

The result will be something like this:

Running scan command
Scanning table2
Scanning with all user auths
Scanning for row bob jones
Results ->
bob jones contact:address [billing] 1425613612825 false 123 any street
bob jones contact:city [billing] 1425613620377 false anytown
bob jones contact:phone [billing] 1425613627653 false 555-1212
bob jones purchases:sneakers [billing&inventory] 1425613634458 false $60

Here we provide row="bob jones", which is passed along to the run() method on
the ScanCommand. Line 13 shows how to provide that information to the Scanner,
using the Range class. Ranges can also be defined in other ways to better limit the
results. Review the API documentation for more information. We also cover addi-
tional ways to construct key ranges throughout this book, in particular in “Crafting
Ranges” on page 108.

This example uses the createScanner () method on the Connector.
This Scanner object runs in one thread and hits one range at a
time. You can also use the createBatchScanner() method, which
returns a BatchScanner and will scan multiple ranges in parallel.
When your data is spread out on many tablet servers, this BatchS
canner can return results much faster. However, the BatchScanner
does not guarantee any ordering of the results returned. Your code
will have to handle that correctly.

Using Authorizations

As we mentioned before, the shell scan command uses all of the user’s authorizations
by default. This is a convenience provided by the shell for interactively accessing the
data. To make the Java scan example work the same way, we had to do a couple of

Demo of JavaCode | 69

http://accumulo.apache.org/1.6/apidocs/index.html?org/apache/accumulo/core/client/Scanner.html
http://accumulo.apache.org/1.6/apidocs/index.html?org/apache/accumulo/core/data/Key.html
http://accumulo.apache.org/1.6/apidocs/index.html?org/apache/accumulo/core/data/Value.html
http://accumulo.apache.org/1.6/apidocs/index.html?org/apache/accumulo/core/data/Range.html

things. First we set a default value of SCAN_ALL for the auths property used by Scan
Command in the pom.xml file. This allows us to not pass in -Dauths=something. If Scan
Command finds that the authorizations are set to the default SCAN_ALL value, it will look
up the user’s entire set of authorizations and use those for the scan, as is done in the
Accumulo shell. On line 8 of the ScanCommand run() method, you see the securityOp
erations() method of the Connector used to obtain a SecurityOperations object.
From this object, we use the getUserAuthorizations() method to obtain an Author
izations object that contains all the user’s authorizations. Alternatively, if we explic-
itly pass in auths for ScanCommand, it will provide them to the string array
constructor of Authorizations on line 5. In either case, the Authorizations object is
used when creating a Scanner on line 10.

As we did in the shell demo, let’s scan for just records with the billing authorization.
Run the following:

mvn clean compile exec:exec -Dtable.name=table2 -Dauths=billing \
-Dinstance.name=miniInstance -Dzookeeper.location=1localhost:$ZKPORT -Pjava:scan

You should get results like these:

Running scan command

Scanning table2

Using scan auths billing

Scanning for all rows

Results ->
bob jones contact:address [billing] 1425613612825 false 123 any street
bob jones contact:city [billing] 1425613620377 false anytown
bob jones contact:phone [billing] 1425613627653 false 555-1212
fred smith contact:address [billing] 1425613640651 false 444 main st.
fred smith contact:city [billing] 1425613646562 false othertown

Here, the results are limited to records that could be viewed using only the billing
authorization.

Using a Simple Iterator

The last thing we want to show in Java code is how to set up an iterator. The shell
example used the built-in GrepIterator. We will do the same here. To run the exam-
ple, use the following, again replacing the instance name and ZooKeeper location as
appropriate:

mvn clean compile exec:exec -Dtable.name=table2 -Dterm=town \
-Dinstance.name=miniInstance -Dzookeeper.location=1localhost:SZKPORT -Pjava:grep

Your results should look like this:

Running grep command
Grepping table2
Results ->

70 | Chapter2: Quick Start

http://bit.ly/accumulo_securityoperations
http://bit.ly/accumulo_auths
http://bit.ly/accumulo_auths

bob jones contact:city [billing] 1425613620377 false anytown
fred smith contact:city [billing] 1425613646562 false othertown

The Java code is similar to the scan example, but instead of setting up a range, we add
the GrepIterator to the Scanner. Here is the code:

System.out.println("Grepping " + table);

Authorizations authorizations = connection.securityOperations()
.getUserAuthorizations(user);

Scanner scanner = connection.createScanner(table, authorizations);

Map<String, String> grepProps = new HashMap<String, String>();

grepProps.put("term", term);

IteratorSetting is = new IteratorSetting(25, "sample-grep",
GrepIterator.class.getName(), grepProps);

scanner.addScanlterator(is);

System.out.println("Results ->");

for (Entry<Key,Value> entry : scanner) {
System.out.println(" " + entry.getKey() +

+ entry.getValue());
}

The authorizations are set up on line 2 just as in the SCAN_ALL case for the ScanCom
mand. The scanner is created the same way also, shown on line 3. But on line 6, we
construct an IteratorSetting using a GrepIterator and map of properties that set
the term to be the value we passed in, town in this case. The 25 in the constructor is
the priority of this iterator. The "sample-grep" string is a unique name for the itera-
tor that will be used as a key to group together the iterator’s configuration informa-
tion in ZooKeeper (its priority, class, and options). Line 7 shows how the
IteratorSetting is added to the Scanner. Looping over results is just as was shown
in the ScanCommand.

Iterator names must be unique within a table and iterator scope. So
must iterator priorities. More on iterator configuration can be
found in “Iterators” on page 209.

A More Complete Installation

Although the quickstart example using the MiniAccumuloCluster will get you started
quickly, that installation doesn’t start several components, such as the monitor. The
Hadoop installation is minimal, so you do not get a chance to learn any of those tools.
The MiniAccumuloCluster is really more suitable for starting up Accumulo and
using it for testing.

So if MiniAccumuloCluster is not what most developers use, what is the best way to
get a development environment set up? Most developers use a full installation, either
on one node or in small cluster with virtual machines (VMs) or on a service like

A More Complete Installation | 71

http://bit.ly/iteratorsetting

Amazon EC2. Typically that requires going through the process of installing Hadoop,
ZooKeeper, and Accumulo individually. This can be a daunting task if you have no
experience with any of these components.

Instead of providing a VM image for you to use, we decided to facilitate setting up a
one-node install. The advantages of not using a preconfigured VM are better perfor-
mance and more flexibility. A full installation, even on one node, will allow you to
shut down Accumulo and save the data. The rest of this book will assume you are
using a full installation.

To get a more complete installation, we are going to use the quickinstall project from
the book’s GitHub site. This project will download all the necessary components,
install and configure them, and then start everything up for you. To use the quickin-
stall, you need to build it yourself or download the bundle from http://accumulo
book.com/quickinstall. The file is over 170 MB, but includes full installs of Accumulo,
Hadoop, and ZooKeeper.

This quickinstall has only been tested on Linux and Mac OS X.
Getting the full stack, particularly Hadoop, to run on Windows is
more difficult.

If you would like to build it yourself, clone the project with:
git clone https://github.com/accumulobook/quickinstall
Then run:
mvn clean package

This will also download the installs of Accumulo, Hadoop, and ZooKeeper, so be
patient. The resulting far.gz in the target directory is what has been uploaded to
http://accumulobook.com/quickinstall.

Open a new terminal window and extract that file with tar tzf. Then change into
the quickinstall-home directory. Run the install with the following:

./bin/install

If the install fails, the error messages should be helpful for resolving
issues. Follow the instructions and rerun the install script after fix-
ing whatever was wrong. If you have previously attempted to install
Hadoop, make sure there are no HADOOP_* environment variables
already set up in your environment. The quickinstall and other
example commands will not work otherwise.

72 | Chapter2: Quick Start

https://github.com/accumulobook/quickinstall
http://accumulobook.com/quickinstall
http://accumulobook.com/quickinstall
http://accumulobook.com/quickinstall

This script configures Hadoop, formats the NameNode, and then starts HDFS and
YARN. An attempt is made to use native libraries for Hadoop. It then configures Zoo-
Keeper and starts it. Lastly, the script configures Accumulo, runs its initialization, and
then starts it. An attempt is made to build the Accumulo native libraries using Accu-
mulos own script. Accumulo’s manual and API documentation are also included.

Let’s look at the quickinstall-home directory when the installation is complete:

accumulo-1.6.1
Contains the Accumulo installation

hadoop-2.4.1
Contains the Hadoop installation

zookeeper-3.4.6
Contains the ZooKeeper installation

hdfs
The directory where Hadoop stores data

zk-data
The directory where ZooKeeper stores data

Also in quickinstall-home is a bin directory with some helper scripts:

o Quickinstall helpers

quickinstall-env
Sets up the environment variables

qi-start
Starts Hadoop, ZooKeeper, and Accumulo

qi-stop
Stops Accumulo, Hadoop, and ZooKeeper

o Documentation helpers

hadoop-doc
Opens the local copy of Hadoop’s documentation

accumulo-doc
Opens the local copy of Accumulo’s documention

Both Hadoop and Accumulo as packaged contain documentation and API docs you
can use. Running the quickinstall-env command will set up some environment
variables and make sure your path contains the correct location for Hadoop, Zoo-
Keeper, and Accumulo.

A More Complete Installation | 73

After the install, everything should be running. It is a self-contained environment and
everything should be under the quickinstall-home directory. The benefit of this is that
you can stop everything, remove that directory, and reinstall if needed.

You can verify everything is running with this command:
jps -1m

This command should show you processes that include the following:

» Hadoop processes

org.apache.hadoop.hdfs.server.datanode.DataNode
org.apache.hadoop.hdfs.server.namenode.NameNode
org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode
org.apache.hadoop.yarn.server.nodemanager.NodeManager
org.apache.hadoop.yarn.server.resourcemanager.ResourceManager

» ZooKeeper process
org.apache.zookeeper.server.quorum.QuorumPeerMain
o Accumulo processes

org.apache.accumulo.start.Main gc --address localhost

org.apache.accumulo.start.Main master --address localhost
org.apache.accumulo.start.Main monitor --address localhost
org.apache.accumulo.start.Main tracer --address localhost
org.apache.accumulo.start.Main tserver --address localhost

To start up an Accumulo shell, first run:

source bin/quickinstall-env

If things were not running, you could run qi-start to start
Hadoop, ZooKeeper, and then Accumulo after sourcing
quickinstall-env. When you want to stop everything, run qi-stop.
Accumulo and Hadoop both include start-all.sh scripts, which can
be confusing. The scripts provided with quickinstall start and stop
all the processes you will need. Inspect qi-start and qi-stop to
see how to start processes separately.

Now you need to run the main accumulo command, which is located in quickinstall-
home/accumulo-1.6.1/bin. This is the main entry point for working with Accumulo
from the command line. It will be on your path if you sourced the quickinstall-env
script. Let’s run the shell:

accumulo shell -u root -p secret

This will start the shell you saw in the shell example. Try out some of the commands,
such as tables. You should only see the accumulo.root, accumulo.metadata, and trace

74 | Chapter2: Quick Start

tables, which are internal tables we discuss more in “Metadata Table” on page 379 and
“Using Tracing” on page 481, respectively.

Lets get set up to run the insert and scan commands with Java code again. We will
handle the table creation and granting authorizations to the root user in the shell.
Create a table named table3:

createtable table3
Now ensure that the root user has billing and inventory authorizations:
setauths -u root -s "billing,inventory"

Once that is complete, we will use a script similar to the ./bin/insert-all.sh script from
the Java example. However, this script will use not use Maven to execute the JavaExam
ple class; instead, it will run it directly. You will need to use Maven to build a JAR by
executing the following from the examples/quickstart directory:

mvn package

Go back to the terminal window were you checked out the book’s source code. From
the examples/quickstart directory, source the quickinstall-env script from the
quickinstall-home/bin directory where the quickinstall is running to set up the envi-
ronment for the running cluster. Now run the JavaExample using the accumulo
command:

source PATH_TO_QUICKINSTALL_HOME/bin/quickinstall-env
accumulo -add $PWD/target/mini-accumulo-cluster-example-0.0.1-SNAPSHOT. jar \
com.accumulobook.macexample.JavaExample

You should be presented with the default usage from the JavaExample class, explain-
ing all the options:

Error: The following options are required: -i, --instance -z, --zookeepers -p,
--password -u, --user
Usage: <main class> [options] [command] [command options]
Options:
* -1, --instance
Accumulo instance name
* -p, --password
Accumulo user password
* -u, --user
Accumulo user
* -z, --zookeepers
Comma-separated list of zookeepers
Commands:
create Usage: create [options]
Options:
* -t, --table
Table name to create

insert Usage: insert [options]
Options:

A More Complete Installation | 75

-a, --auths
ColumnVisiblity expression to insert with data
* -cf, --columnFamily
Column Family to insert
* -cq, --columnQualifier
Column Qualifier to insert
* .r, --rowid
Row Id to insert
* -t, --table
Table to scan
* -val, --value
Value to insert

scan Usage: scan [options]
Options:
-a, --auths
Comma separated list of scan authorizations
-r, --row
Row to scan
* -t, --table
Table to scan

grep Usage: grep [options]
Options:
* -t, --table
Table to scan
* --term
Term to grep for in table

Using the accumulo command along with the -add option is the
easiest and cleanest way to run Java programs with a classpath
already set up for your Accumulo installation.

Now let’s insert the first key-value pair:

accumulo -add $PWD/target/mini-accumulo-cluster-example-0.0.1-SNAPSHOT. jar \
com.accumulobook.macexample.JavaExample \

-1 accumulo -z localhost:2181 -u root -p secret \

insert -r "bob jones" -t table3 -cq contact -cf address \

-val "123 any street" -a billing

For this example, we used the Accumulo instance name and the
ZooKeeper location from the quickinstall. This is the normal way
to connect to a running Accumulo instance.

76

| Chapter2: Quick Start

From the Accumulo shell where you installed and ran the quickinstall, run the scan
command. When you ran the createtable table3 command, the Accumulo shell
put in table3, which you can see in the prompt:

root@accumulo table3> scan
bob jones address:contact [billing] 123 any street

The other insert commands are in the ./bin/insert-all2.sh file back in the examples/
quickstart terminal. You can either copy and paste the commands from this file into
the terminal, including the variables that are set up, or you can just run the insert-
all2.sh script:

./bin/insert-all2.sh
The output should look like this:

Running insert command
Writing mutation for bob jones
Running insert command
Writing mutation for bob jones
Running insert command
Writing mutation for bob jones
Running insert command
Writing mutation for bob jones
Running insert command
Writing mutation for fred smith
Running insert command
Writing mutation for fred smith
Running insert command
Writing mutation for fred smith
Running insert command
Writing mutation for fred smith

Once the data is inserted, let’s use the shell to scan to make sure we can see all the
data. This time, let’s run the shell with the -e switch to pass in an Accumulo com-
mand. This will exit the shell after the command finishes and dump the output back
to STDOUT. First, from the Accumulo shell window, type exit to get out of the shell.
We will now use the -e switch to pass in a command for the shell to execute. For that
reason, our scan command needs to use the -t switch to specify which table to scan.
Using command-line execution with the Accumulo shell is a useful technique,
because you can then use all the regular Unix tools such as grep, sed, and cut:

accumulo shell -u root -p secret -e "scan -t table3"

Assuming the data was inserted and your Accumulo user authorizations include bill
ing,inventory, the output should look like this:

bob jones address:contact [billing] 123 any street

bob jones city:contact [billing] anytown
bob jones phone:contact [billing] 555-1212
bob jones sneakers:purchases [billing&inventory] $60

A More Complete Installation | 77

fred smith address:contact [billing] 444 main st.

fred smith city:contact [billing] othertown

fred smith glasses:purchases [billing&inventory] $30
fred smith hat:purchases [billing&inventory] $20

Eight lines should be returned. You could count the lines manually, or you could pipe
the last command though we -1:

accumulo shell -u root -p secret -e "scan -t table3 -st" | wc -1

If you don't get all eight, revisit the previous commands and make sure the records
have been inserted correctly and that your authorizations are configured properly.

Now run the following to execute the same scan with the JavaExample command.
You must be either be in the terminal within the examples/quickstart directory or
modify the location of the JAR to an absolute path:

accumulo -add SPWD/target/mini-accumulo-cluster-example-0.0.1-SNAPSHOT.jar \
com.accumulobook.macexample.JavaExample \
-1 accumulo -z localhost:2181 -u root -p secret scan -t table3

The output should be:

Running scan command
Scanning table3
Scanning with all user auths
Scanning for all rows
Results ->
bob jones address:contact [billing] 1425654249954 false 123 any street
bob jones city:contact [billing] 1425654251454 false anytown
bob jones phone:contact [billing] 1425654252921 false 555-1212
bob jones sneakers:purchases [billing&inventory] 1425654254414 false $60
fred smith address:contact [billing] 1425654255892 false 444 main st.
fred smith city:contact [billing] 1425654257394 false othertown
fred smith glasses:purchases [billing&inventory] 1425654258824 false $30
fred smith hat:purchases [billing&inventory] 1425654260287 false $20

The result should be the same as from scanning in the earlier example. Try limiting
the results by row:

accumulo -add $PWD/target/mini-accumulo-cluster-example-0.0.1-SNAPSHOT.jar \
com.accumulobook.macexample.JavaExample \
-1 accumulo -z localhost:2181 -u root -p secret scan -t table3 -r "bob jones"

The output should be:

Running scan command

Scanning table3

Scanning with all user auths

Scanning for row bob jones

Results ->
bob jones address:contact [billing] 1425654249954 false 123 any street
bob jones city:contact [billing] 1425654251454 false anytown

78 | Chapter2: Quick Start

bob jones phone:contact [billing] 1425654252921 false 555-1212
bob jones sneakers:purchases [billing&1inventory] 1425654254414 false $60

Now try limiting the results by authorizations:

accumulo -add $PWD/target/mini-accumulo-cluster-example-0.0.1-SNAPSHOT.jar \
com.accumulobook.macexample.JavaExample \
-1 accumulo -z localhost:2181 -u root -p secret scan -t table3 -a billing

The output should be:

Running scan command

Scanning table3

Using scan auths billing

Scanning for all rows

Results ->
bob jones address:contact [billing] 1425654249954 false 123 any street
bob jones city:contact [billing] 1425654251454 false anytown
bob jones phone:contact [billing] 1425654252921 false 555-1212
fred smith address:contact [billing] 1425654255892 false 444 main st.
fred smith city:contact [billing] 1425654257394 false othertown

For a last exercise, try running the grep example:

accumulo -add $PWD/target/mini-accumulo-cluster-example-0.0.1-SNAPSHOT.jar \
com.accumulobook.macexample.JavaExample \
-1 accumulo -z localhost:2181 -u root -p secret grep -t table3 --term town

The output should be:

Running grep command

Grepping table3

Results ->
bob jones city:contact [billing] 1425654251454 false anytown
fred smith city:contact [billing] 1425654257394 false othertown

Other Important Resources

We have seen how to interact with Accumulo both in the shell and in code. Another
important tool for interacting with Accumulo is the monitor page. Assuming your
quickinstall is still running, visit http://localhost:50095. We will not discuss the moni-
tor page in detail here, but feel free to click around and look at the different informa-
tion it provides. More details about the monitor are at “Monitor” on page 377.

Another important tool is the logfiles. For the quickinstall, these are located in
quickinstall-home/accumulo-1.6.1/logs. The Accumulo processes we listed with the
jps command each has its own log. The logs are prefixed with gc, master, monitor,
master, or tserver. By default, Accumulo configures a .log and .debug.log for each pro-
cess, with the latter logging everything at a log level of DEBUG.

Other Important Resources | 79

http://localhost:50095

One Last Example with a Unit Test

We talked about the MiniAccumuloCluster being good for unit testing. There is an
example named Example.java in the examples/quickstart/main/java/com/accumulo-
book/macexample directory. It is a bit of a contrived example, but it has no knowledge
of the MiniAccumuloCluster. Instead it just knows about the instance name, Zoo-
Keeper location, and root password, and uses those to connect to an Accumulo
instance. The ExampleTest.java test starts up a MiniAccumuloCluster and then uses
the instance name, ZooKeeper location, and root password from that to construct a
new Example. Methods on this instance of Example are then tested against the MiniAc
cumuloCluster, as if it were a full Accumulo instance. You may have noticed that a
unit test was executed when you ran mvn package earlier. This ExampleTest.java was
the test that ran. Feel free to run mvn test and study the output.

Additional Resources

o Main Apache Accumulo page

o Official Accumulo documentation
 Javadocs

« Downloads

« Source code

 GitHub mirror

o Mailing list information

o Issues/Jira

e Build server

o Latest GitHub projects

80 | Chapter2: Quick Start

http://accumulo.apache.org
http://bit.ly/accumulo_manual
http://accumulo.apache.org/1.6/apidocs
http://accumulo.apache.org/downloads/
http://bit.ly/accumulo_source
https://github.com/apache/accumulo
http://bit.ly/accumulo_lists
http://bit.ly/accumulo_jira
http://bit.ly/accumulo_build_server
http://bit.ly/accumulo_github

CHAPTER 3
Basic API

Accumulo is designed to support building applications that support huge numbers of
simultaneous users, handling a large number of write, update, and read requests by
providing highly scalable, low-latency, random access to data in tables. These tables
can be designed to support Internet applications that serve data to and receive data
from millions of users around the world. In addition, Accumulo provides capabilities
well suited to keeping a large amount of data organized for the purposes of analysis,
and for delivering analytical results to many users of varying access levels.

The Java client API is the primary method of getting data into and out of Accumulo
tables. Applications can be written in Java or other JVM-based languages using the
provided client library or in non-JVM-based languages by using the Thrift proxy.

Applications typically need to perform three tasks: getting data into Accumulo, apply-
ing any necessary transformations to existing data to map to the Accumulo data
model, and performing scans against Accumulo tables to satisfy user requests.

Many Accumulo clients are deployed as part of a web application, allowing users to
perform interactive requests for information stored in Accumulo tables, although this
is certainly not a requirement. Some clients provide access to information in Accu-
mulo to other services.

When you design an application on the Accumulo API, you should consider a few
questions that will assist in determining how to write the application, how the data
should be organized within one or more Accumulo tables, and ideally, what level of
performance to expect.

These considerations are all equally important.

81

The first thing to consider when creating an application on Accumulo is simply what
activities the application will carry out on behalf of the user. The questions to answer
include but are not limited to:

 Does the application capture information provided by the user?
o Are there semantic rules governing relationships in the information managed?

o Does data need to be updated?

In particular, attention should be paid to the access patterns that the application
requires. The term access pattern refers to how the user wants to access the data. For
example, users may need to retrieve information about books based on the title, and
at other times, by the author, and at other times, both. Knowing what information
users know and how they will use that to find out information they don’t know will
help guide the design of tables and rule out designs that will not perform well.

The second thing to consider are the data characteristics of the data that is managed
by Accumulo, including questions such as:

» Does the data already exist or is it being created by the user via the application, or
both?

o If some data already exists, in what format is it currently stored?

« Is combining two or more existing data sets required? If so, is the way they
should be combined known beforehand?

o At what rate will data arrive?
o What sensitivities exist within the data?

« What groups of users will need access to which parts of the data?

The third consideration in application design is performance. Applications must han-
dle requests quickly enough to satisfy business or mission requirements, in the con-
text of large amounts of data and large numbers of users. We discuss performance in
depth in Chapter 13.

Development Environment

To begin writing Java applications for Accumulo, obtain the Accumulo Java library.
Information on developing applications in other languages is described in “Thrift
Proxy” on page 236.

82 | (Chapter3:BasicAPI

Obtaining the Client Library

The latest Accumulo Java client library can be obtained from the official site. If you
are using Maven to manage project dependencies, no special repositories need to be
added to the Maven settings.xml file.

Using Maven

To see if Maven is installed, type mvn -version. If the Maven version is not 3.0.4 or
greater, download and install it from http://maven.apache.org. To add Accumulo as a
dependency for a Maven project, add the following to the dependencies section of the
pom.xml file:

<dependency>
<groupld>org.apache.accumulo</groupIld>
<artifactId>accumulo-core</artifactId>
<version>1.6.0</version>

</dependency>

Run mvn clean package to create a JAR, or use the appropriate Maven goals for the
project.

Using Maven with an IDE

Several IDEs include built-in support for Maven that makes development easier:

Eclipse
If you're using Eclipse, you might need to install a plug-in for Maven support.

NetBeans
Comes with Maven support.

Intelli] IDEA
Comes with Maven support.

Configuring the Classpath

Bundling up the Accumulo dependencies with a client JAR is discouraged, because it
can make debugging difficult later. A better way to handle dependencies is to config-
ure the classpath properly. The accumulo-core, accumulo-trace, and ZooKeeper JARs
are ones that are likely to be needed on the classpath. Commons and log4j JARs may
also be necessary. To run a MapReduce job, dependencies must be passed to the Map-
Reduce child processes using the -1libjars parameter. Accumulo comes with scripts
that configure the classpath and libjars (if applicable) for standalone or MapReduce
jobs. The usage for these scripts follows:

Development Environment | 83

http://accumulo.apache.org/downloads
http://maven.apache.org
http://maven.apache.org/eclipse-plugin.html
http://wiki.netbeans.org/Maven
http://bit.ly/intellij_idea

Standalone
bin/accumulo -add jarFile className args

MapReduce
bin/tool.sh jarFile className args

Introduction to the Example Application: Wikipedia Pages

Basic Accumulo applications often begin with a data set and some things we want to
do with that data. For the purposes of introducing readers to the Accumulo API,
were going to use the data from Wikipedia. We'll write an application to load this
data and to query it, with the goal of allowing users to explore the information con-
tained within it in various ways.

Wikipedia Data

Wikipedia is a collection of over 30 million articles in 287 languages, including 4.3
million in English, written by volunteers. Articles contain free-form text and associ-
ated metadata including title, timestamps, contributor information, and references to
other articles and sources.

You can download a snapshot of the English Wikipedia articles. In addition to one file
containing all the articles (enwiki-latest-pages-articles.xml.bz2), it is possible to down-
load files containing just a portion of the articles with filenames like enwiki-latest-
pages-articles1.xml-p000000010p000010000.bz2. Alternatively, a specific set of pages
can be downloaded via the Special Export option.

The data is stored in XML format. The body of the articles is in the MediaWiki
markup format, developed specifically for Wikipedia.

