
DATA / DATABA SES / SECURIT Y

Accumulo

ISBN: 978-1-449-37418-1

US $49.99 CAN $57.99

“	If	you	need	random	access
to	large	datasets	you'd	
be	wise	to	learn	about	
Accumulo.		And	there's	no	
better	place	to	start	than	
with	this	book.”

—Doug Cutting
Founder of Hadoop

“	Aaron	Cordova,	Billie
Rinaldi,	and	Michael	Wall	
have	been	leaders	in	the	
Accumulo	community	
since	its	inception,	and	
I	can	think	of	no	one	
more	qualified	to	write	
the	definitive	book	on	
Accumulo.”

—Jeremy Kepner
MIT Lincoln Laboratory

Twitter: @oreillymedia
facebook.com/oreilly

Get up to speed on Apache Accumulo, the flexible, high-performance
key-value store created by the US National Security Agency (NSA) and
based on Google’s Bigtable data storage system. Written by former
NSA team members, this comprehensive tutorial and reference covers
Accumulo architecture, application development, table design, and
cell-level security.

With clear information on system administration, performance tuning, and
best practices, this book is ideal for developers seeking to write Accumulo
applications, administrators charged with installing and maintaining
Accumulo, and other professionals interested in what Accumulo has to
offer. You will find everything you need to use this system fully.

■ Get a high-level introduction to Accumulo’s architecture and
data model

■ Take a rapid tour through single- and multiple-node
installations, data ingest, and query

■ Learn how to write Accumulo applications for several use
cases, based on examples

■ Dive into Accumulo internals, including information not
available in the documentation

■ Get detailed information for installing, administering, tuning,
and measuring performance

■ Learn best practices based on successful implementations in
the field

Aaron Cordova, a cofounder of Koverse Inc., started and led the Apache Accumulo
project as a computer systems researcher at the US National Security Agency.

Billie Rinaldi, a senior technical staff member at Hortonworks, Inc., was a leader
of the NSA computer science research team that implemented Accumulo.

Michael Wall, a graduate of the US Air Force Academy, served as a software
engineer for the NSA and other government agencies. He develops a variety of
applications with Accumulo.

A
ccum

ulo
Cordova,

Rinaldi &
 W

all

Aaron Cordova,
Billie Rinaldi & Michael Wall

Accumulo
APPLICATION DEVELOPMENT, TABLE DESIGN, AND BEST PRACTICES

www.allitebooks.com

http://www.allitebooks.org

DATA / DATABA SES / SECURIT Y

Accumulo

ISBN: 978-1-449-37418-1

US $49.99 CAN $57.99

“	If	you	need	random	access
to	large	datasets	you'd	
be	wise	to	learn	about	
Accumulo.		And	there's	no	
better	place	to	start	than	
with	this	book.”

—Doug Cutting
Founder of Hadoop

“	Aaron	Cordova,	Billie
Rinaldi,	and	Michael	Wall	
have	been	leaders	in	the	
Accumulo	community	
since	its	inception,	and	
I	can	think	of	no	one	
more	qualified	to	write	
the	definitive	book	on	
Accumulo.”

—Jeremy Kepner
MIT Lincoln Laboratory

Twitter: @oreillymedia
facebook.com/oreilly

Get up to speed on Apache Accumulo, the flexible, high-performance
key-value store created by the US National Security Agency (NSA) and
based on Google’s Bigtable data storage system. Written by former
NSA team members, this comprehensive tutorial and reference covers
Accumulo architecture, application development, table design, and
cell-level security.

With clear information on system administration, performance tuning, and
best practices, this book is ideal for developers seeking to write Accumulo
applications, administrators charged with installing and maintaining
Accumulo, and other professionals interested in what Accumulo has to
offer. You will find everything you need to use this system fully.

■ Get a high-level introduction to Accumulo’s architecture and
data model

■ Take a rapid tour through single- and multiple-node
installations, data ingest, and query

■ Learn how to write Accumulo applications for several use
cases, based on examples

■ Dive into Accumulo internals, including information not
available in the documentation

■ Get detailed information for installing, administering, tuning,
and measuring performance

■ Learn best practices based on successful implementations in
the field

Aaron Cordova, a cofounder of Koverse Inc., started and led the Apache Accumulo
project as a computer systems researcher at the US National Security Agency.

Billie Rinaldi, a senior technical staff member at Hortonworks, Inc., was a leader
of the NSA computer science research team that implemented Accumulo.

Michael Wall, a graduate of the US Air Force Academy, served as a software
engineer for the NSA and other government agencies. He develops a variety of
applications with Accumulo.

A
ccum

ulo
Cordova,

Rinaldi &
 W

all

Aaron Cordova,
Billie Rinaldi & Michael Wall

Accumulo
APPLICATION DEVELOPMENT, TABLE DESIGN, AND BEST PRACTICES

www.allitebooks.com

http://www.allitebooks.org

Aaron Cordova, Billie Rinaldi, and Michael Wall

Boston

Accumulo
Application Development,

Table Design, and Best Practices

www.allitebooks.com

http://www.allitebooks.org

978-1-449-37418-1

[LSI]

Accumulo: Application Development, Table Design, and Best Practices
by Aaron Cordova, Billie Rinaldi, and Michael Wall

Copyright © 2015 Aaron Cordova, Billie Rinaldi, Michael Wall. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Marie Beaugureau
Production Editor: Matthew Hacker
Copyeditor: Kim Cofer
Proofreader: Eileen Cohen

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrators: Aaron Cordova and Billie Rinaldi

July 2015: First Edition

Revision History for the First Edition
2015-06-30: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449374181 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Accumulo: Application Development,
Table Design, and Best Practices, the cover image of a yak, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449374181
http://www.allitebooks.org

Table of Contents

Foreword. xiii

Preface. xv

1. Architecture and Data Model. 1
Recent Trends 1
The Role of Databases 2
Distributed Applications 4
Fast Random Access 7

Accessing Sorted Versus Unsorted Data 7
Versions 11
History 12
Data Model 13

Rows and Columns 14
Data Modification and Timestamps 17

Advanced Data Model Components 19
Column Families 19
Column Visibility 22
Full Data Model 26

Tables 27
Introduction to the Client API 28

Approach to Rows 32
Exploiting Sort Order 33

Architecture Overview 34
ZooKeeper 35
Hadoop 35
Accumulo 36
A Typical Cluster 41

iii

www.allitebooks.com

http://www.allitebooks.org

Additional Features 42
Automatic Data Partitioning 42
High Consistency 42
Automatic Load Balancing 43
Massive Scalability 43
Failure Tolerance and Automatic Recovery 43
Support for Analysis: Iterators 44
Support for Analysis: MapReduce Integration 44
Data Lifecycle Management 45
Compression 45
Robust Timestamps 45

Accumulo and Other Data Management Systems 46
Comparisons to Relational Databases 46
Comparisons to Other NoSQL Databases 50

Use Cases Suited for Accumulo 56
A New Kind of Flexible Analytical Warehouse 56
Building the Next Gmail 56
Massive Graph or Machine-Learning Problems 57
Relieving Relational Databases 57
Massive Search Applications 57
Applications with a Long History of Versioned Data 58

2. Quick Start. 59
Demo of the Shell 60

The help Command 61
Creating a Table and Inserting Some Data 61
Scanning for Data 62
Using Authorizations 63
Using a Simple Iterator 63

Demo of Java Code 63
Creating a Table and Inserting Some Data 64
Scanning for Data 68
Using Authorizations 69
Using a Simple Iterator 70

A More Complete Installation 71
Other Important Resources 79
One Last Example with a Unit Test 80
Additional Resources 80

3. Basic API. 81
Development Environment 82

Obtaining the Client Library 83

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Using Maven 83
Configuring the Classpath 83

Introduction to the Example Application: Wikipedia Pages 84
Wikipedia Data 84
Data Modeling 85
Obtaining Example Code 88
Downloading Sample Wikipedia Pages 89
Downloading All English Wikipedia Articles 89

Connect 90
Insert 90

Committing Mutations 93
Handling Errors 95
Insert Example 97
Using Lexicoders 99
Writing to Multiple Tables 100

Lookups and Scanning 103
Lookup Example 106
Crafting Ranges 108
Grouping by Rows 110
Reusing Scanners 111
Isolated Row Views 111
Tuning Scanners 112

Batch Scanning 113
Update: Overwrite 116

Overwrite Example 116
Allowing Multiple Versions 117

Update: Appending or Incrementing 118
Update: Read-Modify-Write and Conditional Mutations 118

Conditional Mutation API 119
Conditional Mutation Batch API 121
Conditional Mutation Example 121

Delete 125
Deleting and Reinserting 126
Removing Deleted Data from Disk 127
Batch Deleter 127

Testing 129
MockAccumulo 129
MiniAccumuloCluster 129

4. Table API. 131
Basic Table Operations 131

Creating Tables 131

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Renaming 135
Deleting Tables 135
Deleting Ranges of Rows 135
Deleting Entries Returned from a Scan 136
Configuring Table Properties 137
Locality Groups 138
Bloom Filters 142
Caching 144
Tablet Splits 145
Compacting 149
Additional Properties 151
Online Status 156
Cloning 157
Importing and Exporting Tables 158
Additional Administrative Methods 159

Table Namespaces 160
Creating 161
Renaming 162
Setting Namespace Properties 162
Deleting 163
Configuring Iterators 164
Configuring Constraints 164
Testing Class Loading for a Namespace 165

Instance Operations 165
Setting Properties 165
Cluster Information 166
Precedence of Properties 171

5. Security API. 175
Authentication 176
Permissions 177

System Permissions 178
Namespace Permissions 180
Table Permissions 181

Authorizations 183
Column Visibilities 184
Limiting Authorizations Written 184
An Example of Using Authorizations 185
Using a Default Visibility 190
Making Authorizations Work 193

Auditing Security Operations 194
Custom Authentication, Permissions, and Authorization 195

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Custom Authentication Example 196
Other Security Considerations 197

Using an Application Account for Multiple Users 198
Network 198
Disk Encryption 198

6. Server-Side Functionality and External Clients. 201
Constraints 201

Constraint Configuration API 202
Constraint Configuration Example 203
Creating Custom Constraints 205
Custom Constraint Example 205

Iterators 209
Iterator Configuration API 211
VersioningIterator 212
Iterator Configuration Example 213
Adding Iterators by Setting Properties 215
Filtering Iterators 215
Combiners 220
Other Built-in Iterators 228

Thrift Proxy 236
Starting a Proxy 237
Python Example 238
Generating Client Code 240

Language-Specific Clients 241
Integration with Other Tools 242

Apache Hive 242
Apache Pig 248
Apache Kafka 251

Integration with Analytical Tools 255

7. MapReduce API. 257
Formats 257
Writing Worker Classes 259
MapReduce Example 259
MapReduce over Underlying RFiles 262

Example of Running a MapReduce Job over RFiles 263
Delivering Rows to Map Workers 264
Ingesters and Combiners as MapReduce Computations 264
MapReduce and Bulk Import 268

Bulk Ingest to Avoid Duplicates 269

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

8. Table Design. 271
Single-Table Designs 271

Implementing Paging 274
Secondary Indexing 275

Index Partitioned by Term 276
Querying a Term-Partitioned Index 279
Maintaining Consistency Across Tables 283
Index Partitioned by Document 284
Querying a Document-Partitioned Index 287
Indexing Data Types 288

Full-Text Search 295
wikipediaMetadata 295
wikipediaIndex 295
wikipedia 296
wikipediaReverseIndex 297
Ingesting WikiSearch Data 297
Querying the WikiSearch Data 299

Designing Row IDs 304
Lexicoders 304
Composite Row IDs 304
Key Size 305
Avoiding Hotspots 305
Designing Row IDs for Consistent Updates 306

Designing Values 307
Storing Files and Large Values 310
Human-Readable Versus Binary Values and Formatters 311

Designing Authorizations 313
Designing Column Visibilities 314

9. Advanced Table Designs. 317
Time-Ordered Data 317
Graphs 319

Building an Example Graph: Twitter 323
Traversing Graph Tables 325
Traversing the Example Twitter Graph 326

Semantic Triples 329
Semantic Triples Example 329

Spatial Data 334
Open Source Projects 334
Space-Filling Curves 335

Multidimensional Data 337
D4M and Matlab 337

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

D4M Example 338
Machine Learning 343

Storing Feature Vectors 343
A Machine-Learning Example 345

Approximating Relational and SQL Database Properties 351
Schema Constraints 351
SQL Operations 352

10. Internals. 357
Tablet Server 357

Write Path 358
Read Path 359
Resource Manager 360
Write-Ahead Logs 367
File formats 369
Caching 373

Master 374
FATE 374
Load Balancer 375

Garbage Collector 376
Monitor 377
Tracer 377
Client 378

Locating Keys 378
Metadata Table 379
Uses of ZooKeeper 379
Accumulo and the CAP Theorem 379

11. Administration: Setup. 383
Preinstallation 383

Operating Systems 383
Kernel Tweaks 384
Native Libraries 385
User Accounts 385
Linux Filesystem 385
System Services 385
Software Dependencies 386

Installation 387
Tarball Distribution Install 387
Installing on Cloudera’s CDH 388
Installing on Hortonworks’ HDP 394
Installing on MapR 396

Table of Contents | ix

Running via Amazon Web Services 398
Building from Source 399

Configuration 401
File Permissions 401
Server Configuration Files 402
Client Configuration 406
Deploying JARs 407
Setting Up Automatic Failover 409
Initialization 410

Running Very Large-Scale Clusters 411
Networking 411
Limits 412
Metadata Table 412
Tablet Sizing 413
File Sizing 413
Using Multiple HDFS Volumes 413

Security 416
Column Visibilities and Accumulo Clients 416
Supporting Software Security 416
Network Security 417
Encryption of Data at Rest 422
Kerberized Hadoop 423
Application Permissions 424

12. Administration: Running. 425
Starting Accumulo 425

Via the start-all.sh Script 425
Via init.d Scripts 426

Stopping Accumulo 427
Via the stop-all.sh Script 427
Via init.d scripts 427
Stopping Individual Processes 427

Starting After a Crash 428
Monitoring 429

Monitor Web Service 429
JMX Metrics 433
Logging 436
Tracing 436

Cluster Changes 438
Adding New Worker Nodes 438
Removing Worker Nodes 438
Adding New Control Nodes 439

x | Table of Contents

Removing Control Nodes 439
Table Operations 440

Changing Settings 440
Changing Online Status 444
Cloning 444
Import, Export, and Backups 446

Data Lifecycle 449
Versioning 449
Data Age-off 450
Compactions 451
Merging Tablets 453
Garbage Collection 456

Failure Recovery 456
Typical Failures 456
More-Serious Failures 457
Tips for Restoring a Cluster 458
Troubleshooting 461

13. Performance. 469
Understanding Read Performance 470
Understanding Write Performance 471

BatchWriters 472
Bulk Loading 472

Hardware Selection 473
Storage Devices 474
Networking 475
Virtualization 475
Running in a Public Cloud Environment 476

Cluster Sizing 476
Modeling Required Write Performance 477
Cluster Planning Example 478

Analyzing Performance 481
Using Tracing 481
Using the Monitor 483
Using Local Logs 487

Tablet Server Tuning 488
External Settings 488
Memory Settings 489
Write-Ahead Log Settings 491
Resource Settings 493
Timeouts 495
Scaling Vertically 496

Table of Contents | xi

Cluster Tuning 496
Splitting Tables 498
Balancing Tablets 500
Balancing Reads and Writes 501
Data Locality 501
Sharing ZooKeeper 502

A. Shell Commands Quick Reference. 505

B. Metadata Table. 511

C. Data Stored in ZooKeeper. 519

Index. 523

xii | Table of Contents

Foreword

Apache Accumulo burst onto the database scene in 2011 and has established itself as
the highest-performance open source database in the world. This unprecedented ach‐
ievement is a testament to the hard work of the many dedicated developers in the
Accumulo community. Aaron Cordova, Billie Rinaldi, and Michael Wall have been
leaders in the Accumulo community since its inception, and I can think of no one
more qualified to write the definitive book on Accumulo.

The most distinguishing features of the Accumulo database are high performance,
scalability, and flexible security. This book does a thorough job of providing the key
concepts necessary for developers to utilize these features, while also making the
material accessible to a wide audience.

Finally, Aaron, Billie, and Michael have taken great care in creating this text and have
incorporated feedback on its development from the entire community. It has been a
pleasure to watch this book grow and evolve into the impressive volume that it has
become.

—Dr. Jeremy Kepner
MIT Lincoln Laboratory

xiii

Preface

Goals and Audience
We have designed this book to gather in a single place our community’s collective
knowledge of how best to use Apache Accumulo. This includes some history and
background on the Accumulo project, how to configure and tune an Accumulo
instance, and much about how to write applications using Accumulo. This book
should help you get started with Accumulo, as well as provide a reference for those
already familiar with it.

Those new to distributed applications will find an overview of why data stores such as
Accumulo have become popular in recent years. People looking to write applications
using Accumulo will find detailed information about its API as well as common
design patterns and motivations behind various uses of Accumulo. Administrators of
Accumulo will learn basic through advanced configuration options, including tips for
tuning Accumulo for better performance. Even experienced Accumulo users are
likely to find some information in these pages that they have not encountered before.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

xv

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/accumulobook. Please also see the website we made for this book at
https://accumulobook.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Accumulo: Application Development,
Table Design, and Best Practices by Aaron Cordova, Billie Rinaldi, and Michael Wall
(O’Reilly). Copyright 2015 Aaron Cordova, Billie Rinaldi, Michael Wall,
978-1-449-37418-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xvi | Preface

https://github.com/accumulobook
https://accumulobook.com
mailto:permissions@oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/accumulo_1e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xvii

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://bit.ly/accumulo_1e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
We would like to thank our technical reviewers, Josh Elser, Eric Newton, and Christo‐
pher Tubbs, without whom this book would have been less accurate and more diffi‐
cult to read. We would also like to thank the many people who gave us feedback on
this book, including but not limited to Sterling Foster, Alan Mangan, Jeremy Kepner,
Tessa Cordova, David Barker, Al Krinker, Alex Moundalexis, Clint Green, David
Perry, Christina Wall, and Rebecca Derry.

Thanks also to GroupLens Research at the University of Minnesota for use of the
MovieLens data set for our examples.

Finally, we would like to thank the Apache Accumulo community—all the developers
and users who have contributed to making Accumulo a fantastically stable, fast, and
useful data store.

xviii | Preface

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Architecture and Data Model

Apache Accumulo is a highly scalable, distributed, open source data store modeled
after Google’s Bigtable design. Accumulo is built to store up to trillions of data ele‐
ments and keeps them organized so that users can perform fast lookups. Accumulo
supports flexible data schemas and scales horizontally across thousands of machines.
Applications built on Accumulo are capable of serving a large number of users and
can process many requests per second, making Accumulo an ideal choice for
terabyte- to petabyte-scale projects.

Recent Trends
Over the past few decades, several trends have driven the progress of data storage and
processing systems. The first is that more data is being produced, at faster rates than
ever before. The rate of available data is increasing so fast that more data was pro‐
duced in the past few years than in all previous years. In recent years a huge amount
of data has been produced by people for human consumption, and this amount is
dwarfed by the amount of data produced by machines. These systems and devices
promise to generate an enormous amount of data in the coming years. Merely storing
this data can be a challenge, let alone organizing and processing it.

The second trend is that the cost of storage has dropped dramatically. Hard drives
now store multiple terabytes for roughly the same price as gigabyte drives stored gig‐
abytes of data a decade ago. Although computer memory is also falling in price, mak‐
ing it possible for many applications to run with their working data sets entirely in
memory, systems that store most data on disk still have a big cost advantage.

The third trend is that disk throughput has improved more than disk seek times, for
conventional spinning-disk hard drives. Though solid-state drives (SSDs) have
altered this balance somewhat, the advantage of the sequential read performance of

1

http://bit.ly/bigtable_paper

conventional hard drives versus random read performance is a large factor in the
design of the systems we’ll be discussing.

Finally, we’ve seen a shift from using one processor to multiple processors as increa‐
ses in single-processor performance have slowed. This is reflected in a shift not only
to multithreaded programs on a single server but also to programs distributed over
multiple separate servers.

These trends have caused system and application developers to take a hard look at
conventional designs and to consider alternatives. The question many are asking is:
how should we build applications so we can take advantage of all this data, in light of
current hardware trends, and in the most cost-effective way possible?

The Role of Databases
Conventional relational databases have served as the workhorse for persisting appli‐
cation data and as the processing engine for data analysis for many years. With the
advent of the World Wide Web, web applications can be exposed to millions of con‐
current users, creating the need for highly scalable data storage and retrieval technol‐
ogies. Many applications begin with a single relational database as the storage engine
and gradually reduce the number of features enabled on the database in order to get
better performance and serve more requests per second. Eventually a single database
is just not enough, and applications begin to resort to distributing data among several
database instances in order to keep up with demand. All of the overhead for manag‐
ing multiple databases and distributing data to them has to be handled by the
application.

Similarly, databases have also played an important role in analytical applications.
Often a relational database will be at the center of a data warehouse in which records
from operational databases are combined and refactored to support queries that
answer analytical questions. The field of Business Intelligence has grown up around
the capabilities of data warehouses. As more and more data becomes available, the
need for these analytical systems to scale becomes greater. Not only are organizations
collecting and keeping more structured data from operational systems, but interest is
also growing in other types of data that’s less well-structured—such as application
logs, social media data, and text documents. The ability to combine all of these data
sets in one place in order to ask questions across them is a compelling use case that is
driving innovation in scalable systems.

Accumulo is unlike some other new distributed databases in that it was developed
with more of a focus on building analytical platforms, rather than simply as the scala‐
ble persistence layer for data generated via a web application. The flexibility of the
data model and support for building indexes in Accumulo make analyzing data from
a variety of sources easier. Accumulo also introduces fine-grained access control to

2 | Chapter 1: Architecture and Data Model

make it possible for organizations to confidently protect data of varying sensitivity
levels in the same physical cluster.

Analysis and Column Storage
Many analytical databases take advantage of column-oriented storage rather than
row-oriented storage, which is the primary storage for most databases.

Row-oriented storage is useful for operational applications that need to maintain
some state across multiple fields or multiple rows. When updating multiple fields in a
row, perhaps as part of a transaction, it is convenient to store all the fields that need to
be updated simultaneously together on disk, read them off of disk together into mem‐
ory in order to change values as part of a transaction, and write them back to disk
together to maintain a consistent view of the data at all times.

In contrast, analytical applications often do not require any updates to data and are
instead aggregating and summarizing the data. In many cases analytical questions are
designed to calculate some statistic for one or a subset of the fields across all of the
rows. It is inconvenient to store data in row-oriented format because it requires all the
fields of one row to be read before any fields of the next row can be accessed. As a
result, analytical storage engines often store data in column-oriented formats. This
way, all of the data for a particular field across all rows can be found together on disk.
This drastically reduces the time required to read data to answer these types of analyt‐
ical questions. Because similarity is a property that compression relies on to reduce
storage size, column-oriented storage also improves the opportunities for compres‐
sion because the data values within a single field are often similar to one another.

Accumulo makes it possible to group sets of columns together on disk via a feature
called locality groups so analytical applications can gain these advantages. As part of
Accumulo’s additional focus on analytical applications, its support for locality groups
is more powerful than in some other distributed databases because the names of col‐
umns don’t have to be declared beforehand, there is no penalty for a large number of
different column names, and the columns can be mapped to locality groups in any
way desired. We discuss locality groups in depth in “Column Families” on page 19.

Some relational databases have adopted a distributed approach to scaling to meet
demand. In all distributed systems there are trade-offs. Distributed applications
introduce new complexities and failure modes that might not have existed in one-
server applications, so many distributed applications also ensure that the design and
APIs offered are simple to make understanding the behavior of the entire system eas‐
ier. In many ways new platforms like Accumulo represent stepping back to look at the
problem and building a data store from the ground up to support these larger work‐
loads and the concise set of features they require. The goal of Accumulo, being based
on Google’s Bigtable, is to provide a set of features that work well even as data sizes

The Role of Databases | 3

grow into the tens of petabytes—even in the presence of the regular failures expected
of cheaper, commodity-class hardware that is commonly used.

Distributed Applications
To effectively use increasing amounts of available data, a few application design pat‐
terns have emerged for automatically distributing data and processing over many
separate commodity-class servers connected via a network, and that vastly prefer
sequential disk operations over random disk seeks. Unlike some distributed systems,
applications that implement these patterns do not share memory or storage, an
approach called a shared-nothing architecture. These applications are designed to han‐
dle individual machine failures automatically with no interruption in operations.

Perhaps the most popular of these is Apache Hadoop, which can be used to distribute
data over many commodity-class machines and to run distributed processing jobs
over the data in parallel. This allows data to be processed in a fraction of the time it
would take on a single computer. Hadoop uses sequential I/O, opening and reading
files from beginning to end during the course of a distributed processing job, and
writing output to new files in sequential chunks. A graphical representation of vertical
scaling versus horizontal or shared-nothing scaling is shown in Figure 1-1.

Shared-Nothing Architectures
Some distributed applications are built to run on hardware platforms featuring many
processors and large amounts of shared random-access memory (RAM), and often
connect to a storage area network (SAN) via high-speed interconnects such as Fibre
Channel to access shared data storage.

In contrast, shared-nothing architectures do not share RAM and do not connect to
shared storage, but rather consist of many individual servers, each with its own pro‐
cessors, RAM, and hard drives. These systems are still connected to one another via a
network such as Gigabit Ethernet. Often the individual servers are of the more inex‐
pensive sort and often include cheaper individual components, such as Serial ATA
(SATA) drives rather than Small Computer System Interface (SCSI) drives.

Technologies that increase the resilience of a single server, such as hardware Redun‐
dant Array of Independent Disks (RAID) cards, which allow several hard drives
within a server to be grouped together for redundancy, are unnecessary in a shared-
nothing architecture. These can be replaced with an application layer that tolerates
the failure of entire servers, such as the Hadoop Distributed File System (HDFS).

4 | Chapter 1: Architecture and Data Model

http://hadoop.apache.org

Figure 1-1. Scaling strategies

Accumulo employs this distributed approach by partitioning data across multiple
servers and keeping track of which server has which partition. In some cases these
data partitions are called shards, as in pieces of something that has been shattered. In
Accumulo’s case, data is stored in tables, and tables are partitioned into tablets. Each
server hosts a number of tablets. These servers are called tablet servers (Figure 1-2).

Some other systems support this type of data partitioning and require that a particu‐
lar field within the data be specified for the purpose of mapping a particular row to a
partition. For example, a relational database may allow a table to be split into parti‐
tions based on the Date field. All of the rows that have a date value in January might
be in one partition, and the rows with a date value in February in another. This struc‐
ture is very sensitive to the distribution of values across rows. If many more rows
have date values in February, that partition will be larger than the other partitions.

Distributed Applications | 5

1 R. Sen, A. Farris, and P. Guerra, “Benchmarking Apache Accumulo BigData Distributed Table Store Using Its
Continuous Test Suite.” in IEEE International Congress on Big Data, 2013, pp. 334–341.

Figure 1-2. Tables are partitioned into tablets and distributed

In contrast, Accumulo does not require you to specify how to partition data. Instead,
it automatically finds good points to use to split the data into tablets. As new data
arrives, a particular single tablet may become larger than the others. When it reaches
a configurable threshold, the tablet is split into two tablets. This way, tablets can be
uniform in size without any intervention from administrators.

Partitions also have to be mapped to particular servers. If responsibility for storage is
coupled with responsibility for processing requests for a particular tablet, movement
of read and write processing for a tablet from one server to another also requires that
the data be moved. This data movement can be expensive. So, rather than coupling
responsibility for reads and writes with the storage of a tablet, Accumulo allows tablet
servers to be responsible for tablets that are stored on another server, at least tem‐
porarily. Over time, tablet servers will create local copies of the data in background
operations to avoid reads over the network in response to client requests.

The flexibility in assigning tablets to tablet servers allows Accumulo to be very
responsive to handling individual hardware failures without requiring additional
intervention from applications or administrators. This is crucial to running a large-
scale cluster, because hardware failure becomes a common occurrence with hundreds
or thousands of machines. Instances of Accumulo have been known to run on more
than a thousand servers, hosting trillions of key-value pairs.1

Accumulo includes features that can be used to build a wide variety of scalable dis‐
tributed applications, including storing structured or semistructured sparse and
dynamic data, building rich text-search capabilities, indexing geospatial or multidi‐

6 | Chapter 1: Architecture and Data Model

mensional data, storing and processing large graphs, and maintaining continuously
updated summaries over raw events using server-side programming mechanisms.

Fast Random Access
Fast random access is important to many applications. Random access implies that
even though the particular element of data that is sought is not known until the time
of execution, the access time for any particular data element is roughly the same. This
is in contrast to sequential access, in which the reads start at the beginning of a set of
data and proceed to read more data until reaching the end. It’s also important that
that access time be fast enough to satisfy application requirements. Many web appli‐
cations require that the data requested be accessible in less than one second.

There are several techniques for achieving good random-access performance. Two
popular techniques are hashing and sorting. These techniques are used all the time in
computer applications accessing data held in memory, but they conveniently also
apply to data stored on disk, and even across multiple machines.

Unlike Hadoop jobs, where the data is often unorganized and where each job pro‐
cesses most or all of the data, Accumulo is designed to store data in an organized fash‐
ion so users can quickly find the data they need or incrementally add to or update a
data set. Accumulo’s role in life is to store key-value pairs, keeping the keys sorted at
all times. This enables applications to achieve fast, interactive response times even
when the data sizes range in the petabytes.

Accessing Sorted Versus Unsorted Data
Imagine a scenario in which you need to catch a flight, and your ticket shows your
flight leaving from gate D5. Suppose that the gates are unordered; that is, gate A1 is
right next to F3, which is right next to B2. If you are currently standing at gate B2,
you would have no idea how close you are to D5, and no idea in which direction you
should go to get closer to D5. The only strategy guaranteed to locate gate D5 is to
begin visiting all the gates in the hope that you stumble across D5. This strategy is
fine if you have hours and hours to spend searching. If you’re in a hurry, chances are
you will miss your flight. Not only is this too slow to be practical, but it is horribly
inefficient. Every person trying to catch a flight will waste at least several hours and a
lot of effort finding the right gate.

If the gates are sorted in a known order, such as alphabetical and numerical order so
that gate A1 is physically next to gate A2 and the last A gate is next to the first B gate,
finding a particular gate is much easier. You know that to find gate D5 you must skip
all the A, B, and C gates, and that if you see E gates you’ve gone too far. Once you’ve
found one of the D gates, say D8, you know that your gate is only three gates away. If

Fast Random Access | 7

the next gate you see is D7 or D9, you now know whether to keep going or to turn
around to get to D5.

This is the same way that computers use sorted data. A computer uses an algorithm
known as a binary search to find a key-value pair in a list sorted by key (Figure 1-3).
Binary search works by looking at the key in the middle of the list and comparing
that to the key it wants to find. If the key in the middle of the list is greater than the
key sought, the computer will then search the first half of the list. If the key in the
middle of the list is less than the key sought, the computer will search the second half
of the list.

Whichever half is chosen, the computer again picks the key in the middle and com‐
pares that to the key it’s looking for, and based on this comparison it decides in which
direction it must continue searching. This continues until the computer finds an
exact match or determines that the key sought is not in the list.

Figure 1-3. An example of binary search

This dramatically reduces the number of keys that must be examined and makes
searching for a particular key faster. How much faster? If it takes 10 milliseconds to
fetch and examine one key, finding a particular key in an unsorted list of a billion

8 | Chapter 1: Architecture and Data Model

keys will take an average of 57 days, because the right key could be anywhere—best
case it’s the first one you look at; worst case it’s the last.

If the list is sorted, it only takes an average of 300 milliseconds. If the sorted list has
not a billion key-value pairs, but a trillion, it takes 400 milliseconds—only 30 percent
longer for a 1000× increase in data!

Algorithms that have this kind of performance are said to exhibit logarithmic access
time with respect to the number of data elements, as opposed to linear access time,
because the access time is a function not of the number of data elements but of the
logarithm of the number of elements.

Hashing Versus Sorting
Hashing is a popular technique for organizing data so that a given data element can
be accessed quickly. If we are storing key-value pairs, where each key is associated
with a single value, a hash function applied to the key can be used to determine where
a key-value pair will be stored. Good hash functions map inputs to a range of output
values uniformly. When storing key-value pairs, the key is passed as the input to the
hash function (called hashing the key) and the output hash is used as the address of
the key-value pair in the storage medium. For example, we might decide to store the
key-value pair favoriteColor→red by first hashing the key, favoriteColor, which pro‐
duces the value 1004, and so we store that key-value pair in the 1004th slot in
memory.

Lookups designed to retrieve the value of a known key consist of hashing the key,
noting the hash output value and jumping to the place referenced by that hash, and
retrieving the value of the key-value pair. The hash can refer to a location in memory,
on disk, or on a particular machine in a cluster. If we need to look up the value for the
key favoriteColor, we simply hash it to obtain the address 1004 and go directly to the
1004th memory slot to retrieve the key-value pair (Figure 1-4).

In distributed systems hashing is sometimes used to distribute key-value pairs across
machines in a cluster. Hashing has the advantage of not requiring the system to do
anything special to keep the data uniformly spread out across machines. Lookups can
consist of simply hashing the key to find the server on which a key-value pair is
stored, and then hashing again to find the spot within the server that contains the
key-value pair.

Because these lookups consist of just one step, hashing enables very fast random
access to data. However, because the hash function is designed to spread keys out uni‐
formly across the address space, any similarity among keys is lost. For, example if we
wanted to be able to access the values for not just favoriteColor but favoriteIceCream
and favoriteMovie, we would have to do three separate lookups because these key-
value pairs would end up being assigned to different places by the hash function.

Accumulo does not rely on hashing for data distribution; it uses sorting instead.

Fast Random Access | 9

Like hashing, sorting data can enable fast random access, but unlike hashing, sorting
can preserve some of the relationships among keys. This way, we can quickly find one
key that we want by doing a binary search, but also any closely related keys by reading
a few additional keys that appear sequentially after the first key. Because disks can
read sequential data much faster than accessing data randomly, the difference
between finding and returning one key versus finding one key and scanning 1,000 of
the keys that follow sequentially is minimal.

This property of sorted data allows application designers to exploit any relationships,
sometimes called locality, in their data by creating keys that group related information
together when sorted (Figure 1-5).

Maintaining asorted set of key-value pairs, especially when distributed across multi‐
ple machines, is more work than using hashing. Specifically, you have to maintain an
additional mapping of which machine has which portion of the sorted set. In Accu‐
mulo, this mapping is called the metadata table, and Accumulo has a lot of functional‐
ity built in to handle the additional work of maintaining this information. We discuss
the metadata table in depth in “Metadata Table” on page 379.

Figure 1-4. Hashing a key to an address

10 | Chapter 1: Architecture and Data Model

www.allitebooks.com

http://www.allitebooks.org

Figure 1-5. Accessing related keys in sorted data

Versions
The first public open source version of Accumulo is 1.3.

Version 1.4 has been used in production for years on very large clusters.

As of this writing, the latest stable version of Accumulo is 1.6. We will focus this book
on version 1.6, pointing out differences in other versions where appropriate. Version
1.6 includes the following new features and improvements over previous versions:

• Multivolume support (running over multiple HDFS instances)
• Table namespaces
• Conditional mutations
• Partial encryption support
• Pluggable compaction strategies
• Lexicoders (tools for sorting tuples properly)
• Locality groups in memory
• Service IP addresses
• Support for ViewFS
• Maven plug-in
• Default key size constraint

Versions | 11

You can find the complete Release Notes for the 1.6 release at the Apache Accumulo
site.

History
Accumulo is one of several implementations based on Google’s Bigtable. The others
include Apache HBase, Hypertable, and Apache Cassandra.

Accumulo has been an open source project since 2011 and has since seen several
releases. A brief history of the project is as follows:

2003
Google publishes a paper describing the Google File System (GFS), a distributed
filesystem for storing very large files across many commodity-class servers.

2004
Google publishes a paper describing a simplified distributed programming model
and associated fault-tolerant execution framework called MapReduce.

2006
Google publishes a paper entitled “Bigtable: A Distributed Storage System for
Structured Data”. That same year a team from Yahoo! releases an open source
version called Apache Hadoop.

Fall 2007
An open source implementation of Google’s Bigtable called HBase is started by a
team at the company Powerset.

January 2008
Hadoop becomes a top-level Apache project. HBase becomes a subproject.

At the same time, a team of computer scientists and mathematicians at the US
National Security Agency (NSA) are evaluating the use of various big data tech‐
nologies, including Apache Hadoop and HBase, in an effort to help solve the
issues involved with storing and processing large amounts of data of different
sensitivity levels. Authors Billie Rinaldi and Aaron Cordova are part of this team.

July 2008
Powerset is acquired by Microsoft.

After reviewing existing solutions and comparing the stated objectives of existing
open source projects to the agency’s goals, the NSA team begins a new imple‐
mentation of Google’s Bigtable. The team focuses on performance, resilience, and
access control of individual data elements. The intent is to follow the design as
described in the paper closely in order to build on as much of the effort and expe‐
rience of Google’s engineers as possible.

12 | Chapter 1: Architecture and Data Model

http://bit.ly/accumulo_1_6_0
http://bit.ly/gfs_paper
http://bit.ly/dean-ghemawat
http://bit.ly/bigtable_paper
http://bit.ly/bigtable_paper

The team extends the Bigtable design with additional features that includes a
method for labeling each key-value pair with its own access information, called
column visibilities, and a mechanism for performing additional server-side func‐
tionality, called iterators.

May 2009
Version 1.0 of Accumulo is released, but it is not yet publicly available.

May 2010
HBase becomes a top-level Apache project.

September 2011
Accumulo becomes a public open source incubator project hosted by the Apache
Software Foundation.

March 2012
Accumulo graduates to top-level project status. First publicly available release is
1.3.5.

April 2012
Version 1.4 is released.

May 2013
Version 1.5 is released and includes a Thrift proxy, more control over compac‐
tions, and table import and export

May 2014
Version 1.6 is released and extends the API to include conditional mutations and
table namespaces.

Data Model
At the most basic level, Accumulo stores key-value pairs on disk (Figure 1-6), keeping
the keys sorted at all times. This allows a user to look up the value of a particular key
or range of keys very quickly. Values are stored as byte arrays, and Accumulo doesn’t
restrict the type or size of the values stored. The default constraint on the maximum
size of the key is 1 MB.

Figure 1-6. A simple key-value pair

Data Model | 13

http://bit.ly/accumulo_incubation
http://bit.ly/accumulo_project

Rather than simple keys as shown in Figure 1-6, Accumulo keys are made up of sev‐
eral components. Inside the key there are three main components: a row ID, a col‐
umn, and a timestamp (Figure 1-7).

Figure 1-7. Main components of the key

Rows and Columns
The row ID and column components allow developers to model their data similarly
to how one might store data in a relational database, or perhaps a spreadsheet. One
major difference is that relational databases often have autogenerated row IDs and
rely on secondary indexes for all data access, whereas the row IDs in Accumulo can
contain data that is relevant to an application.

When sorting keys, Accumulo first sorts the data by row ID, then sorts keys with the
same row ID by column, and finally sorts keys with the same row ID and column by
timestamp. Row IDs and columns are sorted in ascending, lexicographical order—
which means, roughly, alphabetical order—byte-by-byte.

The row ID is used to group several key-value pairs into a logical row. All the key-
value pairs that have the same row ID are considered to be a part of the same row.
Row IDs are simply byte arrays. A logical row in Accumulo can consist of more data
than can fit in memory. Values for multiple columns within a row can be changed
atomically.

The ability to modify rows atomically is an important feature for application design‐
ers to keep in mind when modeling their data. This means that Accumulo will com‐
mit the changes to a particular row all at once, or not at all in the case of a failure.
This allows applications always to have a consistent view of the data in a row, and not
to have to handle cases in which a change is partially applied. (We discuss atomicity
more in “Transactions” on page 47.)

Columns allow a row to contain multiple elements, as in a relational database table.
Each column is mapped to a value. But unlike in a relational database, you don’t have
to declare columns before storing data in them, and not every row has to have the
same columns present. Further, the type of data stored under a particular column
does not have to be the same across rows. Finally, columns do not have a specified
maximum length in which values must fit. (Column names, being part of the key, are

14 | Chapter 1: Architecture and Data Model

by default limited, because the total key is constrained to be less than 1 MB. However,
the values under these columns are not constrained in size by default.)

Accumulo tables can cope with missing or additional columns and changes in the
underlying schema of the data because Accumulo does not make any assumptions
about the schema. If rows imported every day for a month contain 10 columns and
suddenly they now contain 11 columns, Accumulo will not reject a request to store
the new rows; it will simply store them. Applications designed to read from the 10
known columns can continue to do so even with the new rows and simply ignore the
additional column.

This departure from the relational model represents a trade-off. On the one hand, the
flexibility makes storing data much easier. It is easier to store data that does not con‐
form to a well-known schema, and it is also easier to store data whose structure
changes over time.

However, whereas applications built on a relational database can rely on the database
to ensure that values conform to specified types and lengths, applications built on
Accumulo cannot assume that value types and lengths conform to any constraints,
unless Accumulo is configured to apply specific constraints to the data. Application
designers can decide whether to implement constraints to be applied by Accumulo at
insert-time or whether to handle varying value types and lengths at read-time in the
application.

For example, we may have a table that we use to store Wikipedia articles. The table
contains some structured data, or metadata, about each article, along with the actual
article text. Individual metadata elements may not be the same from one article to the
next.

Notice that not all the rows in Figure 1-8 have data stored in every column, a prop‐
erty known as sparseness. In other systems, missing values must be indicated by stor‐
ing a NULL value, which takes up space on disk. In Accumulo, the missing values
simply do not appear in the list of key-value pairs. On disk, this data is laid out as a
long series of sorted key-value pairs.

Data Model | 15

Figure 1-8. A table consisting of rows and columns

Note that there is no key-value pair in Figure 1-9 for the comment field for Apache
Thrift, for example. Because Accumulo stores data this way, it can handle sparse data
sets very efficiently. Writing a key-value pair that contains a column that doesn’t
appear in any other row is no different from Accumulo’s perspective than storing any
other key-value pair.

If you are coming from a relational database background, it might
be confusing to think of a row in Accumulo as a set of key-value
pairs. Looking at data retrieved in the Accumulo shell, which we
touch on first in “Demo of the Shell” on page 60, a row will actually
be many lines on the screen. Figure 1-8 may be a more familiar
representation of the data, and you can see how it might translate
into Accumulo in Figure 1-9. In this example, a row, defined as a
set of key-value pairs, is analogous to a record in a relational data‐
base. Everything with the same row ID contains information about
a given record.

16 | Chapter 1: Architecture and Data Model

Figure 1-9. Key-value pairs representing data for various rows and columns

Data Modification and Timestamps
Accumulo allows applications to update and delete existing information. These oper‐
ations are essential to developing operational applications. Rather than modifying the
data already written to disk, however, Accumulo handles modifications of this type
via versioning.

The timestamp element of the key adds a new dimension to the well-known two-
dimensional row-column model, and this allows data under a particular row-column
pair to have more than one version (Figure 1-10). By default, Accumulo keeps only
the newest version of a row-column pair, but it can be configured to store a specific
number of versions, versions newer than a certain date, or all versions ever written.

Figure 1-10. A table consisting of rows and columns with multiple versions

Data Model | 17

The set of key-value pairs on disk appears as in Figure 1-11.

Figure 1-11. Two key-value pairs that represent two versions of data for one row-column
pair

Timestamps are stored as 64-bit integers using the Java long data type. They are sor‐
ted in descending order, unlike rows and columns, so that the newest versions of a
row-column pair appear first when scanning down a table. In this way, Accumulo
handles updates by simply storing new versions of key-value pairs. If only the newest
version is retrieved, it appears as if the value has changed.

Timestamps that are assigned to key-value pairs by the tablet server
use the number of milliseconds since midnight, January 1, 1970,
also known as the Unix epoch.

Similarly, deletes are implemented using a special marker inserted in front of any
existing versions. The appearance of a key-value pair with a delete marker is inter‐
preted by Accumulo to mean “ignore all versions of this row-column pair older than
this timestamp.”

For example, if we wanted to remove the comment for the row identified by
Apache_Accumulo, the Accumulo client library would insert a delete marker with the
Apache_Accumulo row ID and the comment column, and that delete marker would be

18 | Chapter 1: Architecture and Data Model

assigned a timestamp representing the current time by the receiving tablet server.
Subsequent reads of the Apache_Accumulo row would encounter the delete marker
and know to skip any key-value pairs for that row and column appearing after the
delete marker.

To add a comment field back into that row we would simply write a new key-value
pair, which would get a newer timestamp than the delete marker, and so it would be
returned by subsequent scans.

It is possible to specify the timestamp when inserting a new key
into Accumulo, but this should only be done for advanced applica‐
tions, because timestamps are used in determining the ordering of
insertions and deletions. In the typical case in which the timestamp
is not specified by the client, the tablet server that receives the key-
value pair will use the time at which the data arrived as the
timestamp.
Applications that use time information typically store that time
information as the value of a separate column rather than storing it
in the timestamp portion of the key.

Advanced Data Model Components
Accumulo’s data model includes additional components that help applications ach‐
ieve better performance and data protection. These components are extensions to the
basic concept of a column.

Columns are split into three components: a column family, a column qualifier, and a
column visibility.

Most applications will start by simply assigning the names of fields to the column
qualifier. Column families and column visibilities do not have to be populated. When
developers have an idea for how data will be accessed, and for the sensitivity levels of
various columns, these additional components can be used to help optimize and pro‐
tect information.

Column Families
Often, applications find that they will access some columns together, and not other
columns. Other times they need to access all of the columns within rows. This is
especially prevalent in analytical applications.

When scanning for only a subset of the columns, it can be useful to change the way
groups of columns are stored on disk so that frequently grouped columns are stored
together, and so that columns containing large amounts of data that are not always
scanned can be isolated.

Advanced Data Model Components | 19

For example, we might have some columns storing relatively small, structured data,
and other columns storing larger values such as text or perhaps media such as
imagery, audio, or video. In the Wikipedia table, the text column stores long text val‐
ues. Sometimes our application may need to scan just the structured details about a
user or multiple users and other times will need to scan the user details and the larger
columns containing media content.

To cause related columns to be stored in consecutive key-value pairs in Accumulo,
application designers can place these columns in the same column family. To apply
this to our earlier example, we can choose to put the text and comment columns
under a column family called content and the other columns under the metadata col‐
umn family. If we retrieve the metadata column family, the tablet server can do less
work to read just that one column family than if the individual metadata columns
were scattered throughout each row, interleaved with content columns.

Unlike Bigtable and HBase, Accumulo column families need not be declared before
being used, and Accumulo tables can have a very high number of column families if
necessary.

Although grouping columns into families can make retrieving a single column family
within one row more efficient, it can still be inefficient to read one column family
across multiple rows, because we’ll still have to scan over other column families
before accessing the next row. For example, it would be inefficient if we always had to
read the Wikipedia content off of disk when we are only interested in the user details.

To help avoid reading data unnecessarily from disk, application designers can choose
to assign column families to a locality group. Locality groups are stored in separate
contiguous chunks of data on disk so that an application that is only scanning over
column families in one locality group doesn’t need to read data from any other local‐
ity groups. This gives Accumulo more of a columnar-style storage that is amenable to
many analytical access patterns.

Applying locality groups to our earlier example, we can choose to put the content col‐
umn family in one locality group and the metadata column family in another locality
group. Before we assigned column families to locality groups, a scan configured to
read only the metadata columns would still end up reading the content columns off
of disk (Figure 1-12), and tablet servers would filter them out, returning only the data
requested.

20 | Chapter 1: Architecture and Data Model

www.allitebooks.com

http://www.allitebooks.org

Figure 1-12. Reading over one column family still requires filtering out other column
families

Once we assign the content column family to its own locality group, Accumulo will
begin to store this textual content in a separate section on disk (Figure 1-13). Now
when we read just the columns containing Wikipedia metadata, we don’t have to read
all of the text for each article off of disk.

Accumulo allows the assignment of column families to locality groups to change over
time. New data written to Accumulo will always be written to disk according to the
current assignment of column families to locality groups. Any data written prior to
the change in assignment will need to be reprocessed before the benefit of the new
locality groups is realized. Accumulo will reprocess data on disk automatically via a
process called compaction, but compactions can also be forced as necessary. Using
compactions to get previously written data to reflect changes in locality group assign‐
ments is described in “Locality Groups” on page 138.

Advanced Data Model Components | 21

Figure 1-13. Column families in different locality groups are stored together on disk

Column Visibility
Accumulo’s focus on supporting analysis of data from several different sources has
resulted in an additional component to the Bigtable data model called column visibil‐
ity. The column visibility component is designed to logically isolate certain types of
data based on sensitivity, by associating each value with a security label expression.
This enables data to be protected from unauthorized access and for data sets of differ‐
ing sensitivity to be stored in the same physical tables.

This feature is designed to reduce the amount of data movement that needs to occur
when an organization decides that an application or an analytical process is allowed
to look at two data sets. Imagine the case in which two data sets had to be stored in
two physically separate systems for security reasons, called system A and system B. If
one day an organization decides that it needs to join these data sets to answer an ana‐
lytical question, the data from one system would have to be physically moved into the
other system, say A into B, if there happens to be enough room. And the users of sys‐
tem B would have to be denied access to it while the data from system A resides there,
if not all of them are also authorized to read data from system A. Or perhaps a third
system will need to be stood up to handle the combination of this data, requiring that

22 | Chapter 1: Architecture and Data Model

new hardware be acquired, software installed, and the data from both system A and
system B to be copied to the new system. That process could take months.

If the data is already all stored together physically, and protected with column visibili‐
ties, then granting access of a single analytical application to both data sets is trivial.
While the analytical process is running, users authorized to read only one type of data
or another can continue to submit queries against the system without ever seeing
anything they aren’t authorized to see.

In our example, we might decide that the data residing under the comment and pageid
columns does not need to be exposed to applications that allow the public to read the
article text and titles (Figure 1-14), and so we can decide to protect the data in these
columns using the column visibility component of the key.

Figure 1-14. Two columns are deemed viewable by internal applications and users

The way we protect these values is by populating the column visibility components
with security label expressions, sometimes called simply security labels. Security label
expressions consist of one or more tokens combined by logical operators &, repre‐
senting logical AND, and |, representing logical OR. Subexpressions can be grouped
using parentheses.

In our simple example here, we are using just single-token expressions in our column
visibility. On disk these key-value pairs now look like Figure 1-15.

Advanced Data Model Components | 23

Figure 1-15. Individual key-value pairs are labeled with column visibilities

Column visibilities are an extremely fine-grained form of access control. Sometimes
the term cell-level is used when discussing Accumulo’s ability to allow every value to
have its own security label, which is stored in the column visibility element of the key.
The term cell-level is used to contrast the granularity of Accumulo’s security model
with row-level or column-level security in which one can control access to all the data
in a row or all the data in a column. It is not often the case that any one raw data set
requires that each column of each row to have a different column visibility. Usually
some combination of row-level or column-level access control will suffice, which col‐
umn visibilities can support just as well.

But because a common application on Accumulo involves building secondary
indexes, perhaps across several types of data of differing sensitivity levels, each key-
value pair in an index will end up needing a specific column visibility based on the
row and column from which it originated. Applications that use these types of
indexes are very powerful because they allow different views of the data to be com‐
posed on the fly, according to the access level of the user performing the query.

For example, a user with only the public access token can scan this table and will only
see the data with the public token in the column visibility portion of the key
(Figure 1-16).

24 | Chapter 1: Architecture and Data Model

Figure 1-16. View of only public data in the table

A user with both the public and internal access tokens will see all of the data in the
table when doing a scan (Figure 1-17).

Figure 1-17. View of all of the data in the table

Advanced Data Model Components | 25

A user or application with only the internal access token will only see the data with a
column visibility containing the internal token (Figure 1-18).

Figure 1-18. View of only internal data in the table

Because column visibilities are used to filter data after specific rows
and columns have been selected for a scan, table designers should
be careful not to design an application that relies too heavily on fil‐
tering, because this will impact read performance.

The assignment of access tokens to applications, individual users, or groups of users
is typically handled outside of Accumulo by a central user-management system,
although access tokens can be restricted in conjunction with Accumulo or using only
Accumulo if desired.

We discuss using column visibilities in designing applications in depth in “Column
Visibilities” on page 184.

Full Data Model
Now that we’ve discussed all of the components of the Accumulo data model we can
show the full model containing all components of the key, with the components of the
column broken out (Figure 1-19).

26 | Chapter 1: Architecture and Data Model

Figure 1-19. Accumulo key structure

Not all of the components must be used. At the very least, you can choose to use only
the row ID and value portions of the key-value pair. In this case Accumulo will oper‐
ate like a simple key-value store. Many applications start with rows and columns, and
apply the use of additional components as designs are optimized.

Developers should consider carefully the components of the key that their application
requires when designing tables.

Tables
When stored in Accumulo, key-value pairs are grouped into tables. You can apply
some settings at the table level to control the behavior and management of the data.
The key-value pairs within tables are partitioned into tablets and distributed automat‐
ically across multiple machines in a cluster.

Each table begins life as a single tablet, spanning all possible keys. Once data is writ‐
ten to a table and it reaches a certain size threshold, the tablet server hosting it finds a
good point in the middle of the tablet and splits it into two tablets.

When a tablet server does this it always splits a tablet on a row boundary, guarantee‐
ing that the data for each row is fully contained within one tablet and therefore
resides on exactly one server. This is important to allowing consistent updates to be
applied atomically to the data in an individual row.

For example, as our Wikipedia table grows, it will eventually be split along a row
boundary into two tablets (Figure 1-20).

Tables | 27

Figure 1-20. Splitting a tablet into tablets

Accumulo takes care of distributing responsibility for tablets evenly across tablet
servers. A single tablet server can host several hundred tablets or more
simultaneously.

We discuss the splitting process more in depth in “Splits” on page 365.

Introduction to the Client API
Accumulo provides application developers with a client library that is used to locate
and communicate with tablet servers for writing data, and reading one or more key-
value pairs.

Rather than providing a query language such as SQL, Accumulo provides developers
with a simple API and a high degree of control over data layout, so that by designing
tables carefully, many concurrent user requests can be satisfied very quickly with a
minimal amount of work done at read time. Accumulo’s read API is simple and
straightforward.

As you would expect from a key-value store, clients can provide a key and look up the
associated value, if it exists. Instead of returning one value, however, clients can opt to
scan a range of key-value pairs beginning at a particular key. The performance differ‐

28 | Chapter 1: Architecture and Data Model

ence between looking up and retrieving a single value versus scanning, say, a few hun‐
dred kilobytes of key-value pairs is fairly small, because the cost of reading that
amount of data sequentially is dominated by the disk seek time.

This pattern allows clients to design rows such that the data elements required for a
given request can be sorted near one another within the same table. Because rows
may not all have the same columns, applications can be designed to take advantage of
whatever data is available, potentially discovering new information in new columns
along the way.

The ability to discover new information via scanning is valuable for applications that
want to combine information about similar subjects from different sources that may
not contain the same information about each subject.

Furthermore, it is up to the application to interpret the columns and values retrieved.
Some applications store simple strings or numbers, while others store serialized pro‐
grammatic objects. Some applications store map tile images in values and assemble
the tiles retrieved into a user-facing web interface, the way Google Maps uses
Bigtable.

Accumulo is written in Java and provides a Java client library. Clients in other lan‐
guages can communicate with Accumulo via the provided Thrift proxy. All clients use
three basic classes to communicate with Accumulo:

BatchWriter

All new inserts, updates, and deletes are packaged up into Mutation objects and
given to a BatchWriter. A Mutation object contains a set of changes to be
applied to a single row. The batch writer knows how the table is split into tablets
and which servers the tablets are assigned to. Using this information, the batch
writer efficiently groups Mutation objects into batches to increase write through‐
put. Batch writers send batches of Mutation objects to various tablet servers. The
batch writer is multithreaded, and the trade-off between latency and throughput
can be tuned. See Figure 1-21.

Introduction to the Client API | 29

Figure 1-21. Writing mutations

Scanner

Key-value pairs are read out of a table using a Scanner object. A scanner can start
at the beginning of a table or at a particular key, and can stop at the end of the
table or a given key. After seeking to the initial key, scanners proceed to read out
key-value pairs sequentially in key order until reaching the end of the table or the
specified ending key. Scanners can be configured to read only certain columns.
Additional configuration for a scanner can be made to apply additional logic
classes called iterators, and specific options to iterators, to alter the set of key-
value pairs returned from a particular scanner. See Figure 1-22.

30 | Chapter 1: Architecture and Data Model

www.allitebooks.com

http://www.allitebooks.org

Figure 1-22. Scanning one row

BatchScanner

When multiple ranges of keys are to be read from a table, a BatchScanner can be
used to read the key-value pairs for the ranges using multiple threads. The ranges
are grouped by tablet server to maximize the efficiency of communication
between threads and tablet servers. This can be useful for applications whose
design requires many individual scans to answer a single question. In particular,
tables designed for working with time series, secondary indexes, and complex
text search can all benefit from using batch scanners. See Figure 1-23.

Introduction to the Client API | 31

Figure 1-23. Scanning a batch of rows

More detail on developing applications using Accumulo’s API is found in the chapters
beginning with Chapter 3.

Approach to Rows
Accumulo takes a slightly different approach to rows in the client API than do some
other implementations based on Bigtable, such as HBase. Accumulo’s read API is
designed to stream key-value pairs to the client rather than to package up all the key-
value pairs for a row into a single unit before returning the data to the user.

This is often less convenient than working with data on a row-by-row basis, and
applications that want to work with entire rows can do additional configuration to
assist with this, as described in “Grouping by Rows” on page 110. The upside is that
rows in an Accumulo table can be very large and do not need to fit in the memory of
the tablet server or the client. Working with key-value pairs can come in handy when
row IDs are coming from external data and the number of columns per row may be
unknown or may vary widely, as can happen when building secondary indexes.

32 | Chapter 1: Architecture and Data Model

Exploiting Sort Order
The trick to taking full advantage of Accumulo’s design is to exploit the fact that
Accumulo keeps keys sorted. This requires application designers to determine a way
to order the data such that most user queries can be satisfied with one or a small
number of scans, each consisting of a lookup into a table to return one or more
sequential key-value pairs.

A single scan is able to perform this lookup and return one or even hundreds of key-
value pairs, often in less than a second, even when tables contain trillions of key-value
pairs. Applications that understand and use this property can achieve subsecond
response times for most user requests without having to worry about performance
degrading as the amount of data stored in the system increases dramatically.

This sometimes requires creative thinking in order to discover a key design that
works for a particular application. A good example of this is the way Google describes
the row ID of its WebCrawl table in the Bigtable paper. In this table, the intent is to
provide users with the ability to look up information about a given website, identified
by the hostname. Because hostnames are hierarchical and because users may want to
look at a specific hostname or all hostnames within a domain, Google chose to trans‐
form the hostname to support these access patterns by reversing the order in which
domain name components are stored under the row ID, as shown in Table 1-1.

Table 1-1. Google’s WebCrawl row design

Row ID

com.google.analytics

com.google.mail

com.google.maps

com.microsoft

com.microsoft.bing

com.microsoft.developers

com.microsoft.search

com.microsoft.www

com.yahoo

com.yahoo.mail

Introduction to the Client API | 33

com.yahoo.search

com.yahoo.www

Achieving optimal performance also depends on the ability to satisfy user requests
without having to filter out or ignore a large amount of key-value pairs as a part of
the scan.

Because developers have such a high degree of control over how data is arranged,
there are a wide variety of options for designing tables. We cover these in depth in
Chapter 8.

Architecture Overview
Accumulo is a distributed application that depends on Apache Hadoop for storage
and Apache ZooKeeper for configuration (Figure 1-24).

Figure 1-24. Accumulo architecture

Because Accumulo is based on Google’s Bigtable, as HBase is, it uses some of the same
names for components that Bigtable does, but there are some differences (Table 1-2).

Table 1-2. Accumulo and HBase Bigtable naming conventions

Apache Accumulo Bigtable Apache HBase

Tablet Tablet Region

Tablet Server Tablet Server Region Server

Minor Compaction Minor Compaction Flush

34 | Chapter 1: Architecture and Data Model

Major Compaction Merging Compaction Minor Compaction

(Full) Major Compaction Major Compaction Major Compaction

Write-Ahead Log Commit Log Write-Ahead Log

HDFS GFS HDFS

Hadoop MapReduce MapReduce Hadoop MapReduce

MemTable MemTable MemStore

RFile SSTable HFile

ZooKeeper Chubby ZooKeeper

ZooKeeper
ZooKeeper is a highly available, highly consistent, distributed application in which all
data is replicated on all machines in a cluster so that if one machine fails, clients read‐
ing from ZooKeeper can quickly switch over to one of the remaining machines. Zoo‐
Keeper plays the role for Accumulo of a centralized directory and lock service that
Google’s Chubby provides for Bigtable. In addition, write replication is synchronous,
which means clients wait until data is replicated and confirmed on all machines
before considering a write successful. In practice, ZooKeeper instances tend to con‐
sist of three or five machines.

Accumulo uses ZooKeeper to store configuration and status information and to track
changes in the cluster. ZooKeeper is also used to help clients begin the process of
locating the right servers for the data they seek.

Hadoop
In the same way that Google’s Bigtable stores its data in a distributed filesystem called
GFS, Accumulo stores its data in HDFS. Accumulo relies on HDFS to provide persis‐
tent storage, replication, and fault tolerance. Having a separate storage layer allows
Accumulo to balance the responsibility for serving portions of tables independently
of where they are stored, although data tends to be served from the same server on
which it is stored.

Like Accumulo, HDFS is a distributed application, but one that allows users to view a
collection of machines as a single, scalable filesystem. HDFS files can be very large, up
to terabytes per file. HDFS automatically breaks these files into blocks—by default 64
MB or 128 MB in size depending on the version of HDFS—and distributes these
blocks across the cluster uniformly. In addition, each block is replicated on multiple

Architecture Overview | 35

http://static.googleusercontent.com/media/research.google.com/en/us/archive/chubby-osdi06.pdf

machines (Figure 1-25). The default replication factor is three in order to avoid losing
data when one machine or even an entire rack of servers becomes unavailable. Usu‐
ally, one replica is written to the local hard drive, another to another machine in the
same rack, and a third to a machine in another rack. This way, even the loss of an
entire rack won’t cause data loss.

Figure 1-25. Hadoop Distributed File System

Accumulo
An Accumulo instance consists of several types of processes running on one to thou‐
sands of machines.

Analogous to HDFS files, Accumulo tables can be very large in size, up to tens of tril‐
lions of key-value pairs or more. Accumulo automatically partitions these into tablets
and assigns responsibility for hosting tablets to servers called tablet servers
(Figure 1-26).

However, unlike HDFS block replicas, Accumulo tablets are assigned to exactly one
tablet server at a time. This allows one server to manage all the reads and writes for a
particular range of keys, enabling reads and writes to be highly consistent because no
synchronization has to occur between tablet servers. When a client writes a piece of
information to a row, clients reading that row immediately after the write will see the
new information.

Typically, a server will run one tablet server process and one HDFS DataNode process
(Figure 1-27). This allows most tablets to have a local replica of the files they
reference.

36 | Chapter 1: Architecture and Data Model

Figure 1-26. Accumulo

As a result, a tablet server can host a tablet whose file replicas are all located on other
servers. This situation does not prevent the tablet’s data from being read and is usu‐
ally temporary, because any time a tablet server performs compaction of a tablet’s
files, it will by default create one local replica of each new file. Over time, a tablet
tends to have one local replica for each file it references.

Figure 1-27. Typical process distribution

Architecture Overview | 37

Tablet servers
Tablet servers host a set of tablets and are responsible for all the writes and reads for
those tablets. Clients connect directly to tablet servers to read and write data. Tablet
servers can host hundreds or even thousands of tablets, each consisting of about 1 GB
of data or more. Tablet servers store data written to these tablets in memory and in
files in HDFS, and handle scanning data for clients, applying any additional filtering
or processing the clients request.

Master
Every Accumulo cluster has one active master process that is responsible for making
sure all tablets are assigned to exactly one tablet server at all times and that tablets are
load-balanced across servers. The master also helps with certain administrative oper‐
ations such as startup, shutdown, and table and user creation and deletion.

Accumulo’s master can fail without causing interruption to tablet servers and clients.
If a tablet server fails while the master is down, some portion of the tablets will be
unavailable until a new master process is started on any machine. When the new
master process starts, it will reassign any tablets that do not have a tablet server
assignment.

It is possible to configure Accumulo to run multiple master processes so that one
master is always running in the event that one fails. Whichever process obtains a
master ZooKeeper lock first will be the active master, and the remaining processes
will watch the lock so that one of them can take over if the active master fails.

Garbage collector
The garbage collector process finds files that are no longer being used by any tablets
and deletes them from HDFS to reclaim disk space.

A cluster needs only one garbage collector process running at any given time.

Monitor
Accumulo ships with an informative monitor that reports cluster activity and logging
information into one web interface (Figure 1-28). This monitor is useful for verifying
that Accumulo is operating properly and for helping understand and troubleshoot
cluster and application performance. “Monitor Web Service” on page 429 gives
descriptions of the information displayed by the monitor.

38 | Chapter 1: Architecture and Data Model

Figure 1-28. Monitor UI

Client
Accumulo provides a Java client library for use in applications. Many Accumulo cli‐
ents can read and write data from an Accumulo instance simultaneously. Clients
communicate directly with tablet servers to read and write data (Figure 1-29). Occa‐
sionally, clients will communicate with ZooKeeper and with the Accumulo master for

Architecture Overview | 39

certain table operations, but no data is sent or received through ZooKeeper or the
master.

Figure 1-29. Accumulo clients

Thrift proxy
As of version 1.5, Accumulo provides an optional Thrift proxy that can be used to
develop clients in languages other than those that run on the Java Virtual Machine
(JVM). These other clients can connect to the Thrift proxy, which communicates
with the Accumulo cluster and allows data to be read and written by these other
clients.

Accumulo versions 1.4 and older use logger processes to record
each new write in an unsorted write-ahead log on disk that can be
used to recover any data that was lost from the memory of a failed
tablet server. Accumulo 1.5 no longer has dedicated logger pro‐
cesses. The write-ahead logs are written directly to files in HDFS.

40 | Chapter 1: Architecture and Data Model

www.allitebooks.com

http://www.allitebooks.org

A Typical Cluster
A typical Accumulo cluster consists of a few control nodes and a few to many worker
nodes (Figure 1-30).

Control nodes include:

• One, three, or five machines running ZooKeeper
• Ideally, two machines running HDFS NameNode processes, one active, one for

failover
• One to two machines running Accumulo master, garbage collector, and/or moni‐

tor
• For Hadoop 1, an optional machine running a Hadoop job tracker process if

MapReduce jobs are required
• For Hadoop 2, an optional machine running a YARN resource manager process

if MapReduce jobs are required

Each worker node typically includes:

• One HDFS DataNode process for storing data
• One tablet server process for serving queries and inserts
• For Hadoop 1, an optional Hadoop task tracker for running MapReduce jobs
• For Hadoop 2, an optional YARN node manager for running MapReduce jobs

The logger process mentioned in Accumulo versions 1.4 and earlier
would have typically run on each worker node.

In addition, applications require one to many processes using the Accumulo client
library to write and read data.

Architecture Overview | 41

Figure 1-30. A typical cluster

Additional Features
In addition to the features already described, Accumulo provides more features to
help you build scalable applications running on large clusters. Not all of these are
unique to Accumulo, but the combination of these features is likely unique.

Automatic Data Partitioning
Accumulo tables can be very large, up to petabytes in size. You can tune the tablet-
splitting process, but you don’t have to worry about choosing a good key on which to
partition because Accumulo automatically finds good split points.

High Consistency
Accumulo provides a highly consistent view of the data. Tablets are assigned to
exactly one tablet server at a time. An update to a particular key’s value is
immediately reflected in subsequent reads because those updates and reads go to the
same server.

42 | Chapter 1: Architecture and Data Model

Other NoSQL systems allow writes for a particular key to happen on more than one
server, and consistency is achieved via communication between these servers.
Because this communication is not instantaneous, these systems are considered even‐
tually consistent. One advantage of eventually consistent systems is that a single
instance of the database can run over geographically disparate data centers, and
writes to some servers can continue even if those servers cannot communicate with
all of the other servers participating in the cluster.

An Accumulo instance is designed to be deployed within a single data center and to
provide a highly consistent view of the data. One advantage of high consistency is
that application logic can be simplified.

Automatic Load Balancing
The Accumulo master automatically balances the responsibility for serving tablets
across tablet servers. When one tablet server has more tablets than another, the mas‐
ter process will instruct the overloaded tablet server to stop serving a tablet and
instruct the underloaded tablet server to begin hosting that tablet.

Massive Scalability
Accumulo is considered a horizontally scalable application, meaning that you can
increase the capabilities of the system by adding more machines, rather than by
replacing existing machines with bigger, more capable machines (vertical scaling).
New machines joining an Accumulo cluster begin participating in the cluster very
quickly, because no data movement is required for these new machines to start host‐
ing tablets and the reads and writes associated with them.

Accumulo can also work well at large scale, meaning on clusters consisting of thou‐
sands of machines hosting petabytes of data.

A major benefit to building on Accumulo is that an application can be written and
deployed on a small cluster when the amount of data and the number of concurrent
writes and reads is low. As data or read-write demand grows, the Accumulo cluster
can be expanded to handle more data and reads without an application rewrite.

Many distributed systems today are built to scale from one server to many. Accumulo
may be one of the most scalable data stores out there. As of version 1.6, Accumulo is
capable of running across multiple instances of HDFS with different HDFS NameNo‐
des. This means that Accumulo can be configured to support more update operations
than can be accommodated by a single HDFS instance.

Failure Tolerance and Automatic Recovery
Like Hadoop, Accumulo is designed to survive single server failures and even the fail‐
ure of a single rack. If a single Accumulo tablet server fails, the master process notes

Additional Features | 43

this and reassigns its tablets to the remaining tablet servers. Accumulo clients auto‐
matically manage the failover from one tablet server to another. Application develop‐
ers do not need to worry about retrying their operations simply because a machine
fails.

In a large cluster these types of failures are commonplace, and Accumulo does a lot of
work to minimize the burden on application developers as well as administrators so
that a single instance running on thousands of machines is tractable.

Support for Analysis: Iterators
Storing large amounts of data and making it searchable is only part of the solution to
the problem of taking full advantage of big data. Often data needs to be aggregated,
summarized, or modeled in order to be fully understood and utilized. Accumulo pro‐
vides a few mechanisms for performing analysis on data in tables.

One of these mechanisms, Accumulo iterators, enable custom aggregation and sum‐
marization within tablet servers to allow you to maintain result sets efficiently and
store the data at a higher level of abstraction. They are called iterators because they
iterate over key-value pairs and allow developers to alter the data before writing to
disk or returning information to users.

There are various types of iterators that range from filtering to simple sums to main‐
taining a set of statistics. These are covered in “Iterators” on page 209.

Developers have used iterators to incrementally update edge weights in large graphs
for applications such as social network analysis or computer network modeling. Oth‐
ers have used iterators to build complex feature vectors from a variety of sources to
represent entities such as website users. These feature vectors can be used in
machine-learning algorithms like clustering and classification to model underlying
groups within the data or for predictive analysis.

Support for Analysis: MapReduce Integration
Beyond iterators, Accumulo supports analysis via integration with the popular
Hadoop MapReduce framework. Accumulo stores its data in HDFS and can be used
as the source of data for a MapReduce job or as the destination of the output from a
MapReduce job. MapReduce jobs can either read from tablet servers using the Accu‐
mulo client library, or from the underlying files in which Accumulo stores data via
the use of specific MapReduce input and output formats.

In either case, Accumulo supports the type of data locality that MapReduce jobs
require, allowing MapReduce workers to read data that is stored locally rather than
having to read it all from remote machines over the network.

We cover using MapReduce with Accumulo in depth in Chapter 7.

44 | Chapter 1: Architecture and Data Model

Data Lifecycle Management
Accumulo provides a good degree of control over how data is managed in order to
comply with storage space, legal, or policy requirements.

In addition, the timestamps that are part Accumulo’s key structure can be used with
iterators to age data off according to a policy set by the administrator. This includes
aging off data older than a certain amount of time from now, or simply aging off data
older than a specific date.

Timestamps can also be used to distinguish among two or more versions of otherwise
identical keys. The built-in VersioningIterator can be configured to allow any
number of versions, or only a specific number of versions, to be stored. Google’s orig‐
inal Bigtable paper describes using timestamps to distinguish among various versions
of the Web as it was crawled and stored from time to time.

With this built-in functionality in the database, work that otherwise must be done in
a batch-oriented fashion involving a lot of reading and writing data back to the sys‐
tem can be performed incrementally and efficiently.

We cover age-off in depth in “Data Age-off ” on page 450.

Compression
Accumulo compresses data by default using several methods. One is to apply a com‐
pression algorithm such as GZip or LZO to blocks of data stored on disk. The other is
a technique called relative-key encoding, in which the shared prefixes of a set of keys
are stored only once, and the following keys only need express the changes to the ini‐
tial key.

Compressing data in this way can improve I/O, because reading compressed data and
doing decompression can be faster than reading uncompressed data and not doing
decompression. Compression also helps offset the cost of the block replication that is
performed by HDFS.

The Bigtable paper describes two types of compression. One compresses long com‐
mon strings across a large window, and the other does compression over small win‐
dows of data. These types of custom compression are not implemented in Accumulo.

Robust Timestamps
When Accumulo tablet servers are assigning timestamps to key-value pairs, Accu‐
mulo ensures that the timestamps are internally consistent. Accumulo only assigns
new timestamps that are later than the most recent timestamp for a given tablet. In
other words, timestamps assigned by a tablet server are guaranteed to increase.

Additional Features | 45

This addresses the inevitable situation in which some servers in the cluster have
clocks that are off and are applying timestamps from the future to keys. If these keys
were transferred to another server, newly written data would be treated as older than
existing data. It would be very confusing for users not to see the data they expect. It
would be an even more critical problem in the Accumulo metadata that keeps track of
tablets and their files. Entire data files could be lost if this problem were allowed to
occur. Thus, Accumulo only assigns new timestamps that are later than the most
recent timestamp for a given tablet.

It is also possible to use a one-up counter for timestamps by configuring a table with
a time type of logical instead of the default time type of milliseconds since the UNIX
epoch (Midnight UTC on January 1, 1970). In either case, tablet servers ensure that a
newly written key-value pair is never stamped with a timestamp that precedes the
most recent timestamp for the key’s tablet. This does not, however, prevent arbitrary
user-assigned timestamps from being written to a table.

Accumulo and Other Data Management Systems
Application developers and systems engineers face a wide range of choices for man‐
aging their data today. Often the differences among these options are subtle and
require a deep understanding of technologies’ capabilities as well as the problem
domain. To help in deciding when Accumulo is or isn’t a good fit for a particular pur‐
pose, we compare Accumulo to some other popular options.

Comparisons to Relational Databases
Relational databases, by far the most popular type of database in use today, have been
around for several decades and serve a wide variety of uses. Understanding the rela‐
tive strengths and weaknesses of these systems is useful for determining how and
when to use them instead of Accumulo.

SQL
One of the strengths of relational databases is that they implement a set of operations
known as relational algebra codified in Structured Query Language (SQL). SQL
allows users to perform rich and complex operations at query time, including set
intersection, joins, aggregations, and sorting. Relational databases are heavily opti‐
mized to perform these operations at query time.

One challenge of using SQL is that of performing this work at query time on a large
amount of data. Relational Massively Parallel Processing (MPP) databases approach
this by dividing the work to perform SQL operations among many servers. The
approach taken by Accumulo is to encourage aggressive precomputation where
possible, often using far more storage to achieve the space-time trade-off, in order to

46 | Chapter 1: Architecture and Data Model

http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Unix_time

minimize the work done at query time and maintain fast lookups even when storing
petabytes of data.

Space-Time Trade-off and Cheap Space
In computer science, the space-time trade-off refers to the fact that you can use more
space to store the results of computation in order to reduce the time required to get
answers to users. Conversely, you can save space by waiting until users ask and com‐
puting answers on the fly.

Over the past decade the cost of storage has dropped dramatically. As a result, Accu‐
mulo applications tend to precompute as much as possible, often combining into one
table data that would be stored as two or more tables in a relational database.

When applications are designed to support answering analytical questions about enti‐
ties of interest, it is common to precompute the answer for all entities periodically, or
to update the answers via iterators when new raw data is ingested, so that queries can
consist of a simple, very fast lookup.

Transactions
Many relational databases provide very strong guarantees around data updates, com‐
monly termed ACID, for Atomicity, Consistency, Isolation, and Durability.

ACID
Atomicity

Either all the changes in a transaction are made or none is made. No partial
changes are committed.

Consistency
The database is always in a consistent state. This means different things in differ‐
ent contexts. For databases in which some rows can refer to others, consistency
means that a referenced row must exist.

Isolation
Each transaction is made independent of other transactions. Changes appear the
same whether done serially or concurrently.

Durability
Changes are persistent and survive certain types of failure.

In relational databases these properties are delivered via several mechanisms. One
such mechanism is a transaction, which bundles a set of operations together into a

Accumulo and Other Data Management Systems | 47

logical unit. Transactions are important for supporting operational workloads such as
maintaining information about inventory, keeping bank accounts in order, and track‐
ing the current state of business operations. Transactions can contain changes to mul‐
tiple values within a row, changes to values in two or more rows in the same table, or
even updates to multiple rows in multiple tables. These types of workloads are con‐
sidered online transaction processing (OLTP).

Accumulo guarantees these ACID properties for a single mutation (a set of changes
for a single row) but does not provide support for atomic updates across multiple
rows. Nor does Accumulo maintain consistent references between rows. Row isola‐
tion for reads can be obtained by enabling the feature for a particular scanner (see
“Isolated Row Views” on page 111).

Normalization
If you store multiple copies of the same data in different places, it can be difficult to
ensure a high degree of consistency. You might update the value in one place but not
the other. Therefore, storing copies of the same values should be avoided.

Values that don’t have a one-to-one relationship to each other are often divided into
separate tables that keep pointers between themselves. For example, a person typically
only has one birth date, so you can store birth date in the same table as first name and
other one-to-one data (Figure 1-31).

But a person may have many nicknames or favorite songs. This type of one-to-many
data is stored in a separate table (Figure 1-32). There is a well-defined process, called
normalization, for deciding which data elements to put into separate tables. There are
several degrees to which normalization can be applied, but it typically involves break‐
ing out data involved in one-to-many or many-to-many relationships into multiple
tables and joining them at query time.

Another group of workloads is termed online analytical processing (OLAP). Rela‐
tional databases have been used to support these kinds of workloads as well. Often
analysis takes the approach of looking at snapshots of operational data, or simply may
bring together reference data that doesn’t require updates but requires efficient read
and aggregation capabilities. Because these data snapshots are no longer updated,
there is no opportunity for the data to become inconsistent, and the need for normal‐
ization is diminished.

Because OLAP workloads require fewer updates, tables are often precombined, or
denormalized, to cut down on the operations that are carried out a query time
(Figure 1-33). This is another example of the space-time trade-off, whereby an
increase in storage space used reduces the time to get data in the format requested.

48 | Chapter 1: Architecture and Data Model

Figure 1-31. A table containing a one-to-one relationship

Figure 1-32. An example of normalization

Accumulo and Other Data Management Systems | 49

2 “NoSQL Relational Database Management System: Home Page.” Strozzi.it. 2 October 2007. Retrieved 29
March 2010.

Figure 1-33. An example of denormalization

In the example in Figure 1-33 of denormalizing data for analysis, it is easy to see how
you would want a system like Accumulo that is highly scalable, employs compression
of redundant data, and handles sparse data well.

Accumulo does not implement relational algebra. Accumulo provides ACID guaran‐
tees, but on a more limited basis. The only transactions allowed by Accumulo are
inserts, deletes, or updates to multiple values within a single row. These transactions
are atomic, consistent, isolated, and durable. But a set of updates to multiple rows in
the same table, or rows in different tables, do not have these guarantees.

Accumulo is therefore often used for massive operational workloads that can be per‐
formed via single-row updates, or for massive OLAP workloads.

Comparisons to Other NoSQL Databases
Accumulo belongs to a group of applications known as NoSQL databases. The term
NoSQL refers to the fact that these databases support data access methods other than
SQL and is short for Not SQL or Not Only SQL—although the engineer who coined
the term NoSQL, Carlo Strozzi, has expressed that it may be more appropriate to call
these applications nonrelational databases.2

50 | Chapter 1: Architecture and Data Model

www.allitebooks.com

http://www.allitebooks.org

Rather than using SQL for creating queries to fetch data and perform aggregation,
Accumulo provides a simplified API for writing and reading data. Departing from the
relational model and SQL has two major implications: increased flexibility in how
data is modeled and stored, and the fact that some operations that other databases
perform at query time are instead applied when data is written. In other words,
results are precomputed so that query-time operations can consist solely of simple,
fast tasks.

Compared to other NoSQL databases, Accumulo has some features that make it espe‐
cially dynamic and scalable.

Data model
NoSQL it’s a somewhat nebulous term, and is applied to applications as varied as
Berkley DB, memcached, Bigtable, Accumulo, MongoDB, Neo4j, Amazon’s Dynamo,
and others.

Some folks have grouped distributed software systems into categories based on the
data model supported. These categories can consist of the following:

Pure key-value
• Riak
• Dynamo
• memcached

Columnar (Bigtable)
• Bigtable
• Accumulo
• HBase
• Cassandra

Document
• MongoDB
• CouchDB

Graph
• Neo4j

Some of these applications have in common a key-value data model at a high level.
Accumulo’s data model consists of key-value pairs at the highest level, but because of
the structure of the key it achieves some properties of conventional two-dimensional,

Accumulo and Other Data Management Systems | 51

flat-record tables, columnar and row-oriented databases, and a little bit of hierarchy
in the data model via column families and column qualifiers.

Apache Accumulo, Apache Cassandra, and Apache HBase share this basic Bigtable
data model.

Other NoSQL data stores, such as MongoDB and CouchDB, are considered to be
document-oriented stores because they store JavaScript Object Notation (JSON)–like
documents natively.

Neo4j is a graph-oriented database whose data model consists of vertices and edges.

Choosing which data model is most appropriate for an application is probably the
first and foremost factor one should consider when choosing a NoSQL technology.
There is some flexibility in applying the data model because, for example, a key-value
store can be made to store graph data and because a document-based data model is
sort of a superset of the key-value model.

Key ordering
Some NoSQL databases use hashing to distribute their keys to servers. This makes
lookups simple for clients but can require some data to be moved when machines are
added to or removed from the cluster. It can also make scanning across a sequential
range of keys more difficult or impossible.

Because Accumulo maintains its own dynamic mapping of keys to servers it can very
quickly handle machines joining or leaving the cluster, with no data movement and
minimal interruption to clients. In addition, the key space is partitioned dynamically
and automatically so that the data is distributed evenly throughout the cluster.

Tight Hadoop integration
Many NoSQL databases have their own storage mechanism. Accumulo uses HDFS.
This offers several advantages:

• Accumulo can use the output of MapReduce jobs without having to move large
amounts of data. Accumulo can also serve as the source of input data for MapRe‐
duce jobs. This allows Hadoop clusters to be used for mixed workloads.

• Accumulo benefits from the significant work done by the Hadoop community to
make HDFS resilient, scalable, and stable.

• Because Hadoop is becoming the de-facto standard for large data processing in
many organizations, Accumulo reduces the cost of acquiring a scalable, low-
latency query capability by building on existing investment in Hadoop.

52 | Chapter 1: Architecture and Data Model

High versus eventual consistency
Some NoSQL databases are designed to run over geographically distributed data cen‐
ters and allow data to be written in more than one place simultaneously. This results
in a property known as eventual consistency, in which a value read from the database
may not be the most up-to-date version.

Accumulo is designed to run within a single data center and provides a highly consis‐
tent view of the data at all times. This means that users are guaranteed to always see
the most up-to-date version of the data, which simplifies application development.

When comparing NoSQL databases, you may want to consider which trade-offs have
been made in the design. In particular, much attention has been paid to the CAP the‐
orem, which states that in designing a distributed database, you can choose to pro‐
vide at most two of the following properties: high Consistency, Availability, and
Partition-tolerance (hence CAP). A good treatment of this concept is in “Brewer’s
Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Serv‐
ices” by Seth Gilbert and Nancy Lynch.

See “Accumulo and the CAP Theorem” on page 379 for a discussion on the choices
made in the Accumulo design with respect to the CAP Theorem.

Column visibility and access control
Organizations are turning to Accumulo in order to satisfy stringent data-access
requirements and to comply with legal and corporate requirements and policies.

Most databases provide a level of access control over the data. Accumulo’s column
visibilities are often more fine-grained and can be used to implement a wide variety
of access-control scenarios.

HBase in particular has implemented Accumulo’s column visibilities—including the
same types of security label expressions as Accumulo as well as a different mode of
access involving attaching access-control lists (ACLs) to cells.

One important note is that HBase includes a NOT operator (!) that can make it impos‐
sible to allow users to view the data using a subset of all their tokens, because they
could remove a token used as part of a NOT expression to protect data. See the Accu‐
mulo mailing list for the thread “‘NOT’ operator in visibility string.”

For example, suppose there were multiple cells with the following labels:

 kvpair1: private
 kvpair2: (private | admin) & !probationary
 kvpair3: admin

To query Accumulo’s key-value pairs, the user must always provide a list of authoriza‐
tion tokens to use for the query. Accumulo’s built-in ColumnVisibilityFilter deter‐
mines whether a particular set of tokens is sufficient to view a particular key-value

Accumulo and Other Data Management Systems | 53

http://bit.ly/gilbert_lynch
http://bit.ly/gilbert_lynch
http://bit.ly/gilbert_lynch
http://bit.ly/accumulo_mailing_list
http://bit.ly/accumulo_mailing_list

pair. Each user has a maximum set of tokens he is allowed to use for queries. It is not
uncommon for applications developed on Accumulo to allow users to issue queries
with a subset of their allowed tokens in order to see data as it would be viewed at dif‐
ferent visibility levels. For example, a user with both the private and admin tokens
might choose to query the data with just the private token. This helps with publishing
data to other groups of users that are granted different authorization tokens.

In the presence of the NOT operator, applications cannot allow users to view the data
with any fewer than all of their tokens, because removing a token from a query would
increase the number of key-value pairs visible to the user, amounting to an elevation
of privilege. In the preceding example, imagine issuing a query with the private and
probationary tokens versus a query with just the private token.

Another important note is that HBase does not consider the security label expression
to be a part of the key portion of the data model, as Accumulo does. This implies a
model in which a key-value pair at one visibility level can be overwritten with a dif‐
ferent visibility level. In Accumulo’s visibility model, you can store multiple values at
different visibility levels for the same row and column, because the visibility is con‐
sidered part of the key. It is not possible to overwrite one visibility with another less
restrictive visibility.

HBase’s implementation is also a bit different from Accumulo’s in that it utilizes cop‐
rocessors since HBase doesn’t have a construct like Accumulo iterators. There may be
performance differences as a result.

MongoDB has recently added a feature called redact as part of its Aggregation Frame‐
work that can be used to filter out subdocuments based on a flexible set of expres‐
sions. It appears likely that Accumulo’s filtering logic could also be implemented in
this framework.

Iterators
Accumulo’s iterators allow application developers to push some computation to the
server side, which can result in a dramatic increase in performance depending on the
operations performed. HBase provides a mechanism called coprocessors, which exe‐
cute code and can be triggered at many places. Unlike coprocessors, iterators operate
in only three places, are stackable, and are an integral part of the data processing
pipeline since much of the tablet server’s core behavior is implemented in built-in
system iterators.

Iterators are applied at scan time, when flushing memory to disk
(minor compaction), and when combining files (major
compaction).

54 | Chapter 1: Architecture and Data Model

http://bit.ly/hbase_cell_security
http://bit.ly/hbase_cell_security
http://bit.ly/redact_operator
http://bit.ly/redact_operator

Because iterators can be used much like MapReduce map or combine functions, iter‐
ators can help execute analytical functionality in a more streamlined and organized
manner than batch-oriented MapReduce jobs. Developers looking to efficiently create
and maintain result sets should consider iterators as an option.

Dynamic column families and locality groups
As mentioned in “Column Families” on page 19, Accumulo can have any number of
column families, and column families can be assigned arbitrarily to locality groups.
Accumulo does not require column families to be declared before they can be used.
Accumulo stores key-value pairs together on disk according to how their column
families are mapped to locality groups within a single file, rather than using separate
files or directories to separate the data, which keeps file management overhead con‐
stant. Furthermore, changes can be made to how the data is stored on disk by reconfi‐
guring locality groups on the fly, without changing how data is modeled in the
Accumulo key.

In contrast, HBase requires column families to be declared beforehand, and each col‐
umn family is stored in a separate directory in HDFS, which drastically limits the
flexibility of column family usage. Because column families are mapped to HDFS
directories in HBase, they must consist of printable characters, whereas in Accumulo
they are arbitrary byte arrays. Because every column family is a separate storage
directory in HBase, in practice it is recommended that tables have fewer than 10 col‐
umn families total (see Lars George’s HBase: The Definitive Guide [O’Reilly]). Each
column family in HBase is effectively in its own locality group, and multiple families
cannot be grouped together.

File handle resources are limited per server, and the overall number of files and direc‐
tories in HDFS is limited by the capacity of the NameNode, so having the number of
files be dependent on your specific data model rather than on the overall amount of
data becomes a consequence that every application must consider. Accumulo applica‐
tion designers do not have to consider this problem because Accumulo does not have
this limitation.

HBase requires that at least one column family be declared per table, and every key-
value pair inserted must specify a column family, whereas Accumulo does not require
the column family portion of the key to be filled out. It can be left blank, even if col‐
umn qualifiers or other parts of the key are filled out.

Support for very large rows
Accumulo does not assume that rows must fit entirely in memory. Key-value pairs are
streamed back to the client in batches, and it’s possible for the client to fetch a portion
of a row first and to stream the rest of the row in separate batches.

Accumulo and Other Data Management Systems | 55

http://shop.oreilly.com/product/0636920014348.do

An example of an application design that may require arbitrarily large rows is in the
use of tables to store secondary indexes for document search, where the row ID is
used to store search terms that may be mapped to many document IDs stored in col‐
umn qualifiers. The row corresponding to a common search term would be especially
large, because that term is likely to appear in a large number of documents.

Parallelized BatchScanners
In addition to being able to scan over a single range of key-value pairs, Accumulo
provides a BatchScanner in its client API that can be used to fetch rows from multi‐
ple places in a table simultaneously in multiple threads. This is also useful for applica‐
tions performing queries using secondary indexes.

Namespaces
Accumulo tables can be assigned to a namespace, which enables them to be config‐
ured and managed as a group. This makes it easier to have multiple groups of people
managing tables in the same cluster. See “Table Namespaces” on page 160 for details.

Use Cases Suited for Accumulo
Accumulo’s design represents a set of objectives and technical features different from
those in data management systems such as filesystems and relational databases.
Application and system designers need to understand how these features work
together. We present here a few applications that could leverage Accumulo’s strengths.

A New Kind of Flexible Analytical Warehouse
In attempts to build a system to analyze all the data in an organization by bringing
together many disparate data sources, three problems can easily arise: a scalability
problem, a problem managing sparse dynamic data, and security concerns.

Accumulo directly addresses all three of these with horizontal scalability, a rich key-
value data model that supports efficiently storing sparse data and that facilitates dis‐
covery, and fine-grained access control. An analytical data warehouse built around
Accumulo is still different from what one would build around a relational database.
Analytical results would be aggressively precomputed, potentially using MapReduce.
Many types of data could be involved, including semistructured JSON or XML, or
features extracted from text or imagery.

Building the Next Gmail
The original use case behind Bigtable was for building websites that support massive
scale in two dimensions: number of simultaneous users and amount of data managed.
If your plan is to build the next Gmail, Accumulo would be a good starting point.

56 | Chapter 1: Architecture and Data Model

Massive Graph or Machine-Learning Problems
Features such as iterators, MapReduce support, and a data model that supports stor‐
ing dimensional sparse data make Accumulo a good candidate for creating, maintain‐
ing, storing, and processing extremely large graphs or large sets of feature vectors for
machine-learning applications.

MapReduce has been used in conjunction with Accumulo’s scan capabilities to effi‐
ciently traverse graphs with trillions of edges, processing hundreds of millions of
edges per second.

Some machine-learning techniques, especially nonparametric algorithms such as k-
nearest neighbors, are memory-based and require storing all the data rather than
building a statistical model to represent the data. Keeping or “remembering” all the
data points is what is meant by “memory-based,” not that the data all lives in RAM.
Accumulo is able to store large amounts of these data points and provides the basic
data selection operations for supporting these algorithms efficiently. See “Machine
Learning” on page 343 for more on this.

In addition, for predictive applications that use models built from slowly changing
historical data, Accumulo can be used to store historical data and make it available
for query, and to support building models from this data via MapReduce. Accumulo’s
ability to manage large tables allows users to use arbitrarily complex predictive mod‐
els to score all known entities and store their results for fast lookup, rather than hav‐
ing to compute scores at query time.

Relieving Relational Databases
Because relational databases have performed well over the past several decades, they
have become the standard place for putting all data and have had to support a wide
variety of data management problems. But as database expert Michael Stonebraker
and others have argued, trying to have only one platform can result in challenges
stemming from the difficulty of optimizing a single system for many use cases.

Accumulo has been used to offload the burden of storing large amounts of raw data
from relational databases, freeing them up for more specialized workloads such as
performing complex runtime operations on selected subsets or summaries of the
data.

Massive Search Applications
Google has used Bigtable to power parts of its primary search application. Accumulo
has features such as automatic partitioning, batch scanning, and flexible iterators that
can be used to support complex and large-scale text search applications.

Use Cases Suited for Accumulo | 57

http://bit.ly/big_graph_experiment
http://bit.ly/stonebraker_cetintemel
http://bit.ly/stonebraker_cetintemel
http://bit.ly/caffeine_bigtable

Applications with a Long History of Versioned Data
Wikipedia is an application with millions of articles edited by people around the
world. Part of the challenge of these types of massive-scale collaborative applications
is storing many versions of the data as users edit individual elements. Accumulo’s data
model allows several versions of data to be stored, and for users to retrieve versions in
several ways. Accumulo’s scalability makes having to store all versions of data for all
time a more tractable proposition.

58 | Chapter 1: Architecture and Data Model

CHAPTER 2

Quick Start

Now that you have a basic understanding of Accumulo, this chapter should get you
up and running. We will work through a couple of different install options and then
work through a few examples. The accumulo-quickstart installation should be suit‐
able for use with examples throughout the rest of this book.

The quickest method to get started with Accumulo is to use the MiniAccumuloClus
ter. It is a minimal version of Accumulo that starts ZooKeeper and runs against the
local filesystem instead of starting up HDFS. It provides a testing and experimenta‐
tion environment that is close to that of a full-blown Accumulo installation, but
without the initial configuration overhead. The MiniAccumuloCluster is great for
writing automated tests and for experimenting with approaches. It will not scale to
large data, but it is perfect for getting started.

The example project we will use is based on the Instamo Archetype, which is an
Accumulo contrib project.

Our example includes a maven pom.xml file with populated dependencies. It also
contains ShellExample, MapReduceExample, and ExampleAccumuloUnitTest classes
that illustrate running different types of client code. Code run against a MiniAccumu
loCluster works the same as code that runs against a full Accumulo installation.

To get started, make sure you have Java 1.7 installed and Apache Maven 3.0.4 or
greater. See http://maven.apache.org/ if you need to install Maven. Now, clone the Git
repository that contains all source for this book:

git clone https://github.com/accumulobook/examples

Change to the quickstart directory. Let’s get started.

59

http://accumulo.apache.org/contrib.html
http://maven.apache.org/

Demo of the Shell
We will begin with a look at how to use the shell. From the quickstart directory, run
the following:

mvn clean compile exec:exec -Pshell

The shell profile that is selected with the -Pshell option runs the main() method of
the ShellExample class. This starts a ZooKeeper process, an Accumulo master pro‐
cess, two Accumulo TabletServer processes, and an Accumulo shell client. You will be
presented with an interactive shell that looks something like this:

[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building Mini Accumulo Cluster Example 0.0.1-SNAPSHOT
[INFO] --
[INFO]
[INFO] --- maven-clean-plugin:2.4.1:clean (default-clean) @ mini-accumulo-
 cluster-example ---
[INFO] Deleting /Users/accumulobook/src/accumulo-book/sourcecode/chapter2/mini-
 accumulo-cluster-example/target
[INFO]
[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @ mini-
 accumulo-cluster-example ---
[debug] execute contextualize
[WARNING] Using platform encoding (UTF-8 actually) to copy filtered resources,
 i.e. build is platform dependent!
[INFO] Copying 1 resource
[INFO]
[INFO] --- maven-compiler-plugin:2.0.2:compile (default-compile) @ mini-accumulo-
 cluster-example ---
[INFO] Compiling 3 source files to /Users/accumulobook//src/accumulo-book/
 sourcecode/chapter2/mini-accumulo-cluster-example/target/classes
[INFO]
[INFO] --- exec-maven-plugin:1.2.1:exec (default-cli) @ mini-accumulo-cluster-
 example ---

---- Initializing Accumulo Shell

Starting the MiniAccumuloCluster in /var/folders/2y/
 n9lzqm2x10lfxqm9n40xvfvw0000gn/T/1425610595980-0
Zookeeper is localhost:24968
Instance is miniInstance
[main] INFO org.apache.accumulo.minicluster.impl.MiniAccumuloClusterImpl -
 Starting MAC against instance miniInstance and zookeeper(s) localhost:24968.

Shell - Apache Accumulo Interactive Shell
-
- version: 1.6.2
- instance name: miniInstance
- instance id: de5cd0be-b63b-458a-a1eb-6cad5e360350
-

60 | Chapter 2: Quick Start

- type 'help' for a list of available commands
-
root@miniInstance>

The default prompt on the shell shows the current Accumulo user, root, and the cur‐
rent Accumulo instance name, miniInstance.

If your shell is idle for too long (60 minutes by default), you will
receive an Authorization Timeout when you try to enter com‐
mands. You just need to enter the user’s password again. As set in
the ShellExample.java file, the password is pass1234.

The help Command
Start by running the help command. This command will show all available com‐
mands. To see more information about a specific command, run help command (for
example, run help delete to learn more about the delete command). See Appen‐
dix A for more information on the shell commands.

The shell also supports history and tab completion.

Creating a Table and Inserting Some Data
Now that you know how to get help on shell commands, let’s create a table and insert
some data. Because Accumulo is a schemaless database, all you need is the table
name. The schema will evolve as you insert data. So let’s create a table a named table1
by using the createtable command:

root@miniInstance> createtable table1
root@miniInstance table1>

Notice that the prompt changed and now shows you the current table, table1.

The table is currently empty, so we need to insert some data. We will use the insert
command. We introduce the Accumulo data model in “Data Model” on page 13, so
let’s insert some example data using the insert row column_family column_quali
fier value -l column_visibility -ts timestamp shell command:

insert "bob jones" "contact" "address" "123 any street" -l "billing"
insert "bob jones" "contact" "city" "anytown" -l "billing"
insert "bob jones" "contact" "phone" "555-1212" -l "billing"
insert "bob jones" "purchases" "sneakers" "$60" -l "billing&inventory"
insert "fred smith" "contact" "address" "444 main st." -l "billing"
insert "fred smith" "contact" "city" "othertown" -l "billing"

Demo of the Shell | 61

insert "fred smith" "purchases" "glasses" "$30" -l "billing&inventory"
insert "fred smith" "purchases" "hat" "$20" -l "billing&inventory"

Generally it is best to let Accumulo manage the timestamps on its
keys. Setting timestamps explicitly should be left to advanced use
cases, because it can result in unexpected behavior if you are not
very familiar with how the key’s timestamp is used in Accumulo.

Scanning for Data
Once you get data into Accumulo, you need to view it. We will use the scan com‐
mand, so run:

scan

Wait, didn’t we just insert data? Why did the scan not return anything? The data we
entered included column visibilities with the -l switch, but the root user does not
have authorizations to view those. A user in Accumulo can write data with any
authorizations (unless it has been prohibited by configuring the VisibilityCon
straint—see “Authorizations” on page 183), but viewing records requires authoriza‐
tion. Keep this in mind whenever you don’t see data you thought you inserted.

A user’s current authorizations can be viewed with the getauths command. Running
getauths now will show an empty list. Assign the necessary authorizations with the
following:

setauths -u root -s inventory,billing

Run another getauths. to ensure that you set them correctly. The result should be:

billing,inventory

Notice that the auths are now sorted. You should now see all records with another
scan:

root@miniInstance table1> scan
bob jones contact:address [billing] 123 any street
bob jones contact:city [billing] anytown
bob jones contact:phone [billing] 555-1212
bob jones purchases:sneakers [billing&inventory] $60
fred smith contact:address [billing] 444 main st.
fred smith contact:city [billing] othertown
fred smith purchases:glasses [billing&inventory] $30
fred smith purchases:hat [billing&inventory] $20

You may have noticed that the timestamp is not displayed. Even though we didn’t add
one on insert, they are there. Use the -st or --show-timestamps switch to see them:

bob jones contact:address [billing] 1425611200186 123 any street
bob jones contact:city [billing] 1425611200286 anytown

62 | Chapter 2: Quick Start

bob jones contact:phone [billing] 1425611200318 555-1212
bob jones purchases:sneakers [billing&inventory] 1425611200354 $60
fred smith contact:address [billing] 1425611200385 444 main st.
fred smith contact:city [billing] 1425611200417 othertown
fred smith purchases:glasses [billing&inventory] 1425611200455 $30
fred smith purchases:hat [billing&inventory] 1425611200488 $20

If you want to view just the records for one row ID, use the -r switch. This will limit
the results to one row ID:

root@miniInstance table1> scan -r "bob jones"
bob jones contact:address [billing] 123 any street
bob jones contact:city [billing] anytown
bob jones contact:phone [billing] 555-1212
bob jones purchases:sneakers [billing&inventory] $60

Using Authorizations
By default, the shell scan command will use all of the current user’s granted authori‐
zations. Use the -s switch to limit the scan authorizations:

root@miniInstance table1> scan -s billing
bob jones contact:address [billing] 123 any street
bob jones contact:city [billing] anytown
bob jones contact:phone [billing] 555-1212
fred smith contact:address [billing] 444 main st.
fred smith contact:city [billing] othertown

We did not insert any records with only the inventory visibility, so you would not see
any results using just that authorization.

Using a Simple Iterator
We have briefly discussed Accumulo’s iterators. One built-in iterator is the GrepItera
tor, which searches the key and the value for an exact string match. The shell’s grep
command sets up this iterator and uses it during the scan:

root@miniInstance table1> grep town
bob jones contact:city [billing] anytown
fred smith contact:city [billing] othertown

Demo of Java Code
Now let’s do the same things, but this time using Java code instead of shell com‐
mands. The Java code to perform these operations exists in the JavaExample class of
quickstart. It connects to any specified running Accumulo instance and does not start
up its own MiniAccumuloCluster.

