
June 30th 2021 — Quantstamp Verified

Illuvium Yield Farming Rewards
This smart contract audit was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Yield Farming

Auditors Sebastian Banescu, Senior Research Engineer
Ed Zulkoski, Senior Security Engineer
Poming Lee, Research Engineer

Timeline 2021-05-16 through 2021-06-16

EVM Berlin

Languages Solidity

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification Tokenomics, Launchpad, and Reward Details
README.md

Documentation Quality Medium

Test Quality Medium

Source Code
Repository Commit

illuvium-contracts 68297e2 (audit)

illuvium-contracts 98697c5 (reaudit)

illuvium-contracts 94807fc (review)

Total Issues 16 (12 Resolved)

High Risk Issues 1 (1 Resolved)

Medium Risk Issues 2 (2 Resolved)

Low Risk Issues 6 (5 Resolved)

Informational Risk Issues 7 (4 Resolved)

Undetermined Risk Issues 0 (0 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://medium.com/illuvium/9-tokenomics-launchpad-and-reward-details-5894c3b356be
https://github.com/IlluviumGame/illuvium-contracts/blob/68297e2fda9090586ca2980d01c2a23642833b65/README.md
https://github.com/IlluviumGame/illuvium-contracts
https://github.com/IlluviumGame/illuvium-contracts/tree/68297e2fda9090586ca2980d01c2a23642833b65
https://github.com/IlluviumGame/illuvium-contracts
https://github.com/IlluviumGame/illuvium-contracts/commit/98697c5c9ac6e2e94826425423ace0211fb8584f
https://github.com/IlluviumGame/illuvium-contracts
https://github.com/IlluviumGame/illuvium-contracts/commit/94807fce56dcda930484baee6cecc30197e2029b

Summary of Findings

Quantstamp has performed a security audit of the Illuvium yield farming contracts (note that the other contracts in the repositories were not in scope). Several
findings indicated below have been identified ranging from High to Undetermined severity levels. Additionally, we have identified issues in the specification, code comments and deviations
from best practices. Moreover, we have encountered several failing tests when executing the existing test suite. The errors we encountered are included in this report. We recommend fixing
all issues before deploying the code in production.

We have performed a reaudit, which involved checking the fixes performed by the Illuvium team to address the issues found during the first audit. This report has been
updated based on commit hash .

After the first audit:

After the reaudit:
98697c5

Contracts that were in the scope of this audit:

• IlluviumCorePool.sol

• IlluviumFlashPool.sol

• IlluviumLockedPool.sol

• IlluviumPoolBase.sol

• IlluviumPoolFactory.sol

• IlluviumVault.sol

• TokenLocking.sol

• ILockedPool.sol

Quantstamp has reviewed commit where the following two smart contracts were added:After the 2nd reaudit/review: 94807fc

• FlashPoolV2.sol

• FlashPoolBase.sol

All concerns raised by the auditors on commit have been addressed by the current implementation.76843ad

ID Description Severity Status

QSP-1 Uniswap Call Susceptible To Price Manipulation Attacks High Fixed

QSP-2 Does Not Check If Lock Period Has PassedIlluviumFlashPool Low Acknowledged

QSP-3 Unclear ILV Token Bookkeeping For ILV/ETH Pair Pool Low Fixed

QSP-4 Potentially Uncounted Rewards Medium Fixed

QSP-5 Potentially Lost Rewards Medium Fixed

QSP-6 Total Balances Set Larger Than Intended Low Fixed

QSP-7 Violation Of Check-Effects-Interactions Pattern Low Mitigated

QSP-8 Missing Or Insufficient Input Validation Low Fixed

QSP-9 Missing invariant checks Low Fixed

QSP-10 Reverts On Zero ETH BalanceswapEthForIlv Informational Fixed

QSP-11 Inconsistent Initialization Steps Informational Fixed

QSP-12 Is Defined In Blocks But Is Expected To Be 2 WeeksblocksPerUpdate Informational Acknowledged

QSP-13 Privileged Roles and Ownership Informational Acknowledged

QSP-14 Clone-and-Own Informational Acknowledged

QSP-15 Unused Functions Informational Fixed

QSP-16 Misaligned Code And Comments Informational Fixed

https://github.com/IlluviumGame/illuvium-contracts/blob/68297e2fda9090586ca2980d01c2a23642833b65/contracts/pools/IlluviumCorePool.sol
https://github.com/IlluviumGame/illuvium-contracts/blob/68297e2fda9090586ca2980d01c2a23642833b65/contracts/pools/IlluviumFlashPool.sol
https://github.com/IlluviumGame/illuvium-contracts/blob/68297e2fda9090586ca2980d01c2a23642833b65/contracts/pools/IlluviumLockedPool.sol
https://github.com/IlluviumGame/illuvium-contracts/blob/68297e2fda9090586ca2980d01c2a23642833b65/contracts/pools/IlluviumPoolBase.sol
https://github.com/IlluviumGame/illuvium-contracts/blob/68297e2fda9090586ca2980d01c2a23642833b65/contracts/pools/IlluviumPoolFactory.sol
https://github.com/IlluviumGame/illuvium-contracts/blob/68297e2fda9090586ca2980d01c2a23642833b65/contracts/pools/IlluviumVault.sol
https://github.com/IlluviumGame/illuvium-contracts/blob/68297e2fda9090586ca2980d01c2a23642833b65/contracts/pools/TokenLocking.sol
https://github.com/IlluviumGame/illuvium-contracts/blob/68297e2fda9090586ca2980d01c2a23642833b65/contracts/interfaces/ILockedPool.sol
https://github.com/IlluviumGame/illuvium-contracts/blob/94807fce56dcda930484baee6cecc30197e2029b/contracts/pools/FlashPoolV2.sol
https://github.com/IlluviumGame/illuvium-contracts/blob/94807fce56dcda930484baee6cecc30197e2029b/contracts/pools/FlashPoolBase.sol

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.8.0• Slither

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither .

Findings

QSP-1 Uniswap Call Susceptible To Price Manipulation Attacks

Severity: High Risk

FixedStatus:

File(s) affected: IlluviumVault.sol

The function uses Uniswap to exchange ETH for ILV tokens. The function is declared public with no access control. If the contract holds a large amount of ETH,
attackers can manipulate (likely using flash loans) the Uniswap ETH/ILV price such that the will receive an unfavorable amount of ILV. Further, computing in the
function leaves it susceptible to .

Description: swapEthForIlv
IlluviumVault ilvOut

sandwich attacks

The following steps describe how this issue could be exploited:Exploit Scenario:

1. The attacker causes an imbalance in the Uniswap pool by either increasing the amount of ETH or decreasing the amount of ILV in the pool (possibly utilizing a flash
loan).

2. The attacker invokes . The will receive a lower than market-value amount of ILV due to the imbalance in step 1.swapEthForIlv IlluviumVault

3. The attacker buys back the ETH from step 1 at a favorable price (paying back the flash loan if needed).

Restrict the function such that only a privileged user can invoke it. Rather than relying on Uniswap to compute the value in the function, pre-compute an expectedRecommendation: ilvOut

https://github.com/crytic/slither
https://medium.com/coinmonks/demystify-the-dark-forest-on-ethereum-sandwich-attacks-5a3aec9fa33e

amount (accounting for a small amount of slippage) and pass it into the function. This additional parameter may be avoided by using an independent price oracle for the ILV token if such an
oracle is available.

Added and as input parameters to , made function access restricted. SeeUpdate: ilvOut deadline swapEthForIlv PR #34

QSP-2 Does Not Check If Lock Period Has PassedIlluviumFlashPool

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: IlluviumFlashPool.sol

The function (inherited by) does not check if of a deposit. The
adds a check in its overridden function , however, does not override the function.

Description: IlluviumPoolBase._unstake IlluviumFlashPool block.timestamp > lockedUntil
IlluviumCorePool _unstake IlluviumFlashPool _unstake

Check that is in the past for a deposit that is unstaked.Recommendation: lockedUntil

Based on the following quote from dev team we have decided to change the severity of this issue from High to Low:Update:

"Flash pools don’t lock tokens by design. Documentation was improved to address the confusion. See "PR #35

QSP-3 Unclear ILV Token Bookkeeping For ILV/ETH Pair Pool

Severity: Low Risk

FixedStatus:

,File(s) affected: IlluviumCorePool.sol IlluviumVault.sol

In on L30, the comment states that is the "Total value of ILV tokens available in the pool". However, while functions such as
only increase when , this is not the case for functions such as . For

example, if the is , the is still increased on L205, even though pair tokens are staked (not ILV).