An abbreviated example of an article is as follows:

<mediawiki xmlns="http://www.mediawiki.org/xml/export-0.10/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.mediawiki.org/xml/export-0.10/

http://www.mediawiki.org/xml/export-0.10.xsd" version="0.10" xml:lang="en">

<siteinfo>

<sitename>Wikipedia</sitename>

<dbname>enwiki</dbname>

<base>http://en.wikipedia.org/wiki/Main_Page</base>

<generator>MediaWiki 1.25wmf14</generator>

<case>first-letter</case>

<namespaces>

<namespace key="-2" case="first-letter">Media</namespace>

<namespace key="2600" case="first-letter">Topic</namespace>
</namespaces>
</siteinfo>

84 | Chapter3:BasicAPI

http://dumps.wikimedia.org/enwiki/latest/
http://en.wikipedia.org/wiki/Special:Export

<page>
<title>Apache Accumulo</title>

<ns>0</ns>

<1d>34571412</1d>

<revision>

<1d>637313466</id>
<parentid>631046295</parentid>
<timestamp>2014-12-09T12:33:13Z</timestamp>
<contributor>

<username>Frap</username>

<1d>612852</1d>

</contributor>

<model>wikitext</model>
<format>text/x-wiki</format>

<text xml:space="preserve" bytes="5554">

'''"Apache Accumulo''' is a computer software project that developed a
sorted, distributed key/value store based on the [[Bigtable]] technology
from [[Google]].<ref>[http://accumulo.apache.org/ Apache Accumulo].
Accumulo.apache.org. Retrieved on 2013-09-18.</ref> It is a system

built on top of [[Apache Hadoop]], [[Apache ZooKeeper]], and [[Apache
Thrift]].

</text>

<sha1l>dzr6dhn3hlq22aalz44g8g8abo15gm4</shal>

</revision>

</page>

</mediawiki>
As an example of using the API, we'll parse these articles and write them to Accu-
mulo. First we'll devise a way of mapping the data to the Accumulo data model into
one or more tables. Next we'll ingest the data using parts of the Accumulo Java client
API. Finally, we'll write some code to allow users to query these tables in various
ways.

Data Modeling

Instead of formulating questions as database queries, application designers should
break questions into scan operations—ideally as few of them as possible per user
request. To start getting used to this way of thinking, it is a good idea to begin appli-
cation design with a single table. Additional tables can be added to the application if it
is determined that they are necessary to support additional access patterns.

When deciding how to represent data in Accumulo, developers face one of two chal-
lenges: either creating a new schema that allows them to model the data they will be

Introduction to the Example Application: Wikipedia Pages | 85

creating, or mapping existing data conforming to an existing schema to the Accu-
mulo data model in a way that supports the access patterns required.

A Quick Overview of Data Modeling

Data modeling is a task that involves identifying the structure of a concept to be rep-
resented in a system and defining its representation within the system. It is often
performed at many levels and in many ways. A schema is a description of the struc-
ture in data.

A particular schema can be represented in various ways when stored in different sys-
tems. For example, one could define the concept of an address to be made up of a
street number, a city name, a state, a zip code. An address such as this is composed of
four named elements and has a specific meaning to a particular application. For this
reason, this schema could be considered a semantic or conceptual data model. Con-
ceptual models can be represented in several formats, or logical models.

For example, one might represent or map a particular address to the JSON format as
follows:

{
street: '123 any street',
city: 'anytown',
state: 'CA',
zipCode: 90210
}

Or as XML:

<records>
<address>
<street required=true>123 any street</street>
<city>anytown</city>
<state>CA</state>
<zip code>90210</z1ip code>
</address>
</records>

In other places one might represent an address as a table, such as in a relational
database.

JSON, XML, and two-dimensional tables can be thought of as logical methods of cap-
turing a conceptual model in a particular way for a particular purpose. In fact, many
applications make use of several logical data models to represent the same conceptual
data in various places. For example, an application may retrieve some rows from a
relational database representing a user’s profile and deserialize them as a program-
matic object in memory, and then convert the programmatic object to JSON before
sending it to a web browser.

86 | Chapter3:BasicAPI

Accumulo.

Accumulo has its own logical model as well, consisting of multidimensional keys and
simple values. We cover the elements of the data model in “Data Model” on page 13.

The final type of data model is a physical model. A physical model describes how data
elements are stored or transmitted in some physical medium. An example of a physi-
cal model is a B-Tree file for relational databases or the RFile file format used by

In some systems there are more than three levels of abstraction. The number of levels
required depends on the complexity of the system. Additional levels of abstraction
can help in keeping each individual level simple and manageable.

The Accumulo data model is again included in Figure 3-1 as a convenient reminder

during our modeling task.

Key

row 1D

Column

Value
Timestamp

Figure 3-1. Basic Accumulo key structure

As in any key-value system, if one knows the key, the associated value can be found
very quickly. With a single Accumulo table we should store the information that an
application will use to perform lookups in elements within the Accumulo key, and the
information to be retrieved in the value. To start, well create a table that allows users
to specify an article title and retrieve the text or associated metadata. The way we'll
map Wikipedia data to the Accumulo data model is as described in Table 3-1.

Table 3-1. One method for storing Wikipedia articles in Accumulo

Row ID

page title
page title
page title
page title

page title

Column family

contents

metadata

metadata

metadata

metadata

Column qualifier

namespace
revision

timestamp

Column visibility Value
contents visibility page contents
id visibility id
namespace visibility namespace
revision visibility revision
timestamp visibility timestamp

Introduction to the Example Application: Wikipedia Pages | 87

Here we're storing the timestamp of each Wikipedia article under a
column called timestamp. This should not be confused with the
timestamp that is part of each key, which will be provided by the
tablet servers and used to keep track of when each key-value pair
was written.

We'll put our code to do this in the WikipediaIngest class. Our client code will pro-
duce this table in Accumulo based on a Wikipedia XML dump file:

Alternate Olympics contents: [] refimprove \xOAIn artistic gymnasti ...
Alternate Olympics metadata:id [] 15713865

Alternate Olympics metadata:namespace []

Alternate Olympics metadata:revision [] 7328338

Alternate Olympics metadata:timestamp [] 2013-04-09T08:05:05Z
Ancient Olympic Games contents: [] pp-protected for \x0A pp-move
Ancient Olympic Games metadata:id [] 19098431

Ancient Olympic Games metadata:namespace []

Ancient Olympic Games metadata:revision [] 5207008

Ancient Olympic Games metadata:timestamp [] 2013-08-19T10:52:07Z
Arena X-Glide contents: [] \Xx0AArena X-Glide is a swimsuit made ...
Arena X-Glide metadata:id [] 23781846

Arena X-Glide metadata:namespace []

Arena X-Glide metadata:revision [] 7328338

Arena X-Glide metadata:timestamp [] 2012-09-24T15:35:39Z

As we introduce the API we'll return to this example to illustrate how the parts of the
API fit into a broader application.

Obtaining Example Code

Code for the examples we describe here can be downloaded from https://github.com/
accumulobook/examples.

Before building, we need to put one JAR that is not available in any public repo into
our local Maven repo (see “Traversing the Example Twitter Graph” on page 326 for
another example using the Ubigraph library):

mvn install:install-file -Dfile=1lib/ubigraph-0.2.4.jar -DgroupId=org.ubiety \
-DartifactId=ubigraph -Dversion=0.2.4 -Dpackaging=jar

The examples can be built via Maven:
mvn clean compile

The examples ending in Example.java can be run from within an IDE or from the
command line without setting up an external Accumulo cluster.

To run an example from the command line, use the following:

mvn exec:java -Dexec.mainClass="com.accumulobook.[package].[Example]" \
-Dexec.args="argument"

88 | (Chapter3:BasicAPI

https://github.com/accumulobook/examples
https://github.com/accumulobook/examples
http://ubietylab.net/ubigraph/

All of these classes use the MiniAccumuloCluster class discussed in Chapter 2. The
MiniAccumuloCluster is a single process that stores data to a temporary directory on
disk that is deleted when the instance is shut down.

In these classes you will see:
Connector conn = ExampleMiniCluster.getConnector();

That code can be replaced with the following code to execute against an actual Accu-
mulo instance like the quickinstall:

String instanceName = "your_instance";
String zooKeepers = "your_zoo_server_1:port,your_zoo_server_2:port";

Instance instance = new ZooKeeperInstance(instanceName, zooKeepers);

Connector conn = instance.getConnector("your_username",
new PasswordToken("your_password"));

Downloading Sample Wikipedia Pages

It is convenient to be able to work with a sample set of Wikipedia pages. These can be
downloaded via the Special Export API.

For example, to download a set of pages from the Hadoop category one can use the
curl command as follows:
curl -d "" "http://en.wikipedia.org/w/index.php?title=Special:Export)\
&pages=Cloudera%0AApache_HBase%0AApache_ZooKeeper%0AApache_Hive\
%0AApache_Mahout%0AMapR%0AHor tonworks%0AApache_Accumulo%0ASqoop)
%0AApache_Hadoop%0A0ozie%0ACloudera_Impala%0AApache_Giraph%@AApache_Spark)
&action=submit" > hadoopPages.xml
In some of our examples we'll use the equivalent of this curl command in Java. The
WikipediaPagesFetcher class will do this for us.

Downloading All English Wikipedia Articles

A dump of all e=English Wikipedia articles is available. The dump will consist of a
single large XML file. The XML contains metadata about each article and the article
contents, marked up in the WikiMedia format. The full dump can be somewhat large.

Our examples use the bliki library to parse these files.

We'll first introduce the basic API for reading and writing data. Then we’ll work
through an example of modeling data from Wikipedia, providing ways to add data
from our application and access information.

Introduction to the Example Application: Wikipedia Pages | 89

http://bit.ly/english_lang_wikipedia
https://code.google.com/p/gwtwiki

Connect

The Accumulo client API begins with an Instance object, which describes a particu-
lar Accumulo cluster. An Accumulo instance is uniquely identified by a set of Zoo-
Keeper servers and an instance name. A single set of ZooKeeper servers can manage
multiple Accumulo instances, so the Accumulo instance name is required:

String instanceName = "accumulo_instance";
String zooKeepers = "zoo_server_1:port,zoo_server_2:port";

Instance instance = new ZooKeeperInstance(instanceName, zooKeepers);

Both data-specific and administrative actions are handled through an Accumulo Con
nector object. The Connector is obtained from an Instance object:

String principal = "user_name";
AuthenticationToken token = new PasswordToken('password");

Connector connector = instance.getConnector(principal, token);

For more information on providing credentials, see “Authentication” on page 176.

Connectors are used primarily to obtain other objects required to read and write
data, namely, BatchWriter, Scanner, and BatchScanner. They can also be used to
perform administrative actions through the tableOperations(), securityOpera
tions(), and instanceOperations() methods. Connectors can be shared by multi-
ple threads.

The following sections illustrate how to use the objects obtained from a Connector to
read and write data.

Insert

Writing data into Accumulo is accomplished by creating a Mutation object and
adding it to a BatchWriter.

A Mutation encapsulates a set of changes to a single row. The changes can be either
puts or deletes. We'll address deletes later. All the changes within a single mutation
can be applied atomically, meaning they either succeed or fail as a group. This is
because a row is always fully contained within a single tablet, which is always assigned
to exactly one tablet server.

This makes it easy for applications to make concurrent updates to a row without wor-
rying about mutations being partially applied:

String rowId = "Article_Title";

String metadataColFam = "metadata";

String authorColQual = "author";

Value authorValue = new Value("Joe Jones".get());

90 | Chapter3:BasicAPI

Mutation m = new Mutation(rowId);
m.put(metadataColFam, authorColQual, authorValue);

Note that column families do not have to be declared to exist before they are specified
in a mutation. In addition, column families and column qualifiers are allowed to be
empty String objects or byte arrays. There are multiple incarnations of the put()
method that allow specifying more or fewer parts of the key. For example, we could
also specify a ColumnVisibility object as part of our put:

String rowId = "Article_Title";

String metadataColFam = "metadata";

String authorColQual = "author";

ColumnVisibility publicColVis = new ColumnVisibility("public");
Value authorValue = new Value("Joe Jones".get());

Mutation m = new Mutation(rowId);
m.put(metadataColFam, authorColQual, publicColVis, authorValue);

We can also specify a timestamp, although this is generally discouraged. They do not
have to represent time and can be used to store logical version numbers of keys, but
when using custom timestamps applications are entirely responsible for managing
versions through insert, update, and delete operations.

Unlike all other components of the key, timestamps are stored as Java Longs and are
sorted in descending order:

String rowlId = "Article_Title";

String metadataColFam = "metadata";

String authorColQual = "author";

ColumnVisibility publicColVis = new ColumnVisibility("public");
Long timestamp = System.currentTimeMillis();

Value authorValue = new Value("Joe Jones".get());

Mutation m = new Mutation(rowId);

m.put(metadataColFam, authorColQual, publicColVis, timestamp, authorValue);
Multiple puts can be applied to a single mutation. Each of these puts will insert new
data for the column specified:

String rowId = "Article_Title";

String metadataColFam = "metadata";
String authorColQual = "author";
Value authorValue = new Value("Joe Jones".get());

String pageldColQual = "pageid";
Value pageldValue = new Value("54321".get());

Mutation m = new Mutation(rowId);
m.put(metadataColFam, authorColQual, authorValue);
m.put(metadataColFam, pageIdColQual, pageldValue);

Insert | 91

A single mutation will be converted into multiple key-value pairs, one for each
unique column mutated (Figure 3-2). Unless specified in the client, all the key-value
pairs for a mutation will receive the same timestamp from the tablet server.

One Mutation in Client

rowld: Apache_Accumulo

column column
. e value
family qualifier
#* See also
content comment Added Column- | - -
orianted DEMS
metadata pageid 571876229 | ----
metadata title Apache
Accumulo

Three invocations of put()

Three Key-Value Pairs in Tablet Server

eolumn

rowid family

Apache_Accumulo metadata

Apache_Accumulo metadata

column
qualifier

pageid

title

timestamp

Apache_Accumulo content comment 20111001

20111001

20111001

value

[* Bee also */ Added
Column-oriented DBME

571876229

Apache
Accumulo

Timestamps applied

<

Figure 3-2. Mutation resulting in multiple key-value pairs

put() should be called only once per column to be manipulated,
because having multiple key-value pairs with the same row Id, col-
umn components, and timestamp will result in one of those key-
\ value pairs being arbitrarily picked to be kept by the server.

characters.

Strings Versus Byte Arrays

In these examples we use String objects for elements of the key. The advantage of
using String objects is that they are human-readable and the sort order is relatively
apparent. However, these don’t have to be Strings. When supplied with String
objects the Key class automatically converts them to UTF-8-encoded byte arrays.

For some applications, other objects can be serialized to byte arrays. When doing this,
keep in mind that Accumulo will compare two byte arrays by comparing one byte at a
time. If this doesn't result in the sort order desired, the serialization process can be
manipulated to produce byte arrays that do sort properly.

Value objects of course are not sorted and also store byte arrays. This makes it possi-
ble to store binary or other data without worrying about having to escape certain

92 | Chapter3:BasicAPI

When storing serialized objects other than Strings, it is possible to create a custom
Formatter for displaying the objects in a human-readable way so that key-value pairs
can be inspected in the shell. We discuss custom Formatters in “Human-Readable
Versus Binary Values and Formatters” on page 311.

In general, the elements within keys should be relatively small.
Keeping the total key size under a megabyte will allow Accumulo to
“ efficiently process many keys simultaneously during reads and
writes in memory.

In Accumulo 1.6, there is a Constraint configured on all new
tables that rejects mutations if they contain keys larger than 1 MB.
We discuss configuring tables in Chapter 4.

Recall that values are stored as byte arrays and are not sorted as the elements of the
key are. Values can contain more data than the elements of the key can but should
still be kept within a reasonable size for tablet servers to process, because they will
read data from tables on disk into memory in order to retrieve them for clients.

Values in practice can be used to store an incredibly wide variety of data. Accumulo
will never interpret the bytes unless an application configures a table to do so explic-
itly. As such, the information contained in a value is completely up to the discretion
of the application.

We discuss some best practices in techniques for creating values in “Designing Val-
ues” on page 307.

Committing Mutations

Once we have one or more mutations we want to apply to a table, we can commit
them by adding them to a BatchWriter. BatchWriters will efficiently group muta-
tions into batches based on the way tablets are assigned to tablet servers in order to
minimize the network overhead involved in sending mutations to tablet servers:

BatchWriterConfig config = new BatchWriterConfig()
.setMaxMemory (MAX_MEMORY)
.setMaxLatency(LATENCY, TimeUnit.MILLISECONDS)
.setMaxWriteThreads(THREADS);

BatchWriter bw = connector.createBatchWriter("table name",);
bw.addMutation(m);

bw.close();

Insert | 93

Typical values for these parameters are:

Max Memory
1000000 (1 million bytes or roughly 1 MB)

Max Latency
1000 (1 thousand milliseconds)

Max Write Threads
10

Application developers should always tune the BatchWriter
parameters to obtain the best performance on their particular data.

The size of batches a BatchWriter uses is controlled via the Max Memory setting.
Giving a BatchWriter more memory allows the BatchWriter to group more muta-
tions together before sending them over the network.

Max Latency determines how long a BatchWriter will wait before sending mutations
that do not comprise a full batch. This is so mutations don't end up waiting a long
time for a full batch to be created.

Most clients can experiment with these parameters to achieve the throughput and
maximum latency they need.

The BatchWriter provides a flush() method that can be used to ensure that all
mutations that haven't been sent are sent. This usually does not need to be called and
can significantly degrade performance if used extensively, because it will defeat the
BatchWriter’s attempts to amortize network overhead. One possible use of flush()
is to aid in synchronizing writes between two or more tables.

Here is a simple example of code in a client application that calls flush() on a Batch
Writer every 1,000 mutations, in order to ensure that all writes thus far were com-
mitted successfully:

class MyIngestClient {
private BatchWriter bw = connector.createBatchWriter("table name",);

private int totalWritten = 0;

public void writeData(Mutation m) throws MutationsRejectedException {
bw.add(m);
totalWritten++;

if(totalWritten % 1000 == 0)

94 | Chapter3:BasicAPI

bw.flush();

public void shutdown() throws MutationsRejectedException {
bw.close();

}
}

We'll talk about handling that MutationsRejectedException in the next section.

The close() method should be used to send any remaining mutations and shut
down the write threads when a BatchWriter is no longer needed. Simply allowing
Java to garbage-collect the BatchWriter object can cause the final batches to be sent
and threads to close, but explicitly calling close() is a better practice.

Thread Safety

The BatchWriter and BatchScanner create their own thread pools

\ for efficiently communicating with multiple tablet servers simulta-
neously. If an application has more than one thread for other rea-
sons, keep in mind that Connector and BatchWriter objects are
thread-safe, in that they can be shared and used by multiple threads
without synchronization. But Scanner and BatchScanner are not
thread-safe—each thread should obtain and use its own Scanner
and BatchScanner instances or else use them in a synchronized
manner so that only one thread is accessing them at a time. Batch
Writer and BatchScanner instances should be closed via close()
when no longer needed.

Handling Errors

The Accumulo client automatically handles errors related to the automatic failover
from one tablet server to another. This frees up the application designer to focus on
the logic of the application rather than having to write the code to retry inserts.

Accumulo assumes that client applications do care to know that all mutations have
been successfully applied. If for some reason a mutation fails, the Accumulo client
will throw a MutationsRejectedException.

A mutation can fail for several reasons:
o Mutations contained ColumnVisibility instances that the submitting user was
not authorized to write if configured—see “Authorizations” on page 183.
o Mutations violated one or more Constraints configured for the table.

o A persistent server failure prevented the write from succeeding.

Insert | 95

o Other unknown errors.

Each of these types of failures can be permanent or transient. A permanent failure
means that a particular mutation is simply not allowed to be written to the table,
according to Constraints currently configured. Simply retrying to commit these
mutations will not work, because the mutations violate some rule and will never be
allowed to be written.

If getAuthorizationFailuresMap() or getConstraintViolationSummaries()
returns any elements, then there are permanent failures. Applications that receive
exceptions in these cases should report the situation to the user or developer, because
it is likely that there is either some malformed data, a security problem, or a bug.

Transient failures, on the other hand, can succeed if the application tries to commit
them again. getErrorServers() can return a list of servers that the automatic retries
failed to write to. Applications can choose to retry indefinitely, or to fail and report
the error to the user or administrators.

Finally, any other errors are simply counted and are available via getUnknownExcep
tions().

The type of failure that caused the MutationsRejectedException to be thrown can
be obtained from the exception object:

try {
bw.addMutation(m);
bw.close();
} catch (MutationsRejectedException ex) {

// ---] Permanent failures [----

// mapping of keyextent mappings to SecurityErrorCode
Map<KeyExtent, Set<SecurityErrorCode>> authFailuresMap =
ex.getAuthorizationFailuresMap();
if(authFailuresMap.size() > 0) {
// retrying will fail. log any recently added mutations
for(Entry<KeyExtent, Set<SecurityErrorCode>> extent :
authFailuresMap.entrySet()) {

}...
}

// list of constraint violations
if(ex.getConstraintViolationSummaries().size() > 0) {
// retrying will fail. log any recently added mutations
for(ConstraintViolationSummary summary :
ex.getConstraintViolationSummaries()) {

96 | Chapter3:BasicAPI

// ----] Transient failures [----

// A list of servers that had internal errors when mutations were written
// optionally log

// optionally retry

Collection<String> errorServers = ex.getErrorServers();

// the number of unknown other errors
// log and possibly retry
int numUnknown = ex.getUnknownExceptions();

}...

The exact mutations that were rejected are not reported. Future versions of Accumulo
may make it easier to identify particular problems with individual mutations. For
now, applications can keep track of recently added mutations in order to log them in
the event of persistent errors, or to retry them in the case of transient failures.

If no exceptions are thrown by a BatchWriter when calling flush() or close(), an
application can be assured that all mutations added to that BatchWriter have been
persisted to Accumulo’s write-ahead log on disk, and at that point even a single server
or single rack failure should not result in any lost data.

So far we've only covered simple inserts. Next, we'll examine reading data, and then
revisit other operations possible in mutations, including updates and deletes.

Note that this application is essentially defining the structure or schema of the table.
By default Accumulo does not place restrictions on what column families and column
qualifiers may be used, or on the structure of the row ID. This means that clients that
write data must be coupled with clients that read data. In practice they can simply be
the same client, but if they are separate, care must be taken to ensure that clients read-
ing tables are either kept in sync with clients that write, or that they can dynamically
discover and handle changes to the table. This can be done, for example, by ignoring
additional columns and only scanning for known columns, or by treating the con-
tents of rows as dynamic.

Insert Example

For our Wikipedia data, we'll be creating one row per article. Our parser will give us a
Java object called WikipediaArticle containing the information for one article.

Because we have all the information we need about an article in one object, we'll map
the elements of each article to various columns in one mutation and submit them to a
BatchWriter.

Insert | 97

This code is from the example code provided at the GitHub repository mentioned in
“Obtaining Example Code” on page 88. We include the full classnames of these exam-
ples for ease of reference:

Mutation m = new Mutation(article.getTitle().replace(" ", "_"));

String wikitext = article.getText();
String plaintext = model.render(converter, wikitext)
.replace("{{", " ")
-replace("}}", " ");
.put("contents", "", plaintext);
.put("metadata", "namespace", article.getNamespace());
.put("metadata", "timestamp", article.getTimeStamp());
.put("metadata", "id", article.getId());
.put("metadata", "revision", article.getRevisionId());

3 3 3 3 3

writer.addMutation(m);

To run an example that creates the WikipediaArticles table, downloads some Wikipe-
dia articles, and inserts them into the table, run the following command in the Accu-
mulo example code directory:

$ mvn clean compile
$ mvn exec:java -Dexec.mainClass="com.accumulobook.basic.WikipediaIngestExample"

This will start up a MiniAccumuloCluster, download and ingest a set of Wikipedia
articles in the Hadoop category into a table called WikipediaArticles, and start up a
shell for examining the data. You should see output similar to the following:

$ mvn exec:java -Dexec.mainClass="com.accumulobook.basic.WikipediaIngestExample"
[INFO] Scanning for projects...
[INFO]

Parsing articles ...
Parsing Cloudera
Parsing Apache HBase
Parsing Apache ZooKeeper
Parsing Apache Hive
Parsing Apache Mahout
Parsing MapR

Parsing Hortonworks
Parsing Apache Accumulo
Parsing Sqoop

Parsing Apache Hadoop
Parsing Oozie

Parsing Cloudera Impala
Parsing Apache Giraph
Parsing Apache Spark
done.

starting shell ...

98 | (Chapter3:BasicAPI

Shell - Apache Accumulo Interactive Shell

- version: 1.6.0
- instance name: miniInstance
- instance 1d: XXXXXXXX

- type 'help' for a list of available commands

root@iniInstance> table WikipediaArticles
root@iniInstance WikipediaArticles> scan

Apache_Accumulo contents: [] Infobox software Apache Accumulo is a computer
software project ...

Apache_Accumulo metadata:id [] 34571412

Apache_Accumulo metadata:namespace []

Apache_Accumulo metadata:revision [] 6640499

Apache_Accumulo metadata:timestamp [] 2014-01-22T05:32:03Z

Apache_Giraph contents: [] Infobox Software \x0AApache Giraph is an Apache
project to perform graph processing on big data.

Apache_Giraph metadata:id [] 37752641

Apache_Giraph metadata:namespace []

Apache_Giraph metadata:revision [] 604610728

Apache_Giraph metadata:timestamp [] 2014-04-17T16:12:43Z

----hit any key to continue or 'q' to quit ----

root@iniInstance WikipediaArticles> quit

Using Lexicoders

In our example, we are storing simple Strings in our key elements. It is possible to
store other values as well, because key elements are simply byte arrays, but ensuring
that different types sort properly can be a challenge.

Accumulo provides a set of helper classes, called Lexicoders, to aid in converting
objects of various types into byte arrays that preserve the native sort order.

Lexicoders have two methods, encode() and decode(), used to process a single
object of a specified type. For example, the DateLexicoder takes a Date instance and
returns a byte array that will sort properly when inserted as part of a key in an Accu-
mulo table:

DatelLexicoder datelLexicoder = new DatelLexicoder();
byte[] dateBytes = datelLexicoder.encode(new Date());
A Lexicoder can also decode bytes it has encoded to retrieve the original object:

Date date = datelLexicoder.decode(dateBytes);

Lexicoders can even be used to store composite types, such as lists and pairs. To store
a list of three Double objects in a row ID, we can use the ListLexicoder:

Insert | 99

List<Double> threeDimCoord = new ArrayList<>();
threeDimCoord.add(9.0);
threeDimCoord.add(2.0);
threeDimCoord.add(7.0);

ListLexicoder<Double> coordCoder = new ListlLexicoder<>();

byte[] coordBytes = coordCoder.encode(threeDimCoord);
We discuss using Lexicoders when reading data in “Crafting Ranges” on page 108 and
when using indexes in “Using Lexicoders in indexing” on page 290.

