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Overview

Modifying somebody else's code is unethical and even may be illegal. Long ago, when MS-DOS
was the prevailing operating system, I wrote a small resident printer driver. At that time, the
problem of localizing code or reencoding printers was urgent. One year later, I located my driver
in use by some other company. This driver was installed by a Mister X. However, Mister X didn't
limit himself to installing the driver. That person also modified the copyright information,
specifying that the driver's author was himself. I do not feel angry about that occasion anymore,
although a feeling of resentment still remains. Thus, I understand very well the feelings of
software developers whose programs have been illegally reverse-engineered and modified.

However, ignoring reality is not the right behavior. To efficiently protect their programs,
developers must know the cracker's toolset. Furthermore, in addition to negative effects, attacks
on protection systems, worms, and computer viruses have some positive effect, because their
existence makes software developers pay more attention to security and develop protection
mechanisms more carefully. To a certain extent, attacks on software and computer systems
play the role of stimulators for the software's "immune system," although indisputably on a large
scale they can result in a virus epidemic harming many users or even ruining their computer
systems. This book provides some examples of reverse engineering and of patching executable
code. Note that all of these examples are intended for educational purposes only.

There are other reasons for investigating executable code. Understanding the internal
mechanisms of executable code operation, and the way in which individual structures of high-
level programming languages are converted into Assembly commands, is important for writing
more efficient and highly-optimized programs. Often, low-level debugging is required for
understanding the causes of random errors that occur at run time. Finally, every professional
programmer must be curious and willing to understand how his or her programs operate. Isn't it
interesting to discover how the source code of a program written in C++ or Delphi is transformed
after it is processed with a compiler? Thus, all examples provided in this book are aimed at
achieving positive goals and in no case at performing illegal actions.

When planning this book, I didn't intend to write an official textbook (although such textbooks are
few and the time has come for them to be written). Rather, I tried to provide materials that I have
accumulated during my long years of professional activity. In the future, I hope to write a
textbook on the basis of this book. I'll do this with pleasure.

This book pays the most attention to such powerful tools of executable code investigation as the
IDA Pro disassembler and the SoftIce debugger. These tools are characterized by practically
unlimited capabilities, and hopefully you'll add them to your armory.

This book contains lots of reference materials. This is possibly a typical programming style that
manifests itself in attempts to write a universal, all-sufficient program (which, by the way,
remains an unattainable dream). I support the opinion that only few books do not force the
reader to undertake, every ten pages, a long search in other books and on the Internet.

When writing this book, I oriented it toward operating systems from the Windows NT/2000/
XP/2003 family. Nevertheless, lots of materials provided here will be applicable for the Windows
9

x
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 operating systems, although I didn't test my materials on this platform.

Most examples considered in this book relate to the C++ programming language and the
Microsoft Visual C++ compiler, although there are some examples related to Borland C++ 5.0.
The Pascal language and the Delphi compiler are paid less attention. You might ask why I use
such a limitation. The answer is that I chose the classical language and the most powerful and
popular compiler.

Target Audience

This book is not intended for readers who have no programming experience. If you program in
some high-level programming language but are not acquainted with Assembly, you'll need to
consult some book dedicated to Assembly programming from time to time. Most examples
provided here are written in C++, so programmers should not encounter any difficulties
understanding these examples.

I hope that this book will be useful to everyone interested in the internal mechanisms of program
operation and willing to understand how high-level programming language constructs are
converted to machine commands. In other words, this book is intended for all IT professionals
interested in code investigation and the secrets of programming.

Acknowledgements

I would like to express my thanks to Igor Shishigin, who offered me the opportunity to write this
book. I enjoyed working on it and hope that it will be useful to you.

The 

assembler

 and the disassembler are two sides of the same coin. The assembler converts the source code
of the program written in Assembly language into the binary code, and the disassembler
converts the binary module into a sequence of Assembly commands. Thus, for analysis of the
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disassembled code it is necessary to know machine commands, their binary format, and their
Assembly representation. Also, it is important to understand the structure of data representation
in computer memory, as well as to know the structure of programs written for the Windows
operating system. All of these topics will be covered in this chapter.

1.1. Representing Information in Computer Memory

The main goal of this section is to describe how numeric data are stored in computer memory.

1.1.1. Investigating the Memory

Consider a simple program written in the C programming language (Listing 1.1).

Listing 1.1: A simple program that outputs the memory dump
#include <stdio.h>
#include <windows.h>
int k = 0x1667;
BYTE *b = (BYTE*)&k;
void main()
{
        int j = 0;
        printf("\n%p ", b);
        for(int i = 0; i < 400; i++)
        {
                printf("%02x ", *(b++));
                if(++j == 16&&i<398)
                {
                        printf("\n");
                        j = 0;
                        printf("%p  ", b) ;
                };
        };
        printf("\n");
};

Note All C programs will be compiled
using the Microsoft Visual C++
compiler (which is supplied as
part of Visual Studio .NET
2003). In my opinion, this is the
best C++ compiler available.
Special cases will be
mentioned individually.

The program in Listing 1.1 must output the contents of the memory area, starting from the block
that stores the variable value. This memory area, sent to any device, is called the dump. The
program outputs to the screen the memory area that stores variables.

Compile the program, then start command-line session and run it. The console screen would
display a table made up of hexadecimal (hex) numbers (Fig. 1.1).
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Figure 1.1: Memory dump displayed by the program presented in Listing 1.1

Judging by the memory pattern, it contains data in addition to the value of the k variable, which
is 0x1667 (the least significant byte of the word has the smallest address). What are these
data? How is it possible to understand these tables of hex numbers? I will begin by covering
issues that advanced users might consider elementary — namely, with representation of
numbers in computer memory. Most readers that have mastered these concepts can skip 
Sections 1.1.2 and 1.1.3.

1.1.2. 

Scales of Notation

Decimal Notation

Most individuals have known the decimal scale of notation from childhood. It is natural and
traditional. Binary notation is not as natural for humans, but it is natural for computers. Computer
memory is made up of elements that can be in one of two possible states. One of the states is
conventionally designated as zero, and the alternative state is one. As a result, all information in
memory is written as binary numbers, or sequences of ones and zeros. In addition, computer
memory is divided into blocks, each block containing eight items. These blocks are called
memory cells or bytes. A single digit in binary notation is called a bit (bit stands for binary digit).
Thus, each memory cell is made up of eight binary digits, or 8 bits.

Recall that decimal system numbers are base 10 numbers. This means that every decimal
system number can be represented as a sum of the powers of ten, where the number positions
serve as coefficients. Consider the following example:

· 4567 = 4×l03 + 5×l02 + 6×l01 + 7×100

In other words, every digit's contribution depends on the position that it takes. The position of the
digit depends on the ordinal number counted from right to left, starting from zero. Such numeral
systems are also called positional numeral systems.

Binary Notation

Binary notation is also a positional numeral system. Thus, any binary number can be
represented in the form of a sum of the powers of two, for example:

· 11101001 =1×27 +1×26 +1×25 +0×24 +1×23 +0×22 +0×21 +1×20
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This method of writing binary numbers is actually the method of converting it to another numeral
system. For example, if you carry out these actions in decimal system notation, you'll obtain 233.

Converting a decimal system number into the binary representation is somewhat more difficult.
This can be done according to the following algorithm:

1. Divide the given number by two and take the remainder as the next most significant bit.

2. If the result is greater than one, return to step 1.

3. The binary number is composed of the last result of division (the most significant bit) and
all remainders from the division.

For instance, consider conversion of the number 350 to binary notation:

As the result of the preceding computations, it is obtained that the binary representation of the
decimal system number 350 is 101011110.

To ensure that numbers in different notations can be adequately distinguished in Assembly
programs, a single-character B suffix is used for designating binary numbers. For decimal
system numbers, the D suffix is used, which can be omitted. For hex numbers, the H suffix is
used. For example: 10000B, 345H, 100, etc.

By analogy with decimal fractions, it is possible to consider binary fractions. For example, the
binary number 1001.1101 can be represented as follows:

· 1×23 +0×22 +0×21 +1×20 +1×(1/21)+1×(1/22) + 0×(l/23) + 1×(l/24)

A binary fraction can also be converted into decimal notation by simply using arithmetic
operations. For example, to convert the number 1001.1101 into a decimal number, it is
necessary to carry out all operations specified in the binary number representation. As a result,
you'll obtain the following number in decimal notation: 9.8125.

Decimal fractions are also easily converted into binary notation. The integer and fractional parts
of the number are converted separately. The algorithm for converting the whole part of the
number was already covered. The fractional part is converted as follows:

1. Multiply the fractional part by two (the system base).

2. In the resulting number, separate the integer part (this will be either zero or one). This will
be the first digit after the decimal point in the binary numeral system.
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3. If the fractional part of the resulting number is not zero, return to step 1; otherwise,
terminate computation. It is possible to specify the computation's precision — in other
words, the number of digits after the decimal point — and terminate computations when
this precision is achieved.

Now, consider a practical example of converting the decimal system number into the binary
representation. Assume that it is necessary to convert 105.406 into binary notation. The
algorithm of converting the integer part of the number has already been considered. Thus, 105
in binary representation equals 1101001. To convert the fractional part, use the algorithm just
considered. The sequence of computations is presented here. Note that in this example it was
necessary to stop the computation when a precision of nine characters after the decimal point
was reached.

0.406×2
0×(1/21)

0.812×2 1×(1/22)

0.624×2 1×(1/23)

0.248×2 0×(1/24)

0.496×2 0×(1/25)

0.992×2 1×(1/26)

0.984×2 1×(1/27)

0.968×2 1×(1/28)

0.936×2 1×(1/29)

As a result of this computation, you'll find out the following:
· 105.406˜ 1101001. 011001111

Thus, converting decimal system numbers into the binary notation, in which they are stored in
the computer memory, is an additional factor of precision loss.

Hexadecimal Numeral System

The hex numeral system is more compact than the decimal numeral system. Numbers in hex
numeral systems are easily converted into the binary system, and vice versa. Finally, the hex
numeral system corresponds to the computer memory's architecture considerably better than
any other notation. Sixteen hex digits are used for designating numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, and F. The method of converting numbers from a decimal to a hex system, and
vice versa, is similar to the method described in the previous section; the only difference is that
in this case the system base is 16 instead of 2. Hopefully, you will easily derive the required
algorithms on your own.

Consider the method of converting numbers from hex system into the binary system, and vice
versa. The main principle here is exceedingly simple: Four digits of a binary number, a 
quaternion, correspond to one digit of a hex number, and vice versa. Fig. 1.2 demonstrates the
conversion of the 10101101 binary number to a hex number.
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Figure 1.2: Converting a binary number to a hex number

Fig. 1.3 illustrates backward conversion of the hex number 14A into a binary format.

Figure 1.3: Converting a hex number to a binary number

As already mentioned, the hex numeral system, out of all numeral systems, best maps to the
computer memory's architecture. The computer memory is easily divided into cells containing 8
bits each. However, 8 bits corresponds to two hex digits. For example, 1345H will take two
memory cells, the least significant cell (according to the convention) will contain 45H, and the
most significant cell will store 13H.

The conversion of fractions from the hex numeral system to the binary numeral system, and vice
versa, is easy; you do this in the same way as for integer numbers. The fractional part, like the
integer part, is converted according to the following principle: One hex digit corresponds to four
binary digits. Consider the binary number 101.10001 and convert it into hex notation.

According to this rule, the result will be as follows: 101=0101=5. Furthermore, the fractional

part can be represented as follows: 10001=10001000=88 (note that in fractional part, all
quartets of digits are counted from left to right). As a result, the 101.10001 binary number
corresponds to 5.88 in hex notation. As in the integer part, conversion of the fractional part is
reduced to dividing the binary digits into quaternions and padding incomplete quaternions with
zeros (from left to right).

1.1.3. 

Representing Numbers in Computer Memory

Unsigned Integer Numbers

The principle of representing unsigned integer numbers in computer memory is trivial:
1. The number must be converted to the binary numeral system.

2. It is necessary to determine the memory size required to store that number. As already
mentioned, the most convenient way of doing this is to convert the number into hex
notation, after which the amount of memory required for storing this number will be
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immediately clear. According to convention, memory is allocated by single memory cells
(bytes), double cells (words), and quadruple cells (4 bytes, or a double word). Assembly
language provides special directives for reserving memory for storing numeric constants
and variables:
§ Namel DB value 1 ; Reserve 1 byte

§ Name2 DW value 2 ; Reserve 2 bytes

§ Name3 DD value 3 ; Reserve 4 bytes

§ Name4 DQ value 4 ; Reserve 8 bytes

§ Name5 DT value 5 ; Reserve 10 bytes

When dealing with variables, which usually will be the case, it is necessary to determine the
range, within which the variable value would change, and reserve the memory for storing this
variable on the basis of the obtained information. Because contemporary Intel processors are
oriented toward operations over 32-bit numbers, the best approach for the moment is to orient
them toward variables of the same dimensions.

Consider the fragment of some C program, shown in Listing 1.2.

Listing 1.2: A fragment of a program written in C
BYTE e = 0xab;
WORD c = 0x1234;
DWORD b = 0x34567890;
_ _int64 a = 0x6178569812324572;

This fragment defines four variables: the e 1-byte variable, the c 2-byte variable, the b 4-byte

variable,[1] and the a 8-byte variable. Using the program presented in Listing 1.1, output the
memory area where these variables are stored. You'll obtain the following sequence of bytes:
ab 00 00 00 34 12 00 00 90 78 56 34 00 00 00 00 72 45 32 12 98 56 78 61

Consider this sequence of bytes carefully. You should find all of the variables without difficulties.
The most important conclusions that can be drawn by studying this sequence of bytes are as
follows.
§ As you should recall, in Listing 1.1 the memory contents were displayed from the lower

(least significant) to the higher (most significant) address. Thus, the least significant bytes
of all numbers (variables) take the least significant addresses of the word. The least
significant word in a double word, in turn, takes the smaller address. Finally, in a 64-bit
variable, the least significant double word must take the smaller address. This issue is
important for analysis of the binary code. Later, you'll be able to identify variables in one
glance at the memory region.

§ As you can see, all variables require a memory size that is a multiple of a 4-byte value. After
each initialized variable, the compiler inserts a special directive for alignment by a 32-bit
boundary (Align 4). However, the situation is not that simple, and alignment might be
different with a different order of variables. This topic will be covered in more detail in 
Section 3.1.1.

Examples Thus, a 16-bit number, such as A890H,
will be stored in memory as the following
sequence of bytes: 90 A8. A 32-bit
number, such as 67896512H, will be
stored as 12 65 89 67. Finally, a 64-bit
number, F5C68990D1327650H, for
example, will be stored as 50 76 32 D1
90 89 C6 F5.
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Signed Numbers

Because the memory contains only binary digits, it would be logical to dedicate a separate bit for
storing the number sign. For example, if you have one memory cell, you'll be able to use
arithmetic operations over the numbers ranging from -127 to +127 (11111111 to 01111111).
This approach won't be too bad; however, it would be necessary to introduce separate addition
operations for signed and unsigned numbers. There is an alternative method of introducing
signed numbers. In the algorithm of building such numbers, a certain number is known to be
positive and a number with the inverse sign is easily found: a + (-a) = 0.

When working with a set of single-byte numbers, it is natural to consider that 1 equals the 
00000001 binary number. By solving the equation 00000001 + x = 00000000, you'll obtain a
result that at first glance seems paradoxical: x =11111111. In other words, using this alternative
approach, -1 must be considered equal to 11111111 (255 in the decimal system equivalent
and FF in hex). Now, it is time to elaborate on this theory. Obviously, -1-(1)=-2 . Therefore,
according to this theory, -2 must be equal to 11111110 and 00000010 must represent +2.
Check whether these figures correspond to the previously described theory, and you'll see that 
11111110 + 00000010 = 00000000. Thus, the self-evident identity is true: +2 + (-2) = 0. This
means that the chosen approach is consistent and the process can be continued (Table 1.1).

Table 1.1: Signed single-byte numbers

Positive number Binary
representation

Negative number Binary
representation

+0 00000000 -0 00000000

+1 00000001 -1 llllllll

+2 00000010 -2 11111110

+3 00000011 -3 11111101

+4 00000100 -4 11111100

+5 00000101 -5 11111011

... ... ... ...

+120 01111000 -120 10001000

+121 01111001 -121 10000111

+122 01111010 -122 10000110

+123

01111011 -123 10000101

+124 01111100 -124 10000100

+125 01111101 -125 10000011

+126 01111110 -126 10000010

+127 01111111 -127 10000001

+128 Doesn't exist within
the limits of 1 byte

-128 10000000

Consider Table 1.1 more carefully. What was the result of elaborating this theory? The signed
numbers can range from -128 to +127.
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Thus, a single-byte number can be interpreted both as a signed and as an unsigned number.
According to the first approach (signed), 11111111 will equal -1; with unsigned numbers, it will
equal 255. Thus, everything depends on the chosen interpretation. The most interesting fact is
that addition and subtraction are carried out according to the same method for both signed and
unsigned numbers. Therefore, the processor has only one command for each operation: ADD
and SUB. When executing a specific operation. There might be overflow or carry to the

nonexistent bit;[2] however, this topic deserves separate consideration. This problem could be
solved by reserving one or more memory cells. All of these considerations can be easily
extended to 2- and 4-byte numbers. Thus, the maximum unsigned 16-bit number equals 65,535,
and signed numbers belong to the range from -32,768 to +32,767.

Another interesting issue relates to the most significant bit. As you can see, this bit can be used
to determine the sign. However, this bit is not entirely isolated and participates with the other bits
in forming the number value.

Having the skills to navigate signed and unsigned numbers is important for an investigator of
software code. For example, having encountered commands such as cmp eax, 0FFFFFFFEh,
it is necessary to bear in mind that this might be the cmp eax, -2 command.

Consider the sequence of variables shown in Listing 1.3.

Listing 1.3: A sequence of different variables
signed char e = -2;
short int c = -3;
int b = -4;
_ _int64 a = -5;

As you can see, all variables shown in this listing are signed variables with negative values.
When displaying the memory block containing these variables, the following sequence of bytes
will be obtained:
FE 00 00 00 FD FF 00 00 FC FF FF FF 00 00 00 00 FB FF FF FF FF FF FF FF

Thus, the value of an 8-bit variable set to -2 in computer memory is represented as FEh, the
value of a 16-bit variable set to -3 is represented by the FFFDh sequence, and the value of a 32-
bit variable set to -4 is represented as FFFFFFFCh. Finally, a negative 64-bit variable set to -5 is
represented as follows: FFFFFFFFFFFFFFFBh. Recall that when representing a 64-bit variable,
the 4 least significant bytes must be located at an address smaller than the most significant
bytes.

Real Numbers

To use real numbers in commands of the Intel processor (the arithmetic coprocessor[3]), they
must be represented in computer memory in the normalized form. In general, the normalized
form of a number appears as follows:

· A = (NS)×M×Nq

Here, NS designates the number sign; M stands for mantissa, which usually meets the < 1
condition; N is the base of the numeral system; and q is the exponent, which might be positive or
negative. Numbers represented this way are often called floating-point numbers. Consider a
practical example of a floating-point number. Try to represent 5.75 in the normalized form. First,
it is necessary to convert this number into the binary notation. This task is trivial: 5 in binary
notation will be represented as 1001, and 0.75 equals (1/2) + (1/4). In other words, 5.75 =

1001.11B. Furthermore, 1001.11B = 1.00111 × 23. Thus, the normalized number will comprise
the following components: NS = +1, M =1.00111, N=2, and q = 3. Note that when using such a
representation, the first number of the mantissa always equals one; consequently, it is possible
to do without storing it. Intel format is based on this possibility. In addition, it is necessary to bear
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in mind that the q exponent is stored in the memory in the form of a sum with a certain number,
to ensure that it is always positive. The Intel processor can work with the following three types of
real numbers:

§ Short real number — For storing a short real number, 32 bits are allocated. Bits 0-22 are
reserved for the mantissa. Bits 23–30 are intended for storing the q exponent added to the
number 127. The last bit, bit 31, is intended for storing the number sign (if this bit is set to
one, then the number is negative; otherwise, the number is positive).

§ Long real number — Here, 64 bits are allocated for storing such a number. Bits 0-51 are
reserved for storing the mantissa. Bits 52-62 are intended for storing the q exponent added
to 1024. The last bit, bit 63, determines the number sign (if this bit is set to one, then the
number is negative; otherwise, the number is positive).

§ Extended real number— For storing such numbers, 80 bits are allocated. Bits 0-63 are
intended for storing the mantissa. Bits 64-78 store the q exponent added to 16,383. The last
bit, bit 79, is intended for storing the number sign (if this bit is set to one, then the number is
negative; otherwise, the number is positive).

Consider a practical example illustrating representation of a floating-point number in the
memory. Assume that the following variable is declared in some program written in C:
                              float a = -80.5;

The float type corresponds to the short real number. This means that its memory
representation will take 32 bits. Now, try to view the memory using the standard approach. Here
are 4 bytes that represent the previously mentioned number:
                              00 00 a1 c2

To make this representation easily understandable, convert it into the binary representation:
              00000000 00000000 10100001 11000010

To make this representation more understandable, rewrite it starting from the most significant
byte to emphasize the mantissa, exponent, and sign:
              11000010 10100001 00000000 00000000

Now, separate the mantissa. Recall that 23 bits are allocated for storing it. Thus, the following
binary number will be obtained: 0100001. Note that mantissa bits are counted starting from the
most significant one (in this case, this is bit 22). The trailing zeros are discarded because the
whole mantissa is located to the right of the decimal point. However, the obtained number
doesn't represent the mantissa exactly. As already mentioned, the first number of the mantissa
is always equal to one; consequently, there is no need to store it. Thus, when using Intel
representation, this one should be restored. Therefore, the following number will represent the
mantissa: 1.0100001B. The sign of the whole number is negative because bit 31 is set to one.
As relates to the exponent, it must be obtained from the 10000101B binary number. In decimal
system representation, this will equal 133. To obtain the exponent for a short real number,
subtract 127 from this value; the result will be 6. Thus, to obtain a real fractional number from
the mantissa, the decimal point must be shifted six positions to the right. The result will be 
1010000. 1B. In hex notation, this is 50.8H; if you convert this number to decimal notation,
the result will be 80.5.

To have hands-on practice, consider the following sequence of bytes:
                  00   80   FB   42

Try to prove that this sequence of bytes corresponds to the representation of 125.75.

On the basis of the material in this section, it is possible to conclude that if real numbers are
used in a program, they might become approximate before any actions are carried out over
them. This is because all real numbers must be normalized before they can be written into the
memory.
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Binary-Coded Decimals

Binary-coded decimal (BCD) notation is a special method of representing decimal numbers in
computer memory. In this case, each of the digits of an unsigned decimal number is
represented as the 4-bit binary equivalents (nibbles). The Intel processor supports two types of
such numbers: packed and unpacked.

§
Every digit of a packed number is encoded by a nibble (4 bits, or half a byte). In this case,
the 4 most significant bits contain the most significant digit. Thus, a byte can contain a
number ranging from 0 to 99. For example, 56 will be represented as 
01010110B
.

§
Each digit of an unpacked number is encoded by a single byte. In this case, only the 4 least
significant bits store digits and the 4 most significant bits must contain zeros. Thus, 1 byte
can contain a number from 0 to 9.

BCDs are rarely used in programming nowadays; therefore, I won't consider this topic further.

[
1

]

BYTE
 is simply unsigned char, 
WORD
 is unsigned short int, and 
DWORD
 is unsigned int. Definitions of these data types can be found, for example, in the windows.h file.

[
2

]

It can be easily proven that simultaneously representation of signed and unsigned numbers is
possible because the number size is limited by 1 or more bytes.

[
3

]

Starting with Intel 486, the arithmetic coprocessor is an integral, built-in part of the
microprocessor.

1.2. Intel Pentium Processor Commands and Registers

This section is dedicated to the overview of the Intel Pentium commands and registers. This
material is useful if you will be investigating executable code. The information provided here will
be helpful not only for beginners but also for experienced users. It can be used as a reference
that is always handy.

1.2.1. Pentium Microprocessor Registers
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The Pentium microprocessor comprises general-purpose registers, the flags register, segment
registers, control registers, system address registers, and debug registers. The EIP register,
which also is known as the instruction pointer, deserves special mention. It always contains the
address of the executable command relative to the start of the segment. This register cannot be
accessed directly; however, lots of commands change its contents indirectly— for example, the
commands that pass control.

General-Purpose Registers

The list of general-purpose registers includes the following:
§ EAX = (16 + AX = (AH + AL))

§ EBX = (16 + BX = (BH + BL))

§ ECX = (16 + CX = (CH + CL))

§ EDX = (16 + DX = (DH + DL))

§ ESI = (16 + SI)

§ EDI = (16 + DI)

§ EBP = (16 + BP)

§ ESP = (16 + SP)

The EAX, EBX, EDX, and ECX registers are called working registers. Note that of all these
registers have subregisters. For example, the first 16 bits of the EAX register are designated as
AX. The least significant byte, AX, is in turn designated as AL, and the most significant bit is AH.
The EDI and ESI registers are called index registers. They play a special role in index
operations. The EBP register is usually employed for addressing parameters and local variables
in the stack. The ESP register is the stack pointer that is automatically modified by PUSH, POP,
RET, and CALL; however, it is rarely used explicitly. The ESI, EDI, ESP, and EBP registers also
have subregisters. For example, the first 16 bits of the EDI register are designated as DI.

Flags Register

The flags register contains 32 bits. The bit values used by this register are as follows:
§ Bit 0, carry flag (CF) — This bit is set to one if in the course of addition or multiplication

there was a carry from the most significant bit or if a bit was borrowed in the course of
subtraction.

§ Bit 1- One.

§ Bit 2, parity flag (PF) — This bit is set to one if the least significant byte of the result
contains an even number of ones; otherwise, this bit is set to zero.

§ Bit 3 - Zero.

§ Bit 4, auxiliary carry flag (AF) — This bit is set to one if there was a number was carried (or
borrowed) from the third bit into bit 4.

§ Bit 5 - Zero.

§ Bit 6, zero flag (ZF) — This bit is set to one if the result of the operation is zero; otherwise,
this bit is set to zero.

§ Bit 7, sign flag (SF) — This bit equals the most significant bit of the result of the previous
operation.

§ Bit 8, trap flag (TF) — Setting this flag to one results in INT 3 being called after each
command. This flag is used by debuggers in real mode.

§ Bit 9, interrupt flag (IF) — Resetting this flag to zero results in the microprocessor ceasing
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to accept interrupts from external devices.

§ Bit 10, direction flag (DF) — This flag is taken into account in string operations. If the flag is
set to one, the address is automatically decremented in string operations.

§ Bit 11, overflow flag (OF) — This bit is set to one if the result of the operation over a signed
number has exceeded the allowed limits.

§ Bits 12 and 13, input/output privilege level (IOPL) - These bits define the privilege level
required to allow the code to execute input/output commands and other privileged
commands.

§ Bit 14, nested task flag (NT).

§ Bit 15 — Zero.

§ Bit 16, resume flag (RF) — This flag is used with the debug breakpoint registers.

§ Bit 17, virtual mode flag (VM)— In protected mode, this flag enables the virtual 8086 mode.

§ Bit 18, alignment control flag (AC) — If this flag is set to one, exception 17 is thrown if an
unaligned operand is accessed.

§ Bit 19, virtual function of the IF flag (VIF) — This flag works in the protected mode.

§ Bit 20, virtual interrupt pending flag (VIP).

§ Bit 21, identification command availability flag.

§ Bits 22–31 — Must be zero.

Segment Registers

Segment registers include CS, the code segment; DS, the data segment; SS, the stack segment;
and ES, GS, and FS, auxiliary registers. All segment registers are 16-bit registers. Segment
registers are intended to participate in forming the memory address either directly or using
selectors that point to a certain structure (in descriptors table) that determines the segment, in
which the address being formed is located.

Control Registers

The list of control registers includes the following:
§ The CR0 register:
o Bit 0, protection enabled flag (PE) — Switches the processor to protected mode.

o Bit 1, monitor coprocessor flag (MP) — Causes exception 7 with each WAIT command.

o Bit 2, coprocessor emulation (EM) — Causes exception 7 with each coprocessor
command.

o Bit 3, task switching flag (TS) — Determines whether or not the given coprocessor
context relates to the current task. It causes exception 7 when executing the next
coprocessor command.

o Bit 4, extension type — Indicates support for coprocessor instructions (ET).

o Bit 5, numeric error (NE) — Enables native mechanisms for reporting coprocessor errors.

o Bits 6–15, reserved.

o Bit 16, write protect (WP) — Enables write protection at the supervisor privilege level.

o Bit 17, reserved.

o Bit 18, alignment mask (AM) — Enables automatic alignment checking.

www.allitebooks.com

http://www.allitebooks.org
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o Bits 19–28, reserved.

o Bit 29, not write-through (NW) — Disables write-through for writes that hit the cache or
invalidation cycles.

o Bit 30, cache disable (CD) — Prevents the cache from filling.

o Bit 31, paging (PG) — Enables paging when set to one.

§ The CR1 register is reserved for future use.

§ The CR2 register stores the 32-bit linear address, at which the last page fault occurred.

§ In the CR3 register, the 20 most significant bits store the physical base address of the page
directory table. Other bits are as follows:
o Bit 3, page level write transparent (PWT) — Controls the write-through or write-back page

caching policy.

o Bit 4, page-level cache disable (PCD) — Controls caching of the current page directory.

§ The CR4 register:
o Bit 0, virtual 8086 mode extensions (VME) — Enables interrupt- and exception-handling

extensions in virtual 8086 mode when set to one.

o Bit 1, protected-mode virtual interrupts (PVI) — Enables hardware support for a virtual
interrupt flag (VIF) in protected mode when set to one.

o Bit 2, time stamp disable (TSD) — Restricts the execution of the RDTSC instruction to
procedures running at privilege level 0.

o Bit 3, debugging extensions (DE) — Enables breakpoints on accessing input/output ports.

o Bit 4, page size extensions (PSE) — Enables 4-MB pages when set to one.

o Bit 5, physical address extension (PAE) — Enables the paging mechanism to reference at
least 36-bit physical addresses when set to one.

o Bit 6, machine-check enable (MCE) — Enables the machine-check exception when set to
one.

o Bit 7, page global enable (PGE) — Enables the global page feature when set to one.

o Bit 8, performance-monitoring counter enable (PCE) -— Enables execution of the RDPMC
instruction for programs or procedures running at any protection level when set to one.

o Bit 9, operating system support for FXSAVE and FXRSTOR instructions (OSFXSR) —
Enables the FXSAVE and FXRSTOR instructions to save and restore the contents of the
XMM and MXCSR registers, along with the contents of the x87 floating-point unit (FPU) and
MMX registers, when set to one.

System Address Registers

These registers are used in the protected mode of Intel processors. The Windows operating
system also operates in this mode.
§ GDTR — This is a 6-byte register containing the linear address of the global descriptor table

(GDT).

§ TDTR — This is a 6-byte register containing the 32-bit linear address of the interrupt
descriptor table.

§ LDTR — This is a 10-byte register containing the 16-bit selector (index) for GDT and an 8-
byte descriptor.

§ TR — This is a 10-byte register containing the 16-bit selector for GDT and the entire 8-byte
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descriptor from GDT, describing the task state segment (TSS) of the current task. TSS is a
segment of special format that contains all required information about the given task, and a
special field that ensures task interactions and intercommunications.

Debug Registers
§ DR0-DR3 — These registers store the 32-bit linear addresses of the breakpoints. The

operating mechanism of these registers is as follows: Any address formed by a program is
compared with the addresses stored in the debug registers. If a match is encountered, the
processor generates the debug exception (INT 1).

§ DR6 (equivalent to DR4) — This register reflects the checkpoint status. Bits of this register
are set according to the debug conditions that have caused the debug exception. Significant
bits of this register are as follows:
o Bit 0, breakpoint condition detected (B0) — If this bit is set to zero, this indicates that the

last exception has occurred when the breakpoint determined in DR0 was reached.

o Bit 1 — This bit is similar to B0 but in relation to the DR1 register.

o Bit 2 — This bit is similar to B0 but in relation to the DR2 register.

o Bit 3 — This bit is similar to B0 but in relation to the DR3 register.

o Bit 13, debug register access detected (BD) — Protects debug registers.

o Bit 14, single step (BS) — If this bit is set to one, the exception was generated because
the trap flag (bit 8 in flags register) is set to one.

o Bit 15, task switch (BT) — If the value of this bit is one, the exception was caused by
switching to the task with the trap bit set.

§ DR7 (equivalent to DR5) — This bit controls the breakpoints setting. In this register, for each
of the debug registers (DR0-DR3) there are fields that determine the conditions, for which it
is necessary to generate interrupts. The first four pairs of bits (8 bits) of this register, a pair
per register, indicate whether the corresponding register would define a breakpoint for the
local task (in which case the first bit must be set to one) or for all tasks running in the
system (in which case the second bit of the pair must be set to one). Bits 16-31 define the
type of access, for which the interrupt will be activated (when fetching a command or
reading or writing to or from the memory) and specify the data size:
o Bits 16-17, 20-21, 24-25, and 28-29 define the type of access as follows: 00 by a

command, 01 for writing, 11 for reading and writing, and 10 for not used.

o Bits 18-19, 22-23, 26–27, and 30-31 define the size of the operand as follows: 00 for
byte, 01 for 2 bytes, 11 for 4 bytes, and 10 for "not used."

1.2.2. Main Instruction Set

The main instruction set includes all commands of the microprocessor, except for the
coprocessor instructions and MMX instructions.

The designations adopted for presenting materials in subsequent tables are as follows:
§ dest and src — Destination operand and source operand

§ m — Operand located in memory

§ r — Operand that is a processor register

§ r8, rl6, and r32 — 8-, 16-, and 32-bit processor registers, respectively

§ mm — 64-bit MMX register

§ m32 and m64 — 32-bit and 64-bit operands, respectively, located in memory

§ ir32 — Normal processor registers
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§ imm — Immediate operand (constant), 1 byte in size

Table 1.2: Data exchange commands

Command Description

MOV dest, src Load data to or from the register, memory, or
immediate operand. For example: MOV AX, 10;
MOVEBX, ESI; MOVAL, BYTE PTR MEM; and MOV
 DWORD PTR MEM, 10000h.

XCHG r/m, r Exchange data between registers or between a
register and the memory. The command for
exchanging data between memory cells is not
provided in the Intel processor instruction set.

BSWAP reg32 Swap bytes from the least significant— most
significant order into the most significant-least
significant order. Bits 7-0 exchange positions
with bits 31 —24, and bits 15-8 exchange
positions with bits 23-16. This command was in
troduced in the Intel 486 processor.

MOVSXB r, r/m Extend a byte to a word or double word with
duplication of the sign bit and load it into the
destination. For example: MOVSXB AX, BL and
MOVSXB EAX, BYTE PTR MEM. The command
was introduced in the Intel 386 processor.

MOVSXW r, r/m Load the source word, extended to a double
word with duplication of the sign bit, into the
destination. For example: MOVSXW EAX, WORD
PTR MEM. This command was introduced in the
Intel 386 processor.

MOVZXB r, r/m Load the source byte extended to a word or
double word with duplication of the zero bit into
the destination. For example: MOVSXB AX, BL
and MOVSXB EAX, BYTE PTR MEM. This
command was introduced in the Intel 386
processor.

MOVZXW r, r/m Load the source word extended to a double word
with duplication of the zero bit into the
destination. For example: MOVZXW EAX, WORD
PTR MEM. This command was introduced in the
Intel 386 processor.

XLAT Load a byte from the table in the data segment,
the starting point of which is pointed by EBX
(BX) into AL. The initial value of AL plays the
role of the offset.
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LEA r, m Load the effective address, for example:

LEA EAX, MEM;

LEA EAX, [EBX]

This command is featured by certain "magic"
properties that allow efficient arithmetic. For
example, the LEA EAX, [EAX*8] command
multiplies the contents of EAX by 8, and the LEA
EAX, [EAX] [EAX*4] command multiplies the
contents of EAX by 5. The LEA ECX, [EAX]
[ESI+5] command is equivalent to the
following three commands:
MOV ECX, EAX
ADD ECX, ESI
ADD ECX, 5

Note that the LEA command allows multiplying
only by 2, 4, and 8; therefore, if it is necessary to
use a different multiplier, multiplication must be
combined with addition.

LDS r, m Load the DS:reg pair from memory. In this
case, the word (or double word) is first, and DS
contains the next word.

LES r, m Similar to the previous command but in relation
to the ES:reg pair.

LFS r, m Similar to the previous command but in relation
to FS:reg.

LGS r, m Similar to the previous command but in relation
to GS:reg.

LSS r, m Similar to the previous command but in relation
to SS:reg.
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Conditional settings of the first bit of
the byte:

SETcc r/m

Check the cc condition. If this condition has
been met, then the first bit of the byte is set to
one; otherwise, this bit is set to zero. Conditions
are similar to the ones used in conditional jumps
(JE, JC). For example: SETE AL. This
command was introduced in the Intel 386
processor. All variants of this command are as
follows:

SETA/SETNBE — Set if greater.

SETAE/SETNB — Set if greater or equal.

SETB/SETNAE — Set if smaller.

SETBE/SETNA — Set if smaller.

SETC — Set if there is a carry.

SETE/SETZ — Set if zero.

SETG/SETNLE — Set if greater.

SETGE/SETNL — Set if greater or equal.

SETL/SETNGE — Set if smaller.

SETLE/SETNG -— Set if smaller or equal.

SETNC — Set if there is no carry.

SETNE/SETNZ — Set if smaller or equal.

SETNO — Set if there is no overflow.

SETNP/SETPO — Set if there is no parity.

SETNS — Set if there is no sign.

SETO — Set if there is overflow.

SETP/SETPE — Set if there is parity.

SETS — Set if there is a sign.

LAHF Load flags into AH (obsolete).

SAHF Save AH into the flags register (obsolete).
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Conditional movings: CMOVX dest,
src

CMOVA/CMOVNBE — Move if greater.

CMOVAE/CMOVNB — Move if greater or equal

CMOVB/CMOVNAE — Move if smaller.

CMOVBE/CM0VNA — Move if smaller.

CMOVC — Move if there is carry.

CMOVE/CMOVZ — Move if zero.

CMPVG/CMOVNLE — Move if greater.

CMOVGE/CMOVNL — Move if greater or equal.

CMOVL/CMOVNGE — Move if smaller.

CMOVLE/CMOVNG — Move if greater or equal.

CMOVNC — Move if there is no carry.

CMOVNE/CMOVNZ — Move if smaller or equal.

CMOVNO — Move if there is no overflow.

CMOVNP/CMOVPO — Move if there is no parity.

CMOVNS — Move if there is no sign.

CMOVO — Move if there is no overflow.

CMOVP/CMOVPE — Move if there is parity.

CMOVS — Move if there is a sign.

Table 1.3: Input/output commands

Command Description

IN AL (AX, EAX) , Port

IN AL (AX, EAX) , DX

Load from the input/output port into the
accumulator. The port is addressed directly
through the Dx register.

OUT port, AL (AX, EAX)

OUT DX, AL (AX, EAX)

Output into the input/output port. The port is
addressed directly through the Dx register.

[REP] INSB

[REP] INSW

[REP] INSD

Output the data from the port addressed by
the Dx register into the following memory
cell: ES:[EDI/DI]. After input of a byte,
word, or double word, EDI/DI is corrected
by 1, 2, or 4. If the REP prefix is present, the
process continues until the contents of CX
equal zero.

[REP] OUTSB

[REP] OUTSW

[REP] OUTSD

Output the data from the DS:[EST/SI]
memory cell into the output port, the
address of which is stored in the DX
register. After output of a byte, word, or
double word, the EST/SI pointer is
corrected by 1, 2, or 4.

Table 1.4: Instructions for operations over the stack

Command Description

PUSH r/m Load a word or double word into the stack.
Because the stack becomes unaligned by
the double word boundary if a word is
loaded into it, it is recommended to push
double words into the stack anyway.

PUSH const Load an immediate 32-bit operand into the
stack.
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PUSHA Load the EAX, EBX, ECX, EDX, EST, EDI,
EBP, and ESP registers into the stack. This
command was introduced in the Intel 386
processor.

POP r/m Retrieve a word or double word from the
stack.

POPA Retrieve the data from the stack into the 
EAX, EBX, ECX, EDX, EST, EDT, EBP, and
ESP registers. The command was
introduced in the Intel 386 processor.

PUSHF Load the flags register into the stack.

POPF Retrieve the flags register from the stack.

Table 1.5: Instructions for integer arithmetic

Command Description

ADD dest,
src

Add two operands. The first operand can be a register or memory cell,
and the second operand can be a register, memory cell, or constant. If
both operands are memory cells, this operation is impossible.

XADD dest,
src

Exchange operands and then carry out the ADD operation. This
command was introduced in the Intel 486 processor.

ADC dest,
src

Add with the account of the carry flag; the carry flag is added to the
least significant bit.

INC r/m Increment the operand.

SUB dest,
src

Subtract one operand from another operand. All other features are
similar to the addition (the ADD command).

SBB dest,
src

Subtract with the account of the carry bit. The carry bit (flag) is
subtracted from the least significant bit.

DEC r/m Decrement the operand.

CMP r/m, r/m Compare (subtracts the operands without changing their values).

CMPXCHG r,
m, a

Compare and exchange. This command accepts three operands
(register-operand-source, memory cell-operand-destination, or
accumulator; in other words, AL, AX or EAX). If the values in the
destination operand and accumulator are equal, then the destination
operand is replaced with the source operand, and initial value of the
destination operand is loaded into the accumulator. This command was
introduced in the Intel 486 processor.

CMPXCHG8B r,
m, a

Compare and exchange 8 bytes. The command was introduced in the
Intel Pentium processor. It compares the number stored in the EDX:
EAX pair of registers with the 8-byte number in memory.

NEG r/m Invert the operand sign.
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AAA ASCII adjust after addition. This command adjusts the result of addition
as set by the American Standard Code for Information Interchange
(ASCII) (binary addition of two unpacked BCDs). The AAA instruction
must follow an ADD instruction that adds (binary addition) two unpacked
BCDs and stores a byte result in the AL register. The AAA instruction
then adjusts the contents of the AL register so that they contain the
correct one-digit, unpacked BCD result.

If the addition produces a decimal carry, the AH register is incremented
by one and the AL register is incremented by six (binary addition).

For example, assume that AX contains the 9H number. In this case,
executing the ADD AL, 8 /AAA pair of commands results in AX
containing 0107H, in other words, the 17 ASCII number.

AAS ASCII adjust after subtraction. This operation adjusts the result of the

subtraction of two unpacked BCDs to create an unpacked BCD result.[

a]

If the subtraction produces a decimal carry, the AH register is
decremented by one and the AL register is decremented by six (binary
addition).

Consider the following example:
     MOV AX, 205H ; Load the 25 ASCII number.
     SUB AL, 8    ; Binary subtraction
     AAS

As a result, AX will contain the 0107H code, in other words, unpacked
BCD 17.

AAM ASCII adjust after multiplication. This instruction adjusts the result of
the multiplication of two unpacked BCDs to create a pair of unpacked
(base 10) BCDs. For this command, it is assumed that the AX register
contains the result of binary multiplication of two decimal system digits
(ranging from 0 to 81). After completion of this operation, the AX
register will contain a 2-byte product in ASCII format. It is assumed that
the least significant digit is contained in AL and the most significant
digit is contained in AH. The AAM instruction is only useful when it
follows an MUL instruction that multiplies (binary multiplication) two
unpacked BCDs and stores a word result in the AX register. The AAM
instruction then adjusts the contents of the AX register so that they
contain the correct two-digit, unpacked (base 10) BCD result.

AAD ASCII adjust before division. This command adjusts two un packed
BCDs (the least significant digit in the AL register and the most
significant digit in the AH register) so that a division operation
performed on the result will yield a correct unpacked BCD. The AAD
instruction is only useful when it precedes a DIV instruction that divides
(binary division) the adjusted value in the AX register by an unpacked
BCD. The AAD instruction sets the value in the AL register to (AL +
(10*AH) ) and then clears the AH register to 00H. The value in the
AX register then equals the binary equivalent of the original unpacked,
two-digit (base 10 number in registers AH and AL.

DAA Decimal adjust AL after addition. This operation adjusts the sum of two
packed BCDs to create a packed BCD result and is only useful when it
follows an ADD instruction that adds (binary addition) a pair of two-digit,
packed BCDs and stores a byte result in the AL register. The DAA
instruction then adjusts the contents of the AL register so that they
contain the correct two-digit, packed BCD result.
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DAS Decimal adjust after subtraction. This instruction adjusts the result of
the subtraction of two packed BCDs to create a packed BCD result and
is only useful when it follows a SUB instruction that subtracts (binary
subtraction) a single two-digit, packed BCD from another and stores a
byte result in the AL register. The DAS instruction then adjusts the
contents of the AL register so that they contain the correct two-digit,
packed BCD result.

MUL r/m Multiply AL(AX, EAX) by an unsigned integer number. The result will
be contained in AX, DX:AX, EDX:EAX.

IMUL r/m Perform signed multiplication (similar to MUL). All operands are
considered signed. This instruction has three forms, depending on the
number of operands. The one-operand form is identical to that used by
the MUL instruction. The two-operand form is follows: IMUL r, src
and r <- r*src. The three-operand form of this instruction is as
follows:

IMUL cist, src, imm and dst <- src*imm.

DIV r/m
(src)

Perform unsigned division. This operation is similar to unsigned
multiplication. It divides the accumulator and its extension (AH:AL,
DX:AX, EDX:EAX) by the divisor src. The quotient is then placed
into the accumulator, and the remainder is saved in the accumulator
extension.

IDIV r/m Performs signed division. This is similar to unsigned division.

CBW Convert a byte to a word (CBW). This instruction doubles the size of the
operand through sign extension. It extends the byte (AL) into a word
and copies the sign bit in the source operand into every bit in the AH
register.

CWD Convert a word to a double word. This instruction doubles the size of
the source operand (AX) into the double word (DX:AX) and copies the
sign bit (bit 15) of the word in the AX register into every bit of the Dx
register.

CWDE Convert a word to a double word. This instruction doubles the source
operand (AX) through sign extension. This is similar to CWD but uses
EAX as the destination.

CDQ Convert a double word (EAX) to a quadword (EDX:EAX).

[a]Recall that ASCII numbers assume one digit is used per byte and BCD numbers assume
that one digit is used per nibble (4 bits). In other words, the AX register can contain either a
two-digit ASCII number or a four-digit BCD number.

Table 1.6: Logical operations

Command Description

AND dest, src Logical AND operation. This resets to zero
every bit of dest, provided that the
corresponding bit of src is zero.

TES Best, src Similar to AND but does not change dest.
This operation is used for checking whether
there are nonzero bits.

OR dest, src Logical OR. This sets to one all bits in dest,
for which the corresponding bits in src are
not zero.
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XOR dest, src Exclusive OR. Each bit of the result is one if
the corresponding bits of the two operands
are different; each bit is zero if the
corresponding bits of the operands are the
same.

NOT dest Inverts the values of all bits.

Table 1.7: Shift operations

Command Description

RCL/RCR dest, src Rotate through carry left and rotate through
carry right. These commands cyclically shift
all bits of the source oper and to the left or
right, including the carry flag, into rotation. 
Src may be either CL or the immediate
operand.

ROL/ROR dest, src Rotate left and rotate right. These
commands are similar to RCL/RCR but use
CF differently. CF doesn't participate in the
cyclic shift, and its original value is not a
part of the result. But CF receives a copy of
the bit shifted from one end to the other.

SAL/SAR dest, src Shift arithmetically left or right. In the right
shift, the most significant bit is duplicated.
In the left shift, the least significant bit is
filled with zero. The "popped out" bit is
loaded into CF.

SHL/SHR dest, src Shift logically left or right. A logical shift
right is different from SAR in that the most
significant bit is also filled with zero.

SHLD/SHRD dest, src, count Three-operand commands for left and right
shifts. The first operand, as usual, can be
either a register or a memory cell. The
second operand must be a general-purpose
register, and the third operand is either CL
or the immediate operand. The essence of
this operation is that dest and src are first
joined and then shifted by the number of
bits specified by count. The result is then
placed into dest.

Table 1.8: String operations

Command Description

REP Repeat the string operation until ECX is
reset to zero. There are several variations
with this prefix, such as REPZ (REPS) for
repeat until zero (zf = 1) and REPNZ
(REPNE) for repeat as long as zero.
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MOVS dest, src Move a byte, word, or double word from the
chain ad dressed by DS:[ESI] into the
dest chain addressed by ES [EDI ] . The
EDI and ESI registers are automatically
corrected according to the value of the
direction flag (DF). This command has the
following variants: MOVSB (byte) for
moving by single bytes, MOVSW (word) for
moving by words, and MOVSD (double
word) for moving by 4-byte blocks. Dest
and src do not need to be specified
explicitly.

LODS src Load a string. This is the command for
loading a string into an accumulator. The
following variants of the command are
available: lodsb, lodsw, and lodsd.
When executing this command, a byte,
word, or double word is loaded into AL, AX,
or EAX, respectively. The ESI register is
automatically changed by one, depending
on the state of DF. The REP prefix is not
used.

STOS dest An inverse of LODS. In other words, this
command passes a byte, word, or double
word from an accumulator into the string
and automatically corrects EDT.

SCAS dest Scan a string. It subtracts a string element, 
dst, from the contents of an accumulator (
AL, AX, EAX) and modifies flags. The
REPNE prefix allows the required element
within the string to be found.

CMPS dest, src Compare strings. This command subtracts
a byte, word, or double word of the dst
string from the corresponding element of
the src string. Flags are modified
depending on the subtraction result. The 
EDI and ESI registers are automatically
shifted to the next element. If the REPE
prefix is used, the command continues
comparison until the end of the string is
reached or as long as elements are equal.
If the REPNE prefix is used, the command
continues comparison until the end of the
string is reached or until elements are
equal.

Table 1.9: Commands for operations over flags

Command Description

CLC Clear the carry flag in the EFLAGS register.

CMC Complement the carry flag. This inverts CF.

STC Set CF in the EFLAGS register.

CLD Clear the direction flag. This resets DF to
zero.
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STD Set DF in the EFLAGS register.

CLI Clear the interrupt flag. This disables
maskable hardware interrupts.

STI Set the interrupt flag. This enables
maskable hardware interrupts.

CTS Reset the task switching flag.

Table 1.10: Control flow commands

Command Description

JMP target There are five forms of this command,
differing by the distance of the destination
and the current address and by the method
of specifying the target address. When
working in Windows, jumps within the limits
of a 32-bit segment are mainly used (NEAR
). The target address can be specified
directly (by a label) or indirectly; in other
words, this value can be stored in the
memory cell or register (JMP [EAX] ).

JMP target Another type of jump — a short jump —
takes only 2 bytes. The range of the offset
within which the jump takes place, is 128-
127. The use of such jumps is limited.

An intersegment jump can appear as
follows: JMP FWORD PTR L, where L is the
pointer to the structure containing a 48-bit
address, started with the 32-bit offset
address and followed by a 16-bit selector
(segment, call gateway, task state
segment). Also, the following variant of
intersegment jump is possible: JMP FWORD
ES:[EDT].
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Conditional jumps JA/JNBE — Jump if above, jump if not
below or equal.

JAE/JNB — Jump if above or equal, jump if
not below.

JB/JNAE — Jump if below, jump if not
above.

JBE/JNA — Jump if below or equal, jump if
not above.

JC — Jump if there is a carry.

JE/JZ — Jump if equal, jump if zero.

JG/JNLE — Jump if greater, jump if not
less or equal.

JGE/JNL — Jump if greater or equal, jump
if not less.

JL/JNGE — Jump if less, jump if not
greater or equal.

JLE/JNG — Jump if less or equal, jump if
not greater.

JNC — Jump if there is no carry.

JNE/JNZ — Jump if not equal, jump if not
zero.

JNO — Jump if there is no overflow.

JNP/JPO — Jump if there is no parity, jump
if the parity is odd.

JNS — Jump if there is no sign.

JO — Jump if there is overflow.

JP/JPE — Jump if there is parity, jump if
the parity is even.

JS — Jump if there is a sign.

JCXZ — Jump if CX equals zero.

JECXZ — Jump if ECX equals zero.

In the flat memory model, conditional jump
commands carry out jumps within a 32-bit
register.

Loop control; all commands of this group
decrement the contents of the ECX register

LOOP — Perform a loop operation if ECX
content does not equal zero.

LOOPS (LOOPZ) - Perform a loop
operation if the contents of ECX do not
equal zero and ZF equals one.

LOOPNE (LOOPNZ) - Perform a loop
operation if the contents of ECX do not
equal zero and ZF equals zero.

CALL target Pass control to procedure (label) and saves
the address that follows the CALL
command into the stack. In the flat memory
model, the return address is a 32-bit offset.
An intersegment call requires both the
selector and the offset to be pushed into
the stack (in other words, a 48-bit value,
where 16 bits are for the selector and 32
bits are for the offset).
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RET [N] Return from the procedure. An optional
parameter, N, assumes that the command
also automatically clears the stack (frees N
bytes). There are several variants of the
command that assembler chooses
automatically, depending on the procedure
type (NEAR or FAR). However, it is also
possible to explicitly specify the return type
(RETN or RETE). In the flat memory model,
RETN with a 4-byte return address is used
by default.

Table 1.11: Commands for supporting high-level programming languages

Command Description

ENTER par1, par2 Prepare the stack when entering a
procedure. The parl parameter shows the
number of bytes for local variables within a
procedure, and par2 specifies the nesting
level of the procedure. When par2 equals
zero, nesting is not allowed (this situation
arises when programming in C language).

LEAVE Exit a high-level procedure. This restores
the original stack contents after executing
the ENTER command.

BOUND r16, m1 6 or BOUND REG32,
MEM32

Check the array index against the bounds.
It is assumed that the register contains the
current address of the array and that the
second operand defines 2 words or 2
double words in the memory. The first
argument is considered the minimum index
value, and the second argument is the
maximum index value. If the current index
goes beyond these limits, then the INI 5
command is generated. These commands
are used for control if the index falls within
the specified range, which is important for
debugging purposes.

Table 1.12: Interrupt commands

Command Description

INT n Call to the interrupt procedure. This is a 2-
byte command. The contents of the flags
register are pushed into the stack, followed
by the fully qualified return address. In
addition, the trap flag (TF) is reset. After
this, an indirect jump through the nth
element of the interrupt descriptor table is
carried out to the interrupt handler. The 1-
byte INT 3 command is named the debug
exception handler and is actively used in
debuggers.

INTO Similar to the INT 4 command, provided
that overflow flag equals one. If OF equals
zero, the command doesn't carry out any
actions.
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IRET Interrupt return. This command retrieves
the return address and flags register from
the stack and returns from the interrupt.
The privilege level bit will be modified only if
the current privilege level equals zero.

Table 1.13: Processor synchronization commands

Command Description

HLT Halt. This program stops instruction
execution and switches the processor to
the halt state. Processor can be switched to
resume operation by an external interrupt.

LOCK Assert LOCK# signal prefix. This is a bus
locking prefix. It forces the processor to
form the LOCK# signal for the time of
execution of the command that follows the
prefix. In a multiprocessor system, this
signal blocks requests to the bus from other
processors.

NOP No operation.

WAIT (FWAIT) Synchronize with the coprocessor. Most
coprocessor commands handle this
command automatically.

Table 1.14: Commands for processing chains of bits (introduced in the Intel 386
processor)

Command Description

BSF (BSR) dest, src Bit scan forward and bit scan reverse.
Here, Dest is a 16-bit or a 32-bit register.
Src is a register or a memory cell. When
the BSF command is executed, the src
operand is scanned starting from least
significant bits. The BSR command scans
starting from the most significant bits. The
number of the first encountered bit set to
one is placed into the dest register, and
the zero flag is reset to zero. If src
contains zero, then ZF equals one, and the
contents of dest are undefined.

BT dest, src Bit test. This selects the bit in the bit string
specified by src at the bit position specified
by dest and stores its value in the carry
flag.