Demo of Java Code | 63

http://accumulo.apache.org/1.6/apidocs/index.html?org/apache/accumulo/core/iterators/user/GrepIterator.html
http://accumulo.apache.org/1.6/apidocs/index.html?org/apache/accumulo/core/iterators/user/GrepIterator.html

For this exercise, leave the Accumulo shell example running, and we will connect to
its MiniAccumuloCluster using Java code. If you stopped it, restart it with the follow‐
ing command:

mvn compile exec:exec -Pshell

You will need to know the ZooKeeper and instance information the ShellExample
used to start up. It is output just before the shell starts up, something like this:

 ---- Initializing Accumulo Shell

 Starting the MiniAccumuloCluster in /var/folders/2y/
 n9lzqm2x10lfxqm9n40xvfvw0000gn/T/1425610595980-0
 Zookeeper is localhost:11272
 Instance is miniInstance

We need this information to connect to the running Accumulo instance. To facilitate
copying and pasting the following examples, set an environment variable for the Zoo‐
Keeper port with something like this:

export ZKPORT=11272

Be sure to use the correct port number.

Creating a Table and Inserting Some Data
Take a look at the JavaExample.java file in src/main/java/com/accumulobook/macex‐
ample. Much of the code is for parsing arguments and selecting which command to
run. The relevant code that uses the Accumulo client API will be highlighted here.

All commands that will be run here need to get a reference to the Accumulo
Connector. Using the instance name and the location of the running ZooKeeper, the
code to get this Connector is in the getConnection() method of JavaExample class.
All the Command classes extend the AbstractCommand class, which provides a setCon
nection() method that the JavaExample uses to set each Command’s Connector. Here
is what the code looks like for the getConnection() method. The instance and zoo
keepers fields are set based on command-line parameters when the code is executed:

public Connector getConnection() throws AccumuloException,
 AccumuloSecurityException {
 Instance i = new ZooKeeperInstance(instance, zookeepers);
 Connector conn = i.getConnector(user, new PasswordToken(password));
 return conn;
}

Using this Connector inside some Java code, let’s create a table. For this part of the
quickstart, the table will be called table2. From the terminal where you started the
shell, you can run the tables command, and you should not see a table2 table. Let’s
create that table now. In a new terminal window at the quickstart directory, run the
following:

64 | Chapter 2: Quick Start

http://bit.ly/accumulo_connector

mvn clean compile exec:exec -Dtable.name=table2 -Dinstance.name=miniInstance \
-Dzookeeper.location=localhost:$ZKPORT -Pjava:create

Be sure to replace the instance.name and zookeeper.location values with what was
displayed when the ShellExample started. If this hangs for more than 15 seconds or
so after outputting “Running create command,” your ZooKeeper location may be
wrong. Once execution is complete, you should be able to run tables from the shell
in the other window and see table2.

The Connector has access to TableOperations, which is used to perform table opera‐
tions (see Chapter 4). We use the createTable() method to create the table. Here is
the code example from the CreateCommand run() method:

public void run() throws AccumuloException, AccumuloSecurityException,
 TableExistsException {
 System.out.println("Creating table " + table);
 if (connection.tableOperations().exists(table)) {
 throw new RuntimeException("Table " + table + " already exists");
 } else {
 connection.tableOperations().create(table);
 System.out.println("Table created");
 }
}

On line 3, we check to ensure that the table does not already exist. This is not techni‐
cally necessary, because a TableExistsException will be thrown, but this pattern of
checking for existence before creating a table enables us to do something different if
we wanted.

Now let’s insert some data. As in the shell example, we will do this one row at time.
Later, you will see how to batch up inserts, or mutations, and execute them together.
Here is the first row. When copying and pasting, remember to change the
instance.name and zookeeper.location values:

mvn clean compile exec:exec -Drow.id="bob jones" \
-Dcolumn.family=contact \
-Dcolumn.qualifier=address \
-Dauths=billing \
-Dvalue="123 any street" \
-Dtable.name=table2 \
-Dinstance.name=miniInstance -Dzookeeper.location=localhost:$ZKPORT -Pjava:insert

The -D switches are simply setting system properties that get
passed to the JavaExample class as arguments.

Demo of Java Code | 65

From the shell, you can now change to the table2 table by running table table2, and
then you can run scan. If your user has the billing authorization, you should see the
record. If you don’t see any records, use getauths and setauths for the root user as
we showed earlier to ensure that the billing authorization is present.

We will look at how to handle authorizations with Java in the next section.

Again using the Connector object, here is the code that inserts data:

public void run() throws TableNotFoundException, MutationsRejectedException {
 System.out.println("Writing mutation for " + rowId);
 BatchWriter bw = connection.createBatchWriter(table, new BatchWriterConfig());
 Mutation m = new Mutation(new Text(rowId));
 m.put(new Text(cf), new Text(cq), new ColumnVisibility(auths), timestamp,
 new Value(val.getBytes()));
 bw.addMutation(m);
 bw.close();
}

A BatchWriter is created from the Connector. A Mutation is constructed with the
row ID for a new key-value pair. There are multiple put methods for Mutation with
different signatures to define the rest of the key-value pair. The Mutation is added to
the BatchWriter. You could also add multiple mutation objects to a batch writer,
which is a more typical usage that saves the overhead of creating a new BatchWriter
as well as batching together data to amortize network communication overhead.
When the batch writer is closed or flushed, the added mutations are sent to
Accumulo.

Here are commands you can copy and paste to insert the rest of the sample data. Each
of these commands needs the instance name and ZooKeeper location updated. There
is also a batch script explained after these commands that may be easier to use:

mvn clean compile exec:exec -Drow.id="bob jones" \
-Dcolumn.family=contact \
-Dcolumn.qualifier=city \
-Dauths=billing \
-Dvalue="anytown" \
-Dtable.name=table2 \
-Dinstance.name=miniInstance -Dzookeeper.location=localhost:$ZKPORT -Pjava:insert

mvn clean compile exec:exec -Drow.id="bob jones" \
-Dcolumn.family=contact \
-Dcolumn.qualifier=phone \
-Dauths=billing \
-Dvalue="555-1212" \
-Dtable.name=table2 \
-Dinstance.name=miniInstance -Dzookeeper.location=localhost:$ZKPORT -Pjava:insert

mvn clean compile exec:exec -Drow.id="bob jones" \
-Dcolumn.family=purchases \

66 | Chapter 2: Quick Start

http://bit.ly/accumulo_batchwriter
http://bit.ly/accumulo_mutation

-Dcolumn.qualifier=sneakers \
-Dauths=billing\&inventory \
-Dvalue="\$60" \
-Dtable.name=table2 \
-Dinstance.name=miniInstance -Dzookeeper.location=localhost:$ZKPORT -Pjava:insert

mvn clean compile exec:exec -Drow.id="fred smith" \
-Dcolumn.family=contact \
-Dcolumn.qualifier=address \
-Dauths=billing \
-Dvalue="444 main st." \
-Dtable.name=table2 \
-Dinstance.name=miniInstance -Dzookeeper.location=localhost:$ZKPORT -Pjava:insert

mvn clean compile exec:exec -Drow.id="fred smith" \
-Dcolumn.family=contact \
-Dcolumn.qualifier=city \
-Dauths=billing \
-Dvalue="othertown" \
-Dtable.name=table2 \
-Dinstance.name=miniInstance -Dzookeeper.location=localhost:$ZKPORT -Pjava:insert

mvn clean compile exec:exec -Drow.id="fred smith" \
-Dcolumn.family=purchases \
-Dcolumn.qualifier=glasses \
-Dauths=billing\&inventory \
-Dvalue="\$30" \
-Dtable.name=table2 \
-Dinstance.name=miniInstance -Dzookeeper.location=localhost:$ZKPORT -Pjava:insert

mvn clean compile exec:exec -Drow.id="fred smith" \
-Dcolumn.family=purchases \
-Dcolumn.qualifier=hat \
-Dauths=billing\&inventory \
-Dvalue="\$20" \
-Dtable.name=table2 \
-Dinstance.name=miniInstance -Dzookeeper.location=localhost:$ZKPORT -Pjava:insert

The bash script is quickstart/bin/insert-all.sh. It runs all these commands for you but
allows you to pass in the instance name, ZooKeeper location, and table name values
once at the beginning. Run it as follows from the quickstart directory, replacing the
parameters with the correct values for your running shell:

./bin/insert-all.sh miniInstance "localhost:$ZKPORT" table2

You can run these mutations multiple times but still end up with
only eight key-value pairs. The reason is that Accumulo defaults to
keep only the most recent version of each key by configuring the
VersioningIterator on every new table. Even if the same data is
inserted multiple times, you will only see one version of each key-
value pair.

Demo of Java Code | 67

If you don’t see eight key-value pairs, check your auths again with getauths and
make sure you see billing and inventory. Assuming you didn’t stop the shell after run‐
ning the shell demo, table1 and table2 should now have exactly the same data.

Scanning for Data
Now let’s use some Java code to scan all the rows. Run the following, and all the rows
will be printed:

mvn clean compile exec:exec -Dtable.name=table2 -Dinstance.name=miniInstance \
-Dzookeeper.location=localhost:$ZKPORT -Pjava:scan

You will see output like the following:

Running scan command
Scanning table2
Scanning with all user auths
Scanning for all rows
Results ->
 bob jones contact:address [billing] 1425613612825 false 123 any street
 bob jones contact:city [billing] 1425613620377 false anytown
 bob jones contact:phone [billing] 1425613627653 false 555-1212
 bob jones purchases:sneakers [billing&inventory] 1425613634458 false $60
 fred smith contact:address [billing] 1425613640651 false 444 main st.
 fred smith contact:city [billing] 1425613646562 false othertown
 fred smith purchases:glasses [billing&inventory] 1425613652640 false $30
 fred smith purchases:hat [billing&inventory] 1425613659394 false $20

Here is the code that is run in the ScanCommand:

System.out.println("Scanning " + table);
Authorizations authorizations = null;
if ((null != auths) && (!auths.equals("SCAN_ALL"))) {
 System.out.println("Using scan auths " + auths);
 authorizations = new Authorizations(auths.split(","));
} else {
 System.out.println("Scanning with all user auths");
 authorizations = connection.securityOperations().getUserAuthorizations(user);
}
Scanner scanner = connection.createScanner(table, authorizations);
if ((null != row) && (!row.equals("SCAN_ALL"))) {
 System.out.println("Scanning for row " + row);
 scanner.setRange(new Range(row));
} else {
 System.out.println("Scanning for all rows");
}
System.out.println("Results ->");
for (Entry<Key,Value> entry : scanner) {
 System.out.println(" " + entry.getKey() + " " + entry.getValue());
}

68 | Chapter 2: Quick Start

On line 10, we create a Scanner object from the Connector. This Scanner is what
scans Accumulo and returns an Iterable of results. We iterate over those results on
line 18 and print out the Accumulo Key and Value. The toString() method of the
Key outputs the key’s timestamp by default. There is also a toStringNoTime()
method on Key if we want to model the shell example more closely. That is left as an
exercise for the reader.

This scan does not limit the results; everything is returned just as in running the scan
command in the Accumulo shell. Let’s see how we could limit the results to just the
bob jones row. Run the following:

mvn clean compile exec:exec -Dtable.name=table2 -Drow="bob jones" \
-Dinstance.name=miniInstance -Dzookeeper.location=localhost:$ZKPORT -Pjava:scan

The result will be something like this:

Running scan command
Scanning table2
Scanning with all user auths
Scanning for row bob jones
Results ->
 bob jones contact:address [billing] 1425613612825 false 123 any street
 bob jones contact:city [billing] 1425613620377 false anytown
 bob jones contact:phone [billing] 1425613627653 false 555-1212
 bob jones purchases:sneakers [billing&inventory] 1425613634458 false $60

Here we provide row="bob jones", which is passed along to the run() method on
the ScanCommand. Line 13 shows how to provide that information to the Scanner,
using the Range class. Ranges can also be defined in other ways to better limit the
results. Review the API documentation for more information. We also cover addi‐
tional ways to construct key ranges throughout this book, in particular in “Crafting
Ranges” on page 108.

This example uses the createScanner() method on the Connector.
This Scanner object runs in one thread and hits one range at a
time. You can also use the createBatchScanner() method, which
returns a BatchScanner and will scan multiple ranges in parallel.
When your data is spread out on many tablet servers, this BatchS
canner can return results much faster. However, the BatchScanner
does not guarantee any ordering of the results returned. Your code
will have to handle that correctly.

Using Authorizations
As we mentioned before, the shell scan command uses all of the user’s authorizations
by default. This is a convenience provided by the shell for interactively accessing the
data. To make the Java scan example work the same way, we had to do a couple of

Demo of Java Code | 69

http://accumulo.apache.org/1.6/apidocs/index.html?org/apache/accumulo/core/client/Scanner.html
http://accumulo.apache.org/1.6/apidocs/index.html?org/apache/accumulo/core/data/Key.html
http://accumulo.apache.org/1.6/apidocs/index.html?org/apache/accumulo/core/data/Value.html
http://accumulo.apache.org/1.6/apidocs/index.html?org/apache/accumulo/core/data/Range.html

things. First we set a default value of SCAN_ALL for the auths property used by Scan
Command in the pom.xml file. This allows us to not pass in -Dauths=something. If Scan
Command finds that the authorizations are set to the default SCAN_ALL value, it will look
up the user’s entire set of authorizations and use those for the scan, as is done in the
Accumulo shell. On line 8 of the ScanCommand run() method, you see the securityOp
erations() method of the Connector used to obtain a SecurityOperations object.
From this object, we use the getUserAuthorizations() method to obtain an Author
izations object that contains all the user’s authorizations. Alternatively, if we explic‐
itly pass in auths for ScanCommand, it will provide them to the string array
constructor of Authorizations on line 5. In either case, the Authorizations object is
used when creating a Scanner on line 10.

As we did in the shell demo, let’s scan for just records with the billing authorization.
Run the following:

mvn clean compile exec:exec -Dtable.name=table2 -Dauths=billing \
-Dinstance.name=miniInstance -Dzookeeper.location=localhost:$ZKPORT -Pjava:scan

You should get results like these:

Running scan command
Scanning table2
Using scan auths billing
Scanning for all rows
Results ->
 bob jones contact:address [billing] 1425613612825 false 123 any street
 bob jones contact:city [billing] 1425613620377 false anytown
 bob jones contact:phone [billing] 1425613627653 false 555-1212
 fred smith contact:address [billing] 1425613640651 false 444 main st.
 fred smith contact:city [billing] 1425613646562 false othertown

Here, the results are limited to records that could be viewed using only the billing
authorization.

Using a Simple Iterator
The last thing we want to show in Java code is how to set up an iterator. The shell
example used the built-in GrepIterator. We will do the same here. To run the exam‐
ple, use the following, again replacing the instance name and ZooKeeper location as
appropriate:

mvn clean compile exec:exec -Dtable.name=table2 -Dterm=town \
-Dinstance.name=miniInstance -Dzookeeper.location=localhost:$ZKPORT -Pjava:grep

Your results should look like this:

Running grep command
Grepping table2
Results ->

70 | Chapter 2: Quick Start

http://bit.ly/accumulo_securityoperations
http://bit.ly/accumulo_auths
http://bit.ly/accumulo_auths

 bob jones contact:city [billing] 1425613620377 false anytown
 fred smith contact:city [billing] 1425613646562 false othertown

The Java code is similar to the scan example, but instead of setting up a range, we add
the GrepIterator to the Scanner. Here is the code:

System.out.println("Grepping " + table);
Authorizations authorizations = connection.securityOperations()
 .getUserAuthorizations(user);
Scanner scanner = connection.createScanner(table, authorizations);
Map<String, String> grepProps = new HashMap<String, String>();
grepProps.put("term", term);
IteratorSetting is = new IteratorSetting(25, "sample-grep",
 GrepIterator.class.getName(), grepProps);
scanner.addScanIterator(is);
System.out.println("Results ->");
for (Entry<Key,Value> entry : scanner) {
 System.out.println(" " + entry.getKey() + " " + entry.getValue());
}

The authorizations are set up on line 2 just as in the SCAN_ALL case for the ScanCom
mand. The scanner is created the same way also, shown on line 3. But on line 6, we
construct an IteratorSetting using a GrepIterator and map of properties that set
the term to be the value we passed in, town in this case. The 25 in the constructor is
the priority of this iterator. The "sample-grep" string is a unique name for the itera‐
tor that will be used as a key to group together the iterator’s configuration informa‐
tion in ZooKeeper (its priority, class, and options). Line 7 shows how the
IteratorSetting is added to the Scanner. Looping over results is just as was shown
in the ScanCommand.

Iterator names must be unique within a table and iterator scope. So
must iterator priorities. More on iterator configuration can be
found in “Iterators” on page 209.

A More Complete Installation
Although the quickstart example using the MiniAccumuloCluster will get you started
quickly, that installation doesn’t start several components, such as the monitor. The
Hadoop installation is minimal, so you do not get a chance to learn any of those tools.
The MiniAccumuloCluster is really more suitable for starting up Accumulo and
using it for testing.

So if MiniAccumuloCluster is not what most developers use, what is the best way to
get a development environment set up? Most developers use a full installation, either
on one node or in small cluster with virtual machines (VMs) or on a service like

A More Complete Installation | 71

http://bit.ly/iteratorsetting

Amazon EC2. Typically that requires going through the process of installing Hadoop,
ZooKeeper, and Accumulo individually. This can be a daunting task if you have no
experience with any of these components.

Instead of providing a VM image for you to use, we decided to facilitate setting up a
one-node install. The advantages of not using a preconfigured VM are better perfor‐
mance and more flexibility. A full installation, even on one node, will allow you to
shut down Accumulo and save the data. The rest of this book will assume you are
using a full installation.

To get a more complete installation, we are going to use the quickinstall project from
the book’s GitHub site. This project will download all the necessary components,
install and configure them, and then start everything up for you. To use the quickin‐
stall, you need to build it yourself or download the bundle from http://accumulo
book.com/quickinstall. The file is over 170 MB, but includes full installs of Accumulo,
Hadoop, and ZooKeeper.

This quickinstall has only been tested on Linux and Mac OS X.
Getting the full stack, particularly Hadoop, to run on Windows is
more difficult.

If you would like to build it yourself, clone the project with:

git clone https://github.com/accumulobook/quickinstall

Then run:

mvn clean package

This will also download the installs of Accumulo, Hadoop, and ZooKeeper, so be
patient. The resulting tar.gz in the target directory is what has been uploaded to
http://accumulobook.com/quickinstall.

Open a new terminal window and extract that file with tar tzf. Then change into
the quickinstall-home directory. Run the install with the following:

./bin/install

If the install fails, the error messages should be helpful for resolving
issues. Follow the instructions and rerun the install script after fix‐
ing whatever was wrong. If you have previously attempted to install
Hadoop, make sure there are no HADOOP_* environment variables
already set up in your environment. The quickinstall and other
example commands will not work otherwise.

72 | Chapter 2: Quick Start

https://github.com/accumulobook/quickinstall
http://accumulobook.com/quickinstall
http://accumulobook.com/quickinstall
http://accumulobook.com/quickinstall

This script configures Hadoop, formats the NameNode, and then starts HDFS and
YARN. An attempt is made to use native libraries for Hadoop. It then configures Zoo‐
Keeper and starts it. Lastly, the script configures Accumulo, runs its initialization, and
then starts it. An attempt is made to build the Accumulo native libraries using Accu‐
mulo’s own script. Accumulo’s manual and API documentation are also included.

Let’s look at the quickinstall-home directory when the installation is complete:

accumulo-1.6.1
Contains the Accumulo installation

hadoop-2.4.1
Contains the Hadoop installation

zookeeper-3.4.6
Contains the ZooKeeper installation

hdfs
The directory where Hadoop stores data

zk-data
The directory where ZooKeeper stores data

Also in quickinstall-home is a bin directory with some helper scripts:

• Quickinstall helpers

quickinstall-env
Sets up the environment variables

qi-start
Starts Hadoop, ZooKeeper, and Accumulo

qi-stop
Stops Accumulo, Hadoop, and ZooKeeper

• Documentation helpers

hadoop-doc
Opens the local copy of Hadoop’s documentation

accumulo-doc
Opens the local copy of Accumulo’s documention

Both Hadoop and Accumulo as packaged contain documentation and API docs you
can use. Running the quickinstall-env command will set up some environment
variables and make sure your path contains the correct location for Hadoop, Zoo‐
Keeper, and Accumulo.

A More Complete Installation | 73

After the install, everything should be running. It is a self-contained environment and
everything should be under the quickinstall-home directory. The benefit of this is that
you can stop everything, remove that directory, and reinstall if needed.

You can verify everything is running with this command:

jps -lm

This command should show you processes that include the following:

• Hadoop processes
org.apache.hadoop.hdfs.server.datanode.DataNode
org.apache.hadoop.hdfs.server.namenode.NameNode
org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode
org.apache.hadoop.yarn.server.nodemanager.NodeManager
org.apache.hadoop.yarn.server.resourcemanager.ResourceManager

• ZooKeeper process
org.apache.zookeeper.server.quorum.QuorumPeerMain

• Accumulo processes
org.apache.accumulo.start.Main gc --address localhost
org.apache.accumulo.start.Main master --address localhost
org.apache.accumulo.start.Main monitor --address localhost
org.apache.accumulo.start.Main tracer --address localhost
org.apache.accumulo.start.Main tserver --address localhost

To start up an Accumulo shell, first run:

source bin/quickinstall-env

If things were not running, you could run qi-start to start
Hadoop, ZooKeeper, and then Accumulo after sourcing
quickinstall-env. When you want to stop everything, run qi-stop.
Accumulo and Hadoop both include start-all.sh scripts, which can
be confusing. The scripts provided with quickinstall start and stop
all the processes you will need. Inspect qi-start and qi-stop to
see how to start processes separately.

Now you need to run the main accumulo command, which is located in quickinstall-
home/accumulo-1.6.1/bin. This is the main entry point for working with Accumulo
from the command line. It will be on your path if you sourced the quickinstall-env
script. Let’s run the shell:

accumulo shell -u root -p secret

This will start the shell you saw in the shell example. Try out some of the commands,
such as tables. You should only see the accumulo.root, accumulo.metadata, and trace

74 | Chapter 2: Quick Start

tables, which are internal tables we discuss more in “Metadata Table” on page 379 and
“Using Tracing” on page 481, respectively.

Let’s get set up to run the insert and scan commands with Java code again. We will
handle the table creation and granting authorizations to the root user in the shell.
Create a table named table3:

createtable table3

Now ensure that the root user has billing and inventory authorizations:

setauths -u root -s "billing,inventory"

Once that is complete, we will use a script similar to the ./bin/insert-all.sh script from
the Java example. However, this script will use not use Maven to execute the JavaExam
ple class; instead, it will run it directly. You will need to use Maven to build a JAR by
executing the following from the examples/quickstart directory:

mvn package

Go back to the terminal window were you checked out the book’s source code. From
the examples/quickstart directory, source the quickinstall-env script from the
quickinstall-home/bin directory where the quickinstall is running to set up the envi‐
ronment for the running cluster. Now run the JavaExample using the accumulo
command:

source PATH_TO_QUICKINSTALL_HOME/bin/quickinstall-env
accumulo -add $PWD/target/mini-accumulo-cluster-example-0.0.1-SNAPSHOT.jar \
com.accumulobook.macexample.JavaExample

You should be presented with the default usage from the JavaExample class, explain‐
ing all the options:

Error: The following options are required: -i, --instance -z, --zookeepers -p,
 --password -u, --user
Usage: <main class> [options] [command] [command options]
 Options:
 * -i, --instance
 Accumulo instance name
 * -p, --password
 Accumulo user password
 * -u, --user
 Accumulo user
 * -z, --zookeepers
 Comma-separated list of zookeepers
 Commands:
 create Usage: create [options]
 Options:
 * -t, --table
 Table name to create

insert Usage: insert [options]
 Options:

A More Complete Installation | 75

 -a, --auths
 ColumnVisiblity expression to insert with data
 * -cf, --columnFamily
 Column Family to insert
 * -cq, --columnQualifier
 Column Qualifier to insert
 * -r, --rowid
 Row Id to insert
 * -t, --table
 Table to scan
 * -val, --value
 Value to insert

scan Usage: scan [options]
 Options:
 -a, --auths
 Comma separated list of scan authorizations
 -r, --row
 Row to scan
 * -t, --table
 Table to scan

grep Usage: grep [options]
 Options:
 * -t, --table
 Table to scan
 * --term
 Term to grep for in table

Using the accumulo command along with the -add option is the
easiest and cleanest way to run Java programs with a classpath
already set up for your Accumulo installation.

Now let’s insert the first key-value pair:

accumulo -add $PWD/target/mini-accumulo-cluster-example-0.0.1-SNAPSHOT.jar \
com.accumulobook.macexample.JavaExample \
-i accumulo -z localhost:2181 -u root -p secret \
insert -r "bob jones" -t table3 -cq contact -cf address \
-val "123 any street" -a billing

For this example, we used the Accumulo instance name and the
ZooKeeper location from the quickinstall. This is the normal way
to connect to a running Accumulo instance.

76 | Chapter 2: Quick Start

From the Accumulo shell where you installed and ran the quickinstall, run the scan
command. When you ran the createtable table3 command, the Accumulo shell
put in table3, which you can see in the prompt:

root@accumulo table3> scan
bob jones address:contact [billing] 123 any street

The other insert commands are in the ./bin/insert-all2.sh file back in the examples/
quickstart terminal. You can either copy and paste the commands from this file into
the terminal, including the variables that are set up, or you can just run the insert-
all2.sh script:

./bin/insert-all2.sh

The output should look like this:

 Running insert command
 Writing mutation for bob jones
 Running insert command
 Writing mutation for bob jones
 Running insert command
 Writing mutation for bob jones
 Running insert command
 Writing mutation for bob jones
 Running insert command
 Writing mutation for fred smith
 Running insert command
 Writing mutation for fred smith
 Running insert command
 Writing mutation for fred smith
 Running insert command
 Writing mutation for fred smith

Once the data is inserted, let’s use the shell to scan to make sure we can see all the
data. This time, let’s run the shell with the -e switch to pass in an Accumulo com‐
mand. This will exit the shell after the command finishes and dump the output back
to STDOUT. First, from the Accumulo shell window, type exit to get out of the shell.
We will now use the -e switch to pass in a command for the shell to execute. For that
reason, our scan command needs to use the -t switch to specify which table to scan.
Using command-line execution with the Accumulo shell is a useful technique,
because you can then use all the regular Unix tools such as grep, sed, and cut:

accumulo shell -u root -p secret -e "scan -t table3"

Assuming the data was inserted and your Accumulo user authorizations include bill
ing,inventory, the output should look like this:

bob jones address:contact [billing] 123 any street
bob jones city:contact [billing] anytown
bob jones phone:contact [billing] 555-1212
bob jones sneakers:purchases [billing&inventory] $60

A More Complete Installation | 77

fred smith address:contact [billing] 444 main st.
fred smith city:contact [billing] othertown
fred smith glasses:purchases [billing&inventory] $30
fred smith hat:purchases [billing&inventory] $20

Eight lines should be returned. You could count the lines manually, or you could pipe
the last command though wc -l:

accumulo shell -u root -p secret -e "scan -t table3 -st" | wc -l

If you don’t get all eight, revisit the previous commands and make sure the records
have been inserted correctly and that your authorizations are configured properly.

Now run the following to execute the same scan with the JavaExample command.
You must be either be in the terminal within the examples/quickstart directory or
modify the location of the JAR to an absolute path:

accumulo -add $PWD/target/mini-accumulo-cluster-example-0.0.1-SNAPSHOT.jar \
com.accumulobook.macexample.JavaExample \
-i accumulo -z localhost:2181 -u root -p secret scan -t table3

The output should be:

Running scan command
Scanning table3
Scanning with all user auths
Scanning for all rows
Results ->
 bob jones address:contact [billing] 1425654249954 false 123 any street
 bob jones city:contact [billing] 1425654251454 false anytown
 bob jones phone:contact [billing] 1425654252921 false 555-1212
 bob jones sneakers:purchases [billing&inventory] 1425654254414 false $60
 fred smith address:contact [billing] 1425654255892 false 444 main st.
 fred smith city:contact [billing] 1425654257394 false othertown
 fred smith glasses:purchases [billing&inventory] 1425654258824 false $30
 fred smith hat:purchases [billing&inventory] 1425654260287 false $20

The result should be the same as from scanning in the earlier example. Try limiting
the results by row:

accumulo -add $PWD/target/mini-accumulo-cluster-example-0.0.1-SNAPSHOT.jar \
com.accumulobook.macexample.JavaExample \
-i accumulo -z localhost:2181 -u root -p secret scan -t table3 -r "bob jones"

The output should be:

Running scan command
Scanning table3
Scanning with all user auths
Scanning for row bob jones
Results ->
 bob jones address:contact [billing] 1425654249954 false 123 any street
 bob jones city:contact [billing] 1425654251454 false anytown

78 | Chapter 2: Quick Start

 bob jones phone:contact [billing] 1425654252921 false 555-1212
 bob jones sneakers:purchases [billing&inventory] 1425654254414 false $60

Now try limiting the results by authorizations:

accumulo -add $PWD/target/mini-accumulo-cluster-example-0.0.1-SNAPSHOT.jar \
com.accumulobook.macexample.JavaExample \
-i accumulo -z localhost:2181 -u root -p secret scan -t table3 -a billing

The output should be:

Running scan command
Scanning table3
Using scan auths billing
Scanning for all rows
Results ->
 bob jones address:contact [billing] 1425654249954 false 123 any street
 bob jones city:contact [billing] 1425654251454 false anytown
 bob jones phone:contact [billing] 1425654252921 false 555-1212
 fred smith address:contact [billing] 1425654255892 false 444 main st.
 fred smith city:contact [billing] 1425654257394 false othertown

For a last exercise, try running the grep example:

accumulo -add $PWD/target/mini-accumulo-cluster-example-0.0.1-SNAPSHOT.jar \
com.accumulobook.macexample.JavaExample \
-i accumulo -z localhost:2181 -u root -p secret grep -t table3 --term town

The output should be:

Running grep command
Grepping table3
Results ->
 bob jones city:contact [billing] 1425654251454 false anytown
 fred smith city:contact [billing] 1425654257394 false othertown

Other Important Resources
We have seen how to interact with Accumulo both in the shell and in code. Another
important tool for interacting with Accumulo is the monitor page. Assuming your
quickinstall is still running, visit http://localhost:50095. We will not discuss the moni‐
tor page in detail here, but feel free to click around and look at the different informa‐
tion it provides. More details about the monitor are at “Monitor” on page 377.

Another important tool is the logfiles. For the quickinstall, these are located in
quickinstall-home/accumulo-1.6.1/logs. The Accumulo processes we listed with the
jps command each has its own log. The logs are prefixed with gc, master, monitor,
master, or tserver. By default, Accumulo configures a .log and .debug.log for each pro‐
cess, with the latter logging everything at a log level of DEBUG.

Other Important Resources | 79

http://localhost:50095

One Last Example with a Unit Test
We talked about the MiniAccumuloCluster being good for unit testing. There is an
example named Example.java in the examples/quickstart/main/java/com/accumulo‐
book/macexample directory. It is a bit of a contrived example, but it has no knowledge
of the MiniAccumuloCluster. Instead it just knows about the instance name, Zoo‐
Keeper location, and root password, and uses those to connect to an Accumulo
instance. The ExampleTest.java test starts up a MiniAccumuloCluster and then uses
the instance name, ZooKeeper location, and root password from that to construct a
new Example. Methods on this instance of Example are then tested against the MiniAc
cumuloCluster, as if it were a full Accumulo instance. You may have noticed that a
unit test was executed when you ran mvn package earlier. This ExampleTest.java was
the test that ran. Feel free to run mvn test and study the output.

Additional Resources
• Main Apache Accumulo page
• Official Accumulo documentation
• Javadocs
• Downloads
• Source code
• GitHub mirror
• Mailing list information
• Issues/Jira
• Build server
• Latest GitHub projects

80 | Chapter 2: Quick Start

http://accumulo.apache.org
http://bit.ly/accumulo_manual
http://accumulo.apache.org/1.6/apidocs
http://accumulo.apache.org/downloads/
http://bit.ly/accumulo_source
https://github.com/apache/accumulo
http://bit.ly/accumulo_lists
http://bit.ly/accumulo_jira
http://bit.ly/accumulo_build_server
http://bit.ly/accumulo_github

CHAPTER 3

Basic API

Accumulo is designed to support building applications that support huge numbers of
simultaneous users, handling a large number of write, update, and read requests by
providing highly scalable, low-latency, random access to data in tables. These tables
can be designed to support Internet applications that serve data to and receive data
from millions of users around the world. In addition, Accumulo provides capabilities
well suited to keeping a large amount of data organized for the purposes of analysis,
and for delivering analytical results to many users of varying access levels.

The Java client API is the primary method of getting data into and out of Accumulo
tables. Applications can be written in Java or other JVM-based languages using the
provided client library or in non-JVM–based languages by using the Thrift proxy.

Applications typically need to perform three tasks: getting data into Accumulo, apply‐
ing any necessary transformations to existing data to map to the Accumulo data
model, and performing scans against Accumulo tables to satisfy user requests.

Many Accumulo clients are deployed as part of a web application, allowing users to
perform interactive requests for information stored in Accumulo tables, although this
is certainly not a requirement. Some clients provide access to information in Accu‐
mulo to other services.

When you design an application on the Accumulo API, you should consider a few
questions that will assist in determining how to write the application, how the data
should be organized within one or more Accumulo tables, and ideally, what level of
performance to expect.

These considerations are all equally important.

81

The first thing to consider when creating an application on Accumulo is simply what
activities the application will carry out on behalf of the user. The questions to answer
include but are not limited to:

• Does the application capture information provided by the user?
• Are there semantic rules governing relationships in the information managed?
• Does data need to be updated?

In particular, attention should be paid to the access patterns that the application
requires. The term access pattern refers to how the user wants to access the data. For
example, users may need to retrieve information about books based on the title, and
at other times, by the author, and at other times, both. Knowing what information
users know and how they will use that to find out information they don’t know will
help guide the design of tables and rule out designs that will not perform well.

The second thing to consider are the data characteristics of the data that is managed
by Accumulo, including questions such as:

• Does the data already exist or is it being created by the user via the application, or
both?

• If some data already exists, in what format is it currently stored?
• Is combining two or more existing data sets required? If so, is the way they

should be combined known beforehand?
• At what rate will data arrive?
• What sensitivities exist within the data?
• What groups of users will need access to which parts of the data?

The third consideration in application design is performance. Applications must han‐
dle requests quickly enough to satisfy business or mission requirements, in the con‐
text of large amounts of data and large numbers of users. We discuss performance in
depth in Chapter 13.

Development Environment
To begin writing Java applications for Accumulo, obtain the Accumulo Java library.
Information on developing applications in other languages is described in “Thrift
Proxy” on page 236.

82 | Chapter 3: Basic API

Obtaining the Client Library
The latest Accumulo Java client library can be obtained from the official site. If you
are using Maven to manage project dependencies, no special repositories need to be
added to the Maven settings.xml file.

Using Maven
To see if Maven is installed, type mvn -version. If the Maven version is not 3.0.4 or
greater, download and install it from http://maven.apache.org. To add Accumulo as a
dependency for a Maven project, add the following to the dependencies section of the
pom.xml file:

<dependency>
 <groupId>org.apache.accumulo</groupId>
 <artifactId>accumulo-core</artifactId>
 <version>1.6.0</version>
</dependency>

Run mvn clean package to create a JAR, or use the appropriate Maven goals for the
project.

Using Maven with an IDE
Several IDEs include built-in support for Maven that makes development easier:

Eclipse
If you’re using Eclipse, you might need to install a plug-in for Maven support.

NetBeans
Comes with Maven support.

IntelliJ IDEA
Comes with Maven support.

Configuring the Classpath
Bundling up the Accumulo dependencies with a client JAR is discouraged, because it
can make debugging difficult later. A better way to handle dependencies is to config‐
ure the classpath properly. The accumulo-core, accumulo-trace, and ZooKeeper JARs
are ones that are likely to be needed on the classpath. Commons and log4j JARs may
also be necessary. To run a MapReduce job, dependencies must be passed to the Map‐
Reduce child processes using the -libjars parameter. Accumulo comes with scripts
that configure the classpath and libjars (if applicable) for standalone or MapReduce
jobs. The usage for these scripts follows:

Development Environment | 83

http://accumulo.apache.org/downloads
http://maven.apache.org
http://maven.apache.org/eclipse-plugin.html
http://wiki.netbeans.org/Maven
http://bit.ly/intellij_idea

Standalone
bin/accumulo -add jarFile className args

MapReduce
bin/tool.sh jarFile className args

Introduction to the Example Application: Wikipedia Pages
Basic Accumulo applications often begin with a data set and some things we want to
do with that data. For the purposes of introducing readers to the Accumulo API,
we’re going to use the data from Wikipedia. We’ll write an application to load this
data and to query it, with the goal of allowing users to explore the information con‐
tained within it in various ways.

Wikipedia Data
Wikipedia is a collection of over 30 million articles in 287 languages, including 4.3
million in English, written by volunteers. Articles contain free-form text and associ‐
ated metadata including title, timestamps, contributor information, and references to
other articles and sources.

You can download a snapshot of the English Wikipedia articles. In addition to one file
containing all the articles (enwiki-latest-pages-articles.xml.bz2), it is possible to down‐
load files containing just a portion of the articles with filenames like enwiki-latest-
pages-articles1.xml-p000000010p000010000.bz2. Alternatively, a specific set of pages
can be downloaded via the Special Export option.

The data is stored in XML format. The body of the articles is in the MediaWiki
markup format, developed specifically for Wikipedia.

An abbreviated example of an article is as follows:

<mediawiki xmlns="http://www.mediawiki.org/xml/export-0.10/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.mediawiki.org/xml/export-0.10/
 http://www.mediawiki.org/xml/export-0.10.xsd" version="0.10" xml:lang="en">
<siteinfo>
<sitename>Wikipedia</sitename>
<dbname>enwiki</dbname>
<base>http://en.wikipedia.org/wiki/Main_Page</base>
<generator>MediaWiki 1.25wmf14</generator>
<case>first-letter</case>
<namespaces>
<namespace key="-2" case="first-letter">Media</namespace>
...
<namespace key="2600" case="first-letter">Topic</namespace>
</namespaces>
</siteinfo>

84 | Chapter 3: Basic API

http://dumps.wikimedia.org/enwiki/latest/
http://en.wikipedia.org/wiki/Special:Export

<page>
<title>Apache Accumulo</title>
<ns>0</ns>
<id>34571412</id>
<revision>
<id>637313466</id>
<parentid>631046295</parentid>
<timestamp>2014-12-09T12:33:13Z</timestamp>
<contributor>
<username>Frap</username>
<id>612852</id>
</contributor>
<model>wikitext</model>
<format>text/x-wiki</format>
<text xml:space="preserve" bytes="5554">
...
'''Apache Accumulo''' is a computer software project that developed a
sorted, distributed key/value store based on the [[Bigtable]] technology
from [[Google]].<ref>[http://accumulo.apache.org/ Apache Accumulo].
Accumulo.apache.org. Retrieved on 2013-09-18.</ref> It is a system
built on top of [[Apache Hadoop]], [[Apache ZooKeeper]], and [[Apache
Thrift]].
...
</text>
<sha1>dzr6dhn3hlq22aalz44g8g8abo15qm4</sha1>
</revision>
</page>
</mediawiki>

As an example of using the API, we’ll parse these articles and write them to Accu‐
mulo. First we’ll devise a way of mapping the data to the Accumulo data model into
one or more tables. Next we’ll ingest the data using parts of the Accumulo Java client
API. Finally, we’ll write some code to allow users to query these tables in various
ways.

Data Modeling
Instead of formulating questions as database queries, application designers should
break questions into scan operations—ideally as few of them as possible per user
request. To start getting used to this way of thinking, it is a good idea to begin appli‐
cation design with a single table. Additional tables can be added to the application if it
is determined that they are necessary to support additional access patterns.

When deciding how to represent data in Accumulo, developers face one of two chal‐
lenges: either creating a new schema that allows them to model the data they will be

Introduction to the Example Application: Wikipedia Pages | 85

creating, or mapping existing data conforming to an existing schema to the Accu‐
mulo data model in a way that supports the access patterns required.

A Quick Overview of Data Modeling
Data modeling is a task that involves identifying the structure of a concept to be rep‐
resented in a system and defining its representation within the system. It is often
performed at many levels and in many ways. A schema is a description of the struc‐
ture in data.

A particular schema can be represented in various ways when stored in different sys‐
tems. For example, one could define the concept of an address to be made up of a
street number, a city name, a state, a zip code. An address such as this is composed of
four named elements and has a specific meaning to a particular application. For this
reason, this schema could be considered a semantic or conceptual data model. Con‐
ceptual models can be represented in several formats, or logical models.

For example, one might represent or map a particular address to the JSON format as
follows:

{
 street: '123 any street',
 city: 'anytown',
 state: 'CA',
 zipCode: 90210
}

Or as XML:

<records>
 <address>
 <street required=true>123 any street</street>
 <city>anytown</city>
 <state>CA</state>
 <zip code>90210</zip code>
 </address>
</records>

In other places one might represent an address as a table, such as in a relational
database.

JSON, XML, and two-dimensional tables can be thought of as logical methods of cap‐
turing a conceptual model in a particular way for a particular purpose. In fact, many
applications make use of several logical data models to represent the same conceptual
data in various places. For example, an application may retrieve some rows from a
relational database representing a user’s profile and deserialize them as a program‐
matic object in memory, and then convert the programmatic object to JSON before
sending it to a web browser.

86 | Chapter 3: Basic API

Accumulo has its own logical model as well, consisting of multidimensional keys and
simple values. We cover the elements of the data model in “Data Model” on page 13.

The final type of data model is a physical model. A physical model describes how data
elements are stored or transmitted in some physical medium. An example of a physi‐
cal model is a B-Tree file for relational databases or the RFile file format used by
Accumulo.

In some systems there are more than three levels of abstraction. The number of levels
required depends on the complexity of the system. Additional levels of abstraction
can help in keeping each individual level simple and manageable.

The Accumulo data model is again included in Figure 3-1 as a convenient reminder
during our modeling task.

Figure 3-1. Basic Accumulo key structure

As in any key-value system, if one knows the key, the associated value can be found
very quickly. With a single Accumulo table we should store the information that an
application will use to perform lookups in elements within the Accumulo key, and the
information to be retrieved in the value. To start, we’ll create a table that allows users
to specify an article title and retrieve the text or associated metadata. The way we’ll
map Wikipedia data to the Accumulo data model is as described in Table 3-1.

Table 3-1. One method for storing Wikipedia articles in Accumulo

Row ID Column family Column qualifier Column visibility Value

page title contents contents visibility page contents

page title metadata id id visibility id

page title metadata namespace namespace visibility namespace

page title metadata revision revision visibility revision

page title metadata timestamp timestamp visibility timestamp

Introduction to the Example Application: Wikipedia Pages | 87

Here we’re storing the timestamp of each Wikipedia article under a
column called timestamp. This should not be confused with the
timestamp that is part of each key, which will be provided by the
tablet servers and used to keep track of when each key-value pair
was written.

We’ll put our code to do this in the WikipediaIngest class. Our client code will pro‐
duce this table in Accumulo based on a Wikipedia XML dump file:

Alternate Olympics contents: [] refimprove \x0AIn artistic gymnasti ...
Alternate Olympics metadata:id [] 15713865
Alternate Olympics metadata:namespace []
Alternate Olympics metadata:revision [] 7328338
Alternate Olympics metadata:timestamp [] 2013-04-09T08:05:05Z
Ancient Olympic Games contents: [] pp-protected for \x0A pp-move ...
Ancient Olympic Games metadata:id [] 19098431
Ancient Olympic Games metadata:namespace []
Ancient Olympic Games metadata:revision [] 5207008
Ancient Olympic Games metadata:timestamp [] 2013-08-19T10:52:07Z
Arena X-Glide contents: [] \x0AArena X-Glide is a swimsuit made ...
Arena X-Glide metadata:id [] 23781846
Arena X-Glide metadata:namespace []
Arena X-Glide metadata:revision [] 7328338
Arena X-Glide metadata:timestamp [] 2012-09-24T15:35:39Z
...

As we introduce the API we’ll return to this example to illustrate how the parts of the
API fit into a broader application.

Obtaining Example Code
Code for the examples we describe here can be downloaded from https://github.com/
accumulobook/examples.

Before building, we need to put one JAR that is not available in any public repo into
our local Maven repo (see “Traversing the Example Twitter Graph” on page 326 for
another example using the Ubigraph library):

mvn install:install-file -Dfile=lib/ubigraph-0.2.4.jar -DgroupId=org.ubiety \
 -DartifactId=ubigraph -Dversion=0.2.4 -Dpackaging=jar

The examples can be built via Maven:

mvn clean compile

The examples ending in Example.java can be run from within an IDE or from the
command line without setting up an external Accumulo cluster.

To run an example from the command line, use the following:

mvn exec:java -Dexec.mainClass="com.accumulobook.[package].[Example]" \
 -Dexec.args="argument"

88 | Chapter 3: Basic API

https://github.com/accumulobook/examples
https://github.com/accumulobook/examples
http://ubietylab.net/ubigraph/

All of these classes use the MiniAccumuloCluster class discussed in Chapter 2. The
MiniAccumuloCluster is a single process that stores data to a temporary directory on
disk that is deleted when the instance is shut down.

In these classes you will see:

Connector conn = ExampleMiniCluster.getConnector();

That code can be replaced with the following code to execute against an actual Accu‐
mulo instance like the quickinstall:

String instanceName = "your_instance";
String zooKeepers = "your_zoo_server_1:port,your_zoo_server_2:port";

Instance instance = new ZooKeeperInstance(instanceName, zooKeepers);

Connector conn = instance.getConnector("your_username",
 new PasswordToken("your_password"));

Downloading Sample Wikipedia Pages
It is convenient to be able to work with a sample set of Wikipedia pages. These can be
downloaded via the Special Export API.

For example, to download a set of pages from the Hadoop category one can use the
curl command as follows:

curl -d "" "http://en.wikipedia.org/w/index.php?title=Special:Export\
&pages=Cloudera%0AApache_HBase%0AApache_ZooKeeper%0AApache_Hive\
%0AApache_Mahout%0AMapR%0AHortonworks%0AApache_Accumulo%0ASqoop\
%0AApache_Hadoop%0AOozie%0ACloudera_Impala%0AApache_Giraph%0AApache_Spark\
&action=submit" > hadoopPages.xml

In some of our examples we’ll use the equivalent of this curl command in Java. The
WikipediaPagesFetcher class will do this for us.

Downloading All English Wikipedia Articles
A dump of all e=English Wikipedia articles is available. The dump will consist of a
single large XML file. The XML contains metadata about each article and the article
contents, marked up in the WikiMedia format. The full dump can be somewhat large.

Our examples use the bliki library to parse these files.

We’ll first introduce the basic API for reading and writing data. Then we’ll work
through an example of modeling data from Wikipedia, providing ways to add data
from our application and access information.

Introduction to the Example Application: Wikipedia Pages | 89

http://bit.ly/english_lang_wikipedia
https://code.google.com/p/gwtwiki

Connect
The Accumulo client API begins with an Instance object, which describes a particu‐
lar Accumulo cluster. An Accumulo instance is uniquely identified by a set of Zoo‐
Keeper servers and an instance name. A single set of ZooKeeper servers can manage
multiple Accumulo instances, so the Accumulo instance name is required:

String instanceName = "accumulo_instance";
String zooKeepers = "zoo_server_1:port,zoo_server_2:port";

Instance instance = new ZooKeeperInstance(instanceName, zooKeepers);

Both data-specific and administrative actions are handled through an Accumulo Con
nector object. The Connector is obtained from an Instance object:

String principal = "user_name";
AuthenticationToken token = new PasswordToken("password");

Connector connector = instance.getConnector(principal, token);

For more information on providing credentials, see “Authentication” on page 176.

Connectors are used primarily to obtain other objects required to read and write
data, namely, BatchWriter, Scanner, and BatchScanner. They can also be used to
perform administrative actions through the tableOperations(), securityOpera
tions(), and instanceOperations() methods. Connectors can be shared by multi‐
ple threads.

The following sections illustrate how to use the objects obtained from a Connector to
read and write data.

Insert
Writing data into Accumulo is accomplished by creating a Mutation object and
adding it to a BatchWriter.

A Mutation encapsulates a set of changes to a single row. The changes can be either
puts or deletes. We’ll address deletes later. All the changes within a single mutation
can be applied atomically, meaning they either succeed or fail as a group. This is
because a row is always fully contained within a single tablet, which is always assigned
to exactly one tablet server.

This makes it easy for applications to make concurrent updates to a row without wor‐
rying about mutations being partially applied:

String rowId = "Article_Title";
String metadataColFam = "metadata";
String authorColQual = "author";
Value authorValue = new Value("Joe Jones".get());

90 | Chapter 3: Basic API

Mutation m = new Mutation(rowId);
m.put(metadataColFam, authorColQual, authorValue);

Note that column families do not have to be declared to exist before they are specified
in a mutation. In addition, column families and column qualifiers are allowed to be
empty String objects or byte arrays. There are multiple incarnations of the put()
method that allow specifying more or fewer parts of the key. For example, we could
also specify a ColumnVisibility object as part of our put:

String rowId = "Article_Title";
String metadataColFam = "metadata";
String authorColQual = "author";
ColumnVisibility publicColVis = new ColumnVisibility("public");
Value authorValue = new Value("Joe Jones".get());

Mutation m = new Mutation(rowId);
m.put(metadataColFam, authorColQual, publicColVis, authorValue);

We can also specify a timestamp, although this is generally discouraged. They do not
have to represent time and can be used to store logical version numbers of keys, but
when using custom timestamps applications are entirely responsible for managing
versions through insert, update, and delete operations.

Unlike all other components of the key, timestamps are stored as Java Longs and are
sorted in descending order:

String rowId = "Article_Title";
String metadataColFam = "metadata";
String authorColQual = "author";
ColumnVisibility publicColVis = new ColumnVisibility("public");
Long timestamp = System.currentTimeMillis();
Value authorValue = new Value("Joe Jones".get());

Mutation m = new Mutation(rowId);
m.put(metadataColFam, authorColQual, publicColVis, timestamp, authorValue);

Multiple puts can be applied to a single mutation. Each of these puts will insert new
data for the column specified:

String rowId = "Article_Title";

String metadataColFam = "metadata";
String authorColQual = "author";
Value authorValue = new Value("Joe Jones".get());

String pageIdColQual = "pageid";
Value pageIdValue = new Value("54321".get());

Mutation m = new Mutation(rowId);
m.put(metadataColFam, authorColQual, authorValue);
m.put(metadataColFam, pageIdColQual, pageIdValue);

Insert | 91

A single mutation will be converted into multiple key-value pairs, one for each
unique column mutated (Figure 3-2). Unless specified in the client, all the key-value
pairs for a mutation will receive the same timestamp from the tablet server.

Figure 3-2. Mutation resulting in multiple key-value pairs

put() should be called only once per column to be manipulated,
because having multiple key-value pairs with the same row Id, col‐
umn components, and timestamp will result in one of those key-
value pairs being arbitrarily picked to be kept by the server.

Strings Versus Byte Arrays
In these examples we use String objects for elements of the key. The advantage of
using String objects is that they are human-readable and the sort order is relatively
apparent. However, these don’t have to be Strings. When supplied with String
objects the Key class automatically converts them to UTF-8–encoded byte arrays.

For some applications, other objects can be serialized to byte arrays. When doing this,
keep in mind that Accumulo will compare two byte arrays by comparing one byte at a
time. If this doesn’t result in the sort order desired, the serialization process can be
manipulated to produce byte arrays that do sort properly.

Value objects of course are not sorted and also store byte arrays. This makes it possi‐
ble to store binary or other data without worrying about having to escape certain
characters.

92 | Chapter 3: Basic API

When storing serialized objects other than Strings, it is possible to create a custom
Formatter for displaying the objects in a human-readable way so that key-value pairs
can be inspected in the shell. We discuss custom Formatters in “Human-Readable
Versus Binary Values and Formatters” on page 311.

In general, the elements within keys should be relatively small.
Keeping the total key size under a megabyte will allow Accumulo to
efficiently process many keys simultaneously during reads and
writes in memory.
In Accumulo 1.6, there is a Constraint configured on all new
tables that rejects mutations if they contain keys larger than 1 MB.
We discuss configuring tables in Chapter 4.

Recall that values are stored as byte arrays and are not sorted as the elements of the
key are. Values can contain more data than the elements of the key can but should
still be kept within a reasonable size for tablet servers to process, because they will
read data from tables on disk into memory in order to retrieve them for clients.

Values in practice can be used to store an incredibly wide variety of data. Accumulo
will never interpret the bytes unless an application configures a table to do so explic‐
itly. As such, the information contained in a value is completely up to the discretion
of the application.

We discuss some best practices in techniques for creating values in “Designing Val‐
ues” on page 307.

Committing Mutations
Once we have one or more mutations we want to apply to a table, we can commit
them by adding them to a BatchWriter. BatchWriters will efficiently group muta‐
tions into batches based on the way tablets are assigned to tablet servers in order to
minimize the network overhead involved in sending mutations to tablet servers:

BatchWriterConfig config = new BatchWriterConfig()
 .setMaxMemory(MAX_MEMORY)
 .setMaxLatency(LATENCY, TimeUnit.MILLISECONDS)
 .setMaxWriteThreads(THREADS);

BatchWriter bw = connector.createBatchWriter("table name",);

...
bw.addMutation(m);

...
bw.close();

Insert | 93

Typical values for these parameters are:

Max Memory
1000000 (1 million bytes or roughly 1 MB)

Max Latency
1000 (1 thousand milliseconds)

Max Write Threads
10

Application developers should always tune the BatchWriter

parameters to obtain the best performance on their particular data.

The size of batches a BatchWriter uses is controlled via the Max Memory setting.
Giving a BatchWriter more memory allows the BatchWriter to group more muta‐
tions together before sending them over the network.

Max Latency determines how long a BatchWriter will wait before sending mutations
that do not comprise a full batch. This is so mutations don’t end up waiting a long
time for a full batch to be created.

Most clients can experiment with these parameters to achieve the throughput and
maximum latency they need.

The BatchWriter provides a flush() method that can be used to ensure that all
mutations that haven’t been sent are sent. This usually does not need to be called and
can significantly degrade performance if used extensively, because it will defeat the
BatchWriter’s attempts to amortize network overhead. One possible use of flush()
is to aid in synchronizing writes between two or more tables.

Here is a simple example of code in a client application that calls flush() on a Batch
Writer every 1,000 mutations, in order to ensure that all writes thus far were com‐
mitted successfully:

class MyIngestClient {

 private BatchWriter bw = connector.createBatchWriter("table name",);
 private int totalWritten = 0;
 ...

 public void writeData(Mutation m) throws MutationsRejectedException {
 bw.add(m);
 totalWritten++;

 if(totalWritten % 1000 == 0)

94 | Chapter 3: Basic API

 bw.flush();
 }

 ...
 public void shutdown() throws MutationsRejectedException {
 bw.close();
 }
}

We’ll talk about handling that MutationsRejectedException in the next section.

The close() method should be used to send any remaining mutations and shut
down the write threads when a BatchWriter is no longer needed. Simply allowing
Java to garbage-collect the BatchWriter object can cause the final batches to be sent
and threads to close, but explicitly calling close() is a better practice.

Thread Safety

The BatchWriter and BatchScanner create their own thread pools
for efficiently communicating with multiple tablet servers simulta‐
neously. If an application has more than one thread for other rea‐
sons, keep in mind that Connector and BatchWriter objects are
thread-safe, in that they can be shared and used by multiple threads
without synchronization. But Scanner and BatchScanner are not
thread-safe—each thread should obtain and use its own Scanner
and BatchScanner instances or else use them in a synchronized
manner so that only one thread is accessing them at a time. Batch
Writer and BatchScanner instances should be closed via close()
when no longer needed.

Handling Errors
The Accumulo client automatically handles errors related to the automatic failover
from one tablet server to another. This frees up the application designer to focus on
the logic of the application rather than having to write the code to retry inserts.

Accumulo assumes that client applications do care to know that all mutations have
been successfully applied. If for some reason a mutation fails, the Accumulo client
will throw a MutationsRejectedException.

A mutation can fail for several reasons:

• Mutations contained ColumnVisibility instances that the submitting user was
not authorized to write if configured—see “Authorizations” on page 183.

• Mutations violated one or more Constraints configured for the table.
• A persistent server failure prevented the write from succeeding.

Insert | 95

• Other unknown errors.

Each of these types of failures can be permanent or transient. A permanent failure
means that a particular mutation is simply not allowed to be written to the table,
according to Constraints currently configured. Simply retrying to commit these
mutations will not work, because the mutations violate some rule and will never be
allowed to be written.

If getAuthorizationFailuresMap() or getConstraintViolationSummaries()

returns any elements, then there are permanent failures. Applications that receive
exceptions in these cases should report the situation to the user or developer, because
it is likely that there is either some malformed data, a security problem, or a bug.

Transient failures, on the other hand, can succeed if the application tries to commit
them again. getErrorServers() can return a list of servers that the automatic retries
failed to write to. Applications can choose to retry indefinitely, or to fail and report
the error to the user or administrators.

Finally, any other errors are simply counted and are available via getUnknownExcep
tions().

The type of failure that caused the MutationsRejectedException to be thrown can
be obtained from the exception object:

try {
 bw.addMutation(m);
 bw.close();
} catch (MutationsRejectedException ex) {

 // ---] Permanent failures [----

 // mapping of keyextent mappings to SecurityErrorCode
 Map<KeyExtent, Set<SecurityErrorCode>> authFailuresMap =
 ex.getAuthorizationFailuresMap();
 if(authFailuresMap.size() > 0) {
 // retrying will fail. log any recently added mutations
 for(Entry<KeyExtent, Set<SecurityErrorCode>> extent :
 authFailuresMap.entrySet()) {
 ...
 }
 }

 // list of constraint violations
 if(ex.getConstraintViolationSummaries().size() > 0) {
 // retrying will fail. log any recently added mutations
 for(ConstraintViolationSummary summary :
 ex.getConstraintViolationSummaries()) {
 ...
 }
 }

96 | Chapter 3: Basic API

 // ----] Transient failures [----

 // A list of servers that had internal errors when mutations were written
 // optionally log
 // optionally retry
 Collection<String> errorServers = ex.getErrorServers();
 ...

 // the number of unknown other errors
 // log and possibly retry
 int numUnknown = ex.getUnknownExceptions();
 ...
}

The exact mutations that were rejected are not reported. Future versions of Accumulo
may make it easier to identify particular problems with individual mutations. For
now, applications can keep track of recently added mutations in order to log them in
the event of persistent errors, or to retry them in the case of transient failures.

If no exceptions are thrown by a BatchWriter when calling flush() or close(), an
application can be assured that all mutations added to that BatchWriter have been
persisted to Accumulo’s write-ahead log on disk, and at that point even a single server
or single rack failure should not result in any lost data.

So far we’ve only covered simple inserts. Next, we’ll examine reading data, and then
revisit other operations possible in mutations, including updates and deletes.

Note that this application is essentially defining the structure or schema of the table.
By default Accumulo does not place restrictions on what column families and column
qualifiers may be used, or on the structure of the row ID. This means that clients that
write data must be coupled with clients that read data. In practice they can simply be
the same client, but if they are separate, care must be taken to ensure that clients read‐
ing tables are either kept in sync with clients that write, or that they can dynamically
discover and handle changes to the table. This can be done, for example, by ignoring
additional columns and only scanning for known columns, or by treating the con‐
tents of rows as dynamic.

Insert Example
For our Wikipedia data, we’ll be creating one row per article. Our parser will give us a
Java object called WikipediaArticle containing the information for one article.

Because we have all the information we need about an article in one object, we’ll map
the elements of each article to various columns in one mutation and submit them to a
BatchWriter.

Insert | 97

This code is from the example code provided at the GitHub repository mentioned in
“Obtaining Example Code” on page 88. We include the full classnames of these exam‐
ples for ease of reference:

Mutation m = new Mutation(article.getTitle().replace(" ", "_"));

String wikitext = article.getText();
String plaintext = model.render(converter, wikitext)
 .replace("{{", " ")
 .replace("}}", " ");

m.put("contents", "", plaintext);
m.put("metadata", "namespace", article.getNamespace());
m.put("metadata", "timestamp", article.getTimeStamp());
m.put("metadata", "id", article.getId());
m.put("metadata", "revision", article.getRevisionId());

writer.addMutation(m);

To run an example that creates the WikipediaArticles table, downloads some Wikipe‐
dia articles, and inserts them into the table, run the following command in the Accu‐
mulo example code directory:

$ mvn clean compile
$ mvn exec:java -Dexec.mainClass="com.accumulobook.basic.WikipediaIngestExample"

This will start up a MiniAccumuloCluster, download and ingest a set of Wikipedia
articles in the Hadoop category into a table called WikipediaArticles, and start up a
shell for examining the data. You should see output similar to the following:

$ mvn exec:java -Dexec.mainClass="com.accumulobook.basic.WikipediaIngestExample"
[INFO] Scanning for projects...
[INFO]
...

Parsing articles ...
Parsing Cloudera
Parsing Apache HBase
Parsing Apache ZooKeeper
Parsing Apache Hive
Parsing Apache Mahout
Parsing MapR
Parsing Hortonworks
Parsing Apache Accumulo
Parsing Sqoop
Parsing Apache Hadoop
Parsing Oozie
Parsing Cloudera Impala
Parsing Apache Giraph
Parsing Apache Spark
done.
starting shell ...

98 | Chapter 3: Basic API

Shell - Apache Accumulo Interactive Shell
-
- version: 1.6.0
- instance name: miniInstance
- instance id: xxxxxxxx
-
- type 'help' for a list of available commands
-
root@miniInstance> table WikipediaArticles
root@miniInstance WikipediaArticles> scan

Apache_Accumulo contents: [] Infobox software Apache Accumulo is a computer
 software project ...
Apache_Accumulo metadata:id [] 34571412
Apache_Accumulo metadata:namespace []
Apache_Accumulo metadata:revision [] 6640499
Apache_Accumulo metadata:timestamp [] 2014-01-22T05:32:03Z
Apache_Giraph contents: [] Infobox Software \x0AApache Giraph is an Apache
 project to perform graph processing on big data. ...
Apache_Giraph metadata:id [] 37752641
Apache_Giraph metadata:namespace []
Apache_Giraph metadata:revision [] 604610728
Apache_Giraph metadata:timestamp [] 2014-04-17T16:12:43Z
----hit any key to continue or 'q' to quit ----
root@miniInstance WikipediaArticles> quit

Using Lexicoders
In our example, we are storing simple Strings in our key elements. It is possible to
store other values as well, because key elements are simply byte arrays, but ensuring
that different types sort properly can be a challenge.

Accumulo provides a set of helper classes, called Lexicoders, to aid in converting
objects of various types into byte arrays that preserve the native sort order.

Lexicoders have two methods, encode() and decode(), used to process a single
object of a specified type. For example, the DateLexicoder takes a Date instance and
returns a byte array that will sort properly when inserted as part of a key in an Accu‐
mulo table:

DateLexicoder dateLexicoder = new DateLexicoder();

byte[] dateBytes = dateLexicoder.encode(new Date());

A Lexicoder can also decode bytes it has encoded to retrieve the original object:

Date date = dateLexicoder.decode(dateBytes);

Lexicoders can even be used to store composite types, such as lists and pairs. To store
a list of three Double objects in a row ID, we can use the ListLexicoder:

Insert | 99

List<Double> threeDimCoord = new ArrayList<>();
threeDimCoord.add(9.0);
threeDimCoord.add(2.0);
threeDimCoord.add(7.0);

ListLexicoder<Double> coordCoder = new ListLexicoder<>();
byte[] coordBytes = coordCoder.encode(threeDimCoord);

We discuss using Lexicoders when reading data in “Crafting Ranges” on page 108 and
when using indexes in “Using Lexicoders in indexing” on page 290.

Writing to Multiple Tables
Often applications will want to write data to multiple tables. It is possible to simply
have multiple BatchWriters, each writing to a different table (Figure 3-3).

In these cases, it can be more efficient to use a MultiTableBatchWriter to allow
mutations destined for tablets that belong to different tables, but that are hosted on
the same tablet server, to be combined when sent over the network (Figure 3-4). This
reduces network overhead and increases throughput. It also makes memory manage‐
ment simpler.

Little needs to change in code to make use of the MultiTableBatchWriter. We first
create the MultiTableBatchWriter and then get individual BatchWriter objects from
it, one for each table being written to. Mutations are added to the BatchWriter corre‐
sponding to the table they belong in.

Here’s an example of creating two separate BatchWriters:

BatchWriterConfig conf = new BatchWriterConfig();

writer1 = conn.createBatchWriter("table1", conf);
writer2 = conn.createBatchWriter("table2", conf);
...
writer1.close();
writer2.close();

100 | Chapter 3: Basic API

Figure 3-3. Network messages using separate BatchWriters

And here’s an example using the MultiTableBatchWriter:

BatchWriterConfig conf = new BatchWriterConfig();

MultiTableBatchWriter multiTableBatchWriter =
 conn.createMultiTableBatchWriter(conf);

writer1 = multiTableBatchWriter.getBatchWriter("table1");
writer2 = multiTableBatchWriter.getBatchWriter("table2");
...
multiTableBatchWriter.close();

Insert | 101

Figure 3-4. Network messages using MultiTableBatchWriter

Also note that the MultiTableBatchWriter has its own flush() and close() meth‐
ods, which will cause any pending mutations to be written, regardless of which Batch
Writer they were added to. This can aid in keeping two or more tables in sync by
allowing the client to write a set of mutations to multiple tables and consider them all
committed upon successful return, or to handle the MutationsRejectedException
thrown by either the flush() or close() method.

We describe an example that uses the MultiTableBatchWriter when discussing sec‐
ondary indexing in “Using MultiTableBatchWriter for consistency” on page 284.

102 | Chapter 3: Basic API

Lookups and Scanning
Reading data from Accumulo is accomplished with a Scanner. A Scanner returns
data via implementing the Java Iterator interface over key-value pairs. By default a
Scanner will return key-value pairs starting at the beginning of a table and eventually
will return all key-value pairs.

To create a Scanner, simply specify the table over which to scan and provide an
Authorizations object representing the authorizations of the user. We discuss the
Authorizations object in depth in “Authorizations” on page 183. For now we’ll
assume that all data is visible:

Scanner scanner = connector.createScanner("table_name", new Authorizations());
for (Entry<Key,Value> entry : scanner) {

 Key k = entry.getKey();
 Value v = entry.getValue();

 ...
}

All the elements of the key can be obtained from the Key object:

Key k = entry.getKey();

Text row = k.getRowID();

Text colFam = k.getColumnFamily();

Text colQual = k.getColumnQualifier();

ColumnVisibility colVis = k.getColumnVisibility();

Long ts = k.getTimestamp();

To specify a range of keys to scan over, use the setRange() method of Scanner:

Scanner scanner = connector.createScanner("table_name", new Authorizations());
Range r = new Range(startKey, endKey);
scanner.setRange(r);

for (Entry<Key,Value> entry : scanner) {
 ...
}

We can scan over the contents of one row by setting a Range on the Scanner consist‐
ing of one row ID (Figure 3-5):

Scanner scanner = connector.createScanner("table_name", new Authorizations());
Range r = new Range("Apache_Hadoop");
scanner.setRange(r);

Lookups and Scanning | 103

for (Entry<Key,Value> entry : scanner) {
 ...
}

Figure 3-5. Scanning one row

We can also scan the whole table for only a particular column (Figure 3-6):

Scanner scanner = connector.createScanner("table_name", new Authorizations());
scanner.fetchColumn(new Text("metadata"), new Text("title"));

for (Entry<Key,Value> entry : scanner) {
 ...
}

104 | Chapter 3: Basic API

Figure 3-6. Scanning one column

Note that this will cause tablet servers to retrieve but skip over all the other columns
present. If an application often needs to retrieve a single column or a particular subset
of columns in a scan, a feature called locality groups can be used to minimize the data
that has to be read from disk and skipped over. We discuss locality groups in “Local‐
ity Groups” on page 138.

A Scanner can have only one Range specified but can have any number of columns or
column families configured. By default, if fetchColumn() and fetchColumnFamily()
have not been called, a Scanner will return all columns it finds.

Calling fetchColumnFamily() will return all columns within the specified family.
fetchColumn() expects both the column family and column qualifier to be specified.

An empty String, "", or an empty byte array stored in a column
family or column qualifier are treated as valid identifiers. This
means we can request a key with a column family "example" and
column qualifier "" and the Scanner will only return key-value
pairs for which the column family is "example" and the column
qualifier is "".

Lookups and Scanning | 105

Here is an example of scanning for one row, returning a specific column and all col‐
umns within a specific family:

Scanner scanner = connector.createScanner("table_name", new Authorizations());
Range r = new Range("Apache_Hadoop");
scanner.setRange(r);
scanner.fetchColumn(new Text("metadata"), new Text("title"));
scanner.fetchColumnFamily(new Text("content"));

// returns the title and any data under the 'content' column family
for (Entry<Key,Value> entry : scanner) {
 ...
}

Note that key-value pairs come streaming into the client according to the Java Itera
tor interface design. Accumulo does not load up all the columns and values for a par‐
ticular row into memory simultaneously, unless a client is configured to do so. HBase
and some other data stores may present more of a row-oriented API. Accumulo does
provide a wrapper for a scanner that lets the client iterate over rows (see “Grouping
by Rows” on page 110), while still iterating over individual key-value pairs within
each row to avoid loading an entire row into memory. For an example of how to load
discrete rows into a data structure in client memory and retrieve specific columns
from those structures, see “WholeRowIterator example” on page 229 on using the
WholeRowIterator.

Lookup Example
In our Wikipedia example, we can retrieve all the information for a given article title
via a simple scan. To do so we create a Scanner on our WikipediaArticles table and set
it to scan over a range that encompasses one row.

We then print out components of the key-value pairs we retrieve:

Scanner scanner = conn.createScanner(WikipediaConstants.ARTICLES_TABLE, auths);

// attempt to read one article
scanner.setRange(new Range(articleTitle));

for (Map.Entry<Key, Value> entry : scanner) {
 Key key = entry.getKey();
 String field;
 if (key.getColumnFamily().toString().equals("contents")) {
 field = "contents";
 } else {
 field = key.getColumnQualifier().toString();
 }

 String valueString = new String(entry.getValue().get());
 System.out.println(field + "\t" + valueString);
}

106 | Chapter 3: Basic API

We can also choose to scan only the metadata:revisions column for all articles:

Scanner scanner = conn.createScanner(WikipediaConstants.ARTICLES_TABLE, auths);

// scan one column from all rows
scanner.fetchColumn(new Text(columnFamily), new Text(columnQualifier));

for (Map.Entry<Key, Value> entry : scanner) {
 Key key = entry.getKey();

 String valueString = new String(entry.getValue().get());
 System.out.println(key.getRow().toString() + "\t" + valueString);
}

The WikipediaClient class contains an example of doing both of these things. It will
start up a MiniAccumuloCluster, ingest Wikipedia articles from the Hadoop category,
and perform these scans.

The example can be run in the example code directory via the following:

$ mvn clean compile
$ mvn exec:java -Dexec.mainClass="com.accumulobook.basic.WikipediaLookupExample"
[INFO] Scanning for projects...
...
Parsing articles ...
Parsing Cloudera
...
Parsing Apache Spark
done.

Printing out one article:

contents Infobox software Apache Accumulo is a computer software project
 ...
id 34571412
namespace
revision 6640499
timestamp 2014-01-22T05:32:03Z

Printing out one column:

Apache_Accumulo 6640499
Apache_Giraph 604610728
Apache_HBase 5925038
Apache_Hadoop 12010884
Apache_Hive 612679440
Apache_Mahout 618938594
Apache_Spark 14011316
Apache_ZooKeeper 618486465
Cloudera 615986938
Cloudera_Impala 14508071
Hortonworks 615116461
MapR 21911013

Lookups and Scanning | 107

Oozie 605458201
Sqoop 19309860

Crafting Ranges
The Range class has a variety of helpful constructors and utility methods to create a
range covering all keys that match portions of a given key exactly.

To obtain all values in all columns for a specific row:

Range oneRow = Range.exact("Apache_Hadoop");

This is equivalent to:

Range oneRow = new Range("Apache_Hadoop");

as was used earlier to scan one row.

To get all values for a specific row and column family:

Range oneRowOneFamily = Range.exact("Apache_Hadoop", "metadata");

To get the value for a specific row, column family, and column qualifier (Figure 3-7):

Range oneKey = Range.exact("Apache_Hadoop", "metadata", "title");

This will usually return only one value unless the table’s versioning settings have been
altered from the default or unless there happen to be more than one column visibility
for this key.

To get a key with a specific column visibility:

Range oneKey = Range.exact("Apache_Hadoop", "metadata", "title", "public");

To get the value for a fully specified key:

Range oneValue = Range.exact("row_0", "column_family_1", "column_qualifier_2",
 "column_visibility_3", 1234567890l);

108 | Chapter 3: Basic API

Figure 3-7. Scanning one key-value pair

Similarly, there are utility methods to create a range covering all keys that match a
given prefix:

// all values in rows that begin with 'Apache_'
Range.prefix("Apache_");

// all values in column families in the 'Apache_Hadoop' row that begin with 'meta'
Range.prefix("Apache_Hadoop", "meta");

// all values in column qualifiers in the 'Apache_Hadoop' row
// in the 'metadata' column family that begin with 'page'
Range.prefix("Apache_Hadoop", "metadata", "page");

// all values in the 'Apache_Hadoop' row, 'metadata' column family,
// and 'pageid' column qualifier that have a column visibility
// beginning with 'pub'
Range.prefix("Apache_Hadoop", "metadata", "pageid", "pub");

For example, suppose our WikipediaArticles table contains the following keys:

Whitaker
White
Whitehouse
Whitewash
Whiz

Lookups and Scanning | 109

To scan over all the keys that begin with the word white—sometimes signified with a
wildcard in search systems as white*—we can obtain the right Range via the following:

Range whiteRange = Range.prefix("White");

To get a set of Range instances that correspond to the way a tablet is split into tablets,
the splitRangeByTablets() method can be used. This can be used to break a long
range into multiple ranges according to the split points within a table. This is typi‐
cally not needed but is used in situations such as a MapReduce job when various cli‐
ents are assigned to process all the data per tablet:

int maxSplits = 100;

Set<Range> ranges = connector.tableOperations()
 .splitRangeByTablets(tableName, givenRange, maxSplits)

If you’re using Lexicoders to encode row IDs or columns in mutations, you should
use the same Lexicoders when creating Range objects for use in scanners.

For example, if we have stored our row IDs using the IntegerLexicoder, we should
again use the IntegerLexicoder when specifying start or stop rows in a Range.
Because Lexicoders return byte arrays, we’ll wrap them in a Text object when creating
a Range:

Integer start = -26;
Integer stop = 105;

IntegerLexicoder ilex = new IntegerLexicoder();

Range range = new Range(new Text(ilex.encode(start)),
 new Text(ilex.encode(stop)));

See “Using Lexicoders in indexing” on page 290 for using Lexicoders in Ranges when
scanning secondary indexes.

Grouping by Rows
For scanning over a range that spans multiple rows, a Java Iterator over key-value
pairs might not be the most convenient way to process those rows. The application
would have to determine for itself when one row ends and another begins. To assist
with this, Accumulo provides a wrapper that groups key-value pairs by row. The Row
Iterator constructor takes either a Java Iterator or Iterable over
Entry<Key,Value>>, so it is easy to use with an Accumulo Scanner. The RowIterator
itself implements the Iterator<Iterator<Entry<Key,Value>>> interface:

// passing a Scanner to RowIterator
RowIterator rowIterator = new RowIterator(connector.createScanner("table_name",
 new Authorizations()));
while (rowIterator.hasNext()) {

110 | Chapter 3: Basic API

 Iterator<Entry<Key,Value>> row = rowIterator.next();
 while (row.hasNext()) {
 Entry<Key, Value> kv = row.next();
 }
}

// passing scanner.iterator() to RowIterator
Iterator<Iterator<Entry<Key,Value>>> rowIterator2 =
 new RowIterator(scanner.iterator());

Reusing Scanners
Scanners return a new Iterator when the iterator() method is called. The Itera
tor that is returned is a separate object from the Scanner, and any changes in the
Scanner will not affect any existing Iterators already retrieved.

For example, we could set the range of a Scanner and configure it to fetch a particular
column. Calling iterator() will instantiate the scan:

Scanner scanner = new Scanner("table_name", new Authorizations());
scanner.setRange(new Range("Apache_Hadoop"));
scanner.fetchColumn(new Text("metadata"), new Text("title"));

Iterator<Entry<Key,Value>> titleIter = scanner.iterator();

We could then change some settings on the Scanner, such as the set of columns to
fetch, while leaving other settings intact. Calling iterator() again would return a
new Iterator object, separate from the Iterator already retrieved:

...
scanner.clearColumns();
scanner.fetchColumn(new Text("metadata"), new Text("pageid"));

Iterator<Entry<Key,Value>> pageIdIter = scanner.iterator();

Isolated Row Views
By default, Scanners can retrieve key-value pairs that are parts of a mutation cur‐
rently being applied. To ensure that Scanners see rows containing only the results of
fully completed mutations, the enableIsolation() method can be applied to a
Scanner:

Scanner scanner = new Scanner("table_name", new Authorizations());
scanner.setRange(new Range("Apache_Hadoop"));
scanner.enableIsolation();

for (Entry<Key,Value> entry : scanner) {
 ...
}

Lookups and Scanning | 111

Note that using a Scanner in isolation mode is only necessary if consistent reads of
multiple columns of each row are required. Scans for only one column per row will
not benefit from isolation mode.

A Note on Isolation
Students of relational databases may recognize the isolation property as the I in the
ACID acronym. Wikipedia defines isolation to mean: “The isolation property ensures
that the concurrent execution of transactions results in a system state that would be
obtained if transactions were executed serially, i.e. one after the other. Providing iso‐
lation is the main goal of concurrency control. Depending on concurrency control
method, the effects of an incomplete transaction might not even be visible to another
transaction.” In this case, using Scanners in isolation mode that ensures the effects of
a not yet completed mutation are not visible to readers of the table. Regardless of
whether isolation mode is used with Scanners, tablet servers ensure that partially
applied mutations are not permanently committed to a table in the event of a failure
during the writing of the mutation.

To see the effect of isolation mode on Scanners in action, Accumulo ships with an
example. The following command will apply a series of mutations to rows in one
thread, while another continually scans the table looking for partial updates. The
command will print out any partial updates it finds:

./bin/accumulo org.apache.accumulo.examples.simple.isolation.InterferenceTest \
 -i instance -z zookeepers -u username -p password -t isotest --iterations 1000

If you don’t get any ERROR statements, run the command again. Sometimes 1,000 iter‐
ations are not enough to expose the issue. Running the command with the
--isolation flag set will perform the same test but using isolated reads:

./bin/accumulo org.apache.accumulo.examples.simple.isolation.InterferenceTest \
 -i instance -z zookeepers -u username -p password -t isotest \
 --iterations 1000 --isolated

Tuning Scanners
Scanners handle communication with tablet servers in identifying and retrieving key-
value pairs. For efficiency reasons, tablet servers return key-value pairs to Scanners in
batches.

Scanners can be tuned to adjust the size of batches as well as when to prefetch
batches.

For example, if it is known that key-value pairs are generally fairly large, perhaps over
500 KB each—or if we are mostly interested in doing very small scans over only a few

112 | Chapter 3: Basic API

http://bit.ly/acid_isolation

key-value pairs—we can choose to reduce the batch size for a Scanner to avoid ship‐
ping unwanted key-value pairs from the server to the client. On the other hand, if we
are often scanning over larger numbers of smaller key-value pairs, we can choose to
increase the batch size.

To get the current batch size (numbered in key-value pairs) for a scanner, use the
getBatchSize() method:

Scanner scanner = conn.createScanner("mytable", auths);

int size = scanner.getBatchSize();

To adjust the batch size, use the setBatchSize() method:

scanner.setBatchSize(size * 2);

When scanning over many key-value pairs, Scanners will wait until the end of a batch
is reached before fetching another batch. This causes the client to pause for a short
time until the next batch is available. If we know we are routinely going to scan over
multiple batches, we can save time by having the scanner prefetch the next batch
sooner.

By default, a threshold is configured for how many batches must be read from a scan‐
ner before it will start to prefetch the next batch. To see the current threshold, use the
getReadaheadThreshold() method:

long numBatches = scanner.getReadaheadThreshold();

To change the read-ahead threshold, use the setReadaheadThreshold() method:

scanner.setReadaheadThreshold(numBatches / 2);

Application designers should experiment with these settings to find optimal values
for various types of accesses.

Batch Scanning
Data can be retrieved for multiple ranges simultaneously using a BatchScanner.
Rather than a single Range object, BatchScanners take a set of Ranges and communi‐
cate with many tablet servers in parallel threads to read all the data within the ranges
specified.

BatchScanners do not return data in sorted order, because they retrieve data from
many tablet servers at once.

When designing applications, keep in mind that the Scanner will
always return key-value pairs in sorted order, but the BatchScan
ner will not.

Batch Scanning | 113

A BatchScanner is obtained in a manner similar to that of a Scanner:

int numThreads = 10;
BatchScanner bscan = connector.createBatchScanner('myTable',
 new Authorizations(), numThreads);

The last parameter designates the number of threads to use to communicate with tab‐
let servers. Most clients will want to use more than one thread if there is more than
one tablet server.

We’ll pass the BatchScanner an ArrayList of Range objects:

List<Range> ranges = new ArrayList<Range>();
ranges.add(new Range("Apache_Accumulo"));
ranges.add(new Range("Apache_Hadoop"));
ranges.add(new Range("Apache_Thrift"));
ranges.add(new Range("Apache_ZooKeeper"));

bscan.setRanges(ranges);

Results from BatchScanner are read the same way as from Scanner:

for(Entry<Key,Value> entry : bscan) {
 // access the elements of the entries
 ...
}

A BatchScanner can be configured with many of the same options that a Scanner
can. For example, we can set a BatchScanner to fetch only certain columns
(Figure 3-8):

int numThreads = 10;
BatchScanner bscan = connector.createBatchScanner('myTable',
 new Authorizations(), numThreads);

List<Range> ranges = new ArrayList<Range>();
ranges.add(new Range("Apache_Accumulo"));
ranges.add(new Range("Apache_Hadoop"));
ranges.add(new Range("Apache_Thrift"));
ranges.add(new Range("Apache_ZooKeeper"));

bscan.setRanges(ranges);

bscan.fetchColumn(new Text("metadata"), new Text("title"));

for(Entry<Key,Value> entry : bscan) {
 // access the elements of the entries
 ...
}

114 | Chapter 3: Basic API

Figure 3-8. Scanning several individual key-value pairs in parallel

The ranges that are passed to a BatchScanner can each span many key-value pairs,
but in practice the performance improvement of using BatchScanners versus individ‐
ual Scanners is most pronounced when a large number of small ranges are scanned.

Because BatchScanners often look up many individual ranges con‐
sisting of a single row ID, it can be beneficial to enable bloom fil‐
ters for tables that are often scanned using BatchScanners. This
will allow tablet servers to skip files that do not contain the row IDs
sought by the BatchScanner, improving performance. See “Bloom
Filters” on page 142 for details.

Batch scanning comes in handy for looking up a set of record IDs retrieved from a
secondary index or doing small joins between tables. We use BatchScanners for our
example in “Secondary Indexing” on page 275.

Batch Scanning | 115

Update: Overwrite
Simple updates that overwrite existing keys are straightforward in Accumulo: simply
inserting a new value for an existing key will cause the old value to appear to be over‐
written (Figure 3-9).

This is because Accumulo will place new versions of existing keys at the beginning,
causing the first version of a key encountered by a scan to be the latest version. By
default Accumulo tables keep only the latest version of each key.

Figure 3-9. A simple overwrite update

No data has to be read in order to perform an overwrite. For this reason, simple over‐
write updates have the same performance as inserts. In some databases the ability to
either update or insert information in the same operation is called an upsert. Typically
in other systems, an update to a key that doesn’t exist will cause an error, unless an
upsert operation is explicitly specified. In Accumulo, inserts are considered updates if
there happens to be an existing version of the key being inserted, but from a mechan‐
ical standpoint there is no difference between an insert and an update, either in per‐
formance or in client usage.

Overwrite Example
In our Wikipedia application, doing an update to the metadata of an article is
straightforward. We implement this method the same as for inserting new data:

public void updateMetadata(
 final String title,
 final String attribute,
 final String value,
 final boolean flush)
 throws MutationsRejectedException {

116 | Chapter 3: Basic API

 Mutation m = new Mutation(title);
 m.put(WikipediaConstants.METADATA_FAMILY, attribute, value);

 batchWriter.addMutation(m);

 if(flush)
 batchWriter.flush();
}

This example will simply insert new information for the column specified. Unless we
modify the VersioningIterator for this table, any old versions will be suppressed
from scans and eventually eliminated from disk during the compaction process.

Allowing Multiple Versions
Accumulo can be configured to keep multiple versions of a key-value pair by chang‐
ing the maxVersions parameter of the VersioningIterator.

Using the shell:

user@accumulo> config -t table_name -s table.iterator.majc.vers.opt.maxVersions=2
user@accumulo> config -t table_name -s table.iterator.minc.vers.opt.maxVersions=2
user@accumulo> config -t table_name -s table.iterator.scan.vers.opt.maxVersions=2

Or through Java:

connector.tableOperations().setProperty("table_name",
 "table.iterator.majc.vers.opt.maxVersions", "2");
connector.tableOperations().setProperty("table_name",
 "table.iterator.minc.vers.opt.maxVersions", "2");
connector.tableOperations().setProperty("table_name",
 "table.iterator.scan.vers.opt.maxVersions", "2");

You can keep all versions by removing the VersioningIterator entirely:

user@accumulo> deleteiter -t table_name -n vers -all

Some applications may want to keep several versions on disk, return the latest by
default, and allow clients to request more than the latest version whenever necessary.

To do this, the maxVersions option for minc and majc should be set to something
greater than 1, say 10, and the scan option should be set to 1. Unless they specify
otherwise, clients will see only the latest version for each value. If they want to go
back and view more versions, they can configure a Scanner to return more than one
version:

Scanner scanner = connector.createScanner("myTable", auths);
IteratorSetting setting = new IteratorSetting(20, "vers",
 "org.apache.accumulo.core.iterators.user.VersioningIterator");

Update: Overwrite | 117

VersioningIterator.setMaxVersions(setting, 10);
scanner.addScanIterator(setting);

Even if a table is configured to allow Scanners to retrieve all ver‐
sions, no entries that are suppressed by delete markers will ever be
returned.

For example, in our Wikipedia application, we can choose to allow multiple versions
of a page to exist indefinitely, in order to preserve the history of edits to an article.
For most lookups, we’ll only want the latest version of an article, but editors may
want to view all versions of an article to compare changes over time.

Update: Appending or Incrementing
Some updates need to add information to existing values. These are different from
simple overwrites because the existing values will need to be combined with the new
value in some way.

An example is adding some amount to a running total. Instead of reading the old
value out, adding the new value to it, and writing the combined value back, Accu‐
mulo allows new values to be written alongside old values, and values are combined
at scan time or compaction time.

Accumulo can perform these kinds of updates very efficiently through the use of
Accumulo iterators, as described in “Combiners for incrementing or appending
updates” on page 221. Effectively, appending or incrementing updates can be done as
quickly as inserts. Applications that require these kinds of updates can simply treat
them like inserts and configure iterators on the table being updated.

An example of using iterators to do efficient incrementing updates is described in
“Ingesters and Combiners as MapReduce Computations” on page 264.

Update: Read-Modify-Write and Conditional Mutations
Accumulo 1.6 supports conditional mutations that can be used to do efficient read-
modify-write operations on rows. The ability to place conditions on mutations ena‐
bles applications to achieve a higher degree of consistency. These are more involved
updates than simple overwrites, because they involve checking the state of an existing
row. These are also only necessary when appending or incrementing updates by using
iterators is insufficient.

Conditional mutations are a bit different from Constraints, as we discuss in “Con‐
straints” on page 201, in that Constraints allow mutations to be rejected or accepted

118 | Chapter 3: Basic API

based on the information contained within just the one new mutation, whereas con‐
ditional mutations allow a mutation to be rejected or accepted based on the informa‐
tion in the row to be modified.

Conditional mutations are more expensive than regular mutations and constraints
because they perform a read of the current data in the table, in addition to accessing
the disk to persist the new mutation in the write-ahead log. Server are able to perform
fewer conditional mutations than they can regular mutations.

Conditional Mutations and Percolator
Conditional mutations are especially interesting because they provide part of the
foundation for a system like Google’s Percolator to be built on Accumulo. Percolator is
a system Google built to transition the work of updating its primary web index from a
batch-oriented MapReduce-based job to a more continuous, incremental system. Per‐
colator “provides cross-row, cross-table transactions with ACID sematics.”

A project to implement an open source version of Percolator for Accumulo is called
Fluo.

Conditional Mutation API
The ConditionalMutation class is used to specify a set of conditions that must be sat‐
isfied in order to apply the puts or deletes contained within the mutation. Conditio
nalMutation objects are like regular Mutation objects except that they can have
Condition objects added.

A Condition object can be configured to check for the absence of a column or to
check that a column’s value is equal to a given value.

A Condition that checks to see if a column is absent can be created as follows:

Condition markedColumnAbsent = new Condition("internal", "marked");

One or more Condition objects can be added to a ConditionalMutation:

ConditionalMutation cm = new ConditionalMutation(someRow);

cm.addCondition(markedColumnAbsent);

Then regular puts and deletes can be applied to the mutation. These will only succeed
if all conditions added are satisfied:

cm.put("internal", "marked", "");
cm.put("metadata", "dateMarked", new Date().toString());

In this example, the ConditionalMutation will first check to see if no column is iden‐
tified by internal:marked currently in the row. If the column is absent, this Conditio

Update: Read-Modify-Write and Conditional Mutations | 119

http://bit.ly/percolator_paper
https://github.com/fluo-io/fluo

nalMutation will be applied, which puts a new column, internal:marked, into the row
that prevents future ConditionalMutations of this type to succeed, and puts another
column, metadata:dateMarked, into the row with a value representing the current
date.

Rather than just checking that a column is absent, we can check to see whether a col‐
umn contains a value we expect:

Condition ensureColorIsBlue = new Condition("details", "color");
ensureColorIsBlue.addValue("blue");

ConditionalMutation otherCm = new ConditionalMutation(someRow);

otherCm.addCondition(ensureColorIsBlue);

In this case, the ConditionalMutation will only be applied if the details:color column
contains the value blue.

To submit a ConditionalMutation, we pass it to a ConditionalWriter object via the
write() method, which returns the success status of each ConditionalMutation. The
success status is returned via a Result object, which can be examined to find out if
the conditional mutation succeeded, or if there were problems with the mutation:

ConditionalWriter cwriter = new ConditionalWriter("myTable", config);

ConditionalWriter.Result result = cwriter.write(cm);

try {
 switch(result.getStatus()) {
 case ACCEPTED:
 // condition was met and mutation was applied
 ...
 break;
 case REJECTED:
 // condition was not met
 ...
 break;
 case VIOLATED:
 // mutation violated a constraint
 ...
 break;
 case UNKNOWN:
 // unknown server error
 ...
 break;
 case INVISIBLE_VISIBILITY:
 // condition involved a visibility not visible to user
 ...
 break;
 default:
 break;

120 | Chapter 3: Basic API

 }
}

Conditional Mutation Batch API
Besides just single writes, a ConditionalWriter can also be passed multiple Conditio
nalMutations. In this case the write() method will return an Iterator over Result
objects:

ArrayList<ConditionalMutation> mutations = new ArrayList<>();
// ConditionalMutations are added
...

Iterator<ConditionalWriter.Result> results = conditionalWriter.write(mutations);

Because there are multiple Results, we can ask a Result to which mutation it applied
in order to know which ConditionalMutations succeeded or failed:

ArrayList<ConditionalMutation> mutations = new ArrayList<>();
// ConditionalMutations are added
...

Iterator<ConditionalWriter.Result> results = conditionalWriter.write(mutations);

for(ConditionalWriter.Result result : results) {
 try {
 switch(result.getStatus()) {
 case ACCEPTED:
 ...
 break;
 case REJECTED:
 System.err.println("mutation failed: " +
 result.getMutation().toString());
 ...
 break;
 ...
 }
}

Conditional Mutation Example
347.50bIn our example application we’d like to let users submit new revisions to
Wikipedia pages, but we want to avoid the following situation, in which users over‐
write each other’s edits:

1. Alice downloads the current version of a page, marked by revision 1.
2. Bob also downloads revision 1 of a page.
3. Alice makes her edits and submits them as revision 2.

Update: Read-Modify-Write and Conditional Mutations | 121

4. Bob makes his edits and submits them as revision 2, overwriting Alice’s edits.

In this scenario, multiple concurrent submissions can cause some edits to be lost.
We’ll use conditional mutations to avoid this situation. What we’d rather have happen
is the following:

1. Alice downloads the current version of a page, marked by revision 1.
2. Bob also downloads revision 1 of a page.
3. Alice makes her edits and submits them as revision 2.
4. Bob makes his edits and submits them as revision 2, but he receives an error

because the revision currently in Accumulo is not the last revision he read.
5. Bob reads revision 2, which includes Alice’s edits.
6. Bob merges his edits with Alice’s, resolving any conflicting edits.
7. Bob submits his edits again, this time as revision 3.
8. Because the current revision still in Accumulo is 2, Bob’s edits are accepted and

written.

The crucial bit of logic here is in step 4. Accumulo’s conditional mutation mechanism
will allow us to check that we have the latest revision right before committing a write.

Here is an example of a method that will try to write new contents of a page and fail if
the current revision is not the last revision we read:

public boolean updateContent(
 final String title,
 final String lastRevision,
 final String contents) throws WikipediaEditException, IOException {

 if (closed)
 throw new IOException("client closed");

 final String newRevision = Integer.toString(
 Integer.parseInt(lastRevision) + 1);

 ConditionalMutation cm = new ConditionalMutation(title);
 Condition lastRevisionStillCurrent = new Condition(
 WikipediaConstants.METADATA_FAMILY,
 WikipediaConstants.REVISION_QUAL);

 // this requires that the version in the table is the last revision we read
 lastRevisionStillCurrent.setValue(lastRevision);
 cm.addCondition(lastRevisionStillCurrent);

 // add puts for our changes
 cm.put(WikipediaConstants.METADATA_FAMILY,
 WikipediaConstants.REVISION_QUAL,

122 | Chapter 3: Basic API

 newRevision);

 cm.put(WikipediaConstants.CONTENTS_FAMILY, "", contents);

 // submit to the server
 ConditionalWriter.Result r = conditionalWriter.write(cm);
 try {
 switch (r.getStatus()) {
 case ACCEPTED:
 return true;
 case REJECTED:
 return false;
 case VIOLATED:
 throw new WikipediaEditException("constraint violated");
 case UNKNOWN: // could retry
 logger.warn("unknown error from server: {0}", r.getTabletServer());
 return false;
 case INVISIBLE_VISIBILITY:
 throw new WikipediaEditException("condition contained a visibility " +
 "the user cannot satisfy");
 default:
 throw new AssertionError(r.getStatus().name());
 }
 } catch (AccumuloException | AccumuloSecurityException ex) {
 throw new WikipediaEditException(ex);
 }
}

In this example, the updateContent() method will apply the edits and return true if
no one has edited the page since the caller read it. It will return false if another user
has committed an edit since the caller read it, in which case the caller can read the
current version, merge edits, and try to commit again. This method throws excep‐
tions for other problems that retrying will not solve—such as violating any con‐
straints on the table—or for problems reading data as part of the condition that the
user is not authorized to see.

If a tablet server fails right after successfully applying a conditional mutation, the cli‐
ent will receive a status of UNKNOWN, because it cannot be known whether the mutation
was applied or not. In this case the Accumulo master will assign the tablet containing
the row of interest to a new tablet server, and the client can check the status of the
row to be mutated to see if the mutation succeeded or not.

The example WikipediaEditExample class contains a main() method that will do a
lookup of a page, commit an edit, attempt to commit an edit to an old revision, and
then do a new read and commit to the latest revision. Abbreviated code that performs
those steps is as follows:

Map<String, String> hadoopArticle = client.getContentsAndRevision(
 "Apache_Hadoop");

Update: Read-Modify-Write and Conditional Mutations | 123

String originalContents = hadoopArticle.get(WikipediaConstants.CONTENTS_FAMILY);
String newContents = originalContents.toLowerCase();
String lastRevision = hadoopArticle.get(WikipediaConstants.REVISION_QUAL);

// apply our edit
if (client.updateContent("Apache_Hadoop", lastRevision, newContents)) {
 System.out.println("edit of revision " + lastRevision + " succeeded.");
} else {
 System.out.println("edit of revision " + lastRevision + " failed.");
}

// if we try again, we should fail
if (client.updateContent("Apache_Hadoop", lastRevision, newContents)) {
 System.out.println("second edit of revision " + lastRevision + " succeeded.");
} else {
 System.out.println("second edit of revision " + lastRevision + " failed.");
}

// need to pull current revision again
hadoopArticle = client.getContentsAndRevision("Apache_Hadoop");
String nextRevision = hadoopArticle.get(WikipediaConstants.REVISION_QUAL);

// put back original contents
// now we should succeed
if (client.updateContent("Apache_Hadoop", nextRevision, originalContents)) {
 System.out.println("edit of revision " + nextRevision + " succeeded.");
} else {
 System.out.println("edit of revision " + nextRevision + " failed.");
}

The first edit should succeed, the second should fail because it’s trying to update a
revision that has already been overwritten, and the final edit should succeed because
it is applied to the latest revision.

To run the example code, type the command in the first line of the following:

$ mvn exec:java -Dexec.mainClass="com.accumulobook.basic.WikipediaEditExample"
...
Parsing articles ...
...
done.
edit of revision 12010884 succeeded.
second edit of revision 12010884 failed.
edit of revision 12010885 succeeded.

These types of edits allow our table to apply only one revision at a time, which aids in
deconflicting concurrent edits.

124 | Chapter 3: Basic API

Delete
An individual key-value pair can be deleted from a table. Technically the way this is
accomplished is by inserting a special delete key (Figure 3-10). A delete key in Accu‐
mulo is a normal key with an internal delete flag set to true.

If a delete key is inserted, all keys with the same row and column as the delete key
with a timestamp the same or earlier than the delete key’s timestamp will be removed,
along with their values. Deletes in Accumulo do not delete a specific key-value pair;
rather, they delete all earlier versions of the key.

Figure 3-10. Deleting an entry from a table

In these diagrams, for convenience the delete marker is shown as
appearing where the value would be, but technically the delete
marker is part of the key.

Earlier we mentioned that a mutation can contain puts or deletes. As an example, per‐
haps we insert a column on rows that represent articles that are in dispute. When the
dispute is resolved, we can remove the dispute marker from the row. The following
code deletes the column identified by the family attributes and qualifier dispute
Marker in the row identified by Article Title:

Mutation m = new Mutation("Article Title");
m.putDelete("attributes", "disputeMarker");
batchWriter.addMutation(m);

Subsequent reads of this row will no longer include the attributes:disputeMarker
column.

Delete | 125

Any number of deletes can be included in a mutation, and deletes can be included in
a mutation along with puts, but one should avoid including a delete and put for the
same column in the same mutation if timestamps are not specified by the client or if
timestamps are the same. We go into more detail on this in the next section.

Deleting and Reinserting
Usually deleting a key and reinserting it with a different value is not necessary in
Accumulo. The new key-value pair can just be inserted, and it will become the most
recent version for that key.

However, some applications may want to delete all earlier versions of a key before
creating a new version. A delete key sorts before an identical key without the delete
flag set. As a result, you can’t delete a key and insert the same key in a single mutation
if Accumulo is managing the timestamps. Accumulo will assign the same timestamp
to both keys, and the nondelete key will be deleted by the delete key. To delete a key
and reinsert it, first add a mutation containing the delete key to the BatchWriter,
flush the BatchWriter so the mutation is sent to Accumulo, then add a mutation con‐
taining the new key to the BatchWriter. This will ensure that the new key is assigned
a later timestamp than the delete key (Figure 3-11).

If you are managing your own timestamps, the same effect can be achieved in a single
mutation by giving the new key a later timestamp than the delete key. If the applica‐
tion logic requires that the timestamp on the key must stay the same, the process is
more complicated. Firstly, you would not be able to replace the value for a key by
inserting the key again with an identical timestamp. Versioning behavior is not well
defined when rows have identical keys, to include the same timestamp.

Secondly, after a delete key is inserted, the delete key remains in Accumulo until a full
major compaction has been executed on the tablet containing the key. This is the only
kind of compaction that reads and rewrites all data for a tablet, thereby ensuring that
none of the tablet’s files contains a key that should have been deleted. To reinsert a
different value for a key at the same timestamp, insert a delete entry for that key,
request a compaction so that the delete key and all earlier versions of the key are
purged, wait for the compaction to finish, and then insert the new key. If your table is
small, you can compact the entire table, but if it is large that can take a long time and
tax Accumulo’s resources. Instead you can compact the row containing the desired
key. Using timestamps in this manner is discouraged because it works against the key
versioning inherent in Accumulo.

126 | Chapter 3: Basic API

Figure 3-11. An entry inserted after a delete

Removing Deleted Data from Disk
Data masked by a delete key can still reside on disk until files have been reprocessed
in compactions. For a discussion of ensuring that deleted data is removed from disk
at a particular time, see “Ensuring that deletes are removed from tables” on page 450.

Batch Deleter
The Accumulo client API provides a method for deleting ranges of keys simultane‐
ously using the BatchDeleter. The BatchDeleter is kind of a combination of a
BatchScanner and a BatchWriter in that it takes multiple ranges to be deleted and
simply inserts delete markers for any key-value pairs in those ranges.

This would otherwise require writing code to use a BatchScanner to fetch each key-
value pair, convert each key-value pair returned into a mutation, put a delete into the
mutation that matches the key-value pair, and then submit those mutations to a
BatchWriter.

The BatchDeleter does all this for us. The BatchDeleter does not perform these
operations more efficiently than our own code would, but it provides a clean client
API for performing them.

To use a BatchDeleter, first instantiate it much like a BatchWriter:

BatchWriterConfig config = new BatchWriterConfig();
config.setMaxMemory(1000000L);
config.setMaxWriteThreads(10);
config.setMaxLatency(10, TimeUnit.SECONDS);
int numThreads = 10;

Delete | 127

BatchDeleter deleter = conn.createBatchDeleter("table_name", auths, numThreads,
 config);

Next we add a set of ranges as we do for a BatchScanner:

deleter.setRanges(ranges);

We can optionally fetch a subset of columns or apply iterators to this scan to further
refine the set of entries to be deleted. These settings are applied as they are for the
BatchScanner.

Finally, we call delete() to perform the scans and insert delete markers:

deleter.delete();

We should also call close() to release the resources used by the BatchDeleter as it
creates multiple threads to perform its work.