Writing to Multiple Tables

Often applications will want to write data to multiple tables. It is possible to simply
have multiple BatchWriters, each writing to a different table (Figure 3-3).

In these cases, it can be more efficient to use a MultiTableBatchWriter to allow
mutations destined for tablets that belong to different tables, but that are hosted on
the same tablet server, to be combined when sent over the network (Figure 3-4). This
reduces network overhead and increases throughput. It also makes memory manage-
ment simpler.

Little needs to change in code to make use of the MultiTableBatchWriter. We first
create the MultiTableBatchWriter and then get individual BatchWriter objects from
it, one for each table being written to. Mutations are added to the BatchWriter corre-
sponding to the table they belong in.

Here’s an example of creating two separate BatchWriters:

BatchWriterConfig conf = new BatchWriterConfig();

writerl = conn.createBatchWriter("tablel", conf);
writer2 = conn.createBatchWriter("table2", conf);

writerl.close();
writer2.close();

100 | Chapter3:BasicAPI

Tablet Server

Tablet of Tablet of Tablet of

Tablet Table? Table3
4 4 4
3 separate messages with
mutations for 3 tables
Client

Batch Batch Batch

Writer1 Writer2 Writer3

Figure 3-3. Network messages using separate BatchWriters

And here’s an example using the MultiTableBatchWriter:

BatchWriterConfig conf = new BatchWriterConfig();

MultiTableBatchWriter multiTableBatchWriter =
conn.createMultiTableBatchWriter(conf);

writerl
writer2

multiTableBatchWriter.close();

multiTableBatchWriter.getBatchWriter("tablel");
multiTableBatchWriter.getBatchWriter("table2");

Insert

Tablet Server

Tablet of Tablet of Tablet of

Tablet Table2 Table3
4
1 message with
mutations for 3 tables
Client
MultiTableBatchWriter

Batch Batch Batch
Writer1 Writer2 Writer3

Figure 3-4. Network messages using MultiTableBatch Writer

Also note that the MultiTableBatchWriter has its own flush() and close() meth-
ods, which will cause any pending mutations to be written, regardless of which Batch
Writer they were added to. This can aid in keeping two or more tables in sync by
allowing the client to write a set of mutations to multiple tables and consider them all
committed upon successful return, or to handle the MutationsRejectedException
thrown by either the flush() or close() method.

We describe an example that uses the MultiTableBatchWriter when discussing sec-
ondary indexing in “Using MultiTableBatchWriter for consistency” on page 284.

102 | Chapter 3:Basic API

Lookups and Scanning

Reading data from Accumulo is accomplished with a Scanner. A Scanner returns
data via implementing the Java Iterator interface over key-value pairs. By default a
Scanner will return key-value pairs starting at the beginning of a table and eventually
will return all key-value pairs.

To create a Scanner, simply specify the table over which to scan and provide an
Authorizations object representing the authorizations of the user. We discuss the
Authorizations object in depth in “Authorizations” on page 183. For now welll
assume that all data is visible:

Scanner scanner = connector.createScanner("table_name", new Authorizations());
for (Entry<Key,Value> entry : scanner) {

Key k = entry.getKey();
Value v = entry.getValue();

.
All the elements of the key can be obtained from the Key object:

Key k = entry.getKey();

Text row = k.getRowID();

Text colFam = k.getColumnFamily();

Text colQual = k.getColumnQualifier();
ColumnVisibility colVis = k.getColumnVisibility();
Long ts = k.getTimestamp();

To specify a range of keys to scan over, use the setRange() method of Scanner:

Scanner scanner = connector.createScanner("table_name", new Authorizations());
Range r = new Range(startKey, endKey);
scanner.setRange(r);

for (Entry<Key,Value> entry : scanner) {

}
We can scan over the contents of one row by setting a Range on the Scanner consist-
ing of one row ID (Figure 3-5):

Scanner scanner = connector.createScanner("table_name", new Authorizations());

Range r = new Range("Apache_Hadoop");
scanner.setRange(r);

Lookups and Scanning | 103

for (Entry<Key,Value> entry : scanner) {

Scan Performed

N column column
rowid N e timestamp value
family qualifier

Apache_Accumulo content comment 20111001 f 5o Wadied
R ——

Apache Accumulo content text 20140215 sorted, distributad keyvalue

Apache_Accumulo metadata pageid 20111001 571876229

Scanner Client One lookup

Apache
Apache_Accumulo metadata title 20111001 Accurmulo
............. ». e
------------ H Apache_Hadoop content text 20080314 source sshture framework.
-------------- : for storage ..
sequentlal SCaN : | Apache Hadoop metadata pageid 20060314 5919308
Scan row . ofonerow
'ADaChefHadOOp’ v Apache Hadoop metadata title 20060314 Apache Hadoop
''''' Thriftis an interface
. Apache_Thrift content text 20070213 nsnmb(;ﬂl&ﬂg“aﬂ‘? and
key-value pairs
A returned to C|I8nt Apache_Thrift metadata pageid 20070213 10438451

Apache_Thrift metadata title 20070213 Apache Thrift

Apache_Zookeeper content text 20140215

Apache_Zookeeper metadata pageid 20140215 26039352

Apache

Apache_Zookeeper metadata title 20140215 Zookeeper

Figure 3-5. Scanning one row

We can also scan the whole table for only a particular column (Figure 3-6):

Scanner scanner = connector.createScanner("table_name", new Authorizations());
scanner.fetchColumn(new Text('"metadata"), new Text("title"));

for (Entry<Key,Value> entry : scanner) {

104 | Chapter3:BasicAPI

Scan Performed

N column column
rowid . . timestamp value
family qualifier

One lookup

Apache_Accumulo content comment 20111001

Apache_Accumulo content text 20140215 =

. Apache_Accumulo metadata pageid 20111001 571876229
Scanner Client

Apache
Accumulo

Apache_Accumulo metadata title 20111001

Apache_Hadoop content text 20060314

sequential scan

SCan . : Apache_Hadoop metadata pageid 20080314 5919308
) o of one column in
metadata:title v, mu|‘t|p|e rows : Apache Hadoop metadata title 20060314 Apache Hadoop
column of all rows
Tt s an interface
Apache_Thrift content text 20070213 dsfinition language and
binary
Apache_Thrift metadata pageid 20070213 10438451
Apache_Thrift metadata title 20070213 Apache Thrift
key-va'ue pair'S . Apache_Zookeeper content text 20140215
returned to client
Apache_Zookeeper metadata pageid 20140215 26039352
Apache
Apache_Zookeeper metadata title 20140215

Zookeeper

Figure 3-6. Scanning one column

Note that this will cause tablet servers to retrieve but skip over all the other columns
present. If an application often needs to retrieve a single column or a particular subset
of columns in a scan, a feature called locality groups can be used to minimize the data
that has to be read from disk and skipped over. We discuss locality groups in “Local-
ity Groups” on page 138.

A Scanner can have only one Range specified but can have any number of columns or
column families configured. By default, if fetchColumn() and fetchColumnFamily()
have not been called, a Scanner will return all columns it finds.

Calling fetchColumnFamily() will return all columns within the specified family.
fetchColumn() expects both the column family and column qualifier to be specified.

An empty String, "", or an empty byte array stored in a column
family or column qualifier are treated as valid identifiers. This
means we can request a key with a column family "example" and
column qualifier "" and the Scanner will only return key-value
pairs for which the column family is "example" and the column
qualifier is "".

Lookups and Scanning | 105

Here is an example of scanning for one row, returning a specific column and all col-
umns within a specific family:

Scanner scanner = connector.createScanner("table_name", new Authorizations());
Range r = new Range("Apache_Hadoop");

scanner.setRange(r);

scanner.fetchColumn(new Text('"metadata"), new Text("title"));
scanner.fetchColumnFamily(new Text("content"));

// returns the title and any data under the 'content' column family
for (Entry<Key,Value> entry : scanner) {

}...

Note that key-value pairs come streaming into the client according to the Java Itera
tor interface design. Accumulo does not load up all the columns and values for a par-
ticular row into memory simultaneously, unless a client is configured to do so. HBase
and some other data stores may present more of a row-oriented API. Accumulo does
provide a wrapper for a scanner that lets the client iterate over rows (see “Grouping
by Rows” on page 110), while still iterating over individual key-value pairs within
each row to avoid loading an entire row into memory. For an example of how to load
discrete rows into a data structure in client memory and retrieve specific columns
from those structures, see “WholeRowlterator example” on page 229 on using the
WholeRowIterator.

Lookup Example

In our Wikipedia example, we can retrieve all the information for a given article title
via a simple scan. To do so we create a Scanner on our WikipediaArticles table and set
it to scan over a range that encompasses one row.

We then print out components of the key-value pairs we retrieve:

Scanner scanner = conn.createScanner(WikipediaConstants.ARTICLES_TABLE, auths);

// attempt to read one article
scanner.setRange(new Range(articleTitle));

for (Map.Entry<Key, Value> entry : scanner) {
Key key = entry.getKey();
String field;
if (key.getColumnFamily().toString().equals("contents")) {

field = "contents";
} else {
field = key.getColumnQualifier().toString();

}

String valueString = new String(entry.getValue().get());
System.out.println(field + "\t" + valueString);

106 | Chapter3:BasicAP|

We can also choose to scan only the metadata:revisions column for all articles:

Scanner scanner = conn.createScanner(WikipediaConstants.ARTICLES_TABLE, auths);

// scan one column from all rows
scanner.fetchColumn(new Text(columnFamily), new Text(columnQualifier));

for (Map.Entry<Key, Value> entry : scanner) {
Key key = entry.getKey();

String valueString = new String(entry.getValue().get());
System.out.println(key.getRow().toString() + "\t" + valueString);
}

The WikipediaClient class contains an example of doing both of these things. It will
start up a MiniAccumuloCluster, ingest Wikipedia articles from the Hadoop category,
and perform these scans.

The example can be run in the example code directory via the following:

$ mvn clean compile
$ mvn exec:java -Dexec.mainClass="com.accumulobook.basic.WikipedialLookupExample"
[INFO] Scanning for projects...

Parsing articles ...
Parsing Cloudera

Parsing Apache Spark
done.

Printing out one article:

contents Infobox software Apache Accumulo is a computer software project

id 34571412

namespace

revision 6640499

timestamp 2014-01-22T05:32:03Z

Printing out one column:
Apache_Accumulo 6640499
Apache_Giraph 604610728
Apache_HBase 5925038
Apache_Hadoop 12010884
Apache_Hive 612679440
Apache_Mahout 618938594
Apache_Spark 14011316
Apache_ZooKeeper 618486465
Cloudera 615986938
Cloudera_Impala 14508071
Hortonworks 615116461
MapR 21911013

Lookups and Scanning | 107

Oozie 605458201
Sqoop 19309860

Crafting Ranges

The Range class has a variety of helpful constructors and utility methods to create a
range covering all keys that match portions of a given key exactly.

To obtain all values in all columns for a specific row:
Range oneRow = Range.exact("Apache_Hadoop");
This is equivalent to:
Range oneRow = new Range('"Apache_Hadoop");
as was used earlier to scan one row.
To get all values for a specific row and column family:
Range oneRowOneFamily = Range.exact("Apache_Hadoop", "metadata");
To get the value for a specific row, column family, and column qualifier (Figure 3-7):
Range oneKey = Range.exact("Apache_Hadoop", "metadata", "title");

This will usually return only one value unless the table’s versioning settings have been
altered from the default or unless there happen to be more than one column visibility
for this key.

To get a key with a specific column visibility:
Range oneKey = Range.exact("Apache_Hadoop", "metadata", "title", "public");
To get the value for a fully specified key:

Range oneValue = Range.exact("row_ 0", "column_family_1", "column_qualifier_2",
"column_visibility_3", 12345678901);

108 | Chapter3:BasicAP|

Scan Performed

N column column
rowid . . timestamp value
family qualifier

Apache
Apache_Accumulo metadata title 20111001 Accumulo

Apache_Accumulo metadata pageid 20111001 571876229

Apache Accumulo content comment 20111001 J o2 AR

Scanner Client

One IOOkUp Apache_Accumulo content text 20140215 sorted, o
N e »
____________________________ Apache_Hadoop metadata title 20060314 Apache Hadoop
Scan Apache_Hadoop metadata pageid 20060314 5019308
‘metadata:title’ P
pache Hadoop
CO|UI’]’][‘I Of row Apache_Hadoop content text 20060314 is an open

one key-value pair

'Apache_Hadoop’)
returned to client

Apache_Thrift metadata title 20070213 Apache Thrift

p J/ Apache_Thrift metadata pageid 20070213 10438451
Theit s an interface
Apache_Thrift content text 20070213 dafinition language and
binary .
Apache_Zookeeper metadata title 20140215 Apache
Zookeeper
Apache_Zookeeper metadata pageid 20140215 26039352
Apache_Zookeeper — content text 20140215

Figure 3-7. Scanning one key-value pair

Similarly, there are utility methods to create a range covering all keys that match a
given prefix:

// all values in rows that begin with 'Apache_'
Range.prefix("Apache_");

// all values in column families in the 'Apache_Hadoop' row that begin with 'meta’
Range.prefix("Apache_Hadoop", "meta");

// all values in column qualifiers in the 'Apache_Hadoop' row
// in the 'metadata' column family that begin with 'page'’
Range.prefix("Apache_Hadoop", "metadata", "page");

// all values in the 'Apache_Hadoop' row, 'metadata’ column family,
// and 'pageid' column qualifier that have a column visibility

// beginning with 'pub’

Range.prefix("Apache_Hadoop", "metadata", "pageid", "pub");

For example, suppose our WikipediaArticles table contains the following keys:

Whitaker
White
Whitehouse
Whitewash
Whiz

Lookups and Scanning | 109

To scan over all the keys that begin with the word white—sometimes signified with a
wildcard in search systems as white*—we can obtain the right Range via the following:

Range whiteRange = Range.prefix("White");

To get a set of Range instances that correspond to the way a tablet is split into tablets,
the splitRangeByTablets() method can be used. This can be used to break a long
range into multiple ranges according to the split points within a table. This is typi-
cally not needed but is used in situations such as a MapReduce job when various cli-
ents are assigned to process all the data per tablet:

int maxSplits = 100;

Set<Range> ranges = connector.tableOperations()
.splitRangeByTablets(tableName, givenRange, maxSplits)
If youre using Lexicoders to encode row IDs or columns in mutations, you should
use the same Lexicoders when creating Range objects for use in scanners.

For example, if we have stored our row IDs using the IntegerLexicoder, we should
again use the IntegerLexicoder when specifying start or stop rows in a Range.
Because Lexicoders return byte arrays, we'll wrap them in a Text object when creating
a Range:

Integer start = -26;
Integer stop = 105;

IntegerLexicoder ilex = new IntegerLexicoder();

Range range = new Range(new Text(ilex.encode(start)),
new Text(ilex.encode(stop)));

See “Using Lexicoders in indexing” on page 290 for using Lexicoders in Ranges when
scanning secondary indexes.

Grouping by Rows

For scanning over a range that spans multiple rows, a Java Iterator over key-value
pairs might not be the most convenient way to process those rows. The application
would have to determine for itself when one row ends and another begins. To assist
with this, Accumulo provides a wrapper that groups key-value pairs by row. The Row
Iterator constructor takes either a Java Iterator or Iterable over
Entry<Key,Value>>, so it is easy to use with an Accumulo Scanner. The RowIterator
itself implements the Iterator<Iterator<Entry<Key,Value>>> interface:

// passing a Scanner to RowIterator

RowIterator rowlterator = new RowIterator(connector.createScanner("table_name",
new Authorizations()));

while (rowIterator.hasNext()) {

110 | Chapter3:BasicAPI

Iterator<Entry<Key,Value>> row = rowlterator.next();
while (row.hasNext()) {
Entry<Key, Value> kv = row.next();

}
}

// passing scanner.iterator() to RowIterator
Iterator<Iterator<Entry<Key,Value>>> rowIterator2 =
new RowIterator(scanner.iterator());

Reusing Scanners

Scanners return a new Iterator when the iterator() method is called. The Itera
tor that is returned is a separate object from the Scanner, and any changes in the
Scanner will not affect any existing Iterators already retrieved.

For example, we could set the range of a Scanner and configure it to fetch a particular
column. Calling iterator() will instantiate the scan:

Scanner scanner = new Scanner("table_name", new Authorizations());
scanner.setRange(new Range("Apache_Hadoop"));
scanner.fetchColumn(new Text("metadata"), new Text("title"));

Iterator<Entry<Key,Value>> titlelter = scanner.iterator();

We could then change some settings on the Scanner, such as the set of columns to
fetch, while leaving other settings intact. Calling iterator() again would return a
new Iterator object, separate from the Iterator already retrieved:

scanner.clearColumns();
scanner.fetchColumn(new Text('"metadata"), new Text('"pageid"));

Iterator<Entry<Key,Value>> pageldIter = scanner.iterator();

Isolated Row Views

By default, Scanners can retrieve key-value pairs that are parts of a mutation cur-
rently being applied. To ensure that Scanners see rows containing only the results of
fully completed mutations, the enableIsolation() method can be applied to a
Scanner:

Scanner scanner = new Scanner("table_name", new Authorizations());

scanner .setRange(new Range("Apache_Hadoop"));
scanner.enableIsolation();

for (Entry<Key,Value> entry : scanner) {

}...

Lookups and Scanning | 111

Note that using a Scanner in isolation mode is only necessary if consistent reads of
multiple columns of each row are required. Scans for only one column per row will
not benefit from isolation mode.

A Note on Isolation

Students of relational databases may recognize the isolation property as the I in the
ACID acronym. Wikipedia defines isolation to mean: “The isolation property ensures
that the concurrent execution of transactions results in a system state that would be
obtained if transactions were executed serially, i.e. one after the other. Providing iso-
lation is the main goal of concurrency control. Depending on concurrency control
method, the effects of an incomplete transaction might not even be visible to another
transaction.” In this case, using Scanners in isolation mode that ensures the effects of
a not yet completed mutation are not visible to readers of the table. Regardless of
whether isolation mode is used with Scanners, tablet servers ensure that partially
applied mutations are not permanently committed to a table in the event of a failure
during the writing of the mutation.

To see the effect of isolation mode on Scanners in action, Accumulo ships with an
example. The following command will apply a series of mutations to rows in one
thread, while another continually scans the table looking for partial updates. The
command will print out any partial updates it finds:

./bin/accumulo org.apache.accumulo.examples.simple.isolation.InterferenceTest \
-1 instance -z zookeepers -u username -p password -t isotest --iterations 1000
If you don’t get any ERROR statements, run the command again. Sometimes 1,000 iter-

ations are not enough to expose the issue. Running the command with the
--isolation flag set will perform the same test but using isolated reads:

./bin/accumulo org.apache.accumulo.examples.simple.isolation.InterferenceTest \
-1 instance -z zookeepers -u username -p password -t isotest \
--iterations 1000 --isolated

Tuning Scanners

Scanners handle communication with tablet servers in identifying and retrieving key-
value pairs. For efficiency reasons, tablet servers return key-value pairs to Scanners in
batches.

Scanners can be tuned to adjust the size of batches as well as when to prefetch
batches.

For example, if it is known that key-value pairs are generally fairly large, perhaps over
500 KB each—or if we are mostly interested in doing very small scans over only a few

112 | Chapter3:BasicAP|

http://bit.ly/acid_isolation

key-value pairs—we can choose to reduce the batch size for a Scanner to avoid ship-
ping unwanted key-value pairs from the server to the client. On the other hand, if we
are often scanning over larger numbers of smaller key-value pairs, we can choose to
increase the batch size.

To get the current batch size (numbered in key-value pairs) for a scanner, use the
getBatchSize() method:

Scanner scanner = conn.createScanner("mytable", auths);

int size = scanner.getBatchSize();
To adjust the batch size, use the setBatchSize() method:
scanner.setBatchSize(size * 2);

When scanning over many key-value pairs, Scanners will wait until the end of a batch
is reached before fetching another batch. This causes the client to pause for a short
time until the next batch is available. If we know we are routinely going to scan over
multiple batches, we can save time by having the scanner prefetch the next batch
sooner.

By default, a threshold is configured for how many batches must be read from a scan-
ner before it will start to prefetch the next batch. To see the current threshold, use the
getReadaheadThreshold() method:

long numBatches = scanner.getReadaheadThreshold();
To change the read-ahead threshold, use the setReadaheadThreshold() method:
scanner.setReadaheadThreshold(numBatches / 2);

Application designers should experiment with these settings to find optimal values
for various types of accesses.

Batch Scanning

Data can be retrieved for multiple ranges simultaneously using a BatchScanner.
Rather than a single Range object, BatchScanners take a set of Ranges and communi-
cate with many tablet servers in parallel threads to read all the data within the ranges
specified.

BatchScanners do not return data in sorted order, because they retrieve data from
many tablet servers at once.

When designing applications, keep in mind that the Scanner will
always return key-value pairs in sorted order, but the BatchScan
\ ner will not.

Batch Scanning | 113

A BatchScanner is obtained in a manner similar to that of a Scanner:

int numThreads = 10;
BatchScanner bscan = connector.createBatchScanner('myTable',
new Authorizations(), numThreads);

The last parameter designates the number of threads to use to communicate with tab-

let servers. Most clients will want to use more than one thread if there is more than
one tablet server.

We'll pass the BatchScanner an ArrayList of Range objects:

List<Range> ranges = new ArraylList<Range>();
ranges.add(new Range("Apache_Accumulo"));
ranges.add(new Range("Apache_Hadoop"));
ranges.add(new Range("Apache_Thrift"));
ranges.add(new Range("Apache_ZooKeeper"));

bscan.setRanges(ranges);
Results from BatchScanner are read the same way as from Scanner:

for(Entry<Key,Value> entry : bscan) {
// access the elements of the entries

}...

A BatchScanner can be configured with many of the same options that a Scanner
can. For example, we can set a BatchScanner to fetch only certain columns
(Figure 3-8):

int numThreads = 10;
BatchScanner bscan = connector.createBatchScanner('myTable',
new Authorizations(), numThreads);

List<Range> ranges = new ArraylList<Range>();
ranges.add(new Range("Apache_Accumulo"));
ranges.add(new Range("Apache_Hadoop"));
ranges.add(new Range("Apache_Thrift"));
ranges.add(new Range("Apache_ZooKeeper"));

bscan.setRanges(ranges);
bscan.fetchColumn(new Text("metadata"), new Text("title"));

for(Entry<Key,Value> entry : bscan) {
// access the elements of the entries

114 | Chapter3:BasicAP|

Batch Scanner Client

Scan rows
{*Apache_Accumulo’,
‘Apache_Hadoop’,
‘Apache_Thrift’,
‘Apache_ZooKeeper}
and fetch only
‘metadata:title’ column

Multiple lookups
in parallel

Batch Scan Performed

rowid

Apache_Accumulo

Apache_Accumulo

Apache_Accumulo

Apache_Accumulo

Apache_Hadoop

Apache_Hadoop

Apache_Hadoop

Apache_Thrift

Apache_Thrift

Apache_Thrift

Apache_ZooKeeper

Apache_ZooKeeper

Apache_ZooKeeper

column
family

content

content

metadata

metadata

content

metadata

metadata

content

metadata

metadata

content

metadata

metadata

column
qualifier

comment

text

pageid

title

text

pageid

title

text

pageid

title

text

pageid

title

timestamp value

20111001

20140215 sorte

20111001 571876229
Apache

20111001 el

20060314

20060314 5919308

20060314 Apache Hadoop

Thrift is an interface

20070213 definition language and
binary

20070213 10438451

20070213 Apache Thrift

20140215 -

20140215 26039352
Apache

20140215 ZooKeeper

Figure 3-8. Scanning several individual key-value pairs in parallel

The ranges that are passed to a BatchScanner can each span many key-value pairs,
but in practice the performance improvement of using BatchScanners versus individ-
ual Scanners is most pronounced when a large number of small ranges are scanned.

Because BatchScanners often look up many individual ranges con-
sisting of a single row ID, it can be beneficial to enable bloom fil-
ters for tables that are often scanned using BatchScanners. This
will allow tablet servers to skip files that do not contain the row IDs
sought by the BatchScanner, improving performance. See “Bloom
Filters” on page 142 for details.

Batch scanning comes in handy for looking up a set of record IDs retrieved from a
secondary index or doing small joins between tables. We use BatchScanners for our
example in “Secondary Indexing” on page 275.

Batch Scanning | 115

Update: Overwrite

Simple updates that overwrite existing keys are straightforward in Accumulo: simply
inserting a new value for an existing key will cause the old value to appear to be over-
written (Figure 3-9).

This is because Accumulo will place new versions of existing keys at the beginning,
causing the first version of a key encountered by a scan to be the latest version. By
default Accumulo tables keep only the latest version of each key.

Updated Table

column column

New Mutation rowid family qualifier timestamp value

Apache_Accumulo content comment 20111001
N column column "
rowid . . timestamp value
family qualifier

.y | Apache_Accumulo content text 20140304 sone

Apache_Accumule content text

Apache_Accumulo content text 20140215 ‘,',,* a

Apache_Accumulo metadata pageid 20111001 571876229
y Apache

Apache_Accumulo metadata title 20111001 Accumulo

Key with two versions

Figure 3-9. A simple overwrite update

No data has to be read in order to perform an overwrite. For this reason, simple over-
write updates have the same performance as inserts. In some databases the ability to
either update or insert information in the same operation is called an upsert. Typically
in other systems, an update to a key that doesn’t exist will cause an error, unless an
upsert operation is explicitly specified. In Accumulo, inserts are considered updates if
there happens to be an existing version of the key being inserted, but from a mechan-
ical standpoint there is no difference between an insert and an update, either in per-
formance or in client usage.

Overwrite Example

In our Wikipedia application, doing an update to the metadata of an article is
straightforward. We implement this method the same as for inserting new data:

public void updateMetadata(
final String title,
final String attribute,
final String value,
final boolean flush)
throws MutationsRejectedException {

116 | Chapter3:BasicAPI

Mutation m = new Mutation(title);
m.put(WikipediaConstants.METADATA_FAMILY, attribute, value);

batchWriter.addMutation(m);

if(flush)
batchWriter.flush();
}
This example will simply insert new information for the column specified. Unless we
modify the VersioningIterator for this table, any old versions will be suppressed
from scans and eventually eliminated from disk during the compaction process.

Allowing Multiple Versions

Accumulo can be configured to keep multiple versions of a key-value pair by chang-
ing the maxVersions parameter of the VersioningIterator.