BTC dest, src Bit test and complement. This selects the
bit in the bit string specified by src at the
bit position specified by dest, stores the bit
value in CF, and complements the bit value
in the bit string.

BTR dest, src Bit test and reset. This selects the bit in the
bit string specified by src at the bit position
specified by dest, stores the bit value in CF
, and resets the bit value in the bit string to
zero.
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BTS dest, src Bit test and set. This selects the bit in the
bit string specified by src at the bit position
specified by dest, stores the bit value in CF
, and sets the bit value in the bit string to
one.

Table 1.15: Protection control commands

Command Description

LGDT src Load the value in the source operand into 
GDTR. Src is a 6-byte value (memory
location).

SGDT dest Store GDTR in the memory.

LIDT src Load the value from the source operand
into IDTR.

SIDT dest Store IDTR in the memory.

LLDT src Load the local descriptor table register (
LDTR). This loads the source operand (16
bits) into the segment selector field of 
LDTR.

SLDT dest

Store LDTR. This stores the segment
selector from LDTR in the destination
operand. The destination operand can be a
general-purpose register or a memory
location (16 bits).

LMSW src Load the machine status word (MSW). This
loads the source operand into MSW, bits 0—
15 of register CR0. The source operand can
be a 16-bit general-purpose register or a
memory location.

SMSW dest Store MSW. This saves MSW into a register or
memory location (16 bits).

LTR src Load the task register (TR). This loads the
source operand into the segment selector
field of TR. The source operand (a general-
purpose register or a memory location)
contains a segment selector that points to a
task state segment.

STR dest Store TR. This stores the segment selector
from TR in the destination operand. The
destination operand can be a general-
purpose register or a memory location (16
bits).

LAR dest, src Load access rights byte. This loads the
access rights from the segment descriptor
specified by the second operand (src) into
the first operand (dest) and sets ZF in the
flags register.
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LSL dest, src Load segment limit. This loads the
unscrambled segment limit from the
segment descriptor specified with the
second operand (source operand) into the
first operand (destination operand) and
sets ZF in the EFLAGS register. The source
operand (which can be a register or a
memory location) contains the segment
selector for the segment descriptor being
accessed. The destination operand is a
general-purpose register.

ARPL r/m, r Adjust RPL field of the segment selector.
This compares RPL fields of two segment
selectors, and if the RPL field of the
destination operand is less than the RPL
field of the source operand, ZF is set to one
and the RPL field of the destination
operand is increased to match that of the
source operand.

VERR seg Verify a segment for reading. This sets ZF
to one if the task is allowed to read in the 
SEG segment.

VERW seg Verify a segment for writing. This sets ZF to
one if the task is allowed to write into the 
SEG segment.

Table 1.16: 

Commands for exchanging data with control registers

Command Description

MOV CRn, src Load src into the CRn control register.

MOV dest, CRn Read from the CRn control register.

MOV DRn, src Load src into the DRn debug register.

MOV dest, DRn Read from the DRn debug register.

MOV TRn, src Load src into the DRn test register.

MOV dest, TRn Read from the TRn test register.

RDTSC Read the timestamp counter. The TSC
value is stored into the EDX:EAX pair of
registers.

Table 1.17: Commands for identifying and controlling architecture

Command Description
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CPUID CPU identification. This returns the
processor identification information. It
depends on the contents of the EAX
register.

If EAX=0, the processor returns the string of
characters con taining information about
the manufacturer into the EBX, EDX, and
ECX registers. For example, AMD
processors return the AuthenticAMD
string and Intel processors return the 
GenuineIntel string.

If EAX=1, the identification code is returned
in the least significant word of the EAX
register.

If EAX=2, processor configuration
parameters are returned in the EAX, EBX,
EcX, and EDX registers.

RDMSR r/m Read from model-specific register (MSR)
into ECX.

RDPMC Read performance-monitoring counters.
This places the value of one of the two
programmable performance monitor ing
counters into the EDX: EAX pair of
registers. The choice of the counter
depends on the contents of the ECX
register.

WRMSR r/m Write to the MSR. This writes the ECX
contents into the MSR.

SYSENTER Fast system call.

SYSEXIT Exit from the system call.

Table 1.18: 

Caching control commands

Command Description

INVD Invalidate internal caches. This invalidates
(flushes) the processor's internal caches
and issues a special-function bus cycle that
directs external caches to flush themselves.
Data held in internal caches is not written
back to main memory.

WBINVD Write back and invalidate caches. This
writes all modified cache lines and
invalidates the caches.

INVLPG r/m Invalidate TLB entry. This invalidates
(flushes) the translation lookaside buffer (
TLB) entry specified with the source.

1.2.3. Arithmetic Coprocessor Commands
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In this section, I'll cover the main issues related to the operation of the arithmetic coprocessor.

Before the release of the Intel 80486 processor, coprocessors were supplied separately.
Nowadays, the coprocessor is a built-in and integral part of the processor.

Structure and Operation

The arithmetic coprocessor operates over its own set of commands and over its own set of
registers. However, command prefetching is carried out by the processor.

The arithmetic coprocessor carries out operations over the following data types: word (16 bits),
short integer (32 bits), long word (64 bits), packed BCD (80 bits), short real number (32 bits),
long real number (64 bits), and extended real number (80 bits). Formats, in which real numbers
are stored, were considered in Section 1.1. In addition to normal numbers, some coprocessor
operations might result in special cases.

Special Cases

The special cases that might occur as a result of coprocessor operations are as follows:
§ Positive zero — All bits are set to zero.

§ Negative zero — The sign bit equals one.

§ Positive infinity — The sign bit is set to zero, all bits of the mantissa are set to zero, and all
bits of the exponent are set to one.

§ Negative infinity — The sign bit is set to one, all bits of the mantissa are set to zero, and all
bits of the exponent are set to one.

§ Denormalized numbers — All bits of the exponent are set to zero.

§ Indefinite numbers — The sign bit is set to one, all bits of the exponent are set to one, the
first bit of the mantissa is set to one (for an 80-bit number, the first 2 bits of the mantissa
are set to one), and the other bits are zeros.

§ Signaling NaNs[4] (SNaNs) — All bits of the exponent are set to one, the first bit of the
mantissa is zero (for an 80-bit number, the first 2 bits are one and zero), and there are ones
among the other bits.

§ Quiet NaNs (QNaNs) — All bits of the exponent are set to one, the first bit of the mantissa
is zero (for an 80-bit number, the first 2 bits of the mantissa are ones), and there are ones
among the other bits of the mantissa.

§ Unsupported numbers do not correspond to standard numbers and are not described as
special cases.

When the coprocessor executes an operation, the processor waits for this operation to
complete. In other words, before each coprocessor command, the assembler automatically
generates the command that checks whether the coprocessor is busy. If the coprocessor is
busy, the processor is switched to the waiting state. Sometimes programmers need to manually
insert the WAIT command after the coprocessor command.

Data Registers

The coprocessor has eight 80-bit data registers that represent a stack structure. These registers
are also called the coprocessor stack. The registers are named R0-R7; however, they cannot be
accessed directly. Each register can take any position in the stack. The names of the relative
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stack registers are ST(0)-ST(7).

There is also the status register (or the status word, SW), the flags of which allow you to assess
the result of the completed operation. The control register (or the control word, CW) contains the
bits that influence the result of execution of the coprocessor commands.

The tags register (or the tag word, TW) is made up of 16 bits describing the contents of the
coprocessor registers — 2 bits per data register. The tag reflects the contents of the data
register. Here are the tag values: 00 for a real nonzero number, 01 for true zero, 10 for special
numbers, and 11 for no data.

In addition to the previously-listed register, the coprocessor has the FIP and FDP registers. The
FIP register contains the address of the last executed command, except for FTNIT, FCLEX,
FLDCW, FSTCW, FSTSW, FSTSWAX, FSTENV, FLDENV, FSAVE, FRSTOR, and FWATT. The FDP
register contains the address of the command operand, except for the preceding commands.

When carrying out computations using a coprocessor command, the most important role is
delegated to exceptions, also called special cases. A typical exception is division by zero.
Exception bits are stored in the status register. Exceptions must be taken into account to obtain
correct results.

Exceptions

The list of exceptions is as follows:
§ Incorrect result (rounding)

§ Invalid operation

§ Division by zero

§ Underflow (tiny result)

§ Overflow (too large result)

§ Denormalized operand

The Status Word

The coprocessor status word reflects its overall state. It includes the following bits:
§ Bit 0, invalid operation exception (IE) flag

§ Bit 1, denormalized operation exception (DE) flag

§ Bit 2, division by zero exception (ZE) flag

§ Bit 3, overflow exception (OE) flag

§ Bit 4, underflow exception (UE) flag

§ Bit 5, inexact result (precision) exception (PE) flag

§ Bit 6, stack fault exception (SF) flag

§ Bit 7, exception summary (ES) flag

§ Bits 8, 9, 10, and 14, condition flags (C0, C1, C2, and C3)

§ Bits 11-13, number (0-7) specifying which register is the top of the stack
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§ Bit 15, FPU busy flag — Matches ES

The Control Word

The control word of the arithmetic coprocessor determines one of several available methods of
processing numeric data. Bits of the control word (CW) are as follows:
§ Bit 0, invalid operation mask (IM)

§ Bit 1, denorm7alized operand mask (DM)

§ Bit 2, division by zero mask (ZM)

§ Bit 3, overflow mask (OM)

§ Bit 4, underflow mask (UM)

§ Bit 5, inexact result (precision) mask (PM)

§ Bits 6 and 7, reserved

§ Bits 8 and 9, precision control (PC)

§ Bits 10 and 11, rounding control (RC)

§ Bit 12, infinity control (IC)

§ Bits 13-15, reserved

The following are possible causes of exceptions:
§ Stack fault. The result is an indefinite number.

§ Operation over an unsupported number. The result is an indefinite number.

§ Operation over an SNaN. The result is a QNaN.

§ Comparison of a number with QNaN or SNaN. The result is C0=C2=C3=l.

§ Addition of infinities (the same sign) or subtraction of infinities (different signs). The result is
an indefinite number.

§ Multiplication of infinity by zero. The result is an indefinite number.

§ Division of infinity by infinity or division of zero by zero. The result is an indefinite number.

§ FPREM and FPREM1 commands if the divisor is zero or if the dividend equals infinity. The
result is an indefinite number, and C2=0.

§ Trigonometric operations over infinity. The result is an indefinite number, and C2=0.

§ Root or logarithm operations if the argument is negative. The result is an indefinite number.

§ FBSTP command if the source register is empty, contains a QNaN or SNaN, contains
infinity, or is more than 18 decimal characters in length. The result is an indefinite number.

§ FXCH if one of the operands is empty. The result is an indefinite number.

Coprocessor Commands

Tables 1.19-1.23 provide a complete list of the FPU commands and a brief description of the
operations they carry out.
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Table 1.19: Data exchange commands

Command Description

FLD src Load a real number into ST(0) (stack top)
from the memory location. In this case, ST
(0)->ST(1). The memory location might be
32 bits, 64 bits, or 80 bits. The FLD ST(0)
command duplicates the stack top.

FILD src Load an integer number from the memory into 
ST(0). In this case, ST(0)->ST(1). The
memory area can be 16 bits, 32 bits, or 64
bits.

FBLD src Load a BCD into ST(0) from an 80-bit
memory area.

FLDZ Load 0 into ST(0).

FLD1 Load 1 into ST(0).

FLDPI Load PI into ST(0).

FLDL2T Load LOG2(10) into ST(0).

FLDTL2E Load LOG2(e) into ST(0).

FLDLG2 Load LG(2) into ST(0).

FLDLN2 Load LN(2) into ST(0).

FST dest Write a real number from ST(0) into the
memory. The memory area might be 32 bits,
64 bits, or 80 bits.

FSTP dest Write a real number from ST(0) into the
memory. The memory area might be 32 bits,
64 bits, or 80 bits. In this case, the stack top is
popped from the stack.

FBST dest

Write a BCD into the memory. The memory
area is 80 bits.

FBSTP dest Write a BCD into the memory. The memory
area is 80 bits. In this case, the stack top is
popped from the stack.

FXCH st(i) Exchange the values of the stack top and the 
i register. If the operand is not specified, then
ST(0) and ST(1) are ex changed.
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FCMOVc dest, src Move conventional data. This command
copies ST(i) (src) into ST(0) (dest).
There are the following forms of this
command:
§ FCMOVE — Copy if equal (ZF = 1)

§ FCMOVE —Copy if not equal (ZF = 0)

§ FCMOVB — Copy if below (CF = 1)

§ FCMOVBE — Copy if below or equal (CF =
1 or ZF = 1)

§ FCMOVBE —COPY if not below or equal (
CF = 1 or ZF = 1)

§ FCMOVNB —COPY if not below (CF = 0)

§ FCMOVNBE —Copy if unordered
(incomparable) (PF = 1)

§ FCMOVU —Copy if not unordered
(comparable) (PF = 0)

Table 1.20: Data comparison commands

Command Description

FCOM Compare two real numbers, ST(0) and ST
(1) . Flags are set the same way as for the
subtraction operation: ST(0) — ST(1).

In this command and further on (up to the 
FCOMI command), the C0, C2, and C3 flags
are set as follows:

ST(0)>src C0 = 0, C2 = 0, C3 = 0

ST(0)<src C0 = l, C2 = 0, C3 = 0

ST(0)=src C0 = 0, C2 = 0, C3 = 1

If operands are unordered (cannot be
compared), then

CO = C2 = C3 = 1.

FCOM src Compare ST(0) with the operand
contained in the memory. The operand
might be 32 bits or 64 bits.

FCOMP src

Compare the real number in ST(0) with
the operand in memory. The ST(0) is
popped from the stack. The operand might
be a register or memory area.

FCOMPP Compare ST(0) and ST(1). Two registers
are popped from the stack.

FICOM src Compare an integer number in ST(0) with
the operand. The operand might be either
16 bits or 32 bits.
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FICOMP src Compare an integer number in ST(0) with
the operand. The operand might be a 16-bit
or 32-bit memory area or a register. In the
course of this operation, ST(0) is popped
from the stack.

FTST Test whether ST(0) equals zero.

FUCOM ST(i) Make an unordered comparison of ST(0)
with ST(i).

FUCOMP ST(i) Make an unordered comparison of ST(0)
with ST(i). In the course of this operation,
the stack is popped.

FUCOMPP ST(i) Make an unordered comparison of ST(0)
with ST(i). In the course of this operation,
the stack is popped twice.

FCOMT src Compare and set flags. The four
commands (FXAM) have the following
influence on the bits of the flags register:

ST(0) >src ZF=0, PF=0, CF = 0

ST(0) <src ZF=0, PF=0, CF = 1

ST(0) =src ZF=1, PF=0, CF = 0

If the operands are unordered, then all
three flags are set to one.

FCOMIP src Compare, set bits, and pop.

FUCOMI src Make an unordered comparison and set
flags.

FUCOMIP src Make an unordered comparison, set flags,
and pop.

FXAM Analyze the contents of the stack top. The
result is stored into bits C3, C2, and C0 as
follows:

000 — Unsupported format

001 — NaN

010 — Normalized number

0ll — Infinity

100 — Zero

101 — Blank operand

110 — Denormalized number

Table 1.21: 

Arithmetic commands

Command Description

FADD src Add the floating point number:

FADD ST(i), ST ST(0) <- ST(0) + src, where src is a
32-bit or 64-bit number ST(i) <- ST(i)
+ ST{0)
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FADDP ST(i), ST Add the floating point number: ST(i) <-
ST(i) + ST(0). In the course of this
operation, the stack is popped.

FIADD src Add the integer number: ST(0) <- ST
(0) + src, where src is a 16-bit or 32-bit
number.

FSUB src Subtract the floating point number:

FSUB ST(i), ST ST(0) <-ST(0) - src, where src is a
32-bit or 64-bit number ST(i) <- ST(i)
- ST(0)

FSUBP ST(i), ST Subtract the floating point number: ST(i)
<- ST(i) - ST(0). When carrying out
this operation, the stack is popped.

FSUBR ST(i), ST Subtract the floating point number reverse: 
ST{0) <- ST(i) - ST(0).

FSUBRP ST(i), ST Subtract the floating point reverse and pop 
ST(0) <-ST(i) -ST(0). When carrying
out this operation, the stack is popped.

FISUB src Subtract integer numbers: ST(0) <- ST
(0) - src, where src is a 16-bit or 32-bit
number.

FISUBR src Subtract integer numbers and pop ST
( 0 ) <- ST( 0 ) - src, where src is
a 16-bit or 32-bit number. When carrying
out this operation, the stack is popped.

FMUL Multiply the floating point number:

FMUL ST(i) The first case: ST(0) <- ST(0)*ST(1)

FMUL ST(i), ST The second case: ST(0) <- ST(i)*ST
(0)

The third case: ST(i) <- ST(i)*ST(0)

FMULP ST(i), ST(0) Multiply the floating point and pop ST(i)
<- ST(i) *ST(0) . When carrying out
this operation, the stack is popped.

FIMUL src Multiply ST(0) by an integer number: ST
(0) <- ST(0) *src. The operand might
be a 16-bit or 32-bit number.

FDIV

FDIV ST(i)

ST(0) <- ST(0)/ST(1)

ST(0) <- ST(0)/ST(i)

ST(i) <- ST(0)/ST(i)

FDIV ST(i), SY

FDIVP ST(i), ST

Divide the floating point numbers and pop: 
ST(i) <- ST(0) / ST(i). When
carrying out this operation, the stack is
popped.

FIDIV src Divide integer numbers: ST(0) <- ST(i)
/src. The divisor might be a 16-bit or a 32-
bit number.



42 Disassembling Code IDA Pro and SoftICE

 

FDIVR ST(i), ST Divide the floating point numbers: ST(0)
<- ST(i) /ST(0).

FDIVRP ST(i), ST Divide the floating point numbers reverse
and pop:

ST(0) <- ST(i)/ST(0). When carrying
out this operation, the stack is popped.

FIDIVR src Divide integer numbers reverse: ST(0) <-
src/ST(0).

FSQRT Extract the square root from ST(0) and
store back.

FSCALE Scale by a power of two: ST(0) <- ST
(0) *2 ^ST(1).

EXTRACT Extract the exponent and mantissa from the
number ST(0). The exponent will be
stored in ST(0), and the mantissa will be
in ST(1).

FPREM Find the remainder from the division:

ST(0) <- ST(0)MOD(ST(1) ).

FPREM1 Find the remainder from the division
according to the IEEE standard.

FUNDINT Round to the nearest integer number stored
in ST(0):

ST(0) <-int(ST(0)).

FABS Find the absolute value: ST(0) <- ABS
(ST(0)).

FCSH Invert the sign: ST(0) <- (-ST(0)).

Table 1.22: Transcendental functions

Command Description

FCOS Compute the cosine: ST(0) <-COS (ST
(0)). The contents of ST( 0) are
interpreted as an angle measured in
radians.

FPTAN Compute the partial tangent. The contents
of ST(0) are interpreted as an angle in
radians. The tangent value is returned to
the place of the argument, then the value of
one is pushed into the stack.

FPATAN

Compute the arctangent. The following
function is computed:

Arctg(ST(1)/ST(0))

After the computation, the stack is popped
and the result goes to the top of the stack.

FSIN Compute the cosine: ST(0) <- sin (si
(0) ). The contents of ST(0) are
interpreted as an angle in radians.
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FSINCOS Compute sine and cosine: ST(0) <- sin
(ST(0)) and ST(1) <-COS(ST(0)).

F2XM1 Compute 2^X- 1: ST(0) <-2^ST(0) -
1.

FYL2X Compute Y*LOG2(X):ST(0) = Y, ST
(1) = X. When this function is executed,
the stack is popped and the result is
pushed into the stack top.

FYL2XP1 Compute Y*LOG2(X):ST(0) = Y, ST
(1) = x. When this function is executed,
the stack is popped and the result is
pushed into the stack top.

Table 1.23: Coprocessor control commands

Command Description

FINIT Initialize the coprocessor.

FNINIT Initialize the coprocessor without waiting.

FSTSW AX Write the status word into AX (SW -> AX)

FSTSW dest Write the status word into deST(16 bits).

FNSTSW dest Save the status word into deST(16 bits).

FLDCW src Load the control word (16 bits) from dest.

FSTCW dest Save the control word into dest.

FCLEX Clear FPU exception flags after checking
for error conditions.

FNCLEX Clear FPU exception flags without checking
for error conditions.

FSTENV dest Store the FPU environment (SW, CW,
TAGW, FIP, FDP) in the memory after
checking for error conditions.

FNSTENV dest

Store the FPU environment (SW, CW,
TAGW, FIP, FDP) in the memory without
checking for error conditions.

FLDENV src Load the FPU environment from the
memory.

FSAVE dest Save the FPU state (SW, CW, TAGW,
FIP, FDP) in the memory after checking
for error conditions.

FNSAVE dest Save the FPU state (SW, CW, TAGW,
FIP, FDP) in the memory without
checking for error conditions.

FHSTOR src Restore the FPU state.

FINCSTP Increment the FPU register's stack pointer.

FDECSTP Decrement the FPU register's stack pointer.
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FFREE ST(i) Free the FPU register. Label ST(i) as
free.

FNOP FPU has no operation.

WAIT (FWAIT) Instruct the processor to wait for FPU to
complete the current operation.

1.2.4. MMX Extension

MMX Architecture

The MMX extension is mainly oriented toward use in multimedia applications. The main idea of
MMX consists of simultaneous processing of several data elements per instruction. The MMX
extension was introduced in the Pentium P54C modification of the Intel Pentium processor and
is present in all later modifications of this processor.

The MMX extension uses new types of packed data: packet bytes (8 bytes), packed words (4
words), packed double words (2 double words), and quadwords. As you can see, these are 64-
bit numbers. The MMX extension includes eight general-purpose registers (designated as MM0-
MM7). The size of these registers is 64 bits. Physically, these registers are used by the least
significant bits of the FPU data registers (R0-R7). MMX commands "spoil" the status register
and the tags register. Therefore, combined use of MMX commands and coprocessor
commands might cause certain difficulties. In other words, before you use MMX commands,
you'll have to save the coprocessor context, which can considerably slow the operation of your
program. Also, it is important to note that MMX commands operate directly of coprocessor
registers, not over the pointers to the stack elements.

MMX Instructions

MMX instructions are briefly outlined in Tables 1.24 and 1.25.

Table 1.24: MMX extension commands

Command Description

EMMS Clear the registers stack. This sets all bits
of the tags word to one.

MOVD mm, m32/ir32 Move the data into the 32 least significant
bits of an MMX register and fill the most
significant bits with zeros.

MOVD m32/ir32, mm Move the data from the 32 least significant
bits of an MMX register.

MOVQ mm, mm/m64 Move the data into an MMX register.

MOVQ mm/m64, mm Move the data from an MMX register.
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PACKSSDW mm, mm/m64 Pack double words into words with signed
saturation. This command packs, with
signed saturation, 2 double words in mm and
2 double words in mm/m64 into 4 double
words in mm. In other words, this command
copies 2 double words from mm into the 2
least significant words of mm and 2 double
words from mm/m64 into the 2 most
significant words. If the value of some
double word happens to be greater than
32,767 or less than -32,768, then 32,767
and -32,768, respectively, will be written
into the double words.

PACKSSWB mm, mm/m64 Pack words into bytes with signed
saturation. This command packs, with
signed saturation, 4 words in mm and 4
words in mm/m64 into 8 bytes in mm. In other
words, 4 words from mm are converted into
the 4 least significant bytes of mm, and 4
words from irm/m64 are converted into the
4 most significant bytes. If the value of
some word happens to be greater than 127
or less than -128, then 127 and -128,
respectively, will be placed into the bytes.

PACKUSWB mm, mm/m64 Pack and saturate 4 signed words from the
destination operand (first operand) and 4
signed words from the source operand
(second operand) into 8 unsigned bytes in
the destination operand, lif the signed value
of a word is beyond the range of an
unsigned byte (that is, greater than 255 or
less than 0), the saturated byte value of 255
or 0, respectively, is stored in the
destination.

PADDB mm, mm/m64

PADDW mm, mm/m64

PADDD mm, mm/m64

Add the individual data elements (bytes,
words, or double words) of the source
operand (second operand) to the individual
data elements of the destination operand
(first operand). If the result of an individual
addition exceeds the range for the specified
data type (overflows), the result is wrapped
around it, meaning that the result is
truncated so that only the lower (least
significant) bits of the result are returned
(that is, the carry is ignored).

PADDSB mm, mm/m64

PADDSW mm, mm/m64

Add packed bytes (words) with sign
saturation.

PADDUSB mm, mm/m64

PADDUSW mm, mm/m64

Add packed bytes (words) with unsigned
saturation.

PAND mm, mm/m64 Perform the logical AND operation.
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PANDN mm, mm/m64 Perform the logical AND NOT operation.
This performs a bitwise logical NOT on the
quadword destination operand (first
operand). Then, the instruction performs a
bitwise logical AND operation on the
inverted destination operand and the
quadword source operand (second
operand). Each bit of the result of the AND
operation is set to one if the corresponding
bits of the source and inverted destination
bits are one; otherwise, it is set to zero. The
result is stored in the destination operand
location.

PCMPEQB mm, mm/m64

PCMPEQD mm, mm/m64

PCMPEQW mm, mm/m64

Packed compare for equal. This compares
the individual data elements (bytes, words,
or double words) in the destination operand
(first operand) to the corresponding data
elements in the source operand (second
operand). If two data elements are equal,
the corresponding data element in the
destination operand is set to all ones (true
); otherwise, it is set to all zeros (false).
The destination operand must be an MMX
register; the source operand may be either
an MMX register or a 64-bit memory
location.

PCMPGTB mm, mm/m64

PCMPGTD mm, mm/m64

PCMPGTW mm, mm/m64

Packed compare for greater than. This
compares the individual signed data
elements (bytes, words, or double words) in
the destination operand (first operand) to
the corresponding signed data elements in
the source operand (second operand). If a
data element in the destination operand is
greater than its corresponding data element
in the source operand, the data element in
the destination operand is set to all ones (
true); otherwise, it is set to all zeros (
false). The destination operand must be
an MMX register; the source operand may
be either an MMX register or a 64-bit
memory location.

PMADDWD mm, mm/m64

Packed multiply and add. This multiplies
the individual signed words of the
destination operand by the corresponding
signed words of the source operand,
producing 4 signed, double word results.
The 2 double word results from the
multiplication of the high-order words are
added together and stored in the upper
double word of the destination operand; the
2 double word results from the
multiplication of the low-order words are
added together and stored in the lower
double word of the destination operand.
The destination operand must be an MMX
register; the source operand may be either
an MMX register or a 64-bit memory
location.

www.allitebooks.com
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PMULHW mm, mm/m64 Packed multiply higher. This multiplies the
4 signed words of the source operand
(second operand) by the 4 signed words of
the destination operand (first operand),
producing 4 signed, double word,
intermediate results. The high-order word of
each intermediate result is then written to
its corresponding word location in the
destination operand. The destination
operand must be an MMX register; the
source operand may be either an MMX
register or a 64-bit memory location.

PMULLW mm, mm/m64 Packed multiply low. This multiplies the 4
signed or unsigned words of the source
operand (second operand) with the 4
signed or unsigned words of the destination
operand (first operand), producing four
double word, intermediate results. The low-
order word of each intermediate result is
then written to its corresponding word
location in the destination operand. The
destination op-erand must be an MMX
register; the source operand may be either
an MMX register or a 64-bit memory
location.

POR mm, mm/m64 Bitwise logical OR.

PSHIMD mm, imm

PSHIMQ mm, imm

PSHIMW mm, imm

PSHIMW mm, irrm

PSHIMD represents the PSLLD, PSRAD,
and PSRLD instructions with the immediate
operand (a counter).

PSHIMQ represents the PSLLQ and PSRLQ
instructions with the immediate operand (a
counter).

PSHIMW represents the PSLLW, PSRAW,
and PSRLW instructions.

PSLLD mm, mm/m64

PSLLQ mm, mm/m 64

PSLLW mm, mm/m 64

Packed shift left logical. This shifts the bits
in the data elements (words, double words,
or a quadword) in the destination operand
(first operand) to the left by the number of
bits specified in the unsigned count
operand (second operand). The result of
the shift operation is written to the
destination operand. As the bits in the data
elements are shifted left, the empty low-
order bits are cleared (set to zero). If the
value specified by the count operand is
greater than 15 (for words), 31 (for double
words), or 63 (for a quadword), then the
destination operand is set to all zeros.
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PSRAD mm, mm/m64

PSRAW mm, mm/m64

Packed shift right arithmetic. This shifts the
bits in the data elements (words or double
words) in the destination operand (first
operand) to the right by the amount of bits
specified in the unsigned count operand
(second operand). The result of the shift
operation is written to the destination
operand. The empty high-order bits of each
element are filled with the initial value of the
sign bit of the data element. If the value
specified by the count operand is greater
than 15 (for words) or 31 (for double
words), each destination data element is
filled with the initial value of the sign bit of
the element.

PSRLD mm, mm/m64

PSRLQ mm, mm/m64

PSRLW mm, mm/m64

Packed shift right logical. This shifts the bits
in the data elements (words, double words,
or quadwords) in the destination operand
(first operand) to the right by the number of
bits specified in the unsigned count
operand (second operand). The result of
the shift operation is written to the
destination operand. As the bits in the data
elements are shifted right, the empty high-
order bits are cleared (set to zero). If the
value specified by the count operand is
greater than 15 (for words), 31 (for double
words), or 63 (for a quadword), then the
destination operand is set to all zeros.

PSUBB mm, mm/m64

PSUBW mm, mm/m64

PSUBD mm, mm/m64

Packed subtract. This subtracts the
individual data elements (bytes, words, or
double words) of the source operand
(second operand) from the individual data
elements of the destination operand (first
operand). If the result of the subtraction
exceeds the range for the specified data
type (overflows), the result is wrapped
around. This means that the result is
truncated so that only the lower (least
significant) bits of the result are returned
(that is, the carry is ignored).

PSUBSB mm, mm/m 64

PSUBSW mm, mm/m64

Packed subtract with saturation. This
subtracts the individual signed data
elements (bytes or words) of the source
operand (second operand) from the
individual signed data elements of the
destination operand (first operand). If the
result of the subtraction exceeds the range
for the specified data type, the result is
saturated. The destination operand must be
an MMX register; the source operand can
be either an MMX register or a quadword
memory location.
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PSUBUSB mm, mm/m64

PSUBUSW mm, mm/m64

Packed subtract unsigned with saturation.
This subtracts the individual unsigned data
elements (bytes or words) of the source
operand (second operand) from the
individual unsigned data elements of the
destination operand (first operand). If the
result of the individual subtraction exceeds
the range for the specified unsigned data
type, the result is saturated (the minimal
number — zero — is used as the result).

PUNPCKHBW mm, mm/m64

Interleave the 4 high-order bytes of the
source operand and the 4 high-order bytes
of the destination operand and write them
to the destination operand.

PUNPCKHWD mm, mm/m64 Interleave the 2 high-order words of the
source operand and the 2 high-order words
of the destination operand and write them
to the destination operand.

PUNPCKHDQ mm, mm/m64 Interleave the high-order double word of the
source operand and the high-order double
word of the destination operand and write
them to the destination operand.

PUNPCKLBW mm, mm/m64 Unpack the low-order bytes of the source
operands and interleave them with the low-
order bytes of the destination operand.

PUNPCKLWD mm, mm/m64 Unpack the low-order words of the source
operand and interleave them with the low-
order words of the destination operand.

PUNPCKLDQ mm, mm/m64 Unpack the low-order double words of the
source operand and interleave them with
the low-order double words of the
destination operand.

PXOR mm, mm/m64 Exclusive OR.

Table 1.25: New MMX commands

Command Description

PADDQ xmm, xmm/m128 Add 128-bit operands.

PSUBQ xmm, xmm/m128 Subtract 128-bit operands.

PMULUDQ xmm, xmm/m128 Multiply 64-bit operands. The result must
not exceed 128 bits.

PSLLDQ xmm, imm Shift left logical the double quadword. This
shifts the contents of the source operand to
the left by the amount of bytes specified by
an immediate operand (imm x 8 bits).

PSRLDQ xmm imm

Shift right logical the double quadword. This
shifts the contents of the source operand to
the right by the amount of bytes specified
by an immediate operand (imm x 8 bits).
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PSHUFHW xmm, xmm/m128, imm Shuffle the packed high words. This
instruction shuffles the word integers
packed into the high quadword of the
source operand and stores the shuffled
result in the high quadword of the
destination operand. An 8-bit immediate
operand specifies the shuffle order.

PSHUFLW xmm/ml28, imm Shuffle the packed low words. The 
PSHUFLW instruction copies words from the
low quadword of the source operand
(second operand) and inserts them in the
low quadword erf the destination operand
(first operand) at word locations selected
with the order operand (third operand).

PSHUFD xmm, xmm/m128, imm Shuffle the packed double words. This
copies double words from source operand
(second operand) and inserts them into the
destination operand (first operand) at the
locations selected with the order operand
(third operand).

PUNPCKHQDQ xmm, xmm/m128 Unpack the high quadwords. This
instruction interleaves the high quadword of
the source operand and the high quadword
of the destination operand and writes them
to the destination register.

PUNPCKLQDQ xmm, xmm/m128 Unpack the low quadwords. This instruction
interleaves the low quadwords of the
source operand and the low quad-words of
the destination operand and writes them to
the destination register.

MOVDQ2Q mm, xmm Move the quadword integer from an XMM
to an MMX register. This instruction moves
the low quadword integer from an XMM
source register to an MMX destination
register.

MOVQ2DQ xmm, mm Copy the content of the mm register into the
least significant half of xmm. The MOVQ2DQ
(move quadword integer from an XMM to
an MMX register) instruction moves the
quadword integer from an MMX source
register to an XMM destination register.

MOVNTDQ m128, xmm Store the double quadword using a
nontemporal hint. This instruction stores
packed. The address must be aligned to a
16-byte boundary.

MOVDQA xmm/m128

MOVDQA xmm/m128, xmm

Move the aligned double quadword. The 
MOVDQA instruction transfers a double
quadword operand from memory to an
XMM register, or vice versa. Alternatively, it
transfers it between XMM registers. The
memory address must be aligned to a 16-
byte boundary.
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MOVDQU xmm, xmm/m128

MOVDQU xmm/m128, xmm

Move the unaligned double quadword. This
instruction performs the same operations
as the MOVDQA instruction, except that 16-
byte alignment of a memory address is not
required.

MOVMSKPD r32, xmm Extract the sign mask from two packed,
double-precision, floating-point values. This
copies the values of sign bits (63 and 127)
into bits 0 and 1 of the r32 register. Other
bits are cleared.

MASKMOVDQU xrrm, xmm Store selected bytes from the source
operand (first operand) into a 1 28-bit
memory location. The mask operand
(second operand) selects, which bytes from
the source operand are written to memory.
The source and mask operands are XMM
registers. The location of the first byte of
the memory location is specified by DI/EDI
and DS registers. The memory location
does not need to be aligned on a natural
boundary. (The size of the store address
depends on the address-size attribute.)

New MMX Instructions

With the release of the Pentium 4 processor, previously-listed instructions of the MMX group
have gained access to 128-bit registers (

xmm

). 

Table 1.25

 lists new MMX instructions.

[
4

]

NaN stands for "not a number." NaNs are nonnumbers; they are not part of the real number set.
The encoding space for NaNs in floating-point format is beyond the ends of the real number line.
This space includes any value with the maximum allowable biased exponent and a nonzero
fraction (the sign bit is ignored for NaNs).

1.3. Specific Features of Windows Programming

This section is a brief introduction to Windows programming. It doesn't pretend to play the role
of a learning course; that would require a separate book. I only want to remind you about the
main principles of Windows programming, which hopefully will be useful when analyzing
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executable modules.

1.3.1. General Concepts

Windows programming is based on the use of application program interface (API) functions.
Using API functions, an application can communicate directly with the Windows operating
system. Applications built on the basis of such interactions are more tightly integrated into the
operating system and, consequently, have more powerful capabilities in comparison to other
programs. Sometimes, API functions are called system calls. However, this designation is not
particularly correct. System calls (in UNIX, for example) are calls to system procedures stored in
the operating system kernel. The operating system provides a range of such procedures to
simplify resource management for application programs. API functions are an additional
interface layer between system procedures and application programs. When calling an API
function, you do not know whether it would be executed entirely by the code of the dynamic link
library (DLL) loaded into your address space or it would use some procedures stored in the
kernel. The Windows operating system is changing and evolving, newer versions are released,
but API remains without changes (although new functions might be added to it). Thus, it
becomes possible to achieve full compatibility with programs written using only the basic set of
API functions.

API functions are supported by using DLLs stored in the system directory (windows\system32).
Linking of these libraries is ensured by the compiler (so-called late implicit binding). The total
number of API functions is enormous; it exceeds 3,000. Most intensely used are API functions
located in the following four DLLs:
§ Kerne132.dll — This library stores the main system control and management functions

(including functions for controlling memory, applications, resources, and files).

§ User32.dll — This library contains various functions of the user interface (including the ones
for processing window messages, timers, and menus).

§ Gdi32.dll — This is the graphics device interface (GDI) library, containing lots of graphics
window functions.

§ Comctl32.dll — This library contains functions that service various controls. In particular,
this library is responsible for the new control style (Windows XP interface style).

If the API function accepts a pointer to string as one of the input arguments, then such a function
has two versions: the one with the A prefix for ANSI strings, and one with the W prefix for the
Unicode strings. For example, there are two versions for the MessageBox API function:
MessageBoxA and MessageBoxW. In high-level programming languages, such as C++, it is
necessary to initially determine, with which strings the program operates. Therefore, the
compiler automatically selects an appropriate version of the function. When writing a program in
Assembly, it is necessary to explicitly specify, which version of a specific function should be
used.

There are two main types of application programs under Windows: console applications and
graphical user interface (GUI) applications. A specific feature of a console application is that
when executing such an application, the system creates a text window, called the console, for
this application (or, as a variant, the application inherits the console from the parent process).
GUI applications work with graphical windows that can contain graphics and various controls,
such as buttons, edit fields, and list boxes. GUI applications are also called graphical or
windowing applications. Windows can run other types of applications — services and drivers,
which are also known as system applications. In addition, Windows can run applications in Posix
and OS/2 subsystems, although with limited possibilities. These types of applications will not be
covered in detail in this book.

Usually, Windows programs are written using library functions (C/C++) or library classes (in
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Delphi, they are called components). In this case, interaction with the operating system is hidden
under the layer of libraries. As a result, the analysis of the executable code becomes more
complicated because it becomes necessary to determine, which library function or class is in
use. This can be achieved by analyzing the library code to determine, which API functions are
called, and to understand the aim of these calls. These are not trivial tasks. The goal of this
section is to explain the general structure of a Windows program to enable you to understand
approaches to analysis of API calls.

In essence, all differences between console and GUI applications consist of the Subsystem
flag stored in the portable executable (PE) header (see Section 1.5). This flag is set when linking
an application. The following command-line options should be chosen when linking applications
using linkexe: /SUBSYSTEM:WINDOWS for GUI applications and /SUBSYSTEM:CONSOLE for
console applications. Accordingly, when working with high-level programming languages, the
compiler must provide options that allow you to choose between console and GUI applications.
At the same time, console and GUI applications are equal in access rights to the operating
system resources. Any console application can create graphical windows and work with them,
and any GUI application, in turn, can work with console windows.

1.3.2. Console Applications

Console applications are compact, both in compiled form and in source code form. The console
itself deserves special attention. As you presumably know, a console is a text-mode window.
Interaction between a console application and such a window is reduced to the following:
§ If a console application is started by another console program, then a child program by

default inherits the console of the parent program.

§ If the parent program has no console, the system creates a new one for the newly-started
application.

§ A console application can have only one console.

§ A console program can create a new console using the AllocConsole API function,
provided that it gets rid of the existing console.

One reason the console appeared in the Windows operating system, which initially was oriented
toward graphics applications, was the necessity of running older applications written for MS-
DOS. As you may recall, MS-DOS was initially oriented toward working with text strings. When
running such a program, Windows automatically allocates a console for it and automatically
redirects to the console all its input and output.

The classical structure of the console application can be called a batch structure (Listing 1.4).
The program consists of the sequence of the actions that need to be executed. For example, the
program might open some file, carry out some actions, and then close the file and terminate
operation.

Listing 1.4: [5] A typical console application
#include <windows.h>
char *s = "Example of console program.\n\0";
char buf[100];
DWORD d;
void main()
{
// Free the console if it has been inherited.
        FreeConsole();
// Create a new console.
        AllocConsole();
// Obtain the output handle for console output.
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        HANDLE ho = GetStdHandle(STD_OUTPUT_HANDLE);
// Obtain the handle for console input.
        HANDLE hi = GetStdHandle(STD_INPUT_HANDLE);

// Output a string to the console.
        WriteConsole(ho, s, lstrlen(s), &d, NULL);
// Use the ReadConsole function for viewing the console screen.
        ReadConsole(hi, (void*)buf, 100, &d, NULL);
// Close the handles.
        CloseHandle(ho);
        CloseHandle(hi);
// Free the console.
        FreeConsole();
}

Listing 1.4 shows an example of a typical console application that outputs a string to the text
screen. A specific feature of this program is that it creates its own console, no matter whether it
was started from a console or otherwise. The sequence of FreeConsole()/AllocConsole
() function calls frees the existing program console and creates a new one. Nothing happens to
the inherited console; the program simply gains the possibility of creating its own console. If you
remove the FreeConsole function in the beginning of this program and start it from the console
application, then no new console would be created. The program will redirect all of its output to
the existing console, despite the presence of the AllocConsole() function.

The program in Listing 1.4 is based on API functions. Even the lstrlen function used for

obtaining the string length is actually an API function. Now, consider how IDA Pro[6] recognizes
the executable code (Listing 1.5).

Listing 1.5: The disassembled listing of the executable code
.text:00401000 _main    proc near           ; CODE XREF: start + 16E p
.text:00401000          push   ebx
.text:00401001          mov    ebx, ds:FreeConsole
.text:00401007          push   esi
.text:00401008          push   edi
.text:00401009          call   ebx                       ; FreeConsole
.text:0040100B          call   ds:AllocConsole

.text:00401011  mov    edi, ds:GetStdHandle

.text:00401017  push   0FFFFFFF5h                   ; nStdHandle

.text:00401019  call   edi                          ; GetStdHandle

.text:0040101B  push   0FFFFFFF6h                   ; nStdHandle

.text:0040101D  mov    esi, eax

.text:0040101F  call   edi                          ; GetStdHandle

.text:00401021  push   0 ;                          ; lpReserved

.text:00401023  mov    edi, eax

.text:00401025  mov    eax, lpString

.text:0040102A  push   offset NumberOfCharsWritten  ; lpNumberOfCharsWritten

.text:0040102F  push   eax                           ; lpString

.text:00401030  call   ds:lstrlenA

.text:00401036  mov    ecx, lpString

.text:0040103C  push   eax                ; nNumberOfCharsToWrite

.text:0040103D  push   ecx                          ; lpBuffer

.text:0040103E  push   esi                          ; hConsoleOutput

.text:0040103F  call   ds:WriteConsoleA

.text:00401045  push   0                            ; lpReserved

.text:00401047  push   offset NumberOfCharsWritten  ; lpNumberOfCharsRead

.text:0040104C  push   64h                 ; nNumberOfCharsToRead

.text:0040104E  push   offset unk_4072C8            ; lpBuffer

.text:00401053  push   edi                          ; hConsoleInput

.text:00401054  call   ds:ReadConsoleA

.text:0040105A  push   esi                          ; hObject

.text:0040105B  mov    esi, ds:CloseHandle
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.text:00401061  call   esi                          ; CloseHandle

.text:00401063  push   edi                          ; hObject

.text:00401064  call   esi                          ; CloseHandle

.text:00401066  call   ebx                          ; FreeConsole

.text:00401068  pop    edi

.text:00401069         pop   esi

.text:0040106A         xor   eax, eax

.text:0040106C         pop   ebx

.text:0040106D         retn

.text:0040106D _main   endp

Even at the first glance of an inexperienced user, it becomes immediately clear that the IDA Pro
disassembler has solved the problem of disassembling executable code excellently.
Nevertheless, in this chapter I am not going to describe disassembled listings; the next and
further chapters will concentrate on this problem. For the moment, I would only like to draw your
attention to how the programs written using only API functions produce a transparent and clearly
understandable executable code.

When speaking about programs similar to the one shown in Listing 1.4, most programmers use
C++ library functions instead of API functions. Listing 1.6 represents such a program.

Listing 1.6: An example of a console application using C++ library functions instead of
API functions

#include <stdio.h>
char *s = "Example of console program.\n\0";
char buf[100];
void main()
{
        puts(s);
        gets(buf);
}

It is necessary to mention that the program in Listing 1.6 doesn't create a new console of its own
but uses the console provided by the operating system. In general, however, its features and
behavior are the same as the ones of the program shown in Listing 1.4. For working with the
console, this program uses the puts and gets functions. The most interesting feature here is
that the IDA Pro disassembler easily disassembles standard C++. Looking deeper into the code
of the puts function, for example, you can easily notice that execution of this function is finally
reduced to execution of the WriteFile API function, which in this case is equivalent to the
WriteConsole function. However, application developers often use nonstandard libraries, the
functions of which cannot be easily recognized and whose goals are not immediately clear. In
particular, this happens if you attempt to disassemble a program written in Delphi. For example,
in the Delphi environment execution of the write console operator requires you to call two
library procedures, the intention and goals of which cannot be recognized by IDA Pro.

The linear (or, in other words, batch) structure of a console program is simple enough. Although
the operations as such might be complex, their sequential order considerably simplifies code
investigation. However, if you want to write a program that would tightly interact with the user,
you'll have to process keyboard and mouse events. In this case, the program structure would
become considerably more complicated. You'll have to introduce a function for processing the
main console events and a loop for processing keyboard and mouse events. Listing 1.7 shows
an approximate design of such a program.

Listing 1.7: An example of a console program that interacts with the user
#include <windows.h>
BOOL WINAPI handler(DWORD);
void inputcons();
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void print(char *);
HANDLE h1, h2;
char *sl  = "Error input!\n";
char s2[35];
char *s4  = "CTRL+C\n";
char *s5  = "CTRL+BREAK\n";
char *s6  = "CLOSE\n";
char *s7  = "LOGOFF\n";
char *s8  = "SHUTDOWN\n";
char *s9  = "CTRL\n";
char *s10 = "ALT\n";
char *s11 = "SHIFT\n";

char *s12 = "\n";
char *s13 = "Code %d \n";
char *s14 = "CAPSLOCK \n";
char *s15 = "NUMLOCK \n";
char *s16 = "SCROLLOCK \n";
char *s17 = "Enhanced key (virtual code) %d \n";
char *s18 = "Function key (virtual code) %d \n";
char *s19 = "Left mouse button\n";
char *s20 = "Right mouse button\n";
char *s21 = "Double click\n";
char *s22 = "Wheel was rolled\n";
char *s23 = "Character '%c' \n";
char *s24 = "Location of cursor x=%d y=%d\n";
void main()
{
// Console initialization
        FreeConsole();
        AllocConsole();
// Obtain the output handle.
        h1 = GetStdHandle(STD_OUTPUT_HANDLE);
// Obtain the input handle.
        h2 = GetStdHandle(STD_INPUT_HANDLE);
// Set the events handler.
        SetConsoleCtrlHandler(handler, TRUE);
// Call the function with the message-processing loop.
        inputcons();
// Delete the handler.
        SetConsoleCtrlHandler(handler, FALSE);
// Close the handles.
        CloseHandle(h1); CloseHandle(h2);
// Free the console.
        FreeConsole();
// Exit the program.
        ExitProcess(0);

};
// Events handler
BOOL WINAPI handler(DWORD ct)
{
//Is this a <CTRL>+<C> event?
       if(ct == CTRL_C_EVENT) print(s4);
//Is this a <CTRL>+<BREAK> event?
       if(ct == CTRL_BREAK_EVENT) print(s5);
// Is it necessary to close the console?
        if(ct == CTRL_CLOSE_EVENT)
        {
                 print(s6);
                 Sleep(2000);
                 ExitProcess(0);
        };
// Is it necessary to terminate the session?
        if(ct == CTRL_LOGOFF_EVENT)
        {
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                print(s7);
                Sleep(2000);
                ExitProcess(0);
        };
// Is it necessary to terminate the operation?
        if(ct == CTRL_SHUTDOWN_EVENT)
        {
                print(s8);
                Sleep(2000);
                ExitProcess(0);
        };
        return TRUE;
};
// The function containing the console's message-processing loop

void inputcons()
{
        DWORD n;
        INPUT_RECORD ir;
        while(ReadConsoleInput(h2, &ir, 1, &n))
        {
// Process mouse events.
                if(ir.EventType == MOUSE_EVENT)
                {
// Double-click.
                     if(ir.Event.MouseEvent.dwEventFlags == DOUBLE_CLICK)
                                print(s21);
// Move the mouse cursor over the console.
                     if(ir.Event.MouseEvent.dwEventFlags == MOUSE_MOVED)
                     {
                 wsprintf(s2, s24, ir.Event.MouseEvent.dwMousePosition.X,
                          ir.Event.MouseEvent.dwMousePosition.Y);
                                print(s2);
                        };
// Mouse wheel
                    if(ir.Event.MouseEvent.dwEventFlags == MOUSE_WHEELED)
                                print(s22);
// Left mouse button
if(ir.Event.MouseEvent.dwButtonState == FROM-LEFT_1ST_BUTTON_PRESSED)
                print (s19);
// Right mouse button
if(ir.Event.MouseEvent.dwButtonState == RIGHTMOST_BUTTON_PRESSED)
                print(s20);
                };
                if(ir.EventType == KEY_EVENT)
                {
                        if(ir.Event.KeyEvent.bKeyDown != 1)continue;

// Extended keyboard
if(ir.Event.KeyEvent.dwControlKeyState == ENHANCED_KEY)
                       {
wsprintf(s2, s17, ir.Event.KeyEvent.wVirtualKeyCode);
                                print(s2);
                       };
//Is this the <CAPS LOCK> key?
if(ir.Event.KeyEvent.dwControlKeyState == CRPSLOCK_ON)
                                print(s!4);
//Is this the left <ALT> key?
if(ir.Event.KeyEvent.dwControlKeyState == LEFT_ALT_PRESSED)
                                print(s10);
//Is this the right <ALT> key?
if(ir.Event.KeyEvent.dwControlKeyState == RIGHT_ALT_PRESSED)
                                print(s10);
//Is this the left <CTRL> key?
if(ir.Event.KeyEvent.dwControlKeyState == LEFT_CTRL_PRESSED)
                                print(s9);
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// Is this the right <CTRL> key?
if(ir.Event.KeyEvent.dwControlKeyState == RIGHT_CTRL_PRESSED)
                                print(s9);
// Is this the <SHIFT> key?
if(ir.Event.KeyEvent.dwControlKeyState == SHIFT_PRESSED)
                                print(s11);
//Is this the <NUM LOCK> key?
if(ir.Event.KeyEvent.dwControlKeyState == NUMLOCK_ON)
                                print(s15);
//Is this the <SCROLL LOCK> key?
if(ir.Event.KeyEvent.dwControlKeyState == SCROLLLOCK_ON)

                                print (s16) ;
// Handler for normal keys
                        if(ir.Event.KeyEvent.uChar.AsciiChar >= 32)
                        {
wsprintf(s2, s23, ir.Event.KeyEvent.uChar.AsciiChar);
                                print(s2);
                        } else
                        {
                                if(ir.Event.KeyEvent.uChar.AsciiChar > 0)
                                {
// Keys with codes >0 but <32 are processed here.
wsprintf(s2, s13, ir.Event.KeyEvent.uChar.AsciiChar);
                                  print(s2);
                                } else
                                {
// These keys are called functional keys.
wsprintf(s2, s 18, ir.Event.KeyEvent.wVirtualKeyCode);
                                   print(s2);
                                 };
                         };
                 };
       };
// Error message
        print(si);
        Sleep(5000);
};
// Console output function
void print(char *s)
{
        DWORD n;
        WriteConsole(h1, s, lstrlen(s), &n, NULL);
};

I won't describe this program in detail because I expect that you are an experienced
programmer. If you are interested in programming console applications, I recommend that you
read my book about Windows programming [3].

When analyzing the program presented in Listing 1.7, it is possible to discover an interesting
detail: The handler function is not called explicitly. Its address is specified in the
SetConsoleCtrlHandler API function. Naturally, the only method of accessing this important
fragment of the program is to analyze the call to the SetConsoleCtrlHandler function to
obtain its address. The IDA Pro disassembler behaves in exactly this way. Consider the program
fragment shown in Listing 1.8.

Listing 1.8: IDA Pro analyzes the SetConsoleCtrlHandler call to obtain the address of the
handler function

.text:00401453    mov    edi, ds:SetConsoleCtrlHandler

.text:00401459    push   1                  ; Add

.text:0040145B    push   offset loc_401000  ; HandlerRoutine
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.text:00401460    mov    hConsoleInput, eax

.text:00401465    call   edi                ; SetConsoleCtrlHandler

The disassembler not only correctly recognizes the call to SetConsoleCtrlHandler but also
correctly interprets both parameters of this function. Do not become confused by the mov
hConsoleInput, eax command; it has no relation to the ConsoleCtrlHandler call. On the
contrary, it relates to the previous call — GetStdHandle. This is the cost of optimization.

Note It should be admitted that
contemporary compilers can
optimize the code much better
than professional programmers
in Assembly. A programmer is
always bound to observe
various conventions, such as
programming style and code
readability. These conventions
do not matter for the compiler.
Various methods of
optimization will be covered
later in this book.

Recall the previously described fragment. Because of the SetConsoleCtrlHandler function,
the disassembler correctly determines the beginning of the handler function, which allows
correct disassembling of this function.

Pay attention to the inputcons function. Principally, it doesn't contain anything unusual. The
calls to the ReadConsoleInput function in the loop allow you to detect events that cannot be
traced by the handler function. This loop could be called the message-processing loop of a
console application. Such loops are more typical of windowing applications; however, for
console applications this approach is also permitted. Naturally, there is a considerable difference
between the two methods of message processing. Each application can have only one console
window; therefore, there is no need to determine, to which window an individual message
relates. A GUI application can have several windows but only one message loop (see Section
1.3.3). Under these circumstances, each message is marked by the handle of the window, for
which that message is intended. At this point, some difficulties might arise, which will be
explained in the next section.

1.3.3. 

Windowing Applications

Windowing applications, also known as GUI applications, are based on event-driven
mechanisms. In other words, the main part of the code of such applications is concentrated in
specialized functions, which, similar to the handler function from the previous section, are
called by the system at a specific event. In addition, for this type of application, the presence of
the message-processing loop is typical. The message-processing loop is used to redirect each
newly-arrived message to the appropriate handler function (Listing 1.9).

Listing 1.9: A typical GUI application
#include <windows.h>
LRESULT CALLBACK WndProc(HWND, UINT, WPARfM, LPflRAM);
int APIENTRY WinMain(HINSTRNCE hlnstance,
                     HINSTANCE hPrevInstance,
                     LPSTR     IpCmdLine,
                     int       nCmdShow)
{
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        char cname[] = "Class";
        char title[] = "A simple Windows application";
        MSG msg;
        // The structure for window class registration

        WNDCLASS wc;
        wc.style         = 0;
        we.lpfnWndProc   = (WNDPROC)WndProc;
        wc.cbClsExtra    = 0;
        wc.cbWndExtra    = 0;
        wc.hInstance     = hInstance;
        wc.hIcon         = LoadIcon(hInstance, (LPCTSTR)IDI_APPLICATION);
        wc.hCursor       = LoadCursor (NULL, IDC_ARROW);
        wc.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1) ;
        wc.lpszMenuName  = 0;
        wc.lpszClassName =cname;
        // Register the class.
        if(!RegisterClass(&wc)) return 0;
        // Create the window.
        HWND hWnd = CreateWindow(
               cname,                     // Class
               title,                     // Header
               WS_OVERLAPPEDWINDOW,       // Window style
               0,                         // X coordinate
               0,                         // Y coordinate
               500,                       // Window width
               300,                       // Window height
               NULL,                      // Handle of the parent window
               NULL,                      // Menu handle
               hInstance,                 // Application identifier
               NULL);                     // Pointer to the structure sent
                                          // by the WM_CREATE message
        // Check whether the window has been created.
        if (!hWnd) return 0;
        // Display the new window.
        ShowWindow(hWnd, nCmdShow);
        // Update the window contents.