Description: IlluviumCorePool.sol poolTokenReserve
IlluviumCorePool.receiveVaultRewards poolTokenReserve poolToken == ilv IlluviumCorePool._stake

poolToken ILV/ETH Pair poolTokenReserve
This makes the computation in of unclear:IlluviumVault.sendIlvRewards ilvInPairPool

uint256 ilvInPairPool =
(pairPoolReserve.mul(ilv.balanceOf(address(ilvEthPair))).div(ilvEthPair.totalSupply())).add(

pairPoolIlvBalance
);

In particular, the expression seems to suggest that
should store the amount of tokens in the pool, the ILV balance itself.

(pairPoolReserve.mul(ilv.balanceOf(address(ilvEthPair))).div(ilvEthPair.totalSupply())) pairPoolReserve
ILV/ETH Pair ILV/ETH Pair NOT

With the current setup, it appears that the computation above will double-count some tokens, since is increased for both and
deposits. This will inflate the weight associated with the pool.

ilvInPairPool pairPoolReserve ILV ILV/ETH Pair
ILV/ETH Pair

Clarify the intended semantics of for the pair pool.Recommendation: poolTokenReserve

Based on the following quote from dev team we have decided to change the severity of this issue from Medium to Low:Update:

" for LP pool gets updated correctly and doesn’t contain any unpaired ILV. Documentation was improved to better reflect the use of ; LP
pool ILV reserve estimation was extracted into a separate function to be more clear. See "
poolTokenReserve poolTokenReserve

estimatePairPoolReserve PR #36

QSP-4 Potentially Uncounted Rewards

Severity: Medium Risk

FixedStatus:

File(s) affected: IlluviumPoolBase.sol

The function does not flush rewards before changing the value of . This may lead to incorrect reward amounts
subsequently.
Description: IlluviumPoolBase._updateStakeLock user.totalWeight

The function should call before changing the weight and update after changing
the weight.
Recommendation: IlluviumPoolBase._updateStakeLock _processRewards user.subYieldRewards

Quote from dev team:Update:

" synchronizes contract state now and processes rewards before updating stake lock. See and "updateStakeLock PR #44 PR #55

QSP-5 Potentially Lost Rewards

Severity: Medium Risk

FixedStatus:

,File(s) affected: IlluviumLockedPool.sol IlluviumCorePool.sol

The function inside and in will not give users the full amount of the reward they are entitled to, when
. Moreover, the function will also stop the users from requesting for the missing amount afterward. Hence the users will lose rewards.

Description: _processVaultRewards IlluviumCorePool IlluviumLockedPool
pendingVaultClaim > poolTokenReserve

When the function is internally invoked, pending claims are transferred to the using . However, if the ILV balance of
the contract is too low, the statement on L281: will only transfer a portion of ILV tokens that
should be rewarded to the . However, the will be updated as if the total reward were received (e.g., on L262).

Exploit Scenario: _processVaultRewards _staker _safeIlvTransfer
IERC20(ilv).safeTransfer(_to, _amount > ilvBalance ? ilvBalance : _amount);

_staker user.subVaultRewards

Consider either reverting if the ILV balance is too low, or update the reward balance of the user to reflect the shortage.Recommendation:

Quote from dev team:Update:

" reverts now if pool balance is too low. See "_processVaultRewards PR #38

QSP-6 Total Balances Set Larger Than Intended

Severity: Low Risk

FixedStatus:

https://github.com/IlluviumGame/illuvium-contracts/pull/34
https://github.com/IlluviumGame/illuvium-contracts/pull/35
https://github.com/IlluviumGame/illuvium-contracts/pull/36
https://github.com/IlluviumGame/illuvium-contracts/pull/44/files
https://github.com/IlluviumGame/illuvium-contracts/pull/55/files
https://github.com/IlluviumGame/illuvium-contracts/pull/38

File(s) affected: TokenLocking.sol

The function may be called multiple times in order to "allow setting balance to zero in case of accidental addition of the holder". However, due to
missing checks/assertions there exists a possibility for human error which could lead to unlocking a total balance larger than intended.
Description: TokenLocking.setBalances()

For the sake of simplicity let's assume that the total amount of locked ILV tokens should be 100. The contract owner performs the following actions:Exploit Scenario: TokenLocking

1. Sets the balances of 2 holders by calling :setBalances
Holder1's balance is set to 70 ILV, using address 0x111•

Holder2's balance is set to 40 ILV, using address 0x111•

that there are no checks in the smart contract to verify that:Note

The , which is equal to 110 ILV is greater than the intended total, which is 100 ILV.totalAmount•

The same address appears twice in the array.holders•

•

2. Notices that the address and amount used for Holder2 was wrong and sets it again by calling :setBalances
Holder2's balance is set to 30 ILV, using address 0x222•

that at this point there exist 2 holders that has 40 ILV and that has 30 ILV, which is again incorrect. This is possible because the
function does not keep track of holders whose balances were set in previous calls to .

Note 0x111 0x222
setBalances() setBalances()

•

The following countermeasures should be implemented to mitigate this issue:Recommendation:

1. Keep track of holders whose balances were set in previous calls to by storing them in a list that can be iterated.setBalances()

2. Whenever is called check that the sum of all balances set (including the balances set in previous calls to this function AND which were not modified by
the current call) is equal to the expected total amount, that is 3.8 million ILV (18 decimals).

setBalances()

3. Check that there are no duplicate addresses in the input argument.

Note that as part of the fix it shouldn't be necessary to assume that the value of is always the same for each call, because if the list is too long then this
function might revert with an out-of-gas error.

holders

holders

Quote from dev team:Update:

"Added duplicate holders check; added total expected balance check; added previously set holders cleanup. to be used to set/update balances in a single transaction
(up to 100 balances setup fit into 4,5mil gas)." See

setBalances
PR #37

QSP-7 Violation Of Check-Effects-Interactions Pattern

Severity: Low Risk

MitigatedStatus:

File(s) affected: IlluviumLockedPool.sol

The and functions do not follow the , because the call to function, makes a call to the the
ILV token contract.

The same issue is also encountered in other functions such as . However, this is not an exhaustive list.

Description: _stake() _unstake() Check-Effects-Interactions pattern _processVaultRewards()

receiveVaultRewards()

Always follow the to avoid reentrancy. This can be done by moving the call to at the end of the
aforementioned functions.
Recommendation: Check-Effects-Interactions pattern _processVaultRewards()

Quote from dev team:Update:

"For the best traceability of external interactions, extracted then into separate reused functions. Protected the functions which operate on a pool tokens with reentrancy guard. See
in , see and "transferPoolToken* IlluviumPoolBase PR #39 PR #43

QSP-8 Missing Or Insufficient Input Validation

Severity: Low Risk

FixedStatus:

, , ,File(s) affected: TokenLocking.sol IlluviumLockedPool.sol IlluviumCorePool.sol IlluviumPoolBase.sol

The following instances of missing or insufficient input validation have been encountered:Description:

1. The parameter of the of the function is not checked to conform to the interface and could be any address._pool TokenLocking.setPool() ILockedPool

2. The parameter of the function is not checked to be greater than zero. The same applies to the
function with the same name in other contracts.

_rewardsAmount IlluviumLockedPool.receiveVaultRewards()

3. The and parameters of are not checked to be different. This could lead to deleting a holder._from _to IlluviumLockedPool.changeLockedHolder()

4. The parameter of is not checked to be different from ._vault IlluviumCorePool.setVault() address(0)

5. The parameter of is not checked to be greater than zero._weight IlluviumPoolBase.setWeight()

Note that this is not an exhaustive list. User inputs should always be validated.

The items in the following list correspond to the items in the description:Recommendation:

1. Use to check if the address provided through the input parameter respects the interface.EIP-165 _pool ILockedPool

2. Add a statement to check that .require _rewardsAmount > 0

3. Add a statement to check that .require _from != _to

4. Add a statement to check that .require _vault != address(0)

5. Add a statement to check that .require _weight > 0

Quote from dev team:Update:

https://github.com/IlluviumGame/illuvium-contracts/pull/37
https://docs.soliditylang.org/en/v0.8.1/security-considerations.html#re-entrancy
https://docs.soliditylang.org/en/v0.8.1/security-considerations.html#re-entrancy
https://github.com/IlluviumGame/illuvium-contracts/pull/39
https://github.com/IlluviumGame/illuvium-contracts/pull/43
https://eips.ethereum.org/EIPS/eip-165

"Introduced validations for ILV and sILV tokens, pool factory. Contracts are to be deployed with a well-tested script, which enforces correctness of the addresses set.
is called only by which validates the inputs. should allow zero input by design to disable the pool (added soldoc). See "changeLockedHolder TokenLocking setWeight PR #45

QSP-9 Missing invariant checks

Severity: Low Risk

FixedStatus:

File(s) affected: IlluviumPoolBase.sol

Assumptions about intermediate values during function processing should be explicitly checked, especially if these values depend on outputs returned by external contract calls. For
example, we assume that the value of on L420 inside of should be greater than zero. Otherwise, it doesn't make sense to create a deposit with

.