Here is an example of how a BatchDeleter might be used to delete a set of articles
from our WikipediaArticles table:

public boolean deleteArticles(final String ... titles) throws IOException {

 if (closed)
 throw new IOException("client closed");

 BatchWriterConfig config = new BatchWriterConfig();
 config.setMaxMemory(1000000L);
 config.setMaxWriteThreads(10);
 config.setMaxLatency(10, TimeUnit.SECONDS);
 int numThreads = 10;

 try {
 BatchDeleter deleter = conn.createBatchDeleter(
 WikipediaConstants.ARTICLES_TABLE, auths, numThreads, config);
 deleter.setRanges(transform(newArrayList(titles), rangeConverter));
 deleter.delete();
 deleter.close();

 return true;
 } catch (TableNotFoundException | MutationsRejectedException ex) {
 logger.error(ex.getMessage());
 }
 return false;
}

For an efficient method of simply removing a large range of rows from a table
without inserting deletion entries for each key-value pair, see the deleterows com‐
mand in the Table API in “Deleting Ranges of Rows” on page 135.

128 | Chapter 3: Basic API

Testing
Applications can be tested in several ways other than with a fully distributed Accu‐
mulo instance. These include the MockAccumulo and the MiniAccumuloCluster
classes.

MockAccumulo
MockAccumulo is an in-memory instance that can be used to test applications without
setting up an Accumulo instance.

Obtaining a new MockInstance is done as follows:

Instance instance = new MockInstance();

The instance can be used to write and read data, which it stores in memory. The data
will disappear when the instance is destroyed or the JVM stops.

Because the MockAccumulo cluster operates this way, it is especially useful for unit
testing.

MiniAccumuloCluster
Accumulo ships with a class called MiniAccumuloCluster that can be used to write
unit tests for Accumulo clients without having to set up a full Accumulo cluster. It
supports the full Accumulo client API so tests can write data and read it back to ver‐
ify correct behavior.

Unlike the MockInstance, which operates entirely in memory, the MiniAccumuloClus
ter writes to a temporary directory on the local disk for the duration of the test. This
allows tests to be run where a minicluster is set up and kept running while other
instantiations of the JVM that operate against this minicluster can be started and
stopped. For example, we can start up a cluster and obtain the instance name, Zoo‐
Keeper servers, and username and password from one JVM, then run a class in
another JVM using those settings to write data, and a third to read data.

Setting up the Accumulo minicluster is done via:

import com.google.common.io.Files;

File tempDirectory = Files.createTempDir();
MiniAccumuloCluster accumulo = new MiniAccumuloCluster(tempDirectory,
 "password");
accumulo.start();
Instance instance = new ZooKeeperInstance(accumulo.getInstanceName(),
 accumulo.getZooKeepers());

Once an instance is started, Connector objects can be obtained:

Testing | 129

Connector conn = instance.getConnector("root", new PasswordToken("password"));

The MiniAccumuloCluster must be explicitly stopped via the stop() method:

accumulo.stop();

Many of the examples in this book are run against the MiniAccumuloCluster.

Now that we have the basic API under our belt, we can start building basic applica‐
tions for Accumulo. Use of uninitialized value within @id_list in sprintf at index-
xml.pl line 407, <> chunk 2009. In the following chapters, we’ll look at more API
methods for managing tables, handling security, pushing application logic to the
server side, and some useful table designs.

130 | Chapter 3: Basic API

CHAPTER 4

Table API

Although most Accumulo client code will consist of reading and writing data as we
have outlined in Chapter 3, many administrative functions are also available via the
client API. Accumulo requires very little setup before an application can write data.
Unlike relational databases and even some other NoSQL databases, Accumulo does
not require any upfront declaration about the structure of the data to be stored in
tables. Row IDs and columns do not have to be specified before data is written, nor
does information about the lengths or types of values. The bare minimum required to
begin writing and reading data is simply to provide a name when creating a new
table.

However, the Accumulo API does provide a wide array of features for configuring
and tuning tables and for controlling cluster actions. We outline those features in this
chapter. Most of these operations can also be carried out via shell commands. We list
the API methods here and the shell commands in “Table Operations” on page 440.

Basic Table Operations
Accumulo provides an API for creating, renaming, and deleting tables. This API can
be used to manage the construction and lifecycle of tables entirely within an
application.

Permission to perform various table operations—such as creating, reading, writing,
altering, and deleting tables—is controlled on a per-user basis. More information on
these permissions can be found in “Table Permissions” on page 181.

Creating Tables
Tables can be created via the TableOperations object:

131

TableOperations ops = connector.tableOperations();
ops.createTable('myTable');

The TableOperations object allows us to check whether a table exists and to delete a
table as well:

if(ops.exists('myTable'))
 ops.delete('myTable');

Tables can also be created through the Accumulo shell:

user@accumulo> createtable myTable

In our example code, we need to create a table to store Wikipedia articles. For this
we’ll use the following code:

TableOperations ops = connector.tableOperations();
if(!ops.exists("WikipediaArticles")) {
 ops.createTable("WikipediaArticles");
}

We can obtain a list of tables by calling the list() method:

SortedSet<String> tables = ops.list();

In the shell, this command is called tables:

user@accumulo> tables
accumulo.root
accumulo.metadata

In Accumulo 1.6, all Accumulo instances start with two tables, the root table and the
metadata table. These keep track of which tablet server is hosting each tablet, and
other information about the system. The use of these tables for internal operations is
described in Chapter 10.

Options for creating tables
Newly created Accumulo tables have several default settings. Many of these are set at
reasonable values for a range of cluster sizes and may not require changing.

Options that can be set via the API on a table at creation time are whether to enable
versioning and what timestamp type is used. The VersioningIterator is enabled by
default and configured to remove all but the latest version of each key. In addition, as
of Accumulo 1.6, the DefaultKeySizeConstraint is also enabled, which rejects any
keys that are larger than 1 MB, though values can still be larger. The constraint on key
sizes is designed to help prevent performance degradation due to memory require‐
ments of larger keys. We discuss iterators and constraints at length in “Iterators” on
page 209 and “Constraints” on page 201.

The VersioningIterator can be disabled with an additional parameter to the crea
teTable() method:

132 | Chapter 4: Table API

boolean useVersioningIterator = false;
ops.createTable('myTable', useVersioningIterator);

Both the VersioningIterator and the DefaultKeySizeConstraint can be disabled
when you create a table in the shell with the --no-default-iterators flag:

user@accumulo> createtable myTable --no-default-iterators

The default time type is TimeType.MILLIS. This instructs tablet servers to use the cur‐
rent system time in milliseconds since the Unix epoch when assigning timestamps to
mutations that have no timestamps provided by the client, which is common.

The other possibility is TimeType.LOGICAL, which uses a one-up counter. Logical time
can be enabled through the API like this:

boolean useVersioningIterator = true;
ops.createTable('myTable', useVersioningIterator, TimeType.LOGICAL);

Or in the shell:

user@accumulo> createtable myTable -tl

Most table settings can be changed, enabled, or disabled after a
table is created. However, the time type of a table cannot be
changed after the table is created.

When creating tables, you may want to consider placing them into their own name‐
space, which we discuss in “Table Namespaces” on page 160.

Logical Time Example
Let’s observe the timestamps Accumulo sets for a simple table using TimeType.LOGI
CAL:

user@accumulo> createtable -tl testTable
user@accumulo testTable> addsplits m
user@accumulo testTable> insert a b c d
user@accumulo testTable> insert e f g h
user@accumulo testTable> insert w x y z
user@accumulo testTable> insert i j k l
user@accumulo testTable> scan -st
a b:c [] 1 d
e f:g [] 2 h
i j:k [] 3 l
w x:y [] 1 z
user@accumulo testTable> flush -w

Basic Table Operations | 133

There are two tablets. In the first tablet are entries for rows a, e, and i, with insert
timestamps 1, 2, and 3, matching their insert order. In the second tablet there is only
one entry for row w, with insert timestamp of 1.

Now let’s take a look at some entries in the Accumulo metadata table. This is a more
complex table that also uses TimeType.LOGICAL. It will be interesting to see its entries
ordered by their timestamps, so let’s reorder them after we retrieve them from a scan:

$./bin/accumulo shell -u user -p password -e "scan -st -t \
 accumulo.metadata" | sort -t" " -k4,4
...
3< srv:dir [] 18 hdfs://node-1.example.com:8020/apps/accumulo/tables/3/
 default_tablet
3< loc:1497335ebb20011 [] 20 node-1.example.com:9997
3< ~tab:~pr [] 21 \x01m
3;m loc:1497335ebb20011 [] 22 node-1.example.com:9997
3;m srv:dir [] 22 hdfs://node-1.example.com:8020/apps/accumulo/tables/3/
 t-0000090
3;m ~tab:~pr [] 22 \x00
3;m file:hdfs://node-1.example.com:8020/apps/accumulo/tables/3/t-0000090/
 F0000093.rf [] 26 208,3
3;m last:1497335ebb20011 [] 26 node-1.example.com:9997
3;m srv:flush [] 26 1
3;m srv:lock [] 26 tservers/node-1.example.com:9997/
 zlock-0000000001$1497335ebb20011
3;m srv:time [] 26 L3
3< file:hdfs://node-1.example.com:8020/apps/accumulo/tables/3/default_tablet/
 F0000094.rf [] 27 173,1
3< last:1497335ebb20011 [] 27 node-1.example.com:9997
3< srv:flush [] 27 1
3< srv:lock [] 27 tservers/node-1.example.com:9997/
 zlock-0000000001$1497335ebb20011
3< srv:time [] 27 L1

We’ll focus on only those metadata entries for our test table, without going into great
detail about what each entry means. More information on the contents of the meta‐
data table can be found in Appendix B.

In examining the entries, we can see the results of six mutations, applied at time‐
stamps 18, 20, 21, 22, 26, and 27. At time 18, the table was created and the default
directory for its tablet was written in column srv:dir. At time 20, the tablet was
assigned to a tablet server, whose address was written in the loc column. At times 21
and 22, a split occurred, creating tablet 3;m, assigning it a srv:dir and loc, and
changing the key ranges for both tablets by setting their ~tab:~pr columns. At times
26 and 27, a flush occurred, writing a new filename for each tablet in the file col‐
umn, as well as some other metadata. During this flush, the most recent timestamp
for each tablet was written to the srv:time column. We can see that the 3;m tablet has
most recent time 3, while the 3< tablet has most recent time 1, which agrees with the
entries we have written to the test table.

134 | Chapter 4: Table API

Futhermore, we also know that mutations were applied at timestamps 19, 23, 24, and
25, and that the entries with those timestamps must have been overwritten by subse‐
quent mutations.

This illustrates that analyzing what happens in an application when entries are inser‐
ted into Accumulo can be a complex task. The logical time type makes this task some‐
what easier, although both time types serve the essential purpose of guaranteeing
insert order into a tablet. TimeType.LOGICAL should only be used for applications for
which the actual time of insert does not matter, only the ordering of inserts.

Renaming
Tables can be renamed via the rename() method. If a table is assigned to a user-
defined namespace, the new name must include the same namespace as the old name
(we cover naming tables within a namespace in “Creating” on page 161):

ops.rename("oldName", "newName");

In the shell this can be done via the renametable command:

user@accumulo oldname> renametable oldname newname
user@accumulo newname>

Deleting Tables
Tables can be deleted via the delete() method:

 void delete(String tableName)

This will remove the table, its configuration, and all data from the system. Disk space
will not be reclaimed from HDFS until the Accumulo garbage collector has a chance
to identify the files that were used by the deleted table and remove them from HDFS.

Tables can be deleted in the shell via the deletetable command:

user@accumulo> deletetable myTable
deletetable { myTable } (yes|no)? yes
Table: [myTable] has been deleted.
user@accumulo>

Deleting Ranges of Rows
A range of rows within a table can be deleted via the deleteRows() method. This can
be used to remove a specific range, or to eliminate all rows within a table without
removing the table itself. To remove a range of rows, specify a start and end row to
the deleteRows() method:

Basic Table Operations | 135

Text startRow = new Text("k");
Text endRow = new Text("r");
ops.deleteRows("myTable", startRow, endRow);

When you specify start and end rows, the deleteRows() method
will remove rows that sort after but not including the start row, and
rows that sort before and including the end row.

To delete all rows from the beginning of the table, use null for the start row parame‐
ter. In this example, all rows from the beginning of the table to the specified end row
will be deleted:

Text endRow = new Text("r");
ops.deleteRows("myTable", null, endRow);

Similarly, rows after a specific start row to the end of the table can be deleted:

Text startRow = new Text("k");
ops.deleteRows("myTable", startRow, null);

To remove all rows, use null for both the start and end row. This is equivalent to
truncating a table in a relational database. Removing all rows will leave the table and
its configuration intact:

ops.deleteRows("myTable", null, null);

These operations can be done in the shell using the deleterows command:

user@accumulo> deleterows --table myTable --begin-row k --end-row r

To delete rows beginning at the start of the table, or ending at the end of the table, or
both, the --force flag must be present:

user@accumulo> deleterows --table myTable --begin-row k --force
user@accumulo> deleterows --table myTable --end-row r --force

To remove all rows (truncate), simply specify --force with no start or end row:

user@accumulo> deleterows --table myTable --force

Deleting Entries Returned from a Scan
The previous section outlined deleting a simple range of rows. All columns for all
rows specified will be deleted in that case.

But we might want to delete a more complex set of entries—for example, not just all
columns for all rows in a range, but perhaps just certain columns.

136 | Chapter 4: Table API

We cover a method for deleting entries that would be returned in a particular scan
configuration with a BatchDeleter in “Batch Deleter” on page 127. The same func‐
tionality is available in the shell via the deletemany command.

Configuring Table Properties
Tables have a set of properties that control the features that are enabled and that tune
table behavior. There are three main methods for setting, removing, and viewing
these settings.

To list the current properties for a table, use the getProperties() method:

for(Entry<String,String> property : ops.getProperties(String tableName))
 System.out.println(property.getKey() + "\t" + property.getValue());

This can be done in the shell via the config command. The config command and
other commands that run on a specific table can either use the default table or the
table specified with the --table or -t option. The Accumulo shell displays the cur‐
rent table in the command prompt, if the current table is set. The following prompt
shows that the current table is myTable, switches to another table, and runs the con
fig command on myTable:

user@accumulo myTable> table otherTable
user@accumulo otherTable> config --table myTable
-----------+---+----------------------
SCOPE | NAME | VALUE
-----------+---+----------------------
default | table.balancer | org.apache.accumu...

To set a property, use the setProperty() method. For example, to change the replica‐
tion factor for new files associated with this table we could do the following:

ops.setProperty("myTable", "table.file.replication", "1");

This can be done in the shell via the config command with the -s or --set option
followed by the name and value of the property to set, separated by =:

user@accumulo> config --table myTable --set table.file.replication=1

To remove a property, use the removeProperty() method. Removing a property
causes the table to revert to the default setting for a property. For example, if we
remove the table-specific setting for table.file.replication, the table will revert to
the default setting of 0, which indicates that the HDFS default replication factor
should be used:

ops.removeProperty("myTable", "table.file.replication");

This can be done in the shell via the config command and the -d or --delete option
specifying the property to be removed:

user@accumulo> config --table myTable --delete table.file.replication

Basic Table Operations | 137

These methods can be used to set a variety of properties that enable certain features
or alter table behavior as we describe in the following sections. In some cases, the
TableOperations object provides additional convenience methods for setting multi‐
ple related properties simultaneously, but these can always be set using the setProp
erty() and removeProperty() methods.

Locality Groups
Locality groups allow application designers to direct Accumulo to store certain sets of
column families together on disk. This allows some sets of column families to be read
from disk without having to read data from all the other column families. Locality
groups are the reason that Accumulo and other Bigtable-style systems are sometimes
grouped under the columnar NoSQL data stores category. We introduce the concept of
locality groups in “Column Families” on page 19.

Accumulo’s locality groups are easy to set up and manage. Locality groups do not
have to be specified during table creation, and changes to locality groups are effected
via background compaction processes, so that tables can remain online and available
through these changes.

A new table has only one default locality group, and all column families that might
ever appear in a table are assigned to it. To assign some column families to a separate
locality group from the default, the setLocalityGroups() method of TableOpera
tions can be used:

Set<Text> groupOne = new HashSet<>();
groupOne.add(new Text("colFamA"));
groupOne.add(new Text("colFamB"));

Set<Text> groupTwo = new HashSet<>();
groupTwo.add(new Text("colFamC"));
groupTwo.add(new Text("colFamD"));

Map<String,Set<Text>> groups = new HashMap<>();
groups.put("localityGroupOne", groupOne);
groups.put("localityGroupTwo", groupTwo);

ops.setLocalityGroups("myTable", groups);

Any column families not included in this mapping will remain in the default locality
group. If new column families appear in the table they will also be stored in the
default locality group.

Column families can be moved to a new locality group at any time. Newly written
files will group data on disk according to the locality group settings at the time the file
is created. This is true for either minor compaction or major compaction.

138 | Chapter 4: Table API

The current assignment of column families to locality groups can be seen via the get
LocalityGroups() method of TableOperations:

for(Map<String,Set<Text>> group : ops.getLocalityGroups("myTable").entrySet()) {
 System.out.println("\nGroup: " + group.getKey());

 for(Text colFam : group.getValue()) {
 System.out.println(colFam.toString());
 }
}

Locality groups example
In our Wikipedia application, we have a situation that can benefit from using locality
groups. We store the article text in the content column along with the article metadata
columns together in the same row for each article.

This is convenient for reading all the information for a particular article; we can scan
a single row to get what we need.

Other times this may not be so convenient. Consider the case when we want to read
out one metadata column from multiple rows. We’d have to read large chunks of text
from the content column and filter it out as we scan from one row to the next
(Figure 4-1).

Using a locality group to separate the content and metadata columns from one
another on disk allows us to leave the content on disk when we’re only reading meta‐
data columns, but also preserves the ability to read content and metadata together
when we need to (Figure 4-2). The trade-off is that reading out all the columns of a
row will be slightly less efficient because we’ll have to read from two portions of a file
instead of one.

Basic Table Operations | 139

Figure 4-1. Reading over one column family still requires filtering out other column
families

We can apply locality group assignments to our column families using the following
example code:

public void setupLocalityGroups(final boolean compact) throws
 AccumuloException,
 AccumuloSecurityException,
 TableNotFoundException {

 Set<Text> contentGroup = new HashSet<>();
 contentGroup.add(WikipediaConstants.CONTENTS_FAMILY_TEXT);

 Set<Text> metadataGroup = new HashSet<>();
 metadataGroup.add(WikipediaConstants.METADATA_FAMILY_TEXT);

 Map<String, Set<Text>> groups = new HashMap<>();
 groups.put("contentGroup", contentGroup);
 groups.put("metadataGroup", metadataGroup);

 conn.tableOperations().setLocalityGroups(WikipediaConstants.ARTICLES_TABLE,
 groups);
 ...

140 | Chapter 4: Table API

Figure 4-2. Column families in different locality groups are stored together on disk

Any newly written files will be organized according to these locality groups. To cause
any existing files to be reprocessed to reflect the locality group assignment, we can
compact our table (we cover the compact command in “Compacting” on page 149):

public void setupLocalityGroups(final boolean compact) throws
 AccumuloException,
 AccumuloSecurityException,
 TableNotFoundException {
 ...
 if(compact) {
 conn.tableOperations().compact(
 WikipediaConstants.ARTICLES_TABLE,
 null,
 null,
 false,
 false);
 }
}

Now when using our WikipediaClient.scanColumn() method in the example code
to read a metadata column, tablet servers will not have to read out any data from the
content column family, resulting in better scan performance.

Basic Table Operations | 141

Bloom Filters
A bloom filter is a highly memory-efficient data structure for keeping track of set
membership with allowed false positives but no false negatives. False positives in this
situation mean that some percentage of the time, when we check a bloom filter to see
if particular item is in a set, it will return the answer yes when the item is not actually
in the set. But having no false negatives means that the bloom filter will never say no
when the item is actually in the set.

This comes in handy in an Accumulo context when we are looking for a particular
key in a table. Enabling bloom filters on a table will allow us to consult the bloom
filter to see if a particular key is in a file associated with a tablet. By consulting the
bloom filter, we can figure out if a file doesn’t contain a key at all instead of having to
seek into and read the data portion of the file.

This is especially useful because often a key will exist in only one file when multiple
files are associated with a tablet. Therefore, we often only need to read one file to
retrieve the key-value pair. This can reduce the time to look up a particular key-value
pair from hundreds of milliseconds, if there are many files, to perhaps tens of
milliseconds.

Of course, because bloom filters can return false positives, some percentage of the
time the bloom filter will say that a file has a key when it doesn’t. In this case we look
in the file and find out that the key we want isn’t there after all, but this is acceptable
behavior. We sometimes search files we don’t need to but are guaranteed never to skip
a file that does contain our key.

Bloom filters are most useful when an application performs lots of
lookups of single rows. They are less useful when an application
mostly performs scans over multiple rows. A bloom filter is only
consulted for ranges containing keys from a single row.

The cost of using bloom filters is the memory they take up. When bloom filters are
enabled, each file has a bloom filter generated for it when it is created. This filter is
stored along with the file and is, by default, lazily loaded into memory by the tablet
server.

By default bloom filters are not enabled on tables, but they can be enabled via the
TableOperations object:

ops.setProperty("myTable", "table.bloom.enabled", "true");

These can also be enabled and other settings configured via the standard config
command in the shell:

user@accumulo> config -t myTable -s table.bloom.enabled=true

142 | Chapter 4: Table API

http://en.wikipedia.org/wiki/Bloom_filter

After bloom filters are enabled, newly written files will have bloom filters generated
for them. Existing files will not. Compaction of older files will cause new files to be
written with bloom filters for existing data. See “Compacting” on page 149 for details
on scheduling compaction operations for a table.

Additional options that can be set and their defaults are as follows:

table.bloom.error.rate

This property specifies the desired acceptable error rate for the bloom filter, as a
percentage. A lower error rate will require that more memory be used. The
default value is 0.5%.

table.bloom.hash.type

This property defines the type of hash function to use when storing and looking
up items in the bloom filter. The default hash function type is murmur.

table.bloom.load.threshold

Even when enabled, bloom filters are lazily loaded to keep the cost of loading a
new tablet low. By default, a tablet server will wait until at least one seek that
could have used a bloom filter is actually performed before loading the bloom fil‐
ter from disk into memory. This behavior can be changed via the
table.bloom.load.threshold property. Setting this property to 0 will cause a
bloom filter to be loaded when the file is opened.

table.bloom.size

Bloom filters are configured with a particular number of slots. The combination
of this property and the desired error rate ultimately determines the amount of
memory dedicated to the bloom filter. The default value is 1,048,576 bytes, or
1 MB.

Key functors
Bloom filters can be configured to use just the row ID; a combination of row ID and
column family: or row ID, column family, and column qualifier when checking to see
if a key exists in a file.

For example, by default bloom filters only check to see if a file contains the same row
ID as a given key. If a key has the same row ID as any key store in a file, the bloom
filter will return yes to the question of whether or not the file should be opened. This
could result in more false positives, because the keys in a file can be for the same row
but different columns than the one our key identifies.

On the other hand, storing more than just the row ID in the bloom filter makes the
lookup more specific. But this can cause the bloom filter to use up more memory in
order to maintain the desired false positive rate, because there are more possible iden‐
tifiers to be stored in the bloom filter.

Basic Table Operations | 143

The portion of the key stored in a bloom filter and used for lookups is controlled by
the key functor.

The functor used can be configured on a per-table basis via the
table.bloom.key.functor property. Accumulo ships with three possible functors:

org.apache.accumulo.core.file.keyfunctor.RowFunctor

Causes only the row ID to be used when the bloom filter is consulted. This is the
default setting.

org.apache.accumulo.core.file.keyfunctor.ColumnFamilyFunctor

Causes the row ID and the column family to be used when the bloom filter is
consulted.

org.apache.accumulo.core.file.keyfunctor.ColumnQualifierFunctor

Causes the row ID, column family, and column qualifer to be used when the
bloom filter is consulted.

Additional functors can be created by extending the org.apache.accu

mulo.core.file.keyfunctor.KeyFunctor Java interface. This can be used to make a
bloom filter take advantage of an application’s access patterns when deciding whether
to search a file for a particular range.

Caching
Caching data in memory is extremely important to the performance of many conven‐
tional database applications. Often a separate set of processes designed to keep part or
all of a database’s data in memory are used to keep the operational load placed on a
database low.

In contrast, Accumulo is designed to make data access fast—even when data is
fetched from disk—by keeping data organized, and to scale up the number of opera‐
tions that can be performed by distributing data across multiple machines. Applica‐
tions can then exploit spatial locality by doing one seek to find a set of related key-
value pairs, which are then read off of disk sequentially at a high rate.

However, Accumulo also employs its own caching mechanisms to allow applications
to take advantage of temporal locality. Temporal locality refers to the situation in
which key-value pairs that have been accessed once are more likely to be accessed
again within a short period of time. With caching, key-value pairs that are fetched
several times within a short period are fetched from disk once and stored in memory.
Subsequent accesses to the desired key-value pairs are fast because they can read from
memory instead of going to disk again.

In particular, Accumulo provides two types of caches. The first is an index cache,
which stores the internal key-to-data block mapping for each file of a tablet. These

144 | Chapter 4: Table API

indexes are used to identify which block of a file should be read from disk to satisfy a
read request. By default the index cache is enabled.

Another cache, the data block cache, is used to store data blocks read from files. By
default the data block cache is disabled.

Whether or not temporal locality exists for a particular table
depends on the access patterns of an application. For applications
that tend to fetch the same sets of key-value pairs several times in a
short period, enabling the data block cache can improve perfor‐
mance considerably, depending on the memory resources available.
Applications that don’t perform multiple fetches of the same sets of
key-value pairs within a short time will not see a benefit from ena‐
bling the data block cache. Having the data block cache enabled for
applications that scan large swaths of a table will not provide a ben‐
efit and can cause data blocks for other tables to be evicted from
memory, decreasing the benefit of caching data blocks for those
other tables.

Application designers can enable or disable either cache for a particular table in the
usual manner, via the setProperty() method. The data block cache property is called
table.cache.block.enable, and the index cache property is
table.cache.index.enable:

ops.setProperty("myTable", "table.cache.block.enable", "true");

The page for an individual table in the Accumulo monitor will show the index cache
hit rate and the block or data cache hit rate.

Tablet Splits
Accumulo automatically splits tablets when they reach a certain size threshold and
tends to create uniformly sized tablets that are load-balanced evenly across the clus‐
ter. Many applications have no need to alter the split points of a table.

However, in some instances applications might want to control the split points for a
table, or to obtain a list of splits.

One scenario for splitting a tablet manually is when you are preparing to stream a
large volume of writes to a new table or a new set of tablets within a table. For exam‐
ple, let’s say we have an application that wants to keep track of user interactions on a
daily basis. We can choose to organize our table by defining row IDs consisting of the
day followed by a user ID:

2015-03-14_usernameK

Basic Table Operations | 145

So each day, all of our writes will be sorted toward the end of the table, because the
date portion of the row ID begins with the date. This is a problem, because the tablet
that spans from the last known row to positive infinity is only hosted by one tablet
server. Our ingest will be limited to the write throughput of one server, no matter
how many servers we have.

User IDs may be somewhat randomly distributed throughout the day. We can
improve the distribution of our writes each day by strategically presplitting the table
with a new set of split points starting with tomorrow’s date, and a user ID portion
based on perhaps the distribution of user IDs from the previous day or several days.

So if the previous day’s tablets ended up getting split automatically by Accumulo into
the following split points:

2015-03-14_usernameC
2015-03-14_usernameF
2015-03-14_usernameJ
...
2015-03-14_usernameQ
2015-03-14_usernameV

We might opt, at the end of the day on March 14, to generate the following split
points for the next day:

2015-03-15_usernameC
2015-03-15_usernameF
2015-03-15_usernameJ
...
2015-03-15_usernameQ
2015-03-15_usernameV

To add splits to a table, use the addSplits() method:

SortedSet<Text> partitionKeys = new TreeSet<>();

// add splits
partitionKeys.add(new Text("f"));
partitionKeys.add(new Text("j"));
partitionKeys.add(new Text("r"));
...

ops.addSplits("myTable", partitionKeys);

146 | Chapter 4: Table API

Adding split points, either manually or automatically, will not cause
data to be unavailable or files to be changed right away. Newly split
tablets will share files for a period of time, each owning nonover‐
lapping ranges of keys in the files. For example, one tablet might
use keys from the beginning of the file up until some midpoint key,
with another tablet using keys after that midpoint through the end
of the file. The files will continue to be shared until a major com‐
paction writes out new files, one for each tablet. Creating new splits
is primarily a matter of adding some entries to the metadata table.

We might want to take the splits from one table and apply them to a new table. A list
of splits within a table can be obtained via the listSplits() method:

Collection<Text> splits = ops.listSplits("myTable");
// note: in earlier versions of Accumulo this was called getSplits()

It is possible to obtain a sample of the splits of a table by specifying the maximum
number of splits to return. The splits will be sampled uniformly:

Collection<Text> sampleSplits = ops.listSplits("myTable", 10);
// note: in previous versions this methods was called getSplits()

Quickly and automatically splitting
Applications can control how aggressively tablet servers automatically split tablets by
setting the table.split.threshold property.

Instead of adding specific split points, applications can temporarily lower the split
threshold while live ingest is happening until a table has as many or more tablets as
there are tablet servers.

Creating splits this way can result in many tablets sharing RFiles in
HDFS initially. It is not until a major compaction is run for a tablet
that an RFile can be created that belongs exclusively to a tablet.
Shared Rfiles are not typically a problem but can cause “chop” com‐
pactions to occur when later merging tablets. When merging tab‐
lets that may have been created using the split threshold lowering
process, consider running the compact command on the table first.

To change the table split threshold, use the handy setProperty() method and specify
a new threshold in terms of bytes:

ops.setProperty("table.split.threshold", "500k");

int numTablets = 0;
int numServers = conn.instanceOperations().getTabletServers().size();

while(numTablets < numServers) {

Basic Table Operations | 147

 // wait a while
 ...
 numTablets = ops.listSplits("myTable", 10);
}

ops.setProperty("table.split.threshold", "1G");

See “Instance Operations” on page 165 for details on the instance-level opera‐
tions API.

We discuss splitting tablets for performance reasons more in “Splitting Tables” on
page 498.

Merging tablets
Tablets can become empty over time, as data is aged off, or as data is deleted from a
table, or as the result of adding splits that don’t end up reflecting the actual distribu‐
tion of the keys.

Empty tablets don’t generally cause serious problems for tables. Perhaps the biggest
issue with empty tablets is that they can cause the distribution of actual data within a
table to be uneven across servers, because the default table load balancer only looks at
the number of tablets, not the amount of data within each tablet.

Empty tablets or even just smaller tablets can be merged into larger tablets to achieve
a more uniform distribution of data across tablets.

To merge tablets in a given range, use the merge() method:

ops.merge("myTable", new Text("ja"), new Text("jd"));

There is a utility class, org.apache.accumulo.core.util.Merge, that will loop over
small tablets, merging until there are no more tablets smaller than a given size:

long goalSize = AccumuloConfiguration.getMemoryInBytes("500M");
boolean force = true;
Merge merge = new Merge();

Text start = null; // begin at the start of the table
Text end = null; // go to the end of the table

merge.mergomatic(conn, "myTable", start, end, goalSize, force);

A few other methods relating to tablets can be useful: getMaxRow() to find out the last
existing row within a range; and splitRangeByTablets(), which can be used to split
a range according to how tablets are currently split. splitRangeByTablets() is used,
for instance, in Accumulo’s MapReduce integration to align MapReduce input splits
to tablets:

148 | Chapter 4: Table API

Text getMaxRow(String tableName, Authorizations auths, Text startRow,
 boolean startInclusive, Text endRow, boolean endInclusive)

Set<Range> splitRangeByTablets(String tableName, Range range, int maxSplits)

Compacting
New writes to Accumulo tables are sent to two places by the tablet server: a sorted in-
memory data structure, called the in-memory map, and an unsorted log on disk,
called the write-ahead log. When the in-memory map reaches a certain size, it is
flushed to a new file in HDFS, a process called a minor compaction.

Applications can direct tablet servers to flush all the recent mutations from memory
to disk for a particular table via the TableOperations.flush() method. This is dif‐
ferent from the BatchWriter.flush() method, which sends all of the mutations from
a client to tablet servers.

Flushing a table can make it easier to perform certain operations, such as shutting
down a tablet server, because a flushed table’s tablets require no recovery if a tablet
server is shut down:

ops.flush(String tableName, Text start, Text end, boolean wait)

Over time, the number of files associated with each tablet increases, up to the maxi‐
mum number of files per tablet specified for the table. Tablet servers automatically
decide when to combine two or more files into one new file in a process called major
compaction. Lookups on tablets with fewer files can be carried out more quickly
because fewer disk seeks are involved in locating the start key of interest.

By default, Accumulo is tuned to allow each tablet to have several files. This has the
effect of balancing the resources dedicated to ingest with those dedicated to lookups.

Applications can choose to compact a table on demand to improve lookup perfor‐
mance via the compact() method. Unlike the periodic compactions that a tablet
server performs in the background, an application-initiated compaction will always
merge all files associated with a tablet into one file. This can also help when you are
attempting to remove deleted data from disk, or with ensuring that changes in config‐
ured options or iterators are immediately reflected in a table’s files.

Major compactions scheduled from the API or the shell will always
cause the data for each tablet to be rewritten to one new file, even
when a tablet already has only one file.
This is useful for ensuring that changes in table configuration—
affect all of the table’s data on disk.

Basic Table Operations | 149

Compactions can be scheduled over a particular range, or over an entire table. It is
also possible to request that the compact method perform a minor compaction before
starting the major compaction, and/or to make the method wait until the compac‐
tions are complete:

boolean flush = true;
boolean wait = false;

Text startRow = new Text("ja");
Text endRow = new Text("jd");

ops.compact("myTable", startRow, endRow, flush, wait);

To compact the entire table, set the start and end row parameters to null:

ops.compact("myTable", null, null, flush, wait) ;

Compacting an entire table or a range within a table can be a useful way of ensuring
that changes in table configuration are reflected in all the data stored on disk.

To configure iterators to be used just for the duration of a compaction, applications
can pass in a list of IteratorSetting objects:

List<IteratorSetting> iterators = new ArrayList<>();
...
boolean flush = true;
boolean wait = false;
void compact("myTable", start, end, iterators, flush, wait);

If compactions are already taking place, the requested compaction of a table will be
queued up and performed as soon as resources become available. A set of queued
compactions for a table can be cancelled via the cancelCompaction() method:

ops.cancelCompaction("myTable");

Compaction properties
Compactions require precious I/O and CPU resources. As such, how often compac‐
tions take place can have a large effect on query and ingest performance. The follow‐
ing are the available compaction properties and their behavior:

table.compaction.major.ratio

This property controls how aggressively tablet servers automatically compact
files. By default the setting is 3, which instructs tablet servers to compact a set of
files if their combined size is at least three times the size of the largest tablet in
the set. For example, if there were three or more files of the same size, they would
be compacted into a single file. Setting this ratio higher makes tablet servers wait
longer before combining files.

150 | Chapter 4: Table API

table.compaction.major.everything.idle

This property controls how long after the last write to a tablet to wait before con‐
sidering the tablet to be idle. A tablet server sometimes chooses to compact idle
tablets, because compacting a tablet’s files into a single file can improve query
performance. Idle compactions might never happen if the tablet server is busy.
The default idle time is one hour. Tablets that already only have one file will not
be compacted in this way.

table.compaction.minor.idle

This property tells the tablet server how long after receiving the last mutation to
leave a tablet’s data in the in-memory map before flushing to disk. Typically a
tablet server waits until the available memory is close to being used up, but in
this case, if a tablet has not seen any mutations for this period of time, the tablet
server can opt to flush the data to disk. The default is 5 minutes.

table.compaction.minor.logs.threshold

This is the maximum number of write-ahead logs that will be associated with a
tablet before the tablet server will perform a minor compaction. After the minor
compaction takes place, the tablet will no longer need the data previously written
to those logs, which will reduce recovery time if the tablet server goes down. The
default setting is 3.

Additional Properties
Several other settings can be controlled on a per-table basis. Application designers
should at least be aware of these options, because their configuration can depend on
access patterns and data used as part of the application. These include the following:

table.balancer

This controls the way that a table’s tablets are distributed throughout the cluster.
By default, a table’s tablets are spread across tablet servers so that each tablet
server has close to the same number of tablets using the DefaultLoadBalancer
class. This does not take into account the number of entries per tablet or the
number of bytes per tablet, just the number of tablets. Some tables call for a dif‐
ferent strategy of distributing tablets across servers.

To implement a custom load balancer, create a Java class that extends
org.apache.accumulo.server.master.balancer.TabletBalancer, implement‐
ing the following methods:

public abstract class TabletBalancer {

...

 /**
 * Assign tablets to tablet servers. This method is called

Basic Table Operations | 151

 * whenever the master finds tablets that are unassigned.
 * ...
 */
 abstract public void getAssignments(
 SortedMap<TServerInstance,
 TabletServerStatus> current,
 Map<KeyExtent,TServerInstance> unassigned,
 Map<KeyExtent,TServerInstance> assignments);

 /**
 * Ask the balancer if any migrations are necessary.
 * ...
 */
 public abstract long balance(
 SortedMap<TServerInstance,
 TabletServerStatus> current,
 Set<KeyExtent> migrations,
 List<TabletMigration> migrationsOut);
 ...
}

table.classpath.context

This property allows the Java CLASSPATH used for a particular table to be speci‐
fied. Iterators and other custom classes can be loaded for a particular table
without affecting the classes loaded for other tables.

tserver.memory.maps.max

This controls the amount of memory dedicated to holding newly written data in
memory before flushing to disk.

table.failures.ignore

If part of a table is unavailable for some reason—for example, if there is a prob‐
lem with HDFS data nodes serving a particular block of a file associated with a
tablet—a scan over that part of a tablet will result in an Exception. It is possible
to allow scans to proceed and return any data that is available, even in the pres‐
ence of some unavailable data by setting table.failures.ignore to true. By
default this setting is false.

table.file.blocksize

This property controls the size of HDFS file blocks used for a table. Setting this
value to be close to the split threshold means that a file can consist of just one
block and therefore can be retrieved from a single HDFS data node, which can
increase query performance.

table.file.compress.blocksize

When Accumulo writes key-value pairs to disk, they are first grouped into blocks
and, by default, compressed. The default setting is 100K, which groups 100 KB of

152 | Chapter 4: Table API

key-value pairs before compression. This means that a compressed block that
decompressed to about 100 KB will be retrieved from disk when even only a sin‐
gle key-value pair is read. If an application will mostly retrieve one, or few, small
key-value pairs, setting this property lower can result in better query perfor‐
mance. If an application will regularly scan larger ranges of key-value pairs, set‐
ting this value higher will reduce file storage overhead slightly and result in
prefetching more data from disk, which will be faster for these applications than
having files that have more, smaller blocks.

table.file.compress.blocksize.index

The files Accumulo uses to store sorted key-value pairs on disk include a section
for indexes. These indexes help a tablet server find which block or blocks of a file
to load for a particular range of keys. This property controls the size of the blocks
used to store index entries for a file. The default is 128 KB, represented as 128K.

table.file.compress.type

This property allows tables to be compressed with the specified algorithm. Accu‐
mulo ships with Gzip and LZO compression libraries. The default compression
algorithm is Gzip. Compression can be turned off by setting this property to
none, which is not recommended for most apps. In general, choosing a compres‐
sion algorithm involves a trade-off between resources needed to perform com‐
pression and the amount of compression.

table.file.max

This property sets the maximum number of files that can be associated with a
tablet. If a new file needs to be written to this tablet and the maximum number of
files is already reached, a tablet server will perform a merging minor compaction
in which one data file is rewritten along with data from memory into a new file,
so that the maximum number of files is not exceeded. Merging minor compac‐
tions are slower than compactions that simply flush out data in memory to a new
file, because they involve reading an existing file and performing a merge-sort
with data from memory to create a new file. This has the effect of slowing down
ingest while keeping the number of files that a tablet server may need to open
down to a reasonable number for any given query.

Setting this property to a value less than the value for tser

ver.scan.files.open.max will prevent a tablet server from having more files
than it is willing to open all at once. This property can be set to 0, in which case it
will default to the value of tserver.scan.files.open.max - 1.

Increasing this value will allow more new files to be flushed to disk before merg‐
ing minor compactions kick in, effectively tuning a table for faster ingest at the
expense of queries. Conversely, setting this value lower will end up throttling
ingest and will make queries faster. The default value is 15 files.

Basic Table Operations | 153

table.file.replication

Controls the number of file block replicas associated with this table. A table that
requires more fault tolerance can set this number higher. Tables that store data
that can be restored from another source can set this property lower. Fewer repli‐
cas will result in faster ingest rates. Setting this property to 0 will cause tablet
servers to use the HDFS default replication setting. 0 is the default setting.

table.file.type

Older versions of Accumulo use a file type known as the map file type. Newer
versions use a format called an RFile. The default setting for this property is rf,
meaning that new files will be written in the RFile format. See “File formats” on
page 369 for more information on these formats.

table.formatter

Some tables can have complex data elements stored in keys or values. For exam‐
ple, a table can contain a serialized Avro object. Anything that is not a Java
String will likely show up in the shell as a jumble of characters. Specifying a cus‐
tom table formatter can cause a table’s values to be printed out in a human-
readable representation. Custom Formatter classes are discussed in “Human-
Readable Versus Binary Values and Formatters” on page 311.

table.interepreter

When scans are performed in the shell, arguments are interpreted as strings. This
may not result in the type of range desired if a table’s rows or columns are not
stored as strings. For example, a table may have serialized Java Long objects as
row IDs.

When row IDs or columns that are not Java Strings are used, an alternative
interpreter can be used for performing scans within the shell. Custom inter‐
preters can be created by extending org.apache.accumulo.core.util.inter
pret.ScanInterpreter:

public interface ScanInterpreter {

 Text interpretRow(Text row);

 Text interpretBeginRow(Text row);

 Text interpretEndRow(Text row);

 Text interpretColumnFamily(Text cf);

 Text interpretColumnQualifier(Text cq);
}

154 | Chapter 4: Table API

The methods defined by the ScanInterpreter interface can be used to transform
a given start row, end row, or column name into the right format for a particular
table. The default scan interpreter is org.apache.accumulo.core.util.inter
pret.DefaultScanInterpreter. Setting a custom interpreter can be done by set‐
ting the table.interepreter property to the fully qualified class name of the
custom interpreter.

table.scan.max.memory

This is the maximum amount of memory that a server will use to batch results of
a scan before sending them to a client. For applications with typically larger
scans, setting this property higher can improve performance. The default is 512
KB (512K).

table.security.scan.visibility.default

This setting allows key-value pairs in a table that have a blank column visibility to
be considered to have a default column visibility. For example, we can store key-
value pairs with no column visibility set but have the table.security.scan.vis
ibility.default property set to public, which will have the effect of requiring
that all users performing scans against these key-value pairs in the table at least
possess the public authorization token.

When a scanner returns key-value pairs that have no column
visibility set, they will appear to have blank column visibilities
when returned to the client, even though a default visibility
can be in place. That is, the tablet server does not fill in the
column visibilities of key-value pairs returned with the default
visibility for the table.
Also, this is a scan-time setting only. It will not cause the
default column visibility to be persisted to disk within any of
the keys. This is convenient because it allows the default visi‐
bility to be changed without rewriting all the data already
stored thus far.

Key-value pairs without a column visibility set can be seen by anyone when there
is no default visibility configured. See the discussion in “Using a Default Visibil‐
ity” on page 190 for more on using the default visibility setting.

table.walog.enabled

This property controls whether to persist new writes to a log on disk before con‐
sidering a write to be successful. By default all new mutations are persisted to the
write-ahead log on disk before a tablet server reports to a client that the write
succeeded. This setting is true by default. The write-ahead log only applies to
writes written to a table via mutations added to a BatchWriter. The write-ahead

Basic Table Operations | 155

log is not involved in bulk-loading new files to a table. This setting does not need
to be set to false when using bulk loading; the write-ahead log is simply not
used. See “MapReduce and Bulk Import” on page 268 for more on bulk import.

Tables that have the write-ahead log disabled can lose data if
live writes are being streamed to servers and a server dies. The
write-ahead log should only be disabled in cases where data is
backed up elsewhere and where tables are regularly check‐
pointed, so that a consistent view of the table can be created
from replaying live writes to data from the last complete
checkpoint after a server failure.

Online Status
Accumulo tables can be brought offline, meaning they will be unavailable for queries
and writes, and they will not utilize any system resources other than disk storage.

This can be useful for tables that do not need to be available at all times but occasion‐
ally can be brought online for some queries and then taken offline again to free up
system resources for other tables. We cover another use case for taking tables offline
when discussing cloning and exporting tables in “Importing and Exporting Tables”
on page 158.

To take a table offline using the TableOperations object, use the offline() method:

ops.offline("myTable");

This will instruct all tablet servers to begin unloading all tablets for the table speci‐
fied, flushing any data in memory to disk and releasing any system resources dedica‐
ted to those tablets, such as open file handles. Because this can take some time,
depending on the size of the table, this call is asynchronous.

Applications can call this method with an additional parameter that causes the call to
wait until a table is offline:

ops.offline("myTable", true);

The accumulo.root and accumulo.metadata tables cannot be taken
offline. To operate on the files associated with these tables, Accu‐
mulo would need to be shut down.

The /tables section of the Accumulo monitor shows the online status of all tables. A
table that is offline can be brought online again with the online() method:

156 | Chapter 4: Table API

ops.online("myTable");
// or
ops.online("myTable", true);

This will instruct tablet servers to be assigned responsibility for all the tablets of the
table specified.

Tables can be taken offline and back online in the shell as well. See “Changing Online
Status” on page 444 for shell methods relating to the online status of tables.

Cloning
Tables can be cloned via the clone() method. Because all underlying files of Accu‐
mulo tables are immutable, cloning can be performed very efficiently.

When a table is cloned, it can also be optionally flushed to ensure that a consistent
view of the table is cloned at a specific point in time, via the Boolean flush parame‐
ter. A cloned table will inherit all the configuration of the original table. Some proper‐
ties of the original table can be excluded when the cloned table is created, and
properties can be optionally set to specified values as well.

A cloned table will not inherit the table permissions of the original. The user that cre‐
ated the cloned table will be the only user authorized to read and alter the table at
first:

boolean flush = true;
Map<String,String> propsToSet = new HashMap<>();
// set any properties to be different for the cloned table
...

Set<String> propsToExclude = new HashSet<>();
// identify any properties not to be copied from the original table
// defaults will be used instead unless set in propsToSet
...

ops.clone("originalTable", "newTable", flush, originalProps, propsToExclude);

Cloning is a good option when the need arises for a consistent copy of a table that can
be manipulated without affecting the original.

Using cloning as a snapshotting mechanism
Cloning can also be thought of as a way of taking a snapshot of a table at a particular
time. If something corrupts a table that is outside the fault-tolerant measures of
Accumulo—such as a bug in a client writing new data to a table or a user accidentally
deleting data—being able to restore a table from a recent snapshot can save a lot of
data and time.

Making a snapshot can be done as in this example:

Basic Table Operations | 157

...
// clone the table as a snapshot
System.out.println("Creating snapshot");

boolean flush = true;

Map<String,String> propsToSet = new HashMap<>();

Set<String> propsToExclude = new HashSet<>();

String timestamp = Long.toString(System.currentTimeMillis());

String snapshot = "myTable_" + timestamp;
ops.clone("myTable", snapshot, flush, propsToSet, propsToExclude);
...

Cloned tables as snapshots can be named with a unique identifier, such as the time
they were cloned. Restoring a snapshot could be as simple as stopping clients, delet‐
ing or renaming the primary table, and cloning the snapshot table using the original
table name as the name of the newly cloned table.

An example is as follows:

...
System.out.println("Restoring from snapshot");
ops.delete("myTable");
ops.clone(snapshot, "myTable", flush, propsToSet, propsToExclude);

// any existing scanners will no longer work
// get a new one
scan = conn.createScanner("myTable", new Authorizations());
for(Map.Entry<Key, Value> kv : scan) {
 System.out.println(
 kv.getKey().getRow() + "\t" +
 new String(kv.getValue().get()));
}
...

Importing and Exporting Tables
Accumulo tables can be exported to a directory in HDFS, or other HDFS-compatible
filesystems, and also imported.

For a table to be exported, it must be taken offline and stay offline for the duration of
the export. This ensures that there is a consistent set of files in HDFS for all tablets in
the table, and that the garbage collector process will not delete any files in the initial
list created by the export command before the files can be copied to another place.
Because offline tables are unavailable for new writes and reads, applications can
choose to clone the table instead, take the clone offline, and export the clone instead
of the original table.

158 | Chapter 4: Table API

Exporting a table will include information such as the table configuration, the split
points, and the logical time information, if any, so that when the table is imported, the
destination table will resemble the original.

To export a table, you must specify a path to a directory in HDFS in which table
information can be written:

ops.offline("myTable");
ops.exportTable("myTable", "/exports/myTable/");

The /exports/myTable directory now contains metadata information and a file con‐
taining commands for Hadoop’s distcp feature that can be used to copy the files
from our table to another HDFS instance. For instructions on doing this, see “Import,
Export, and Backups” on page 446.

Tables exported in this way can be programmatically imported into Accumulo, but
the data files must be copied first:

hadoop distcp -f /exports/myTable/distcp.txt /exports/myTable_contents

Once the files have been copied, the table can be imported with the following meth‐
ods. The files can only be imported once. To import the same table again, the distcp
command must be repeated:

ops.createTable("anotherTable");
ops.importTable("anotherTable", "/exports/myTable_contents")

Exporting and importing a table can facilitate moving a table from one Accumulo
namespace to another, because simply renaming a table to move it into a different
namespace is not possible.

Newly imported tables will have the same table configuration applied and split points
as the exported table.

Additional Administrative Methods
There are a few additional features in the administrative API.

The clearLocatorCache() method can be used to cause a client to forget the map‐
ping of tablets to servers and to learn the mapping anew by reading the metadata
table:

void clearLocatorCache(String tableName)

The tableIdMap() method will return a Java Map of table names to IDs that are used
to identify table resources in HDFS and in the metadata table. Looking up a table’s ID
can be helpful for locating files in HDFS or entries in the metadata table.

Map<String,String> tableIdMap();

Basic Table Operations | 159

The getDiskUsage() command is useful for seeing how many bytes on disk are used
by a table. The method can be used for multiple tables simultaneously:

Set<String> tables = new HashSet<>();
tables.add("testTable");

List<DiskUsage> usages = ops.getDiskUsage(tables);

System.out.println(usages.get(0).getUsage() + " bytes");

The testClassLoad() method is useful for testing whether a class can be correctly
loaded for a given table—for example, a custom iterator or constraint or other user-
defined class.

If a specific CLASSPATH is set for the table, it will be used to attempt to load the class.
The class can be tested for whether it implements a given interface:

String className = "org.my.ClassName";
String asTypeName = "org.my.Interface";
boolean canLoad = ops.testClassLoad("testTable", className, asTypeName);

To configure iterators or constraints on a table, see “Iterators” on page 209 and “Con‐
straints” on page 201, respectively.

Table Namespaces
A new feature in Accumulo 1.6 is that tables can be grouped using a namespace. For
example, one department of an organization can have a set of tables that it can name
without worrying about using the same name for a table as another department.

Here is an example of a set of tables in separate namespaces, perhaps supporting sep‐
arate applications. There are three namespaces, intranet, wiki, and sensor, perhaps
each storing data from different sources, but doing similar things such as storing
records imported, and storing index entries:

intranet.index
intranet.records
intranet.stats
wiki.index
wiki.docPartIndex
wiki.articles
wiki.audit
sensor.records
sensor.index
sensor.trends

Each namespace can use any names for their tables. In addition, some settings can be
applied at the namespace level and will affect all tables in that namespace. Namespa‐
ces provide a convenient way for configuring and managing tables in groups.

160 | Chapter 4: Table API

In a table name, the portion preceding a single dot (.) constitutes the namespace, and
the portion following the dot represents the specific table within the namespace. For
example, the metadata and root tables live within the system namespace, accumulo,
so they appear as accumulo.metadata and accumulo.root. Tables without a namespace
portion and a dot are assigned to the default namespace.

Namespaces can be controlled via the NamespaceOperations class, obtained from a
Connector object:

NamespaceOperations nsOps = conn.getNamespaceOperations();

Creating
A namespace must be created explicitly before a new table can be created within that
namespace. A namespace can only consist of letters, numbers, and underscore char‐
acters. We can also check for the existence of a namespace:

if(!nsOps.exists("myNamespace"))
 nsOps.create("myNamespace");

Now we can create tables within this namespace. To assign a table to a namespace
simply prepend the name of the namespace and a dot before the name of the table:

conn.getTableOperations().create("myNamespace.myTable");

Attempting to assign a table to a namespace, that doesn’t exist will result in an
exception.

These actions can also be done in the shell:

user@accumulo> createnamespace myNamespace
user@accumulo> createtable myNamespace.myTable

Once a table has been created in a namespace it cannot be moved
to another namespace simply by renaming. Tables can be renamed
as long as the namespace portion of the name is unchanged.
You can move a table to a namespace by exporting it to a directory
in HDFS and then importing it into a table in a different name‐
space. See “Importing and Exporting Tables” on page 158.

To obtain a list of namespaces, use the list() method:

for(String namespace : nsOps.list())
 System.out.println(namespace);

To list namespaces in the shell, use the namespaces command:

user@accumulo> namespaces
accumulo
myNamespace

Table Namespaces | 161

To get the name of the system namespace, use the systemNamespace() method. For
the name of the default namespace, use the defaultNamespace() method.

It is possible to set properties on the default namespace, and all tables in the default
namespace will be affected (we cover setting properties on namespaces in “Setting
Namespace Properties” on page 162):

String systemNS = nsOps.systemNamespace();
String defaultNS = nsOps.defaultNamespace();

Renaming
Namespaces can be renamed. In this case all the tables within the namespace will
appear under the new namespace:

nsOps.rename("myNamespace", "myNewNamespace");

In the shell this is achieved via the renamenamespace command:

user@accumulo> createnamespace ns

user@accumulo> createtable ns.test

user@accumulo ns.test> tables
accumulo.metadata
accumulo.root
ns.test

user@accumulo ns.test> renamenamespace ns newns
user@accumulo newns.test> tables

accumulo.metadata
accumulo.root
newns.test

Setting Namespace Properties
Any properties configured on a namespace will be applied to all the tables within it.
This makes changing the properties for a group of tables easy. Tables can still have
individual properties too, in which case they will override any corresponding name‐
space properties.

The only properties that should be applied to namespaces are those
properties that are normally applied to individual tables. These typ‐
ically begin with the table prefix. For a list of table properties, see
“Configuring Table Properties” on page 137.

To set a property, use the setProperty() method on a NamespaceOperations object:

nsOps.setProperty("myNamespace", "table.file.replication", "2");

162 | Chapter 4: Table API

The property will be propagated to all tablet servers via ZooKeeper and may take a
few seconds to affect all tables within the namespace.

Similarly, to remove a property, use the removeProperty() method. This will also be
propagated within a few seconds to tablet servers. When a property has been
removed from a namespace, the tables within the namespace inherit the system set‐
ting if it exists, or the default setting:

nsOps.removeProperty("myNamespace", "table.file.replication");

Properties of a namespace can be listed via the getProperties() method:

for(Entry<String,String>> e : getProperties("myNamespace"))
 System.out.println(e.getKey() + "\t" + e.getValue());

Setting and viewing namespace properties in the shell can be done with the -ns
option to the config command:

user@accumulo> config -ns myNamespace -s property=setting
user@accumulo> config -ns myNamespace -d property
user@accumulo> config -ns myNamespace

Deleting
Before a namespace can be deleted, all the tables within the namespace must be
deleted. Once a namespace is empty, the delete() method can be used to remove it:

nsOps.delete("myNamespace");

A NamespaceNotEmptyException will be thrown if the namespace still contains any
tables.

In the shell this can be done via the deletenamespace() command:

user@accumulo newns.test> deletenamespace newns
deletenamespace { newns } (yes|no)? yes
2014-08-23 12:14:37,297 ERROR [main] shell.Shell (Shell.java:logError(1139)) -
 org.apache.accumulo.core.client.NamespaceNotEmptyException: Namespace newns
 (Id=1) it not empty, contains at least one table

user@accumulo newns.test> deletetable newns.test
deletetable { newns.test } (yes|no)? yes
yes
Table: [newns.test] has been deleted.

user@accumulo> deletenamespace newns
deletenamespace { newns } (yes|no)? yes
yes
user@accumulo>

Table Namespaces | 163

Configuring Iterators
Similarly to the way Accumulo iterators can be configured for individual tables as
described in “Iterators” on page 209, iterators can be configured for a namespace,
which will apply the iterator to all tables within the namespace.

Iterators can be configured to be applied at all scopes (scan-time, minor compaction,
and major compaction) or specific scopes. To add an iterator on all scopes:

IteratorSetting iterSet = new IteratorSetting(10, "myIter",
 com.examples.Iterator.class);
nsOps.attachIterator("myNamespace", iterSet);

Iterators can also be applied to specific scopes. For example, you can set an iterator to
be applied at only minor compaction and major compaction times:

IteratorSetting iterSet = new IteratorSetting(10, "myIter",
 com.examples.Iterator.class);
EnumSet<IteratorScope> scopes =
 EnumSet.of(IteratorScope.MINC, IteratorScope.MAJC);
nsOps.attachIterator("myNamespace", iterSet, scopes);

The same methods available for working with iterators on individual tables can also
be used for namespaces. These include:

• checkIteratorConflicts()

• getIteratorSetting()

• listIterators()

• removeIterator()

See “Iterators” on page 209 for details on using these methods.

Configuring Constraints
Constraints can be applied to namespaces in order to control the mutations allowed
to be written to any tables within the namespace. Like the methods for configuring
iterators, these methods are identical to their table-specific counterparts and include:

• addConstraint()

• listConstraints()

• removeConstraint()

See “Constraints” on page 201 for details on using these methods.

164 | Chapter 4: Table API

Testing Class Loading for a Namespace
The testClassLoad() method can be used to check whether a class can be loaded for
a particular namespace. This is similar to the table-specific method, described in
“Additional Administrative Methods” on page 159.

Instance Operations
An Accumulo instance consists of all the processes that are participating in the same
cluster. It is possible to set instance-wide properties, and obtain information about
the instance, via the InstanceOperations object:

InstanceOperations instOps = conn.instanceOperations();

Setting Properties
Properties can be set on an instance-wide basis. Setting a property will override the
setting in accumulo-site.xml; or if a property doesn’t appear in the accumulo-site.xml
file, it will override the default.

Any type of property can be set here, whether it applies to the instance, to a name‐
space, or to an individual table:

instOps.setProperty("property", "value");

instOps.removeProperty("property");

Configuration
To retrieve a list of property settings as they appear in the accumulo-site.xml file, use
the getSiteConfiguration() method:

Map<String, String> siteConfig = instOps.getSiteConfiguration();
for(Map.Entry<String, String> setting : siteConfig.entrySet()) {
 System.out.println(setting.getKey() + "\t" + setting.getValue());
}

To retrieve a list of properties as they are currently configured in ZooKeeper, use get
SystemConfiguration(). Properties set via the shell or programmatically will be
reflected here, in addition to any set in accumulo-site.xml, as well as the defaults:

Map<String, String> sysConfig = instOps.getSystemConfiguration();
for(Map.Entry<String, String> setting : sysConfig.entrySet()) {
 System.out.println(setting.getKey() + "\t" + setting.getValue());
}

Instance Operations | 165

Cluster Information
The InstanceOperations object can be used to obtain current information about the
instance. To obtain a list of currently active tablet servers, use the getTabletServ
ers() method:

List<String> servers = instOps.getTabletServers();

To get a list of active scans for a particular tablet server, specify the tablet server in the
form IP address : port:

List<ActiveScan> scans = instOps.getActiveScans(tserver);
for(ActiveScan s : scans) {
 System.out.println(
 "age:\t" + s.getAge() + "\n"
 + "auths:\t" + s.getAuthorizations() + "\n"
 + "client:\t" + s.getClient() + "\n"
 + "columns:\t" + s.getColumns() + "\n"
 + "extent:\t" + s.getExtent() + "\n"
 + "idle:\t" + s.getIdleTime() + "\n"
 + "last contact:\t" + s.getLastContactTime() + "\n"
 + "scan id:\t" + s.getScanid() + "\n"
 + "server side iterator list:\t" + s.getSsiList() + "\n"
 + "server side iterator options:\t" + s.getSsio() + "\n"
 + "state:\t" + s.getState() + "\n"
 + "table:\t" + s.getTable() + "\n"
 + "type:\t" + s.getType() + "\n"
 + "user:\t" + s.getUser() + "\n");
}

An ActiveScan object will contain several pieces of information:

age

The time in seconds since the scan began on this server

auths

A list of authorizations to apply to this scan

client

The IP address and port number of the client process

columns

A list of columns fetched as part of the scan, or blank for all

extent

The tablet being scanned

idle

The amount of time in seconds since the scan has returned any data

166 | Chapter 4: Table API

last contact

The amount of time in seconds since the client last contacted the server

scan id

An identifier for the scan

server side iterator list

A list of iterators applied on the server side

server side iterator options

Any options applied to server-side iterators

state

One of:

• RUNNING when the scan is being performed
• IDLE when waiting for the client to request more data
• QUEUED when waiting for system resources to become available to start the

scan

table

The name of the table being scanned

type

One of:

• SINGLE for a regular Scanner
• BATCH for a BatchScanner

user

The name of the user performing the scan

Here is a sample of the information returned:

age: 3507
auths:
client: 192.168.10.70:56689
columns: []
extent: f<<
idle: 27
last contact: 27
scan id: 0
server side iterator list: []
server side iterator options: {}
state: RUNNING
table: table8

Instance Operations | 167

type: SINGLE
user: root

age: 1941
auths:
client: 192.168.10.70:56619
columns: []
extent: 6<<
idle: 27
last contact: 27
scan id: 0
server side iterator list: []
server side iterator options: {}
state: QUEUED
table: table9
type: SINGLE
user: root

age: 135
auths:
client: 192.168.10.70:56716
columns: []
extent: 7<<
idle: 1
last contact: 1
scan id: 0
server side iterator list: []
server side iterator options: {}
state: IDLE
table: table1
type: SINGLE
user: root

To list active compactions scheduled or running on a tablet server, specify the server
using a string consisting of IP address : port:

List<ActiveCompaction> compactions = instOps.getActiveCompactions(tserver);
 for(ActiveCompaction c : compactions) {
 System.out.println(
 "age:\t" + c.getAge() + "\n"
 + "entries read:\t" + c.getEntriesRead() + "\n"
 + "entries written:\t" + c.getEntriesWritten() + "\n"
 + "extent:\t" + c.getExtent() + "\n"
 + "input files:\t" + c.getInputFiles() + "\n"
 + "iterators:\t" + c.getIterators() + "\n"
 + "locality group:\t" + c.getLocalityGroup() + "\n"
 + "output file:\t" + c.getOutputFile() + "\n"
 + "reason:\t" + c.getReason(). + "\n"
 + "table:\t" + c.getTable() + "\n"
 + "type:\t" + c.getType(). + "\n");
}

The ActiveCompaction object will consist of the following information:

168 | Chapter 4: Table API

age

The length of time in seconds that the compaction has been running or
scheduled

entries read

The number of entries read from input files or from memory

entries written

The number of entries written to the output file

extent

An identifier for the tablet being compacted

input files

A list of input files

iterators

A list of iterators applied to the compaction

locality group

Any locality groups involved

output file

The path of the output file

reason
The originator of the compaction. Either:

• CHOP when part of a merge operation
• CLOSE as is done before unloading a tablet
• IDLE when a compaction is triggered by the setting tablet.compac
tion.idle

• SYSTEM when automatically triggered by the tablet server’s internal resource
manager due to data in memory, or number of files

• USER when requested by the user

table
The name of the table

type
One of:

• FULL resulting in one file for the tablet
• MAJOR combining several files into one

Instance Operations | 169

• MERGE combining in-memory data with the tablet’s smallest file
• MINOR flushing in-memory data to a new file

An example of some active compactions from the test program com.accumulo‐
book.tableapi.InstanceOpsExample.java are as follows:

==== tserver.local:56481 ====
age: 914
entries read: 43008
entries written: 43008
extent: j<<
input files: []
iterators: []
locality group:
output file: file:/var/folders/ks/ltzkjxtn5t9cb302mrgzxldm0000gn/T/
 1409356659029-0/accumulo/tables/j/default_tablet/F000002a.rf_tmp
reason: SYSTEM
table: table15
type: MINOR

age: 4519
entries read: 186368
entries written: 93184
extent: 6<<
input files: [file:/var/folders/ks/ltzkjxtn5t9cb302mrgzxldm0000gn/T/
 1409356659029-0/accumulo/tables/6/default_tablet/F000001l.rf, file:/var/
 folders/ks/ltzkjxtn5t9cb302mrgzxldm0000gn/T/1409356659029-0/accumulo/tables/
 6/default_tablet/F000001x.rf, file:/var/folders/ks/
 ltzkjxtn5t9cb302mrgzxldm0000gn/T/1409356659029-0/accumulo/tables/6/
 default_tablet/A000000f.rf, file:/var/folders/ks/
 ltzkjxtn5t9cb302mrgzxldm0000gn/T/1409356659029-0/accumulo/tables/6/
 default_tablet/F000001v.rf]
iterators: []
locality group:
output file: file:/var/folders/ks/ltzkjxtn5t9cb302mrgzxldm0000gn/T/
 1409356659029-0/accumulo/tables/6/default_tablet/A0000021.rf_tmp
reason: USER
table: table9
type: FULL

To check whether a tablet server is reachable, use the ping() method:

String ipAddress = "10.0.0.1";
String port = "9997";

try {
 instOps.ping(ipAddress + ":" + port)
} catch(AccumuloException ae) {
 System.out.println("server " + ipAddress + ":" + port + " unreachable.");
}

170 | Chapter 4: Table API

You can also test whether a class is loadable from the instance-wide classpath by call‐
ing the testClassLoad() method:

String className = "org.my.ClassName";
String asTypeName = "org.my.Interface";

boolean loadable = instOps.testClassLoad(className, asTypeName);

Precedence of Properties
Properties that are applied more specifically take precedence over those applied more
generally. For example, an instance-wide property can be overridden by a namespace-
specific property, which itself can be overridden by a table-specific property
(Figure 4-3).

Figure 4-3. Precedence of properties

For example, we might choose to change a property across all tables from the default
to a specific setting we choose. First, we’ll look at the default setting:

user@accumulo> config -f table.file.replication
-----------+--+---------

Instance Operations | 171

SCOPE | NAME | VALUE
-----------+--+---------
default | table.file.replication | 0
-----------+--+---------

The value, 0, means to use whatever the default replication setting is in HDFS.

We can change the table file replication property for all tables in all namespaces by
not specifying a namespace or table when we apply the property change:

user@accumulo> config -s table.file.replication=1
user@accumulo> config -f table.file.replication
-----------+--+---------
SCOPE | NAME | VALUE
-----------+--+---------
default | table.file.replication | 0
system | @override ... | 1
-----------+--+---------

If we now look at this property for a particular namespace or table, we see that it
inherits the system-wide setting:

user@accumulo> config -f table.file.replication -t ns.test
-----------+--+---------
SCOPE | NAME | VALUE
-----------+--+---------
default | table.file.replication | 0
system | @override ... | 1
-----------+--+---------

user@accumulo> config -f table.file.replication -ns ns
-----------+--+---------
SCOPE | NAME | VALUE
-----------+--+---------
default | table.file.replication | 0
system | @override ... | 1
-----------+--+---------

We can override the system-wide property by setting the property for a namespace:

user@accumulo> config -ns ns -s table.file.replication=2
user@accumulo> config -f table.file.replication -t ns.test
-----------+--+---------
SCOPE | NAME | VALUE
-----------+--+---------
default | table.file.replication | 0
system | @override ... | 2
-----------+--+---------

user@accumulo> config -f table.file.replication -ns ns
-----------+--+---------
SCOPE | NAME | VALUE
-----------+--+---------
default | table.file.replication | 0

172 | Chapter 4: Table API

system | @override ... | 2
-----------+--+---------

The system-wide property is still in effect for tables outside the ns namespace:

user@accumulo> config -f table.file.replication
-----------+--+---------
SCOPE | NAME | VALUE
-----------+--+---------
default | table.file.replication | 0
system | @override ... | 1
-----------+--+---------

Finally, if we set a property for a particular table, it will override the namespace
setting:

user@accumulo> config -t ns.test -s table.file.replication=3
user@accumulo> config -f table.file.replication -t ns.test
-----------+--+---------
SCOPE | NAME | VALUE
-----------+--+---------
default | table.file.replication | 0
system | @override ... | 3
-----------+--+---------

user@accumulo> config -f table.file.replication -ns ns
-----------+--+---------
SCOPE | NAME | VALUE
-----------+--+---------
default | table.file.replication | 0
system | @override ... | 2
-----------+--+---------

user@accumulo> config -f table.file.replication
-----------+--+---------
SCOPE | NAME | VALUE
-----------+--+---------
default | table.file.replication | 0
system | @override ... | 1
-----------+--+---------

Instance Operations | 173

CHAPTER 5

Security API

Accumulo controls access to data in its tables in a number of ways: authentication,
permissions, and authorizations.

These can be thought of as applying at two levels: authentication and permissions at
the higher application and table level, and authorizations—which are used along with
column visibilities—at the lower, key-value–pair level. Authentication relates to Accu‐
mulo users and how a user confirms its identity to Accumulo. Permissions control
what operations Accumulo users are allowed to perform. Authorizations control
which key-value pairs Accumulo users are allowed to see.

Accumulo provides the ability to create accounts, grant permissions, and grant
authorizations. All of these mechanisms are pluggable, with their defaults being to
store and retrieve user information in ZooKeeper. Custom security mechanisms are
discussed in “Custom Authentication, Permissions, and Authorization” on page 195.

High-level security-related operations such as creating users and granting permis‐
sions and authorizations are carried out via the SecurityOperations object, obtained
from a Connector object:

SecurityOperations secOps = conn.securityOperations();

Security operations can be logged to an audit log if Accumulo is configured to do so
(see “Auditing Security Operations” on page 194).

Low-level key-value–pair security occurs naturally whenever ColumnVisibility and
Authorizations objects are used when reading and writing data.

For any given set of security mechanisms, there are essentially two ways to manage
access control: create an account for every user using Accumulo’s security mecha‐
nisms, or create accounts for each application and delegate authentication, permis‐
sions, and authorization for each user to the application. In the latter case, it is the

175

application’s job to authenticate individual users, look up their permissions and
authorization tokens, and pass their authorizations faithfully onto Accumulo when
data is read or written. This is discussed further in “Using an Application Account for
Multiple Users” on page 198.

Authentication
Accumulo user accounts are used to limit the permissions that an application or an
individual user can carry out, and to limit the set of authorization tokens that can be
used in lookups. Some basic instance information such as instance ID, locations of
master processes, and location of the root tablet can be retrieved from the Instance
object itself. This information is available to anyone.

To retrieve any additional information from Accumulo, an application must authenti‐
cate as a particular user.

Before authenticating, the user must exist and have an AuthenticationToken associ‐
ated with it. The default type of AuthenticationToken is the PasswordToken that
simply wraps a password for the user. AuthenticationToken can be extended to sup‐
port other authentication methods such as Lightweight Directory Access Protocol
(LDAP).

To create a new user, use the createLocalUser() method:

String principal = "myApplications";
PasswordToken password = new PasswordToken("appSecret");

secOps.createLocalUser(principal, password);

// in version 1.4 and earlier
Authorizations initialAuthorizations = new Authorizations();
secOps.createUser(principal, "password".getBytes(), initialAuthorizations);

After initialization Accumulo only has one user, the root user, with
a password set at initialization time. The root user can be used to
create other user accounts and grant privileges. See “Initialization”
on page 410 for more details on setting up the root account.

To authenticate as a user, provide a username, or principal, and an AuthenticationTo
ken when obtaining a Connector object from an Instance:

String principal = "myApp";
AuthenticationToken token = new PasswordToken("appSecret");

Connector connector = instance.getConnector(principal, token);

176 | Chapter 5: Security API

In addition, the following methods will simply return whether a particular principal
and AuthenticationToken are valid:

String principal = "myApp";
AuthenticationToken token = new PasswordToken("appSecret");

boolean authenticated = authenticateUser(principal, token);

// deprecated since 1.5
boolean authenticated = authenticateUser(String user, byte[] password);

To set a user’s password, use changeLocalUserPassword():

String principal = "myUser";
PasswordToken token = new PasswordToken("newPassword");
secOps.changeLocalUserPassword(principal, token);

// in 1.5 and older
secOps.changeUserPassword(principal, "newPassword".getBytes());

To obtain a list of users, use the listLocalUsers() method:

Set<String> users = secOps.listLocalUsers();

// in 1.4 and earlier
Set<String> users = secOps.listUsers();

To remove a user from the system, use the dropLocalUser() method:

secOps.dropLocalUser("user");

// in 1.4 and earlier
secOps.dropUser("user");

Permissions
Once a user is authenticated to Accumulo, the types of operations allowed are gov‐
erned by the permissions assigned to the Accumulo user.

There are system permissions, which are global; namespace permissions assigned per
namespace; and table permissions assigned per table. Some permission names are
repeated in more than one scope. For example, there are DROP_TABLE permissions for
the system, namespace, and table scopes. These three permissions allow a user to
delete any table, delete a table within a namespace, and delete a specific table, respec‐
tively. The CREATE_TABLE permissions only appear in system and namespace, because
it does not make sense to create a specific table that already exists.

The user that creates a table is assigned all table permissions for that table. Users must
be granted table permissions manually for tables they did not create, with the excep‐
tion that all users can read the root and metadata tables.

Permissions | 177

If a user tries to perform an operation that is not allowed by the user’s current per‐
missions, an exception will be thrown.

System Permissions
System permissions allow users to perform the following actions:

GRANT

Grant and revoke permissions for users

CREATE_TABLE

Create and import tables

DROP_TABLE

Remove tables

ALTER_TABLE

Configure table properties, perform actions on tables (compact, merge, online/
offline, rename, and split), and grant or revoke permissions on tables

CREATE_USER

Create users and check permissions for users

DROP_USER

Remove users and check permissions for users

ALTER_USER

Change user authentication token or authorizations, and check permissions for
users

CREATE_NAMESPACE

Create namespaces

DROP_NAMESPACE

Remove namespaces

ALTER_NAMESPACE

Rename namespaces, configure namespace properties, and grant or revoke per‐
missions on namespaces

SYSTEM

Perform administrative actions including granting and revoking the SYSTEM per‐
mission, checking authentication for users, checking permissions and authoriza‐
tions for users, and performing table actions (merge, online/offline, split, and
delete a range of rows)

178 | Chapter 5: Security API

To grant a system permission to a user, use the grantSystemPermission() method.
For example:

String principal = "user";

secOps.grantSystemPermission(principal, SystemPermission.CREATE_TABLE);

To see whether a user has a particular system permission, use the hasSystemPermis
sion() method:

boolean hasPermission = secOps.hasSystemPermission(principal,
 SystemPermission.CREATE_TABLE);

Permissions can be revoked for users via the revokeSystemPermission() method:

secOps.revokeSystemPermission(principal, SystemPermission.CREATE_TABLE);

An example of granting a user system-wide permissions is as follows:

// get a connector as the root user
Connector adminConn = instance.getConnector("root", rootPasswordToken);

// get a security operations object as the root user
SecurityOperations adminSecOps = adminConn.securityOperations();

// admin creates a new user
String principal = "testUser";
PasswordToken token = new PasswordToken("password");
adminSecOps.createLocalUser(principal, token);

// get a connector as our new user
Connector userConn = instance.getConnector(principal, token);

// ...

// user tries to create user table in default namespace
String userTable = "userTable";

try {
 userConn.tableOperations().create(userTable);
} catch (AccumuloSecurityException ex) {
 System.out.println("user unauthorized to create table in default namespace");
}

adminSecOps.grantSystemPermission(principal, SystemPermission.CREATE_TABLE);

userConn.tableOperations().create(userTable);
System.out.println("table creation in default namespace succeeded");

Permissions | 179

Namespace Permissions
Permissions can apply to namespaces as well. Namespace permissions are granted for
a particular namespace. Some of the permissions apply to actions performed on the
namespace itself, and some apply to all tables within the namespace:

ALTER_NAMESPACE

Grant and revoke table permissions for tables in the namespace, and alter the
namespace

ALTER_TABLE

Alter tables in the namespace

BULK_IMPORT

Import into tables in the namespace

CREATE_TABLE

Create tables in the namespace

DROP_NAMESPACE

Delete the namespace

DROP_TABLE

Delete a table from the namespace

GRANT

Grant and revoke namespace permissions on a namespace, and alter the name‐
space

READ

Read tables in the namespace

WRITE

Write to tables in the namespace

To check whether a user has a permission for a given namespace, use the hasNamespa
cePermission() method:

String namespace = "myNamespace";
boolean hasNSWritePermission = secOps.hasNamespacePermission(principal,
 namespace, NamespacePermission.WRITE);

To grant a user a permission for a namespace, use the grantNamespacePermission()
method. The permission will apply to all tables within the namespace:

secOps.grantNamespacePermission(principal, namespace, NamespacePermission.WRITE);

To revoke a permission from a user for a namespace, use the revokeNamespacePer
mission() method:

180 | Chapter 5: Security API

secOps.revokeNamespacePermission(principal, namespace,
 NamespacePermission.WRITE);

A short example:

String adminNS = "adminNamespace";
adminConn.namespaceOperations().create(adminNS);

try {
 userConn.tableOperations().create(adminNS + ".userTable");
} catch (AccumuloSecurityException ex) {
 System.out.println("user unauthorized to create table in adminNamespace");
}

// allow user to create tables in the root NS
adminSecOps.grantNamespacePermission(principal, adminNS,
 NamespacePermission.CREATE_TABLE);

userConn.tableOperations().create(adminNS + ".userTable");
System.out.println("table creation in adminNamespace succeeded");

Table Permissions
Table permissions are granted per table, allowing users to perform actions on specific
tables:

READ

Scan and export the table

WRITE

Write to the table, including deleting data, and perform some administrative
actions for the table including flushing and compaction

BULK_IMPORT

Import files to the table

ALTER_TABLE

Configure table properties, perform actions on the table (compact, flush, merge,
online/offline, rename, and split), and grant or revoke permissions on the table

GRANT

Grant and revoke permissions for the table

DROP_TABLE

Remove the table

Some actions require a combination of permissions. These include:

Write conditional mutations
TablePermission.READ and TablePermission.WRITE

Permissions | 181

Clone a table
SystemPermission.CREATE_TABLE or NamespacePermission.CREATE_TABLE and
TablePermission.READ on table being cloned

To grant a table permission to a user for a table, use the grantTablePermission()
method:

String table = "myTable";

secOps.grantTablePermission(principal, table, TablePermission.WRITE);

To check whether a user has a specific permission on a table, use the hasTablePermis
sion() method:

boolean canWrite = secOps.hasTablePermission(principal, table,
 TablePermission.WRITE);

To revoke a permission from a user for a given table, use the revokeTablePermis
sion() method:

secOps.revokeTablePermission(principal, table, TablePermission.WRITE);

These actions can be carried out in the shell as well, as detailed in “Application Per‐
missions” on page 424.

An example of using table permissions is as follows:

String adminTable = "adminTable";
adminConn.tableOperations().create(adminTable);

// user tries to write data
BatchWriterConfig config = new BatchWriterConfig();
BatchWriter writer = userConn.createBatchWriter(adminTable, config);
Mutation m = new Mutation("testRow");
m.put("", "testColumn", "testValue");

try {
 writer.addMutation(m);
 writer.close();
} catch (Exception ex) {
 System.out.println("user unable to write to admin table");
}

// admin grants permission for user to write data
adminSecOps.grantTablePermission(principal, adminTable, TablePermission.WRITE);

writer = userConn.createBatchWriter(adminTable, config);

writer.addMutation(m);
writer.close();
System.out.println("user can write to admin table");

See the full listing of PermissionsExample.java for more detail.

182 | Chapter 5: Security API

Authorizations
Once a user is authenticated to Accumulo and is given permission to read a table, the
user’s authorizations govern which key-value pairs can be retrieved.

Authorizations are applied to Scanners and BatchScanners. The set of authorizations
that can be used for a particular scan is limited by the set of authorizations associated
with the user account. If a user attempts to scan with an authorization that is not
already associated with the user account specified in the Connector, an exception will
be thrown.

To see the list of authorizations associated with a user, use the getUserAuthoriza
tions() method:

Authorizations auths = secOps.getUserAuthorizations(principal);

To associate authorizations with a user, use the changeUserAuthorizations()
method. This will replace any existing authorizations associated with the user:

Authorizations auths = new Authorizations("a","b","c");
secOps.changeUserAuthorizations(principal, auths);

Be sure to include existing authorizations when using the changeU
serAuthorizations() method to add new authorization tokens, or
else previous tokens will be lost. Existing tokens can be retrieved
with the getUserAuthorizations() method.

A user’s authorizations encapsulate a set of strings, sometimes referred to as authori‐
zation tokens. These strings have no intrinsic meaning for Accumulo, but an applica‐
tion can assign its own meaning to them, such as groups or roles for its users.

For a user to be able to read data from Accumulo, a table name and a set of authoriza‐
tion tokens must be provided to either the createScanner() or the createBatchScan
ner() method of the Connector:

Scanner scan = conn.createScanner("myTable", new Authorizations("a", "b", "c"));

Because the Connector is associated with a specific user, the authorizations provided
when a Scanner or BatchScanner is obtained must be a subset of the authorizations
assigned to that user. If they are not, an exception will be thrown.

Authorizations | 183

Passing in a set of authorizations at scan time allows a user to act in
different roles at different times. It also allows applications to man‐
age their own users apart from Accumulo. You can choose to have
one Accumulo user account for an entire application and to let the
application set the authorizations for each scan based on the cur‐
rent user of the application.
Although this requires the application to take on the responsibility
for managing accurate authorizations for their users, it also pre‐
vents users from having to interact with Accumulo or the underly‐
ing Hadoop system directly, allowing more strict control over
access to your data.

See “An Example of Using Authorizations” on page 185 for an example of using less
than all of the possible authorizations associated with a user.

Column Visibilities
To determine which key-value pairs can be seen given a particular set of authoriza‐
tions, each key has a column visibility portion. A column visibility consists of a
Boolean expression containing tokens, & (and), | (or), and parentheses—such as
(a&bc)|def. Evaluation of the Boolean expression requires each string to be inter‐
preted as true or false. For a given set of authorizations, a string is interpreted as true
if it is contained in the set of authorizations.

The visibility (a&bc)|def would evaluate to true for authorization sets containing the
string def or containing both of the strings a and bc. When the visibility evaluates to
true for a given key and a set of authorizations, that key-value pair is returned to the
user. If not, the key-value pair is not included in the set of key-value pairs returned to
the client. Thus it isn’t possible to find out that a particular key-value pair exists, or to
see the full key or value, without satisfying the column visibility.

Tokens used in column visibilities can consist of letters, numbers, underscore, dash,
colon, and as of Accumulo version 1.5, can contain periods and forward slashes. As
of version 1.5, tokens can also contain arbitrary characters if the token is surrounded
by quotes, as in "a?b"&c. The corresponding authorizations do not need to be
quoted, so the minimum set of authorizations needed to view this example visibility
would contain a?b and c.

Limiting Authorizations Written
By default, if users have write permission for a table, they can write keys that they do
not have authorization to retrieve. You can change this behavior by configuring a
constraint on the table. With the VisibilityConstraint, users cannot write data
they are not allowed to read:

184 | Chapter 5: Security API

connector.tableOperations().addConstraint(tableName,
 VisibilityConstraint.class.getName());

This can also be accomplished through the Accumulo shell. When the table is cre‐
ated, add an -evc flag to the createtable command:

user@accumulo> createtable -evc tableName

To add the constraint to an existing table, use the constraint command instead:

user@accumulo> constraint -t tableName \
 -a org.apache.accumulo.core.security.VisibilityConstraint

An Example of Using Authorizations
We’ll illustrate bringing the concepts of users, permissions, authorizations, and col‐
umn visibilities together in a quick example. Let’s say we are writing an application to
keep track of the information associated with a safe in a bank. The safe contains a set
of safety deposit boxes that are used by bank employees and customers to store
objects securely.

There is an outer door to the safe that is protected by a combination known only to a
few bank employees. Other bank employees can see privileged information about the
safe, but not information about the contents of customers’ boxes.

Customers can write down and read information about safety deposit boxes they rent
but cannot see any information privileged to bank employees or other customers.

First we’ll create a table as an administrator and write initial information about a par‐
ticular safe:

// get a connector as the root user
Connector adminConn = instance.getConnector("root", rootPasswordToken);

// get a security operations object as the root user
SecurityOperations secOps = adminConn.securityOperations();

// admin creates a new table and writes some data
// protected with Column Visibilities
System.out.println("\n--- creating table ---");
String safeTable = "safeTable";
adminConn.tableOperations().create(safeTable);

The admin writes the initial information about a safe, including the name, location,
and combination:

// admin writes initial data
System.out.println("\n--- writing initial data ---");
BatchWriterConfig config = new BatchWriterConfig();
BatchWriter writer = adminConn.createBatchWriter(safeTable, config);
Mutation m = new Mutation("safe001");

Authorizations | 185

// write information about this particular safe
m.put("info", "safeName", new ColumnVisibility("public"),
 "Super Safe Number 17");
m.put("info", "safeLocation", new ColumnVisibility("bankEmployee"),
 "3rd floor of bank 2");
m.put("info", "safeOuterDoorCombo",
 new ColumnVisibility("bankEmployee&safeWorker"), "123-456-789");

// store some information about bank owned contents stored in the safe
m.put("contents", "box001",
 new ColumnVisibility("bankEmployee"), "bank charter");

// commit mutations
writer.addMutation(m);
writer.close();

Next the administrator will need to create user accounts for customers. In this exam‐
ple we’re using one account per individual user.

Each customer gets a unique user ID and authorization token, in addition to the pub
lic token:

// admin creates a new customer user
String customer = "customer003";
PasswordToken customerToken = new PasswordToken("customerPassword");
secOps.createLocalUser(customer, customerToken);

// set authorizations for user and grant permission to read and write
// to the safe table
Authorizations customerAuths = new Authorizations("public", "customer003");
secOps.changeUserAuthorizations(customer, customerAuths);
secOps.grantTablePermission(customer, safeTable, TablePermission.READ);

Now the newly created customer can log in and is prevented from seeing any infor‐
mation privileged to bank employees:

// get a connector as our customer user
Connector customerConn = instance.getConnector(customer, customerToken);

// user attempts to get a scanner with
// authorizations not associated with the user
System.out.println("\n--- customer scanning table for bank employee " +
 "privileged information ---");
Scanner scanner;
try {
 scanner = customerConn.createScanner(safeTable,
 new Authorizations("public", "bankEmployee"));

 for(Map.Entry<Key, Value> e : scanner) {
 System.out.println(e);
 }
} catch (Exception ex) {

186 | Chapter 5: Security API

 System.out.println("problem scanning table: " + ex.getMessage());
}

This results in the output:

--- customer scanning table for bank employee privileged information ---
problem scanning table:
 org.apache.accumulo.core.client.AccumuloSecurityException:
Error BAD_AUTHORIZATIONS for user customer003 on table safeTable(ID:1) -
The user does not have the specified authorizations assigned

If the customer scans the table with all the authorizations associated with his account,
she will see the information marked as public:

// user reads data with authorizations associated with the user
System.out.println("\n--- customer scanning table for allowed information ---");
scanner = customerConn.createScanner(safeTable, customerAuths);
for(Map.Entry<Key, Value> e : scanner) {
 System.out.println(e);
}

The output is:

--- customer scanning table for allowed information ---
safe001 info:safeName [public] 1409424734681 false Super Safe Number 17

The customer must be granted write access to the table before writing any informa‐
tion. The customer can then write information protected with a column visibility
consisting of just his own unique authorization token. Subsequent scans will return
this information along with the public safe information:

// admin grants write permission to user
secOps.grantTablePermission(customer, safeTable, TablePermission.WRITE);

// user writes information only she can see to the table
// describing the contents of a rented safety deposit box
System.out.println("\n--- customer writing own information ---");
BatchWriter userWriter = customerConn.createBatchWriter(safeTable, config);
Mutation userM = new Mutation("safe001");
userM.put("contents", "box004", new ColumnVisibility("customer003"),
 "jewelry, extra cash");
userWriter.addMutation(userM);
userWriter.flush();

// scan to see the bank info and our own info
System.out.println("\n--- customer scanning table for allowed information ---");
scanner = customerConn.createScanner(safeTable, customerAuths);
for(Map.Entry<Key, Value> e : scanner) {
 System.out.println(e);
}

The output is:

Authorizations | 187

--- customer writing own information ---
--- customer scanning table for allowed information ---
safe001 contents:box004 [customer003] 1409424734828 false jewelry, extra cash
safe001 info:safeName [public] 1409424734681 false Super Safe Number 17

Now the administrator will create an account for a bank employee. The bank
employee will have access to bank privileged information, public information, but not
any information associated with any customer:

// admin creates a new bank employee user
String bankEmployee = "bankEmployee005";
PasswordToken bankEmployeeToken = new PasswordToken("bankEmployeePassword");
secOps.createLocalUser(bankEmployee, bankEmployeeToken);

// admin sets authorizations for bank employee
// and grants read permission for the table
Authorizations bankEmployeeAuths = new Authorizations("bankEmployee", "public");
secOps.changeUserAuthorizations(bankEmployee, bankEmployeeAuths);
secOps.grantTablePermission(bankEmployee, safeTable, TablePermission.READ);

// connect as bank employee
Connector bankConn = instance.getConnector(bankEmployee, bankEmployeeToken);

If the bank employee attempts to scan for customer information, an exception will be
thrown:

// attempt to scan customer information
System.out.println("\n--- bank employee scanning table for customer " +
 "information ---");
Scanner bankScanner;
try {
 bankScanner = bankConn.createScanner(safeTable,
 new Authorizations("customer003"));

 for(Map.Entry<Key, Value> e : bankScanner) {
 System.out.println(e);
 }
} catch (Exception ex) {
 System.out.println("problem scanning table: " + ex.getMessage());
}

Resulting in the output:

--- bank employee scanning table for customer information ---
problem scanning table:
 org.apache.accumulo.core.client.AccumuloSecurityException:
Error BAD_AUTHORIZATIONS for user bankEmployee005 on table safeTable(ID:1) -
The user does not have the specified authorizations assigned

Now we’ll have the bank employee scan for all information she is allowed to see.
Because this employee has a set of authorizations different from the customer’s, this
view of the table will be different than the view the customer gets when doing the
same scan:

188 | Chapter 5: Security API

// bank employee scans all information they are allowed to see
System.out.println("\n--- bank employee scanning table for allowed " +
 "information ---");
bankScanner = bankConn.createScanner(safeTable, bankEmployeeAuths);

for(Map.Entry<Key, Value> e : bankScanner) {
 System.out.println(e);
}

Here is the output:

--- bank employee scanning table for allowed information ---
safe001 contents:box001 [bankEmployee] 1409424734681 false bank charter
safe001 info:safeLocation [bankEmployee] 1409424734681 false 3rd floor of bank 2
safe001 info:safeName [public] 1409424734681 false Super Safe Number 17

It is also possible to perform a scan using less than all the authorizations we possess.
In this case, the bank employee will generate a view of the table that is viewable by
users with only the public token:

// bank employee scans using a subset of authorizations
// to check which information is viewable to the public
System.out.println("\n--- bank employee scanning table for only public " +
 "information ---");
bankScanner = bankConn.createScanner(safeTable, new Authorizations("public"));

for(Map.Entry<Key, Value> e : bankScanner) {
 System.out.println(e);
}

Here is the view generated:

--- bank employee scanning table for only public information ---
safe001 info:safeName [public] 1409424734681 false Super Safe Number 17

Finally, we may want to protect the table against attempts to write information to a
key-value pair that is protected with a visibility that the writing user cannot satisfy.
This prevents confusing situations in which a user writes data but then cannot read it
out:

// admin protects table against users writing new data they cannot read
adminConn.tableOperations().addConstraint(safeTable,
 "org.apache.accumulo.core.security.VisibilityConstraint");

// customer attempts to write information protected with a bank authorization
// which would erase the combination for the outer door of the safe
System.out.println("\n--- customer attempting to overwrite bank " +
 "information ---");
try {
 userM = new Mutation("safe001");
 userM.put("info", "safeOuterDoorCombo",
 new ColumnVisibility("bankEmployee&safeWorker"), "------");
 userWriter.addMutation(userM);

Authorizations | 189

 userWriter.flush();
} catch (Exception e) {
 System.out.println("problem attempting to write data: " + e.getMessage());
}

This results in the error:

--- customer attempting to overwrite bank information ---
problem attempting to write data: # constraint violations :
1 security codes: {} # server errors 0 # exceptions 0

Even if users are able to write a new key-value pair using the same
row ID and column as an existing key, they can only cause the
newly written key-value pair to obscure the old key-value pair, via
Accumulo’s VersioningIterator, which by default returns only
the newest version of a key-value pair. It would be possible in this
case to configure a scan to read more than one version for a key,
which would allow authorized users to see the old key-value pair.
But it would not be possible for the new key-value pair to cause the
value of the old key-value pair to become visible. According to the
column visibility of the new key-value pair, it would simply be
obscured.
This inability to expose information this way, by writing new key-
value pairs, makes it possible to build highly secure applications
more easily, because applications do not have to explicitly prevent
this issue.

Using a Default Visibility
You may have noticed in our example application that all key-value pairs were pro‐
tected with at least one token in a column visibility. We used the public token to
denote information that everyone was able to read, and distributed the public
authorization token to all users.

190 | Chapter 5: Security API

It is possible to have a table in which some key-value pairs have column visibilities
and others do not. The default behavior for unlabeled data is to allow any user to read
it. This can be changed by applying a default visibility to a table.

When the default visibility is specified, unlabeled key-value pairs will be treated as if
they are labeled with the default column visibility.

To specify the default visibility for a table, set the table.security.scan.visibil
ity.default property to the desired column visibility expression.

For example:

ops.setProperty("table.security.scan.visibility.default", "public");

When key-value pairs with empty labels are scanned, if they are returned as part of
the scan they are displayed as having a blank column visibility, even when a default
visibility is set.

Here is an example of the way a view of a table will change after the default visibility
is set. First we’ll create a table that has a key-value pair with a blank column visibility
and see it show up in all scans:

// get a connector as the root user
Connector conn = instance.getConnector("root", rootPasswordToken);

// create an example table
String exampleTable = "example";
conn.tableOperations().create(exampleTable);

// write some data with col vis and others without
BatchWriterConfig config = new BatchWriterConfig();
BatchWriter writer = conn.createBatchWriter(exampleTable, config);
Mutation m = new Mutation("one");

m.put("", "col1", "value in unlabeled entry");
m.put("", "col2", new ColumnVisibility("public"), "value in public entry");
m.put("", "col3", new ColumnVisibility("private"), "value in private entry");

writer.addMutation(m);
writer.close();

// add auths to root account
conn.securityOperations().changeUserAuthorizations("root",
 new Authorizations("public", "private"));
// scan with no auths
System.out.println("\nno auths:");
Scanner scan = conn.createScanner(exampleTable, Authorizations.EMPTY);
for(Map.Entry<Key, Value> e : scan) {
 System.out.println(e);
}

// scan with public auth

Authorizations | 191

System.out.println("\npublic auth:");
scan = conn.createScanner(exampleTable, new Authorizations("public"));
for(Map.Entry<Key, Value> e : scan) {
 System.out.println(e);
}

// scan with public and private auth
System.out.println("\npublic and private auths:");
scan = conn.createScanner(exampleTable,
 new Authorizations("public", "private"));
for(Map.Entry<Key, Value> e : scan) {
 System.out.println(e);
}

The output of this is as follows:

no auths:
one :col1 [] 1409429068159 false value in unlabeled entry

public auth:
one :col1 [] 1409429068159 false value in unlabeled entry
one :col2 [public] 1409429068159 false value in public entry

public and private auths:
one :col1 [] 1409429068159 false value in unlabeled entry
one :col2 [public] 1409429068159 false value in public entry
one :col3 [private] 1409429068159 false value in private entry

Now we’ll add a default visibility:

// turn on default visibility
System.out.println("\nturning on default visibility");
conn.tableOperations().setProperty(exampleTable,
 "table.security.scan.visibility.default", "x");

// scan with no auths
System.out.println("\nno auths:");
scan = conn.createScanner(exampleTable, Authorizations.EMPTY);
for(Map.Entry<Key, Value> e : scan) {
 System.out.println(e);
}

// scan with public auth
System.out.println("\npublic auth:");
scan = conn.createScanner(exampleTable, new Authorizations("public"));
for(Map.Entry<Key, Value> e : scan) {
 System.out.println(e);
}

// scan with public and private auth
System.out.println("\npublic and private auths:");
scan = conn.createScanner(exampleTable,
 new Authorizations("public", "private"));
for(Map.Entry<Key, Value> e : scan) {

192 | Chapter 5: Security API

 System.out.println(e);
}

The output for this now appears as:

turning on default visibility
no auths:

public auth:
one :col2 [public] 1409429068159 false value in public entry

public & private auths:
one :col2 [public] 1409429068159 false value in public entry
one :col3 [private] 1409429068159 false value in private entry

Making Authorizations Work
For authorizations to be effective in protecting access to data in Accumulo, applica‐
tions and users must:

1. Properly apply column visibilities to data at ingest time.
2. Apply the right authorizations at scan time.

Often Accumulo applications will rely on using specially vetted libraries for creating
the proper column visibilities. If not, then ingest clients can be individually reviewed
and trusted.

For retrieving authorizations, a separate service can be employed to manage the asso‐
ciation of individual users to their sets of authorizations. This service is trusted by the
application, and the application itself is trusted to faithfully pass along the authoriza‐
tions retrieved from such a service to Accumulo.

A typical deployment can be like that shown in Figure 5-1.

Authorizations | 193

Figure 5-1. A typical Accumulo deployment

Auditing Security Operations
Accumulo can be configured to log security operations. Auditing is configured in the
auditLog.xml file in the Accumulo conf/ directory. The logging is done via the Java
log4j package and by default is configured to log via a DailyRollingFileAppender
to a local file named <hostname>.audit in the Accumulo log directory. The following
section of the auditLog.xml file configures the logging level:

<logger name="Audit" additivity="false">
 <appender-ref ref="Audit" />
 <level value="OFF"/>
</logger>

By default, logging is turned off. To enable logging security operations that fail due to
lack of permissions, set the level to WARN:

<level value="WARN"/>

To log all security operations, set the level to INFO. This will include successful secu‐
rity operations logged as operation: permitted as well as unsuccessful operations log‐
ged as operation: denied. Scanning with an authorization the user does not possess is
an example of an operation that would be logged as denied at the INFO level:

194 | Chapter 5: Security API

<level value="INFO"/>

Custom Authentication, Permissions, and Authorization
The authentication, permissions, and authorization tasks for Accumulo accounts are
handled in ZooKeeper by default. These tasks are handled by three classes: ZKAuthen
ticator for authenticating users, ZKAuthorizor for associating users with authoriza‐
tions, and ZKPermHandler for determining what actions a user can carry out on the
system and tables.

As of Accumulo version 1.5 developers can provide custom classes that override these
default security mechanisms. This allows organizations that manage users and their
authorizations in a centralized system to integrate those existing systems with Accu‐
mulo. In these cases, the custom classes must be available to server processes and
specified in the accumulo-site.xml configuration file.

Not all of the three mechanisms must be overridden at the same time. For example,
you can choose to rely on ZooKeeper for permissions handling and authentication,
while using a custom authorization mechanism.

The default configuration of these mechanisms’ properties is shown in Table 5-1.

Table 5-1. Accumulo authentication and authorization properties

Setting name Default Purpose

instance.security.authorizor org.apache.accu

mulo.server.security.han

dler.ZKAuthorizor

Associate users with authorization
tokens

instance.security.authenticator org.apache.accu

mulo.server.security.han

dler.ZKAuthenticator

Authenticate users

instance.security.permissionHandler org.apache.accu

mulo.server.security.han

dler.ZKPermHandler

Manage users’ system and table-level
permissions

These settings cannot be changed in ZooKeeper on a running cluster. They must be
changed in the accumulo-site.xml file and require a restart of Accumulo for the
changes to take effect.

Creating a custom mechanism is done by implementing the Authenticator, Authori
zor, or PermissionHandler interface. These interfaces define the methods required
by Accumulo to determine the access restrictions for user requests.

Custom Authentication, Permissions, and Authorization | 195

Custom Authentication Example
Here we’ll implement a trivial authenticator that uses only one hardcoded username
and password. This would be impractical for any real-world deployment because no
changes to the initial settings are possible, but it will help us illustrate the process of
configuring and deploying a custom authentication scheme.

For this incredibly simple example we’ll implement only a few methods, shown in the
following code. The rest of the methods of the interface that must be implemented we
will leave empty:

public class HardCodedAuthenticator implements Authenticator {

 @Override
 public boolean authenticateUser(String principal, AuthenticationToken token)
 throws AccumuloSecurityException {
 return principal.equals("onlyUser") &&
 new String(((PasswordToken)token).getPassword()).equals("onlyPassword");
 }

 @Override
 public Set<String> listUsers() throws AccumuloSecurityException {
 HashSet<String> users = new HashSet<String>();
 users.add("onlyUser");
 return users;
 }

 @Override
 public boolean userExists(String user) throws AccumuloSecurityException {
 return user.equals("onlyUser");
 }

 @Override
 public Set<Class<? extends AuthenticationToken>> getSupportedTokenTypes() {
 return (Set)Sets.newHashSet(PasswordToken.class);
 }

 @Override
 public boolean validTokenClass(String tokenClass) {
 return tokenClass.equals(PasswordToken.class.toString());
 }
 ...
}

We can build and deploy our example code JAR as described in “Deploying JARs” on
page 407.

Next we need to stop Accumulo if it’s running and configure it to use our Authentica
tor. In practice, custom security mechanisms like this should most likely be config‐
ured before Accumulo is initialized, so that the proper authorizations and
permissions can be coordinated with the creation of the initial root user.

196 | Chapter 5: Security API

We’ll only change the authenticator in accumulo-site.xml in this example:

<property>
 <name>instance.security.authenticator</name>
 <value>com.accumulobook.tableapi.HardCodedAuthenticator</value>
</property>

Once configuration is done, we can start up Accumulo and attempt to authenticate
using the username onlyUser and password onlyPassword:

[centos@centos]$ bin/accumulo shell -u onlyUser
Password: ************

Shell - Apache Accumulo Interactive Shell
-
- version: 1.6.0
- instance name: test
-
- type 'help' for a list of available commands
-
onlyUser@test> tables
accumulo.metadata
accumulo.root
trace

Any attempt to use our previous root account will fail:

[centos@centos]$ bin/accumulo shell -u root
[shell.Shell] ERROR: org.apache.accumulo.core.client.AccumuloSecurityException:
 Error BAD_CREDENTIALS for user root - Username or Password is Invalid
[centos@centos]$

Our hardcoded user account will not have permissions to manipulate anything, or
any authorizations, so it is not very practical. In practice, these custom mechanisms
will need to store information in a centralized location accessible to all processes, as
the default ZooKeeper implementation does. For example, you could use a simple
relational database or an LDAP service.