        UpdateWindow(hWnd);
        // Message-processing loop
        while (GetMessage(&msg, NULL, 0, 0))
        {
        // Translate the virtual key codes to ASCII codes.
                TranslateMessage(&msg);
        // Redirect the message to the window procedure.
                DispatchMessage(&msg);
        }
        return 0;
};
// Window procedure
LRESULT CALLBACK WndProc(HWND hWnd,
UINT message,
WPARAM wParam,
LPARAM lParam)
{
        switch(message)
        {
// Message sent when creating the window
        case WM_CREATE:
                break;
// Message sent when destroying the window
        case WM_DESTROY:
// Message sent when exiting the message-processing loop
                PostQuitMessage(0);
                break;
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// Message sent when redrawing the window contents
        case WM_PAINT:
                break;
// Return unprocessed messages.
                default:
        return DefWindowProc (hWnd, message, wParam, lParam);
        }
        return 0;
}

Listing 1.9 demonstrates a minimal GUI application characterized by all minimal functional
capabilities of a Windows application. In general, Windows applications are built on the basis of
the main window. All remaining windows "orbit" the main window like planets of the solar system
around the sun. Thus, it is easy to distinguish the three main components of such an application:
§ Definition and registration of the window class, to which the main window should belong

§ Message-processing loop, the main task of which is "catching" the messages arriving to the
application and redirecting them to the required window function (not just the main window
function)

§ The main window function and, possibly, functions of other windows

Being aware of such relationship patterns, it is possible to purposefully search for individual
elements of a GUI application.

DispatchMessage is the main API function in the message-processing loop. This function
redirects the newly-arrived messages to the given window function. The message structure
appears as shown in Listing 1.10.

Listing 1.10: The message structure
typedef struct {
    HWND hwnd;
    UINT message;
    WPARAM wParam;

    LPARAM 1Param;
    DWORD time;
    POINT pt;
} MSG

In the preceding listing, you will find the following:
§ hwnd — The handle of the window, to which the current message is addressed.

§ message — The code of the current message.

§ wParam — An optional parameter containing supplementary information.

§ lParam — An optional parameter containing supplementary information.

§ time — The time, at which the message was sent.

§ pt — The mouse cursor coordinate at the time the message was sent. The least significant
word designates the X coordinate, and the most significant word designates the Y
coordinate.

The hwnd value defines the window, to which the message must be sent. For each window — to
be more precise, for each window class — there is a special message-processing function (see 
Listing 1.9). The system knows this, and the message arrives where necessary. Users,
however, do not know this. By the way, the main part of the program code is either concentrated
within such functions or is called from them. How is it possible to solve this problem? To solve it
(at least, to begin solving it correctly), recall that most window functions must be registered. The
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function and the window class are registered. For example, consider Listing 1.9: The address of
the message-processing function is loaded into the lpfnWndProc field. In other words, having
looked at the disassembled application code, you'll learn the function address. For example,
consider a fragment of the disassembled listing produced by the IDA Pro disassembler (Listing
1.11).

Listing 1.11: A fragment of a disassembled GUI application code produced by IDA Pro
.text:00401077 mov [esp + 80h + WndClass.lpfnWndProc], offset loc_401000

Here, loc_401000 determines the window function address. The program understands the
RegisterClass function and the structure that this function accepts as an argument. Listing
1.12 shows a fragment obtained using the W32Dasm v. 10 disassembler, which also has a good
reputation.

Listing 1.12: 

A disassembled fragment obtained using the W32Dasm v. 10 disassembler
:00401077 C744241800104000                 mov [esp+18], 00401000
:0040107F 896C241C                         mov dword ptr [esp+1C], ebp
:00401083 896C2420                         mov dword ptr [esp+20], ebp
:00401087 89742424                         mov dword ptr [esp+24], esi
* Reference To: USER32.LoadIconA, Ord:01BDh
                                           |
:0040108B FF15C4504000                     Call dword ptr [004050C4]
:00401091 68007F0000                       push 00007FOO
:00401096 55                               push ebp
:00401097 89442428                         mov dword ptr [esp+28], eax
* Reference To: USER32.LoadCursorA, Ord:01B9h
                                           |
:0040109B FF15C8504000                     Call dword ptr [004050C8]
:004010A1 89442424                         mov dword ptr [esp+24], eax
:004010A5 8D44240C                         lea eax, dword ptr [esp+OC]
:004010A9 8D542450                         lea edx, dword ptr [esp+50]
:004010AD 50                               push eax
:004010AE C744242C06000000                 mov [esp+2C], 00000006
:004010B6 896C2430                         mov dword ptr [esp+30], ebp
:004010BA 89542434                         mov dword ptr [esp+34], edx
* Reference To: USER32.RegisterClassA, Ord:0216h
                                  |
:004010BE FF15CC504000                Call dword ptr [004050CC]
:004010C4 6685C0                           test ax, ax

Having carefully considered the listing produced by W32Dasm, you should immediately
conclude that it is considerably less informative than the one generated by IDA Pro.
Nevertheless, in most cases, it correctly determines API functions. Thus, it is easy to find the 
RegisterClass function. Then, by the other functions preceding RegisterClass, it is
possible to conclude that the mov [esp + 18], 00401000 command assigns the value of the
window function address to the lpfnWndProc field. Thus, having detected the window function,
an investigator can analyze its text and then find an individual fragment that carries out the
specific action.

The window function is intended for processing messages delivered to it. There are lots of
messages informing the window function about various events that occur to the window or some
of its controls. Finally, it is possible to send custom, user-defined messages to the window
function. For this purpose, there is a special WM_USER constant, and all messages defined
programmatically must be greater than or equal to this constant. By the text of the window
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function, it is possible to determine the reaction of the program to a specific event and thus to
understand the working mechanism of the specific GUI application.

The problem, however, is that the window function doesn't relate to a specific window: It relates
to the entire class of windows. When the application is based on API programming, one function
can correspond to one window. However, this is rarely the case. Processing messages intended
for different windows doesn't require considerable effort, because every message contains a
window descriptor (handle). However, this results in certain difficulties when analyzing
executable code, because in the course of static code analysis it is difficult to determine, for
which window the message processed by the current code fragment is intended. At this point,
debuggers are helpful; they can help set breakpoints to the code of the window function or, as
with the Softlce debugger, even to a specific message from a specific window.

Naturally, the message-processing loop plays an extremely important role in every GUI program.
Having located it in the disassembled code, you'd be able to locate the program fragment that
precedes the loop — in other words, determine where in the program the main window is
created and where the main window class is registered. To search for the message-processing
loop, use such API functions as GetMessage, PeekMessage, TranslateMessage, and
DispatcheMessage, as well as the IsDialogMessage function.

1.3.4. 

Applications Based on Dialogs

Listing 1.13 presents an example of an application, in which the main window is a modal dialog (
Fig. 1.4).

Listing 1.13: An example application that uses a modal dialog
// Resource identifiers
// Definitions of style constants
#define WS_VISIBLE             0x0l0000000L
#define WS_SYSMENU             0x000S0000L
#define WS_MINIMIZEBOX         0x00020000L
#define WS_MAXIMIZEBOX         0x000l0000L
// Modal dialog definition
DIALOG DIALOGEX 10, 10, 150, 100
STYLE  WS_VISIBLE | WS_SYSMENU | WS_MINIMIZEBOX |WS_MAXIMIZEBOX
CAPTION "Modal dialog"
FONT 12, "Arial"
{

}
// Program module
#include <windows.h>
int DWndProc(HWND, UINT, WPARAM, LPARAM);
__stdcall WinMain(HINSTANCE hInstance,
    HINSTANCE hPrevInstance,
    LPSTR lpCmdLine,
    int nCmdShow
)
{
// Create a modal dialog.
DialogBoxParam(hInstance, "DIALOG", NULL, (DLGPROC)DWndProc, 0);
// Close the application.
ExitProcess(0);
};
// Message-handling function of the modal dialog
int DWndProc(HWND hwndDlg, UINT uMsg, WPARAM wParam, LPARAM 1Param)
        {
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               switch(uMsg)
        {
// Message that arrives when the dialog is created
        case WM_INITDIALOG:
               break;
// Message that arrives in case of an attempt at closing the window
        case WM_CLOSE:
        EndDialog(hwndDlg, 0);
        return TRUE;

// Message from window controls
        case WM_COMMAND:
                break;
        };
                return FALSE;
        };

Figure 1.4: An example of a dialog (Listing 1.13)

In contrast to normal windows, modal dialogs are characterized by the following features:
§ Modal dialogs are created on the basis of a template stored in program resources or

created in the memory. In the example from Listing 1.13, the modal dialog is created on the
basis of the template stored in the resources file.

§ Modal dialogs are created using the DialogBoxParam function. The fourth parameter of
this function specifies the address of the function that processes window messages. The 
DialogBoxParam function doesn't return control until the EndDialog function is called.

§ The message-processing function of a dialog is similar to the message-processing function
of a normal window. If the function receives the message and processes that message
itself, it returns TRUE; otherwise, it returns FALSE. As relates to messages, the main
difference is that the WM_INITDIALOG message comes to the dialog instead of the
WM_CREATE message that comes to a normal window.

§ In contrast to a normal window, the dialog has no message-processing loop. To be more
precise, there is one, but the operating system creates it and processes and redirects the
message. Thus, you can encounter applications that have no obvious message-processing
loops.

§ Important issues of working with modal dialogs are the processing of the WM_CLOSE
message and the call to the EndDialog function, which removes the modal dialog from the
memory.

By the way, the window called by the MessageBox API function is a typical example of a modal
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dialog box. In this case, the system not only processes the message but also creates the
window template and organizes the window message function.

Note In the resources file (see Listing
1.13), window style constants
are defined explicitly. However,
this is not necessary. You can
simply insert the following line
of code: #include windows.
h>. Alternatively, you can use
the Resource Wizard of the
Visual Studio .NET product,
after which you needn't worry
about the contents of the
resources file.

Again, consider how IDA Pro disassembled this file (Listing 1.14). The DialogBoxParam
function helps you find the dialog's message-processing function.

Listing 1.14: The disassembled code of the fragment shown in Listing 1.13
.text:00401000 ; BOOL __stdcall DialogFunc(HWND, UINT, WPARAM, LPARAM)
.text:00401000 DialogFunc proc near ; DATA XREF: WinMain(x, x, x, x) + 6 o
.text:00401000
.text:00401000            hDlg  = dword ptr 4
.text:00401000            arg_4 = dword ptr 8
.text:00401000
.text:00401000            cmp  [esp+arg_4], 10h
.text:00401005            jnz  short loc_401014
.text:00401007            mov  eax, [esp + hDlg]
.text:0040100B            push 0          ; nResult
.text:0040100D            push eax        ; hDlg
.text:0040100E            call ds:EndDialog
.text:00401014
.text:00401014 loc_401014:                ; CODE XREF: DialogFunc + 5|j
.text:00401014            xor  eax, eax
.text:00401016            retn
.text:00401016 DialogFunc endp
.text:00401016
.text:00401016 ; -----------------------------------------------------
.text:00401017                align 10h
.text:00401020
.text:00401020 ; ------- S U B R O U T I N E --------------------------
.text:00401020
.text:00401020

.text:00401020 ; __stdcall WinMain(x,x,x,x)

.text:00401020 _WinMain@16 proc near        ; CODE XREF: start + 186 p

.text:00401020

.text:00401020 hInstance   = dword ptr 4

.text:00401020

.text:00401020             mov     eax, [esp + hInstance]

.text:00401024             push    0                   ; dwInitParam

.text:00401026             push    offset DialogFunc   ; lpDialogFunc

.text:0040102B             push    0                   ; hWndParent

.text:0040102D             push    offset TemplateName ; lpTemplateName

.text:00401032             push    eax                 ; hInstance

.text:00401033             call    ds:DialogBoxParamA  ; Create a modal

.text:00401033                           ; dialog box from a dialog box.

.text:00401033                                   ; Template resource

.text:00401039                push    0                   ; uExitCode
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.text:0040103B                call    ds:ExitProcess

.text:00401041                int     3           ; Trap to debugger.

.text:00401041 _WinMain@16    endp

Finally, it is necessary to mention another type of window: nonmodal dialogs. Windows of this
type require an explicit message-processing loop. Listing 1.15 provides an example of an
application, in which a nonmodal dialog plays the role of the main window.

Listing 1.15: An example application, in which a nonmodal dialog plays the role of the
main window

// Resources file
// Resource identifiers
// Definitions of style constants
#define WS_VISIBLE                  0x0l0000000L
#define WS_SYSMENU                  0x00080000L
#define WS_MINIMIZEBOX              0x00020000L
#define WS_MAXIMIZEBOX              0x000l0000L

// Definition of the nonmodal dialog
DIALOG DIALOGEX 10, 10, 150, 100
STYLE  WS_VISIBLE | WS_SYSMENU | WS_MINIMIZEBOX |WS_MAXIMIZEBOX
CAPTION "Nonmodal dialog"
FONT 12, "Arial"
{
}
// Program module
#include <windows.h>
MSG msg;
int DWndProc(HWND, UINT, WPARAM, LPARAM);
__stdcall WinMain(HINSTANCE hInstance,
    HINSTANCE hPrevInstance,
    LPSTR lpCmdLine,
    int nCmdShow)
{
// Nonmodal dialog
    HWND hdlg = CreateDialog(hInstance, "DIALOG", NULL, (DLGPROC)DWndProc);
// Message-processing loop
        while (GetMessage(&msg, NULL, 0, 0))
        {
                IsDialogMessage(hdlg, &msg);
        }
// Close the application.
       ExitProcess(0);
};
// Window function of the nonmodal dialog
int DWndProc(HWND hwndDlg, UINT uMsg, WPARAM wParam, LPARAM lParam)
        {
        switch(uMsg)
        {

// Message coming when the dialog is created
        case WM_INITDIALOG:
                break;
// Message coming in an attempt at closing the dialog
        case WM_DESTROY:
                PostQuitMessage(0);
                break;
        case WM_CLOSE:
                DestroyWindow (hwndDlg);
                return TRUE;
// Message from window controls
        case WM_COMMAND:
                break;

www.allitebooks.com

http://www.allitebooks.org
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        };
                return FALSE;
        };

As you can see from Listing 1.15, the program is similar to a normal windowing application.
However, there still are some specific features:
§ The most obvious feature is that there is no window class registration block.

§ The message-processing loop is slightly modified. Instead of the normal 
TranslateMessage and DispatchMessage functions, the IsDialogMessage function
is used. The use of the latter relates to the problem with using the <Tab> key for switching
among the window controls. The IsDialogMessage function is used to ensure that
everything is working correctly in the nonmodal dialog. In general, when an application
contains both normal windows and nonmodal dialogs, the message-processing loop might
appear as shown in Listing 1.16.

Listing 1.16: Message-processing loop of an application containing normal windows
and nonmodal dialogs

while (GetMessage(&msg, NULL, 0, 0))
{
if(!IsDialogMessage(hw, &msg))

           {

               TranslateMessage(&

msg);

               DispatchMessage(&

msg);

           }

}

Here, 

hw

 is the nonmodal dialog handle. However, the 

IsDialogMessage

 function can also be used for a normal window.

A certain difference in processing of the window closing event (clicking the Close button in the
top right corner) also attracts attention. A normal window is actually closed by the system and,
accordingly, the 

WM_DESTROY

 message is delivered to the window function, which is processed to exit the message-
processing loop 

(PostQuitMessage)

. The nonmodal window is not closed automatically; therefore, it is necessary to process the 
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WM_CLOSE

 message and then close the window using the DestroyWindow function. There are no secrets
here. The DefwindowProc function processes the WM_CLOSE message and implicitly calls the
DestroyWindow function.

[5]All C++ programs in this book were developed in the Visual Studio .NET environment unless
stated otherwise.

[
6

]

The IDA Pro 4.7 disassembler will be used for listings throughout this book.

1.4. Command Format of the Intel Microprocessor

1.4.1. General Considerations

When you consider the list of Intel Pentium microprocessor, you might ask, how are these
commands stored in computer memory? And what is the difference, for example, between MOV
EAX, EBX and MOV EAX, EDI commands? The goal of this section is to demonstrate some
regular patterns of encoding Intel processor commands. If you become interested in analysis of
the command format, this will help you considerably when investigating executable code.

Fig. 1.5 shows the memory area, in which the program code is located. This dump was created
using the OllyDbg debugger, which will be covered later in this chapter. To decrypt this
sequence of bytes and turn it into machine commands (to be more precise, into Assembly
commands), it is necessary to know the formats of these commands. For the moment, I'll
concentrate your attention on this topic.

Figure 1.5: Dump of the program code

First, it is necessary to point out that the command length might range from 1 byte to 10 bytes or
even more. Fig. 1.6 shows the general format of the Intel processor command. As you can see,
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the command structure might be complex. Fortunately, however, it is possible to understand its
structure, because the processor correctly interprets the command code and executes it. With
luck, your intention of understanding it will not be a hopeless job.

Figure 1.6: The Intel processor command format

To begin with, consider prefixes. As you can see, prefixes are optional. It would be logical to
assume that all prefixes shown in Fig. 1.6 must have strictly defined codes to ensure that the
prefix and the command code cannot be confused in the course of decryption. There are four
types of prefixes:

§ The command prefix can take the following values:
o F3H — The repeat prefix REPE/REPZ

o F2H — The repeat prefix REPNE/REPNZ

o F0x — The bus blocking prefix LOCK

§ The address size (size replacement) prefix takes the 67H value.

§ The operand size (size replacement) prefix takes the 66H value.

§ Segment replacement prefixes take the following values:
o 2EH — For the CS register

o 36H — For the SS register

o 3EH — For the DS register

o 26H — For the FS register

o 64H — For the FS register

o 65H — For the GS register

It is important to mention that no more than two prefixes of the same type can be encountered
within the same command. An attempt at writing such a command would cause a processor
error.

Thus, knowing prefix codes, it is possible to tell with certainty, from which component the
command begins: from the code or from the prefix. Note that this is the case only if you know for
sure, from which address the command being studied starts. Otherwise, disassembling will start
from the middle of the command, and the resulting Assembly code won't correspond to the
reality.
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1.4.2. Command Code

Now, consider the code of the processor command The code provided in Listing 1.17 presents a
small and easy fragment of an Assembly program.

Listing 1.17: A small Assembly program for studying formats of the Intel processor
commands

PUSH      EAX
PUSH      EBX
PUSH      ECX

POP       ECX
POP       EBX
POP       EAX
RET

As you can see, the contents of three registers, each register in turn, are stored in the stack.
Then the values saved in the stack are popped into the same registers. After completion of
these commands, the program exits the procedure. Thus, if you consider the memory area, in
which these commands are stored, you'll notice the following sequence of bytes:
                         50 53 51 59 5B 58 C3

The first idea that comes to mind is that each of the preceding commands requires 1 byte. You
can see typical 8-bit commands. For example, C3H is nothing but the code of the RET (to be
more precise, the RETN) command. The first 6 bytes, however, are the most interesting. First,
consider PUSH commands. Here are binary equivalents of these commands: 010100008 (PUSH
EAX), 01010011B (PUSH EBX), and 01010001B (PUSH ECX). Note that these commands differ
only in their least significant bytes. Consequently, the following conclusion is self-evident: The
command as such is encrypted in the command code; in other words, it specifies, which action
and which register are subject to the given operation. To confirm this assumption, consider
binary codes of the following three POP commands: 01011001B (POP ECX), 01011011B (POP
EBX), and 01011000B (POP EAX). The situation becomes clearer. For instance, compare
binary representations of the PUSH EBX and POP EBX commands. Note that the first 2 bits are
matching. In essence, however, the first 2 bits are also matching for other pairs of commands,
such as PUSH EAX/POP EAX and PUSH ECX/POP ECX. To be precise, the first 3 bits are
matching. On the other hand, for all PUSH commands, the first 5 bits are matching (01010B).
Accordingly, the situation is the same for all POP commands (01011B). The regular pattern just
discovered is not a random one. Actually, not only operations but also registers are encrypted in
the code of the PUSH reg and POP reg commands. Register codes are universal. They can be
encountered not only in the command code but also in the Mod R/M field. This issue will be
covered later in this chapter.

For the moment, consider the codes of 32-bit working registers:
§ EAX—000B

§ EDI—111B

§ EBX—011B

§ ESI—110B

§ ECX—001B

§ ESP—100B

§ EDX—010B

§ EBP—101B
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At first glance, everything is straightforward, because a regular pattern has been discovered.
However, the situation is not that simple. There are also 16-bit registers, as well as 8-bit
registers. But the most disappointing issue is that the codes of the PUSH and POP operations
dealing with registers other than the previously-listed working registers or even memory cells
that play the role of operands, are different. All of these issues will be covered in due order.

Note that PUSH and POP commands are not applicable to 8-bit registers. Thus, problems with
addressing 8-bit registers do not arise in relation to PUSH and POP commands. However, there
are also 16-bit registers. It might seem surprising, but 16-bit registers are encoded in the same
way as 32-bit registers. For example, the AX register has the 110B code. And what about
commands that push data into the stack where 16-bit registers can be encountered? The
answer is straightforward: The operand size replacement prefix preceding the command code is
used, in other words, 66H. Thus, for example, the PUSH AX command will be represented by 2
bytes: 66 50. A command such as POP EAX will be represented by the following sequence: 66
58. Having encountered this prefix, the processor is informed that within the current command it
is necessary to replace a 32-bit operand with a 16-bit one. This allows you to draw the following
conclusion: Using 32-bit registers is more efficient than using 16-bit registers.

Unfortunately, the regular patterns related to the codes of the registers in the POP and PUSH
commands are limited to this rule. Here are the codes of these commands applicable to the
segment registers:
§ PUSH CS — 0EH

§ PUSH DS — 1EH

§ PUSH SS — 16H

§ PUSH ES — 06H

§ PUSH FS — 0FAOH

§ PUSH GS — 0FA8H

§ POP DS — 1FH

§ POP SS — 17H

§ POP ES — 07H

§ POP FS — 0FA1H

§ POP GS —

The only pattern that can be discovered here is that the codes of the pairs of commands (such
as PUSH DS/POP DS) differ by one. Also, it is necessary to note that these commands for
segment registers FS and GS have 2-byte codes. Because these registers were introduced in
newer models of the Intel family of processors, there were no 1-byte codes for them. In general,
processor developers are always constrained in their choice of possible solutions; therefore, you
shouldn't expect overall regularity in those solutions.

Continuing the investigation process, it is logical to find an answer to the following question: Are
the command bytes used anywhere besides at designating the command and the register
codes?

Consider conditional jump commands. First, it is necessary to find out how the near jumps (in
other words, jumps within 256 bytes) are encoded. Consider a small fragment of an Assembly
program (Listing 1.18). Note that although this example has no practical meaning, it allows you
to detect certain interesting patterns.

Listing 1.18: A fragment of the Assembly program intended for studying the jump
instructions format
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        JZ  _LAB
        JNZ _LAB
        JB  _LAB
        JNB _LAB
        JG  _LAB
        JNG _LAB
_LAB:

Viewing this code with the debugger, you'll see the following sequence of bytes:
               74 0A 75 08 72 06 73 04 7F 02 7E 00

Clearly, every command takes 2 bytes, and the second byte defines the address, to which the
jump will take place, provided that appropriate condition is carried out. As you can easily see
after considering carefully the codes of the first and the last commands, this is simply
displacement (see Fig. 1.6) from the end of the command. Thus, everything is clear — at least
for the moment.

Now, consider the first bytes of the command more carefully. The general pattern is as follows:
§ JZ—01110100B

§ JNZ—01110101B

§ JB—01110010B

§ JNB—01110011B

§ JG—01111111B

§ JNG—01111110B

The conclusion is self-evident: The code of the conditional jump operation is simply 70H, and the
4 least significant bits define the condition. At the same time, it is obvious that the least
significant bit defines inversion: For JZ, this bit is zero, for JNZ this bit is one, etc. At the same
time, some rules of intuitive logic are observed: equal to zero corresponds to the zero value of
this bit, and greater than means that this bit is set to one. Bits 1–3 define the condition as such.
Because 3 bits allow eight different conditions to be specified, it is possible to combine Table
1.10 and the newly-obtained results to compose Table 1.26.

Table 1.26: 

Conditional jumps codes

Command Code

JB/JNAE/JC 001

JBE/JNA 011

JE/JZ 010

JL/JNGE 110

JLE/JNG 111

JO 000

JP/JPE 101

JS 100

A natural question might arise: What about conditional jumps, for which the offset in a 32-bit
segment plays the role of the address? To investigate this issue, modify the code fragment
presented in Listing 1.18. The modified version is in Listing 1.19.

Listing 1.19: Investigating conditional jump codes when the offset in a 32-bit segment
acts as the address
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        JZ  _LAB
        JNZ _LAB
        JB  _LAB
        JNB _LAB
        JG  _LAB
        JNG _LAB
        DB   1000H DUP(0)
_LAB:

By inserting a data block after the JNB command, you will force the assembler to generate
jumps with the 32-bit offset. The result will appear as shown in Listing 1.20.

Listing 1.20: The dump of the code presented in Listing 1.19
OF 84 1E  10 00 00
OF 85 18  10 00 00
OF 82 12  10 00 00
OF 83 0C  10 00 00
OF 8F 06  10 00 00
OF 8E 00  10 00 00

In the preceding listing, the result is presented as a table, where each row corresponds to its
associated command. As you can see, now the command code is made up of 2 bytes. The first
byte of each row is always 0FH. The structure of the second byte has been already considered.
The operation code is 80H, and it is followed by the condition code and inversion bit. As relates
to the address, it looks strange at first. Well, the address (to be more precise, the offset), is
simply a normal 32-bit number, for which the standard principle must be used: The most
significant byte in the word must have the higher address, and the most significant word must
have the higher address. Thus, the result 1E 10 00 00 is nothing but 00 00 10 1E, and this
is the exact distance in bytes between the JNZ _LAB command and the RET command. The
situation is the same for other conditional jump commands.

1.4.3. The MOD R/M Byte

Consider a seemingly easy operation: MOV EAX, EBX. Its code is made up of 2 bytes: 8B C3.
Because there are lots of variants for sending data between registers, it would be logical to
assume that both registers are encoded here: EAX and EBX. Also, it would be logical to assume
that the first byte is the opcode and the registers are encoded in the second byte. Thus, C3 in
binary representation is 11000011. To make a comparative analysis, consider the MOV EBX,
EAX command. The code of this command is 8B D8. By the way, this confirms the assumption
that the first byte contains the opcode. However, D8H corresponds to 11011000B. Compare this
byte to the binary representation of C3. Naturally, these bytes differ from each other by the
following bit triplets: 000B and 011B. These are the previously-mentioned codes of the EAX and
EBX register. Great! The code of the MOV command operating over two 32-bit registers has been
practically clarified. You have encountered the MOD R/M byte, the structure of which will now be
considered in more detail (see Fig. 1.6).

The MOD R/M byte has the following three fields (see Fig. 1.6):
§ The MOD field — Along with the R/M field, this field forms 32 possible values: 8 registers and

24 indexing modes. In the example provided earlier, this field had the value 11 and
specified that the R/M field would represent the register code.

§ The REG/Code field — This field designates either the register code or the additional 3 bits
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of the operation code.

§ The R/M field — This field can designate the register as the location of the operand or
encode the addressing mode, along with the MOD field.

A reasonable question can arise: What would the difference be between the MOV EAX, EBX and
the MOV AX, 5X operations? You have probably guessed this already. The latter command will
start with the prefix— the additional 66H byte mentioned previously.

And what about MOV commands where 8-bit registers are encountered? Because the developers
were short of 3-bit codes, it would be logical to assume that the code of the command would
change. This assumption proves true. For example, the MOV BL, AL command would be
encoded by 2 bytes: 8A D8. Note that there are eight 8-bit registers; consequently, they also can
be encoded using the same 3 bits:
§ AL—000B

§ BL—011B

§ CL—001B

§ DL—010B

§ AH—100B

§ BH—111B

§ CH—101B

§ DH—110B

Now, you'll easily notice that the D8H byte corresponds to the BL and AL registers. By the way, it
is possible to guess that the MOV command, where there is one register and one immediate
operand, must do without the MOD R/M byte. In this case, it is necessary to encode only one
operand. For example, the code of the MOV EBX, 1234H command will be equivalent to BB
34120000, and the MOV ECX, 1234H command will correspond to B9 34120000. Try to
investigate this issue on your own. As can be easily seen, the command code corresponds to 
B8H, and the first 3 bits define the register, into which the immediate operand will be saved.
However, you'll be surprised when you consider the MOV EAX, 1234H command. The command
code will be B8 34120000. This way, the developers have taken into account that the
command for moving data into the EAX register (accumulator) will be carried out more often than
the command for copying data into other registers. Thus, they made this command shorter.

Consider the fragment in Listing 1.21.

Listing 1.21: A test program for studying the format of MOV commands
MOV EAX, DATA1
MOV EBX, DATA1
MOV ECX, DATA1
MOV EDX, DATA1
MOV EDI, DATA1
MOV ESI, DATA1

Here, DATA1 is some 32-bit variable. Having disassembled this fragment, you'll obtain the result
in Listing 1.22.

Listing 1.22: The disassembled listing of the program shown in Listing 1.21
Al   00104000
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851D 00104000
850D 00104000
8B15 00104000
853D 00104000
8B35 00104000

As can be easily noticed, the EAX register also differs from the other registers. There is a special
code for moving data from the memory into the register. As relates to the other commands, the 
MOD R/M byte is present. Having converted the hex code into binary code, you'll see that the
MOD field in all commands equals zero (00B), the REG field encodes the register, and the R/M
field equals 101B. It would be logical to assume that the MOD and R/M fields define a certain
addressing mode, as with all previously-presented commands, except the one that uses the
EAX register. This is so. The current mode assumes that the effective address is determined by
only one number - the offset in a 32-bit register. By the way, what would happen if you
interchanged the operands in the previously-described commands? Only the command code
would change. Everything else should not change, because neither the addressing method nor
the register used in the command has changed.

Consider the MOV [EBX], ECX command. As you can see, this command uses indirect
addressing through the EBX register. The code of such operations in this command is 89H. The
MOD R/M byte contains information about the registers and the mode of addressing — 0B. It can
be clearly seen that the MOD field contains 00 and the REG and R/M fields contain the codes of
the ECX and EBX registers, respectively. Now, take on a more complicated task: Investigate the
MOV [ebx + 10], ECX command. For this command, the disassembler produces the following
sequence of bytes: 89 45 0A. As you can see, the command code remained the same.
Obviously, the last byte is the offset. The structure of the MOD R/M byte appears as follows:
01001011B. As a result, in comparison to the MOV [EBX], ECX command, only the MOD field
has changed. The reason for this is clear: It occurred because the addressing has changed. I
hope that you would be able to compose the following table (Table 1.27) explaining the behavior
of the MOD R/M byte on your own.

Table 1.27: MOD RIM byte structure in 32-bit addressing

Effective address MOD field value R/M field value

[EAX] 00 000

[EBX] 00 011

[ECX] 00 001

[EDX] 00 010

[ESI] 00 110

[EDI] 00 111

Offset32 00 101

[...] 00 100

Offset8 [EAX] 01 000

Offset8 [EBX] 01 011

Offset8 [ECX] 01 001

Offset8 [EDX] 01 010

Offset8 [ESI] 01 110

Offset8 [EDI] 01 111
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Offset8 [EBP]

01 101

Offset8 [EBP] 01 100

Offset32 [EAX] 10 000

Offset32 [EBX] 10 011

Offset32 [EBX] 10 001

Offset32 [ECX] 10 010

Offset32 [EDX] 10 010

Offset32 [ESI] 10 110

Offset32 [EDI] 10 111

Offset32 [EBP] 10 101

Offset32 [...] 10 100

EAX/AX/AL 11 000

EBX/BX/BL 11 011

ECX/CX/CL 11 001

EDX/DX/DL 11 010

ESP/SP/AH 11 100

EBP/BP/CH 11 101

ESI/SI/DH 11 110

FDI/DI/BH 11 111

Note In Table 1.27, offset8 stands
for the 1-byte offset, Offset32
stands for the 4-byte offset, and
the [... ] string means that for
this combination of the MOD and
R/M fields the MOD R/M byte
will be followed by the SIB
byte.

Consider Table 1.27 more carefully. As you can see, the MOD R/M byte doesn't allow you to
define such an important property of relative addressing as the scaling coefficient. Another byte
is used for this purpose, the SIB byte. The value of the R/M field set to 100B indicates that the
SIB byte must be present.

1.4.4. 

The SIB Byte

Finally, it is time to consider the SIB byte. Its name stands for scale index base. Accordingly,
this byte has the following three fields (see Fig. 1.6).
§ Bits 7-6, the Scale field, specify the scaling coefficient.

§ Bits 5-3, the Index field, specify the register — index.
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§ Bits 2-0 define the register that is the Base.

Consider the fragment in Listing 1.23, written in Assembly language.

Listing 1.23: A fragment of the test program for studying the role of the SIB byte
MOV [EAX*4][EBX+5], EAX
MOV [EBX*4][EAX+5], EAX
MOV [ECX*8][EDX+5], EAX
MOV [EDX*8][ECX+5], EAX

Here are the bytes corresponding to the preceding commands (Listing 1.24).

Listing 1.24: The machine code corresponding to the fragment shown in Listing 1.23
89 44 83  05
89 44 98  05
89 44 CA  05
89 44 Dl  05

The operation code in all cases equals 89H. The 44H hex number is nothing but the MOD R/M
byte. Convert it to the binary format: 44H = 01000100B. Thus, it becomes clear that MOD =
01. This means that the offset must be present in this command. This is so: The offset equals 5,
and the byte representing it is the last byte. The REG field is 000B, which means that the data
are copied from the EAX register. As relates to the R/M field, it equals 100B, and this is exactly
the exception (see Table 1.27), which means that the SIB byte must follow it. By the way, note
that all of the preceding commands differ only by this byte. Start investigation from the first
command. For this command, the code is as follows: 83H = 10000011B. The Scale field,
equal to 10B, sets the scaling coefficient. The Index field is 000B; this is the index register. It
equals EAX. The EAX register is used for forming the resulting address. The Base field equals
011B and defines the base register, which equals the EBX register. Thus, everything is clear
with this byte. Now it would be expedient to consider the general method of using the e SIB byte
(Table 1.28).

Table 1.28: 

Structure of the SIB byte

Scaling index Scale field value Index field value

[EAX] 00 000

[EBX] 00 011

[ECX] 00 001

[EDX] 00 010

[EBP] 00 101

[ESI] 00 110

[EDT] 00 111

Unused 00 100

[EAX*2] 01 000

[EBX*2] 01 011

[ECX*2] 01 001
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[EDX*2] 01 010

[EBP*2] 01 101

[ESI*2] 01 110

[EDI*2] 01 111

Unused 01 100

[EAX*4] 10 000

[EBX*4] 10 011

[ECX*4] 10 001

[EDX*4] 10 010

[EBP*4] 10 101

[EST*4]

10 110

[EDT*4] 10 111

Unused 10 100

[EAX*8] 11 000

[EBX*8] 11 011

[ECX*8] 11 001

[EDX*8] 11 010

[EBP*8] 11 101

[ESI*8] 11 110

[EDI*8] 11 111

Unused 11 100

Hopefully, the difference between MOV [EAX*8] [EBX + 10], ECX and MOV [EAX] [EBX*8 +
10], ECX is now clearer. In the first command, the scaling index is represented by the EAX
register; in the second command, this role is delegated to the EBX register and, accordingly, the
situation is opposite for the base. Also, it becomes clear that commands such as MOV [EAX*4]
[EBX*2], EAX are technically impossible.

1.4.5. Simple Example of Manual Disassembling

Now, having gained the necessary experience, you can try to disassemble the code shown in 
Fig. 1.5. The 55H code stands for the PUSH EBP command. This can be easily discovered if you
recall that the code of the PUSH command is 50H and the code of the EBP register equals five (
101B). After these codes comes the 8DH code. Clearly, this isn't a prefix, because the prefix
codes are well known. Principally, it is possible to consult the manual or enter the command
under the debugger. It turns out that this code corresponds to the LEA command. Because the
command must have two operands, it is obvious that the command must have the MOD R/M
byte. The next byte is ech. After representing it in the binary format, you'll obtain the following
result: ECH = 11101100B. If everything is correct, then the first 2 bits define register
addressing, in which case the data are stored directly in the register (see Table 1.27). In this
case, the next 3 bits (REG) define the register, into which the data will be loaded, and the last bits
define the register, from which the data will be obtained. This source register happens to be the 
ESP register (the 100B code).



79Chapter 1: Introduction to Disassembling

 

The LEA command normally is used for obtaining the address of some variable. How would the
command code appear if this is the case? The situation is clear and straightforward. Assume
that you have encountered the following command: LEA EBP, DATA1. The result of its
disassembling will appear as follows: 8D 2D 00 10 40 00. Clearly, the last 4 bytes of this
byte sequence stand for the variable address. How would the MOD R/M byte appear? This is
2DH = 00101101B. Pay attention to the last 3 bits and consult Table 1.27 (with MOD = 00).
The last 3 bits specify the 101B number, which means that the effective address will be the
offset within a segment — in other words, the direct address of the variable. Hence, it becomes
clear that the second byte is followed by the offset.

Now recall Fig. 1.3. The next byte equals 53H. Thus, it is clear that in this case you are dealing
with the PUSH EBX command (the 3 = 011B code stands for the EBX register). The next byte
is C7H. This is the code of the MOV command, where the destination is either a register or a
memory cell (the DWORD data type) and the source is an immediate operand. Clearly, the next
byte must be the MOD R/M byte. The value of this byte is 05H = 00000101B. Hence, it is
possible to conclude that an immediate operand is loaded into a memory cell. The next 4 bytes
must be the address of that cell. Here they are: D0 86 40 00. Now, it becomes possible to
determine that the address of the required cell is 004086D0H. Finally, the last byte of this
command is 32H. Thus, it is possible to draw the following conclusion: You have decoded the
MOV DWORD PTR [004086D0H], 32 command. Why DWORD, you might ask? This is because
the command code is C7H. If the command were MOV BYTE PTR [004086D0H], 32, then the
C6H code would be used. Now, consider the commands decoded after carrying out this exercise
(Listing 1.25).

Listing 1.25: The commands decoded using the manual disassembling technique
PUSH EBP
LEA EBP, ESP
PUSH EBX
MOV DWORD PTR [4086D0H], 32

Manual disassembling is a tedious job, isn't it? However, having mastered the techniques
described in this section and with some hands-on practice, you'll discover that there isn't
anything particularly difficult about it.

As it turns out, some microprocessor commands can be represented by at least two different
sets of codes. Here is a typical example of such a situation. The MASM32 translator converts
the MOV EBX, 34H command into the following sequence of codes: BB 34 00 00 00. In this
case, the code of the EBX register is encoded in the first 3 bits of the command code (011B)
However, there is another possibility of encoding the same command from a more general point
of view — namely, using the MOD R/M byte. When using this representation, the command will
appear as the following sequence of bytes: C7 C3 34 00 00 00. As you can see, the second
variant of the command representation is 1 byte longer.

1.4.6. Disassembling Problems

The commonly-adopted point of view is that Assembly language is practically the same as
machine language. Apparently, it is possible to draw a seemingly obvious conclusion that the
code of any Assembly program can be unambiguously reconstructed by the machine code.
However, despite this opinion, the situation is not that simple. There are certain problems, which
will be covered in this section.

The first problem relates to the reconstruction of the data structure. The only possibility of
determining the data structure is analyzing the way, in which these data are used in commands.
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This is where the problem arises. The data can be accessed in different ways. For example,
consider a command that at first glance can be disassembled easily — let this be the MOV
DWORD PTR [4086D0H], 32 command. This command shows that some data element
(variable) is located at the 4086D0H address. The addressing mode is direct, so everything is
clear. However, what would you say about the MOV EAX, [EBX] command? To find out what is
stored in the EBX register, it is necessary to analyze the program code. You are lucky if the
command being analyzed is preceded, for example, by the sequence in Listing 1.26.

Listing 1.26: The command sequence clarifying that some 32-bit variable is located at the
4176A8H address

MOV EAX, 4176A0H
ADD EAX, 8
MOV EBX, EAX

On the basis of these commands, it becomes clear that some 32-bit variable is stored at the 
4176A8H address. However, the actual address is often formed several hundred commands
from the command that uses it. Sophisticated manipulations often are used to form that
address. If this is the case, then such an address can be determined only by executing the
program step by step, in other words, by using debugging mechanisms.

Furthermore, obtaining the variable address often is not enough; it is also necessary to know its
size. For example, when dealing with an array, it isn't easy to determine how many elements are
contained there. Even knowing the address of the next variable doesn't always help, because
there might be additional alignment bytes between two variables.

This situation is further aggravated by the availability of two different commands that allow you to
obtain an address of some object in memory. Traditionally, the LEA command was intended for
obtaining the address of the specified variable, for example: LEA EAX, a1. Thus, having
encountered a byte sequence such as 8D 05 08 10 40 00, you would immediately discover
that the address equal to 401008H is loaded into the EAX register. (The 8DH code corresponds
to the LEA command, and 05H stands for the MOD R/M byte. Recall that such an analysis has
already been conducted several times.) However, there is another command in Assembly
language that does the same thing, namely, the MOV reg32, offset var command. The
offset keyword makes the assembler substitute the variable address instead of the variable
value into the command. Thus, it is difficult to understand without code analysis whether you are
dealing with an immediate operand or an address. Note that sometimes carrying out such an
analysis might be a difficult task.

Another problem relates to determining jump addresses and procedure addresses. Control can
be passed to the procedure not only by the CALL command but also by the JMP or even RET
command. Listing 1.27 shows an example program that demonstrates the four methods of
calling procedures. With all that being so, the last three methods of calling procedures might
result in serious complications, which under certain conditions prevent the researcher from
determining that a certain code section is in fact a procedure called from some other location.

Listing 1.27: A test program illustrating different methods of calling procedures
.586P
.MODEL FLAT, STDCALL
TEXT SEGMENT
START:
; Explicit call
        CALL PR1
        LEA  EAX, PR1
; Implicit call
        CALL EAX
        PUSH OFFSET L1
; Return address in the stack
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        JMP EAX
L1:
        PUSH OFFSET L2
        PUSH EAX
; Now the stack top contains the procedure address.
; The next stack element contains the return address from the procedure.
        RETN           ; The call using the RET command
L2:
        RETN
PR1 PROC
        RETN
PR1 ENDP
TEXT ENDS
END START

The code of the program illustrating different methods of calling procedures is provided in Listing
1.27.

The most important problem is finding the correct address, from which the required block of
commands starts. If the procedure couldn't be identified using cross-references, then you might
hope that you'll at least correctly decode the block where procedures are located. Alas, even this
goal isn't always guaranteed to be reached — at least programmatically. It isn't clear where the
block of procedures starts. Assume, however, that you have located the first procedure, to which
there is a direct call. Further assume that you have located its end. Unfortunately, no one can
guarantee that another procedure is located directly after it. Any number of NOP instructions can
separate two procedures. For instance, MASM32 can insert such operations using the ALIGN
directive.

Various issues of recognizing data, procedures, and other program structures will be covered in
more detail in Chapter 3.

1.4.7. x87 Floating-Point Unit Commands

You'd probably like to know more about the arithmetic coprocessor. Is there any principal
difference between the FPU commands and the normal commands of the Intel Pentium
microprocessor? Running a few steps forward, I'll answer that there are no principal differences.
However, there are certain specific features. The minimum length of an FPU command is 2
bytes. The first byte of a command, which was always called the operation code for the
processor commands, but which isn't called an opcode for FPU commands (see later in this
chapter), always has the 5 most significant bits set to 11011B. This means that the most
significant nibble of the first byte of an FPU command is always equal to DH. This allows
investigators to easily identify a coprocessor command within a sequence of bytes in the main
memory.

In addition to the first byte, an FPU command contains the MOD R/M byte and, possibly, an
operand pointing to the memory location from which or into which the operand is copied. For
example, consider the FLD QWORD PTR [20814000H] command that pushes into the
coprocessor stack some long floating-point number from the memory location pointed at by the
operand or address. This command is represented by the following sequence of bytes: DD05
20814000. The first byte will appear as follows in the binary format: 11011101B. The 5 most
significant bits were already mentioned, while the 3 least significant bits are of great interest to
investigators. This command is part of the group of FPU commands intended for manipulations
over operands located in the main memory. If the least significant bit of this byte equals one, this
means that the command passes the data from the coprocessor stack into the memory or
copies the data from the memory. All other commands have this bit set to zero. For example,
these might be arithmetic or comparison operations. Bytes 2 and 1 for the commands under
consideration determine the type of the memory format (MF). The following four values are
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possible:
§ 00 — A short floating-point number (32 bits)

§ 01 — A short integer binary number (32 bits)

§ 10 — A long floating-point number (64 bits)

§ 11 — A 10-byte number (80 bits)

In this case, you are dealing with the value 10, in other words, with a long floating-point number.
Thus, it becomes possible to state that the first byte of the FPU command code can no longer
be considered an operation code.

Now, consider the structure of Mod R/M byte: 05H = 00000101B. Thus, the following are
true: MOD = 00B, REG = 000B, and R/M = 101B. Having consulted Table 1.27, you can draw
an obvious conclusion — namely, that the address is defined by the direct offset (by the R/M
value). Thus, the 3 bits in the middle (called REG) are nothing but the operation code.

Consider the code of another command: FADD ST(1), ST(0) (see Table 1.21). This command
adds the operands located in ST(0) and ST(1) and loads the result into the ST(1) register.
The command code equals DC C1. In binary representation, this code will appear as follows:
11011100 11000001. Consider the first byte. Bit 0 is set to zero and is the part of the
operation code in arithmetic and comparison operations, where coprocessor registers
participate. The value of bit 1 defines whether or not the stack is popped after the operation. In
this command, the stack is not popped, because the value of bit 1 is set to zero. Bit 2 shows
whether the result is returned into the stack top (0) or into some other register (1). In the case
being considered, the result is returned into the ST(1) register. Now, proceed with the analysis
of the second byte. The MOD field is set to 11B, which means that the operation is executed over
the operands stored in registers. The R/M field stores the 001B value, which defines the second
register participating in the operation (ST(1)). The first register is always the ST(0) register.
Finally, the code of the operation just considered is 0000B.

Now, consider the FSQRT command that computes the square root from the operand located at
the top of the stack. For this and similar commands, including (except for transcendental
functions) loading of some constants and some arithmetic operations, it is typical to use only
one stack register— ST(0). The code of this operation is D9 FA, which in the binary format
appears as follows: 11011001 11111010. For such an operation, all bits are constant except
for the first 4 bits of the second byte of the operation (1010B), which define the operation being
executed.

Finally, there is another type of operation that controls the FPU. These operations do not accept
any operands. An example of such an operation is the FINIT operation (see Table 1.23), which
initializes the coprocessor at start-up. The code of this operation is DB E3, or 11011011
11100011 in the binary format. For these operations, as in the previous case, only the first 4
bits of the second byte are significant. These bits define, which operation is being executed.

Thus, the section on Intel Pentium microprocessor command formats has been completed.

1.5. Structure of the Portable Executable Module

The main goal of this section is to describe the structure of a PE module, a type of executable
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(EXE) module. Because the main goal of any investigator is studying executable modules, it is
necessary to know their structure. This information is of special importance, because this
structure is typical not only for executable files but also for DLLs, object modules (OBJ files),
and drivers.

1.5.1. General Approach

The PE format was introduced in the UNIX operating system, where its analogue is known as
the common object file format (COFF). Microsoft revised this format by introducing considerable
modifications to it. Nowadays, it is widely used. As already mentioned, this format is used not
only for executable modules but also for DLLs, as well as for kernel-mode drivers. The most
interesting issue is that the PE standard also covers OBJ files. You main goal is to master the
PE format at such a level that you can understand its structure and use this knowledge in
practice.

The main feature of any PE module is the simplicity of loading it into the memory. No additional
tuning is needed for this purpose. In essence, a PE module is a snapshot of a main memory
region.

Fig. 1.7 shows the general design of the PE format. The first section (in Fig. 1.7, it is shown on
the top) deserves the closest attention. Here, the developers have ensured backward
compatibility to the MS-DOS operating system. To gain sound understanding of the operating
mechanisms of the PE format, it is necessary to consider this section in detail. Thus, any
executable module starts with the DOS section, which is necessary when the program is started
in the MS-DOS environment. The first 2 bytes (MZ) represent the signature that confirms that
you are dealing with an MS-DOS executable module. The MZ signature is the initials of the
Microsoft programmer, Mark Zbikowski, who developed the structure of MS-DOS executable
modules. If you start a PE program under MS-DOS, the loader of this operating system would
read this signature, recognize the module as a normal MS-DOS program, and start it for
execution in a normal way. This is so because the MZ signature in a correct PE module is
followed by the MS-DOS header, which, in turn, is followed by a small stub procedure. This stub
usually displays a text screen informing the user that the current program cannot be executed
under the MS-DOS operating system, after which it terminates the operation. The standard stub
is shown in Listing 1.28.

Listing 1.28: 

The standard MS-DOS stub
PUSH CS
; Data register matches the code register.
POP DS
MOV DX, OFFSET MSG
MOV AH, 9
; Output the MSG text string.
INT 21H
MOV AX, 4C01H
; Exit the program with code 1.
INT 21H
MSG DB ' This program cannot be run in DOS mode $'
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Figure 1.7: The PE file structure

This code might be different. However, it doesn't matter much, because pure MS-DOS can no
longer be encountered. Therefore, this stub never gains control. The most convenient way of
parsing the MZ header is to study the IMAGE_DOS_HEADER structure that can be found in the

winnt.h [7] file. This structure is shown in Listing 1.29.

Listing 1.29: The IMAGE_DOS_HEADER structure
struct IMAGE_DOS_HEADER {    // DOS EXE header
       WORD   e_magic;       // Magic number
       WORD   e_cblp;        // Bytes on the last page of the file
       WORD   e_cp;          // Pages in the file
       WORD   e_crlc;        // Relocations
       WORD   e_cparhdr;     // Size of the header in paragraphs
       WORD   e_minalloc;    // Minimum extra paragraphs needed
       WORD   e_maxalloc;    // Maximum extra paragraphs needed
       WORD   e_ss;          // Initial (relative) SS value
       WORD   e_sp;          // Initial SP value
       WORD   e_csum;        // Checksum

       WORD   e_ip;          // Initial IP value
       WORD   e_cs;          // Initial (relative) CS value
       WORD   e_lfarlc;      // File address of the relocation table
       WORD   e_ovno;        // Overlay number
       WORD   e_res[4];      // Reserved words
       WORD   e_oemid;       // OEM identifier (for e_oeminfo)
       WORD   e_oeminfo;     // OEM information (e_oemid specific)
       WORD   e_res2[10]     // Reserved words
       LONG   e_lfanew;      // File address of the new EXE header
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   }

Only three fields of this structure are of interest from the standpoint of parsing the MZ header.
The e_magic field represents the MZ signature. The e_lfarlc field (located at the 18H offset
from the start of the file) was initially intended for storing the address of the relocation table. The
relocation table was used by the MS-DOS loader to configure relative addresses used within a

program. If this field contains the 40H byte, then this file is a PE module. [8] Apparently,
however, Windows doesn't check the contents of this field; consequently, it is not expedient to
consider that the field value equal to 40H is a sure indication of a PE value. Finally, the
e_lfanew field contains the relative address (at the offset counted from the start of the file),
from which the PE header starts (see Fig. 1.7). This address must contain the PE module
signature, the P and E characters, respectively.

Listing 1.30 shows a simple program you can use to determine whether this file is a loadable PE
module. The name of the module to be checked must be specified in the command line.

Listing 1.30: A simple program for determining whether this file is a loadable PE module
#include <windows.h>
#include <stdio.h>
HANDLE openf(char *) ;
HANDLE hf;
IMAGE_DOS_HEADER id;
IMAGE_NT_HEADERS iw;
// The main function
int main(int argc, char* argv[])
{
        DWORD n;
        int er = 0;
        LARGE_INTEGER 1;
// Check whether parameters are present.
        if(argc < 2){printf("No parameters!\n"); er = 1; goto _exit;};
// File name is the first in the list.
        if((hf = openf(argv[l])) == INVALID_HANDLE_VALUE)
        {
                printf("No file!\n");
                er = 2;
                goto _exit;};
// Determine the file length.
                GetFileSizeEx(hf, &1);
// Read the MS-DOS header.
                if(!ReadFile(hf, &id, sizeof(id), &n, NULL))
        {
                printf("Read DOS_HEADER error 1!\n");
                er = 3;
                goto _exit;};
        if(n < sizeof(id))
        {
                printf("Read DOS_HEADER error 2!\n");
                er = 4;

                goto _exit;};
// Check the MS-DOS signature ('MZ').
        if(id.e_magic != IMAGE_DOS_SIGNATURE)
        {
                printf("No DOS signature!\n");
                er = 5;
                goto _exit;}
        printf("DOS signature is OK!\n");
        if(id.e_lfanew > l.QuadPart)
        {
                printf("No NT signature!\n");
                er = 6;
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                goto _exit;};
// Move the pointer.
        SetFilePointer(hf, id.e_lfanew, NULL, FILE_BEGIN);
// Read the NT header.
        if(!ReadFile(hf, &iw, sizeof(iw), &n, NULL))
        {
                printf("Read NT_HEADER error 1!\n");
                er = 7;
                goto _exit;};
        if(n < sizeof(iw))
        {
                printf("Read NT_HEADER error 2!\n");
                er = 8;
                goto _exit;};
// Check the NT signature ('PE').
        if(iw.Signature != IMAGE_NT_SIGNATURE)
         {
                printf("No NT signature!\n");
                er = 9;
                goto _exit;}
        printf("NT signature is OK!\n");
// Close the file descriptor.
_exit:

        CloseHandle(hf);
        return er;
};
// Function opens the file for reading.
HANDLE openf(char *nf)
{
        return CreateFile(nf,
                GENERIC_READ,
                FILE_SHARE_WRITE | FILE_SHARE_READ,
                NULL,
                OPEN_EXISTING,
                NULL,
                NULL);
};

Thus, you have become acquainted with the IMAGE_DOS_HEADER structure. The
IMAGE_NT_HEADERS structure that represents the PE header will be covered in later sections.
This structure is defined in the windows.h file. Accordingly, the IMAGE_DOS_SIGNATURE and
IMAGE_NT_SIGNATURE constants defining the MZ (5A4Dh) and PE (4550h) signatures are also
contained in this header file.

Naturally, the program in Listing 1.30 cannot guarantee that you are or are not dealing with the
correct PE header. To achieve this, more detailed analysis of the PE header will be required.

In Appendix 1, the example program analyzes the PE header in more detail. This program was
written on the basis of the example presented in Listing 1.30. In addition to the analysis of the
file headers, this program displays the contents of the import, export, and resource sections.

1.5.2. The Portable Executable Header

Now, consider the PE header. As already mentioned, this header is in the form of the 
IMAGE_NT_HEADERS structure (Listing 1.31).

Listing 1.31: The IMAGE_NT_HEADERS structure
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struct IMAGE_NT_HEADERS {
    DWORD Signature;
    IMAGE_FILE_HEADER FileHeader;
    IMAGE_OPTIONAL_HEADER32 OptionalHeader;
}

As you can see, this structure is made up of two parts, IMAGE_FILE_HEADER and
IMAGE_OPTIONAL_HEADER32. It also contains the Signature field, which is PE. Consider the
IMAGE_FILE_HEADER structure, also known as the main header (Listing 1.32).