Note that this is one example of what we assume to be an implicit assumption, however, all implicit assumptions should be checked in a similar way.

Description:
stakeWeight IlluviumPoolBase._stake()

stakeWeight == 0

Add an statement that checks if .Recommendation: assert stakeWeight > 0

Quote from dev team:Update:

"Missing invariant check added. See "PR #51

QSP-10 Reverts On Zero ETH BalanceswapEthForIlv

Severity: Informational

FixedStatus:

File(s) affected: IlluviumVault.sol

If the ETH balance of is zero (possibly due to a previous call to either or), the function will revert due to the check
on L159. However, since is public, a legitimate call to could be griefed by any user if they front-run with a call to .

Description: IlluviumVault swapEthForIlv sendIlvRewards balance
> 0 swapEthForIlv sendIlvRewards swapEthForIlv

Restrict access to as suggested above, or change to return immediately upon zero balance rather than reverting.Recommendation: swapEthForIlv swapEthForIlv

Quote from dev team:Update:

"Resolved in fix for QSP-1. Additionally altered not to swap ETH/ILV if ETH balance is zero. See "sendIlvRewards PR #40

QSP-11 Inconsistent Initialization Steps

Severity: Informational

FixedStatus:

File(s) affected: TokenLocking.sol

According to the inline documentation, step 2 should invoke , and step 3 sets balances (through potentially multiple calls to). However, the function
requires on L164 that , so step 3 cannot occur after step 2.

Description: setPool setBalances
setBalances address(pool) == address(0)
The steps on L17-20 appear correct, but L126 and L149 do not align with this summary.

Revise the initialization logic.Recommendation:

Quote from dev team:Update:

"Fixed comments for and functions. See "setPool setBalances PR #41

QSP-12 Is Defined In Blocks But Is Expected To Be 2 WeeksblocksPerUpdate

Severity: Informational

AcknowledgedStatus:

File(s) affected: IlluviumPoolFactory.sol

Several comments suggest that should equal 2 weeks, but is defined in blocks which have variable mining times. It is not clear why is not used for
this variable instead, particularly since block timestamp manipulation will have minimal effect for such a large timespan.
Description: blocksPerUpdate timestamp

Use for updates instead of . Note that this would also affect related functions such as .Recommendation: block.timestamp block.number IlluviumPoolBase._sync

Quote from dev team:Update:

"Documentation was improved to explicitly state the blocks are used instead of timestamps. The rationale behind using blocks is to make all mined blocks equal in rewards
independently of how much time passes for each block to be mined. See PR #54"

QSP-13 Privileged Roles and Ownership

Severity: Informational

AcknowledgedStatus:

,File(s) affected: TokenLocking.sol IlluviumPoolFactory.sol

Smart contracts will often have variables to designate the person with special privileges to make modifications to the smart contract. The following instances of this issue
have been identified:
Description: owner

1. The of the contract can perform the following privileged actions:owner TokenLocking
Set the address for ILV staking (only once).pool•

Set the balances of tokens owned by any address, e.g. pre-seed investors, seed investors, team members, etc. This can be done multiple times.•

2. The of can create/register unlimited pools at will.owner IlluviumPoolFactory

https://github.com/IlluviumGame/illuvium-contracts/pull/45
https://github.com/IlluviumGame/illuvium-contracts/pull/51
https://github.com/IlluviumGame/illuvium-contracts/pull/40
https://github.com/IlluviumGame/illuvium-contracts/pull/41

This centralization of power needs to be made clear to the users, especially depending on the level of privilege the contract allows to the owner.Recommendation:

Quote from dev team:Update:

"For this is part of the initialization process, once it is complete, the owner has no privileged access anymore. For an ability to register new
pools and set their weights is part of the design. Explicitly added that into the soldoc. See "

TokenLocking IlluviumPoolFactory
PR #42

QSP-14 Clone-and-Own

Severity: Informational

AcknowledgedStatus:

File(s) affected: utils/*

The clone-and-own approach involves copying and adjusting open source code at one's own discretion. From the development perspective, it is initially beneficial as it reduces the
amount of effort. However, from the security perspective, it involves some risks as the code may not follow the best practices, may contain a security vulnerability, or may include intentionally or
unintentionally modified upstream libraries.

All files in the sub-directory are cloned from open source repositories such as openzeppelin.

Description:

utils/

Rather than the clone-and-own approach, a good industry practice is to use the Truffle framework for managing library dependencies. This eliminates the clone-and-own
risks yet allows for following best practices, such as, using libraries.
Recommendation:

Quote from dev team:Update:

"There are some solidity files (not only libraries) copied from OpenZeppelin. We intentionally copied these files into the source control system to track any intentional/unintentional
modifications which may happen there."

QSP-15 Unused Functions

Severity: Informational

FixedStatus:

File(s) affected: IlluviumLockedPool.sol

The and functions declared on L235 and L224 in are never used.Description: now256() blockNumber() IlluviumLockedPool.sol

Remove unused functions.Recommendation:

Quote from dev team:Update:

"Removed unused functions, removed unused and functions, removed unused contract. See "now256() blockNumber() LockedPoolMock PR #46

QSP-16 Misaligned Code And Comments

Severity: Informational

FixedStatus:

File(s) affected: IlluviumCorePool.sol

In the function on L155 code comment says that the should be , however it's not in the case on L165 where the 2nd
parameter passed to the function, which represents the value of is hardcoded to .
Description: IlluviumCorePool.stakeAsPool _useSILV false

_processRewards _useSILV true

Clarify if the code or the comment needs to be adjusted.Recommendation:

Quote from dev team:Update:

"Both code and comments look correct: when the request to process LP pool rewards without sILV () is made by staker, gets executed internally.
Otherwise (if a request is made to process ILV pool rewards, or), doesn’t get executed. Function comment slightly altered to be clearer. See

"

_useSILV = false stakeAsPool
_useSILV = true stakeAsPool PR

#47

Automated Analyses

Slither

Slither has output 390 results, the majority of which have been filtered out because they were false positives. The remaining issues have been included in this report.

Adherence to Specification

The code seems to adhere to the existing specification with one exception:

1. The files indicates that:[Mitigated] TokenLocking.md

Linear unlocking begins: March 30, 2022, 3PM GMT•

Linear unlocking ends: March 30, 2023, 3PM GMT•

However, these dates are not hard-coded in the smart contract. Instead, the contract is left generic and any cliff and duration can be provided when the contract is

deployed. Therefore, we recommend that users check the values of the public and state variables of the contract after it has been

deployed in order to verify if the dates have been set correctly.

cliff duration TokenLocking

Yes, this is part of the deployment scripts, which are also provided and not to be modified.Update from dev team:

Additionally, due to gaps in the documentation we have the following open questions:

1. In function : please confirm if sending all the rewards to the immediately instead of having any
sort of time lock, is intended by design.
[Fixed] IlluviumLockedPool.sol _processVaultRewards msg.sender

https://github.com/IlluviumGame/illuvium-contracts/pull/42/files
https://github.com/IlluviumGame/illuvium-contracts/pull/46
https://github.com/IlluviumGame/illuvium-contracts/pull/47
https://github.com/IlluviumGame/illuvium-contracts/pull/47

What are the intended values of ? Will it be a short duration or is it larger than the 1 year staking period?endBlock•

If a user stakes their tokens immediately before the , are they effectively locking their tokens for free, since will be disabled immediately after?endBlock _sync•

Should be disabled after the pool is disabled?_stake•

Code Documentation

1. Good inline documentation.

2. It is not fully clear why the local variable was created, but it is presumably useful for determining how many tokens
the administrators should deposit into the contract. However, it should be noted that if is called multiple times, this amount could be
misleading as existing balances may exist or be overwritten.

[Fixed] TokenLocking.setBalances.totalAmount
TokenLocking.setBalances

3. The comment in on L105: "Creates (deploys) IlluviumVault linked to IlluviumYieldPool…" does not appear correct, as no pool is set in the
.

[Fixed] IlluviumVault.sol
constructor

4. The comment on L30 of : "/// @dev Total value of ILV tokens available in the pool" does not appear correct. The token may not be ILV, but
could be ILV/ETH pair tokens instead.
[Fixed] IlluviumCorePool.sol

5. In on L583, inline comments should mention that the constant relates to the bonus weight for locking for a full year.[Fixed] IlluviumPoolBase.sol 2e6

6. In L18: "setBeneficiaries" should be changed into "setBalances".[Fixed] TokenLocking.sol

7. The off-chain procedure regarding how a holder is able to obtain a signature from the owner or how/where to send such a signature such that the
migration is initiated by the owner is not clear. This should be clearly documented.
[Fixed] TokenLocking

8. Some code comments indicate concrete values which are not enforced in the code. For example, the comment on L200 in
indicates: "check if blocks/update (2 weeks) have passed since last update". However, the value of can be set to any value in the .