Custom authorizers and permissions handlers can be created and deployed similarly.

Other Security Considerations
In addition to column visibilities being properly applied at ingest time and the proper
authorizations retrieved and used in scans, there are some other things to consider
when building a secure application on the Accumulo API:

Other Security Considerations | 197

• Direct access to tablet servers must be limited to trusted applications—because
the application is trusted to present the proper authorizations at scan time. A
rogue client may be configured to pass in authorizations the user does not have.

• Access to the underlying HDFS instance must not be allowed. Otherwise an
HDFS client could open and read all the key-value pairs stored in Accumulo’s
files without presenting the proper authorizations.

• Similarly, access should be disallowed to the underlying Linux filesystem on
machines on which tablet server and HDFS DataNode processes run.

• Access to ZooKeeper should be restricted because Accumulo uses it to store con‐
figuration information about the cluster, including the list of Accumulo accounts
and passwords.

Using an Application Account for Multiple Users
Many Accumulo applications do not create accounts through Accumulo for each
individual user. This is because some clients choose to do their own authentication
and authorization of individual users via a centralized service within an organization.
Clients are therefore trusted to present user credentials properly.

When applications are deployed this way, client applications must still authenticate
themselves to Accumulo before performing any reads or writes. Administrators and
application designers can restrict the privileges that a client has to particular tables, as
well as the maximal set of authorizations the client is allowed to pass for any of the
users it is serving. This way, even though users can have more authorizations granted
to them than an application requires, a client application’s account can be restricted to
those authorizations deemed necessary to carry out the actions of that particular
application.

Network
The network that Accumulo uses to communicate between nodes and to HDFS and
ZooKeeper should be protected against unauthorized access. Most Accumulo deploy‐
ments do not use Secure Socket Layer (SSL) between nodes, but rather use SSL
between user browsers and trusted web applications.

See “Network Security” on page 417 for more information on securing the network
for an Accumulo deployment.

Disk Encryption
Disks can be encrypted to prevent unauthorized reading of the data should a physical
hard drive be stolen. But if those with physical access to the cluster are not trusted,

198 | Chapter 5: Security API

then the operating system and memory of the machines participating in the Accu‐
mulo cluster would have to be similarly protected. When running Accumulo in mul‐
titenant environments, such as a cloud infrastructure-as-a-service provider like
Amazon’s EC2 or Rackspace, consideration should be given to the security precau‐
tions implemented by the service provider.

For both situations—running in a cluster without trusting those with physical access
or running in the cloud—it may be feasible to employ application-level encryption of
values and to devise keys that are not sensitive. This is problematic when it comes to
building a secondary index, which can rely on the ordering of values to perform
scans.

If scans across ranges of terms in an index can be foregone, then using a strategy
involving hashes of values as keys can still provide fast simple lookups. Ranges of
terms could no longer be scanned because secure hashes of index terms would, by
virtue of the design of hash functions, no longer have any meaningful sort order. In
this case, adjacent keys would have no relationship to each other.

Accumulo also supports encryption of data at rest via modules that implement the
org.apache.accumulo.core.security.crypto.CryptoModule interface, which con‐
sists of the following methods:

CryptoModuleParameters getEncryptingOutputStream(CryptoModuleParameters params)

CryptoModuleParameters getDecryptingInputStream(CryptoModuleParameters params)

CryptoModuleParameters generateNewRandomSessionKey(CryptoModuleParameters params)

CryptoModuleParameters initializeCipher(CryptoModuleParameters params)

The DefaultCryptoModule class is an example that can be used to encrypt data stored
in HDFS. This implementation stores the master key along with files in HDFS, which
may not meet security requirements. For details on configuring Accumulo to use this
or other modules, see “Encryption of Data at Rest” on page 422.

Other Security Considerations | 199

CHAPTER 6

Server-Side Functionality and
External Clients

Beyond reading and writing data, configuring tables, and securing data, Accumulo
has a few additional concepts that can be used to add functionality to tables, and for
performing some computation on the server side. These mechanisms are optional but
can have a drastic impact on application performance, depending on the access pat‐
terns and updates that an application requires.

Constraints
Tables can apply logic to data that is about to be written to determine if a given muta‐
tion should be allowed. This logic is implemented by creating a constraint. Con‐
straints are classes that implement a simple filtering function that is applied to every
mutation before writing it to a table.

Constraints can be used to ensure that all data in a table conforms to some specifica‐
tion. This helps simplify applications, because they can then assume that the data read
from this table has already been checked for conformity.

For example, we can choose to constrain the values inserted into a table to be of a
certain type, such as a number. This allows applications to avoid having to check the
type of values returned.

If a mutation fails a constraint’s criteria, the mutation will be rejected and a code
returned, indicating which criterion was violated. For example:

try {
 writer.addMutation(m);
}
catch (MutationsRejectedException e) {

201

 List<ConstraintViolationSummary> violations =
 e.getConstraintViolationSummaries();

 for(ConstraintViolationSummary v : violations) {
 System.out.println(v.getConstrainClass() +
 "\n" + v.getNumberOfViolatingMutations() +
 "\n" + v.getViolationDescription());
 }
}

If a constraint is violated, we only see how many mutations were involved and which
criterion failed. Applications will need to examine the mutations submitted to deter‐
mine which mutations failed and which did not and were submitted successfully.
Retrying the mutations that violate constraints will result in another exception.

Constraints can be used to help debug new clients without the chance for corrupting
data in the table, or for limiting dynamic data inserted to that which conforms to the
constraints—perhaps saving off the data that fails to another place for inspection.

For example, if we are ingesting data from another database and we expect it to con‐
form to a specific schema but the schema has since changed, our constraint that
enforces the expected schema will immediately detect the change. This will halt our
ingest process until we can figure the situation out. Relational databases operate this
way and some applications may want to do this.

Other applications can take advantage of Accumulo’s flexibility in storing any type of
value and any set of columns to write data that is not well understood to a table where
it can be explored.

Constraint Configuration API
To add a constraint to a table, use the addConstraint() method of the TableOpera
tions object:

TableOperations ops = conn.tableOperations();

ops.addConstraint("myTable", MyConstraint.class.getName());

A table can have several constraints applied. To see the list of constraints for a table,
use the listConstraints() method:

Map<String,Integer> constraints = ops.listConstraints("myTable");

This will return the name of the constraint as well as a unique ID number assigned to
the constraint. This number can be used to remove a constraint via the removeCon
straint() method:

ops.removeConstraint("myTable", 2);

202 | Chapter 6: Server-Side Functionality and External Clients

By default, tables in Accumulo 1.6 have the DefaultKeySizeConstraint enabled.
This constraint rejects mutations that contain keys larger than 1MB in size. This can
prevent a tablet server from running out of memory when loading RFile indexes con‐
taining very large keys.

Constraint Configuration Example
In this example, we’ll create a mutation that violates the DefaultKeySizeConstraint.
It will fail. Then we’ll disable the constraint and apply the mutation successfully.

First, we’ll look at the table constraint configuration:

Connector conn = ExampleMiniCluster.getConnector();

TableOperations ops = conn.tableOperations();
ops.create("testTable");

for(Map.Entry<String, Integer> c : ops.listConstraints("testTable").entrySet()) {
 System.out.println(c);
}

This shows the constraint and its ID number:

org.apache.accumulo.core.constraints.DefaultKeySizeConstraint=1

Now we’ll try to insert a key with a 5 MB column qualifier, which exceeds the con‐
straint’s criterion of all keys being under 1 MB. When we try to flush to the table, an
exception will be thrown and we can see what constraint violations occurred:

// create a column qualifier that is 5MB in size

StringBuilder sb = new StringBuilder();
for(int i=0; i < 1024 * 1024; i++) {
 sb.append("LARGE");
}

String largeColQual = sb.toString();

BatchWriter writer = conn.createBatchWriter("testTable",
 new BatchWriterConfig());
Mutation m = new Mutation("testRow");

m.put("", largeColQual, "");

try {
 writer.addMutation(m);
 writer.flush();
 System.out.println("successfully written");
}
catch (MutationsRejectedException ex) {

 List<ConstraintViolationSummary> violations =

Constraints | 203

 ex.getConstraintViolationSummaries();

 for(ConstraintViolationSummary v : violations) {
 System.out.println(v.getConstrainClass() +
 "\n" + v.getNumberOfViolatingMutations() +
 "\n" + v.getViolationDescription());
 }
}

The output is:

org.apache.accumulo.core.constraints.DefaultKeySizeConstraint
1
Key was larger than 1MB

Now we’ll disable the constraint and try again.

In particular, it is a good idea to leave the DefaultKeySizeCon
straint enabled, because it will help prevent large data elements
from causing memory issues in tablet servers. Data elements larger
than 1 MB are likely best suited for storage as the value of a key-
value pair and not in the key.

// remove constraint and try again
ops.removeConstraint("testTable", 1);

for(Map.Entry<String, Integer> c : ops.listConstraints("testTable").entrySet()) {
 System.out.println(c);
}

writer = conn.createBatchWriter("testTable", new BatchWriterConfig());

try {
 writer.addMutation(m);
 writer.flush();
 System.out.println("successfully written");
} catch (MutationsRejectedException ex) {

 List<ConstraintViolationSummary> violations =
 ex.getConstraintViolationSummaries();

 for(ConstraintViolationSummary v : violations) {
 System.out.println(v.getConstrainClass() +
 "\n" + v.getNumberOfViolatingMutations() +
 "\n" + v.getViolationDescription());
 }
}

Now we see that there are no constraints on the table when we list them, and the out‐
put shows:

successfully written

204 | Chapter 6: Server-Side Functionality and External Clients

Creating Custom Constraints
To create a constraint, create a class that implements the Constraint interface:

public interface Constraint {

 String getViolationDescription(short violationCode);

 List<Short> check(Environment env, Mutation mutation);
}

Next we’ll show a custom constraint example.

Custom Constraint Example
Let’s say we have an application that keeps track of personal information, such as age,
height, and weight. We’d like to make sure that every time we track weight, we track
height too, and vice versa. Further, height and weight should be restricted to sensible
values. At the very least they should be nonnegative.

We can create a constraint to apply these restrictions to all mutations before they are
committed to the table. Any application that reads our table is then guaranteed that if
it finds a height column in a row, the weight column can also be found. Applications
also don’t have to check whether the values are negative, because our constraint will
have done that for us.

The code for our example constraint consists primarily of two methods. One is for
checking a new mutation, and the other is for mapping violation codes to human-
readable explanations. First, we’ll implement our check() method:

private static final short INVALID_HEIGHT_VALUE = 1;
private static final short INVALID_WEIGHT_VALUE = 2;
private static final short MISSING_HEIGHT = 3;
private static final short MISSING_WEIGHT = 4;

final static List<Short> NO_VIOLATIONS = new ArrayList<>();
final static byte[] heightBytes = "height".getBytes();
final static byte[] weightBytes = "weight".getBytes();

@Override
public List<Short> check(Environment env, Mutation mutation) {

 List<Short> violations = null;

 List<ColumnUpdate> updates = mutation.getUpdates();

 boolean haveHeight = false;
 boolean haveWeight = false;

 for(ColumnUpdate update : updates) {

Constraints | 205

 // check height update
 if(equalBytes(update.getColumnQualifier(), heightBytes)) {
 haveHeight = true;
 if(!isNonNegativeNumberString(update.getValue())) {
 if(violations == null)
 violations = new ArrayList<>();
 violations.add(INVALID_HEIGHT_VALUE);
 }
 }

 // check weight update
 if(equalBytes(update.getColumnQualifier(), weightBytes)) {
 haveWeight = true;
 if(!isNonNegativeNumberString(update.getValue())) {
 if(violations == null)
 violations = new ArrayList<>();
 violations.add(INVALID_WEIGHT_VALUE);
 }
 }
 }

 // if we have height, we must also have weight
 if(haveHeight && ! haveWeight) {
 if(violations == null)
 violations = new ArrayList<>();
 violations.add(MISSING_WEIGHT);
 }

 // if we have weight, we must also have height
 if(haveWeight && !haveHeight) {
 if(violations == null)
 violations = new ArrayList<>();
 violations.add(MISSING_HEIGHT);
 }

 return violations == null ? NO_VIOLATIONS : violations;
}

Next we’ll implement getViolationDescription() to map violation codes to strings:

@Override
public String getViolationDescription(short violationCode) {
 switch(violationCode) {
 case INVALID_HEIGHT_VALUE:
 return "Invalid height value";
 case INVALID_WEIGHT_VALUE:
 return "Invalid weight value";
 case MISSING_HEIGHT:
 return "Missing height column";
 case MISSING_WEIGHT:
 return "Missing weight column";
 }

206 | Chapter 6: Server-Side Functionality and External Clients

 return null;
}

We have a few helper methods, too. In particular, when looking for a column quali‐
fier, we want to compare byte arrays rather than converting byte arrays to strings. We
also write a method for checking the type and range of values:

private boolean equalBytes(byte[] a, byte[] b) {
 return Value.Comparator.compareBytes(a, 0, a.length, b, 0, b.length) == 0;
}

// return whether the value is a string representation of a non-negative number
private boolean isNonNegativeNumberString(byte[] value) {
 try {
 double val = Double.parseDouble(new String(value));
 return val >= 0.0;
 } catch(NumberFormatException nfe) {
 return false;
 }
}

Now we can test our constraint by writing some mutations to a test table. First, we’ll
create a table and enable our constraint on it (see “Deploying JARs” on page 407 for
information on deploying a JAR in production):

TableOperations ops = conn.tableOperations();
ops.create("testTable");

// add our custom constraint
ops.addConstraint("testTable", ValidHeightWeightConstraint.class.getName());

for(Map.Entry<String, Integer> c : ops.listConstraints("testTable").entrySet()) {
 System.out.println(c);
}

We can see our constraint in the list of table constraints printed out:

com.accumulobook.advanced.ValidHeightWeightConstraint=2
org.apache.accumulo.core.constraints.DefaultKeySizeConstraint=1

Now we’ll try to write a mutation that we know will fail—a row with just a height
column and no weight column:

BatchWriter writer = conn.createBatchWriter("testTable",
 new BatchWriterConfig());

// create an invalid mutation with only a height update
Mutation m = new Mutation("person");
m.put("", "height", "6.0");

writeAndReportViolations(writer, m);

We get an exception with the information:

Constraints | 207

com.accumulobook.advanced.ValidHeightWeightConstraint
1
Missing weight column

Now we’ll add a weight column, but give it a negative value:

// create a mutation with a valid height but
// an invalid weight value
m = new Mutation("person");
m.put("", "height", "6.0");
m.put("", "weight", "-200.0");

// try to write
writer = conn.createBatchWriter("testTable", new BatchWriterConfig());
writeAndReportViolations(writer, m);

This results in the output:

com.accumulobook.advanced.ValidHeightWeightConstraint
1
Invalid weight value

Finally, we create a sensible mutation, with both height and weight, and valid values
for both:

// create a valid mutation this time
m = new Mutation("person");
m.put("", "height", "6.0");
m.put("", "weight", "200.0");

writer = conn.createBatchWriter("testTable", new BatchWriterConfig());
writeAndReportViolations(writer, m);

Our output now shows:

successfully written

We can also check to make sure mutations that are missing both height and weight
can succeed:

// write a mutation that has nothing to do with weight or height
m = new Mutation("person");
m.put("", "name", "Joe");

writer = conn.createBatchWriter("testTable", new BatchWriterConfig());
writeAndReportViolations(writer, m);

Our mutation succeeded:

successfully written

208 | Chapter 6: Server-Side Functionality and External Clients

Iterators
Accumulo provides a server-side programming framework called iterators, which can
be used to customize a table’s behavior. An iterator is a simple function applied on the
server that can apply logic to one or more key-value pairs. Because Accumulo is
doing work to ensure that key-value pairs are always kept in sorted order, there is a
convenient opportunity to apply additional logic to these key-value pairs.

An iterator can be applied to filter out certain key-value pairs based on some criteria,
or to combine, aggregate, or summarize the values of several related key-value pairs.
Some iterators transform the value of a key-value pair into a new value.

Imagine the case in which we have several versions of the same key-value pair. We
can configure an iterator to choose the version with the maximum numerical value.
Or we can choose to sum across or append the values to produce a composite value.
We’ll get into the specifics of these types of iterators in the following sections.

Iterators and Coprocessors
Iterators are a feature unique to Accumulo. They are not described in the original
Bigtable paper from Google. The opportunity to apply user-defined functions on the
server side for a variety of useful reasons became apparent to the Accumulo develop‐
ers as a consequence of implementing the internal logic of sorting key-value pairs
from multiple sources such as files and in-memory structures, and filtering based on
visibilities.

A later paper from Google about a project called Percolator describes additional pro‐
cesses that run alongside tablet servers, called coprocessors, but these are different
from iterators in that coprocessors are separate processes that do not run in the same
memory space as tablet servers.

Other Bigtable implementations have adopted various server-side programming
mechanisms. HBase employs coprocessors that run in region server memory. (For
more on HBase, see HBase: The Definitive Guide [O’Reilly].) placing them somewhere
between Accumulo’s iterators and Google’s coprocessors.

There is also a young project called Fluo that is implementing coprocessors for Accu‐
mulo.

Iterators are applied in succession so that each iterator uses, as its source data,
another iterator’s output. Each iterator’s output consists of sorted key-value pairs. To
determine the order in which the iterators are applied, each iterator is assigned a pri‐
ority. In each scope, the iterators are applied successively from the lowest priority to
the highest.

Iterators | 209

http://bit.ly/bigtable_paper
http://bit.ly/bigtable_paper
http://bit.ly/percolator_paper
http://shop.oreilly.com/product/0636920014348.do
https://github.com/fluo-io

Tablet servers apply several iterators by default to all key-value pairs for functions
such as basic merge-sorting, selecting key-value pairs based on column family and
column qualifiers specified in scanner options, skipping deleted data, and filtering
out key-value pairs that the user is not authorized to see (Figure 6-1).

Figure 6-1. Iterators are applied in a stack

Each iterator has an opportunity to filter out key-value pairs, collect information, or
transform values. User-configured iterators are applied after all the system iterators
have processed key-value pairs.

A series of iterators is applied in the three scopes in which a tablet server processes
data:

Minor compaction
When flushing the sorted in-memory map to a sorted file on disk

Major compaction
When combining some number of sorted files into a single file

210 | Chapter 6: Server-Side Functionality and External Clients

Scan
When reading all of its sorted in-memory and on-disk structures to answer a
scan query

These scopes are labeled minc, majc, and scan, respectively.

Iterators applied at minc and majc time permanently change the data stored in Accu‐
mulo. Scan-time iterators can be applied for all scans of a table, or on a per-scan basis.

Iterator Configuration API
To configure an iterator through the Java API, create an IteratorSetting object. At a
minimum, provide the iterator’s priority and its class. The priority determines the
order in which iterators are applied; the lower the number, the earlier the iterator is
applied.

You can also provide a shorthand name for the iterator. If this isn’t provided, the sim‐
ple name for the class will be used as its name.

Once the object is created, the convention is for parameters specific to a given iterator
to be set via static methods of that iterator. Then the iterator can be added to the table
or to a particular scanner.

For example, to configure an age-off filtering iterator, we could use the following
code:

int priority = 15;
IteratorSetting setting = new IteratorSetting(priority, AgeOffFilter.class);
AgeOffFilter.setTTL(setting, 3600000);

TableOperations ops = connector.tableOperations();
ops.attachIterator(tableName, setting);

By default, this adds the iterator to all scopes, but which scopes to use can be supplied
with an EnumSet passed to the attachIterator() method. The following would
apply the iterator to all future scans of the table:

ops.attachIterator(tableName, setting, EnumSet.of(IteratorScope.scan));

To configure the iterator to be used only for a particular scanner, use the following:

scanner.addScanIterator(setting);

Before adding an iterator to a table, we can use the checkIteratorConflict()
method to check if there are any potential conflicts with the way we’ve set up our
iterator. This will report whether any existing iterators have the same name or prior‐
ity as the iterator described in the IteratorSetting object:

ops.checkIteratorConflicts(tableName, setting, scopes)

Iterators | 211

Iterator priorities determine the order in which they are applied.
The lower the priority value, the earlier the iterator is applied to a
key-value pair.
The VersioningIterator, for example, is enabled by default at pri‐
ority 20, so any iterator added with a priority less than 20 will be
applied before the VersioningIterator and will see all versions of
key-value pairs that might exist. An iterator with a priority value
higher than 20 will be applied after the VersioningIterator and
so will only see key-value pairs that have passed through the Ver
sioningIterator filter logic.
The checkIteratorConflicts() method just described will help
avoid adding an iterator with the same priority as an existing
iterator.

We can use the listIterators() method to see which iterators are configured on a
given table. This will list the names and scopes of all iterators configured on the table:

Map<String,EnumSet<IteratorScope>> iterators = ops.listIterators(tableName);

To see specific options for a configured iterator, use the getIteratorSetting()
method:

IteratorSetting setting = ops.getIteratorSetting(tableName, name, scope);

Iterators configured on a table can be removed via the removeIterator() method.
The iterator will only be removed for the scopes specified:

conn.tableOperations().removeIterator(tableName, name, scopes);

For details on configuring iterators via shell commands, see “Configuring iterators”
on page 441.

We’ll now look at an example of setting up the VersioningIterator.

VersioningIterator
The VersioningIterator is the only programmable iterator that is configured for all
Accumulo tables by default. Each Accumulo key has a timestamp that is used for
versioning.

Let’s say you insert a key with value a. If you insert the same key at a later time with
value b, Accumulo considers the second key-value pair to be a more recent version of
the first. By default, only the latest timestamped version will be kept.

The VersioningIterator can be configured to keep a different number of versions,
or you can remove it to keep all versions. Here we look at the effects of configuring
the VersioningIterator on a table.

212 | Chapter 6: Server-Side Functionality and External Clients

Iterator Configuration Example
In this example we’ll create a table, which will have the VersioningIterator config‐
ured by default. Then we’ll alter the configuration to see the effects of iterators on our
example data.

First we’ll insert several versions of the same key and see how the VersioningItera
tor applies:

Connector conn = ExampleMiniCluster.getConnector();
TableOperations ops = conn.tableOperations();

ops.create("testTable");

// insert some data
BatchWriter writer = conn.createBatchWriter("testTable",
 new BatchWriterConfig());
Mutation m = new Mutation("row");
m.put("", "col", "1");
writer.addMutation(m);

m = new Mutation("row");
m.put("", "col", "2");
writer.addMutation(m);

m = new Mutation("row");
m.put("", "col", "3");
writer.addMutation(m);
writer.flush();

// look at the key-value pair we inserted
System.out.println("\nview with versioning iterator on");
Scanner scanner = conn.createScanner("testTable", Authorizations.EMPTY);
for(Map.Entry<Key, Value> e : scanner) {
 System.out.println(e.getKey() + ":\t" + e.getValue());
}

Our output looks like this:

view with versioning iterator on
row :col [] 1409449409924 false: 3

Note that there is only one version, the last one we inserted. The others are being sup‐
pressed by the VersioningIterator.

If we were to flush this table, the other versions would disappear completely. As it is
now, they are all still lurking in memory, and the VersioningIterator is filtering out
all but the latest when we do a scan.

Now we’ll look at how the VersioningIterator is set up:

Iterators | 213

// list all iterators
System.out.println("\niterators");
Map<String, EnumSet<IteratorUtil.IteratorScope>> iters =
 ops.listIterators("testTable");
for(Map.Entry<String, EnumSet<IteratorUtil.IteratorScope>> iter :
 iters.entrySet()) {
 System.out.println(iter.getKey() + ":\t" + iter.getValue());
}

// look at the settings for the versioning iterator
IteratorSetting setting = ops.getIteratorSetting("testTable", "vers",
 IteratorScope.scan);

System.out.println("\niterator options");
for(Map.Entry<String, String> opt : setting.getOptions().entrySet()) {
 System.out.println(opt.getKey() + ":\t" + opt.getValue());
}

Our output is:

iterators
vers: [majc, minc, scan]

iterator options
maxVersions: 1

This shows that the VersioningIterator is the only one configured, and that it
applies to all three scopes: major compaction, minor compaction, and scans.

The options show that it is configured to keep one version of each key-value pair.

Now we’ll disable the VersioningIterator and see if we can retrieve all versions we
inserted:

// disable the versioning iterator for all scopes
ops.removeIterator("testTable", "vers", EnumSet.allOf(IteratorScope.class));

// look at our table again
System.out.println("\nview with versioning iterator off");
for(Map.Entry<Key, Value> e : scanner) {
 System.out.println(e.getKey() + ":\t" + e.getValue());
}

Now we see all versions:

view with versioning iterator off
row :col [] 1409449409924 false: 3
row :col [] 1409449409924 false: 2
row :col [] 1409449409924 false: 1

Finally, we’ll enable a different kind of iterator, the SummingCombiner, which will add
up the values of all versions of our key and return the sum:

// enable the SummingCombiner iterator on our table
IteratorSetting scSetting = new IteratorSetting(15, "sum",

214 | Chapter 6: Server-Side Functionality and External Clients

 SummingCombiner.class);

// apply combiner to all columns
SummingCombiner.setCombineAllColumns(scSetting, true);

// expect string representations of numbers
SummingCombiner.setEncodingType(scSetting, SummingCombiner.Type.STRING);

ops.checkIteratorConflicts("testTable", scSetting,
 EnumSet.of(IteratorScope.scan));

// attach the iterator
ops.attachIterator("testTable", scSetting, EnumSet.of(IteratorScope.scan));

// look at our table now
System.out.println("\nview with summing combiner iterator on");
for(Map.Entry<Key, Value> e : scanner) {
 System.out.println(e.getKey() + ":\t" + e.getValue());
}

Now we only see one version, but the value represents the sum of all three versions
we inserted :

view with summing combiner iterator on
row :col [] 1409449409924 false: 6

Adding Iterators by Setting Properties
Iterators are configured like all other table options: by setting properties specific to a
table.

To configure an iterator via properties, use the setProperty() method. Doing this
requires knowing what properties exist and what their acceptable settings are. Also,
iterator conflicts are not checked when properties are set directly. For these reasons,
setting iterators with IteratorSetting objects through the API described in the pre‐
vious section is preferable and recommended. However, it is good to be aware of the
table properties associated with your iterators:

connector.tableOperations().setProperty("table.iterator.majc.ageoff.opt.ttl",
 "3600000");
connector.tableOperations().setProperty("table.iterator.majc.ageoff",
 "10,org.apache.accumulo.core.iterators.user.AgeOffFilter");

When setting up iterators this way it is a good idea to set the options first, to keep the
iterator from being instantiated before it is properly configured.

Filtering Iterators
Filters are iterators that simply decide whether or not to include existing key-value
pairs. They do not alter the key-value pairs in any way.

Iterators | 215

We’ll look at the filters supplied with Accumulo and then how to create our own.

Built-in filters
Some useful filters are provided with Accumulo:

AgeOffFilter

Removes keys when their timestamps differ from the current time by more than
a specified parameter (in milliseconds).

ColumnAgeOffFilter

Stores a separate age-off parameter for each column, to age off columns at differ‐
ent rates.

TimestampFilter

Only keeps keys with timestamps earlier and/or later than given start and end
parameters.

RegExFilter

Returns key-value pairs that match a Java regular expression in a particular por‐
tion of the key or value (the row, column family, column qualifier, or value). Reg‐
ular expressions can be provided for any subset of these four, and matches can be
determined by ORing or ANDing together the results of each individual regular
expression.

GrepIterator

An iterator that matches exact strings to all key-value pairs scanned. This is great
for doing one-time scans of a table. If you find yourself using this iterator fre‐
quently you might want to look into secondary indexes, as described in “Secon‐
dary Indexing” on page 275.

ReqVisFilter

Removes keys with empty column visibilities.

LargeRowFilter

Suppresses entire rows that have more than a configurable number of columns. It
buffers the row in memory when determining whether or not it should be sup‐
pressed, so the specified number of columns should not be too large.

RowFilter

An abstract iterator that decides whether or not to include an entire row. Sub‐
classes of RowFilter must implement an acceptRow() method that takes as a
parameter a SortedKeyValueIterator<Key,Value> (which will be limited to the
row being decided upon) and returns a Boolean. This allows you to decide to
include a row based on several features of the row, such as the presence of two or
more columns or a relationship between values.

216 | Chapter 6: Server-Side Functionality and External Clients

All filters can be configured to reverse their logic by using the setNegate() method:

IteratorSetting setting;
boolean negate = true;

MyFilter.setNegate(setting, negate);

Custom filters

Custom filters can be written by extending org.apache.accumulo.core.itera
tors.Filter. Subclasses of Filter must implement an accept() method that takes
Key and Value as parameters and returns a boolean.

The interface is as follows:

public abstract class Filter extends WrappingIterator
 implements OptionDescriber {
 ...
 /**
 * @return <tt>true</tt> if the key/value pair is accepted by the filter.
 */
 public abstract boolean accept(Key k, Value v);

}

We’ll walk through an example next to see how to make our own custom filter.

Custom filtering iterator example
Here we’ll create a custom filtering iterator that returns key-value pairs only if the
value, interpreted as a number, is greater than a user-provided threshold.

First we create our filter class by extending Filter and defining our accept()
method:

public class GreaterThanFilterExample extends Filter {

 private static final String GREATER_THAN_CRITERION = "greaterThanOption";

 private long threshold = 0;

 @Override
 public boolean accept(Key k, Value v) {
 try {
 long num = Long.parseLong(new String(v.get()));
 return num > threshold;
 } catch(NumberFormatException ex) {
 // continue and return false
 }

 return false;
 }

Iterators | 217

 ...
}

We need to write a few other methods to make users aware of the required threshold
setting:

@Override
public IteratorOptions describeOptions() {
 IteratorOptions opts = super.describeOptions();
 opts.addNamedOption(GREATER_THAN_CRITERION,
 "Only return values greater than given numerical value");
 return opts;
}

@Override
public boolean validateOptions(Map<String,String> options) {
 if(!super.validateOptions(options) ||
 !options.containsKey(GREATER_THAN_CRITERION)) {
 return false;
 }

 String gtString = options.get(GREATER_THAN_CRITERION);
 try {
 Long.parseLong(gtString);
 }
 catch (NumberFormatException e) {
 return false;
 }

 return true;
}

Also, the convention is for iterators to provide static methods for filling out options
on IteratorSetting objects. We’ll add one for our threshold:

public static void setThreshold(
 final IteratorSetting setting,
 final int threshold) {

 setting.addOption(GREATER_THAN_CRITERION, Integer.toString(threshold));
}

Next we want to fetch the threshold from the iterator options whenever our iterator is
used. Iterator classes are set up and torn down at the discretion of the tablet server.
The init() method will allow us to perform some setup before the accept() method
is called:

@Override
public void init(SortedKeyValueIterator<Key,Value> source,
 Map<String,String> options, IteratorEnvironment env) throws IOException {
 super.init(source, options, env);
 if (options.containsKey(GREATER_THAN_CRITERION)) {
 String gtString = options.get(GREATER_THAN_CRITERION);

218 | Chapter 6: Server-Side Functionality and External Clients

 threshold = Long.parseLong(gtString);
 }
}

Finally, we can test our filter. We’ll use the ExampleMiniCluster to create a test table
and apply our iterator to it:

Random random = new Random();

Connector conn = ExampleMiniCluster.getConnector();
TableOperations ops = conn.tableOperations();

ops.create("testTable");

// insert some data
BatchWriter writer = conn.createBatchWriter("testTable",
 new BatchWriterConfig());

for(int i=0; i < 30; i++) {

 int rowNum = random.nextInt(100);
 int colNum = random.nextInt(100);
 int value = random.nextInt(100);

 Mutation m = new Mutation("row" + rowNum);

 m.put("", "col" + colNum, Integer.toString(value));
 writer.addMutation(m);
}

writer.flush();

Now that our test table is full of values with random numbers between 0 and 100,
we’ll add our iterator and scan:

IteratorSetting setting = new IteratorSetting(15, "gtf",
 GreaterThanFilterExample.class.getName());
GreaterThanFilterExample.setThreshold(setting, 80);

conn.tableOperations().attachIterator("testTable", setting);

// we could, instead, set our iterator just for this scan
//scanner.addScanIterator(setting);

// check for the existence of our iterator
for(Map.Entry<String, EnumSet<IteratorUtil.IteratorScope>> i :
 conn.tableOperations().listIterators("testTable").entrySet()) {
 System.out.println(i);
}

Checking for our iterator on the table shows:

Iterators | 219

gtf=[majc, minc, scan]
vers=[majc, minc, scan]

The only thing left to do is to scan our table and check the output:

// scan whole table
Scanner scanner = conn.createScanner("testTable", Authorizations.EMPTY);
for(Map.Entry<Key, Value> e : scanner) {
 System.out.println(e);
}

Note that using an iterator to scan an entire table is not scalable to large tables,
but is good enough for our test here.

The output we get should show no values under our threshold, 80:

row0 :col1 [] 1409452474218 false 95
row13 :col94 [] 1409452474218 false 91
row32 :col70 [] 1409452474218 false 84
row34 :col56 [] 1409452474218 false 92
row49 :col94 [] 1409452474218 false 95
row59 :col86 [] 1409452474218 false 92
row93 :col60 [] 1409452474218 false 91

It may be tempting to write complicated filtering iterators to apply
arbitrary query logic. Keep in mind that filtering data is expensive,
especially in a big data context. An application that requires good
performance at scale will limit filtering to the absolute minimum.

To deploy this iterator to a production cluster, we’ll need to build a JAR that contains
our class and place it where server processes can load it. See “Deploying JARs” on
page 407 for details.

Combiners
Combiners are iterators that combine all the versions of a key-value pair into a single
key-value pair, instead of keeping the most recent versions of a key-value pair as the
VersioningIterator does. Combiners work on sets of keys that only differ in their
timestamp. If you want to combine key-value pairs that do not all have the same row,
column family, qualifier, and visibility, you’ll have to write a different custom iterator.

All combiners can be set to run on one or more particular columns or all columns:

int priority = 35;
IteratorSetting setting = new IteratorSetting(priority, "mycombiner",
 MyCombiner.class);

List<IteratorSetting.Column> columns = new ArrayList<>();

220 | Chapter 6: Server-Side Functionality and External Clients

// can be applied to all columns in a family
columns.add(new IteratorSetting.Column("attributes"));

// and a specific column
columns.add(new IteratorSetting.Column("orders", "amount"));

MyCombiner.setColumns(setting, columns);

To set a combiner to apply to all columns, use the setCombineAllColumns() method:

MyCombiner.setCombineAllColumns(setting, true);

If a combiner is configured to apply to all columns, any columns passed to the
setColumns() method are ignored.

Combiners for incrementing or appending updates
Combiners can help when an application calls for doing updates in which new values
should be appended or otherwise combined with existing values. In many systems
this requires reading the existing values first, applying the combination logic, and
writing back the combined value. Accumulo can combine updates very efficiently by
allowing multiple partially combined values to coexist until the finalized answer is
needed—for example when a value is read by a client performing a scan. This allows
these types of updates to be applied to a table with the same performance as simple
inserts or overwriting updates.

For example, if we would like to update a numerical value by adding a new amount to
the existing value, we don’t have to somehow lock the row and column, read out the
old value, add our new amount to it, and write it back. We can simply insert the
amount to be added and instruct the server to add up all the existing values for that
row and column. When the server writes values to disk it always writes the combined
value to cut down on the partial values that are stored.

Being able to perform inserts without reading data can mean the
difference between a few hundred insert operations per second and
potentially hundreds of thousands of insert operations per second.
It is certainly worth the effort to investigate the possibility of using
combiners to help your application carry out updates.

Iterators | 221

To illustrate the difference, consider the following scenario. Let’s say we are maintain‐
ing a summary of the number of times we have seen each word in a corpus. When we
would like to update results we have two choices. One approach is to have the appli‐
cation read the old value, add the new value, and write the combined value back
(Figure 6-2).

Figure 6-2. Update by performing a read then an overwrite

Another, much faster approach is to do a simple insert of the additional counts, and
let a combiner do the final summation (Figure 6-3).

222 | Chapter 6: Server-Side Functionality and External Clients

Figure 6-3. Update by performing an insert and letting combiner do final summation

Built-in combiners

Accumulo comes with a number of combiners. These are in the org.apache.accu
mulo.core.iterators.user package:

LongCombiner

An abstract combiner that interprets Accumulo Values as Java Long objects. It
comes with three possible encoding types: STRING, which prints and parses the
number as a string; LONG, which encodes the number in exactly 8 binary bytes;
and VARNUM, which uses a variable-length binary encoding.

MaxCombiner

Extends the LongCombiner, interpreting values as Longs, and returns the
maximum Long for each set of values.

MinCombiner

Extends the LongCombiner, interpreting values as Longs, and returns the
minimum Long for each set of values.

SummingCombiner

Extends the LongCombiner, interpreting values as Longs, and returns the sum
of the set of values.

Iterators | 223

SummingArrayCombiner

Interprets Values as an array of Longs, and returns an array of sums. If the arrays
are not the same length, the shorter arrays are padded with zeros to equal the
length of the largest array.

BigDecimalCombiner

An abstract combiner that interprets Accumulo values as BigDecimals.

An additional example combiner is the StatsCombiner in the org.apache.accu
mulo.examples.simple.combiner package. Use of this combiner is illustrated in
Accumulo’s README.combiner example.

We saw an example of setting up the SummingCombiner via the API in “Iterator Con‐
figuration Example” on page 213.

Next we’ll look at writing our own combiner.

Custom combiners

Custom combiners can be written by extending org.apache.accumulo.core.itera
tors.Combiner. Subclasses of Combiner must implement a reduce() method that
takes Key and Iterator<Value> as parameters and returns a Value:

public abstract Value reduce(Key key, Iterator<Value> iter);

If the values are always interpreted as a particular Java type, the TypedValue
Combiner<V> can be used. This combiner uses an Encoder to translate the type V to
and from a byte array. Subclasses of TypedValueCombiner implement a typedRe
duce() method that takes Key and Iterator<V> as parameters and returns an object
of type V:

public abstract class TypedValueCombiner<V> extends Combiner {
 ...
 public abstract V typedReduce(Key key, Iterator<V> iter);

}

A combiner that extends TypedValueCombiner should also have a class implementing
the Encoder interface for converting values to byte arrays and back:

public abstract class TypedValueCombiner<V> extends Combiner {
 ...
 public interface Encoder<V> {
 byte[] encode(V v);

 V decode(byte[] b) throws ValueFormatException;
 }
 ...
}

224 | Chapter 6: Server-Side Functionality and External Clients

Custom combiner example
We’ll implement a combiner that keeps track of the number of items seen and the
sum of the items seen in order to produce an average. We can’t simply store the aver‐
age because we’ll lose information about the number of items seen so far and won’t
know how much relative weight to apply to new items.

First, we’ll implement an Encoder to store a Long and a Double, for the number of
items seen, and the partial total:

public class RunningAverageCombiner
 extends TypedValueCombiner<Pair<Long,Double>> {

 ...
 public static class LongDoublePairEncoder
 implements Encoder<Pair<Long,Double>> {

 @Override
 public byte[] encode(Pair<Long, Double> v) {
 String s = Long.toString(v.getFirst()) + ":" +
 Double.toString(v.getSecond());

 return s.getBytes(StandardCharsets.UTF_8);
 }

 @Override
 public Pair<Long, Double> decode(byte[] b) throws ValueFormatException {
 String s = new String(b, StandardCharsets.UTF_8);
 String[] parts = s.split(":");
 return new Pair<>(Long.parseLong(parts[0]), Double.parseDouble(parts[1]));
 }
 }
 ...
}

This class will allow us to write string values representing a count and a running total
to be averaged.

Now we’ll define our reduce() function, which will tell tablet servers how to combine
multiple versions of values for a key. In our case, we simply keep track of the number
of items we’ve seen, and a running total. At any given time, a client can divide the
running total by the number of items seen to get the current average:

 ...
 @Override
 public void init(SortedKeyValueIterator<Key,Value> source,
 Map<String,String> options, IteratorEnvironment env) throws IOException {
 super.init(source, options, env);
 setEncoder(new LongDoublePairEncoder());
 }

 @Override

Iterators | 225

 public Pair<Long,Double> typedReduce(Key key,
 Iterator<Pair<Long,Double>> iter) {

 Long count = 0L;
 Double sum = 0.0;

 while(iter.hasNext()) {
 Pair<Long,Double> pair = iter.next();

 count += pair.getFirst();
 sum += pair.getSecond();
 }

 return new Pair<>(count, sum);
 }
 ...

Be sure to initialize the encoder to be used here.

Now we can test our combiner on a table. First we’ll create a table, remove the Versio
ningIterator so that our combiner receives all versions of each key, and set our cus‐
tom combiner:

Connector conn = ExampleMiniCluster.getConnector();

TableOperations ops = conn.tableOperations();
ops.create("testTable");

// remove versioning iterator
ops.removeIterator("testTable", "vers", EnumSet.allOf(IteratorScope.class));

// configure our iterator
IteratorSetting setting = new IteratorSetting(10, "rac",
 RunningAverageCombiner.class);
RunningAverageCombiner.setCombineAllColumns(setting, true);
RunningAverageCombiner.setLossyness(setting, false);

// attach to table for all scopes
ops.attachIterator("testTable", setting);

Give our combiner a priority of 10, name it rac, and provide the class.

Set our combiner to operate on all columns.

Instruct the combiner to throw exceptions when values fail to decode with the
given encoder, instead of silently discarding those values.

Now we can insert some test data. We’ll generate random numbers in a particular
range and insert them as multiple versions of the same key. This means the row ID,
column family, column qualifier, and column visibility must be the same. Values in

226 | Chapter 6: Server-Side Functionality and External Clients

different keys will not be combined together, only values representing multiple ver‐
sions of the same key.

We’ll generate numbers uniformly at random between 4.5 and 6.5. Our average
should be somewhere around 5.5:

BatchWriter writer = conn.createBatchWriter("testTable",
 new BatchWriterConfig());

// begin writing numbers to our table
Random random = new Random();

for(int i = 0; i < 5; i++) {
 Mutation m = new Mutation("heights");
 m.put("", "average", "1:" + (random.nextDouble() * 2 + 4.5));
 writer.addMutation(m);
}
writer.flush();

Now we’ll perform a scan on our table. This will cause our combiner to examine the
key-value pairs we’ve written and give it a chance to combine them before returning
any to our client.

We’ll use the same LongDoublePairEncoder to decode values into our count and run‐
ning total. Then we’ll divide the total by the count and print out the average:

LongDoublePairEncoder enc = new LongDoublePairEncoder();

Scanner scanner = conn.createScanner("testTable", Authorizations.EMPTY);
for(Map.Entry<Key, Value> e : scanner) {
 Pair<Long,Double> pair = enc.decode(e.getValue().get());

 double average = pair.getSecond() / pair.getFirst();
 System.out.println(average);
}

Our output consists of one number:

5.975622642042859

Next we write one hundred more versions of our key. After scanning again our aver‐
age is a little closer to 5.5:

5.329055520715937

To load this combiner into tablet servers in a production cluster we’ll need to package
our combiner class and encoder class into a JAR file and deploy it to all the servers.
See “Deploying JARs” on page 407 for details. Be sure to compile your combiner
against the same version of Accumulo that is running on your cluster.

Iterators | 227

Other Built-in Iterators
Accumulo provides a few other built-in iterators for doing things other than simple
filtering and combining:

IndexedDocIterator

This is an iterator for doing indexing by document-based partitioning. This itera‐
tor allows a query to scan the first half of a row, which contains a term index, for
document IDs that contain particular terms; to combine sets of matching docu‐
ment IDs together logically in set operations; and finally to scan the second half
of the row to retrieve the full documents that satisfy all query criteria. We cover
this iterator in depth in “Index Partitioned by Document” on page 284.

IntersectingIterator

The base class extended by IndexedDocIterator, the IntersectingIterator
performs the operations to find selected document IDs without returning the
documents themselves. It will scan a term index within a row to find document
IDs containing search terms, and intersect sets of matching document IDs to find
documents that contain all the search terms.

RowDeletingIterator

Uses a special marker to indicate that an entire row should be deleted. The
marker consists of a row ID, empty column family, qualifier and visibility, and a
value of DEL_ROW.

TransformingIterator

Typically an iterator will only read key-value pairs and decide to filter some out,
as in filters, or to combine the values some way, as in combiners. The transform‐
ing iterator is an abstract iterator that allows parts of the keys to be transformed
also. In implementing a transforming iterator, care should be taken to ensure that
sorted key order is preserved.

WholeColumnFamilyIterator

The WholeColumnFamily iterator bundles up key-value pairs within the same col‐
umn family in a row together and returns them to the client as a single key-value
pair. The client can then decode the key-value pair into the constituent key-value
pairs within that one row and column family.

WholeRowIterator

This iterator encodes all the key-value pairs within one row into a single key-
value pair and sends it to the client as a coherent object. Clients can then decode
the key-value pair to restore the original key-value pairs in the row. This is con‐
venient for processing sets of columns and values one row at a time. It is possible
to fetch a subset of the columns and still get the set of columns per row returned
to the client bundled together. See the example in the next section.

228 | Chapter 6: Server-Side Functionality and External Clients

WholeRowIterator example
When a table is scanned, key-value pairs are streamed back to the client in sorted
order, one after another. Sets of key-value pairs with the same row ID are considered
to be the same row. Clients must examine the row ID to determine which key-value
pairs belong in which row, unless they are grouped using the RowIterator described
in “Grouping by Rows” on page 110.

If all the key-value pairs in a row can fit in memory comfortably, we can choose to
use the WholeRowIterator to get a set of key-value pairs for one row grouped
together in a convenient data structure.

For this example, we’ll create a test table with 100 rows containing 100 columns each.
Each row will be read into client memory completely, and we can decode it into sepa‐
rate columns and access them in any order we choose:

Connector conn = ExampleMiniCluster.getConnector();

TableOperations ops = conn.tableOperations();
ops.create("testTable");

BatchWriter writer = conn.createBatchWriter("testTable",
 new BatchWriterConfig());

for(int i=1; i <= 100; i++) {
 Mutation m = new Mutation("row" + String.format("%02d", i));

 for(int j = 1; j <= 100; j++) {
 m.put("", "col" + j, Integer.toString(i * j));
 }

 writer.addMutation(m);
}
writer.flush();

Next we’ll create a scanner and add the WholeRowIterator to it:

Scanner scanner = conn.createScanner("testTable", Authorizations.EMPTY);
scanner.setRange(new Range("row50", "row60"));

IteratorSetting setting = new IteratorSetting(30, "wri", WholeRowIterator.class);

scanner.addScanIterator(setting);

The WholeRowIterator has a decode() method that will unpack one row’s worth of
data for us into a SortedMap<Key,Value> object. We’ll use some convenience meth‐
ods for grabbing the row ID and creating a map of just column names to values:

private static byte[] getRow(SortedMap<Key,Value> row) {
 return row.entrySet().iterator().next().getKey().getRow().getBytes();
}

Iterators | 229

private static SortedMap<String,Value> columnMap(SortedMap<Key,Value> row) {

 TreeMap<String,Value> colMap = new TreeMap<>();
 for(Map.Entry<Key, Value> e : row.entrySet()) {

 String cf = e.getKey().getColumnFamily().toString();
 String cq = e.getKey().getColumnQualifier().toString();

 colMap.put(cf + ":" + cq, e.getValue());
 }
 return colMap;
}

Now we can perform our scan and operate on one row’s worth of data at a time, grab‐
bing columns in whatever order we want:

Scanner scanner = conn.createScanner("testTable", Authorizations.EMPTY);
scanner.setRange(new Range("row50", "row60"));
// we could choose a subset of columns via fetchColumn() too

IteratorSetting setting = new IteratorSetting(30, "wri", WholeRowIterator.class);
scanner.addScanIterator(setting);

for(Map.Entry<Key, Value> e : scanner) {
 SortedMap<Key, Value> rowData =
 WholeRowIterator.decodeRow(e.getKey(), e.getValue());

 byte[] row = getRow(rowData);
 SortedMap<String, Value> columns = columnMap(rowData);

 System.out.println("\nrow\t" + new String(row));
 System.out.println(":col31\t" + columns.get(":col31"));
 System.out.println(":col15\t" + columns.get(":col15"));
}

Decode the key-value pair to get the row’s columns.

Running our code produces the following output, showing the out-of-order access of
columns within each row:

row row50
:col31 1550
:col15 750

row row51
:col31 1581
:col15 765

...

row row60
:col31 1860
:col15 900

230 | Chapter 6: Server-Side Functionality and External Clients

Low-level iterator API
Filtering iterators and combiners are special cases of general iterators. There is a low-
level iterator API that can be used to create new types of iterators. It is much more
complicated than the API for implementing new filters and combiners, however.

Lower-level iterators at the very least implement the SortedKeyValueItera

tor<Key,Value> interface:

public interface SortedKeyValueIterator<K extends WritableComparable<?>,
 V extends Writable> {

 void init(SortedKeyValueIterator<K,V> source, Map<String,String> options,
 IteratorEnvironment env) throws IOException;

 boolean hasTop();

 void next() throws IOException;

 void seek(Range range, Collection<ByteSequence> columnFamilies,
 boolean inclusive) throws IOException;

 K getTopKey();

 V getTopValue();

 SortedKeyValueIterator<K,V> deepCopy(IteratorEnvironment env);
}

Some iterators choose to extend the WrappingIterator or SkippingIterator classes.

Some developers have been tempted to write iterators that don’t
simply alter the data read as it is returned to the client but also
write out data, potentially to other tablet servers. Although this is
theoretically possible, a few issues make it difficult.
First, tablet servers build up and tear down the iterator stack at
their own discretion, and it is not guaranteed that iterator classes
will be long-lived, or able to maintain state for a particular amount
of time. The other issue is that Accumulo client classes can use a lot
of resources, and lifecycle management of these resources would
need to be altered for use within a tablet server context.
Google implemented a different solution, called coprocessors, for
allowing some writes or reads to tablet servers to trigger writes to
other tablet servers. Coprocessors are described in the paper
“Large-scale Incremental Processing Using Distributed Transac‐
tions and Notifications”.
Some Accumulo developers are working on a similar implementa‐
tion called Fluo.

Iterators | 231

http://bit.ly/percolator_paper
http://bit.ly/percolator_paper
https://github.com/fluo-io/fluo

We’ll implement a simple iterator that takes advantage of one of the features of the
lower-level API: the ability to seek ahead to a new key-value pair. Our iterator will
simply return the first column and its value for each row we scan. After reading the
first column for a row, it will seek to the next row.

Accumulo already has an implementation of an iterator that performs this same func‐
tion and includes some additional optimization: the FirstEntryInRowIterator.

Scan Versus Seek
When an application is scanning key-value pairs in Accumulo and is ready to skip
ahead to the next row, this question arises: is it more efficient to keep scanning keys
one-by-one until the next row is reached (performing a string comparison on the row
portion of each key), or to seek ahead directly to the next row?

Seeks are fairly expensive. On spinning commodity-class disks you can typically only
do 100 to 250 seeks per second, whereas doing a sequential scan can read and per‐
form comparisons on thousands of key-value pairs per second.

If the rarity of key-value pairs of interest is sufficiently high, such that scanning would
take longer than doing a seek, then seeking to the next key-value pair is more
efficient.

For an example of an iterator that tries to balance these options, see org.apache.accu‐
mulo.core.iterators.FirstEntryInRowIterator.java in the Accumulo code base.

The code for our iterator will begin at the WrappingIterator, rather than simply
implementing SortedKeyValueIterator. This will help guarantee that we don’t call
methods out of order.

We’ll first create our class:

public class FirstColumnIterator extends WrappingIterator {

 private Range range;
 private boolean inclusive;
 private Collection<ByteSequence> columnFamilies;
 private boolean done;

 public FirstColumnIterator() {}

 public FirstColumnIterator(FirstColumnIterator aThis,
 IteratorEnvironment env) {
 super();
 setSource(aThis.getSource().deepCopy(env));
 }

 @Override

232 | Chapter 6: Server-Side Functionality and External Clients

 public void init(SortedKeyValueIterator<Key,Value> source,
 Map<String,String> options, IteratorEnvironment env) throws IOException {
 super.init(source, options, env);
 }
 ...

We need a public default constructor because this is the constructer Accumulo
will use to instantiate the iterator.

Additional constructors are optional but may be helpful in implementing the
deepCopy method.

Next we’ll implement just the seek(), next(), hasTop(), and deepCopy() methods.
seek() is called first by the tablet server, and we’ll use it to store off some variables
we’ll need to do our seeking later. It will also handle the case in which a seek is made
to the middle of a row. next() is called to prepare the next key-value pair for retrieval
by getTopKey() and getTopValue(), if the key-value pair exists. hasTop() indicates
whether a key-value pair exists for retrieval.

We call on our superclass, the WrappingIterator, to seek to the next row in our
source iterator. Every iterator has a source that ultimately goes back to files and in-
memory data structures holding key-value pairs. Our iterator simply advances the
source iterator past all but the first column of each row and notes when the end of the
range is reached:

@Override
public void next() throws IOException {
 if(done) {
 return;
 }

 // create a new range to seek to
 Key nextKey = getSource().getTopKey().followingKey(PartialKey.ROW);
 if(range.afterEndKey(nextKey)) {
 done = true;
 }
 else {
 Range nextRange = new Range(nextKey, true, range.getEndKey(),
 range.isEndKeyInclusive());
 getSource().seek(nextRange, columnFamilies, inclusive);
 }
}

@Override
public boolean hasTop() {
 return !done && getSource().hasTop();
}

@Override

Iterators | 233

public void seek(Range range, Collection<ByteSequence> columnFamilies,
 boolean inclusive) throws IOException {
 this.range = range;
 this.columnFamilies = columnFamilies;
 this.inclusive = inclusive;

 done = false;

 Key startKey = range.getStartKey();
 Range seekRange = new Range(
 startKey == null ? null : new Key(startKey.getRow()), true,
 range.getEndKey(), range.isEndKeyInclusive());
 super.seek(seekRange, columnFamilies, inclusive);

 if (getSource().hasTop()) {
 if (range.beforeStartKey(getSource().getTopKey()))
 next();
 }
}

@Override
public SortedKeyValueIterator<Key,Value> deepCopy(IteratorEnvironment env) {
 return new FirstColumnIterator(this, env);
}

This method will get a key that has the first possible row ID after the current key.

Check to see if we’ve reached the end of the range requested by the user and
return if so.

Create a range almost exactly like the one that was first given to us by the seek()
method.

Advance the source iterator past all the columns of this row to the first column of
the next row.

Return false if next() determined the end of the range has been reached, or if
there is no more data in the source iterator.

Save these seek parameters off for doing seeks in our next method.

Construct a range that starts at the beginning of the row containing our start key,
and seek our superclass, which will seek the source iterator.

Skip to the next row if the top key is before our start key, meaning that we
received a seek to the middle of a row.

234 | Chapter 6: Server-Side Functionality and External Clients

Handling a seek to the middle of a row is an important condition
every iterator must address. Even if an application always seeks to
the beginning of a row, Accumulo can internally seek to the middle
of row when performing a long scan that involves pulling multiple
batches of key-value pairs from tablet servers to a client.

Now we can apply our iterator to data in a table. First, we’ll create a simple table of
100 rows with 100 columns each. This will make it easy to see if our iterator is
working:

Connector conn = ExampleMiniCluster.getConnector();

TableOperations ops = conn.tableOperations();
ops.create("testTable");

BatchWriter writer = conn.createBatchWriter("testTable",
 new BatchWriterConfig());

for(int i=0; i < 100; i++) {
 Mutation m = new Mutation("row" + String.format("%02d", i));

 for(int j = 0; j < 100; j++) {
 m.put("", String.format("col%02d", j), i + " " + j);
 }

 writer.addMutation(m);
}
writer.flush();

Now we’ll scan the table and just count the key-value pairs without our iterator so
we’ll have something to compare our iterator results to:

Scanner scanner = conn.createScanner("testTable", Authorizations.EMPTY);

// count items returned
int returned = 0;
for(Map.Entry<Key, Value> e : scanner)
 returned++;

System.out.println("items returned: " + returned);

Our output shows:

items returned: 10000

Now we’ll apply our iterator and see if we only see the first column for every row:

IteratorSetting setting = new IteratorSetting(30, "fci",
 FirstColumnIterator.class);
scanner.addScanIterator(setting);

returned = 0;

Iterators | 235

for(Map.Entry<Key, Value> e : scanner) {
 System.out.println(e);
 returned++;
}

System.out.println("items returned: " + returned);

Now our output shows the rows and columns returned, with only the first column of
each row, and a total count of 100:

row00 :col00 [] 1409608777713 false 0 0
row01 :col00 [] 1409608777713 false 1 0
row02 :col00 [] 1409608777713 false 2 0
...
row98 :col00 [] 1409608777713 false 98 0
row99 :col00 [] 1409608777713 false 99 0
items returned: 100

Thrift Proxy
In addition to the standard Accumulo processes, there is an option to start up a proxy
service (Figure 6-4). This service provides an Apache Thrift API for interacting with
Accumulo. Accumulo comes compiled with C++, Python, and Ruby clients for inter‐
acting with the Thrift API.

Thrift provides a compiler to generate serialization code and remote procedural call
(RPC) clients and servers in a particular language. The structures and services are
defined in files in an interface description language (IDL). Clients for other languages
can be generated, as we describe in “Generating Client Code” on page 240. The details
of the API can be found in the Accumulo IDL file at accumulo/proxy/thrift/
proxy.thrift.

236 | Chapter 6: Server-Side Functionality and External Clients

http://thrift.apache.org/

Figure 6-4. Applications with Accumulo proxy

Starting a Proxy
You must pass a configuration file to the proxy process when starting it up. An exam‐
ple configuration file is included with Accumulo at accumulo/proxy/proxy.properties.
To start the proxy service, run:

accumulo proxy -p /path/to/proxy.properties

When using Thrift proxies, it is common to run one proxy process per proxy client
(Figure 6-5). The proxy could be run on the same machine as the proxy client to
eliminate network usage between proxies and their clients.

Thrift Proxy | 237

Figure 6-5. Example proxy deployment

Python Example
For this example we’ll write some example code in Python. Python is a popular cross-
platform, high-level, interpreted, object-oriented language. It ships with some operat‐
ing systems and runs on Linux, Mac OS X, and Microsoft Windows.

We’ll use the precompiled Python bindings that ship with Accumulo 1.6 in the accu‐
mulo/proxy/gen-py directory. We’ve included the Thrift libraries for Python in the
example code, at src/main/python.

In this example, we’ll generate a simple REST API for talking to Accumulo using
Python and the Flask library.

To connect to the Accumulo Thrift proxy, we’ll use the following code:

from thrift import Thrift
from thrift.transport import TSocket
from thrift.transport import TTransport
from thrift.protocol import TCompactProtocol

from accumulo import AccumuloProxy
from accumulo.ttypes import *

def connect():
 global client
 global login

238 | Chapter 6: Server-Side Functionality and External Clients

https://www.python.org
http://flask.pocoo.org/

 transport = TSocket.TSocket('localhost', 42424)
 transport = TTransport.TFramedTransport(transport)
 protocol = TCompactProtocol.TCompactProtocol(transport)
 client = AccumuloProxy.Client(protocol)
 transport.open()

 login = client.login('root', {'password':'password'})

This port is defined in the proxy.properties file.

Next we’ll use the Flask notations to define some REST methods on our service. Our
simple REST service will include the following methods:

http://host/tables GET List existing tables
http://host/tables/_tableName_ POST Creates a table
http://host/tables/_tableName_ DELETE Deletes a table
http://host/tables/_tableName_/rows POST Insert a mutation
http://host/tables/_tableName_/rows?range=_startRow_:_stopRow_
 &cols=_FamA:QualA,FamB:QualB_ GET Scan a portion of the rows of a table

In Python and Flask syntax, our methods will look like the following:

@app.route('/tables', methods=['GET'])
def listTables():

 tables = client.listTables(login)
 return json.dumps({'tables': list(tables)})

@app.route('/tables/<table>/rows', methods=['POST'])
def insert(table):

 row = request.form.get('row', '')
 colFam = request.form.get('colFam', '')
 colQual = request.form.get('colQual', '')
 colVis = request.form.get('colVis', '')
 value = request.form.get('value', '')

 m = {row: [ColumnUpdate(colFam, colQual, colVis, value=value)]}
 try:
 client.updateAndFlush(login, table, m)
 except Exception as e:
 return json.dumps({'success': False, 'message': str(e)})

 return json.dumps({'success': True})

Notice how when we’re inserting a single value we simply create a Python dict with a
single field name, representing the row ID, and a list of ColumnUpdate objects:

 m = {row: [ColumnUpdate(colFam, colQual, colVis, value=value)]}

See the src/main/python/restapi.py file for more details.

Thrift Proxy | 239

The Thrift proxy can be started as described previously, or for this example we can
run the ExampleMiniThriftProxy.java class included in the example code.

With the Thrift proxy running, we can start our REST service (HTTP response codes
have been removed from the following transcript for readability):

$ python restapi.py &
 * Running on http://127.0.0.1:5000/
 * Restarting with reloader

$ curl "http://127.0.0.1:5000/tables"
{"tables": ["accumulo.root", "accumulo.metadata"]}

$ curl -d "" "http://127.0.0.1:5000/tables/test"
{"success": true}

$ curl "http://127.0.0.1:5000/tables"
{"tables": ["accumulo.root", "testTable", "accumulo.metadata"]}

$ curl -d "row=title&colFam=metadata&colQual=author&value=Joe%20Jones" \
 "http://127.0.0.1:5000/tables/test/rows"
{"success": true}

$ curl -d "row=title&colFam=content&value=This%20is%20an%20example%20article" \
 "http://127.0.0.1:5000/tables/test/rows"
{"success": true}

$ curl "http://127.0.0.1:5000/tables/test/rows"
{"results": [
 ["title", "content", "", 1407815024740, "This is an example article"],
 ["title", "metadata", "author", 1407814986048, "Joe Jones"]
]}

$ curl "http://127.0.0.1:5000/tables/test/rows?cols=content:"
{"results": [["title", "content", "", 1407815024740,
 "This is an example article"]]}

$ curl "http://127.0.0.1:5000/tables/test/rows?cols=metadata:author"
{"results": [["title", "metadata", "author", 1407814986048, "Joe Jones"]]}

$ curl -X DELETE "http://127.0.0.1:5000/tables/test"
{"success": true}

$ curl "http://127.0.0.1:5000/tables"
{"tables": ["accumulo.root", "accumulo.metadata"]}

Generating Client Code
The Thrift compiler can generate client code for many languages that will allow appli‐
cations to communicate with the Accumulo proxy.

As of this writing Thrift supports the following languages:

240 | Chapter 6: Server-Side Functionality and External Clients

http://thrift.apache.org/docs/features

• C++
• C#
• Cocoa
• D
• Delphi
• Erlang
• Haskell
• Java
• JavaScript
• OCaml
• Perl
• PHP
• Python
• Ruby
• Smalltalk

If, for example, we want to develop a new application in PHP, we can run the Thrift
compiler on the Accumulo IDL file:

thrift-0.9.0/compiler/cpp/thrift -gen php accumulo/proxy/thrift/proxy.thrift

This will create a directory called gen-php that contains the code a PHP application
would need to connect and talk to the Accumulo Thrift proxy.

Language-Specific Clients
Accumulo provides an Apache Thrift proxy that enables clients to be written in any
language that Thrift supports. For details on running the proxy, see “Thrift Proxy” on
page 236.

A few developers have created language-specific client libraries to make it easier to
use Accumulo in these languages. This list will likely become out of date very quickly,
so we encourage you to search GitHub and follow the Accumulo blog:

Python
Python is a popular scripting language. The pyaccumulo project supports lan‐
guage bindings for Python.

Language-Specific Clients | 241

http://bit.ly/github_accumulo
https://blogs.apache.org/accumulo/
http://bit.ly/pyaccumulo

Erlang
Erlang is a functional programming language that is popular for building dis‐
tributed systems. The erlaccumulo project provides the client code for Erlang.

C++
C++ is a popular high-performance object-oriented language. The accumulo-cpp
project provides the C++ client code.

Clojure
Clojure is a functional programming language that runs on the JVM. The
clojure-accumulo project uses Clojure on top of the Java API.

Scala
Scala, another JVM language, combines object-oriented and functional program‐
ming. You can evaluate a couple of Scala wrappers around the Java API for your
use. One is available from the scala-accumulo project and the other from the
accumulo-scala project.

Node.js JavaScript
The nodeulo project provides a JavaScript client suitable for inclusion in code
meant to run in a Node.js server.

Integration with Other Tools
A rich and quickly evolving ecosystem surrounds big data technologies. Many of
these other software projects can be used with Accumulo as a part of a broader solu‐
tion. In this section we touch on best practices for using Accumulo with some of
these technologies.

Apache Hive
Apache Hive is a popular tool for executing SQL queries on distributed applications
within the Apache Hadoop ecosystem. Hive can execute a subset of the SQL specifi‐
cation, which is sometimes referred to as the Hive Query Language (HQL) to distin‐
guish it from the full capabilities of SQL.

Hive queries can be executed as MapReduce jobs, and recent efforts allow Hive quer‐
ies to be carried out in more low-latency execution frameworks such as Apache Tez.

Hive integration with Accumulo was first added in Hive version 0.14 and is designed
to work with Accumulo 1.6. To configure Hive to work with Accumulo, you must
specify four configuration parameters:

accumulo.instance.name
accumulo.zookeepers
accumulo.user.name
accumulo.user.pass

242 | Chapter 6: Server-Side Functionality and External Clients

https://github.com/chaehb/erlaccumulo
http://bit.ly/accumulo-cpp
http://bit.ly/accumulo-cpp
http://bit.ly/clojure-accumulo
http://bit.ly/scala-accumulo
http://bit.ly/accumulo-scala
http://bit.ly/accumulo-scala
http://bit.ly/nodeulo
http://hive.apache.org
http://tez.apache.org

These can be applied to a Hive session via -hiveconf options:

hive -hiveconf accumulo.instance.name=accumulo \
 -hiveconf accumulo.zookeepers=zoo1 -hiveconf accumulo.user.name=hive \
 -hiveconf accumulo.user.pass=hive

Table options
The columns of Hive tables are mapped to columns in Accumulo when an Accumulo
table is created. One of the original columns of the Hive table can be used as the row
ID of the Accumulo table. This will enable queries over ranges of values for this col‐
umn to be performed efficiently.

If a Hive table is to be created with columns named name, age, and height, we might
choose to map these to Accumulo by storing the name column as the row ID, and the
other columns in a common column family. This can be specified via the WITH SERDE
PROPERTIES() function during table creation. Our use of this function can look like
the following:

CREATE TABLE people(name STRING, age INT, height INT)
STORED BY 'org.apache.hadoop.hive.accumulo.AccumuloStorageHandler'
WITH SERDEPROPERTIES('accumulo.columns.mapping' =
 ':rowid,attributes:age,attributes:height');

The column mapping relies on the order of fields in the Hive table specification,
assigning the first Accumulo column name to the first Hive table column and so on.

By default the Accumulo table name is the same as the Hive table name. This can be
overridden via the WITH TBLPROPERTIES() function:

WITH TBLPROPERTIES ("accumulo.table.name" = "hive_people")

A table created with CREATE TABLE will be considered managed by Hive, meaning it
will be created and destroyed along with the Hive table. To map a Hive table to an
existing Accumulo table without tying the lifecycle of the Accumulo table to the Hive
table, use the EXTERNAL keyword.

If we simply want to inform Hive of a table we have already created in Accumulo, we
can do something like the following:

CREATE EXTERNAL TABLE people(name STRING, age INT, height INT)
STORED BY 'org.apache.hadoop.hive.accumulo.AccumuloStorageHandler'
WITH SERDEPROPERTIES('accumulo.columns.mapping' =
 ':rowid,attributes:age,attributes:height');

Serializing values
Values in Hive tables can be of various types. By default, values are serialized as
strings when stored in Accumulo. Values can also be stored using a binary serializa‐
tion by adding #b to the end of a field name in the mapping.

Integration with Other Tools | 243

For example, if we want to store the age field using binary serialization we can specify
it as attributes:age#b. To explicitly specify string serialization, #s can be used.

Additional options
Additional behavior can be controlled via the following options:

accumulo.iterator.pushdown

Use iterators to execute filter predicates. True by default.

accumulo.default.storage

Set the serialization method to be used by default when no method is specified.
The default is string.

accumulo.visibility.label

A visibility label to be applied to records written to Accumulo. By default this is
empty.

accumulo.authorizations

A list of authorizations, separated by commas, to be applied when scanning
Accumulo tables. Blank by default.

accumulo.composite.rowid.factory

The name of a Java class that can be used to customize behavior when construct‐
ing LazyObjects from the row ID without changing the ObjectInspector.

accumulo.composite.rowid

Apply custom parsing of the row ID column into a LazyObject.

accumulo.table.name

The name of the Accumulo table to use. By default this is the same as Hive table
name.

accumulo.mock.instance

Use an instance of MockAccumulo for testing instead of an actual Accumulo
instance. Default is false.

Hive example
To explore how Hive and Accumulo can be used together, we’ll import some data
about storm fatalities from the National Oceanic and Atmospheric Administration’s
(NOAA) National Climatic Data Center website into a table in Accumulo and manip‐
ulate the data using HQL queries to answer ad-hoc questions:

$ wget http://www1.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/\
 StormEvents_fatalities-ftp_v1.0_d2014_c20141022.csv.gz
$ gunzip StormEvents_fatalities-ftp_v1.0_d2014_c20141022.csv.gz

244 | Chapter 6: Server-Side Functionality and External Clients

http://www.ncdc.noaa.gov

We can start Hive with the options that allow it to connect to a local Accumulo
instance. In this example we’re using Hortonworks’ HDP 2.1 sandbox VM:

$ hive -hiveconf accumulo.instance.name=hdp \
 -hiveconf accumulo.zookeepers=localhost -hiveconf accumulo.user.name=root \
 -hiveconf accumulo.user.pass=secret

We’ll create a regular Hive table for loading the storm fatalities data from the comma-
separated value (CSV) file we downloaded. Hive does not yet support loading data
directly into a native table like Accumulo, so we’ll populate a Hive table and then
transfer it into Accumulo:

hive> CREATE TABLE storm_fatalities(fat_yearmonth INT, fat_day INT, fat_time INT,
 fatality_id STRING, event_id STRING, fatality_type STRING,
 fatality_date DATE, fatality_age int, fatality_sex STRING,
 fatality_location string, event_yearmonth int) row format delimited fields
 terminated by ',' stored as textfile;

hive> load data local inpath
 './StormEvents_fatalities-ftp_v1.0_d2014_c20141022.csv'
 into table storm_fatalities;
Copying data from
 file:/home/hive/StormEvents_fatalities-ftp_v1.0_d2014_c20141022.csv
Copying file: file:/home/hive/StormEvents_fatalities-ftp_v1.0_d2014_c20141022.csv
Loading data to table default.storm_fatalities

Table default.storm_fatalities stats: [numFiles=1, numRows=0, totalSize=28337,
 rawDataSize=0]
OK
Time taken: 1.72 seconds

We can run a query to check our data against the Accumulo table after loading:

hive> select avg(fatality_age) from storm_fatalities;
OK
44.875
Time taken: 13.12 seconds, Fetched: 1 row(s)

Now we’ll set up the Accumulo table, similar to the Hive table, but also specifying the
mapping:

hive> CREATE TABLE acc_storm_fatalities(fat_yearmonth INT, fat_day INT,
 fat_time INT, fatality_id STRING, event_id STRING, fatality_type STRING,
 fatality_date DATE, fatality_age int, fatality_sex STRING,
 fatality_location string, event_yearmonth int)
 STORED BY 'org.apache.hadoop.hive.accumulo.AccumuloStorageHandler'
 WITH SERDEPROPERTIES('accumulo.columns.mapping' =
 'time:yearmonth,time:day,time:time,:rowid,event:id,fatality:type,
 time:date,person:age,person:sex,fatality:location,event:yearmonth');

hdfs://sandbox.hortonworks.com:8020/user/hive/warehouse/acc_storm_fatalities
OK
Time taken: 1.542 seconds

Let’s copy our storm data into the Accumulo table:

Integration with Other Tools | 245

http://bit.ly/hortonworks_sandbox

hive> INSERT OVERWRITE TABLE acc_storm_fatalities SELECT * FROM storm_fatalities;
OK
Time taken: 8.082 seconds

Looking in the Accumulo shell we can see the data in our table:

accumulo shell -u user
Password: ******

Shell - Apache Accumulo Interactive Shell
-
- version: 1.5.1.2.1.5.0-695
-
user@hdp> tables
!METADATA
acc_storm_fatalities
test
trace

user@hdp> table acc_storm_fatalities

user@hdp acc_storm_fatalities> scan
21149 event:id [] 482017
21149 event:yearmonth [] 201401
21149 fatality:location [] "Vehicle/Towed Trailer"
21149 fatality:type [] "D"
21149 person:sex [] "F"
21149 time:day [] 6
21149 time:time [] 0
21149 time:yearmonth [] 201401
21186 event:id [] 482572
21186 event:yearmonth [] 201401
21186 fatality:location [] "Vehicle/Towed Trailer"
21186 fatality:type [] "I"
21186 person:age [] 2
21186 person:sex [] "M"
21186 time:day [] 6
21186 time:time [] 0
21186 time:yearmonth [] 201401

We can now perform queries over our Accumulo table as we would with a regular
Hive table:

246 | Chapter 6: Server-Side Functionality and External Clients

hive> SELECT AVG(fatality_age) FROM acc_storm_fatalities;

Total MapReduce CPU Time Spent: 3 seconds 260 msec
OK
44.875
Time taken: 30.656 seconds, Fetched: 1 row(s)

hive> SELECT count(1),fatality_location FROM acc_storm_fatalities
 GROUP BY fatality_location;
Total MapReduce CPU Time Spent: 3 seconds 160 msec
OK
1 "Boating"
1 "Business"
4 "Camping"
1 "Golfing"
2 "Heavy Equipment/Construction"
58 "In Water"
1 "Long Span Roof"
18 "Mobile/Trailer Home"
9 "Other"
87 "Outside/Open Areas"
45 "Permanent Home"
6 "Permanent Structure"
5 "Under Tree"
100 "Vehicle/Towed Trailer"
1 FATALITY_LOCATION
Time taken: 29.797 seconds, Fetched: 15 row(s)

Optimizing Hive queries
Hive works best for ad-hoc analytical queries on data stored in a columnar format.
This allows Hive to only read the columns involved in a query and leave other col‐
umns unread on disk. Because Accumulo supports locality groups, we can achieve the
same performance gains as other columnar storage formats (see “Column Families”
on page 19 and “Locality Groups” on page 138).

In our example, we might want to put the data about personal details and time into
their own locality groups, leaving all other columns in the default locality group:

user@hdp acc_storm_fatalities> getgroups
user@hdp acc_storm_fatalities> setgroups person=person time=time
user@hdp acc_storm_fatalities> getgroups
time=time
person=person

We can compact to apply our changes to the files on disk:

user@hdp acc_storm_fatalities> compact
user@hdp acc_storm_fatalities>

Enabling block caching for our tables can also assist in keeping frequently accessed
data blocks in memory:

Integration with Other Tools | 247

user@hdp acc_storm_fatalities> config -s table.cache.block.enable=true

A query involving the field stored in the Accumulo row ID will use a Scanner config‐
ured only over the range specified. For example, the following query scans over a sin‐
gle row, so it would return much faster than an entire table scan:

hive> SELECT * FROM acc_storm_fatalities where event_id=500101;
OK
201404 3 0 22298 500101 "I" NULL 2 "M"
 "Permanent Home" 201404
Time taken: 0.041 seconds, Fetched: 1 row(s)

Additional notes on the Accumulo-Hive integration are available online:

Apache Pig
Apache Pig is a high-level data-processing language that compiles scripts down to a
series of MapReduce jobs that can be executed on data in Accumulo tables. As of Pig
0.13, Accumulo can be used as a Storage option.

Pig can use Accumulo as the source of data in LOAD statements and the destination in
STORE statements.

To load data from an Accumulo table, use the following syntax:

dataset = LOAD 'accumulo://tableName?instance=myInstance&user=myUser
 &password=myPassword&zookeepers=myZooKeeperServers'
 USING org.apache.pig.backend.hadoop.accumulo.AccumuloStorage(
 'column specification') AS
 ('pig schema definition');

A column specification is a comma-separated list of column identifiers. A column
identifier can be *, meaning all columns, a specific column family such as myFamily:,
or a specific column such as myFamily:myColumnQualifier. A column prefix can also
be specified, such as myFamily:col*.

Specifying just a column family, or a prefix followed by a wildcard, requires that the
columns be represented as a map[] in the associated Pig schema definition. Individual
columns in the specification can be represented as particular data types in the Pig
schema definition. Pig will load row IDs from the Accumulo table into the first ele‐
ment of tuples read, as a chararray by default.

In STORE statements, use the following syntax:

STORE dataset
INTO 'accumulo://tableName?instance=myInstance&user=myUser&password=myPassword
 &zookeepers=myZooKeeperServers'
USING org.apache.pig.backend.hadoop.accumulo.AccumuloStorage(
 'column specification', 'options');

248 | Chapter 6: Server-Side Functionality and External Clients

http://bit.ly/accumulointegration
http://bit.ly/accumulostorage

The column specification is the same as for the LOAD statement. Options to be speci‐
fied include the following:

-c|--caster
The class name that implements LoadStoreCaster to use when serializing types
to and from Accumulo tables. Default is UTF8StringConverter. AccumuloBinary
Converter is an alternative.

-auths|--authorizations
A comma-separated list of authorizations to apply when loading data from
Accumulo.

-s|--start
Specifies the inclusive start row at which to begin reading when loading data.

-e|--end
Specifies the inclusive row at which to stop reading.

-buff|--mutation-buffer-size
The number of bytes to use when buffering data to be written to Accumulo.

-wt|--write-threads
The number of threads to use when writing to Accumulo.

-ml|--max-latency
The maximum number of milliseconds to wait before flushing a set of writes to
Accumulo.

-sep|--separator
A character used to separate column names when parsing the column specifica‐
tion. The default is a comma.

-iw|--ignore-whitespace
Whether to strip whitespace from the column specification. The default is true.

We’ll run through an example to make these ideas more clear.

Pig example
To communicate with Accumulo, Pig needs to know the location of the Accumulo
JARs:

export PIG_CLASSPATH="$ACCUMULO_HOME/lib/*:$PIG_CLASSPATH"

We’ll use the example data provided for exploring Pig in Programming Pig by Alan
Gates (O’Reilly):

wget -O NYSE_daily https://github.com/alanfgates/programmingpig/blob/master/\
 data/NYSE_daily?raw=true

Integration with Other Tools | 249

http://shop.oreilly.com/product/0636920018087.do

Let’s start Pig and load this file into a schema:

$ pig
grunt> daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,
 sdate:chararray, open:float, high:float, low:float, close:float,
 volume:int, adj_close:float);

We’ll use Pig to generate a field that we can use as a row ID in an Accumulo table; in
this case we’ll use the symbol name followed by the date. This will give us a table that
supports efficiently looking up all information for a particular symbol in chronologi‐
cal order. We’ll also generate a new field representing the closing price times the vol‐
ume:

grunt> daily_by_symbol_date = foreach daily generate CONCAT(symbol, sdate), open,
 high, low, close, volume * close;

Now we can tell Pig to store this data in a table in our local Accumulo instance:

grunt> store daily_by_symbol_date
 INTO 'accumulo://daily?instance=hdp&user=root&password=secret
 &zookeepers=localhost'
 USING org.apache.pig.backend.hadoop.accumulo.AccumuloStorage('prices:open,
 prices:high,prices:low,prices:close,calculated:voltimesclose');

Note that we didn’t mention the first element of the tuples in daily_by_symbol_date
in our column specification, because that element will be written to Accumulo as the
row ID:

Success!

Job Stats (time in seconds):
JobId Alias Feature Outputs
job_local1392295495_0002 daily,daily_by_symbol_date MAP_ONLY
 accumulo://daily?instance=hdp&user=root&password=secret&zookeepers=localhost,

Input(s):
Successfully read records from: "file:///root/pig-0.13.0/NYSE_daily"

Output(s):
Successfully stored records in: "accumulo://daily?instance=hdp&user=root
 &password=secret&zookeepers=localhost"

Job DAG:
job_local1392295495_0002

Now we should have some data in a table in Accumulo:

root@hdp daily> scan
CA1988-07-25 calculated:voltimesclose [] 5.329194E7
CA1988-07-25 prices:close [] 26.52
CA1988-07-25 prices:high [] 26.88
CA1988-07-25 prices:low [] 26.16
CA1988-07-25 prices:open [] 26.16
CA1990-12-20 calculated:voltimesclose [] 1.526916E7
CA1990-12-20 prices:close [] 7.6

250 | Chapter 6: Server-Side Functionality and External Clients

CA1990-12-20 prices:high [] 7.6
CA1990-12-20 prices:low [] 7.24
CA1990-12-20 prices:open [] 7.24

We can continue to work with this data in Pig via LOAD statements. We’ll use the abil‐
ity to scan a particular range to limit our data set to information for all dates for a
single stock. We can also select just a subset of the columns available. In this example,
we’ll look at only the stock CSX, and the close and voltimesclose columns:

csxinfo = LOAD 'accumulo://daily?instance=hdp&user=root&password=secret
 &zookeepers=localhost'
 USING org.apache.pig.backend.hadoop.accumulo.AccumuloStorage(
 'prices:close,calculated:voltimesclose', '-s CSX -e CSY') AS
 (symdate:chararray, close:float, voltimesclose:float);

dump csxinfo;

(CSX1988-02-18,30.12,6.0517104E7)
(CSX1988-03-02,29.25,5.87691E7)
...
(CSX2009-12-30,49.12,6.65576E7)
(CSX2009-12-31,48.49,8.255908E7)

This is much more efficient than having to read all the data and use Pig’s filter
operator to limit the data.

If we want to allow Pig to use an irregular set of columns in Accumulo rows, we can
use Pig maps to store whatever columns we happen to find in an Accumulo row:

csxinfo = LOAD 'accumulo://daily?instance=hdp&user=root&password=secret
 &zookeepers=localhost'
 USING org.apache.pig.backend.hadoop.accumulo.AccumuloStorage(
 '*', '-s CSX -e CSY') AS
 (symdate:chararray, allcolumns:map[]);

We can also limit the map to just those columns in a particular family:

csxinfo = LOAD 'accumulo://daily?instance=hdp&user=root&password=secret
 &zookeepers=localhost'
 USING org.apache.pig.backend.hadoop.accumulo.AccumuloStorage(
 'prices:', '-s CSX -e CSY') AS
 (symdate:chararray, prices:map[]);

As we did with Hive, we can use Accumulo’s locality groups feature to partition
groups of columns into separate files on disk to make reading a particular subset of
columns more efficient. Carefully generating row IDs can make accessing a subset of
rows as Pig tuples dramatically more efficient.

Apache Kafka
Apache Kafka is a scalable, fast, distributed queue developed originally at LinkedIn.
For this reason it is attractive as part of a larger data workflow as a way to connect

Integration with Other Tools | 251

http://kafka.apache.org

different systems together. For example, a variety of applications can be made to
publish their data to topics in Kafka, and a different set of other systems can be con‐
figured to read data from the topics on the Kafka queue. The applications publishing
and the applications reading don’t have to be configured to talk to one another, just to
talk to Kafka.

This was one powerful idea behind the push a few years ago for organizations to
move to a service-oriented architecture, including a centralized queue serving as a
message bus for the entire organization. Because Kafka is distributed it is a good can‐
didate for inclusion in a big data workflow.

Accumulo clients can read from Kafka topics and write the data read to Accumulo
tables. This provides other applications with the capability to push data to Accumulo
tables simply by publishing data to a Kafka topic. Accumulo clients can of course be
configured to listen for data pushed from other applications directly, but using a
queue allows multiple consumers to read the same data without configuring compli‐
cated pipelines.

Kafka provides some guarantees around the data consumed from its topics:

• Messages sent by a producer to a particular topic partition will be appended in
the order in which they are sent. That is, if a message M1 is sent by the same pro‐
ducer as a message M2, and M1 is sent first, then M1 will have a lower offset than
M2 and appear earlier in the log.

• A consumer instance sees messages in the order in which they are stored in the
log.

• For a topic with replication factor N, we will tolerate up to N–1 server failures
without losing any messages committed to the log.

One thing that is important for many applications is to process each message once, or
sometimes at least once. Kafka can partition a topic and allow multiple consumers to
be grouped within a common group ID in order for the partitions to be consumed in
parallel. Each message will be delivered to a consumer group only once. Within the
consumer group, individual consumers can tell a broker that they have consumed a
message from a particular partition of a topic by updating an offset. From the Kafka
documentation:

Our topic is divided into a set of totally ordered partitions, each of which is consumed
by one consumer at any given time. This means that the position of consumer in each
partition is just a single integer, the offset of the next message to consume. This makes
the state about what has been consumed very small, just one number for each parti‐
tion. This state can be periodically check-pointed. This makes the equivalent of mes‐
sage acknowledgements very cheap.

When using Accumulo to store messages read from Kafka, you can get closer to ach‐
ieving this property of writing each message once in the presence of individual

252 | Chapter 6: Server-Side Functionality and External Clients

http://bit.ly/kafka_getting_started
http://bit.ly/kafka_getting_started

machine failures by synchronizing the updating of the Kafka consumer offsets with
flushing batches successfully to Accumulo.

An example of code that acts as a Kafka consumer and Accumulo ingest client is as
follows:

package com.accumulobook.integration;

import com.google.common.base.Function;
import com.google.common.collect.Iterables;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;

import kafka.consumer.ConsumerConfig;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.message.MessageAndMetadata;

import org.apache.accumulo.core.client.BatchWriter;
import org.apache.accumulo.core.client.BatchWriterConfig;
import org.apache.accumulo.core.client.Connector;
import org.apache.accumulo.core.client.MutationsRejectedException;
import org.apache.accumulo.core.client.TableNotFoundException;
import org.apache.accumulo.core.data.Mutation;

public class KafkaIngestClient {
 private final ProblemMessageSaver saver;

 public interface ProblemMessageSaver {

 void save(final List<byte[]> messages);
 }

 private final KafkaStream<byte[], byte[]> stream;
 private final BatchWriter batchWriter;
 private final int batchFlushSize;
 private final Function<byte[], Mutation> messageConverter;
 private final ConsumerConnector consumerConnector;
 private final ArrayList<byte[]> messageBuffer;

 public KafkaIngestClient(
 final String zookeeper,
 final String consumerGroup,
 final String topic,
 final String table,
 final BatchWriterConfig bwc,
 final Connector conn,
 final int batchFlushSize,
 final Function<byte[], Mutation> messageConverter,

Integration with Other Tools | 253

 final ProblemMessageSaver saver) throws TableNotFoundException {

 // create kafka consumer
 Properties props = new Properties();
 props.put("zookeeper.connect", zookeeper);
 props.put("auto.offset.reset", "smallest");
 props.put("autocommit.enable", "false");
 props.put("group.id", consumerGroup);

 ConsumerConfig consumerConfig = new ConsumerConfig(props);
 consumerConnector =
 kafka.consumer.Consumer.createJavaConsumerConnector(consumerConfig);

 Map<String, Integer> topicCountMap = new HashMap<>();
 topicCountMap.put(topic, new Integer(1));
 Map<String, List<KafkaStream<byte[],byte[]>>> consumerMap =
 consumerConnector.createMessageStreams(topicCountMap);

 stream = consumerMap.get(topic).get(0);

 // create Accumulo batch writer
 batchWriter = conn.createBatchWriter(table, bwc);
 this.batchFlushSize = batchFlushSize;
 this.messageConverter = messageConverter;
 this.messageBuffer = new ArrayList<>();
 this.saver = saver;
 }

 public void run() {

 for(MessageAndMetadata<byte[], byte[]> mm : stream) {

 byte[] message = mm.message();
 messageBuffer.add(message);

 if(messageBuffer.size() >= batchFlushSize) {
 while (true) {
 try {
 batchWriter.addMutations(Iterables.transform(messageBuffer,
 messageConverter));
 batchWriter.flush();
 consumerConnector.commitOffsets();
 messageBuffer.clear();
 break;
 } catch (MutationsRejectedException ex) {

 // constraint violations and authorization failures
 // will not be solved simply by retrying
 if (ex.getConstraintViolationSummaries().size() > 0
 || ex.getAuthorizationFailuresMap().size() > 0) {

254 | Chapter 6: Server-Side Functionality and External Clients

 // save off these messages for examination and continue
 saver.save(messageBuffer);
 consumerConnector.commitOffsets();
 messageBuffer.clear();
 break;
 }
 // else will retry until success
 }
 }
 }
 }
 }
}

In the event that a machine dies, some of the messages read from the Kafka queue
and batched in memory by the Accumulo client library will not yet have been written
to Accumulo. Another machine starting up to take over consumption of the partition
from which the failed machine was reading (or perhaps an existing client allowed by
Kafka to take over consumption of the partition from the failed machine) will start
reading messages from the offset of the last message known to have been written to
Accumulo successfully, so that no messages will fail to be written to Accumulo.

Because it is possible for the BatchWriter to flush messages to Accumulo on its own
in the background, this strategy provides at-least-once processing semantics, meaning
each message will be processed once, or in the case of failure, perhaps more than
once. If the mapping of Kafka messages to key-value pairs written to Accumulo is
deterministic, Accumulo’s VersioningIterator can be configured to eliminate any
duplicates by keeping only the latest version of a particular row and column within a
key. This is the default configuration for all tables in Accumulo.

Integration with Analytical Tools
Many use cases call for processing data with additional analytical tools on a separate
machine outside of Accumulo or on additional processes colocated with Accumulo
tablet servers, such as R or OpenTDSB.

R is a popular analytical tool that implements a wide variety of statistical algorithms.
Some work has gone into integrating R with Accumulo. This adapter makes it possi‐
ble for R to function as an Accumulo client and to pull data into R for further analy‐
sis.

OpenTSDB is a project for storing time series in scalable databases such as Accumulo.
An adapter for OpenTSDB onto Accumulo is also available.

Integration with Analytical Tools | 255

http://bit.ly/raccumulo
http://bit.ly/accumulo-opentsdb

CHAPTER 7

MapReduce API

One advantage of Accumulo’s integration with Hadoop is that MapReduce jobs can be
made to read input from Accumulo tables and also to write results to Accumulo
tables. This can be done for ingesting a large amount of data quickly, for analyzing
data in Accumulo tables, or for outputting data from Accumulo tables to HDFS.

Formats
Accumulo provides MapReduce input and output formats that read from Accumulo
and write to Accumulo directly. There are input and output formats for both MapRe‐
duce APIs: org.apache.hadoop.mapred and org.apache.hadoop.mapreduce.

A MapReduce job can read input from an Accumulo table, write output to an Accu‐
mulo table, or both.

To configure a MapReduce job to read input from an Accumulo table, use code simi‐
lar to the following:

job.setInputFormatClass(AccumuloInputFormat.class);

AccumuloInputFormat.setInputTableName(job, "table_name");

ClientConfiguration zkiConfig = new ClientConfiguration()
 .withInstance("myInstance")
 .withZkHosts("zoo1:2181,zoo2:2181");

AccumuloInputFormat.setZooKeeperInstance(job, zkiConfig);
AccumuloInputFormat.setConnectorInfo(job, "username",
 new PasswordToken("password"));

List<Pair<Text,Text>> columns = new ArrayList<>();
columns.add(new Pair(new Text("colFam"), new Text("colQual")));
AccumuloInputFormat.fetchColumns(job, columns); // optional

257

List<Ranges> ranges = new ArrayList<Range>();
ranges.add(new Range("a", "k"));
AccumuloInputFormat.setRanges(job, ranges); // optional

AccumuloInputFormat.setScanIsolation(job, true); // optional

AccumuloInputFormat.setScanAuthorizations(job, auths); // optional

The AccumuloInputFormat class takes care of configuring Scanner objects within
map workers to deliver the key-value pairs specified in the options.

Internally, each Mapper has a Scanner over a particular range, which provides key-
value pairs to the map function. Accumulo will assign each tablet as an InputSplit to
a map worker. In addition, Accumulo tries to assign a tablet to a map worker that is
running on the same machine that is currently hosting the tablet. This tends to pro‐
vide the kind of physical data locality that map workers expect for efficient
processing.

This behavior can be disabled via the InputFormatBase.setAutoAdjustRanges()
method, in which case the MapReduce job will assign one map worker to each Range
configured on the input format. If these ranges span tablets, a map worker will end
up reading information from more than one tablet, which makes it harder to assign
map tasks to machines that have a local copy of tablet data:

InputFormatBase.setAutoAdjustRanges(job, false);

To configure a MapReduce job to output data to an Accumulo table, use the Accumu
loOutputFormat class:

job.setOutputFormatClass(AccumuloOutputFormat.class);

ClientConfiguration zkiConfig = new ClientConfiguration()
 .withInstance("myInstance")
 .withZkHosts("zoo1:2181,zoo2:2181");

AccumuloOutputFormat.setZooKeeperInstance(job, zkiConfig);
AccumuloOutputFormat.setConnectorInfo(job, "username",
 new PasswordToken("password"));

BatchWriterConfig config = new BatchWriterConfig();

AccumuloOutputFormat.setBatchWriterOptions(job, config);
AccumuloOutputFormat.setDefaultTableName(job, "table_name");
AccumuloOutputFormat.setCreateTables(job, true); //optional

setCreateTables() tells Accumulo whether or not to create any output tables
that may not exist.

258 | Chapter 7: MapReduce API

Writing Worker Classes
Mappers over Accumulo tables receive a Key object and a Value object for each map()
call:

public static class WordCountMapper extends Mapper<Key,Value,K2,V2> {

 @Override
 public void map(Key k, Value v, Context context) {

 }
}

Accumulo’s InputFormatBase can be extended to provide arbitrary objects of type K,V
to a mapper, where K,V can be derived from any number of Key, Value pairs.

MapReduce jobs that write to Accumulo tables emit a Text object and a Mutation
object. When a job writes to just one table, the Text object can be omitted and null
passed instead:

public static class WordCountReducer extends Reducer<K,V,Text,Mutation> {

 @Override
 public void reduce(K k, Iterable<V> values, Context context) {
 // process input

 Mutation m = new Mutation(row);
 m.put(colFam, colQual, value);

 context.write(null, m);

 }
}

Each Reducer has a BatchWriter that sends data to Accumulo via Text (table name),
Mutation pairs.

MapReduce Example
We’ll run the ubiquitous Word Count example over our Wikipedia articles.

First we’ll create our mapper, combiner, and reducer worker classes, starting with the
mapper. Our mapper will read the value of the contents column from our original
WikipediaArticles table and break the article text up into individual words, counting
the appearance of each word within the document along the way:

public static class WordCountMapper extends Mapper<Key,Value,Text,IntWritable> {

 @Override
 public void map(Key k, Value v, Context context) throws IOException,

Writing Worker Classes | 259

 InterruptedException {

 String text = new String(v.get());

 // count words in article
 HashMap<String, Integer> wordCounts = new HashMap<>();
 for (String word :
 text.replaceAll("[^a-zA-Z]", " ").toLowerCase().split("\\s+")) {
 if (!wordCounts.containsKey(word)) {
 wordCounts.put(word, 0);
 }
 wordCounts.put(word, wordCounts.get(word) + 1);
 }

 for (Map.Entry<String, Integer> e : wordCounts.entrySet()) {
 context.write(new Text(e.getKey()), new IntWritable(e.getValue()));
 }
 }
}

Next, we’ll apply a combiner that will sum over the words seen in the documents pro‐
cessed by an individual map worker. This cuts down on the number of key-value
pairs that have to be shuffled, sorted, and read by reduce workers. Specifically, this
combiner takes a word and a set of partial sums and produces the word and one par‐
tial sum:

public static class WordCountCombiner
 extends Reducer<Text,IntWritable,Text,IntWritable> {

 @Override
 public void reduce(Text k, Iterable<IntWritable> values, Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 for(IntWritable v : values) {
 sum += v.get();
 }

 context.write(k, new IntWritable(sum));
 }
}

Finally, our reducer will take all the partial sums from all the map workers and calcu‐
late the final count for each word. We will emit a single mutation, which will be writ‐
ten to the output table by AccumuloOutputFormat using an internal BatchWriter.
We’ll store the final count as a String representation of an integer in our output
table:

public static class WordCountReducer
 extends Reducer<Text,IntWritable,Text,Mutation> {

 @Override
 public void reduce(Text k, Iterable<IntWritable> values, Context context)

260 | Chapter 7: MapReduce API

 throws IOException, InterruptedException {
 int sum = 0;
 for(IntWritable v : values) {
 sum += v.get();
 }

 Mutation m = new Mutation(k.toString());
 m.put("count", "", Integer.toString(sum));

 context.write(null, m);
 }
}

Now we need to make a driver to configure and run our job. For this job, this will
consist of setting up the worker classes, and configuring AccumuloInputFormat and
AccumuloOutputFormat:

@Override
public int run(String[] args) throws Exception {

 Job job = Job.getInstance(new Configuration());
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 job.setMapperClass(WordCountMapper.class);
 job.setCombinerClass(WordCountCombiner.class);
 job.setReducerClass(WordCountReducer.class);

 // input
 job.setInputFormatClass(AccumuloInputFormat.class);

 ClientConfiguration zkiConfig = new ClientConfiguration()
 .withInstance(args[0])
 .withZkHosts(args[1]);

 AccumuloInputFormat.setInputTableName(job, WikipediaConstants.ARTICLES_TABLE);
 List<Pair<Text,Text>> columns = new ArrayList<>();
 columns.add(new Pair(WikipediaConstants.CONTENTS_FAMILY_TEXT, new Text("")));

 AccumuloInputFormat.fetchColumns(job, columns);
 AccumuloInputFormat.setZooKeeperInstance(job, zkiConfig);
 AccumuloInputFormat.setConnectorInfo(job, args[2], new PasswordToken(args[3]));

 // output
 job.setOutputFormatClass(AccumuloOutputFormat.class);

 BatchWriterConfig config = new BatchWriterConfig();

 AccumuloOutputFormat.setBatchWriterOptions(job, config);
 AccumuloOutputFormat.setZooKeeperInstance(job, zkiConfig);
 AccumuloOutputFormat.setConnectorInfo(job, args[2],
 new PasswordToken(args[3]));

MapReduce Example | 261

 AccumuloOutputFormat.setDefaultTableName(job,
 WikipediaConstants.WORD_COUNT_TABLE);
 AccumuloOutputFormat.setCreateTables(job, true);

 job.setJarByClass(WordCount.class);

 job.submit();
 return 0;
}

We can run this from within our IDE, or by packaging this up as a JAR and submit‐
ting via the mapred command:

mapred -jar wordCount.jar

When the job is done we can examine the word counts in the shell:

root@miniInstance> table WikipediaWordCount
table WikipediaWordCount

root@miniInstance WikipediaWordCount> scan -b accumulo
scan -b accumulo
accumulo count: [] 20
achieve count: [] 1
achieved count: [] 1
achieves count: [] 1

MapReduce over Underlying RFiles
Typically, Accumulo uses HDFS to store all data that’s stored in tables. The format of
these files is RFile, described in “File formats” on page 369.

By design, Accumulo’s files are immutable, meaning their contents cannot be
changed. Writing new data and combining old files is done by creating new files. This
makes it possible to easily process a consistent snapshot of a table by reading the
underlying RFiles.

MapReduce jobs can be run over a set of RFiles for a table. Doing MapReduce in this
way not only provides a consistent view of a table, which could also be done by read‐
ing over a clone of a table, but it also allows the MapReduce job to avoid using
resources of tablet servers by reading directly from data nodes. The jobs can be more
efficient for that reason.

To run MapReduce over a set of RFiles for a table, typically users will clone the table
beforehand and take the cloned table offline. This will keep the set of RFiles static
throughout the time the MapReduce job is running.

The API for cloning a table and taking it offline is as follows:

TableOperations ops = conn.tableOperations();

262 | Chapter 7: MapReduce API

boolean flush = true;
Map<String,String> propertiesToSet = Collections.EMPTY_MAP;
Set<String> propertiesToExclude = Collections.EMPTY_SET;

ops.clone(originalTable, cloneTable, flush, propertiesToSet,
 propertiesToExclude);

When we configure the MapReduce job, we simply use the setOfflineTableScan()
method when configuring our AccumuloInputFormat:

AccumuloInputFormat.setOfflineTableScan(job, true);

Example of Running a MapReduce Job over RFiles
We’ll run through an example of running a MapReduce job over RFiles using the
WordCount class from our previous example.

Our job setup code is almost identical to the previous example, but this time we’ll
clone our articles table first, take it offline, then configure our job to use the cloned
table’s underlying RFiles:

// clone the articles table
ZooKeeperInstance inst = new ZooKeeperInstance(args[0], args[1]);
Connector conn = inst.getConnector(args[2], new PasswordToken(args[3]));

conn.tableOperations().clone(
 WikipediaConstants.ARTICLES_TABLE,
 WikipediaConstants.ARTICLES_TABLE_CLONE,
 true,
 Collections.EMPTY_MAP,
 Collections.EMPTY_SET);

// take cloned table offline, waiting until the operation is complete
boolean wait = true;
conn.tableOperations().offline(WikipediaConstants.ARTICLES_TABLE_CLONE, wait);

ClientConfiguration zkiConfig = new ClientConfiguration()
 .withInstance(args[0])
 .withZkHosts(args[1]);

// input
job.setInputFormatClass(AccumuloInputFormat.class);
AccumuloInputFormat.setInputTableName(job,
 WikipediaConstants.ARTICLES_TABLE_CLONE);
List<Pair<Text,Text>> columns = new ArrayList<>();
columns.add(new Pair(WikipediaConstants.CONTENTS_FAMILY_TEXT, new Text("")));

AccumuloInputFormat.fetchColumns(job, columns);
AccumuloInputFormat.setZooKeeperInstance(job, zkiConfig);
AccumuloInputFormat.setConnectorInfo(job, args[2], new PasswordToken(args[3]));

MapReduce over Underlying RFiles | 263

// configure to use underlying RFiles
AccumuloInputFormat.setOfflineTableScan(job, true);

We run this job as we did our previous example, either from within the IDE, or by
building a JAR and using the mapred command:

mapred jar mapReduceFilesExample.jar

Delivering Rows to Map Workers
In our previous examples, it was only necessary for us to receive one key-value pair in
each map task. It may be necessary for each call to the map method to receive a row
containing multiple columns instead. To configure a MapReduce job to deliver rows
to the map method we could set the WholeRowIterator on our AccumuloInputFormat
and then decode each row into multiple key-value pairs inside our map function defi‐
nition, but there is another input format we can use that will do this work for us.

AccumuloRowInputFormat will deliver a row ID as the key to a mapper, and a Peekin
gIterator<Entry<Key,Value>> as the value. The peeking iterator will contain the
key-value pairs within this row, in sorted order.

Our mapper can then process individual columns within a row like this:

public void map(Text rowID, PeekingIterator<Entry<Key,Value>> value,
 Context context) {
 Entry<Key,Value> entry = value.next();
 // process this column

 entry = value.next();
 // process this column, etc
}

Ingesters and Combiners as MapReduce Computations
The MapReduce programming model is designed for batch computation rather than
incremental computation. For example, when calculating word counts over a set of
10,000 documents, a MapReduce job would read all the documents and calculate how
many times each word appears. If we then add a single new document to the corpus,
we either must read in all the original 10,000 documents again along with the new
document, or read all the previous word counts and add the counts from the one new
document to the existing counts (Figure 7-1).