Using the shell:

user@accumulo> config -t table_name -s table.iterator.majc.vers.opt.maxVersions=2
user@accumulo> config -t table_name -s table.iterator.minc.vers.opt.maxVersions=2
user@accumulo> config -t table_name -s table.iterator.scan.vers.opt.maxVersions=2

Or through Java:

connector.tableOperations().setProperty("table_name",
"table.iterator.majc.vers.opt.maxVersions", "2");
connector.tableOperations().setProperty("table_name",
"table.iterator.minc.vers.opt.maxVersions", "2");
connector.tableOperations().setProperty("table_name",
"table.iterator.scan.vers.opt.maxVersions", "2");

You can keep all versions by removing the VersioningIterator entirely:
user@accumulo> deleteiter -t table_name -n vers -all

Some applications may want to keep several versions on disk, return the latest by
default, and allow clients to request more than the latest version whenever necessary.

To do this, the maxVersions option for minc and majc should be set to something
greater than 1, say 10, and the scan option should be set to 1. Unless they specify
otherwise, clients will see only the latest version for each value. If they want to go
back and view more versions, they can configure a Scanner to return more than one
version:

Scanner scanner = connector.createScanner("myTable", auths);
IteratorSetting setting = new IteratorSetting(20, "vers",
"org.apache.accumulo.core.iterators.user.VersioningIterator");

Update: Overwrite | 117

VersioningIterator.setMaxVersions(setting, 10);
scanner.addScanlterator(setting);

Even if a table is configured to allow Scanners to retrieve all ver-
sions, no entries that are suppressed by delete markers will ever be
returned.

For example, in our Wikipedia application, we can choose to allow multiple versions
of a page to exist indefinitely, in order to preserve the history of edits to an article.
For most lookups, we'll only want the latest version of an article, but editors may
want to view all versions of an article to compare changes over time.

Update: Appending or Incrementing

Some updates need to add information to existing values. These are different from
simple overwrites because the existing values will need to be combined with the new
value in some way.

An example is adding some amount to a running total. Instead of reading the old
value out, adding the new value to it, and writing the combined value back, Accu-
mulo allows new values to be written alongside old values, and values are combined
at scan time or compaction time.

Accumulo can perform these kinds of updates very efficiently through the use of
Accumulo iterators, as described in “Combiners for incrementing or appending
updates” on page 221. Effectively, appending or incrementing updates can be done as
quickly as inserts. Applications that require these kinds of updates can simply treat
them like inserts and configure iterators on the table being updated.

An example of using iterators to do efficient incrementing updates is described in
“Ingesters and Combiners as MapReduce Computations” on page 264.

Update: Read-Modify-Write and Conditional Mutations

Accumulo 1.6 supports conditional mutations that can be used to do efficient read-
modify-write operations on rows. The ability to place conditions on mutations ena-
bles applications to achieve a higher degree of consistency. These are more involved
updates than simple overwrites, because they involve checking the state of an existing
row. These are also only necessary when appending or incrementing updates by using
iterators is insufficient.

Conditional mutations are a bit different from Constraints, as we discuss in “Con-
straints” on page 201, in that Constraints allow mutations to be rejected or accepted

118 | Chapter3:BasicAP|

based on the information contained within just the one new mutation, whereas con-
ditional mutations allow a mutation to be rejected or accepted based on the informa-
tion in the row to be modified.

Conditional mutations are more expensive than regular mutations and constraints
because they perform a read of the current data in the table, in addition to accessing
the disk to persist the new mutation in the write-ahead log. Server are able to perform
fewer conditional mutations than they can regular mutations.

Conditional Mutations and Percolator

Conditional mutations are especially interesting because they provide part of the
foundation for a system like Google’s Percolator to be built on Accumulo. Percolator is
a system Google built to transition the work of updating its primary web index from a
batch-oriented MapReduce-based job to a more continuous, incremental system. Per-
colator “provides cross-row, cross-table transactions with ACID sematics”

A project to implement an open source version of Percolator for Accumulo is called
Fluo.

Conditional Mutation API

The ConditionalMutation class is used to specify a set of conditions that must be sat-
isfied in order to apply the puts or deletes contained within the mutation. Conditio
nalMutation objects are like regular Mutation objects except that they can have
Condition objects added.

A Condition object can be configured to check for the absence of a column or to
check that a column’s value is equal to a given value.

A Condition that checks to see if a column is absent can be created as follows:
Condition markedColumnAbsent = new Condition("internal", "marked");
One or more Condition objects can be added to a ConditionalMutation:

ConditionalMutation cm = new ConditionalMutation(someRow);

cm.addCondition(markedColumnAbsent);

Then regular puts and deletes can be applied to the mutation. These will only succeed
if all conditions added are satisfied:

cm.put("internal”, "marked", "");
cm.put("metadata", "dateMarked", new Date().toString());

In this example, the ConditionalMutation will first check to see if no column is iden-
tified by internal:marked currently in the row. If the column is absent, this Conditio

Update: Read-Modify-Write and Conditional Mutations | 119

http://bit.ly/percolator_paper
https://github.com/fluo-io/fluo

nalMutation will be applied, which puts a new column, internal:marked, into the row
that prevents future ConditionalMutations of this type to succeed, and puts another
column, metadata:dateMarked, into the row with a value representing the current
date.

Rather than just checking that a column is absent, we can check to see whether a col-
umn contains a value we expect:

Condition ensureColorIsBlue = new Condition("details", "color");
ensureColorIsBlue.addValue("blue");

ConditionalMutation otherCm = new ConditionalMutation(someRow);

otherCm.addCondition(ensureColorIsBlue);

In this case, the ConditionalMutation will only be applied if the details:color column
contains the value blue.

To submit a ConditionalMutation, we pass it to a ConditionalWriter object via the
write() method, which returns the success status of each ConditionalMutation. The
success status is returned via a Result object, which can be examined to find out if
the conditional mutation succeeded, or if there were problems with the mutation:

ConditionalWriter cwriter = new ConditionalWriter("myTable", config);
ConditionalWriter.Result result = cwriter.write(cm);

try {
switch(result.getStatus()) {

case
// condition was met and mutation was applied
break;

case
// condition was not met
break;

case
// mutation violated a constraint
break;

case
// unknown server error
break;

case
// condition involved a visibility not visible to user
break;

default:
break;

120 | Chapter3:BasicAP|

}
}

Conditional Mutation Batch API

Besides just single writes, a ConditionalWriter can also be passed multiple Conditio
nalMutations. In this case the write() method will return an Iterator over Result
objects:

ArraylList<ConditionalMutation> mutations = new ArraylList<>();
// ConditionalMutations are added

Iterator<ConditionalWriter.Result> results = conditionalWriter.write(mutations);

Because there are multiple Results, we can ask a Result to which mutation it applied
in order to know which ConditionalMutations succeeded or failed:

ArraylList<ConditionalMutation> mutations = new ArraylList<>();
// ConditionalMutations are added

Iterator<ConditionalWriter.Result> results = conditionalWriter.write(mutations);

for(ConditionalWriter.Result result : results) {
try {
switch(result.getStatus()) {
case
break;
case

System.err.println("mutation failed:
result.getMutation().toString());

i
break;

}
}

Conditional Mutation Example

347.50bIn our example application wed like to let users submit new revisions to
Wikipedia pages, but we want to avoid the following situation, in which users over-
write each other’s edits:

1. Alice downloads the current version of a page, marked by revision 1.
2. Bob also downloads revision 1 of a page.

3. Alice makes her edits and submits them as revision 2.

Update: Read-Modify-Write and Conditional Mutations | 121

4. Bob makes his edits and submits them as revision 2, overwriting Alice’s edits.

In this scenario, multiple concurrent submissions can cause some edits to be lost.
Well use conditional mutations to avoid this situation. What wed rather have happen
is the following:

® N U

1. Alice downloads the current version of a page, marked by revision 1.
2. Bob also downloads revision 1 of a page.

3.
4

Alice makes her edits and submits them as revision 2.

. Bob makes his edits and submits them as revision 2, but he receives an error

because the revision currently in Accumulo is not the last revision he read.
Bob reads revision 2, which includes Alice’s edits.

Bob merges his edits with Alice’s, resolving any conflicting edits.

Bob submits his edits again, this time as revision 3.

Because the current revision still in Accumulo is 2, Bob’s edits are accepted and
written.

The crucial bit of logic here is in step 4. Accumulo’s conditional mutation mechanism
will allow us to check that we have the latest revision right before committing a write.

Here is an example of a method that will try to write new contents of a page and fail if
the current revision is not the last revision we read:

public boolean updateContent(

final String title,
final String lastRevision,
final String contents) throws WikipediaEditException, IOException {

if (closed)
throw new IOException("client closed");

final String newRevision = Integer.toString(
Integer.parseInt(lastRevision) + 1);

ConditionalMutation cm = new ConditionalMutation(title);

Condition lastRevisionStillCurrent = new Condition(
WikipediaConstants.METADATA_FAMILY,
WikipediaConstants.REVISION_QUAL);

// this requires that the version in the table is the last revision we read
lastRevisionStillCurrent.setValue(lastRevision);
cm.addCondition(lastRevisionStillCurrent);

// add puts for our changes
cm.put(WikipediaConstants.METADATA_FAMILY,
WikipediaConstants.REVISION_QUAL,

122

| Chapter 3: Basic AP

newRevision);
cm.put(WikipediaConstants.CONTENTS_FAMILY, "", contents);

// submit to the server
ConditionalWriter.Result r = conditionalWriter.write(cm);
try {
switch (r.getStatus()) {
case
return true;
case
return false;
case
throw new WikipediaEditException("constraint violated");
case // could retry
logger.warn("unknown error from server: {0}", r.getTabletServer());
return false;
case
throw new WikipediaEditException("condition contained a visibility
"the user cannot satisfy");
default:
throw new AssertionError(r.getStatus().name());

+

}
} catch (AccumuloException | AccumuloSecurityException ex) {
throw new WikipediaEditException(ex);

}
}
In this example, the updateContent() method will apply the edits and return true if
no one has edited the page since the caller read it. It will return false if another user
has committed an edit since the caller read it, in which case the caller can read the
current version, merge edits, and try to commit again. This method throws excep-
tions for other problems that retrying will not solve—such as violating any con-
straints on the table—or for problems reading data as part of the condition that the
user is not authorized to see.

If a tablet server fails right after successfully applying a conditional mutation, the cli-
ent will receive a status of UNKNOWN, because it cannot be known whether the mutation
was applied or not. In this case the Accumulo master will assign the tablet containing
the row of interest to a new tablet server, and the client can check the status of the
row to be mutated to see if the mutation succeeded or not.

The example WikipediaEditExample class contains a main() method that will do a
lookup of a page, commit an edit, attempt to commit an edit to an old revision, and
then do a new read and commit to the latest revision. Abbreviated code that performs
those steps is as follows:

Map<String, String> hadoopArticle = client.getContentsAndRevision(
"Apache_Hadoop");

Update: Read-Modify-Write and Conditional Mutations | 123

String originalContents = hadoopArticle.get(WikipediaConstants.CONTENTS_FAMILY);
String newContents = originalContents.tolLowerCase();
String lastRevision = hadoopArticle.get(WikipediaConstants.REVISION_QUAL);

// apply our edit
if (client.updateContent("Apache_Hadoop", lastRevision, newContents)) {
System.out.println("edit of revision " + lastRevision + " succeeded.");
} else {
System.out.println("edit of revision

+ lastRevision + " failed.");

}

// if we try again, we should fail
if (client.updateContent("Apache_Hadoop", TlastRevision, newContents)) {
System.out.println("second edit of revision " + lastRevision + " succeeded.");
} else {
System.out.println("second edit of revision

+ lastRevision + " failed.");

}

// need to pull current revision again
hadoopArticle = client.getContentsAndRevision("Apache_Hadoop");
String nextRevision = hadoopArticle.get(WikipediaConstants.REVISION_QUAL);

// put back original contents
// now we should succeed
if (client.updateContent("Apache_Hadoop", nextRevision, originalContents)) {
System.out.println("edit of revision " + nextRevision + " succeeded.");
} else {
System.out.println("edit of revision

+ nextRevision + " failed.");

}

The first edit should succeed, the second should fail because its trying to update a
revision that has already been overwritten, and the final edit should succeed because
it is applied to the latest revision.

To run the example code, type the command in the first line of the following:

$ mvn exec:java -Dexec.mainClass="com.accumulobook.basic.WikipediaEditExample"
Parsing articles ...

done.

edit of revision 12010884 succeeded.

second edit of revision 12010884 failed.
edit of revision 12010885 succeeded.

These types of edits allow our table to apply only one revision at a time, which aids in
deconflicting concurrent edits.

124 | Chapter3:BasicAPI

Delete

An individual key-value pair can be deleted from a table. Technically the way this is
accomplished is by inserting a special delete key (Figure 3-10). A delete key in Accu-
mulo is a normal key with an internal delete flag set to true.

If a delete key is inserted, all keys with the same row and column as the delete key
with a timestamp the same or earlier than the delete key’s timestamp will be removed,
along with their values. Deletes in Accumulo do not delete a specific key-value pair;
rather, they delete all earlier versions of the key.

Table with entry deleted

New Mutation) column column .
rowid N e timestamp value
family qualifier

rowid column column timestamp deleteMarker Apache_Accumulo content comment 20111001 [

family qualifier

Apache_Accumulo metadata pageid - present Apache_Accumulo content text 20140304 =

Apache_Accumulo metadata pageid 20140304 [deleteMarker]

SUppreSSed key ------------- #» | Apache Accumulo metadata pageid 20111001 571876229

Apache

Apache_Accumulo metadata title 20111001 Accumulo

Figure 3-10. Deleting an entry from a table

In these diagrams, for convenience the delete marker is shown as
appearing where the value would be, but technically the delete
marker is part of the key.

Earlier we mentioned that a mutation can contain puts or deletes. As an example, per-
haps we insert a column on rows that represent articles that are in dispute. When the
dispute is resolved, we can remove the dispute marker from the row. The following
code deletes the column identified by the family attributes and qualifier dispute
Marker in the row identified by Article Title:

Mutation m = new Mutation("Article Title");
m.putDelete("attributes", "disputeMarker");
batchWriter.addMutation(m);

Subsequent reads of this row will no longer include the attributes:disputeMarker
column.

Delete | 125

Any number of deletes can be included in a mutation, and deletes can be included in
a mutation along with puts, but one should avoid including a delete and put for the
same column in the same mutation if timestamps are not specified by the client or if
timestamps are the same. We go into more detail on this in the next section.

Deleting and Reinserting

Usually deleting a key and reinserting it with a different value is not necessary in
Accumulo. The new key-value pair can just be inserted, and it will become the most
recent version for that key.

However, some applications may want to delete all earlier versions of a key before
creating a new version. A delete key sorts before an identical key without the delete
flag set. As a result, you can’t delete a key and insert the same key in a single mutation
if Accumulo is managing the timestamps. Accumulo will assign the same timestamp
to both keys, and the nondelete key will be deleted by the delete key. To delete a key
and reinsert it, first add a mutation containing the delete key to the BatchWriter,
flush the BatchWriter so the mutation is sent to Accumulo, then add a mutation con-
taining the new key to the BatchWriter. This will ensure that the new key is assigned
a later timestamp than the delete key (Figure 3-11).

If you are managing your own timestamps, the same effect can be achieved in a single
mutation by giving the new key a later timestamp than the delete key. If the applica-
tion logic requires that the timestamp on the key must stay the same, the process is
more complicated. Firstly, you would not be able to replace the value for a key by
inserting the key again with an identical timestamp. Versioning behavior is not well
defined when rows have identical keys, to include the same timestamp.

Secondly, after a delete key is inserted, the delete key remains in Accumulo until a full
major compaction has been executed on the tablet containing the key. This is the only
kind of compaction that reads and rewrites all data for a tablet, thereby ensuring that
none of the tablet’s files contains a key that should have been deleted. To reinsert a
different value for a key at the same timestamp, insert a delete entry for that key,
request a compaction so that the delete key and all earlier versions of the key are
purged, wait for the compaction to finish, and then insert the new key. If your table is
small, you can compact the entire table, but if it is large that can take a long time and
tax Accumulo’s resources. Instead you can compact the row containing the desired
key. Using timestamps in this manner is discouraged because it works against the key
versioning inherent in Accumulo.

126 | Chapter3:BasicAP|

New Mutation Table with entry inserted after delete

N column column
rowid N e timestamp value
family qualifier

rowid column column o ciamp deleteMarker Apache_Accumulo content comment 20111001 o ae2 VATEE
family qualifier

Apache Accumulo is 8
sor oyl

Apache_Accumulo metadata pageid - 10001 Apache_Accumulo content fext 20140304
"4 | Apache_Accumulo metadata pageid 20140305 10001
Delete marker » | Apache_Accumulo metadata pageid 20140304 [deleteMarker]
...-¥ | Apache Accumulo metadata pageid 20111001 571876229
Suppressed key ot
Apache_Accumulo metadata title 20111001 pacne

Accumulo

Figure 3-11. An entry inserted after a delete

Removing Deleted Data from Disk

Data masked by a delete key can still reside on disk until files have been reprocessed
in compactions. For a discussion of ensuring that deleted data is removed from disk
at a particular time, see “Ensuring that deletes are removed from tables” on page 450.

Batch Deleter

The Accumulo client API provides a method for deleting ranges of keys simultane-
ously using the BatchDeleter. The BatchDeleter is kind of a combination of a
BatchScanner and a BatchWriter in that it takes multiple ranges to be deleted and
simply inserts delete markers for any key-value pairs in those ranges.

This would otherwise require writing code to use a BatchScanner to fetch each key-
value pair, convert each key-value pair returned into a mutation, put a delete into the
mutation that matches the key-value pair, and then submit those mutations to a
BatchWriter.

The BatchDeleter does all this for us. The BatchDeleter does not perform these
operations more efficiently than our own code would, but it provides a clean client
API for performing them.

To use a BatchDeleter, first instantiate it much like a BatchWriter:

BatchWriterConfig config = new BatchWriterConfig();
config.setMaxMemory(1000000L);
config.setMaxWriteThreads(10);
config.setMaxLatency(10, TimeUnit.SECONDS);

int numThreads = 10;

Delete | 127

BatchDeleter deleter = conn.createBatchDeleter("table_name", auths, numThreads,
config);

Next we add a set of ranges as we do for a BatchScanner:
deleter.setRanges(ranges);

We can optionally fetch a subset of columns or apply iterators to this scan to further
refine the set of entries to be deleted. These settings are applied as they are for the
BatchScanner.

Finally, we call delete() to perform the scans and insert delete markers:
deleter.delete();

We should also call close() to release the resources used by the BatchDeleter as it
creates multiple threads to perform its work.

Here is an example of how a BatchDeleter might be used to delete a set of articles
from our WikipediaArticles table:

public boolean deleteArticles(final String ... titles) throws IOException {

if (closed)
throw new IOException("client closed");

BatchWriterConfig config = new BatchWriterConfig();
config.setMaxMemory(1000000L);
config.setMaxWriteThreads(10);
config.setMaxLatency(10, TimeUnit.SECONDS);

int numThreads = 10;

try {
BatchDeleter deleter = conn.createBatchDeleter(
WikipediaConstants.ARTICLES_TABLE, auths, numThreads, config);
deleter.setRanges(transform(newArrayList(titles), rangeConverter));
deleter.delete();
deleter.close();

return true;
} catch (TableNotFoundException | MutationsRejectedException ex) {
logger.error(ex.getMessage());

}

return false;
}
For an efficient method of simply removing a large range of rows from a table
without inserting deletion entries for each key-value pair, see the deleterows com-
mand in the Table API in “Deleting Ranges of Rows” on page 135.

128 | Chapter3:BasicAP|

Testing

Applications can be tested in several ways other than with a fully distributed Accu-
mulo instance. These include the MockAccumulo and the MiniAccumuloCluster
classes.

MockAccumulo

MockAccumulo is an in-memory instance that can be used to test applications without
setting up an Accumulo instance.

Obtaining a new MockInstance is done as follows:

Instance instance = new MockInstance();

The instance can be used to write and read data, which it stores in memory. The data
will disappear when the instance is destroyed or the JVM stops.

Because the MockAccumulo cluster operates this way, it is especially useful for unit
testing.

MiniAccumuloCluster

Accumulo ships with a class called MiniAccumuloCluster that can be used to write
unit tests for Accumulo clients without having to set up a full Accumulo cluster. It
supports the full Accumulo client API so tests can write data and read it back to ver-
ify correct behavior.

Unlike the MockInstance, which operates entirely in memory, the MiniAccumuloClus
ter writes to a temporary directory on the local disk for the duration of the test. This
allows tests to be run where a minicluster is set up and kept running while other
instantiations of the JVM that operate against this minicluster can be started and
stopped. For example, we can start up a cluster and obtain the instance name, Zoo-
Keeper servers, and username and password from one JVM, then run a class in
another JVM using those settings to write data, and a third to read data.

Setting up the Accumulo minicluster is done via:

import com.google.common.io.Files;

File tempDirectory = Files.createTempDir();

MiniAccumuloCluster accumulo = new MiniAccumuloCluster(tempDirectory,
"password");

accumulo.start();

Instance instance = new ZooKeeperInstance(accumulo.getInstanceName(),
accumulo.getZooKeepers());

Once an instance is started, Connector objects can be obtained:

Testing | 129

Connector conn = instance.getConnector("root", new PasswordToken("password"));
The MiniAccumuloCluster must be explicitly stopped via the stop() method:
accumulo.stop();
Many of the examples in this book are run against the MiniAccumuloCluster.

Now that we have the basic API under our belt, we can start building basic applica-
tions for Accumulo. Use of uninitialized value within @id_list in sprintf at index-
xml.pl line 407, <> chunk 2009. In the following chapters, we'll look at more API
methods for managing tables, handling security, pushing application logic to the
server side, and some useful table designs.

130 | Chapter3:BasicAPI

CHAPTER 4

Table API

Although most Accumulo client code will consist of reading and writing data as we
have outlined in Chapter 3, many administrative functions are also available via the
client API. Accumulo requires very little setup before an application can write data.
Unlike relational databases and even some other NoSQL databases, Accumulo does
not require any upfront declaration about the structure of the data to be stored in
tables. Row IDs and columns do not have to be specified before data is written, nor
does information about the lengths or types of values. The bare minimum required to
begin writing and reading data is simply to provide a name when creating a new
table.

However, the Accumulo API does provide a wide array of features for configuring
and tuning tables and for controlling cluster actions. We outline those features in this
chapter. Most of these operations can also be carried out via shell commands. We list
the API methods here and the shell commands in “Table Operations” on page 440.

Basic Table Operations

Accumulo provides an API for creating, renaming, and deleting tables. This API can
be used to manage the construction and lifecycle of tables entirely within an
application.

Permission to perform various table operations—such as creating, reading, writing,
altering, and deleting tables—is controlled on a per-user basis. More information on
these permissions can be found in “Table Permissions” on page 181.

Creating Tables

Tables can be created via the TableOperations object:

131

TableOperations ops = connector.tableOperations();
ops.createTable('myTable');

The TableOperations object allows us to check whether a table exists and to delete a
table as well:

if(ops.exists('myTable'))
ops.delete('myTable');

Tables can also be created through the Accumulo shell:
user@accumulo> createtable myTable

In our example code, we need to create a table to store Wikipedia articles. For this
we'll use the following code:

TableOperations ops = connector.tableOperations();
if(lops.exists("WikipediaArticles")) {
ops.createTable("WikipediaArticles");

}
We can obtain a list of tables by calling the 1ist() method:

SortedSet<String> tables = ops.list();
In the shell, this command is called tables:

user@accumulo> tables
accumulo.root
accumulo.metadata

In Accumulo 1.6, all Accumulo instances start with two tables, the root table and the
metadata table. These keep track of which tablet server is hosting each tablet, and
other information about the system. The use of these tables for internal operations is
described in Chapter 10.

Options for creating tables

Newly created Accumulo tables have several default settings. Many of these are set at
reasonable values for a range of cluster sizes and may not require changing.

Options that can be set via the API on a table at creation time are whether to enable
versioning and what timestamp type is used. The VersioningIterator is enabled by
default and configured to remove all but the latest version of each key. In addition, as
of Accumulo 1.6, the DefaultKeySizeConstraint is also enabled, which rejects any
keys that are larger than 1 MB, though values can still be larger. The constraint on key
sizes is designed to help prevent performance degradation due to memory require-
ments of larger keys. We discuss iterators and constraints at length in “Iterators” on
page 209 and “Constraints” on page 201.

The VersioningIterator can be disabled with an additional parameter to the crea
teTable() method:

132 | Chapter4:Table AP|

boolean useVersioningIterator = false;
ops.createTable('myTable', useVersioninglterator);

Both the VersioningIterator and the DefaultKeySizeConstraint can be disabled
when you create a table in the shell with the - -no-default-iterators flag:

user@accumulo> createtable myTable --no-default-iterators

The default time type is TimeType.MILLIS. This instructs tablet servers to use the cur-
rent system time in milliseconds since the Unix epoch when assigning timestamps to
mutations that have no timestamps provided by the client, which is common.

The other possibility is TimeType.LOGICAL, which uses a one-up counter. Logical time
can be enabled through the API like this:

boolean useVersioningIterator = true;
ops.createTable('myTable', useVersioningIterator, TimeType.LOGICAL);

Or in the shell:

user@accumulo> createtable myTable -tl

Most table settings can be changed, enabled, or disabled after a
table is created. However, the time type of a table cannot be
changed after the table is created.

\

When creating tables, you may want to consider placing them into their own name-
space, which we discuss in “Table Namespaces” on page 160.

Logical Time Example

Lets observe the timestamps Accumulo sets for a simple table using TimeType.LOGI
CAL:

user@accumulo> createtable -tl testTable
user@accumulo testTable> addsplits m
user@accumulo testTable> insert a b c d
user@accumulo testTable> insert e f g h
user@ccumulo testTable> insert w x y z
user@accumulo testTable> insert 1 j k 1
user@accumulo testTable> scan -st
ab:c[]1 d

e f:g [] 2 h

ij:k [13 1

wx:y []1 z

user@accumulo testTable> flush -w

Basic Table Operations | 133

There are two tablets. In the first tablet are entries for rows a, e, and i, with insert
timestamps 1, 2, and 3, matching their insert order. In the second tablet there is only
one entry for row w, with insert timestamp of 1.