Listing 1.32: The IMAGE_FILE_HEADER structure
Struct IMAGE_FILE_HEADER {
       WORD    Machine;
       WORD    NumberOfSections;
       DWORD   TimeDateStamp;
       DWORD   PointerToSymbolTable;
       DWORD   NumberOfSymbols;
       WORD    SizeOfOptionalHeader;
       WORD    Characteristics;
}

The fields of this structure are briefly outlined as follows:
§ Machine — This is the type of processor. For Intel i80x86 processors, this value is 014ch.

§ NumberOfSections — This shows the number of sections in the PE module.

§ TimeDateStamp — This gives the date and time of the file creation.

§ PointerToSymbolTable — This field is used for debugging. As a rule, its value is zero.

§ NumberOfSymbols — This field is used for debugging. As a rule, its value is zero.

§ SizeOfOptionalHeader — This shows the size of the second part of the PE header (see
the description of the IMAGE_OPTIONAL_HEADER32 structure). As a rule, this value is 224
bytes.

§ Characteristics — This field contains informational bits (flags). In particular, bit 13
specifies whether this module is a DLL (0) or an EXE module (1).

Now, consider the second part of the PE header — an optional header (
IMAGE_OPTIONAL_HEADER32). The fields of this header are shown in Listing 1.33.

Listing 1.33: The IMAGE_OPTIONAL_HEADER32 structure
struct IMAGE_OPTIONAL_HEADER {
       WORD    Magic;
       BYTE    MajorLinkerVersion;
       BYTE    MinorLinkerVersion;
       DWORD   SizeOfCode;
       DWORD   SizeOflnitializedData;
       DWORD   SizeOfUninitializedData;
       DWORD   AddressOfEntryPoint;
       DWORD   BaseOfCode;
       DWORD   BaseOfData;
       DWORD   ImageBase;
       DWORD   SectionAlignment;
       DWORD   FileAlignment;
       WORD    MajorOperatingSystemVersion;
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       WORD    MinorOperatingSystemVersion;
       WORD    MajorlmageVersion;
       WORD    MinorlmageVersion;
       WORD    MajorSubsystemVersion;
       WORD    MinorSubsystemVersion;
       DWORD   Win32VersionValue;
       DWORD   SizeOfImage;
       DWORD   SizeOfHeaders;
       DWORD   CheckSum;
       WORD    Subsystem;
       WORD    DllCharacteristics;
       DWORD   SizeOfStackReserve;
       DWORD   SizeOfStackCommit;
       DWORD   SizeOfHeapReserve;
       DWORD   SizeOfHeapCommit;
       DWORD   LoaderFlags;
       DWORD   NumberOfRvaAndSizes;
IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
}

The fields of this structure are as follows:

§ Magic — This field defines the main intention of this module. In particular, for a normal
executable file this field is 010BH.

§ MajorLinkerVersion — This is the major version number of the linker used for building
this file.

§ MinorLinkerVersion — This is the minor version number of the linker used to create
this file.

§ SizeOfCode — This field specifies the size (in bytes) of the executable code contained in
the file.

§ SizeOf InitializedData — This is the size of the initialized data section.

§ SizeOfUninitializedData — This is the size of the uninitialized data section.

§ AddressOfEntryPoint — This shows the relative virtual address, the address in the
virtual address space of the executable module, of the instruction, from which the program
execution starts. Accordingly, if the relative address, from which the module starts
execution, is 1000H and the module will load at the 400000H address (see the ImageBase
field), then the point, from which the program starts execution, will be located at the 
401000H address.

§ BaseOfCode — This gives the relative virtual address of the first program section.

§ BaseOfData — This gives the relative virtual address, from which the first data section
starts. Usually, data sections start after the executable code sections.

§ ImageBase — This gives the virtual address (not a relative address), from which the
module will be loaded. If the loader places this module so that it starts exactly from this
address, it won't need to correct addresses further and the loading process will be fast. If
the loader cannot place the module at this address, then additional address tuning will be
required. For executable modules, this value is usually equal to 400000H.

§ SectionAlignment — This value defines section alignment in memory. All sections in
memory must start from values that are multiples of this value.

§ FileAlignment — This value defines section alignment within a file. All sections in the file
must start from the address that is a multiple of this value.
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§ MajorOperatingSystemVersion — This is the most significant number of the Win32
subsystem required to start the program.

§ MinorOperatingSystemVersion — This is least significant number of the Win32
subsystem required to start the program.

§ MajorimageVersion — This is the major version number specified at linking time (the
most significant part of n). For link.exe, the command-line option specifying this number
must appear as follows: /version:n.m.

§ MinorimageVersion — This is a minor version number specified at compile time (least
significant part of m).

§ MajorSubsystemVersion, MinorSubsystemVersion — These are the most
significant and least significant numbers of the subsystem versions. These fields typically
are not used.

§ Win32VersionValue — Although the name of this field is meaningful, most articles
related to various issues with PE headers state that its value must be zero.

§ SizeOfImage — This gives the total size of the PE header (headers and sections) in
memory, aligned by SectionAlignment.

§ SizeOfHeaders — This gives the size of all headers plus the size of the sections table.

§ Checksum — This is a checksum of the file. For executable modules, this value is zero.

§ Subsystem — This field specifies, for which subsystem a given module is intended. The
values of this field are as follows: 0000H for unknown subsystem, 0001H for device driver,
0002H for Windows GUI, 0003H for console application, 0005H for OS/2, and 0007H for
Posix.

§ D1lCharacteristics — This field fell out of use starting from Windows NT 3.5.

§ SizeOfStackReserve — This field specifies the required amount of stack memory.

§ SizeOfStackCommit — This gives the amount of memory allocated for the stack.

§ SizeOfHeapReserve — This is the amount of memory required for the local heap.

§ SizeOfHeapCommit — This is the amount of memory allocated for the local heap.

§ LoaderFlags — Starting from Windows NT 3.5, this field is out of use.

§ NumberOfRvaAndSizes — This field is reserved for further extensions of the format (the
size of array containing some structures). As a rule, this field is set to 10H.

§ DataDirectory — This is an array of structures (Listing 1.34). For the moment, the
IMAGE_NUMBEROF_DIRECTORY_ENTRIES value is 16. Each structure is made up of two
elements, each element being 4 bytes in size. Only the first 12 structures are used. The first
element of the structure describes the data location (relative virtual address), and the
second element specifies the data size. Array elements are as follows:

o 0 — Table of exported functions

o 1 — Table of imported functions

o 2 — Resource table

o 3 — Table of exceptions

o 4 — Security table
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o 5 — Sections table

o 6 — Debug table

o 7 — Description strings

o 8 — Operating speed of the computer, measured in million instructions per second
(MIPS)

o 9 — Thread local storage (TLS)

o 10 — Configuration table area

o 11 — Table of import addresses

Listing 1.34: The IMAGE_DATA_DIRECTORY structure
struct IMAGE_DATA_DIRECTORY {
DWORD   VirtualAddress;
DWORD   Size;
}

1.5.3. Sections Table

The sections table comes immediately after the optional PE header. It is possible to compare
the value of the SizeOfOptionalHeader field (see the IMAGE_FILE_HEADER STRUCTURE) to
the sizeof (IMAGE_NT_HEADERS) - sizeof (IMAGE_FILE_HEADER) - 4 value. It is then possible
to access the following address counting from the start of the file: e_lfanew + sizeof
(IMAGE_NT_HEADERS).

The sections table is made up of structures, each 40 bytes in size. The number of sections is
taken from the NumberOfSections field (see the IMAGE_FILE_HEADER structure from
Listing 1.32). Thus, obtaining the list of sections is a trivial task. Listing 1.35 shows the structure
that is an element of the sections table.

Listing 1.35: 

An elementary structure that makes up a typical element of the sections table
struct IMAGE_SECTION_HEADER {
    BYTE    Name[IMAGE_SIZEOF_SHORT_NAME];
    union {
            DWORD   PhysicalAddress;
            DWORD   VirtualSize;
    } Misc;
    DWORD   VirtualAddress;
    DWORD   SizeOfRawData;
    DWORD   PointerToRawData;
    DWORD   PointerToRelocations;
    DWORD   PointerToLinenumbers;
    WORD    NumberOfRelocations;
    WORD    NumberOfLinenumbers;
    DWORD   Characteristics;
}

Consider the fields of this structure:
§ Name — The section name. The IMAGE_SIZEOF_SHORT_NAME value equals 8. If the
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number of symbols in the name is less than 8, then the remaining bits are filled with zeros.

§ VirtualSize — The memory amount required for the section.

§ VirtualAddress — The relative virtual address, at which the loader must download the
section.

§ SizeOfRawData — The size of the virtual section aligned according to the value of the 
FileAlignment field to the nearest greater value (see the IMAGE_OPTIONAL_HEADER
structure in Listing 1.33).

§ PointerToRawData — The offset within a file, at which this section is located.

§ PointerToRelocations, PointerToLinenumbers, NumberOfRelocations, and
NumberOfLinenumbers — Fields used in OBJ files; they won't be considered here.

§ Characteristics — The flags that characterize this section (Table 1.29).

Table 1.29: Flags that characterize a section

Value Description

00000020H This section contains the program code.

00000040H This section contains initialized data.

00000080H This section contains uninitialized data.

00000200H This section is used by the compiler.

00000800H This section is used by the compiler.

04000000H This section cannot be cached.

08000000H This section has no paged organization.

10000000H This is a shared section.

20000000H This is an executable section.

40000000H This is a read-only section.

80000000H This is a writable section.

The names and purposes of the sections can differ at the compiler's discretion.

Note You can create custom
sections and assign custom
names to them. For example,
you can write an Assembly
program and assign an
arbitrary name to the section or
segment, in which the
executable code would reside.
The program would operate as
normal; however, some
debuggers and disassemblers
would be confused because the
entry point to the program is
located in a section with a
name unknown to them.

Here is an incomplete list of sections created by compilers from Microsoft and Borland.
§ .text — This section contains executable code (Microsoft).



92 Disassembling Code IDA Pro and SoftICE

 

§ CODE — This section contains executable code (Borland).

§ .DATA — This section contains uninitialized global variables (Microsoft).

§ DATA — This section contains uninitialized global variables (Borland).

§ bss — All data in this section are uninitialized. The section size within a file is zero.

§ .CRT — This is another section for initialized data (Microsoft).

§ CRT — This is the data section (Borland).

§ .rdata — This section contains read-only data (constants and debug information).

§ .rsrc — This section contains information about resources.

§ .edata — This section contains information about exported functions.

§ .idata — This section contains information about imported functions.

§ .reloc — This is the settings table. Information contained here might be needed for the
Windows loader if for some reason it will have to load the module at an address other than
the address specified in the PE header. The table contains the relative addresses of those
memory cells that contain the addresses used in the program, the values of which might be
modified during the loading. This table is also called the relocation table. More detailed
information about investigation of the relocation table can be found in Section 2.1.1.

§ .icode — This jumps to the import function of older versions of tlink32.exe.

§ .debug — This section contains debug information.

Thus, using the relocation table, you'll be able to compute the position of the section in a file, as
well as its size. After you achieve this, you'll be able to view the information stored in this
section, obtain its listing, or even try to disassemble executable code.

Special attention should be drawn to import and export tables and to the section containing
resource information. These issues will be covered in the next few sections. However, before
proceeding with this investigation, it is necessary to clarify how the PE image appears in the
virtual memory. It is different from a copy of the PE module. The simplified algorithm used for
loading the module appears as follows:

1. All headers, including the DOS header, PE header (IMAGE_NT_HEADERS), and sections
table, are loaded into the memory.

2. Sections start to be loaded into the memory. Still, their relative virtual addresses must be
aligned according to the value of the SectionAlignment field (see the description of
the IMAGE_OPTIONAL_HEADER structure).

What conclusions can be drawn from this information? First, it is necessary to understand how
the offset of a specific object within a file can be determined by its virtual address. This
important issue is related to the import and export table. In general, the algorithm for obtaining
the offset is as follows:

1. The section where the given object resides is determined by the virtual address.

2. On the basis of the sections table, the section offset within the PE file is determined.

3. The offset of the object within a section is determined.

4. The offset of the object can be obtained by adding the section offset within a file and the
object offset within the section.

An example C++ function for determining the offset within the PE file by the relative virtual
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address is presented in Listing 1.36. Accordingly, it is assumed that the iw =
IMAGE_NT_HEADERS global structure is read beforehand and the ais global array made up of
the IMAGE_SECTION_HEADER structures (see Listing 1.35) is filled. The vsm input parameter is
the relative virtual address of the required object. The function would return the offset of that
object within the PE file.

Listing 1.36: The C++ function for determining the object offset in the PE file by its
relative virtual address

DWORD getoffs(DWORD vsm)
{
        DWORD fi = 0;
        if(vsm < ais[0].VirtualAddress)return fi;
        for(int i = 0; I < iw.FileHeader.NumberOfSections; i++)
        {
                if(vsm < ais[i].VirtualAddress && i > 0){
                fi = ais[i - 1].PointerToRawData +
                                       (vsm - ais[i -1].VirtualAddress);
                        break;};
        };
        if(i = iw.FileHeader.NumberOfSections)
         fi = ais[i - 1].PointerToRawData +  (vsm - ais[i - 1].VirtualAddress);
        return fi;
j;

1.5.4. 

Import Table

It should be pointed out that if you want to find the import section by searching the .idata name
in the sections table, you'll fail. Linkers (at least the ones supplied by Microsoft) do not create
such a section. Thus, it will be necessary to use the DataDirectory array from the
IMAGE_OPTIONAL_HEADER structure (see Listing 1.33). To carry out an elementary
investigation of executable modules, it is possible to use the program presented in Appendix 1.
You'll immediately notice that in many executable modules there is no .idata section, although
the import table is present. If the .idata section is present, then the import table is located
there.

Recall that the DataDirectory array is made up of 12 significant elements (the total number
of elements is 16). Each element of this array is made up of two fields: VirtualAddress for
the virtual address of the object, and Size for the object size (see Listing 1.34). The import table
is defined by the second element (index of one). This is the only reliable evidence that allows
you to determine the location of the import table. However, this is enough. Recall the
considerations at the end of the previous section, and then recall Listing 1.36. Thus, there
mustn't be any problems related to finding the import table. Now it only remains to understand its
structure.

In the beginning of the import table there is an array of structures, which are shown in Listing
1.37.

Listing 1.37: The array of structures in the beginning of the import table
struct IMAGE_IMPORT_DESCRIPTOR {
union {
        DWORD   Characteristics;
        DWORD   OriginalFirstThunk;
      };
        DWORD   TimeDateStamp;
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        DWORD   ForwarderChain;
        DWORD   Name;
        DWORD   FirstThunk;
}

This array is terminated by the element with zero fields. It is necessary to point out again that at
least two fields must be checked for zero values, for example, Characteristics and Name.
Now consider the fields in Listing 1.37:
§ Characteristics — Relative virtual address of another array containing relative virtual

addresses of imported functions.

§ TimeDateStamp — Date and time of the file or DLL creation, or zero.

§ ForwarderChain — Usually 0FFFFFFFFh.

§ Name — Address of the ASCII string containing the name of the import library (a DLL).
Thus, every element of an array corresponds to its DLL.

§ FirstThunk — Relative virtual address of an array containing addresses of the names of
imported functions. This is a second copy of the array pointed at by the Characteristics
field. If the Characteristics field is zero (this is typical for some compilers other than
that supplied by Microsoft), then it is necessary to check the FirstThunk field, which
points at the second copy of the array.

Note Hopefully, you understand that
in this case you are dealing with
DLLs implicitly related to the
executable module, not to
those that are loaded during the
call to the LoadLibrary API
function.

Now, consider arrays pointed at by the Characteristics and FirstThunk fields. It is
necessary to point out again that these are two different arrays, although their elements point at
the same names of imported functions. These arrays are made up of the structures presented
in Listing 1.38.

Listing 1.38: The IMAGE_THUNK_DATA32 structure
struct IMAGE_THUNK_DATA32 {
union {
        DWORD ForwarderString;
        DWORD Function;
        DWORD Ordinal;
        DWORD AddressOfData;
        } ul;
}

As you can see, the IMAGE_THUNK_DATA32 structure, in essence, is made up of a single field;
however, it is in four different forms. This field specifies the relative virtual address of the name
of the imported function for a given DLL. If the most significant word of the field equals 8000H,
then the least significant word contains the ordinal number of the imported function (export by
ordinal). The array must be terminated by a double word set to zero.

Finally, it is necessary to consider the structure of the imported function name. Without diving
deep into details, note that the function name is a simple ASCII string terminated by zero.
However, this name starts at the address specified by the IMAGE_THUNK_DATA32 structure
plus 2 bytes. The preceding 2 bytes contain the ordinal number for the given imported function
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from the given DLL.

The array pointed at by the FirstThunk field from the IMAGE_IMPORT_DESCRIPTOR structure
(see Listing 1.37) deserves special attention. The CALL commands, which call imported
functions, point at the elements of this array directly (for example, CALL DWORD PTR
[address] or as follows:MOV ESI, address/CALL ESI) or by calling the stub (JMP DWORD
PTR [address]). When the module loads, the loader determines the actual addresses of
functions in the memory by their names or ordinals and then places these addresses into this
array. The array pointed at by the Characteristics field doesn't change in the course of
loading. A detailed example illustrating the procedure of searching for the name of imported
function will be provided in Section 1.6.1.

1.5.5. Export Table

The export table is necessary for DLLs to ensure that the application can correctly call the
functions provided by the DLLs. As with the import table, to investigate the export table it is
necessary to use the DataDirectory array from the IMAGE_NT_HEADERS structure, because
the .edata section might be missing from the executable module. In this case, you'll need the
first element of the array (index of zero).

The IMAGE_EXPORT_DIRECTORY structure is located at the specified address. This structure
contains all information required for investigating exported functions (Listing 1.39).

Listing 1.39: The IMAGE_EXPORT_DIRECTORY structure
struct IMAGE_EXPORT_DIRECTORY {
    DWORD   Characteristics;
    DWORD   TimeDateStamp;

    WORD    MajorVersion;
    WORD    MinorVersion;
    DWORD   Name;
    DWORD   Base;
    DWORD   NumberOfFunctions;
    DWORD   NumberOfNarnes;
    DWORD   AddressOfFunctions;
    DWORD   AddressOfNames;
    DWORD   AddressOfNameOrdinals;
}

Consider the fields of the IMAGE_EXPORT_DIRECTORY structure:
§ Characteristics — This field is reserved. To all appearances, it is always set to zero.

§ TimeDateStamp — This shows the data and time of creation of export data, or zero.

§ MajorVersion — This gives the major part of the export table version. It usually is zero.

§ MinorVersion — This gives the minor version of the export table version. It usually is
zero.

§ Name — This is the name of exporting module. In principle, it must not match the file name.

§ Base — This is the ordinal number of the exported function. Exported functions, besides
the name, have an ordinal number, by which they also can be accessed.

§ NumberOfFunctions — This shows number of elements in the array of addresses of
exported functions.

§ NumberOfNames — This gives number of elements in the array of the exported function
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names.

§ AddressOfFunctions — This is a relative virtual address of the array of virtual
addresses of exported functions.

§ AddressOfNames — This is the relative virtual address of the array, where relative virtual
addresses of exported functions are contained.

§ AddressOfNameOrdinals — This is the relative virtual address of the 16-bit array
(ordinals array), containing index values for the array of exported functions. To obtain the
function ordinal, it is necessary to add the value of the Base field to the index value.

To gain a proper understanding of the mechanisms of obtaining information about exported
functions, it is necessary to understand the relationships among the following three arrays: array
of function addresses, names array, and ordinals array. The ordinals array is a link between the
first two arrays. The number of elements in the names array equals the number of elements in
the ordinals array. Thus, to obtain the function address by its name, it is necessary to complete
the following steps:

1. Find the function in the names array by the function name.

2. Obtain the index, by which the required name can be found in the names array, and then
find the element with this value of the index in the ordinals array.

3. Take the value of the element found in the ordinals array. This value will serve as an
index for the array of function addresses. After that, it is enough to access the array of
function addresses and obtain the required address.

Analyze the program presented in Appendix 1 to understand how to work with the export table.
Experiment with locating the export table for different programs and DLL files.

1.5.6. Resource Section

As in previous cases, to obtain the resource block, it is necessary to use the DataDirectory
array from the IMAGE_NT_HEADERS structure. You'll need the array element with an index equal
to two. In contrast to the previously-considered objects of a PE module, the resource section
has a hierarchical tree structure. In practice, four levels of this structure are used. In addition to
this, all addresses used within the resource section are counted from the start of the resource
section (in other words, these are not relative virtual addresses). This is natural, because
resources are loaded into the memory as they are accessed, not during the loading of the
module.

In essence, to understand the structure of resources, only the two structures shown in Listings
1.40 and 1.41 will be needed.

Listing 1.40: The IMAGE_RESOURCE_DIRECTORY structure
struct IMAGE_RESOURCE_DIRECTORY {
    DWORD   Characteristics;
    DWORD   TimeDateStamp;
    WORD    MajorVersion;
    WORD    MinorVersion;
    WORD    NumberOfNamedEntries;
    WORD    NumberOfIdEntries;
}

Listing 1.41: The IMAGE_RESOURCE_DIRECTORY_ENTRY structure
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struct IMAGE_RESOURCE_DIRECTORY_ENTRY {
    ULONG   Name;
    ULONG   OffsetToData;
}

Consider the fields of the IMAGE_RESOURCE_DIRECTORY structure:
§ Characteristics — This is the flags field, which, to all appearances, is not used

nowadays.

§ TimeDateStamp — This field specifies the data and time of resource creation.

§ MajorVersion and MinorVersion — These fields specify the major and minor parts of
the resource version. They are practically useless.

§ NumberOfNamedEntries — This is the total number of named resources.

§ NumberOfIdEntries — This field gives the total number of resources specified by
resource identifiers.

The fields of the IMAGE_RESOURCE_DIRECTORY_ENTRY structure are as follows:
§ Name — This field might be interpreted differently, depending on the level and on the value

of the most significant bit. All of these cases will be considered in the sections that follow.

§ OffsetToData — This field specifies the address computed in relation to the start of the
resource section. The objects that can be pointed at by this address will be considered
separately.

Thus, by going to the address specified in the second element (index of two) of the 
DataDirectory array, you'll access the realm of resources. This is where the first hierarchical
level starts. It is necessary to point out that if the value of the address is zero, this might mean
only that the resource block is missing.

First Level of the Hierarchy

At the top (the first) level of the resource hierarchy, the IMAGE_RESOURCE_DIRECTORY
structure resides (see Listing 1.42). The only field that can provide the possibility of investigating
the resources is the NumberOfIdEntries field. At the first level, this field contains the number
of resource types stored in the PE header. The NumberOfNamedEntries field doesn't have
any meaning at the first level.

Listing 1.42: Fragment of the winuser.h file
#define RT_CURSOR              1
#define RT_BITMAP              2
#define RT_ICON                3
#define RT_MENU                4
#define RT_DIALOG              5
#define RT_STRING              6
#define RT_FONTDIR             7
#define RT_FONT                8
#define RT_ACCELERATOR         9
#define RT_RCDATA              10

#define RT_MESSAGETABLE        11
#define RT_GROUP_CURSOR        12
#define RT_GROUP_ICON          14
#define RT_VERSION             16
#define RT_DLGINCLUDE          17
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#define RT_PLUGPLAY            19
#define RT_VXD                 20
#define RT_ANICURSOR           21
#define RT_ANIICON             22
#define RT_HTML                23
#define RT_MANIFEST            24

What can you achieve if you know the number of resource types? As it turns out, this is the key
field, because the IMAGE_RESOURCE_DIRECTORY structure is directly followed by the array of
IMAGE_RESOURCE_DIRECTORY_ENTRY structures (see Listing 1.41). Their number equals the
value stored in the NumberOfidEntries field, so you'll have no problems reading them one by
one. The Name field of the IMAGE_RESOURCE_DIRECTORY_ENTRY structure at the first level
contains the resource type identifier. Resource type identifiers can be found in the winuser.h file
of the Visual Studio .NET product (Listing 1.42).

Thus, at the first level of the resource hierarchy, it is possible to find out how many types of
resources are in the module, and to identify them all.

The OffsetToData fields of all elements point to the IMAGE_RESOURCE_DIRECTORY
structures located at the second level of the hierarchy.

Second Level of the Hierarchy

The second level of the hierarchy also starts with the IMAGE_RESOURCE_DIRECTORY
structures. The number of such structures equals the number of resource types in the module
(see the previous section). In these structures, the following two fields are the most important:
NumberOfNamedEntries and NumberOfIdEntries. The first field contains the number of
named resources, and the second field gives the number of resources specified by resource
identifiers. Thus, at the second level, each IMAGE_RESOURCE_DIRECTORY structure is directly
followed by an array of the IMAGE_RESOURCE_DIRECTORY_ENTRY structures. The number of
elements in such arrays equals the value of the NumberOfNamedEntries
+NumberOfIdEntries field. The fields of the IMAGE_RESOURCE_DIRECTORY_ENTRY
structures that make up the array deserve special attention. The Name field must now be
interpreted differently. If the most significant bit of this field is set to zero, then the field itself
represents the resource identifier. If the most significant bit is set to one, then the other bits must
be interpreted as the offset of the name of the given resource relative to the start of the block of
resources. The structure of the name is as follows: The starting 2 bytes specify the name length
in characters (not in bytes), followed by the name itself in Unicode notation.

Again, consider the OffsetToData field. This field for each
IMAGE_RESOURCE_DIRECTORY_ENTRY structure of the second level points at the same
structure, except that it belongs to the third level.

Third Level of the Hierarchy

Thus, branching finished at the second level. The array of the 
IMAGE_RESOURCE_DIRECTORY_ENTRY structures at the third level corresponds to the same
structures of the second level. Consider how the fields of these structures should be interpreted
at the third level. The Name field now defines the number (the identifier) of the resource
description language. All identifiers are defined in the winnt.h file. They start with the LANG_
prefix and won't be listed here. As relates to the OffsetToData field, it again points at the
IMAGE_RESOURCE_DIRECTORY_ENTRY structure, except that it belongs to the fourth level.

Fourth Level of the Hierarchy
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At the fourth level of the hierarchy, the Name field of the
IMAGE_RESOURCE_DIRECTORY_ENTRY structure defines the size of the binary image of the
given resource. The address (relative to the start of the resource section, as usual) is the
address of the memory area where the binary resource description is located. This address is
defined by the OffsetToData field.

At this point, the description of resources is completed. It is only necessary to mention that the
program presented in Appendix 1 analyzes only two levels of resources. In most cases, this is
enough.

1.5.7. About Debug Information

This description of the PE module structure won't be complete without at least a brief description
of the debug information. The program presented in Appendix 1 only informs you of the
presence of such information (symbolic table and debug info) and the addresses (offsets), at
which this information is located within the module being investigated.

Symbolic Table

The location of the symbolic table can be determined using the FileHeader header. The
PointerToSymbolTable field contains the relative virtual address of the symbolic table. If this
field is zero, then the symbolic table is missing. What is the symbolic table? The term doesn't
reflect the actual meaning. In this case, the term symbol must be interpreted as an identifier of
the high-level programming language, such as a variable or a function. The symbolic table
contains the following information: the symbolic name (the variable or function name), the
relative virtual address of the symbol, the type of the symbol (the variable or function), and its
memory class (automatic, register, label, etc.). All this information about the identifier is
packed into the IMAGE_SYMBOL structure, the description of which can be found in the winnt.h
file.

Debug Information

In essence, the debug info must be interpreted as information about the numbers of the code
lines of specific program. This information is stored in the PE module in a location other than the
symbolic table. Locating this information is not a trivial task. Achieving this goal requires
additional effort. First, it is necessary to locate the 

IMAGE_DEBUG_DIRECTORY

 header. It is pointed at by the sixth (index of six) element of the 

DataDirectory

 array from the 

IMAGE_NT_HEADERS

 structure. If the PE file contains several types of debug info, then there is an individual 

IMAGE_DEBUG_DIRECTORY

 structure for each of them. The 

TYPE
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 field of this structure defines the type of debug info. The types of debug info are defined in the
winnt.h file. They are specified in the 

IMAGE_DEBUG_TYPE

_ constants. For example, the value 

1

 corresponds to the debug info in COFF, while the value 

9

 (

IMAGE_DEBUG_TYPE_BORLAND

) corresponds to the Borland debug info. The 

PointerToRawData

 field of the 

IMAGE_DEBUG_DIRECTORY

 structure must contain the offset of the debug info in COFF counted from the start of the debug
info block, if the 

TYPE

 field is set to one. At this location, the 

IMAGE_COFF_SYMBOLS_HEADER

 must reside. This is the key issue. The structure contains information both about the symbolic
table (which earlier was found using different method; see the 

previous section

) and about the table of line numbers. The 

NumberOfSymbols

 field must contain the number of the identifiers in the symbolic table. This number will equal the
contents of the 

NumberOfSymbols field in the IMAGE_FILE_HEADER structure (see Listing 1.32). The
LvaToFirstSymbol field will contain the offset of the symbolic table counted from the start of
the IMAGE_COFF_SYMBOLS_HEADER structure. Thus, you'd access the symbolic table using
another, more academic method. Finally, the LvaToFirstLinenumber field contains the offset
of the COFF line numbers table counted from the start of the structure.
[7]All structures used in the PE header are taken from the header files.

[
8

]

Or this file is an NE module used under Windows 3.1. Such programs are rarely encountered
nowadays.
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1.6. Debugging and Disassembling Assembly Programs

This section is dedicated to Assembly language because debugging and disassembling
programs written in this language usually is convenient and easy.

1.6.1. Examples of Code Disassembling

Consider several examples that, in my opinion, will help you quickly master this process.

Searching for Imported Functions

Consider an elementary example program written in Assembly language. The source code of
this program is shown in Listing 1.43.

Listing 1.43: An elementary Assembly program
.586P
.MODEL FLAT, STDCALL
includelib f:\masm32\lib\user32.lib
EXTERN        MessageBoxA@16:NEAR
; Data segment
_DATA SEGMENT
TEXT1 DB 'No problem!', 0
TEXT2 DB 'Message', 0
_DATA ENDS
; Code segment
_TEXT SEGMENT
START:
        PUSH OFFSET 0
        PUSH OFFSET TEXT2
        PUSH OFFSET TEXT1
        PUSH 0
        CALL MessageBoxA@16
        RETN
_TEXT ENDS
END START

The program in Listing 1.43 is a trivial one. Its only goal is to display the MessageBox dialog. To
obtain an executable module, issue the following two commands:
      ML  /c /coff  prog.asm
      LINK /subsystem:console prog.obj

That you are building a console application doesn't matter in this case. Alternatively, you could
use the /subsystem:windows linking options and try to explain the difference in the behavior
of both programs.

As a result of translation, you'll obtain the executable file called prog.exe. All of these issues are
self-evident for any programmer involved in Assembly programming. However, the
disassembling procedure is difficult, even for such a trivial example. For disassembling, it is
possible to use any suitable program, such as dumpbin.exe supplied as part of Microsoft Visual
Studio .NET. Issue the following command: dumpbin /disasm prog.exe >prog.txt. The
contents of the output file, called prog.txt, are shown in Listing 1.44.
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Listing 1.44: The result of disassembling the prog.exe program using the dumpbin.exe
utility
Microsoft (R) COFF/PE Dumper Version 7.10.3077
Copyright (C) Microsoft Corporation.  All rights reserved.
Dump of file r8.exe
File Type: EXECUTABLE IMAGE
  00401000: 6A 00              push        0
  00401002: 68 0C 30 40 00     push        40300Ch
  00401007: 68 00 30 40 00     push        403000h
  0040100C: 6A 00              push        0
  0040100E: E8 01 00 00 00     call        00401014
  00401013: C3                 ret
  00401014: FF 25 00 20 40 00  jmp         dword ptr ds:[00402000h]
  Summary
        1000 .data
        1000 .rdata
        1000 .text

The dumpbin.exe program turned out to be efficient enough and disassembled this module
satisfactorily. On the basis of the disassembled listing, it is easy to recognize the call to the
imported MessageBox function. In particular, this follows from the parameter values. After
carrying out the dumpbin /rawdata /section:.data prog.exe >prog.txt command,
you'll obtain the contents of the .data section, where initialized data must reside (Listing 1.45).

Listing 1.45: The contents of the .data section of the test example in Listing 1.44
RAW DATA #3
00403000: 4E 6F 20 70 72 6F 62 6C 65 6D 21 00 4D 65 73 73  No problem!.Mess
00403010: 61 67 65 00                                      age.

If you compare the parameter addresses from Listing 1.43 with the data from Listing 1.44, you
can make sure that the CALL instruction is the call to the imported MessageBox function.

However, not all questions that arise when viewing Listing 1.44 have been solved. The call is
carried out at the address where the JMP command is located. To understand what this means,
it is necessary to recall Section 1.5.4, where the import table was considered. I'd like to remind
you that the import table is made up of an array of IMAGE_IMPORT_DESCRIPTOR structures
(see Listing 1.37). The number of structures in the array equals the number of the DLLs in use.
The matter concerns implicit linking. In this structure, there is the FirstThunk field, which must
point to the array of the IMAGE_THUNK_DATA32 structures (for every DLL). In essence, these
structures are made up of the pointers to the names of imported functions. After loading the
executable module, the loader places there the addresses of the functions in the DLL instead of
the addresses of the function names. The jmp dword ptr ds:[00402000h] command calls
the imported function, the address of which must be located at the 00402000h address. Thus, it
is possible to conclude that the 00402000h virtual address is the virtual address of the array
element pointed at by the FirstThunk field. If you use the program presented in Appendix 1,
you'll be able to obtain the relative virtual address and the offset for the array of 
IMAGE_THUNK_DATA32 structures (in the program being described, this array is called
AdresImpArray). The relative virtual address turns out to equal 2000h. Everything is correct
here, because the virtual loading address is 400000h. As relates to the offset, it is 600h.
Having obtained this information, you can locate the array of IMAGE_THUNK_DATA32 structures
within the prog.exe file. This can be done using the simplest 16-bit hex viewer (for instance, you
can use the one that is part of the FAR Manager). As it turns out, the 38 20 00 00 sequence
of bytes is located at the 600h address, in other words, the number 2038h. This number is
nothing but the relative virtual address (minus 2 bytes) of the name of the imported 
MessageBox function. In other words, the relative virtual address of the function name and,
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after loading, of the function as such is 203Ah. Again, you can use the program from Appendix 1
to make sure that everything is correct and that the offset of the function name within the prog.
exe file must be located at the 63Ah address. Open the prog.exe file and make sure that the
MessageBoxA string is located at this offset.

Perhaps, these considerations seem too complicated and bulky to you. If so, try to draw the
same conclusion using the hiew.exe program. This program is one of the best hex editors,
indispensable when correcting executable modules. In addition, it provides the possibility of
disassembling PE modules. All examples and explanations provided in this book relate to
version 6.11 of this program. To proceed, load the prog.exe executable module into hiew.exe.
Consider what you'd discover at the 401000H address in the disassembling mode (Listing 1.46).

Listing 1.46: The results produced by hiew.exe when disassembling the prog.exe test
program
.00401000:        6A00               push 00
.00401002:        680C304000         push 000403000C
.00401007:        680C304000         push 0004030000
.0040100C:        6A00               push 00
.0040100E:        E801000000         call .000401014
.00401013:        C3                 retn
.00401014:        FF2500204000       jmp MessageBoxA

As you can see, hiew.exe is a more advanced program than dumpbin.exe, because it has
recognized the call to the MessageBoxA function. On the basis of the jmp command, it is
possible to determine the jump address. This is the 402000h address, as should be expected
(do not forget how the bytes of integer numbers are stored, and that the first 2 bytes of the
command code are the code byte and the MOD R/M byte, as explained in Section 1.4). Now,
switch to the hex viewing mode and go to the obtained address. At that address, as expected,
the following sequence of bytes is located: 38 20 00 00. This is the 2038h number,
representing a relative virtual address. To obtain the virtual address, it is necessary to add the
base loading address of the module, which is 400000h. The address of the string that must
contain the name of the imported function (which, in this case, is MessageBoxA) is obtained as
follows: 400000h + 2038h + 2h = 40203Ah. Go to the obtained address, and you'd
discover the required name.

It would be interesting to view what the result would be if you compiled the program using
TASM32. To achieve this, replace the MessageBoxA@16 name (Listing 1.43) with
MessageBoxA, and the user32.lib import library with the Borland import32.lib library. To compile
and link the program, use the following commands:
   tasm32 /ml  prog.asm
   tlink32 -ap  prog.obj

After compiling and linking, run hiew.exe and load the prog.exe executable module. Note that
Borland's compiler creates larger executable modules than the similar Microsoft compiler. 
Listing 1.47 shows the disassembled text of the prog.exe module compiled and linked using
TASM32. Compare it to the text provided in Listing 1.46. As you can see, the text is practically
identical, but the addressing is slightly different.

Listing 1.47: The disassembled text of the prog.exe module compiled and linked using
TASM32
.00401000:        6A00               push 00
.00401002:        680C204000         push 00040200C
.00401007:        680C204000         push 0004020000
.0040100C:        6A00               push 00
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.0040100E:        E801000000         call .000401014

.00401013:        C3                 retn

.00401014:        FF2530304000       jmp MessageBoxA

Go to the 403030h address, which is the address of the array element pointing at the name of
the imported function. There you'll find the following sequence of bytes: 44 30 00 00. This
means that the name of the imported function must be located at the following address: 40000h
+ 3044h.

Difficulties with Recognizing Executable Code

Although it might seem that there mustn't be any special problems related to disassembling
executable modules written in Assembly languages, some problems still arise.

Consider the following test program (Listing 1.48). First compile it using MASM32.

Listing 1.48: The test Assembly program for illustrating difficulties with disassembling
.586P
.MODEL FLAT, STDCALL
includelib f:\masm32\lib\user32.lib
EXTERN        MessageBoxA@16:NEAR
; Data segment
_DATA SEGMENT
TEXT1 DB 'No problem!', 0
TEXT2 DB 'Message', 0
_DATA ENDS
; Code segment
_TEXT SEGMENT
START:
        PUSH OFFSET 0
        PUSH OFFSET TEXT2
        PUSH OFFSET TEXT1
        PUSH 0
        CALL MessageBoxA@16
        RETN
        DB 50
11:
        RETN
_TEXT ENDS
END START

The program in Listing 1.48 appears strange. For example, for what purpose is the 11 label
intended if there are no jumps to it? Note that the label will be needed in the future. What
purpose does the DB 50/RETN sequence serve if it doesn't execute? All of these issues will be
clarified in due order. The main goal of this program is to determine how contemporary
disassemblers would react to such a fragment. I assume that all disassemblers would
understand the entire code fragment following the first RETN command incorrectly. By the way,
how should it be interpreted? This is simply the 32 C3 sequence of bytes that corresponds to
the XOR AL, BL command. This assumption turns out to be true, because all disassemblers,
including the fabulous IDA Pro, considered the RETN command to be followed by the XOR AL,
BL command.
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Note I was truly surprised by the
OllyDbg debugger and
disassembler. After loading this
code, it displayed the DB 50/
RETN sequence. I thought that
this was mystical, and for a
couple of seconds believed in
the eminence of this debugger.
Then I replaced the byte
sequence with a single XOR AL
, BL command. The debugger
continued to blindly state that
this was DB 50/RETN. So, it
was a disappointment.

Now, modify this program by a single command: MOV EBX, OFFSET 11 (Listing 1.49). This
command is meaningless. However, consider what the popular disassemblers would state.

Listing 1.49: The modified code of the test program shown in Listing 1.48
.586P
.MODEL FLAT, STDCALL
includelib f:\masm32\lib\user32.lib
EXTERN        MessageBoxA@16:NEAR
; Data segment
_DATA SEGMENT
TEXT1 DB 'No problem!', 0
TEXT2 DB 'Message', 0
_DATA ENDS
; Code segment
_TEXT SEGMENT
START:
        MOV  EBX, OFFSET 11
        PUSH OFFSET START

        PUSH OFFSET 0
        PUSH OFFSET TEXT2
        PUSH OFFSET TEXT1
        PUSH 0
        CALL MessageBoxA@16
        POP  EDX
        ADD  EDX, 11 - START
        CALL EDX
        RETN
        DB 50
11:
        RETN
_TEXT ENDS
END START

Now check the compiled code using three different disassemblers. Hiew.exe doesn't notice
anything, which means that its interpretation of the code that follows the RETN command didn't
change. The respectable W32Dasm program behaves the same way. IDA Pro (admittedly a
superior product) reacts to the new command immediately. The fragment of the disassembled
listing produced by IDA Pro is shown in Listing 1.50.

Listing 1.50: A fragment of the disassembled text produced by IDA Pro
.text=00401000 ; ------- S U B R O U T I N E ---------------------------
.text:00401000
.text:00401000
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.text:00401000          public start

.text:00401000 start    proc near               ; DATA XREF: start + 5 o

.text:00401000          mov     ebx, offset nullsub_1

.text:00401005          push    offset start

.text:0040100A          push    0               ; uType

.text:0040100C          push    offset Caption  ; lpCaption

.text:00401011          push    offset Text     ; lpText

.text:00401016          push    0               ; hWnd

.text:00401018          call    MessageBoxA

.text:0040101D          pop     edx

.text:0040101E          add     edx, 28h

.text:00401024          call    edx

.text:00401026          retn

.text:00401026 start    endp

.text:00401026

.text:00401026 ;----------------------------------------------------------------

.text:00401027           db 32h

.text:00401028 ; [00000001 BYTES: COLLAPSED FUNCTION nullsub_1. PRESS KEYPAD "+"

.text:00401028 ; TO EXPAND]

Note how the MOV EBX, OFFSET 11 command has been disassembled. The nullsub_1 name
means that this label points at the procedure comprising only one RETN command — a blank
procedure (null). The comment inserted by the 00401028 address means that the procedure
is collapsed. To expand the procedure (in other words, to view its text), it is enough to press the
<+> key on the numeric keypad. In this case, the expanded procedure contains only one
command— RETN.

Thus, IDA Pro has separated the husk from the grain. In other words, it has separated the RETN
command from the 32H code. Is this an advantage or is it a drawback? Are you surprised by this
question? Assume that the source code contained simply a MOV EBX, N command, where N is
some number. This number would happen to fall into some address range; however, it isn't an
address of any command. Nevertheless, the disassembler would conclude that a procedure is
located at this address. Such errors are not serious because there are no jumps to this address.
There are also no jumps to the window procedure; however, in that case the address is
determined by the call of one of the API functions (see Section 1.3).

Anyway, such erroneous detection of a procedure doesn't imply serious complications. However,
if this turns out to be an address of some command, to which there will later be a "secret" jump
(secret jumps will be covered further on in more detail), this might be helpful for the purposes of
analyzing the code. Developers of IDA Pro were thinking logically when they considered that a
number that has fallen into the range of command addresses is likely to represent an address.
In my opinion, this was a correct choice.

Now continue the empirical investigation. This time, replace the MOV EBX, OFFSET 11
command with the CALL 11 command. How would the most popular disassemblers handle this
situation? IDA Pro tracks the procedure address and marks it in the listing. Hiew.exe still doesn't
recognize a procedure, although it displays the CALL command. There is no reason to expect
anything different from it, because its main goal is not disassembling. As relates to W32Dasm,
this time this disassembler has put on a good show. Listing 1.51 shows a fragment of the listing
produced by this program.

Listing 1.51: 

A fragment of the disassembled listing produced by W32Dasm
//******************** Program Entry Point ********
:00401000 E823000000              call 00401028
:00401005 6800104000              push 00401000
:0040100A 6A00                    push 00000000
* Possible StringData Ref from Data Obj ->"Message"
                                  |
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:0040100C 680C304000              push 0040300C
* Possible StringData Ref from Data Obj ->"No problem!"
                                  |
:00401011 6800304000              push 00403000
:00401016 6A00                    push 00000000
* Reference To: user32.MessageBoxA, Ord:019Dh
                                  |
:00401018 E80D000000              Call 0040102A
:0040101D 5A                      pop edx
:0040101E 81C228000000            add edx, 00000028
:00401024 FFD2                    call edx
:00401026 C3                      ret
:00401027 32                      BYTE 32h
* Referenced by a CALL at Address:
|:00401000
|
:00401028 C3                      ret

As you can see, W32Dasm recognizes the 0040l028h address as a procedure address (
Referenced by a CALL at Address 00401000).

Thus, the material provided in this section demonstrates that there are certain difficulties with
disassembling code written in Assembly programming language. No disassembler is capable of
exhaustively analyzing the code, so human investigators won't remain jobless.

Secret Jumps and Secrets of Jumps

I'd like to explain secret jumps. There are the following widely used commands for passing
control: JMP and the group of conditional jumps, such as JXX, CALL, RETN, and LOOP. At the
same time, jump commands can imitate different jump commands from the same group. The
only reason such a programming style might be used is to confuse potential investigators of the
program code. This section will cover this topic to help you take countermeasures against such
tricks.

Consider the JMP command. This is the simplest command from the preceding list, provided
that the jumps are considered within the framework of the flat memory model. At first glance,
everything is clear and straightforward. The command carries out the jump to the specified
address. When this happens, the contents of all registers (except for EIP) don't change.
However, in addition to the standard jumps such as JMP 11 (where 11 is simply a label), there
are indirect jumps:
§ jmp dword ptr [1o]—The lo variable specifies some jump address.

§ JMP EBX — The EBX register contains the jump address.

§ JMP DWORD PTR [EBX] — The EBX register contains the address of some variable
which, in turn, contains the jump address.

For example, what should you do if you see the JMP EAX command but do not know what is
contained in the EAX register? This content might be formed several hundred commands from
the given command. In such a situation, no disassembler would help you. There are only two
ways out: Manually analyze the text of the disassembled program, or resort to the debugger.
After you finally determine the address contained in the required register, you'll be able to use
the disassembler and insert a comment, specifying this value. Most contemporary
disassemblers have already implemented this function. However, I'm not going to rush forward.
In Chapter 2, when considering contemporary disassemblers, I'll cover this functional capability
in more detail. For the moment, the most important goal is to understand the essence of the
problem and find approaches to solving it.
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However, the problem being considered is complicated because any of the previously-listed
commands can "masquerade" as a different command. For example, the LOOP command might
play the role of a near jump (127 bytes forward or 128 bytes back) instead of providing evidence
of the presence of a loop.

Here are several examples. For instance, consider the program presented in Listing 1.52.

Listing 1.52: An example demonstrating nonstandard use of the RET command
.586P
.MODEL FLAT, STDCALL
includelib f:\masm32\lib\user32.lib
EXTERN        MessageBoxA@16:NEAR
_DATA SEGMENT
; The address is stored here.
meml  DD OFFSET 12
TEXT1 DB 'No problem!', 0
TEXT2 DB 'Message', 0
_DATA ENDS
_TEXT SEGMENT
START:
        MOV  EAX, meml
; The next two commands are equivalent to JMP 12.
        PUSH EAX
        RETN
11:
        RETN
12:
        PUSH OFFSET 0
        PUSH OFFSET TEXT2
        PUSH OFFSET TEXT1
        PUSH 0
        CALL MessageBoxA@16
        RETN
_TEXT ENDS
END START

The program shown in Listing 1.52 demonstrates nonstandard use of the RET command. The
PUSH/RET combination of commands is equivalent to the JMP command. Furthermore, it is
possible to invent even trickier code; for example, consider Listing 1.53.

Listing 1.53: A fragment of code demonstrating another imitation of the JMP command
MOV  EAX, meml
SUB  ESP, 4
MOV  DWORD PTR [ESP], EAX
RETN

As a result, a simple jump to the 12 address takes place. At the same time, commands might be
mixed with other commands, in which case it would be difficult to determine correctly, to which
location the jump actually takes place. The main idea here is that the tricks with jumps to
addresses stored in the stack can be complicated indefinitely because it is possible to place an
arbitrary number of jump addresses into the stack. Furthermore, the commands can be mixed in
any order. Assembly language provides unlimited possibilities in this respect.

The situation with conditional jumps is similar. It often is impossible to determine whether the
jump condition is satisfied by analyzing the code. As a result, it becomes unclear, to which
branch of the program control would be passed, and it becomes difficult even to determine
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whether any of the branches would be executed. For example, consider the sequences of
commands provided in Listing 1.54.

Listing 1.54: A sequence of commands, for which it is hard to guess where the jump
takes place
...
CMP EAX, 100
JA 11
...
11:

For such code fragments, it is difficult to determine where the jump takes place. This is because
it is difficult to track what might be contained in the EAX register.

In essence, the JA command in Listing 1.54 might play the role of the JMP command, because
in practice the number contained in the EAX register might be greater than 100, in which case
the program fragment that follows the JA command has no practical meaning. Only a debugger
might be of any help. Nevertheless, even the debugger cannot ensure the necessary results,
because there is always a nonzero probability of program execution going the other way.

The technique I will describe now is called code overlapping. The main essence of this
technique is as follows: Part of the command code might become a standalone command, the
meaning of which is often difficult to guess. Consider the program fragment presented in Listing
1.55.

Listing 1.55: An example illustrating the code overlapping technique
MOV  AX, 015EBH
JMP  $ - 2
PUSH OFFSET 0
PUSH OFFSET TEXT2
PUSH OFFSET TEXT1
PUSH 0
CALL MessageBoxA@16
11:
RETN

Guessing that the 015EBH code is simply JMP SHORT 11 and that the MOV AX, 015EBH
command simply disguises this jump to the 11 label is not a trivial task.

Using Debug Information

The previous section explained the possibilities of confusing potential code investigators, in
other words, protecting the program from anyone who would analyze it with malicious intentions.
There also is the reverse of the coin. Often, the developer must disassemble his or her own
program to understand how it works and to eliminate implementation errors and bugs. For this
purpose, debug info is often used (see Section 1.5.7).

Most contemporary debuggers and disassemblers interpret the debug info well and are capable
of correctly reconstructing the program being investigated. Assembly language, unfortunately,
uses the debug info inefficiently and mainly relates to the variable names. Principally, variable
names are satisfactorily identified by disassemblers, such as IDA Pro. The only fault of IDA Pro
is that it cannot determine the true name of a variable if the module doesn't contain the debug
info.
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To include the debug info when translating a program using MASM32, it is necessary to include
the /Zi command-line option in the ml.exe command line and use the /DEBUG command-line
option in the link.exe command line. The debug info is added into the file that has the same
name as the executable module and the PDB file name extension (PDB stands for program
database). It is also possible to use the /PDB:NONE command-line options, in which case the
debug info will be placed into the executable module. Finally, it is possible to specify the type of
the debug info, such as /DEBUGTYPE: {CV|COFF}, where CV designates the debug info
intended for the CodeView debugger and COFF stands for the debug info in COFF. Similarly,
when using the TASM32 assembler, the debug info can be included in the executable module.
To achieve this, the tasm32.exe command line must include the /zi command-line option
(include all debug info), and the tlink32.exe must include the /v command-line option. If these
requirements have been observed, all information related to variables and operations over them
will be placed into the executable module. Later, this information will be available to
disassemblers and debuggers. Note that all information will be stored, even information about
variables that are not used in the program.

1.6.2. About Dynamic Modification of the Executable Code

On one hand, self-modifying code doesn't correspond to the "code and data" programming
paradigm, according to which the program is made up of the code that must be executed and
the data that must be read and, if necessary, modified. On the other hand, there exists the Von
Neumann principle, the rough interpretation of which doesn't make any principal difference
between the data and the code. According to this interpretation, both the code and the data are
simply sequences of bytes or bits (according to your preference). Therefore, dynamic code
modification is an excellent technique that allows you to disguise the intentions of the program.

Programmers who have experience with MS-DOS programming know that code modification
during its execution is a simple matter. Under MS-DOS, it is possible to modify the content of
any memory cell, no matter what is contained there — the code or the data. Under Windows,
code cannot be modified directly. Also, it is impossible to execute code located in the data
segment or in the dynamic memory area. To obtain the possibility of doing so, the program must
run in ring 0. Thus, for a normal program, all possibilities of dynamic code modification are
prohibited. However, there are several ways out, which will be covered in this section.

Execution in the Stack

Code execution in the stack is probably the best method of self-modification that a program can
implement. Memory pages allocated for the stack have attributes that allow reading and writing
of data from and to the stack and even allow code to be executed there. The code can be
modified as it is moved. Finally, Assembly commands can be stored in the data segment then
moved to the stack and executed there. High-level programming languages allow you to use the
stack, although with several limitations — sometimes considerable. Assembly language freely
allows you to use the stack without encountering any serious difficulties. However, some
problems can arise even here.

For instance, consider a simple console application (Listing 1.56).

Listing 1.56: A simple console application intended for investigating the code self-
modification problem

.586P

.MODEL FLAT, STDCALL
includelib f:\masm32\lib\user32.lib
EXTERN MessageBoxA@16:NEAR
;-----------------------------------------------
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_DATA SEGMENT
TEXT1 DB 'I am in the stack!', 0
TEXT2 DB 'Message from the stack', 0
_DATA ENDS
_TEXT SEGMENT
START:
; Call a procedure
      CALL PROC1
      RETN
      PROC1 PROC

      PUSH 0
      PUSH OFFSET TEXT2
      PUSH OFFSET TEXT1
      PUSH 0
      CALL MessageBoxA@16
      RETN
PROC1 ENDP
_TEXT ENDS
END START

Name this program prog.asm. To compile and link it, issue the following commands:
   ML /c /coff progl
   LINK /SUBSYSTEM:CONSOLE progl.obj

As a result, the prog.exe executable module will appear, which would display MessageBox with
a corresponding message when it is started for execution.

Now, try to launch a frontal attack at the problem. Copy the contents of the PROC1 procedure
into the stack and try to run the procedure there. The program that illustrates this approach is
shown in Listing 1.57.

Listing 1.57: A program that copies the contents of PROC1 into the stack and tries to run
it there
.586P
.MODEL FLAT, STDCALL
includelib f:\masm32\lib\user32.lib
EXTERN MessageBoxA@16:NEAR
;----------------------------------------------
_DATA SEGMENT
TEXT1 DB 'I'm in the stack!', 0
TEXT2 DB 'Message from the stack', 0
_DATA ENDS
_TEXT SEGMENT

START:
; Prepare the stack.
      MOV EDX, ESP
      MOV ECX, OFFSET L1
      SUB ECX, PROC1
; Allocate space in the stack.
      SUB ESP, ECX
; Copy the code into the allocated space.
      MOV EDI, ESP
      LEA ESI, PROC1
      CLD
      REP MOVSB
; Call the procedure from the stack.
      CALL ESP
; Restore the stack.
      MOV ESP, EDX
      RETN
      PROC1 PROC
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      PUSH 0
      PUSH OFFSET TEXT2
      PUSH OFFSET TEXT1
      PUSH 0
      CALL MessageBoxA@16
      RETN
PROC1 ENDP
_TEXT ENDS
END START

The result will be disappointing. When you start this program for execution, the operating system
would display an error message. Using the OllyDbg debugger, try to find out why this happens.
Start the program under the debugger, and execute it in step-by-step mode. Having reached the 
CALL ESP command, press the <F7> key. You'll find yourself in the stack location, where the
procedure was copied. At first glance, it seems that the code has been copied correctly (Listing
1.58).

Listing 1.58: The stack location, to which the code of the PROC1 procedure has been
copied
000CFFB0        6A        00              PUSH        0
000CFFB2        68        0B304000        PUSH        40300B
000CFFB7        68        00304000        PUSH        403000
000CFFBC        6A        00              PUSH        0
000CFFBE        E8        02000000        CALL        000CFFC5
000CFFC3        C3                        RETN

However, the address at which the procedure was called, also resides in the stack. Is it possible
to find any jump to MessageBox? Everything is straightforward. In the CALL MessageBoxA@16
command, the Assembly translator substitutes relative addresses. This is the cause of the
problem! What could be done about it? Do you really need to correct the address when moving
the code to the stack? Fortunately, there is another way of calling the procedure. This call
appears as follows: LEA EBX, MessageBoxA@16/CALL EBX. Check whether this works by
rewriting the program (Listing 1.59).