264 | Chapter 7: MapReduce API

Figure 7-1. Updating word count results

Either option is a lot of work to add just one document.

As a result, incrementally updating a result set such as this in an efficient way tends to
be done by waiting until there are a substantial number of new documents before
updating the result set, the cost of which is that the result set is not updated very
often.

In contrast, Accumulo’s combiners can be used to incrementally update a result set
much more efficiently. In MapReduce, you can specify a combiner class that will be
used to combine together intermediate output from the map phase before it is sent to
the reduce phase. You can think of Accumulo’s combiners as performing a similar
function.

In the word count example, the MapReduce job maps over documents and outputs
word,1 for each word in the document. A combiner sums up the word counts for
each mapper and sends those intermediate counts to a reducer, which tallies the final
counts. In this simplest MapReduce use case, the same class is used for the reducer
and the combiner. To perform a word count in Accumulo, you can configure a
LongCombiner on the table and insert entries with row word and value 1 (Figure 7-2).
After the data is written into Accumulo, the computation is complete.

Ingesters and Combiners as MapReduce Computations | 265

Figure 7-2. Updating word count results incrementally

An example of configuring a table this way is as follows:

IteratorSetting iterSet = new IteratorSetting(
 10,
 "summingCombiner",
 org.apache.accumulo.core.iterators.user.SummingCombiner.class.getName());

SummingCombiner.setEncodingType(iterSet, SummingCombiner.Type.LONG);

List<IteratorSetting.Column> columns = new ArrayList<>();
columns.add(new IteratorSetting.Column(new Text("colFam"), new Text("colQual")));
SummingCombiner.setColumns(iterSet, columns);

// or instead, to apply combiner to all columns
// SummingCombiner.setCombineAllColumns(iterSet, true);

conn.tableOperations().attachIterator("table_name", iterSet);

In the class WordCountIngester we can perform the work our previous WordCount
Mapper performed:

String wikitext = article.getText();
String plaintext = model.render(converter, wikitext)
 .replace("{{", " ")
 .replace("}}", " ");

266 | Chapter 7: MapReduce API

// count words in article
HashMap<String, Integer> wordCounts = new HashMap<>();
for(String word :
 plaintext.replaceAll("^[a-zA-Z]"," ").toLowerCase().split("\\s+")) {
 if(!wordCounts.containsKey(word)) {
 wordCounts.put(word, 0);
 }

 wordCounts.put(word, wordCounts.get(word) + 1);
}

try {
 for (Map.Entry<String, Integer> e : wordCounts.entrySet()) {
 Mutation m = new Mutation(e.getKey());
 m.put("counts", "", e.getValue().toString());

 batchWriter.addMutation(m);
 }
} catch (MutationsRejectedException e) {
 e.printStackTrace();
}

The SummingCombiner will perform the final reduce function for us. We set up the
table as follows:

if (!conn.tableOperations().exists(WikipediaConstants.WORD_COUNT_TABLE)) {
 conn.tableOperations().create(WikipediaConstants.WORD_COUNT_TABLE);

 // configure combiner
 IteratorSetting iterSet = new IteratorSetting(
 10,
 "summingCombiner",
 org.apache.accumulo.core.iterators.user.SummingCombiner.class.getName());

 SummingCombiner.setEncodingType(iterSet, SummingCombiner.Type.STRING);

 List<IteratorSetting.Column> columns = new ArrayList<>();
 columns.add(new IteratorSetting.Column(new Text("counts"), new Text("")));
 SummingCombiner.setColumns(iterSet, columns);

 conn.tableOperations().attachIterator(WikipediaConstants.WORD_COUNT_TABLE,
 iterSet);
}

The final results of a reduce computation that assumes it has seen all the values for a
particular key would typically be performed by a scan-time iterator and are not
persisted in the table. An example of a computation that might be performed at scan
time is the final divide in a running average.

Ingesters and Combiners as MapReduce Computations | 267

MapReduce and Bulk Import
In some cases, rather than writing data to Accumulo incrementally, an application
will want to provide a set of new files to Accumulo all at once. A MapReduce output
format, the AccumuloFileOutputFormat, is provided for creating a set of files in the
RFile format for bulk import into Accumulo. See “File formats” on page 369 for
details on the RFile format.

The most efficient way to create these RFiles is for them to each contain one continu‐
ous range of key-value pairs that doesn’t overlap with any other RFile’s key-value
pairs. This is so that when these files are introduced to existing tablets in an Accu‐
mulo table, only one or maybe two tablets will require data in each RFile. Using the
RangePartitioner is important to ensuring this property of the output RFiles.

To configure a job to use the RangePartitioner:

job.setPartitionerClass(RangePartitioner.class);
RangePartitioner.setSplitFile(job, "/jobconfig/splitsFile.txt");

The splits file should be a file in HDFS that contains one Base64-encoded split
point per line.

Each Reducer will create a separate RFile, and data must be output from the reduce
method in sorted order. For example, a Reducer take the following form:

public static class ReduceClass extends Reducer<Text,Text,Key,Value> {

 public void reduce(Text key, Iterable<Text> values, Context output)
 throws IOException, InterruptedException {

 for (Text value : values) {
 // create outputKey and outputValue
 output.write(outputKey, outputValue);
 }
 }
}

We’re not emitting a Text and Mutation object, as is done with the AccumuloOut
putFormat, but rather, Key and Value objects.

If the for loop does not create output keys in sorted order, you can instead insert the
Key, Value pairs into a TreeMap in the for loop, and then iterate over the TreeMap to
do the output writes at the end of the reduce method.

Once our job is finished we can import the RFiles via the importDirectory()
method:

boolean setTimestamps = true;
importDirectory("table_name", "/inputFiles", "/failedFiles", setTimestamps);

268 | Chapter 7: MapReduce API

This will move the files into directories associated with the table specified and intro‐
duce them to existing tablets.

Bulk Loading and Split Points
The split points used in a MapReduce job don’t need to be perfect. Accumulo can
handle a mismatch in the split points used in files for bulk loading versus the current
distribution of split points in a table by allowing tablets to share access to files that
span their split points temporarily. The major compaction process will allow tablets to
obtain a new set of files that only contain the data that falls within the range of the
tablet.

However, because major compaction is required to get data from bulk imported files
into the right ranges if the split points are misaligned, using split points in bulk files
that differ significantly from the split points in a table means that the cluster will pay a
high price in terms of I/O, in order to assimilate the data from a bulk import.

In addition, using a pathological set of split points (e.g., an unnecessarily large num‐
ber of them) is a good way to cause a cluster to grind to a crawl if a high enough load
is placed on the HDFS NameNode for delete and rename operations associated with
bulk import.

See “Bulk-loading files from a MapReduce job” on page 448 for details on using the
Accumulo shell to bulk-load files created from MapReduce jobs.

Bulk Ingest to Avoid Duplicates
Another reason to use bulk import is to avoid writing duplicate entries into Accu‐
mulo tables when a large number of clients are used to write data. The more clients
involved in writing data, the higher the chance that one can fail. If clients are simply
writing data to Accumulo in response to individual user write requests, this may not
be much of a problem. Applications can use conventional load balancers to find a live
client and write their data.

However, in a scenario in which clients are writing information from a set of files, for
example, the loss of a client makes it likely that only a portion of a file was ingested. If
another client is directed to reingest the file, there is a chance that it will create dupli‐
cate entries in the table.

One way to avoid this is to make the key-value pairs written for each piece of input
data deterministic. That is to say, each input record is converted into the same set of
key-value pairs no matter when or which client is ingesting the record. This can still
result in the same key-value pair getting written more than once, but the Versionin
gIterator can be configured to ignore all but the latest version of a key-value pair,
effectively eliminating duplicates.

MapReduce and Bulk Import | 269

Sometimes creating deterministic key-value pairs is not an option. For example, an
application may want to create key-value pairs for an input record that use the time‐
stamp of when the data was ingested as part of the row ID. This would allow data to
be read from Accumulo roughly in the order in which it arrived. For more discussion
on storing data in time order, see Chapter 9.

In this case, reloading some input records from a partially processed input file would
result in duplicate records with different row IDs. Using MapReduce and bulk load‐
ing would avoid loading in any key-value pairs from a file that was partially processed
when the machine processing it suffered a failure. This can also allow for loading
some set of key-value pairs all together as an atomic unit as each RFile is either com‐
pleted and loaded or discarded, so that another worker can produce a complete file.

270 | Chapter 7: MapReduce API

CHAPTER 8

Table Design

Accumulo provides application developers with a high degree of control over data
layout, which has a large effect on the performance of various access patterns. Here
we discuss some table designs for various purposes and address particular issues in
designing keys, values, and authorizations.

Single-Table Designs
Some applications require looking up values based on a few specific pieces of data
most of the time. In these cases it is convenient to identify any hierarchies that may
exist in the data and to build a single table that orders the data according to the
hierarchy.

For example, if we are writing an application to store messages, such as email, we
might have a hierarchy that consists of user accounts identified by unique email
addresses. Within a user account we have folders, and each folder contains zero or
more email messages (Figure 8-1).

In addition to natural hierarchies in the data, we also need to consider access pat‐
terns. A common query will be to access a list of messages to or from a user within a
particular folder, preferably in time order from most recent to oldest.

271

Figure 8-1. Hierarchy in data

An example application method for fetching this data can look like the following:

listMessages(emailAddress, folder, offset, num)

where emailAddress is the user’s email address, folder indicates which mail folder to
access, and offset and num together indicate which set of messages to fetch for the
purposes of displaying email addresses in pages. The first page would have an offset
of 0 and could have a num of 100 to show the first (most recent) 100 email messages.

To support reading this data efficiently, we could store all the messages that belong to
a user under a row ID consisting of the user’s email address, followed by the folder,
and finally, the date and time at which the email was created or arrived. We may also
want to store a unique identifier for this email at the end, to distinguish messages that
arrive at the same time. Our row IDs then would look something like this:

alice@accumulomail.com_inbox_20110103051745_AFBBE

where alice@accumulomail.com is the email address, followed by the folder name
(inbox), followed by a zero-padded date and time representation that is designed to
sort dates properly, followed by a hash of some part of the email or perhaps an ID
that is delivered in the email header.

272 | Chapter 8: Table Design

This works, except that using the human-readable representation of the data would
order our keys in ascending time order, rather than descending as most email appli‐
cations do. To change this, we can transform the representation of the date in the row
ID so that they sort in reverse time order. One way to do this is to subtract the date
from a number larger than the largest date we expect to ever store. For example, the
date element could be subtracted from the number 99999999999999. We could store
the actual date in a value in this row.

Note that we’re using an underscore as the delimiter here. A different delimiter may
be required depending on whether we ever need to parse the row ID and whether
underscores are valid characters for the elements of the row ID.

We then need to determine how to store each part of the message. We can decide to
break out the subject and body into different columns so that users can quickly get a
list of messages showing the subject without having to read all of the bodies of those
messages. Other times, a user will need to retrieve an entire message, including the
body and subject. The application method to retrieve all the data for a single message
can look like the following:

getMessage(emailAddress, folder, date, emailId)

So we can have one column family for small amounts of data like the subject, and
another column family for the email bodies. This will allow us to store those two col‐
umn families in different locality groups, which means we can efficiently read one
from disk without reading the other, and other times we can still read them both
fairly efficiently.

Now a message in our table may look like Table 8-1.

Table 8-1. Email message table

Row Column family Column
qualifier

Value

alice@accumulo

mail.com_inbox_79889896948254_AFBBE

details subject Re: meeting fri

alice@accumulo

mail.com_inbox_79889896948254_AFBBE

details from bob@othermail.com

alice@accumulo

mail.com_inbox_79889896948254_AFBBE

content Alice, can we meet

Monday instead?

This one table can now fulfill both types of requests. The implementation of listMes
sages() without paging would involve creating a single scan such as:

public Iterator<Entry<Key,Value>> listMessages(
 String emailAddress,

Single-Table Designs | 273

 String folder,
 Authorizations auths) {

 Scanner scanner = inst.createScanner("emailMessagesTable", auths);

 // we only want to scan over the 'details' column family
 scanner.fetchColumnFamily("details");
 scanner.setRange(Range.prefix(emailAddress + "_" + folder));

 return scanner.iterator();
}

Similarly, the implementation of getMessage() would involve creating a single scan
such as:

public Iterator<Entry<Key,Value>> listMessages(
 String emailAddress,
 String folder,
 String date,
 String emailID,
 Authorizations auths) {

 String transformedDate = (99999999999999-Integer.parseInt(date)).toString();

 Scanner scanner = inst.createScanner("emailMessagesTable", auths);
 // we want all column families, and so we don't fetch a particular family
 scanner.setRange(Range.exact(emailAddress + "_" + folder + "_" +
 transformedDate + "_" + emailID));

 return scanner.iterator();
}

In this example, our table exploits natural hierarchies in the data and addresses the
two most common access patterns for retrieving information for an application.
There are any number of variations on this theme, but a design involving a single
table is limited in the number of ways the data can be accessed. For example, this
table would not support finding email messages that contain one or more search
terms. For those access patterns, additional tables for secondary indexes are
necessary.

Implementing Paging
By default, scanners return key-value pairs until the set of results is exhausted. Appli‐
cations that want to enable users to page through results have several options.

For example, we can create a method that takes a start row ID, a set of columns, a
page offset, and a page size:

public List<Entry<Key,Value>> getResults(String startRow, List<Text> columns,
 int offset, int pageSize)

274 | Chapter 8: Table Design

We can choose to create brand-new Scanner objects every time this method is called,
and skip over the previous page until we reach the specified offset. This has the disad‐
vantage of having to read more and more results off of disk and transfer them to the
client as the page offset increases. If users will typically only look at the first few pages
this might be acceptable.

An example of using Google’s Guava library to modify a Java iterator returned from a
Scanner is as follows:

import com.google.common.collect.FluentIterable;

public List<Entry<Key,Value>> getResults(String startRow, List<Text> columns,
 int offset, int pageSize) {

 // ... after the scanner has been setup
 FluentIterable<Entry<Key, Value>> fiter = FluentIterable.from(scanner);
 fiter.skip(offset);
 fiter.limit(pageSize);

 return Lists.newArrayList(fiter);
}

Another option is to cache recently created scanners and associate them with individ‐
ual queries. When users request the next page in a set of results, we can simply
retrieve the scanner and continue fetching the next page of key-value pairs. Scanners
do not have the ability to seek backward, but if the primary method of paging
through results is to start at the first and move through the pages sequentially, this
method may work well. This has the disadvantage of having to keep scanners around
and expire them after a certain amount of time or until the user closes the session.

Another option for paging forward is to, instead of caching Scanner objects, cache
the last key-value pair seen and then create a new scanner, seeking to the next logical
key that appears after the last key-value pair seen. This has the advantage of not
requiring scanner resources to be kept open, but it can incur more overhead by creat‐
ing a new scanner for every page requested.

When paging is implemented in the context of secondary indexes, we need to process
record IDs retrieved from the index table that match the query criteria to identify the
page of records requested, and then fetch only matching actual records for that page.

Secondary Indexing
Applications that use a single table and employ a simple access pattern are among the
most scalable, consistent, and fast. This type of design can serve in a wide variety of
applications. When storing records in an Accumulo table, we can store them in sor‐
ted order but can only sort them one way.

Secondary Indexing | 275

https://github.com/google/guava

In the previous example we stored emails in order of the recipient’s email address,
then by the date, and finally by a unique email ID. In this case the record ID used is a
concatenation of those three elements. If we want to look up records based on other
criteria, we have to scan the entire table. For these other access patterns, building a
secondary index can provide a solution. These applications still need to minimize the
work done at query time, to ensure high performance as the amount of data and the
number of concurrent users increase.

Secondary indexes are tables that allow users to quickly identify the record IDs that
contain a value from a particular field. Those record IDs can then be used to retrieve
the full record from the primary table containing records. We’ll next discuss two
types of secondary indexes: a term-partitioned index and a document-partitioned
index.

Index Partitioned by Term
One way to build a secondary index is by storing individual terms to be queried in
the row ID. For example, we can retrieve Wikipedia pages that contain a given word
by building a table storing the words found in article text in the Accumulo row ID
and the article title as the column qualifier.

Table 8-2 recalls our WikipediaArticles table from “Data Modeling” on page 85, which
used article titles as the row ID.

Table 8-2. Wikipedia article contents

Row Column family Column qualifier Column visibility Value

page title contents contents visibility page contents

page title metadata id id visibility id

page title metadata namespace namespace visibility namespace

page title metadata revision revision visibility revision

page title metadata timestamp timestamp visibility timestamp

Now we create a secondary index that maps words appearing in Wikipedia pages to
the page titles, shown in Table 8-3. An index organized by storing words or terms as
the row ID is referred to as a term-partitioned index.

276 | Chapter 8: Table Design

Table 8-3. Wikipedia index of contents

Row Column family Column qualifier Column visibility Value

word contents page title page visibility

The entries for an index on a subset of Wikipedia articles are as follows:

white contents:Friendship_Games []
white contents:Olympic_Games []
white contents:Olympic_Games_ceremony []
whitfield, contents:Cotswold_Olimpick_Games []
whitsun, contents:Cotswold_Olimpick_Games []
whitsun. contents:Cotswold_Olimpick_Games []
who contents:Alternate_Olympics []
who contents:Ancient_Olympic_Games []
who contents:Arena_X-Glide []

Because in a secondary index table we’re swapping the order of the row IDs and val‐
ues from the original table, an index like this is sometimes called an inverted index.
However, note that we don’t store the title from the WikipediaArticles table in the
value portion of the secondary index, but rather we store titles in the column quali‐
fier. This is because a term can appear in more than one article. We don’t want article
titles to be different versions of values for the terms, and we could envision wanting
to scan a range of titles within a term, so we simply store the titles under the column
qualifier and leave the value blank.

This technique also works for indexing the article metadata fields. It is possible to
store the index entries for all fields in the same table if we want (see Table 8-4). We’ll
store the concatenated column family and qualifier from the original table in the col‐
umn family of the index so that a client can fetch values from a particular column, if
they so choose. By not specifying the column family, a client can find the rows in
which a given value appears in any field.

Table 8-4. Wikipedia index of all fields

Row Column family Column qualifier Column visibility Value

word contents page title page visibility

id metadata:id page title page visibility

namespace metadata:namespace page title page visibility

revision metadata:revision page title page visibility

timestamp metadata:timestamp page title page visibility

Secondary Indexing | 277

When we build a secondary index table, one value from the origi‐
nal table can become many key-value pairs if we are tokenizing the
text of the original values and storing a key-value pair for every
individual word in the index. Index tables are a good example of
using up more disk space to gain speed when doing searches.
In this case, we’re using roughly twice the disk space of our original
table in order to avoid doing expensive table scans. Developers of
relational databases will recognize this trade-off, because relational
database indexes are also stored on disk. Accumulo’s default com‐
pression techniques can help mitigate the additional disk space
used.
Not only does this require additional disk space, but it will also take
longer to write this data from clients because we’re now writing not
only the original record, but also some number of index entries.
Application designers should consider the impact on ingest speed
versus the speed up gained for queries and choose which fields, if
any, to write to a secondary index based on the types of queries
required.
The horizontal scalability of Accumulo’s design makes accommo‐
dating additional precomputation such as this a matter of simply
adding more hardware resources.

An example of an ingest client that writes data to the WikipediaArticles table and the
WikipediaIndex table at the same time is as follows:

// write article data to articles table as before
String wikitext = page.getText();
String plaintext = model.render(converter, wikitext);
plaintext = plaintext
.replace("{{", " ")
.replace("}}", " ");

Mutation m = new Mutation(page.getTitle());
m.put(WikipediaConstants.CONTENTS_FAMILY, "", plaintext);
m.put(WikipediaConstants.METADATA_FAMILY, WikipediaConstants.NAMESPACE_QUAL,
 page.getNamespace());
m.put(WikipediaConstants.METADATA_FAMILY, WikipediaConstants.TIMESTAMP_QUAL,
 page.getTimeStamp());
m.put(WikipediaConstants.METADATA_FAMILY, WikipediaConstants.ID_QUAL,
 page.getId());
m.put(WikipediaConstants.METADATA_FAMILY, WikipediaConstants.REVISION_QUAL,
 page.getRevisionId());

writer.addMutation(m);

// write index entries as well

// tokenize article contents on whitespace and punctuation and set to lowercase

278 | Chapter 8: Table Design

HashSet<String> tokens = Sets.newHashSet(plaintext.replace("\"", "")
 .toLowerCase().split("\\s+"));
for (String token : tokens) {
 if (token.length() < 2) { // skip single letters
 continue;
 }

 Mutation indexMutation = new Mutation(token);
 indexMutation.put(WikipediaConstants.CONTENTS_FAMILY, page.getTitle(),
 BLANK_VALUE);

 indexWriter.addMutation(indexMutation);
}

Create a new Mutation with the term that users can query as the row ID.

Designate this index entry as being from the article contents by specifying a col‐
umn family. Store the page title in the column qualifier so that we use it to per‐
form a subsequent lookup on the primary articles table.

We’re only indexing simple words here, by tokenizing the original text on whitespace.
We talk about how to index other types of values in “Indexing Data Types” on page
288.

Now we have a table containing original articles, with the article title as the key, and
another table containing index entries of words found in articles with pointers to the
article titles from which they came.

Querying a Term-Partitioned Index
With this term-partitioned secondary index we can now look up article titles by the
value of any metadata field, or by any word appearing in the article body. Once we
have some article titles retrieved from the index table, we can retrieve the information
about the articles by doing lookups against the original WikipediaArticles table using
a BatchScanner:

public void querySingleTerm(String term) throws TableNotFoundException {

 Scanner scanner = conn.createScanner(WikipediaConstants.INDEX_TABLE, auths);
 // lookup term in index
 scanner.setRange(Range.exact(term));

 // store all article titles returned
 HashSet<Range> matches = new HashSet<>();
 for (Entry<Key, Value> entry : scanner) {
 matches.add(new Range(entry.getKey().getColumnQualifier().toString()));
 }

 if(matches.isEmpty()) {
 System.out.println("no results");

Secondary Indexing | 279

 return;
 }

 for (Entry<Key, Value> entry : retrieveRecords(conn, matches)) {
 System.out.println("Title:\t" + entry.getKey().getRow().toString()
 + "\nRevision:\t" + entry.getValue().toString() + "\n");
 }
}

private Iterable<Entry<Key,Value>> retrieveRecords(Connector conn,
 Collection<Range> matches) throws TableNotFoundException {
 // retrieve original articles
 BatchScanner bscanner = conn.createBatchScanner(
 WikipediaConstants.ARTICLES_TABLE, auths, 10);
 bscanner.setRanges(matches);

 // fetch only the article contents
 bscanner.fetchColumn(new Text(WikipediaConstants.METADATA_FAMILY),
 new Text(WikipediaConstants.REVISION_QUAL));

 return bscanner;
}

Note that our query code is coupled with our ingest code. If we change our ingest
code, the schema of our index or original articles table will change and our query
code will have to be updated in order to query these tables properly.

The query we just performed is an example of a point query, in which we find all
records containing an exact term. We can also use this index to perform range queries,
in which we retrieve all records matching a range of terms. See “Using Lexicoders in
indexing” on page 290 for an example.

Dealing with the nuances of secondary indexing in applications will be new to devel‐
opers accustomed to working with relational databases, which do the work of build‐
ing secondary indexes for applications. The trade-off for having to do this work is an
incredible amount of flexibility in how data is indexed and retrieved.

This level of control is appropriate for Accumulo because the large data volumes
Accumulo is designed to manage make it imperative for data to be organized in ways
that are optimized for specific access patterns; otherwise performance will quickly
degrade.

A suboptimal query on even a few gigabytes of data, such as a simple linear scan, can
still be done quickly because that much data will fit comfortably in the main memory
a single server and even a single desktop or notebook computer. But sub-optimal
queries on hundreds of terabytes of data will be too slow for users to tolerate.

One way to view indexing is as a way to precompute views of the data that are opti‐
mal for the required access patterns. The scalability of the system and the relatively
low cost of storage makes materializing these views feasible.

280 | Chapter 8: Table Design

Combining query terms
In the previous example we were only querying for a single term or a single range of
terms at a time. If we needed to look up records that satisfy more than one
criterion—say, for example, all Wikipedia articles containing the word baseball with a
timestamp newer than a year ago—we would need to do separate scans for each crite‐
rion and combine the article titles returned to get articles that match both criteria. To
be specific, each scanner returns a set of titles matching the scan criterion applied,
and the intersection of those sets of titles represents articles that match all criteria.
The union of those sets of titles would represent articles that match at least one crite‐
rion.

A simple implementation that uses one HashSet to determine records that match any
term is as follows:

// returns records matching any term
public void queryMultipleTerms(String ... terms) throws TableNotFoundException {

 HashSet<String> matchingRecordIDs = new HashSet<>();

 for(String term : terms) {

 Scanner scanner = conn.createScanner(WikipediaConstants.INDEX_TABLE, auths);
 // lookup term in index
 scanner.setRange(Range.exact(term));

 for (Entry<Key, Value> entry : scanner) {
 matchingRecordIDs.add(entry.getKey().getColumnQualifier().toString());
 }
 }

 if(matchingRecordIDs.isEmpty()) {
 System.out.println("no results");
 return;
 }

 // convert to Ranges
 List<Range> ranges = Lists.newArrayList(
 Iterables.transform(matchingRecordIDs, new StringToRange()));

 for (Entry<Key, Value> entry : retrieveRecords(conn, ranges)) {
 System.out.println("Title:\t" + entry.getKey().getRow().toString()
 + "\nRevision:\t" + entry.getValue().toString() + "\n");
 }
}

private class StringToRange implements Function<String,Range> {

 @Override
 public Range apply(String f) {
 return new Range(f);

Secondary Indexing | 281

 }
}

For multiple single-term lookups—such as all articles that contain both the word
baseball and record—we can take advantage of the fact that the article titles, which are
stored in the column qualifier, are sorted within a single row and column family. We
can combine the titles returned from two single-term scans by simply comparing the
titles as they are returned from each scan to find matches, rather than having to load
all the titles in memory and perform set intersection using something like Java collec‐
tions. This is important because we often can’t predict how many records will match a
given criterion.

Problems can arise when queries become more complex than this. Some of these can
be better addressed via a document-partitioned index, as described in “Index Parti‐
tioned by Document” on page 284.

Querying for a term in a specific field
In our previous example, we were looking for index entries that match our query
term, regardless of the field in which our term may have appeared in the original
record. We can execute a more focused query by specifying a field in which our term
must appear, presuming we’ve stored this field information in the key of our index.

For example, if we want only articles in which the term wrestling appears in the body
of the article, we can limit the range of our initial scanner to entries representing an
appearance of the word wrestling within the body of the article. When we created our
index, we used the column family to store information about the field from which an
index term originated. So we can simply construct a range covering the exact row and
column we want when configuring our scanner. When scanning only one row, this is
more efficient than using the fetchColumn() method, because no key-value pairs in
other columns will be iterated over and rejected.

Modifying our query from the previous example, we have:

Scanner scanner = conn.createScanner(WikipediaConstants.INDEX_TABLE, auths);
// lookup term and field in index
scanner.setRange(Range.exact(term), WikipediaConstants.CONTENTS_FAMILY);

// store all article titles returned
HashSet<Range> matches = new HashSet<>();
for (Entry<Key, Value> entry : scanner) {
 matches.add(new Range(entry.getKey().getColumnQualifier().toString()));
}

if(matches.isEmpty()) {
 System.out.println("no results");
 return;
}

282 | Chapter 8: Table Design

for (Entry<Key, Value> entry : retrieveRecords(conn, matches)) {
 System.out.println("Title:\t" + entry.getKey().getRow().toString()
 + "\nRevision:\t" + entry.getValue().toString() + "\n");
}

Now we include the column family in range, which identifies the field in which
the search term appears.

It is even possible to build an index across tables this way, by storing the table name
in the key. For example, we could choose to build our index to store information as in
Table 8-5.

Table 8-5. Index across multiple tables

Row Column family Column qualifier Column visibility Value

value originalTable-field record ID page visibility

This type of index would allow queries to be performed across multiple data sets
simultaneously. The flexibility of index tables allows for options such as this.

Maintaining Consistency Across Tables
Term-based secondary indexes must be maintained along with the original table so
that inconsistencies do not arise. Even though Accumulo does not provide multirow
transactions or cross-table transactions, this consistency can often be managed in the
application.

One strategy for managing consistency between the original table and the secondary
index table is to carefully order read and write operations. You can choose to wait
until new rows are written to the original table first, and then write the corresponding
entries to the secondary index. If for some reason a write to the original table fails, it
can be retried before any index entries are written. This way clients aren’t referred by
the index to a row in the original table that doesn’t exist.

Inversely, when data is deleted from the original table, the index entries should be
removed first, and then the row from the original table. These strategies will prevent
any clients from looking up data in the index that has not yet been written or that has
been removed from the original table.

More complicated strategies may be required if an application involves concurrent
updates to indexed data. One potential way to address updating secondary indexes is
to look to higher-level abstractions built on top of Accumulo, such as the Fluo frame‐
work, which allows writes to be triggered to index tables from updates to a primary
record table.

Secondary Indexing | 283

https://github.com/fluo-io

Using MultiTableBatchWriter for consistency

We introduce the MultiTableBatchWriter in “Writing to Multiple Tables” on page
100.

The MultiTableBatchWriter has close() and flush() methods that allow applica‐
tions to push new data to multiple tables and verify that they were written success‐
fully. This can help when synchronizing writes to secondary indexes while writing to
original tables.

To use a MultiTableBatchWriter in our indexing example, we’ll first create a Multi
TableBatchWriter and use it to obtain the individual BatchWriter objects for our
index and record table:

BatchWriterConfig conf = new BatchWriterConfig();
MultiTableBatchWriter multiTableBatchWriter =
 conn.createMultiTableBatchWriter(conf);

writer = multiTableBatchWriter.getBatchWriter(WikipediaConstants.ARTICLES_TABLE);
indexWriter =
 multiTableBatchWriter.getBatchWriter(WikipediaConstants.INDEX_TABLE);

Our application can keep track of mutations and call flush() periodically to deter‐
mine when a batch has been written successfully or that a set of mutations should be
retried.

Instead of calling flush() on individual BatchWriter objects, we instead call it on
our MultiTableBatchWriter like this:

try {
 multiTableBatchWriter.flush();
} catch (MutationsRejectedException mre) {
 // report or retry
}

Also, when we are done writing data, we call close() on our MultiTableBatch
Writer instead of individual BatchWriters:

try {
 multiTableBatchWriter.close();
 System.out.println("done.");
} catch (MutationsRejectedException mre) {
 // report or retry
}

See the full listing of WikipediaIngestMultiTableExample.java for details.

Index Partitioned by Document
A basic term-partitioned index is useful for retrieving all the data containing a partic‐
ular word or having a specific value for a field. If we need to find all the data contain‐

284 | Chapter 8: Table Design

ing two different words, the client code would have to issue two scans to the basic
index, bringing the document IDs for both back to the client side and intersecting the
two lists. This can be inefficient if one or both of the terms appears in many docu‐
ments, requiring many IDs to be retrieved. One solution to this problem is to build a
document-partitioned index. In such an index, sets of documents are grouped together
into partitions, and each partition is assigned an ID. The index is organized first by
partition ID, then by word. Table 8-6 shows an example.

Table 8-6. Document-partitioned table

Row Column family Column qualifier Column visibility Value

partition ID doc \0 wikiDoc page title page visibility page contents

partition ID ind word \0 wikiDoc \0 page title \0 info page visibility

Document-Based Partitioning
Document-based partitioning is a concept employed by other systems. Google
describes a kind of document-based partitioning in a 2003 paper on the main indexes
backing the famous Google search application, entitled “Web Search for a Planet: The
Google Cluster Architecture.”

In this paper Google says that “the search is highly parallelizable by dividing the index
into pieces (index shards), each having a randomly chosen subset of documents from
the full index” and that “each query goes to one machine (or a subset of machines)
assigned to each shard.”

Similarly, some distributed relational databases, sometimes called massive parallel
processing (MPP) databases, employ this type of strategy for distributing data across
machines and executing queries across partitions.

The partition ID is the row portion of the key. The page contents are stored in one
column family of the row, and the index is stored in another column family. To
retrieve all the pages containing the words “wrestling” and “medal” in this partition,
we can read over and merge the sorted lists of page titles obtained by scanning over
the keys starting with partition ID_ : index : wrestling and starting with parti
tion ID : index : medal.

This intersection can be accomplished on the server side with an appropriate Accu‐
mulo iterator. We discuss iterators in more depth in “Iterators” on page 209. An itera‐
tor that seeks to multiple starting points and intersects the results is called an
intersecting iterator.

Secondary Indexing | 285

http://bit.ly/1N9v47T
http://bit.ly/1N9v47T

To use this method, a data set should be divided into an appropriate number of parti‐
tions so that the partitions are not too large or too small, and there are enough of
them that they are spread over the desired number of servers. Ideally each partition
will fill an entire tablet, so its size should be somewhere between 256 MB and tens of
gigabytes. For the Wikipedia data, we’ll use 32 partitions.

Example code for building this table is as follows:

private static final int NUM_PARTITIONS = 10;
private static final Value BLANK_VALUE = new Value("".getBytes());

@Override
public void process(WikiArticle article, Siteinfo info) throws SAXException {

 String wikitext = article.getText();
 String plaintext = model.render(converter, wikitext);
 plaintext = plaintext.replace("{{", " ").replace("}}", " ");

 Mutation m = new Mutation(Integer.toString(Math.abs(
 article.getTitle().hashCode()) % NUM_PARTITIONS));
 m.put("doc" + '\0' + "wikiDoc", article.getTitle(), plaintext);

 // tokenize article contents on whitespace and punctuation and set to lowercase
 HashSet<String> tokens = Sets.newHashSet(plaintext.toLowerCase()
 .split("\\s+"));
 for (String token : tokens) {
 m.put("ind", token + '\0' + "wikiDoc" + '\0' + article.getTitle() + '\0',
 BLANK_VALUE);
 }

 try {
 writer.addMutation(m);
 } catch (MutationsRejectedException e) {
 throw new SAXException(e);
 }
}

Unlike term-partitioned indexes, in a document-partitioned table
Accumulo can make all the inserts for a given document atomically
because they are all inserted into the same row. The trade-off is that
all partitions must be searched when performing queries.

Key-value pairs in this table look as follows:

root@miniInstance> table WikipediaPartitioned
table WikipediaPartitioned
root@miniInstance WikipediaPartitioned> scan
scan
0 doc\x00wikiDoc:Sqoop [] Infobox software Sqoop is a ...
0 ind:\x00wikiDoc\x00Sqoop\x00 []

286 | Chapter 8: Table Design

0 ind:2012.\x00wikiDoc\x00Sqoop\x00 []
0 ind:a\x00wikiDoc\x00Sqoop\x00 []
0 ind:accumulo\x00wikiDoc\x00Sqoop\x00 []
0 ind:also\x00wikiDoc\x00Sqoop\x00 []
0 ind:and\x00wikiDoc\x00Sqoop\x00 []
0 ind:apache\x00wikiDoc\x00Sqoop\x00 []
0 ind:application\x00wikiDoc\x00Sqoop\x00 []
0 ind:archives\x00wikiDoc\x00Sqoop\x00 []

Querying a Document-Partitioned Index
When querying the data, we will use a BatchScanner along with an intersecting itera‐
tor, the IndexedDocIterator, to find relevant pages in each of the partitions. To scan
all partitions, we give the BatchScanner a special range that covers the entire table.

Code to query our document-partitioned index is as follows:

BatchScanner scanner = conn.createBatchScanner(
 WikipediaConstants.DOC_PARTITIONED_TABLE, auths, 10);
scanner.setTimeout(1, TimeUnit.MINUTES);
scanner.setRanges(Collections.singleton(new Range()));

Text[] termTexts = new Text[terms.length];
for (int i = 0; i < terms.length; i++) {
 termTexts[i] = new Text(terms[i]);
}

// lookup all articles containing the terms
IteratorSetting is = new IteratorSetting(50, IndexedDocIterator.class);
IndexedDocIterator.setColfs(is, "ind", "doc");
IndexedDocIterator.setColumnFamilies(is, termTexts);
scanner.addScanIterator(is);

for (Entry<Key, Value> entry : scanner) {
 String[] parts = entry.getKey().getColumnQualifier().toString().split("\0");
 System.out.println(
 "doctype: " + parts[0] +
 "\ndocID:" + parts[1] +
 "\ninfo: " + parts[2] +
 "\n\ntext: " + entry.getValue().toString());
}

See the WikipediaQueryMultiterm.java file for more detail.

Secondary Indexing | 287

Be aware than when you use the document-partitioned index strat‐
egy with a BatchScanner, a single query is sent to all tablets involv‐
ing all tablet servers in the query, whereas queries against term-
partitioned indexes typically involve only a few machines. This
reduces the number of concurrent queries that the cluster can sup‐
port. By involving more machines, Accumulo can process more
complex queries in a fairly bounded time frame.
The document-partitioned indexing strategy described minimizes
the network usage involved in these queries as well as round trips
between the client and tablet servers. It does this by performing all
intersections within the server memory and by storing the full
record alongside the index entries for that record.

Applications that utilize a document-partitioned index don’t necessarily need to
query all partitions for every user request. For example, an application designer might
choose to use partitions to implement paging and to return the first page or pages to
users by scanning a subset of the partitions. Users can then request additional pages,
which are populated via scans of the remaining partitions.

The mapping of documents to partitions is typically done via hashing or round-
robin, but it can be done in other ways, depending on the needs of the application.
For example, the value of a particular field within a document or record—such as the
document type—might be chosen to determine in which partition a document or
record belongs. However, care should be taken to ensure partitions are all about the
same size, so that tablet servers are evenly loaded.

Term-partitioned and document-partitioned indexes are two of the more popular
table designs for addressing a wide variety of access patterns with a minimum num‐
ber of tables.

Indexing Data Types
Values in the original table can be just about anything. Accumulo will never interpret
a value and doesn’t sort them. When building a secondary index, sort order of these
items must be considered. For values to sort properly, they may need to be trans‐
formed. Here are a few examples of how the human-readable string representations
of these values may not be the right way to store values in the keys of an index table.

String representations of numbers, when sorted lexicographically as Accumulo sorts
them, do not end up in numerical order. These must be transformed in order to sort
properly. One way to make lexicographic sorting match numeric sorting is to pad the
numbers to a fixed width with zeros on their left. For example:

 0
 1

288 | Chapter 8: Table Design

 11
 2

might be stored as:

 00
 01
 02
 11

Another example is IP addresses, which consist of four 8-bit numbers called octets,
each of which ranges between 0 and 255, separated by a period. Because the string
representation of an octet can be either one, two, or three characters, IP addresses do
not sort well lexicographically:

192.168.1.1
192.168.1.15
192.168.1.16
192.168.1.2
192.168.1.234
192.168.1.25
192.168.1.3
192.168.1.5
192.168.1.51
192.168.1.52

To avoid this situation, the octets can simply be zero-padded to sort IP addresses
properly:

192.168.001.001
192.168.001.002
192.168.001.003
192.168.001.005
192.168.001.015
192.168.001.016
192.168.001.025
192.168.001.051
192.168.001.052
192.168.001.234

Fortunately, there is a human-readable way to store dates that sorts them in the
proper order using the longest time periods first and zero-padding:

YYYYMMDD

20120101
20120102
20120201
20120211
20120301

YYYYMMDDHHmmSS

Including dashes, spaces, and colons will not change this basic order:

Secondary Indexing | 289

YYYY-DD-MM HH:mm:SS

Dates could also be converted to a value such as milliseconds since midnight January
1, 1970 or some other convention and stored as numbers with appropriate padding or
encoding.

In the original BigTable paper the authors describe a method for storing domain
names so that subdomains that share a common domain suffix sort together:

com.google.appengine
com.google.mail
com.google.www
com.msdn
com.msdn.developers
com.yahoo
com.yahoo.mail
com.yahoo.search

It may be preferable to simply transform strings from the natural output of the
toString() representation to a string that sorts values properly. If at all possible, the
Lexicoder framework (described in the next section) should be used to help do this
sorting, but in general knowing how to sort values is important to developing tables
that allow for range queries.

Using Lexicoders in indexing
Accumulo 1.6 provides a set of Lexicoders to aid in converting various types to byte
arrays so that they sort properly. Lexicoders are provided for the following types in
the org.apache.accumulo.core package:

• BigInteger
• Bytes
• Date
• Double
• Integer
• List
• Long
• Pair
• String
• Hadoop Text Object
• Unsigned Integer
• Unsigned Long

290 | Chapter 8: Table Design

• UUID

Lexicoders come in especially handy in creating a secondary index. When various
types appear as values in original records, the Lexicoders can convert them to prop‐
erly sorted byte arrays suitable to use in the row ID of an inverted index.

An example of using Lexicoders to index dates appears in our WikipediaIngestWi
thIndexExample class:

Date d = dateFormat.parse(page.getTimeStamp());

byte[] dateBytes = dateLexicoder.encode(d);

Mutation dateIndexMutation = new Mutation(dateBytes);
dateIndexMutation.put(WikipediaConstants.TIMESTAMP_QUAL, page.getTitle(),
 BLANK_VALUE);
indexWriter.addMutation(dateIndexMutation);

We will also want to use the same Lexicoder when converting query terms to index
entries. Lexicoders return byte arrays, which we can wrap in a Text object and pass to
the Range constructor:

public void queryDateRange(
 final Date start,
 final Date stop) throws TableNotFoundException {

 DateLexicoder dl = new DateLexicoder();

 Scanner scanner = conn.createScanner(WikipediaConstants.INDEX_TABLE, auths);

 // scan over the range of dates specified
 scanner.setRange(
 new Range(
 new Text(dl.encode(start)),
 new Text(dl.encode(stop))));

 // store all article titles returned
 HashSet<Range> matches = new HashSet<>();
 for (Entry<Key, Value> entry : scanner) {
 matches.add(new Range(entry.getKey().getColumnQualifier().toString()));
 }

 if(matches.isEmpty()) {
 System.out.println("no results");
 return;
 }

 for (Entry<Key, Value> entry : retrieveRecords(conn, matches)) {
 System.out.println("Title:\t" + entry.getKey().getRow().toString()
 + "\nRevision:\t" + entry.getValue().toString() + "\n");
 }
}

Secondary Indexing | 291

We can now query for articles with timestamps appearing within a range of dates:

SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
System.out.println("querying for articles from 2015-01-01 to 2016-01-01");
query.queryDateRange(df.parse("2015-01-01"), df.parse("2016-01-01"));

We’ll get several results in the output:

querying for articles from 2015-01-01 to 2016-01-01
...
Title: Apache Hadoop
Revision: 11630810

Title: Apache Hive
Revision: 18882023

Custom Lexicoder example: Inet4AddressLexicoder
Developers can write custom Lexicoders for encoding new types into byte arrays. To
create a custom Lexicoder, a class must implement the Lexicoder interface and spec‐
ify the type targeted. This will require that two methods be defined: encode() and
decode():

byte[] encode(V v);

V decode(byte[] b) throws ValueFormatException;

Because IP addresses were not listed in the types of Lexicoders that are distributed
with Accumulo, we’ll write our own. We’ll use the byte representation that
Inet4Address returns, because it will sort the way we want. Here is a list of IP
addresses we’ll store in the order in which we want them to be sorted:

192.168.1.1
192.168.1.2
192.168.11.1
192.168.11.11
192.168.11.100
192.168.11.101
192.168.100.1
192.168.100.2
192.168.100.12

Here’s the implementation of our Lexicoder:

public class Inet4AddressLexicoder implements Lexicoder<Inet4Address> {

 @Override
 public byte[] encode(Inet4Address v) {
 return v.getAddress();
 }

 @Override
 public Inet4Address decode(byte[] b) throws ValueFormatException {

292 | Chapter 8: Table Design

 try {
 return (Inet4Address) Inet4Address.getByAddress(b);
 } catch (UnknownHostException ex) {
 throw new ValueFormatException(ex.getMessage());
 }
 }
}

Now we’ll run an example, first encoding by the string representation, then using our
Lexicoder:

Connector conn = ExampleMiniCluster.getConnector();

List<String> addrs = new ArrayList<>();

addrs.add("192.168.1.1");
addrs.add("192.168.1.2");
addrs.add("192.168.11.1");
addrs.add("192.168.11.11");
addrs.add("192.168.11.100");
addrs.add("192.168.11.101");
addrs.add("192.168.100.1");
addrs.add("192.168.100.2");
addrs.add("192.168.100.12");

conn.tableOperations().create("addresses");

BatchWriter writer = conn.createBatchWriter("addresses",
 new BatchWriterConfig());

// ingest using just address strings
for(String addrString : addrs) {

 Mutation m = new Mutation(addrString);
 m.put("", "address string", addrString);

 writer.addMutation(m);
}

writer.flush();

System.out.println("sort order using strings");
Scanner scanner = conn.createScanner("addresses", Authorizations.EMPTY);
for(Map.Entry<Key, Value> e : scanner) {
 System.out.println(e.getValue());
}

This will output the following list:

sort order using strings
192.168.1.1
192.168.1.2
192.168.100.1

Secondary Indexing | 293

192.168.100.12
192.168.100.2
192.168.11.1
192.168.11.100
192.168.11.101
192.168.11.11

Notice how the addresses in the 192.168.100 network appear before the addresses in
the 192.168.11 network. This ordering would prevent us from doing range scans
properly.

Now we’ll ingest this same list using our Lexicoder:

// delete rows
conn.tableOperations().deleteRows("addresses", null, null);

// ingest using lexicoder
Inet4AddressLexicoder lexicoder = new Inet4AddressLexicoder();

for(String addrString : addrs) {

 InetAddress addr = InetAddresses.forString(addrString);

 byte[] addrBytes = lexicoder.encode((Inet4Address)addr);

 Mutation m = new Mutation(addrBytes);
 m.put("", "address string", addrString);

 writer.addMutation(m);
}

writer.close();

// scan again
System.out.println("\nsort order using lexicoder");
for(Map.Entry<Key, Value> e : scanner) {
 System.out.println(e.getValue());
}

The output of this code is the following:

sort order using lexicoder
192.168.1.1
192.168.1.2
192.168.11.1
192.168.11.11
192.168.11.100
192.168.11.101
192.168.100.1
192.168.100.2
192.168.100.12

294 | Chapter 8: Table Design

Now our addresses are sorted properly. We can implement range scans for not just
individual addresses, but also for addresses within an IP network.

Full-Text Search
Searching a corpus of documents for items matching a set of search terms is more
complicated than simple key-value lookups, but it can still be addressed in several
ways using specific table designs. In “Secondary Indexing” on page 275 we discuss
strategies for querying with multiple terms by using a term-partitioned index and a
document-partitioned index, which can be used to perform full-text searches, if the
index entries consist of individual words.

There is a contributed project called wikisearch that illustrates a few techniques for
going beyond the document-partitioned index design outlined in “Index Partitioned
by Document” on page 284.

The wikisearch example calculates some statistics on terms and uses them to optimize
queries. Like the document-partitioned index, this table design employs iterators to
perform additional work on the server side.

There are four tables in this project.

wikipediaMetadata
The wikipediaMetadata table (Table 8-7) keeps track of the fields that are indexed. It
is consulted in order to determine if a query requires searching fields that are not
indexed. If so, the query will proceed without trying to consult the index entries in
the other tables.

This table has a SummingCombiner iterator configured to add up the values of the f
column family.

Table 8-7. WikiSearch metadata

Row Column family Column qualifier Column visibility Value

field name e language id \0 LcNoDiacriticsNormalizer all | language id

field name i language id all | language id

wikipediaIndex
The wikipediaIndex table (Table 8-8) serves as a global index, identifying which parti‐
tions contain articles that have a specified field value for a specified field name. This
is so that partitions that don’t contain any information about a particular search term
can be omitted from the set of partitions to query in the second step.

Full-Text Search | 295

http://bit.ly/accumulo_wikisearch

Table 8-8. WikiSearch index

Row Column family Column qualifier Column visibility Value

field value field name partition id \0 language id all | language id Uid.List object

This table has an additional iterator configured, the GlobalIndexUidCombiner. This
iterator maintains a list of article IDs that are associated with a search term and a
count of how many times this search term has been written to this table. If the list of
IDs grows over 20 by default, then it stops keeping track of individual UIDs and only
keeps the count.

This table is queried to obtain information on the number of articles in which a
search term appears and optionally, if the number of articles is low enough, the actual
list of article IDs in which a search term appears. In these cases, this saves us an addi‐
tional lookup against the wikipedia table.

Once the information about all the search terms in a query has been obtained from
this table, the query logic determines whether to do additional scans against the wiki‐
pedia table, and what type of scans to do—whether an optimized scan including the
index within each partition searched or a full table scan.

wikipedia
The wikipedia table (Table 8-9) contains the full text of each article and a set of index
entries. The set of documents within a partition appears first, under the d column
family. Then there are a set of index entries consisting of a column family beginning
with the prefix fi and containing the field name in which a term appears, a column
qualifier containing the word found in the field, the language ID, and the article ID.

This is organized to allow a server-side iterator to scan over the index entries and
determine which articles satisfy all of the query criteria specified. Once a set of arti‐
cles is obtained the iterator can then return either the content for the set of matching
documents or simply the article IDs.

Table 8-9. WikiSearch document

Row Column family Column qualifier Column visibility Value

partition id d language id \0 article id all | language id Base64 encoded Gzip’ed document

partition id fi \0 field name field value \0 language id \0 article id all | language id

This table doesn’t have any iterators configured after ingest, but when the query code
determines that an optimized query plan can be executed, the OptimizedQueryItera

296 | Chapter 8: Table Design

tor class or EvaluatingIterator class can be applied to BatchScanner objects and
configured for the duration of a particular query.

wikipediaReverseIndex
The wikipediaReverseIndex table (Table 8-10) is the reverse of the wikipediaIndex
table. It is used to perform index lookups using leading wildcards—instead of the
wikipediaIndex table, which supports exact term matches and those with trailing
wildcards.

Table 8-10. WikiSearch reverse index

Row Column family Column qualifier Column visibility Value

reversed field value field name partition id \0 language id all | language id Uid.List object

Ingesting WikiSearch Data
We’ll work through installing and using the wikisearch project and examine the tables
created:

 [accumulo@host ~]$ git clone \
 https://git-wip-us.apache.org/repos/asf/accumulo-wikisearch.git

The accumulo-wikisearch has not been updated since the Accu‐
mulo 1.5.0 release. You will need to install Accumulo 1.5.0 with
Hadoop 1.0.4 to run these examples.

Next we’ll copy the example configuration file and edit it to work with our Accumulo
instance:

 [accumulo@host ~]$ cd accumulo-wikisearch
 [accumulo@host accumulo-wikisearch]$ mvn
 [accumulo@host accumulo-wikisearch]$ cp ingest/conf/wikipedia.xml.example \
 conf/wikipedia.xml
 [accumulo@host accumulo-wikisearch]$ vi ingest/conf/wikipedia.xml

The configuration file should be filled in with the information about our Accumulo
cluster:

<configuration>
 <property>
 <name>wikipedia.accumulo.zookeepers</name>
 <value>your-zookeeper:2181</value>
 </property>
 <property>
 <name>wikipedia.accumulo.instance_name</name>

Full-Text Search | 297

 <value>your-instance</value>
 </property>
 <property>
 <name>wikipedia.accumulo.user</name>
 <value>your-username</value>
 </property>
 <property>
 <name>wikipedia.accumulo.password</name>
 <value>your-password</value>
 </property>
 <property>
 <name>wikipedia.accumulo.table</name>
 <value>wikipedia</value>
 </property>
 <property>
 <name>wikipedia.ingest.partitions</name>
 <value>5</value>
 </property>
</configuration>

The current version of this project is built against Accumulo 1.5.0
and Hadoop 1.0 but can be modified by editing the pom.xml files.

With the configuration file set up the way we want it, we need to install the project’s
iterators to a location where the tablet servers can access and load them. In this case
we’ll use the $ACCUMULO_HOME/lib/ext/ directory on the local filesystem of each
of the tablet servers:

[accumulo@host accumulo-wikisearch]$ scp ingest/lib/wikisearch-ingest-1.5.0.jar \
 accumulo@tserver1:/opt/accumulo/accumulo-1.5.0/lib/ext/
[accumulo@host accumulo-wikisearch]$ scp ingest/lib/protobuf-java-2.3.0.jar \
 accumulo@tserver1:/opt/accumulo/accumulo-1.5.0/lib/ext/

Now we’ll place a file containing some Wikipedia articles into HDFS so they can be
loaded into Accumulo via a MapReduce job. See “Wikipedia Data” on page 84 for
details on obtaining Wikipedia files:

[accumulo@host ~]$ mv enwiki-latest-pages-articles1.xml-p000000010p000010000.bz2\
 wiki.xml.bz2
[accumulo@host ~]$ hdfs dfs -mkdir /input
[accumulo@host ~]$ hdfs dfs -mkdir /input/wiki
[accumulo@host ~]$ hdfs dfs -put wiki.xml.bz2 /input/wiki/

Now we’re ready to run the script that loads this data into tables in Accumulo:

[accumulo@host accumulo-wikisearch]$ cd ingest/bin
[accumulo@host bin]$./ingest.sh /input/wiki/

INFO zookeeper.ClientCnxn: Session establishment complete on server

298 | Chapter 8: Table Design

 zookeeper:2181
Input files in /input/wiki: 1
Languages:1

INFO input.FileInputFormat: Total input paths to process : 1
INFO mapred.JobClient: Running job: job_201410202349_0007
INFO mapred.JobClient: map 0% reduce 0%
INFO mapred.JobClient: map 100% reduce 0%
INFO mapred.JobClient: Job complete: job_201410202349_0007

When the job is complete we can examine the tables. The import code applies secu‐
rity tokens for the language of an article to the key-value pairs imported, so we need
to grant these tokens to our Accumulo user:

[accumulo@host ~]$ accumulo shell -u accumulo
password:

accumulo@host> setauths -u <user> -s all,enwiki,eswiki,frwiki,fawiki
accumulo@host> tables
!METADATA
trace
wikipedia
wikipediaIndex
wikipediaMetadata
wikipediaReverseIndex

We’ll set up an application to query these tables in the next section.

Querying the WikiSearch Data
This example project ships with a web application that we can use to query the wiki-
search tables we created in the preceding section.

First, we’ll configure the app for our Accumulo instance:

[accumulo@host query]$ cp src/main/resources/META-INF/ejb-jar.xml.example \
 src/main/resources/META-INF/ejb-jar.xml
[accumulo@host query]$ vi src/main/resources/META-INF/ejb-jar.xml

<enterprise-beans>
 <session>
 <ejb-name>Query</ejb-name>
 <env-entry>
 <env-entry-name>instanceName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>your-instance</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>zooKeepers</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>your-zookeepers</env-entry-value>
 </env-entry>
 <env-entry>

Full-Text Search | 299

 <env-entry-name>username</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>your-username</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>password</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>your-password</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>tableName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>wikipedia</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>partitions</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>5</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>threads</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>8</env-entry-value>
 </env-entry>
 </session>
 </enterprise-beans>

Next, we’ll build the query project:

[accumulo@host accumulo-wikisearch]$ mvn install
[accumulo@host accumulo-wikisearch]$ cd query
[accumulo@host query]$ mvn package assembly:single

Now we’ll install it in a JBoss AS 6.1 server. In our case JBoss lives in /opt:
 [accumulo@host query]$ cd /opt/jboss/server/default
 [accumulo@host default]$ tar -xzf ~/accumulo-wikisearch/query/target/\
 wikisearch-query-1.5.0-dist.tar.gz

Copy over the WAR file to the deploy directory:

 [accumulo@host default]$ cp ~/accumulo-wikisearch/query-war/target/\
 wikisearch-query-war-1.5.0.war deploy/

Now we can start JBoss:

 [accumulo@host deploy]$ /opt/jboss/bin/run.sh -b 0.0.0.0 &

Finally, we’ll copy some JAR files from JBoss’s directories into the lib/ext/ directories
of our tablet servers:

 [accumulo@host lib]$ sudo cp kryo-1.04.jar \
 /opt/accumulo/accumulo-1.5.0/lib/ext/
 [accumulo@host lib]$ sudo cp minlog-1.2.jar \
 /opt/accumulo/accumulo-1.5.0/lib/ext/

300 | Chapter 8: Table Design

http://download.jboss.org/jbossas/6.1/jboss-as-distribution-6.1.0.Final.zip

 [accumulo@host lib]$ sudo cp commons-jexl-2.0.1.jar \
 /opt/accumulo/accumulo-1.5.0/lib/ext/
 [accumulo@host lib]$ cd ..
 [accumulo@host default]$ sudo cp deploy/wikisearch-query-1.5.0.jar \
 /opt/accumulo/accumulo-1.5.0/lib/ext/

We can bring up the user interface for this application by going to http://<hostname>:
8080/accumulo-wikisearch/ui/ui.jsp in a web browser (Figure 8-2).

Figure 8-2. The Wikisearch UI

This example uses the Apache Commons JEXL library to create a query language.
The supported JEXL operators include:

• ==

• !=

• <

• <=

• >

• >=

Full-Text Search | 301

• =~

• !~

• and

• or

We’ll do a search for documents that contain both the words old and man:

TEXT == 'old' and TEXT == 'man'

This returns the results in Figure 8-3.

Figure 8-3. Search results

The logs show that there were 986 matching entries for this query:

HTML query: TEXT == 'old' and TEXT == 'man'
Connecting to [instanceName = koverse, zookeepers = koversevm:2181,
 username = root].
986 matching entries found in optimized query.
AbstractQueryLogic: TEXT == 'old' and TEXT == 'man' 2.63
 1) parse query 0.00

302 | Chapter 8: Table Design

 2) query metadata 0.01
 3) full scan query 0.00
 3) optimized query 2.62
 1) process results 0.14
 1) query global index 0.02
1976233182 Query completed.

We’ll try adding another search term, sea:

TEXT == 'old' and TEXT == 'man' and TEXT == 'sea'

This returns the results in Figure 8-4.

Figure 8-4. Refined search results

This cuts down the matching entries to only 339:

HTML query: TEXT == 'old' and TEXT == 'man' and TEXT == 'sea'
Connecting to [instanceName = koverse, zookeepers = koversevm:2181,
 username = root].
339 matching entries found in optimized query.

Full-Text Search | 303

Designing Row IDs
Row IDs are the most powerful elements of the Accumulo data model because they
determine the primary sort order of all the data. Here we discuss considerations for
designing good row IDs, along with a few issues that can arise and methods for
addressing them.

Lexicoders
The first place to look for help in designing row IDs that sort properly is Lexicoders.
Lexicoders are a set of classes designed to help convert a variety of object types into
byte arrays that preserve the native sort order of the objects. We introduce Lexicoders
in “Using Lexicoders in indexing” on page 290 for helping sort various types of
objects.

Composite Row IDs
When you construct row IDs that consist of multiple elements, it is necessary to use
delimiters in order to have rows sorted hierarchically, such that all of the rows that
begin with one element are sorted before the first row of the next first-place element
appears.

For example, if we want to sort data by first name then secondarily by last name, we
need a delimiter to ensure that if we read only first names we see them all in order
regardless of what last names might follow each first name. Without a delimiter we
can run into the following situation:

bobanderson
bobbyanderson
bobjones

In this case “bob anderson” should be followed by “bob jones,” but because we are
missing a delimiter, “bobby anderson” appears between them. Using a delimiter we
get the desired sort order:

bob_anderson
bob_jones
bobby_anderson

Because the delimiter, in this case an underscore, sorts before the third b in “bobby,”
all first names with four or more letters are sorted after all the appearances of “bob.”

An effective delimiter should be a character that sorts before any characters that are
likely to appear in the elements of a row ID. The null character 0 can be used if
necessary.

304 | Chapter 8: Table Design

Composite row IDs may be human-readable enough as-is. If not, custom Formatters
can be written to make viewing them easier. See “Human-Readable Versus Binary
Values and Formatters” on page 311.

The ListLexicoder and PairLexicoder can help in designing composite row IDs.

Key Size
As mentioned in “Constraints” on page 201, Accumulo 1.6 has a constraint added to
new tables that the complete key be smaller than 1 MB. Keep in mind that the com‐
plete key includes the row ID, column family, column qualifier, visibility, and time‐
stamp. Keeping the key under 1 MB is a best practice for all versions of Accumulo.

Avoiding Hotspots
In many table designs, hotspots can arise as the result of uneven distribution of row
IDs, which often arises from skew in the source data. A common example is that of
time-ordered row IDs, which we addressed by introducing a fixed number of bucket
IDs as prefixes to spread newly written data across multiple parts of the table. We dis‐
cuss avoiding hotspots in that we discuss in “Time-Ordered Data” on page 317.

Other examples include frequently appearing items in data sets, such as very frequent
words appearing in textual data, highly populated areas in geospatial data, and tem‐
poral spikes in time series data. These can all cause an inordinate amount of data to
be sent to one server, undermining the effectiveness of the distributed system.

Hotspots can involve simply one server being many times busier than all the others.
They also can involve contention over individual rows and the creation of very large
rows, due to Accumulo’s control over concurrent access to each individual row. In
either case, the general approach is to alter the row IDs to either spread them over a
larger portion of the table and therefore over a larger number of servers, or to simply
break up highly contested rows into multiple rows to eliminate contention and overly
large rows.

In the case of many writes ending up going to one server, introducing some sort of
prefix in front of the row ID can cause the writes to be sent to as many servers as
there are unique prefixes. An example of this is the fixed buckets that we discuss in
“Time-Ordered Data” on page 317 and also in document-partitioned indexes in
“Index Partitioned by Document” on page 284.

An example of breaking up contentious rows is to append a suffix to the row ID. Mul‐
tiple writes to the same data then end up going to different row IDs while keeping the
rows next to each other, preserving scan order. One example is in indexing the word
the, which appears more than any other word in English documents. Instead of sim‐
ply indexing the word the, you can attach a random suffix to the word the like this:

Designing Row IDs | 305

the_023012
the_034231
the_323133
the_812500

This way multiple writers can still index the word the and avoid contention because
they are technically writing to different rows. In addition, the tablet containing the
word the can now be split into multiple tablets hosted on multiple servers, which
would not be possible if all instances of the word the were indexed into the same row.

Scanners only need to be modified to begin at the first random suffix and end at the
last:

'the_' to 'the`'

Other strategies for avoiding hotspots in indexed data involve indexing pairs of words
when one word is very frequent. Instead of indexing the we would index the_car,
the_house, etc. This has the advantage of making it easier to find records containing
two words when one word is very frequent, while preserving the ability to retrieve all
records containing just the frequent word.

Sometimes, very frequent items are not of interest to an application and can simply
be omitted from the index. Apache Lucene and other indexing libraries often employ
stop lists, which contain very frequent words that can be skipped when individual
words in a document are indexed.

Some users have used Accumulo combiners to keep track of how many times a term
appears in an index using a separate column family and cease to store additional
terms after seeing a given number of them, as in the wikisearch example in “Full-Text
Search” on page 295. This strategy is useful because it doesn’t require knowing the
frequent terms beforehand, as a stop list does. However, by itself it doesn’t prevent
clients from continuing to write frequent terms that will be ignored. An index like
this could be scanned periodically (perhaps using a MapReduce job) to retrieve only
the highly frequent terms for the purpose of creating a stop list that clients can use.

Designing Row IDs for Consistent Updates
Accumulo is designed to split tables into tablets on row boundaries. Tablet servers
will not split a row into two tablets, so each row is fully contained within one tablet.
The Accumulo master ensures that exactly one tablet server will be responsible for
each tablet, and therefore each row. As a result, applications can make multiple
changes to the data in one row simultaneously or, in database parlance, atomically,
meaning that the server will never apply a portion of the changes. If something goes
wrong while some changes are applied, the mutation will simply fail, the row will
revert to the last consistent state, and the client process can try it again.

306 | Chapter 8: Table Design

Applications that need to make updates to several data elements simultaneously can
try to use the row construct to gather the data that needs to be changed simultane‐
ously together under one row ID. An example is perhaps changing all of the elements
of a customer address simultaneously so that the address is always valid and not some
combination of an old and new address.

Sometimes grouping data that needs to be changed under a common row ID is not
possible. An example is an application that needs to transfer amounts of money
between accounts. This involves subtracting an amount from one account and adding
it to the other account. Either both or neither of these actions should succeed. If only
one succeeds, money is either created or destroyed. The pair of accounts that needs to
be modified is not known beforehand and is impractical for use as a row ID.

It is possible to achieve this capability in a system based on BigTable as evidenced by
Google’s Percolator paper, which describes an application layer implemented over
BigTable that provides distributed atomic updates, or distributed transactions. The
Fluo project is developing a framework for distributed transactions on top of
Accumulo.

Also see “Transactions” on page 47.

Designing Values
Values in Accumulo are stored as byte arrays. As such they can store any type of data,
but it is up to the application developer to decide how to serialize data to be stored.
Many applications store Java String objects or other common Java objects. There is
no reason, however, that more complicated values cannot be stored.

Some developers use custom serialization code to convert their objects to values.
Technologies such as Google’s Protocol Buffers, Apache Thrift, or Apache Avro have
been used to generate code for serializing and deserializing complex structures to
byte arrays for storage in values. Kryo is another good, Java-centric, technology for
serializing Java objects extremely quickly, although the support across different ver‐
sions of Kryo is limited.

Iterators can also be made to deserialize and operate on these objects.

Here we present an example using Apache Thrift. Thrift uses an IDL to describe
objects and services. The IDL files are then compiled by the Thrift compiler to gener‐
ate code in whatever languages are desired for implementing servers and clients. The
Thrift compiler will generate serialization and deserialization code in a variety of on-
the-wire formats for any data structures declared in the IDL files and will generate
RPCs for any services defined. Then it is up to the application developer to imple‐
ment the logic behind the RPCs.

Designing Values | 307

http://bit.ly/percolator_paper
https://github.com/fluo-io/fluo
http://bit.ly/protocol_buffers
http://avro.apache.org
http://bit.ly/kryo_esoteric
http://bit.ly/apache_thrift

It is possible to implement the client in one language and the server in another. This
is a primary advantage to using Thrift.

In our example, we won’t create any Thrift services but will simply use Thrift to
define a data structure and generate code to serialize it for storage in an Accumulo
table.

Thrift structs and services are written in the IDL and are stored in a simple text file.
We’ll design a struct in the Thrift IDL to store information about an order:

struct Order {
 1:i64 timestamp
 2:string product
 3:string sku
 4:float amount
 5:optional i32 discount
}

In our Order struct, we have five elements. The first four are required and the last is
optional. The elements are numbered to support the ability to add and remove ele‐
ments without breaking services that are built against older versions of these structs.

Next we’ll use the Thrift compiler to generate Java classes to serialize and deserialize
this struct:

laptop:~ cd thrift
laptop:thrift compiler/cpp/thrift -gen java order.thrift

This will create a directory called gen-java that will contain our Java classes—in our
case just one, Order.java. The generated file for even this simple structure is fairly
long so we won’t include it here.

We can then use our newly generated class to serialize Java objects to byte arrays and
back when writing to and reading from Accumulo tables:

public class OrderHandler {

 public void takeOrder(
 final long customerID,
 final String product,
 final Double amount,
 final int discount,
 final String sku,
 final BatchWriter writer) throws TException, MutationsRejectedException {

 // fill out the fields of the order object
 Order order = new Order();
 order.timestamp = new Date().getTime();
 order.product = product;
 order.sku = sku;
 order.amount = amount;
 if (discount > 0) {

308 | Chapter 8: Table Design

 order.discount = discount;
 }

 // we use a TMemoryBuffer as our Thrift transport to write to
 // when serializing
 TMemoryBuffer buffer = new TMemoryBuffer(300);

 // we use the efficient TBinaryProtocol to store a compact
 // representation of this object.
 // other options include TCompactProtocol and TJSONProtocol
 TBinaryProtocol proto = new TBinaryProtocol(buffer);

 // this serialized our structure to the memory buffer
 order.write(proto);

 byte[] bytes = buffer.getArray();

 // we'll store this order under a row identified by the customer ID
 Mutation m = new Mutation(Long.toString(customerID));

 // we generate a UUID based on the bytes of the order to distinguish
 // one order from another in the list of orders for each customer
 m.put("orders", UUID.nameUUIDFromBytes(bytes).toString(), new Value(bytes));
 writer.addMutation(m);
 }

 ...
}

When reading from this table we can use similar code to deserialize a list of Order
objects from values found in the orders table:

...
public class OrderHandler {

 ...

 public List<Order> getOrders(
 final long customerId,
 final Authorizations auths,
 final Connector connector) throws TableNotFoundException, TException {

 // instantiate a scanner to fetch this data from the table
 Scanner scanner = connector.createScanner("orders", auths);

 // create a range to restrict this scanner to read the given customer's info
 scanner.setRange(new Range(Long.toString(customerId)));
 scanner.fetchColumnFamily(new Text("orders"));

 ArrayList<Order> orders = new ArrayList<>();

 for(Entry<Key,Value> entry : scanner) {
 // use a TMemoryInputTransport to hold serialized bytes

Designing Values | 309

 TMemoryInputTransport input =
 new TMemoryInputTransport(entry.getValue().get());

 // need to use the same protocol to deserialize
 // as we did to serialize these objects
 TBinaryProtocol proto = new TBinaryProtocol(input);

 Order order = new Order();

 // deserialize the bytes in the protocol
 // to populate fields in the Order object
 order.read(proto);
 orders.add(order);
 }

 return orders;
 }
}

When you use an object-serialization framework, a programmatic object is converted
into a byte array and stored as a single value in a table. This strategy is convenient in
cases when the entire object is always retrieved.

When an application requires retrieving only a portion of an object, the fields within
an object can be mapped to one key-value pair each. The advantage of splitting up the
fields of an object into separate key-value pairs is that individual fields can be
retrieved without having to retrieve all the fields. Locality groups can be used to fur‐
ther isolate groups of fields that are read together from those that are not read. See
the section in “Locality Groups” on page 138 on configuring locality groups.

Storing Files and Large Values
Accumulo is designed to store structured and semistructured data. It is not optimized
to serve very large values, such as those that can arise from storing entire files in
Accumulo. The practical limit for a value size depends on available memory, because
Accumulo loads several values into memory simultaneously when servicing client
requests.

When storing larger values than what comfortably fits in memory, users typically do
one of two things: store the files in HDFS or some other scalable filesystem or blob
store such as Amazon’s S3, or break up files into smaller chunks.

When storing files in an external filesystem or blob store, Accumulo only needs to
store a pointer, such as a URL, to where the actual file can be retrieved from the exter‐
nal store. This has the advantage of allowing users to search and find files using Accu‐
mulo. It also inherits all the benefits of security and indexing while not having to
store that actual data in Accumulo, which frees up resources for just doing lookups.

310 | Chapter 8: Table Design

If users are more interested in retrieving specific parts of files, breaking up files into
chunks and storing them in Accumulo may work better, because Accumulo can then
provide the chunk of the user-requested file in one request rather than looking up the
file pointer in Accumulo and fetching the file it from an external system. Files broken
up into chunks can still cause problems when many chunks are retrieved simultane‐
ously, because they can overwhelm available memory.

The Accumulo documentation includes an example of storing files as well as some
discussion.

Users have contributed some example techniques for doing this.

All of this logic is managed in an application or service layer implemented above
Accumulo.

Human-Readable Versus Binary Values and Formatters
In some cases it is convenient to store values in a format that is readable by humans.
For example, debugging becomes easier, and viewing data in the Accumulo shell is
possible.

In some cases, values are stored in human-readable form, such as UTF8 strings, and
are converted to binary on the fly for operations, then converted back to human-
readable values before they’re written back to the table. One example is that of storing
numbers as strings in a table configured to sum the numerical values in those strings.
In this case, the iterator that performs the summation is responsible for converting
strings into Long or Double objects before summing them together, and then convert‐
ing them back into String objects before outputting them to be sent either to the user
or to the disk for storage. The provided SummingCombiner can be configured to do
this for strings, or to simply treat values as Long objects.

Many applications can be made more efficient by using binary values. In this case,
however, values are no longer easily read in the shell. To make debugging and viewing
binary values easier, users can create a custom Formatter by implementing
org.apache.accumulo.core.util.format.Formatter. This will allow the shell to
display otherwise unreadable keys and values using some human-readable
representation:

 package org.apache.accumulo.examples;

 /**
 * this is an example formatter that only shows a deserialized value
 * and not the key
 */

 public class ExampleFormatter implements Formatter {

Designing Values | 311

http://bit.ly/accumulo_docs
http://bit.ly/accumulo_blob_store

 private Iterator<Entry<Key,Value>> iter;

 @Override
 public void initialize(Iterable<Map.Entry<Key, Value>> scanner,
 boolean includeTimestamps) {
 iter = scanner.iterator();
 }

 @Override
 public boolean hasNext() {
 return iter.hasNext();
 }

 @Override
 public String next() {
 Entry<Key,Value> n = iter.next();
 byte[] bytes = n.getValue().getBytes();
 // deserialize
 String s = myDeserializationFunction(bytes);
 return s;
 }

 @Override
 public void remove() {
 }

 private String myDeserializationFunction(byte[] bytes) {
 ...
 }
 }

Formatters can be configured on a per-table basis by setting the table.formatter
option. Customer formatters only need to be included on the CLASSPATH when you
run the shell.

The shell also makes it easy to configure formatters via the formatter command.

To add a formatter:

user@accumulo> table myTable
user@accumulo myTable> scan

user@accumulo> formatter -f org.apache.accumulo.examples.ExampleFormatter \
 -t myTable
user@accumulo> scan

To remove a formatter:

user@accumulo> formatter -r -t myTable

312 | Chapter 8: Table Design

Designing Authorizations
Authorization tokens can represent any attribute or class of the data or of users. A
short example of a token based on the data may be useful.

In many industries some data needs to be stored that represents information that can
be used to identify an individual. This kind of data is typically referred to as Person‐
ally Identifiable Information (PII). There are guidelines and laws in the United States
and other countries for how to protect PII. Other fields related to this individual
might be less sensitive if the fields containing PII are omitted. Often groups such as
analysts and researchers need access to these other fields but not the PII, so that they
can find relationships and causes in activities and conditions.

Information such as a name, home address, and date of birth are just a few of the
types of fields that are deemed PII. It could be useful to label data in these fields with
the fact that it is considered PII. We could simply define a token called pii and require
that users possess this token in order to read PII data. The definition of information
considered PII may change, but it is not likely to change quickly. The set of users that
are authorized to see PII data may change quickly, so we keep this mapping in an
external system.

Besides attributes of the data to create tokens like PII, a common pattern is to label
data based on the general purpose of its existence. Some fields may exist only to
express how data travels within the organization, which may be sensitive and is only
useful for internal debugging or auditing. This data can be labeled as for internal use
only or that it exists only for auditing. We can create tokens for each of these, perhaps
debug and audit.

Finally, it is common to label data based on a well-defined role in an organization that
represents a group of people who need to work with it. The relationship of data to
these groups is often slow-changing, though the membership of individual users in
each group is often highly dynamic. Tokens that represent groups such as these may
include such things as administration, billing, or research to denote the role that
requires access to the data.

When a field has more than one characteristic, we can combine these tokens using &
or |, which are Boolean operators representing that both tokens are required (logical
AND) or that just one or both are required (logical OR), respectively.

If you are upgrading to Accumulo 1.5 or later, the API for authori‐
zations has changed slightly. The toString() method no longer
calls the serialize() method. The serialize() method now
Base64-encodes the auths array. Be sure to test these changes thor‐
oughly as you upgrade.

Designing Authorizations | 313

http://bit.ly/protecting_pii

When you consider granting authorizations to users, it is suggested that you do not
use the root for anything other than table manipulation—such as creating tables and
granting privileges—and that you do not give the root user any security labels. By fol‐
lowing this suggestion, you force developers and system admins to log in as the cor‐
rect user to access data.

For more on the relationship between user accounts and authorizations, see “An
Example of Using Authorizations” on page 185.

Designing Column Visibilities
Once the notion of which authorization tokens might be needed is addressed, we next
need to decide how to apply those tokens in column visibilities. Recall that the Accu‐
mulo data model allows a security label to be stored as part of each key. Security
labels are stored in the part of the key called the column visibility (Figure 8-5).

Figure 8-5. Accumulo data model

Accumulo’s security labels are designed to be flexible to meet a variety of needs. How‐
ever, a result of this flexibility is that the way to define tokens and combine them into
labels isn’t always obvious.

There are several things to keep in mind when designing security labels. First is
which attributes of the data define the sensitivity thereof:

• Is every record as sensitive as every other?
• Are some fields more sensitive than others?

Second is what requirements relate to accessing the data:

• Do users need to be granted permission before being able to read particular data
elements?

• Is access based on job role?
• How quickly do access control needs change?

Column visibilities are designed to not be changed often. In fact, it is impossible to
actually change the column visibility stored in the key. Rather, users have to delete the
old key and write a new key and value with a different column visibility. The

314 | Chapter 8: Table Design

VersioningIterator does not help us here, because two keys that differ only by their
column visibility are considered to be different keys by the VersioningIterator.

Keys That Differ Only in Column Visibility
Because two keys that differ only in column visibility are considered two separate
keys, those keys can coexist and won’t be deduplicated by the Versioning Iterator.
This can be desirable if there are multiple representations of values at different sensi‐
tivity levels. A facetious example is that one’s age with the public column visibility can
be 29, when one’s private age is really 34.

A better application of this concept is to use representations of values at different res‐
olutions. For example, a person’s full address can be more sensitive than just the
address limited to zip code. In practice, the zip code is a different field and can be
labeled separately.

Imagine a satellite image that is very high-definition and reveals potentially private
details such as the contents of an individual’s backyard. We might choose to down-
sample this image to a lower resolution to obscure sensitive details and make that
representation of the image more widely accessible.

It is of course easy for application designers to choose to store these representations
under different columns, but the option for multiple representations of a value that
only differ in sensitivity should be understood.

A bigger issue in trying to change column visibilities is that there can be many bil‐
lions or trillions of key-value pairs, and if regular changes in column visibilities are
required to support changes in access control, many new-key value pairs must be
written to suppress older versions of the data. For a nontrivial amount of data, this is
not tractable.

For this reason it is generally recommended to label data with attributes of the data or
long-standing use cases of the data, using tokens that describe attributes of the data or
groups of users that are not likely to change frequently, if ever, and then to assign
tokens to individual users in order to grant access. This mapping of users to tokens is
always stored in some external system such as an LDAP server. As such, the user-
token mappings can be changed rapidly without the need to rewrite any data in
Accumulo.

Designing Column Visibilities | 315

CHAPTER 9

Advanced Table Designs

After covering the basics of table design in the previous chapter, here we discuss
advanced design considerations for storing some commonly encountered types of
data in Accumulo. Examples include time series, graph, geospatial, feature vector, and
other data.

Time-Ordered Data
Reading and writing data in time order is a common requirement. In a previous
example, we ordered email messages in reverse time order within a particular folder
belonging to a particular user account. Some applications want to access data primar‐
ily in time order. That is, the first and most important element of the data is the time
component. Examples include time series such as stock data, application logs, and
series of events captured by sensors.

We could simply use a timestamp as the row ID of a table. Rows will be sorted in
increasing time order, and retrieving the data for one timestamp or a range of time‐
stamps is straightforward.

But using a simple timestamp as the row ID of a table can be problematic when it
comes to writing the data. This is because often new data arrives with timestamps that
only ever increase. If we simply order our data this way, all new data will always be
written to the end of the table, specifically to the last tablet, which spans some time‐
stamp we’ve already seen up to positive infinity (Figure 9-1).

317

Figure 9-1. Hotspot in time-ordered table

Because each tablet is hosted by exactly one tablet server, data will always be written
to one server. This might be acceptable if one tablet server can cope with the rate of
incoming data. If not, that last tablet on one tablet server will become a bottleneck in
the overall ingest process.

To avoid this, some users have resorted to partitioning their table into several buckets
and storing ideally uniform partitions of the data in each bucket. One way to do this
is to prefix the timestamps with an integer as shown in Figure 9-2.

318 | Chapter 9: Advanced Table Designs

Figure 9-2. Alternative layout using buckets

Then new key-value pairs can be uniformly written to each of these buckets. This
allows new data to be ingested in time order into several servers at once. The trade-
off is that each bucket must be queried in order to retrieve all the data for a particular
time range. In this case we can elect to use a BatchScanner configured with a Range
for the desired time range within each bucket. This is especially useful if the intent is
to perform MapReduce jobs over time ranges of data.

Drawbacks include the fact that the number of buckets must be chosen ahead of time
and that the table will be limited to being hosted by as many servers as there are
buckets.

Graphs
Graphs are incredibly useful for representing data for a wide variety of problems.

In this section we are using the computer science definition of a
graph: a set of vertices or nodes, and a set of edges representing con‐
nections between nodes. This is in contrast to the notion of a graph
as a visual representation of the data, sometimes called a chart,
such as a bar graph.

Graphs | 319

Graphs representing many real-world phenomena can present challenges for some
other data storage systems because they can exhibit some difficult properties, depend‐
ing on the representation. These include sparseness, in which most nodes connect to
few other nodes, and skew in the distribution of node degrees, meaning that while
most nodes connect to few other nodes, a small number of nodes connect to many
other nodes, or even all of them.

Consider a graph that represents words and the documents in which they appear.
Such a graph could be considered an inverted index of a set of documents, if we were
to store the graph by listing pairs of nodes that represent words in sorted order. This
graph would exhibit the properties of sparseness and skew because a large number of
words would appear in only a few documents, and some words—such as the, a, and
or—would appear in all or almost all of the documents.

Figure 9-3 shows a small example of a social network. A real social network would
also exhibit skew, because most people will have connections to a number of friends
or colleagues likely numbering in the low hundreds, while some famous people will
be followed or friended by many thousands or even millions of other users.

Figure 9-3. Example of a graph representing a social network

Of the two most common ways to represent graphs—as a matrix or as an edge-list—
the edge-list representation is best suited to these types of graphs because no storage
is required to represent the pairs of nodes that are not connected. Accumulo is espe‐
cially well-suited to handling an edge-list when pairs of nodes are mapped to rows
and columns, because Accumulo handles sparse rows efficiently, and because rows in
Accumulo can be large and are not assumed to fit into the memory of a single
machine.

320 | Chapter 9: Advanced Table Designs

An example of how we might store a graph in Accumulo is as follows:

row ID column family column qualifier value
allen friends carl
bob friends joe
bob friends sally
carl friends allen
carl friends betty
carl friends harry

We can even store multiple types of edges by using the column family to describe the
type of edge:

row ID column family column qualifier value
allen family jared
allen family michael
allen friends carl
bob friends joe
bob friends sally
carl friends allen
carl friends betty
carl family susan
carl friends harry

This allows applications to efficiently look up all of the nodes connected to a given
node, and to select nodes connected via all or a subset of the types of edges present.
Technically, a graph of this type with multiple types of edges is called a multigraph. It
is possible in a multigraph to have two or more edges of different types between the
same two nodes.

Some graphs feature directed edges, in which the relationship between two nodes
flows in a particular direction. For example, one user of a social messaging app may
follow the status updates of another user but not vice versa. In our table, the first
node, represented by the row ID, can signify the originating node and the second
node the destination node.

Graph edges can also be weighted in order to represent some feature of the edge such
as strength, distance, or cost. Accumulo is especially well suited to maintaining large
graphs whose edges, nodes, and weights are updated over time. This is because, in
addition to the ability to add new columns at ingest time, Accumulo’s iterators offer
an extremely efficient way to aggregate contributions to edge weights.

We can choose to store the edge weight in the value of our table and configure our
table to use an iterator, such as the built-in SummingCombiner, in order to add up the
weights for each unique row-column pair. We may want to store the number of mes‐
sages two users of a messaging application have sent to each other over time. Our
table can then look like this:

Graphs | 321

row ID column family column qualifier value
allen family jared 2
allen family michael 55
allen friends carl 6
bob friends joe 17
bob friends sally 1
carl friends allen 3
carl friends betty 20
carl family susan 4
carl friends harry 2

Whenever a user sends another user a message, we can update the graph simply by
inserting a new mutation with a count of one:

user@accumulo friendGraph> insert allen family jared 1

Accumulo will automatically sum up the inserts for each row-column pair and return
the aggregated result whenever it is read:

user@accumulo friendGraph> scan -b allen family:jared
allen family:jared [] 3

Because Accumulo applies iterators at scan time and during compactions, updates to
this graph table are as inexpensive as simple inserts. A large number of individual
update/inserts can be sent to this table.

Tables like these have some interesting properties. One is that the number of key-
value pairs will reflect the number of existing edges in the graph. The number of key-
value pairs in this table then grows with the number of real-world relationships that
exist, but not with the number of individual interactions that are aggregated to repre‐
sent the weight of these relationships. Also, often graphs built to reflect real-world
relationships have many fewer edges than they could have. A graph with N nodes can
have up to N2 edges, but the number of edges in many real-world graphs is on the
order of N—that is, simply some multiple of N.

So a summarized graph representation of a large number of events will end up having
many fewer key-value pairs than there are raw events. In addition, the number of new
nodes in real-world graphs often grows relatively slowly over time.

A table design that builds a graph from several different data sources and aggregates
the interactions in relationships observed is a powerful method of combining data
and allowing natural patterns to emerge. For example, consider a table supporting an
analytical application that combines sources of data such as interactions between cus‐
tomers, customers check-ins at store locations, and products customers have rated.
All the information for a particular customer would be organized under one row so
looking up everything that a company knows about that customer can be found
quickly by doing a single scan.

322 | Chapter 9: Advanced Table Designs

Applications can be written to handle the appearance of new columns and present
whatever information is available to analysts.

Building an Example Graph: Twitter
To illustrate the concepts of the graph table we’ve outlined, we’ll build a graph from
information in the public Twitter stream. Tweets can include mentions of users,
replies to other users, and mentions of hashtags. We can build a graph from these
relationships by inserting edges into a graph table as we process the stream.

First we’ll set up our table to store edges and increment the weight of the edge each
time we insert it:

public static BatchWriter setupTable(
 final Connector conn,
 final String name,
 boolean deleteIfPresent) throws Exception {

 TableOperations ops = conn.tableOperations();

 // create table
 if (ops.exists(name) && deleteIfPresent) {
 ops.delete(name);
 }

 ops.create(name);

 // remove versioning iterator
 ops.removeIterator(name, "vers",
 EnumSet.allOf(IteratorUtil.IteratorScope.class));

 // setup summing combiner
 IteratorSetting iterSet = new IteratorSetting(10, "sum",
 SummingCombiner.class);
 SummingCombiner.setCombineAllColumns(iterSet, true);
 SummingCombiner.setEncodingType(iterSet,
 SummingCombiner.STRING_ENCODER.getClass().getName());

 ops.attachIterator(name, iterSet);

 return conn.createBatchWriter(name, new BatchWriterConfig());
}

Next, we’ll parse the Twitter stream, inserting edges for the relationships we care
about as we go. We’ll use the Twitter4j library and set up a StatusListener that can
write to our graph table:

private static class TGStatusListener implements StatusListener {

 private final BatchWriter writer;

Graphs | 323

 public TGStatusListener(final BatchWriter writer) {
 this.writer = writer;
 }

 @Override
 public void onStatus(Status status) {

 String user = status.getUser().getScreenName();

 // keep track of replies
 Graph.writeEdge(user, status.getInReplyToScreenName(), "reply", 1, writer,
 true);

 // track mentions
 for(UserMentionEntity mention : status.getUserMentionEntities()) {
 Graph.writeEdge(user, mention.getScreenName(), "mention", 1, writer, true);
 }

 // treat hashtags as nodes
 for(HashtagEntity ht: status.getHashtagEntities()) {
 Graph.writeEdge(user, ht.getText(), "hashtag", 1, writer, true);
 }
 }
 ...
}

The implementation of the writeEdge() method is as follows. We treat each edge as a
single key-value pair. Inserting an edge multiple times will cause their weights to be
summed using the SummingCombiner:

public static void writeEdge(
 final String nodeA,
 final String nodeB,
 final String edgeType,
 int weight,
 final BatchWriter writer,
 boolean storeReverseEdge) {
 try {
 Mutation forward = new Mutation(nodeA);
 forward.put(edgeType, nodeB, new Value(Integer.toString(weight).getBytes()));
 writer.addMutation(forward);

 if (storeReverseEdge) {
 Mutation reverse = new Mutation(nodeB);
 reverse.put(edgeType, nodeA,
 new Value(Integer.toString(weight).getBytes()));
 writer.addMutation(reverse);
 }
 } catch (MutationsRejectedException ex) {
 Logger.getLogger(TwitterGraph.class.getName()).log(Level.SEVERE, null, ex);
 }
}

324 | Chapter 9: Advanced Table Designs

Next we’ll discuss traversing graphs and return to this example to explore the graph
we’ve created.

Traversing Graph Tables
Tables as described previously make it easy to do some types of graph traversal.

Retrieving all of a given node’s directly connected neighbors (the one-hop neighbors)
is particularly easy. It involves a simple scan of one row of the table and extraction of
the connected neighbors by reading the column qualifiers:

import com.google.common.base.Function;
import com.google.common.collect.Iterables;

public Iterable<String> getNeighbors(
 final String node,
 final Scanner scanner,
 final String edgeType) {

 scanner.setRange(Range.exact(node));

 if(!edgeType.equals("ALL"))
 scanner.fetchColumnFamily(new Text(edgeType));

 return Iterables.transform(scanner, new Function<Entry<Key,Value>,String>() {

 @Override
 public String apply(Entry<Key, Value> f) {
 return f.getKey().getColumnQualifier().toString();
 }
 });
}

Further traversing the graph and retrieving all the neighbors of the one-hop neigh‐
bors can be done using a BatchScanner. If we are careful to remove all the neighbors
we’ve already visited from the set of neighbors we pass to the BatchScanner, we can
continue to do this until we have visited the entire graph, in breadth-first order:

import com.google.common.base.Function;
import com.google.common.collect.Iterables;
import com.google.common.collect.Sets;

public Iterable<String> neighborsOfNeighbors(
 final Iterable<String> neighbors,
 final BatchScanner batchScanner,
 final String edgeType) {

 List<Iterable<String>> nextNeighbors = new ArrayList<>();

 // process given neighbors in batches of 100
 for (List<String> batch : Iterables.partition(neighbors, 100)) {

Graphs | 325

 batchScanner.setRanges(Lists.transform(batch, new Function<String, Range>() {
 @Override
 public Range apply(String f) {
 return Range.exact(f);
 }
 }));

 if (!edgeType.equals("ALL"))
 batchScanner.fetchColumnFamily(new Text(edgeType));

 nextNeighbors.add(Iterables.transform(batchScanner,
 new Function<Entry<Key, Value>, String>() {
 @Override
 public String apply(Entry<Key, Value> f) {
 return f.getKey().getColumnQualifier().toString();
 }
 }));
 }

 return Sets.newHashSet(Iterables.concat(nextNeighbors));
}

We can run into some limitations around the amount of data we can keep in memory
as we do this, but we can elect to store some of the state of our traversal back into the
table in Accumulo.

Higher-level traversals and algorithms can be built using sequences of scans and
batch scans. Some work has been done at the National Security Agency to process
some very large graphs using MapReduce over Accumulo tables.

Traversing the Example Twitter Graph
Using our previous example, we’ll use the methods described earlier to explore the
Twitter graph. For this example, we’ll visualize some data from our graph using Ubi‐
graph, a free graph visualization tool.

A copy of the Ubigraph JAR is included in the lib/ directory of the example code.
Install it into your local Maven repository if you haven’t done so already:

[accumulo@host lib]$ mvn install:install-file -Dfile=ubigraph-0.2.4.jar \
 -DgroupId=org.ubiety -DartifactId=ubigraph -Dversion=0.2.4 -Dpackaging=jar

Next we’ll start the Ubigraph server, which will listen for requests to visualize nodes
and edges of our graph. You must accept the license and download the server to run
this example:

[accumulo@host ubigraph]$ bin/ubigraph_server
8 processors
Using single-level layout.
Running Ubigraph/XML-RPC server.

326 | Chapter 9: Advanced Table Designs

http://bit.ly/big_graph_experiment
http://ubietylab.net/ubigraph
http://ubietylab.net/ubigraph
http://bit.ly/ubigraph

We’ll use our graph methods to retrieve a few nodes and their neighbors:

// visualize our graph, one node at a time
System.out.println("visualizing graph ...");
UbigraphClient client = new UbigraphClient();

for (String startNode :
 new String[]{"a", "b", "c", "d", "e", "f", "g", "h", "i"}) {

 Scanner startNodeScanner = conn.createScanner(TWITTER_GRAPH_TABLE,
 Authorizations.EMPTY);
 Optional<String> node = Graph.discoverNode(startNode, startNodeScanner);
 startNodeScanner.close();

 if (node.isPresent()) {

 // visualize start node
 int nodeId = client.newVertex();
 client.setVertexAttribute(nodeId, "label", node.get());

 Scanner neighborScanner = conn.createScanner(TWITTER_GRAPH_TABLE,
 Authorizations.EMPTY);
 for (String neighbor :
 Graph.getNeighbors(node.get(), neighborScanner, "ALL")) {

 // visualize neighbor node
 int neighborId = client.newVertex();
 client.setVertexAttribute(neighborId, "label", neighbor);

 // visualize edge
 client.newEdge(nodeId, neighborId);
 }
 neighborScanner.close();
 }
}

To run this example, you’ll need to obtain the API keys necessary to access Twitter
programmatically from our example application by visiting http://dev.twitter.com and
registering a new application. Once your application is registered you can obtain the
Access Token, Access Token Secret, Consumer Key, and Consumer Secret to use as
arguments to the TwitterGraph class:

 $ mvn exec:java -Dexec.mainClass="com.accumulobook.designs.graph.TwitterGraph" \
 -Dexec.args="access token, access token secret consumer key \
 consumer secret"

 processing twitter stream ...

 2785 [Twitter Stream consumer-1[initializing]] INFO twitter4j.TwitterStreamImpl
 - Establishing connection.
 3642 [Twitter Stream consumer-1[Establishing connection]] INFO
 twitter4j.TwitterStreamImpl - Connection established.

Graphs | 327

http://dev.twitter.com

 3642 [Twitter Stream consumer-1[Establishing connection]] INFO
 twitter4j.TwitterStreamImpl - Receiving status stream.

 shutting down twitter stream.

 visualizing graph ...

After this message, the Ubigraph window will display a few clusters of nodes repre‐
senting a Twitter user and his connections to other users or hashtags he has men‐
tioned (Figure 9-4).

Figure 9-4. Visualization of the Twitter graph

A few other projects are designed to process graphs that have been adapted for use
with Accumulo, including the two we describe next.

Blueprints for Accumulo
Blueprints is part of the TinkerPop graph toolkit. The AccumuloGraph project imple‐
ments the Blueprints API on Accumulo, enabling Blueprints-enabled applications to
run on Accumulo. The implementation involves a table to store the graph that is simi‐
lar to the design described previously but includes a few more features as well as a
separate optional table as an index on vertex and edge properties.

328 | Chapter 9: Advanced Table Designs

http://www.tinkerpop.com/
https://github.com/JHUAPL/AccumuloGraph

Titan
Titan is “a scalable graph database optimized for storing and querying graphs con‐
taining hundreds of billions of vertices and edges distributed across a multi-machine
cluster. Titan is a transactional database that can support thousands of concurrent
users executing complex graph traversals.”

A few efforts have been started to begin allowing Accumulo to be used as the backend
storage layer, but some changes in the Titan API may be required before this can be
done efficiently. The most mature effort is the titan-accumulo project. be found at

Semantic Triples
The Semantic Web and related natural-language–processing technologies have cre‐
ated significant interest in representing triples consisting of a subject, predicate, and
object. Such triples can conform to the Resource Description Framework (RDF)
Semantic Web model. Accumulo can be used to store and access triples efficiently,
and even support higher-level query languages such as SPARQL.

The general strategy is to store each subject, object, and predicate three times, ordering
the triples differently each time so that a scan can be performed to retrieve one, two,
or three elements efficiently. One table stores elements in SPO order (subject, predi‐
cate, object), another in OSP order, and the third in POS. This way any query for all
three elements can be done on any table, a query for any two elements can be done on
the table in which those to elements appear first, and a query for a single element can
be done on the table in which the element appears first.

This strategy is described in the paper “Rya: A Scalable RDF Triple Store for the
Clouds”. These three tables can be used, along with the appropriate query logic, to
satisfy SPARQL queries on RDF triples.

This table design is a good example of how multiple orderings of elements can sup‐
port a wide range of queries.

Semantic Triples Example
We’ll use the Freebase API to explore building a table to hold semantic triples.

The Freebase data set contains a set of facts, each containing three items: a subject, a
predicate, and an object. Students of English grammar may recognize these as basic
parts of one type of sentence. The facts are curated from a variety of sources includ‐
ing wikis. In many cases the facts are extracted using machine-learning techniques
from free-text sentences.

We’ll pull all the information about several topics from Freebase into a table holding
semantic triples (Table 9-1). First, we need a method for constructing all the ways

Semantic Triples | 329

http://thinkaurelius.github.io/titan/
http://bit.ly/titan-accumulo
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://bit.ly/rdf_triple_store
http://bit.ly/rdf_triple_store
http://bit.ly/freebase_data

we’ll need to store a triple. Our strategy will be to store the first element of a triple in
the row ID, the next in the column family, and the third in the column qualifier.

Table 9-1. Storing triples

Row Column family Column qualifier Column visibility Value

spo_ subject predicate object

osp_ object subject predicate

pos_ predicate object subject

For each triple, we’ll store three key-value pairs, one for each permutation of S, P, and
O. We’ll prefix the row ID with the ordering of the triple elements so we know which
element is which for any given triple:

public static void insertTriples(
 final String subject,
 final BatchWriter writer) throws Exception {

 final List<Pair<String,String>> properties = getProperties(subject);

 // for SPO triple
 Mutation spo = new Mutation("spo_" + subject);

 for(Pair<String, String> prop : properties) {

 String predicate = prop.getFirst();
 String object = prop.getSecond();

 spo.put(predicate, object, BLANK);

 Mutation pos = new Mutation("pos_" + predicate);
 pos.put(object, subject, BLANK);
 writer.addMutation(pos);

 Mutation osp = new Mutation("osp_" + object);
 osp.put(subject, predicate, BLANK);
 writer.addMutation(osp);
 }

 writer.addMutation(spo);

 writer.flush();
}

We’ll request information from the API about a few topics and load them into our
table:

330 | Chapter 9: Advanced Table Designs

Connector conn = ExampleMiniCluster.getConnector();

if(conn.tableOperations().exists("triples"))
 conn.tableOperations().delete("triples");

conn.tableOperations().create("triples");

BatchWriter writer = conn.createBatchWriter("triples", new BatchWriterConfig());

System.out.println("loading data ...");

FreebaseExample.insertTriples("darth_vader", writer);
FreebaseExample.insertTriples("jedi", writer);
FreebaseExample.insertTriples("luke_skywalker", writer);
FreebaseExample.insertTriples("yoda", writer);
FreebaseExample.insertTriples("obi_wan_kenobi", writer);

System.out.println("done.");

Now we can ask questions by querying this table using one or two elements of a triple
and retrieve the remaining one or two elements per associated triple. For example, we
can ask to see everything about Darth Vader:

System.out.println("\n=== Darth Vader ===");

for(String s : query(
 "darth_vader",
 null,
 null,
 conn.createScanner("triples", Authorizations.EMPTY))) {
 System.out.println(s);
}

Subject

Predicate

Object

Our query function will figure out which elements of a triple are present in the query
and scan the proper rows accordingly. When only one element of a triple is provided,
our query function will return both of the remaining two elements for every triple
that matches the element provided. When two elements are provided, our query
function returns a list of the one remaining element in all matching triples. For our
query about Darth Vader as a subject, we’ll get back a list of predicates and objects for
all triples containing darth_vader as the subject. Our implementation of these types of
queries is as follows:

public static Iterable<String> query(
 final String subject,

Semantic Triples | 331

 final String predicate,
 final String object,
 final Scanner scanner) throws Exception {

 if(subject == null && predicate == null && object == null)
 throw new IllegalArgumentException("Must specify at least one of subject,
 predicate, object");

 if(subject != null) {
 if(predicate != null) { // SP_ get all objects for subject and predicate
 scanner.setRange(Range.prefix("spo_" + subject));
 scanner.fetchColumnFamily(new Text(predicate));

 return Iterables.transform(scanner, cqSelector);
 }
 else {
 if(object != null) { // S_O get all predicates for subject and object

 scanner.setRange(Range.prefix("osp_" + object));
 scanner.fetchColumnFamily(new Text(predicate));

 return Iterables.transform(scanner, cqSelector);
 }
 else { // S__ get all predicates and objects for subject
 scanner.setRange(Range.prefix("spo_" + subject));
 return Iterables.transform(scanner, cfqSelector);
 }
 }
 }
 else {
 if(predicate != null) {
 if(object != null) { // _PO get all subjects for predicate and object
 scanner.setRange(Range.prefix("pos_" + predicate));
 scanner.fetchColumnFamily(new Text(object));

 return Iterables.transform(scanner, cqSelector);
 }
 else { // _P_ get all subjects and objects for predicate
 scanner.setRange(Range.prefix("pos_" + predicate));
 return Iterables.transform(scanner, cfqSelector);
 }
 }
 else { // __O get all subjects and predicates for object
 scanner.setRange(Range.prefix("osp_" + object));
 return Iterables.transform(scanner, cfqSelector);
 }
 }
}

The cqSelector and cfqSelector classes return the remaining one or two elements
of matching triples, respectively:

332 | Chapter 9: Advanced Table Designs

// returns just the last element of a matching triple
private static final Function<Entry<Key,Value>,String> cqSelector =
 new Function<Entry<Key,Value>,String>() {

 @Override
 public String apply(Entry<Key, Value> e) {
 return e.getKey().getColumnQualifier().toString();
 }
};

// returns the last two elements of a matching triple
private static final Function<Entry<Key,Value>,String> cfqSelector =
 new Function<Entry<Key,Value>,String>() {

 @Override
 public String apply(Entry<Key, Value> e) {
 return e.getKey().getColumnFamily().toString() + "\t"
 + e.getKey().getColumnQualifier().toString();
 }
};

Our query for subject:darth_vader returns a list of predicate and object results:

=== Darth Vader ===
/award/ranked_item/appears_in_ranked_lists AFI's 100 Years
/book/book_character/appears_in_book Path to Truth
/book/book_character/appears_in_book The Changing of the Guard
/book/book_character/appears_in_book The Dangerous Games
...
/common/topic/alias Anakin Skywalker
/common/topic/alias Lord Vader
...
/fictional_universe/fictional_character/character_created_by George Lucas
/fictional_universe/fictional_character/children Leia Organa
/fictional_universe/fictional_character/children Luke Skywalker

We can also get just a list of objects for a given subject and predicate. For example, to
see all the jobs Darth Vader has held:

System.out.println("\n=== Darth Vader's Jobs ===");
for(String s : query(
 "darth_vader",
 "/fictional_universe/fictional_character/occupation",
 null,
 conn.createScanner("triples", Authorizations.EMPTY))) {
 System.out.println(s);
}

This returns the results:

=== Darth Vader's Jobs ===
Assassin
Dark Lord of the Sith

Semantic Triples | 333

Jedi
Martial Artist

We can search for subjects and objects associated with just a given predicate. For
example, to see a list of organizations and their members:

System.out.println("\n=== Memberships ===");
for(String s : query(
 null,
 "/fictional_universe/fictional_character/organizations",
 null,
 conn.createScanner("triples", Authorizations.EMPTY))) {
 System.out.println(s);
}

And we get:

=== Memberships ===
Jedi darth_vader
Jedi luke_skywalker
Jedi yoda
Rebel Alliance luke_skywalker

Spatial Data
In addition to numerical and textual data, Accumulo has been used to store, index,
and retrieve spatial data consisting of geographical coordinates. Spatial data is chal‐
lenging because each point is two-dimensional and Accumulo’s tables, as well as any
data stored in memory or on disk, can only be sorted in one way. Naive implementa‐
tions might choose to index latitude separately from longitude and use set operations
to identify data that falls within a given box on Earth, but this strategy often requires
retrieving and then filtering out many more points than lie within the box.