Now let’s take a look at some entries in the Accumulo metadata table. This is a more
complex table that also uses TimeType.LOGICAL. It will be interesting to see its entries
ordered by their timestamps, so let’s reorder them after we retrieve them from a scan:

$./bin/accumulo shell -u user -p password -e "scan -st -t \
accumulo.metadata" | sort -t" " -k4,4

3< srv:dir [] 18 hdfs://node-1.example.com:8020/apps/accumulo/tables/3/
default_tablet

3< loc:1497335ebb20011 [] 20 node-1.example.com:9997

3< ~tab:~pr [] 21 \x01m

3;m loc:1497335ebb20011 [] 22 node-1.example.com:9997

3;m srv:dir [] 22 hdfs://node-1.example.com:8020/apps/accumulo/tables/3/

t-0000090

~tab:~pr [] 22 \x00

file:hdfs://node-1.example.com:8020/apps/accumulo/tables/3/t-0000090/

FOOEO093.rf [] 26 208,3

3;m last:1497335ebb20011 [] 26 node-1.example.com:9997

3;m srv:flush [] 26 1

3;m srv:lock [] 26 tservers/node-1.example.com:9997/
z1lock-0000000001$1497335ebb20011

3;m srv:time [] 26 L3

3< file:hdfs://node-1.example.com:8020/apps/accumulo/tables/3/default_tablet/
FOO00094.rf [] 27 173,1

3< last:1497335ebb20011 [] 27 node-1.example.com:9997

3< srv:flush [] 27 1

3< srv:lock [] 27 tservers/node-1.example.com:9997/
zlock-0000000001$1497335ebb20011

3< srv:time [] 27 L1

We'll focus on only those metadata entries for our test table, without going into great

detail about what each entry means. More information on the contents of the meta-
data table can be found in Appendix B.

In examining the entries, we can see the results of six mutations, applied at time-
stamps 18, 20, 21, 22, 26, and 27. At time 18, the table was created and the default
directory for its tablet was written in column srv:dir. At time 20, the tablet was
assigned to a tablet server, whose address was written in the loc column. At times 21
and 22, a split occurred, creating tablet 3;m, assigning it a srv:dir and loc, and
changing the key ranges for both tablets by setting their ~tab:~pr columns. At times
26 and 27, a flush occurred, writing a new filename for each tablet in the file col-
umn, as well as some other metadata. During this flush, the most recent timestamp
for each tablet was written to the srv:time column. We can see that the 3;m tablet has
most recent time 3, while the 3< tablet has most recent time 1, which agrees with the
entries we have written to the test table.

134 | Chapter4:Table AP|

Futhermore, we also know that mutations were applied at timestamps 19, 23, 24, and
25, and that the entries with those timestamps must have been overwritten by subse-
quent mutations.

This illustrates that analyzing what happens in an application when entries are inser-
ted into Accumulo can be a complex task. The logical time type makes this task some-
what easier, although both time types serve the essential purpose of guaranteeing
insert order into a tablet. TimeType.LOGICAL should only be used for applications for
which the actual time of insert does not matter, only the ordering of inserts.

Renaming

Tables can be renamed via the rename() method. If a table is assigned to a user-
defined namespace, the new name must include the same namespace as the old name
(we cover naming tables within a namespace in “Creating” on page 161):

ops.rename("oldName", "newName");
In the shell this can be done via the renametable command:

user@accumulo oldname> renametable oldname newname
user@accumulo newname>

Deleting Tables
Tables can be deleted via the delete() method:

void delete(String tableName)

This will remove the table, its configuration, and all data from the system. Disk space
will not be reclaimed from HDFS until the Accumulo garbage collector has a chance
to identify the files that were used by the deleted table and remove them from HDFS.

Tables can be deleted in the shell via the deletetable command:

user@accumulo> deletetable myTable
deletetable { myTable } (yes|no)? yes
Table: [myTable] has been deleted.
user@accumulo>

Deleting Ranges of Rows

A range of rows within a table can be deleted via the deleteRows() method. This can
be used to remove a specific range, or to eliminate all rows within a table without
removing the table itself. To remove a range of rows, specify a start and end row to
the deleteRows() method:

Basic Table Operations | 135

Text startRow = new Text("k");
Text endRow = new Text("r");
ops.deleteRows("myTable", startRow, endRow);

When you specify start and end rows, the deleteRows() method
will remove rows that sort after but not including the start row, and
rows that sort before and including the end row.

To delete all rows from the beginning of the table, use null for the start row parame-
ter. In this example, all rows from the beginning of the table to the specified end row
will be deleted:

Text endRow = new Text(“r");
ops.deleteRows("myTable", null, endRow);

Similarly, rows after a specific start row to the end of the table can be deleted:

Text startRow = new Text("k");
ops.deleteRows("myTable", startRow, null);

To remove all rows, use null for both the start and end row. This is equivalent to
truncating a table in a relational database. Removing all rows will leave the table and
its configuration intact:

ops.deleteRows("myTable", null, null);
These operations can be done in the shell using the deleterows command:
user@accumulo> deleterows --table myTable --begin-row k --end-row r

To delete rows beginning at the start of the table, or ending at the end of the table, or
both, the - -force flag must be present:

user@accumulo> deleterows --table myTable --begin-row k --force
user@accumulo> deleterows --table myTable --end-row r --force

To remove all rows (truncate), simply specify - - force with no start or end row:

user@accumulo> deleterows --table myTable --force

Deleting Entries Returned from a Scan

The previous section outlined deleting a simple range of rows. All columns for all
rows specified will be deleted in that case.

But we might want to delete a more complex set of entries—for example, not just all
columns for all rows in a range, but perhaps just certain columns.

136 | Chapter4:Table AP|

We cover a method for deleting entries that would be returned in a particular scan
configuration with a BatchDeleter in “Batch Deleter” on page 127. The same func-
tionality is available in the shell via the deletemany command.

Configuring Table Properties

Tables have a set of properties that control the features that are enabled and that tune
table behavior. There are three main methods for setting, removing, and viewing
these settings.

To list the current properties for a table, use the getProperties() method:

for(Entry<String,String> property : ops.getProperties(String tableName))
System.out.println(property.getkKey() + "\t" + property.getValue());

This can be done in the shell via the config command. The config command and
other commands that run on a specific table can either use the default table or the
table specified with the --table or -t option. The Accumulo shell displays the cur-
rent table in the command prompt, if the current table is set. The following prompt
shows that the current table is myTable, switches to another table, and runs the con
fig command on myTable:

user@accumulo myTable> table otherTable

user@accumulo otherTable> config --table myTable

___________ e

SCOPE | NAME | VALUE

___________ e
default | table.balancercoviiiiiiinenenennnnn | org.apache.accumu...

To set a property, use the setProperty() method. For example, to change the replica-
tion factor for new files associated with this table we could do the following:

ops.setProperty("myTable", "table.file.replication", "1");

This can be done in the shell via the config command with the -s or --set option
followed by the name and value of the property to set, separated by =:

user@accumulo> config --table myTable --set table.file.replication=1

To remove a property, use the removeProperty() method. Removing a property
causes the table to revert to the default setting for a property. For example, if we
remove the table-specific setting for table.file.replication, the table will revert to
the default setting of 0, which indicates that the HDFS default replication factor
should be used:

ops.removeProperty("myTable", "table.file.replication");

This can be done in the shell via the config command and the -d or - -delete option
specifying the property to be removed:

user@accumulo> config --table myTable --delete table.file.replication

Basic Table Operations | 137

These methods can be used to set a variety of properties that enable certain features
or alter table behavior as we describe in the following sections. In some cases, the
TableOperations object provides additional convenience methods for setting multi-
ple related properties simultaneously, but these can always be set using the setProp
erty() and removeProperty() methods.

Locality Groups

Locality groups allow application designers to direct Accumulo to store certain sets of
column families together on disk. This allows some sets of column families to be read
from disk without having to read data from all the other column families. Locality
groups are the reason that Accumulo and other Bigtable-style systems are sometimes
grouped under the columnar NoSQL data stores category. We introduce the concept of
locality groups in “Column Families” on page 19.

Accumulo’s locality groups are easy to set up and manage. Locality groups do not
have to be specified during table creation, and changes to locality groups are effected
via background compaction processes, so that tables can remain online and available
through these changes.

A new table has only one default locality group, and all column families that might
ever appear in a table are assigned to it. To assign some column families to a separate
locality group from the default, the setLocalityGroups() method of TableOpera
tions can be used:

Set<Text> groupOne = new HashSet<>();
groupOne.add(new Text('"colFamA"));
groupOne.add(new Text('"colFamB"));

Set<Text> groupTwo = new HashSet<>();
groupTwo.add(new Text('"colFamC"));
groupTwo.add(new Text('"colFamD"));

Map<String,Set<Text>> groups = new HashMap<>();
groups.put("localityGroupOne", groupOne);
groups.put("localityGroupTwo", groupTwo);

ops.setLocalityGroups("myTable", groups);

Any column families not included in this mapping will remain in the default locality
group. If new column families appear in the table they will also be stored in the
default locality group.

Column families can be moved to a new locality group at any time. Newly written
files will group data on disk according to the locality group settings at the time the file
is created. This is true for either minor compaction or major compaction.

138 | Chapter4:Table API

The current assignment of column families to locality groups can be seen via the get
LocalityGroups() method of TableOperations:

for(Map<String,Set<Text>> group : ops.getlLocalityGroups("myTable").entrySet()) {
System.out.println("\nGroup: " + group.getKey());

for(Text colFam : group.getValue()) {
System.out.println(colFam.toString());

}
}

Locality groups example

In our Wikipedia application, we have a situation that can benefit from using locality
groups. We store the article text in the content column along with the article metadata
columns together in the same row for each article.

This is convenient for reading all the information for a particular article; we can scan
a single row to get what we need.

Other times this may not be so convenient. Consider the case when we want to read
out one metadata column from multiple rows. Wed have to read large chunks of text
from the content column and filter it out as we scan from one row to the next
(Figure 4-1).

Using a locality group to separate the content and metadata columns from one
another on disk allows us to leave the content on disk when we're only reading meta-
data columns, but also preserves the ability to read content and metadata together
when we need to (Figure 4-2). The trade-off is that reading out all the columns of a
row will be slightly less efficient because we’ll have to read from two portions of a file
instead of one.

Basic Table Operations | 139

rowid column family column qualifier timestamp value
Apache_Accumulo content comment 20111001 /ool ¥ Added Column-eriented
Apache_Accumulo content text 20120301 Aecumuioea sorgh derbuted keylvalue
Apache_Accumulo metadata pageid 20111001 571876229
Apache_Accumulo metadata title 20111001 Apache Accumulo
Apache_Hadoop content text 20060314 Ao e e oo
Apache_Hadoop metadata pageid 20060314 5919308
Apache_Hadoop metadata title 20060314 Apache Hadoop
Apache_Thrift content text 20070213 Tt anintertage geinition language and
Apache_Thrift metadata pageid 20070213 10438451
Apache_Thrift metadata title 20070213 Apache Thrift

Figure 4-1. Reading over one column family still requires filtering out other column
families

We can apply locality group assignments to our column families using the following
example code:

public void setupLocalityGroups(final boolean compact) throws
AccumuloException,
AccumuloSecurityException,
TableNotFoundException {

Set<Text> contentGroup = new HashSet<>();
contentGroup.add(WikipediaConstants.CONTENTS_FAMILY_TEXT);

Set<Text> metadataGroup = new HashSet<>();
metadataGroup.add(WikipediaConstants.METADATA_FAMILY_TEXT);

Map<String, Set<Text>> groups = new HashMap<>();
groups.put("contentGroup"”, contentGroup);
groups.put("metadataGroup", metadataGroup);

conn.tableOperations().setLocalityGroups(WikipediaConstants.ARTICLES_TABLE,
groups);

140 | Chapter4:Table API

File on disk
. . N column column .
Logical Table View rowid family qualifier meStamP value
o
g Apache_Accumulo metadata pageid 20111001 571876229
N column column =
rowid . . timestamp value
family qualifier (O]
‘E:. Apache_Accumulo metadata title 20111001 Apache Accumulo
Apache_Accumulo content comment 20111001 /e i ﬁ
8 Apache Hadoop metadata pageid 20060314 5319308
Apache_Accumulo content text 20120301 -
-
=1 Apache Hadoop metadata title 20060314 Apache Hadoop
Apache_Accumulo metadata pageid 20111001 571876229 8
@
[m] Apache Thrift ~ metadata pageid 20070213 10438451
Apache_Accumulo metadata tite 20111001 Apache
P - Accurmulo
Apache_Thrift metadata title 20070213 Apache Thrift
Apache Hadoop content text 20060314 =0
Apache_Hadoop metadata pageid 20060314 5919308
Apache_Hadoop metadata title 20060314 Apache Hadoop column column
Q rowid . .. timestamp value
=] family qualifier
Apache_Thrift content text 20070213 Q X
(O] Apache Accumulo content comment 201110071 o=t
=
Apache_Thrift metadata pageid 20070213 10438451 =
T Apache_Accumulo content text 20120301
Q
Apache_Thrift metadata title 20070213 Apache Thrift =]
| Apache_Accumulo content text 20060314
-
c
..2 Apache_Hadoop content text 20070213
Q
O

Figure 4-2. Column families in different locality groups are stored together on disk

Any newly written files will be organized according to these locality groups. To cause
any existing files to be reprocessed to reflect the locality group assignment, we can
compact our table (we cover the compact command in “Compacting” on page 149):

public void setuplLocalityGroups(final boolean compact) throws
AccumuloException,
AccumuloSecurityException,
TableNotFoundException {

if(compact) {
conn.tableOperations().compact(

WikipediaConstants.ARTICLES_TABLE,
null,
null,
false,
false);

}

}

Now when using our WikipediaClient.scanColumn() method in the example code
to read a metadata column, tablet servers will not have to read out any data from the

content column family, resulting in better scan performance.

Basic Table Operations | 141

Bloom Filters

A bloom filter is a highly memory-efficient data structure for keeping track of set
membership with allowed false positives but no false negatives. False positives in this
situation mean that some percentage of the time, when we check a bloom filter to see
if particular item is in a set, it will return the answer yes when the item is not actually
in the set. But having no false negatives means that the bloom filter will never say no
when the item is actually in the set.

This comes in handy in an Accumulo context when we are looking for a particular
key in a table. Enabling bloom filters on a table will allow us to consult the bloom
filter to see if a particular key is in a file associated with a tablet. By consulting the
bloom filter, we can figure out if a file doesn’t contain a key at all instead of having to
seek into and read the data portion of the file.

This is especially useful because often a key will exist in only one file when multiple
files are associated with a tablet. Therefore, we often only need to read one file to
retrieve the key-value pair. This can reduce the time to look up a particular key-value
pair from hundreds of milliseconds, if there are many files, to perhaps tens of
milliseconds.

Of course, because bloom filters can return false positives, some percentage of the
time the bloom filter will say that a file has a key when it doesn't. In this case we look
in the file and find out that the key we want isn’t there after all, but this is acceptable
behavior. We sometimes search files we don’t need to but are guaranteed never to skip
a file that does contain our key.

Bloom filters are most useful when an application performs lots of
lookups of single rows. They are less useful when an application
mostly performs scans over multiple rows. A bloom filter is only
consulted for ranges containing keys from a single row.

The cost of using bloom filters is the memory they take up. When bloom filters are
enabled, each file has a bloom filter generated for it when it is created. This filter is
stored along with the file and is, by default, lazily loaded into memory by the tablet
server.

By default bloom filters are not enabled on tables, but they can be enabled via the
TableOperations object:

ops.setProperty("myTable", "table.bloom.enabled", "true");

These can also be enabled and other settings configured via the standard config
command in the shell:

user@accumulo> config -t myTable -s table.bloom.enabled=true

142 | Chapter4:Table AP|

http://en.wikipedia.org/wiki/Bloom_filter

After bloom filters are enabled, newly written files will have bloom filters generated
for them. Existing files will not. Compaction of older files will cause new files to be
written with bloom filters for existing data. See “Compacting” on page 149 for details
on scheduling compaction operations for a table.

Additional options that can be set and their defaults are as follows:

table.bloom.error.rate
This property specifies the desired acceptable error rate for the bloom filter, as a
percentage. A lower error rate will require that more memory be used. The
default value is 0.5%.

table.bloom.hash. type
This property defines the type of hash function to use when storing and looking
up items in the bloom filter. The default hash function type is murmur.

table.bloom. load. threshold
Even when enabled, bloom filters are lazily loaded to keep the cost of loading a
new tablet low. By default, a tablet server will wait until at least one seek that
could have used a bloom filter is actually performed before loading the bloom fil-
ter from disk into memory. This behavior can be changed via the
table.bloom.load.threshold property. Setting this property to © will cause a
bloom filter to be loaded when the file is opened.

table.bloom.size
Bloom filters are configured with a particular number of slots. The combination
of this property and the desired error rate ultimately determines the amount of
memory dedicated to the bloom filter. The default value is 1,048,576 bytes, or
1 MB.

Key functors

Bloom filters can be configured to use just the row ID; a combination of row ID and
column family: or row ID, column family, and column qualifier when checking to see
if a key exists in a file.

For example, by default bloom filters only check to see if a file contains the same row
ID as a given key. If a key has the same row ID as any key store in a file, the bloom
filter will return yes to the question of whether or not the file should be opened. This
could result in more false positives, because the keys in a file can be for the same row
but different columns than the one our key identifies.

On the other hand, storing more than just the row ID in the bloom filter makes the
lookup more specific. But this can cause the bloom filter to use up more memory in
order to maintain the desired false positive rate, because there are more possible iden-
tifiers to be stored in the bloom filter.

Basic Table Operations | 143

The portion of the key stored in a bloom filter and used for lookups is controlled by
the key functor.

The functor used can be configured on a per-table basis via the
table.bloom.key.functor property. Accumulo ships with three possible functors:

org.apache.accumulo.core.file.keyfunctor.RowFunctor
Causes only the row ID to be used when the bloom filter is consulted. This is the
default setting.

org.apache.accumulo.core.file.keyfunctor.ColumnFamilyFunctor
Causes the row ID and the column family to be used when the bloom filter is
consulted.

org.apache.accumulo.core.file.keyfunctor.ColumnQualifierFunctor
Causes the row ID, column family, and column qualifer to be used when the
bloom filter is consulted.

Additional functors can be created by extending the org.apache.accu
mulo.core.file.keyfunctor.KeyFunctor Java interface. This can be used to make a
bloom filter take advantage of an application’s access patterns when deciding whether
to search a file for a particular range.

Caching

Caching data in memory is extremely important to the performance of many conven-
tional database applications. Often a separate set of processes designed to keep part or
all of a database’s data in memory are used to keep the operational load placed on a
database low.

In contrast, Accumulo is designed to make data access fast—even when data is
fetched from disk—Dby keeping data organized, and to scale up the number of opera-
tions that can be performed by distributing data across multiple machines. Applica-
tions can then exploit spatial locality by doing one seek to find a set of related key-
value pairs, which are then read off of disk sequentially at a high rate.

However, Accumulo also employs its own caching mechanisms to allow applications
to take advantage of temporal locality. Temporal locality refers to the situation in
which key-value pairs that have been accessed once are more likely to be accessed
again within a short period of time. With caching, key-value pairs that are fetched
several times within a short period are fetched from disk once and stored in memory.
Subsequent accesses to the desired key-value pairs are fast because they can read from
memory instead of going to disk again.

In particular, Accumulo provides two types of caches. The first is an index cache,
which stores the internal key-to-data block mapping for each file of a tablet. These

144 | Chapter4:Table AP|

indexes are used to identify which block of a file should be read from disk to satisty a
read request. By default the index cache is enabled.

Another cache, the data block cache, is used to store data blocks read from files. By
default the data block cache is disabled.

Whether or not temporal locality exists for a particular table
depends on the access patterns of an application. For applications
that tend to fetch the same sets of key-value pairs several times in a
short period, enabling the data block cache can improve perfor-
mance considerably, depending on the memory resources available.

Applications that don’t perform multiple fetches of the same sets of
key-value pairs within a short time will not see a benefit from ena-
bling the data block cache. Having the data block cache enabled for
applications that scan large swaths of a table will not provide a ben-
efit and can cause data blocks for other tables to be evicted from
memory, decreasing the benefit of caching data blocks for those
other tables.

Application designers can enable or disable either cache for a particular table in the
usual manner, via the setProperty() method. The data block cache property is called
table.cache.block.enable, and the index cache property is
table.cache.index.enable:

ops.setProperty("myTable", "table.cache.block.enable", "true");

The page for an individual table in the Accumulo monitor will show the index cache
hit rate and the block or data cache hit rate.

Tablet Splits

Accumulo automatically splits tablets when they reach a certain size threshold and
tends to create uniformly sized tablets that are load-balanced evenly across the clus-
ter. Many applications have no need to alter the split points of a table.

However, in some instances applications might want to control the split points for a
table, or to obtain a list of splits.

One scenario for splitting a tablet manually is when you are preparing to stream a
large volume of writes to a new table or a new set of tablets within a table. For exam-
ple, let’s say we have an application that wants to keep track of user interactions on a
daily basis. We can choose to organize our table by defining row IDs consisting of the
day followed by a user ID:

2015-03-14_usernameK

Basic Table Operations | 145

So each day, all of our writes will be sorted toward the end of the table, because the
date portion of the row ID begins with the date. This is a problem, because the tablet
that spans from the last known row to positive infinity is only hosted by one tablet
server. Our ingest will be limited to the write throughput of one server, no matter
how many servers we have.

User IDs may be somewhat randomly distributed throughout the day. We can
improve the distribution of our writes each day by strategically presplitting the table
with a new set of split points starting with tomorrow’s date, and a user ID portion
based on perhaps the distribution of user IDs from the previous day or several days.

So if the previous day’s tablets ended up getting split automatically by Accumulo into
the following split points:

2015-03-14_usernameC
2015-03-14_usernameF
2015-03-14_usernamel]

2015-03-14_usernameQ
2015-03-14_usernameV

We might opt, at the end of the day on March 14, to generate the following split
points for the next day:

2015-03-15_usernameC
2015-03-15_usernameF
2015-03-15_usernamel]

2015-03-15_usernameQ
2015-03-15_usernameV

To add splits to a table, use the addSplits() method:

SortedSet<Text> partitionKeys = new TreeSet<>();

// add splits

partitionKeys.add(new Text("f"));
partitionKeys.add(new Text("j"));
partitionKeys.add(new Text("r"));

ops.addSplits("myTable", partitionKeys);

146 | Chapter4:Table AP|

Adding split points, either manually or automatically, will not cause
data to be unavailable or files to be changed right away. Newly split
tablets will share files for a period of time, each owning nonover-
lapping ranges of keys in the files. For example, one tablet might
use keys from the beginning of the file up until some midpoint key,
with another tablet using keys after that midpoint through the end
of the file. The files will continue to be shared until a major com-
paction writes out new files, one for each tablet. Creating new splits
is primarily a matter of adding some entries to the metadata table.

We might want to take the splits from one table and apply them to a new table. A list
of splits within a table can be obtained via the 1istSplits() method:

Collection<Text> splits = ops.listSplits("myTable");
// note: in earlier versions of Accumulo this was called getSplits()

It is possible to obtain a sample of the splits of a table by specifying the maximum
number of splits to return. The splits will be sampled uniformly:

Collection<Text> sampleSplits = ops.listSplits("myTable", 10);
// note: in previous versions this methods was called getSplits()
Quickly and automatically splitting

Applications can control how aggressively tablet servers automatically split tablets by
setting the table.split.threshold property.

Instead of adding specific split points, applications can temporarily lower the split
threshold while live ingest is happening until a table has as many or more tablets as
there are tablet servers.

Creating splits this way can result in many tablets sharing RFiles in
HDFS initially. It is not until a major compaction is run for a tablet
“ that an RFile can be created that belongs exclusively to a tablet.

Shared Rfiles are not typically a problem but can cause “chop” com-
pactions to occur when later merging tablets. When merging tab-
lets that may have been created using the split threshold lowering
process, consider running the compact command on the table first.

To change the table split threshold, use the handy setProperty() method and specify
a new threshold in terms of bytes:

ops.setProperty("table.split.threshold", "500k");

int numTablets = 0;
int numServers = conn.instanceOperations().getTabletServers().size(); (1)

while(numTablets < numServers) {

Basic Table Operations | 147

// wait a while

numTablets = ops.listSplits("myTable", 10);
}

ops.setProperty("table.split.threshold", "1G");

© See “Instance Operations” on page 165 for details on the instance-level opera-
tions APIL.

We discuss splitting tablets for performance reasons more in “Splitting Tables” on
page 498.

Merging tablets

Tablets can become empty over time, as data is aged off, or as data is deleted from a
table, or as the result of adding splits that don’t end up reflecting the actual distribu-
tion of the keys.

Empty tablets don’t generally cause serious problems for tables. Perhaps the biggest
issue with empty tablets is that they can cause the distribution of actual data within a
table to be uneven across servers, because the default table load balancer only looks at
the number of tablets, not the amount of data within each tablet.

Empty tablets or even just smaller tablets can be merged into larger tablets to achieve
a more uniform distribution of data across tablets.

To merge tablets in a given range, use the merge() method:
ops.merge("myTable", new Text("ja"), new Text("jd"));

There is a utility class, org.apache.accumulo.core.util.Merge, that will loop over
small tablets, merging until there are no more tablets smaller than a given size:
long goalSize = AccumuloConfiguration.getMemoryInBytes("500M");

boolean force = true;
Merge merge = new Merge();

Text start = null; // begin at the start of the table
Text end = null; // go to the end of the table

merge.mergomatic(conn, "myTable", start, end, goalSize, force);

A few other methods relating to tablets can be useful: getMaxRow() to find out the last
existing row within a range; and splitRangeByTablets(), which can be used to split
a range according to how tablets are currently split. splitRangeByTablets() is used,
for instance, in Accumulos MapReduce integration to align MapReduce input splits
to tablets:

148 | Chapter4:Table AP|

Text getMaxRow(String tableName, Authorizations auths, Text startRow,
boolean startInclusive, Text endRow, boolean endInclusive)

Set<Range> splitRangeByTablets(String tableName, Range range, int maxSplits)

Compacting

New writes to Accumulo tables are sent to two places by the tablet server: a sorted in-
memory data structure, called the in-memory map, and an unsorted log on disk,
called the write-ahead log. When the in-memory map reaches a certain size, it is
flushed to a new file in HDFS, a process called a minor compaction.

Applications can direct tablet servers to flush all the recent mutations from memory
to disk for a particular table via the TableOperations.flush() method. This is dif-
ferent from the BatchWriter.flush() method, which sends all of the mutations from
a client to tablet servers.

Flushing a table can make it easier to perform certain operations, such as shutting
down a tablet server, because a flushed table’s tablets require no recovery if a tablet
server is shut down:

ops.flush(String tableName, Text start, Text end, boolean wait)

Over time, the number of files associated with each tablet increases, up to the maxi-
mum number of files per tablet specified for the table. Tablet servers automatically
decide when to combine two or more files into one new file in a process called major
compaction. Lookups on tablets with fewer files can be carried out more quickly
because fewer disk seeks are involved in locating the start key of interest.