Will be set during deployment by migration script.

[Mitigated] IlluviumPoolFactory.sol
blockPerUpdate constructor()

Update:

Adherence to Best Practices

1. Since the function does not allow the user to specify where the tokens will be unlocked to. The event event has 3

parameters: , and and is emitted only once on L242 with the first 2 parameters having the same value. It is unclear why both these parameters are needed

if they are never different.

[Fixed] TokenLocking.release TokensReleased
by to amount

2. Nested ternary expressions without any code alignment should be avoided. For example L436 contains such an expression without any parentheses which makes

it hard to audit and maintain: . Also the comment on

L435 is vague as it refers to "safe bounds". It should be explicitly indicated what those bounds are. We recommend using nested statements and adding

more precise comments.

[Fixed]

_now256 = _now256 < cliff ? cliff : _now256 - cliff > duration ? cliff + duration : _now256;
if-then-else

3. should check that each holder and amount is non-zero.[Fixed] TokenLocking.setBalances

4. Magic numbers should be avoided in code and replaced with named constants which provide a semantic meaning and don't just indicate the constant's value.

For example:

[Fixed]

The value appears twice in the contract and it is unclear why this value is used and what it represents.1e12 IlluviumLockedPool•

The value appears on L167 in and on L583 in and it is unclear what it represents.2e6 IlluviumCorePool IlluviumPoolBase•

The value appears multiple times in and it is unclear what it represents.1e6 IlluviumPoolBase•

5. There are minor inconsistencies between the and , such as the core pool using as

opposed to .

[Acknowledged] IlluviumCorePool IlluviumLockedPool vaultRewardsPerWeight
vaultRewardsPerToken

"This is intended by design since core pools allow staking for different time intervals as opposed to the locked pool. That’s where the “weight”

comes into play: it reflects the difference in the period tokens are locked for."

Update from dev team:

6. SafeMath is used interchangeably with normal arithmetic symbols throughout, however since it Solidity is used SafeMath is not needed.[Fixed] 0.8

7. Event parameters with type should be . The following deviations from this best practice were identified:address indexed

L94 in where parameter of the event is not .[Fixed] TokenLocking.sol poolAddr PoolUpdated indexed•

Test Results

Test Suite Results

Several failing tests have been encountered when running the existing test suite. We provide the output of the test suite, including the error details below.After audit:

The dev team has indicated that the failing tests are due to a . Running the test files individually helps reduce the probability of failing

tests. However, failing tests might still be encountered at seemingly random points.

After reaudit: known issue in Truffle

Using network 'test'.

Compiling your contracts...
===========================
> Everything is up to date, there is nothing to compile.

[initial migration] local network - skipping the migration script
[ILV ERC20 deployment] local network - skipping the migration script
[Token Locking deployment] local network - skipping the migration script
[pools deployment] local network - skipping the migration script

Contract: IlluviumCorePool
✓ should correctly create a core pool (828ms)
✓ should stake correctly (755ms)
✓ should unstake correctly (2624ms)
✓ should revert on invalid unstake (3159ms)

https://github.com/trufflesuite/truffle/issues/1461

✓ should not accumulate rewards before init block (1622ms)
✓ should correctly set last yield distribution (3070ms)
✓ should update stake lock correctly (1515ms)
✓ should revert on invalid update stake lock (2048ms)
✓ should correctly set users locking weight (4203ms)
✓ should mint sILV correctly (1407ms)
✓ should mint ILV correctly (3253ms)
✓ should process and lock ilv yield rewards correctly (1295ms)
✓ should calculate pending rewards correctly (1890ms)
✓ should calculate pending rewards correctly for multiple users (4631ms)
✓ should calculate pending rewards correctly after bigger stakes (3893ms)
✓ should not accumulate yield after yield farming ends (2560ms)

Contract: IlluviumFlashPool
✓ should create a flash pool correctly (1539ms)
✓ should unstake correctly (2056ms)
✓ should always set total weight (2732ms)
✓ should not accumulate rewards after pool is disabled (1755ms)
✓ should mint sILV correctly (1614ms)
✓ should process and lock ilv yield rewards correctly (3644ms)

Contract: IlluviumLockedPool
✓ should stake locked tokens correctly (97ms)
✓ should unstake locked tokens correctly (1094ms)
✓ should allow only token locking calls (96ms)
✓ should calculate pool reserve correctly (1937ms)

Contract: IlluviumPoolFactory
✓ should create core pools correctly (2642ms)
✓ should create flash pools correctly (11639ms)
✓ should correctly update ilv per block (3962ms)
✓ should revert on invalid ilv per block update (2420ms)
✓ should correctly change a given pool weight (2795ms)
✓ should revert on unauthorized pool weight change (6245ms)
✓ should mint exact amount of ILV during yield farming (135702ms)

Contract: TokenLocking and its flows (excluding staking)
unix timestamp <–> Date conversion

✓ Wed Mar 30 2022 18:00:00 GMT+0300 (Eastern European Summer Time) converts to 1648652400
when token locking TokenLocking is deployed without a pool attached

✓ unlocking formula gives 3170979198376458 out of 100k in 1 sec
✓ unlocking formula gives 6341958396752917 out of 200k in 1 sec
✓ unlocking formula gives 9512937595129375 out of 300k in 1 sec
token locking state variables are initialized correctly

✓ owner is a0
✓ duration is t3 - t2
✓ cliff is t2
✓ cliff is 1648652400
✓ ILV token address (ilv) is set correctly
✓ locking pool is not set (staking is not supported)

setting the balances
when pool is not set

when expected total is correct
when there are no duplicate holders
when t < t2
when t = t1

✓ succeeds (252ms)
when t = t2 - 1

✓ succeeds (99ms)
when t ≥ t2
when t = t2

✓ reverts (104ms)
when t = t2 + 1

✓ reverts (87ms)
when t = t3

✓ reverts (70ms)
when there are duplicate holders
when t < t2
when t = t1

✓ reverts (109ms)
when t = t2 - 1

✓ reverts (598ms)
when t ≥ t2
when t = t2

✓ reverts (712ms)
when t = t2 + 1

✓ reverts (674ms)
when t = t3

✓ reverts (352ms)
when expected total is not correct
when t < t2
when t = t1

✓ reverts (333ms)
when t = t2 - 1

✓ reverts (102ms)
when t ≥ t2
when t = t2

✓ reverts (196ms)
when t = t2 + 1

✓ reverts (717ms)
when t = t3

✓ reverts (930ms)
when pool is set
when t < t2
when t = t1

✓ reverts (382ms)
when t = t2 - 1

✓ reverts (94ms)
when t ≥ t2
when t = t2

✓ reverts (150ms)
when t = t2 + 1

✓ reverts (131ms)
when t = t3

✓ reverts (71ms)
resetting the balances

when balances are first set to [40, 70, 0]
✓ lockedHolders array is [a1, a2] (78ms)
when balances are then set to [0, 60, 30]

✓ lockedHolders array is [a2, a3] (89ms)
✓ account 1 balance gets erased (46ms)
✓ account 2 balance gets set to 60 and not 70
✓ account 3 balance gets set to 30 (67ms)

when 100 balances are set for the first time
4495075 gas is used

✓ operation fits into a single block
when 150 balances are set next

4556668 gas is used
✓ operation fits into a single block

when locked tokens are allocated
✓ staking fails for holder 1 (no locking pool) (85ms)
✓ holder 1 ILV balance is zero
✓ staking fails for holder 2 (no locking pool) (55ms)
✓ holder 2 ILV balance is zero
✓ staking fails for holder 3 (no locking pool) (52ms)
✓ holder 3 ILV balance is zero (57ms)
holder 1 is registered as a beneficiary:

✓ userRecord.ilvBalance is 50.741k
✓ userRecord.ilvReleased is zero
✓ userRecord.hasStaked is false

holder 2 is registered as a beneficiary:
✓ userRecord.ilvBalance is 513.432k
✓ userRecord.ilvReleased is zero
✓ userRecord.hasStaked is false

holder 3 is registered as a beneficiary:
✓ userRecord.ilvBalance is 927.593k
✓ userRecord.ilvReleased is zero
✓ userRecord.hasStaked is false

migrateWithSig (locked tokens migration)
when a1 is overridden with an account with known key – migration

✓ reverts if the signature is invalid (68ms)
✓ reverts if the nonce is bad (72ms)
✓ reverts if the signature has expired (184ms)
✓ reverts if the signature is wrong (414ms)
✓ reverts when performed by low privileged user pair (153ms)
old (overridden) address of the migrated holder is registered as a beneficiary