There are several strategies for storing spatial data in Accumulo that try to avoid
heavy reliance on filtering.

Open Source Projects
GeoMesa is an open source project to support storing spatio-temporal data (a combi‐
nation of geographical and time-based information) in Accumulo. GeoMesa makes
use of a technique called geohashing, which is described as “a binary string in which
each character indicates alternating divisions of the global longitude-latitude rectan‐
gle.”

The GeoMesa project is also designed to work with GeoServer, an open source server
for sharing geospatial data that can allow many popular mapping applications to con‐
nect to it, including Google Earth and ArcGIS.

334 | Chapter 9: Advanced Table Designs

http://geomesa.github.io/
http://bit.ly/geomesa_geohashing
http://geomesa.github.io/
http://geoserver.org/about/

Another project is GeoWave, which provides multidimensional indexing and support
for geographic objects and geospatial operators. GeoWave includes a GeoServer plug-
in that is compatible with the Open Geospatial Consortium (OGC) standard—a set of
MapReduce input and output formats for bulk analysis of geospatial data in Hadoop.

Space-Filling Curves
Space-filling curves are another technique for mapping higher-dimensional data to a
single dimension. They work by imposing an order in which points in the higher-
dimensional space are visited. Listing these points in order is how these points are
written to a one-dimensional index.

Any ordering could be used, but space-filling curves are designed to maintain good
locality after the points are mapped to one dimension. The points that are close
together in high-dimensional space tend to be close together in the one-dimensional
list. The locality-preserving property is useful for indexing data in Accumulo because
the goal of our tables is to answer most user requests with one or a small number of
scans.

Several popular space-filling curves have been used in Accumulo tables. The easiest to
implement and understand is the Z-order curve, which visits points in higher-
dimensional space in a Z-like pattern. Others include the Hilbert Curve and Peano
Curve.

For two-dimensional geospatial data, we simply need to convert the points by using
the instructions for creating a space-filling curve and then write the transformed
points to Accumulo.

For the Z-order curve, suppose we have the decimal-degree coordinates:

Lat: 033.11 Lon: 044.22

These are transformed into row ID by simply interleaving the digits from each
number:

0034341212

When scanning for the points that fall within a user-provided range, we similarly
convert the starting and stopping points (i.e., the lower lefthand point and upper
righthand point) to points on the curve and scan the table to retrieve all the points
that lie within that range.

For our Z-order curve example, we might query from (30.00, 40.00) to (35.00, 45.00).
These query points are translated to 33050000 and 44050000. We set up our scan to
range from 0033050000 to 0044050000.

In this example we’re using human-readable strings to store our Z-order coordinates,
but in practice a more compact representation can be used. Here is an example of

Spatial Data | 335

http://bit.ly/geowave
http://bit.ly/space-filling_curve
http://bit.ly/z-order_curve
http://bit.ly/hilbert_curve
http://bit.ly/peano_curve
http://bit.ly/peano_curve

code that implements the common pattern for scanning tables containing Z-order
coordinates:

 Double startLat = 30.0;
 Double stopLat = 35.0;
 Double startLon = 40.0;
 Double stopLon = 45.0;

 // assuming we've stored our points as human-readable strings
 String startZPoint = "0034000000";
 String stopZPoint = "0034550000";

 Range range = new Range(startZPoint, stopZPoint);
 Scanner scanner = new Scanner("myGeoTable");
 scanner.setRange(range);

 ArrayList<Value> results = new ArrayList<>();

 for(Entry<Key,Value> entry : scanner) {
 // unscramble the point returned
 String zPoint = entry.getKey().getRow().toString();
 StringBuilder latStr = new StringBuilder();
 StringBuilder lonStr = new StringBuilder();

 for(int i=0; i < zPoint.length(); i+=2) {
 latStr.append(zPoint.charAt(i));
 lonStr.append(zPoint.charAt(i+1));
 }

 Double lat = Double.parse(latStr.build());
 Double lon = Double.parse(lonStr.build());

 // filter points outside our box
 if(lat >= startLat && lat <= stopLat
 && lon >= startLon && lon <= stopLon) {

 results.add(entry.getValue());
 }
 }

We are guaranteed to receive all points within the requested area, but we can get
points that lie outside the requested range. These points can be filtered out, either by
the client or by a filtering iterator configured on the table.

The Z-order curve will sometimes return a large number of points outside the
requested area, particularly around the middle of the indexed area. Other curves can
perform better but at the cost of increased complexity of implementation.

336 | Chapter 9: Advanced Table Designs

Multidimensional Data
Some of the strategies for storing two-dimensional spatial data in Accumulo can be
generalized to store higher-dimensional data. For example, in addition to latitude and
longitude, an index can be built that stores altitude and other numerical data. Textual
data can also be combined with numerical data in these indexes.

For example, to store points consisting of latitude, longitude, and altitude, we can
choose to zero-pad our points and combine them using the Z-order curve:

Lat: 00033.11 Lon: 00044.22 Altitude (feet): 11555.00

This would be combined in the Z-curve to produce the point:

001001005345345120120

To query for a cube in this space we pick two three-dimensional corners of the cube
on opposite sides, transform these points as before, and perform a scan, filtering out
any points that fall outside the cube.

D4M and Matlab
The Dynamic Distributed Dimensional Data Model (D4M) was developed by Dr.
Jeremy Kepner and others at MIT Lincoln Labs to take advantage of data stores like
Accumulo. It has been used for a wide variety of applications and has been shown to
have extremely good performance characteristics. D4M is a technique for applying
linear algebra to databases that simplifies the creation of new analytics using parallel
computation tools such as pMatlab (Parallel Matlab Toolkit), MatlabMPI, and grid‐
Matlab.

The Accumulo tables used by D4M involve storing associative arrays in a table and
also storing its logical transpose so that rows and columns can both be searched effi‐
ciently.

The D4M schema as used with Accumulo consists of four tables.

If we ingest records, each consisting of a unique ID and a set of fields and values, the
D4M schema can be described as follows.

The TEdgeTxt table is used to store any original text found in records. It is used to
retrieve the full text of any records found by searching other tables, or to simply
retrieve records by ID if the ID is known.

Table 9-2. TEdgeTxt

row ID column value

record ID field full text

Multidimensional Data | 337

http://www.mit.edu/~kepner/D4M/
http://bit.ly/kepner_et_al
http://bit.ly/d4m_schema

The Tedge table (Table 9-3) is used to store any metadata found in records. It can also
store tokenized words from the text in the TedgeTxt table.

Table 9-3. Tedge

row ID column value

record ID field|value 1

The transpose of the Tedge table is stored in the TedgeT table (Table 9-4) and is used
to look up record IDs by the values of specific fields.

Table 9-4. TedgeT

row ID column value

field|value record ID 1

The TedgeDeg table (Table 9-5) stores a count of the number of times a field-value
pair has been seen. It can be used to answer simple questions and to provide statistics
for queries involving more than one field-value pair.

Table 9-5. TedgeDeg

row ID column value

field|value “degree” count

Linear algebra operations can then be performed by fetching arrays using either the
row-oriented or column-oriented tables and by executing operations in parallel using
one of the parallel Matlab frameworks mentioned.

The D4M software is available for download. The ZIP files include an eight-lecture
course on how to use D4M.

D4M Example
We’ll walk through an example.

First we’ll start up an Accumulo instance running locally. For testing we’ll just start
up a MiniAccumuloCluster instance using the Accumulo quickstart project from
“Demo of the Shell” on page 60.

After cloning the examples project and changing into the quickstart directory, start up
a shell via:

338 | Chapter 9: Advanced Table Designs

http://bit.ly/d4m_software

mvn clean compile exec:exec -Pshell

This will start a shell and a MiniAccumuloCluster that we can use just for the dura‐
tion of this example. This program will generate a different ZooKeeper port each time
it runs, so we’ll take note of the ZooKeeper port that is printed out and use it in the
following examples to connect to this instance:

...
 ---- Initializing Accumulo Shell

Starting the MiniAccumuloCluster in /var/folders/...
Zookeeper is localhost:25641
Instance is miniAccumulo

Shell - Apache Accumulo Interactive Shell
...

We’ll leave the shell running in a terminal window while we run these other steps.

Adding D4M to Octave or Matlab
To load and analyze data we need GNU Octave or Matlab. Octave is an open source
high-level computing language similar to Matlab.

Make sure you have a version of Octave with the Java interface. If
you see “error: javaObject: Octave was not compiled with Java
interface,” follow the java package installation instructions.

Next we’ll download the D4M libraries:

$ wget http://www.mit.edu/~kepner/D4M/d4m_api_2.5.1.zip
$ wget http://www.mit.edu/~kepner/D4M/libext_2.5.1.zip

Unzip both and place the libext folder inside the d4m_api folder. This folder will be
our D4M_HOME:

$ unzip d4m_api_2.5.1.zip
$ unzip libext_2.5.1.zip
$ mv libext d4m_api

We’ll also need to create a file called classpath.txt in our home directory so Octave can
find the Java classes D4M needs. Add one line for each JAR file in d4m_api/lib and
d4m_api/libext:

/home/user/d4m_api/libext/accumulo-core-1.5.0.jar
/home/user/d4m_api/libext/commons-jci-core-1.0.jar
/home/user/d4m_api/libext/jtds-1.2.5.jar
/home/user/d4m_api/libext/accumulo-fate-1.5.0.jar
/home/user/d4m_api/libext/commons-jci-fam-1.0.jar
/home/user/d4m_api/libext/libthrift-0.9.1.jar

D4M and Matlab | 339

http://bit.ly/octave_language
http://bit.ly/java_pkg_install

/home/user/d4m_api/libext/accumulo-server-1.5.0.jar
/home/user/d4m_api/libext/commons-lang-2.4.jar
/home/user/d4m_api/libext/log4j-1.2.15.jar
/home/user/d4m_api/libext/accumulo-trace-1.5.0.jar
/home/user/d4m_api/libext/commons-logging-1.0.4.jar
/home/user/d4m_api/libext/slf4j-api-1.6.1.jar
/home/user/d4m_api/libext/commons-collections-3.2.jar
/home/user/d4m_api/libext/hadoop-core-1.1.2.jar
/home/user/d4m_api/libext/slf4j-log4j12-1.6.1.jar
/home/user/d4m_api/libext/commons-configuration-1.5.jar
/home/user/d4m_api/libext/hadoop-tools-1.1.2.jar
/home/user/d4m_api/libext/zookeeper-3.3.5.jar
/home/user/d4m_api/libext/commons-io-1.4.jar
/home/user/d4m_api/libext/json.jar
/home/user/d4m_api/lib/D4M_API_JAVA_AC.jar
/home/user/d4m_api/lib/D4M_API_JAVA.jar

Loading example data
We’ll use an example of ingesting data via Matlab scripts from https://github.com/
denine99/d4mBB/. Clone this Git repository:

$ git clone https://github.com/denine99/d4mBB/

$ cd d4mBB

Edit the d4m_Baseball_Demo.m script with the information for our MiniAccumu
loCluster instance. The top of the file should look like this:

%% Demonstrates D4M's capabilities on a small Baseball statistic data set by
% (1) Parsing data into a form ready for ingestion
% (2) Ingesting data into memory or an Accumulo Table
% (3) Querying data to answer several questions of interest

% User Parameters:
doDB = 1; % Use an Accumulo Database instead of in-memory Associative Arrays
DB = DBserver('localhost:[your-zookeeper-port]','Accumulo','miniInstance',
 'root','pass1234');

This shows us how to connect to Accumulo from Matlab or Octave.

Now we’ll start up Matlab or Octave and add the D4M libraries to our path:

[user@hostname d4mBB]$ octave
GNU Octave, version 3.8.1
...
octave:1> addpath('../d4m_api/matlab_src')

Next we’ll run the demo script, which will load data from a CSV file into Accumulo
tables and perform some commands to fetch the data:

340 | Chapter 9: Advanced Table Designs

https://github.com/denine99/d4mBB/
https://github.com/denine99/d4mBB/

This script loads data into memory to organize the information
and then writes to Accumulo. If data does not fit in memory it can
be loaded into memory and written to Accumulo in parts.

octave:2> d4m_Baseball_Demo
INGEST time (sec) = 0.731
INGEST time (sec) = 0.494
...
INGEST time (sec) = 0.147
INGEST time (sec) = 0.094
INGEST time (sec) = 0.064
Creating baseballMaster in localhost:12953 Accumulo
Creating baseballMasterT in localhost:12953 Accumulo
Creating baseballMasterDeg in localhost:12953 Accumulo
Creating baseballSalaries in localhost:12953 Accumulo
Creating baseballSalariesT in localhost:12953 Accumulo
Creating baseballSalariesDeg in localhost:12953 Accumulo
Creating baseballMaster in localhost:12953 Accumulo
Creating baseballMasterT in localhost:12953 Accumulo
Creating baseballMasterDeg in localhost:12953 Accumulo
Creating baseballSalaries in localhost:12953 Accumulo
Creating baseballSalariesT in localhost:12953 Accumulo
Creating baseballSalariesDeg in localhost:12953 Accumulo
...

This script will run a series of queries and display the results in a paginated screen.
Type q to exit that screen.

Let’s take a look at what the script is doing. The D4M API uses the concept of a table
and a table-pair. The script uses the following commands to create tables and table
pairs in Accumulo:

Tm = DB('baseballMaster', 'baseballMasterT');
Tmd = DB('baseballMasterDeg');

Next the demo script performs some queries. The first is “Find all stored information
about a specific player: zobribe01 (Ben Zobrist)”:

octave:3> Tm('playerID|zobribe01,',:)
(playerID|zobribe01,bats|B) 1
(playerID|zobribe01,birthCountry|USA) 1
(playerID|zobribe01,birthState|IL) 1
(playerID|zobribe01,birthYear|1981) 1
(playerID|zobribe01,height|75) 1
(playerID|zobribe01,nameFirst|Ben) 1
(playerID|zobribe01,nameLast|Zobrist) 1
(playerID|zobribe01,weight|200) 1

D4M and Matlab | 341

A few lines down we find a query to “Find how many players weigh < 200 lb. and bat
with left hand or both hands.” First the script finds out how many players meet each
criterion separately:

octave:4> A = sum(str2num(Tmd('weight|000,:,weight|199,',:)),1);
octave:5> B = str2num(Tmd('bats|L,bats|B,',:));
octave:6> A
(1,degree) 13182
octave:7> B
(bats|B,degree) 1106
(bats|L,degree) 4629

Now the script will find those that meet both criteria. “A > B, so we will first query for
all the rows of players that bat L or B” and “Then, within those rows, we will find the
players that weigh < 200 lb”:

octave:8> A_LB = Tm(:,'bats|L,bats|B,');
octave:9> A_LB_all = Tm(Row(A_LB),:);
octave:10> A_LB_light = A_LB_all(:,'weight|000,:,weight|199,');
octave:11> NumStr(Row(A_LB_light))
ans = 4463

Help reference for the D4M Matlab scripts is available via:

>> help D4M

The D4M libraries ship with some built-in examples in D4M_HOME/examples/.

Load example data using Java
To load some example data using Java, we’ll use the D4M_Schema project:

git clone https://github.com/medined/D4M_Schema.git

Open up the D4M_Schema/schema project in Netbeans or Eclipse. Edit the file in src/
main/resources/d4m.properties to contain the following settings:

 accumulo.instance.name=miniInstance
 accumulo.zookeeper.ensemble=localhost:your-zookeeper-port
 accumulo.user=root
 accumulo.password=pass1234

Run the com.codebits.example.d4m.TaxYear2007ToAccumulo.java file.

This will create the D4M tables and load a CSV file containing tax information into
those tables. This code does not use any libraries from the previous D4M example; it
simply knows how to create tables of the structure that the D4M API understands.

These tables can be used to perform queries in Matlab as in the preceding examples
and can also be seen in the shell when you start the RunShell.java program:

root@miniInstance> tables
!METADATA
Tedge

342 | Chapter 9: Advanced Table Designs

TedgeDegree
TedgeMetadata
TedgeText
TedgeTranspose

root@miniInstance> table TedgeDegree

root@miniInstance TedgeDegree> scan
adjusted gross income (in thousands)|$-1 :degree [] 1
adjusted gross income (in thousands)|$10007290 :degree [] 1
adjusted gross income (in thousands)|$100192 :degree [] 1
adjusted gross income (in thousands)|$1002480 :degree [] 1
adjusted gross income (in thousands)|$10025 :degree [] 1
adjusted gross income (in thousands)|$100273 :degree [] 1
...

After you run these examples, quitting the shell and stopping the MiniAccumuloClus
ter will shut down the Mini Accumulo instance and erase the data used.

These examples use a single machine to process data retrieved from Accumulo. You
can perform these operations in parallel on multiple machines by using the Parallel
Matlab Toolbox. This will enable these analytics to scale along with the size of the
data machines.

Machine Learning
Large-scale data storage and retrieval are two challenges that are directly addressed by
Accumulo. But often simply storing raw data and delivering subsets to users as the
results of queries can still be overwhelming, if even subsets consist of more results
than users can understand.

Data mining, knowledge discovery, and machine-learning techniques help address
the problem of transforming an overwhelming amount of raw data into higher-level
representations that are more amenable for making decisions. Because Accumulo is
often a part of decision processes based on big data, some techniques for doing
machine learning in Accumulo have emerged.

Storing Feature Vectors
Some techniques for storing graphs that we mentioned earlier can be used in
machine-learning methods. Machine learning often involves the construction of fea‐
ture vectors, which are used to describe entities of interest. For example, users of a
video rental application can be the entities that are described by feature vectors con‐
sisting of all the movies they have ever watched or rated. A feature can be any meas‐
ure that might be informative for determining a property of interest about an entity,
such as whether a user might want to watch a new movie, or whether a particular
location might be a good place to build a new store, etc. Features can be binary (either

Machine Learning | 343

http://bit.ly/pmatlab
http://bit.ly/pmatlab

an entity has a feature or it doesn’t), or features can be weighted with a real number.
The construction of features is not always obvious and often involves the application
of domain expertise to help come up with likely useful features.

An example feature vector is as follows:

actionMoviesWatched: 28
dramasWatched: 3
...
raidersOfLostArkRating: 4
flightOfTheNavigatorRating: 3
...

A feature vector consists of all the features that apply to a particular entity. These vec‐
tors can be very large (i.e., high dimensional) and can vary widely from one entity to
another. For this reason, storing feature vectors can be challenging for many tradi‐
tional databases. Accumulo is particularly well suited for storing a feature vector as a
set of columns in a row because of its support for dynamic columns, large rows, and
sparse rows.

In addition, Accumulo iterators can be used to efficiently increment feature weights
as new raw observations arrive. For example, each time a user watches a film we
might add a new feature describing the fact that the user watched this movie, as well
as incrementing the weight for the number of films the user has watched in the genre
of this movie:

Movie:
 Casablanca

Features:
 watchedCasablanca: true
 dramasWatched: +1

Using an iterator to update the dramasWatched feature allows us to increment the
value without reading out the old value first.

We can store an entity’s feature vector in a single row in an Accumulo table. The row
ID is the name of the entity, and the columns are named after the feature. Either
the value can be ignored when the presence of the column is taken to mean that the
entity has that feature and absent columns are taken to mean the entity doesn’t, or the
value can be used to store the weight of the feature:

user123 watchedCasablanca -
user123 dramasWatched 3

We might also elect to put different types of features into their own locality groups so
that we can efficiently select different types of features in case we don’t always want to
use them all.

344 | Chapter 9: Advanced Table Designs

Once we’ve built a table to store feature vectors, we might also want to create another
table that stores the names of features in the row ID and the names of entities in col‐
umns so we can quickly look up all the entities that have a particular feature:

watchedCasablanca user123
watchedCasablanca user234
watchedGattaca user123

This table can be considered an index on features.

A Machine-Learning Example
These tables make it possible to perform a variety of machine-learning tasks. For
example, there is a classifier called the k-Nearest-Neighbors Classifier that works by
finding some number, k, of entities in the database that are most similar or nearest to
an entity of interest based on a similarity metric that compares two feature vectors.
These entities are the nearest neighbors. Once the k nearest neighbors are found, we
can get an estimate for some property of the entity of interest by averaging the value
of that property across the nearest neighbors.

K nearest neighbors is an example of a nonparametric method, or instance-based
learning, because it requires storing information about every previous instance seen,
rather than building a representative model. Accumulo is well suited to such a task
because of its scalability.

To illustrate this, we’ll use the MovieLens data set, which can be downloaded in sizes
of 100 KB, 1 MB, or 10 MB ratings. For example, the 100 KB data set consists of:

• 100,000 ratings (1–5) from 943 users on 1,682 movies.
• Each user has rated at least 20 movies.
• Simple demographic information for the users (age, gender, occupation, zip).

We’ll ingest the u.data file, which contains the values for the userId, movieId, rating,
and timestamp fields, per line. The u.item file contains the movieId, title, release date,
video release date, IMDB url, and information on which genres it belongs to.

This example is written in Python and uses the Accumulo Thrift proxy. Details on
using the Thrift proxy can be found in “Thrift Proxy” on page 236. To run this exam‐
ple using the Thrift proxy connecting to a MiniAccumuloCluster, simply run the
ExampleMiniThriftProxy class from the examples:

mvn exec:java -Dexec.mainClass="com.accumulobook.ExampleMiniThriftProxy"

First we’ll import the ratings file (u.data) and the file describing movies (u.item). The
code for parsing these files and storing the data in Accumulo is as follows:

#!/usr/bin/python

Machine Learning | 345

http://bit.ly/movielens_data

import sys
import csv
import math
import uuid

import common
from accumulo.ttypes import *

client = None
login = None

def loadMLFile(filename):
 if client.tableExists(login, 'ml'):
 client.deleteTable(login, 'ml')
 client.createTable(login, 'ml', True, TimeType.MILLIS)

 opts = WriterOptions(1000000, 5000, 30000, 10)
 writer = client.createWriter(login, 'ml', opts)

 print 'loading file ...'
 with open(filename,'r') as f:
 reader = csv.reader(f,delimiter='\t')

 for userId, itemId, rating, timestamp in reader:

 # entity to feature
 m = {'user_' + userId: [ColumnUpdate('movie', 'item_' + itemId,
 value=rating)]}
 client.update(writer, m)

 # write feature to entity
 im = {'item_' + itemId: [ColumnUpdate('movie', 'user_' + userId,
 value=rating)]}
 client.update(writer, im)

 client.closeWriter(writer)

def loadMoviesFile(filename):
 if client.tableExists(login, 'movies'):
 client.deleteTable(login, 'movies')
 client.createTable(login, 'movies', True, TimeType.MILLIS)

 opts = WriterOptions(1000000, 5000, 30000, 10)
 writer = client.createWriter(login, 'movies', opts)

 # movie id | movie title | release date | video release date |
 # IMDb URL | unknown | Action | Adventure | Animation |
 # Children's | Comedy | Crime | Documentary | Drama | Fantasy |
 # Film-Noir | Horror | Musical | Mystery | Romance | Sci-Fi |
 # Thriller | War | Western |

346 | Chapter 9: Advanced Table Designs

 print 'loading file ...'
 with open(filename,'r') as f:
 reader = csv.reader(f,delimiter='|')

 for rec in reader:
 # entity to feature
 m = {'item_' + rec[0] : [ColumnUpdate('movie', 'title',
 value='movie_' + rec[1])]}
 client.update(writer, m)

 # write feature to entity
 im = {'movie_' + rec[1] : [ColumnUpdate('movie', 'id',
 value='item_' + rec[0])]}
 client.update(writer, im)

 client.closeWriter(writer)

We’ll run these interactively using the Python interpreter:

python -i recommendedMovies.py
>>>
>>> loadMLFile('/Data/movielens-100k/u.data')
loading file ...
>>> loadMoviesFile('/Data/movielens-100k/u.items')
loading file ...
>>>

This will populate our tables, ml and movies.

We can now scan to see all the ratings for a particular movie or user:

>>> common.printScan('ml','item_1','item_10')
item_1 movie user_1 5
item_1 movie user_10 4
item_1 movie user_101 3
item_1 movie user_102 3
item_1 movie user_106 4
item_1 movie user_108 4
...

>>> common.printScan('ml','user_1','user_10')
user_1 movie item_1 5
user_1 movie item_10 3
user_1 movie item_100 5
user_1 movie item_101 2
user_1 movie item_102 2
user_1 movie item_103 1
user_1 movie item_104 1
user_1 movie item_105 2

Now we can find the nearest users. Our implementation is as follows. First we retrieve
all the movies a given user has rated. These constitute the user’s feature vector.
Because we have organized our table so that a user’s ratings are all stored in the same
row, we can fetch a user’s feature vector using a single scan:

Machine Learning | 347

def kNearestNeighbors(table, rowId, k):

 topK = [(0.0,None)] * k

 # get features of rowId
 features = getFeatures(table, rowId)
 # print out movie titles
 print 'got features', \
 '\n'.join(['\t'.join((lookupMovie(x[0]),x[1])) for x in features.items()])

Next we’ll get all the other users that have rated one of the movies rated by our given
user. We rely on the fact that we’ve also stored movie-to-user relationships in our ml
table. For this we’ll use a BatchScanner and give to it all the movie IDs from our
user’s feature vector:

 # get other entities with at least one feature in common
 others = set([e.key.colQualifier for e in common.batchScan(table,
 features.keys())])
 others.remove(rowId)

 print 'got ', len(others), 'others'

We’ll use cosine similarity to compare two users. This will return a value between 0
and 1. A 0 value means that two users have nothing in common, and 1 means that
their feature vectors are identical.

Cosine similarity for two vectors A and B is defined as cos θ = A · B
∥ A ∥ ∥ B ∥

A dot B is defined as:

A · B = ∑
i = 1

n
Ai × Bi

And ∥ A ∥ is defined as:

∑
i = 1

n
Ai

2

Here’s our implementation:

def cosineSim(a, b):

 maga = math.sqrt(sum([x * x for x in map(float, a.values())]))
 magb = math.sqrt(sum([x * x for x in map(float, b.values())]))
 d = 0.0

 for k,v in a.items():
 d += float(b.get(k, 0.0)) * float(v)

348 | Chapter 9: Advanced Table Designs

 return d / (maga * magb)

Now we’ll get the full feature vector for each of the users returned. Once we have
those, we can calculate the similarity score to our given user. We sort the other users
in descending order of score and keep only the top k:

 # grab each entity's feature vector
 processed = 0
 for other in others:
 otherFeatures = getFeatures(table, other)

 d = cosineSim(features, otherFeatures)
 #print d, other

 topK.append((d,other,otherFeatures))
 processed += 1
 if processed % 100 == 0:
 print 'sorting topk'
 topK.sort(reverse=True)
 topK = topK[:k]

 topK.sort(reverse=True)
 topK = topK[:k]
 return topK

We’ll run the kNearestNeighbors() method:

>>> neighbors = kNearestNeighbors('ml', 'user_456', 10)
got features movie_To Die For (1995) 3
movie_Better Off Dead... (1985) 3
movie_Speed (1994) 2
movie_Young Frankenstein (1974) 4
movie_Maltese Falcon, The (1941) 4
...
got 940 others
sorting topk

Now we have our nearest neighbors, their similarity scores, and their feature vectors.
We’ll print out just the list of scores and neighbor names:

>>> for n in neighbors:
... print n[0], n[1]
...
0.507011769831 user_59
0.484341141469 user_276
0.472683044333 user_846
0.467597644954 user_916
0.464106214554 user_339
0.46275022327 user_561
0.46052254186 user_94
0.457961659774 user_429

Machine Learning | 349

0.452115992772 user_387
0.450752649362 user_870

This is an example of nearest neighbor search, simply finding the nearest neighbors.
This might be useful in itself; for example, if we were building a social network for
movie lovers, this algorithm would help us build a recommendation engine that rec‐
ommends similar users with whom we might want to communicate, because they
appear to rate movies similarly.

If we were interested in predicting a particular attribute or property of a user, we
could use the nearest neighbors to make our prediction by averaging the attribute or
property values of the nearest neighbors and using that average as our prediction for
the entity of interest. This is known as nearest neighbor classification.

We can go further and use a variation of this nearest neighbor classifier to build a dif‐
ferent recommendation engine that suggests movies to our given user, by predicting
the rating our given user would give a movie based on the ratings her nearest neigh‐
bors gave to the movie.

For example, if we want to estimate the rating that a new user, user_456, will give to
the movie Pulp Fiction, having not watched it yet, we use the top k entities that are
most similar to user_456 and average the rating that those users gave to the movie to
come up with our estimate:

def recommendedScore(nearest, movie):
 item = lookupMovieId(movie)
 score = 0.0
 matched = 0
 for n in nearest:
 items = n[2]
 if items.has_key(item):
 matched += 1
 score += float(items[item])
 # average
 if matched > 0:
 score = score / matched
 return score

Convert the movie name to movie ID.

If the average rating that the top k most similar users gave to a movie was 4 stars out
of 5, we might elect then to recommend to a user that she watch the movie:

>>> recommendedScore(neighbors, 'movie_Pulp Fiction (1994)')
4.9

user_456 actually rated Pulp Fiction a 5. Let’s look at a movie user_456 rated low,
Jaws 2:

>>> recommendedScore(neighbors, 'movie_Jaws 2 (1978)')
3.0

350 | Chapter 9: Advanced Table Designs

1 See Jimmy Lin et al., “Low-Latency, High-Throughput Access to Static Global Resources within the Hadoop
Framework”, 2009.

These scan operations are designed to be fast enough to return answers in time for
some interactive applications. Depending on the data set, features will likely need to
be tuned to minimize the number of candidates examined at query time. We could
also decide to simply update this table throughout the day and at night precalculate a
list of movies to recommend to each user by using a MapReduce job, storing this list
of recommendations in Accumulo for fast lookup as users visit our web application.

Similar operations can be used to cluster users into natural groups, again using simi‐
larity metrics to compare feature vectors. Other types classifiers can also be trained
on these feature vectors to produce models appropriate for scoring new instances in
real time to predict class or some value of interest.

In machine-learning applications in which Accumulo is already a part of the architec‐
ture, it could be used to provide low-latency, high-throughput access to static global
resources, even though some other more lightweight distributed key-value stores may
perform better.1 In this case Accumulo could be used to store and update model
probabilities, especially when the model is larger than fits comfortably in memory
even in a distributed cache such as memcached.

Accumulo may be more suitable than some other key-value stores because the use of
iterators could make incrementing model weights very efficient, as long as the appli‐
cation is more interested in incrementing weights more often than reading weights. If
any locality is associated with weights, it could be exploited to write and scan weights
in batches, resulting in better throughput than reading and writing each individually.

Approximating Relational and SQL Database Properties
Accumulo is a nonrelational database, meaning it doesn’t provide built-in support for
joins, cross-row or cross-table transactions, or referential integrity. Similarly, Accu‐
mulo does not implement SQL operations over tables. However, Accumulo can be
made to behave more like a relational or SQL database in some ways if desired.

Schema Constraints
One thing that some other databases do is to enforce a schema on inserted data. If a
particular row doesn’t conform to the specified schema of a table, the insert fails. In
contrast, Accumulo is designed to support building tables with widely varying struc‐
ture across rows. The set of columns and value types in a table are defined only by the
actual data. This requires applications to handle missing columns and values of any

Approximating Relational and SQL Database Properties | 351

http://bit.ly/lin_et_al
http://bit.ly/lin_et_al

type or size. In practice the code used to insert data is therefore more closely coupled
with the code used to query the data.

By requiring that inserts conform to a particular schema, applications can be less
closely coupled and can be simplified. Accumulo can be made to apply constraints to
tables that are examined at insert time. Users can write a Constraint class that
requires each column name to be one of a specified set, and can also apply type and
size limitations to values stored. Mutations that fail these constraints will be rejected.

See “Constraints” on page 201.

SQL Operations
Although Accumulo doesn’t support SQL, a few SQL operations are trivial to imple‐
ment using the Accumulo API. Besides implementing these capabilities in your own
client, Accumulo also integrates with Apache Pig and Apache Hive, which can per‐
form some SQL operations. See “Apache Pig” on page 248 on how to do operations
like joins, group by, and order by on Accumulo using the Apache Pig scripting lan‐
guage and “Apache Hive” on page 242 for using Apache Hive with Accumulo to exe‐
cute SQL queries.

SELECT

Also known as projection, the SQL SELECT clause is used to select a set of columns
from a table. By default, scanners retrieve all available columns, even those the user
may not know about. Scanners can be configured to retrieve only a particular set of
columns using the fetchColumn() and fetchColumnFamily() methods.

WHERE

Also known as selection, the SQL WHERE clause is used to select a subset of rows from a
table. Accumulo scanners can be configured to scan over only a subset of rows by
specifying a range of row IDs. Similarly, applications can use secondary indexes to
identify sets of row IDs that can be combined using set operations to identify a final
set of row IDs that satisfy the logic of a WHERE clause. This set of row IDs can be
passed to a BatchScanner to retrieve the full rows from a record table.

Projection and selection can be combined by calling the fetchColumn() or fetchCo
lumnFamily() methods on the BatchScanner used to retrieve the final set of original
records.

Most relational databases generate statistics about indexes and data in tables as the
data is inserted. These statistics are used by query planners to optimize data retrieval.
For example, if we were querying for records containing the value book in one field
and the value $10 in another field, we could consult the statistics table to see which
value appears less frequently. If the value book appears in only a small number of

352 | Chapter 9: Advanced Table Designs

records and the value $10 appears in many, we can plan our query out by first fetch‐
ing those record IDs that contain the value book, and then filtering that subset to find
records that match the second criterion.

There is no reason that similar statistics could not be stored in Accumulo. The Sum
mingCombiner can come in handy for updating counts in a statistics table.

JOIN, GROUP BY, and ORDER BY
Because Accumulo is designed to answer user requests in subsecond times, and to
scale to very large amounts of data, the operations that can be performed at query
time are limited to things that can be done very quickly, despite the size of the data.
SELECT and WHERE operations are among those.

JOIN, GROUP BY, and ORDER BY are more complex and require significant resources to
perform on large amounts of data. Recently, several new systems have emerged to aid
in performing these operations at scale, namely MPP databases such as Vertica,
Greenplum, and Asterdata, as well as Cloudera’s Impala and Facebook’s Presto, which
are based in part on Google’s Dremel and Tenzing projects. These work by perform‐
ing SQL operations in parallel quickly enough to be interactive.

Accumulo keeps data in tables sorted by keys at all times but does not sort data on the
fly. Users of Accumulo tend to materialize transformations of original data sets in sev‐
eral tables and perform simple lookups on these tables in subsecond times, rather
than computing new transformations on the fly while users wait. In general, opera‐
tions that require sorting and transforming all the data tend to be performed using
MapReduce.

Accumulo doesn’t provide built-in support for joins, but there are several strategies
for joining two tables.

Strategies for Joins
Although Accumulo doesn’t provide SQL support, there are a few ways in which
tables can be joined on the fly. This may not be tractable for very large tables, but in
some cases it is feasible.

Joins and sorts are expensive operations. Relational databases are optimized to per‐
form this kind of work on tables at query time. Accumulo tables can be very large, so
rather than performing joins and alternate sort orders at query time, you may con‐
sider trying to precompute these joined or sorted tables ahead of time, maintaining
them as the original table is updated so users aren’t waiting for results.

Of course not all types of joins and sorts can be anticipated. For truly ad-hoc joins,
sorts, and aggregations, frameworks like Apache Hive or Cloudera’s Impala can be
used. See “Apache Hive” on page 242 for details on using Hive with Accumulo tables.
There is work taking place to make Impala work with Accumulo also.

Approximating Relational and SQL Database Properties | 353

http://bit.ly/cloudera_impala
http://prestodb.io/
http://bit.ly/dremel_paper
http://bit.ly/tenzing_paper

The trade-off when using these tools is that, in order to make these operations fast
enough to be used interactively, as many of the machines as possible are involved in
the operation. This reduces the number of concurrent users that can be querying the
system at any given time when compared to the number of users that can be perform‐
ing scans against precomputed Accumulo tables.

The cost of performing a join at query time depends on which parts of the Accumulo
key are being joined. Estimates of the cost of joining two tables in different ways
follow:

RowID to RowID
When two tables are to be joined based on the row ID of each table, performing a
join is a simple matter of scanning both tables once simultaneously and returning
rows that appear in both.

The number of comparisons that needs to be done to accomplish this is on the
order of the size of the two tables, or O(a+b) in algorithm performance parlance.

When we write O(something) we are using big-O notation. The
definition of big-O is that the big-O of a particular function is the
number of steps required to accomplish the function expressed in
terms of n where n is the number of input items, times a constant
factor. The term representing the constant factor is omitted when
big-O notation is written.
So, for example, if a function for finding an item in a list requires
2*n steps (which would be a slow search algorithm), we would sim‐
ply write O(n) when using big-O notation. The constant factor 2 is
omitted.
This helps computer scientists focus on the relative efficiency of an
algorithm as the number of input items increases. The effect of the
constant factors tends to diminish as the other parts of the function
apply to input data.
We should note here too that big-O notation describes the worst-
case runtime complexity of an algorithm. Other letters are used to
describe best-time and expected or average-time complexity.

Value to row ID
When joining the values from one table, A, with the row IDs of another table, B,
it is best to scan the values of A and to look up whether B contains a row ID for
that value.

The number of comparisons required to perform this join is O(a * log2(b)),
where a is the size of table A and b is the size of table B.

354 | Chapter 9: Advanced Table Designs

Value to value
If two tables are to be joined on their values, it is more efficient to build an index
of one of the tables and perform a value-to–rowID join by scanning the values of
one and doing lookups for each value in the other. This is because the number of
comparisons required to join two tables’ unsorted values is O(a*b), whereas the
comparisons it takes to build an index of one is O(b*log2(b)) and building the
index and doing the join, O(b*log2(b) + a*log2(b)), is less than O(a*b).

These runtime estimates make it clear that it is not infeasible to perform the occa‐
sional join of two tables even when data sets are large, but that these joins are often
still too slow to be performed interactively while users wait. The tools mentioned in
the previous section are specifically designed to perform SQL operations at scale with
the goal of being fast enough for interactive queries, typically from seconds to a few
minutes.

GROUP BY and ORDER BY

GROUP BY and ORDER BY can be performed often in one MapReduce job.

In some cases, Accumulo can apply the functions typically used in a GROUP BY query
using iterators, provided that the data is already sorted in the desired fashion in a
table. Accumulo supports applying iterators at scan time, allowing aggregated views
of the data to be created on the fly as data is read from disk and sent to clients.

An example of this is when a table contains a record of individual events stored under
some set of identifiers and a scan applying a combining iterator combines the indi‐
vidual events into an aggregated value. Such events might be individual orders, with
the product name stored in the key and the amount of the order in the value.

Approximating Relational and SQL Database Properties | 355

CHAPTER 10

Internals

This chapter describes the internal workings of Accumulo. Although Accumulo can
be used without a knowledge of its internals, developing an increased understanding
of how Accumulo works will make it easier to understand and make decisions about
how best to interact with Accumulo.

Tablet Server
Accumulo tables are split into contiguous ranges called tablets. Each tablet is assigned
to a tablet server, also known as a tserver, that is responsible for all reads and writes
for the tablet. Each tablet server can be assigned hundreds or even thousands of tab‐
lets. If an Accumulo instance reaches well over 1,000 tablets per server, it is time to
start making adjustments: merging tablets, deleting old data, rethinking the table
design, or increasing the size of the cluster.

An Accumulo instance typically runs one tablet server per slave node (for example,
each server that is running an HDFS DataNode). A tablet server registers with an
Accumulo instance by obtaining a lock in ZooKeeper. If a tablet server loses or is
unable to monitor its lock, it will kill itself. It is important for Accumulo to be able to
keep track of properly functioning tablet servers and to automatically shut down
unresponsive tablet servers in order to ensure that a tablet is never assigned to more
than one tablet server. ZooKeeper locks assist this process.

The following sections describe many of the operations tablet servers perform on
their tablets.

357

1 See Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. “The log-structured merge-tree
(LSM-tree).” Acta Inf. 33, 4 (1996), 351–385.

Discussion of Log-Structured Merge Tree

The reading and writing for an individual tablet are governed by a
log-structured merge-tree approach1 as interpreted in the BigTable
design. This technique is designed to take best advantage of hard‐
ware that performs fast sequential writes and is most useful when
much more data is written than is read.

When reading or writing new data, the Accumulo client library first locates which
tablet should contain the data and which tablet server is hosting that tablet. This is
accomplished by looking up the location of the root table, which contains informa‐
tion about the tablets of the metadata table. Once the desired metadata tablet and its
location are read from the root tablet, the desired data tablet and its location are
looked up in the metadata tablet. The client library caches tablet locations that it has
found previously, so when data is looked up again it may be able to skip one or more
of these steps.

Starting in Accumulo 1.6, the root tablet is considered to be in a separate root table
that is never split. In earlier versions, the root tablet is considered to be part of the
metadata table. This change does not affect how the client interacts with Accumulo,
but it simplifies Accumulo’s internal implementation.

Write Path
Within a tablet, incoming writes are committed to an on-disk write-ahead log.
(Write-ahead logging can optionally be disabled per table, at the risk of losing data if
a single tablet server goes down with data in memory that has not made it onto disk.)
The write-ahead log is not sorted by key, because new data is appended to it. In Accu‐
mulo 1.5.0 and later, the write-ahead log is stored directly in HDFS. The number of
replicas required for the write-ahead logfiles can be configured. In Accumulo 1.4 a
custom logging process writes to local disk instead. The write-ahead logs are man‐
ually replicated onto the disk of one remote server in addition to local disk.

358 | Chapter 10: Internals

Once the new data is confirmed to be on disk, it is inserted into a sorted in-memory
structure. At this point, the write is successful and the data will available for reads
(Figure 10-1).

When the resource manager determines that a tablet server’s allocated memory is
becoming full, it selects some tablets for minor compaction, which means flushing
data from memory to disk. Successful minor compaction results in a new sorted
HDFS file associated with the tablet.

Figure 10-1. Write path

Read Path
Within a tablet, reads consist of constructing a merged view of sorted in-memory and
on-disk structures (Figure 10-2). The on-disk structures are HDFS files associated
with the tablet and do not include write-ahead logfiles, which are unsorted.

Tablet Server | 359

Figure 10-2. Read path

Resource Manager
Each tablet server has a resource manager that maintains thread pools for minor and
major compaction, tablet splits, migration and assignment, and a read-ahead pipe‐
line. The sizes of these thread pools are configurable via appropriate properties, with
the exception of the split and assignment thread pools, which each contain a single
thread:

tserver.compaction.major.concurrent.max
tserver.compaction.minor.concurrent.max
tserver.migrations.concurrent.max
tserver.readahead.concurrent.max
tserver.metadata.readahead.concurrent.max

360 | Chapter 10: Internals

Minor compaction
Minor compaction is the process of flushing data that is sorted in memory onto a sor‐
ted file on disk (Figure 10-3).

The resource manager includes a memory manager that periodically evaluates the
current states of the server’s assigned tablets and returns a list of tablets that should be
minor-compacted. The memory manager is pluggable, with its class being configured
by tserver.memory.manager.

The default memory manager is the LargestFirstMemoryManager. If the total mem‐
ory usage of all the tablets on the tablet server exceeds a dynamic threshold, or if the
time of a tablet’s last write is far enough in the past, a tablet will be selected for minor
compaction. The threshold is adjusted over time so that the highest memory usage
before a minor compaction is between 80 and 90 percent of the maximum memory
allowed for the tablet server, tserver.memory.maps.max. If too many minor compac‐
tions are already queued, it will not select additional tablets for minor compaction
until the queue has decreased. The number of minor-compaction tasks allowed in the
queue is twice the number that can be executed concurrently, which is controlled by
the global tserver.compaction.minor.concurrent.max configuration property .
The per-table table.compaction.minor.idle property controls how long a tablet
can be idle before becoming a candidate for minor compaction. The memory man‐
ager selects the tablet with the highest combination of memory usage and idle time—
memory * 2^(minutes idle / 15)—or, if memory is not too full, the idle tablet with the
highest combination of these.

If a tablet has more than a specified number of write-ahead logfiles (table.compac
tion.minor.logs.threshold), it will be minor compacted outside of the memory
management system. This is to reduce recovery time in the case of tablet server
failure.

Tablet Server | 361

Figure 10-3. Minor compaction

Major compaction
When there are too many files for a tablet, read performance will suffer because each
lookup must perform a merged read of all the sorted files and in-memory structures
for the tablet. For this reason, each tablet server has a thread pool devoted to merging
together files within a tablet. This process of merging together some or all of a tablet’s
files is called major compaction (Figure 10-4). If all of a tablet’s files are merged into a
single file, it is called a full major compaction. The full major compaction is noted as a
special case because additional cleaning up of obsolete data is possible when all of a
tablet’s existing data is being rewritten.

362 | Chapter 10: Internals

You can request a full major compaction for a table through the shell or the API. The
compaction can be restricted to a range of tablets specified by start and end rows. A
user-initiated compaction can also be canceled.

Major compactions are also initiated automatically by tablet servers. Tablet servers
evaluate whether files need to be merged periodically. How long the tablet servers
wait between evaluations is controlled by the global tserver.compac

tion.major.delay property.

In Accumulo 1.6 and later, the strategy for performing major compactions is plugga‐
ble and is configured per table with the table.majc.compaction.strategy property.

The per-table table.compaction.major.ratio property influences the tablet server’s
decision whether to merge files and which files are merged. To determine whether a
tablet’s files are in need of major compaction, the tablet server first sorts the files by
size. If the size of the largest file times the compaction ratio is less than or equal to the
sum of the sizes of all the files, the set of files is merged into a single file. If this is not
true, the largest file is removed from the set and the remaining files are evaluated.
This is repeated until a set of files is selected for compaction or until there is only one
file left in the set. This algorithm is chosen to reduce the number of times data is
rewritten through major compaction. Effectively, it tries to compact small files into
significantly larger files that won’t need to be compacted as often.

There is a maximum for the number of files a single major compaction thread is
allowed to open, tserver.compaction.major.thread.files.open.max. If a set of
files selected for major compaction contains more files than this maximum, the com‐
paction will merge the N-smallest files, where N is the number of files that are
allowed. The remaining uncompacted files will eventually be compacted in multiple
passes.

Tablet Server | 363

Figure 10-4. Major compaction

Merging minor compaction
The major compaction algorithm can result in a large number of files as the tablet
size grows. This can reduce read performance and increase memory usage require‐
ments for the tablet server. There is a per-table property that provides a hard maxi‐
mum on the number of files per tablet, table.file.max. When a tablet reaches this
number of files, the tablet server will not create new files via minor compaction.
Instead, the tablet server will choose the tablet’s smallest file, and merge the data from
this file and the in-memory structure into a new file (Figure 10-5). This process is
called a merging minor compaction.

Consider adjustments to the table.file.max property carefully.
Making it low can increase read performance while decreasing
write performance. The performance of bulk-loading data is not
affected.

364 | Chapter 10: Internals

Figure 10-5. Merging minor compaction

Splits
When a tablet’s size reaches a configurable threshold, the tablet server will decide to
split it into two tablets (Figure 10-6). Splitting tablets into smaller pieces allows Accu‐
mulo to spread load more evenly across tablet servers. Tablets are split on row
boundaries only, so that a row is never spread across more than a single tablet. The
threshold for tablet size is set in bytes via table.split.threshold. Conceptually, the
server must create two new tablets, split the original tablet’s data appropriately
between the two new tablets, and update the metadata table with information about
the two new tablets, removing information about the original tablet as needed.

To make splitting a lightweight metadata operation that does not require rewriting
the original tablet’s data, the names of a tablet’s files are stored in the metadata table.
This allows files to be associated with more than one tablet. When reading data from
its files, a tablet restricts its reads to the range of keys in its own domain. When a
tablet is split into two new tablets, both of the new tablets will use the files of the orig‐
inal tablet. Splitting takes priority over compaction so that a tablet that is growing

Tablet Server | 365

very quickly can be split into as many tablets as needed before the new tablets start
compacting their files, which would otherwise be an ingest bottleneck.

Splitting requires multiple rows in the metadata table to be updated. This means that
it is not inherently an atomic operation. To achieve fault tolerance during splitting,
the tablet server performs the following process. First the tablet is closed so that no
new writes are accepted. Then three writes are made to the metadata table: the tablet
is made smaller and is marked as splitting; a new tablet is added; and the original tab‐
let’s splitting marks are removed. The tablet server swaps the new tablets for the old
tablet in its online tablet list, and the master is informed of the new tablets. If the tab‐
let server goes down during the splitting process, a new tablet server will pick up the
splitting process where it left off. The new server determines that splitting must be
continued if a tablet it is assigned has splitting marks in the metadata table.

Splitting a table into enough tablets is essential to being able to take
advantage of the parallelism of the system. By default, a table’s tab‐
lets will be spread evenly across the tablet servers. For some appli‐
cations it is better not to leave the split points to chance. Split
points can be specified when a table is created, or added to an exist‐
ing table.

Figure 10-6. Tablet splitting process

366 | Chapter 10: Internals

Write-Ahead Logs
Write-ahead logs are used to guarantee data integrity in the presence of hardware or
software failures. Because each tablet contains an in-memory map that stores recently
written data, this data must be persisted to disk first to ensure that it isn’t lost. A sin‐
gle write-ahead logfile is only written to by a single tablet server, but log entries for all
tablets assigned to that server can be intermingled in the same logfile. Bulk ingest
does not utilize the write-ahead log or the in-memory map for a tablet, because this
involves introducing new sorted files to a tablet.

The logging mechanisms are different in different versions of Accumulo. Accumulo
1.4 and earlier used custom logging processes. Each slave node would typically be
configured to run one tablet server process and one logger process. When a tablet
server received new data, it would log the data to the local logger process, if present,
and to one remote logger process. It would send data to two remote loggers if a local
logger was not present.

In Accumulo 1.5 and later, data is logged directly to a file in HDFS, so that separate
logger processes are not needed. The tablet server waits until the data is replicated
appropriately by HDFS, and then it proceeds with inserting the data into the in-
memory map for the appropriate tablet. The HDFS replication of write-ahead logfiles
is controlled with the tserver.wal.replication property. If this property is set to 0,
the HDFS default replication is used. Setting this property to 2 will provide similar
performance and data protection to Accumulo 1.4. Setting it to 3 will provide even
better data protection, ensuring that data is written to three different disks before it is
committed to Accumulo. However, this will use more disk I/O resources when writ‐
ing and can affect ingest performance. It is not recommended that the replication of
write-ahead logfiles be set to 1, because a single server failure could result in data loss.

Recovery
Like regular data files, the write-ahead logfiles containing data for a given tablet are
written to the metadata table row for that tablet. If a tablet server is assigned a tablet
that has write-ahead log entries in the metadata table, the tablet server will conduct a
log recovery before bringing the tablet online (Figure 10-7). Because the logs contain
unsorted data for multiple tablets, the files are first sorted so that servers don’t need to
read through irrelevant data to recover the data for a single tablet. Sorting of logfiles
is done by a work queue managed in ZooKeeper. The master submits files to this
work queue when it reassigns tablets that have write-ahead log entries. Each tablet
server monitors the work queue for new files that need to be sorted and maintains a
thread pool for sorting tasks. The size of the thread pool is controlled with the tser
ver.recovery.concurrent.max property.

A single tablet server will win the race to grab a file from the work queue and begin
sorting it. It reads a large chunk of the file into memory and writes it out sorted by

Tablet Server | 367

entry type, tablet, and original order in the file. It repeats this process, creating a new
file for each chunk that fits in memory, until the entire file is sorted. The size of the
sorted chunks defaults to 200 MB and can be adjusted by changing the tser
ver.sort.buffer.size property. A typical write-ahead logfile size is 1 GB, controlled
by tserver.walog.max.size. Under normal circumstances a tablet will only have
one or two write-ahead logfiles, so with the default settings there may be 5 to 10 sor‐
ted file chunks to read during data recovery.

In addition to logged data, the file contains minor compaction start and finish mark‐
ers and specifies a concise tablet ID for each tablet referenced. The usual identifier for
a tablet is its key extent (start row exclusive, end row inclusive), but a short ID is
assigned in the write-ahead logs so that it can be specified in fewer bytes. Once the
sorting is completed, the tablet server that will host the tablet begins recovering the
data for that tablet. It conducts a merged read of all the sorted log chunks that can
contain data for the tablet. First it finds the tablet ID, then it uses the ID to find the
last minor compaction that succeeded for the tablet. This determines which log
entries must be replayed. Once the tablet server has replayed the log entries, it minor-
compacts the tablet. Currently, a tablet server only recovers one tablet at a time,
because newly assigned tablets are only loaded one at a time.

Figure 10-7. Recovery from tablet server failure

368 | Chapter 10: Internals

File formats
BigTable’s SSTable file format is described as a sequence of compressed data blocks
followed by a block index. Both the data blocks and the index consist of key-value
pairs sorted by key, with the index containing the first key of each data block (or per‐
haps a smaller equivalent key) paired with the location in the file of the beginning of
that data block. When the file is opened, the index is read into memory. To locate a
key in the file, a binary search is performed on the index to find the location of the
data block containing the desired key. Then this data block is read from disk and
scanned sequentially until the desired key is reached.

The file format used by Accumulo is the RFile, which stands for relative key file.
RFiles have a similar structure to SSTables with a few additional optimizations. The
size of the compressed blocks in an RFile is controlled per table with the
table.file.compress.blocksize property, which defaults to 100 KB. This size is
prior to compression.

Note that compressed blocks (~100 KB) are not the same as HDFS
blocks (128 MB or more). There are many compressed blocks per
HDFS block.

RFile optimizations
A single-index approach doesn’t work well for very large files because as the file size
grows, so must the size of the index. Because the index is read into memory when the
file is opened, it will take longer to open larger files. This can be mitigated somewhat
by increasing the compressed block size to decrease the size of the index, but then
lookup times will also increase because the data blocks are scanned sequentially when
looking up keys. To support very large files, Accumulo 1.4 introduces a multilevel
index. The table.file.compress.blocksize.index property, defaulting to 128 KB
prior to compression, sets the maximum size of an index block. When a file is writ‐
ten, the index to the beginnings of the compressed data blocks is accumulated in
memory. When the index reaches its maximum size, a level 0 index block is written
out, a level 1 index is started with a pointer to the level 0 index block, and a new level
0 index block is started with pointers to data blocks. When all the data has been writ‐
ten out, any remaining index blocks are written to the file. When the file is opened,
only the highest level index must be read into memory. There is no limit to the num‐
ber of index levels, but a two-level index is sufficient for files in the tens of gigabytes
with the default settings. See Figure 10-8 for an illustration of the on-disk data layout
for a two-level index.

Accumulo 1.5 features an additional optimization to reduce the time needed to
sequentially scan a data block. Once a given data block has been accessed once, it is

Tablet Server | 369

http://bit.ly/bigtable_paper

cached in memory. When the data block has been accessed twice, the RFile begins
building a dynamic, ephemeral index by storing the key and pointer corresponding to
the midpoint of the block. As the block continues to be used, when it is accessed 2^N
times, N additional keys will be added to the ephemeral index.

Relative key encoding
Within a compressed block, Accumulo performs compression of identical portions
and identical prefixes of portions of consecutive keys. A single byte is used to encode
whether the row, column family, column qualifier, column visibility, and/or time‐
stamp match those of the previous key. Of the remaining three bits in that byte, one is
used to indicate whether any prefix compression is present for the key, another is
used as the deletion flag for the key, and the last is unused. Prefix compression is only
available in Accumulo 1.5 and later. If prefix compression is present, an additional
byte is used to indicate whether the row, column family, column qualifier, and/or col‐
umn visibility have a common prefix as the previous key, and whether the timestamp
is expressed as a difference from the previous timestamp. A common prefix must be
at least two bytes. The remaining three bits of the prefix compression byte are
unused.

If a portion of the key matches that portion of the previous key identically, as indica‐
ted in the first byte, no additional information needs to be written for that portion. If
a portion of the key has a common prefix with that portion of the previous key, the
length of the prefix is written followed by the remaining bytes for that portion of the
key. In the case of the timestamp, there is no prefix length, but the difference from the
previous key is written. If a portion of the key has no common prefix with the previ‐
ous key, the entire portion is written.

Locality groups
To enable greater intermingling of different types of data in a single Accumulo table,
RFiles also support locality groups. This feature allows sets of column families to be
grouped together on disk, which can result in better compression. It also allows appli‐
cations to tune a table’s disk layout to better suit its access patterns. For example, if
two columns are always queried together, the columns could be put in a locality
group. Alternatively, if one column contains very large data, such as image files, and
another column contains much smaller data, such as text, these columns could be put
in different locality groups to improve the lookup times when only text data is
retrieved.

BigTable maintains separate SSTables for each locality group, whereas RFiles store
locality groups in different sections of the same file. This makes the number of files
Accumulo must manage independent of the number of locality groups or column
families.

370 | Chapter 10: Internals

Unlike BigTable, Accumulo does not require column families to be specified before
data can be inserted into those families. To accommodate the use of unspecified col‐
umn families, Accumulo introduces the concept of a default locality group. All col‐
umns are stored in the default locality group unless configured otherwise. Locality
group mappings can be added or changed at any time, but will only take effect for
new files written. RFiles are immutable, so files remain in the locality groupings that
were in effect when the files were created. When new files are created through minor
or major compaction, they will use the newest locality group configuration.

Figure 10-8 illustrates how the file layout is modified to make accessing data within a
locality group efficient.

Figure 10-8. File layout with and without locality groups

Bloom filters
Bloom filters are data structures used to help determine whether a set of elements
contains a given element. Accumulo can use bloom filters to determine whether a
given key might be found in a file, or whether that file does not need to be searched
for the key.

Tablet Server | 371

1 For general information about bloom filters, see Burton H. Bloom, “Space/time trade-offs in hash coding with
allowable errors”, Communications of the ACM 13, 7(July 1970), 422-426.

Bloom filters can optionally be enabled per table. The properties governing the
bloom filter configuration are of the form table.bloom.*.

If enabled, a bloom filter layer maintains a set of bloom filters for each file. Each key
in a file is hashed with a number of hash functions, and the resulting hashes are
represented as a bit vector. A bloom filter is the OR of the bit vectors for each key in a
file.1

When looking up a key in the file, the bloom filter can be used to determine if the file
can contain the key, or definitively does not contain the key (Figure 10-9). This check
can be performed more efficiently than seeking for the key in the file, especially if the
bloom filter has already been loaded into memory.

By default, the bloom filter layer hashes the row portion of the key, so it can be used
to determine if a particular row appears in the file. However, it can be configured to
hash the row and column family, or the row, column family, and column qualifier.
This is controlled by setting table.bloom.key.functor to one of the three classes
one of three classes from the org.apache.accumulo.core.file.keyfunctor package:
RowFunctor, ColumnFamilyFunctor, and ColumnQualifierFunctor.

Because seeks are specified for Accumulo in terms of a Range of
keys, and not a specific key, the bloom filter layer will only provide
improvements when the Range seeked only covers a single row
in the case of the default RowFunctor, or a single row and
column family in the case of the ColumnFamilyFunctor, or a
single row, column family and column qualifier in the case of the
ColumnQualifierFunctor.

372 | Chapter 10: Internals

http://bit.ly/bloom_cacm_1970
http://bit.ly/bloom_cacm_1970

Figure 10-9. Bloom filter

Caching
Each tablet server process holds two BlockCache instances, one for data blocks and
one for index blocks. These are caches in memory of individual compressed blocks of
Accumulo RFiles. Though compressed on disk, the blocks are cached uncompressed
in memory and take up JVM heap. The size of each cache is specified in bytes with
the tserver.cache.data.size and tserver.cache.index.size properties.

When the amount of data stored in a cache exceeds its specified maximum size, the
cache will evict its least recently accessed blocks. The cache roughly reserves a third
of its size for blocks that have been accessed a single time and two-thirds of its size for
blocks that have been accessed more than once. Blocks never need to be invalidated
in a cache, because Accumulo’s RFiles are immutable.

The caches maintain counts including number of cache hits (block reads where the
block was found in the cache) and total number of block reads, and Accumulo tracks
this information and displays it on its monitor page.

Tablet Server | 373

Master
The master’s main function is to monitor the status of tablet servers and tablets and
to perform tablet assignment and load balancing as necessary. The master can
remove the ZooKeeper locks of unresponsive tablet servers, forcing those tablet
server processes to stop. The master also handles administrative operations requested
by users, such as creating tables or altering system or table configuration.

To find tablets that need to be assigned, the master continuously scans the metadata
table. Each tablet’s state is determined based on the loc, future, and last entries for
that tablet in the metadata table. If a tablet is not in its desired state—for example, if it
is unassigned or is assigned to a dead tablet server—the master will assign the tablet
by setting its future entry in the metadata table and by telling a selected tablet server
that it should host the tablet. A load balancer is used to select a server for the tablet.

The master uses tablet server status information to balance the load of tablets across
tablet servers. If there are active tablet servers that cannot be contacted, or there are
unhosted tablets, or either the master or any tablet servers are in the process of shut‐
ting down, the master will not perform load balancing. See “Load Balancer” on page
375 for more information on how tablets are balanced.

The status information collected from each tablet server includes the last contact time
and some tablet server–wide information such as OS load, hold time (the amount of
time the tablet server has been stuck waiting for minor compaction resources), num‐
ber of lookups, cache hits, and write-ahead logs that are being sorted. Per-table infor‐
mation is also provided, including number of entries; entries in memory; number of
tablets; number of online tables; ingest, query, and scan information; and number of
minor and major compactions. If the master cannot obtain the status of a tablet
server repeatedly, the master will request that the tablet server process halt.

The master is not a single point of failure, because Accumulo can continue running
without it. However, if the master is down for too long, the tablets can become unbal‐
anced, and if tablet server processes go down while the master is down, their tablets
will not be reassigned.

Multiple masters can be configured, and they will create a queue of locks in Zoo‐
Keeper. If the active master goes down, losing its ZooKeeper lock, the next master
having a lock in the queue will obtain the master lock and become the active master.

FATE
The master performs a number of administrative actions on behalf of a user. These
actions can involve multiple steps, such as communicating with a tablet server, read‐
ing or writing data in ZooKeeper, and reading or writing data to the metadata table. If
the master fails without completing all the steps needed for a particular action, Accu‐

374 | Chapter 10: Internals

mulo and the client process could be left in an undesired state. For this reason, Accu‐
mulo introduced a fault-tolerant execution system, FATE, to ensure that multistep
administrative operations are made atomically—either all the steps succeed, or the
original state of the system is restored.

A FATE operation breaks down an administrative action into a set of repeatable, per‐
sisted operations—objects that implement the Repo interface. Each Repo must have
the same end state when executed more than once, even if it has been partially exe‐
cuted previously. It also should be able to undo any changes it has made. On success‐
ful execution, a Repo returns the next Repo needed to continue the action. Before a
Repo is executed, it is stored in ZooKeeper along with a transaction ID associated
with the FATE operation.

If the master goes down in the middle of performing a FATE operation, the next mas‐
ter that takes over will be able to continue the operation or roll it back based on the
information recorded in ZooKeeper. The actions currently managed as FATE opera‐
tions include bulk import, compact range, cancel compaction, create table, clone
table, delete table, import table, export table, rename table, and shutdown tablet
server.

Load Balancer
The load balancer that the Accumulo master uses to assign tablets to tablet servers is
controlled by the master.tablet.balancer property. The load balancer is responsi‐
ble for finding assignments for tablets that are unassigned, at start time or any other
time unassigned tablets are discovered (such as when a tablet server process goes
down). It is also responsible for determining when the tablet load across tablet servers
is out of balance, and determining which tablets should be moved from one server to
another. This is called migration or reassignment. If the default TableLoadBalancer is
used, you can set a different balancer for each table by changing the table.balancer
property, which defaults to the DefaultLoadBalancer. Balancing each table inde‐
pendently is important, because otherwise a table’s tablets might not be evenly dis‐
tributed, even if each tablet server is hosting the same number of tablets.

The DefaultLoadBalancer attempts to assign a tablet to the last server that hosted it,
if possible. If there is no last location, it will assign the tablet to a random server.
When determining whether tablets need to be reassigned to keep the tablet servers
evenly loaded, the DefaultLoadBalancer looks at the number of online tablets for
each server. If there are tablet servers that have more and less than the average num‐
ber of online tablets, this load balancer will move tablets from overloaded servers to
underloaded servers. It picks a pair of tablet servers, starting with the most loaded
and least loaded, and moves the smallest number of tablets necessary to bring one of
the two servers to average load. When the DefaultLoadBalancer decides to move a
tablet, it first decides which table the tablet should come from. If the higher-loaded

Master | 375

server has more tablets from any given table than the less-loaded server, the balancer
picks the most out-of-balance table. If none of the tables are out of balance, the bal‐
ancer picks the busiest table (as defined by ingest rate plus query rate). Once a table is
chosen, the balancer selects the most recently split tablet from that table. It repeats the
tablet selection process until it selects the desired number of tablets for migration.

Garbage Collector
The garbage collector is a process that deletes files from HDFS when they are no
longer used by Accumulo. This is a complex operation because a file can be used by
more than one tablet. Early incarnations of the garbage collector compared the files
in HDFS with the files listed in the metadata table. Prior to 1.6, the garbage collector
still has the option to be run this way if Accumulo is not running and has been shut
down cleanly. However, when Accumulo is running this method is not sufficient
because files must be put in place before their metadata entries are inserted, with the
result that the metadata table is expected to be slightly behind what exists on disk.

To address this issue, there is a section of the metadata table that records candidates
for deletion. If a tablet doesn’t need a file anymore, it writes a deletion entry for that
file to the appropriate section of the metadata table. A tablet no longer needs a file if it
has performed a compaction that rewrites that file’s data into a new file. Major com‐
paction, full major compaction, and merging minor compactions all result in files
that can be deleted.

The garbage collector reads the deletion section of the metadata table to identify can‐
didates for deletion. Then the garbage collector looks to see if the deletion candidates
are still in use elsewhere, if they appear as file or scan entries for any tablets, or if they
are in a batch of files that are currently being bulk imported. After confirming the
candidates that are no longer in use, the garbage collector removes those files from
HDFS and removes the files’ deletion entries from the metadata table.

The garbage collector also deletes write-ahead logfiles that are no longer being used.
Rather than using deletion entries to find candidate write-ahead logs for deletion, the
garbage collector finds files in the write-ahead log directories, then determines if they
are still in use.

Accumulo can run without the garbage collector. However, when the garbage collec‐
tor is not running, Accumulo will not reclaim disk space used by files that are no
longer needed. As with the master, multiple garbage collectors can be configured, and
the inactive garbage collectors will monitor a ZooKeeper lock, waiting to obtain the
lock in case the active garbage collector fails.

376 | Chapter 10: Internals

Monitor
The Accumulo monitor process provides a web service and UI for observing Accu‐
mulo’s state. It connects to the master and the garbage collector processes via Thrift
RPC.

The monitor is not essential for running Accumulo, but it is a useful tool for observ‐
ing Accumulo’s status and learning about any issues that Accumulo may be having.
Currently Accumulo only works with a single active monitor process. If a second
monitor is started, it will wait to take over in the event the first monitor fails.

One of the most useful features of the monitor is that it can aggregate log messages
from all Accumulo processes. By default, WARN and ERROR messages from all processes
are forwarded to the monitor, which displays them under Recent Logs in its UI. This
behavior is configurable in the generic_logger log4j configuration files.

Tracer
Accumulo includes a distributed tracing functionality based on the Google Dapper
paper that makes it possible to understand why some operations take longer than
expected. This tracing functionality captures time measurements for different parts of
the system across components and different threads.

Tracing is optional. To enable tracing, one or more tracing processes are started to
capture tracing information from Accumulo client and server processes using Apache
Thrift RPC. If no Accumulo tracer processes are running, tracing will be disabled.
The start-all script will launch one tracer process for each host defined the ACCU‐
MULO_CONF_DIR/tracers file. Usually one tracer is sufficient to handle the tracing
data for even a substantial Accumulo instance.

One trace is defined as a series of spans that have timing information for a specific
operation. In addition to start and stop times, each span has a description and IDs for
itself, its trace, and its parent span if one exists. Clients that want to use tracing must
enable it for an application and then start and stop traces for individual operations
(see “Using Tracing” on page 481 for an example of enabling tracing and retrieving
the results). When tracing is started, or turned on, each span associated with a trace is
sent to a tracer process chosen at random from the list of tracers that have registered
in ZooKeeper. Spans are received by each tracer asynchronously using Thrift RPC
and inserted into the trace table in Accumulo. When the client operation being ana‐
lyzed is complete, the client should turn tracing off, at which point any remaining
spans from previous asynchronous calls will be inserted into the trace table. The com‐
plete trace information can then be retrieved from the trace table through the Accu‐
mulo shell or monitor page.

Monitor | 377

http://bit.ly/dapper_paper
http://bit.ly/dapper_paper

Accumulo server processes also use tracing to obtain and log information about their
internal operations. Operations traced by Accumulo include every minor and major
compaction, as well as 1 out of every 100 garbage-collection rounds.

Client
Accumulo clients communicate with Accumulo server processes in a variety of ways.
Information such as the instance ID, instance name, master locations, tablet server
locations, and root tablet location are retrieved by the client directly from ZooKeeper.
Whenever the client retrieves information from ZooKeeper, that information is
cached in the ZooCache. If the same information is looked up again, the client will
first check the cache.

When the client obtains a connection to Accumulo, it reads the available tablet
servers from ZooKeeper and connects to a tablet server to authenticate. The Connec
tor can then be used to retrieve various types of scanner or writer objects for reading
from or writing to Accumulo. It can also be used to retrieve objects that can perform
table operations, instance operations, and security operations. The operations that
can be performed with these objects are covered in detail in Chapter 4.

Locating Keys
When a Range is scanned, the tablet or tablets that overlap the Range must be located.
When a Mutation is written, there will always be a single tablet containing the row ID
of the Mutation, and that tablet must be located. The location of a tablet is the IP
address and port of the tablet server that hosts the tablet. Tablet locations are stored
in the metadata table, which itself is split into multiple tablets. So, the metadata tablet
containing information about the desired tablet must also be located. The locations of
metadata tablets are stored in the root tablet.

Before Accumulo 1.6, the root tablet was a special tablet in the met‐
adata table. In 1.6, the root tablet is in a separate table called the
root table.

In fact, all the information about the metadata tablets is stored in a single root tablet
that is never split. The root tablet location is retrieved from ZooKeeper, while all
other tablet locations (metadata and not) are retrieved from the tablet servers hosting
the root and metadata tablets. The client looks up tablet locations by conducting
appropriate scans of the metadata table, but the tablet server’s Thrift API is used
directly rather than going through the client scan API.

378 | Chapter 10: Internals

The location of the root tablet is cached in the ZooCache, while the locations of other
tablets are cached separately. The separate tablet location cache is not invalidated
when a tablet is moved to a different server, but if the client looks for a tablet by con‐
tacting a tablet server that is not hosting the tablet, the client will remove the location
from the cache and retry.

Metadata Table
The metadata table (along with the root tablet/table) is the authoritative source of
information on the tablets and files for an Accumulo instance. The files for the meta‐
data table are typically stored at a higher replication: the default is five replicas, rather
than the default of three for other tables’ files.

See Appendix B for details on the contents of the metadata table.

Uses of ZooKeeper
ZooKeeper is used heavily by Accumulo for determining liveness of processes, coor‐
dinating tasks, ensuring fault tolerance of administrative operations, and storing con‐
figuration that can be modified on the fly without restarting Accumulo.

See Appendix C for details on the data stored in ZooKeeper.

Accumulo and the CAP Theorem
It has been well-argued that it is basically impossible not to choose to be partition-
tolerant when designing a distributed system because, in a distributed system, some
messages between servers will inevitably be lost (which is the definition of a partition
in this context).

With respect to the CAP Theorem, Accumulo is a CP system, choosing consistency
over availability during a network partition. Accumulo is designed to only allow
writes for a particular key to one and only one machine. Some other distributed data‐
bases allow writes for a particular key to happen at multiple machines, and they
choose to replicate these writes between servers as fast as they can.

Accumulo is also designed to run within a single data center, which means it operates
over a local area network (LAN) rather than a wide area network (WAN) spanning
multiple data centers that are geographically distributed. In a LAN, network parti‐
tions can still occur in which some tablet servers cannot talk to other tablet servers
or—more importantly—to ZooKeeper. However, when this happens the tablet servers
that cannot talk to ZooKeeper cannot guarantee that they are the only server hosting
a given tablet, and so they exit to avoid receiving writes and creating an inconsistent
view of a tablet.

Metadata Table | 379

http://bit.ly/cap_confusion
http://bit.ly/cap_confusion

From Accumulo’s perspective, if a server isn’t responding to ZooKeeper (meaning it
has let its tablet server lock expire), then the server may be down or it may be run‐
ning and just unable to talk to ZooKeeper. So the master has a dilemma. Because the
server might be running, Accumulo could allow any clients that can talk to the tablet
server to continue to read from and write to it. Because there is no other place accept‐
ing changes to the tablets hosted by this tablet server, there is no problem with con‐
sistency per se. But because it is impossible to distinguish between the server being
down and being unable to communicate with the ZooKeeper and master servers, tab‐
let servers are designed to exit so the master can assign their tablets to other tablet
servers that can still talk to ZooKeeper. This ensures that the tablets are available to
clients and that there is only one place where a particular key can be modified.

This process takes only a few seconds or less depending on how the cluster is
configured.

Any clients that cannot talk to ZooKeeper will be unable to perform any reads or
writes. This amounts to a lack of availability. In a single data center, populations of
client processes will not have much difference in how well they can connect to
servers, as compared to client processes around the world talking to servers in multi‐
ple geographically distributed data centers. Many installations perform load balanc‐
ing across clients and if for some reason some population of clients is unable to
service requests, the load balancers will try to redirect requests to healthy clients.

This is different from systems that choose availability and partition-tolerance (AP)
but not consistency. These systems are often designed to be run over machines in
multiple data centers, separated by WAN links. These links may cease functioning for
some period of time, resulting in a network partition. Even when they are function‐
ing, the difference in latency between connecting to a machine in a near data center
versus a machine in a faraway data center can result in clients attempting to talk only
to machines in the near data center.

In this scenario clients can write a value to a particular key in either data center,
whether the WAN link is functioning or not, and can read the value of the key from
either data center. The values of these keys can be the same, but if the WAN link is
down or if a read occurs after a client has written a new value in the far data center
but before that value has been replicated to the near data center, the client talking to
the near data center may read a stale value. Eventually, when the WAN link is back up
or when enough time has passed for the new value to be replicated to the near data
center, all clients will see the newest versions of values for all keys, giving rise to the
term eventual consistency.

Because clients can write to the same key at multiple data centers, and because these
databases are frequently distributed across data centers with high-latency WAN links
between them, even when the WAN links are up some stale reads are possible because
replication latency is always present and limited by the speed of light.

380 | Chapter 10: Internals

Because there is essentially no opportunity for data to get out of sync in Accumulo, it
chooses consistency. Therefore we call Accumulo a CP system, because it can con‐
tinue to operate in the presence of partitions, but not all clients can perform writes to
machines on either side of a partition.

The crucial decision for distributed database designers is whether to design their
databases to be globally distributed or highly consistent. Accumulo is a highly consis‐
tent, single–data center application.

Accumulo and the CAP Theorem | 381

CHAPTER 11

Administration: Setup

Accumulo is designed to run on a large number of servers and includes several fea‐
tures designed to make administrating and maintaining large clusters tractable for
administrators.

In particular, dynamic load balancing and automatic recovery from common types of
hardware failure help keep Accumulo healthy even in clusters of over a thousand
machines, in which hardware failures are common.

Preinstallation
Here are the ways in which the software environment should be set up to support
installing Accumulo. For suggestions on selecting appropriate types of hardware and
sizing a cluster, see “Hardware Selection” on page 473.

Operating Systems
Accumulo is regularly run and tested on several versions of Linux:

• Red Hat Enterprise Linux
• CentOS 6
• Ubuntu 12 and above

Development platforms include Linux and Mac OS X.

383

Kernel Tweaks
A few low-level kernel settings that can dramatically impact the responsiveness of the
cluster might need to be tuned for scaling up the per-machine resources allowed
when more than 100 machines are in a cluster.

Swappiness
Tablet servers should be given enough operational memory to avoid swapping. Swap‐
ping is bad because it can cause a tablet server to have to wait while the kernel
retrieves from disk some page of memory that was swapped out. This delay can inter‐
fere with Accumulo’s ability to determine the responsiveness of the tablet servers and
to keep all the data online.

To help avoid swapping, it is recommended that the Linux vm.swappiness setting be
set low to instruct the kernel to not be eager at all when it comes to swapping pages
from memory out to disk.

In Linux kernels prior to version 3.5, setting vm.swappiness to 0
would instruct the kernel to avoid swapping except when not swap‐
ping would cause an out-of-memory error. In kernel 3.5 and later,
setting vm.swappiness to 0 instructs the kernel not to swap ever
and to allow the out-of-memory errors to occur. Setting the value
to 1 instructs the kernel to behave the same way kernels previous to
3.5 did with swappiness set to 0.

To set swappiness low temporarily, do the following:

echo 1 > /proc/sys/vm/swappiness

And to make the setting persist across system reboots, do:

echo "vm.swappiness = 1" >> /etc/sysctl.conf

If it is undesirable to set swappiness to 1 on a system, ensure that it is set to a low
enough value to avoid tablet servers swapping.

Number of open files
Accumulo needs to be able to create enough threads, network sockets, and file
descriptors to respond to user requests. All of these require resources from the ker‐
nel, which are limited by the number of open files allowed.

To set this, edit /etc/security/limits.conf or add a specific file under /etc/security/
limits.d/ and add the following lines:

accumulo nofile soft 65536
accumulo nofile hard 65536

384 | Chapter 11: Administration: Setup

Native Libraries
Because Java garbage collection can cause pauses that make it difficult to determine
the status of a process, Accumulo employs its own memory management for newly
written entries. This requires the use of binary libraries compiled for the specific
architecture on which Accumulo is deployed. In older versions of Accumulo, binary
libraries for the Linux x86-64 architecture were provided in the distributed files. If
you are deploying to another architecture, or using version 1.6, these libraries must
be built after installation.

If the binary libraries are not available, Accumulo will fall back on a pure-Java imple‐
mentation, but at the cost of decreased performance and stability.

User Accounts
Many distributions of Hadoop configure a mapred and a hdfs user. Accumulo can be
configured to use its own accumulo account.

If Accumulo will be installed from RPM or Debian packages, the package scripts can
create the accumulo user account.

Linux Filesystem
Accumulo stores data in HDFS, which in turn stores blocks of data in the underlying
Linux filesystem. Popular Linux filesystems include ext3, ext4, and XFS.

Accumulo 1.4 and earlier versions required the ability to write to a local directory to
store write-ahead logs. A directory must be created for this purpose and must be
writeable by the accumulo user. It can improve performance to put write-ahead logs
on separate disks from disks storing HDFS data. These directories are specified in the
accumulo-site.xml file described in “Server Configuration Files” on page 402.

Accumulo 1.5 and later versions store these files in HDFS so no additional directories
need to be created.

System Services
Accumulo relies on several system services to operate properly:

Domain Name Service (DNS)
Hadoop requires that domain names of machines be resolvable from domain to
IP address and from IP address to domain name.

Network Time Protocol (NTP)
When an Accumulo table is configured to use a TimeType of milliseconds (MIL
LIS), Accumulo’s tablet servers rely on system time for applying timestamps to
mutations that do not otherwise have a timestamp provided. With many

Preinstallation | 385

machines in a cluster, some machines are bound to have clocks that are off. Run‐
ning NTP daemons can help keep clocks closer in sync and avoid situations in
which assigned timestamps jump forward as tablets are migrated from one server
to the next. Tablet servers ensure that the timestamps they assign never decrease
for any given tablet.

Secure Shell (SSH)
Accumulo ships with scripts that use SSH to start and stop processes on all
machines in a cluster from a single node. This is not required, however, if
another means of starting and stopping processes is used, such as init.d scripts.

To keep your Accumulo data secure, you also need to ensure that these services are
secure just like any other system built on top of Hadoop. For the scope of this book,
we cover a few important details in “Security” on page 416.

Software Dependencies
Accumulo depends on several software packages. First, Accumulo is written in Java.
Java versions 1.6 and 1.7 have been tested and are known to work. The Sun/Oracle
JDK is used more often in production, although OpenJDK is often used for
development.

Apache Hadoop
Accumulo 1.6 binaries are built against Apache Hadoop 2.2.0, and should work with
Hadoop versions 2.2.x and 1.2.x with little to no modification. To build against a dif‐
ferent version see “Building from Source” on page 399.

Depending on the version of HDFS that is installed, different HDFS settings need to
be configured in order to ensure that Accumulo can flush write-ahead logs to HDFS
safely. The append or sync directive should be set to true. This setting requires that
HDFS clients confirm that data has been transferred to DataNode processes success‐
fully before returning.

Necessary settings for different versions of HDFS are summarized in Table 11-1.

Table 11-1. Hadoop durability options

Hadoop version Setting Default

0.20.205 dfs.support.append must be configured

0.23.x dfs.support.append defaults to true

1.0.x dfs.support.append must be configured

1.1.x dfs.durable.sync defaults to true

386 | Chapter 11: Administration: Setup

Hadoop version Setting Default

2.0.0-2.0.4 dfs.support.append defaults to true

Setting dfs.datanode.synconclose to true will help avoid data loss in the event of
catastrophic failure, such as losing power to all nodes at once. This setting causes the
write-ahead log to ask disks to sync writes to disk before returning, which is safe but
also incurs a performance penalty. If an uninterruptible power supply is used so that
machines can be shut down safely in the event of total power loss, dfs.datanode.syn
conclose can be set to false.

This should be set in the hdfs-site.xml configuration file, and HDFS should be restar‐
ted afterwards.

Apache ZooKeeper
Apache ZooKeeper is a distributed directory service designed to keep information
completely replicated and synchronized across a small number of machines. Hence it
is a highly available system for keeping small amounts of data. Accumulo uses Zoo‐
Keeper to store configuration information and to coordinate actions across the clus‐
ter. See Appendix C for additional information on Accumulo’s use of ZooKeeper.

ZooKeeper version 3.3.0 or later should be used.

The only configuration option of ZooKeeper that is regularly changed is the number
of connections per client machine. The default is 10. Changing this is a matter of
adding the line:

maxClientCnxns=250

to the zoo.cfg file. Versions of ZooKeeper 3.4.0 or later do not require this change.

Installation
After Hadoop and ZooKeeper are installed, Accumulo can be installed. Accumulo
versions prior to 1.6 provided precompiled RPM and deb packages. For version 1.6.0
and later, the development team made the decision to no longer officially support
these.

Tarball Distribution Install
Accumulo can be downloaded as a Gzipped TAR file from a mirror at http://accu
mulo.apache.org/downloads/.

Extract the tarball to the desired location and ensure that the files are owned by the
user that Accumulo processes will run as. As of Accumulo1.6, native libraries must be

Installation | 387

http://zookeeper.apache.org
http://accumulo.apache.org/downloads/
http://accumulo.apache.org/downloads/

built from source. Follow the instructions in “Building native libraries” on page 400
for building these and proceed to “Configuration” on page 401.

Installing on Cloudera’s CDH
Cloudera provides a popular commercial distribution of Hadoop called CDH (the
Cloudera Distribution for Hadoop) that ships Accumulo 1.6 as part of CDH version
5. Accumulo is packaged as an optional parcel in the Cloudera Manager that can be
installed as part of the general installation process (Figure 11-1).

Figure 11-1. Selecting the Accumulo parcel during CDH5 install

Selecting Accumulo from the list of additional parcels and clicking Continue will
begin the installation process (Figure 11-2).

388 | Chapter 11: Administration: Setup

Figure 11-2. Installing the Accumulo parcel

Accumulo is now an available service. Next we need to add the service to our cluster,
which will configure and start up Accumulo. From the main Cloudera Manager page,
select the Add Service option. This will show a list of services to be installed
(Figure 11-3). Selecting Accumulo will install Accumulo and all its dependent serv‐
ices, including HDFS and ZooKeeper.

Installation | 389

Figure 11-3. Adding the Accumulo service to the cluster

The Add Service Wizard will prompt you to assign roles to various machines in the
cluster. These include which machines will run the master process, tablet server pro‐
cesses, etc. (Figure 11-4).

Figure 11-4. Assigning Accumulo roles to machines

Next the wizard will prompt for any configuration options that should be set before
starting the service (Figure 11-5). This is a good opportunity to set things like the
Instance Secret. Other options have good starting defaults.

390 | Chapter 11: Administration: Setup

Figure 11-5. Setting configuration options before installing the Accumulo service

Finally, the wizard will start Accumulo and dependent services, if any are not already
started (Figure 11-6).

Figure 11-6. Services are started by the Add Service Wizard

After installation Accumulo will show up as a service on the main view of a cluster in
the Cloudera Manager (Figure 11-7).

Installation | 391

Figure 11-7. Accumulo in the overall Cloudera cluster view

You can see Accumulo-specific details by clicking the Accumulo 1.6 link, which will
display the Accumulo Service details page (Figure 11-8). There is also a link to the
Accumulo monitor.

392 | Chapter 11: Administration: Setup

Figure 11-8. Viewing the Accumulo service in Cloudera Manager

Further configuration of the Accumulo service can be done via the Configuration tab
at the top of the service details page (Figure 11-9).

Figure 11-9. Additional Accumulo configuration

After installation, the Accumulo files are located in /opt/cloudera/parcels/ACCU‐
MULO. The commands in the bin/ directory will be part of the PATH.

Configuration files are in /etc/accumulo/conf.

Installation | 393

Custom JARs should be placed in /opt/cloudera/parcels/ACCUMULO/lib/
accumulo/lib/ext/ if you’re not using HDFS to distribute files, as detailed in “Using
HDFS” on page 408.

Installing on Hortonworks’ HDP
The Hortonworks Data Platform (HDP) is a distribution of Hadoop and other scala‐
ble data processing technologies that emphasizes open source contribution. HDP 2.1
ships with Accumulo 1.5.1 as an optional RPM.

On each machine to participate in the accumulo cluster, run:

yum install accumulo

This will install the Accumulo JARs and configuration files customized for use with
HDP:

Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package accumulo.x86_64 0:1.5.1.2.1.5.0-695.el6 will be installed
--> Finished Dependency Resolution
...
Total download size: 11 M
Installed size: 13 M
Is this ok [y/N]: y
Downloading Packages:
...
accumulo-1.5.1.2.1.5.0-695.el6.x86_64.rpm
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing : accumulo-1.5.1.2.1.5.0-695.el6.x86_64
 Verifying : accumulo-1.5.1.2.1.5.0-695.el6.x86_64
Installed:
 accumulo.x86_64 0:1.5.1.2.1.5.0-695.el6
Complete!

The RPM will install Accumulo in /usr/lib/accumulo, and put configuration files
in /etc/accumulo/conf. Configuration files appropriate for the memory available on
servers can be copied from /etc/accumulo/conf/examples. For example, to copy the
files that configure Accumulo to use 3 GB of RAM we would do:

cp /etc/accumulo/conf/examples/3GB/standalone/* /etc/accumulo/conf/

The accumulo-site.xml and accumulo-env.sh files can be adjusted according to the
instructions in “Configuration” on page 401, but the directory references are already
set up according to the HDP layout.

Next we need to make the directory in HDFS that our configuration files expect:

394 | Chapter 11: Administration: Setup

hdfs dfs -mkdir -p /usr/accumulo/data

HDP instructions recommend changing permissions on the data directory to grant
access to all users. This should be restricted to only the accumulo user for production
environments:

hdfs dfs -chmod -R 777 /usr/accumulo/data

Next we’ll change the ownership of the Accumulo data directory:

sudo -u hdfs hdfs dfs -chown -R accumulo:hdfs /usr/accumulo/data

We can now initialize Accumulo. We need to do this only once and from one
machine:

/usr/lib/accumulo/bin/accumulo init
[util.Initialize] INFO : Hadoop Filesystem is hdfs://sandbox.hortonworks.com:8020
[util.Initialize] INFO : Accumulo data dir is /user/accumulo/data
[util.Initialize] INFO : Zookeeper server is localhost:2181
[util.Initialize] INFO : Checking if Zookeeper is available. If this hangs, then
 you need to make sure zookeeper is running

Instance name : hdp
Enter initial password for root (this may not be applicable for your security
 setup): ******
Confirm initial password for root: ******
[Configuration.deprecation] INFO : dfs.replication.min is deprecated. Instead,
 use dfs.namenode.replication.min
[Configuration.deprecation] INFO : dfs.block.size is deprecated. Instead, use
 dfs.blocksize
[master.Master] INFO : Loaded class :
 org.apache.accumulo.server.security.handler.ZKAuthorizor
[master.Master] INFO : Loaded class :
 org.apache.accumulo.server.security.handler.ZKAuthenticator
[master.Master] INFO : Loaded class :
 org.apache.accumulo.server.security.handler.ZKPermHandler
[security.AuditedSecurityOperation] INFO : Initialized root user with username:
 root at the request of user !SYSTEM

Accumulo can be started with the start-all.sh script. See Chapter 12 for more details
on this process:

[root@sandbox conf]# /usr/lib/accumulo/bin/start-all.sh
Starting monitor on localhost
Starting tablet servers done
Starting tablet server on localhost
[server.Accumulo] INFO : Attempting to talk to zookeeper
[server.Accumulo] INFO : Zookeeper connected and initialized, attemping to talk
 to HDFS
[server.Accumulo] INFO : Connected to HDFS
Starting master on localhost
Starting garbage collector on localhost
Starting tracer on localhost

[root@sandbox conf]#

Installation | 395

The default RPM may not ship with native libraries built. See “Building native libra‐
ries” on page 400 for more information on building native libraries, which will pro‐
vide better performance.

Installing on MapR
MapR is a distribution of Hadoop that includes a completely redesigned, proprietary,
distributed filesystem, called MapR-FS, that takes the place of HDFS. The MapR dis‐
tribution includes additional features for security and enterprise integration such as
NFS compatibility.

Accumulo 1.6 can be installed on MapR version 3.1 or 3.0 using the following steps
(also see these instructions):

wget http://mirror.cc.columbia.edu/pub/software/apache/accumulo/1.6.1/\
 accumulo-1.6.1-bin.tar.gz
tar -xzf accumulo-1.6.1-bin.tar.gz

mkdir /opt/accumulo
mv accumulo-1.6.1 /opt/accumulo/

Create a volume for storing Accumulo data. This volume will take the place of
the /accumulo directory in HDFS and has additional capabilities, such as snapshots,
mirroring, and quotas:

maprcli volume create -name project.accumulo -path /accumulo

We’ll disable the MapR filesystem’s compression because Accumulo compresses data
by default:

hadoop mfs -setcompression off /accumulo

We’ll create a configuration directory containing mostly links to the original MapR
configuration files, with the exception of core-site.xml, so we can alter it without
affecting other services:

[accumulo-1.6.1]# mkdir hadoop
[accumulo-1.6.1]# mkdir hadoop/hadoop-0.20.2
[accumulo-1.6.1]# cd hadoop/hadoop-0.20.2
[hadoop-0.20.2]# ln -s /opt/mapr/hadoop/hadoop-0.20.2/* .
[hadoop-0.20.2]# rm conf
rm: remove symbolic link `conf'? y
[hadoop-0.20.2]# mkdir conf
[hadoop-0.20.2]# cd conf
[conf]# ln -s /opt/mapr/hadoop/hadoop-0.20.2/conf/* .
[conf]# cp core-site.xml t
[conf]# mv t core-site.xml
mv: overwrite `core-site.xml'? y

Adding the following properties to core-site.xml will tell the MapR filesystem to dis‐
able read/write caching, because Accumulo does its own caching:

396 | Chapter 11: Administration: Setup

http://bit.ly/accumulo_on_mapr

<property>
 <name>fs.mapr.readbuffering</name>
 <value>false</value>
</property>
<property>
 <name>fs.mapr.aggregate.writes</name>
 <value>false</value>
</property>

Edit the following lines of /opt/mapr/conf/warden.conf to allow Accumulo to use up to
2 GB of memory:

service.command.os.heapsize.max=2750 (from 750)
service.command.os.heapsize.min=2256 (from 256)

Next we’ll configure Accumulo. Follow the instructions in “Server Configuration
Files” on page 402 for copying configuration files and “Building native libraries” on
page 400 on building native libraries. Then return here for MapR-specific
configuration.

Edit accumulo-env.sh to point to the proper Hadoop and ZooKeeper directories:

test -z "$HADOOP_PREFIX" && \
export HADOOP_PREFIX=/opt/accumulo/accumulo-1.6.1/hadoop/hadoop-0.20.2/

test -z "$ZOOKEEPER_HOME" && \
export ZOOKEEPER_HOME=/opt/accumulo/accumulo-1.6.1/hadoop/hadoop-0.20.2/lib

Edit accumulo-site.xml with following properties:

<property>
 <name>instance.zookeeper.host</name>
 <value>maprdemo:5181</value>
 <description>comma separated list of zookeeper servers</description>
</property>

<property>
 <name>tserver.port.client</name>
 <value>9996</value>
</property>

<property>
 <name>master.walog.closer.implementation</name>
 <value>org.apache.accumulo.server.master.recovery.MapRLogCloser</value>
</property>

<property>
 <name>tserver.wal.blocksize</name>
 <value>562M</value>
</property>

Now Accumulo can be initialized as described in “Initialization” on page 410.

Installation | 397

Running via Amazon Web Services
Amazon Web Services (AWS) provide a set of scripts for spinning up an Accumulo
cluster that runs on virtual machines in Amazon’s EC2 (Elastic Compute Cloud).

This involves first setting up a ZooKeeper cluster using Apache Whirr, and then using
the Elastic MapReduce command-line tools.

To setup a ZooKeeper cluster using Apache Whirr, use the following commands:

$ ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa_whirr

$ bin/whirr launch-cluster --cluster-name=zookeeper
--instance-templates='1 zookeeper'
--provider=aws-ec2
--identity=$AWS_ACCESS_KEY_ID
--credential=$AWS_SECRET_ACCESS_KEY

The Security Groups must be configured to allow the Accumulo machines to connect
to ZooKeeper processes on these machines. See the AWS documentation on EC2
security groups for Linux instances.

Obtain the EMR CLI tools:

 $ elastic-mapreduce --create --alive --name "Accumulo" --bootstrap-action
 s3://elasticmapreduce/samples/accumulo/accumulo-install.sh
 --args "IP,DBNAME,PASSWORD" --bootstrap-name "install Accumulo"
 --enable-debugging --log-uri s3://BUCKETNAME/accumulo-logs/
 --instance-type m1.large --instance-count 4 --key-pair KEY

Use your own values for IP, DBNAME, PASSWORD, BUCKETNAME, and KEY:

IP
The IP address of one of the ZooKeeper nodes.

DBNAME
The name that will be used as the Accumulo instance name.

PASSWORD
The password to use for the Accumulo root account.

BUCKETNAME
The name of an S3 bucket that will be used store Accumulo logs.

KEY
The name of an EC2 SSH key-pair.

The --instance-type parameter describes the type of Amazon virtual machine to be
used. m1.large machines work well because they have local storage disks and a mod‐
est amount of memory and CPU. m1.xlarge instance types have also been used to
build Accumulo clusters in EC2 but may not be completely configured for these
scripts.

398 | Chapter 11: Administration: Setup

http://bit.ly/accumulo_on_emr
http://bit.ly/ec2_security_groups
http://bit.ly/ec2_security_groups
http://amzn.to/1ftU927

Once the script starts running, you will see a line of output similar to:

Created job flow j-1XIYVOM2PGH3R

This identifier can be used to obtain the address of the Accumulo master node:

$ elastic-mapreduce --list j-1XIYVOM2PGH3R

j-1XIYVOM2PGH3R Waiting ec2-23-22-183-67.compute-1.amazonaws.com
 Accumulo
 PENDING Setup Hadoop Debugging

$ ssh hadoop@ec2-23-22-183-67.compute-1.amazonaws.com

The Accumulo instance is running at this point.

Building from Source
Accumulo is distributed under the Apache open source license, so the source code
can be downloaded and modified to suit a particular need. Any modifications to the
source code, or to use options different from those that were used to create the binary
distributions, will require building Accumulo from source.

Several tools make this process easier. Specifically, the Java SDK and Maven build tool
should be installed. Java JDK version 1.6 or 1.7 and Maven version 3.0.4 will work.

To build from source, first download the source packages from a mirror listed on the
Apache Accumulo website.

Source code is found in the file ending in src.tar.gz. Once downloaded it can be
unpacked via:

tar -xzf accumulo-1.6.x-src.tar.gz

This will create a directory containing all the source files.

Building a tarball distribution
To compile the source into binaries, change into this directory via:

cd accumulo-1.6.x

Type:

mvn package -P assemble

This will build a distribution compiled against Hadoop 2.2.0. The distribution should
run with any supported version of Hadoop without being recompiled. However, if
desired it is possible to compile with a different version by supplying appropriate
options. To build for a different version compatible with Hadoop-2, for example
Hadoop 0.23.5, use the option:

mvn -Dhadoop.version=0.23.5 package -P assemble

Installation | 399

http://accumulo.apache.org/downloads/

To build for Hadoop 1, use the profile option and also specify the version of Hadoop.
For example:

mvn -Dhadoop.profile=1 -Dhadoop.version=1.1.0 package -P assemble

Once the build process is complete, there will be a TAR file distribution in
accumulo-1.6.x/assemble/target/accumulo-1.6.x-bin.tar.gz similar to the binary distri‐
butions available from the Accumulo website.

This tarball can be copied into the appropriate location and the instructions in “Tar‐
ball Distribution Install” on page 387 can be followed to complete installation. Most
installations will also want to use the native libraries, described in the next section.

Building native libraries
Native libraries are written in C++ and must be built for a specific architecture. The
binary distributions come with native libraries prebuilt for the GNU Linux x86-64
architecture. If you are building from scratch or simply for a different platform, the
native libraries can be built as follows.

Before building the native libraries, install the appropriate build tools. These include
make and g++. Make sure these are installed.

For CentOS, g\++ is installed via the gcc-c++ package.

The Java development kit packages should also be installed. On CentOS this requires
java-1.7.x-openjdk-devel or java-1.6.x-openjdk-devel, where x is the latest minor ver‐
sion number.

JAVA_HOME may need to be set appropriately. For example:

export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk.x86_64/

Once these packages are installed, the native libraries can be built via a script dis‐
tributed with Accumulo:

[centos@centos accumulo-1.6.0]$ bin/build_native_library.sh
g++ -m64 -g -fPIC -shared -O2 -fno-omit-frame-pointer -fno-strict-aliasing -Wall
-I/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.65.x86_64/include
-I/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.65.x86_64/include/linux -Ijavah
-o libaccumulo.so nativeMap/org_apache_accumulo_tserver_NativeMap.cc
Successfully installed native library
[centos@centos accumulo-1.6.0]$

In older versions of Accumulo, after downloading the source code as outlined in the
previous section, type:

cd server/src/main/c++
make

The native libraries will be found in the Accumulo install directory under lib/native/:

400 | Chapter 11: Administration: Setup

[centos@centos accumulo-1.6.0]$ ls lib/native/
libaccumulo.so

Accumulo will attempt to use these if they are present. If they are not, messages will
appear in the logs warning that the native libraries could not be found. If Accumulo is
configured to run using native libraries, and they are not available, Accumulo may
fail to start, because the nonnative Java-based libraries will cause the JVM to use more
memory than is allocated.

The following section provides more information on configuring Accumulo.

Configuration
Configuring Accumulo is a process similar to configuring Hadoop, involving editing
several files and distributing them across all the machines participating in an Accu‐
mulo cluster. In addition, after initialization and startup there are quite a few settings
that are stored in ZooKeeper that can be modified to affect changes across the cluster
without restarting.

File Permissions
Accumulo stores primary data in HDFS, including its write-ahead logs. In HDFS the
user that runs Accumulo processes must have the ability to read and write to files and
directories under the directory specified as instance.dfs.dir in accumulo-site.xml,
which defaults to /accumulo. The user must also be able to create this directory, which
means writing to the HDFS root directory if the default directory is unchanged. It is
recommended to create a directory that the accumulo user has permission to write to
(e.g., /user/accumulo), and to make the instance.dfs.dir a subdirectory of this
directory (e.g., /user/accumulo/accumulo).

For example:

hdfs dfs -mkdir /user/accumulo/accumulo

As of Accumulo version 1.6, the instance.volumes setting should
be used instead of instance.dfs.dir. The instance.volumes
property expects a comma-separated list of HDFS URIs in which it
will store data.
This setting can be set to reference your NameNode with a value
like hdfs://namenode:9001/accumulo to configure Accumulo sim‐
ilarly to the default instance.dfs.dir configuration.

Accumulo needs to be able to write application logfiles for debugging and monitor‐
ing. If you use the accumulo user to start Accumulo processes, these directories
should be writable by the accumulo user.

Configuration | 401

For a Debian-based system these logs are in the /var/log and /var/lib directories:

sudo mkdir /var/log/accumulo
sudo mkdir /var/lib/accumulo
sudo chown -R accumulo:accumulo /var/log/accumulo
sudo chown -R accumulo:accumulo /var/lib/accumulo

Server Configuration Files
Accumulo ships with some examples based on various memory configurations. To
start with these example files, copy the files into Accumulo’s conf directory (such
as /etc/accumulo/conf/):

cd /etc/accumulo/conf
sudo cp -r examples/3GB/native-standalone/* .

Accumulo needs to know how to talk to HDFS and ZooKeeper in order to start up.
Two files, accumulo-env.sh and accumulo-site.xml, control most of Accumulo’s startup
settings. These two files should be copied to each machine that will run Accumulo
processes and should be kept in sync if anything changes.

If you copy configuration files from a directory called native-
standalone/, the native libraries must be built or Accumulo can fail
to start. This is because the native libraries will handle their own
memory allocation, and if they are not found, Accumulo reverts to
using Java data structures, which will require more memory than
the JVM is configured to provide. See “Building native libraries” on
page 400 for details on building these libraries.
You can configure Accumulo to run without the native libraries by
allocating more memory to the JVM in which the tablet server
runs, so that it exceeds the amount of memory specified for the
tserver.memory.maps.max property, set in the accumulo-site.xml
file. The memory dedicated to the tablet server JVM is specified in
the accumulo-env.sh file on the line that defines ACCUMULO_TSER
VER_OPTS. Specifically, the -Xmx option should be set higher than
tserver.memory.maps.max.
Beware, however, that tablet servers will not perform as well as they
would when using native libaries, and if tablet servers are config‐
ured to use several gigabytes of memory, JVM garbage-collection
pauses can interfere with the tablet servers’ ability to respond
quickly enough to requests.