By default, Accumulo is tuned to allow each tablet to have several files. This has the
effect of balancing the resources dedicated to ingest with those dedicated to lookups.

Applications can choose to compact a table on demand to improve lookup perfor-
mance via the compact() method. Unlike the periodic compactions that a tablet
server performs in the background, an application-initiated compaction will always
merge all files associated with a tablet into one file. This can also help when you are
attempting to remove deleted data from disk, or with ensuring that changes in config-
ured options or iterators are immediately reflected in a table’s files.

Major compactions scheduled from the API or the shell will always
cause the data for each tablet to be rewritten to one new file, even
when a tablet already has only one file.

This is useful for ensuring that changes in table configuration—
affect all of the table’s data on disk.

Basic Table Operations | 149

Compactions can be scheduled over a particular range, or over an entire table. It is
also possible to request that the compact method perform a minor compaction before
starting the major compaction, and/or to make the method wait until the compac-
tions are complete:

boolean flush = true;
boolean wait = false;

Text startRow = new Text("ja");
Text endRow = new Text("jd");

ops.compact("myTable", startRow, endRow, flush, wait);
To compact the entire table, set the start and end row parameters to null:
ops.compact("myTable", null, null, flush, wait) ;

Compacting an entire table or a range within a table can be a useful way of ensuring
that changes in table configuration are reflected in all the data stored on disk.

To configure iterators to be used just for the duration of a compaction, applications
can pass in a list of IteratorSetting objects:

List<IteratorSetting> iterators = new ArraylList<>();

boolean flush = true;

boolean wait = false;

void compact("myTable", start, end, iterators, flush, wait);
If compactions are already taking place, the requested compaction of a table will be
queued up and performed as soon as resources become available. A set of queued
compactions for a table can be cancelled via the cancelCompaction() method:

ops.cancelCompaction("myTable");

Compaction properties

Compactions require precious I/O and CPU resources. As such, how often compac-
tions take place can have a large effect on query and ingest performance. The follow-
ing are the available compaction properties and their behavior:

table.compaction.major.ratio
This property controls how aggressively tablet servers automatically compact
files. By default the setting is 3, which instructs tablet servers to compact a set of
files if their combined size is at least three times the size of the largest tablet in
the set. For example, if there were three or more files of the same size, they would
be compacted into a single file. Setting this ratio higher makes tablet servers wait
longer before combining files.

150 | Chapter4:Table API

table.compaction.major.everything.idle
This property controls how long after the last write to a tablet to wait before con-
sidering the tablet to be idle. A tablet server sometimes chooses to compact idle
tablets, because compacting a tablet’s files into a single file can improve query
performance. Idle compactions might never happen if the tablet server is busy.
The default idle time is one hour. Tablets that already only have one file will not
be compacted in this way.

table.compaction.minor.idle
This property tells the tablet server how long after receiving the last mutation to
leave a tablet’s data in the in-memory map before flushing to disk. Typically a
tablet server waits until the available memory is close to being used up, but in
this case, if a tablet has not seen any mutations for this period of time, the tablet
server can opt to flush the data to disk. The default is 5 minutes.

table.compaction.minor.logs.threshold
This is the maximum number of write-ahead logs that will be associated with a
tablet before the tablet server will perform a minor compaction. After the minor
compaction takes place, the tablet will no longer need the data previously written
to those logs, which will reduce recovery time if the tablet server goes down. The
default setting is 3.

Additional Properties

Several other settings can be controlled on a per-table basis. Application designers
should at least be aware of these options, because their configuration can depend on
access patterns and data used as part of the application. These include the following:

table.balancer
This controls the way that a table’s tablets are distributed throughout the cluster.
By default, a table’s tablets are spread across tablet servers so that each tablet
server has close to the same number of tablets using the DefaultLoadBalancer
class. This does not take into account the number of entries per tablet or the
number of bytes per tablet, just the number of tablets. Some tables call for a dif-
ferent strategy of distributing tablets across servers.

To implement a custom load balancer, create a Java class that extends
org.apache.accumulo.server.master.balancer.TabletBalancer, implement-
ing the following methods:

public abstract class TabletBalancer {

/**

* Assign tablets to tablet servers. This method is called

Basic Table Operations | 151

* whenever the master finds tablets that are unassigned.
*

*

/

abstract public void getAssignments(
SortedMap<TServerInstance,
TabletServerStatus> current,
Map<KeyExtent,TServerInstance> unassigned,
Map<KeyExtent,TServerInstance> assignments);

/**
* Ask the balancer if any migrations are necessary.
*

*

/

public abstract long balance(
SortedMap<TServerInstance,
TabletServerStatus> current,
Set<KeyExtent> migrations,
List<TabletMigration> migrationsOut);

}...

table.classpath.context
This property allows the Java CLASSPATH used for a particular table to be speci-
fied. Iterators and other custom classes can be loaded for a particular table
without affecting the classes loaded for other tables.

tserver.memory.maps.max
This controls the amount of memory dedicated to holding newly written data in
memory before flushing to disk.

table.failures.ignore
If part of a table is unavailable for some reason—for example, if there is a prob-
lem with HDFS data nodes serving a particular block of a file associated with a
tablet—a scan over that part of a tablet will result in an Exception. It is possible
to allow scans to proceed and return any data that is available, even in the pres-
ence of some unavailable data by setting table.failures.ignore to true. By
default this setting is false.

table.file.blocksize
This property controls the size of HDFS file blocks used for a table. Setting this
value to be close to the split threshold means that a file can consist of just one
block and therefore can be retrieved from a single HDFS data node, which can
increase query performance.

table.file.compress.blocksize
When Accumulo writes key-value pairs to disk, they are first grouped into blocks
and, by default, compressed. The default setting is 100K, which groups 100 KB of

152 | Chapter4:Table AP|

key-value pairs before compression. This means that a compressed block that
decompressed to about 100 KB will be retrieved from disk when even only a sin-
gle key-value pair is read. If an application will mostly retrieve one, or few, small
key-value pairs, setting this property lower can result in better query perfor-
mance. If an application will regularly scan larger ranges of key-value pairs, set-
ting this value higher will reduce file storage overhead slightly and result in
prefetching more data from disk, which will be faster for these applications than
having files that have more, smaller blocks.

table.file.compress.blocksize.index
The files Accumulo uses to store sorted key-value pairs on disk include a section
for indexes. These indexes help a tablet server find which block or blocks of a file
to load for a particular range of keys. This property controls the size of the blocks
used to store index entries for a file. The default is 128 KB, represented as 128K.

table.file.compress. type
This property allows tables to be compressed with the specified algorithm. Accu-
mulo ships with Gzip and LZO compression libraries. The default compression
algorithm is Gzip. Compression can be turned off by setting this property to
none, which is not recommended for most apps. In general, choosing a compres-
sion algorithm involves a trade-off between resources needed to perform com-
pression and the amount of compression.

table.file.max

This property sets the maximum number of files that can be associated with a
tablet. If a new file needs to be written to this tablet and the maximum number of
files is already reached, a tablet server will perform a merging minor compaction
in which one data file is rewritten along with data from memory into a new file,
so that the maximum number of files is not exceeded. Merging minor compac-
tions are slower than compactions that simply flush out data in memory to a new
file, because they involve reading an existing file and performing a merge-sort
with data from memory to create a new file. This has the effect of slowing down
ingest while keeping the number of files that a tablet server may need to open
down to a reasonable number for any given query.

Setting this property to a value less than the value for tser
ver.scan.files.open.max will prevent a tablet server from having more files
than it is willing to open all at once. This property can be set to 0, in which case it
will default to the value of tserver.scan.files.open.max - 1.

Increasing this value will allow more new files to be flushed to disk before merg-
ing minor compactions kick in, effectively tuning a table for faster ingest at the
expense of queries. Conversely, setting this value lower will end up throttling
ingest and will make queries faster. The default value is 15 files.

Basic Table Operations | 153

table.file.replication
Controls the number of file block replicas associated with this table. A table that
requires more fault tolerance can set this number higher. Tables that store data
that can be restored from another source can set this property lower. Fewer repli-
cas will result in faster ingest rates. Setting this property to 0 will cause tablet
servers to use the HDFS default replication setting. 0 is the default setting.

table.file.type
Older versions of Accumulo use a file type known as the map file type. Newer
versions use a format called an RFile. The default setting for this property is rf,
meaning that new files will be written in the RFile format. See “File formats” on
page 369 for more information on these formats.

table.formatter
Some tables can have complex data elements stored in keys or values. For exam-
ple, a table can contain a serialized Avro object. Anything that is not a Java
String will likely show up in the shell as a jumble of characters. Specifying a cus-
tom table formatter can cause a table’s values to be printed out in a human-
readable representation. Custom Formatter classes are discussed in “Human-
Readable Versus Binary Values and Formatters” on page 311.

table.interepreter
When scans are performed in the shell, arguments are interpreted as strings. This
may not result in the type of range desired if a table’s rows or columns are not
stored as strings. For example, a table may have serialized Java Long objects as
row IDs.

When row IDs or columns that are not Java Strings are used, an alternative
interpreter can be used for performing scans within the shell. Custom inter-
preters can be created by extending org.apache.accumulo.core.util.inter
pret.ScanInterpreter:

public interface ScanInterpreter {
Text interpretRow(Text row);
Text interpretBeginRow(Text row);
Text interpretEndRow(Text row);
Text interpretColumnFamily(Text cf);

Text interpretColumnQualifier(Text cq);

154 | Chapter4:Table AP|

The methods defined by the ScanInterpreter interface can be used to transform
a given start row, end row, or column name into the right format for a particular
table. The default scan interpreter is org.apache.accumulo.core.util.inter
pret.DefaultScanInterpreter. Setting a custom interpreter can be done by set-
ting the table.interepreter property to the fully qualified class name of the
custom interpreter.

table.scan.max.memory
This is the maximum amount of memory that a server will use to batch results of
a scan before sending them to a client. For applications with typically larger
scans, setting this property higher can improve performance. The default is 512
KB (512K).

table.security.scan.visibility.default
This setting allows key-value pairs in a table that have a blank column visibility to
be considered to have a default column visibility. For example, we can store key-
value pairs with no column visibility set but have the table.security.scan.vis
ibility.default property set to public, which will have the effect of requiring
that all users performing scans against these key-value pairs in the table at least
possess the public authorization token.

When a scanner returns key-value pairs that have no column
visibility set, they will appear to have blank column visibilities
when returned to the client, even though a default visibility
can be in place. That is, the tablet server does not fill in the
column visibilities of key-value pairs returned with the default
visibility for the table.

Also, this is a scan-time setting only. It will not cause the
default column visibility to be persisted to disk within any of
the keys. This is convenient because it allows the default visi-
bility to be changed without rewriting all the data already
stored thus far.

Key-value pairs without a column visibility set can be seen by anyone when there
is no default visibility configured. See the discussion in “Using a Default Visibil-
ity” on page 190 for more on using the default visibility setting.

table.walog.enabled
This property controls whether to persist new writes to a log on disk before con-
sidering a write to be successful. By default all new mutations are persisted to the
write-ahead log on disk before a tablet server reports to a client that the write
succeeded. This setting is true by default. The write-ahead log only applies to
writes written to a table via mutations added to a BatchWriter. The write-ahead

Basic Table Operations | 155

log is not involved in bulk-loading new files to a table. This setting does not need
to be set to false when using bulk loading; the write-ahead log is simply not
used. See “MapReduce and Bulk Import” on page 268 for more on bulk import.

Tables that have the write-ahead log disabled can lose data if
live writes are being streamed to servers and a server dies. The
“ write-ahead log should only be disabled in cases where data is
backed up elsewhere and where tables are regularly check-
pointed, so that a consistent view of the table can be created
from replaying live writes to data from the last complete
checkpoint after a server failure.

Online Status

Accumulo tables can be brought offline, meaning they will be unavailable for queries
and writes, and they will not utilize any system resources other than disk storage.

This can be useful for tables that do not need to be available at all times but occasion-
ally can be brought online for some queries and then taken offline again to free up
system resources for other tables. We cover another use case for taking tables offline
when discussing cloning and exporting tables in “Importing and Exporting Tables”
on page 158.

To take a table offline using the TableOperations object, use the of fline() method:

ops.offline("myTable");

This will instruct all tablet servers to begin unloading all tablets for the table speci-
fied, flushing any data in memory to disk and releasing any system resources dedica-
ted to those tablets, such as open file handles. Because this can take some time,
depending on the size of the table, this call is asynchronous.

Applications can call this method with an additional parameter that causes the call to
wait until a table is offline:

ops.offline("myTable", true);
The accumulo.root and accumulo.metadata tables cannot be taken

offline. To operate on the files associated with these tables, Accu-
mulo would need to be shut down.

The /tables section of the Accumulo monitor shows the online status of all tables. A
table that is offline can be brought online again with the online() method:

156 | Chapter4:Table API

ops.online("myTable");

// or

ops.online("myTable", true);
This will instruct tablet servers to be assigned responsibility for all the tablets of the
table specified.

Tables can be taken offline and back online in the shell as well. See “Changing Online
Status” on page 444 for shell methods relating to the online status of tables.

Cloning

Tables can be cloned via the clone() method. Because all underlying files of Accu-
mulo tables are immutable, cloning can be performed very efficiently.

When a table is cloned, it can also be optionally flushed to ensure that a consistent
view of the table is cloned at a specific point in time, via the Boolean flush parame-
ter. A cloned table will inherit all the configuration of the original table. Some proper-
ties of the original table can be excluded when the cloned table is created, and
properties can be optionally set to specified values as well.

A cloned table will not inherit the table permissions of the original. The user that cre-
ated the cloned table will be the only user authorized to read and alter the table at
first:

boolean flush = true;
Map<String,String> propsToSet = new HashMap<>();
// set any properties to be different for the cloned table

Set<String> propsToExclude = new HashSet<>();
// identify any properties not to be copied from the original table
// defaults will be used instead unless set in propsToSet

ops.clone("originalTable", "newTable", flush, originalProps, propsToExclude);

Cloning is a good option when the need arises for a consistent copy of a table that can
be manipulated without affecting the original.

Using cloning as a snapshotting mechanism

Cloning can also be thought of as a way of taking a snapshot of a table at a particular
time. If something corrupts a table that is outside the fault-tolerant measures of
Accumulo—such as a bug in a client writing new data to a table or a user accidentally
deleting data—being able to restore a table from a recent snapshot can save a lot of
data and time.

Making a snapshot can be done as in this example:

Basic Table Operations | 157

// clone the table as a snapshot
System.out.println("Creating snapshot");

boolean flush = true;
Map<String,String> propsToSet = new HashMap<>();
Set<String> propsToExclude = new HashSet<>();

String timestamp = Long.toString(System.currentTimeMillis());

String snapshot = "myTable_" + timestamp;
ops.clone("myTable", snapshot, flush, propsToSet, propsToExclude);

Cloned tables as snapshots can be named with a unique identifier, such as the time
they were cloned. Restoring a snapshot could be as simple as stopping clients, delet-
ing or renaming the primary table, and cloning the snapshot table using the original
table name as the name of the newly cloned table.

An example is as follows:

System.out.println("Restoring from snapshot");
ops.delete("myTable");
ops.clone(snapshot, "myTable", flush, propsToSet, propsToExclude);

// any existing scanners will no longer work
// get a new one
scan = conn.createScanner("myTable", new Authorizations());
for(Map.Entry<Key, Value> kv : scan) {
System.out.println(
kv.getKey().getRow() + "\t" +
new String(kv.getValue().get()));

Importing and Exporting Tables

Accumulo tables can be exported to a directory in HDEFS, or other HDFS-compatible
filesystems, and also imported.

For a table to be exported, it must be taken offline and stay offline for the duration of
the export. This ensures that there is a consistent set of files in HDFS for all tablets in
the table, and that the garbage collector process will not delete any files in the initial
list created by the export command before the files can be copied to another place.
Because offline tables are unavailable for new writes and reads, applications can
choose to clone the table instead, take the clone offline, and export the clone instead
of the original table.

158 | Chapter4:Table API

Exporting a table will include information such as the table configuration, the split
points, and the logical time information, if any, so that when the table is imported, the
destination table will resemble the original.

To export a table, you must specify a path to a directory in HDFS in which table
information can be written:

ops.offline("myTable");

ops.exportTable("myTable", "/exports/myTable/");
The /exports/myTable directory now contains metadata information and a file con-
taining commands for Hadoop’s distcp feature that can be used to copy the files

from our table to another HDFS instance. For instructions on doing this, see “Import,
Export, and Backups” on page 446.

Tables exported in this way can be programmatically imported into Accumulo, but
the data files must be copied first:

hadoop distcp -f /exports/myTable/distcp.txt /exports/myTable_contents

Once the files have been copied, the table can be imported with the following meth-
ods. The files can only be imported once. To import the same table again, the distcp
command must be repeated:

ops.createTable("anotherTable");
ops.importTable("anotherTable", "/exports/myTable_contents")

Exporting and importing a table can facilitate moving a table from one Accumulo
namespace to another, because simply renaming a table to move it into a different
namespace is not possible.

Newly imported tables will have the same table configuration applied and split points
as the exported table.

Additional Administrative Methods
There are a few additional features in the administrative API.

The clearLocatorCache() method can be used to cause a client to forget the map-
ping of tablets to servers and to learn the mapping anew by reading the metadata
table:

void clearLocatorCache(String tableName)

The tableIdMap() method will return a Java Map of table names to IDs that are used
to identify table resources in HDFS and in the metadata table. Looking up a table’s ID
can be helpful for locating files in HDES or entries in the metadata table.

Map<String,String> tableIdMap();

Basic Table Operations | 159

The getDiskUsage() command is useful for seeing how many bytes on disk are used
by a table. The method can be used for multiple tables simultaneously:

Set<String> tables = new HashSet<>();
tables.add("testTable");

List<DiskUsage> usages = ops.getDiskUsage(tables);

System.out.println(usages.get(0).getUsage() + " bytes");

The testClassLoad() method is useful for testing whether a class can be correctly
loaded for a given table—for example, a custom iterator or constraint or other user-
defined class.

If a specific CLASSPATH is set for the table, it will be used to attempt to load the class.
The class can be tested for whether it implements a given interface:

String className = "org.my.ClassName";
String asTypeName = "org.my.Interface";
boolean canLoad = ops.testClassLoad("testTable", className, asTypeName);

To configure iterators or constraints on a table, see “Iterators” on page 209 and “Con-
straints” on page 201, respectively.

Table Namespaces

A new feature in Accumulo 1.6 is that tables can be grouped using a namespace. For
example, one department of an organization can have a set of tables that it can name
without worrying about using the same name for a table as another department.

Here is an example of a set of tables in separate namespaces, perhaps supporting sep-
arate applications. There are three namespaces, intranet, wiki, and sensor, perhaps
each storing data from different sources, but doing similar things such as storing
records imported, and storing index entries:

intranet.index
intranet.records
intranet.stats
wiki.index
wiki.docPartIndex
wiki.articles
wiki.audit
sensor.records
sensor.index
sensor.trends

Each namespace can use any names for their tables. In addition, some settings can be
applied at the namespace level and will affect all tables in that namespace. Namespa-
ces provide a convenient way for configuring and managing tables in groups.

160 | Chapter4:Table API

In a table name, the portion preceding a single dot (.) constitutes the namespace, and
the portion following the dot represents the specific table within the namespace. For
example, the metadata and root tables live within the system namespace, accumulo,
so they appear as accumulo.metadata and accumulo.root. Tables without a namespace
portion and a dot are assigned to the default namespace.

Namespaces can be controlled via the NamespaceOperations class, obtained from a
Connector object:

NamespaceOperations nsOps = conn.getNamespaceOperations();

Creating

A namespace must be created explicitly before a new table can be created within that
namespace. A namespace can only consist of letters, numbers, and underscore char-
acters. We can also check for the existence of a namespace:

1f(!nsOps.exists("myNamespace"))
nsOps.create("myNamespace");

Now we can create tables within this namespace. To assign a table to a namespace
simply prepend the name of the namespace and a dot before the name of the table:

conn.getTableOperations().create("myNamespace.myTable");

Attempting to assign a table to a namespace, that doesn’t exist will result in an
exception.

These actions can also be done in the shell:

user@accumulo> createnamespace myNamespace
user@accumulo> createtable myNamespace.myTable

Once a table has been created in a namespace it cannot be moved
to another namespace simply by renaming. Tables can be renamed
“ as long as the namespace portion of the name is unchanged.

\

You can move a table to a namespace by exporting it to a directory
in HDFS and then importing it into a table in a different name-
space. See “Importing and Exporting Tables” on page 158.

To obtain a list of namespaces, use the 1ist() method:

for(String namespace : nsOps.list())
System.out.println(namespace);

To list namespaces in the shell, use the namespaces command:

user@accumulo> namespaces
accumulo
myNamespace

Table Namespaces | 161

To get the name of the system namespace, use the systemNamespace() method. For
the name of the default namespace, use the defaultNamespace() method.

It is possible to set properties on the default namespace, and all tables in the default
namespace will be affected (we cover setting properties on namespaces in “Setting
Namespace Properties” on page 162):

String systemNS = nsOps.systemNamespace();
String defaultNS = nsOps.defaultNamespace();

Renaming

Namespaces can be renamed. In this case all the tables within the namespace will
appear under the new namespace:

nsOps.rename("myNamespace", "myNewNamespace");
In the shell this is achieved via the renamenamespace command:

user@accumulo> createnamespace ns
user@ccumulo> createtable ns.test

user@ccumulo ns.test> tables
accumulo.metadata
accumulo.root

ns.test

user@accumulo ns.test> renamenamespace ns newns
user@ccumulo newns.test> tables

accumulo.metadata
accumulo.root
newns. test

Setting Namespace Properties

Any properties configured on a namespace will be applied to all the tables within it.
This makes changing the properties for a group of tables easy. Tables can still have
individual properties too, in which case they will override any corresponding name-
space properties.

The only properties that should be applied to namespaces are those
properties that are normally applied to individual tables. These typ-
ically begin with the table prefix. For a list of table properties, see
“Configuring Table Properties” on page 137.

To set a property, use the setProperty() method on a NamespaceOperations object:

nsOps.setProperty("myNamespace", "table.file.replication", "2");

162 | Chapter4:Table API

The property will be propagated to all tablet servers via ZooKeeper and may take a
few seconds to affect all tables within the namespace.

Similarly, to remove a property, use the removeProperty() method. This will also be
propagated within a few seconds to tablet servers. When a property has been
removed from a namespace, the tables within the namespace inherit the system set-
ting if it exists, or the default setting:

nsOps.removeProperty("myNamespace", "table.file.replication");
Properties of a namespace can be listed via the getProperties() method:

for(Entry<String,String>> e : getProperties("myNamespace"))
System.out.println(e.getKey() + "\t" + e.getValue());

Setting and viewing namespace properties in the shell can be done with the -ns
option to the config command:

user@accumulo> config -ns myNamespace -s property=setting
user@accumulo> config -ns myNamespace -d property
user@accumulo> config -ns myNamespace

Deleting

Before a namespace can be deleted, all the tables within the namespace must be
deleted. Once a namespace is empty, the delete() method can be used to remove it:

nsOps.delete("myNamespace");

A NamespaceNotEmptyException will be thrown if the namespace still contains any
tables.

In the shell this can be done via the deletenamespace() command:

user@accumulo newns.test> deletenamespace newns

deletenamespace { newns } (yes|no)? yes

2014-08-23 12:14:37,297 ERROR [main] shell.Shell (Shell.java:logError(1139)) -
org.apache.accumulo.core.client.NamespaceNotEmptyException: Namespace newns
(Id=1) it not empty, contains at least one table

user@accumulo newns.test> deletetable newns.test
deletetable { newns.test } (yes|no)? yes

yes

Table: [newns.test] has been deleted.

user@accumulo> deletenamespace newns
deletenamespace { newns } (yes|no)? yes
yes

user@accumulo>

Table Namespaces | 163

Configuring Iterators

Similarly to the way Accumulo iterators can be configured for individual tables as
described in “Iterators” on page 209, iterators can be configured for a namespace,
which will apply the iterator to all tables within the namespace.

Iterators can be configured to be applied at all scopes (scan-time, minor compaction,
and major compaction) or specific scopes. To add an iterator on all scopes:

IteratorSetting iterSet = new IteratorSetting(10, "myIter",
com.examples.Iterator.class);
nsOps.attachIterator("myNamespace", iterSet);

Iterators can also be applied to specific scopes. For example, you can set an iterator to
be applied at only minor compaction and major compaction times:

IteratorSetting iterSet = new IteratorSetting(10, "myIter",
com.examples.Iterator.class);
EnumSet<IteratorScope> scopes =
EnumSet.of (IteratorScope.MINC, IteratorScope.MAIC);
nsOps.attachIterator("myNamespace", iterSet, scopes);

The same methods available for working with iterators on individual tables can also
be used for namespaces. These include:

e checkIteratorConflicts()

e getIteratorSetting()

e listIterators()

e removelterator()

See “Iterators” on page 209 for details on using these methods.

Configuring Constraints

Constraints can be applied to namespaces in order to control the mutations allowed
to be written to any tables within the namespace. Like the methods for configuring
iterators, these methods are identical to their table-specific counterparts and include:
e addConstraint()
e listConstraints()

e removeConstraint()

See “Constraints” on page 201 for details on using these methods.

164 | Chapter4:Table AP|

Testing Class Loading for a Namespace

The testClassLoad() method can be used to check whether a class can be loaded for
a particular namespace. This is similar to the table-specific method, described in
“Additional Administrative Methods” on page 159.

Instance Operations

An Accumulo instance consists of all the processes that are participating in the same
cluster. It is possible to set instance-wide properties, and obtain information about
the instance, via the InstanceOperations object:

InstanceOperations instOps = conn.instanceOperations();

Setting Properties

Properties can be set on an instance-wide basis. Setting a property will override the
setting in accumulo-site.xml; or if a property doesn’t appear in the accumulo-site.xml
file, it will override the default.