Listing 1.59: A modified version of the program presented in Listing 1.57
.586P
.MODEL FLAT, STDCALL
includelib f:\masm32\lib\user32.lib
EXTERN MessageBoxA@16:NEAR
;----------------------------------------------
_DATA SEGMENT
TEXT1 DB 'I'm in the stack!', 0
TEXT2 DB 'Message from the stack', 0
_DATA ENDS
_TEXT SEGMENT
START:
; Prepare the stack.
      MOV EBP, ESP
      MOV ECX, OFFSET L1
      SUB ECX, PROC1

; Allocate space in the stack.
      SUB ESP, ECX
; Copy the code.
      MOV EDI, ESP
      LEA ESI, PROC1
      CLD
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      REP MOVSB
; Call the procedure from the stack.
      CALL ESP
; Restore the stack
      MOV ESP, EBP
      RETN
      PROC1 PROC
      PUSH 0
      PUSH OFFSET TEXT2
      PUSH OFFSET TEXT1
      PUSH 0
      LEA EBX, MessageBoxA@16
      CALL EBX
      RETN
PROC1 ENDP
L1:
_TEXT ENDS
END START

Translate and run the program. This time there is no error; however, the MessageBox looks
somewhat crippled. To be more precise, it doesn't contain any text. An attempt at running the
program under the debugger doesn't provide any positive result. Although, this time it is possible
to make sure that the call to MessageBox is carried out at the correct address. What's wrong?
Conduct the following experiment. Replace the CALL ESP command with CALL PROC1; in
other words, check whether the procedure as such would execute. Strangely, the result will be
the same. What could be the cause of this error? Because the procedure executed correctly
earlier, try to remove commands for copying the procedure into the stack, removing one
command at a time. This will help you detect, which command produces the error. As it turns
out, this is the SUB ESP, ECX command. At this point, some suspicions should arise. What's
wrong with this command? Such commands are widely and extensively used by all assemblers
and compilers. The value stored in ECX is not large enough to go beyond the stack boundaries,
and even if this happened it would cause a different error. After some consideration, the
following idea comes to mind: The address in the stack must be a multiple of four. In the
program under consideration, this requirement has not been met. Try to correct the contents of 
ECX before subtracting it from ESP. There are different methods of achieving this goal. For
instance, this might be done as follows: SHL ECX, 2. In other words, multiply the ECX content by
four. The same result might be obtained as follows (if you consider four to be too large): AND
ECX, FFFFFFFCH/SHL ECX, 1. In both cases, the result will be positive, because the code
copied into the stack will work correctly. However, the simplest way of correcting this program is
using the ALIGN 4 directive to ensure that the addresses of the PROC1 procedure and the L1
label are aligned by a double word. The final version of the program that copies the procedure
into the stack and executes it there appears as in Listing 1.60.

Listing 1.60: 

The final version that copies the procedure code into the stack and executes it there
.586P
.MODEL FLAT, STDCALL
includelib f:\masm32\lib\user32.lib
EXTERN MessageBoxA@16:NEAR
;----------------------------------------------
_DATA SEGMENT
TEXT1 DB 'I'm in the stack!', 0
TEXT2 DB 'Message from the stack', 0
_DATA ENDS
_TEXT SEGMENT
START:
; Prepare the stack.
      MOV EBP, ESP
      MOV ECX, OFFSET L1
      SUB ECX, PROC1
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; Allocate the space in the stack.
      SUB ESP, ECX

; Copy the code into the stack.
      MOV EDI, ESP
      LEA ESI, PROC1
      CLD
      REP MOVSB
; Call the procedure from the stack.
      CALL ESP
; Restore the stack.
      MOV ESP, EBP
      RETN
      ALIGN 4
      PROC1 PROC
      PUSH 0
      PUSH OFFSET TEXT2
      PUSH OFFSET TEXT1
      PUSH 0
      LEA EBX, MessageBoxA@16
      CALL EBX
      RETN
      PROC1 ENDP
      ALIGN 4
L1:
_TEXT ENDS
END START

Thus, everything is straightforward — provided that you follow some simple rules: Procedures
must be called through a register, and code must be aligned by the 4-byte boundary.

However, there is another problem. What should you do with jumps? If a jump uses a 4-byte
address that must be stored in relocatable fragment, then the code copied into the stack won't
work correctly. This problem also has a simple solution: All such jumps must be short jumps. No
special steps must be taken, because the assembler automatically makes all jumps short if they
are carried out within the range of 128 bytes. You'll only need to ensure that all required jumps
and procedure calls fall within this interval.

Using the WriteProcessMemory Function

Another method of modifying the code dynamically at run time is to use the 
WriteProcessMemory API function. Using this function, it is possible to write the data into the
process address space. The area, into which it is necessary to write the data, must be available
for writing; otherwise, the write operation won't be carried out and the function would return a
nonzero value (in a successful write operation, the function returns zero). Consider parameters
of this function in more detail.
§ Parameter 1 — This is the descriptor of the process into whose address space the function

is going to write the data.

§ Parameter 2 — This is the address of the process memory, into which the function is going
to write.

§ Parameter 3 — This is the pointer to the data buffer, from which the data will be written into
the process memory.

§ Parameter 4 — This is the number of bytes that will be written into the process memory.

§ Parameter 5 — This is the pointer to the variable that will store the number of bytes written
into the process memory. If this parameter is zero, it will be ignored.

As already mentioned, before writing anything into the process memory, it is necessary to obtain
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the process descriptor. To achieve this, it is enough to open the process using the 
OpenProcess function. This function is used any time some other function requires the
descriptor of the process to execute. Consider the parameters of this function:
§ Parameter 1 — This is the desired level of access to the process. All access levels are

mapped to constants and listed in the documentation and header files. The names of these
constants start with the PROCESS_ prefix. For writing into the process memory, the
combination of the following two constants is needed: PROCESS_VM_OPERATION and
PROCESS_VM_WRITE.

§ Parameter 2 — This parameter can take two values. If this parameter is set to one, then the
descriptor can be inherited; otherwise (the parameter is set to zero), the descriptor cannot
be inherited.

§ Parameter 3 — This is the identifier of the process that you need to open.

Finally, it is necessary to describe how the process identifier can be obtained. Because you are
studying the task of writing into your own code, it is possible to use the 
GetCurrentProcessId API function. This function doesn't require any parameter and returns
the identifier of the calling process.

An example of a self-modifying program is shown in Listing 1.61. This console program writes
the C3H code at the RETE address. If this hasn't been done, the program will fall into an endless
loop and will never complete its execution without external influence.

Listing 1.61: An example of a self-modifying program that uses the WriteProcessMemory
function
.586P
.MODEL FLAT, STDCALL
PROCESS_VM_OPERATION    =        0008H
PROCESS_VM_WRITE        =        0020H
PROCESS_VM_OW           =        PROCESS_VM_OPERATION OR PROCESS_VM_WRITE
includelib f:\masm32\lib\user32.lib
includelib f:\masm32\lib\kernel32.lib
EXTERN OpenProcess@12:NEAR
EXTERN WriteProcessMemory@20:NEAR
EXTERN GetCurrentProcessId@0:NEAR
;-----------------------------------------------
_DATA SEGMENT
OPC        DB OC3H
_DATA ENDS
_TEXT SEGMENT
START:
        CALL GetCurrentProcessId@0
; EAX contains the identifier of the current process.
        PUSH EAX
        PUSH 1
        PUSH PROCESS_VM_OW
        CALL OpenProcess@12
; EAX contains the descriptor of the opened process.

        PUSH 0
        PUSH 1
        PUSH OFFSET OPC
        PUSH OFFSET RETE
        PUSH EAX
        CALL WriteProcessMemory@20
RETE:
        JMP  RETE
        RETN
_TEXT ENDS
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END START

Note After the descriptor of some
object has been used, it is
necessary to close it using the 
CloseHandle function. In the
preceding example, the system
closes all handles
automatically.

The use of the WriteProcessMemory function is characterized by certain drawbacks
compared with code execution in the stack. First, this function corrects the code of the current
process; however, it cannot increase the memory size to add new code. Furthermore, code
execution in the stack is stealthier than the use of the WriteProcessMemory function, which
can be easily detected by any literate code digger.

Using the VirtualProtectEx Function

Instead of writing into the process memory using the WriteProcessMemory function, it is
possible to use the VirtualProtectEx API function to allow access to the required bytes (or
pages where the required bytes reside) then use the normal MOV command.

Listing 1.62 presents a program similar to the one shown in Listing 1.61. The difference between
these programs is that the program in Listing 1.62 uses the VirtualProtectEx function. Like
the previous example, the C3H byte is written at the RETE address; however, this time this goal
is achieved using a simple MOV command.

Listing 1.62: An example of self-modifying code that uses the VirtualProtectEx command
.586P
.MODEL FLAT, STDCALL
PROCESS_VM_OPERATION    = 0008H
PROCESS_VM_WRITE        = 0020H
PROCESS_VM_OW           = PROCESS_VM_OPERATION OR PROCESS_VM_WRITE
PAGE_WRITECOPY          = 8
PAGE_EXECUTE            = 10h
includelib f:\masm32\lib\user32.lib
includelib f:\masm32\lib\kernel32.lib
; Imported functions
EXTERN OpenProcess@12:NEAR
EXTERN FlushInstructionCache@12:NEAR
EXTERN VirtualProtectEx@20:NEAR
EXTERN GetCurrentProcessId@0:NEAR
:--------------------------------------------------
_DATA SEGMENT
HANDLE  DD ?
NN      DD ?
_DATA ENDS
_TEXT SEGMENT
START:
        CALL GetCurrentProcessId@0
; Open the current process.
        PUSH EAX
        PUSH 1
        PUSH PROCESS_VM_OW
        CALL OpenProcess@12
; Allow copying of the byte at the RETE address.
        MOV  HANDLE, EAX
        PUSH OFFSET NN

        PUSH PAGE_WRITECOPY
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        PUSH 1
        PUSH OFFSET RETE
        PUSH EAX
        CALL VirtualProtectEx@20
; Change the byte at the RETE address.
        LEA  EAX, RETE
        MOV  BYTE PTR [EAX], OC3H
; Return the initial attribute to the byte.
        PUSH OFFSET NN
        PUSH PAGE_EXECUTE
        PUSH 1
        PUSH OFFSET RETE
        PUSH HANDLE
        CALL VirtualProtectEx@20
; Flush the cache.
        PUSH 1
        PUSH OFFSET RETE
        PUSH HANDLE
        CALL FlushInstructionCache@12
RETE:
        JMP  RETE
        RETN
_TEXT ENDS
END START

Consider the parameters accepted by the VirtualProtectEx function:
§ Parameter 1 — Handle of the process whose memory has to be modified.

§ Parameter 2 — Address of the memory region whose attribute is going to be modified.

§ Parameter 3 — Size of the memory region to be modified. The attribute is changed for all
memory pages containing the bytes of the memory region to be modified.

§ Parameter 4 — Set of attributes (see Listing 1.62).

§ Parameter 5 — Address of the variable that will store the old attribute of the first of the
range of pages (if there are several pages).

In addition, the program contains a function that wasn't described earlier. This is the 
FlushInstructionCache function. It is needed to flush the buffer containing commands. If
this has not been done, the processor will probably used old commands for execution without
noticing any changes introduced into the memory. The parameters of this function are as
follows.
§ Parameter 1 — Descriptor of the process whose memory is going to be changed.

§ Parameter 2 — Address of the memory region that has been changed.

§ Parameter 3 — Size of the modified memory region.

At this point, coverage of self-modifying code has been completed. Do not forget about this
capability when starting code analysis.
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This chapter is dedicated to various software tools for investigating and patching executable
modules.

2.1. 

Overview of the Code Investigator's Toolkit

In this section, I briefly overview of the software tools most often used for code investigation. I'll
also provide several examples illustrating the use of these instruments.

Some programs covered here were created by enthusiastic individuals; therefore, their life cycle
is short. The main goal of this chapter is not only to describe these tools but also to show you
what instruments are available for studying the executable code and what can be expected from
these tools. The principles of using such programs are similar in many respects. For example,
all debuggers implement such an instrument as breakpoints. After you become acquainted with
the operating principle of one debugger, you'll feel at ease with the other representatives of this
class of programs and will be able to use them in your day-to-day activities.

2.1.1. Disassemblers

The Dumpbin.exe Program

The dumpbin.exe utility is supplied as part of the Visual Studio .NET distribution set. It is used
for investigation of loadable object modules in the COFF format and outputs the information into
the current console. Console output can always be redirected into a file. Proceeding this way,
you'll be able to study the disassembled code in detail. Despite its console nature, this is a
useful program suitable for analysis of small programs.

The command-line options of this program are as follows:
§ /ALL — Displays all available information about the module, except for the Assembly code.

§ /ARCH — Outputs the contents of the .arch section of the module header.

§ /ARCHIVEMEMBERS — Displays minimal information about elements of the object library.

§ /DEPENDENTS — Displays the names of DLLs, from which the module imports functions.

§ /DIRECTIVES — Displays the contents of the .drectve section created by the compiler
(only for object modules).

§ /DISASM — Disassembles the contents of the module sections using debug info (if
present).

§ /EXPORTS — Displays the names exported by the module.

§ /FPO — Outputs frame pointer omission (FPO) to the console.

§ /HEADER — Outputs to the console the headers of the module and all its sections. In case
of the object library, it displays the headers of all its modules.

§ /IMPORTS — Displays the names imported by this module.

§ /LINENUMBERS — Displays the numbers of the object module lines (if any).
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§ /LOADCONFIG — Displays the IMAGE_LOAD_CONFIG_DIRECTORY structure used by the
loader and defined in the winnt.h file.

§ /LINKERMEMBER[:{1|2}] — Outputs all names in the object library, which are defined as
public:
o /LINKERMEMBER:1 — Outputs in the order, in which object modules appear in the

library

o /LINKERMEMBER:2 — First displays the offset and index of object modules, followed by
the alphabetically ordered lists of names for each module

o /LINKERMEMBER — Uses a combination of options 1 and 2

§ /OUT — Specifies that the output must occur into the file instead of the console. For
example: /OUT:ED.TXT. It is also possible to redirect the output into the file using the
redirection character (>).

§ /PDATA — Outputs the contents of exception tables (for reduced instruction set computing
processors).

§ /RAWDATA — Outputs the dump of each file section. The following variants of this option
are possible: /RAWDATA:BYTE, /RAWDATA:SHORTS, /RAWDATA:LONGS, /RAWDATA:
NONE, and /RAWDATA:, number. Here, the number parameter defines the line width.

§ /RELOCATIONS — Outputs all relocations within the relocation table.

§ /SECTION:section — Defines the specific section.

§ /SUMMARY — Displays minimal information about sections.

§ /SYMBOLS — Outputs the symbolic table of the COFF file.

The following is an example of command-line use:
   dumpbin /disasm prog.exe >prog.txt

Thus, the disassembled program code will be redirected into the prog.txt file.

A specific feature of the dumpbin.exe program is that it disassembles only sections with known
names (see Section 1.5.3). If you place executable code into a section with an arbitrary name
(one that is not predefined), then the program won't output disassembled code, although it would
still produce a dump.

As an example, consider the investigation of the relocations table of a DLL (see Section 1.5.3)
using the dumpbin.exe program. For this investigation, I have chosen a simple DLL written in
Assembly language. Assume that the name of this library is prog.dll. To begin the investigation,
issue the dumpbin/disasm prog.dll command. Listing 2.1 provides the code lines that
represent the disassembled listing of the executable code of this module. Some of the code
lines are supplemented with my comments.

Listing 2.1: Disassembled listing of the executable code produced by the dumpbin.exe
utility

10001000: B8 01 00 00 00     mov   eax, 1    ; Start of entry point
procedure
10001005: C2 OC 00           ret   OCh
10001008: 55                 push  ebp      ; Start of exported function
10001009: 8B EC              mov   ebp, esp
1000100B: 83 7D 08 01        cmp   dword ptr [ebp + 8], 1
1000100F: 75 13              jne   10001024
10001011: 6A 00              push  0
10001013: 68 26 30 00 10     push  10003026h
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10001018: 68 3E 30 00 10     push  1000303Eh
1000101D: 6A 00              push  0
1000101F: E8 04 00 00 00     call  10001028 ; API call
10001024: 5D                 pop   ebp
10001025: C2 04 00           ret   4
10001028: FF 25 00 20 00 10  jmp   dword ptr ds:[10002000h]

Now output the relocation table and try to find out, which commands correct the addresses when
loading this library. To achieve this, issue the dumpbin /relocations prog.dll command.
The result of command execution is shown in Listing 2.2.

Listing 2.2: The result of execution of the dumpbin /relocations prog.dll command
BASE RELOCATIONS #4
       1000 RVA,         10 SizeOfBlock
       14  HIGHLOW              10003026
       19  HIGHLOW              1000303E
       2A  HIGHLOW              10002000

Most interesting is the leftmost column, which contains the operand offset that must be taken
into account when loading this DLL into the main memory. For example, the value 14 means
that the address value is 10001014. Thus, you come to the push 10003026h command. The
operand of this command is some address that must be corrected if this DLL is going to be
loaded by a base address other than 10000000h.

The IDA Pro Disassembler

This famous disassembler, which hasn't been outperformed yet, will be covered in detail in 
Chapter 5. When I was writing this book, I considered version 4.7; according to information
published at the product's official site, http://www.idapro.com, the differences between this
version and the newly-released version 4.9 are minor for the tasks that will be considered in this
book.

By the way, IDA Pro is not only a disassembler but also a debugger. Nevertheless, I'll consider
this product mainly as a disassembler because disassembling functions fulfill its main role.

W32Dasm

This disassembler will be covered in detail in Section 2.2. This program, like IDA Pro, also
provides debugging capabilities. However, to all appearances, the project isn't being developed
anymore. Version 10 of this product, which will be considered in this book, apparently was
created by individuals other than the initial development team. You also can find version 8.98 of
this product on the Internet

Specialized Disassemblers

What are specialized disassemblers? I consider specialized the disassemblers that are oriented
toward specific compilers. Note that I don't mean decompilers. Translation of the executable
code into the program source code — in other words, de-compilation — is in general impossible.
Specialized disassemblers recognize language structures, such as classes, events, and
methods, and disassemble them. In this respect, Delphi is mentioned most often because
analysis of programs written in Delphi is complicated when using a normal disassembler. The
only program known to me that satisfactorily tackles the task of disassembling programs written
using Delphi and C Builder is the DeDe disassembler (DeDe stands for Delphi Decompiler). The
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official site of the developer of this disassembler can be found at http://dafixer.cjb.net/.

Using DeDe, you'll gain a complete understanding of the hierarchy of the program objects within
minutes. Furthermore, you'll be capable of viewing Assembly code of any event, such as clicking
a button or an event related to form creation. Fig. 2.1 shows one of the program windows,
displaying the disassembled code of the button-clicking event.

Figure 2.1: The DeDe program window displaying the disassembled code of a button-click
event in an application

2.1.2. Debuggers

Debuggers are programs that allow step-by-step execution of programs in machine code. All
known programming environments have built-in debuggers. These built-in tools won't be
considered here. The main goal of this material is to consider independent standalone
debugging tools. Most contemporary debuggers can correctly interpret the structure of the
debug info produced by the main contemporary compilers, provided that such information is
present in the module being debugged. In this case, they are capable of debugging programs
both at the level of Assembly code and at the level of the application source code, which
considerably simplifies the program analysis. However, such situations are rarely encountered.
As a rule, only programming beginners leave the debug info in the release version.

Another specific feature typical for contemporary debuggers is support of some features
characteristic for disassemblers: for example, recognition of library and API functions and
possibilities of correcting the code and providing comments. Thus, the convergence of
debuggers and disassemblers is obvious. Earlier, I mentioned that most disassemblers can
execute the module in the debug mode. Thus, as you can see, this convergence is bidirectional.
As you'll see later, the most efficient approach to code investigation is the combined use of
debuggers and disassemblers.

Turbo Debugger

Turbo Debugger was one of the most popular debuggers during the 1990s. Unfortunately,
nowadays it is no longer supported by Borland. The version from the 1990s, which is freely

distributed over the Internet, is unstable under Windows NT/2000/XP/2003. [1] Nevertheless, it is
possible to use this debugger for educational purposes and for debugging small applications (
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Fig. 2.2).

Figure 2.2: The Turbo Debugger window with a program loaded for debugging

Debugging Tools for Windows

The Debugging Tools for Windows set of programs is supplied as part of the driver development
kit (DDK) for Microsoft's Windows XP distribution. Recently, it was possible to download this
package directly from Microsoft's Web site: http://www.microsoft.com. This toolset allows
debugging of both user-mode applications and kernel-mode drivers. It includes version 6.0 of
the windbg.exe debugger (Fig. 2.3), equipped with a GUI. A detailed description of this debugger
won't be provided here. It is only necessary to mention that this is an event-driven debugger:
The user sets breakpoints to specific API functions or attempts to access a specific memory
area of the application being debugged. Then the user starts working in the debug mode and
waits for the debugger to break program execution because of the call to the chosen function or
an attempt at accessing the specified memory region. After that, it is possible to find the code
that tried to call the function or access the memory, and analyze that fragment. This working
mechanism will be covered in detail in Chapter 4, when the SoftIce debugger is covered in more
detail.
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Figure 2.3: Graphical user interface of the windbg.exe program

The OllyDbg Debugger

OllyDbg is one of the best application-level debuggers. It will be covered in more detail in 
Section 2.3. The discussion forum concerning this debugger can be found at the following
address: http://ollydbg.win32asmcommunity.net/stuph/. The official site of the product is
http://www.ollydbg.de.

The SoftIce Debugger

The most powerful debugging tool is indisputably SoftIce, originally from NuMega Lab. In 1997,
this company was purchased by Compuware. The name SoftIce refers to how, when this
debugger is actuated, all other software running on the computer is "frozen." You'll obtain a
"snapshot" of the entire system. Chapter 4 is dedicated to this excellent product.

Information about this debugger, as well as other NuMega Lab products, can be found at the
following address: http://www.compuware.com/products/numega.htm.

2.1.3. Hexadecimal Editors

What are hex editors? Hex is an abbreviation of hexadecimal, which means that these editors
work with hexadecimal numbers, or, to be precise, with data in the hex format. Normally, they
are used for editing files; however, they also might edit disk regions. Advanced hex editors can
disassemble binary code and introduce modifications by specifying command mnemonic.

The WinHex Program

This program provides a rich set of functional capabilities. For example, it can do the following:
§ Work with various files and recognize a large number of formats. It carries out lots of

operations over files, including encrypting, comparing, splitting, and merging files.

§ Carry out low-level disk operations. This program is indispensable when recovering lost or
damaged files.

§ Edit files located directly in the memory.

The site of the developers of this program can be found at http://www.x-ways.net/. However,
this program lacks disassembling capabilities, which somewhat reduces its value for code
investigation.

The Hacker Viewer (hiew.exe) Program

This program is widely used and is popular with programmers involved in investigation and
correction of the executable code. Its name stands for Hacker's view. The main task carried out
by this program is viewing and editing loadable modules. The advantage of this program is that
editing is possible in three modes: binary, text, and Assembly code.
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This program has a console interface (Fig. 2.4). All commands are executed using functional
keys (including combinations with the <Alt> and <Ctrl> keys). For example, by pressing <F4>,
you'll be able to choose the method of representing binary files: text, Assembly, or binary mode.
By pressing <F3> (provided that you are viewing a file in the binary or Assembly mode), you'll
gain the possibility of editing the file. If you are working in the Assembly viewing mode and press
<F2> after <F3>, then you'll be able to edit the machine command in the symbolic view. I won't
concentrate your attention on the commands of this program because they are simple and self-
evident. Furthermore, the complete list of these commands can be obtained by pressing <F1>.
Now, consider a simple example illustrating the use of this program.

Figure 2.4: The hiew.exe program interface

Listing 2.3 presents a simple console program written in the Assembly language. This program
displays a text string on the screen.

Listing 2.3: A simple console application that displays a text string
.586P
.MODEL FLAT, stdcall
; Constants
STD_OUTPUT_HANDLE equ -11
INVALID_HANDLE_VALUE equ -1
; Prototypes of external procedures
EXTERN GetStdHandle@4:NEAR
EXTERN WriteConsoleA@20:NEAR
EXTERN ExitProcess@4:NEAR
; Linker directives for linking libraries
includelib f:\masm32\lib\user32.lib
includelib f:\masm32\lib\kernel32.lib
;----------------------------------------------------------------------
;Data segment
_DATA SEGMENT
       BUF   DB "Output string", 0
       LENS  DWORD ? ; Number of displayed characters
       HANDL DWORD ?
_DATA ENDS
; Code segment
_TEXT SEGMENT
START:
; Obtain the output handle.
        PUSH STD_OUTPUT_HANDLE
        CALL GetStdHandle@4
        CMP  EAX, INVALID_HANDLE_VALUE
        JE  _EX
        MOV  HANDL, EAX
; String output
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        PUSH 0
        PUSH OFFSET LENS
        PUSH 17
        PUSH OFFSET BUF

        PUSH HANDL
        CALL WriteConsoleA@20
_EX:
        PUSH 0
        CALL ExitProcess@4
_TEXT ENDS
END START

The program shown in Listing 2.3 is easy and correct. Now assume that in the course of
debugging you have accidentally changed a single command. For instance, assume that you
replaced the JE command with JNE. As a result, after translation the program ceased to
operate. Is it possible to correct the error without resorting to editing the Assembly code? The
answer is yes. To achieve this, it is necessary to disassemble the program, find an error, and
then use hiew.exe. In general, it is possible to do without the disassembler, using only hiew.exe,
because it is suitable for disassembling small programs. Nevertheless, to make this example
more illustrative, this investigation will be conducted in two stages.

Disassemble the module using the dumpbin.exe utility. The disassembled code is provided in 
Listing 2.4.

Listing 2.4: Disassembled code of the simple console program provided in Listing 2.3
Dump of file cons1.exe
File Type: EXECUTABLE IMAGE
 00401000: 6AF5             push   OF5h
 00401002: E825000000       call   00401032
 00401007: 83F8FF           cmp    eax, 0FFh
 0040100A: 751E             jne    0040102A
 0040100C: A316304000       mov    [00403016], eax
 00401011: 6A00             push   0
 00401013: 6812304000       push   403012h
 00401018: 6A11             push   11h
 0040101A: 6800304000       push   403000h

 0040101F: FF3516304000     push   dword ptr ds:[00403016h]
 00401025: E80E000000       call   00401038
 0040102A: 6A00             push   0
 0040102C: E80D000000       call   0040103E
 00401031: CC               int    3
 00401032: FF2508204000     jmp    dword ptr ds:[00402008h]
 00401038: FF2500204000     jmp    dword ptr ds:[00402000h]
 0040103E: FF2504204000     jmp    dword ptr ds:[00402004h]

The disassembled code allows you to easily detect the error. By the way, the cmp eax,
OFFFFFFFFh command must be interpreted as cmp eax, -1. Memorize the required code:
83F8FFH. Now start hiew.exe, press <F7>, and search for the required combination. Having
located it, press <F3> then <F2>. Then replace the JNE command with JE. Press <F9> to save
the change. Thus, you have corrected the program without retranslating it. It is also possible to
find the required command at the 00401007H address, because hiew.exe correctly displays the
virtual addresses of the disassembled sections.

In addition to the PE format, hiew.exe supports other executable file formats, such as MZ, NE,
LX, LE, and ELF. The author of this program is Eugene Suslikov. The program support site
address is http://www.serje.net/sen/.
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The biew.exe Editor

In its interface and system of commands, this program is close to hiew.exe. It also supports a
large number of executable file formats. The program support site is http://biew.sourceforge.
net. The latest released version is 5.6.2.

2.1.4. Other Utilities

There are lots of programs intended to help investigators understand the structure of the
executable module and analyze the executable code contained there. All such utilities carry out
specialized functions. For example, PE browsers allow you to obtain the most complete
information about the executable module. An example of such a simple browser is the program
presented in Appendix 1. More advanced browsers allow you to edit the PE header by correcting
the field contents, adding new sections, etc. Two other types of researcher tools will be covered
in the next few sections. Individual programs won't be covered in detail, first because they are
numerous and second because most of them are no longer supported by their authors.

Resource Viewers

There are lots of programs capable of viewing the resources of executable modules. Programs
capable of extracting resources and saving them in binary format or in the form of a text files
with the .rc file name extension are less numerous. Careful attention must be drawn to more
advanced programs capable of editing resources directly in the executable module.

Fig. 2.5 shows the dialog of the Resource Hacker program, allowing you to edit resources
directly in executable modules. Pay special attention to the left pane of the window, where all
resources of a given program are listed in the form of a hierarchical structure. The right pane of
the window contains the resource code in the RC format. You can directly modify the resource
code in the right window pane and then press the Compile Script button to compile the
resource code and place it into the executable module. Using the Show Dialog button, it is
possible to open the dialog editor, edit the resource using visual GUI tools, and then place it
again into the executable module.

Figure 2.5: Resource Hacker is one of the most advanced resource editors, allowing you to
edit resources directly in the executable module
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Monitors

Monitors are a special kind of program intended for tracking specific events occurring in the
system. In relation to the disassembling tasks, monitors trace specified actions carried out by
programs being investigated. There are two types of monitors that are of the most interest to
code investigators: registry monitors that track all attempts at accessing the system registry, and
file monitors that trace attempts at accessing the entire file system.

Fig. 2.6 shows the window of the Registry Monitor (regmon.exe) utility, which tracks attempts of
the application programs at accessing the system registry. Having obtained and saved such a
log (see Fig. 2.6), it is possible to easily determine, which actions were carried out by a specific
program and what that program attempted to do with the system registry. This information
provides an important clue for searching the required location in the executable code. File
monitors operate in a similar way; however, as mentioned before, they trace all attempts at
accessing the entire file system.

Figure 2.6: 
The Registry Monitor by Mark Russinovich, a program that tracks all attempts at accessing
the system registry carried out by application programs

There is another type of program working with the system registry, namely, registry scanners.
Scanners can determine, which registry entries were accessed during the specified time interval.
Often, such programs are even more convenient than monitors.

[
1

]

Here is a quotation from the warning published on the official Borland site: "The Turbo Debugger
is provided 'as is,' without warranty of any kind. Borland does not offer technical support or
accept bug reports on this version and it will not be updated or upgraded. The latest, supported
version of our debugger is available in Borland C++ Builder."

2.2. The W32Dasm Debugger and Disassembler
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The Windows Disassembler (W32Dasm) program is a symbiosis of a powerful debugger and a
disassembler. Versions 8.93 and 10 of this program, which are the most widely used nowadays,
can work not only with PE modules but also with DOS, NE, and LE modules. In this section, this
program will be covered in detail.

2.2.1. Getting Started

Program Appearance and Settings

The main window of the W32Dasm program is shown in Fig. 2.7. The main menu is
supplemented by the toolbar, elements of which are activated depending on the situation.

Figure 2.7: The main window of the W32Dasm program

As already mentioned, this program is a combination of a debugger and a disassembler. This is
reflected by the presence of the two menu items: Disassembler and Debug. Accordingly, there
are individual settings both for the disassembler and for the debugger. For the disassembler,
there are only three options related to the analysis of the cross-references in conditional jumps,
unconditional jumps, and procedure calls. By default, all three options are set. It is undesirable
to disable these options because this reduces the information content of the disassembled code.
Principally, disabling these options might be necessary if you are going to disassemble a large
program, because this would slightly speed up the process of program code analysis.

Debugger options are more numerous; however, all of them are self-evident. The W32Dasm
Debugger Options window is shown in Fig. 2.8. As you can see, all debugger options relate to
the specific features of loading processes, threads, and DLLs.
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Figure 2.8: The W32Dasm Debugger Options window

To start working with the chosen executable module, it is necessary to choose the required file
by selecting the Disassembler | Open File... menu options. After that, the program will carry out
analysis of that module and produce the disassembled text, along with detailed information

about the sections existing in the module. [2] W32Dasm correctly recognizes API functions and
supplies them with informative comments (Fig. 2.9).

Figure 2.9: A fragment of the disassembled text

Having completed the work with the module, it is possible to create a working project using the 
Disassembler | Save Disassembler... menu commands. By default, the project will be saved in
the wpjfiles subdirectory of the W32Dasm working directory. Every project includes two files: the
file with the .alf file name extension, containing the disassembled text, and another file with the .
wpj file name extension, which represents the project as such. If you want to start another
working session, you can open the saved project using the Project | Open... menu commands.

2.2.2. Working with the Disassembled Code

Navigating the Disassembled Code

When navigating the disassembled code, the current line is highlighted in a different color. In
addition, jumps and procedure calls are highlighted specially. Navigation over the disassembled
code is also simplified by the Goto menu item. The available options are as follows:
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§ Goto Code Start — This means go to the start of the listing.

§ Goto Program Entry Point — This is the most important menu item, allowing you to go to
the program entry point.

§ Goto Page — This menu item allows you to go to the page with the specified number. By
default, each page contains 50 lines of code.

§ Goto Code Location — This means jump to the specified address. If the address is
missing, then the range and proximity to other addresses are taken into account.

The Search menu command is another method of navigating the disassembled text. This
command doesn't differ from similar commands found in other programs.

If the current line contains a jump or procedure call, you can jump to the appropriate address by
clicking the respective toolbar button. You can continue navigating in this way until you detect
the required program fragment. The most advantageous point here is that it is also possible to
move in the inverse direction. All required toolbar buttons will be automatically highlighted.

Furthermore, those addresses, to which the jump is carried out, contain lists of source
addresses, from which the jumps were carried out. If you highlight the line, in which the address
is located, and double-click it with the right mouse button, you'll go to the required line of code.

Displaying Data

There are several methods of working with the data.

First, there is the HexData | Hex Display of Data... menu item, which you can use to view the
contents of data segments in hex or string representations. In addition, the program code can be
viewed in hex format. For this purpose, use HexData | Hex Display of Code... menu command
sequence.

Second, there is the Refs | String Data References menu item. This is a powerful and useful
tool. When you choose this menu item, the list of code lines, to which there are references from
the program text, will appear. This list includes everything the disassembler could detect when
analyzing the program. By selecting the required line, you can double-click it and jump to the
required program location. If this line is referenced from several locations, you can continue
double-clicking to visit all required locations. Fig. 2.10 displays the window containing references
to string data types.
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Figure 2.10: The window displaying references to strings

As you can see from Fig 2.10, it is possible to copy either selected string or all strings into the
clipboard.

Outputting Imported and Exported Functions

The list of imported functions and modules is located in the beginning of the disassembled text (
Fig. 2.11). In addition, the list of imported functions can be obtained by choosing the Functions |
Imports menu options. If you select a specific function from the list and double-click it, you'll
obtain all program locations, from which that function is called.

Figure 2.11: A fragment of the list of imported modules and functions

To obtain the list of exported functions, choose the Functions | Exports menu commands.

Displaying Resources

Resources (or, to be precise, two main resources — menu and dialog) are also described in the
beginning of the disassembled text. It is possible to work with the list of resources in special
windows that can be opened by choosing the Refs | Menu References and Refs | Dialog
references options from the menu. String resources can be viewed in the previously-mentioned
window for viewing string references (see Fig. 2.10). Unfortunately, this version of the program
doesn't recognize other types of resources.

Text Operations

Strings of the disassembled text can be copied to the clipboard or printed. To select the string,
move the cursor to its leftmost position and click the left mouse button. To select a group of
code lines, use the <Shift> key as well. To copy or print the selected fragment, click a special
toolbar button, which is highlighted when the fragment is copied to the clipboard or sent to the
printer.
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2.2.3. Debugging Programs

In this section, I briefly cover the functional possibilities of application debugging using the
W32Dasm debugger.

Loading a Program for Debugging

There are two methods of loading a module for debugging. To load a module that has already
been disassembled, choose the Debug | Load Process menu commands. The Debug | Attach
to an Active Process menu options allow you to attach and debug the process loaded into the
memory. When the debugger loads, two windows appear on the screen. The first one is the
information window (Fig. 2.12).

Figure 2.12: The information window of the debugger

The second window is the control window (Fig. 2.13).
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Figure 2.13: The control window of the debugger

The information window contains several list windows, including the contents of the central
processing unit (CPU) registers, processor flag values, breakpoints, the contents of segment
registers, base addresses, and two data displays. Later in this chapter, I will explain the
functions of the buttons located in this window.

Now, consider the control window. The Run button starts the program loaded into the debugger,
and the Pause button pauses its execution. The Terminate button stops the program's
execution and removes it from the debugger. The Step Into and Step Over buttons are
intended for step-by-step execution of the program being debugged. The first button executes all
instructions sequentially, and the second button executes instructions by stepping over the code
of procedures and repeating chains of commands. In addition, there are AutoStep Into and
AutoStep Over buttons for automatic step-by-step execution of the debugged program. With an
API function, even the use of the Step Into button will not result in step-by-step execution of the
function code because this code is not available to user programs. A convenient feature is that
in the course of step-by-step execution, the cursor moves synchronously not only in the
debugger but also in the disassembler window.

Note that if you are attaching to the process loaded into the memory, then this process will be
unloaded from the memory when exiting the debugger, which might result in incorrect operation
of the operating system.

Working with Dynamic Link Libraries

To debug a DLL, you can proceed as follows: Load the program that accesses the required DLL
into the debugger. Then, view the list of used DLLs. To work with a particular DLL, you might be
required to start the program and execute one of its functions. After you double-click the
required library, you'll see its disassembled code in the disassembler window and will be able to
work with the library code.

Setting Breakpoints

You can set breakpoints in the disassembled listing. To achieve this, go to the required line of
code and press <F2> or press <Ctrl> and click the left mouse button. The breakpoint will
immediately appear in the information window and in the control window; the marked command
will have the BP* prefix. The existing breakpoint can be deleted in the same way it was set. It is
also possible to deactivate the existing breakpoint. To achieve this, go to the information window
and open the list of existing breakpoints. Choose the required address and right-click it with the
mouse. The asterisk near the breakpoint will disappear, and the line of code in the disassembler
window will change from yellow to green.

To quickly jump to the required breakpoint, choose it from the list in the information window and
double-click it with the mouse. Finally, it is possible to set breakpoints to specific events, such as
loading and unloading a DLL or creating and deleting a thread. These goals are achieved by
setting an appropriate flag in the information window.

Modifying Code, Data, and Registers

The debugger allows you to modify the code that you loaded previously. To do so, click the 
Patch Code button in the control window (Fig. 2.14). It is important to note that only the code
loaded into the debugger is modified, not the disassembled text. Having found the required
location in the code being debugged, you can modify this code and immediately test the result of
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modification by running the program. If your modification was correct, you can proceed with
modifying the module.

Figure 2.14: The window for modifying the code being debugged

To modify the registers and memory cells of an executable process, there is a special button —
the Modify Data button in the information window. The window opened with this button is shown
in Fig. 2.15. At first glance, it might seem that this window is cluttered with elements; however,
after you carefully study this window, you'll discover that there isn't anything redundant there.
The top part of the window displays the current values of the main processor flags, which you
can change. To modify the content of a register or memory cell, first set the modifier value
using Enter Value. Then choose the required register and click the button next to it.
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Figure 2.15: The window for modifying the contents of registers and memory cells

To restore the previous value, click the R button to the right of the register field. To change the
content of the memory cell, first write the cell address to the Mem Lock field and then use the
Mem button above it. Other operations that can be carried out in this window are self-evident.

Outputting Information about an Application Programming Interface

The debugger allows you to output additional information about executed API functions. To use
this functionality, go to the control window and set the following flags: Enable Documented API
Detail and Stop Auto On API. Then, press <F5> to start program execution. Every time the
program encounters an API function, it will stop and the screen will display information about the
specific function.

Searching for the Required Locations in a Program

Quite often, it is necessary to find a location within the disassembled code that corresponds to a
specific location within the executable program. The most efficient way of achieving this goal is
as follows: Load the required module into the debugger. Start it for execution, step to the
required position, and click the 

Terminate

 button. As a result, the highlighted string in the disassembled code will be at the required
position. Bear in mind that some programs introduce modifications that remain in force. For
instance, the hotkeys can be classified as such modifications.
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The use of W32Dasm will be covered in more detail later in this book.

[
2

]

Although W32Dasm is capable of working with modules of different types, only PE modules will
be covered here.

2.3. The OllyDbg Debugger

This is an excellent debugger in its class. For example, it is capable of determining procedure
parameters and loops, and of detecting constants, arrays, and strings. Such features have never
been typical of the instruments in its class. This debugger supports all processors of the 80x86
family and correctly interprets most numeric formats. It is possible to load an executable module
into this debugger, as well as to connect to the running process. In general, there are rich
possibilities, some of which will be covered here.

2.3.1. Getting Started with OllyDbg

Debugger Windows

The main window of OllyDbg is shown in Fig. 2.16. In addition to the traditional main menu and
the toolbar, the main window contains four informational panes. These are the disassembler
window (top left), data window (bottom left), registers window (top right), and stack window
(bottom right). In addition, other windows are available for use. The list of all available windows
is presented in the View menu. Some of these windows will be described in this section; other
ones you'll have to study on your own if you like this debugger and are going to use it regularly. I
strongly recommend that you do so.
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Figure 2.16: The OllyDbg debugger with a loaded program

Now, consider the windows shown in Fig. 2.16. These windows are the most important ones,
without which it is impossible to debug applications.

The Disassembler Window

The disassembler window contains four columns:
§ Address — The command address column. This column contains the virtual address of the

command, which is assigned when the command is loaded into the memory. By double-
clicking this column, you'll convert all addresses into offsets counted from the current
address ($, $-2, $+4, etc.).

§ Hex dump — The command code column. In this case, you'll see the code as such and the
operand value. In addition, the column provides various icons that allow you to understand
the program logic: For instance, they specify commands, to which there are jumps (>) and

commands that carry out the jumps (ˆ for up and   for down). The same column marks the
loops that the debugger has successfully recognized. When you double-click this column,
the address shown in the first column is highlighted in red. This means that you have set a
breakpoint to that command (address).

§ Disassembly — This column contains the Assembly mnemonics for the command. If you
double-click this command, the window for editing the Assembly command will appear.
Here you can correct the command. The corrected command will be further used in the
debugging process. Furthermore, the corrected program text can be written into the
executable module. That's a great possibility, isn't it?

§ Comment — This column contains additional information about the command. Here the
program specifies the names of API functions, library functions, etc. If you double-click this
column, you'll be able to add your comment to each line of the Assembly code.

The Data Window

By default, this window contains three columns: Address, Hex dump, and the column for text
interpretation of the contents of the cell (ASCII, Unicode, etc.). Interpretation of the second and
third columns can be changed. For instance, you can choose to display and interpret cell
contents as Unicode.

The Registers Window

The registers window can contain three sets of registers: general-purpose registers and FPU
registers, general-purpose registers and MMX registers, and general-purpose registers and
3DNow registers. By double-clicking this window, you'll gain the possibility of editing the contents
of the appropriate register.

The Stack Window

The stack window displays the stack content. The first column (Address) contains the cell
address within the stack, the second column (Value) displays the cell content, and the third
column (Comment) contains the possible comment to the cell value (see Fig. 2.16).
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More about the Windows

When starting to work with the debugger, bear in mind the following issues:
§ By double-clicking the right mouse button within any window, you'll call the context menu.

This menu is different for different windows. I strongly recommend that you carefully study
these menus. Some information on this topic will be provided further on in this chapter.

§ Window contents are interdependent. For instance, consider the registers. By clicking one
of the general-purpose registers with the right mouse button, it is always possible to
interpret its contents as an address in the data area (follow in dump) or as an address in
the stack area (follow in stack).

Debug Execution

Debugging is analyzing a program by executing it in different modes. This section covers
different program execution modes in OllyDbg.

Assume that the executable code is loaded into the debugger. The disassembler window
displays the Assembly code. The main modes of program execution available to you are as
follows:
§ Step-by-step execution that bypasses procedures (step over). When you press <F8>, the

current Assembly command is executed. By executing commands sequentially, you can
watch three other windows to view how the contents of registers, the data section, and the
stack section are changed. A specific feature of this mode is that if the next command
happens to be the procedure call (CALL), then all commands that make up the procedure
will be automatically executed as a single instruction.

§ Step-by-step execution that steps into the procedure (step into). To execute the program in
this mode, press <F7>. The main difference from the previous mode is that when CALL
commands are encountered, all instructions that make up the procedure will be executed
sequentially.

Both of the preceding methods (step over and step into) can be automated using animation.
This can be achieved by pressing the <Ctrl>+<F8> and the <Ctrl>+<F7> keyboard combinations
for each mode, respectively. After you press these keyboard shortcuts, the step over and step
into commands will be executed in the automatic mode with a small delay, one after another.
After executing each instruction, the debugger windows will be refreshed so that you'll be able to
trace the changes. The execution can be paused at any time by pressing the <Esc> key. Also,
execution stops automatically when breakpoints are encountered (see Section 2.3.2) and when
the program being debugged generates an exception.

Another method of the step-by-step program execution is the trace mode. Trace mode is similar
to animation, but this time the debugger windows are not refreshed at each step. Two methods
of tracing corresponding to step over and step into are executed using the <Ctrl>+<F12> and
<Ctrl>+<F11> shortcuts. Tracing can be stopped with the same methods used for stopping
animation. After execution of each command, information related to its execution is loaded into
the special tracing buffer, which you can view using the View | Run trace menu commands. If
desired, the contents of the trace buffer can be saved into a text file. Also, it is possible to define
the conditions, under which the tracing would stop (set trace condition) — <Ctrl>+<T> (the
breakpoint). The following trace conditions can be specified:
§ The range of addresses, in which the break would take place

§ Conditional expressions, such as EAX>100000, for which tracing would be stopped
provided that the condition is true

§ A number of some command or a command set, for which tracing would stop

It is possible to instruct the debugger to execute the code until the return from the procedure is
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encountered (execute till return). In other words, the entire code of the current procedure will
be executed, and the procedure would return control. To achieve this goal, the <Ctrl>+<F9>
shortcut is used.

Finally, if in the course of tracing you have found yourself somewhere deep within the system
code, it is possible to exit it by using the execute till user code command — the <Alt>+<F9>
shortcut.

2.3.2. Breakpoints

Breakpoints are a powerful debugging tool. They allow you to understand program execution
logic in the finest detail, providing snapshots of the registers, stack, and data at specified
moments.

Ordinary Breakpoints

Ordinary breakpoints are set at a chosen command. To achieve this, use the <F2> key in the
disassembler window or double-click the second column of this window (Hex dump). As a
result, the address of the command (Address) in the first column will be highlighted in red. This
type of breakpoint is helpful for finding the correlation between program execution logic
(displaying specific windows, messages, etc.) and specific sections of program code. In addition,
it is possible to check the status of registers, a variable, or the stack in any breakpoint of this
type. If you press <F2> or double-click a breakpoint a second time, the breakpoint will be
removed. Bear in mind that the break occurs before execution of the command, to which the
breakpoint has been set.

Conditional Breakpoints

Conditional breakpoints are set by pressing the <Shift>+<F2> combination. In this case, the
window with the combo box, into which the breakpoint can be entered will appear. The combo
box field allows you to enter the condition, under which command execution must be interrupted
provided that this condition is true. The debugger supports complex expressions containing
various conditions. Here are several examples:
§ EAX == 1 — This condition instructs the debugger to interrupt execution at the marked

command (before its execution). Program execution will be interrupted provided that the
content of the EAX register is one.

§ EAX = 0 and ECX > 10 — These conditions instruct the debugger to interrupt program
execution at the marked command provided that the content of the EAX register is zero and
the content of the ECX register is greater than ten.

§ [STRING 427010] == "Error" — Program execution will be interrupted provided that
the "Error" string is found at the 427010H address. Also, it is possible to write the
following condition: EAX == "Error". In this case, the content of EAX will always be
interpreted as a pointer to string.

§ [427070] = 1231 — This condition defines the breakpoint in case the content of the 
427070H memory cell is equal to 1231H.

§ [[427070]] = 1231 — Indirect addressing is used. It is assumed that the cell with the 
427070h address, in turn, contains the address of another cell, the content of which will be
compared with the 1231H number.
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Conditional Breakpoints with a Log

Conditional logging breakpoints are an extension for conditional breakpoints. To set a
conditional logging breakpoint, press the <Shift>+<F4> shortcut. Any time such a breakpoint is
actuated, this event is recorded in the log. To view the log contents, press the <Alt>+<L>
shortcut or select the View | Log commands from the menu. It is possible to specify the record,
as well as the expression whose value will appear in the log. Finally, it is possible to set the
counter, which will specify how many times the record must be written into the log and whether it
is necessary to interrupt program execution any time the breakpoint conditions are satisfied.

Breakpoint to Windows Messages

Because messages arrive to the window function (or, to be precise, to the window class
function), to set a breakpoint to some windows message it is necessary to ensure that the
application window is opened — in other words, that the windowing application has been started
for execution. For simplicity, I have loaded a simple application with a single window into the
debugger. Press the <Ctrl>+<F8> shortcut to start this application. The application window
activates after a short delay (about 1 second). Pay attention to the part of the program that
executes continuously. This is the message-processing loop. To reach the window function, it is
necessary to call the list of windows created by the application being investigated. This can be
achieved using the View | Windows menu. The result of this command is shown in Fig. 2.17.

Figure 2.17: The window displaying the list of windows created by the application being
investigated

The window displayed in Fig. 2.17 allows the investigator to discover the window descriptor, its
name, its identifier, and, most importantly, the address of the window procedure (ClsProc). The
information about the address of the window procedure allows the investigator to find the
window function and set there either a normal or a conditional breakpoint. However, when
working with window functions, it is best to set breakpoints at window messages.

Thus, click the window shown in Fig. 2.17 and choose Message breakpoint on ClassProc
from the context menu. Another window will appear, in which it is possible to set the following
breakpoint parameters:
§ Choose the message from the drop-down list. Note the following:
o Instead of the message as such, it is possible to choose an event, which might be

indicated by several messages, such as creation or deletion of a window or a keyboard
event.

o It is possible to choose user-defined messages.

§ List the windows that will be tracked to determine whether this message arrives from one of
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them. Include the given window, all windows with a given title, or all windows.

§ Define a counter to determine how many times the breakpoint is actuated.

§ Specify whether the program execution should be interrupted when the breakpoint is
actuated.

§ Define whether the record should be written into the log when the breakpoint is actuated.

On your own, practice setting the preceding breakpoints. Also, trace the contents of the stack
window, a useful and instructive occupation.

Breakpoints to the Import Functions

To obtain the list of all names imported into the module being debugged, press the <Ctrl>+<N>
shortcut. Further, click the window with right mouse button, and you'll be able to carry out the
following actions:
§ Set a breakpoint at the call of the imported function (Toggle breakpoint on import)

§ Set a conditional breakpoint at the call to the imported function (Conditional breakpoint
on import)

§ Set a conditional breakpoint with logging at the call to the imported function (Conditional
log breakpoint on import)

§ Set breakpoints at all links to the specified name (Set breakpoint on every reference)

§ Set breakpoints with logging at all references to the given name (Set log breakpoint on
every reference)

§ Remove all breakpoints (Remove all breakpoints)

Breakpoints at the Memory Area

The OllyDbg debugger allows you to set a single breakpoint at the memory area. To achieve
this, choose the disassembler window or the data window. Then use the context menu and
choose the Breakpoint | Memory on access commands or Breakpoint | Memory on write
commands. After that, the newly-specified breakpoint will be ready to use. The first type of a
breakpoint is possible both for the code and for the data, and the second type is possible only
for the code. Breakpoints can be deleted by choosing the Breakpoint | Remove memory
breakpoint commands from the context menu.

Breakpoints in the Memory Window

The memory window displays the memory blocks reserved for the program being debugged or
by the program being debugged on its own. In this window, it is also possible to set one
breakpoint. To achieve this, use the right-click menu and choose the Set memory breakpoint
on access command or the Set memory breakpoint on write command. To remove the
breakpoint, right-click the memory window and choose the Remove memory breakpoint
command.

Hardware Breakpoints

Normal breakpoints use the standard INT 3 interrupt vector. The use of such breakpoints can
considerably slow down the execution of the program being debugged. However, Intel Pentium
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microprocessors also provide four debug registers — DR0-DR3 (see Section 1.2.1). These
registers can contain four breakpoints, virtual addresses of the current program. When the
address used by a command turns out to equal the address contained in one of these registers,
the processor generates an exception that is trapped by the debugger. Hardware breakpoints do
not slow down the execution of the program being debugged. However, there are only four of
them. To set a hardware breakpoint, go to the disassembler window and choose the Breakpoint
| Hardware on execution commands from the context menu. As an alternative, use the
Breakpoint | Hardware on access or Breakpoint | Hardware on write commands from the
main menu. To delete hardware breakpoints, use the Breakpoint | Remove hardware
breakpoints commands from the context menu.

2.3.3. 

Other Capabilities

The Watch expressions Window

OllyDbg provides a special window for watching expressions. Recall that you encountered
expressions when I described conditional breakpoints. It is possible to use complex expressions
containing both memory cells and registers, and these expressions might be as complicated as
desired. To open the Watch expressions window, use the View | Watches menu commands.
When the Watch expressions window opens, click the right mouse button and choose the Add
Watches command. After that, you can define an expression that the debugger will watch — in
other words, display its value. Fig. 2.18 shows the Watch expressions window containing a list
of four expressions, the values of which are watched and displayed when executing any
processor command.

Figure 2.18: The Watch expressions window

Searching for Information

OllyDbg allows you to search for any kind of information. Consider some of its functional
capabilities.

By pressing the <Ctrl>+<B> shortcut, the search window appears, in which you can define the
string that will be sought in the module loaded into the debugger. The search string can be
entered in the form of the sequence of characters, sequence of bytes, or sequence of Unicode
characters.

For searching, use the <Ctrl>+<F> shortcut (for a single command) or the <Ctrl>+<S>
combination (for a sequence of commands).

The <Ctrl>+<L> combination repeats the last search operation.
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Correcting an Executable Module

OllyDbg provides excellent capabilities of correcting executable modules. You can save the
module being debugged, along with corrections, and even create a new executable module.
This can be achieved easily. Just click the right mouse button in the disassembler window and
choose the 

Copy to execution | Selection

 commands from the context menu. As a result, the entire disassembled module will be copied
into the new window. After that, click the right mouse button in that window and choose the 

Save file

 command. You'll have the possibility to choose the name, under which to save the new
executable module. This is convenient: First, you can create any number of versions of the
corrected file. Second, the check for the correctness of the modified code is carried out without
exiting the debugger.

There are still lots of important and interesting issues related to OllyDbg. Alas, everything has its
natural end, and the limited volume of this book requires me to proceed with considering several
other topics that are no less interesting and important.

2.4. Examples of Executable Files Correction

The examples provided here are not too difficult. They are given for the following purposes:
§ To demonstrate the possibilities of the previously described tools

§ To demonstrate some standard techniques for investigation and correction of executable
code

§ To stop tempting you with promises and jump into code disassembling

All techniques of correcting executable code are provided here for educational purposes only.

2.4.1. 

Example 1: Eliminating an Annoying Message

Recently I purchased a CD containing an encyclopedia in the field of history. After installing it on
my computer and making sure that everything worked, I forgot about this program. A week later,
I discovered that when this program was started for execution, an annoying message box
appeared on the screen (Fig. 2.19).
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Figure 2.19: The annoying error message that appeared when the encyclopedia was
started

If the Yes button is clicked, the program would continue to operate normally. After several
minutes of consideration, I decided that this happened because a couple of days ago I moved all
swap files to the same partition. Because I didn't intend to recover the initial state and the
program continued to operate normally, I decided to correct its executable code to remove the
annoying message.

Thus, I proceeded as follows. To all appearances, this message is displayed in a standard 
MessageBox window. First, the presence of an icon on the left indicates such a window (in this
case, it is an exclamation mark). Second, such windows usually contain two buttons — Yes and
No. How do you reach this call?

Searching with OllyDbg

There are several ways of accessing the MessageBox window using the debugger. The easiest
way of doing this is to set a breakpoint to the imported MessageBox name (see Section 2.3.2),
and then start the program (<Ctrl>+<F8>) and wait for the interrupt. However, this time the
situation is much simpler. The message appears at the initial stages of the program start-up,
and this location can be easily detected by step-by-step program execution (press <F8>).