Heterogeneous clusters made of machines with differing hardware can have configu‐
ration files that differ in their memory settings, for example. However, properties
such as the instance secret and hostnames of ZooKeeper must be the same.

402 | Chapter 11: Administration: Setup

accumulo-env.sh
Set the following system variables in the accumulo-env.sh file to the appropriate values
for your system. If you are using Debian packages this file will be mostly configured
already. The only setting you may need to change is the HADOOP_CONF_DIR if you’re
using Hadoop 2.0 or later:

JAVA_HOME

Should be the directory that contains bin/java.

HADOOP_HOME

Should contain Hadoop JARs and a lib/ directory.

HADOOP_CONF_DIR

Should contain the files core-site.xml, hdfs-site.xml, etc.

For Hadoop 2.0, comment out the line:

 # test -z "$HADOOP_CONF_DIR" && export
 HADOOP_CONF_DIR="$HADOOP_PREFIX/conf"

and uncomment:

 test -z "$HADOOP_CONF_DIR" && export
 HADOOP_CONF_DIR="$HADOOP_PREFIX/etc/hadoop"

ZOOKEEPER_HOME

Should contain a zookeeper.jar file.

Memory settings
Settings for various hardware configs. Also see “Tablet Server Tuning” on page
488:

4 GB RAM

Tablet server
-Xmx1g -Xms1g

Master
-Xmx1g -Xms1g

Monitor
-Xmx1g -Xms256m

GC
-Xmx256m -Xms256m

Logger
-Xmx1g -Xms256m (1.4 and below only)

Configuration | 403

General options
-XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=75

Other processes
-Xmx1g -Xms256m

16 GB RAM

Tablet server
-Xmx4g -Xms4g

Master
-Xmx4g -Xms4g

Monitor
-Xmx1g -Xms256m

GC
-Xmx1g -Xms1g

Logger
-Xmx1g -Xms256m (1.4 and below only)

General options
-XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=75

Other processes
-Xmx1g -Xms256m

64 GB RAM

Tablet server
-Xmx16g -Xms16g

Master
-Xmx8g -Xms8g

Monitor
-Xmx1g -Xms256m

GC
-Xmx2g -Xms2g

Logger
-Xmx1g -Xms256m (1.4 and below only)

General options
-XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=75

404 | Chapter 11: Administration: Setup

Other processes
-Xmx1g -Xms256m

96 GB RAM

Tablet server
-Xmx32g -Xms32g

Master
-Xmx8g -Xms8g

Monitor
-Xmx1g -Xms256m

GC
-Xmx2g -Xms2g

Logger
-Xmx1g -Xms256m (1.4 and below only)

General options
-XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=75

Other processes
-Xmx1g -Xms256m

When you’re allocating memory to tablet servers, you should keep
in mind the memory allocated to other processes so as not to over‐
subscribe the available memory on a machine. Oversubscription
can lead to memory pages being swapped out, which can cause
servers to be so unresponsive as to be unfit to participate in an
Accumulo instance.
Also see “Kernel Tweaks” on page 384 for the swappiness setting.

accumulo-site.xml
This XML file contains properties, each with a name and a value. Hadoop uses simi‐
lar files for its configuration. This file tells Accumulo processes which ZooKeeper
instance to use for configuration information and the values of various settings to use
when starting up. The file should only be readable by the accumulo user when it con‐
tains the instance secret. A separate site file without sensitive information can be cre‐
ated for client use.

If you are using Debian packages or RPMs, this file should be mostly configured
already.

Configuration | 405

instance.zookeeper.host

Write the list of ZooKeeper servers, separated by commas, such as:

zk1.mycluster.com:2181,zk2.mycluster.com,zk3.mycluster.com

instance.secret

This is a shared secret among processes in a single Accumulo instance. It pre‐
vents processes that do not know the secret from joining the instance. It should
be changed to a unique value for each installation.

The instance secret is used to control the membership of the clus‐
ter, but it is not used to enforce confidentiality.

general.classpaths

If you are using Hadoop 2.0 or later, make sure all the HDFS and Hadoop com‐
mon JARs are added to the general.classpaths property. Some systems place
HDFS 2.0 JARs in /usr/lib/hadoop-hdfs/ and MapReduce JARs in /usr/lib/
hadoop-0.20-mapreduce or /usr/lib/hadoop-mapreduce.

tserver.port.client and tserver.port.search
Some installations will require changing the default port number on which some
processes listen, if the ports are already taken by other processes. In particular,
the default tablet server port, 9997, may be taken by a Java Management Exten‐
sions (JMX) listener or other process. If so, the tablet server can be configured to
listen on a different port by setting tserver.port.client to a specific port num‐
ber or by setting tserver.port.search to true, in which case the tablet server
will try the successively higher port numbers until finding an open port.

Be sure to reference “Tablet Server Tuning” on page 488 for other properties that
could be configured in accumulo-site.xml when you tune tablet servers.

Client Configuration
In addition to inheriting settings from accumulo-site.xml, Accumulo clients can be
configured via a Java properties file in the home directory of the user that Accumulo
client processes run as. Typically this will be accumulo. This properties file allows
each Accumulo client to be configured separately, rather than having them all inherit
the same settings from server configuration files or settings stored in ZooKeeper.

The properties file is located at $HOME/.accumulo/config. Each line of the properties
file can specify one property and one value, separated by a tab character. Lines begin‐
ning with an octothorp (#) are ignored.

406 | Chapter 11: Administration: Setup

For example:

turn on SSL
instance.rpc.ssl.enabled true

We’ll look at an example using this configuration file when we discuss SSL in “Con‐
figuring SSL” on page 418.

Deploying JARs
Accumulo processes are started from JAR files distributed as part of the installation.
These live in $ACCUMULO_HOME/lib.

In addition, any Java classes that customize Accumulo, such as iterators and con‐
straints must be distributed to servers across the cluster so that tablet servers and cli‐
ents can load them.

There are several ways to get the Accumulo JARs and custom JARs onto servers.

Using lib/ext/
In $ACCUMULO_HOME/lib/ there is a directory called ext/ that Accumulo processes
monitor for custom JARs. Accumulo has its own Java class loader that can reload
updated classes without restarting the JVM. Simply placing new JARs into this direc‐
tory will allow processes to load them, and to update them if they’ve been loaded
already.

This requires copying the custom JARs onto every server, using a command such as
scp. An alternative is to have Accumulo look in HDFS, which allows JARs to be
uploaded once into HDFS and then retrieved by all processes that need them.

Custom JAR loading example
The code examples that are described in this book can be built into a JAR file via the
following Maven commands:

[user@host accumulo-examples]$ mvn compile package
...
[INFO]
[INFO] --- maven-jar-plugin:2.3.2:jar (default-jar) @ accumulo-examples ---
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 2.954s
[INFO] Finished at: Mon Sep 01 13:49:33 EDT 2014
[INFO] Final Memory: 24M/310M
[INFO] --

Configuration | 407

Now there is a JAR file in the target/ directory that can be deployed to tablet servers
in order to load custom filters, combiners, etc. We’ll copy it into $ACCU‐
MULO_HOME/lib/ext/ next:

cp accumulo-examples-0.0.1-SNAPSHOT.jar lib/ext/

Now we can use any class in that JAR. For example, we can add the custom constraint
defined in our example code:

[centos@centos accumulo-1.6.0]$ bin/accumulo shell -u root
Password: ******

Shell - Apache Accumulo Interactive Shell
-
- version: 1.6.0
- instance name: test
-
- type 'help' for a list of available commands
-
root@test test> createtable test
root@test test> constraint -a -t test \
 com.accumulobook.advanced.ValidHeightWeightConstraint
Added constraint com.accumulobook.advanced.ValidHeightWeightConstraint
 to table test with number 2
root@test test>

Accumulo does not have to be stopped in order for processes to
begin using the classes in new JAR files in lib/ext/. Accumulo
deploys its own Java class loader to manage loading newer versions
of classes when they become available. This is not the case for JAR
files in lib.

Using HDFS
In addition to lib/ext/, Accumulo can load JARs from HDFS by using the Apache VFS
class loader. The advantage of using HDFS is that administrators can manage custom
JARs by uploading them once to HDFS from where all Accumulo processes can
access them, instead of copying JAR files to the local filesystem of each server.

The relevant configuration option is:

<property>
 <name>general.vfs.classpaths</name>
 <value></value>
</property>

Administrators can provide a comma-separated list of HDFS paths that contain JAR
files.

For example, to add classes from our example code to a path in HDFS, we would first
upload the JAR file to a directory in HDFS that Accumulo processes can read:

408 | Chapter 11: Administration: Setup

[centos@centos ~]$ hdfs dfs -mkdir /accumulo/ext
[centos@centos ~]$ hdfs dfs -put accumulo-examples-0.0.1-SNAPSHOT.jar \
 /accumulo/ext/

Next we would add the path to the accumulo-site.xml file:

<property>
 <name>general.vfs.classpaths</name>
 <value>hdfs://centos:8020/accumulo/ext/.*.jar</value>
</property>

The general.vfs.classpaths property cannot be modified by
updating the property in ZooKeeper. It must be set in accumulo-
site.xml.

After starting Accumulo, we should be able to use classes from our uploaded JAR:

root@test> constraint -a -t test \
 com.accumulobook.advanced.ValidHeightWeightConstraint
Added constraint com.accumulobook.advanced.ValidHeightWeightConstraint to table
 test with number 2
root@test>

Setting Up Automatic Failover
Essential to running a large cluster is Accumulo’s ability to tolerate certain types of
failure. When certain processes fail, their workload is automatically reassigned to
remaining worker nodes or backup processes on other machines. In general, setting
up automatic failover for Accumulo processes is simply a matter of running an
instance of a process on more than one server.

Tablet servers
The master process ensures that any tablets that were being served by a failed
machine are reassigned to remaining tablet servers, which perform any recovery
necessary by reading from write-ahead logs. For more on this process see
“Recovery” on page 367.

Masters
A master process must be running in order for tablet server failover to happen. If
no master is running, most client operations can proceed, but if any tablet server
fails while the master is down, some tablets will be unavailable until a master pro‐
cess is started.

To avoid a situation in which tablets can become unavailable, multiple masters
processes can be run to ensure that at least one master is running at all times. For
this purpose, the $ACCUMULO_HOME/conf/masters file should contain the
hostnames of the machines on which master processes are run.

Configuration | 409

The master processes use ZooKeeper to coordinate electing an active master and
to elect a new active master in the event that the active master fails.

Garbage collectors
The garbage collector process is not critical to client operations but must run to
ensure aged-off, deleted, and redundant data is removed from HDFS.

Initialization
Before Accumulo is started for the first time, an Accumulo instance must be initial‐
ized. This can be done on a machine that can connect to both ZooKeeper and HDFS,
via the command:

accumulo init

This command should be run under the user account under which later Accumulo
processes will be run, such as the accumulo user.

Be sure to verify that the init script is using the correct values for ZooKeeper servers
and the Hadoop filesystem:

INFO: Hadoop Filesystem is hdfs://[your-namenode]:8020
INFO: ZooKeeper server is [your-zookeeper]:2181

If an error occurs, such as “java.io.IOException: No FileSystem for scheme: hdfs,”
check that the path to the Hadoop HDFS JARs are included in the general.class
paths setting in the accumulo-site.xml file.

This script will create an entry in ZooKeeper that will be used to coordinate all con‐
figuration information for this Accumulo instance. In addition, the script will create a
directory called /accumulo in HDFS, in which all table data will be stored.

If the accumulo user cannot write to the root directory of HDFS, an error will be
thrown. Ensure that the accumulo user can create the /accumulo directory in HDFS,
or create it beforehand and grant ownership to accumulo. Alternatively, configure
Accumulo to use a different directory that the accumulo user has permission to write
to by changing the instance.dfs.dir property in accumulo-site.xml as described in
“File Permissions” on page 401.

After initialization, there will be three tables in Accumulo: accumulo.root, accu‐
mulo.metadata, and the trace table. See Chapter 10 for more information on how
Accumulo makes use of those tables.

To reinitialize
If for some reason you want to reinitalize an Accumulo cluster, the /accumulo direc‐
tory (or whichever directory is specified as instance.dfs.dir) in HDFS must be

410 | Chapter 11: Administration: Setup

moved or deleted first. Deleting /accumulo will erase all data in any existing Accu‐
mulo tables. This can be done via the command:

hadoop fs -rmr /accumulo

Or you can simply move the directory:

hadoop fs -mv /accumulo /new path

After this is done, the accumulo init script can be run again. Accumulo processes
should be stopped before you run the init script. The script will prompt for an
instance name. If the instance name has ever been used before, the script will prompt
to delete the existing entry from ZooKeeper. Answering Y will remove any informa‐
tion previously associated with that instance name, at which point initialization will
proceed normally.

Multiple instances
An Accumulo instance is a logical grouping of processes into one cooperative appli‐
cation. It is possible for multiple Accumulo instances to share a ZooKeeper cluster
and an HDFS cluster. The instances must have unique instance names and they must
be configured to use different directories in HDFS.

Additionally, if processes that belong to two different Accumulo instances are located
on the same server, they must be configured to use different TCP ports to communi‐
cate. The port properties to configure depend on the type of process, and include mas
ter.port.client, tserver.port.client, gc.port.client, monitor.port.client,
monitor.port.log4j, and trace.port.client.

Running Very Large-Scale Clusters
Accumulo is designed to run on clusters of up to thousands of machines. There are
some things to consider when running at very large scale that may not be an issue on
smaller clusters.

Networking
As a distributed application, Accumulo relies heavily on the network that connects
servers to one another. Like Apache Hadoop, Accumulo does not require exotic net‐
working hardware, and it is designed to operate well on commodity-class networking
components such as Gigabit Ethernet and 10 Gigabit Ethernet. Modern Hadoop con‐
figuration recommendations include considering 10 Gigabit Ethernet for reduced
latency.

Running Very Large-Scale Clusters | 411

Limits
The largest clusters begin to be bottlenecked not by any component of Accumulo but
by the underlying subsystems on which it runs. In particular, a single HDFS Name‐
Node becomes a bottleneck in terms of the number of update operations that the
entire cluster can perform over time. This limit can be observed by looking at the
time that the Accumulo garbage collector takes to complete one pass. If the garbage
collector is taking over five minutes to run, the NameNode is likely a bottleneck.

Accumulo 1.6 introduces the ability to run Accumulo over multiple NameNodes to
overcome this limitation. See “Using Multiple HDFS Volumes” on page 413.

Metadata Table
Accumulo’s metadata table (called accumulo.metadata in Accumulo 1.6) is a special
table designed to store the current location and other information about each tablet
of every other table. As such it plays an important role in the operation of every
Accumulo application.

By default, the metadata table is configured to be scalable and to provide good perfor‐
mance for even large clusters. Understanding how the configuration of the metadata
table affects performance and scalability can help you fine-tune your cluster. In large
Accumulo clusters the metadata table can be split and hosted by additional tablet
servers in order to scale with the number of clients performing metadata lookups.

The default configuration for the metadata table is different from that of other tables.
It is tuned for high performance and availability, and to take advantage of its rela‐
tively small size.

To improve query performance, the size of compressed file blocks is reduced from
100 K to 32 K, the data block cache is enabled so that the frequent reads by clients are
serviced very quickly from data cached in memory, and the major compaction ratio is
set to 1.

To increase availability and decrease the possibility of data loss, the file replication is
increased to 5 (or the maximum replication defined in HDFS if that is less than 5, or
the minimum replication defined in HDFS if that is greater than 5).

The split threshold is decreased from 1 GB to 64 MB because the metadata table is so
much smaller than data tables, and because we want the metadata tablets spread onto
multiple tablet servers for better read and write throughput.

Two locality groups are configured, so that columns that are accessed together fre‐
quently can be read more efficiently.

412 | Chapter 11: Administration: Setup

The metadata table configuration generally does not need to be
adjusted. If your metadata table is heavily taxed early on, before it
has gotten large enough for it to naturally split onto a desired num‐
ber of tablet servers, you could lower the split threshold temporar‐
ily to obtain more metadata tablets.

The metadata table’s design is not a limiting factor in the scalability of Accumulo.
Going by the following simple calculation in the Bigtable paper, the metadata table
can address more data than can be stored in HDFS:

Each METADATA row stores approximately 1KB of data in memory. With a modest
limit of 128 MB METADATA tablets, our three-level location scheme is sufficient to
address 234 tablets (or 261 bytes in 128 MB tablets).

Tablet Sizing
Having fewer, larger tablets can reduce the overhead of managing a large-scale clus‐
ter. This can be achieved by increasing the split threshold for splitting one tablet into
two. Tablets that are tens of gigabytes in size are not unreasonable.

To increase the tablet split threshold, change the table.split.threshold in the shell:

user@accumulo myTable> config -t myTable -s table.split.threshold=20GB

File Sizing
For the same reason that larger tablet sizes can reduce overhead, it can be useful to
increase the block size in HDFS to a value closer to the size of tablets. This reduces
the amount of information the NameNode has to manage for each file, allowing the
NameNode to manage more overall files.

To increase the block size for a table, set table.file.blocksize:

user@accumulo> config -t mytable -s table.file.blocksize=1GB

Be careful not to confuse table.file.blocksize, which controls
the size of HDFS blocks for a given table, with tser

ver.default.blocksize, which controls the size of blocks to cache
in tablet server memory.

Using Multiple HDFS Volumes
Accumulo version 1.6 and later can store files using multiple HDFS volumes, poten‐
tially on multiple NameNodes. There are several options for doing this. One is to
configure Accumulo to run over two or more separate HDFS instances, each with a
NameNode and a set of DataNodes, and DataNodes each store data for only one

Running Very Large-Scale Clusters | 413

http://bit.ly/bigtable_paper

NameNode (Figure 11-10). In this case, DataNodes are not shared between NameNo‐
des and they operate without any knowledge of one another. Accumulo simply keeps
track of which files live in which HDFS instance.

Support for using multiple HDFS volumes is new and tooling for
controlling distribution and customization is limited.

Accumulo does this by using full path names to all the files under management,
including the hostname of the NameNode of the HDFS cluster in which each file
lives. After Accumulo is informed of the list of NameNodes to use in the configura‐
tion file, no other configuration is necessary. Accumulo will automatically distribute
files across HDFS clusters evenly.

Figure 11-10. Accumulo on multiple HDFS clusters

Another option is to use NameNode federation, in which a set of DataNodes are
shared between two or more NameNodes (Figure 11-11). Federation can make it eas‐
ier to keep the data in HDFS balanced because each NameNode can see the informa‐
tion on every DataNode and place data based on the load of all the DataNodes.

414 | Chapter 11: Administration: Setup

Figure 11-11. Accumulo on an HDFS cluster using NameNode federation

In either of these cases, the configuration of Accumulo is the same. A list of NameNo‐
des to use is specified in the accumulo-site.xml file under the instance.volumes
property:

 <property>
 <name>instance.volumes</name>
 <value>hdfs://namenode1:9001/accumulo,hdfs://namenode2:9001/accumulo</value>
 </property>

Accumulo instances that utilize multiple NameNodes are capable of scaling to
extremely large sizes, beyond a few thousand nodes to ten thousand or more. With
modern hard drives each server could have up to 30 TB raw, 10 TB after replication,
and a cluster of 10,000 servers could store up to 100 PB. Accumulo provides a single
unified view of all of this data, and lookups remain fast because of the ordering of the
keys in each table.

Handling NameNode hostname changes
Because Accumulo keeps track of the hostname of the NameNode when using multi‐
ple NameNodes, special care must be taken when moving a NameNode to a new
hostname. If a NameNode is moved from namenodeA to namenode1, an additional

Running Very Large-Scale Clusters | 415

configuration property, instance.volumes.replacements, must be added and Accu‐
mulo must be restarted in order for Accumulo to be able to talk to the new
NameNode:

 <property>
 <name>instance.volumes.replacements</name>
 <value>hdfs://namenodeA:9001/accumulo hdfs://namenode1:9001/accumulo</value>
 </property>

If more than one NameNode changes hostnames this way, each pair of NameNode
hostnames should be listed, with commas separating pairs of hostnames and spaces
separating individual hostnames:

 <property>
 <name>instance.volumes.replacements</name>
 <value>hdfs://namenodeA:9001/accumulo hdfs://namenode1:9001/accumulo,
 hdfs://namenodeB:9001/accumulo hdfs://namenode2:9001/accumulo</value>
 </property>

Security
Accumulo works to protect data from unauthorized access. Like any security meas‐
ures, the features Accumulo provides must be coordinated with other system security
measures in order to achieve the intended protection.

There are three requirements for Accumulo to guarantee that no data is exposed in an
unauthorized manner:

• Data is properly labeled when inserted by Accumulo clients.
• Accumulo clients present the proper authorization tokens when reading data.
• Supporting systems listed in “System Services” on page 385 and supporting soft‐

ware are secured.

Column Visibilities and Accumulo Clients
Accumulo will authenticate a user according to the user’s credentials (such as a pass‐
word), and authorize that user to read data according to the column visibilities
present within that data and the authorizations granted to the user. All other means
of accessing Accumulo table data must be restricted.

Supporting Software Security
Because Accumulo stores data in HDFS, access to these files must be restricted. This
includes access to both the RFiles, which store long-term data, and Accumulo’s write-
ahead logs, which store recently written data. Accumulo should be the only applica‐
tion allowed to access these files in HDFS.

416 | Chapter 11: Administration: Setup

Similarly, HDFS stores blocks of files in an underlying Linux filesystem. Users who
have access to blocks of HDFS data stored in the Linux filesystem would also bypass
data-level protections. Access to the file directories on which HDFS data is stored
should be limited to the HDFS daemon user.

Unnecessary services should be turned off.

The accumulo-site.xml file should not be readable except by the accumulo user,
because it contains the instance secret and the trace user’s password. A separate conf/
directory with files readable by other users can be created for client use, with an
accumulo-site.xml file that does not contain those two properties.

Network Security
IPTables or other firewall implementations can be used to help restrict access to TCP
ports.

Accumulo uses the port numbers listed in Table 11-2 by default. These should be
reachable by Accumulo clients as well as by one another.

Table 11-2. Accumulo network ports

Setting name Port
number

Purpose

monitor.port.log4j 4560 The listening port for the monitor’s log4j logging collection

tserver.port.client 9997 The port used for handling client connections on the tablet
servers

master.port.client 9999 The port used for handling client connections on the master

trace.port.client 12234 The listening port for the trace server.

n/a 42424 Accumulo proxy server port

gc.port.client 50091 The listening port for the garbage collector’s monitor service

monitor.port.client 50095 The listening port for the monitor’s HTTP service

Accumulo tablet servers must be able to communicate with HDFS DataNodes and the
NameNode.

Only trusted client applications should be allowed to connect to ZooKeeper and
Accumulo tablet servers.

Security | 417

Configuring SSL
As of Accumulo 1.6.0, the Secure Sockets Layer (SSL) cryptographic protocol can be
configured to secure communications among Accumulo server processes and among
server and client processes. This prevents anyone with access to the network devices
from reading data as it is passed from servers to clients or servers to other servers.

To configure Accumulo to communicate over SSL, each client and server should have:

• Cryptographic x.509 certificates generated
• Certificates stored in Java KeyStore files
• SSL properties configured in accumulo-site.xml for servers and in the client config

file for clients

The SSL configuration properties are described in Table 11-3. The client config file is
described in “Client Configuration” on page 406.

The Java truststore should contain the public certificate of the authority that has
signed all of the server certificates.

Table 11-3. Accumulo SSL properties

Setting name Default Purpose

instance.rpc.ssl.enabled false Enable SSL

instance.rpc.ssl.clientAuth false Require clients to present SSL certs as well as servers

rpc.javax.net.ssl.keyStore $ACCUMULO_CONF_DIR/ssl/
keystore.jks

Path to keystore

rpc.javax.net.ssl.keyStorePassword [empty] Keystore password (if empty, uses Accumulo
instance.secret)

rpc.javax.net.ssl.keyStoreType jks Keystore type

rpc.javax.net.ssl.trustStore $ACCUMULO_CONF_DIR/ssl/
truststore.jks

Path to truststore

rpc.javax.net.ssl.trustStorePassword [empty] Truststore password (if empty, uses no password)

rpc.javax.net.ssl.trustStoreType jks Truststore type

If Accumulo is configured to require clients to present certificates, each client must
also have a keystore and truststore file. Configuring clients to use a keystore is not
done in the accumulo-site.xml file, because clients typically should not have access to
this file. Client configuration properties can be specified in a properties file (each line

418 | Chapter 11: Administration: Setup

containing a “name-value” pair) in the user’s home directory in a file named ~/.accu‐
mulo/config or in the file $ACCUMULO_CONF_DIR/client.conf.

An example client configuration is:

 instance.rpc.ssl.clientAuth true
 instance.rpc.ssl.enabled true
 rpc.javax.net.ssl.keyStore path_to_keystore
 rpc.javax.net.ssl.keyStorePassword keystore_password

If you are using your own Certificate Authority (CA), a separate truststore file con‐
taining the public key of the CA can be distributed to servers and clients as well,
specified by the following:

 rpc.javax.net.ssl.trustStore path_to_truststore
 rpc.javax.net.ssl.trustStorePassword truststore_password

Separately, Accumulo’s monitor web page can be configured to use HTTPS instead of
HTTP. This is independent of whether Accumulo is using SSL for RPC. This is done
by configuring the monitor to use a keystore and truststore with the following prop‐
erties, similar to setting the RPC properties:

monitor.ssl.keyStore
monitor.ssl.keyStorePassword
monitor.ssl.trustStore
monitor.ssl.trustStorePassword

An example of creating a set of certificates from our own CA is as follows. First we’ll
create a Certificate Authority and place its public key in a keystore file, which will call
the truststore:

[centos@centos ~]$ openssl genrsa -des3 -out root.key 4096
Generating RSA private key, 4096 bit long modulus
...............................++
..
 ++
e is 65537 (0x10001)
Enter pass phrase for root.key:
Verifying - Enter pass phrase for root.key:

[centos@centos ~]$ ls
root.key

Next we’ll create a certificate request:

[centos@centos ~]$ openssl req -x509 -new -key root.key -days 365 \
 -out root.pem
Enter pass phrase for root.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Security | 419

Country Name (2 letter code) [XX]:US
State or Province Name (full name) []:DC
Locality Name (eg, city) [Default City]:Washington
Organization Name (eg, company) [Default Company Ltd]:Accumulo Corp
Organizational Unit Name (eg, section) []:Developers
Common Name (eg, your name or your server's hostname) []:Cert Auth
Email Address []:certs@accumulocorp.com
[centos@centos ~]$ ls
root.key root.pem

Now we can generate a Base-64 encoded version of our PEM file:

[centos@centos ~]$ openssl x509 -outform der -in root.pem -out root.der

The Base-64 encoded certificate now can be imported into our Java keystore:

[centos@centos ~]$ keytool -import -alias root-key -keystore truststore.jks \
 -file root.der
Enter keystore password:
Re-enter new password:
Owner: EMAILADDRESS=certs@accumulocorp.com, CN=Cert Auth, OU=Developers,
 O=Accumulo Corp, L=Seattle, ST=Washington, C=US
Issuer: EMAILADDRESS=certs@accumulocorp.com, CN=Cert Auth, OU=Developers,
 O=Accumulo Corp, L=Seattle, ST=Washington, C=US
Serial number: abd68bf897fcf631
Valid from: Sun Sep 14 15:57:19 GMT-05:00 2014 until: Mon Sep 14 15:57:19
 GMT-05:00 2015
...
Trust this certificate? [no]: yes
Certificate was added to keystore
[centos@centos ~]$ ls
root.der root.key root.pem truststore.jks

The root.der file can be deleted. The root.key file should be protected because it is
used to authorize client and server certificates.

The truststore.jks file should be copied to servers and clients that will communicate
using certificates generated by this CA’s keys. This way, processes can verify that the
certificates presented are authentic.

With our new CA, we can generate certificates for all the machines that will partici‐
pate in our Accumulo cluster, including servers and clients.

First, we’ll generate a server key:

[centos@centos ssl]$ openssl genrsa -out server.key 4096
Generating RSA private key, 4096 bit long modulus
..
 ..
 ++
...++
e is 65537 (0x10001)

420 | Chapter 11: Administration: Setup

Next we’ll create a certificate request that we can use with our CA to create a server
certificate:

[centos@centos ssl]$ openssl req -new -key server.key -out server.csr
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:
State or Province Name (full name) []:
Locality Name (eg, city) [Default City]:
Organization Name (eg, company) [Default Company Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
[centos@centos ssl]$ ls
root.key root.pem server.csr server.key truststore.jks

Now we’ll use our CA keys to generate a server certificate from the certificate request:

[centos@centos ssl]$ openssl x509 -req -in server.csr -CA root.pem \
 -CAkey root.key -CAcreateserial -out server.pem -days 365
Signature ok
subject=/C=XX/L=Default City/O=Default Company Ltd
Getting CA Private Key
Enter pass phrase for root.key:
[centos@centos ssl]$
[centos@centos ssl]$ ls
root.key root.pem root.srl server.csr server.key server.pem truststore.jks

Next we’ll make a PKCS12 file from our server certificate that we can use to import
into our keystore:

[centos@centos ssl]$ openssl pkcs12 -export -in server.pem -inkey server.key \
 -certfile server.pem -name 'server-key' -out server.p12
Enter Export Password:
Verifying - Enter Export Password:
[centos@centos ssl]$ ls
root.key root.pem root.srl server.csr server.key server.p12 server.pem
 truststore.jks

Let’s import the PKCS12 file into our keystore:

[centos@centos ssl]$ keytool -importkeystore -srckeystore server.p12 \
 -srcstoretype pkcs12 -destkeystore server.jks \
 -deststoretype JKS

Security | 421

Enter destination keystore password:
Re-enter new password:
Enter source keystore password:
Entry for alias server-key successfully imported.
Import command completed: 1 entries successfully imported, 0 entries failed
 or cancelled

We can remove the .p12 file because it’s no longer needed:

[centos@centos ssl]$ rm server.p12

The server.jks, server.key, and truststore.jks files should be moved to the Accumulo
server and protected by changing ownership of the files to the user that Accumulo
processes run as, and restricting access to only that user. The absolute local filesystem
paths to and pass phrases for the truststore.jks and server.jks files should be put into
the accumulo-site.xml file, as described in Table 11-3.

After this configuration process, Accumulo will employ SSL in communications
between clients and servers, and between servers.

Encryption of Data at Rest
Accumulo controls access to data for client programs that are configured to pass user
authorizations as part of scan operations. Cryptography can be used to secure data
from those with physical access to storage components in which data is stored.

As of Accumulo version 1.6.0, data stored on disk can be encrypted via pluggable
modules, with the exception of data stored in HDFS as part of the tablet server recov‐
ery process. An example implementation ships with Accumulo, although it stores the
master key for all encryption keys in HDFS along with encrypted files.

To configure Accumulo to use encryption when storing files, add the following prop‐
erties to accumulo-site.xml:

<property>
 <name>crypto.module.class</name>
 <value>org.apache.accumulo.core.security.crypto.DefaultCryptoModule</value>
</property>

<property>
 <name>crypto.cipher.suite</name>
 <value>AES/CFB/NoPadding</value>
</property>

<property>
 <name>crypto.cipher.algorithm.name</name>
 <value>AES</value>
</property>

<property>
 <name>crypto.cipher.key.length</name>

422 | Chapter 11: Administration: Setup

 <value>128</value>
</property>

<property>
 <name>crypto.secure.rng</name>
 <value>SHA1PRNG</value>
</property>

<property>
 <name>crypto.secure.rng.provider</name>
 <value>SUN</value>
</property>

<property>
 <name>crypto.secret.key.encryption.strategy.class</name>
 <value>org.apache.accumulo.core.security.crypto.
 CachingHDFSSecretKeyEncryptionStrategy</value>
</property>

<property>
 <name>crypto.default.key.strategy.cipher.suite</name>
 <value>AES/ECB/NoPadding</value>
</property>

Kerberized Hadoop
Apache Hadoop can be deployed using Kerberos to control the processes that are
allowed to participate in the cluster. To use Accumulo with a kerberized HDFS
instance, you must create an Accumulo principal:

kadmin.local -q "addprinc -randkey accumulo/[hostname]"

Principals can then be exported to a keytab file. There can be a separate keytab file for
each server, or all principals can be globbed into a single keytab file as follows:

kadmin.local -q "xst -k accumulo.keytab -glob accumulo*"

The keytab file for a server must be stored locally on that server, owned by the accu‐
mulo user with file permissions 400. A suggested location for the keytab file is the
$ACCUMULO_HOME/conf directory. The absolute local path to the the keytab file
on each server must be specified in the accumulo-site.xml file, as well as the principal.
The placeholder _HOST can be used for the hostname, but the realm must be specified:

<property>
 <name>general.kerberos.keytab</name>
 <value>$ACCUMULO_CONF_DIR/accumulo.keytab</value>
</property>

<property>
 <name>general.kerberos.principal</name>
 <value>accumulo/_HOST@[realm]</value>
</property>

Security | 423

Application Permissions
Accumulo has the concept of a user permission, but more often these are associated
with a particular application that may provide access to multiple users. Accumulo cli‐
ents can do their own authentication of multiple users and also look up any associ‐
ated authorization tokens, which they then faithfully pass to Accumulo tablet servers
when doing scans.

Before any user can read any data, however, an account must be created, authoriza‐
tion tokens assigned, and access to tables granted. Administrators can work with
application developers to determine the right level of access for the account and how
to determine the set of authorization tokens to grant to the account.

To create an account in the shell, run the createuser command:

root@accumulo> createuser myapp
Enter new password for 'myapp': *****
Please confirm new password for 'myapp': *****

To allow this account to read a particular table, run:

root@accumulo> grant Table.READ -t mytable -u myapp
root@accumulo> System permissions:

Table permissions (!METADATA): Table.READ
Table permissions (mytable): Table.READ

To grant authorizations to an account, run:

root@accumulo> setauths -u myapp -s myauth
root@accumulo> getauths -u myapp
myauth

To see what permissions a user account has, run:

root@accumulo> userpermissions -u myapp

Once this has been done, an Accumulo client identified by the myapp account can
connect to Accumulo, passing in the password specified, and perform scans against
the mytable table and pass in the myauth authorization token . If a client tries to read
from another table, or tries to write to mytable, or tries to pass in a different authori‐
zation token, it will receive an Authorization exception.

A list of available permissions can be seen via the systempermissions and tableper
missions commands.

See “Permissions” on page 177 for more on permissions.

424 | Chapter 11: Administration: Setup

CHAPTER 12

Administration: Running

Before Accumulo is started, HDFS and ZooKeeper must be running.

Accumulo can either be managed from a single control node using scripts provided
in the bin/ directory, or using init.d scripts.

A running instance can be verified using the monitoring methods described in “Mon‐
itoring” on page 429.

Starting Accumulo
This section describes two types of scripts you can use to start Accumulo.

Via the start-all.sh Script
The start-all.sh script will SSH into all the machines listed in masters, slaves, gc, moni‐
tor, and tracers and start the associated processes. Password-less SSH is required to do
this without having to type passwords for each machine.

In each of these files, the hostname of machines should be listed,
rather than IP address. In addition, each hostname should resolve
to an IP address that can be resolved back to the same hostname.

Here is additional detail on each of the host files:

slaves
The conf/slaves file is used by the start-all.sh script to start Accumulo processes
on worker nodes, namely tablet server and, in the case of Accumulo 1.4 and

425

earlier, logger processes. The hostnames of all machines that should run tablet
server processes should be listed in this file.

In cases in which a tablet server will run on the same machines that will host
master processes, the hostname of those machines should be listed here too.

masters
The conf/masters file contains a list of the machines that will run a master pro‐
cess. There should be at least one machine, but more than two or three is gener‐
ally not necessary. If more than one machine is listed here, the master processes
will choose an active master, and the others will serve as failover masters in the
case that the active master fails. Unlike tablet servers, only a few machines need
to run master processes.

gc
This file contains a list of the machines that will run garbage collector processes.
Like the master, only one will be active at any given time and any machines
beyond the first will only take over should the active garbage collector fail.

monitor
This file contains a list of the machines that will run monitor processes. Like the
master, only one will be active at any given time and any machines beyond the
first will only take over should the active monitor fail.

tracers
This file contains a list of the machines that will run tracer processes. Like the
master, only one will be active at any given time and any machines beyond the
first will only take over should the active tracer fail.

Via init.d Scripts
Some distributions of Hadoop include init.d scripts for Accumulo.

The ACCUMULO_HOME environment variable may need to be set in the script.

Accumulo can then be started by running:

sudo service accumulo start

Depending on the masters, slaves, etc. files, processes will be started based on the files
in which a machine’s hostname appears.

Accumulo processes can be started at boot time and stopped at shutdown by adding
the accumulo script to one or more Linux runlevels.

426 | Chapter 12: Administration: Running

Stopping Accumulo
Accumulo clusters can be stopped gracefully, flushing all in-memory entries before
exiting so that the next startup can proceed without having to recover any data from
write-ahead logs. The Accumulo master orchestrates this shutdown.

Via the stop-all.sh Script
If using the start-all.sh and stop-all.sh scripts, Accumulo can be shut down via the
stop-all.sh script. This script will attempt to talk to the master to orchestrate the shut‐
down. If the master is not running, the stop-all.sh script will hang. Hitting Ctrl-C will
prompt the user to hit Ctrl-C again to cancel shutdown or else the script will force‐
fully kill all tablet servers and other Accumulo processes. If Accumulo is stopped this
way, the next time the system is started tablet servers must recover any writes that
were in memory at shutdown time from the write-ahead logs.

Usually this is not necessary. If the master is down, bringing up a new master process,
perhaps on another machine, before attempting to shut down will help reduce the
need for recovery on startup.

The accumulo admin command can also be used to stop the cluster:

accumulo admin stopAll

If a ClassNotFoundException occurs when using the stop-all.sh script, ensure that the
MapReduce and HDFS JARs are correctly specified in the general.classpaths prop‐
erty in the accumulo-site.xml file.

Via init.d scripts
To stop all Accumulo processes on a particular node, run:

sudo service accumulo stop

Stopping Individual Processes
Individual processes can also be stopped gracefully to avoid recovery from write-
ahead logs.

To stop an individual tablet server:

accumulo admin stop hostname

To stop the master:

accumulo admin stopMaster

Stopping Accumulo | 427

Starting After a Crash
If tablet server processes crash or exit due to a temporary network partition, they can
simply be restarted and the Accumulo master will start assigning tablets to them.

If a cluster was shut down without allowing tablet servers to flush, (e.g., if processes
were all killed with a kill -9 or if power was lost to the cluster), the cluster can be
restarted and the process of recovery will begin.

For each tablet on a tablet server that was killed before it could flush the entries in
memory to HDFS, the Accumulo master will coordinate a recovery process. See
“Recovery” on page 367 for details.

During the recovery process, tablet servers will be assigned a tablet and will attempt
to replay the mutations written to the write-ahead log to re-create the state that was in
the memory of the machines that were killed. This process can take from a few sec‐
onds to a few minutes depending on the size of the write-ahead logs. The master will
display the status of this process on the monitor page.

Clients can begin to read and write to tablets that aren’t involved in recoveries while
recoveries are taking place. As soon as a tablet’s recovery is complete, clients can
again read and write key-value pairs to it.

For additional information on steps to recover a cluster in cases when automatic
recovery is insufficient, see “Failure Recovery” on page 456.

Now that Accumulo is installed, configured, and running, clients can connect, create
tables, and read and write data.

The primary administrative concerns at this point are monitoring system usage and
health, and adding or removing machines from the cluster as a result of failure or
response to changes in usage. Accumulo is designed to operate on large clusters, and
most individual failures do not require immediate administrative attention. Other‐
wise, keeping up would quickly become infeasible. Accumulo automatically detects
certain types of machine failures and automatically recovers from them, reassigning
work to remaining healthy machines in some cases.

For many maintenance operations it is not necessary to stop an Accumulo instance.
This allows clients to continue to operate as machines fail, are added, or are removed.

One notable exception to this is in the case of upgrades. Accumulo does not yet sup‐
port rolling upgrades, a practice in which some machines are brought down, upgra‐
ded, and introduced to the cluster while machines that have not been upgraded are
still participating in the cluster.

428 | Chapter 12: Administration: Running

Monitoring
Accumulo provides several methods of monitoring system health and usage. These
include the monitor web service, logging, and JMX metrics.

Monitor Web Service
Accumulo provides a monitor process that gathers information from a running clus‐
ter and presents it in one place for convenience. The monitor makes it relatively sim‐
ple to determine system health and performance.

Overview
The default view in the monitor presents an overview of activity in the cluster
(Figure 12-1). Particularly useful are the various graphs on this page. Administrators
and developers can quickly gain an idea of how well the cluster is operating, spot
issues, and analyze application performance.

The main section of this page shows two tables, followed by 10 graphs, all in two col‐
umns. The two tables show information from the Accumulo master and about the
ZooKeeper cluster.

An attempt is made to draw attention to any known problems with the cluster in the
form of a red background that appears behind information that indicates a severe
problem. This includes things such as the master being down, unassigned tablets, and
log warnings and errors.

On the left are links to all the other views, described next.

Monitoring | 429

Figure 12-1. View of the monitor

Master Server View
The Master Server View provides information on the instance overall, as well as a list
of tables.

A legend is provided of the meaning of the columns in the first table:

430 | Chapter 12: Administration: Running

Online Tablet Servers
Number of tablet servers currently available.

Total Tablet Servers
The total number of tablet servers configured.

Last GC
The last time files were cleaned-up from HDFS.

Entries
The total number of key-value pairs in Accumulo.

Ingest
The number of key-value pairs inserted, per second. (Note that deleted records
are counted as “inserted” and will make the ingest rate increase in the near-term.)

Entries Read
The total number of key-value pairs read on the server side. (Not all may be
returned because of filtering.)

Entries Returned
The total number of key-value pairs returned as a result of scans.

Hold Time
The maximum amount of time that ingest has been held across all servers due to
a lack of memory to store the records.

Load
The one-minute load average on the computer that runs the monitor web server.

This view is where active recoveries from any tablet server failures are displayed.

Tablet Servers View
The Tablet Servers View shows a list of active tablet servers and activity per server.

Here, an administrator can quickly see if tablets are evenly distributed across servers,
how many key-value pairs (entries) per second are being ingested, and how many
entries are being read for each server. This view is particularly useful for determining
whether the entire cluster is being utilized evenly, or whether there are hotspots (i.e., a
few servers that are handling the majority of the load).

Note that this view does not show which tablets belong to which tables.

Clicking the hostname of a tablet server will show a list of tablets currently hosted by
that server. Statistics about server activities such as compactions and splits are also
shown.

Monitoring | 431

Server Activity View
This view is a graphical representation of various aspects of server activity across the
cluster.

Each circle or square in the grid represents a tablet server. Various dimensions of
each server can be displayed as color or motion, according to the selections from the
drop-down menus across the top of the view.

The intent of this view is to provide a high density of information at a quick glance.
For example, you can choose to monitor load to see which servers may be overloa‐
ded, including by work from other processes running alongside tablet servers. Or you
can choose to show queries to try to highlight any hotspots and reveal flaws in table
design.

You can show information for an individual server by hovering the mouse cursor
over a particular square or circle.

Garbage Collector View
The Garbage Collector View shows recent activity performed by the garbage collec‐
tor. Administrators will want to check this view to make sure the garbage collector is
running. Without it, the cluster could run out of disk space as files are combined in
compaction operations, creating new files and making old files obsolete.

Tables View
The Tables View shows activity on a per-table basis.

Of particular interest here is the number of tablets per table. The aggregate ingest rate
and number of concurrent queries will increase as the number of servers hosting a
table’s tablets increases, up until all servers have at least one of the table’s tablets.

To see which servers are hosting a table’s tablets, administrators can click the name of
the table. A list of servers and the number of tablets from this particular tablet is
shown.

Recent Traces View
This view shows information about recent traces, which are a sample of operations
that are timed to indicate performance.

For more on tracing, see “Tracing” on page 436.

Documentation View
This view shows links to various types of documentation, including:

432 | Chapter 12: Administration: Running

• User Manual
• Administration
• Combiners
• Constraints
• Bulk Ingest
• Configuration
• Isolation
• Java API
• Locality Groups
• Timestamps
• Metrics
• Distributed Tracing

Recent Logs View
This view collects log messages at the warn and error level from across the cluster.
This can be very useful as clusters get larger and going out to each individual server
becomes more cumbersome.

Logs are listed in ascending time order, so the latest messages appear at the bottom.
You can dismiss messages that have been read and acknowledged by clicking Clear
All Events.

JMX Metrics
Metrics can be enabled for measuring several operations throughout an Accumulo
cluster. These include metrics such as:

• Number of minor or major compactions currently running
• Number of entries in memory
• Minimum and maximum times for scan operations
• Average time for commit preparation

The collection of these is controlled via the $ACCUMULO_HOME/conf/accumulo-
metrics.xml file. This file allows metrics to be enabled and logged. When logging is
enabled, files will be created by default in $ACCUMULO_HOME/metrics.

To allow servers to accept JMX connections, we may have to first modify accumulo-
env.sh by adding the following lines:

Monitoring | 433

export ACCUMULO_TSERVER_OPTS="-Dcom.sun.management.jmxremote.port=9006 \
 -Dcom.sun.management.jmxremote.authenticate=false \
 -Dcom.sun.management.jmxremote.ssl=false $ACCUMULO_TSERVER_OPTS"
export ACCUMULO_MASTER_OPTS="-Dcom.sun.management.jmxremote.port=9002 \
 -Dcom.sun.management.jmxremote.authenticate=false \
 -Dcom.sun.management.jmxremote.ssl=false $ACCUMULO_MASTER_OPTS"
export ACCUMULO_MONITOR_OPTS="-Dcom.sun.management.jmxremote.port=9003 \
 -Dcom.sun.management.jmxremote.authenticate=false \
 -Dcom.sun.management.jmxremote.ssl=false $ACCUMULO_MONITOR_OPTS"
export ACCUMULO_GC_OPTS="-Dcom.sun.management.jmxremote.port=9004 \
 -Dcom.sun.management.jmxremote.authenticate=false \
 -Dcom.sun.management.jmxremote.ssl=false $ACCUMULO_GC_OPTS"
export ACCUMULO_LOGGER_OPTS="-Dcom.sun.management.jmxremote.port=9005 \
 -Dcom.sun.management.jmxremote.authenticate=false \
 -Dcom.sun.management.jmxremote.ssl=false $ACCUMULO_LOGGER_OPTS"

If we modify this file, Accumulo processes will need to be restarted before these set‐
tings will take effect.

Next we can enable the metrics we want. For example, to turn on metrics collection
for scans on tablet servers, we can simply change a boolean value in the metrics XML
file:

<tserver>
 <enabled type="boolean">true</enabled>
 <logging type="boolean">false</logging>
 <update>
 <enabled type="boolean">false</enabled>
 <logging type="boolean">false</logging>
 </update>
 <scan>
 <enabled type="boolean">true</enabled>
 <logging type="boolean">false</logging>
 </scan>

These configuration files must be distributed throughout the cluster. We can now
connect to the JMX port on processes to view the metrics. For example, we can use
the jconsole command to view metrics for a tablet server by specifying the hostname
and port:

jconsole

This opens the connection window in Figure 12-2.

434 | Chapter 12: Administration: Running

Figure 12-2. Connecting to a local tablet server JMX port

After connecting, we can navigate to the MBean tab and expand the tablet server–
related metrics from the options in the left-hand pane (Figure 12-3).

We can also see metrics as they are logged to files in the metrics/ directory:

accumulo@host metrics]$ ls
tserver.scan-20141025.log

Alex Moundalexis has written a helpful tutorial on enabling JMX for use with Gan‐
glia written.

Monitoring | 435

http://bit.ly/enabling_JMX

Figure 12-3. Viewing tablet server metrics via JMX

Logging
Accumulo processes log to several local logfiles. Logs are configured via Log4j config‐
uration XML and properties files.

By default, DEBUG-level events are written to a separate debug logfile, INFO and higher-
level events are written to the regular log, and WARN and higher-level events are for‐
warded to the monitor for consolidation. You can modify this behavior by editing the
$ACCUMULO_HOME/conf/generic_logger.xml file and the $ACCUMULO_HOME/
conf/monitor_logger.xml file.

You can suppress some types of messages and configure them separately by editing
the log4j.properties file.

Tracing
In a distributed system, diagnosing application performance and errors can be diffi‐
cult. This is because operations can span several machines as clients call remote pro‐
cedure calls on servers and servers call other servers.

In Accumulo, clients talk primarily to tablet servers, which in turn talk to HDFS
DataNode processes, all of which can be on different physical servers.

Tracing is a way of following an operation as it moves from server to server in order
to get a holistic view of the timing of each stage of the operation. Clients can enable
tracing explicitly, and Accumulo also traces some of its internal operations. If an
Accumulo tracer process is running, trace information is collected and stored in a

436 | Chapter 12: Administration: Running

trace table in Accumulo. The Accumulo shell has a special formatter configured to
display this information.

Tracing in the shell

To trace individual shell commands, you can enable tracing with the trace on com‐
mand. Subsequent operations are traced until the trace off command is used to dis‐
able tracing. After tracing is disabled, trace information will be gathered and printed
to the screen:

root@accumulo> table test
root@accumulo test> trace on
root@accumulo test> insert g g g g
root@accumulo test> scan
a b:c [] d
e f:g [] h
g g:g [] g
row f:q [] v
root@accumulo test> trace off
Waiting for trace information
Trace started at 2013/12/12 04:33:52.602
Time Start Service@Location Name
14108+0 shell@ubuntu shell:root
 28+10122 shell@ubuntu close
 2+10122 shell@ubuntu binMutations
 28+10127 shell@ubuntu org.apache.accumulo.core.client.impl.
 TabletServerBatchWriter$MutationWriter 1
 22+10127 shell@ubuntu org.apache.accumulo.core.client.impl.
 TabletServerBatchWriter$MutationWriter 1
 22+10127 shell@ubuntu sendMutations
 2+10135 shell@ubuntu client:update
 10+10138 tserver@localhost update
 9+10138 tserver@localhost wal
 6+10140 tserver@localhost update
 6+10140 tserver@localhost wal
 2+10142 tserver@localhost update
 2+10142 tserver@localhost wal
 1+10147 tserver@localhost commit
 1+11998 tserver@localhost getTableConfiguration
 1+12003 tserver@localhost getTableConfiguration
 6+12012 shell@ubuntu scan
 6+12012 shell@ubuntu scan:location
 4+12013 tserver@localhost startScan
 4+12013 tserver@localhost tablet read ahead 7
 1+12020 tserver@localhost listLocalUsers
root@accumulo test>

See “Using Tracing” on page 481 for more information on enabling tracing in appli‐
cations and interpreting the trace results.

Monitoring | 437

Cluster Changes
Accumulo is designed to withstand regular occurrences of machine failure, so adding
and removing machines from a cluster configuration can be done easily. Machines
can be added to or removed from a running Accumulo instance without causing
interruption to clients.

Adding New Worker Nodes
A major advantage of the shared-nothing, horizontal scale-out architecture of Accu‐
mulo and Hadoop is that adding more hardware resources can increase the aggregate
performance of a cluster in a near-linear fashion. Clusters can be increased in size
quite a few times and still realize a significant increase in performance rather than
sharply diminishing returns.

When additional storage, increased ingest rate, or increased concurrent query perfor‐
mance is required, worker nodes can be added. Empirically, some clusters have been
shown to yield an increase of roughly 85 percent in write and query capabilities when
a cluster is doubled in size.

To add a new worker machine to a cluster, simply install the Hadoop and Accumulo
software (most workers run Hadoop DataNode and tablet server processes), and copy
the Hadoop and Accumulo configuration files to the new machines. Upon starting,
the DataNode process will contact the HDFS NameNode and let it know that the new
machine is available for storing new HDFS data blocks. When the tablet server starts
it will register itself in ZooKeeper. The Accumulo master will notice that it is available
and has no tablets assigned, and will begin the process of migrating responsibility for
hosting several tablets to the new machine.

If the start-all.sh and stop-all.sh scripts are being used to start and stop the cluster, the
new machine should be added to the conf/slaves file on the machine from which the
start/stop scripts are run.

Removing Worker Nodes
Removing a live worker node from the cluster can be done as simply as turning off
the machine. However, this will cause the cluster to have to recover the entries that
were in the memory of the machine from write-ahead logs. It can take a while before
all the entries are again available for query. In addition, if the worker node is running
a DataNode process, the replicas on that node must be rereplicated.

To avoid the recovery process, tablet server processes can be shut down gracefully, in
which they flush in-memory entries before exiting. This allows the machines that
take over responsibility for its tablets to begin hosting them immediately.

The accumulo admin command can be used to shut down a specific tablet server:

438 | Chapter 12: Administration: Running

accumulo admin stop [hostname]

If you are using the start-all.sh and stop-all.sh scripts to control the cluster, the
machine’s hostname should be removed from the conf/slaves file.

If you are removing several machines at once, care must be taken to avoid taking all
of the replicas of any particular HDFS data block offline simultaneously. To avoid
this, HDFS provides the ability to decommission a DataNode, which will cause HDFS
to replicate all the blocks hosted by decommissioning nodes elsewhere. When this
process is complete, the nodes can be turned off.

Decommissioning HDFS DataNodes can be done by adding their hostnames to the
conf/excludes.xml file (or another file defined by the setting dfs.hosts.exclude from
$HADOOP_HOME/conf/hdfs-site.xml) and running the command:

hadoop dfsadmin -refreshNodes

This will start the decommissioning process. The HDFS monitor page at http://
<namenode>:50070 can be used to monitor the process for completion. When the
number of decommissioning nodes is 0 and the number of decommissioned nodes
reaches the correct number, the DataNode processes can be stopped.

Adding New Control Nodes
Normally control nodes do not need to be added to the cluster in order to improve
performance—they don’t participate in most client operations such as reading or
writing data. From time to time a control node may fail and may need to be restored
or replaced.

A new inactive master process can be started at any time provided it has the configu‐
ration files for a particular cluster. It will register itself in ZooKeeper and stand by
until the active master process fails.

A new garbage collector process can be added if the previous garbage collector has
failed. Because the garbage collector runs periodically in the background, it is not
configured to perform automatic failure the way the master process is.

Removing Control Nodes
Control node processes do not maintain any persistent state and can simply be killed
to remove them from the cluster. The hostnames should also be removed from the
masters, monitor, gc, and tracers files to avoid trying to start processes on removed
machines the next time start scripts are run.

Before stopping the active master process, an inactive master process should be
started in order to ensure a master process is always running in case a tablet server
fails. Once the inactive master process is started, the active master can be brought
down and the inactive master will automatically take over responsibility.

Cluster Changes | 439

Table Operations
Administrators can perform various operations on tables through the shell. These
functions are also available to applications via the Table API described in Chapter 4.

Changing Settings
Accumulo allows administrators to configure a large number of settings that govern
the behavior of Accumulo processes.

Besides the configuration controlled by the files in the Accumulo conf/ directory,
additional settings are stored in ZooKeeper. These settings allow changes to be made
that in some cases can be reflected immediately across the cluster without having to
restart processes.

The shell can be used to view current settings:

accumulo@hostname:~$ accumulo shell -u root
Password: ******

Shell - Apache Accumulo Interactive Shell
-
- version: 1.5.0
- instance name: accumulo
- instance id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
-
- type 'help' for a list of available commands
-
root@accumulo> config
---------+--+-------------------------
SCOPE | NAME | VALUE
---------+--+-------------------------
default | gc.cycle.delay | 5m
default | gc.cycle.start | 30s
...
default | instance.dfs.uri |
default | instance.security.authenticator | org.apache.accumulo.
 server.security.handler.ZKAuthenticator
default | instance.security.authorizor | org.apache.accumulo.
 server.security.handler.ZKAuthorizor
default | instance.security.permissionHandler | org.apache.accumulo.
 server.security.handler.ZKPermHandler
default | instance.zookeeper.host | localhost:2181
...
default | master.bulk.threadpool.size | 5
default | master.bulk.timeout | 5m
default | master.fate.threadpool.size | 4
default | master.lease.recovery.interval | 5s
default | master.port.client | 9999

To view a specific setting, use the -f flag:

440 | Chapter 12: Administration: Running

root@accumulo> config -f table.compaction.major.everything.idle
---------+--+-------------------------
SCOPE | NAME | VALUE
---------+--+-------------------------
default | table.compaction.major.everything.idle ... | 1h
system | @override | 2h
---------+--+-------------------------
root@accumulo>

You can also view settings that match a given prefix:

root@accumulo> config -f tserver.bulk
---------+--+-------------------------
SCOPE | NAME | VALUE
---------+--+-------------------------
default | tserver.bulk.assign.threads | 1
default | tserver.bulk.process.threads | 1
default | tserver.bulk.retry.max | 5
default | tserver.bulk.timeout | 5m
---------+--+-------------------------
root@accumulo>

The config shell command can also be used to change configuration settings.

In some cases this change will be reflected across the cluster immediately:

root@accumulo> config -s table.compaction.major.everything.idle=2h

Altering load balancing
Tablets should always be balanced evenly across tablet servers, using the default load
balancer. The particular load balancer in use can be controlled on a per-table basis via
the table.balancer property.

Information about configuring load balancers and how the load balancers work can
be found in “Additional Properties” on page 151.

Configuring iterators
At times administrators will find it useful to enable, configure, or disable iterators for
a particular table. We talk about a specific example in “Data Lifecycle” on page 449.
Here we describe how to configure iterators.

Iterators that implement the OptionDescriber interface can be configured through
the shell via the setiter or setscaniter commands. Iterators can also be configured
through the Java API via the IteratorSetting object. Configuring iterators amounts
to setting a number of string properties on a table, which are stored in ZooKeeper.

Iterators can also be configured manually by setting the appropriate properties, but
this is not recommended because it can be more error-prone. To change the

Table Operations | 441

parameters of an existing iterator, the easiest method is to change the string property
through Accumulo’s API or the shell.

To configure an iterator on a given table, use the setiter command. The command
requires a number of parameters. The iterator class can be specified with -class
where the class name is fully qualified. Some iterators have built-in flags, so you can
use those as shortcuts instead of specifying -class with the entire class name. These
are:

• The AgeOffFilter (-ageoff)
• The RegExFilter (-regex)
• The ReqVisFilter (-reqvis)
• The VersioningIterator (-vers)

In addition to the class name, specify between one and three scopes—the -minc,
-majc, and/or -scan scope—signifying that the iterator should be applied at minor
compaction time, major compaction time, and scan time, respectively.

Configuring an iterator for the scan scope applies the iterator to all
scans of the table by all users. To configure an iterator through the
shell for the current scan session only (i.e., all scans issued in the
shell by the current user on a given table), use the setscaniter
command instead.
The syntax is the same as for the setiter command, except that
the iterator scope does not need to be specified.

You must also specify the iterator’s priority, which controls the order in which the
iterators are applied. Specifying a shorthand name for the iterator is optional with the
-n parameter. Iterator configuration is stored in ZooKeeper under parameter names
of the form table.iterator.scope.name.*.

If the shell is in a table context (which can be obtained with the table command), the
iterator will be applied to the current table. A different table can be specified with the
-t option.

For example, to configure an AgeOffFilter that ages off data older than one hour, do
the following:

user@accumulo tablename> setiter -ageoff -scan -p 10
AgeOffFilter removes entries with timestamps more than <ttl> milliseconds old
----------> set AgeOffFilter parameter negate, default false keeps k/v that pass
 accept method, true rejects k/v that pass accept method:
----------> set AgeOffFilter parameter ttl, time to live (milliseconds): 3600000
----------> set AgeOffFilter parameter currentTime, if set, use the given value

442 | Chapter 12: Administration: Running

 as the absolute time in milliseconds as the current time of day:
user@accumulo tablename>

After you have configured an iterator on a table, type config -t table name in the
shell to see the actual properties. config -t table name -f iterator reduces the list
to the iterator-related properties. You could set these properties manually on the table
using the shell or the Java API. To add the AgeOffFilter to the majc scope in addi‐
tion to the scan scope, run the following commands:

config -t tableName -s table.iterator.majc.ageoff.opt.ttl=3600000
config -t tableName -s table.iterator.scan.ageoff=\
 10,org.apache.accumulo.core.iterators.user.AgeOffFilter

Safely deploying custom iterators
Newly developed iterators can be challenging to deploy. This is because you are effec‐
tively allowing some application logic to be hosted inside tablet servers, where bugs
can cause problems that affect data. One especially bad scenario is one in which a bug
in an iterator causes data to be lost as it is compacted to disk.

To help avoid losing data, or experiencing other issues when deploying new custom
iterators, it can be helpful to enable an iterator to be applied at scan time only, at least
at first.

This can be done via the shell as follows:

user@accumulo> setiter -class com.company.MyIterator -n myiterator -scan \
 -t myTable -p 40

This allows administrators to view the effects of an iterator in a way that isn’t perma‐
nent. Scanning an entire table with an iterator applied can help expose any bugs that
can arise from running real data through the iterator.

If no issues are observed, an iterator can also be applied at minor and major compac‐
tion times, making the changes permanent on disk. In the shell this would be done
like this:

user@accumulo> setiter -class com.company.MyIterator -n myiterator -minc -majc \
 -t myTable -p 40

If issues are observed, an iterator can be disabled in the shell via the deleteiter
command:

user@accumulo> deleteiter -n myiterator -minc -majc -scan -t myTable

In particular, shutting down a system with a faulty iterator configured to be applied at
minor compaction time can cause special havoc because tablet servers will perform
minor compactions at shutdown and may prevent safe shutdown. It is preferable to
disable any such iterators and attempt to correct the situation while the system is
running.

Table Operations | 443

Another strategy for testing out new iterators is to configure them on a clone of a
table. This has the advantage of allowing the logic to be tested through scan, minor
compaction, and major compaction without affecting the original table. See “Clon‐
ing” on page 444 for details on cloning tables.

Custom constraints can cause similar issues and can be similarly disabled if issues
arise, but these are usually not as egregious as those with iterators.

Changing Online Status
A table can be brought offline, a state in which the table is no longer available for
queries or writes and also no longer uses system resources.

All tables are online upon creation. The offline shell command can be used to take a
table offline:

root@accumulo> offline mytable

The monitor’s tables view will show the online/offline status of each table.

Taking tables offline can allow a cluster that is heavy on storage to store more tables
than administrators would want to be available at any given time. This could be use‐
ful if tables need to be kept around for archival purposes, and can be brought online
in the event that they need to be queried. Offline tables will not be affected by
compactions.

To bring a table back online for queries and writes, use the online command:

root@accumulo> online mytable

Cloning
Accumulo tables can be cloned at very low cost in terms of system resources. This
allows applications to operate on a version of a table without making permanent
changes. As soon as a table is cloned, its clone can be written to and read from
without affecting the original table.

Cloning works by copying just the configuration information for an original table to
a new table. This configuration information is stored in Accumulo’s metadata table.
Cloning tables is fast because Accumulo’s files are all immutable, meaning they can be
shared between several logical tables for reads. If new entries are written to a cloned
table, they will be written to a separate set of files in HDFS.

Cloned and offline tables can be considered a consistent snapshot of a table as it exis‐
ted at the time it was cloned. Tables that are offline can be exported for the purpose of
backing up data or moving a table to another cluster.

444 | Chapter 12: Administration: Running

To clone a table, use the clonetable command in the shell, specifying the name of
the original table followed by the name of the table to create as a clone of the first. In
this example we create a test table and clone it:

root@accumulo> createtable testtable
root@accumulo testtable> insert a b c d
root@accumulo testtable> scan
a b:c [] d
root@accumulo testtable> clonetable testtable testtableclone
root@accumulo testtable> table testtableclone
root@accumulo testtableclone> scan
a b:c [] d

In order to get a consistent view of a table before cloning, the clonetable command
will first flush the original table. Flushing a table will ensure that all key-value pairs
that currently only live in the memory of tablet servers (and write-ahead logs) are
written to HDFS. Otherwise, these key-value pairs will not show up in the newly
cloned table.

It is possible to clone a table without flushing first by using the -nf option when cre‐
ating a clone. In this case, any entries that are still in the memory of tablet servers
when the clonetable command is run will be excluded from the newly cloned table:

root@accumulo testtable> insert e f g h
root@accumulo testtable> scan
a b:c [] d
e f:g [] h
root@accumulo testtable> clonetable -nf testtable testtablenoflush
root@accumulo testtable> table testtablenoflush
root@accumulo testtablenoflush> scan
a b:c [] d
root@accumulo testtablenoflush>

To export a snapshot of a table elsewhere, for backup or other purposes, see “Import,
Export, and Backups” on page 446.

Altering cloned table properties
Table properties can be excluded from or added to the cloned table before it is
brought online. For example, if the original table has an age-off iterator configured
that is designed to remove data older than a given date, we may want to exclude that
iterator from our cloned table, if the intent of the cloned table is to serve as an archive
of the original for some time beyond the age-off date.

Possible reasons to add a property to the cloned table before it is brought online
include testing out an experimental iterator or modifying the behavior of the cloned
table.

For example, to modify the cloned table to keep the latest three versions of each key-
value pair:

Table Operations | 445

root@accumulo testtable> clonetable testtable testtableclone \
 -s table.iterator.majc.vers.opt.maxVersions=3,\
 table.iterator.minc.vers.opt.maxVersions=3,
 table.iterator.scan.vers.opt.maxVersions=3
root@accumulo testtable> config -t testtableclone -f table.iterator
---------+---+------------------------
SCOPE | NAME | VALUE
---------+---+------------------------
table | table.iterator.majc.vers | 20,org.apache.accumulo.
 core.iterators.user.VersioningIterator
table | table.iterator.majc.vers.opt.maxVersions .. | 3
table | table.iterator.minc.vers | 20,org.apache.accumulo.
 core.iterators.user.VersioningIterator
table | table.iterator.minc.vers.opt.maxVersions .. | 3
table | table.iterator.scan.vers | 20,org.apache.accumulo.
 core.iterators.user.VersioningIterator
table | table.iterator.scan.vers.opt.maxVersions .. | 3
---------+---+------------------------

Cloning for MapReduce
One use case for cloning is to create a copy of a table whose files can be used as the
input to a MapReduce job. Tables that are online can receive new inserts of data, and
Accumulo can perform a compaction in which the set of files that comprises a table
changes. Each file Accumulo stores in HDFS is immutable once closed, but the set of
files associated with a table at any given time can change. To avoid a situation in
which a table’s set of files changes, a table can be cloned and then taken offline:

root@accumulo> clonetable mytable mytablecopy
root@accumulo> tables
!METADATA
mytable
mytablecopy
trace
root@accumulo> offline mytablecopy

Once the table is offline, its set of files will not change and a MapReduce job can be
run over them. The MapReduce job must be configured to read over a table’s files
instead of reading data through tablet servers. See “MapReduce over Underlying
RFiles” on page 262 for details on how to configure a MapReduce job to run over files
of an offline table.

Import, Export, and Backups
Accumulo stores all its data in HDFS, which features full-data replication to prevent
data loss in the event that one or more machines fail. Although HDFS replication is
often sufficient for maintaining data availability for applications, there are a few
remaining reasons to back up data to places other than the HDFS.

446 | Chapter 12: Administration: Running

The most obvious is that an Accumulo instance is designed to run within a single
data center. Data centers can suffer catastrophic failure, such as in the event of a wide‐
spread power failure or natural disaster. The ability to back up data to data centers in
other geographic locations is important if data is to survive one of these catastrophic
failures.

Another reason to create a backup is to create a copy of the data to be used for pur‐
poses other than those of the original cluster. Servers are often powerful enough to
support mixed workloads on a single cluster, and many Accumulo clusters do double
duty, managing data for low-latency requests for applications and performing in-
depth or historical bulk analysis via MapReduce. Nevertheless, the ability to copy data
to another cluster can be useful for supporting a wider variety of workloads on the
same data set.

Exporting a table
Creating a backup of Accumulo data, as in other systems, involves copying the data to
be backed up to another storage medium and restoring that data at some future point
to recover from a disaster, or simply loading it into another Accumulo instance. To
back up a table, administrators should first flush, clone, then offline the newly cloned
table and leave it offline while the export is taking place. The export command will
write information about a table’s files to a directory in HDFS. This information can be
used to copy table files to another cluster or other storage medium:

root@accumulo> clonetable mytable mytable_backup1
root@accumulo> offline mytable_backup1
root@accumulo> exporttable -t mytable_backup1 /table_backups/mytable

To use Hadoop’s distcp (distributed copy) utility to move the files, reference the
distcp.txt file like this:

hadoop distcp -f hdfs://namenode/backups/mytable/distcp.txt \
 hdfs://othernamenode/tmp/mytable_backup1

Hadoop Distributed Copy
Hadoop provides a mechanism for moving large amounts of data between HDFS
instances, or other distributed filesystems, called Distributed Copy or distcp after the
command name for short. Rather than pulling data out of HDFS to a single machine
and then uploading it to another HDFS cluster, Distributed Copy sets up a MapRe‐
duce job that will stream files from where they are stored in HDFS DataNodes to
DataNodes in another HDFS instance. This operation will attempt to use as much
network bandwidth as is available and minimizes the chance for bottlenecks to occur
while the data is copied.

Table Operations | 447

Of course HDFS can also be used to copy data within the same HDFS instance if that
is required.

Importing an exported table

To import a table that has been exported via the exporttable command, Accumulo
provides an importtable command. The importtable command tables two parame‐
ters: the name of the table to create into which the files will be imported, and the
directory in HDFS where exported information is stored:

root@accumulo> importtable importedtable /tmp/mytable_backup1

If the Linux accumulo user doesn’t have permission to read the files in the import
directory, this command will fail as it moves files from the import directory.

The imported table will have the same split points and configuration information as
the table that was exported.

Bulk-loading files from a MapReduce job
MapReduce jobs can be used to write data into files that Accumulo understands. (See
Chapter 7 for details on how this is done.) These files can then be bulk-loaded into
Accumulo without the need to write each key-value pair to tablet servers. The advan‐
tage of bulk loading is that users can take advantage of the efficiency of MapReduce
to sort data the way Accumulo would if key-value pairs were written to its tablet
servers one at a time, or one batch at a time as via the BatchWriter. Another advan‐
tage of using MapReduce to create files for bulk import is that a consistent set of files
can be created without the chance of creating duplicates in the event that one or more
machines fail during the MapReduce job. See “Bulk Ingest to Avoid Duplicates” on
page 269 for scenarios in which bulk-importing files can help avoid creating duplicate
rows in Accumulo tables.

To import files created from a MapReduce job, use the importdirectory command.
This command will import files into the current table set in the shell, so administra‐
tors should first set the current table via the table command before running the
importdirectory command.

importdirectory expects three parameters—the name of the HDFS directory that
contains files to be imported, the name of a directory to which to store any files that
fail to import cleanly, and whether to set the timestamp of imported key-value pairs:

448 | Chapter 12: Administration: Running

user@accumulo> table myTable
user@accumulo mytable> importdirectory /newFiles /importFailures true

Bulk Loading and Timestamps
An important consideration for bulk-loading files created via MapReduce is whether
to accept the timestamps of key-value pairs in the files as valid, or to set new time‐
stamps for all imported key-value pairs based on the time the files are imported.

If the clock in any machine participating in the MapReduce job used to create these
RFiles is set to a future time—and if the MapReduce job simply used system time to
timestamp key-value pairs—then those key-value pairs—then those key-value pairs
will create problems when they are bulk-imported. Specifically, if a key-value pair has
a timestamp that is set to a future time, inserts and deletes that use the current time as
the timestamp will appear to not have any effect, because the VersioningIterator
uses timestamps to determine the order of operations. A key-value pair with a future
timestamp will appear to be the latest mutation to a row, until time catches up with
whatever future timestamp the key-value pair has.

If it is not reasonable to assume that the timestamps of key-value pairs created via
MapReduce are valid (i.e., that there is a chance that some timestamps are set in the
future), administrators should specify the last parameter of the importdirectory
command as true.

Data Lifecycle
Managing large amounts of data creates new challenges for long-running systems.
Not only can data be large to begin with, but also—as data is continually ingested
over time—the amount of data under management can get to be extremely large.
Applications can be designed to look after the data under their management. Accu‐
mulo can automatically apply policies set by applications and applies background
compaction processes and garbage collection to maintain the data lifecycle.

System designers can elect to allow administrators to address data lifecycle issues
without making changes to an application’s logic. Accumulo provides some features
to help address data lifecycle management even when dealing with very large-scale
data, by leveraging and coordinating resources across the cluster.

Versioning
It may be the case that the data stored in Accumulo is written once and never upda‐
ted. If not, the first consideration in data lifecycle management is how to deal with
multiple versions of data. Applications can choose to store one, some, or all versions
of data. It can be useful to be able to view previous versions of data to see how data

Data Lifecycle | 449

changes over time, for debugging, or simply to make reverting an application to a
previous state easier.

Accumulo handles versions by examining the timestamp element of keys that are
otherwise identical. That is to say, when two or more keys have the same row ID, col‐
umn family, column qualifier, and column visibility, the timestamp is the only thing
left that can vary between keys. Keys that only vary in timestamp are considered to be
different versions. Each version has a unique timestamp and potentially different val‐
ues. The built-in but optional VersioningIterator can be configured to keep one,
some, or all versions.

The VersioningIterator is configured by default on new tables to key at most one
version of a key-value pair. This policy can be changed via the following options:

table.iterator.majc.vers.opt.maxVersions
table.iterator.minc.vers.opt.maxVersions
table.iterator.scan.vers.opt.maxVersions

These options’ settings apply at major compaction, minor compaction, and scan time,
respectively.

Whatever the setting, the VersioningIterator will prefer more recent versions—the
versions with the highest-numbered timestamps—over older versions.

Data Age-off
Many times data needs to be kept for a certain period of time, after which it should be
deleted or archived. Accumulo’s timestamps and AgeOffFilter support automatically
removing data with timestamps that are beyond a certain date.

When the ttl parameter is set, the AgeOffFilter is set to remove key-value pairs
that are older than the specified number of milliseconds:

setiter -ageoff -majc -minc -scan -n ageoff -p 30
-> set AgeOffFilter parameter negate, default false keeps k/v that pass accept
 method, true rejects k/v that pass accept method: false
-> set AgeOffFilter parameter ttl, time to live (milliseconds): 10000
-> set AgeOffFilter parameter currentTime, if set, use the given value as the
 absolute time in milliseconds as the current time of day:

Ensuring that deletes are removed from tables
The delete operation is implemented through the insertion of special delete markers
that suppress earlier versions. As a result, deleted data—meaning key-value pairs sup‐
pressed by a delete marker—are not immediately removed from files belonging to a
table. Key-value pairs are only really removed during the compaction processes,
when data is transferred from memory to a file on disk or when two or more files are
combined into a merged file.

450 | Chapter 12: Administration: Running

During the minor compaction process, when data in memory is flushed to a file on
disk, any key-value pairs in memory that are suppressed by a delete marker are not
written to disk, but the delete marker is. This eliminates some of the deleted data that
was in memory. Delete markers are kept around in order to suppress any older ver‐
sions of key-value pairs that may exist in other files.

During a major compaction when multiple files are combined, any existing versions
of key-value pairs that are suppressed by a delete marker found in any of the files as
part of the compaction are not written to the newly merged file. This eliminates more
of the deleted data, but the delete marker is still written to the newly merged file.

Only when a tablet server performs a full major compaction, merging all files for a
particular tablet into one new file, is it guaranteed that all deleted data is removed and
the delete marker can also be omitted from the newly merged file.

Tablet servers do not typically merge all files for a tablet into one unless there is an
idle period. The table.compaction.major.everything.idle setting controls how
long a tablet server will wait after a table receives a mutation before compacting all of
its files into one. But this is not guaranteed to happen. The tablet server can be busy
with other tables.

To guarantee that all deleted data has been removed from a table at a particular time,
schedule a full major compaction via the shell:

 user@accumulo table> compact

If the intent is not simply to remove deleted entries from a table but also to remove
them from disk and reclaim space, the Accumulo garbage collector process and
HDFS trash must be involved. The Accumulo garbage collector will ensure that files
no longer used by Accumulo are deleted in HDFS, which can simply move them to
the HDFS trash, depending on the version of HDFS.

The hdfs dfs -expunge command can be used to empty the HDFS trash. HDFS
DataNodes must then ultimately delete blocks for those files from the Linux
filesystem.

Compactions
All of Accumulo’s files are immutable. Data is only removed during the compaction
process, when one or more files are combined—omitting any key-value pairs that fail
to pass the VersioningIterator and AgeOffFilter tests—and new files are written
out. After compaction, the old files containing old key-value pairs that should be
removed sit around in HDFS until the garbage collector removes them.

One thing to keep in mind is that some files may never be automatically compacted if
there is no need to cut down on the number of files per tablet. To ensure that all
extraneous versions and all aged-off data is removed, administrators can periodically

Data Lifecycle | 451

schedule compactions of all files in a table, ensuring that all files are compacted at
least once. The compact shell command will do this:

user@accumulo> compact

After a compaction in which key-value pairs are removed, the existing split points
may no longer be appropriate. For example, the distribution of the data may have
shifted, and the table can have some tablets that are empty. The merge shell command
can be used to eliminate empty tablets, as described in “Merging Tablets” on page 453.

Using major compaction to apply changes
Because a major compaction scheduled from an application will effectively cause all
the data in a table to be reprocessed, compactions are a convenient way of affecting a
change in configuration for a range within a table or over the entire table. In particu‐
lar, occasionally it can be useful to apply an iterator to a table just for the duration of
the compaction.

For example, we can choose not to have an age-off filter configured on a table all the
time, but from time to time we might choose to aggressively prune old data, perhaps
within areas of a table that are known to contain data that is not considered as impor‐
tant anymore.

We can choose to change a configuration option on a table, such as the compression
algorithm used or the replication factor for files in HDFS, and compact the entire
table to ensure that the effects of those changes are realized.

Or we can choose to simply compact to ensure that all data marked for deletion is
actually removed from disk.

In this example we’ll demonstrate how to turn off compression for a test table. The du
command shows how many bytes the table is using:

root@accumulo testtable> du
 239 [testtable]
root@accumulo testtable> config -t testtable -s table.file.compress.type=none
root@accumulo testtable> config -t test -f table.file.compress.type
---------+---+----------
SCOPE | NAME | VALUE
---------+---+----------
default | table.file.compress.type | gz
table | @override | none
---------+---+----------

root@accumulo testtable> du
 239 [testtable]

Note that our table has not yet changed in size. Any new files created or merged in a
merging compaction will not be compressed. To change the files already on disk, we
can schedule a compaction manually:

452 | Chapter 12: Administration: Running

root@accumulo testtable> compact -t testtable
root@accumulo testtable> du
 270 [testtable]

The -w option can be used to cause the shell wait for the compaction to complete
before returning.

If the -t option is not specified, Accumulo will compact the current table in the shell.

If a compaction has been scheduled but has not yet begun and you want to cancel it,
the --cancel option can be specified to cancel the compaction.

The --noflush option can be used to avoid flushing entries still in memory on tablet
servers to disk before compacting.

Tables that are offline will not be affected by compactions.

Compacting specific ranges
It is possible to compact only a portion of a table by specifying a range of rows to the
compact command.

The -b or --begin-row option and -e or --end-row options will cause the compac‐
tion to affect only the key-value pairs between the begin and end rows, inclusively.

This can be used to alter sections of a table. For example, if a table’s rows are based on
time, we might want to allow for more versions of each key-value pair for more
recent data, and only keep one version of each key-value pair around for the oldest
data.

To affect this change, we can temporarily change the VersioningIterator options
for our table, and schedule a compaction for a range comprising our oldest data. We
can then restore the original configuration.

Accumulo 1.6 allows administrators to specify specific iterators and options to use for
a particular compaction.

See “Compacting” on page 149 for details on the compaction API.

Merging Tablets
A table’s key distribution could change over time, which could even result in empty
tablets due to data age-off. Even the AgeOffFilter isn’t used, over time data may be
deleted from tables during the normal course of an application. In this case a table
can have empty tablets (Figure 12-4).

Data Lifecycle | 453

Figure 12-4. Empty tablets listed in the tablet server view of the monitor

Empty tablets are not a big problem per se, but they are basically wasted overhead in
the metadata table. They can also cause balancing to be a bit off, because the default
load balancer only looks at tablets per server and not necessarily key-value pairs per
server.

454 | Chapter 12: Administration: Running

Tablet merging can be used to reduce the number of tablets in the table. In a tablet
merge, two or more tablets are combined to form one tablet.

Unlike tablet splitting and compaction, tablet merging is not an
automatic operation performed by tablet servers, as of version 1.6.
As such, tablets will not be merged unless these commands are
applied.

The merge command in the Accumulo shell has two modes: merging a range of tab‐
lets into a single tablet, or merging consecutive tablets until a given minimum size is
reached. To merge tablets to a given size in bytes:

user@accumulo> merge -s 100M -t mytable

If the minimum size is chosen appropriately, this will result in fewer, larger tablets
(Figure 12-5).

Figure 12-5. Empty tablets are eliminated after merging

To merge tables beginning at a given row and ending at a given row:

user@accumulo> merge -b j -e o -t mytable

This can also be done via the Java API:

 Instance inst = new ZooKeeperInstance(myInstance, zkServers);
 Connector conn = inst.getConnector(principal, passwordToken);
 conn.tableOperations().merge("mytable", new Text("e"), new Text("o"));

See “Merging tablets” on page 148 for details on the merging tablets via the Adminis‐
trative API.

Data Lifecycle | 455

Garbage Collection
With both VersioningIterator and AgeOffFilter, as well as individual deletes, the
garbage-collection process is ultimately responsible for getting rid of data
permanently.

The garbage collector works by scanning the metadata table to determine which files
can be removed and issuing delete commands to the HDFS NameNode. The garbage
collector competes with the other processes in the cluster for HDFS NameNode
resources, and so long-running garbage-collection times can be an indicator of a
NameNode under stress.

Failure Recovery
With clusters of up to thousands of relatively unreliable commodity-class machines,
hardware failures are commonplace. Many types of failure, however, are automati‐
cally managed and clients and administrators do not need to take any action.

Typical Failures
Here we outline the types of failures Accumulo is designed to tolerate gracefully and
without immediate administrative intervention, and the actions to be taken.

Single machine failure
By far the most common occurrence—the failure of a single Accumulo server, includ‐
ing the master—will not cause any data to become unavailable, or even any interrup‐
tion in client service.

If the Accumulo master is down, clients can continue to communicate with tablet
servers, and one inactive master process will automatically be chosen to become the
new active master. However, if a tablet server fails while there are no operational mas‐
ters, the tablets that were being hosted by the failed tablet server will not be reas‐
signed and hence will be unavailable for writes or reads by clients until a new master
process is started again.

If a process is only temporarily crashed, as can happen if some other process uses up
all available memory and a tablet server is forced to exit, the failed process can simply
be restarted, as outlined in “Starting After a Crash” on page 428.

Any permanently failed machines can be replaced or removed. No configuration
information needs to be changed, except perhaps to remove the hostname of a
machine that you don’t intend to replace from the conf/slaves file.

456 | Chapter 12: Administration: Running

Single machine unresponsiveness
Sometimes a tablet server continues to respond to ZooKeeper requests but fails to
respond to Accumulo client requests. In this scenario clients may be caused to wait
indefinitely, because the master will not reassign the stalled tablet server’s tablets if it
still holds its ZooKeeper lock. The process may eventually exit on its own and lose its
lock, allowing the Accumulo master to reassign its tablets so clients can continue.

Before that happens an administrator can elect to examine the logs on the monitor
for any indication of a problem, or else simply shut down the tablet server process so
that its tablets can be served by other healthy tablet servers. This way clients can con‐
tinue more quickly.

Accumulo clients are designed to wait indefinitely for a cluster to become healthy in
terms of all of the tablets being online and available. For example, MapReduce jobs
that are stalled because of an unresponsive server may well simply continue after a
stalled tablet server process is killed.

Network partitions
Accumulo does not allow clients on both sides of a network partition to continue to
write data. In the event of a network partition, in which messages are lost between
nodes in a cluster, some tablet servers will find themselves on a side of the partition
that can continue to talk to the ZooKeeper cluster, and others will not. Rather than
allowing clients that can talk to tablet servers that are disconnected from ZooKeeper
to continue writing and reading data, Accumulo tablet servers will exit upon discov‐
ering that they can no longer communicate with ZooKeeper.

Because all Accumulo tablet servers and often all clients are in the same data center,
it’s often the case that load balancers in front of clients can redirect requests to clients
that can still talk to ZooKeeper during the network partition.

For additional details, see “Accumulo and the CAP Theorem” on page 379 for a dis‐
cussion of Accumulo and the CAP Theorem.

More-Serious Failures
These types of failures can result in data loss or unavailability.

All NameNodes failing simultaneously
Running a single NameNode used to be a big risk to Hadoop and Accumulo clusters
because its failure meant some or all the mappings of filenames to data blocks in
HDFS were lost or at least temporarily unavailable. Now HDFS can be configured to
automatically failover from one NameNode to a hot standby that is kept in sync with
the active NameNode.

Failure Recovery | 457

Care must be taken to ensure the NameNodes don’t share a common resource that, in
the event of failure, would cause both NameNodes to go offline. There are limits to
this, of course, because both NameNodes could be destroyed in a disaster affecting a
data center. Accumulo is not designed to run over multiple geographically distributed
data centers, though work is being done to allow Accumulo instances to replicate data
to another data center in future versions of Accumulo.

All ZooKeeper servers failing simultaneously
Many of the same considerations for high-availability multiple NameNodes apply to
ZooKeeper servers. At least one needs to be operating in order for Accumulo to
function.

Power loss to the data center
Accumulo is designed to run within a single data center, with low-latency networking
between nodes. If power is lost to the data center, none of the machines in the Accu‐
mulo cluster will be operational. The hsync setting should true to avoid data loss if
no uninterruptible power supply can be used to bring down the cluster gracefully in
the case of a sudden power outage.

Loss of all replicas of an HDFS data block
HDFS replicates data blocks so that the loss of any one block will not cause an inter‐
ruption in service. HDFS clients will simply find another remaining replica. If all rep‐
licas of a given block are unavailable, Accumulo operations will fail.

To avoid the scenario in which a single hardware failure causes all replicas to become
unavailable, HDFS provides the ability to specify the number of replicas, and also
allows the specification of which machines live on which rack. The assumption here
is that all machines within the same rack share a common power supply or network
switch. So, not all replicas should be stored on machines in that rack; rather, at least
one should be stored on a machine in another rack. This capability is known as
HDFS rack-awareness.

Tips for Restoring a Cluster
In the more serious failures outlined previously, additional action may be required to
restore the cluster to a healthy state.

The first thing is to run hadoop fsck on the HDFS /accumulo folder to make sure
there are no missing or corrupt blocks. If there are problems in HDFS, the grep com‐
mand in the Accumulo shell can be used to scan the metadata table to see if any of the
files affected by missing blocks are RFiles currently referenced in the metadata table.
RFiles that are no longer referenced can be deleted from HDFS. If the RFiles are still

458 | Chapter 12: Administration: Running

referenced but are not part of the Accumulo metadata table, those RFiles will need to
be put into a known good state.

If corrupt RFiles are part of the metadata table, you must rebuild the metadata by cre‐
ating a new instance and importing all the data. Usually that known good state is
from some time in the past, which will mean data is missing. To account for the miss‐
ing data, you will need to replay all the changes since that known good state, unless
you can figure out exactly what changes to replay.

It is not recommended to modify the Accumulo metadata table to get to a good state.
Following are some things you can do to help yourself with these steps.

Replay data
Provide yourself with the ability to replay incoming data. This can mean saving off
the ingest source files for some period. It can also mean creating a change log of
updates that can be replayed. Ensure that you have timestamps for when this data was
originally pushed to Accumulo.

Back up NameNode metadata
This is especially important for Hadoop 1.0 because the NameNode is a single point
of failure. Back up NameNode’s fsimage, edits, VERSION, and fstime files so you can
recover HDFS. Doing so will allow you get Accumulo into a good state from a point
in the past, and then you can do things like replay all updates since that point.

Back up table configuration, users, and split points
If the Accumulo metadata table went away or got corrupted, you could bulk-import
the existing RFiles to recover. But to get your cluster to the same state, you would
need to re-create the existing table configuration, table splits, and users. Some of this
information is stored in ZooKeeper but is tricky to pull out. Some of this information
is not saved anywhere outside the metadata table, which is why you should back it up
yourself.

Accumulo 1.6 includes a command for dumping the configuration information to a
file:

accumulo admin dumpconfig

Otherwise, the following commands can help gather information to help restore
configuration:

config -t tablename

This command will show you the current table configuration.

getsplits

This command in the Accumulo shell can be used to store the current splits.

Failure Recovery | 459

users

This command in combination with the getauths -u username command will
show you users and authorization tokens.

systempermission, tablepermission, and userpermission
These commands will show permission information.

Use these commands to dump text files with information. Having this information
can also help in the case when ZooKeeper information has been deleted due to user
error or catastrophic failure.

Turn on HDFS trash
Turning on the HDFS trash makes a copy of every deleted file. Configuration is done
by setting fs.trash.interval to a number of minutes greater than zero in core-
site.xml. The trash interval should based on how much your Accumulo data changes
and how much storage you have. For example, lots of HDFS storage or a higher rate
of change in Accumulo would mean a longer trash interval.

Create an empty RFile
If you can’t find a known good copy of an RFile, you can create an empty RFile that
gets copied to that expected location.

An empty RFile is not simply an empty file; it contains header
information.
This procedure should only be used to allow an Accumulo table to
be partially recovered and brought online without error.

Accumulo versions 1.5.2 and later have a utility to create an empty RFile:

accumulo org.apache.accumulo.core.file.rfile.CreateEmpty /some/path/to/empty.rf

Prior to those versions, you can use the following shell commands to create an empty
RFile that will serve the same purpose:

createtable foo
delete "" "" ""
flush -t foo

Now you can find the RFile that was created with something like the following and
then copy or move it:

tables -l # look for id of the foo table, 22 for example
hadoop fs -ls /accumulo/tables/22/default_tablet

460 | Chapter 12: Administration: Running

Take Hadoop out of safe mode manually
When Accumulo restarts, it will begin compacting and flushing write-ahead logs.
Additionally, any client will be able to write data, which could get flushed to
an RFile. You can set up Hadoop to not come out of safe mode automatically,
which will prevent any changes from happening to RFiles. Setting
dfs.namenode.safemode.threshold-pct to a value greater than 1 in the Hadoop
hdfs-site.xml config file will require human intervention to take HDFS out of safe
mode.

Troubleshooting
If Accumulo clients are experiencing issues such as errors or timeouts, several things
should be checked as part of the troubleshooting process.

Ensure that processes are running
If any of the services on which Accumulo depends is not healthy, Accumulo will
experience issues. Make sure HDFS is running and healthy. The HDFS monitor page
at http://<namenode host>:50070 will show the status of HDFS. If any blocks are
missing, Accumulo will be unable to serve the data from the files those blocks belong
to. If DataNode processes have crashed, it may be possible to restart them and for
their blocks to become available again.

ZooKeeper should also be running and healthy. Administrators can check this by
connecting to a ZooKeeper process via Telnet (to port 2181 by default) and typing
ruok, short for are you ok? The server should respond with imok (I am ok) and close
the connection. If ZooKeeper is down, it should be restarted before you attempt to
start any Accumulo processes.

Finally, Accumulo processes should be checked to make sure they are running and
operating properly. The Accumulo monitor page will indicate problems by highlight‐
ing issues in red. For example, if you have zero running tablet servers, if any tablets
are unassigned, or if the Accumulo master is unreachable, the monitor page will show
red boxes behind text.

Check log messages
The Accumulo monitor also gathers error log messages from tablet servers and dis‐
plays them in one place for convenience. Checking for these can help explain issues.

If the monitor is not showing any errors or if it is down, logs are still written to local
files on each machine running Accumulo processes.

Failure Recovery | 461

Understand network partitions
If for some reason a tablet server is unable to reach ZooKeeper (a condition known as
a network partition), within a period of time it will lose its tablet server lock. At this
point the Accumulo master will attempt to obtain the tablet server’s lock. If the
attempt is successful, the tablet server is no longer considered to be part of the cluster
and the master will reassign its tablets to remaining healthy servers. The tablet server
that lost its lock will then exit to prevent clients from sending any more writes to it.

This procedure is designed to guarantee that each tablet is hosted by only one tablet
server at a time. If ZooKeeper or tablet servers are not responsive enough to network
requests, tablet server processes may terminate because they can’t distinguish between
arbitrarily delayed requests and a network partition. If tablet servers are exiting regu‐
larly due to a loss of a ZooKeeper lock, they or ZooKeeper may not have sufficient
resources.

Causes of this can include swapping to disk if available memory is insufficient, the
Java garbage collector pauses when not using native libraries, or hardware for the
application is insufficient.

Exception when scanning a table in the shell
When scanning a table in the shell results in an exception, the cause could be a bad
formatter. Use the following to show which formatter is being used:

config -t tablename

Use the following to remove the formatter:

formatter -r

Graphs on the monitor are “blocky”
“Blocky” means that the lines are completely horizontal for a period, then there is an
increase or decrease, then more horizontal lines, then an increase or decrease, and so
on. This means that tablet servers are having delays in reporting information back to
the monitor. Tablet servers report information back every 5 seconds. If data for two
or more periods is late, the monitor uses the prior value. Usually this is an indication
that one or more tablet servers are having trouble. You can look on the tablet server
monitor page and sort by last update time to get an idea of which servers are having
trouble. Another way to find the server is to start up a shell, run debug on, then scan
accumulo.metadata. It will take some time, but you should see messages repeated
with the IP address of problem servers. Once you find out which tablet server or tab‐
let servers are having problems, you can go there and look at system monitoring tools
and the logs to diagnose the cause.

462 | Chapter 12: Administration: Running

Tablets not balancing across tablet servers
It is safe to stop and start the master if needed. Sometimes error messages show that
tablets are not balancing, but there are no failed tablet servers and no other indica‐
tion. Or the master is having problems communicating, but there is no other appa‐
rent cause. Accumulo will gracefully handle stopping the master service and
restarting.

Calculate the size of changes to a cloned table
Sometimes it is useful to see how much a table has changed since it was cloned. We
talk about cloning in “Table Operations” on page 440 and why it might be useful as a
snaphot of the original table. But the original table is going to continue to change as
data is inserted and deleted.

The du command in the Accumulo shell can be used to see the size in bytes of a table.
When passed in multiple arguments, it also shows how much space is shared.

Here is an example run in the shell:

du table1Clone table1

 1,232,344 [table1]
51,212,424 [table1, table1Clone]
 723,232 [table1Clone]

This is showing that 51.2 MB are still shared between the tables, 723 KB have been
removed from table1, and 1.2 MB have been added to table1, since the clone.

Unexpected or unexplained query results
If you get unexpected results when running a query, be sure to consider all the itera‐
tors being applied. This includes both iterators configured on the table and iterators
being applied programmatically to the scanner. Having a scan iterator at the same pri‐
ority as a table iterator is allowed. This is so that table iterator options can be overrid‐
den at scan time by configuring an identical iterator at scan time with different
options.

But having different iterators at the same priority will cause unexpected behavior,
because only one is applied and it is nondeterministic which one. Two scans that
appear exactly the same may use different iterators and return different results. Addi‐
tionally, consider the logic of lower-numbered iterators that may remove or alter a
record before it gets to iterator you are expecting.

Slow queries
If queries are running more slowly than usual, the first thing to look for is hotspots.
This is an indication that tablets or data are not balanced and Accumulo is not dis‐
tributing the workload very well. Other things you might look at include:

Failure Recovery | 463

• Is disk space filling up on tablet servers?
• Are there extra-large logfiles? Be sure to check logfiles for other services running

on the node as well, such as DataNode logs.
• Are scans in the shell slow too? This is an indication of system problems instead

of problems with your code.
• Is there contention on the tablet server with another Accumulo process such as

garbage collection, compaction, or even MapReduce tasks?

Look at ZooKeeper
Sometimes it is useful to see what is stored in ZooKeeper. Extreme caution should be
used, because changing data in ZooKeeper could cause serious issues for Accumulo.
First, you need to know the instance ID, which is displayed when you log in via the
shell. You can also find the instance ID by looking in /accumulo/instance_id in HDFS
or in the header of the monitor page. Use the zkCli.sh command included with Zoo‐
Keeper and any of the ZooKeeper hosts defined in accumulo-site.xml under the
instance.zookeeper.host property:

zkCli.sh -server host:port

While in the command-line client, use commands like the following to see what Zoo‐
Keeper has stored:

ls /accumulo/replace with instance_id

The get command will display information about each entry.

Accumulo 1.4, some of the entries in ZooKeeper are protected. Once the CLI comes
up, use a command like the following to authenticate:

addauth digest accumulo:SECRET

Replace the SECRET passphrase with whatever is defined in the instance.secret
property in the accumulo-site.xml file.

Use the listscans command

The listscans command is very useful for finding out what is happening currently
in your cluster. It will show you information about scans running on every tablet
server. There is a lot of information, though, so it is common to dump this informa‐
tion to a file:

accumulo shell -u username -p password -e 'listscans -np' > /path/to/file.txt

As a developer, you can add information to what is displayed in the listscans com‐
mand by setting options on any IteratorSetting object you add to your Scanner.
This can be useful for debugging long-running queries.

464 | Chapter 12: Administration: Running

Look at user-initiated compactions
When looking for long-running processes on your cluster, sometimes you may want
to see what user-initiated compactions are happening. These will show up as FATE
operations, and you can run the following to see what is currently in progress:

accumulo org.apache.accumulo.server.fate.Admin print

To get a sense for these over time, you can loop this command as in the following:

while true; do
 date;
 accumulo/bin/accumulo org.apache.accumulo.server.fate.Admin print;
 sleep 60;
done

There is also a fate command that you can run in an Accumulo shell to get informa‐
tion. Note that system-initiated compactions are not managed by fate transactions.
For those, you will need to go to the tablet server logs and filter or search for the lines
with Starting MajC or use the listcompactions command, which is similar to the
listscans command.

The Accumulo documentation has a section on troubleshooting
that has more troubleshooting tips not covered in this book.

Inspect RFiles
Invariably, during the development phase a situation can arise wherein key-value
pairs are being labeled incorrectly. Accumulo is designed to take security labels very
seriously. As such, it is not possible to simply turn off the iterator responsible for
examining security labels and filtering out key-value pairs whose label logic is not sat‐
isfied by the querying user’s credentials—even if that user is logged in as the Accu‐
mulo root user.

What this means for key-value pairs that have incorrect labels is that they simply
won’t show up in any scan. If a scan over an entire table yields no results when the
monitor page indicates that data is, in fact, in there—and when all the known granted
labels are being used to scan the table (the default mode of scanning in the shell)—
this is a symptom indicating that a table might contain entries with incorrect labels.

If this appears to be happening, a table can be configured to throw exceptions if it is
asked to store a key-value pair with a label that can’t be satisfied with the writing
user’s credentials. This way, an incorrect security label shows up before it ever gets
written to a table.

This constraint can be added in the shell like this:

Failure Recovery | 465

http://bit.ly/accumulo_troubleshooting

root@accumulo> constraint -t tableName -a \
 org.apache.accumulo.core.security.VisibilityConstraint

If for some reason this and other troubleshooting methods of fixing labels have failed,
or other parts of key-value pairs need to be inspected, an administrator with access to
read files from HDFS can inspect Accumulo’s underlying RFiles to see what the key-
value pairs actually are.

Reading RFiles directly should not be done lightly, because there
are no checks in place to ensure that the user has the authorization
to see all of the data stored in an Accumulo table. This is the exact
reason that access to HDFS must be restricted.
This procedure should only be executed and allowed on develop‐
ment clusters during the debugging phase.

Administrators can dump the contents of an RFile using the following procedure.
This procedure should only be executed and allowed on development clusters during
the debugging phase:

1. Determine the underlying table ID for the table containing suspected incorrect
labels.
This will allow us to locate the RFiles for the table of interest in HDFS. In the
shell, type:

root@accumulo> tables -l
!METADATA => !0
baseball_stats => 17
 wikipedia => 18
 wikipedia_index => 15
trace => 1

2. List the files in HDFS for one of the tablets in the table of interest. In our exam‐
ple, we’ll examine a file in the default_tablet of the wikipedia_index table with
ID 15.
Exit the shell and run the hadoop fs command:

$ hadoop fs -ls /accumulo/tables/15/default_tablet

Found 7 items
-rw-r--r-- 1 accumulo supergroup 24215993 2013-12-11 05:14
 /accumulo/tables/15/default_tablet/F0000hy3.rf
-rw-r--r-- 1 accumulo supergroup 18290804 2013-12-11 05:21
 /accumulo/tables/15/default_tablet/F0000hyk.rf
-rw-r--r-- 1 accumulo supergroup 4515 2013-12-11 09:01
 /accumulo/tables/15/default_tablet/F0000iab.rf
-rw-r--r-- 1 accumulo supergroup 673682 2013-12-11 09:20
 /accumulo/tables/15/default_tablet/F0000iax.rf

466 | Chapter 12: Administration: Running

-rw-r--r-- 1 accumulo supergroup 1201112 2013-12-11 09:47
 /accumulo/tables/15/default_tablet/F0000ibd.rf
-rw-r--r-- 1 accumulo supergroup 5282634 2013-12-11 11:17
 /accumulo/tables/15/default_tablet/F0000idd.rf
-rw-r--r-- 1 accumulo supergroup 5631122 2013-12-11 11:24
 /accumulo/tables/15/default_tablet/F0000ids.rf

3. View summary information about an RFile file by using PrintInfo.
To view simple details of the file, use the PrintInfo class with only the filename
as an argument. This will show statistics from the file as well as the first and last
key. These keys may show an example of one of the incorrect labels:

$ accumulo rfile-info /accumulo/tables/15/default_tablet/F0000hy3.rf

Locality group : <DEFAULT>
 Start block : 0
 Num blocks : 665
 Index level 0 : 83,095 bytes 1 blocks
 First key : 0000313867566100000000205001 :fields [public]
 0 false
 Last key : 0000313867568500000000205001 :fields [prvate]
 0 false
 Num entries : 31,218
 Column families : []

Meta block : BCFile.index
 Raw size : 4 bytes
 Compressed size : 12 bytes
 Compression type : gz

Meta block : RFile.index
 Raw size : 83,257 bytes
 Compressed size : 12,992 bytes
 Compression type : gz

In this case, the prvate security token probably represents a misspelling of the
word private. If we scanned the table using the private token we would not see the
keys with the label prvate.

4. View RFile contents using PrintInfo.
To dump key-value pairs from the file, use the -d option:

accumulo rfile-info -d /accumulo/tables/15/default_tablet/F0000hy3.rf

The utility will print out the statistics as before, followed by string representa‐
tions of the key-value pairs in this file.

Failure Recovery | 467

1 Jakob Nielsen, Usability Engineering (Boston: Academic Press, 1993), Chapter 5.

CHAPTER 13

Performance

One aspect of working with big data is the chance to regularly exercise computer sci‐
ence performance theory. Desktop computers are so powerful that sometimes appli‐
cation developers can get away with inefficient designs without affecting performance
to the extent that users notice. When you work with many terabytes of data, perfor‐
mance and efficient design once again become paramount.