Any type of property can be set here, whether it applies to the instance, to a name-
space, or to an individual table:

instOps.setProperty("property", "value");

instOps.removeProperty("property");

Configuration

To retrieve a list of property settings as they appear in the accumulo-site.xml file, use
the getSiteConfiguration() method:

Map<String, String> siteConfig = instOps.getSiteConfiguration();
for(Map.Entry<String, String> setting : siteConfig.entrySet()) {

System.out.println(setting.getkKey() + "\t" + setting.getValue());
}

To retrieve a list of properties as they are currently configured in ZooKeeper, use get
SystemConfiguration(). Properties set via the shell or programmatically will be
reflected here, in addition to any set in accumulo-site.xml, as well as the defaults:

Map<String, String> sysConfig = instOps.getSystemConfiguration();
for(Map.Entry<String, String> setting : sysConfig.entrySet()) {

System.out.println(setting.getKey() + "\t" + setting.getValue());
}

Instance Operations | 165

Cluster Information

The InstanceOperations object can be used to obtain current information about the
instance. To obtain a list of currently active tablet servers, use the getTabletServ
ers() method:

List<String> servers = instOps.getTabletServers();

To get a list of active scans for a particular tablet server, specify the tablet server in the
form IP address : port:

List<ActiveScan> scans = instOps.getActiveScans(tserver);
for(ActiveScan s : scans) {

System.out.println(

"age:\t" + s.getAge() + "\n"

"auths:\t" + s.getAuthorizations() + "\n"
"client:\t" + s.getClient() + "\n"
"columns:\t" + s.getColumns() + "\n"
"extent:\t" + s.getExtent() + "\n"
"idle:\t" + s.getIdleTime() + "\n"
"last contact:\t" + s.getLastContactTime() + "\n"
"scan id:\t" + s.getScanid() + "\n"
"server side iterator list:\t" + s.getSsilList() + "\n"
"server side iterator options:\t" + s.getSsio() + "\n"
"state:\t" + s.getState() + "\n"
"table:\t" + s.getTable() + "\n"
"type:\t" + s.getType() + "\n"
"user:\t" + s.getUser() + "\n");

+ o+ o+ o+ o+ o+ o+ o+ o+ o+

}

An ActiveScan object will contain several pieces of information:

age
The time in seconds since the scan began on this server

auths
A list of authorizations to apply to this scan

client
The IP address and port number of the client process

columns
A list of columns fetched as part of the scan, or blank for all

extent
The tablet being scanned
idle
The amount of time in seconds since the scan has returned any data

166 | Chapter4:Table API

last contact
The amount of time in seconds since the client last contacted the server

scan id
An identifier for the scan

server side iterator list
A list of iterators applied on the server side

server side iterator options
Any options applied to server-side iterators

state
One of:

o RUNNING when the scan is being performed
« IDLE when waiting for the client to request more data

o QUEUED when waiting for system resources to become available to start the
scan

table
The name of the table being scanned

type
One of:

o SINGLE for a regular Scanner

o BATCH for a BatchScanner

user
The name of the user performing the scan

Here is a sample of the information returned:

age: 3507

auths:

client: 192.168.10.70:56689
columns: []

extent: f<<

idle: 27

last contact: 27

scan id: 0

server side iterator list: []
server side iterator options: {}
state: RUNNING

table: table8

Instance Operations | 167

type: SINGLE
user: root

age: 1941

auths:

client: 192.168.10.70:56619
columns: []

extent: 6<<

idle: 27

last contact: 27

scan id: 0

server side iterator list: []
server side iterator options: {}
state: QUEUED

table: table9

type: SINGLE

user: root

age: 135

auths:

client: 192.168.10.70:56716
columns: []

extent: 7<<

idle: 1

last contact: 1

scan id: 0

server side iterator list: []
server side iterator options: {}
state: IDLE

table: tablel

type: SINGLE

user: root

To list active compactions scheduled or running on a tablet server, specify the server
using a string consisting of IP address : port:

List<ActiveCompaction> compactions = instOps.getActiveCompactions(tserver);

for(ActiveCompaction c : compactions) {

System.out.println(
"age:\t" + c.getAge() + "\n"

"entries read:\t" + c.getEntriesRead() + "\n"
"entries written:\t" + c.getEntriesWritten() + "\n"
"extent:\t" + c.getExtent() + "\n"
"input files:\t" + c.getInputFiles() + "\n"
"{terators:\t" + c.getIterators() + "\n"
"locality group:\t" + c.getLocalityGroup() + "\n"
"output file:\t" + c.getOutputFile() + "\n"
"reason:\t" + c.getReason(). + "\n"
"table:\t" + c.getTable() + "\n"
"type:\t" + c.getType(). + "\n");

+ + + + + + + + + o+

}

The ActiveCompaction object will consist of the following information:

168 | Chapter4:Table AP|

age
The length of time in seconds that the compaction has been running or
scheduled

entries read
The number of entries read from input files or from memory

entries written
The number of entries written to the output file

extent
An identifier for the tablet being compacted

input files
A list of input files

iterators
A list of iterators applied to the compaction

locality group
Any locality groups involved

output file
The path of the output file

reason
The originator of the compaction. Either:

« CHOP when part of a merge operation
o CLOSE as is done before unloading a tablet

o IDLE when a compaction is triggered by the setting tablet.compac
tion.idle

o SYSTEM when automatically triggered by the tablet server’s internal resource
manager due to data in memory, or number of files

o USER when requested by the user

table
The name of the table

type
One of:

o FULL resulting in one file for the tablet

+ MAJOR combining several files into one

Instance Operations | 169

o MERGE combining in-memory data with the tablet’s smallest file

« MINOR flushing in-memory data to a new file

An example of some active compactions from the test program com.accumulo-
book.tableapi.InstanceOpsExample.java are as follows:

==== tserver.local:56481 ====

age: 914

entries read: 43008

entries written: 43008

extent: j<<

input files: []

iterators: []

locality group:

output file: file:/var/folders/ks/ltzkjxtn5t9cb302mrgzx1dm0000gn/T/
1409356659029-0/accumulo/tables/j/default_tablet/FOO0002a.rf_tmp

reason: SYSTEM

table: tablel5

type: MINOR

age: 4519

entries read: 186368

entries written: 93184

extent: 6<<

input files: [file:/var/folders/ks/1ltzkjxtn5t9cb302mrgzx1dm0@OOgn/T/
1409356659029-0/accumulo/tables/6/default_tablet/FO00001l.rf, file:/var/
folders/ks/1ltzkjxtn5t9cb302mrgzx1dm@OOOgn/T/1409356659029-0/accumulo/tables/
6/default_tablet/F000001x.rf, file:/var/folders/ks/
1tzkjxtn5t9cb302mrgzx1dm00OOgn/T/1409356659029-0/accumulo/tables/6/
default_tablet/A000000f.rf, file:/var/folders/ks/
1tzkjxtn5t9cb302mrgzx1dm00OOgn/T/1409356659029-0/accumulo/tables/6/
default_tablet/FO00001v.rf]

iterators: []

locality group:

output file: file:/var/folders/ks/1ltzkjxtn5t9cb302mrgzx1dme0OOgn/T/
1409356659029-0/accumulo/tables/6/default_tablet/A0000021.rf_tmp

reason: USER

table: table9

type: FULL

To check whether a tablet server is reachable, use the ping() method:

String ipAddress = "10.0.0.1";
String port = "9997";

try {
instOps.ping(ipAddress +

} catch(AccumuloException ae) {
System.out.println("server "

}

+ port)

. " unreachable.");

+ ipAddress + + port +

170 | Chapter4:Table API

You can also test whether a class is loadable from the instance-wide classpath by call-
ing the testClassLoad() method:

String className = "org.my.ClassName";
String asTypeName = "org.my.Interface";

boolean loadable = instOps.testClassLoad(className, asTypeName);

Precedence of Properties

Properties that are applied more specifically take precedence over those applied more
generally. For example, an instance-wide property can be overridden by a namespace-
specific property, which itself can be overridden by a table-specific property
(Figure 4-3).

" Default
~ System

' Namespace
\'_ Table ,\
\'_ Table ;\

' Namespace
\'_ Table ,\
\'_ Table ;\

Figure 4-3. Precedence of properties
For example, we might choose to change a property across all tables from the default
to a specific setting we choose. First, we'll look at the default setting:

user@accumulo> config -f table.file.replication
___________ e m e e e e emeeeeeemeeeemeeeeameeaeeaeeemeeeeeaeeaeeemeade——n———-

Instance Operations | 171

SCOPE | NAME | VALUE

The value, 0, means to use whatever the default replication setting is in HDFS.

We can change the table file replication property for all tables in all namespaces by
not specifying a namespace or table when we apply the property change:

user@accumulo> config -s table.file.replication=1
user@accumulo> config -f table.file.replication

___________ e e e e e e e e eeeemmemmmeeeeeemeeaeeeemmmmeseeeeeeeeemeadenen———-
SCOPE | NAME | VALUE
___________ e e e e e M e eeeeemmememeeeeeeseeaeeeemmmmemeeeeeeeeemeadenen———-
default | table.file.replicationccviiiiiineniinennenennnnnns | ©
system | QOVErTide tiiiiii ittt ittt ittt e, | 1
........... LY

If we now look at this property for a particular namespace or table, we see that it
inherits the system-wide setting:

user@accumulo> config -f table.file.replication -t ns.test

........... LY
SCOPE | NAME | VALUE
........... LY
default | table.file.replicationccuiiiiiiiiinenenennnnnnnns | 0
system | (o1 Z=Y ol i X« = | 1
___________ e mm e e e e e e e e e e e

user@accumulo> config -f table.file.replication -ns ns

___________ e e e e e e e e eeeemmemmmeeeeeemeeaeeeemmmmeseeeeeeeeemeadenen———-
SCOPE | NAME | VALUE
___________ e e e e e M e eeeeemmememeeeeeeseeaeeeemmmmemeeeeeeeeemeadenen———-
default | table.file.replicationccviiiiiinniinnnenennennns | ©
system | QOVerTide tuiiiii ittt it i ittt et e, | 1
........... LY

We can override the system-wide property by setting the property for a namespace:

user@accumulo> config -ns ns -s table.file.replication=2
user@accumulo> config -f table.file.replication -t ns.test

........... LY
SCOPE | NAME | VALUE
........... LY
default | table.file.replicationccviiiiiiiininenennnnnnnns | 0
system | (o1 2= ol i X« = | 2
___________ m o m e e e e e e e e e

user@accumulo> config -f table.file.replication -ns ns

___________ e e e e e e e eeeeemmememeeeeeeseeaeeaememeeseeeeeeeeemeadenen———-
SCOPE | NAME | VALUE
___________ e e e e e e e e eeeemmememeeeeeeseeeeeeememeemeeeeeeeeemeadenen———-
default | table.file.replicationcviiiiiininiinennenennnnnns | ©

172 | Chapter4:Table AP|

system | @OVerTide tiiiiii ittt ittt it ittt e e, | 2
___________ Y

The system-wide property is still in effect for tables outside the ns namespace:

user@accumulo> config -f table.file.replication

........... LY R
SCOPE | NAME | VALUE
........... LY R
default | table.file.replicationccuiiiiiiiininenennnnnnnns | 0
system | (o1 Z=Y ol i X« = | 1
___________ e m e e e e e e e e e

Finally, if we set a property for a particular table, it will override the namespace
setting:

user@accumulo> config -t ns.test -s table.file.replication=3
user@accumulo> config -f table.file.replication -t ns.test

........... Y
SCOPE | NAME | VALUE
........... LY
default | table.file.replicationccviiiiiiiininenennnnnnnns | 0
system | (o1 Z=Y ol i X = | 3
___________ e m e e e e e e e e e e e

user@accumulo> config -f table.file.replication -ns ns

___________ e e e e e e e e eeeemmemeeeeeeeeseeeeeeememesmeeeeeeeeemeadennen———-
SCOPE | NAME | VALUE
___________ e e e e e e e e eeeeemmemeeeeeeeemeeaeeeememeemeeeeeeeeemeadenen———-
default | table.file.replicationccviiiiiineninnnenennnnnns | ©
system | QOVErTide tiiiiii ittt it ittt ittt e, | 2
........... LY

user@accumulo> config -f table.file.replication

........... LY
SCOPE | NAME | VALUE
........... LY
default | table.file.replicationcceiiiiiiniininenennnnnnnns | 0
system | (o1 Z=Y ol i e = | 1
___________ e m e e e e e e e e e e e

Instance Operations | 173

CHAPTER 5
Security API

Accumulo controls access to data in its tables in a number of ways: authentication,
permissions, and authorizations.

These can be thought of as applying at two levels: authentication and permissions at
the higher application and table level, and authorizations—which are used along with
column visibilities—at the lower, key-value-pair level. Authentication relates to Accu-
mulo users and how a user confirms its identity to Accumulo. Permissions control
what operations Accumulo users are allowed to perform. Authorizations control
which key-value pairs Accumulo users are allowed to see.

Accumulo provides the ability to create accounts, grant permissions, and grant
authorizations. All of these mechanisms are pluggable, with their defaults being to
store and retrieve user information in ZooKeeper. Custom security mechanisms are
discussed in “Custom Authentication, Permissions, and Authorization” on page 195.

High-level security-related operations such as creating users and granting permis-
sions and authorizations are carried out via the SecurityOperations object, obtained
from a Connector object:

SecurityOperations secOps = conn.securityOperations();

Security operations can be logged to an audit log if Accumulo is configured to do so
(see “Auditing Security Operations” on page 194).

Low-level key-value—pair security occurs naturally whenever ColumnVisibility and
Authorizations objects are used when reading and writing data.

For any given set of security mechanisms, there are essentially two ways to manage
access control: create an account for every user using Accumulo’s security mecha-
nisms, or create accounts for each application and delegate authentication, permis-
sions, and authorization for each user to the application. In the latter case, it is the

175

applications job to authenticate individual users, look up their permissions and
authorization tokens, and pass their authorizations faithfully onto Accumulo when
data is read or written. This is discussed further in “Using an Application Account for
Multiple Users” on page 198.

Authentication

Accumulo user accounts are used to limit the permissions that an application or an
individual user can carry out, and to limit the set of authorization tokens that can be
used in lookups. Some basic instance information such as instance ID, locations of
master processes, and location of the root tablet can be retrieved from the Instance
object itself. This information is available to anyone.

To retrieve any additional information from Accumulo, an application must authenti-
cate as a particular user.

Before authenticating, the user must exist and have an AuthenticationToken associ-
ated with it. The default type of AuthenticationToken is the PasswordToken that
simply wraps a password for the user. AuthenticationToken can be extended to sup-
port other authentication methods such as Lightweight Directory Access Protocol
(LDAP).

To create a new user, use the createLocalUser () method:

String principal = "myApplications";
PasswordToken password = new PasswordToken("appSecret");

secOps.createlLocalUser(principal, password);

// in version 1.4 and earlier
Authorizations initialAuthorizations = new Authorizations();
secOps.createUser(principal, "password".getBytes(), initialAuthorizations);

After initialization Accumulo only has one user, the root user, with
a password set at initialization time. The root user can be used to
create other user accounts and grant privileges. See “Initialization”
on page 410 for more details on setting up the root account.

To authenticate as a user, provide a username, or principal, and an AuthenticationTo
ken when obtaining a Connector object from an Instance:

String principal = "myApp";
AuthenticationToken token = new PasswordToken("appSecret");

Connector connector = instance.getConnector(principal, token);

176 | Chapter5: Security API

In addition, the following methods will simply return whether a particular principal
and AuthenticationToken are valid:

String principal = "myApp";
AuthenticationToken token = new PasswordToken('"appSecret");

boolean authenticated = authenticateUser(principal, token);

// deprecated since 1.5
boolean authenticated = authenticateUser(String user, byte[] password);

To set a user’s password, use changeLocalUserPassword():

String principal = "myUser";
PasswordToken token = new PasswordToken("newPassword");
secOps.changelLocalUserPassword(principal, token);

// in 1.5 and older
secOps.changeUserPassword(principal, "newPassword".getBytes());

To obtain a list of users, use the listLocalUsers() method:

Set<String> users = secOps.listLocalUsers();

// in 1.4 and earlier
Set<String> users = secOps.listUsers();

To remove a user from the system, use the dropLocalUser () method:

secOps.dropLocalUser("user");

// in 1.4 and earlier
secOps.dropUser("user");

Permissions

Once a user is authenticated to Accumulo, the types of operations allowed are gov-
erned by the permissions assigned to the Accumulo user.

There are system permissions, which are global; namespace permissions assigned per
namespace; and table permissions assigned per table. Some permission names are
repeated in more than one scope. For example, there are DROP_TABLE permissions for
the system, namespace, and table scopes. These three permissions allow a user to
delete any table, delete a table within a namespace, and delete a specific table, respec-
tively. The CREATE_TABLE permissions only appear in system and namespace, because
it does not make sense to create a specific table that already exists.

The user that creates a table is assigned all table permissions for that table. Users must
be granted table permissions manually for tables they did not create, with the excep-
tion that all users can read the root and metadata tables.

Permissions | 177

If a user tries to perform an operation that is not allowed by the user’s current per-
missions, an exception will be thrown.

System Permissions

System permissions allow users to perform the following actions:

GRANT
Grant and revoke permissions for users

CREATE_TABLE
Create and import tables

DROP_TABLE
Remove tables

ALTER_TABLE
Configure table properties, perform actions on tables (compact, merge, online/
offline, rename, and split), and grant or revoke permissions on tables

CREATE_USER
Create users and check permissions for users

DROP_USER
Remove users and check permissions for users

ALTER_USER
Change user authentication token or authorizations, and check permissions for
users

CREATE_NAMESPACE
Create namespaces

DROP_NAMESPACE
Remove namespaces

ALTER_NAMESPACE
Rename namespaces, configure namespace properties, and grant or revoke per-
missions on namespaces

SYSTEM
Perform administrative actions including granting and revoking the SYSTEM per-
mission, checking authentication for users, checking permissions and authoriza-
tions for users, and performing table actions (merge, online/offline, split, and
delete a range of rows)

178 | Chapter5: Security API

To grant a system permission to a user, use the grantSystemPermission() method.
For example:

String principal = "user";

secOps.grantSystemPermission(principal, SystemPermission.CREATE_TABLE);

To see whether a user has a particular system permission, use the hasSystemPermis
sion() method:

boolean hasPermission = secOps.hasSystemPermission(principal,
SystemPermission.CREATE_TABLE);

Permissions can be revoked for users via the revokeSystemPermission() method:
secOps.revokeSystemPermission(principal, SystemPermission.CREATE_TABLE);
An example of granting a user system-wide permissions is as follows:

// get a connector as the root user
Connector adminConn = instance.getConnector("root", rootPasswordToken);

// get a security operations object as the root user
SecurityOperations adminSecOps = adminConn.securityOperations();

// admin creates a new user

String principal = "testUser";

PasswordToken token = new PasswordToken("password");
adminSecOps.createlocalUser(principal, token);

// get a connector as our new user
Connector userConn = instance.getConnector(principal, token);

/) ...

// user tries to create user table in default namespace
String userTable = "userTable";

try {
userConn.tableOperations().create(userTable);
} catch (AccumuloSecurityException ex) {
System.out.println("user unauthorized to create table in default namespace");

}
adminSecOps.grantSystemPermission(principal, SystemPermission.CREATE_TABLE);

userConn.tableOperations().create(userTable);
System.out.println("table creation in default namespace succeeded");

Permissions | 179

Namespace Permissions

Permissions can apply to namespaces as well. Namespace permissions are granted for
a particular namespace. Some of the permissions apply to actions performed on the
namespace itself, and some apply to all tables within the namespace:

ALTER_NAMESPACE
Grant and revoke table permissions for tables in the namespace, and alter the
namespace

ALTER_TABLE
Alter tables in the namespace

BULK_IMPORT
Import into tables in the namespace

CREATE_TABLE
Create tables in the namespace

DROP_NAMESPACE
Delete the namespace

DROP_TABLE
Delete a table from the namespace

GRANT
Grant and revoke namespace permissions on a namespace, and alter the name-
space

READ
Read tables in the namespace

WRITE
Write to tables in the namespace

To check whether a user has a permission for a given namespace, use the hasNamespa
cePermission() method:

String namespace = "myNamespace";
boolean hasNSWritePermission = secOps.hasNamespacePermission(principal,
namespace, NamespacePermission.WRITE);

To grant a user a permission for a namespace, use the grantNamespacePermission()
method. The permission will apply to all tables within the namespace:

secOps.grantNamespacePermission(principal, namespace, NamespacePermission.WRITE);

To revoke a permission from a user for a namespace, use the revokeNamespacePer
mission() method:

180 | Chapter5: Security API

secOps.revokeNamespacePermission(principal, namespace,
NamespacePermission.WRITE);

A short example:

String adminNS = "adminNamespace";
adminConn.namespaceOperations().create(adminNS);

try {
userConn.tableOperations().create(adminNS +

} catch (AccumuloSecurityException ex) {
System.out.println("user unauthorized to create table in adminNamespace");

}

'.userTable");

// allow user to create tables in the root NS
adminSecOps.grantNamespacePermission(principal, adminNS,
NamespacePermission.CREATE_TABLE);

userConn.tableOperations().create(adminNS + ".userTable");
System.out.println("table creation in adminNamespace succeeded");

Table Permissions

Table permissions are granted per table, allowing users to perform actions on specific
tables:

READ
Scan and export the table

WRITE
Write to the table, including deleting data, and perform some administrative
actions for the table including flushing and compaction

BULK_IMPORT
Import files to the table

ALTER_TABLE
Configure table properties, perform actions on the table (compact, flush, merge,
online/offline, rename, and split), and grant or revoke permissions on the table

GRANT
Grant and revoke permissions for the table

DROP_TABLE
Remove the table

Some actions require a combination of permissions. These include:

Write conditional mutations
TablePermission.READ and TablePermission.WRITE

Permissions | 181

Clone a table
SystemPermission.CREATE_TABLE or NamespacePermission.CREATE_TABLE and
TablePermission.READ on table being cloned

To grant a table permission to a user for a table, use the grantTablePermission()
method:

String table = "myTable";

secOps.grantTablePermission(principal, table, TablePermission.WRITE);

To check whether a user has a specific permission on a table, use the hasTablePermis
sion() method:
boolean canWrite = secOps.hasTablePermission(principal, table,
TablePermission.WRITE);
To revoke a permission from a user for a given table, use the revokeTablePermis
sion() method:

secOps.revokeTablePermission(principal, table, TablePermission.WRITE);

These actions can be carried out in the shell as well, as detailed in “Application Per-
missions” on page 424.

An example of using table permissions is as follows:

String adminTable = "adminTable";
adminConn.tableOperations().create(adminTable);

// user tries to write data

BatchWriterConfig config = new BatchWriterConfig();

BatchWriter writer = userConn.createBatchWriter(adminTable, config);
Mutation m = new Mutation("testRow");

m.put("", "testColumn", "testValue");

try {
writer.addMutation(m);
writer.close();
} catch (Exception ex) {
System.out.println("user unable to write to admin table");

}

// admin grants permission for user to write data
adminSecOps.grantTablePermission(principal, adminTable, TablePermission.WRITE);

writer = userConn.createBatchWriter(adminTable, config);

writer.addMutation(m);
writer.close();
System.out.println("user can write to admin table");

See the full listing of PermissionsExample.java for more detail.

182 | Chapter5: Security API

Authorizations

Once a user is authenticated to Accumulo and is given permission to read a table, the
user’s authorizations govern which key-value pairs can be retrieved.

Authorizations are applied to Scanners and BatchScanners. The set of authorizations
that can be used for a particular scan is limited by the set of authorizations associated
with the user account. If a user attempts to scan with an authorization that is not
already associated with the user account specified in the Connector, an exception will
be thrown.

To see the list of authorizations associated with a user, use the getUserAuthoriza
tions() method:

Authorizations auths = secOps.getUserAuthorizations(principal);

To associate authorizations with a user, use the changeUserAuthorizations()
method. This will replace any existing authorizations associated with the user:

Authorizations auths = new Authorizations("a","b","c");
secOps.changeUserAuthorizations(principal, auths);

Be sure to include existing authorizations when using the changeu
serAuthorizations() method to add new authorization tokens, or
else previous tokens will be lost. Existing tokens can be retrieved
\ with the getUserAuthorizations() method.

A user’s authorizations encapsulate a set of strings, sometimes referred to as authori-
zation tokens. These strings have no intrinsic meaning for Accumulo, but an applica-
tion can assign its own meaning to them, such as groups or roles for its users.

For a user to be able to read data from Accumulo, a table name and a set of authoriza-
tion tokens must be provided to either the createScanner() or the createBatchScan
ner () method of the Connector:

Scanner scan = conn.createScanner("myTable", new Authorizations("a", "b", "c"));

Because the Connector is associated with a specific user, the authorizations provided
when a Scanner or BatchScanner is obtained must be a subset of the authorizations
assigned to that user. If they are not, an exception will be thrown.

Authorizations | 183

Passing in a set of authorizations at scan time allows a user to act in
different roles at different times. It also allows applications to man-
age their own users apart from Accumulo. You can choose to have
one Accumulo user account for an entire application and to let the
application set the authorizations for each scan based on the cur-
rent user of the application.

Although this requires the application to take on the responsibility
for managing accurate authorizations for their users, it also pre-
vents users from having to interact with Accumulo or the underly-
ing Hadoop system directly, allowing more strict control over
access to your data.

See “An Example of Using Authorizations” on page 185 for an example of using less
than all of the possible authorizations associated with a user.

Column Visibilities

To determine which key-value pairs can be seen given a particular set of authoriza-
tions, each key has a column visibility portion. A column visibility consists of a
Boolean expression containing ftokens, & (and), | (or), and parentheses—such as
(a&bc) |def. Evaluation of the Boolean expression requires each string to be inter-
preted as true or false. For a given set of authorizations, a string is interpreted as true
if it is contained in the set of authorizations.

The visibility (a&bc) |def would evaluate to true for authorization sets containing the
string def or containing both of the strings a and bc. When the visibility evaluates to
true for a given key and a set of authorizations, that key-value pair is returned to the
user. If not, the key-value pair is not included in the set of key-value pairs returned to
the client. Thus it isn't possible to find out that a particular key-value pair exists, or to
see the full key or value, without satisfying the column visibility.

Tokens used in column visibilities can consist of letters, numbers, underscore, dash,
colon, and as of Accumulo version 1.5, can contain periods and forward slashes. As
of version 1.5, tokens can also contain arbitrary characters if the token is surrounded
by quotes, as in "a?b"&c. The corresponding authorizations do not need to be
quoted, so the minimum set of authorizations needed to view this example visibility
would contain a?b and c.

Limiting Authorizations Written

By default, if users have write permission for a table, they can write keys that they do
not have authorization to retrieve. You can change this behavior by configuring a
constraint on the table. With the VisibilityConstraint, users cannot write data
they are not allowed to read:

184 | Chapter5: Security API

connector.tableOperations().addConstraint(tableName,
VisibilityConstraint.class.getName());

This can also be accomplished through the Accumulo shell. When the table is cre-
ated, add an -evc flag to the createtable command:

user@ccumulo> createtable -evc tableName
To add the constraint to an existing table, use the constraint command instead:

user@accumulo> constraint -t tableName \
-a org.apache.accumulo.core.security.VisibilityConstraint

An Example of Using Authorizations

We'll illustrate bringing the concepts of users, permissions, authorizations, and col-
umn visibilities together in a quick example. Let’s say we are writing an application to
keep track of the information associated with a safe in a bank. The safe contains a set
of safety deposit boxes that are used by bank employees and customers to store
objects securely.