✓ userRecord.ilvBalance is 502.734k
✓ userRecord.ilvReleased is zero
✓ userRecord.hasStaked is false

new address of the migrated holder is not registered as a beneficiary
✓ userRecord.ilvBalance is zero
✓ userRecord.ilvReleased is zero
✓ userRecord.hasStaked is false

succeeds when performed by an admin on user request
✓ TokensMigrated event is emitted
✓ new address of the migrated holder gets appended to lockedHolders (440ms)
old address of the migrated holder is no longer registered as a beneficiary

✓ userRecord.ilvBalance is zero
✓ userRecord.ilvReleased is zero
✓ userRecord.hasStaked is false

new address of the migrated holder is registered as a beneficiary
✓ userRecord.ilvBalance is 502.734k
✓ userRecord.ilvReleased is zero
✓ userRecord.hasStaked is false

succeeds when performed by a user on admin request
✓ TokensMigrated event is emitted

✓ new address of the migrated holder gets appended to lockedHolders
old address of the migrated holder is no longer registered as a beneficiary

✓ userRecord.ilvBalance is zero
✓ userRecord.ilvReleased is zero
✓ userRecord.hasStaked is false

new address of the migrated holder is registered as a beneficiary
✓ userRecord.ilvBalance is 93.363k
✓ userRecord.ilvReleased is zero
✓ userRecord.hasStaked is false

when no one stakes
linear unlocking routine(s)
holder 1 releases linearly:

t = t2
✓ release reverts (65ms)
✓ holder 1 ILV balance is 0/50.741k
0/365 of the tokens are released

✓ userRecord.ilvBalance is 365/365 of the initial stake (50.741k/50.741k)
✓ userRecord.ilvReleased is 0/365 of the initial stake (0/50.741k)
✓ userRecord.hasStaked is false

t = t2 + 1 second
✓ holder 1 ILV balance is 0.001609006732/50.741k (96ms)
0.000011574074074074073/365 of the tokens are released

✓ userRecord.ilvBalance is 364.99998842592595/365 of the initial stake (50.741k/50.741k)
✓ userRecord.ilvReleased is 0.000011574074074074073/365 of the initial stake (0.001609006732/50.741k)
✓ userRecord.hasStaked is false

t = t2 + 1 block
✓ holder 1 ILV balance is 0.024135100984/50.741k
0.00017361111111111112/365 of the tokens are released

✓ userRecord.ilvBalance is 364.9998263888889/365 of the initial stake (50.741k/50.741k)
✓ userRecord.ilvReleased is 0.00017361111111111112/365 of the initial stake (0.024135100984/50.741k)
✓ userRecord.hasStaked is false

t = t2 + 1 day
✓ holder 1 ILV balance is 139.018181671232/50.741k (135ms)
1/365 of the tokens are released

✓ userRecord.ilvBalance is 364/365 of the initial stake (50.602k/50.741k)
✓ userRecord.ilvReleased is 1/365 of the initial stake (139.018181671232/50.741k)
✓ userRecord.hasStaked is false

t = t2 + 1 week
✓ holder 1 ILV balance is 973.12727169863/50.741k
7/365 of the tokens are released

✓ userRecord.ilvBalance is 358/365 of the initial stake (49.768k/50.741k)
✓ userRecord.ilvReleased is 7/365 of the initial stake (973.12727169863/50.741k)
✓ userRecord.hasStaked is false

t = t2 + 1 month
✓ holder 1 ILV balance is 4.17k/50.741k
30/365 of the tokens are released

✓ userRecord.ilvBalance is 335/365 of the initial stake (46.571k/50.741k)
✓ userRecord.ilvReleased is 30/365 of the initial stake (4.17k/50.741k)
✓ userRecord.hasStaked is false

t = t3 - 1 month
✓ holder 1 ILV balance is 46.571k/50.741k (258ms)
335/365 of the tokens are released

✓ userRecord.ilvBalance is 30/365 of the initial stake (4.17k/50.741k)
✓ userRecord.ilvReleased is 335/365 of the initial stake (46.571k/50.741k)
✓ userRecord.hasStaked is false

t = t3 - 1 week
✓ holder 1 ILV balance is 49.768k/50.741k
358/365 of the tokens are released

✓ userRecord.ilvBalance is 7/365 of the initial stake (973.12727169863/50.741k)
✓ userRecord.ilvReleased is 358/365 of the initial stake (49.768k/50.741k)
✓ userRecord.hasStaked is false

t = t3 - 1 day
✓ holder 1 ILV balance is 50.602k/50.741k
364/365 of the tokens are released

✓ userRecord.ilvBalance is 1/365 of the initial stake (139.018181671232/50.741k)
✓ userRecord.ilvReleased is 364/365 of the initial stake (50.602k/50.741k)
✓ userRecord.hasStaked is false

t = t3 - 1 block
✓ holder 1 ILV balance is 50.741k/50.741k (404ms)
364.9998263888889/365 of the tokens are released

✓ userRecord.ilvBalance is 0.00017361111110858474/365 of the initial stake (0.024135100984/50.741k)
✓ userRecord.ilvReleased is 364.9998263888889/365 of the initial stake (50.741k/50.741k)
✓ userRecord.hasStaked is false

t = t3 - 1 second
✓ holder 1 ILV balance is 50.741k/50.741k (119ms)
364.99998842592595/365 of the tokens are released

✓ userRecord.ilvBalance is 0.000011574074051168282/365 of the initial stake (0.001609006732/50.741k)
✓ userRecord.ilvReleased is 364.99998842592595/365 of the initial stake (50.741k/50.741k)
✓ userRecord.hasStaked is false

t = t3
✓ holder 1 ILV balance is 50.741k/50.741k
all the tokens are released

✓ userRecord.ilvBalance is zero (0/50.741k)
✓ userRecord.ilvReleased is equal to initial stake (50.741k/50.741k)
✓ userRecord.hasStaked is false

holder 2 releases linearly:
t = t2

✓ release reverts (178ms)
✓ holder 2 ILV balance is 0/513.432k (64ms)
0/365 of the tokens are released

✓ userRecord.ilvBalance is 365/365 of the initial stake (513.432k/513.432k)
✓ userRecord.ilvReleased is 0/365 of the initial stake (0/513.432k)
✓ userRecord.hasStaked is false

t = t2 + 1 second
✓ holder 2 ILV balance is 0.01628082717/513.432k (42ms)
0.000011574074074074073/365 of the tokens are released

✓ userRecord.ilvBalance is 364.99998842592595/365 of the initial stake (513.432k/513.432k)
✓ userRecord.ilvReleased is 0.000011574074074074073/365 of the initial stake (0.01628082717/513.432k)
✓ userRecord.hasStaked is false

t = t2 + 1 block
✓ holder 2 ILV balance is 0.244212407562/513.432k (40ms)
0.00017361111111111112/365 of the tokens are released

✓ userRecord.ilvBalance is 364.9998263888889/365 of the initial stake (513.431k/513.432k)
✓ userRecord.ilvReleased is 0.00017361111111111112/365 of the initial stake (0.244212407562/513.432k)
✓ userRecord.hasStaked is false

t = t2 + 1 day
✓ holder 2 ILV balance is 1.406k/513.432k (44ms)
1/365 of the tokens are released

✓ userRecord.ilvBalance is 364/365 of the initial stake (512.025k/513.432k)
✓ userRecord.ilvReleased is 1/365 of the initial stake (1.406k/513.432k)
✓ userRecord.hasStaked is false

t = t2 + 1 week
✓ holder 2 ILV balance is 9.846k/513.432k (235ms)
7/365 of the tokens are released

✓ userRecord.ilvBalance is 358/365 of the initial stake (503.585k/513.432k)
✓ userRecord.ilvReleased is 7/365 of the initial stake (9.846k/513.432k)
✓ userRecord.hasStaked is false

t = t2 + 1 month
✓ holder 2 ILV balance is 42.199k/513.432k (78ms)
30/365 of the tokens are released

✓ userRecord.ilvBalance is 335/365 of the initial stake (471.232k/513.432k)
✓ userRecord.ilvReleased is 30/365 of the initial stake (42.199k/513.432k)
✓ userRecord.hasStaked is false

t = t3 - 1 month
✓ holder 2 ILV balance is 471.232k/513.432k (152ms)
335/365 of the tokens are released

✓ userRecord.ilvBalance is 30/365 of the initial stake (42.199k/513.432k)
✓ userRecord.ilvReleased is 335/365 of the initial stake (471.232k/513.432k)
✓ userRecord.hasStaked is false

t = t3 - 1 week
✓ holder 2 ILV balance is 503.585k/513.432k (347ms)
358/365 of the tokens are released

✓ userRecord.ilvBalance is 7/365 of the initial stake (9.846k/513.432k)
✓ userRecord.ilvReleased is 358/365 of the initial stake (503.585k/513.432k)
✓ userRecord.hasStaked is false

t = t3 - 1 day
✓ holder 2 ILV balance is 512.025k/513.432k (510ms)
364/365 of the tokens are released