Fig. 2.20 shows the debugger window displaying the required program fragment. Note that
slightly above the MessageBox function there is the GlobalMemoryStatus API call.
Obviously, the execution of this function results in the error message. In this case, you do not
even need to investigate how this function operates. The important issue is that the call to this
function is directly followed by the code lines provided in Listing 2.5.

Figure 2.20: The OllyDbg window displaying the fragment of the call to MessageBox

Listing 2.5: Code lines directly preceding the call displaying the warning message
00494039       813D 287A4900        CMP DWORD PTR DS:[497A28], 989680
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00494043       7D 1F                JGE SHORT RHistory.00494064

It is easy to replace the JGE SHORT 00494064 command with the JMP SHORT 00494064
command. Thus, you'll bypass the call to the MessageBox window. In this chapter I have
described hiew.exe, an excellent program that can be used for correcting executable modules.
However, it is also possible to correct executable modules using OllyDbg. It is a wonderful
feeling to know that any task can have several solutions and that you can use any of them. I
hope that you experience this feeling many times!

Searching with W32Dasm

Now, try to locate the required fragment using W32Dasm. It is possible to use the list of
imported functions and, having found MessageBox by double-clicking the line of code
containing this function name, to find all locations where this function is called. It is also possible
to use the debugger built into W32Dasm. This method will be illustrated here.

Use the Debug | Load Process menu commands. The window will appear where it is
necessary to specify the program loading parameters. Click the Load button. The debugger
window will appear (Fig. 2.21). Click the AutoStep Over button and wait for the required
message to appear. When the message appears, click the Terminate button. You'll find yourself
in the required location of the program (disassembled code). The further steps are exactly as
described earlier — start hiew.exe and introduce the required corrections.

Figure 2.21: The W32Dasm window

Searching with IDA Pro

The procedure of searching for the required program fragment in IDA Pro also is traditional.
First, it is necessary to find the MessageBox name in the list of functions. Then double-click the
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name to go to the code fragment shown in Fig. 2.22. This is a "stub" called from the other
locations within the program. Pay special attention to the ellipsis. If you right-click it and select
the Jump to cross reference item in the context menu, the window will open, which would
display all program addresses, from which the MessageBox function is called. Now you won't
have any difficulties checking all of these function calls and finding the required location within
the program.

Figure 2.22: Fragment of the disassembled program code produced by IDA Pro

Note When correcting the executable
code (usually, this is done to
remove the protection),
conditional jump commands
are often encountered.
Because such commands are
often preceded by comparison
commands (CMP), there is a
common opinion that to crack a
program the cracker needs to
know only one Assembly
command. This is not quite
true. In difficult situations, the
code investigator must literally
"grind" the Assembly code.

2.4.2. Example 2: Removing Limitations on Program Use

The task of removing limitations of trial versions is not too difficult. At the same time, it is one of
the most common. This problem can be solved using W32Dasm. For code correction, the hiew.
exe program is traditionally used.

The program considered in this section, Allscreen, is a shareware program allowing you to
produce snapshots of individual windows or fragments of the screen. I downloaded its
shareware release quite a long time ago. This program is written in Delphi. However, as will be
shown in this section, it is possible to solve the problem without even knowing, in which
programming language it was written. Nevertheless, it should be pointed out that the DeDe
disassembler (see Section 2.1.1), which I praised earlier, failed to determine the program
structure. This is probably because an old version of compiler was used for program translation.

Thus, when you start the allscreen.exe program, the dialog shown in Fig. 2.23 appears on the
screen. When you carefully study cracking and related issues, you'll discover that usually the
cracker must look for the program fragment corresponding to some visual effect, such as
opening or closing a window or text output.



147Chapter 2: The Code Investigator's Toolkit

 

Figure 2.23: The window that appears at start-up of the Allscreen program

When the user clicks the Accept button, there is a delay of about 6 seconds (Fig. 2.24), after
which the program operates normally.

Figure 2.24: The delay window displayed by the Allscreen program

After 15 runs, the program displays the window shown in Fig 2.25, and terminates.
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Figure 2.25: The message informing the user about expiration of the trial period

To remove the protection, the cracker must solve the following two problems:
§ Eliminate the annoying delay

§ Ensure that the program continues to operate correctly after the trial period expires

The Delay Procedure

The window shown in Fig. 2.25 is a blunder of the program's authors. The window, along with its
contents, can be hidden within the resources. However, when a new record appears in that
window, it is nothing but the program code. Thus, start W32Dasm and load the allscreen.exe
program there. Open the string data reference (SDR) window, find the Shareware Delay
string there, and double-click it. You'll find yourself in the required program location. This
program fragment is shown in Listing 2.6.

Listing 2.6: Fragment of the Allscreen code required for removing the delay procedure
* Referenced by a (U)nconditional or (C)onditional Jump at Address:
|:004420BC(C)
|
:00442123 33D2              xor edx, edx
:00442125 8B83B0010000      mov eax, dword ptr [ebx + 000001B0]
:0044212B E8541DFDFF        call 00413E84
:00442130 33D2              xor edx, edx
:00442132 8B83B4010000      mov eax, dword ptr [ebx + 000001B4]

:00442138 E8471DFDFF        call 00413E84
:0044213D 33D2              xor edx, edx
:0044213F 8B83B8010000      mov eax, dword ptr [ebx + 000001B8]
:00442145 E83A1DFDFF        call 00413E84
:0044214A BA50000000        mov edx, 00000050
:0044214F 8B83BC010000      mov eax, dword ptr [ebx + 000001BC]
:00442155 E8D618FDFF        call 00413A30
* Possible StringData Ref from Code Obj ->"Shareware Delay"
                            |
:0044215A BAA8214400        mov edx, 004421A8
:0044215F 8B83BC010000      mov eax, dword ptr [ebx + 000001BC]
:00442165 E8EE1DFDFF        call 00413F58
:0044216A 33D2              xor edx, edx
:0044216C 8B83C0010000      mov eax, dword ptr [ebx + 000001C0]
:00442172 E80D1DFDFF        call 00413E84
:00442177 33D2              xor edx, edx
:00442179 8B83C4010000      mov eax, dword ptr [ebx + 000001C4]
:0044217F E8001DFDFF        call 00413E84
:00442184 33D2              xor edx, edx
:00442186 8B83C8010000      mov eax, dword ptr [ebx + 000001C8]
:0044218C E8F31CFDFF        call 00413E84
:00442191 8B83CC010000      mov eax, dword ptr [ebx + 000001CC]
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:00442197 E8E8D4FFFF        call 0043F684
:0044219C 5B                pop ebx
:0044219D C3                ret

I have provided a larger code fragment in Listing 2.6, having included several preceding lines of
code. In essence, this listing shows the entire delay procedure. There is no practical sense in
trying to understand the meaning of each individual CALL command, although it can be easily
discovered (by conducting a small experiment) that, for example, CALL 00413E84 removes a
string from the screen.

To eliminate the delay, it is enough to "exclude" this fragment from the program. The easiest
way of achieving this is to insert POP EBX/RET commands into the start of this code fragment
(the 00442123 address) using some hex editor (hiew.exe, for example). After starting the
corrected program for execution, the delay is eliminated (see for yourself).

Removing the Limitation on the Number of Program Runs

Now consider the second problem — removing the limitation on program runs. After you
carefully consider the window (see Fig. 2.25), it will be clear that this window is formed by the
program. This means that you can try to find the text displayed on the screen within the
program. As in the previous case, the string can be found in the SDR window. Double-click this
line of code to find yourself in the required program location (Listing 2.7).

Listing 2.7: Fragment of Allscreen responsible for limiting the number of runs
:00443326 8BC0               mov eax, eax
:00443328 53                 push ebx
:00443329 8BD8               mov ebx, eax
:0044332B 803DEC56440001     cmp byte ptr [004456EC], 01
:00443332 7546               jne 0044337A
:00443334 A124564400         mov eax, dword ptr [00445624]
:00443339 E84E2CFEFF         call 00425F8C
:0044333E A1D8564400         mov eax, dword ptr [004456D8]
:00443343 E87816FEFF         call 004249C0
:00443348 FF05F0564400       inc dword ptr [004456F0]
:0044334E C605EC56440000     mov byte ptr [004456EC], 00
:00443355 833DF05644000F     cmp dword ptr [004456F0], 0000000F
:0044335C 7E1C               jle 0044337A
:0044335E 6A00               push 00000000
:00443360 668B0DB0334400     mov cx, word ptr [004433B0]
:00443367 B202               mov dl, 02
* Possible StringData Ref from Code Obj ->"This Software Has Been Used Over"
                             |
:00443369 B8BC334400         mov eax, 004433BC
:0044336E E8BDAEFEFF         call 0042E230
:00443373 8BC3               mov eax, ebx

:00443375 E84214FEFF         call 004247BC
* Referenced by a (U)nconditional or (C)onditional Jump at Addresses:
:00443332(C), :0044335C(C)
                            |
:0044337A 33D2              xor edx, edx
:0044337C 8B83F4010000      mov eax, dword ptr [ebx + 000001F4]
:00443382 E8A52DFFFF        call 0043612C
:00443387 33D2              xor edx, edx
:00443389 8B83F8010000      mov eax, dword ptr [ebx + 000001F8]
:0044338F E8982DFFFF        call 0043612C
:00443394 33D2              xor edx, edx
:00443396 8B83FC010000      mov eax, dword ptr [ebx + 000001FC]
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:0044339C E88B2DFFFF        call 0043612C
:004433A1 33D2              xor edx, edx
:004433A3 8B8314020000      mov eax, dword ptr [ebx + 00000214]
:004433A9 E87E2DFFFF        call 0043612C
:004433AE 5B                pop ebx
:004433AF C3                ret

As in the previous case, Listing 2.7 presents the entire code fragment required to achieve the
cracking goal. View several preceding lines of code, and you'll easily discover "suspicious"
commands (Listing 2.8).

Listing 2.8: Commands you must correct to remove the limitation on program runs
cmp dword ptr [004456F0], 0000000F
jle 0044337A

Recall that the program ceases to operate after 15 runs (0FH in hex representation). The easiest
way of removing the limitation is to overwrite the code fragment spanning the addresses from 
0044335EH to 00443375H with NOP (90H) commands. Use hiew.exe for this purpose. As a
result, the program would operate without any limitations on the number of runs.

2.4.3. 

Example 3: Cracking an Evaluation Copy

General Considerations

The next example considers how to make a fully featured program out of the 30-day evaluation
copy of the Intel C++ 4.5 compiler. I'm not going to add functional capabilities missing from the
evaluation version of the compiler. This example only demonstrates the principal possibility of
removing the time limitation for the use of the evaluation copy.

After you install the compiler on your computer, it will be located in the ...\compiler45\bin
directory. The program name is icl.exe. Start this program, and it will output the following strings
to the console:
   Intel(R) C/C++ Compiler Version 4.5 00015
   Copyright (C) 1985-2000 Intel Corporation. All rights reserved.
   Evaluation copy.
   Icl: NOTE: This is day 1 of 30 day evaluation period.
   Icl: Command line error: no files specified.

The last output line is clear because the C program name wasn't specified in the command line.
If you specify the name of some C program, the compiler would be functional. However, after a
month it would cease to operate and, instead of compiling your programs, would display the
following string: The evaluation period has expired.

Now, start IDA Pro and try to find the strings that appear in the compiler's console output. Listing
2.9 shows what I located as a result of searching the program code.

Listing 2.9: Strings in the Intel C compiler console output, which were found in IDA Pro
data:00419C20 aCopyrightC1985 db 'Copyright (C) 1985-2000 Intel
Corporation.  All rights reser'
.data:00419C20                 ; DATA XREF: sub_404574 + 31 o
.data:00419C20                 ; sub_40C974 + 21  o
.data:00419C20                 db 'ved.', 0Ah
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.data:00419C20                 db 'Evaluation copy', 0

Note that the entire listing represents a single string. This is an important issue, especially if you
assume that the Evaluation copy message isn't related to any check for the program's
operability. Any attempt at locating a string like This is day, however, didn't succeed. Even if
I could locate such a string, I'd most likely discover a call to some library function, such as puts
or printf. Then I'd have to go one level higher to discover the strings where the limitations for
the program use are checked. So, I decided to use the debugger for further analysis of the
program.

Searching in the Debugger

Before starting the debugger, I found the address of the main function using IDA Pro. This
address turned out to be 00402000H, so, after starting OllyDbg, I immediately set the
breakpoint to that address and started program analysis from that point.

To try this, locate the main function and start step-by-step program execution (<F8>), checking
the contents of the console window after each procedure call. You'll soon locate the fragment in 
Listing 2.10.

Listing 2.10: Tracing the console output of the evaluation copy of the Intel C compiler
0040204A        E8 71040000         CALL  icl.004024C0
0040204F        0FB6C0              MOVZX EAX, AL
00402052        85C0                TEST  EAX, EAX
00402054        0F84 E5000000       JE    icl.0040213F
0040205A        E8 D1780000         CALL  icl.00409930
0040205F        0FB6C0              MOVZX EAX, AL
00402062        85CO                TEST  EAX, EAX
00402064        OF84 C4000000       JE    icl.0040212E

As it turns out, the procedure with the 0040204AH address outputs the Evaluation copy
string, and the procedure located at the 0040205AH address outputs the string informing the
user about the 30-day evaluation period. Based on the assumption made at the end of the 
previous section, consider the second procedure (0040205AH), skipping the first one. An
attempt at replacing the JE command with JNE doesn't produce the desired result. When
running the program in step over mode, you'll find that this procedure returns one. Thus, I've
made a simple assumption, namely, that only the contents of the EAX register are of any interest
in this procedure. Thus, replace CALL icl.00409930 with MOV EAX, 1 (the number of bytes
in both commands is equal) and save the executable module. Test it for usability. It works, and it
continues to work after the 30-day trial period expires.

2.4.4. 

Example 4: Removing Protection

In this example, I demonstrate how crackers often achieve their goals by taking a lengthy and
tedious route instead of using the easy and fast approach. This time, consider the GetPixel
program intended for taking color pixels from the screen. I obtained this module with the crack
(crack.exe). Because I required a demonstration example, I decided to remove the protection
without any help (after all, this is an interesting and instructive occupation). Note that although
this program was written in Visual Basic I didn't use this knowledge for code investigation. For all
I know, Visual Basic decompilers never produce useful results.
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Step 1: Attempt To Register the Program

Fig. 2.26 shows the registration window of the GetPixel program. According to the intention of
the program's author, this window must be used for user registration. The Name and
Registration Code fields are intended for supplying the user name and registration code. When
the user clicks the OK button, the program checks the supplied name and password. When I
supplied an arbitrary name and an arbitrary password, the program displayed an error message.
Well, I didn't expect it to behave differently.

Figure 2.26: The GetPixel registration window

After this first failed attempt, I tried to make the program register my name and the password.
Using logic, I started this small investigation by searching for strings containing Registration.

Open the famous IDA Pro disassembler and load the program there. In the strings window, I
located three strings containing this word: Register Successfully!, Registration, and
Register Fail!. It seems that I chose a correct approach. Start with the first phrase. Double-
click this string, and you'll find yourself in the required location of the disassembler window (
Listing 2.11).

Listing 2.11: The fragment of disassembled code containing the Register Successfully!
string
.text:00409720          aRegisterSucces:  ; DATA XREF: .text:00417ECE o
.text:00409720          unicode 0, <Register Successfully!>, 0

Follow the cross-reference, and you'll find the fragment in Listing 2.12.

Listing 2.12: The code fragment, to which the cross-reference (Listing 2.11) points
.text:00417EC5     lea      edx, [ebp - 134h]
.text:00417ECB     lea      ecx, [ebp - 34h]
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.text:00417ECE     mov      dword ptr [ebp - 12Ch], offset aRegisterSucces
; "Register Successfully!"
.text:00417ED8     mov      dword ptr [ebp - 134h], 8
.text:00417EE2     call     ds:__vbaVarDup

It is difficult to determine what the __vbaVarDup function represents; however, it appears much
like a message about successful registration. Now, study the program code located near these
strings in more detail. Slightly above the code provided in Listing 2.12, I discovered the fragment
shown in Listing 2.13.

Listing 2.13: The "suspicious" code located slightly above the fragment shown in Listing
2.12
.text:00417E76     push     ecx
.text:00417E77     push     edx
.text:00417E78     push     4
.text:00417E7A     call     edi ; __vbaFreeVarList
.text:00417E7C     add      esp, 20h
.text:00417E7F     cmp      [ebp - 1A8h], bx
.text:00417E86     jz       loc_4181A4

This looks suspicious. Find out what is located at the loc_4181A4 address. Jump to that
address, and you'll discover the fragment in Listing 2.14.

Listing 2.14: Code fragment located at the loc_4181A4 address of the GetPixel program
.text:00418268     mov     dword ptr [ebp - 12Ch], offset aRegisterFailed
; "Register Failed!"
.text:00418272     mov     dword ptr [ebp - 13Ch], offset aPleaseVisit
; "Please visit"
.text:0041827C     mov     dword ptr [ebp - 14Ch], offset aHttpWww_aimoo_
; "http://www.aimoo.com/getpixel"
.text:00418286     mov     dword ptr [ebp - 15Ch], offset aToGetYourRegis
; "to get your register code"
.text:00418290     call    ebx
; __vbaVarCat

This is a message about failed registration that invites the user to visit the developer's site.
Thus, this indicates that the chosen way is the correct one. Start hiew32.exe and find the .
text:00417E86 address there. Overwrite 6 bytes with NOP instructions. Then exit and start the
program. When the program starts, repeat the registration attempt by supplying any arbitrarily
chosen name and password. You'll receive the message that you are now a registered user.
Does this mean that the problem has been solved and you can rejoice? No!

Step 2: 

Remove the Nag Screen

Soon you'll discover that the problem is far from solved. If you didn't quit the program after
"successful" registration, the registration window would display that the registration was carried
out successfully. However, after restarting the program, the registration window would again
state that this copy wasn't a registered one. Furthermore, after restart, the window shown in Fig.
2.27 would start to appear with a certain level of probability. If this window appears and the user
clicks the Yes button, the program tries to connect to the developer's site; otherwise, it continues
normal operation.
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Figure 2.27: The nag screen

After carefully looking at the contents of the directory, where the program was installed, I
discovered the clickme.reg file containing the script for writing a correct user name and
password into the registry (provided that the user knows the correct user name and password).
Open the registry, and you'll discover that the user name and the password you specified when
attempting to register the program were written into the location specified by the clickme.reg
script. Apparently, the program compares this user name and password to some reference
value at start-up. You do not know these values (and, rushing somewhat ahead, you'll never
know them). After that, the program specifies that this is an unregistered copy (see Fig. 2.26). In
addition, it occasionally displays the nag screen (see Fig. 2.27).

It is necessary to remove the nag screen. Open the strings window in IDA and search for the 
How do you feel me? string. Having located it, consider the code section that contains a
reference to this string. This code fragment is provided in Listing 2.15.

Listing 2.15: The GetPixel code fragment that contains a reference to "How do you feel
me?"
.text:0040B217   push    eax
.text:0040B218   mov     dword ptr [ebp - 0D0h], offset aHowDoYouFeelMe
                                          ; "How do you feel me?"
.text:0040B222   mov     dword ptr [ebp - 0E0h], offset aIWantToBeConfi
                                          ; "I want to be confirmed :-)"
.text:0040B22C   call    esi              ; __vbaVarCat
.text:0040B22E   lea     ecx, [ebp - 0E8h]
.text:0040B234   push    eax
.text:0040B235   lea     edx, [ebp - 98h]
.text:0040B23B   push    ecx
.text:0040B23C   push    edx
.text:0040B23D   call    esi ; __vbaVarCat
.text:0040B23F   push    eax
.text:0040B240   call    ds:rtcMsgBox

It is obvious that the call rtcMsgBox command is the call to the MessageBox function. This
function is unneeded, so you can overwrite it with NOP instructions. However, don't rush forward
without taking all required actions. The MessageBox function must provide the user with a
choice, and it is assumed that the user chooses No. Scroll the listing down and locate the
required code fragment (Listing 2.16).

Listing 2.16: The GetPixel fragment for the Yes/No choice when the nag screen is
displayed
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.text:0040B2B6   call    ds:__vbaVarTstEq

.text:0040B2BC   test    ax, ax

.text:0040B2BF   jz      short loc_40B305

.text:0040B2C1   mov     esi, ds:__vbaStrToAnsi

.text:0040B2C7   push    1

.text:0040B2C9   lea     edx, [ebp - 60h]

.text:0040B2CC   push    offset aC     ; "C:\\"

.text:0040B2D1   push    edx

.text:0040B2D2   call    esi           ; __vbaStrToAnsi

.text:0040B2D4   push    eax

.text:0040B2D5   push    0

.text:0040B2D7   lea     eax, [ebp - 5Ch]

.text:0040B2DA   push    offset aHttpWww_aimoo_
                                       ; "http://www...aimoo.com/getpixel"
.text:0040B2DF   push    eax
.text:0040B2E0   call    esi           ; __vbaStrToAnsi
.text:0040B2E2   ush     eax
.text:0040B2E3   push    0
.text:0040B2E5   push    0
.text:0040B2E7   call    sub_407CB0
.text:0040B2EC   call    ds:__vbaSetSystemError

If the condition requiring the contents of the EAX register to be zero has not been observed, the
program attempts to connect to the author's site. To avoid this action, it is necessary to replace 
JZ with JMP SHORT. That's all!

Start hiew32.exe and modify the two previously-mentioned fragments (see Listing 2.15,
overwrite the MessageBox function with NOP instructions, and replace JZ with JMP SHORT in
Listing 2.16). Do not forget that it is necessary to overwrite both the function call and the PUSH
instruction preceding it. As a result, the nag screen won't appear.

Step 3: Complete the Registration

Now it remains to complete the final step, which consists of making the program to believe that
the registry contains the correct registration data. Apparently, it would be logical to assume that
there must be some procedure that checks the password for correctness.

I should admit that at this stage it took me about an hour to locate this procedure. I used both a
disassembler and a debugger (OllyDbg). I had to guess how to access that procedure. Now I'm
going to explain you how I did this.

First, it is necessary to note the names of the registry entries that have to be filled in the course
of registration. These are the License and RegUser fields. The License field must contain
the password. Now search for this string.

The string can be easily found. It occurs in two locations. This is an encouraging indication,
because there are two calls to the password: at program start-up and from the registration
window. Look at the disassembled program code, and you'll discover that in the first case the 
rtcGetSetting function is used and in the second case the rtcSaveSetting function is
used. Everything is clear now. The first function reads the password, and the second function
writes it. Information about both functions can be found in the Microsoft Developer Network
(MSDN). The first function deserves the most attention.

Go to the required program fragment, scroll the listing down, and try to understand the program
logic. When scrolling down, trace only those procedures that are not supplied as part of some
library. One such procedure, most likely, will be the one that checks the password and user
name for correctness.

First, the code fragment in Listing 2.17 attracted my attention.
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Listing 2.17: A candidate for the role of the password-checking procedure
.text:0040AE00       lea    edx, [ebp - 78h]
.text:0040AE03       push   edx
.text:0040AE04       call   sub_415160

What value is placed into the EDX register? Start the debugger and set a breakpoint to the
40AE03 address. Then look, at which location in the stack the EDX register points. It turns out to
be the name read from the system registry. There is no password here. Consequently, this
procedure is not the one you are looking for. It is necessary to continue the search. In the course
of this search, another procedure should attract your attention (Listing 2.18).

Listing 2.18: Another candidate for the role of the password-checking procedure
.text:0040AE5C     lea    edx, [ebp - 88h]
.text:0040AE62     lea    eax, [ebp - 78h]
.text:0040AE65     push   edx
.text:0040AE66     push   eax
.text:0040AE67     call   sub_416070

Use the debugger to find out that EDX points to the string made up of the user name and the
password (as it turns out, they were combined somewhere). Execute this procedure under the
debugger, and it will return the value of zero in the EAX register. Note that 0 in most
programming languages corresponds to FALSE. Well, it seems that the time has come for a
small experiment.

Start hiew32.exe, and replace the fragment shown in Listing 2.19 with the MOV EAX, 1
command, overwriting all other bytes of the procedure (Listing 2.18) with 90H values.

Listing 2.19: The code fragment that must be replaced with the MOV EAX, 1 command
.text:0040AE65     push   edx
.text:0040AE66     push   eax
.text:0040AE67     call   sub_416070

Start the program, open the registration window, and try to register again. This time you'll
succeed.

Step 4: Use an Unexpected Solution

Now it is time to point out that there is much easier way of achieving the correct result. Probably,
you have already guessed what I mean. It is necessary to access the 00416070H address,
which is the address where the password-checking procedure starts, and insert two commands
at its beginning: MOV EAX, 1/RETN 8. Nothing else will be needed. All three steps described
earlier will become unnecessary. It was tempting to demonstrate for you an easy and ready-to-
use solution. However, several considerations prevented me from doing this:
§ In practice, most problems are not solved in the easiest way. An easy and elegant solution

is usually found later, when the desired result has already been achieved. Thus, learning on
the basis of elegant solution is not the correct approach.

§ The approach to solving the problem chosen by the investigator doesn't matter. What
matters is that the task has finally been solved.

A question may come to your mind. In the solution that I demonstrated here, I acted on the basis



157Chapter 2: The Code Investigator's Toolkit

 

of information obtained from the script found in the working directory of the program. On the
basis of this script, I discovered where the user name and password are written in the course of
program registration. What would I do if there were no script? There is no problem here. If this
were the case, it would be possible to use some registry monitor tracing all attempts at
accessing the registry. If you have no registry monitors at your disposal, it is possible to resort to
direct analysis of the disassembled code. For example, functions such as rtcSaveSetting
and rtcGetSetting are the first candidates for such an analysis.

Overview

There are different versions of SoftIce for all of Microsoft's operating systems from the Windows
family and even for MS-DOS. First, it is necessary to mention that SoftIce is a kernel-mode
debugger. This means that it can be used for debugging any programs that run under a specific
operating system, including services and drivers running in the protection ring 0. Because
SoftIce closely interacts with the operating system, it allows you to obtain lots of internal system
information (private information, I'd say) related to the details of the operating system's
operation. Therefore, SoftIce is an indispensable tool for everyone who studies the internal
mechanisms of Windows operation. Among code diggers, SoftIce is considered the best
debugger ever known.

The distribution set, along with the debugger, provides lots of utilities and tools, the most
important of which is the 

Symbol Loader (in other words, the loader of the debug information). The Symbol Loader
program (loader32.exe) loads the executable module into the memory and calls the SoftIce
debugger window. In other words, it sets a breakpoint to the program entry point. If debug
information recognizable by the loader is present in the executable module, it also loads this
information into the debugger. The debugger allows you to debug executable code not only
locally but also remotely. Remote debugging is carried out from a remote computer connected
through the COM port to the local computer running the program being debugged.

SoftIce installation deserves separate consideration. Because this debugger operates at the
kernel level, developers have to constantly elaborate their product to ensure support for all
releases of the Windows operating system. Nevertheless, articles and discussions dedicated to
problems related to SoftIce installation and troubleshooting swarm the Internet. I won't provide
the installation topics here to economize on space. You can find all required information at the
product's support site, http://www.compuware.com, where, having registered, you can
download the SoftIce Reference Guide. My goal is to provide a brief introduction to application
debugging using SoftIce. Therefore, I'll give detailed descriptions of the SoftIce commands most
frequently used for debugging standard applications. Also covered will be examples of
debugging when the debugging information is present in the modules being debugged, as well
as when the debugging information is not available.

All examples provided in this chapter are applicable to Windows XP and Windows Server 2003.
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4.1. Basic Information about Working with SoftIce

This section covers the basic information required to start working with this powerful instrument.

4.1.1. Getting Started

Main SoftIce Window

When the SoftIce window pops up, all system functions are "frozen." So, to obtain a screenshot
of the SoftIce window, I had to use two computers (Fig. 4.1).

Figure 4.1: The SoftIce main window

The SoftIce main window appears in the following four cases:
§ When the user presses the <Ctrl>+<D> keyboard combination. This command pops up the

debugger window when executing any program. Thus, you can view the state of the
operating system and executed applications at anytime.

§ When loading some application into the memory using the loader32.exe program. In this
case, the loading process is interrupted exactly when it encounters the entry point into the
executable module. You'll be able to continue application execution in any debugger mode
from that point.

§ When one of the breakpoint conditions is satisfied. You set breakpoint beforehand in the
debugger window. The debugger will show exactly the location where the interrupt should
be placed. One of the greatest advantages of SoftIce is its capability for working with
several applications in parallel. You can set breakpoints to several applications
simultaneously.

§ The SoftIce window can appear in case of a system error or a system crash (Blue Screen of
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Death, or BSOD).

The debugger window is shown in Fig. 4.1. The main window contains several windows that
show different information. The number of such windows might vary. For instance, you, at your
discretion, can add or remove these windows to or from the main window. The illustration
demonstrates the most frequently used windows of the debugger. Note that you not only can
view information in these windows but also can change their contents, such as the contents of
the processor registers. However, this should be carried out carefully, because changing these
registers might result in unpredictable behavior of the application or, perhaps, of the entire
system. Thus, consider the debugger windows one by one, from top to bottom (see Fig 4.1):
§ Registers window — This window lists all registers, including the segment registers

(except for FPU registers) and their contents. The flags register is also shown, each flag
designated by a separate letter. If the flag was changed during the last operation, it is
marked by an uppercase letter and highlighted in the different color.

§ FPU registers window— This window shows the contents of the eight FPU registers.

§ Data window — This window is intended for displaying the contents of a specific memory
region in both byte format and ASCII format. You can scroll this window, viewing arbitrary
memory regions.

§ Code window — This window contains the disassembled code, which also can be scrolled.
If the application that you have loaded contains debug information recognizable by SoftIce,
then the window would display the program's source code in a high-level programming
language.

§ Stack window — The stack window doesn't present the entire stack contents. On the
contrary, it displays only the stack frame directly related to the operation of the given
application.

§ Command window — In this window, you can enter various SoftIce commands. In
particular, from the illustration it is possible to see that by entering the H command you can
display the help pane, a list of the debugger commands. To obtain information about an
individual command, it is necessary to enter H followed by the command name, for
example: H hwnd.

When working in the main (command) window, it is possible to issue commands to control the
debugger. Along with the commands issued in the main window, it is possible to use keyboard
shortcuts. In addition, provision has been made for using the standard mouse and the context
menu.

Also note the lowest window — the help pane. When you issue a command, the help pane can
assist you correctly enter that command and its parameters. In particular, the window will list all
commands, starting from the characters that you have already entered. Besides, the debugger
always displays the current process in the top right corner of the window. Always pay attention to
this important issue to avoid confusing applications. This topic will be covered in more detail in 
Section 4.1.3.

In addition to the preceding windows, it is possible to use the trace window, where the values of
all variables listed in the WATCH command are traced, as well as other windows, including the
MMX registers window and the local variables window.

Operating Modes of the Debugger

After installing the SoftIce debugger, you can choose from the following five methods of start-up:
§ Disable — The debugger doesn't start.
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§ Manual — The debugger doesn't start automatically. To start the debugger, issue the Net
start ntice command. The directory, into which you install SoftIce, contains the ntice.
bat file that holds this command. This mode is the safest one; however, it doesn't allow
driver debugging at start-up.

§ Automatic — The debugger starts up automatically. However, in this mode you cannot
debug kernel-mode drivers.

§ System and Boot — In both cases, the debugger starts automatically. The difference
between these two modes is the order of loading the system and boot drivers.

4.1.2. The Loader

The main window of the loader32.exe program is shown in Fig. 4.2. As mentioned before, this
program is intended for loading executable modules into the debugger. This utility also can
retrieve debug information from the modules being debugged (provided that it is present there)
and pass this information to SoftIce. When loading the module being debugged, the loader sets
a breakpoint to the program entry point.

Figure 4.2: The loader32.exe program window

Loading the Executable Module

To load an executable module into the debugger, it is necessary to proceed as follows:
1. Open the module using the File | Open... menu option. You can use the Open button on

the toolbar for the same purpose.

2. Then, choose the Module | Load menu item. It is also possible to use the Load
Symbols toolbar button. The debugger would first translate the detected symbolic
information into the file with the same name as that of the module being loaded and with
the NMS file name extension, after which it would load the module, along with the debug
information, into SoftIce. If the debugging information is missing, the loader would inform
you about this and provide you with the choice whether or not to continue loading the
module being investigated into the debugger. Translation of the debug information into
the file with the NMS extension can be carried out by a separate command: either use
the Module | Translate menu or click the Translate toolbar button.
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The 

Loaded Symbols list contains the list of loaded modules. Pay special attention to the SYM=
column. When loading the executable module, this column contains the size of the loaded
symbolic information. Modules that do not contain such information are not displayed in the 
Loaded Symbols list.

Loading Parameters

After loading the module being investigated into SoftIce, it is possible to specify the start-up
settings. To achieve this, use the Module | Settings... menu. The window, in which you can
specify these settings is shown in Fig. 4.3. This window has four tabs, which must be considered
in more detail.

Figure 4.3: The Settings window allows you to set the loading parameters for the modules
to be debugged
§ The General tab contains the following controls:
o The Command line arguments field allows you to specify the command-line

parameters, with which the program being debugged must be started under the
debugger.

o The Source file search path field lets you specify the search paths for the files related to
the module being debugged.

o The Default source file search path field allows you to specify the main search path for
the files. The debugger always searches according to the path specified in the Source
file search path field, and only after that uses this field.

o If the Prompt for missing source files flag is set, then the debugger will inform you if all
files required for debugging the executable file are not available. In particular, if the
debugging information is missing, you'll be prompted to specify whether to continue
loading the executable file into the debugger.

o The Minimize Loader on successful load flag is used for minimizing the loader size in
the memory after the executable program is loaded into the debugger.

§ The Debugging tab allows you to modify some current debugging parameters:
o The Load symbol information only and Load executable checkboxes allow you to load
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only debug information into the debugger and to load debug information with the
executable module, respectively.

o The Stop at WinMain, main, DllMain etc. flag allows you to set a breakpoint to the
starting point of the user part of the executable module. If the debug information is not
available, the breakpoint is set to the starting point of program execution.

§ Using the Translation tab, you can set the translation parameters of the debug information
of the executable module. The switches are as follows:
o Publics only — Translate external names only.

o Type information only — Translate only information about variable types.

o Symbols only — Translate symbolic names only.

o Symbols and source code — Translate all debugging information.

o Package source with symbol table — Save the translated information in the NMS file.

§ The Modules and Files tab allows you to list all files and their locations. These files will be
loaded with the executable module. You can list all files that contain the debug information
here. Loading of specific files can be temporarily blocked using a special switch.

4.1.3. Techniques of Working with SoftIce

Getting Started with Processes

Consider the main issues related to working with SoftIce:
§ You are working in a multitasking operating system. The program that you are going to

investigate using SoftIce after loading will become only one of the multiple processes
running in the system. You must know exactly, with which process you are working. Do not
confuse processes, because this might freeze the entire system. The debugger shows the
current process in the bottom right corner of the help window.

§ When loading an application using the loader32.exe program, the breakpoint is set to the
start of program execution. The newly-created process becomes the current one. Thus, you
can comfortably trace the newly-loaded application (see Section 4.2.2). However, when you
close the debugger window by pressing <F5>, and then call it again, the process you were
tracing earlier won't be the current process any longer. Each newly-running process has its
own virtual address space. This address space is called the process context. For example,
the D Ds:004080AF command will output the memory contents for a specific virtual
address space, and that address space will represent the context of the current process. To
work with the addresses of an individual process, it is necessary to ensure that this process
is the current one. To achieve this, use the ADDR command (a description of this command
will be provided in Section 4.2.2, see "Main Informational Commands"). The following
illustrates the use of the ADDR command: : ADDR 058. Here, 058 is the process identifier
(PID). The PID value for the current process can be determined by using the ADDR
command without parameters.

§ Breakpoints represent the main tool of investigating executable code. You should clearly
understand where the breakpoint is set (in other words, to which process or thread a
specific breakpoint relates). In particular, this relates to setting breakpoints to API calls.
When you create such a breakpoint, always use conditional constructs to specify, to which
process that breakpoint relates. For this purpose, use the PID function that returns the
current PID. As relates to the PID value, it can be obtained using the previously-mentioned
ADDR command. The following illustrates how to set a breakpoint to the CreateWindowEx
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API function: : BPX CreateWindowEx if (PID == 0x58). It is necessary to point out
again that the PID value for the required process can be determined using the ADDR or
PROC commands. To set such a breakpoint, it is not necessary to make the required
process the current one.

Breakpoints

When investigating specific executable code, one task always consists of searching for the
required location within the program being investigated. When program code written in one of
the high-level programming languages is not available (which most often is the case, unless you
are debugging your own program), breakpoints are indispensable in research.

Nonpermanent Breakpoints

Nonpermanent (one-shot) breakpoints operate only once. Actually, nonpermanent breakpoint is
a line in the code window, to which the cursor (highlighted string) points. To move the cursor,
use the U command. The HERE command (or the <F7> shortcut) runs the executable code from
the current command to the line of code marked using this method. Bear in mind that the HERE
command is issued from the code window; it is necessary to switch to this window by pressing 
<F6> before issuing the command. It is also possible to use the G address command, in which
case the code will execute to the specified address.

Persistent Breakpoints

A typical example of a persistent (sticky) breakpoint is a breakpoint set to a specific command (a
specific virtual address of the process). To set a persistent breakpoint, it is necessary to switch
to the code window and use the BPX command without parameters. You can scroll the code and
set breakpoints at required addresses. In this case, the lines of code, to which the breakpoints
are set, will be highlighted. The same result can be achieved by using the <F9> shortcut. To
remove the existing breakpoint, either move the cursor to the existing breakpoint and issue the 
BPX command, or press <F9>.

The general method of controlling breakpoints is applicable to the following breakpoints: BL to
find the numbered list of breakpoints, BC n to delete the breakpoint with the specified number,
BC * to delete all breakpoints, and BE n to edit the breakpoint with the specified number.
Finally, if you know the address, at which you need to set a breakpoint, you can use that address
in the BPX command, for example: BPX 0008:806CEFAB. If you issue the BPX command with
the same address again, the breakpoint with the specified address will be deleted. Do not forget
that the breakpoint set to the command address is related to a specific address space — in
other words, to a specific process.

Conditional Breakpoints

Conditional breakpoints are activated if the conditions specified for them are satisfied. It is
impossible to set two different breakpoints to the same address or to the same API function;
however, you can use conditional constructs to take into account different variants of calling the
same breakpoints. Here are typical examples of using conditional breakpoints.

Example 1

The breakpoint set to a specific address is activated only if the content of the EAX register takes
the specified value:
: BPX  0008:806CEFAB if(EAX == 406090)
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Example 2

Consider a small investigation for the breakpoint set to the MessageBox function call (the
application under consideration is the WinRar archiving utility). Start the WinRar application,
open the SoftIce window, and determine the application identifier using the ADDR command. The
identifier turned out to be equal to 0x328. Then, issue the following command to create a
conditional breakpoint:
   : BPX MessageBoxA if(PID == 0x328)

Issue the BL command to make sure that the breakpoint is set as desired. Note that the A suffix
has been specified. This suffix is mandatory, because SoftIce distinguishes API functions by
their actual names.

Exit the debugger by pressing <F5>, and execute one of the application's commands that must
cause the MessageBox window to appear. The SoftIce window will pop up immediately. The
command window will display the message informing you why the SoftIce window has popped
up. In this example, this message will appear as follows:
   Break due to BP 00: USER32!MessageBoxA IF(PID = 0x328) (ET = 2.65 seconds)

Now, consider the code window. The first line of the entry into the MessageBox procedure will
be highlighted there:
USER32!MessageBoxA
001B:77D56471    CMP     DWORD  PTR [77D8C3DO], 0

You can easily investigate the stack of the MessageBoxA function call and find the return
address and parameter values. Having executed the ? * (ESP + 4) command, you'll obtain the
value of the window handle for the window that initialized the MessageBox call (if something is
unclear to you, return to Section 3.2.1, "Stack Structures"). The HWND value turns out to be equal
to 100EC. View the list of windows opened by the WinRar application using the HWND 328
command, and you'll see that such a window exists and that it corresponds to the 
WinRarWindow class. By the way, in the same table you'll see the address of the window
function of this window. Thus, it is possible to dive into studying the operation of this window.
However, return to the first line of the MessageBox function call and find the return address.
The ESP register points to the return address, Thus, by issuing the ? *(ESP) command, you'll
discover that this address is equal to 43C76D.

There is another method of obtaining the return address. To use this method, press <F11>.
After the MessageBox window appears, click one of the buttons in this window. The SoftIce
window will appear, and you'll find yourself on the line that directly follows the MessageBox
function call.
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Note In general, searching for calls
to individual API functions is not
a trivial task. To succeed, you
must know these functions well
and understand that the same
result can be achieved using
different methods. For
example, assume that you
need to know where the
window is created. At first
glance, it seems natural to look
for the CreateWindow
function call. However, this is
not so.

First, there is no such function
as CreateWindow. Even if
you call the CreateWindow
function in your program, the 
CreateWindowEx function is
always used.

Second, it is necessary to look
for CreateWindowExA and
CreateWindowExW functions
instead of CreateWindowEx.

Finally, the window might be
created by modal dialog
functions, such as 
DialogBoxIndirect,
DialogBoxParam, and
DialogBoxIndirectParam.
Or it might be created by
nonmodal functions, such as 
CreateDialogParam,
CreateDialogIndirect,
and 
CreateDialogIndirectPar
am. Also, do not forget that for
all functions it is necessary to
take into account the A and W
suffixes.

Example 3

Consider how the register contents can be traced:
   : BPX EIP IF(EAX == 0x10)

The breakpoint specified by this command will be activated when the value of the EAX register
becomes equal to 0x10, regardless of in which thread this event takes place.

Breakpoints to Windows Messages

As you know, the main events in GUI applications take place in window functions. Discovering
the reaction of the window function to a specific message is the most important goal of program
code investigation. Here, breakpoints set to Windows messages are indispensable. An example
of the command that sets such a breakpoint is as follows:
   : BMSG  100EC WM_CREATE

The first parameter of this command is the window handle, the function of which must receive
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the message. By the window handle value, the debugger determines the thread that has created
this window, so the investigator doesn't need to care about solving this problem. When the
required message arrives, the SoftIce debugger is activated and the code window will display
the start of the window function. An interesting point is that the same result can be achieved
using a standard BPX command, for example:

   : BPX  43C76D IF((ESP -> 8) == WM_CREATE)

The first parameter is the address of the first command of the window function. Later, the
command exploits the fact that the second parameter of the window function is located 8 bytes
from the stack top.

Searching for a Window Procedure

How is it possible to locate a window procedure? Here are some helpful and easy tips:
§ View the list of application windows. This list can be displayed by the HWND n command,

where n is the application identifier. As you already know, the application identifier can be
obtained using the ADDR command. The list of application windows contains their names,
using which it is sometimes easy to locate the required window and, consequently, the
window procedure address.

§ If the list of windows is small, you can easily test all procedures by setting a breakpoint to
the start of the window procedure (to be precise, at one of the first commands). If the
breakpoint is activated when the window is activated, this means that you have found the
required window.

§ Analyze the window operation to find out, which API function can be called when working
with this window (this was method I chose in Example 2 from the previous section). Set a
breakpoint to that function and carry out some operations in that window. In case of an
interrupt, determine from which location was that function called. This will be the window
function. In addition, bear in mind that most API functions accept the window handle as the
first parameter.

Working with Applications that Contain Debug Information

SoftIce is a full-featured debugger, which means that it can load debug information and supply it
with the executable code. Thus, when debugging custom applications, SoftIce can be used
instead of the standard debugger built into the integrated development environment (IDE).
Consider this approach on the example of debugging user applications written in C++ using
Visual Studio .NET.

When the "add debug info" option is chosen (for this purpose, the best approach is using the 
DEBUG project configuration), the debug information database is created with the executable
module. This database represents a file that by default has the same name as the executable
module and the PDB file name extension (see Section 1.6.1). Information stored in that file is
enough to represent the structure of the source program, along with the names of local and
global variables, and to map this structure to the machine code.

When the loader32.exe program loads the executable module, it also loads the debug
information and passes this to the debugger. By default, if the debug information is available for
the program, SoftIce presents the program source code without Assembly commands in the
source code window. Later, you can use the SRC command to switch to the mixed program
representation (the source code of the program and machine code) or to pure machine code. In
the first case, step-by-step program execution means that the program is executed one operator
at a time. When using mixed representation, one step is equivalent to one machine command.
Accordingly, it is possible to set breakpoints both to the operators of a high-level programming
language and to machine commands. Listing 4.1 demonstrates several lines from the SoftIce
code window when mixed representation was used.
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Listing 4.1: 

Several lines from the Softlce code window when mixed representation was used

00006                 a = 10;

001B:00411A2E         MOV DWORD PTR [EBP - a], 0000000A

00007                 b = 11;

001B:00411A35         MOV DWORD PTR [EBP - b], 0000000B

00008                 c = 10;

001B:00411A3C         MOV DWORD PTR [EBP - c], 0000000C

00009                 printf("%d\n", max(a, b, c));

001B:00411A43         MOV EAX, [EBP - c]

001B:00411A46         PUSH EAX

...

You should understand that in expressions such as [

EBP - a

] the 

a

 value is the address of the 

a

 variable in the stack (to be precise, the offset in relation to the address where the old 

EBP

 is stored —

 in other words, simply four).

4.2. Brief SoftIce Reference

This brief SoftIce reference contains most SoftIce commands. These commands are more than
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enough for investigating executable code.

4.2.1. Hotkeys

Controlling the Screen
§ <Ctrl>+<D> — Open or close the main SoftIce window.

§ <Ctrl>+<Alt> + arrow keys — Move the SoftIce main window over the screen with the
increment equal to the character size.

§ <Ctrl>+<Alt>+<Home>— Move the main SoftIce window to the top left corner of the screen.

§ <Ctrl>+<Alt>+<End> — Move the main SoftIce window to the bottom left corner of the
screen.

§ <Ctrl>+<Alt>+<PageUp> — Move the main SoftIce window to the top right corner of the
screen.

§ <Ctrl>+<Alt>+<PageDn> — Move the main SoftIce window to the bottom right corner of the
screen.

§ <Ctrl>+<L> — Refresh the main SoftIce window.

§ <Ctrl>+<Alt>+<C>— Place the main SoftIce window at the center of the screen.

Navigating the Main Window
§ <Alt>+<C> — Switch to the code window from the command window, and vice versa.

§ <Alt>+<D> — Switch to the data window from the command window, and vice versa.

§ <Alt>+<L> — Switch to the local variables window from the command window, and vice
versa.

§ <Alt>+<R> — Switch to the registers window from the command window, and vice versa.

§ <Alt>+<W> — Switch to the watch window from the command window, and vice versa.

§ <Alt>+<S> — Switch to the stack window from the command window, and vice versa.

It is also possible to switch to any window (except for the FPU window) by clicking the required
window with the left mouse button.

Navigating within Windows
§ < > — Move one line back.

§ < > — Move one line forward.

§ < > — Move one character left.

§ < > — Move one character right.

§ <PageUp> — Move one page back.

§ <PageDn> — Move one page forward.
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§ <Home> — Go to the first line of code.

§ <End> — Go to the last line of code.

Controlling the Command Window
§ <Enter> — Terminate the command line and execute the command.

SoftIce remembers 32 recently-entered commands. To navigate the list of commands stored in
the buffer, use the < > and < > keys. The prefix that you have already entered into the
command line is taken into account. For example, if you have entered the B character, only the
commands starting from that character will be displayed. If you are currently in the code window,
then to view the commands buffer, use the following shortcuts: <Shift>+< > and <Shift>+< >.

When editing the command line, use the following commands:
§ <Home> — Go to the start of the command line.

§ <End> — Go to the end of the command line.

§ <Insert> — Toggle the insert/replace modes.

§ <Delete> — Delete the character to the right of the cursor and move the line fragment to the
left.

§ <Bkspc> — Delete the character to the left of the cursor and move the line fragment to the
left.

§ < > and < > — Move the cursor over the line.

The SoftIce debugger has the command window protocol buffer. This buffer contains all
information previously output into the window. To view the content of this buffer, use <PageDn>
and <PageUp>.

Functional Keys
§ <F1> — Display help (equivalent to the H command).

§ <F2> — Open/close the registers window.

§ <F3> — Toggle the source code modes.

§ <F4> — Display the screen of the application being debugged.

§ <F5> — Return to the program being debugged.

§ <F6> — Move the cursor to or from the code window.

§ <F7> — Execute the application being debugged up to the command pointed to by the
cursor.

§ <F8> — Execute the current command of the application being debugged, stepping into the
functions.

§ <F9> — Set a breakpoint to the current command.

§ <F10> — Execute the current command, stepping over functions.

§ <F11> — Go to the calling function of the program being debugged.

§ <F12> — Execute the function up to the exit to the calling program.

§ <Shift>+<F3> — Change the output format in the data window.
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§ <Alt>+<F1> — Open/close the registers window.

§ <Alt>+<F2> — Open/close the data window.

§ <Alt>+<F3> — Open/close the code window.

§ <Alt>+<F4> — Open/close the watch window.

§ <Alt>+<F5> — Clear the content of the command window.

§ <Alt>+<F11>— Display the data located at the address stored in the first double word of the
data window.

§ <Alt>+<F12> — Display the data located at the address stored in the second double word
of the data window.

Note The complete list of debugger
commands that can be
obtained by pressing <F1> or
by issuing the H command is
large; however, it doesn't
contain all available
commands. The complete list
of commands can be found in
the Softlce Command
Reference document, which
can be downloaded from http://
www.compuware.com and
other Internet sites dedicated to
the Softlce debugger. In this
book, I mainly use the list
displayed by the debugger
when the H command is issued.
These commands are more
than enough for debugging
code and investigating
application programs.

4.2.2. SoftIce Commands

SoftIce Macrocommands

The commands described in this section can be combined into macrocommands, or macros.
There are two types of macrocommands that can be used in Softlce. First, consider run-time
macros. These commands can exist only within the current debugger session. After you restart
the debugger, these commands will disappear. The list of commands that can be used to control
these macros is as follows:
§ MACRO macro_name = "command1; command2;..." — Create or change a macro. For

example, : MACRO _ap "bc *;bpx MessageBox" creates a macro named _ap.

§ MACRO macro_name * — Delete the macro with the specified name. For example, : 
MACRO _ap * deletes the _ap macro from the list of macros.

§ MACRO * — Delete all macros from the list.

§ MACRO macro_name — Edit the macro with the specified name.
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§ MACRO — Display the list of macros.

Macros can be defined with parameters. To achieve this, the % character is used. After this
character, the parameter number must be specified. The parameter number must belong to the
range from one to eight. For example, the MACRO_bpx = "bpx %1;b1" command creates a
macro named _bpx that accepts a single parameter. This macro sets a breakpoint to the
command specified as a parameter and outputs the list of existing breakpoints. To insert
characters such as " or % into the macro name, use the backslash character (\). To insert a
backslash, use the (\\) sequence.

To create persistent macrocommands, use the loader32.exe program. To achieve this, use the 
Edit | SoftIce Initialization Settings... menu. After you choose this menu, the SoftIce settings
window will appear. In this window, go to the Macro Definitions tab (see Fig. 4.4). All further
actions should be intuitive. The Add and Edit buttons are used for adding and editing macros,
respectively. To remove an existing macro, use the Remove button. Bear in mind that all
changes introduced in the SoftIce settings window come into force only after you reload the
SoftIce debugger.

Figure 4.4: The settings window for creating persistent macros

Commands for Controlling SoftIce Windows
§ Lines n — This command sets the number of lines in the debugger main window. The

value of n can range from 25 to 60.

§ Width m— This command sets the width of the main window in characters. The value of m
can range from 80 to 160.

§ Set font n — This command sets the size of the font used by the debugger. The n
variable can take the values 1, 2, or 3.

§ Set origin x y — Using this command, it is possible to specify the values of the screen
coordinates of the top left window corner.

§ Set forcepalette [on | off] — If the value of this parameter is set to on, then all
changes to the system color palette are blocked.

§ Color [c1 c2 c3 c4 c5] | [reset] — This command specifies the color palette of
the debugger's main window. The color reset command resets the color palette of the
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debugger's main window to its default state. The cl, c2, c3, c4, and c5 1-byte parameters
specify the foreground and background colors for appropriate elements of the debugger's
main window. The first half-byte specifies the background color, and the second half-byte
sets the foreground color:
o c1 — Main background and foreground colors

o c2 — Background and foreground colors for output of the changed flags (in the registers
window)

o c3 — Background and foreground colors for highlighting the current command in the
code window

o c4 — Background and foreground colors in the help pane

o c5 — Background and foreground colors for the dividing lines between windows

§ Commands for opening and closing windows:
o WC — Code window.

o WD— Data window. Several data windows can exist simultaneously. The number of each
window can be specified after the separating dot, for example: wd.3.

o WF — FPU window.

o WL — Local variables window.

o WR — Registers window.

o WW — Watch window.

o WS — Stack window.

o WX — MMX registers window.

Each of the preceding commands opens the window of the corresponding type or closes the
appropriate window (provided that it has already been opened). The size of the main window
doesn't change, so opening a new window or closing an existing one changes the sizes of the
existing windows. You can also specify the window size (the number of lines) by putting this
parameter in the command. For example, the wd 30 command allocates 30 lines in the data
window.

§ EC — This command switches between the command window and the code window
(equivalent to the <F6> shortcut).

§ CLS — This command clears the command window (equivalent to the <Ctrl>+<F5>
shortcut).

§ RS — Using this command, it is possible to temporarily hide the SoftIce window. When you
press any key, the SoftIce window will be restored. The RS command is equivalent to the
<F4> shortcut.

§ ALTSCR — This command is intended for redirecting the SoftIce window to an additional
monitor. The command format is as follows: ALTSCR [mono|vga|off]. Parameters of
this command are as follows:
o Mono — Monochrome monitor

o Vga — Monitor supporting video graphics array modes

o off — Switch off the alternative monitor (default)

§ FLASH — This command is intended for restoring the screen after the T and P commands.
The command format is as follows: FLASH on switches the restore mode on, and FLASH
off switches the restore mode off. When executing this command without parameters, the
current output mode is used.
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Obtaining and Changing Information in SoftIce Windows
§ R— This command is intended for retrieving and modifying information stored in registers.

The format is as follows: R[-d|reg_name|reg_name [=] value].
o The R -d variant outputs the list of registers and their contents into the command window.

o The R reg_name variant moves the cursor of the registers window to the register
specified in the command. You can edit the register content and save the change by
pressing <Enter>. It is also possible to switch to the registers window using another
method, such as using the mouse, and then proceed in the same way to edit the register
content.

o The R reg_name = value variant (the = character can be omitted) loads the specified
value into the specified register.

§ U — This command outputs the disassembled listing into the command window. The format
of the command is as follows: U [address [L length]]. Command parameters are as
follows:
o Address — The address, from which to start the listing output. It is possible to specify

the register, from which this address should be retrieved.

o Length — The number of bytes in the listing.

When the listing length is specified, the listing will be output into the command window. If the
address is specified but the length is missing, then the listing in the code window will start from
the specified address. If the command is issued without parameters, the contents in the code
window will be scrolled starting from the current address (the one, at which the previous listing
was terminated). If the code window is missing, information output will be directed into the
command window.
§ D — This command outputs the memory dump of a specific memory area. The format of

this command is as follows: D[size] [address [L length]]. Command parameters
are as follows:
o Size — This parameter can take the following values: B to output information in bytes, W

to output information in words, D to output information in double words, S to output
information in short floating-point numbers (32-bit numbers), L to output information in
long floating-point numbers (64-bit numbers), and T to output information in 10-byte
blocks.

o address — This parameter specifies the address, from which to start the dump output. It
is possible to specify the register, from which this address should be retrieved.

o Length — This parameter specifies the number of bytes for output (the listing length). By
default, this value is 128.