Scalable applications that interact with large numbers of users often need to respond
to requests very quickly, in under a second. Jakob Nielsen suggests acknowledging
time limits that affect how users perceive an application:1

0.1 second is about the limit for having the user feel that the system is reacting instan‐
taneously, meaning that no special feedback is necessary except to display the result.
1.0 second is about the limit for the user’s flow of thought to stay uninterrupted, even
though the user will notice the delay. Normally, no special feedback is necessary during
delays of more than 0.1 but less than 1.0 second, but the user does lose the feeling of
operating directly on the data.
10 seconds is about the limit for keeping the user’s attention focused on the dialogue.
For longer delays, users will want to perform other tasks while waiting for the com‐
puter to finish, so they should be given feedback indicating when the computer expects
to be done. Feedback during the delay is especially important if the response time is
likely to be highly variable, since users will then not know what to expect.

Some useful questions with regard to performance include:

469

http://bit.ly/response_time_limits

• What performance is acceptable or expected of the application?
• What operations does the application need to perform and how much work is

required to do them?
• Can some of the work to answer queries be performed at ingest time rather than

query time (precomputation)? How might this affect ingest performance?

The answers to these questions can help guide the application designer to determine
how data should be processed and organized so that the required access patterns can
be supported in a way that meets the performance requirements and the semantic
rules of the application.

Understanding Read Performance
Application designers must understand the capabilities of the hardware and subsys‐
tems on which their application must run in order to reason about performance and
develop designs to meet performance requirements. As far as understanding hard‐
ware is concerned, Google Bigtable author Jeffrey Dean compiled a list of what he
called Numbers Everyone Should Know, shown in Table 13-1. Hardware performance
may change as technology improves, but these are good order-of-magnitude esti‐
mates. Of those, a few are of special interest to Accumulo application developers.

Table 13-1. Some Numbers Everyone
Should Know

Main memory reference 0.0001 ms

Send 2K bytes over 1 Gbps network 0.020 ms

Read 1 MB sequentially from memory 0.25 ms

Round trip within same datacenter 0.5 ms

Disk seek 10 ms

Read 1 MB sequentially from network 10 ms

Read 1 MB sequentially from disk 30 ms

To help application designers understand how using Accumulo affects application
performance, it is useful to apply the information on how hardware performs to an
understanding of how Accumulo operations use hardware.

470 | Chapter 13: Performance

http://bit.ly/large_dist_sys_advice

Accumulo reads, or scans, involve doing some lookups in the Accumulo client’s cache,
then communicating with a tablet server to read out the data requested.

One important thing to note when modeling queries is that in our earlier calcula‐
tions, the number and size of key-value pairs has a linear effect on the time it takes to
read data off of disk, sort it in memory, and transfer it over the network—the more
data read, the longer it takes. But the total number of key-value pairs in the table has
a much smaller effect. The bigger the table, the more servers it will take to store the
data. When querying, however, a single scan will usually involve only one tablet
server and a small number of files containing the requested data, no matter how big
the table gets.

The first step—finding the right tablet server for a scan—requires doing a binary
search among tablet extents stored in memory. The time to do this search grows loga‐
rithmically with the number of tablets. This means that if finding the right tablet
among 100 tablets takes 5 microseconds on average, finding the right tablet when
there are 1,000 tablets should only take an average of 10 microseconds, not 50. We
introduce this concept in depth in “Fast Random Access” on page 7.

Sometimes the blocks referenced as part of a scan will be cached in memory already,
because Accumulo employs caching of blocks read from HDFS. However, Accumulo
is designed to perform fast scans even when data is not cached and does so by mini‐
mizing disk seeks. This design is crucial to scaling to handle large amounts of data in
a cost-effective way, because disk is many times cheaper than memory. More infor‐
mation on how Accumulo works is in Chapter 10.

Of course, an application can itself reference memory, disk, other services over the
network. Performing back-of-the-envelope calculations about how an application
should perform is helpful in determining viable design alternatives.

Understanding Write Performance
When we talk about write performance we often address two things: throughput and
latency, which are sometimes at odds. By throughput we mean writing a number of
items, or mutations, over time; throughput is the rate of writes. We often seek to ach‐
ieve high throughput.

Latency refers to the time between when a write is ready to be written, and when it is
available for query. We often seek to achieve low latency.

Applications can write data to Accumulo in two ways: by bundling mutations into
batches via the BatchWriter, or by importing files from HDFS via bulk import. These
methods allow application developers to balance throughput and latency to meet
their requirements.

Understanding Write Performance | 471

BatchWriters
High throughput when the BatchWriter is used depends on the ability to amortize
network overhead by grouping mutations together before shipping them to tablet
servers. The BatchWriter does this by waiting for several mutations to become avail‐
able so it can group them together and send them all at once. This way, it only has to
pay the network overhead for every hundred or thousand or so mutations, rather
than every mutation. Seen another way, the network cost of writing a mutation can be
reduced by a hundred or a thousand times via batching.

The time the BatchWriter spends waiting to gather some number of mutations con‐
tributes to latency. If the BatchWriter is able to gather 1,000 mutations, throughput
will be higher, but latency will also be higher. Applications can choose therefore to
configure the BatchWriter to send smaller batches of mutations more frequently so
that latency is kept low. This configuration allows applications to choose where they
want to reside in the spectrum between high throughput and low latency. Applica‐
tions could choose to optimize for low latency at the cost of throughput by configur‐
ing the BatchWriter to wait for only a short time to gather a batch of mutations or by
explicitly calling flush() to immediately send pending mutations. These settings are
detailed in “Committing Mutations” on page 93.

Bulk Loading
An alternative to ingesting data via clients using the BatchWriter is to prepare key-
value pairs into files and bulk-load them to Accumulo tables. Using bulk loading to
write data to Accumulo tables represents sliding all the way to the high-throughput
end of the spectrum. Bulk loading employs the MapReduce framework, which is opti‐
mized to process data at very high throughput. The data is only available for query
after all the data has been processed and the MapReduce job completes, representing
higher latency.

To understand how bulk loading works, it’s helpful to know how data for Accumulo
tables is stored in HDFS. An Accumulo table consists of a set of files in HDFS and
metadata describing which files belong to which tablets and which key ranges each
tablet spans. When data is ingested via an Accumulo client, RFiles are created and
stored in HDFS as part of the minor compaction process. After tablets are split, they
can share RFiles until a major compaction process writes out a separate set of RFiles
for each tablet.

Eventually, Accumulo will end up having one or a small number of RFiles for each
tablet, and each RFile will only contain data for one tablet. This represents a kind of
equilibrium state for Accumulo in which no more compactions are necessary.

Users who want to get data into Accumulo at a very high rate of throughput can use
MapReduce to create the RFiles such that they closely resemble the set of RFiles that

472 | Chapter 13: Performance

1 Luiz André Barroso, Jeffrey Dean, and Urs Hölzle, “Web Search for a Planet: The Google Cluster Architec‐
ture”, Micro, IEEE, 23, no. 2, 22–28.

Accumulo would create on its own if the data were to be ingested via streaming
clients.

Creating RFiles via MapReduce can be faster because a data set can be organized into
the optimal set of RFiles in one MapReduce job rather than via several rounds of
compaction on intermediate RFiles. The downside of bulk loading is that none of the
data is available for query until the entire data set is done being processed by MapRe‐
duce. It also requires that all the data to be loaded is staged in HDFS.

Bulk loading is an option for quickly loading a large data set into Accumulo when it is
possible to stage the data in HDFS and when the latency requirements are such that
the data can be unavailable until the MapReduce job is complete.

“Bulk-loading files from a MapReduce job” on page 448 discusses additional factors
to consider when bulk loading, including how to handle key timestamps.

Hardware Selection
Accumulo is designed to run on commodity-class servers. In general, using more-
expensive hardware will not dramatically improve Accumulo’s performance or relia‐
bility and in some cases will work against Accumulo’s availability features.

What do we mean by commodity class? Basically commodity here refers to servers
that are widely available for a large number of uses, such as servers that can be used
for serving web pages, handling email, etc. Using these general-purpose machines has
several advantages. First, when architecting the first MapReduce and BigTable clus‐
ters, Google calculated1 that it would get the most compute power per dollar using
this hardware:

Combining more than 15,000 commodity-class PCs with fault-tolerant software cre‐
ates a solution that is more cost-effective than a comparable system built out of a
smaller number of high-end servers.

Second, because these types of servers are so widely used, many vendors are compet‐
ing to sell them, which helps keep prices low and provides enough demand for hard‐
ware manufacturers to keep improving performance.

Typical hardware for an Accumulo tablet server is as follows:

CPU
2x 4-core or 6-core CPUs

RAM
16–96 GB RAM

Hardware Selection | 473

http://bit.ly/google_cluster
http://bit.ly/google_cluster

Disks
2-12x 1–3 TB disks

Networking
1-2x Gb Ethernet or 10 Gb Ethernet cards

If these servers will also be hosting TaskTrackers for running MapReduce jobs, addi‐
tional RAM and or CPU cores will come in handy.

Buying hardware with many more CPU cores and much more RAM—scaling up ver‐
tically—may not result in higher performance, because a single tablet server process is
limited in some ways. Accumulo is designed to scale horizontally, meaning adding
more servers rather than increasing the resources of each server.

Storage Devices
Unlike some databases, Accumulo is designed to keep most of the data managed on
disk. As much data as will fit is cached into RAM as data is read from disk, but even
reads that request data that is not cached in RAM are designed to be fast, because
Accumulo minimizes disk seeks by keeping the data organized and reading fairly
large chunks at a time.

Hard disk drives
Because Accumulo relies on HDFS to distribute and replicate blocks of data, it is rec‐
ommended that storage consist primarily of inexpensive hard disk drives (HDDs),
such as 1–3 TB SATA 7,200–15,000 RPM drives, mounted separately (as JBOD, i.e.,
Just a Bunch of Disks) rather than via RAID. HDFS essentially implements a RAID-1
data redundancy scheme, replicating entire disk blocks rather than using erasure cod‐
ing, so employing RAID in addition to HDFS replication is unnecessary. The upsides
of keeping full replicas are that there is no recovery time when a single hard drive is
lost, and any of the replicas can be used for reading the data.

Storage-area networks
Storage-area networks (SANs) are not as well suited to providing storage for Accu‐
mulo because the scaling, independence, and failure characteristics are different from
the shared-nothing, unreliable hardware Accumulo and HDFS are designed for.
SANs provide an abstraction layer that defeats the attempts by HDFS to reason about
data locality. If for some reason Accumulo must be run on a SAN, it is preferable that
HDFS be configured to keep only one replica of each block, because the SAN will
often provide its own replication.

474 | Chapter 13: Performance

Solid-state disks
Solid-state disks (SSDs) have presented an interesting development for databases in
general because many databases require a high number of random-access reads and
writes. SSDs provide a much higher number of random reads per second because
there is no disk platter to rotate as with HDDs. However, because Accumulo is
designed to reduce seeks by performing sequential disk accesses as much as possible,
the advantages of SSDs over HDDs are not as pronounced with Accumulo as they
would be with databases that perform a high number of seeks per user request. SSDs
may work well in an environment where the ratio of the read request rate to the total
stored data is very high, such as 25,000 random reads per second per terabyte of data.

One fact to keep in mind when considering databases to use with SSDs is that ran‐
dom writes can exacerbate an effect known as write amplification. Write amplification
refers to the case when a single write from an application perspective can result in
more physical writes as the SSD attempts to find or create an empty spot in which to
write the data. Accumulo’s write patterns, which are append-only and sequential,
should result in a minimal level of write amplification.

Networking
Accumulo is a networked application and its storage layer, HDFS, is a networked file
system. Clients connect directly to tablet servers to read and write data. Tablet servers
will try to read data from local disks when possible, avoiding reading data across the
network, but will also often end up reading blocks of data from an HDFS DataNode
over the network.

Having enough network bandwidth is fairly important to Accumulo. Even data read
from disks local to a tablet server must still be transferred over the network to clients
on other machines. For most clusters, servers with one or two 1-Gb Ethernet cards
are sufficient. If there is more than one network interface card (NIC), they should be
bonded in Linux to improve performance and availability. Currently Hadoop cannot
utilize more than one NIC. Many clusters’ networks consist of a 10 Gb switch atop
each rack of servers and a 10 Gb switch connecting a row of racks together.

Virtualization
Accumulo can be run on virtualized hardware, with a few caveats. HDFS makes some
assumptions about the physical location of data in order to achieve good perfor‐
mance. If the virtual environment supports access to local disks, then these assump‐
tions can remain valid. If, however, the physical storage of data is abstracted away
onto remote media, the efforts by HDFS to reduce network I/O will be pointless. This
may or may not be a problem, depending on the total I/O available.

Hardware Selection | 475

http://bit.ly/fusion-io_accumulo
http://bit.ly/fusion-io_accumulo
http://bit.ly/multiple_nifs

Another consideration is server responsiveness. Accumulo continually attempts to
determine the status of its processes. If server response time is highly variable due to
unpredictable access to underlying physical resources, Accumulo’s timeouts may need
to be increased to avoid dropping servers that are alive but don’t respond quickly
enough. This increases the time that data may be unavailable before Accumulo recov‐
ers from a true server failure.

Finally, there is the issue of independence and availability. The shared-nothing archi‐
tecture Accumulo is built on relies on trying to reduce dependence among hardware
components in order to minimize the effect of an individual failure so that the overall
system can continue functioning. In a virtual environment, a physical failure may
affect more than one virtual server if those virtual servers happen to share any hard‐
ware, which can result in less availability than one might expect from separate physi‐
cal machines. If these issues can be managed, Accumulo can be run successfully in a
virtual environment.

Running in a Public Cloud Environment
In Amazon’s Elastic Compute Cloud (EC2) environment, for example, it is recom‐
mended that tablet server processes be run on instances with ephemeral storage,
because that allows access to local disks. Some EC2 users recommend picking the
largest instance type in a family, because supposedly this means that the virtual
instance resources match the physical resources and that there will be only one virtual
machine on a particular physical server, which can make access to the physical hard‐
ware less variable and services more responsive.

Amazon Elastic Block Store (EBS) volumes are recommended for storing the Name‐
Node’s data, preferably across several volumes in a RAID configuration for higher
availability, but not for primary HDFS storage because this increases the interdepend‐
ence between servers. Alternatively, a cluster could utilize multiple NameNodes run‐
ning in a high-availability (HA) configuration using local ephemeral disk.

Amazon EC2 uses Security Groups to restrict network access to specific ports and
hosts. See “Network Security” on page 417 for a list of ports that must be open.

Cluster Sizing
Several factors affect how much hardware is required for a particular use of
Accumulo.

The best way to gather information on cluster performance starts with gathering
empirical measures. Accumulo is designed so that aggregate write and read perfor‐
mance scales with the number of machines participating in the cluster. The perfect
theoretical limit is to scale linearly, meaning that by doubling the cluster size you get
double the aggregate performance. But, as Amdahl’s Law describes, because there is

476 | Chapter 13: Performance

some overhead in operations that can’t be parallelized, performance increases will be
less than perfectly linear.

Informal testing shows that doubling the number of machines in an Accumulo clus‐
ter results in roughly an 85 percent increase in aggregate write performance. Several
factors contribute to the efficiency of the performance increase seen when the cluster
is doubled, including network hardware and application design.

Modeling Required Write Performance
For the purposes of cluster planning using back-of-the-envelope calculations, a good
practice is to prototype an application and measure the performance against a single
server, and then against two servers, and look for the percentage increase in read and
write performance. You may have to write several gigabytes of data or more in order
to test the splitting and migration properties of tables before seeing an increase in
aggregate write and read rates.

Based on these rates, you can estimate the number of machines required to reach a
target number of user requests to read or write application data by multiplying one or
two server aggregate rates by 1.85 until the target number of requests is reached.

For example, say we needed to be able to write a million key-value pairs per second,
which would allow a theoretical MapReduce job writing to Accumulo to keep up with
some reporting requirements.

Testing of an application prototype on some particular hardware reveals that the
single-server write rate is 120,000 key-value pairs per second. Multiplying this by
1.85, we get an estimate of 222,000 pairs per second using two servers. We continue
to multiply by 1.85 until we reach 1,000,000 writes per second, doubling the number
of servers in our cluster each time. At four servers we have a theoretical write rate of
760,000 key-value pairs per second. At eight servers we have a rate of 1.4 million, so
we need somewhere in between four and eight servers.

A direct formula for estimating the number of servers required to reach a target write
rate is as follows:

m = 2
log2 a/s /0 . 7655

m - estimated number of machines
a - target aggregate write rate in key-value pairs per second
s - measured single server performance in key-value pairs per second

On the other hand, if you want to measure the total expected read or write rate of an
existing set of servers, you can measure application performance against one or two
servers and extrapolate to the size of the cluster to get the aggregate write rate.

Cluster Sizing | 477

For example, if we measure an application as being able to write 5,000 user requests
per second against 1 server (where each user request translates into several key-value
pairs), and we have 20 servers, we can expect to see an aggregate write rate of about
71,000 key-value pairs on 20 servers, or about 14 times the single-server write rate.

To estimate the aggregate write performance of a cluster given the number of
machines and single-server performance, the following formula can be used:

a = s × 0 . 85
log2 m

× m
a - estimated aggregate write rate in key-value pairs per second
s - measured single server write rate in key-value pairs per second
m - number of machines

Cluster Planning Example
Let’s imagine we are going to set up a Twitter clone that gets just as much traffic.
Assume Twitter ingests 500 million tweets a day and each tweet is about 2,500 bytes
on average. That would be about 1.25 terabytes of new data per day. Our incoming
data might increase by 100 percent over the year so that by the end we’re storing 2.5
terabytes of new data per day. We need to store a year’s worth of data online and
make it available for queries on this system. Data older than one year old can be
deleted because it is stored on another archival system (perhaps another HDFS
cluster).

So we expect to have about 685 TB of data over the course of the next year.

Estimated total volume of data
To start, knowing how much data you need to store for a particular period of time
can help determine the size of your cluster. Accumulo uses Gzip compression by
default. It also compresses sets of keys by using a technique called relative key encod‐
ing (see “Relative key encoding” on page 370).

These techniques can often result in a 3–4:1 compression ratio. This is convenient
because HDFS replicates data by a factor of three by default. So even though HDFS
will increase storage requirements by a factor of three, compression brings the
amount of storage required for raw data closer to a 1:1 ratio of raw data ingested to
data stored on disk.

This means that to store 1 TB of data in Accumulo you will need at least 1 TB of disk
space, but usually not 3 TB. But keep in mind that this is before building any secon‐
dary index tables, which will require additional space.

For our 685 TB of original data we know we’ll need at least that much raw storage.

478 | Chapter 13: Performance

http://bit.ly/tweet_volume
http://bit.ly/tweetstream_dist
http://bit.ly/tweetstream_dist

Types of user requests and indexes required
If your application is designed to do lookups only one way—perhaps taking advan‐
tage of a natural hierarchy in the data elements (see “Single-Table Designs” on page
271)—your data can be stored in a single table. In this case the table will likely require
about as much space to store the data in an Accumulo table as the storage size of the
data in the original format. If additional lookup methods are required, a secondary
index table will need to be built.

Typically, a single index table will suffice for any combination of equality expressions
ANDed together. Some users will want to query ranges of values in multiple fields
simultaneously, which can require additional index tables. Depending on your query
requirements, knowing the number and type of additional index tables can help you
plan to have enough storage. See “Secondary Indexing” on page 275 for details on
building secondary indexes.

If users need to be able to query all fields, the uncompressed size of the terms in the
index would equal that of the original data, and that doesn’t include the size of the
unique identifiers that the index would use to point to the original data. Accumulo’s
compression and relative-key encoding are very efficient, so the disk storage needed
for a full index might not actually exceed the original data size. However, if you find
your indexes are larger than you want, you may want to index only a subset of the
fields.

For our example, let’s assume that our desired index size is half the size of the original
data, adding 50 percent to our storage needs, bringing the total to 1,028 TB, or a little
over 1 PB.

Compactions
As new data is ingested into files in HFDS, periodically Accumulo compacts multiple
files into a single file to make opening and reading files simpler and faster. During the
compaction process, tablet servers copy several files into one new file. The compac‐
tion process requires additional temporary storage and I/O resources. Just as with a
MapReduce cluster, an Accumulo cluster will need some free space in which to oper‐
ate. Let’s estimate that 20 percent more storage is required for this purpose.

This increases the total to 1,234 TB.

Rate of incoming data
We’ve estimated the storage required to hold the initial data and the data added each
day. To store the data in additional secondary indexes, and to perform compactions,
the number of servers we’ll need depends on the amount of storage per machine.
Modern servers can support 12 or more disks. At 3 TB per disk, a single server can
store 36 TB or more. If we buy 2 TB hard drives and can fit 12 drives into each server,

Cluster Sizing | 479

in addition to the disks used to support the operating system, we’ll eventually need
about 52 servers for our 1,234 TB of total data.

But maxing out the storage per server may not be adequate to support the ingest rate
of the data. Ingestion depends on having not only enough raw storage, but also
enough compute capacity and I/O to sort and manage the data. Let’s calculate how
many servers are needed to support the ingest rate we require.

For key-value pairs that are about 1 KB in size, a single tablet server on typical hard‐
ware can ingest 30,000–100,000 key-value pairs per second or more, depending on
the number of CPU cores, the number of drives, the size of the key-value pairs, and
how Accumulo is configured. See “Tablet Server Tuning” on page 488 for information
on tuning Accumulo for high ingest rates.

You will also have to adjust the number of ingest processes to achieve the best
throughput for your system; a single ingest client may not be able to push Accumulo’s
tablet servers to their highest possible ingest rate.

As the size of the cluster increases, the per-server rate will drop somewhat, simply
because clients are forced to split their batches over more and more servers, which
increases network overhead. Informal testing indicates that you can increase the
aggregate write rate of a cluster by about 85 percent when the cluster hardware is
doubled.

Let’s estimate how many servers will be needed to support our initial rate of 500 mil‐
lion tweets per day.

Each tweet has about 30 fields. Let’s imagine that on average about half of those are
empty. Just to ingest the data we will be writing 15 x 500 million = 7.5 billion key-
value pairs per day, if we store each field as a separate key-value pair in a common
row. If we index 10 fields per tweet, including a separate entry for each word of text in
the tweet, on average say 15 words, that’s roughly another 25 x 500 million = 12.5 bil‐
lion key-value pairs.

So we’ll need to be able to ingest 20 billion key-value pairs per day if we write 40 key-
value pairs per tweet. That’s an average of 231,500 key-value pairs per second.

Using the formula from “Modeling Required Write Performance” on page 477 we’ll
need between 3 and 14 servers to get started, depending on whether our per-server
write performance is 100,000 or 30,000 writes per second, respectively. If the data
arrives nonuniformly throughout the day, and peaks at, say, 2 p.m. at two times the
average, we’ll need as many as 8 of the higher-end servers to handle peak load. To
handle a peak as high as 140,000 tweets per second, we might need as many as 192
servers.

480 | Chapter 13: Performance

http://bit.ly/tweet_fields
http://bit.ly/tweet_volume

If we want to store 1,234 TB by the end of the year, we’ll need to add a new server
every seven days. If we only buy 10 servers to start with, we’ll have to buy more in less
than three months.

If we buy half the cluster today, that’s 26 machines. We may want to do this, because
in six months hardware may be slightly improved and we can get the best perfor‐
mance per dollar.

Age-off strategy
The final consideration in our exercise is how we plan to age-off the data. Aging off
old data can reduce our total storage requirements.

We can use Accumulo’s AgeOffIterator to automatically remove key-value pairs that
are over a year old. Accumulo’s files are immutable, so to do this we need to make
sure we compact the tables periodically to create new files in which the old data is
absent, and that we garbage-collect the old files.

This will cause all files to be processed and iterators, such as the AgeOffIterator, to
be applied in the creation of new files. See “Data Lifecycle” on page 449 for more on
managing the data lifecycle.

Analyzing Performance
Accumulo is designed to support high rates of ingest and fast reads across a large
number of servers and a large number of user requests. Applications that are
designed properly can take advantage of these features, and analyzing performance
will reveal whether any design decisions need to be changed.

Using Tracing
Detailed timing information on what Accumulo is doing behind the scenes can be
obtained by enabling a process called tracing. Tracing is generally only turned on
temporarily while analyzing an application’s behavior, because it increases the load on
Accumulo by generating data that is stored in an Accumulo trace table.

Traces can be enabled programmatically in Java or in the Accumulo shell. The Java
client code is in the accumulo-core module under org.apache.accu

mulo.core.trace. Here is an example that uses tracing in Java:

DistributedTrace.enable(instance, zooReader, hostname, "someApplication");
Trace scanTrace = Trace.on("descriptiveString");

BatchScanner scanner = conn.createBatchScanner(...);
for (Entry<Key, Value> entry : scanner) {
 ...
}

Analyzing Performance | 481

long traceId = Trace.currentTrace().traceId();
Trace.off();

After running the trace in Java, you can either go to the Recent Traces in the monitor
page or scan the trace table directory using the traceId as the row ID:

user@accumulo> scan -t trace -r traceId

Note that the trace table has the org.apache.accumulo.core.trace.TraceFormatter
class configured, so the output will be more readable.

Here is an example in the shell, which returns tracing information after a pause when
tracing is turned off. You can still use the monitor page or scan the trace table directly
to retrieve the tracing information:

user@accumulo> trace on
user@accumulo> scan -t tablename -r rowId
user@accumulo> trace off
Waiting for trace information
Waiting for trace information

Time Start Service@Location Name
 5469+0 shell@hostname shell:root
 1+5 tserver@localhost listLocalUsers
 1+2667 shell@hostname client:getTableConfiguration
 1+2674 tserver@localhost getTableConfiguration
 1+2679 tserver@localhost getTableConfiguration
 1+2686 shell@hostname client:getUserAuthorizations
 82+2723 shell@hostname scan
 41+2723 shell@hostname scan:locateTablet
 3+2743 shell@hostname client:startScan
 2+2746 tserver@localhost startScan
 2+2761 tserver@localhost startScan
 1+2761 tserver@localhost metadata tablets read ahead 4
 41+2764 shell@hostname scan:location
 39+2765 tserver@localhost startScan
 37+2766 tserver@localhost tablet read ahead 9
 1+2767 tserver@localhost open

The time column of numbers shows the length of a particular operation in millisec‐
onds, and the start column shows how many milliseconds elapsed between the start
of the entire trace and the start of a particular operation. Note that operations are
nested so that the time number for one operation is greater than the sum of the times
taken by the operations it initiates, i.e., those nested under it. The nesting is shown by
indentation. Tracing is useful for finding operations that are taking longer than
expected.

482 | Chapter 13: Performance

Using the Monitor
The Accumulo monitor is a convenient way to see metrics of cluster performance and
diagnose problems. The monitor page shows several graphs of interest to perfor‐
mance analyses. Application designers can check these to see what kind of aggregate
performance an application is achieving, and to verify how an application will scale
when run against an increasing number of servers. For these graphs to be used effec‐
tively, estimates for the theoretical performance of individual hardware components
must be known, or else any comparison to empirical performance numbers is
meaningless.

In particular, looking at the aggregate ingest rate (Figure 13-1) and aggregate number
of scans (Figure 13-2) will provide a good notion of how busy the cluster is.

Figure 13-1. Aggregate ingest rate in key-value pairs per second

Figure 13-2. Aggregate scan rate in key-value pairs per second

Next most useful are the graphs describing the raw amount of data written or read, in
megabytes (Figure 13-3 and Figure 13-4).

Analyzing Performance | 483

Figure 13-3. Aggregate ingest rate in megabytes of data per second

Figure 13-4. Aggregate scan rate in megabytes of data per second

Monitoring CPU load can also be useful in determining how busy the cluster is
(Figure 13-5).

Figure 13-5. Aggregate CPU load

Looking at caching information in the graphs at the bottom of the list is useful for
seeing whether index or block caching is having the desired effect (Figure 13-6 and
Figure 13-7).

484 | Chapter 13: Performance

Figure 13-6. Number of index block cache misses (i.e., when Accumulo has to read an
index block from HDFS)

Figure 13-7. Number of data block cache misses (i.e., when Accumulo has to read a data
block from HDFS)

In addition, you can measure the number of items that are being processed by Accu‐
mulo clients, which may be converting individual user requests into several key-value
pairs. Knowing how to convert the number of user write or read requests into the
number of key-value pairs or megabytes of data read and written will help verify that
the cluster is performing optimally.

For example, if every user request to write a record of application data involves writ‐
ing the original record as one key-value pair to one table, and several key-value pairs
for index entries of individual fields in the record, the ratio of application records to
key-value pairs written may be 1 to 10 or more.

Getting familiar with these metrics will help in reasoning about performance and
tuning decisions discussed in the next few sections.

We cover the types of exceptions that Accumulo applications can expect and some
ways to handle them in “Handling Errors” on page 95. When you troubleshoot an
application, it is also important to be able to get information on the health of the tab‐
let servers and master in order to determine whether the application is doing some‐
thing wrong or simply experiencing issues due to hardware problems or
misconfiguration.

Analyzing Performance | 485

Tablet servers forward log messages of severity WARN and above to the Accumulo
monitor that displays them in one convenient location (Figure 13-8). Checking these
logs can be helpful if a failure occurs within a tablet server.

Figure 13-8. Logs in monitor

When you are for hotspots, viewing the page of the monitor that shows the amount
of data written or read per server is useful (Figure 13-9). If one or two servers are
handling the majority of the reads and writes, versus roughly the same number of
reads or writes across most of the servers, it may indicate a hotspot.

Figure 13-9. Server statistics

486 | Chapter 13: Performance

Further drilling down into the individual tablets hosted by a server can reveal the
range of keys that reads and writes are using (Figure 13-10).

Figure 13-10. Tablet statistics

A hotspot in a particular range of keys can be a feature of some external data being
loaded, over which the application has no control, or it can be the result of a deliber‐
ate key design.

In the former case, application designers can consider transforming external data into
a set of keys that avoids hotspots by using techniques described in “Avoiding Hot‐
spots” on page 305.

For more tips on troubleshooting, see “Troubleshooting” on page 461.

Using Local Logs
In addition to forwarding WARN and ERROR level messages to the monitor, tablet
servers write to several logfiles on the local machine, which can include log messages
of lower severity that may be useful for debugging. These are typically found in either
$ACCUMULO_HOME/logs or /var/log/accumulo.

See “Logging” on page 436 for details on configuring logs.

Analyzing Performance | 487

Tablet Server Tuning
Tablet servers are multithreaded and will take advantage of multiple cores on a server.
Additional tuning should be done according to the particular hardware on which tab‐
let servers will run and what other processes are present.

We discuss table-specific properties in depth in “Configuring Table Properties” on
page 137 for tuning table behavior. Here we address remaining properties that are
specific to tablet server operations.

External Settings
A number of settings external to Accumulo must be configured for Accumulo to
work properly. In addition to the settings described in “Kernel Tweaks” on page 384
and “Software Dependencies” on page 386, the following are some settings to exam‐
ine when you are tuning for performance.

HDFS threads used to transfer data
Depending on your version of HDFS, you may or may not need to increase the num‐
ber of threads that can be used to transfer data. If the version you are using has the
dfs.datanode.max.transfer.threads property, which defaults to 4096, you do not
need to adjust it. If HDFS is still using dfs.datanode.max.xcievers, its value should
be increased to 4096:

 <property>
 <name>dfs.datanode.max.xcievers</name>
 <value>4096</value>
 </property>

HDFS durable sync
For Accumulo 1.5 and later, HDFS durable sync must be enabled because Accumulo
uses HDFS for its write-ahead log. Older versions of Hadoop may need dfs.sup
port.append set to true, but newer versions default dfs.durable.sync to true, so
that value merely needs to remain unchanged. In newer versions of Hadoop, the
dfs.datanode.synconclose property should also be set to true to ensure that data in
Accumulo RFiles is synced to disk when the files are closed.

In older versions of Hadoop:

 <property>
 <name>dfs.support.append</name>
 <value>true</value>
 </property>

In newer versions:

488 | Chapter 13: Performance

 <property>
 <name>dfs.durable.sync</name>
 <value>true</value>
 </property>
 <property>
 <name>dfs.datanode.synconclose</name>
 <value>true</value>
 </property>

Memory Settings
Tablet servers are designed to serve data from disk efficiently, but they are also
designed to use memory to optimize reads and writes as much as possible. Memory
settings are among those that have the most significant performance impact. There
are a few things to consider when configuring the amount of memory dedicated to
various components of tablet servers.

tserver.memory.maps.max
The in-memory map is where new writes are stored and sorted in memory, in addi‐
tion to be written to disk in a write-ahead log, until they are flushed to disk in a
minor compaction.

The amount of memory that each tablet server reserves for in-memory maps is con‐
trolled via the tserver.memory.maps.max setting, and increasing this can improve
write speed and decrease the number of individual compactions. Memory is divided
among all tablets actively receiving writes on the same tablet server, so this property
may need to be increased significantly to have a noticeable effect.

If the in-memory map size is increased, the number of write-ahead logfiles should
also be adjusted. When a tablet has a given number of write-ahead logs, it will auto‐
matically be flushed, even if memory is not full. So, the number of write-ahead logs
(table.compaction.minor.logs.threshold) times the size of each log (tser
ver.walog.max.size) should be at least as big as the amount of memory given for in-
memory maps (tserver.memory.maps.max):

table.compaction.minor.logs.threshold × tserver.walog.max.size ≥ tser
ver.memory.maps.max

For example, if we are setting tserver.memory.maps.max to 12GB, and tser
ver.walog.max.size is set to 4GB, we would want to increase table.compac
tion.minor.logs.threshold to be greater than 3.

Increasing the size of the write-ahead logs via tserver.walog.max.size can cause
recovery to take longer and should be done with caution.

Tablet Server Tuning | 489

tserver.memory.maps.native.enabled
In all but trivial testing systems, native in-memory maps should be built, if necessary,
and enabled by leaving the tserver.memory.maps.native.enabled property set to
true. See “Building native libraries” on page 400 for details on building native maps.

To ensure that native in-memory maps are being used, make sure the libraries exist in
$ACCUMULO_HOME/lib/native. If not, they can be built by running the make com‐
mand in $ACCUMULO_HOME/server/src/main/c++/.

At startup time, tablet server logs in $ACCUMULO_HOME/logs/tserver*.log will
show whether native maps are enabled:

[server.Accumulo] INFO : tserver.memory.maps.native.enabled = true

And whether they were not found:

[tabletserver.NativeMap] ERROR: Failed to load native map library ..

Cache settings
In general, more memory dedicated to caches will provide better query performance.
However, Java garbage collection may then take longer to reclaim memory from
objects no longer in use, decreasing tablet server responsiveness and interfering with
ZooKeeper’s attempts to determine server online status. The cache size properties are
tserver.cache.index.size and tserver.cache.data.size and they govern the
amount of memory used to cache RFile index blocks and RFile data blocks,
respectively.

Ideally, the index cache size should be chosen so that all index blocks for the tablets
hosted by a tablet server fit in memory. To estimate this size, the number of files per
tablet and tablets per tablet server must be determined, as well as the average index
size per file (see “Inspect RFiles” on page 465 for information on inspecting individ‐
ual RFiles).

Any amount of memory dedicated to the data cache will be utilized, so its size can be
made as large as makes sense for your application and your hardware. The more
memory that can be used to hold data blocks in the data cache, the greater the num‐
ber of disk accesses that can be avoided when Accumulo fetches key-value pairs that
were recently accessed or key-value pairs that are sorted close together in a tablet to
recently accessed data.

Java heap size

The tablet server heap size is an environment variable, ACCUMULO_TSERVER_OPTS, set
in the accumulo-env.sh file. It should be large enough to cover the total size given to
caches, plus some overhead. If native maps are not enabled (which is not recom‐
mended), the heap size must also include the size of the in-memory maps. Tablet

490 | Chapter 13: Performance

servers will error out if the memory allocation does not add up when native maps are
turned off. The in-memory maps and caches are not the only things the tablet server
stores in memory, but they are generally the values that are tuned larger when there is
more memory available, and their values therefore are potentially the largest contrib‐
utors to a tablet server’s memory usage.

Processes other than the tablet server only need sufficient memory
to operate and don’t benefit from increased memory. A potential
exception is the Accumulo garbage collector. If you have a lot of
tablets, files, and servers, making the garbage collection memory
allocation larger will keep collection efficient. If it can’t keep the list
of all files that are candidates for deletion in memory, it has to use
multiple passes to reclaim files.

tserver.mutation.queue.max
This is the number of bytes of write-ahead log data to store in memory before it is
flushed to disk. Setting the value too low reduces Accumulo’s throughput, but setting
it too high can result in memory exhaustion if there are many concurrent writers.
Values of 2M or 4M may be reasonable. (See the ACCUMULO-1905 and
ACCUMULO-1950 Jira pages for a more detailed analysis.)

Additional settings are listed in Table 13-2.

Table 13-2. Additional tablet server memory settings

Setting Description

tserver.default.blocksize Size of blocks used in caches

tserver.dir.memdump Local directory to store temporary files used by long-running scans. If an in-memory map is
ready to be deleted (its contents having been flushed in HDFS in a minor compaction) but is
still being used by a long-running scan, a copy of the data needed by the scan will be stored
on a local disk until it is no longer needed. This allows the memory to be freed sooner.

tserver.memory.manager Implementation of memory manager; default is LargestFirstMemoryManager

tserver.server.message.size.max Maximum allowable message size a tablet server will accept

tserver.sort.buffer.size Amount of memory to use when sorting write-ahead logs for recovery

Write-Ahead Log Settings
The write-ahead log currently limits the speed of writes via the BatchWriter because
all mutations must be committed in an append-only fashion to the write-ahead log in

Tablet Server Tuning | 491

http://bit.ly/accumulo-1905_jira
http://bit.ly/accumulo-1950_jira

order to be considered successful. Therefore, tuning the write-ahead log settings is
usually worth the effort.

The following are the settings that impact performance the most:

tserver.wal.replication
Write-ahead logs are stored in HDFS as of Accumulo version 1.5, and as such they
are replicated for availability should a server fail. By default, write-ahead logs are
replicated according to the default policy set for HDFS in $HADOOP_HOME/conf/
hdfs-site.xml, but this setting can be overridden for tablet servers in general and spe‐
cific tables as well.

Reducing the number of replicas for write-ahead logs can increase performance when
safety demands allow.

tserver.wal.sync

By default in Accumulo 1.6, tablet servers are configured to use the SYNC_BLOCK flag
when closing blocks written to write-ahead logs. In addition, the sync method is
called on the underlying filesystem when data is written to a write-ahead log. The
particular sync method called depends on the tserver.wal.sync.method in Accu‐
mulo 1.6.1 and newer.

tserver.wal.sync.method

When tserver.wal.sync is used as just described, this setting controls the particular
sync method used. The default is hsync, which waits until writes are completed to
disk. Using the hsync method prevents the loss of data in Accumulo tables even in the
event of a sudden power outage.

In environments where uninterruptible power supplies are applied to allow systems
to be shut down gracefully in the event of a power outage, this setting can be set to
hflush, which does not wait. Using hflush can result in up to a 30 percent increase in
write performance.

Note that this setting is only in Accumulo version 1.6.1 and newer.

Table 13-3 contains additional write-ahead log settings.

492 | Chapter 13: Performance

Table 13-3. Additional tablet server write-ahead log settings

Setting Description

tserver.archive.walogs Controls whether to keep copies of write-ahead logs for debugging purposes.

tserver.wal.blocksize Size of HDFS block used for write-ahead logs.

tserver.walog.max.size Maximum size for each write-ahead log. Related to tserver.memory.maps.max.

Resource Settings
Tablet servers use system resources to respond to client requests and to perform
background operations. These resources include open files, threads, and memory. We
discuss memory settings specifically in “Memory Settings” on page 489.

The following is a list of settings that control the number of threads dedicated to vari‐
ous tasks. Consider adjusting one of these upward if the particular operation associ‐
ated appears to be lagging and system resources allow. Changing the number of
resources allocated to one activity may require reducing resources allocated to other
activities.

tserver.compaction.major.concurrent.max
This setting controls the maximum number of concurrent major compactions that a
tablet server will carry out. Because major compactions involve reading multiple files
and writing out one new merged file, this setting can impact overall I/O usage. If
resources allow and major compactions appear to be queueing up in the tablet server
view of the monitor, this setting can be increased.

tserver.compaction.minor.concurrent.max
This controls the maximum number of concurrent minor compactions that a tablet
server can execute and determines how much I/O a tablet server is allowed to use for
writing new data to disk.

tserver.readahead.concurrent.max
This limits the number of long-running scans a tablet server will support
concurrently.

Tablet Server Tuning | 493

Running Tablet Servers Alongside MapReduce Workers
It is common for Accumulo processes to be deployed on the same servers that are
hosting MapReduce worker processes, such as Hadoop TaskTrackers. If this is the
case, it is important to make sure that there are enough available hardware resources
for each process when all the processes are being utilized.

For example, the number of MapReduce task slots (simultaneous workers) should be
multiplied by the amount of RAM allocated for each slot, and added to the RAM
required by the Accumulo tablet server and any other running processes to estimate
the total required memory. If this amount exceeds the available RAM, processes
should each be allocated less RAM, or the number of available MapReduce workers
should be decreased to avoid a situation in which pages of RAM will be swapped to
disk, which can cause delays that can be interpreted as a failed server and cause tablet
servers to be terminated and excluded from the cluster.

The I/O resources of servers will also be shared in this case, and running Accumulo
compactions will affect MapReduce performance and vice versa. There is a limit to
the number of files Accumulo will allow a tablet to have before forcing a major com‐
paction, in order to keep the number of file resources per scan reasonable. If there is
not enough I/O on a server to support the number of compactions required to orga‐
nize newly written data, compaction tasks will queue up on tablet servers. This can be
seen in the monitor on the tablet servers view in the column listing the number of
compactions running and queued.

If compactions are queuing up, the resources dedicated to compactions may need to
be increased, at the expense of resources dedicated to MapReduce. This can be an
indication too that simply more hardware resources are needed.

Additional resources settings are listed in Table 13-4.

Table 13-4. Additional tablet server resource settings

Setting Description

tserver.bloom.load.concurrent.max Threads used to load bloom filters in the background

tserver.bulk.assign.threads Threads used to communicate with other servers during bulk loading

tserver.bulk.process.threads Threads used to process files for bulk loading

tserver.compaction.major.thread.files.open.max Number of files that can be opened during major compactions

tserver.recovery.concurrent.max Threads used for sorting logs during recovery

494 | Chapter 13: Performance

tserver.scan.files.open.max Maximum number of open file handles that can be used for scans

tserver.server.threads.minimum Minimum number of threads for handling requests

tserver.workq.threads Threads used for copying failed bulk loading files

tserver.metadata.readahead.concurrent.max Number of metadata scans that can execute

tserver.migrations.concurrent.max Number of concurrent allowed tablet migrations

tserver.tablet.split.midpoint.files.max Number of index files to open when looking for a midpoint at which to split
a tablet

tserver.monitor.fs Whether to monitor local filesystems and exit on detecting failure

Timeouts
Tablet servers keep resources around for certain periods of time to allow tasks to
reuse them and avoid the overhead of setting up resources anew. These settings con‐
trol how aggressively tablet servers reclaim those resources. Some of them are used to
control how long to wait before determining a failure.

Timeout settings are listed in Table 13-5.

Table 13-5. Tablet server timeout settings

Setting Description

tserver.bulk.retry.max Times a server will try to assign a file to a tablet that is migrating or splitting.

tserver.bulk.timeout Time to wait for a bulk loading task to complete.

tserver.client.timeout Time to wait for additional scans from a client before closing a session.

tserver.compaction.major.delay Time to sleep between checking whether major compaction is needed.

tserver.compaction.warn.time Time before a warning is logged to note a compaction that has not made progress.

tserver.files.open.idle Time that an open file is left open for future queries before being closed.

tserver.hold.time.max Time to wait for functional disk I/O after memory is full before exiting. This is used to detect
local failures.

tserver.server.threadcheck.time Time to wait between adjustments to the thread pool.

tserver.session.idle.max Time to wait before closing an idle session.

Tablet Server Tuning | 495

Scaling Vertically
Adding more memory and CPU to a single server will help a single tablet server pro‐
cess cope with more concurrent queries and writes. Modern servers can have up to 12
or more disks, which can increase the amount of CPU and RAM required to keep
those disks busy.

Write-ahead logs can become a bottleneck for ingest because tablet servers each use
one, albeit replicated, write-ahead log. If the ingest rate of a server is dominated by
the time spent flushing mutations to the write-ahead log, adding more disks or CPU
to each server will not increase the write rate. Adding more RAM and increasing the
tserver.mutation.queue.max and tserver.memory.maps.max will improve perfor‐
mance up to a point. For this reason, it may be more cost effective to have more indi‐
vidual servers, each with fewer resources so that a greater portion of available disks is
devoted to write-ahead logs. This is consistent with Accumulo’s design to run well on
relatively cheap servers.

On individual servers that have extensive resources, including 256 GB of RAM or
more and 12 or more disks, it may be possible to improve performance by running
multiple tablet server processes on a single physical server. When doing so, it is
important that each tablet server listen on a separate set of network ports.

Cluster Tuning
Performance bottlenecks can occur in several places in an Accumulo application. It is
important to make sure that Accumulo applications are taking advantage of all the
hardware resources available and that each hardware component is being used
efficiently.

Potential bottlenecks include:

The number of clients writing or reading data
If not enough clients are available to ship new data to or scan data from the clus‐
ter, tablet servers will be underutilized.

The number of tablets available
If not enough tablets are available, some tablet servers will be idle, neither accept‐
ing writes nor serving queries. If performance is unsatisfactory for a given table
and the number of tablets the table is split into is less than the number of avail‐
able tablet servers, adding additional split points or turning down the split
threshold temporarily will cause there to be enough tablets for every server to
have one and participate in serving requests for the table.

496 | Chapter 13: Performance

The number of operations per second that a single HDFS NameNode can support
At very large scales, the sheer number of filesystem operations can become the
bottleneck of a cluster. A single HDFS NameNode is limited to a few thousand
update operations per second because each operation is synced to disk.

The throughput of the network
As clusters grow, the network can become the bottleneck if it isn’t scaled up along
with the number of servers. In some cases upgrading from Gigabit Ethernet to 10
Gigabit Ethernet or upgrading the switches connecting racks is required to avoid
the network becoming a bottleneck.

The distribution of keys being read from or written to in tables (hotspots)
Even if there are tablets on each server, it may be the case that all of the incoming
keys end up going to a small number of tablets, if there are common keys that
appear frequently.

The relative amount of CPU, RAM, and hard drives available per server
For example, servers may have lots of CPU but not enough disks, or vice versa.

The number of servers participating in the cluster
This is the ideal bottleneck. Performance of the application can be increased by
adding more machines.

Cluster tuning will consist of balancing these resources relative to one another. In
order to maximize reads and writes, applications should start by considering three
numbers:

• The number of tablet servers
• The number of tablets
• The number of client processes writing to tablet servers

Before tablet servers can all participate in servicing requests for a particular table,
there have to be at least as many tablets in the table as tablet servers in order for the
Accumulo master to be able to assign at least one tablet to each server.

Once each server has at least one tablet from the table to which an application wants
to send a request, there must also be enough client processes available to avoid artifi‐
cially limiting the aggregate read or write rate. If the theoretical limit of the tablet
servers in the Accumulo cluster is 1,000,000 writes per second, and if client processes
max out at 100,000 writes per second, we’ll need at least 10 client processes to reach
our cluster maximum.

Once these are roughly balanced, the next things to address are the load-balancing
strategy used by the master, and whether we have hotspots in our table, as described
in the next few sections.

Cluster Tuning | 497

Splitting Tables
Brand new tables in Accumulo start out as a single tablet. Accumulo automatically
splits tablets when they reach a certain threshold known as the table.split.thresh
old setting in the tablet configuration. We discuss performing tablet splits program‐
matically in “Tablet Splits” on page 145. Here we discuss splitting tablets using the
shell and additional considerations.

Some applications might be bottlenecked by the number of tablets until there are
enough tablets for every tablet server to host one or more. You can choose to either
wait until there is enough data ingested for the table to split automatically into the
desired number of tablets, turn down the split threshold temporarily to cause auto‐
matic splits to happen sooner, or presplit the table using a set of known split points.

Lowering the split threshold temporarily has the advantage of allowing Accumulo to
still pick the split points uniformly, no matter what kind of distribution of keys exists
within a table. This still assumes that the splits that will occur on the initial amount of
data ingested are representative of the split points that would have been chosen after
all the data is ingested. For example, if we are importing a list of users that has been
sorted alphabetically, the initial split points will only occur within the first few letters
of the alphabet and will not be representative of how the data would be split after the
entire list is imported. Users can try to obtain a representative sample of their data for
the purpose of ingesting it and allowing Accumulo to find good split points early.

To lower the split threshold for a table, users can configure the table in the shell like
this:

config -t tableName -s table.split.threshold=1G

If your application has a table with a small amount of data, con‐
sider splitting it as well. Such tables could be filled with lookup
information, or generated from another part of your application,
and so on. If these tables are on one tablet server, the application is
not taking advantage of Accumulo’s distributed abilities and may be
creating artificial hotspots.
One way to split a small table is the break the range up in one part
for every node in your cluster that hosts tablet servers. This may
not distribute it very well if data is not evenly distributed by
row ID.
Another way is to compact the table and look at the size of the cur‐
rent RFile. Then in the table config, set table.split.threshold
roughly equal to the RFile size divided by the number of tablet
servers. Wait until tablet servers have created the desired number
of splits. Be sure to set the table.split.threshold back to the
original value afterward.

498 | Chapter 13: Performance

Rather than lowering the split threshold, users can submit a list of split points to
Accumulo to use to create multiple tablets. The advantage of this is that the table will
be distributed onto more servers before any data is ingested. The onus of picking
good split points rests with the user.

To presplit a table from a list of points, the split points should first be put into a text
file, with one point per line. For example:

e
j
o
t

Adding these split points to a single-tablet table would result in five tablets: (-infinity,
e], (e, j], (j, o], (o, t], and lastly (t, infinity) (Figure 13-11). The special tablet with end
point at infinity exists for every table and is called the default tablet.

Figure 13-11. Adding split points

Then the split points file can be submitted to Accumulo for splitting via the shell:

user@accumulo> addsplits -t tableName -sf fileName

Cluster Tuning | 499

A file with split points can also be provided when first creating a table through the
shell. To copy the split points from an existing table, use:

user@accumulo> createtable myPreSplitTable --copy-splits existingTable

To use a file do the following:

user@accumulo> createtable myPreSplitTable --splits-file mySplitsFile.txt

A small set of specific split points can be added directly in the shell:

user@accumulo> addsplits e j o t -t mytable

Splits can be added via the Java API as well:

 ZooKeeperInstance inst = new ZooKeeperInstance(myInstance, zkServers);
 Connector conn = inst.getConnector(principal, passwordToken);

 SortedSet<Text> splitPoints = new TreeSet<>();
 splitPoints.add(new Text("e"));
 splitPoints.add(new Text("j"));
 splitPoints.add(new Text("o"));
 splitPoints.add(new Text("t"));

 conn.tableOperations().addSplits("mytable", splitPoints);

If a set of split points are to be used to presplit a table from time to time, or to be
distributed along with an application for use with multiple sources of data, care
should be taken to ensure that the split points used on a table are representative of the
distribution of the data to be loaded. The distribution of keys within a data set may
change over time, and may not be the same from one data source to another.

Accumulo can also merge tablets, which is covered in “Merging Tablets” on page 453.

Balancing Tablets
Once a table is split into some number of tablets, the Accumulo master can use differ‐
ent load balancers to achieve a good distribution of tablets across tablet servers. By
default, each table’s tablets are balanced separately and are assigned evenly and ran‐
domly to tablet servers. This load balancer will likely suffice for the majority of
applications.

However, some applications may require more fine-tuned control over their tablets.
Some key design patterns require not only that a table’s tablets are distributed evenly,
but that specific subsets of tablets are also distributed evenly.

An example might be a table with a row key containing a date. Suppose an applica‐
tion built on top of this table frequently accesses dates falling within the same month
at the same time. Using the default load balancer could end up assigning all the tab‐
lets for a month to a single server, limiting the insert and query capabilities across
that group of tablets. Instead, this table could employ a custom load balancer to

500 | Chapter 13: Performance

ensure that tablets falling within the same month are distributed evenly to tablet
servers.

To write a custom load balancer, implement a class that extends TabletBalancer as
described in “Additional Properties” on page 151. Add a JAR containing the new bal‐
ancer to Accumulo’s CLASSPATH on at least the master nodes, and configure a table to
use this balancer by setting the table.balancer property for the table.

Balancing Reads and Writes
Accumulo allows users to dedicate system resources to writes or reads as necessary.
By default, Accumulo does not throttle writes in order to keep some resources avail‐
able for reads, so query performance can suffer if clients are using too much of Accu‐
mulo’s resources for writing.

One method of throttling writes and improving read performance is to decrease the
maximum number of files Accumulo is allowed to create per tablet. This is controlled
with the per-table setting table.file.max, which defaults to 15. When the maximum
number of files has been reached for a tablet, Accumulo will merge new data with
data from one of the existing files instead of creating a new file for that tablet. The
new, merged file will then replace the existing file. This process is called a merging
minor compaction.

When merging minor compactions are occurring, the overall write rate of the cluster
may begin to decrease, because a minor compaction to free up memory for new
writes may be waiting for a merging minor compaction to complete. While this is
happening, any new writes to the server cannot proceed and clients are told to wait.
Increasing the table.file.max setting or decreasing the table.compac

tion.major.ratio setting will ensure that enough background compactions occur so
that minor compactions will not end up having to wait and block clients.

Data Locality
In MapReduce jobs, the notion of physical data locality, in terms of the distance
between data to be processed and the CPU and RAM elements in which it will be
processed, is extremely important. Many types of MapReduce jobs are run on data
that is so large that reading it from some storage medium over a network would limit
the performance in an unacceptable way. The primary innovation of MapReduce ver‐
sus many other types of data processing is that it sends the computation to the data,
rather than moving the data to the computation.

When key-value pairs are processed in a MapReduce job, the key-value pairs are read
from a local disk by a copy of the map or reduce process that has been sent to the
machine holding the data. This allows the overall job to be limited by the aggregate

Cluster Tuning | 501

throughput of all the hard drives in the cluster, which is often much higher than the
aggregate throughput rate of the network connecting machines in the cluster.

Data for MapReduce jobs is stored beforehand in HDFS, which automatically distrib‐
utes it over many machines, handles replication, and helps programs find a particular
piece of data by exposing the IP address of the physical machine on which it is stored.

For Accumulo, the concept of physical data locality is still important but not para‐
mount. Because Accumulo uses HDFS to store files, each time a tablet server flushes a
new file to HDFS as part of the minor compaction process, one copy of that file is
stored locally on the machine hosting the tablet server process. Subsequent reads can
then simply read from local disk rather than pulling data from a remote machine over
a network.

Over time, as the Accumulo master performs load balancing of tablets, some tablets
may reference files for which there is no local copy, forcing reads to pull data from a
remote machine over the network. But eventually the major compaction process will
tend to create new files for each tablet, merging several old files into one new file,
which will cause a local copy to be created. Good physical data locality is something
Accumulo achieves eventually and asynchronously.

Accumulo has a utility for checking the level of data locality in a cluster. It can be run
via the accumulo command:

accumulo org.apache.accumulo.server.util.LocalityCheck -u root -p secret

Server %local total blocks
 10.10.100.1 100.0 7
 10.10.100.2 100.0 10
 10.10.100.3 100.0 10

If for some reason a cluster has poor data locality, increasing the frequency of major
compactions or scheduling a major compaction can cause files to be rewritten. To
compact a table, use the compact command from the shell:

accumulo@cluster> compact myTable

Note that this will completely rewrite all files in a table. When stopping and restarting
a cluster, Accumulo tries to reassign tablets to the same tablet servers that were previ‐
ously hosting them before shutting down, so that physical locality is preserved.

Sharing ZooKeeper
Some other applications running on or close to the Accumulo cluster might also
make use of ZooKeeper. In particular, Apache Kafka is a popular distributed queue
used to stream data to and from applications. Some Accumulo clients can make use
of Kafka to stream data to Accumulo or from Accumulo to other applications.

502 | Chapter 13: Performance

http://kafka.apache.org

Similarly, Apache Storm, a popular streaming data processing framework, relies on
ZooKeeper for configuration information.

Be cognizant of the load placed on ZooKeeper by these other systems. (See the Zoo‐
Keeper documentation on monitoring.) Although ZooKeeper itself is a distributed
application, one machine of the quorum serves as master, meaning that all writes go
to it, whereas reads can go to any member of the quorum. The ZooKeeper quorum
master has to handle all writes and replicate those writes synchronously to other
members of the quorum, so the scalability of writes isn’t improved by adding more
machines; rather, it makes each write more expensive, reducing the total write
throughput of the ZooKeeper instance.

If ZooKeeper can’t keep up with operations, Accumulo will not function properly. It is
possible to run multiple separate ZooKeeper instances on a cluster, each one consist‐
ing of one, three, or five nodes, as long as applications are configured to use different
instances.

Cluster Tuning | 503

https://storm.incubator.apache.org
http://bit.ly/zookeeper_monitoring

APPENDIX A

Shell Commands Quick Reference

Debugging
classpath

Lists the current files on the classpath.

debug

Turns debug logging on or off.

listscans

Lists what scans are currently running in Accumulo. See the accumulo.core.cli
ent.admin.ActiveScan javadoc for more information about columns.

listcompactions

Lists what compactions are currently running in Accumulo. See the accu
mulo.core.client.admin.ActiveCompaction javadoc for more information
about columns.

trace

Turns trace logging on or off.

ping

Ping tablet servers.

Exiting
bye

Exits the shell.

505

exit

Exits the shell.

quit

Exits the shell.

Help
about

Displays information about this program.

help

Provides information about the available commands.

info

Displays information about this program.

?

Provides information about the available commands.

Iterator
deleteiter

Deletes a table-specific iterator.

deletescaniter

Deletes a table-specific scan iterator so it is no longer used during this shell
session.

listiter

Lists table-specific iterators configured in this shell session.

setiter

Sets a table-specific iterator.

setscaniter

Sets a table-specific scan iterator for this shell session.

setshelliter

Adds an iterator to a profile for this shell session.

listshelliter

Lists iterator profiles configured in the shell.

deleteshelliter

Deletes iterator profiles configured in this shell session.

506 | Appendix A: Shell Commands Quick Reference

Permissions Administration
grant

Grants system or table permissions for a user.

revoke

Revokes system or table permissions from a user.

systempermissions

Displays a list of valid system permissions.

tablepermissions

Displays a list of valid table permissions.

userpermissions

Displays a user’s system and table permissions.

Shell Execution
execfile

Specifies a file containing Accumulo commands to execute.

history

Generates a list of commands previously executed.

Shell State
authenticate

Verifies a user’s credentials.

cls

Clears the screen.

clear

Clears the screen.

notable

Returns to a tableless shell state.

sleep

Sleeps for the given number of seconds.

table

Switches to the specified table.

user

Switches to the specified user.

Shell Commands Quick Reference | 507

whoami

Reports the current username.

Table Administration
clonetable

Clones a table.

config

Prints system properties and table-specific properties.

createtable

Creates a new table, with optional aggregators and optionally pre-split.

deletetable

Deletes a table.

droptable

Deletes a table.

du

Prints how much space, in bytes, is used by files referenced by a table. When
multiple tables are specified it prints how much space, in bytes, is used by files
shared between tables, if any.

exporttable

Exports a table.

importtable

Imports a table.

offline

Starts the process of taking a table offline.

online

Starts the process of putting a table online.

renametable

Renames a table.

tables

Displays a list of all existing tables.

Table Control
addsplits

Adds split points to an existing table.

508 | Appendix A: Shell Commands Quick Reference

compact

Sets all tablets for a table to major compact as soon as possible (based on current
time).

constraint

Adds, deletes, or lists constraints for a table.

flush

Flushes a table’s data that is currently in memory to disk.

getgroups

Gets the locality groups for a given table.

getsplits

Retrieves the current split points for tablets in the current table.

merge

Merges tablets in a table.

setgroups

Sets the locality groups for a given table (for binary or commas, use Java API).

User Administration
addauths

Adds authorizations to the maximum scan authorizations for a user.

createuser

Creates a new user.

deleteuser

Deletes a user.

dropuser

Deletes a user.

getauths

Displays the maximum scan authorizations for a user.

passwd

Changes a user’s password.

setauths

Sets the maximum scan authorizations for a user.

users

Displays a list of existing users.

Shell Commands Quick Reference | 509

Writing, Reading, and Removing Data
delete

Deletes a record from a table.

deletemany

Scans a table and deletes the resulting records.

deleterows

Deletes a range of rows in a table. Note that rows matching the start row are not
deleted, but rows matching the end row are deleted.

egrep

Searches each row, column family, column qualifier, and value, in parallel, on the
server side (using a java Matcher, so put .* before and after your term if you’re
not matching the whole element).

formatter

Specifies a formatter to use for displaying table entries.

interpreter

Specifies a scan interpreter to interpret scan range and column arguments.

grep

Searches each row, column family, column qualifier, and value in a table for a
substring (not a regular expression), in parallel, on the server side.

importdirectory

Bulk-imports an entire directory of data files to the current table. The boolean
argument determines if Accumulo sets the time.

insert

Inserts a record.

maxrow

Finds the max row in a table within a given range.

scan

Scans the table and displays the resulting records.

510 | Appendix A: Shell Commands Quick Reference

APPENDIX B

Metadata Table

The metadata table contains a row for every tablet in Accumulo. Tablets are uniquely
described by the ID of their table and the last row in the range assigned to the tablet,
or end row. Table B-1 describes the columns that can appear in a tablet’s row in the
metadata table, and Table B-2 shows some sample entries from a real metadata table.

In addition to tablet entries, there is a section of the metadata table that records file
deletion entries. There is also a section for files that are in the process of being bulk-
imported into Accumulo, to assist the garbage collector in not deleting these files pre‐
maturely. More about file deletion can be found in “Garbage Collector” on page 376.

Table B-1. Metadata table description

Row Column family Column qualifier Value

table id ; tablet end row file regular data file name size in bytes , number of keys

table id ; tablet end row future tablet server session id tserver IP : port

table id ; tablet end row last tablet server session id tserver IP : port

table id ; tablet end row loc tablet server session id tserver IP : port

table id ; tablet end row log server / log file name log set | table id

table id ; tablet end row scan file currently being scanned

table id ; tablet end row srv compact compaction id

table id ; tablet end row srv dir tablet directory

511

Row Column family Column qualifier Value

table id ; tablet end row srv flush flush id

table id ; tablet end row srv lock zookeeper lock location

table id ; tablet end row srv time M or L followed by latest time

table id ; tablet end row ~tab ~pr 0x01 followed by previous tablet’s end row

Row ID
The row ID for a tablet contains the table ID and the tablet end row separated by a
semicolon. For the last tablet in a table, there is no end row. The row for that tablet is
the table ID followed by <.

Rows starting with ~del are for deletion entries and rows starting with ~blip are for
files that are in the process of being bulk loaded. These entries also contain the name
of the file marked for deletion or bulk loading.

There are also entries for problems with loading resources. If the problem involves
the metadata table, the information about the problem is written directly to Zoo‐
Keeper, but problems with other tablets are written to the metadata table. These
entries have row ID beginning with ~err and also containing the table name. The col‐
umn family is either FILE_READ, FILE_WRITE, or TABLET_LOAD, indicating the type of
problem, and the column qualifier is the resource name, which is either a filename or
a tablet key extent (prev row and end row). The value contains additional informa‐
tion such as the time the problem occurred, the server, and the exception if available.

File Column Family
This column family contains information about a tablet’s files. The column qualifier
is the name of the file and the value contains information about the file, its size in
bytes, and number of keys. Under some conditions these values are estimates. For
example, when a tablet is split, the two resulting tablets’ file entries will each be
assumed to contain about half the bytes and number of keys of the original tablet’s
files.

The first letter of the filename (the actual file name, not including its path) indicates
what type of operation created the file:

512 | Appendix B: Metadata Table

F
Minor compaction

C
Major compaction

A
Full major compaction

M
Merging minor compaction

I
Bulk import

Scan Column Family
This column family is used to ensure that files are not deleted while they are being
scanned. The column qualifier is the name of a file currently being scanned. The
garbage collector takes this information into account when determining which files
are still in use and which can be safely deleted.

future, last, and loc Column Families
These column families contain information about where a tablet has been assigned.
The future column contains the current assignment. The loc column contains the cur‐
rent assignment once the tablet has been successfully loaded by the assigned tablet
server. The last column is the last assignment, used to try to reassign a tablet to the
same server to improve data locality.

The column qualifier is the tablet server session ID, and the value is the tablet server
location, its IP address, and port. Each tablet server process has a unique session ID,
so if the tablet server process is restarted on a machine Accumulo will be able to dis‐
tinguish between tablets assigned to it before and after it was restarted.

log Column Family
This column family contains information about a tablet’s write-ahead logfiles. The
column qualifier is the server name and the logfile name separated by a slash. The
value is the log set and table ID separated by a pipe. In 1.5.0 and later, the log set is
the same as the logfile name.

Metadata Table | 513

srv Column Family
The dir column qualifier has the tablet’s main directory as its value. The tablet can
use files outside of this directory, but new files will be created in the directory.

The compact column qualifier has the most recent compaction ID as its value. The
flush column qualifier has the most recent flush ID as its value. These IDs are used
to determine whether requested flushes or compactions have successfully completed
for all relevant tablets.

The lock column qualifier contains the ZooKeeper lock location for a tablet server
that is attempting to write to the metadata table. There is a constraint on the metadata
table that only accepts writes from tablet servers with currently held ZooKeeper locks.

The time column qualifier stores the timestamp of the most recently written data to a
tablet. It is preceded by an M indicating that the timestamp is in milliseconds since the
epoch, or an L indicating that the timestamp is in logical time (essentially a one-up
counter).

~tab:~pr Column
This column contains the end row of the previous tablet, which helps Accumulo keep
track of its metadata. The value is 0x01 followed by previous tablet’s end row. For the
first tablet in a table, there is no previous tablet, so the value is set to 0x00.

Other Columns
There are a few additional metadata entry types that are ephemeral, such as those
written in the process of a tablet split operation. These include a ~tab:oldprevrow
and ~tab:splitRatio for split operations; chopped:chopped for merge operations;
loaded for bulk import operations; and !cloned for table clone operations.

Table B-2. A sample of metadata table contents

Row Column family:Column qualifier Value

!0;!0< srv:dir /root_tablet

!0;!0< ~tab:~pr \x00

!0;~ file:/table_info/A0001c8q.rf 965,28

!0;~ last:1409c5a89030283 127.0.0.1:9997

!0;~ loc:1409c5a89030283 127.0.0.1:9997

514 | Appendix B: Metadata Table

Row Column family:Column qualifier Value

!0;~ srv:compact 10892

!0;~ srv:dir /table_info

!0;~ srv:flush 10892

!0;~ srv:lock tservers/127.0.0.1:9997/

zlock-0000000000$1409c5a89030283

!0;~ srv:time L3523

!0;~ ~tab:~pr \x01!0<

!0< last:1409c5a89030283 127.0.0.1:9997

!0< loc:1409c5a89030283 127.0.0.1:9997

!0< srv:compact 10892

!0< srv:dir /default_tablet

!0< srv:flush 10892

!0< srv:lock tservers/127.0.0.1:9997/

zlock-0000000000$1409c5a89030283

!0< srv:time L4504

!0< ~tab:~pr \x01~

1< file:/default_tablet/

C0000dj7.rf

12617985,527400

1< file:/default_tablet/

C0000mcw.rf

18999363,790313

1< file:/default_tablet/

C00013vg.rf

25227499,1035563

1< file:/default_tablet/

C000191y.rf

7476173,305642

1< file:/default_tablet/

C0001alv.rf

2239839,91671

Metadata Table | 515

Row Column family:Column qualifier Value

1< file:/default_tablet/

C0001boe.rf

1543104,63045

1< file:/default_tablet/

C0001bzk.rf

452015,18523

1< file:/default_tablet/

C0001c5h.rf

146692,5864

1< file:/default_tablet/

F0001c45.rf

95096,3852

1< file:/default_tablet/

F0001c6j.rf

43762,1750

1< file:/default_tablet/

F0001c7w.rf

55019,2206

1< last:1409c5a89030283 127.0.0.1:9997

1< loc:1409c5a89030283 127.0.0.1:9997

1< log:127.0.0.1+9997/30d1970a-

3db5-49fc-82d6-8adde36c9453

127.0.0.1+9997/30d1970a-

3db5-49fc-82d6-8adde36c9453:4

1< srv:compact 0

1< srv:dir /default_tablet

1< srv:flush 0

1< srv:lock tservers/127.0.0.1:9997/

zlock-0000000000$1409c5a89030283

1< srv:time M1380306759481

1< ~tab:~pr \x00

3< file:/default_tablet/

F0000005.rf

186,1

3< last:1409c5a89030283 127.0.0.1:9997

3< loc:1409c5a89030283 127.0.0.1:9997

516 | Appendix B: Metadata Table

Row Column family:Column qualifier Value

3< srv:dir /default_tablet

3< srv:flush 1

3< srv:lock tservers/127.0.0.1:9997/

zlock-0000000000$1409c5a89030283

3< srv:time M1377020908127

3< ~tab:~pr \x00

~del/!0/

table_info/

A0001c8l.rf

Metadata Table | 517

APPENDIX C

Data Stored in ZooKeeper

Under the /accumulo node in ZooKeeper, there is a node for each instance of Accu‐
mulo keyed by instance ID. There is also an instances node that contains a node for
each Accumulo instance name, with the data for each instance name being the
instance ID currently associated with that name.

The following nodes can exist under each instance ID node.

masters, tservers, gc, monitor, and tracers Nodes
These nodes contain the locations of the various Accumulo processes.

The masters/lock node contains an ephemeral sequential master lock whose data is
the master location. The masters/goal_state node contains the master’s goal state
(NORMAL, SAFE_MODE, or CLEAN_STOP).

The tservers/tablet_server_host:port nodes contain an ephemeral sequential
lock for the specified tablet server. The data for the lock is TSERV_CLIENT=host:port.

The gc/lock node contains an ephemeral sequential lock for the garbage collector.
The data for the lock is GC_CLIENT=IP:port.

The data for the monitor node is the location (IP:port) of the monitor server. There is
also a child node monitor/log4j_port, whose data is the port of the monitor server
used for collecting error logs from other Accumulo processes.

The data for the tracers/trace-ID nodes is the location (IP:port) for the tracer pro‐
cess. The ID is a one-up counter for the tracer processes.

519

problems/problem_info Nodes
These nodes are created when a problem has occurred with a resource of the meta‐
data table. Problems with nonmetadata resources are stored in the metadata table.

The problem information encoded in the node name includes the table name, prob‐
lem type (FILE_READ, FILE_WRITE, or TABLET_LOAD), and resource name (either a file‐
name or tablet key extent). The data for the node is additional information about the
problem, including the time the problem occurred, the server, and the exception if
available.

root_tablet Node
This node has lastlocation, location, future_location, dir, and walogs children.
These nodes contain the information that is stored in the metadata table for other
tablets: tablet server assignment information, HDFS directory, and write-ahead log
files.

tables/table_id Nodes
These nodes contain the following child nodes:

state

Data is the current state of the table (NEW, ONLINE, OFFLINE, or DELETING).

conf/table_property_name

Data is the value for the table property.

flush-id

Data is the ID of the last attempted flush.

compact-id

Data is the ID of the last attempted compaction followed by an encoding of the
iterators used for the compaction.

compact-cancel-id

Data is the ID of the last canceled compaction.

name

Data is the name of the table.

config/system_property_name Node
The data for each of these nodes is the value for the specified system property. These
property values override what is configured in the accumulo-site.xml file.

520 | Appendix C: Data Stored in ZooKeeper

users/username Nodes
Accumulo’s user authentication and authorization mechanisms are pluggable. The
default authentication implementation is a simple username/password system. The
usernames are stored as ZooKeeper nodes whose data is the hash of the user’s pass‐
word. The default authorization implementation stores the Accumulo users’ maxi‐
mum set of authorizations in a child node of the username node in ZooKeeper. These
authorizations are used along with column visibilities for each key to determine
which key-value pairs can be seen by the user.

Other Nodes
hdfs_reservations

Associates external HDFS directories with a FATE transaction ID when in the
process of bulk importing files, importing tables, or exporting tables.

table_locks

Contains table read and write locks associated with performing some types of
table operations.

next_file

Used for creating unique file and directory names for the lifetime of an Accu‐
mulo instance, this stores the current maximum number of names that have been
allocated.

bulk_failed_copyq

Contains tablet server work queue for copying files that failed to bulk import.

recovery

Contains tablet server work queue for sorting write-ahead logfiles that need to be
recovered.

dead/tservers

Contains tablet servers that have been shut down.

fate/transaction_id

Contains state of in-progress FATE operations.

Data Stored in ZooKeeper | 521

Index

A
Access Control Lists (ACLs), 53
Accumulo

cases suited for, 56
history of, 12
other data management systems vs., 46-56
versions of, 11

administration, Accumulo, 383-424
configuration process, 401-410
installation options, 387-401
preinstallation conditions, 383-387
security features, 416-424
very large-scale clusters, 411-416

analyzing performance, 481-487
with local logs, 487
with monitor, 483-487
with tracing, 481

Apache Cassandra, 12, 51
Apache CouchDB, 51
Apache Hadoop, 4
Apache HBase, 12, 51, 54
Apache Hive, 242-248
Apache Thrift proxy, 40, 236-242

generating client code, 240
Python example, 238
starting a, 237
with language-specific clients, 241

Apache ZooKeeper
configuration, 387
data stored in, 519-521
internals and, 379
nodes in, 519-521
uses of, 35
uses of and, 379

architecture, 34-41
Accumulo in, 36-40
Hadoop in, 35
ZooKeeper in, 35

atomicity, 47
authentication

custom, 195-197
process of, 176

authorizations, 183-193
about, 183
and column visibilities, 184
custom, 195
deployment using, 193
example, 185-190
limiting, 184
using default visibility in, 190-193

authorizations, designing, 313

B
basic Accumulo API, 81-130

batch scanning data, 113-115
connecting objects, 90
deleting data, 125-128
development environment, 82
reading data, 103-113
testing applications in, 129
updates in, 116-124
Wikipedia pages example, 84-89
writing data, 90-102

batch scanning, 113-115
BatchScanner, 31
BatchWriter, 29
Bigtable, 1, 12, 29
Bigtable data, 51

523

binary searches, 8
bloom filters, 142-144

benefits/drawbacks with, 142
defined, 142
functors for, 143
setting options for, 142

Business Intelligence, 2

C
CAP theorem, 53, 379
Cassandra (see Apache Cassandra)
cell-level security, 24
Chubby, 35
client API, 28-34

and classes used to communicate with
Accumulo, 29-31

approach to rows in, 32
exploiting sort order in, 33

client communication, 39, 378
cloning

altering table properties and, 445
for MapReduce, 444-446

cluster planning, 476-481
age-off strategy in, 481
compactions in, 479
estimated total volume of data for, 478
example, 478-481
modeling write performance for, 477
rate of incoming data in, 479
user requests/indexes required and, 479

cluster tuning, 496-503
data locality and, 501
for balancing reads and writes, 501
for balancing tablets, 500
for splitting tables, 498-500
potential bottlenecks in, 496
sharing of ZooKeeper and, 502

clusters, 41
changes in, 438-439
control nodes, adding, 439
control nodes, removing, 439
restoring, 458-461
sizing of, 476-481
stopping, 427
worker nodes, adding, 438
worker nodes, removing, 438

column families, 19, 55
column qualifiers, 19
column visibilities, 13, 19, 314

column-oriented storage, 3
columnar data, 51
combiners, 220-227

built-in, 223
custom, 224-227
defined, 220
incrementing/appending updates with, 221

compactions
data lifecycle and, 451
major compactions, applying changes with,

452
of specific ranges, 453

compression, 45
conditional mutations, 118-124

and Percolator, 119
for batches of results, 121
submitting, 119

configuration process, 401-410
automatic failover in, 409
client configuration files for, 406
file permissions in, 401
initialization in, 410
JAR files for, 407-409
server configuration files for, 402-406

consistency, 42, 47
constraint configuration API, 202
constraints, 201-208

configuration example, 203
custom example, 205-208
defined, 201

control nodes, 41
coprocessors, 54
Cordova, Aaron, 12
CouchDB (see Apache CouchDB)
creating backups, 446-449

bulk-loading files from MapReduce, 448
exporting tables, 447
importing tables, 448
timestamps and, 449
with Hadoop Distributed Copy, 447

D
D4M schema, 337-343

about, 337
example, 338-343
Java, loading data with, 342
Matlab scripts, loading data with, 340
Octave/Matlab, adding, 339

data lifecycle, 449-456

524 | Index

compactions and, 451
data age-off and, 450
garbage collection process and, 456
merging tables and, 453-455
versioning and, 449

data lifecycle management, 45
data model, 13

column families in, 19
column visibility in, 22-26
data modification and timestamps in, 17
full, 26
rows and columns in, 14-16

data partitioning, 42
data storage, 1
data warehouses, 56
databases, role of, 2
deleting data, 125-128

and removing data from disks, 127
reinserting and, 126
with BatchDeleter, 127

denormalization, 48
development environment, 82

configuring classpaths, 83
obtaining the client library, 83
using Maven, 83

distributed applications, 4-7
and partitioning of data in Accumulo, 5
shared-nothing architectures vs., 4

document data, 51
durability, 47
Dynamo, 51

E
external settings (tablet server), 488

HDFS durable sync, 488
HDFS threads for data transfer, 488

F
failure recovery, 456-467

clusters, restoring, 458-461
troubleshooting error/timeout issues,

461-467
types of failures, 456-458

failure tolerance, 43
failure(s)

loss of HDFS replicas, 458
network partitions and, 457
of all NameNodes, 457
of all ZooKeeper servers, 458

power loss in data centers, 458
single machine unresponsiveness, 457
single-machine, 456
types of, 456-458

filters, 215-220
built-in, 216
custom, 217-220

full-text search, 295-303
ingesting WikiSearch data and, 297
querying WikiSearch data and, 299-303
wikipedia table, 296
wikipediaIndex table, 295
wikipediaMetadata table, 295
wikipediaReverseIndex table, 297

G
garbage collector process, 38, 376
George, Lars, 55
Google, 1, 12
Google File System (GFS), 12
Google Maps, 29
graph data, 51
graph problems, 57
graph(s), 319-329

about, 319-323
traversing, 325-329
Twitter example, 323, 326-329

GZip, 45

H
Hadoop Distributed File System (HDFS), 4, 44
hardware

for networking, 475
for performance optimization, 473-476
for running Accumulo in public cloud envi‐

ronments, 476
storage devices, 474
virtualized, 475

hashing the key, 9
HBase (see Apache HBase)
HBase: The Definitive Guide (George), 55
HDFS (Hadoop Distributed File System), 4, 44
horizontal scaling, 4, 43
Hypertable, 12

I
initialization, 410

about, 410

Index | 525

of multiple instances, 411
re-, 410

installation options, 387-401
building from source code, 399
CDH, 388-394
for running on Amazon Web Services, 398
HDP, 394
MapR, 396
tarball distribution, 387

instance operations (table API), 165-173
obtaining cluster information with, 166-171
precedence of properties in, 171
setting properties with, 165

integration with other tools, 242-255
analytical tools, 255
Apache Hive, 242-248
Apache Kafka, 251-255
Apache Pig, 248-251

internals, 357-381
CAP theorem and, 379
client communication and, 378
garbage collector, 376
locating keys and, 378
master, 374-376
metadata table, 379
monitor, 377
tablet server, 357-373
tracer, 377
ZooKeeper and, 379

isolation, 47
iterator configuration API, 211
iterator(s), 13, 30, 209-236

adding, by setting properties, 215
and co-processors, 209
combiners, 220-227
configuration example, 213-215
defined, 209
filtering, 215-220
in Accumulo, 44
IndexDocIterator, 228
IntersectingIterator, 228
low-level iterator API, 231-236
RowDeletingIterator, 228
scopes with, 209
TransformingIterator, 228
VersioningIterator, 212
WholeColumnFamilyIterator, 228
WholeRowIterator, 228

J
JAR files, loading, 407-409

from HDFS, 408
lib/ext/ directory method, 407
Maven commands for, 407

Java code, 63-71
creating a table in, 64
inserting data in, 65-68
scanning for data in, 68
using authorizations in, 69
using iterators in, 70

K
Kafka (see Apache Kafka)
kernel settings, 384

open file limits, 384
swappiness, 384

keys, locating, 378

L
load balancing, 43
locality groups, 3, 20, 138-141

example, 139
setting up and managing, 138

logfiles, 79
LZO, 45

M
machine learning, 57, 343-351

example, 345-351
vectors, storing, 343

MapReduce, 12, 44
MapReduce API, 257-270

bulk import and, 268-270
delivering rows to map workers, 264
example, 259-262
ingesters/combiners as MapReduce compu‐

tations, 264-267
input/output formats with, 257
over underlying RFiles, 262-264
worker classes, writing, 259

Massively Parallel Processing (MPP), 46
master process, 38, 374-376

FATE operations by, 374
load balancer for, 375

memcached data model, 51
memory settings (tablet server), 489-490

cache settings, 490

526 | Index

Java heap size, 490
tserver.memory.maps.max, 489
tserver.memory.maps.native.enabled, 490
tserver.mutation.queue.max, 491

memory-based learning techniques, 57
merging tables, data lifecycle and, 453-455
metadata, 15
metadata tables, 10, 379, 511-514
MiniAccumuloCluster shell, 60-63

creating a table in, 61
help command in, 61
inserting data in, 61
scanning for data in, 62
unit test example, 80
using authorizations in, 63
using iterators in, 63

MongoDB, 51, 54
Monitor page, 79
monitor process, 38, 377
monitor web service, 429-433

Documentation View, 432
Garbage Collector View, 432
Master Server View, 430
overview, 429
Recent Logs View, 433
Recent Traces View, 432
Server Activity View, 432
Tables View, 432
Tablet Servers View, 431

monitoring system health and usage, 429-436
JMX metrics for, 433-435
logging for, 436
monitor web service for, 429-433

MPP (Massively Parallel Processing), 46
multidimensional data, 337
Mutation object, 29

N
namespaces, 160-165

configuring constraints for, 164
configuring iterators for, 164
creating, 161
deleting, 163
example, 160
renaming, 162
setting properties of, 162

Neo4J, 51
non-relational databases, 50
normalization, 48

NoSQL databases
Accumulo vs. other, 50-56
and iterators, 54
batch scanning in, 56
column families and locality groups in, 55
column visibility and access control in, 53
data models of, 51
Hadoop integration for, 52
high vs. eventual consistency in, 53
key ordering in, 52
large rows in, 55
namespaces in, 56

O
On-Line Analytical Processing (OLAP), 48
On-Line Transaction Processing (OLTP), 47
one-node installation, 71-79
operational workloads, 47

P
paging, implementing, 274
partitions, 6
performance, 469-503

analyzing, 481-487
cluster sizing and, 476-481
cluster tuning for, 496-503
hardware selection and, 473-476
modeling, 477
read, 470
tablet server tuning for, 488-496
write, 471-473, 477

permissions, 177-182
custom, 195
namespace, 180
system, 178
table, 181

Pig (see Apache Pig)
preinstallation conditions, 383-387

filesystem, 385
kernel settings, 384
native libraries, 385
operating systems, 383
software, 386
system services, 385
user accounts, 385

processes, stopping, 427
processors, multiple, 2
pure key-value data, 51

Index | 527

Q
querying term-partitioned indexes, 279-283

about, 279
combining query terms, 281
specific field, querying for term in, 282

R
random access memory (RAM), 4
random access performance, 7-10

and hashing vs. sorting data, 9
with sorted vs. unsorted data, 7

read performance, 470
reading data, 103-113

and grouping data by rows, 110
crafting ranges for, 108
example, 106
reusing Scanners for, 111
tuning Scanners for, 112
with isolated row views, 111
with Scanners, 103-106

recovery, tablet, 43
relational databases

Accumulo vs., 46-50
ACID guarantees in, 47
approximating properties of, 351-355
join strategies in Accumulo vs., 353-355
normalization in, 48-50
relieving, 57
schema constraints in, 351
space-time tradeoff in, 47
SQL in, 46
transactions in, 47

relative-key encoding, 45
resource manager, 360-366

major compaction by, 362
merging minor compaction by, 364
minor compaction by, 361
splitting by, 365

resource settings (tablet server), 493
and MapReduce workers, 494
tserver.compaction.major.concurrent.max,

493
tserver.compaction.minor.concurrent.max,

493
tserver.readahead.concurrent.max, 493

restarting Accumulo, 428
RFile format, 369-372

bloom filters in, 371
locality groups in, 370

optimization of, 369
relative key encoding in, 370

Riak, 51
Rinaldi, Billie, 12
row IDs, designing, 304-307

composite row IDs, 304
consistent updates, designing for, 306
hotspots, avoiding, 305
key size and, 305
Lexicoders and, 304

row-oriented storage, 3
running Accumulo, 425-467

cluster changes, 438-439
clusters, stopping, 427
data lifecycle and, 449-456
failure recovery in, 456-467
monitoring system health and usage,

429-436
processes, stopping, 427
restarting after a crash, 428
starting program, 425
table operations, 440-449
tracing operations, 436

S
SAN (storage area network), 4
scalability, of Accumulo, 43
scanner object, 30
search applications, 57
secondary indexing, 275-295

data types, indexing, 288-295
document-partitioned indexes, 284-288
term-partitioned indexes, 276-284

security API, 175-199
application accounts for multiple users in,

198
auditing operations in, 194
authentication in, 176, 195-197
authorizations in, 183-193, 195
disk encryption with, 198
permissions in, 177-182, 195
protecting networks with, 198

security features of Accumulo, 416-424
application permissions, 424
column visibilities, 416
encryption of data at rest, 422
Kerberized Hadoop, 423
limiting file access to support, 416
network security, 417-422

528 | Index

security label expression, 22
semantic triples, 329-334

about, 329
Freebase API example with, 329-334

server configuration files
accumulo-env.sh file, 403
accumulo-site.xml file, 405
copying, 402

shards, 5
shared-nothing architecture, 4
shared-nothing scaling, 4
shell commands, 505-510

debugging, 505
exiting, 505
for reading data, 510
for removing data, 510
for writing data, 510
help, 506
iterator, 506
permissions administration, 507
related to shell execution, 507
related to shell state, 507
table administration, 508
table control, 508
user administration, 509

software dependencies, 386
Apache Hadoop, 386
Apache ZooKeeper, 387

solid state drives (SSDs), 1
source code, 399

native libraries from, 400
tarball distributions from, 399

sparseness, 15
spatial data, 334-336

open source projects using, 334
space-filling curves and, 335

SQL databases, 46
approximating properties in, 351-355
GROUP BY clause in, 353, 355
JOIN clause in, 353
join strategies in Accumulo, 353-355
ORDER BY clause in, 353, 355
schema constraints in, 351
SELECT clause in, 352
WHERE clause in, 352

SSDs (solid state drives), 1
starting Accumulo, 425

init.d scripts for, 426
start-all.sh script for, 425

Stonebraker, Michael, 57
stopping Accumulo

clusters, stopping, 427
init.d scripts for, 427
processes, stopping, 427
stop-all.sh script for, 427

storage area network (SAN), 4
storage cost, 1
storage devices

hard disk drives, 474
solid state disks, 475
storage area networks, 474

T
table API, 131-173

alternate compression algorithm, 153
alternative interpreter, 154
block replica control, 154
block size control, 152
block size for compression, 152
block size for storage in index, 153
bloom filters, 142-144
caching data, 144
changing file format, 154
clearing locator cache, 159
cloning tables, 157
compacting, 149-151
creating tables, 131-135
custom table formatter, 154
deleting entries returned from a scan, 136
deleting ranges of rows in tables, 135
deleting tables, 135
enabling write-ahead log, 155
finding disk usage, 160
ignoring table failures, 152
importing/exporting tables, 158
instance operations, 165-173
locality groups, 138-141
looking up table IDs, 159
maximum memory for batching scan

results, 155
maximum number of files associated with

tablets, 153
memory control, 152
namespaces, 160-165
online/offline status, 156
renaming tables, 135
setting column visibility to default, 155
specifying CLASSPATH, 152

Index | 529

tablet balancing, 151
tablet splits, 145-148
testing class load, 160

table design(s), 271-315, 317-355
authorizations, designing, 313
column visibilities, designing, 314
D4M schema and, 337-343
full-text search and, 295-303
graphs, 319-329
machine learning and, 343-351
multidimensional data in, 337
paging, implementing, 274
relational/SQL database properties and,

351-355
row IDs, designing, 304-307
secondary indexing and, 275-295
semantic triples in, 329-334
single-, 271-274
spatial data in, 334-336
time-ordered data in, 317-319
values, designing, 307-312

table operations, 440-449
backups, creating, 446-449
cloning, 444-446
online status, changing, 444
settings, changing, 440-441

table settings
changing, 440-441
iterators, 441-444
load balancing, 441

table(s), Accumulo, 27
tablet server tuning, 488-496

external settings for, 488
for vertical scaling, 496
memory settings for, 489-490
resource settings for, 493
timeout settings for, 495
write-ahead log settings for, 491

tablet servers, 5, 38, 357-373
caching in, 373
read path, 359
resource manager of, 360-366
RFile format and, 369-372
write path, 358
write-ahead logs of, 367

tablet splits, 145-148
adding, 146
and merging tablets, 148
changing tablet split threshold, 147

obtaining lists of, 147
reasons for using, 145

tablets, 5
term-partitioned indexes, 276-284

about, 276-279
consistency across tables, maintaining, 283
querying, 279-283

testing applications, 129
with MiniAccumuloCluster, 129
with MockAccumulo, 129

Thrift proxy (see Apache Thrift proxy)
time-ordered data, 317-319
timestamps, 45
tracer, 377
tracing operations, 436
transactions, 47
traversing graphs, 325-329

about, 325
Blueprints API for, 328
Titan API for, 329
Twitter example graph, 326-329

troubleshooting process, 461-467
checking log messages in, 461
cloned tables in, 463
ensuring processes are running in, 461
for "blocky" graphs, 462
for exceptions when scanning tables in the

shell, 462
for slow queries, 463
for tablet balancing errors, 463
for unexpected query results, 463
listscans command in, 464
network partitions in, 462
RFiles inspection in, 465-467
user-initiated compactions in, 465
ZooKeeper in, 464

tuning
cluster, 496-503
tablet server, 488-496

U
unit tests, 80
updates, 116-124

conditional mutations in, 118-124
for appending or incrementing values, 118
for overwriting existing keys, 116-118
for read-modify-write operations, 118-124

530 | Index

V
values, designing, 307-312

about, 307-310
human readable vs. binary values/format‐

ters, 311
large values, 310
storing files and, 310

versioned data, applications with, 58
vertical scaling, 4, 43
very large-scale clusters, 411-416

file sizing in, 413
limits for, 412
metadata table in, 412
multiple HDFS volumes in, 413-416
networking in, 411
tablet sizing in, 413

W
websites with massive simultaneous users and

data, 56
Wikipedia pages example, 84-89

data in Wikipedia articles, 84
data modeling, 85-88
downloading all English articles, 89
downloading sample pages, 89

obtaining code, 88
worker nodes, 41
write performance, 471-473

BatchWriters and, 472
bulk loading and, 472
modeling, 477

write-ahead log settings (tablet server), 491
tserver.wal.replication, 492
tserver.wal.sync, 492
tserver.wal.sync.method, 492

write-ahead logs
about, 367
logfile recovery, 367

writing data, 90-102
committing mutations for, 93
example, 97
handling errors when, 95
mutation objects for, 90
to multiple tables, 100-102
using Lexicoders in, 99
with strings vs. byte arrays, 92

Z
ZooKeeper (see Apache ZooKeeper)

Index | 531

About the Authors
Aaron Cordova worked as a computer systems researcher at the US National Secu‐
rity Agency, where he started and led the Apache Accumulo project through its first
release. He has built large-scale data processing and analysis systems for intelligence,
defense, academic research, and web companies. Aaron is a cofounder of
Koverse Inc.

From 2008 to 2012, Billie Rinaldi was a leader of the National Security Agency com‐
puter science research team that implemented Apache Accumulo. Dr. Rinaldi code‐
signed one of Accumulo’s key technical advantages, a customizable server-side
programming framework, and made numerous other contributions to the software.
Since Accumulo became open source in fall 2011, she has worked to foster the com‐
munity surrounding it. Dr. Rinaldi was elected the Project Management Committee
chair when Accumulo became a top-level Apache project and was subsequently invi‐
ted to become a member of the Apache Software Foundation. Dr. Rinaldi is a senior
member of technical staff at Hortonworks, Inc.

Michael Wall has been using Apache Accumulo since September 2010 and has been
involved in all types of development from analytic simulation to a large-scale news
aggregation site. After graduating from the US Air Force Academy in 1994, he served
on active duty in the US Air Force. Since leaving the military, Mike has worked as a
software engineer for the National Security Agency and other government agencies.

Colophon
The animal on the cover of Accumulo: Application Development, Table Design, and
Best Practices is a yak, an animal well-suited for the higher altitudes and colder tem‐
peratures of the mountains and plateaus in Central Asia, where both wild (Bos mutus)
and domesticated (Bos grunniens) varieties still chew cud. Relatively large lungs and
hearts permit the bodies of yaks to transport oxygen efficiently, and a larger rumen,
the first of its four stomach chambers, relative to cattle allows the yak to eat food in
larger portions and less frequently. Temperatures approaching 60ºF will threaten this
animal with dehydration. The yak will more easily accommodate a -40ºF winter night
in the Himalayas.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from The Royal Natural History. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Goals and Audience
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Architecture and Data Model
	Recent Trends
	The Role of Databases
	Distributed Applications
	Fast Random Access
	Accessing Sorted Versus Unsorted Data

	Versions
	History
	Data Model
	Rows and Columns
	Data Modification and Timestamps

	Advanced Data Model Components
	Column Families
	Column Visibility
	Full Data Model

	Tables
	Introduction to the Client API
	Approach to Rows
	Exploiting Sort Order

	Architecture Overview
	ZooKeeper
	Hadoop
	Accumulo
	A Typical Cluster

	Additional Features
	Automatic Data Partitioning
	High Consistency
	Automatic Load Balancing
	Massive Scalability
	Failure Tolerance and Automatic Recovery
	Support for Analysis: Iterators
	Support for Analysis: MapReduce Integration
	Data Lifecycle Management
	Compression
	Robust Timestamps

	Accumulo and Other Data Management Systems
	Comparisons to Relational Databases
	Comparisons to Other NoSQL Databases

	Use Cases Suited for Accumulo
	A New Kind of Flexible Analytical Warehouse
	Building the Next Gmail
	Massive Graph or Machine-Learning Problems
	Relieving Relational Databases
	Massive Search Applications
	Applications with a Long History of Versioned Data

	Chapter 2. Quick Start
	Demo of the Shell
	The help Command
	Creating a Table and Inserting Some Data
	Scanning for Data
	Using Authorizations
	Using a Simple Iterator

	Demo of Java Code
	Creating a Table and Inserting Some Data
	Scanning for Data
	Using Authorizations
	Using a Simple Iterator

	A More Complete Installation
	Other Important Resources
	One Last Example with a Unit Test
	Additional Resources

	Chapter 3. Basic API
	Development Environment
	Obtaining the Client Library
	Using Maven
	Configuring the Classpath

	Introduction to the Example Application: Wikipedia Pages
	Wikipedia Data
	Data Modeling
	Obtaining Example Code
	Downloading Sample Wikipedia Pages
	Downloading All English Wikipedia Articles

	Connect
	Insert
	Committing Mutations
	Handling Errors
	Insert Example
	Using Lexicoders
	Writing to Multiple Tables

	Lookups and Scanning
	Lookup Example
	Crafting Ranges
	Grouping by Rows
	Reusing Scanners
	Isolated Row Views
	Tuning Scanners

	Batch Scanning
	Update: Overwrite
	Overwrite Example
	Allowing Multiple Versions

	Update: Appending or Incrementing
	Update: Read-Modify-Write and Conditional Mutations
	Conditional Mutation API
	Conditional Mutation Batch API
	Conditional Mutation Example

	Delete
	Deleting and Reinserting
	Removing Deleted Data from Disk
	Batch Deleter

	Testing
	MockAccumulo
	MiniAccumuloCluster

	Chapter 4. Table API
	Basic Table Operations
	Creating Tables
	Renaming
	Deleting Tables
	Deleting Ranges of Rows
	Deleting Entries Returned from a Scan
	Configuring Table Properties
	Locality Groups
	Bloom Filters
	Caching
	Tablet Splits
	Compacting
	Additional Properties
	Online Status
	Cloning
	Importing and Exporting Tables
	Additional Administrative Methods

	Table Namespaces
	Creating
	Renaming
	Setting Namespace Properties
	Deleting
	Configuring Iterators
	Configuring Constraints
	Testing Class Loading for a Namespace

	Instance Operations
	Setting Properties
	Cluster Information
	Precedence of Properties

	Chapter 5. Security API
	Authentication
	Permissions
	System Permissions
	Namespace Permissions
	Table Permissions

	Authorizations
	Column Visibilities
	Limiting Authorizations Written
	An Example of Using Authorizations
	Using a Default Visibility
	Making Authorizations Work

	Auditing Security Operations
	Custom Authentication, Permissions, and Authorization
	Custom Authentication Example

	Other Security Considerations
	Using an Application Account for Multiple Users
	Network
	Disk Encryption

	Chapter 6. Server-Side Functionality and External Clients
	Constraints
	Constraint Configuration API
	Constraint Configuration Example
	Creating Custom Constraints
	Custom Constraint Example

	Iterators
	Iterator Configuration API
	VersioningIterator
	Iterator Configuration Example
	Adding Iterators by Setting Properties
	Filtering Iterators
	Combiners
	Other Built-in Iterators

	Thrift Proxy
	Starting a Proxy
	Python Example
	Generating Client Code

	Language-Specific Clients
	Integration with Other Tools
	Apache Hive
	Apache Pig
	Apache Kafka

	Integration with Analytical Tools

	Chapter 7. MapReduce API
	Formats
	Writing Worker Classes
	MapReduce Example
	MapReduce over Underlying RFiles
	Example of Running a MapReduce Job over RFiles

	Delivering Rows to Map Workers
	Ingesters and Combiners as MapReduce Computations
	MapReduce and Bulk Import
	Bulk Ingest to Avoid Duplicates

	Chapter 8. Table Design
	Single-Table Designs
	Implementing Paging

	Secondary Indexing
	Index Partitioned by Term
	Querying a Term-Partitioned Index
	Maintaining Consistency Across Tables
	Index Partitioned by Document
	Querying a Document-Partitioned Index
	Indexing Data Types

	Full-Text Search
	wikipediaMetadata
	wikipediaIndex
	wikipedia
	wikipediaReverseIndex
	Ingesting WikiSearch Data
	Querying the WikiSearch Data

	Designing Row IDs
	Lexicoders
	Composite Row IDs
	Key Size
	Avoiding Hotspots
	Designing Row IDs for Consistent Updates

	Designing Values
	Storing Files and Large Values
	Human-Readable Versus Binary Values and Formatters

	Designing Authorizations
	Designing Column Visibilities

	Chapter 9. Advanced Table Designs
	Time-Ordered Data
	Graphs
	Building an Example Graph: Twitter
	Traversing Graph Tables
	Traversing the Example Twitter Graph

	Semantic Triples
	Semantic Triples Example

	Spatial Data
	Open Source Projects
	Space-Filling Curves

	Multidimensional Data
	D4M and Matlab
	D4M Example

	Machine Learning
	Storing Feature Vectors
	A Machine-Learning Example

	Approximating Relational and SQL Database Properties
	Schema Constraints
	SQL Operations

	Chapter 10. Internals
	Tablet Server
	Write Path
	Read Path
	Resource Manager
	Write-Ahead Logs
	File formats
	Caching

	Master
	FATE
	Load Balancer

	Garbage Collector
	Monitor
	Tracer
	Client
	Locating Keys

	Metadata Table
	Uses of ZooKeeper
	Accumulo and the CAP Theorem

	Chapter 11. Administration: Setup
	Preinstallation
	Operating Systems
	Kernel Tweaks
	Native Libraries
	User Accounts
	Linux Filesystem
	System Services
	Software Dependencies

	Installation
	Tarball Distribution Install
	Installing on Cloudera’s CDH
	Installing on Hortonworks’ HDP
	Installing on MapR
	Running via Amazon Web Services
	Building from Source

	Configuration
	File Permissions
	Server Configuration Files
	Client Configuration
	Deploying JARs
	Setting Up Automatic Failover
	Initialization

	Running Very Large-Scale Clusters
	Networking
	Limits
	Metadata Table
	Tablet Sizing
	File Sizing
	Using Multiple HDFS Volumes

	Security
	Column Visibilities and Accumulo Clients
	Supporting Software Security
	Network Security
	Encryption of Data at Rest
	Kerberized Hadoop
	Application Permissions

	Chapter 12. Administration: Running
	Starting Accumulo
	Via the start-all.sh Script
	Via init.d Scripts

	Stopping Accumulo
	Via the stop-all.sh Script
	Via init.d scripts
	Stopping Individual Processes

	Starting After a Crash
	Monitoring
	Monitor Web Service
	JMX Metrics
	Logging
	Tracing

	Cluster Changes
	Adding New Worker Nodes
	Removing Worker Nodes
	Adding New Control Nodes
	Removing Control Nodes

	Table Operations
	Changing Settings
	Changing Online Status
	Cloning
	Import, Export, and Backups

	Data Lifecycle
	Versioning
	Data Age-off
	Compactions
	Merging Tablets
	Garbage Collection

	Failure Recovery
	Typical Failures
	More-Serious Failures
	Tips for Restoring a Cluster
	Troubleshooting

	Chapter 13. Performance
	Understanding Read Performance
	Understanding Write Performance
	BatchWriters
	Bulk Loading

	Hardware Selection
	Storage Devices
	Networking
	Virtualization
	Running in a Public Cloud Environment

	Cluster Sizing
	Modeling Required Write Performance
	Cluster Planning Example

	Analyzing Performance
	Using Tracing
	Using the Monitor
	Using Local Logs

	Tablet Server Tuning
	External Settings
	Memory Settings
	Write-Ahead Log Settings
	Resource Settings
	Timeouts
	Scaling Vertically

	Cluster Tuning
	Splitting Tables
	Balancing Tablets
	Balancing Reads and Writes
	Data Locality
	Sharing ZooKeeper

	Appendix A. Shell Commands Quick Reference
	Debugging
	Exiting
	Help
	Iterator
	Permissions Administration
	Shell Execution
	Shell State
	Table Administration
	Table Control
	User Administration
	Writing, Reading, and Removing Data

	Appendix B. Metadata Table
	Row ID
	File Column Family
	Scan Column Family
	future, last, and loc Column Families
	log Column Family
	srv Column Family
	~tab:~pr Column
	Other Columns

	Appendix C. Data Stored in ZooKeeper
	masters, tservers, gc, monitor, and tracers Nodes
	problems/problem_info Nodes
	root_tablet Node
	tables/table_id Nodes
	config/system_property_name Node
	users/username Nodes
	Other Nodes

	Index
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