✓ userRecord.ilvBalance is 1/365 of the initial stake (1.406k/513.432k)
✓ userRecord.ilvReleased is 364/365 of the initial stake (512.025k/513.432k)
✓ userRecord.hasStaked is false

t = t3 - 1 block
✓ holder 2 ILV balance is 513.431k/513.432k (457ms)
364.9998263888889/365 of the tokens are released

✓ userRecord.ilvBalance is 0.00017361111110858474/365 of the initial stake (0.244212407562/513.432k)
✓ userRecord.ilvReleased is 364.9998263888889/365 of the initial stake (513.431k/513.432k)
✓ userRecord.hasStaked is false

t = t3 - 1 second
✓ holder 2 ILV balance is 513.432k/513.432k
364.99998842592595/365 of the tokens are released

✓ userRecord.ilvBalance is 0.000011574074051168282/365 of the initial stake (0.01628082717/513.432k)
✓ userRecord.ilvReleased is 364.99998842592595/365 of the initial stake (513.432k/513.432k)
✓ userRecord.hasStaked is false

t = t3
✓ holder 2 ILV balance is 513.432k/513.432k (167ms)
all the tokens are released

✓ userRecord.ilvBalance is zero (0/513.432k)
✓ userRecord.ilvReleased is equal to initial stake (513.432k/513.432k)
✓ userRecord.hasStaked is false

holder 3 releases linearly:
t = t2

✓ release reverts (372ms)
✓ holder 3 ILV balance is 0/927.593k (358ms)
0/365 of the tokens are released

✓ userRecord.ilvBalance is 365/365 of the initial stake (927.593k/927.593k)
✓ userRecord.ilvReleased is 0/365 of the initial stake (0/927.593k)

✓ userRecord.hasStaked is false
t = t2 + 1 second

✓ holder 3 ILV balance is 0.029413801208/927.593k
0.000011574074074074073/365 of the tokens are released

✓ userRecord.ilvBalance is 364.99998842592595/365 of the initial stake (927.593k/927.593k)
✓ userRecord.ilvReleased is 0.000011574074074074073/365 of the initial stake (0.029413801208/927.593k)
✓ userRecord.hasStaked is false

t = t2 + 1 block
✓ holder 3 ILV balance is 0.441207018132/927.593k
0.00017361111111111112/365 of the tokens are released

✓ userRecord.ilvBalance is 364.9998263888889/365 of the initial stake (927.593k/927.593k)
✓ userRecord.ilvReleased is 0.00017361111111111112/365 of the initial stake (0.441207018132/927.593k)
✓ userRecord.hasStaked is false

t = t2 + 1 day
✓ holder 3 ILV balance is 2.541k/927.593k (186ms)
1/365 of the tokens are released

✓ userRecord.ilvBalance is 364/365 of the initial stake (925.052k/927.593k)
✓ userRecord.ilvReleased is 1/365 of the initial stake (2.541k/927.593k)
✓ userRecord.hasStaked is false

t = t2 + 1 week
✓ holder 3 ILV balance is 17.789k/927.593k (300ms)
7/365 of the tokens are released

✓ userRecord.ilvBalance is 358/365 of the initial stake (909.804k/927.593k)
✓ userRecord.ilvReleased is 7/365 of the initial stake (17.789k/927.593k)
✓ userRecord.hasStaked is false

t = t2 + 1 month
✓ holder 3 ILV balance is 76.24k/927.593k (109ms)
30/365 of the tokens are released

✓ userRecord.ilvBalance is 335/365 of the initial stake (851.353k/927.593k)
✓ userRecord.ilvReleased is 30/365 of the initial stake (76.24k/927.593k)
✓ userRecord.hasStaked is false

t = t3 - 1 month
✓ holder 3 ILV balance is 851.353k/927.593k
335/365 of the tokens are released

✓ userRecord.ilvBalance is 30/365 of the initial stake (76.24k/927.593k)
✓ userRecord.ilvReleased is 335/365 of the initial stake (851.353k/927.593k)
✓ userRecord.hasStaked is false

t = t3 - 1 week
✓ holder 3 ILV balance is 909.804k/927.593k
358/365 of the tokens are released

✓ userRecord.ilvBalance is 7/365 of the initial stake (17.789k/927.593k)
✓ userRecord.ilvReleased is 358/365 of the initial stake (909.804k/927.593k)
✓ userRecord.hasStaked is false

t = t3 - 1 day
✓ holder 3 ILV balance is 925.052k/927.593k (391ms)
364/365 of the tokens are released

✓ userRecord.ilvBalance is 1/365 of the initial stake (2.541k/927.593k)
✓ userRecord.ilvReleased is 364/365 of the initial stake (925.052k/927.593k)
✓ userRecord.hasStaked is false

t = t3 - 1 block
✓ holder 3 ILV balance is 927.593k/927.593k (167ms)
364.9998263888889/365 of the tokens are released

✓ userRecord.ilvBalance is 0.00017361111110858474/365 of the initial stake (0.441207018132/927.593k)
✓ userRecord.ilvReleased is 364.9998263888889/365 of the initial stake (927.593k/927.593k)
✓ userRecord.hasStaked is false

t = t3 - 1 second
✓ holder 3 ILV balance is 927.593k/927.593k
364.99998842592595/365 of the tokens are released

✓ userRecord.ilvBalance is 0.000011574074051168282/365 of the initial stake (0.029413801208/927.593k)
✓ userRecord.ilvReleased is 364.99998842592595/365 of the initial stake (927.593k/927.593k)
✓ userRecord.hasStaked is false

t = t3
✓ holder 3 ILV balance is 927.593k/927.593k (302ms)
all the tokens are released

✓ userRecord.ilvBalance is zero (0/927.593k)
✓ userRecord.ilvReleased is equal to initial stake (927.593k/927.593k)
✓ userRecord.hasStaked is false

Contract: TokenLocking Sim
prepared 32 accounts with '320k' total ILV. deploying yield farming infrastructure
finalizing TokenLocking setup (locked balances, locked pool setup)
Staking '0.01' into ILV and ILV/ETH LP pools to init them
Simulation starting
Day 350:

staked: '* * '
released: ' '

Day 776:
staked: '* * '
released: ' * ** ** *** *** * *'

Day 1099:
staked: '* * '
released: '* * ** * **** ** ******** * *'

Simulation complete.
All tokens released. '30' reward sent. '320.019k' ILV released.

Staked: '* * '
Balances: '!*************!*****************'

'10.00516042' ILV left in the vault/pools
✓ evolve from t1 to t4 = t3 + 1 year (low complexity) (47644ms)

prepared 32 accounts with '320k' total ILV. deploying yield farming infrastructure
finalizing TokenLocking setup (locked balances, locked pool setup)
Staking '0.01' into ILV and ILV/ETH LP pools to init them
Simulation starting
Day 3:

staked: '* * *** '
released: ' '

Day 327:
staked: '* * * *** '
released: ' '

Day 879:
staked: '* * * *** '
released: ' * * * ** * * *'

Day 1134:
staked: '* * * *** '
released: ' * ** * * ** * * ** * * *'

Simulation complete.
All tokens released. '20' reward sent. '320.019k' ILV released.

Staked: '* * * *** '
Balances: '!*****!*!*****!!!***************'

'0.0017054' ILV left in the vault/pools
✓ evolve from t1 to t4 = t3 + 1 year [@skip-on-coverage] (58222ms)

Contract: TokenLocking and its flows (including staking)
when yield farming infrastructure is deployed

deployment looks correct (rough integrity check)
✓ uniswapV2Router02.WETH is expected WETH9
✓ uniswapV2Router02.factory is expected UniswapV2Factory (513ms)
✓ uniswapV2Factory.getPair(ILV, WETH) is expected pair ILV/ETH
✓ pair.factory is expected UniswapV2Factory
✓ pair.token0 is ILV
✓ pair.token1 is WETH
✓ pair.totalSupply is √XY (53ms)
✓ zero address balance is √XY – 1000
✓ H0 pair balance is √XY – 1000 (436ms)
✓ ILV_Pool.ilv is ILV
✓ ILV_Pool.sIlv is sILV (38ms)
✓ ILV_Pool.factory is expected PoolFactory (41ms)
✓ ILV_Pool.poolToken is ILV (183ms)
✓ ILV_Pool.vault is expected Vault
✓ ILV_Pool ILV balance is zero (59ms)
✓ LP_Pool.ilv is ILV (369ms)
✓ LP_Pool.sIlv is sILV (77ms)
✓ LP_Pool.factory is expected PoolFactory (75ms)
✓ LP_Pool.poolToken is ILV/ETH Pair
✓ LP_Pool.vault is expected Vault (562ms)
✓ LP_Pool ILV balance is zero (145ms)
✓ LockedPool.ilv is ILV
✓ LockedPool.tokenLocking is expected TokenLocking (685ms)
✓ LockedPool.vault is expected Vault (72ms)
✓ LockedPool ILV balance is zero (329ms)
✓ TokenLocking.cliff is t2 (79ms)
✓ TokenLocking.duration is 1 year (179ms)
✓ TokenLocking.ilv is ILV
✓ TokenLocking.pool is not set (290ms)
✓ TokenLocking ILV balance is zero (58ms)
✓ Vault.ilv is ILV (389ms)
✓ Vault.uniswap is expected UniswapV2Router02
✓ Vault ILV balance is zero (67ms)
Vault.pools is set