The output is directed to the data window. If this window is missing, the dump is output into the
command window.
§ E — This command is intended for editing the memory. The command format is as follows: 
E[size] [address [data_list]]. Command parameters are as follows:
o Size — The meaning and value of this parameter are the same as for the D command.

o Address — This parameter defines the address of the area to be edited.

o Data_list — If this parameter is missing, the cursor moves to the data window, where
you can directly edit a memory cell. Data passed in this parameter are placed into the
memory cells starting from the specified address. The data format must correspond to
the size parameter. If there are several values, they must be separated by commas.

An example of using this command is as follows: EB EBx 33, 34, 35. This command will place
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the values 33, 34, and 35, respectively, into three memory cells starting from the address stored
in the EBX register.
§ PEEK — This command reads data directly from the physical memory. The command

format is as follows: PEEK[size] address. Command parameters are listed below:
o Size — This parameter specifies the size of the memory cell. It can take the following

values: B for byte, W for word, and D for double word.

o Address — This is the address, from which the information is read.

§ POKE — This command writes the data directly into the physical memory. The command
format is as follows: POKE[size] address value. Command parameters are as
follows:
o Size — This parameter has the same meaning as the similar parameter for the PEEK

command.

o Address — This is the physical address, to which the data must be written.

o Value — This is the value to be written to the physical memory.

§ PAGEIN — This command loads the missing page into the physical memory. The command
format is as follows: PAGEIN address. The command parameter is the virtual page
address.

§ WATCH — This command specifies the expression that will be traced in the watch window,
for example: WATCH ds:eax. Thus, the data whose address is stored in the EAX register
will be traced.

§ FORMAT — Using this command, it is possible to change the output format in the data
window. This command doesn't accept any parameters. It simply changes the data window
format cyclically.

§ DATA — Using this command, it is possible to create additional windows for viewing data.
This command accepts a window number ranging from zero to three as a parameter.

§ A — This command allows you to enter an Assembly command at the specified address.
The command format is as follows: A [address]. The address to which the Assembly
command being entered will be placed, is the only parameter of this command. If the
address is not specified, the current address from the code segment is used. When
executing this command, the help window displays the prompt (address), after which it is
possible to enter the required command.

§ S — This command allows data search. The command format is as follows:

S [-acu] [address L length data-list]. Command parameters are as follows:
o c — Case-insensitive search

o u — Search in the Unicode format

o a — Search in the ASCII format

o Address — Starting address for the search range

o Length — Length of the search area

o Data_list — List of data for searching, delimited by commas or blank characters

This command is intended for searching for the required data. If the required data items are
found, they will be displayed in the data window, and the command window will display an
appropriate message specifying the address, at which they are located. To continue searching,
enter this command without parameters. An example of data usage is as follows: S ds:eax L
2000 20. This will search for the 20h byte in the area that has the length 2000h, starting from
the address stored in the EAX register.
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§ F — This command is intended for filling the memory area. The command format is as
follows:

F address L length data_list. Command parameters are as follows:
o Address — Starting address

o Length — Length of the data area to be filled

o Data_list — Data that will be placed starting from the required address (data items
must be separated by commas or blank characters)

This command places the data specified by the data_list parameter, starting from the
specified address. If the length value is greater than the data length, the data items will be
repeated cyclically until they reach the length size. An example of command use is as follows:
F ds:eax L 100 "W". Thus, the memory area starting at the DS:EAX address, which has the
length of 100H, will be filled with w characters.

§ M — The command for moving data. The command format is as follows: M addressl L
length address2. Parameter values are as follows:
o Addressl — Address, from which the data will be moved

o Length — Length of the data to be moved

o Address2 — Address, to which the data will be moved

An example using this command is as follows: M ds: eax L 1000 ds:ebx. With this
command, l000h bytes will be moved from the address pointed at by the EAX register to the
area with the address stored in the EBX register.
§ C — This command is intended for comparing two data blocks. The command format is as

follows: C addressl L length address2.
o Addressl — Address of the first data block to be compared

o Length — Length of the data to be compared

o Address2 — Address of the second data block

Using this command, it is possible to compare two data blocks. If two data blocks are not equal,
then the command window will display the complete addresses of these bytes and their values.
An example of command use is as follows: Cds:100L10ds:200. Here, l0h bytes are
compared.
§ HS — This command can be used for searching in the command buffer. The command

format is as follows: HS [+|-] string. The + or - signs stand for descending (from top
to bottom) and ascending (from bottom to top) search orders, respectively. After the sign,
the search string is specified. To continue searching, use the command without
parameters.

§ .(dot) — If the code window is visible, then this command makes the instruction specified by
the CS:EIP visible and highlights it.

Commands for Controlling Breakpoints

Breakpoints are the most important mechanisms for application debugging. SoftIce assigns
each breakpoint a number ranging from 0 to 255. Thus, 256 breakpoints can exist
simultaneously. Breakpoint numbers can be used for controlling breakpoints: You can remove
an existing breakpoint, enable it, or disable it. The total number of breakpoints for accessing
memory and input/output ports must not exceed four.

Breakpoint Types
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The main types of breakpoints supported by the SoftIce debugger are as follows:
§ Execution breakpoints — In this case, you can specify the command name, which SoftIce

replaces with the INT 3 interrupt. If the name of this command appears in the executable
code, code execution is interrupted. In particular, you can set a breakpoint to API calls.

§ Memory breakpoints — With this breakpoint, the debugger traces access to specific
memory addresses.

§ Interrupt breakpoints — The debugger will trace breakpoints that take place in the operating
system by modifying the interrupt descriptor table (IDT) (see Section 1.2.1).

§ Input/output breakpoints — The debugger traces all instructions for INPUT and OUTPUT.

§ Windows message breakpoints — To set such a breakpoint, it is necessary to know the
descriptor of the window, to which a message must arrive.

Capabilities of Breakpoints

When working with breakpoints, it is possible to use conditional constructs. In such cases, the
breakpoint will be activated only if the specified condition has been observed. In particular, using
conditional constructs it is possible to specify, for which process the given breakpoint would be
activated. A typical example of such a condition is as follows: if (pid == 0x058). This
condition specifies that the PID must be equal to 0x058. This condition will be used constantly,
because you are going to debug specific applications that are running in your operating system.

Using the do operator, it is possible to specify the commands that must be executed if a
breakpoint is activated. In general, the format of this command appears as follows: do "
command 1; command 2;...". As a command, it is possible to use both normal commands and
macros.

When describing the commands intended for controlling breakpoints, the following designations
will be used:
§ size — This parameter defines the size of the cell, to which the breakpoint will be set. The

list of valid values is as follows: B for byte, W for word, and D for double word.

§ [R|W|RW|X] — This parameter specifies the type of access to the memory cell or input/
output port that will be traced. Here, R designates reading from the cell (port), W is for writing
to the cell (port), RW is for reading and writing to and from the cell (port), and x is for
executing the command that occupies the given memory cell.

§ Reg_deb — Here, it is possible to specify, which debug register should be used (D0-D3).
As a rule, this parameter is skipped, because the debugger chooses the required register
on its own.

§ [IF cond] — Here, it is possible to specify, the condition that must be observed to enable
the interrupt at the given breakpoint.

§ [DO comm] — Using this command, it is possible to specify a command or group of
commands that will be executed in case of an interrupt at the given breakpoint.

Commands for Setting Breakpoints
§ BPM — Using this command, it is possible to set a breakpoint to a specific memory cell.

The command format is as follows: BPM[size] addr [R|W|RW|X] [reg_deb] [IF
cond] [DO comm]. The addr parameter specifies the cell address. The address can be
specified either explicitly or using registers, for example, as follows: ds: eax.

§ BPIO — This command sets a breakpoint to the input and output to and from a specific
port. The command format is as follows: BPIO [R|W|RW] [deb_reg] [IF cond] [DO
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comm]. The debugger will trace all commands for input and output to and from the specified
port.

§ BPINT — This command is used for setting an interrupt breakpoint. The breakpoint is
activated only if the interrupt is activated through the IDT. The command format is as
follows: BPINT int_number [IF cond] [DO comm]. Here, int_number is the
number of the interrupt being traced. When the breakpoint is activated, the first command
will be the first instruction of the interrupt handler.

§ BPX — This command sets an execution breakpoint, for example, a breakpoint for
execution of a specific API function. The command format is as follows: BPX name [IF
cond] [DO comm]. Here, name specifies some name, for example, MessageBoxW. The
BPX command without parameters sets a breakpoint to the current command. However, to
set a breakpoint for the current command, it is necessary to switch to the code window of
the debugger.

§ BMSG — This command is intended for setting a breakpoint to the messages arriving for the
specific window in the specific range. The command format is as follows: BMSG hWnd [L]
[beg_mes [end_mes]] [IF con] [DO comm]. Parameters of this commands are as
follows:
o hWnd — The window handle.

o [L] — When this parameter is set, the message will simply be displayed in the command
buffer (the command window); however, the debugger will not be activated.

o [beg_mes] — The first message from the message range. This might be either a
numeric or a symbolic designation of the required message.

o [end_mes] — The last message from the message range (when dealing with the
message range instead of a single message). If this parameter is missing, only the
message specified by the beg_mes parameter will be traced.

If no messages are specified in the command, then the breakpoint is applied to all messages of
the given window. The example illustrating the use of this command is as follows: BMSG
01001F WM_PAINT. This command traps the WM_PAINT message for the window with the
01001F handle.
§ BSTAT — This command outputs statistics on the given breakpoint. As a parameter for this

command, specify the breakpoint number. In particular, this command will output the 
Popups value (the number of times this breakpoint caused the SoftIce window to pop up)
and the Breaks value (the number of times the given breakpoint was activated}, among
others.

Commands for Manipulating Breakpoints
§ BPE — This command is intended for editing a given breakpoint. The command accepts the

breakpoint number as a parameter.

§ BPT — This command calls the template for creating a breakpoint with the specified
number into the command line. The difference of this command from the previous one is
that this command creates a new breakpoint instead of editing the existing one.

§ BL — This command generates the list of breakpoints, specifying the breakpoint number
and the template used for creating the given breakpoint.

§ BC — This command deletes the specified breakpoint. The parameter of this command is
the breakpoint number of the list of breakpoint numbers (separated by commas or blank
characters). If the * character is specified as a parameter, then all breakpoints will be
deleted.
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§ BD — This command disables all breakpoints specified as parameters. The parameter of
this command is a list of all breakpoints to be disabled (breakpoint numbers separated by
commas or blank characters). To disable all breakpoints, use the * wildcard character.

§ BE — This command enables breakpoints. As a parameter, it accepts the list of breakpoints
(breakpoint numbers separated by commas or blank characters) or the * wildcard
character.

§ BH — This command outputs the list of breakpoints used in the current and previous
debugging sessions. You can navigate this list and can choose the breakpoint that you
need by pressing <Insert>. The <Enter> key is used for setting all selected breakpoints. The
debugger remembers the last 32 breakpoints.

Tracing Commands
§ X — This command exits the SoftIce window and returns control to the program whose

execution was interrupted by SoftIce. This command is equivalent to the <F5> hotkey or the
<Ctrl>+<D> shortcut.

§ G — This command informs the debugger that it is necessary to execute the application
being debugged. The command format is as follows: G [=addressl] [address2]. The
command accepts the following parameters:
o Addressl — This is the address, from which the execution must start. If this address

has not been specified, then execution will start from the current address (CS:EIP).

o Address2 — This is the terminating address for execution. If this address has not been
specified, execution will continue until a breakpoint is encountered or until the SoftIce
window is called.

The G command without parameters is equivalent to the X command. The G @SS:EBP
command is equivalent to pressing <F11> (go to the calling function).
§ T — This command is intended for step-by-step execution of the code being debugged. The

command format is as follows: T [=address] [count]. Command parameters are as
follows:
o Address — This is the starting address, from which the tracing must start. If this

parameter has not been specified, then execution will start from the current command.

o Count — This parameter specifies the number of instructions to be executed. If this
parameter is missing, then only one instruction will be executed.

This command without parameters is equivalent to pressing <F8>. An example of command use
is as follows: T CS:EIP - 20 10. Thus, ten instructions will be executed starting from the CS:
EIP - 20 address.
§ P — This command corresponds to execution of the instruction bypassing procedures,

interrupts, string commands, and loops. Without parameters, it is equivalent to pressing
<F10>. If the RET (P RET) option is present, SoftIce will execute the program until the
RETN/RETF instructions are encountered. Execution will stop at the point, to which the jump
using these commands is carried out. Thus, this command with a parameter is equivalent to
pressing <F12>.

§ HERE — This command is equivalent to pressing the <F7> hotkey. It instructs the debugger
to execute the program starting from the CS:EIP address to the current location of the
cursor in the code window.

§ EXIT — This command is considered obsolete. It is equivalent to the x command. It is
recommended that you avoid using this command.

§ GENINT — This command passes control to the specified interrupt. The command format is
as follows: GENINT [nmi | intl | int3| number]. The following parameters are
accepted by this command:



179Chapter 4: The SoftIce Debugger

 

o nmi — The call to the nonmaskable interrupt

o Intl — The call to interrupt number 1

o Int3 — The call to interrupt number 3

o Number — The call to the interrupt with a number ranging from 0 to 5F

This command must be used carefully. When using it, you must be sure that the handler for the
specified interrupt exists; otherwise, the command would freeze the entire system.
§ HBOOT — This command resets (reboots) the entire computer system.

§ I1HERE — There are two variants of this command. I1HERE on enables the mode. In this
case, the SoftIce window will be called every time the interrupt with the number 1 takes
place. I1HERE off disables the mode.

§ I3HERE — This command has two variants: I3HERE on enables the mode. The SoftIce
window will be called every time the interrupt with the number 3 takes place. The I3HERE
off command disables the mode.

§ ZAP — This command replaces the calls to interrupts 1 and 3 with NOP instructions.

Main Informational Commands
§ GDT — This command displays the global descriptor table (GDT). The command format is

as follows: GDT [selector|address]. The list of the command parameters is as
follows:
o Selector — Selector in GDT

o Address — Segment address

If parameters are not specified, the command would display the entire GDT content.
§ IDT — This command displays the local descriptor table (LDT). The command format is as

follows: IDT [selector|table_selector]. Command parameters are as follows:
o Selector — Selector in LDT

o Table_selector — LDT selector in GDT

If the command is issued without parameters, the entire LDT will be displayed.
§ IDT — This command displays the contents of the IDT. The command format is as follows: 
IDT [number|address]. Command parameters are as follows:
o Number — Number of the interrupt, about which it is necessary to display information

o Address — Address of the interrupt handler (selector:offset), about which it is
necessary to display information

If the command is issued without parameters, the command would display the current content of
the entire IDT.
§ TSS — Using this command, the debugger outputs the contents of the task state segment

(TSS) into the command window. The parameter of this command is the selector in GDT,
pointing to TSS. If the command is issued without a parameter, then the command will
display the contents of the current TSS, whose selector is located in the task register.

§ CPU — This command displays the complete list of processor registers and their contents.

§ PCI — This command outputs the information about all PCI devices present in the system
into the command window.

§ MOD — This command outputs the list of all loaded Windows modules. In the command
line, it is possible to specify the first characters of the module name, in which case the
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command will output the list of all modules whose names start with the specified prefix.

§ HEAP32 — This command outputs the list of memory heaps created by the operating
system and applications. The command format is as follows: HEAP32 [hheap|name]. The
list of command parameters is as follows:
o hheap — Handle of the heap returned by the CreateHeap function

o Name — Task name

This command outputs the following information: the base address of the heap, the maximum
size, the amount of used memory (in kilobytes), the number of segments in the heap, the heap
type, and the heap owner. If command parameters are missing, the list of all heaps is displayed.
§ TASK — When this command is issued, the debugger displays the entire task list and

additional information about tasks in the command window. The active heap will be marked
by the * character. This command might be useful in a system malfunction, when it is
necessary to determine, which task was the cause.

§ NTCALL — This command lists all system services operating at the kernel level (ring 0).

§ WMSG — This command displays the list of Windows messages and their numbers in the
command window. The command format is as follows: WMSG [partial_name]
[number]. Command parameters are as follows:
o Partial_name — Full or partial name of the Windows message

o Number — Number of the Windows message

The command without parameters outputs the list of all Windows messages known to the
debugger. If the partial_name parameter is present, the debugger outputs all messages
corresponding to the given fragment of the message name. If the message number is specified,
then the message number and its name will be displayed.
§ PAGE — Using this command, the debugger outputs information about memory pages

starting from the given virtual address. The displayed information includes virtual and
physical addresses, attribute, type, and virtual size. The command format is as follows: 
PAGE [address] [L length]. Command parameters are as follows:
o Address — Virtual page address

o Length — Number of pages for output

If the command is issued without parameters, the debugger displays the list of all pages.
§ PHYS — This command displays the list of all virtual addresses corresponding to the given

physical address. This command can be used only with the parameter specifying the
physical address.

§ STACK — This command outputs information about the stack structure. The command
format is as follows: STACK [thread | frame]. Command parameters are as follows:
o Thread — Either the thread descriptor or the thread identifier

o Frame — Address of the stack frame

If this command is specified without parameters, the debugger outputs information about the
current stack on the basis of the SS:EBP address.
§ XFRAME — This command outputs information about the exception written into the stack

(see Section 3.2.5). The command parameter is either the thread identifier or the pointer to
the stack frame. If the parameter is missing, the debugger uses the current thread.

§ HWND — This command outputs information about the windows created in the system. The
command format is as follows: HWND [-x] [-c] [hwnd|desktop|process|thread|
modul|class]. Command parameters are as follows:
o -x — Extended information
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o -c — Windows hierarchy

o Hwnd — Window handle or the pointer to the window structure

o Desktop — Desktop descriptor

o Process — PID

o Thread — Thread identifier

o Module — Module name

o Class — Name of the registered window class

If the command is issued without parameters, the debugger outputs information about all
windows currently in the system.
§ class — This command outputs information about window classes. The command format

is as follows: CLASS [-x] [process] [thread] [module] [class]. Command
parameters are as follows:
o -x — Extended information about window classes

o Process — PID

o Thread — Thread identifier

o Module — Module identifier or name

o Class — Name of the registered window class

If the command is issued without parameters, the debugger will output the list of all registered
window classes for the current process.
§ THREAD - This command is used for obtaining information about threads. The command

format is as follows: THREAD [-r|-x-u] [thread] [process]. Command
parameters are as follows:
o -r — Information about the thread registers

o -x — Extended information about threads

o -u — Information about user-level thread components

o Thread — Thread identifier

o Process — PID

§ ADDR- This command is used to output information about existing address contexts
(processes) and to establish the current context. To set the current context, it is necessary
to supply the command parameter representing the PID, name, or address. Also, it is
possible to specify the address of the process environment block (PEB), or kernel process
environment block (KPEB). If the command is issued without parameters, the debugger
outputs information about all existing address contexts.

§ MAP32 — This command outputs the list of loaded 32-bit modules and additional
information about these modules. The command format is as follows: MAP32 [-u|-s]
[name|handle|address]. Command parameters are as follows:
o -u — Display only modules loaded into the user-mode part of available memory

o -s — Display only modules loaded into the part of the memory allocated for the operating
system and the tools that it requires

o Name — Module name

o Handle — Base address of a module image
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o Address — Address that falls within the module image

If the command is issued without parameters, the debugger will output the list of all loaded 32-bit
modules and additional information about those modules.
§ proc — This command is intended for obtaining information about the process. The

command format is as follows: PROC [-xom] [name]. Command parameters are as
follows:
o -x — Extended information about each branch

o -o — Extended information about each object

o -m — Information about the object's memory use

o Name — Name of the tasks or process, process descriptor, PID, thread name or
identifier, or thread descriptor

If the object name has not been specified, then information about all processes will be displayed.
§ QUERY - This command is intended for output of the virtual memory map of the processes.

The command format is as follows: QUERY [-x] [address] [name]. Command
parameters are as follows:
o -x — Names of processes (along with information about them) that occupy the specified

virtual address

o address — Virtual address

o Name — Process name

If the command is issued without parameters, it displays the virtual memory map of the current
process.
§ WHAT — This command tries to interpret the parameter specified to it. For example, if the

supplied parameter is the PID, the command informs you about this. In other words, you
can check the authenticity of the identifier or descriptor on your own.

§ OBJTAB — This command allows you to obtain information about the USER object table.

§ FOBJ — This command outputs information about existing file objects. Such objects are
created for each opened file.

§ IRP — This command outputs information about input/output request packets.

§ FIBER — This command outputs the information about the fiber data structure. In
particular, this data structure is returned by the CreateFiber() function.

Other Commands
§ PAUSE — This command sets two modes for viewing information in the command window.

The PAUSE on mode is the default one, in which the information is displayed in portions,
and the next portion of data appears only after the user presses any key. The PAUSE off
mode corresponds to continuous information output.

§ ? — This command computes the expression value, for example, ? 34 + 90*2. The
debugger simultaneously outputs the result in hex and decimal formats, as well as in the
ASCII format.

§ OPTNFO — This command allows you to obtain information about a specific processor
instruction. For example, if you issue the OPINFO add command, the main information
about the ADD processor instruction will be displayed on the screen (Listing 4.2).

Listing 4.2: Information about the ADD processor instruction displayed by the
OPINFO command
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ADD
     Integer addition: DEST <- DEST + SRC
     EFLAGS | OF DF IF SF ZF AF PF CF TF NT RF |
            | M        M  M  M  M  M           |

§ ALTKEY — This command replaces the keyboard combination used for activating the
SoftIce debugger. By default, the <Ctrl>+<D> shortcut is used. If this command is issued
without parameters, then SoftIce will display the current combination in the command
window, for example, ALTKEY Alt P or ALTKEY ctrl z. In this case, the SoftIce
window will be activated by <Alt>+<P> or <Ctrl>+<Z>, respectively.

Operators

The SoftIce debugger environment allows you to use expressions in commands and breakpoint
definitions. Expressions are built using operators. Consider the list of operators used by the
debugger.

Addressing Operators
§ . — If the code window is visible, this command makes the instruction located at CS:EIP

visible, and highlights it. The dot operator can be used in expressions.

§ * — This operator is used for specifying the address, to which the given expression points.
For example, *(EAX) designates the contents of the memory pointed to by the EAX
register.

§ -> — Using this operator, as well as using the asterisk operator, it is possible to obtain the
memory contents located at the address pointed to by the given expression. For example, if
you know the address of the window procedure, which can be obtained using the HWND
command, then it is possible to set the following breakpoint at the WM PAINT message:
BPX 65DFE003 IF (ESP -> 8) == WM PAINT.

§ @ - This operator is equivalent to the asterisk operator.

Arithmetic Operators
§ Unary and binary plus (+) operators, for example, +100 or EBx + EST

§ Unary and binary minus (-) operators, for example, -100 or EAx - 8

§ Binary multiplication (*) operator, for example, EBx*4

§ Binary division (/) operator, for example, (EAX + EBx) /2

§ Binary modulo (%) operator, for example, EBx % 3

§ Logical left shift operator (<<)

§ Logical right shift operator (>>)

Bitwise Operators

§ Bitwise AND operator (&)

§ Bitwise or operator (|)

§ Bitwise exclusive OR operator (^)
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§ Bitwise negation or NOT operator (~)

Logical Operators
§ Logical NOT (!), for example, ! EBx

§ Logical AND (&&), for example, EAX && EBX

§ Logical OR (||), for example, EAX || FF

§ Equality condition (==)

§ Inequality condition (!=)

§ Less than (<)

§ Greater than (>)

§ Less than or equal to (<=)

§ Greater than or equal to (>=)

Built-in SoftIce Functions

The disassembler provides a range of built-in functions. The main built-in functions are briefly
outlined here:
§ Byte — Return the least significant byte of the expression.

§ Word — Return the least significant word of the expression.

§ Dword — Return a double word (extend a byte or a word to a double word).

§ HiByte — Return the most significant byte (or a word or a double word).

§ Hiword — Return the most significant word.

§ Sword — Convert a byte into a signed word.

§ Long — Convert a byte or a word into a long integer.

§ wstr — Display the string in the Unicode format.

§ Flat — Convert the address with a selector (logical address) into the linear address of the
flat memory model.

The current contents of the registers can be found using the functions with names
corresponding to the names of appropriate registers, for example, EAX, EBX, and EDX.
§ CFL — Return the carry flag's value.

§ PFL— Return the parity flag's value.

§ AEL — Return the auxiliary flag's value.

§ ZEL — Return the zero flag's value.

§ SEL — Return the sign flag's value.

§ OEL — Return the overflow flag's value.

§ RFL — Return the resume flag's value.
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§ TEL — Return the trace flag's value.

§ DFL — Return the direction flag's value.

§ TEL — Return the interrupt flag's value.

§ NTFL — Return the nested task flag's value.

§ IOPL — Return the input/output privilege level flag's value.

§ VMFL — Return the virtual machine flag's value.

§ IRQL — Return the interrupt request level flag's value.

§ DataAddr — Return the initial address of the data block displayed in the data window.

§ CodeAddr —Return the address of the first instruction displayed in the code window.

§ Eaddr — Return the effective address of the current instruction, if one is present.

§ Evalue — Return the value located at the current effective address.

§ Process — Return the kernel-mode PEB of the currently active process.

§ Thread — Return the kernel-mode thread environment block of the currently active thread.

§ PID — Return the identifier of the currently active process.

§ TID — Return the identifier of the currently active thread.

§ BPCount — Return the number of times that the breakpoint has been activated, for which
the value of the conditional expression was TRUE.

§ BPTotal — Return the total number of times the breakpoint has been evaluated.

§
BPMiss
 —
 Return the number of times the breakpoint has been triggered, for which the conditional
expression hasn't been satisfied (and the Softlce window hasn't been activated).

§
BPLog
 —
 Silently save into the buffer information about the number of times the breakpoint has been
evaluated.

§
BPIndex
 —
 Return the number of the current breakpoint in the list of breakpoints.

If the number of any function is preceded by the underscore character, then the disassembler
computes the current function value and uses it in further computations: _ 

PID,_TID,_EAX,
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 etc.

Overview

In 

Section 2.4

, I provided several simple examples of analysis and correction of executable code. The main
goal of this chapter is to provide some theoretical basis. Using the material provided here, you'll
be able to investigate more difficult cases.

When studying code analysis, it is necessary to understand that this is not the same thing as
decompilation (conversion of binary executable code into a program written in some high-level
programming language). Although I will provide analysis of the algorithmic structure and main
constructs of high-level programming languages in this chapter, its main goal isn't reconstruction
of the program's source code (which in general is impossible). Rather, the main aim of this
material is to provide an understanding of the program operating logic. Examples in Section 2.4
demonstrate code analysis techniques aimed at solving specific tasks (code analysis in the
specified context). These problems were solved without even trying to understand, which
constructs of specific programming language were used. However, you won't be able to solve
more difficult problems without knowing these constructs, understanding how they are converted
during the compilation, and discovering the form, in which they are present in the binary code
after the compilation is completed.

Even for a single programming language there might be lots of different compilers — consider
the C++ programming language. In addition, every compiler usually has several compilation
modes, which, as a rule, are related to the methods of optimizing the resulting code and adding
various check procedures into it (such as checks for going beyond the buffer limits). All of these
concepts are illustrated in Fig. 3.1. In general, it is impossible to study this entire hierarchy. This
is not a serious problem, however, because studying this is unnecessary. The only thing that you
need to do is understand the patterns, according to which the executable code is formed.

Figure 3.1: The language-executable code hierarchy

I hope that the material provided in this chapter will help you master these patterns. The
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executable code in this chapter is all analyzed on the basis of IDA Pro, which is the best
contemporary disassembler. Reference information about this disassembler will be provided in 

Chapter 5

.

3.1. Data Identification

Data identification was covered in Section 1.6; however, there I mainly described Assembly
language. Analysis of code written using Assembly language is, on one hand, easier and on the
other hand, more difficult than analyzing the code written in some high-level programming
language. This task is easier because you are writing the same code that will be placed into the
compiled program. This task is more difficult because Assembly language practically doesn't
limit the options of the programmer. Thus, everything depends on the programmer's self-
discipline and formulated tasks. If your goal is to confuse any potential investigator of your code,
you won't be able to find a language better than Assembly. When you are writing a program in
some high-level programming language, you can't predict what will result after your source code
is compiled. Furthermore, most programmers writing their programs in Visual C++ or Delphi
never think what the compiler would produce on the basis of their source code. When analyzing
such a code, investigators must solve the following problems:
§ "Grind" the specific features of compiler operation

§ "Squeeze" their way through the programmer's working style

This section concentrates on the topic of identifying the data used in high-level programming
languages.

3.1.1. Global Variables

There is a common opinion that global variables are harmful for programming. Nevertheless,
most programmers always used them in the past, use them now, and will continue to use them
in the future. Therefore, mastering the technique of recognizing global variables is a must.

Optimization Influence

Optimization by Execution Speed and Code Size

I'll start investigation of the optimization influence with a simple program written in C++.[1] This
program is presented in Listing 3.1. There are three global variables in this program, one of
which is not initialized.

Listing 3.1: Simple C++ program containing three global variables, one uninitialized
#include <stdio.h>
int a, b = 20, s = 0;
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void main()
{
        a = 10;
        s = a + b;
        printf("%d", s);
};

Consider what the Microsoft Visual C++ (Visual Studio .NET 2003) compiler would produce out
of this program. Load the executable module, compiled using the "no optimization" option, into
the IDA Pro disassembler. The disassembled code is presented in Listing 3.2. I hope that you
won't have any difficulties studying this disassembled text, which I have followed with brief
comments.

Listing 3.2: Disassembled code of the program (Listing 3.1) compiled without
optimization
.text:00401000 _main   proc near                ; CODE XREF: start + 16E p
.text:00401000         push    ebp
.text:00401001         mov     ebp, esp
.text:00401003         mov     dword_4086E0, 0Ah ; a = 10
.text:0040100D         mov     eax, dword_4086E0 ; a -> eax
.text:00401012         add     eax, dword_408040 ; a + b -> eax
.text:00401018         mov     dword_4086E4, eax ; eax -> s
.text:0040101D         mov     ecx, dword_4086E4 ; s -> ecx
.text:00401023         push    ecx
.text:00401024         push    offset unk_4060FC ; Formatted printf string
.text:00401029         call    _printf
.text:0040102E         add     esp, 8
.text:00401031         xor     eax, eax
.text:00401033         pop     ebp
.text:00401034         retn
.text:00401034 _main   endp

Having carefully analyzed Listing 3.2, you'll immediately note the following interesting issues:
§ IDA Pro has excellently handled the job of recognizing global variables. This is not

surprising. The text contains direct references to global variables (dword_4086EO,
dword_4086E4, and dword_408040). Assembly commands directly refer to the variable
size. Determining the sizes of variables is an important issue related to disassembling. It is
not always possible to determine the variable size exactly. Note that the b (dword_408040)
variable is located separately from the other two variables. The compiler considers a (

dword_4086EO) and s (dword_4086E4) [2] variables uninitialized ones. This topic will be
covered in more detail later in this section, when discussing variable size and location (see "
Variable Size, Location, and Type").

§ Even a beginner will immediately note that the compiled text is redundant:
o There are the so-called prologue (PUSH EBP/MOV EBP, ESP) and epilogue (POP EBP)

of the function. These will be covered in more detail in Section 3.2.1. Both of these
elements are redundant in this function, because the EBP register is used for addressing
of the stack variables and parameters, which are not present in this program.

o The a variable is initialized, then it is used in the addition operation. Because its value is
not printed and is not further used, it is possible to use a simple constant instead of the a
variable.

o Unnecessary memory reservation for the s variable immediately attracts attention.
Because the result of addition is loaded into the EAX register, it is most logical to use it as
the s variable. In other words, it would be expedient to make s a register variable.
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Listing 3.3 presents the disassembled code of the same program (see Listing 3.1) compiled with
the "create fast code" option. As you can see, now the code doesn't create any function
prologue or epilogue. For the moment, this issue is not the main one.

Listing 3.3: Disassembled code (Listing 3.1) compiled with the "create fast code" option
.text:00401000 _main   proc near              ; CODE XREF: start + 16E p
.text:00401000         mov  eax,  dword_408040   ; b -> eax
.text:00401005         add  eax, OAh             ; The sum is here.
.text:00401008         push eax
.text:00401009         push offset unk_4060FC
.text:0040100E         mov  dword_4086E0,  0Ah   ; 10 -> a
.text:00401018         mov  dword_4086E4,  eax   ; eax -> s
.text:0040101D         call _printf
.text:00401022         add  esp, 8
.text:00401025         xor  eax, eax
.text:00401027         retn
.text:00401027 _main   endp

Consider how the sum (the s variable) is obtained. The summing is carried out by adding the
register content and a constant. This operation is carried out much faster than adding the
register content and a variable. Pay special attention to the command grouping. First, the values
are pushed onto the stack; then, they are followed by two data exchange commands. This
approach is based on the Pentium processor properties. It is known as command pairing. Its
main idea is that two commands that satisfy specific predefined conditions are executed in
parallel, which means that two commands are carried out as a single command. Thus, the
compiler has met some of the optimization requirements.

Note Contemporary Intel-compatible
processors have two pipelines
of executing instructions. These
pipelines are known as U
pipelines and V pipelines.
Under certain circumstances,
the processor would execute
two commands sequentially in
different pipelines. As the
result, the execution speed
would be practically doubled.
There are instructions that can
be executed only in the U
pipeline, and other instructions
can be used only in V pipeline.
Finally, there are instructions
that can be executed in both
pipelines. Knowing this, it is
possible to group commands to
increase the program execution
speed as much as possible.
Contemporary compilers
"know" this processor feature.
So, if you encounter an unusual
order of instructions in the
executable code, you should
recall instruction pairing.

Try to optimize by the code size. Disassembling shows that the change in the code size is
minimal (compared with that in Listing 3.3): the ADD ESP, 8 command (which takes 3 bytes) is
replaced with the POP ECX/POP ECX pair of commands (each command is 1 byte).
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Why did I provide all these examples? My goal wasn't to study optimization techniques (this
topic deserves a separate book). I simply wanted to prepare you (and provide a certain
theoretical background) to perceive that the code you will analyze might be quite unusual as the
result of optimization. Nevertheless, in the future I'll explain lots of optimization methods many
times.

Note The examples provided in this
section, among other things,
demonstrate that trying to
provide better optimization than
the compiler does (especially
as relates to the execution
speed) is not a simple job. The
test example (see Listing 3.1)
considered in this section is
simple. The situation will
become more complicated with
a real-world Assembly program
comprising hundreds of
commands. Manual
optimization of such programs
becomes difficult. Thus, in most
cases you'll have to rely on the
compiler, especially when
dealing with such products as
Microsoft Visual C++, long
famous for its optimization
capabilities.

Evaluating Execution Time

When optimizing program code, evaluating the execution time of a specific program fragment
becomes the most important issue. The simplest way of achieving this goal is to use two API
functions. The first function is QueryPerformanceCounter. Its only argument is the pointer to
the LARGE_INTEGER structure. If the function is executed correctly, this structure would store
the number of processor clocks elapsed since program start-up. The second function is 
QueryPerformanceFrequency. Its argument also contains the pointer to the
LARGE_INTEGER structure; however, this time the structure contains the clock frequency. Thus,
if t1 and t2 stand for the number of clocks elapsed from the start and to the end of the program
fragment being investigated, respectively, and fr is the clock frequency, then the number of
milliseconds required for executing the given program fragment can be computed by the
following formula: (t2 - t1) *1000/fr. This is only a rough evaluation, because in the
multitasking environment exact computations of the execution time of the chosen program
fragment are out of the question.

Pointers to Global Variables

It is impossible to imagine the C programming language without pointers. Pointers are
quintessential of this programming language and determine its fate. Instead operating over a
variable, it is possible to operate over the pointer to that variable. To operate over pointers,
compilers use indirect addressing. This fact, however, is self-evident. If s is some pointer to
data, then the MOV EDX, s command allows the data to be accessed through [EDX]: for
example, the MOV EAX, [EDX] command moves a 4-byte value from the data area into the EAX
register.

Listing 3.4 demonstrates a sample program, in which one of the global variables is defined by a
pointer. The disassembled listing of this program is provided in Listing 3.5.
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Listing 3.4: Sample program, in which one global variable is defined using a pointer
#include <stdio.h>
#include <stdlib.h>
int a, b = 20;
int *s;
void main()
{
        s = (int*)malloc(4);
        a = 10;

        *s = a + b;
        printf("%d", *s);
        free(s);
};

Listing 3.5: Disassembled code of the program presented in Listing 3.4
.text:00401000 _main  proc  near               ; CODE XREF: start + 16E p
.text:00401000        push  ebp
.text:00401001        mov   ebp, esp
.text:00401003        push  4                  ; Reserve 4 bytes.
.text:00401005        call  _malloc
.text:0040100A        add   esp, 4             ; Clear the stack.
.text:0040100D        mov   dword_4086CO, eax  ; This variable
                                               ; contains a pointer.
.text:00401012        mov   dword_4086C4, OAh  ; a = 10
.text:0040101C        mov   eax, dword_4086C4  ; a -> eax
.text:00401021        add   eax, dword_408040  ; a + b -> eax
.text:00401027        mov   ecx, dword_4086CO  ; ECX contains the
                                               ; pointer address.
.text:0040102D        mov   [ecx], eax         ; The sum is located
                                               ; at the address
                                               ; referenced by the
                                               ; pointer.
.text:0040102F        mov   edx, dword_4086CO  ; Pointer -> edx
.text:00401035        mov   eax, [edx]         ; Sum -> eax
.text:00401037        push  eax                ; The sum is pushed
                                               ; into the stack.
.text:00401038        push  offset unk_4060FC  ; The formatted string
.text:0040103D        call  _printf
.text:00401042        add   esp, 8

.text:00401045        mov   ecx, dword_4086CO  ; Pointer -> ecx.

.text:0040104B        push  ecx

.text:0040104C        call  _free              ; Release the pointer.

.text:00401051        add   esp, 4

.text:00401054        xor   eax, eax

.text:00401056        pop   ebp

.text:00401057        retn

.text:00401057        _main endp

Note that Listing 3.5 uses indirect addressing twice (through the ECX and EDX registers). The
second case, in which indirect addressing is used (through EDX), looks strange because ECX
already contains the address of the s variable. Why use EDX? This is a rhetorical question. After
all, I compiled the program having specified that no optimization was needed by the compiler.
Thus, the compiler has simply generated one fragment for writing through the pointer and
another fragment for reading through the pointer.

What conclusions can be drawn on the basis of this material? Notice that indirect addressing is
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used when briefly viewing the disassembled code. This means that pointers must be present in
the program being investigated.

Global Variables and Constants

Consider an intricate issue: How do you distinguish the address of some global variable from a
normal constant?

Consider the example program shown in Listing 3.6. Variables a, b, and c are assigned the
values of some numeric constants, then the standard printf library function is used to output
them to the console. The C program is correct and unambiguous; it cannot be interpreted
incorrectly. However, consider how IDA Pro interprets the executable code of this program (
Listing 3.7).

Listing 3.6: Distinction between an address of a global variable and a normal constant
#include <stdio.h>
int a, b, c;
void main()
{
        a = 10;
        b = 20;
        c = 0x4086d0;
        printf("%d %d %d\n", a, b, c);
};

Listing 3.7: Disassembled code of the program shown in Listing 3.6
.text:00401000 _main       proc near          ; CODE XREF: start + 16E p
.text:00401000             push    ebp
.text:00401001             mov     ebp, esp
.text:00401003             mov     dword_4086C8, 0Ah
.text:0040100D             mov     dword_4086C0, 14h
.text:00401017             mov     dword_4086C4, offset unk_4086D0
.text:00401021             mov     eax, dword_4086C4
.text:00401026             push    eax
.text:00401027             mov     ecx, dword_4086C0
.text:0040102D             push    ecx
.text:0040102E             mov     edx, dword_4086C8
.text:00401034             push    edx
.text:00401035             push    offset aDDD  ; "%d %d %d\n"
.text:0040103A             call    _printf
.text:0040103F             add     esp, 10h
.text:00401042             xor     eax, eax
.text:00401044             pop     ebp
.text:00401045             retn
.text:00401045 _main       endp

Consider Listing 3.7, obtained using IDA Pro, more carefully. The dword_4086C8 label is the a
variable, dword_4086C0 corresponds to the b variable, and dword_4086C4 stands for the c
variable. What does this mean? The dword_4086C4 variable is used to load the address of the
unk_4086D0 memory cells. Why? What is the role of these cells? The number 0x4086D0 is
simply a constant! However, IDA Pro considered this number to be an address. Strange! It
should be pointed out that the unk_ prefix means that the disassembler has doubts and is not
sure what is hidden by that address. However, the disassembler's doubts do not matter! In the
course of analysis, you must draw an unambiguous conclusion. In this example, the text is
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simple; therefore, it is not difficult to make the right decision. You must not have any doubts,
even though IDA Pro has some. However strange this might seem at first, in this situation the
W32Dasm disassembler has done a good job. This is not because of its outstanding capabilities
in the field of recognizing addresses and constants. This is because of its lack of such
capabilities, which causes this disassembler to interpret everything (or practically everything) as
constants.

What would happen if the c variable is assigned the 0x4086c0 value? I hope that you have
already guessed. In this case, IDA Pro will obtain additional confirmation that this is an address
of some variable. Instead of the mov dword_4086C4, offset unk_4086D0 command,
another command would appear in the listing: mov dword_4086C4, offset dword_4086c0.
Thus, the disassembler no longer doubts that it is dealing with a variable. However, you know
that this is not so. Furthermore, you will easily draw the right conclusion using the disassembled
listing.

However, another problem remains. Any disassembler is a program; therefore, it needs a strict
criterion that can be implemented algorithmically. In the case being considered, there are no
commands that would confirm (or refute) the assumption that it is dealing with an address
except for the range. Falling into this range makes a constant a candidate for being an address.
What would this range be in the case in question? Everything is straightforward here. First, there
is a range of addresses allocated for the data. IDA Pro considers a constant falling into this
range one of the indications of a data address. However, there also is the range of code
addresses. For example, if a constant is equal to 0x401000, the disassembler would consider
that it deals with the address of the _main function. Note that in this case IDA Pro will not
"suspect" that the constant represents an address; it would be sure that this is an address.

What conclusion can be drawn on the basis of these considerations? My conclusion is de
omnibus dubitandum. In other words, you can never be certain of anything. If the suspicious
constant is treated like an address — for instance, using the LEA command — then it is possible
to speak about an address with greater certainty. Furthermore, if you notice that the constant is
then used in indirect addressing or as a function parameter (which represents an address by
definition), then you shouldn't have any doubts.

Variable Size, Location, and Type

Long ago, when MS-DOS was dominant, I encountered in a Pascal manual a statement
declaring that the use of 1-byte variables instead of 2-byte ones speeds up program operation. I
doubted this statement, so I investigated the Assembly code of such a program. It turned out
that the statement was far from true. Has the situation changed? How do 32-bit operating
systems behave? Is there any practical advantage in using 1- and 2-byte variables instead of 4-
byte ones? Where are variables located, and how can disassemblers determine their size? All of
these questions will be answered in this section.

To begin the investigation, recall the material provided in Section 1.1.3. Consider the code
fragment shown in Listing 3.8 (it is similar to the one shown in Listing 1.2).

Listing 3.8: Fragment of the test C program for studying variable size, location, and type
BYTE e = 0xab;
WORD c = 0x1234;
DWORD b = 0x34567890;

If you view the memory, you will discover that all variables are aligned by a boundary that is a
multiple of four. However, it turns out that this alignment is only due to the order, in which these
variables were declared. For example, consider code, in which variables are declared in a
different order (Listing 3.9).
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Listing 3.9: Fragment of Listing 3.8, in which variables are declared in a different order
WORD c = 0x1234;
BYTE e = 0xab;
DWORD b = 0x34567890;

In this case, the compiler will place variables in memory so that the first two variables will be
located in two neighboring words. The b variable will be aligned by the 4-byte boundary, as in
the previous case. There are optimal rules for the alignment of different data types. Table 3.1
outlines information about the alignment of data of different sizes.

Table 3.1: Optimal requirements for alignment of data of different sizes

Data size Alignment

1 byte 1 (no alignment)

2 bytes 2

4 bytes 4

6 bytes 8

8 bytes 8

10 bytes 16

16 bytes 16

Consider another example (Listing 3.10).

Listing 3.10: Simple example illustrating optimal alignment of data of different sizes
#include <stdio.h>
#include <windows.h>
WORD b = 10;
BYTE a;
DWORD c;
void main()
{
        a = 10;
        c = 30;
        printf("%d %d %d\n", a, b, c);
};

This is a simple example. However, even here there is a particular feature that will be helpful for
investigating some patterns of memory allocation for different variables. The a and c variables
are not initialized. They are assigned their values directly in the program text. The b variable is
initialized. Is there any difference among these variables? As it turns out, there is. Compile the
program using the Microsoft Visual C++ compiler, then disassemble the resulting executable
module using IDA Pro. Analyze the resulting listings, and you'll find that in IDA Pro all variables
will be located in the . data section. However, recall the material provided in Section 1.5.3,
where it was explained that initialized variables must be placed into the .data section and
uninitialized ones must be added to the .bss section. Curiously, listings produced by IDA Pro
clearly show that although all variables are located within the same section, they are placed into
different parts of that section: First, there is an initialized variable, then, after a long-enough
interval, there are two uninitialized variables. To understand the reason behind such behavior,
compile the program with the /Fas command-line option. An intermediate Assembly listing will
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be generated in the course of compiling. View this listing, and you'll discover an interesting
phenomenon: Two segments are present in the listing, one with the _data name (containing an
initialized variable) and another one called _bss (containing uninitialized variables). Later, these
segments must transform into appropriate sections. However, the compiler knows the names of
the _bss and _data segments and later combines them into the single . data section. With all
that being so, the data located in the _bss segment always follow the data from the _data
segment. To check this statement, write a simple Assembly program containing two data
segments (_bss and _data). After linking, only one data section called .data will remain.
However, if you slightly change the segment names, for example, replacing _bss with _bss1,
then the executable module will have two sections: . data and _bssl (including the underscore
character). After checking this statement for the Microsoft Visual C++ compiler, test the behavior
of other compilers. In my experiments, compiling the program from Listing 3.10 using Borland C
++ v. 5.00 showed that this compiler behaves similarly. In this case, the Assembly code
contained two data segments, with the _data and _bss names.

Consider another issue. How is it possible to determine the variable size in the course of
disassembling? The generalized answer to this question is as follows: This goal can be achieved
by analyzing the commands that operate over a specific variable. This answer is self-evident
because the variable behaves in a specific way depending on the operations that are carried out
over it. Recall the material provided in Section 1.4, where the format of the Intel microprocessor
commands was described. For instance, consider a simple operation that assigns some integer
value to a numeric variable. In C, this operation appears, for example, as follows: b = 10.
Accordingly, an Assembly command in general will appear as follows: MOV [mem], 10.
However, you know that in Assembly such operations require the variable type to be specified
explicitly (for example, byte ptr). This requirement is well-grounded. There is a significant
difference between placing the number 10 into a WORD variable and placing it into a DWORD
variable. Because there is a significant difference in the mathematics, there also must be a
difference in the command format.

Consider the complete command codes for the commands assigning values to variables of
three types: BYTE, WORD, and DWORD (Listing 3.11).

Listing 3.11: Complete codes of commands assigning values to three types of variables
C605 C8864000 14             MOV byte ptr [04086C8], 20
66 C705 C8864000 0A00        MOV word ptr [04086C8], 10
C705 C4864000 1E000000       MOV dword ptr [04086C4], 30

Note that MOD R/M bytes for all three commands are identical. The reason is clear: The first
operand is an offset for all three commands. Curiously, the code of the command operating over
a WORD operand differs by the presence of the 66H prefix from the code of the command
operating over the DWORD operand. This prefix specifies that the operand has the WORD type, not
the DWORD type. The command, in which the first operand has the BYTE type, has its individual
code. Thus, it becomes clear how the disassembler obtains information about the variable size:
It simply analyzes the program code.

Until now, floating-point numbers have not been covered. Now it is time to consider them.
Consider the program shown in Listing 3.12.

Listing 3.12: Simple program for investigating the behavior of floating-point variables
#include <stdio.h>
#include <windows.h>
double s, d;
int i;
void main()
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{
        s = 0.00;
        d = 1.034;
        for(i = 0; i < 100; i++)
                 s = s + i/d;
    printf("%f\n", s);
};

As you can see, the program in Listing 3.12 has two double variables. Recall the material
provided in Section 1.1.3 — to be precise, in its "Real Numbers" subsection, where floating-point
numbers were described. The format of double numbers used in the C++ language
corresponds to the format of long floating-point numbers supported by the Intel microprocessor,
or, to be precise, by its FPU (see Section 1.2.3). Listing 3.13 contains the disassembled code of
the main function from Listing 3.12.

Listing 3.13: Disassembled code of the main function from Listing 3.12
.text:00401000 _main         proc near   ; CODE XREF: start + 16E p
.text:00401000         var_8 = qword ptr -8
.text:00401000
.text:00401000              push    ebp
.text:00401001              mov     ebp, esp
.text:00401003              fld     ds:dbl_408108
.text:00401009              fstp    dbl_40R9D0
.text:0040100F              fld     ds:dbl_408100
.text:00401015              fstp     dbl_40A9C0
.text:0040101B              mov     dword_40A9C8, 0
.text:00401025              jmp     short loc_401034
.text:00401027 loc_401027:               ; CODE XREF: _main + 55 j
.text:00401027              mov     eax, dword_40A9C8
.text:0040102C              add     eax, 1
.text:0040102F              mov     dword_40A9C8, eax
.text:00401034
.text:00401034 loc_401034:               ; CODE XREF: _main + 25 j
.text:00401034              cmp     dword_40A9C8, 64h
.text:0040103B              jge     short loc_401057
.text:0040103D              fild    dword_40A9C8
.text:00401043              fdiv    dbl_40A9C0
.text:00401049              fadd    dbl_40A9D0
.text:0040104F              fstp    dbl_40A9D0
.text:00401055              jmp     short loc_401027
.text:00401057 ;-----------------------------------------------------------------
.text:00401057

.text:00401057 loc_401057:               ; CODE XREF: _main + 3B j

.text:00401057              fld     dbl_40A9D0

.text:0040105D              sub     esp, 8

.text:00401060              fstp    [esp + 8 + var_8]

.text:00401063              push    offset unk_4080FC

.text:00401068              call    _printf

.text:0040106D              add     esp, 0Ch

.text:00401070              xor     eax, eax

.text:00401072              pop     ebp

.text:00401073              retn

.text:00401073 _main        endp

The disassembled listing created by IDA Pro deserves special comments:
§ For the moment, skip the strange var_8 variable, which will be considered later. Also, skip

the function prologue. The four commands that following the prologue are interesting. They
represent nothing but the assignment of initial values to the s and d variables. For this
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purpose, the compiler has reserved places for two floating-point constants (dbl_408108 and
dbl_408100) beforehand. Using a sequence of two commands (fld and fstp), the
constant is loaded into an appropriate variable (these commands can be found in Table
1.19). Both constants and variables (dbl_40A9D0 and dbl_40A9C0) take 8 bytes, which is
quite natural. The next command, resetting the dword_40A9C8 integer variable to zero, is
self-evident. It simply assigns an initial value to the loop counter.

§ Later, there is a jump into the loop body to the loc_401034 label. Before this label, there
are three commands, which are intended to increase the loop counter (i++). Therefore,
skip these commands the first time. A possible exit from the loop is checked by the cmp
dword_40A9C8 and 64h/jge short loc_401057 commands. Naturally, 64h
corresponds to 100.

§ Then, there are four commands whose goal can be guessed by the code of the source
program. They correspond to s = s + i/d. The algorithm implemented by these
commands is as follows: The fild dword_40A9C8 command loads the integer loop
counter into the top of the coprocessor stack, st (0). The next command, fdiv, divides
the loop counter by the dbl_40A9C0 variable (this is d). Then, the fadd command adds
the division result to the dbl_40A9D0 variable, where the sum will be accumulated. Finally,
because the addition result is located in the coprocessor stack, the fstp command is used
to place it into the dbl_40A9D0 variable. The coprocessor stack is popped, which means
that, for example, the content of ST(1) is moved to ST(0). Later, an unconditional jump
returns control to the start of the loop.

§ Then, there is the call to the printf function. It is necessary to push a floatingpoint
number into the stack. This is an instructive technique. The fld dbl_40A9D0 command
pushes the computed sum into the coprocessor stack The next command, sub esp, 8,
reserves space in the stack for an 8-byte value. This command is equivalent to the two 
push commands. Then, the fstp [esp + 8 + var_8] command places the sum from
the coprocessor stack into the normal stack. The next push command sends the formatted
string into the stack.

The case just considered, in which initial values of floating-point variables are stored in
constants and then loaded into variables, is practiced by the Microsoft Visual C++ compiler. The
Borland C++ compiler uses another technique, which is less illustrative. The disassembled code
of the executable module produced by the Borland C++ compiler is shown in Listing 3.14.

Listing 3.14: Disassembled code of the executable module produced by Borland C++
.text:0040111B             mov      dword ptr dbl_40C2C4, 95810625h
.text:00401127             mov      dword ptr dbl_40C2C4 + 4, 3FF08B43h

As you can see, two strange constants are loaded into the memory. From this listing, it is hardly
possible to determine that this is a floating-point number and then to determine that number.
When analyzing this code, it is impossible to do without the information provided in Section 1.1.3
. The same problem is also encountered in Microsoft Visual C++, provided that you operate
over float variables. Such variables are short real numbers taking only 32 bits. Therefore, a
normal mov command is used for assigning this type of value to a variable. However, for any
operations over such variables, coprocessor commands are used. Thus, I strongly recommend
that you gain a sound understanding of the structure of real numbers (Section 1.1.3).

Thus, if you encounter FPU commands, you must immediately understand that it will be
necessary to spend time investigating floating-point variables.

When dealing with an integer variable, it is important to discover whether it is signed or
unsigned. For example, how would you distinguish int variables from unsigned int
(DWORD) ones? The general principle is as follows: Analyze the operations over the variables of
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interest and, on the basis of this analysis, determine their types. A more specific method of
determining the type of integer variables is analysis of the conditional constructs, in which they
participate. For example, the JL conditional jump command is used for comparing signed
numbers, and the JB command is its analogue used for unsigned numbers.

It only remains to answer a single question: Will any performance gain be obtained if you use
integer variables smaller than 4 bytes? The answer to this question consists of the following
issues:
§ Using shorter variables allows you to economize on memory.

§ However, it complicates the algorithm in the compiled code, because 32-bit variables must
be used in the program anyway. Complication of the algorithm slows down the execution
and results in the growth of the required memory.

Complex Data Types

Strings

Programming languages interpret string data types as sequences of encoded characters. As a
rule, ASCII encoding is used. When using this type of encoding, 1 byte is allocated for encoding
each character. Nowadays, Unicode encoding is gaining popularity. When using this type of
encoding, 2 bytes are allocated for encoding a single character.

Strings look much like arrays. The difference between them is that the string structure contains
information that can be used to easily determine its length. There are two different approaches
to solving this problem.
§ The end of the string must be marked in some way. Some specific code can be used for

this purpose, made up of 1 or more bytes. In C, the NULL (zero) code is traditionally used
for this purpose (it should not be confused with the 0 character). When using Unicode,
strings are terminated by two characters with the zero code. In addition, some
contemporary compilers can terminate strings with an entire sequence of seven 0 bytes,
thus adapting strings for processing in double-word blocks. Taking into account growing
memory resources, this approach doesn't seem too wasteful. This mechanism is
characterized by the following two drawbacks:

o To discover the string length, it is necessary to view the entire string, no matter how long
it might be. Furthermore, all string operations must be based on checking for the
presence of the string terminating character, which makes these operations somewhat
slower.

o When this approach is used, 0 bytes cannot be used directly within a string.

§ Information about the string length (or about its end) must be stored somewhere within the
string. Using the starting bytes of the string for this purpose is a natural approach. For
example, this approach is used in Pascal and in Delphi. This might be only a single byte, in
which case the string might not be longer than 255 characters. In Delphi, however, it is
possible to create strings with a 4-byte length field. In this case, the maximum possible
string length is comparable to the amount of the address space allocated to a process
under the Windows operating system.