There is an outer door to the safe that is protected by a combination known only to a
few bank employees. Other bank employees can see privileged information about the
safe, but not information about the contents of customers’ boxes.

Customers can write down and read information about safety deposit boxes they rent
but cannot see any information privileged to bank employees or other customers.

First we'll create a table as an administrator and write initial information about a par-
ticular safe:

// get a connector as the root user
Connector adminConn = instance.getConnector("root", rootPasswordToken);

// get a security operations object as the root user
SecurityOperations secOps = adminConn.securityOperations();

// admin creates a new table and writes some data
// protected with Column Visibilities
System.out.println("\n--- creating table ---");
String safeTable = "safeTable";
adminConn.tableOperations().create(safeTable);

The admin writes the initial information about a safe, including the name, location,
and combination:

// admin writes initial data

System.out.println("\n--- writing initial data ---");
BatchWriterConfig config = new BatchWriterConfig();

BatchWriter writer = adminConn.createBatchWriter(safeTable, config);
Mutation m = new Mutation("safe001");

Authorizations | 185

// write information about this particular safe

m.put("info", "safeName", new ColumnVisibility('public"),
"Super Safe Number 17");

m.put("info", "safelLocation", new ColumnVisibility("bankEmployee"),
"3rd floor of bank 2");

m.put("info", "safeOuterDoorCombo",
new ColumnVisibility("bankEmployee&safeWorker"), "123-456-789");

// store some information about bank owned contents stored in the safe
m.put("contents", "box001",
new ColumnVisibility("bankEmployee"), "bank charter");

// commit mutations
writer.addMutation(m);
writer.close();

Next the administrator will need to create user accounts for customers. In this exam-
ple we're using one account per individual user.

Each customer gets a unique user ID and authorization token, in addition to the pub
lic token:

// admin creates a new customer user

String customer = "customer003";

PasswordToken customerToken = new PasswordToken("customerPassword");
secOps.createlLocalUser(customer, customerToken);

// set authorizations for user and grant permission to read and write

// to the safe table

Authorizations customerAuths = new Authorizations("public", "customer003");
secOps.changeUserAuthorizations(customer, customerAuths);
secOps.grantTablePermission(customer, safeTable, TablePermission.READ);

Now the newly created customer can log in and is prevented from seeing any infor-
mation privileged to bank employees:

// get a connector as our customer user
Connector customerConn = instance.getConnector(customer, customerToken);

// user attempts to get a scanner with
// authorizations not associated with the user

System.out.println("\n--- customer scanning table for bank employee " +
"privileged information ---");

Scanner scanner;

try {

scanner = customerConn.createScanner(safeTable,
new Authorizations("public", "bankEmployee"));

for(Map.Entry<Key, Value> e : scanner) {
System.out.println(e);

}
} catch (Exception ex) {

186

| Chapter5: Security API

System.out.println("problem scanning table:

}

This results in the output:

+ ex.getMessage());

--- customer scanning table for bank employee privileged information ---

problem scanning table:
org.apache.accumulo.core.client.AccumuloSecurityException:

Error BAD_AUTHORIZATIONS for user customer@03 on table safeTable(ID:1) -

The user does not have the specified authorizations assigned

If the customer scans the table with all the authorizations associated with his account,
she will see the information marked as public:

// user reads data with authorizations associated with the user
System.out.println("\n--- customer scanning table for allowed information ---");
scanner = customerConn.createScanner(safeTable, customerAuths);
for(Map.Entry<Key, Value> e : scanner) {

System.out.println(e);
}

The output is:

--- customer scanning table for allowed information ---
safe0@01 info:safeName [public] 1409424734681 false Super Safe Number 17

The customer must be granted write access to the table before writing any informa-
tion. The customer can then write information protected with a column visibility
consisting of just his own unique authorization token. Subsequent scans will return
this information along with the public safe information:

// admin grants write permission to user
secOps.grantTablePermission(customer, safeTable, TablePermission.WRITE);

// user writes information only she can see to the table

// describing the contents of a rented safety deposit box

System.out.println("\n--- customer writing own information ---");

BatchWriter userWriter = customerConn.createBatchWriter(safeTable, config);

Mutation userM = new Mutation("safe001");

userM.put("contents", "box004", new ColumnVisibility("customer003"),
"jewelry, extra cash");

userWriter.addMutation(userM);

userWriter.flush();

// scan to see the bank info and our own info
System.out.println("\n--- customer scanning table for allowed information ---");
scanner = customerConn.createScanner(safeTable, customerAuths);
for(Map.Entry<Key, Value> e : scanner) {

System.out.println(e);
}

The output is:

Authorizations | 187

--- customer writing own information ---

--- customer scanning table for allowed information ---

safe@01 contents:box004 [customer003] 1409424734828 false jewelry, extra cash
safe@01 info:safeName [public] 1409424734681 false Super Safe Number 17

Now the administrator will create an account for a bank employee. The bank
employee will have access to bank privileged information, public information, but not
any information associated with any customer:

// admin creates a new bank employee user

String bankEmployee = "bankEmployee005";

PasswordToken bankEmployeeToken = new PasswordToken("bankEmployeePassword");
secOps.createlLocalUser(bankEmployee, bankEmployeeToken);

// admin sets authorizations for bank employee

// and grants read permission for the table

Authorizations bankEmployeeAuths = new Authorizations("bankEmployee", "public");
secOps.changeUserAuthorizations(bankEmployee, bankEmployeeAuths);
secOps.grantTablePermission(bankEmployee, safeTable, TablePermission.READ);

// connect as bank employee
Connector bankConn = instance.getConnector(bankEmployee, bankEmployeeToken);

If the bank employee attempts to scan for customer information, an exception will be
thrown:

// attempt to scan customer information

System.out.println("\n--- bank employee scanning table for customer " +
"{nformation ---");

Scanner bankScanner;

try {

bankScanner = bankConn.createScanner(safeTable,
new Authorizations("customer003"));

for(Map.Entry<Key, Value> e : bankScanner) {
System.out.println(e);

}
} catch (Exception ex) {
System.out.println("problem scanning table:

}
Resulting in the output:

+ ex.getMessage());

--- bank employee scanning table for customer information ---

problem scanning table:
org.apache.accumulo.core.client.AccumuloSecurityException:

Error BAD_AUTHORIZATIONS for user bankEmployee005 on table safeTable(ID:1) -

The user does not have the specified authorizations assigned

Now we'll have the bank employee scan for all information she is allowed to see.
Because this employee has a set of authorizations different from the customer’s, this
view of the table will be different than the view the customer gets when doing the
same scan:

188 | Chapter5: Security API

// bank employee scans all information they are allowed to see

System.out.println("\n--- bank employee scanning table for allowed " +
"{nformation ---");

bankScanner = bankConn.createScanner(safeTable, bankEmployeeAuths);

for(Map.Entry<Key, Value> e : bankScanner) {
System.out.println(e);
}

Here is the output:

--- bank employee scanning table for allowed information ---

safe@01 contents:box001 [bankEmployee] 1409424734681 false bank charter

safe@01 info:safeLocation [bankEmployee] 1409424734681 false 3rd floor of bank 2
safe001 info:safeName [public] 1409424734681 false Super Safe Number 17

It is also possible to perform a scan using less than all the authorizations we possess.
In this case, the bank employee will generate a view of the table that is viewable by
users with only the public token:

// bank employee scans using a subset of authorizations

// to check which information is viewable to the public

System.out.println("\n--- bank employee scanning table for only public
"{nformation ---");

bankScanner = bankConn.createScanner(safeTable, new Authorizations("public"));

+

for(Map.Entry<Key, Value> e : bankScanner) {
System.out.println(e);
}

Here is the view generated:

--- bank employee scanning table for only public information ---
safe001 info:safeName [public] 1409424734681 false Super Safe Number 17

Finally, we may want to protect the table against attempts to write information to a
key-value pair that is protected with a visibility that the writing user cannot satisfy.
This prevents confusing situations in which a user writes data but then cannot read it
out:

// admin protects table against users writing new data they cannot read
adminConn.tableOperations().addConstraint(safeTable,
"org.apache.accumulo.core.security.VisibilityConstraint");

// customer attempts to write information protected with a bank authorization
// which would erase the combination for the outer door of the safe
System.out.println("\n--- customer attempting to overwrite bank " +
"{nformation ---");

try {

userM = new Mutation('"safe001");

userM.put("info", "safeOuterDoorCombo",

new ColumnVisibility("bankEmployee&safeWorker"), "------ ");
userWriter.addMutation(userM);

Authorizations | 189

userWriter.flush();
} catch (Exception e) {

System.out.println("problem attempting to write data:
}

This results in the error:

+ e.getMessage());

--- customer attempting to overwrite bank information ---
problem attempting to write data: # constraint violations :
1 security codes: {} # server errors 0 # exceptions 0

Even if users are able to write a new key-value pair using the same
row ID and column as an existing key, they can only cause the
newly written key-value pair to obscure the old key-value pair, via
Accumulo’s VersioningIterator, which by default returns only
the newest version of a key-value pair. It would be possible in this
case to configure a scan to read more than one version for a key,
which would allow authorized users to see the old key-value pair.
But it would not be possible for the new key-value pair to cause the
value of the old key-value pair to become visible. According to the
column visibility of the new key-value pair, it would simply be
obscured.

This inability to expose information this way, by writing new key-
value pairs, makes it possible to build highly secure applications
more easily, because applications do not have to explicitly prevent
this issue.

Using a Default Visibility

You may have noticed in our example application that all key-value pairs were pro-
tected with at least one token in a column visibility. We used the public token to
denote information that everyone was able to read, and distributed the public
authorization token to all users.

190 | Chapter5: Security API

It is possible to have a table in which some key-value pairs have column visibilities
and others do not. The default behavior for unlabeled data is to allow any user to read
it. This can be changed by applying a default visibility to a table.

When the default visibility is specified, unlabeled key-value pairs will be treated as if
they are labeled with the default column visibility.

To specify the default visibility for a table, set the table.security.scan.visibil
ity.default property to the desired column visibility expression.

For example:
ops.setProperty("table.security.scan.visibility.default", "public");

When key-value pairs with empty labels are scanned, if they are returned as part of
the scan they are displayed as having a blank column visibility, even when a default
visibility is set.

Here is an example of the way a view of a table will change after the default visibility
is set. First we'll create a table that has a key-value pair with a blank column visibility
and see it show up in all scans:

// get a connector as the root user
Connector conn = instance.getConnector("root", rootPasswordToken);

// create an example table
String exampleTable = "example";
conn.tableOperations().create(exampleTable);

// write some data with col vis and others without
BatchWriterConfig config = new BatchWriterConfig();

BatchWriter writer = conn.createBatchWriter(exampleTable, config);
Mutation m = new Mutation("one");

m.put("", "coll", "value in unlabeled entry");
m.put("", "col2", new ColumnVisibility("public"), "value in public entry");
m.put("", "col3", new ColumnVisibility("private"), "value in private entry");

writer.addMutation(m);
writer.close();

// add auths to root account
conn.securityOperations().changeUserAuthorizations("root",
new Authorizations("public", "private"));

// scan with no auths
System.out.println("\nno auths:");
Scanner scan = conn.createScanner(exampleTable, Authorizations.EMPTY);
for(Map.Entry<Key, Value> e : scan) {

System.out.println(e);
}

// scan with public auth

Authorizations | 191

System.out.println("\npublic auth:");
scan = conn.createScanner(exampleTable, new Authorizations("public"));
for(Map.Entry<Key, Value> e : scan) {
System.out.println(e);
}

// scan with public and private auth
System.out.println("\npublic and private auths:");
scan = conn.createScanner(exampleTable,
new Authorizations("public", "private"));
for(Map.Entry<Key, Value> e : scan) {
System.out.println(e);
}

The output of this is as follows:

no auths:
one :coll [] 1409429068159 false value in unlabeled entry

public auth:
one :coll [] 1409429068159 false value in unlabeled entry
one :col2 [public] 1409429068159 false value in public entry

public and private auths:

one :coll [] 1409429068159 false value in unlabeled entry

one :col2 [public] 1409429068159 false value in public entry
one :col3 [private] 1409429068159 false value in private entry

Now we’ll add a default visibility:

// turn on default visibility

System.out.println("\nturning on default visibility");

conn.tableOperations().setProperty(exampleTable,
"table.security.scan.visibility.default", "x");

// scan with no auths
System.out.println("\nno auths:");
scan = conn.createScanner(exampleTable, Authorizations.EMPTY);
for(Map.Entry<Key, Value> e : scan) {
System.out.println(e);
}

// scan with public auth
System.out.println("\npublic auth:");
scan = conn.createScanner(exampleTable, new Authorizations("public"));
for(Map.Entry<Key, Value> e : scan) {
System.out.println(e);
}

// scan with public and private auth
System.out.println("\npublic and private auths:");
scan = conn.createScanner(exampleTable,

new Authorizations("public", "private"));
for(Map.Entry<Key, Value> e : scan) {

192

| Chapter5: Security API

System.out.println(e);
}

The output for this now appears as:

turning on default visibility
no auths:

public auth:
one :col2 [public] 1409429068159 false value in public entry

public & private auths:
one :col2 [public] 1409429068159 false value in public entry
one :col3 [private] 1409429068159 false value in private entry

Making Authorizations Work

For authorizations to be effective in protecting access to data in Accumulo, applica-
tions and users must:

1. Properly apply column visibilities to data at ingest time.

2. Apply the right authorizations at scan time.

Often Accumulo applications will rely on using specially vetted libraries for creating
the proper column visibilities. If not, then ingest clients can be individually reviewed
and trusted.

For retrieving authorizations, a separate service can be employed to manage the asso-
ciation of individual users to their sets of authorizations. This service is trusted by the
application, and the application itself is trusted to faithfully pass along the authoriza-
tions retrieved from such a service to Accumulo.

A typical deployment can be like that shown in Figure 5-1.

Authorizations | 193

Security Perimeter
[Accumulo J
5. ranges, 6. key-value pairs
authorizations
3. User ID —
Web Server Authorization
- Service
[Query Client] 4. Authorizations

t] J

2. User ID,
ranges

=)

Figure 5-1. A typical Accumulo deployment

1. Authentication 7. key-value pairs

Auditing Security Operations

Accumulo can be configured to log security operations. Auditing is configured in the
auditLog.xml file in the Accumulo conf/ directory. The logging is done via the Java
log4j package and by default is configured to log via a DatlyRollingFileAppender
to a local file named <hostname>.audit in the Accumulo log directory. The following
section of the auditLog.xml file configures the logging level:
<logger name="Audit" additivity="false">
<appender-ref ref="Audit" />
<level value="OFF"/>
</logger>
By default, logging is turned off. To enable logging security operations that fail due to
lack of permissions, set the level to WARN:

<level value="WARN"/>

To log all security operations, set the level to INFO. This will include successful secu-
rity operations logged as operation: permitted as well as unsuccessful operations log-
ged as operation: denied. Scanning with an authorization the user does not possess is
an example of an operation that would be logged as denied at the INFO level:

194 | Chapter5: Security API

<level value="INF0"/>

Custom Authentication, Permissions, and Authorization

The authentication, permissions, and authorization tasks for Accumulo accounts are
handled in ZooKeeper by default. These tasks are handled by three classes: ZKAuthen
ticator for authenticating users, ZKAuthorizor for associating users with authoriza-
tions, and ZKPermHandler for determining what actions a user can carry out on the
system and tables.

As of Accumulo version 1.5 developers can provide custom classes that override these
default security mechanisms. This allows organizations that manage users and their
authorizations in a centralized system to integrate those existing systems with Accu-
mulo. In these cases, the custom classes must be available to server processes and
specified in the accumulo-site.xml configuration file.

Not all of the three mechanisms must be overridden at the same time. For example,
you can choose to rely on ZooKeeper for permissions handling and authentication,
while using a custom authorization mechanism.

The default configuration of these mechanisms’ properties is shown in Table 5-1.

Table 5-1. Accumulo authentication and authorization properties

Setting name Default Purpose
instance.security.authorizor org.apache.accu Associate users with authorization
mulo.server.security.han tokens

dler.zKAuthorizor

instance.security.authenticator org.apache.accu Authenticate users
mulo.server.security.han
dler.ZKAuthenticator

instance.security.permissionHandler org.apache.accu Manage users’ system and table-level
mulo.server.security.han permissions
dler.zZKPermHandler

These settings cannot be changed in ZooKeeper on a running cluster. They must be
changed in the accumulo-site.xml file and require a restart of Accumulo for the
changes to take effect.

Creating a custom mechanism is done by implementing the Authenticator, Authori
zor, or PermissionHandler interface. These interfaces define the methods required
by Accumulo to determine the access restrictions for user requests.

Custom Authentication, Permissions, and Authorization | 195

Custom Authentication Example

Here we’ll implement a trivial authenticator that uses only one hardcoded username
and password. This would be impractical for any real-world deployment because no
changes to the initial settings are possible, but it will help us illustrate the process of
configuring and deploying a custom authentication scheme.

For this incredibly simple example we'll implement only a few methods, shown in the
following code. The rest of the methods of the interface that must be implemented we
will leave empty:

public class HardCodedAuthenticator implements Authenticator {

public boolean authenticateUser(String principal, AuthenticationToken token)
throws AccumuloSecurityException {
return principal.equals("onlyUser") &&
new String(((PasswordToken)token).getPassword()).equals("onlyPassword");

public Set<String> listUsers() throws AccumuloSecurityException {
HashSet<String> users = new HashSet<String>();
users.add("onlyUser");
return users;

}

public boolean userExists(String user) throws AccumuloSecurityException {
return user.equals("onlyUser");

}

public Set<Class<? extends AuthenticationToken>> getSupportedTokenTypes() {
return (Set)Sets.newHashSet(PasswordToken.class);

}

public boolean validTokenClass(String tokenClass) {
return tokenClass.equals(PasswordToken.class.toString());

}

}...

We can build and deploy our example code JAR as described in “Deploying JARs” on
page 407.

Next we need to stop Accumulo if it's running and configure it to use our Authentica
tor. In practice, custom security mechanisms like this should most likely be config-
ured before Accumulo is initialized, so that the proper authorizations and
permissions can be coordinated with the creation of the initial root user.

196 | Chapter5:Security API

We'll only change the authenticator in accumulo-site.xml in this example:

<property>
<name>instance.security.authenticator</name>
<value>com.accumulobook. tableapi.HardCodedAuthenticator</value>
</property>
Once configuration is done, we can start up Accumulo and attempt to authenticate
using the username onlyUser and password onlyPassword:

[centos@centos]$ bin/accumulo shell -u onlyUser

password: *kkkkhkkkkkhkhk

Shell - Apache Accumulo Interactive Shell

- version: 1.6.0
- instance name: test

- type 'help' for a list of available commands

onlyUser@test> tables
accumulo.metadata
accumulo.root

trace

Any attempt to use our previous root account will fail:

[centos@centos]$ bin/accumulo shell -u root

[shell.Shell] ERROR: org.apache.accumulo.core.client.AccumuloSecurityException:
Error BAD_CREDENTIALS for user root - Username or Password is Invalid

[centos@centos]$

Our hardcoded user account will not have permissions to manipulate anything, or
any authorizations, so it is not very practical. In practice, these custom mechanisms
will need to store information in a centralized location accessible to all processes, as
the default ZooKeeper implementation does. For example, you could use a simple
relational database or an LDAP service.

Custom authorizers and permissions handlers can be created and deployed similarly.

Other Security Considerations

In addition to column visibilities being properly applied at ingest time and the proper
authorizations retrieved and used in scans, there are some other things to consider
when building a secure application on the Accumulo API:

Other Security Considerations | 197

o Direct access to tablet servers must be limited to trusted applications—because
the application is trusted to present the proper authorizations at scan time. A
rogue client may be configured to pass in authorizations the user does not have.

o Access to the underlying HDFS instance must not be allowed. Otherwise an
HDFEFS client could open and read all the key-value pairs stored in Accumulos
files without presenting the proper authorizations.

o Similarly, access should be disallowed to the underlying Linux filesystem on
machines on which tablet server and HDFS DataNode processes run.

o Access to ZooKeeper should be restricted because Accumulo uses it to store con-
figuration information about the cluster, including the list of Accumulo accounts
and passwords.

Using an Application Account for Multiple Users

Many Accumulo applications do not create accounts through Accumulo for each
individual user. This is because some clients choose to do their own authentication
and authorization of individual users via a centralized service within an organization.
Clients are therefore trusted to present user credentials properly.

When applications are deployed this way, client applications must still authenticate
themselves to Accumulo before performing any reads or writes. Administrators and
application designers can restrict the privileges that a client has to particular tables, as
well as the maximal set of authorizations the client is allowed to pass for any of the
users it is serving. This way, even though users can have more authorizations granted
to them than an application requires, a client application’s account can be restricted to
those authorizations deemed necessary to carry out the actions of that particular
application.

Network

The network that Accumulo uses to communicate between nodes and to HDFS and
ZooKeeper should be protected against unauthorized access. Most Accumulo deploy-
ments do not use Secure Socket Layer (SSL) between nodes, but rather use SSL
between user browsers and trusted web applications.

See “Network Security” on page 417 for more information on securing the network
for an Accumulo deployment.

Disk Encryption

Disks can be encrypted to prevent unauthorized reading of the data should a physical
hard drive be stolen. But if those with physical access to the cluster are not trusted,

198 | Chapter5: Security API

then the operating system and memory of the machines participating in the Accu-
mulo cluster would have to be similarly protected. When running Accumulo in mul-
titenant environments, such as a cloud infrastructure-as-a-service provider like
Amazon’s EC2 or Rackspace, consideration should be given to the security precau-
tions implemented by the service provider.

For both situations—running in a cluster without trusting those with physical access
or running in the cloud—it may be feasible to employ application-level encryption of
values and to devise keys that are not sensitive. This is problematic when it comes to
building a secondary index, which can rely on the ordering of values to perform
scans.

If scans across ranges of terms in an index can be foregone, then using a strategy
involving hashes of values as keys can still provide fast simple lookups. Ranges of
terms could no longer be scanned because secure hashes of index terms would, by
virtue of the design of hash functions, no longer have any meaningful sort order. In
this case, adjacent keys would have no relationship to each other.

Accumulo also supports encryption of data at rest via modules that implement the
org.apache.accumulo.core.security.crypto.CryptoModule interface, which con-
sists of the following methods:

CryptoModuleParameters getEncryptingOutputStream(CryptoModuleParameters params)
CryptoModuleParameters getDecryptingInputStream(CryptoModuleParameters params)
CryptoModuleParameters generateNewRandomSessionKey(CryptoModuleParameters params)

CryptoModuleParameters initializeCipher(CryptoModuleParameters params)

The DefaultCryptoModule class is an example that can be used to encrypt data stored
in HDFS. This implementation stores the master key along with files in HDFS, which
may not meet security requirements. For details on configuring Accumulo to use this
or other modules, see “Encryption of Data at Rest” on page 422.

Other Security Considerations | 199

CHAPTER 6

Server-Side Functionality and
External Clients

Beyond reading and writing data, configuring tables, and securing data, Accumulo
has a few additional concepts that can be used to add functionality to tables, and for
performing some computation on the server side. These mechanisms are optional but
can have a drastic impact on application performance, depending on the access pat-
terns and updates that an application requires.

Constraints

Tables can apply logic to data that is about to be written to determine if a given muta-
tion should be allowed. This logic is implemented by creating a constraint. Con-
straints are classes that implement a simple filtering function that is applied to every
mutation before writing it to a table.

Constraints can be used to ensure that all data in a table conforms to some specifica-
tion. This helps simplify applications, because they can then assume that the data read
from this table has already been checked for conformity.

For example, we can choose to constrain the values inserted into a table to be of a
certain type, such as a number. This allows applications to avoid having to check the
type of values returned.

If a mutation fails a constraint’s criteria, the mutation will be rejected and a code
returned, indicating which criterion was violated. For example:

try {
writer.addMutation(m);

}

catch (MutationsRejectedException e) {

201

List<ConstraintViolationSummary> violations =
e.getConstraintViolationSummaries();

for(ConstraintViolationSummary v : violations) {
System.out.println(v.getConstrainClass() +
"\n" + v.getNumberOfViolatingMutations() +
"\n" + v.getViolationDescription());
}
}
If a constraint is violated, we only see how many mutations were involved and which
criterion failed. Applications will need to examine the mutations submitted to deter-
mine which mutations failed and which did not and were submitted successfully.
Retrying the mutations that violate constraints will result in another exception.

Constraints can be used to help debug new clients without the chance for corrupting
data in the table, or for limiting dynamic data inserted to that which conforms to the
constraints—perhaps saving off the data that fails to another place for inspection.

For example, if we are ingesting data from another database and we expect it to con-
form to a specific schema but the schema has since changed, our constraint that
enforces the expected schema will immediately detect the change. This will halt our
ingest process until we can figure the situation out. Relational databases operate this
way and some applications may want to do this.

Other applications can take advantage of Accumulo’s flexibility in storing any type of
value and any set of columns to write data that is not well understood to a table where
it can be explored.

Constraint Configuration API

To add a constraint to a table, use the addConstraint() method of the TableOpera
tions object:

TableOperations ops = conn.tableOperations();

ops.addConstraint("myTable", MyConstraint.class.getName());

A table can have several constraints applied. To see the list of constraints for a table,
use the listConstraints() method:

Map<String,Integer> constraints = ops.listConstraints("myTable");

This will return the name of the constraint as well as a unique ID number assigned to
the constraint. This number can be used to remove a constraint via the removeCon
straint() method:

ops.removeConstraint("myTable", 2);

202 | Chapter6: Server-Side Functionality and External Clients

By default, tables in Accumulo 1.6 have the DefaultKeySizeConstraint enabled.
This constraint rejects mutations that contain keys larger than 1MB in size. This can
prevent a tablet server from running out of memory when loading RFile indexes con-
taining very large keys.

Constraint Configuration Example

In this example, we'll create a mutation that violates the DefaultKeySizeConstraint.
It will fail. Then we'll disable the constraint and apply the mutation successfully.

First, we'll look at the table constraint configuration:

Connector conn = ExampleMiniCluster.getConnector();

TableOperations ops = conn.tableOperations();
ops.create("testTable");

for(Map.Entry<String, I