✓ pools.ilvPool is expected ILV CorePool
✓ pools.pairPool is expected LP CorePool
✓ pools.lockedPool is expected LockedPool

when TokenLocking setup is finalized (locked tokens issued, vault attached)
setup looks correct

✓ TokenLocking.pool is expected LockedPool
✓ TokenLocking ILV balance is a sum of the locked balances
✓ TokenLocking.userRecord.hasStaked is false for all holders (933ms)

when holders 1 and 2 stake
staking can be observed

✓ LockedPool.poolTokenReserve gets increased by total amount
for holder 1

✓ TokenLocking.TokensStaked event gets emitted correctly
✓ LockedPool.Staked event gets emitted correctly (169ms)
✓ TokenLocking.userRecord.hasStaked is updated to true (533ms)
✓ ILV.Transferred event doesn't get emitted (121ms)
LockedPool.User record gets created properly

✓ user.tokenAmount is equal to staked

✓ user.subVaultRewards is zero
LockedPool._processVaultRewards is not executed

✓ LockedPool.VaultRewardsClaimed event doesn't get emitted
for holder 2

✓ TokenLocking.TokensStaked event gets emitted correctly
✓ LockedPool.Staked event gets emitted correctly
✓ TokenLocking.userRecord.hasStaked is updated to true
✓ ILV.Transferred event doesn't get emitted
LockedPool.User record gets created properly

✓ user.tokenAmount is equal to staked
✓ user.subVaultRewards is zero

LockedPool._processVaultRewards is not executed
✓ LockedPool.VaultRewardsClaimed event doesn't get emitted

total stake amount doesn't get transferred from TokenLocking to LockedPool
✓ ILV.Transferred event doesn't get emitted
LockedPool.User record gets created properly

✓ user.tokenAmount is equal to staked
✓ user.subVaultRewards is zero

LockedPool._processVaultRewards is not executed
✓ LockedPool.VaultRewardsClaimed event doesn't get emitted

total stake amount doesn't get transferred from TokenLocking to LockedPool
✓ TokenLocking balance remains (296ms)
✓ LockedPool balance remains zero (89ms)

when vault rewards are distributed
pools receive rewards

✓ ILV_Pool 0.0000999 (1821ms)
✓ LP_Pool 0.0009996 (152ms)
✓ LockedPool 2.9989002 (252ms)
✓ Vault 3e-7 (520ms)

Contract: IlluviumVault
✓ should correctly swap eth for ilv (804ms)
✓ should revert on swap without eth (109ms)
✓ should revert on zero ILV swap (1029ms)
✓ should revert on expired swap (635ms)
✓ should correctly set core pools (1469ms)
✓ should correctly send vault rewards to core pools (7309ms)
✓ should properly distribute vault rewards to staker (12145ms)
✓ should properly distribute vault rewards to multiple stakers (10497ms)
✓ should correctly set poolTokenReserve for pools (13482ms)
✓ should properly distribute vault rewards using stake() (6102ms)

331 passing (51m)

Code Coverage

Due to the failing tests, the coverage values could not be accurately computed and have resulted in low values as indicated in the table below.

Coverage values have been increased. However, the branch coverage is not sufficiently high at 66%. We recommend increasing this value as close to 100% as

possible.

After audit:

After reaudit:

File % Stmts % Branch % Funcs % Lines

IlluviumAware.sol 100% 50% 100% 100%

IlluviumCorePool.sol 100% 76.92% 100% 100%

IlluviumFlashPool.sol 88.89% 66.67% 100% 88.89%

IlluviumLockedPool.sol 98% 61.54% 93.33% 96.08%

IlluviumPoolBase.sol 96.35% 70% 87.5% 96.32%

IlluviumPoolFactory.sol 76.19% 54.17% 70% 76.19%

IlluviumVault.sol 98.18% 61.11% 100% 98.21%

ReentrancyGuard.sol 100% 50% 100% 100%

TokenLocking.sol 91.89% 69.64% 85.71% 92.11%

All files 94.44% 66.25% 89.89% 94.25%

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

ebb172aa0a2b701fdacb09bb725627720bed3def08ff060e561ed7a43972852c ./FlashPoolV2.sol

1c653f8b38e35fe50640ff22ba779215d8831c6346c3634b1ab88e88b7cd2fc8 ./FlashPoolBase.sol

4105ab18554b037462f5d9dd9e76103dfe1e694afa63fe060ae9653a19a3b1d7 ./contracts/Migrations.sol

e247e60428165e34c9b7bdecf7f0e9b7bdc133b224ed38821351ba29bc622ae1 ./contracts/interfaces/IERC20.sol

33181c04f1be0e88e8163bae190c280fd59a3a675fca8191fbb3fb554e03a1b4 ./contracts/interfaces/ICorePool.sol

effd20243643684806566972be54bd2380c74cfeb1d6fa3b1f1cb2ae763ea738 ./contracts/interfaces/ILockedPool.sol

2be0ff818c14a134320c5fb0199e860201ac7d672d20e945684864bdb4b5d2ba ./contracts/interfaces/IERC1155.sol

c1e0f757a7c7eb8ea63b9976de66468c8e0ffd441c32830528778c7c0a1d77ae ./contracts/interfaces/IERC721.sol

7cb5b4cfb9c4eb09a7bdf2a9a836ac4e82b66f9b45123f8e1e86027f70d5d45a ./contracts/interfaces/INFTClaimManager.sol

ef05bdf6074a0bf2e28d4b5940dcfc609e9cbf3c8c406f0208e82666116d19bc ./contracts/interfaces/IWETH.sol

284a49b71012bc58d64eca4576f522a01c31a5757b0f81331e6aecb1ed1b49ec ./contracts/interfaces/IERC20Mintable.sol

99f7a79ff8e8a0635ae15c50cf11f630bbc9f826ab15480313130c9575ae06c1 ./contracts/interfaces/IPool.sol

7ae0144686847a705dad2d16b3a2b2a20fae1184e2aa1dbb48ea954a0d56057d ./contracts/interfaces/IVaultReceiver.sol

aa54f80eb1a568a64cc24742ce56d56b07a2d27860eb56514bbcd6a8ccc03791 ./contracts/interfaces/IDisperse.sol

d51869f89e3f94f07558f18917647d5f30e62ad03001d2c2d58d019618c3bc04 ./contracts/locking_erc20/__NopLockingListener.sol

f05c1bbf51d18f2e9fccd26c344a5291c5fe5d655a8b29932372b92d5cdea354 ./contracts/locking_erc20/__LockingERC20.sol

5f8e954aa9773d07bb443c4cb1c7c596f4f3cd51af09c2ada4f575abe6c71d67 ./contracts/locking_erc20/LockingListener.sol

05593b2d41b9325f70bc430b93c7ef948598d8a8b011e9600e35570f51af31f6 ./contracts/locking_erc20/LockingERC20.sol

b8e1f5b09cd26de89741351b44fa6502b3901ba09b82bdf8275e1f2e56ca553c ./contracts/utils/ERC20.sol

a20e8915751d5dc88469c76d9f1a8583d0fca63ace73d58dbc0f23dcd783341c ./contracts/utils/Ownable.sol

4593bae74a40321d74e1ff2fdd19ce503fa7da14dcf05ffeaf4c59f25b46ef89 ./contracts/utils/SafeERC20.sol

1d90a734c956271ac90b7c46ac29aad359cad8f5e361498bc3092ccd920517e4 ./contracts/utils/SafeMath.sol

c626c394d1c3f1ebb4c3fb278d54d53dc28259d3848b965bb3d7b40d87d1afe6 ./contracts/utils/Address.sol

8f1fdee146be83108fb7cf8d0f54c88d72998da3198fe725bece06bef65703a2 ./contracts/utils/AddressUtils.sol

9e06ea99bbad80a7c86c3b5ed2d3c67b1fde4445f693146072a78e3a121e9c41 ./contracts/utils/AccessControl.sol

b263443181dba6c3e9e0a411b0bc75a8734eb04b68c40da7042d300ad613c708 ./contracts/pools/IlluviumCorePool.sol

9bb1a9ff913604b356f2599dde7a1995297c387f690adea6469229696fe6bbef ./contracts/pools/IlluviumVault.sol

63577bfc42ecb7e0fd93ca57880fee94d0b7f7b9de4a66bdc7064c3725edcc67 ./contracts/pools/IlluviumPoolBase.sol

0b9f9a14f3095313b405ceb4530cb57222bf1793d00290d48f443ffaef388e3d ./contracts/pools/IlluviumPoolFactory.sol

91b3696813c093d6be3eeba607e7d06c5fffd8b32b6921a40f86bbd6656d94c3 ./contracts/pools/IlluviumLockedPool.sol

facb218ff7fcfcff633361e6f9f09144136911594d950e6786561d3d9fe6694c ./contracts/pools/IlluviumFlashPool.sol

ccf6fc0d61caa9928b5c9c5198146b7708e2371426a16b6ad461f5c583f10d75 ./contracts/pools/TokenLocking.sol

82e2af4fb2dde5653f665a06775b937fe84eb2be0e4bab3bc9e8deb2fd265d26 ./contracts/token/ERC721Receiver.sol

65c2398dd19a042f445611bd5c5b008d720c035ed33b71b61725dce3e83aade3 ./contracts/token/EscrowedIlluviumERC20.sol

e0b24aaa9d62977fd7a1572b2ece1bba7a27921a55cc022624a67f5f59b90f33 ./contracts/token/IlluviumERC20.sol

d653a70303ca168c629a9bb437988f8021ba47170ca1a2c924706dd644ac9cbc ./contracts/token/ERC20Receiver.sol

2e70b68a4d93e6169ee6432701b6029d0ffb86265c4ff6d520bdca0530365ef0 ./contracts/mocks/PoolFactoryMock.sol

d39b33cbd013483b16f4f09b4499e51fd019da71ee5aa4521d02b908845b0746 ./contracts/mocks/__NopReceiver.sol

60448cc58d667f12175c39186755dbca0ad5ffa3a2baff26e02a3dcd18ef04a6 ./contracts/mocks/__IlluviumERC20.sol

44e3e206260ba5247d86cf3108563c1860efca3e90ecc13bb5c4c1665dc9952b ./contracts/mocks/ERC20Mock.sol

42a2483f3ef3340a389354c282ac4a62109c071306100fb2f0328d335dedab5e ./contracts/mocks/FlashPoolMock.sol

60098e2b5f6e1eb7ca7ed4b0eed83dc2a303e43d4fd623f40466129edc7f7b52 ./contracts/mocks/TokenLockingMock.sol

549608bcc2d8c736bac84cc49a9feb70b0ed2f213670adb3eea0680ab16f7402 ./contracts/mocks/CorePoolMock.sol

8a04c15c30356270bc860907e0ae52168408c4f88598879503b73035ec02e1fc ./contracts/mocks/LockedPoolMock.sol

Tests

49345091fae96d988b96cd527f0c88c3dead607e5a17f03aa01960ef30dc553a ./test/ilv_vault_yield.js

0f12d61518183174dbdf254bd8a14459a24ab09f56fce268a3d2b43c52a098de ./test/locking_erc20/locking_erc20_locking.js

60ab2fa1de46bbb0fddbcc9f019d11892c0f78f9976be13f2692c9097a29fb9c ./test/locking_erc20/locking_erc20_zeppelin.js

aca568ab7cb6f80af3e53334a1f6c25ca4d9c9a5e39d1b82ec63986030501883 ./test/locking_erc20/locking_erc20_evolution.js

ee6e7a8620fa47e9e88fbffdfa50e46b4a4c777f463ce79c53c66b619803c59e ./test/locking_erc20/locking_erc20_transfers.js

c628b9104510578f627c199b7c341da030d49a95f7b068cd99af6806d03b8ec8 ./test/locking_erc20/locking_erc20_unit.js

c54533124099d73395a666abd09aa306accf3d7780b5194cb0dd2a62284b343d ./test/locking_erc20/include/locking_erc20_dates.js

33ab58c45936c8fbeafd0d15057aec1452ddb96d4486ce100a8f7385ad122074 ./test/locking_erc20/include/locking_erc20_features_roles.js

0c747c1977d49c3d1a8a723bcf3ea78dd682fb78c2d8db27375365f83547d2ef ./test/locking_erc20/include/locking_erc20_constants.js

5b1da9a4397c98add0161ca442f114a078f12cd242cdc1bece0522fa1596425a ./test/locking_erc20/include/locking_erc20_functions.js

180b9f52e217fd2edfa0dec74314277e34ffb1296d384eca70e863c772274098 ./test/ilv_erc20/ilv_erc20_unit.js

32ae7b0f520252aed0bb2215356895354f22a3ff894db30ce4946a32a04b645e ./test/ilv_erc20/ilv_erc20_deployment.js

34dbb51a541952793eb75d4186819440c9e39d12e0dcc60fc8adae0b9667d5b2 ./test/ilv_erc20/ilv_erc20_non_func.js

c2130892aaaf22e3479508ad1d595f2233be6d06bace62075f6f208b0706e5b1 ./test/ilv_erc20/ilv_erc20_func_req.js

10a1ee6c6dca3d8e949db18f6dd5997f5f39f16517395bab4f9b28d5a07128e4 ./test/ilv_erc20/ilv_erc20_qs_audit.js

d47e2a21b85e4247350d0903f40b1c493063b184b7fb35b2d94373da269bdca8 ./test/ilv_erc20/ilv_erc20_acl.js

e2e966e44dc6eaee3972dfcab13b8bc4403bc3a42c3a5800f3ad8bdbda99785d ./test/ilv_erc20/ilv_erc20_mint_burn.js

26437fe38bf579c783f872d917c102870eb4913fa4dd5c42d37466986de71d54 ./test/ilv_erc20/ilv_erc20_dao.js

1db83f0afa0b949ec902fb82836dc6e5f5cab1e822724dbed0a1975ffb3fe363 ./test/include/rpc_api.js

e3e68db852dd3a2a0144be85fd51a7fcfc0f0b79e005a561deae137b149d5561 ./test/include/locking_settings.js

13ad7f0f3fa857b6d3a3b392035f06dc17521eb6603d468a6d829a447979d4a4 ./test/include/ERC20.behavior.ext.js

a3ef3d2f46be99e75d7b7e42f8432b5867f35de19f7f611a069c9b54c072a7d6 ./test/include/Comp.behavior.js

fc834c8eb817650b20018c2be35b0f77463e11c7bcdbaeb6c44598a60246afde ./test/include/yield_functions.js

f0e3c229964d8e555613db5f21629fa94c04e2a4f66e87d0740028bccd88b9ed ./test/include/ilv_erc20_features_roles.js

241f8279b15aaf1008056a48ab28cffe0c528aea799ad7edb40a5656dcf5a5cc ./test/include/EIP712.js

d6307283af76481c95c265a51501692fd38bcc841d348b15e80349d7461a2ffc ./test/include/ilv_erc20_constants.js

91c40bc532a4f95bb5750ef5345d4f232c7b8da8b5815657324d21578c628ffe ./test/include/ERC20.behavior.js

29befca9e49ab9b83dc9c0a75c4c020b3eb45a6c21f6ff6351a29526c9288c22 ./test/yield_farming/TokenLocking.test.js

ceb7514147f8754a68e0c41046c4c20b04852ddb6a61f2c62d87ff74d1d08f4f ./test/yield_farming/CorePool.test.js

7195b8808ff9736495f490378eac1e3073acdc43e468fbbd582cda2c47841987 ./test/yield_farming/Vault.test.js

52ce056d7f42f8f125d65c30d541a4759a545300fc8f780c92bc844fb2e27561 ./test/yield_farming/TokenLocking-sim.test.js

620b421ab160957bb4d92d9227a805a4c0308dfbaf00574e7e5721e4743c1f1e ./test/yield_farming/LockedPool.test.js

725486cb7279138ad10d91e36786a6af8733a8dd2cac67bde77d0e5c57ce03dd ./test/yield_farming/TokenLocking-ns.test.js

d829720443202511652c624d2430b3aa1592213e201114da044a13e045b2cd4d ./test/yield_farming/PoolFactory.test.js

63934552305178810b72cf6783428f9b4f42ed2f92a40c11be87be14de363139 ./test/yield_farming/FlashPool.test.js

bc0eb47961ed8634ae59d5fac4dfc156af07c351434284a9afdfb5faca6022d5 ./test/yield_farming/utils/index.js

de3b144981392003fb616f3a5e995853fb60938fdad8c136a46abdd14fab5f00 ./test/yield_farming/include/yield_farming_functions.js

Changelog

2021-05-28 - Initial report based on commit hash• 68297e2

2021-06-16 - Updated report based on commit hash• 98697c5

2021-08-14 - Updated report based on commit hash• 94807fc

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Illuvium Yield Farming Rewards Audit