In addition to the two preceding approaches, it is possible to use a combined approach. In this
case, the string length is specified before the string but the string terminator marks its end. This
approach is convenient for compatibility. However, because of its redundancy, it is a constant

source of headaches for programmers. [3]
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Note Programmers with experience
in MS-DOS programming,
certainly, would immediately
recall function 9 of the int
21h interrupt, using which it is
possible to output a character
string to the screen. This
system procedure used the
dollar sign ($) as a terminator.
This terminator is inconvenient
and was moved out of use long
ago.

To begin investigation of the string data type, consider a simple example of using Unicode
strings (Listing 3.15).

Listing 3.15: Simple example illustrating the use of Unicode strings
#include <stdio.h>
wchar_t  s[] = L"Hello, programmer!";
wchar_t  f[] = L"%s\n";

void main()
{
    wprintf(f, s);
};

Recall that wchar_t specifies the Unicode string type, L stands for the macro converting an
ASCII string to a Unicode string, and wprintf is the function for console output of Unicode
strings (an analogue of the printf function used for console output of ASCII strings). Note that
the format string (f) for the wprintf function also must be in Unicode encoding. Consider how
IDA Pro disassembles the call to the wprintf function (Listing 3.16).

Listing 3.16: Disassembled listing of the call to the wprintf function
.text:00401003       push  offset aHelloProgramme ; "Hello, programmer!"
.text:00401008       push  offset aS              ; "%s\n"
.text:0040100D       call  _wprintf

This is great, isn't it? IDA Pro has done an excellent job recognizing a Unicode string. Here are
these strings as they appear in the data section (Listing 3.17).

Listing 3.17: Unicode strings from Listing 3.15 as they appear in the data section
.data:00409040       aHelloProgramme:           ; DATA XREF: _main + 3 o
.data:00409040       unicode 0, <Hello, programmer!>, 0

If desired, you can press the <A> key to convert this string into the sequence of ASCII
characters. You'll then discover that the codes of ASCII characters belonging to the range from
0 to 127 are converted to Unicode without changes by adding a most significant 0 byte
(complementing a byte with a word). Thus, conversion of an English text from ASCII to Unicode
is a trivial task.

The next example (Listing 3.18) relates to Delphi. [4]

Listing 3.18: Example illustrating the use of Delphi strings
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var
  sl:widestring;
  s2:string; {by default this is an AnsiString}
  s3:shortstring;
begin
  s1 := 'Hello world!';
  s2 := 'Hello programmers!';
  s3 := 'Hello hackers!';
  writeln(sl);
  writeln(s2);
  writeln(s3);
end.

The program in Listing 3.18 uses three types of strings available in Delphi. What would you see
when analyzing the disassembled code produced by IDA Pro? What could be more interesting
than programming, except for investigation of the executable code?

Compile this program, load it into IDA Pro, and analyze it automatically. Then, try to find the
strings of interest in the Strings window. Strangely, only the Hello world! string can be found
there. Hope remains that other strings are near, so you'd be able to find them quickly. This hope
is not vain. Here is the code fragment that you needed (Listing 3.19).

Listing 3.19: Code fragment containing strings from the program in Listing 3.18
CODE:0044CC4D        align 10h
CODE:0044CC50        dd 18h
CODE:0044CC54 aHelloWorld:
CODE:0044CC54                        ; DATA XREF: sub_44CBAC + 21 o
CODE:0044CC54        uniccde 0, <Hello world!>, 0
CODE:0044CC6E        align 10h
CODE:0044CC70        dd OFFFFFFFFh, 12h
CODE:0044CC78 aHelloProgramme db 'Hello programmers!', 0

CODE:0044CC78                        ; DATA XREF: sub_44CBAC + 30 o
CODE:0044CC8B        align 4
CODE:0044CC8C dword_44CC8C    dd 6C65480Eh, 68206F6Ch, 656B6361h, 217372h

CODE:0044CC8C                        ; DATA XREF: sub_44CBAC + 3A o

Very well! The disassembler has recognized the s2 string (Listing 3.18). It hasn't placed it into
the Strings window; however, this is a minor drawback. It would be interesting to find out what is
located at the 0044CC8C address, because the reference to that block from the program code is
also present. Move the cursor to that string and press the <A> key (it is also possible to use the 
Options | Ascii string style menu commands and click the Pascal style button in the dialog
box that would appear on the screen. Then the wonder would happen (Listing 3.20).

Listing 3.20: Fragment of the disassembled test program (Listing 3.18) with the s3 string
CODE:0044CC8C aHelloHackers       db 14, 'Hello hackers!'
CODE:0044CC8C                       ; DATA XREF: sub_44CBAC + 3A o
CODE:0044CC9B                     db 0

As you can see, the third string also has been discovered. Why didn't the disassembler find it
immediately? To all appearances, the cause lies in the byte with the 14 value, to which the
reference was pointing. This is the string length byte. However, the disassembler, when
analyzing the reference, considered that because this is the start of the string, then the text
cannot contain a character with the code 14. In principle, this assumption was correct; however,
the disassembler never guessed that this is the string length byte.
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Thus, it becomes possible to draw conclusions. In case of a short string (shortstring), the
reference points to the string length byte. By the way, pay attention that the string is terminated
by the NULL character, which is not taken into account when computing the string length (which
is correct).

Now consider two other strings. The string located at the 0044CC78 address also is null-
terminated. Note that the reference again points to the start of the string and the string is null
terminated. What about the string length? This issue is interesting. The string is preceded by two
4-byte values. The 12h number specifies the string length. As you can see, 4 bytes are allocated
for the string length. However, the string structure includes 4 more bytes. This is the so-called
reference count. Thus, for strings of this type the reference points directly to the string contents.
The text information itself is preceded by 8 bytes of auxiliary information.

The last string type is Unicode. The Unicode string starts at the 0044CC54 address. In contrast
to the previous case, the string structure includes a 4-byte length, but there is no reference
count. In this case, the reference from the program code points to the string contents. The
disassembler has located this string because of this. The string is terminated by two 0 bytes.

To conclude the discussion of strings, consider the simple test program shown in Listing 3.21.
Compile this program using Microsoft Visual C++.

Listing 3.21: Simple C program illustrating string operations
#include <stdio.h>
#include <string.h>
char s[] = "Good-bye!";
void main()
{
       strcat(s," My love!");
       printf("%s\n", s);
}

The disassembled code of the program presented in Listing 3.21 is shown in Listing 3.22.

Listing 3.22: Disassembled code of the program shown in Listing 3.21
.text:00401000 _main        proc near          ; CODE XREF: start + 16E p
.text:00401000              push    ebp
.text:00401001              mov     ebp, esp
.text:00401003              push    offset aMyLove  ; char *
.text:00401008              push    offset aGoodBye ; char *
.text:0040100D              call    _strcat
.text:00401012              add     esp, 8
.text:00401015              push    offset aGoodBye ; "Good-bye!"
.text:0040101A              push    offset aS       ; "%s\n"

.text:0040101F              call    _printf

.text:00401024              add     esp, 8

.text:00401027              xor     eax, eax

.text:00401029              pop     ebp

.text:0040102A              retn

.text:0040102A _main        endp

Listing 3.22 is easy and is not worth special comments. It should only be mentioned that both
strings are excellently recognized by IDA Pro.

Introduce a small modification into the program shown in Listing 3.21. Make the s variable local
by moving its definition into the main function. After compiling the program and disassembling
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its code, you'll obtain an unusual disassembled code (Listing 3.23).

Listing 3.23: Disassembled code of the modified program (Listing 3.21)
.text:00401000 _main        proc near          ; CODE XREF: start + 16E p
.text:00401000 var_C        = byte ptr -0Ch
.text:00401000 var_8        = dword ptr -8
.text:00401000 var_4        = word ptr -4
.text:00401000
.text:00401000              push    ebp
.text:00401001              mov     ebp, esp
.text:00401003              sub     esp, OCh
.text:00401006              mov     eax, ds:dword_4060FC
.text:0040100B              mov     dword ptr [ebp + var_C], eax
.text:0040100E              mov     ecx, ds:dword_406100
.text:00401014              mov     [ebp + var_8], ecx
.text:00401017              mov     dx, ds:word_406104
.text:0040101E              mov     [ebp + var_4], dx
.text:00401022              push    offset aMyLove               ; char *
.text:00401027              lea     eax, [ebp + var_C]
.text:0040102A              push    eax                          ; char *
.text:0040102B              call    _strcat
.text:00401030              add     esp, 8
.text:00401033              lea     ecx, [ebp + var_C]

.text:00401036              push    ecx

.text:00401037              push    offset aS                    ; "%s\n"

.text:0040103C              call    _printf

.text:00401041              add     esp, 8

.text:00401044              xor     eax, eax

.text:00401046              mov     esp, ebp

.text:00401048              pop     ebp

.text:00401049              retn

.text:00401049 _main        endp

Consider Listing 3.23 more carefully. The code is unusual. The disassembler has determined
only one string (a literal). However, the first parameter of the strcat function is the address of
the string that the disassembler failed to locate. This can be stated doubtlessly because strcat
is a well-known library function. However, what about commands ranging from the 00401006 to
the 0040101E address? What do they mean? They move 10 bytes of data into the stack area
(recall that the string must be stored in the stack). At the same time, the string in question is
exactly 10 bytes in size (taking into account the 0 byte). Thus, it is an intricate method used by
the compiler to pass the string from the data section to the stack area. Consider the memory
address 004060FC, from which the block passed into the stack starts. Here is this block (Listing
3.24).

Listing 3.24: Memory block passed to the stack
.rdata:004060FC dword_4060FC   dd 646F6F47h   ; DATA XREF: _main + 6 r
.rdata:00406100 dword_406100   dd 6579622Dh   ; DATA XREF: _main + E r
.rdata:00406104 word_406104    dw 21h         ; DATA XREF: _main + 17 r

Press the <A> key and convert the block to the ASCII format. After that, the "lost" string will be
found. The conclusion is easy and straightforward: The disassembler failed to locate one of the
strings because the compiler treated it simply as a block of data.

Arrays
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As shown in the previous section, although strings have a structure that allows you to determine
the data size, even such a powerful disassembler as IDA Pro is not always capable of
recognizing a string, to speak nothing about arrays. This is because the array size is not
explicitly specified in the structure. There are difficulties related to determining the array size.
However, arrays can be clearly identified. Consider a simple example. In the program shown in 
Listing 3.25, an integer array is filled with integer numbers ranging from zero to nine. After
compiling this program using Microsoft Visual Studio and loading the executable code into IDA
Pro, the disassembled code shown in Listing 3.26 will be obtained.

Listing 3.25: 

Simple C program for investigating array identification in the executable code
#include <stdio.h>
int a[10];
void main()
{
        for(int i = 0; i < 10; i++) a[i] = i;
};

Listing 3.26: Disassembled code of the program shown in Listing 3.25
.text:00401000 _main        proc near          ; CODE XREF: start + 16E p
.text:00401000              var_4  = dword ptr - 4
.text:00401000              push    ebp
.text:00401001              mov     ebp, esp
.text:00401003              push    ecx
.text:00401004              mov     [ebp + var_4], 0
.text:0040100B              jmp     short loc_401016
.text:0040100D loc_40100D:                     ; CODE XREF: _main + 29 j
.text:0040100D              mov     eax, [ebp+var_4]
.text:00401010              add     eax, 1
.text:00401013              mov     [ebp + var_4], eax
.text:00401016 loc_401016:                     ; CODE XREF: _main + B j
.text:00401016              cmp     [ebp + var_4], OAh
.text:0040101A              jge     short loc_40102B
.text:0040101C              mov     ecx, [ebp + var_4]

.text:0040101F              mov     edx, [ebp + var_4]

.text:00401022              mov     dword_4072C0[ecx*4], edx

.text:00401029              jmp     short loc_40100D

.text:0040102B loc_40102B:                     ; CODE XREF: _main + 1A j

.text:0040102B              xor     eax, eax

.text:0040102D              mov     esp, ebp

.text:0040102F              pop     ebp

.text:00401030              retn

.text:00401030 _main endp

You encountered the method of loop organization shown in Listing 3.13. As you have certainly
guessed, var_4 is nothing but the stack variable — the loop counter. Pay special attention to
the mov dword_4072C0 [ecx*4], edx command, which is the key to understanding the
operating logic of this program. There is no doubt that this is an array: dword_4072C0 is the
start of this array, ecx contains the current index value, and the scaling coefficient equal to four
indicates that each element of this array is 4 bytes in size. The array size in this program can be
clearly identified. However, you should not rely on the assumption that the number of array
elements is always determined by the number of iterations in the loop that processes this array.
The programmer might use different parts of the array in different sections of the program. With
all this being so, these fragments of the array must not begin from the starting point of that array.
Thus, with high probability it is possible to state that the array size is no less than the specified
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value.

Some problems might arise when using arrays in functions. The argument accepted by the
function is simply a pointer. This pointer might be passed farther through a sequence of
functions. Assume that in the last function you see some parameter used as a pointer to an
array. To locate that array, you'll have to traverse the entire sequence of functions in the reverse
direction, which would require time and patience. In such situations, it is better to use the
debugger, set a breakpoint to the function where the pointer behaves like a pointer to an array,
and obtain the value of that pointer. Having accomplished this, it is necessary to return to
disassembler, locate the required array at the address determined using the debugger, and find
cross-references from the program code to that array. After that, it will be possible to continue
analysis of the executable code.

Structures

A structure is a generalization of an array. In contrast to arrays, which are made up of the
elements of the same type, structures can comprise elements of different types. As with arrays,
structure elements are accessed on the basis of the base address, which defines the starting
point of the structure instance. However, the problem is more complicated than with arrays.
Sometimes, it is difficult to make sure that data items of different types belong to the same
structure. Consider a C program illustrating the behavior of structures (Listing 3.27).

Listing 3.27: Sample program for investigating the behavior of structures
#include <stdio.h>
#include <windows.h>
struct a {
        char s[10];
        BYTE b;
        int i;
};
a al;
void main()
{
       for(int j = 0; j < 10; j++) a1.s[j] = 'A';
       al.b = 10;
       al.i = 10000;
};

Compile this program using the Microsoft Visual C++ compiler, then disassemble the executable
code using IDA Pro. The disassembled text of this program is shown in Listing 3.28.

Listing 3.28: Disassembled text of the program shown in Listing 3.27
.text:00401000 _main        proc near        ; CODE XREF: start + 16E p
.text:00401000              var_4 = dword ptr -4
.text:00401000              push    ebp

.text:00401001              mov     ebp, esp

.text:00401003              push    ecx

.text:00401004              mov     [ebp + var_4], 0

.text:0040100B              jmp     short loc_401016

.text:0040100D loc_40100D:                   ; CODE XREF: _main + 26 j

.text:0040100D              mov     eax, [ebp + var_4]

.text:00401010              add     eax, 1

.text:00401013              mov     [ebp + var_4], eax

.text:00401016 loc_401016:                   ; CODE XREF: _main + B j
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.text:00401016              cmp     [ebp + var_4], 0Ah

.text:0040101A              jge     short loc_401028

.text:0040101C              mov     ecx, [ebp + var_4]

.text:0040101F              mov     byte_4072C0[ecx], 41h

.text:00401026              jmp     short loc_40100D

.text:00401028 loc_401028:                   ;  CODE XREF: _main + 1A j

.text:00401028              mov     byte_4072CA, 0Ah

.text:0040102F              mov     dword_4072CC, 2710h

.text:00401039              xor     eax, eax

.text:0040103B              mov     esp, ebp

.text:0040103D              pop     ebp

.text:0040103E              retn

.text:0040103E _main        endp

Carefully consider the text shown in Listing 3.28. In this text, you will encounter three different
types of data determined by the following pointers: byte_4072C0 (array), byte_4072CA (byte),
and dword_4072CC (double word). At the same time, there are no clear indications that these
variables must be joined into the same structure. This is of no importance in the current context.
Hence, the program must contain operations that would disclose the structure as an integral
entity.

Consider the program shown in Listing 3.29. As you can see, the a structure is the parameter of
the init procedure. Then consider how this situation is reflected in the program's executable
code (Listing 3.30). This program is artificial because the structure passed to the function is not
used and is not passed back.

Listing 3.29: Behavior of the structure passed to some function as a parameter
#include <stdio.h>
#include <windows.h>
struct a {
        char s[10];
        BYTE b;
        int i;
};
a al;
void init(a);
void main()
{
        init(al);
};
void init(a c)
{
        for(int j = 0; j < 10; j++) c.s[j] = 'A';
        c.b = 10;
        c.i = 10000;
};

Listing 3.30: Disassembled text of the main function of the program shown in Listing 3.29
.text:00401000 main        proc near         ; CODE XREF: start + 16E p
.text:00401000             push    ebp
.text:00401001             mov     ebp, esp
.text:00401003             sub     esp, 10h
.text:00401006             mov     eax, esp
.text:00401008             mov     ecx, dword_4072C0
.text:0040100E             mov     [eax], ecx
.text:00401010             mov     edx, dword_4072C4
.text:00401016             mov     [eax + 4], edx
.text:00401019             mov     ecx, dword_4072C8
.text:0040101F             mov     [eax + 8], ecx
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.text:00401022             mov     edx, dword_4072CC

.text:00401028             mov     [eax + OCh], edx

.text:0040102B             call    sub_401040

.text:00401030             add     esp, 10h

.text:00401033             xor     eax, eax

.text:00401035             pop     ebp

.text:00401036             retn

.text:00401036 _main endp

Listing 3.30 presents the disassembled code of the main function of the program in Listing 3.29.
The sub_401040 procedure, the call to which is carried out by 0040102B, is the init function.
The lines of code preceding this procedure are of great interest. Pay special attention to the sub
esp, 10h command. It is the equivalent of four PUSH commands. However, note that the size of
the structure under consideration is exactly 16 bytes. After the command allocating the space in
the stack is the mov eax, esp command. Thus, the EAX register points to the start of the stack
area. This stack area is filled with the data. The impression is that you are dealing with 4 double
words. IDA Pro has come to the same conclusion. That 16 bytes are allocated simultaneously
(the structure length is exactly 15 bytes, but taking into account that the i field is aligned by the
4-byte boundary, the result is 16) must make you vigilant. Nevertheless, this alone doesn't prove
anything. To discover what was passed to the function, it is necessary to analyze the code of
that function (Listing 3.31).

Listing 3.31: Disassembled text of the init function (Listing 3.29)
.text:00401040 sub_401040    proc near     ; CODE XREF: _main + 2B p
.text:00401040       var_4  = dword ptr -4
.text:00401040       arg_0  = byte  ptr   8
.text:00401040       arg_A  = byte  ptr   12h
.text:00401040       arg_C  = dword ptr  14h
.text:00401040              push    ebp
.text:00401041              mov     ebp, esp
.text:00401043              push    ecx
.text:00401044              mov     [ebp + var_4], 0
.text:0040104B              jmp     short loc_401056
.text:0040104D loc_40104D:                 ; CODE XREF: sub_401040 + 24 j

.text:0040104D              mov     eax, [ebp + var_4]

.text:00401050              add     eax, 1

.text:00401053              mov     [ebp + var_4], eax

.text:00401056 loc_401056:                 ; CODE XREF: sub_401040 + B j

.text:00401056              cmp     [ebp + var_4], OAh

.text:0040105A              jge     short loc_401066

.text:0040105C              mov     ecx, [ebp + var_4]

.text:0040105F              mov     [ebp + ecx + arg_0], 41h

.text:00401064              jmp     short loc_40104D

.text:00401066 loc_401066:                 ; CODE XREF: sub_401040 + lA j

.text:00401066              mov     [ebp + arg_A], 0Ah

.text:0040106A              mov     [ebp + arg_C], 2710h

.text:00401071              mov     esp, ebp

.text:00401073              pop     ebp

.text:00401074              retn

.text:00401074 sub_401040   endp

Consider the code of the init function (see Listing 3.31). Principally, this text is similar to that
provided in Listing 3.28. However, this time, taking into account the analysis of the code of the
main function (see Listing 3.30), it is possible to understand its meaning. Thus, 16 bytes were
passed to the function (4 times, 4 bytes at a time). The function first processes an array (10
bytes in size), then a 0 byte (arg_0), then a 1-byte value (arg_A), and finally a 4-byte value (
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arg_C). At this point, it is logical to assume that the object you are dealing with is a structure.
What allows you to draw such a conclusion? For instance, the 3 independent (at first glance)
double words were sent to the stack and the first 10 bytes are combined to form an array within
the procedure can confirm this assumption.

Thus, it is possible to conclude that the structures can be disclosed when they are passed as
parameters. However, it is necessary to admit that these considerations are too heuristic to
delegate this task to a disassembler. An interesting point here is that the Borland C++ compiler
in a similar situation acts in approximately the same way as Microsoft Visual C++. Compile the
program presented in Listing 3.29 using the Borland C++ compiler, then disassemble it using
IDA Pro. The disassembled fragment of the executable code responsible for calling the Init
function is shown in Listing 3.32.

Listing 3.32: Fragment calling Init (compiled by Borland C++ and disassembled by IDA
Pro)
.text:00401108         mov     al, byte_40C2C6
.text:0040110E         shl     eax, 10h
.text:00401111         mov     ax, word_40C2C4
.text:00401118         push    eax
.text:00401119         push    dword_40C2CO
.text:0040111F         push    dword_40C2BC
.text:00401125         push    dword_40C2B8
.text:0040112B         call    sub_401134

This fragment is notable by a strange variable — word_40C2C4. Where could such a variable
of the WORD type come from? After all, there are no such variables in the program. Nevertheless,
the total amount of data passed through the stack is 16 bytes as in the previous case — to be
precise, 15 bytes. Is Borland more accurate than Microsoft? This is unlikely.

However, there are situations, in which the disassembler can unambiguously determine that it is
dealing with a structure. These are situations, in which structures are used as parameters when
calling well-known library or API functions. The code fragment shown in Listing 3.33
demonstrates the call to the RegisterClass API function. I have intentionally provided the
code lines preceding this call. These code lines contain commands that fill the WndClass
structure, which the disassembler recognizes excellently. It cannot fail to recognize this
structure, because its address is the parameter of the well-known API function.

Listing 3.33: Disassembled code showing the call to the RegisterClass API function
.text:0040104D       mov    [ebp+WndClass.style], 0
.text:00401054       mov    [ebp+WndClass.lpfnWndProc], offset sub_401140
.text:0040105B       mov    [ebp+WndClass.cbClsExtra], 0
.text:00401062       mov    [ebp+WndClass.cbWndExtra], 0
.text:00401069       mov    edx, [ebp + hInstance]
.text:0040106C       mov    [ebp + WndClass.hInstance], edx
.text:0040106F       push   7F00h           ; lpIconName

.text:00401074       mov    eax, [ebp + hInstance]

.text:00401077       push   eax             ; hInstance

.text:00401078       call   ds:LoadIconA

.text:0040107E       mov    [ebp + WndClass.hIccn], eax

.text:00401081       push   7F00h           ; lpCursorName

.text:00401086       push   0               ; hInstance

.text:00401088       call   ds:LoadCursorA

.text:0040108E       mov    [ebp + WndClass.hCursor], eax

.text:00401091       mov    [ebp + WndClass.hbrBackground], 6

.text:00401098       mov    [ebp + WndClass.lpszMenuName], 0

.text:0040109F       lea    ecx, [ebp + ClassName]
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.text:004010A2       mov    [ebp + WndClass.lpszClassName], ecx

.text:004010A5       lea    edx, [ebp + WndClass]

.text:004010A8       push   edx             ; lpWndClass

.text:004010A9       call   ds:RegisterClassA

In Listing 3.33, the address of the WndClass structure is counted in relation to the contents of
the EBP register, which means that the structure is defined as a stack local variable (see Section
3.1.2). However, the essence of these considerations won't change if you make it a global
variable. In this case, the structure is identified because it is used as a parameter.

3.1.2. Local Variables

As a rule, local variables are interpreted as variables defined directly within a procedure or a
function. As you know, the stack is used for this purpose. In my opinion, this is only a particular
case. I understand local variables widely, not only as variables defined in the stack (they might
be called stack variables) but also as temporary variables (local in relation to the program run
time) and as variables stored in registers.

Variables Defined in the Stack

Variables defined in the stack (stack variables) were already mentioned several times. The
program in Listing 3.34 uses only local variables and two functions: main and add. Note that
the add function accepts three arguments and that the first argument is a pointer. The s variable
is modified in the add function.

Listing 3.34: Example program illustrating the use of local variables
#include <stdio.h>
int add(int *, int, int);
void main()
{
        int i = 10, s, j;
        s = 12; j = 20;
        printf("%d\n", add(&s, i, j));
};
int add(int *s1, int i1, int jl)
{
        int n;
        *s1 = *s1 + 10;
        n = *s1 + j1 + i1;
        return n*n;
};

The disassembled text of the main function from Listing 3.34 is presented in Listing 3.35. Note
that when compiling the test program, the option preventing optimization was set.

Listing 3.35: Disassembled text of the main function from Listing 3.34
.text:00401000 _main       proc near        ; CODE XREF: start + 16E p
.text:00401000        var_C = dword ptr -0Ch
.text:00401000        var_8 = dword ptr -8
.text:00401000        var_4 = dword ptr -4
.text:00401000             push    ebp
.text:00401001             mov     ebp, esp
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.text:00401003             sub     esp, 0Ch

.text:00401006             mov     [ebp + var_4], 0Ah

.text:0040100D             mov     [ebp + var_8], 0Ch

.text:00401014             mov     [ebp + var_C], 14h

.text:0040101B             mov     eax, [ebp + var_C]

.text:0040101E             push    eax

.text:0040101F             mov     ecx, [ebp + var_4]

.text:00401022             push    ecx

.text:00401023             lea     edx, [ebp + var_8]

.text:00401026             push    edx

.text:00401027             call    sub_401050

.text:0040102C             add     esp, 0Ch

.text:0040102F             push    eax

.text:00401030             push    offset unk_4060FC

.text:00401035             call    _printf

.text:0040103A             add     esp, 8

.text:0040103D             xor     eax, eax

.text:0040103F             mov     esp, ebp

.text:00401041             pop     ebp

.text:00401042             retn

.text:00401042 _main       endp

Skip the standard function prologue, and look at the sub esp, 0CH command. Here, 12 bytes
are reserved for local variables — this is the area between the previous value of the stack
pointer (to which the EBP register points) and the new value. This corresponds to three variables
(see Listing 3.34). Nevertheless, IDA Pro declares these variables as var_4, var_8, and
var_C. What do the _4, _8, and _C suffixes mean? These are addresses where the variables
are located in relation to the boundary, from which the area of stack variables starts. The
address of this boundary is stored in the EBP register.

Next are the commands for data initialization. Note that there is no difference between variables
initialized when declared and variables assigned some values in the program.

Addresses from 0040101B to 00401026 are occupied by the commands that send parameters
into the stack for calling the add function. Pay special attention to the var_8 variable, which,
doubtlessly, corresponds to the s variable in the program source code. To handle this variable,
the lea edx, [ebp + var_8]/push edx commands are used, which means that the
address of this variable is sent into the stack. This is natural, because in the program it is
explicitly specified that the pointer is passed. However, I'd like to warn you against drawing
premature conclusions. Compilers often handle pointers with undue familiarity. For the s
variable, the pointer is passed to the function used in the program for modifying the s variable. If
this were not so (if the s variable were not modified in the add function), then the compiler would
be able to pass the variable to the function. This approach produces the same result, but it is
much easier. Thus, two other variables, i (var_4) and j (var_C), are passed into the stack
by value.

The result of the function call, which, as expected, is stored in the EAX register (nevertheless,
see Section 3.2.1), is passed to the function as a parameter for console output.

It is time to consider the code of the add function. The disassembled text is shown in Listing
3.36.

Listing 3.36: Disassembled text of the add function (Listing 3.34)
.text:00401050 sub_401050    proc near        ; CODE XREF: _main + 27 p
.text:00401050               var_4  = dword ptr -4
.text:00401050               arg_0  = dword ptr  8
.text:00401050               arg_4  = dword ptr  0Ch
.text:00401050               arg_8  = dword ptr  10h
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.text:00401050               push    ebp

.text:00401051               mov     ebp, esp

.text:00401053               push    ecx

.text:00401054               mov     eax, [ebp + arg_0]

.text:00401057               mov     ecx, [eax]

.text:00401059               add     ecx, 0Ah

.text:0040105C               mov     edx, [ebp + arg_0]

.text:0040105F               mov     [edx], ecx

.text:00401061               mov     eax, [ebp + arg_0]

.text:00401064               mov     ecx, [eax]

.text:00401066               add     ecx, [ebp + arg_8]

.text:00401069               add     ecx, [ebp + arg_4]

.text:0040106C               mov     [ebp+var_4], ecx

.text:0040106F               mov     eax, [ebp + var_4]

.text:00401072               imul    eax, [ebp + var_4]

.text:00401076               mov     esp, ebp

.text:00401078               pop     ebp

.text:00401079               retn

.text:00401079 sub_401050    endp

IDA Pro assigns the function parameter names starting with the arg prefix. Thus, as expected,
the function has obtained three parameters: arg_0, arg_4, and arg_8. As in case of the stack
variables, offsets 0, 4, and 8 are counted in relation to the content of the EBP register; however,
this time the offset is counted downward into the area of higher addresses.

Note that at first glance, no space is reserved in the stack for the var_4 variable (in the
program, the name of this variable is n). This issue is an interesting one. Why does the compiler
reserve stack space for variables in the main function? To reserve the stack space, the push
ecx command is used. This can be easily discovered by checking the stack balance in the
beginning and in the end of the procedure. To achieve this, count the number of bytes pushed
into the stack in the beginning and popped from the stack in the end. The PUSH command is
often used for reserving stack space when there is only one stack variable.

It would be interesting to find the parameter that is a pointer to variable among all function
parameters. Here, everything is simple. This parameter was the last to be pushed. Because the
stack grows upward, toward lower addresses, this parameter will have the smallest offset in the
direction of higher addresses. This will be arg_0. Here is the sequence of commands that
discloses this: mov eax, [ebp + arg_0] /mov ecx, [eax] /add ecx, 0Ah. This
corresponds to *s1 = *s1 + 10.

All further computations are self-evident. They correspond to n = *s1 + j1 + i1. The imul
instruction stands for the n*n operation.

Again, it is necessary to mention the optimization. Optimization can change the program code to
such an extent that it becomes impossible to recognize it. This is especially true for Microsoft
Visual C++. For instance, try to compile the program (see Listing 3.34) using the "create
compact code" option. Before compiling, insert some output operator into the add function — for
example, printf ("%d\n", n). Otherwise, the optimizer will do without any function call and

replace it with the constant that it computes on its own (yes, this is so [5]). Now, consider what
would happen to the main function after optimization (Listing 3.37).

Listing 3.37: Disassembled code of the optimized main function
.text:00401029 _main       proc near        ; CODE XREF: start + 16E p
.text:00401029        var_4 = dword ptr -4
.text:00401029             push    ebp

.text:0040102A             mov     ebp, esp

.text:0040102C             push    ecx

.text:0040102D             push    14h
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.text:0040102F             lea     eax, [ebp + var_4]

.text:00401032             push    0Ah

.text:00401034             push    eax

.text:00401035             mov     [ebp + var_4], 0Ch

.text:0040103C             call    sub_401000

.text:00401041             push    eax

.text:00401042             push    offset unk_4060FC

.text:00401047             call    _printf

.text:0040104C             add     esp, 14h

.text:0040104F             xor     eax, eax

.text:00401051             leave

.text:00401052             retn

.text:00401052 _main       endp

Listing 3.37 is an instructive one. The main issue, to which it is necessary to pay attention in the
course of analysis, is that only one stack variable has been defined. It would be desirable to
guess, which variable this is, even without viewing the listing. This is the s variable. It is this
variable whose contents will be modified in the add function. In other words, s is a variable.
However, i and j are not variables; rather, they are in essence constants because they are not
modified in the course of program execution. The optimizer treats them accordingly. Instead of
allocating stack memory for them, it is possible to simply send numeric constants as parameters
to the add function. This goal is achieved by the push 14h and push 0Ah commands. The
address of the s variable is sent to the stack: lea eax, [ebp + var_4]/... /push eax.

Also, it is necessary to pay attention to another issue: Memory for the stack variable is allocated
using the push ecx command, which can confuse the code investigator. However, the
optimizer's main goal in this case is to make the code as compact as possible, and it does its
best to achieve this. This also explains why only a single leave command is used to restore the
stack in the end of the procedure.

Thus, the following conclusion can be drawn in relation to stack variables: If the value of a stack
variable is not changed in the course of program execution, the optimizer can replace it with a
constant. This information is not particularly important for a simple analysis of the program's
actions. However, in my opinion, for a sound understanding of the program operating logic this
issue is important.

Also, it is possible to obtain useful information if you compile the program shown in Listing 3.34
using the Borland C++ v. 5.0 compiler. The result of disassembling the executable code of the 
main function is shown in Listing 3.38.

Listing 3.38: Disassembled main function from Listing 3.34 compiled using Borland C++
5.0
.text:00401108 _main       proc near       ; DATA XREF: .data:0040A0B8 o
.text:00401108       var_4 = dword ptr -4
.text:00401108       argc  = dword ptr  0Ch
.text:00401108       argv  = dword ptr  10h
.text:00401108       envp = dword ptr  14h
.text:00401108            push     ebx
.text:00401109            push     esi
.text:0040110A            push     ecx
.text:0040110B            mov      ebx, 0Ah
.text:00401110            mov      [esp + 4 + var_4], 0Ch
.text:00401117            mov      esi, 14h
.text:0040111C            push     esi
.text:0040111D            push     ebx
.text:0040111E            lea      eax, [esp + 0Ch + var_4]
.text:00401122            push     eax
.text:00401123            call     sub_401140
.text:00401128            add      esp, 0Ch
.text:0040112B            push     eax
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.text:0040112C            push     offset format ; Format

.text:00401131            call     _printf

.text:00401136            add     esp, 8

.text:00401139            pop     edx

.text:0040113A            pop     esi

.text:0040113B            pop     ebx

.text:0040113C            retn

.text:0040113C_main       endp

Different compilers are characterized by different styles. For instance, in contrast to Microsoft's
compiler, which, just to be on the safe side, resets the EAX register to zero even when the main
function is declared as void, Borland's compiler interprets the void type literally, which means
that it doesn't pay attention to the contents of the EAX register. Another specific feature of
Borland's compiler is that it actively uses the ESI and EBX registers. Note that according to
generally adopted conventions, a function must not change the contents of the EBX, EBP, ESP,
ESI, and EDI registers; so, Borland's compiler must insert PUSH EBX/PUSH EST commands in
the beginning of the function and POP ESI/POP EBX commands in the end of function. I
suspect that this is just an inherited legacy. In older Intel processors, the CX and DX registers
could not be used for addressing.

Like Microsoft's compiler, Borland's compiler analyzes the text and discovers that the i and j
variables are constants in their essence. Therefore, it doesn't reserve the memory in the stack
for them and uses constants instead. Stack memory is reserved only for the s variable (var_4).
Note that this also is carried out using a single PUSH command (push ecx).

Consider the most interesting issue. Borland's compiler doesn't use the EBP register here; it
uses the ESP register instead. This is a well-known optimization technique, so you should know
about it. However, you might object: The contents of the ESP register changes. You'd be right.
But the compiler does not forget about this; it handles this problem excellently by dynamically
tracking all changes of the ESP register and correcting the addressing as appropriate. Look, in
the beginning was the mov [esp + 4 + var_4], 0Ch command followed by two PUSH
commands. The content of ESP was reduced by eight. Therefore, the compiler uses the lea
eax, [esp + 0Ch + var_4] command. Everything is correct, because 4 + 8 = 12 = 0Ch.
IDA Pro, fortunately, also understands these issues and specifies the var_4 variable in both
commands.

Temporary Variables

What are temporary variables? I consider as such the variables used for storing intermediate
results of computations. In the course of computations, the processor registers are widely used.
Therefore, it is possible to state that the registers are used as temporary variables. Note that you
have already encountered such variables. For example, consider Listing 3.13, and recall how
the loop was organized there (the 00401027-0040102F addresses). The EAX register plays
the role of temporary variable, which for the time of loop execution stores the loop counter.
When using real variables for storing intermediate results, the FPU registers are also used. As a
rule, these are the first three registers of the coprocessor: ST(0), ST(1), and ST(2). If you
recall Listing 3.13, the comments that follow it emphasized the method of start-up initialization of
floating-point variables: The floating-point variable is first loaded into the ST(0) coprocessor
register using the FLD command. Then, from the ST(0) register the variable is loaded into the
memory area allocated for the floating-point variable (using the FSTP command).

How many registers might be needed if the expression to be computed is a complex one?
Simple considerations are as follows: Operations over numeric variables are binary operations.
Two operands participate in each operation. The result can be placed either into a third operand
or into one of the operands participating in the previous operation. The result of execution of any
specific operation might be the operand of another binary operation. However, again two
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operands participate in the binary operation and the result is placed into one of them. These
considerations are also applicable if there are parentheses in the expression. Thus, it is possible
to conclude that two operands are enough for storing intermediate results. However, what
should you do if the operands are 64-bit ones (and you have a 32-bit processor)? The C++
compiler can use library procedures (such as _alldiv), which are provided especially for such
cases. Nevertheless, as you'll see later, sometimes the compiler still uses the stack for
temporary variables.

It is time to study an instructive example. Some program that carries out numeric computations
would be suitable for this purpose. The program in Listing 3.39 provides an example of such a
computation, where both integer and floating-point values are used in the expression to be
computed.

Listing 3.39: Use of temporary variables on the example of numeric computations
#include <stdio.h>
void main()
{
        double i, j, s;
        int k, d;
        i = 10; j = 20; k = 30; d = 40;
        s = ((k - 1)*(d - 1))*((i - 1)/(j - 1));
        printf("%f\n", s);
};

The disassembled code of the main function of this program, obtained using the IDA Pro
disassembler, is shown in Listing 3.40.

Listing 3.40: Disassembled code of the main function of the program in Listing 3.39
.text:00401000 _main          proc near       ; CODE XREF: start + 16E p
.text:00401000       var_2C = qword ptr -2Ch
.text:00401000       var_24 = dword ptr -24h
.text:00401000       var_20 = qword ptr -20h
.text:00401000       var_18 = dword ptr -18h
.text:00401000       var_14 = dword ptr -14h
.text:00401000       var_10 = qword ptr -10h
.text:00401000       var_8  = qword ptr -8
.text:00401000             push    ebp
.text:0040100              mov     ebp, esp
.text:00401003             sub     esp, 24h
.text:00401006             fld     ds:dbl_408110
.text:0040100C             fstp    [ebp + var_8]
.text:0040100F             fld     ds:dbl_408108
.text:00401015             fstp    [ebp + var_20]
.text:00401018             mov     [ebp + var_14], 1Eh
.text:0040101F             mov     [ebp + var_18], 28h
.text:00401026             mov     eax, [ebp + var_14]
.text:00401029             sub     eax, 1
.text:0040102C             mov     ecx, [ebp + var_18]
.text:0040102F             sub     ecx, 1
.text:00401032             imul    eax, ecx
.text:00401035             mov     [ebp + var_24], eax
.text:00401038             fild    [ebp + var_24]
.text:0040103B             fld     [ebp + var_8]
.text:0040103E             fsub    ds:dbl_408100
.text:00401044             fld     [ebp + var_20]
.text:00401047             fsub    ds:dbl_408100
.text:0040104D             fdivp   st(1), st
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.text:0040104F             fmulp   st(1), st

.text:00401051             fst     [ebp + var_10]

.text:00401054             sub     esp, 8

.text:00401057             fstp    [esp + 2Ch + var_2C]

.text:0040105A             push    offset unk_4080FC

.text:0040105F             call    _printf

.text:00401064             add     esp, 0Ch

.text:00401067             xor     eax, eax

.text:00401069             mov     esp, ebp

.text:0040106B             pop     ebp

.text:0040106C             retn

.text:0040106C _main endp

For storing local variables, 36 bytes are allocated (sub esp, 24h). This is 4 bytes more than
required for five variables. The compiler has allocated the stack memory for storing a temporary
variable, although at first glance it might do without it. This is because it is also possible to use
the reserves (such as the EDX register) or leave the result in the EAX register (as will be
explained later). Microsoft's compiler tries to avoid using the EBX, EDI, and ESI registers for
computations because doing so would make it necessary to take steps for recovering these
registers in the end of the function.

The start-up initialization commands occupy addresses from 00401006 to 0040101F. As

before, for initializing floating-point variables the compiler uses floating-point constants, [6] which
are stored in the data segment. In this case, the constant is first loaded into the ST(0) FPU
register using the fld command and then into appropriate variable (using the fstp command).
Integer variables are initialized by directly loading specific values into them using the mov
command.

Next, direct computations start. This stage requires more detailed consideration:
§ Commands from 00401026 to 0040102F load the k and d variables into registers and

further prepare them for multiplication. The preparation consists of subtracting one from
them. Thus, the EAX register will contain the k - 1 value, and ECX will contain the d - 1
value. Then it is possible to carry out multiplication. Next, the imul eax, ecx command is
executed, and the multiplication result is loaded into the EAx register. In other words, the
following operation is executed: (k - 1) * (d - 1) -> EAx. Later, it is necessary to
decide where the computation result must be stored. The EAx register at first seems
suitable because it appears that this register won't be used in later computations. However,
there is a small problem here. The resulting integer value must participate in computations
with real numbers. At the same time, the fld command loads values from the memory into
FPU stack. Thus, the compiler made a reasonable decision to use a temporary variable for
storing an intermediate result (the intermediate result will be stored directly in the stack).

§ Consider further computations. The result of computing the (k - 1) * (d - 1)
expression is loaded onto the top of the FPU stack (into the ST(o) register) using the fld
command. Then the fld command moves the current ST(0) value into ST(1) and loads
the i variable into ST(0). Next, the fsub d. S: dbl_408100 command (located at the
0040203E address) computes the i - l expression, leaving the result in the ST(o)
register. The next fld command loads the j variable into ST(o). As this happens (pay
attention!), the previous value of ST(0) is moved into ST(+) and the previous value of ST
(1) is moved into ST(2). Thus, ST(2) plays the role of a temporary variable. The next
fsub command computes the j - 1 value. Then the fdivp st (1), st command
carries out division and pops the stack. As a result, the quotient goes into ST ( 0) and the
value in ST(2) moves into ST(1). The fmulpst (1) , st command carries out
multiplication and pops the stack, which means that the final result goes into ST(0). The
last stroke is carried out by the fst [ebp + var_10] command, which corresponds to
ST (o) -> s. Note that the fst command loads the value into the variable without
popping the stack.

§ To load a floating-point value into the stack, a well-known technique encountered earlier is
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used: The sub esp, 8 command, equivalent to the two PUSH commands, prepares the
space for a floating-point variable. Then the fstp command (popping the coprocessor
stack) places the result of computations into the stack for further use with the printf
function.

Thus, temporary variables are used by the compiler for computations. The role of temporary
variables can be delegated to general-purpose registers, FPU registers, and stack variables.

Temporary variables are often used when the result of execution of one function is used in
another function (Listing 3.41).

Listing 3.41: Temporary variables when the result of executing a function is used in
another
#include <stdio.h>
int add(int, int);
int sub(int, int);
void main()
{
       int i = 10, j = 20;
       printf("%d\n", add (i, sub(i, j ))) ;
};
int add(int a, int b)
{
       return a + b;
};
int sub(int a, int b)
{
       return a - b;
};

In the program shown in Listing 3.41, the result of the sub function is used in the add function,
and the result of the add function, in turn, is used by the printf function. Listing 3.42 shows
the fragment of the disassembled code of this program related to temporary variables.

Listing 3.42: Disassembled code of Listing 3.41 for processing intermediate variables
.text:00401014        mov     eax, [ebp + var_8]
.text:00401017        push    eax
.text:00401018        mov     ecx, [ebp + var_4]
.text:0040101B        push    ecx

.text:0040101C        call    sub_401060

.text:00401021        add     esp, 8

.text:00401024        push    eax

.text:00401025        mov     edx, [ebp + var_4]

.text:00401028        push    edx

.text:00401029        call    sub_401050

.text:0040102E        add     esp, 8

.text:00401031        push    eax

.text:00401032        push    offset unk_4060FC

.text:00401037        call    _printf

.text:0040103C        add     esp, 8

The var_4 and var_8 variables correspond to the i and j variables in the program source
code. First, the sub_401060 (sub) function is called. As should be expected, the result of this
function is loaded into the EAX register. Later, the EAX register is used as a variable, which is
then used as a parameter when calling the add function (sub_401050). Similarly, the result of
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the add function is loaded into the EAX register and used as a parameter when calling the
printf function.

Register Variables

The C programming language makes provision for the register type of variables. Initially, it
was assumed that variables declared as register must be stored in registers whenever
possible. Contemporary compilers ignore this keyword (although it is considered valid for
compatibility). Nowadays, compilers act as they consider expedient, according to the specified
optimization options. Consider the example program shown in Listing 3.43. Compile this
program using the Microsoft Visual C++ compiler, with the "create compact code" option.

Listing 3.43: Example program illustrating the use of register variables
#include <stdio.h>
void main()
{
        int i, j, s;
        i = 0; j = 1; s = 0;

        for(i = 0; i < 100; i++, j++) s = s + j;
        printf("%d %d %d \n", i, j, s);
};

The disassembled code of this program is shown in Listing 3.44.

Listing 3.44: Disassembled code of the program shown in Listing 3.43
.text:00401000 _main         proc near          ;   CODE XREF: start + 16E p
.text:00401000               xor     eax, eax
.text:00401002               push    64h
.text:00401004               inc     eax
.text:00401005               xor     ecx, ecx
.text:00401007               pop     edx
.text:00401008 loc_401008:                      ; CODE XREF: _main + C j
.text:00401008               add     ecx, eax
.text:0040100A               inc     eax
.text:00401005               dec     edx
.text:0040100C               jnz     short loc_401008
.text:0040100E               push    ecx
.text:0040100F               push    eax
.text:00401010               push    64h
.text:00401012               push    offset aDDD ; "%d d %d \n"
.text:00401017               call    _printf
.text:0040101C               add     esp, 10h
.text:0040101F               xor     eax, eax
.text:00401021               retn
.text:00401021_main          endp

Note that although three local variables are defined in the source program, the stack is not used
for storing variables in the resulting code. This is exactly the case, in which the compiler has
used registers for storing variables. Also note that for code size minimization, the compiler didn't
insert a prologue and an epilogue into the main function.

Thus, the ECX register is used for storing the s variable (the xor ecx, ecx command
corresponds to s = 0). The xor eax, eax/... /inc eax commands relate to the j
variable. As relates to the i variable, the compiler has introduced an interesting modification to
reduce the code size. Instead of increasing a value of some variable and comparing it with 100,
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some variable is first assigned the value of 100 and after each iteration the value of this variable
is decremented and compared with 0. This approach is easier and faster. The role of this
register variable is delegated to the EDX register.

Finally, because in the end of the loop there is no variable that would contain the value of 100
(as there should be, according to the source code of the program), the number 100 is simply
pushed into the stack using the 

push 64h

 command.

[
1

]

The same relates to the C programming language because this program doesn't use any
capabilities introduced with the arrival of the C++ language. However, I won't concentrate on
these minor details. I always mean the two most widely used C++ compilers, namely, Microsoft
Visual C++ and Borland C++.

[
2

]

Start-up initialization of the s variable doesn't make sense because the initial value of s is not
used anywhere.

[
3

]

A typical complication is deciding what to do if, for example, information about the string length
doesn't correspond to the location of the terminator.

[
4

]

Here and further on, I use the Delphi compiler supplied as part of Borland Delphi 7.0.

[
5

]

When optimizing a program for maximum operating speed, even this trick won't help!

[
6

]

In the C++ language, constants stored in the data segment and having, like variables, strictly
defined types, are called type safe constants. Constants used only directly in the program code
are called literal constants.

3.2. Identifying Program Structures

Understanding the program structure of the executable module is often more important than
recognizing variables, because it allows you to understand the program's operating logic.
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3.2.1. Procedures and Functions

You have already encountered procedures and functions [7] many times. The main goal of this
section is to generalize accumulated experience and investigate new features.

Passing Parameters

Until now, it was silently assumed that data are passed to the procedure through the stack. This
mechanism, which will be considered in the next section, is common. However, this approach is
not the only available one.

For the moment, abstract from compilers and simply consider how and in which way it is
possible to pass parameters to the procedure. If you are working in Assembly, you'll be able to
add all of these mechanisms to your arsenal. Furthermore, nothing can prevent you from
combining several such mechanisms simultaneously. However, when working with compilers
created for high-level programming languages, it is necessary to account for generally-adopted
conventions, which will be covered in the next few sections.

Passing Parameters through the Stack

Passing parameters through the stack is the most common and widely used mechanism. This
approach allows you to create recursive procedures, but the use of other approaches makes
recursion problematic. As a rule, parameters are placed into the stack using the PUSH
commands. However, another method is possible, which you have encountered multiple times.
It is possible to manually change the value of the stack pointer and then use normal MOV
commands to place the parameters into the allocated region. For example, if two parameters
are loaded into the EAX and EBX registers, respectively, then it is possible to place them into the
stack using the following sequence of commands: SUB ESP, 8/MOV [ESP], EAX/MOV [ESP],
EBX. This is equivalent to the two PUSH EAX/PUSH EBX commands (recall that the stack grows
upward in the direction of smaller addresses).

When passing parameters, the most important issue is the order, in which the parameters
appear in the stack. When receiving parameters from the stack, the called procedure follows a
strictly defined order, which must be observed when calling that procedure. However, this is only
one problem. The second problem is clearing the stack. After the called procedure has executed
all required operations and returned control into the calling program fragment, the parameters
passed to the procedure remain in the stack. If the procedure is called multiple times, this, in the
long run, might crash the program. There are two practical approaches to solving this problem.
The first method is used only in the C++ programming language. Using this method, the stack is
released after the return from the called procedure. It is convenient because it is possible to use
procedures with a variable number of parameters.
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Note The printf standard C library
function is an example of such
a procedure. The first
parameter of this function is
always a string that might
contain special substrings
(called format specifiers).
Format specifiers start with the 
% character. The number of
such specifiers is equal to the
number of additional
parameters of the printf
function.

As a rule, the stack is restored using the ADD ESP, 4*N command, where N is the number of

32-bit parameters. [8] However, alternative ways, such as using SUB ESP, -4*N or even PoP
commands, are possible. It is important to understand their meaning. Sometimes the compiler,
for economy, restores the stack after calling several procedures.

The second method of stack recovery consists of using the RETN 4*N command immediately
after exiting the procedure. Again, N specifies the number of 32-bit parameters. This approach
was initially used in Pascal compilers. This approach is slightly faster. However, it makes it
problematic to call a procedure with a variable number of parameters.

Passing Parameters through the Data Segment

The use of global variables for passing information into a procedure suggests itself. However,
this approach is a persistent source of headaches. To avoid errors, you'll have to allocate an
individual set of global parameters for every procedure, which requires additional memory
resources. The use of global variables also makes recursive calls problematic, because you
won't be able to use the same variables if they are already in use. However, this drawback
doesn't mean that this approach is not used. Nothing prevents you from using it when writing a
program in C++ or Delphi.

The preceding approach can be improved by using a specially organized memory block for
passing parameters. You'll probably have to organize such a block individually for each
procedure, although, in theory, it is possible to create a structure of universal buffer for passing
parameters to all called procedures. The structure of such a buffer can be organized to make it
possible to use recursive procedure calls.

Passing Parameters Through Program Code

Passing parameters through program code looks somewhat exotic. However, it is a realistic
method, provided that you use Assembly language. For example, consider the algorithm in 
Listing 3.45.

Listing 3.45: Algorithm for passing parameters through the program code
...
CALL PROC1
      DB "This parameter is passed through the program code", 0
; The PROC1 procedure will return control here.
...
PROC1 PROC
; Pop the return address from the stack.

; Define the parameter addresses and length.
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; Modify the return address in the stack.
; Process.
Return from the procedure.
      RETN
PROC1 ENDP

As you can see, this method doesn't contain anything too difficult or impossible. However, its
implementation in a high-level programming language requires additional effort.

Passing Parameters Through Registers

The method of passing parameters through registers is fast. However, it has certain limitations,
because registers are few. This approach is mainly used with other mechanisms, such as
passing parameters through the stack. When using this combined approach, the first
parameters are usually passed through registers and the remaining parameters are passed
through the stack. Later in this chapter, this approach will be covered in more detail.

Conventions for Passing Parameters

Consider compilers of high-level programming languages. As you would expect, they mainly
pass parameters through the stack. The main calling conventions used by contemporary
compilers are listed in Table 3.2.

Table 3.2: Standard calling conventions used by contemporary compilers

Calling
convention

Order of
parameters

Stack-clearing
method

Comment

C convention

(__cdecl)

From right to left By the calling
program

The compiler
automatically
inserts the
underscore
character (_) before
the function name.

Standard calling
convention

(__stdcall)

From right to left By the called
procedure

The compiler
automatically
inserts the
underscore
character (_) before
the function name.
The function name
is terminated by
the @ suffix followed
by the number
specifying the total
length of all
parameters (in
bytes).

Pascal calling
convention (
PASCAL)

From left to right By the called
procedure

This calling
convention is used
in Pascal and
Delphi.
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Fast calling
convention, also
known as register
call

(__fastcall)

From left to right By the called
procedure

Microsoft's C++
compiler employs
two registers (ECX
and EDX). If this is
not enough for
passing all
parameters, then
the remaining
parameters are
passed through the
stack. The Borland
C++ compiler uses
three registers (EAX
, EDX, and ECX).

Note The calling conventions listed
in Table 3.2 are not the only
available ones. In different
programming languages, there
are language-specific
conventions. For example,
Delphi supports the safecall
convention, and Basic has its
individual calling convention.
Some calling conventions have
been gradually moved out of
use. For example, the Pascal (
__pascal) calling convention
is no longer supported in
Microsoft Visual C++.

When writing programs in C++, the most common calling conventions are __cdecl (when
working with normal and library functions) and __stdcall (when calling most API functions).

As an illustration of the use of register calling conventions (fast function calls), consider the
simple program shown in Listing 3.46.

Listing 3.46: Simple program illustrating the use of the__fastcall calling convention
#include <stdio.h>
int __fastcall add(int, int, int);
void main()
{
        int i = 10, j = 20, k = 30;
        printf("%d\n", add(i, j, k));

};
int__fastcall add(int a, int b, int c)
{
        return a + b + c;
};

As you can see, the program in Listing 3.46 contains a function declared as __fastcall. First,
consider the disassembled text of the executable code of this program produced by the
Microsoft Visual C++ compiler (Listing 3.47).

Listing 3.47: Disassembled text (Listing 3.46) produced by Microsoft Visual C++
.text:00401000 _main        proc near          ; CODE XREF: start + 16E p
.text:00401000       var_C  = dword ptr -OCh
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.text:00401000       var_8  = dword ptr -8

.text:00401000       var_4  = dword ptr -4

.text:00401000              push    ebp

.text:00401001              mov     ebp, esp

.text:00401003              sub     esp, 0Ch

.text:00401006              mov     [ebp + var_4], 0Ah

.text:0040100D              mov     [ebp + var_C], 14h

.text:00401014              mov     [ebp + var_8], lEh

.text:0040101B              mov     eax, [ebp + var_8]

.text:0040101E              push    eax

.text:0040101F              mov     edx, [ebp + var_C]

.text:00401022              mov     ecx, [ebp + var_4]

.text:00401025              call    sub_401040

.text:0040102A              push    eax

.text:0040102B              push    offset unk_4060FC

.text:00401030              call    _printf

.text:00401035              add     esp, 8

.text:00401038              xor     eax, eax

.text:0040103A              mov     esp, ebp

.text:0040103C              pop     ebp

.text:0040103D              retn

.text:0040103D_main         endp

The code presented in this listing is well known. However, there is one issue that you did not
encounter earlier. According to the program (see Listing 3.46), the add function must have three
parameters. Obviously, sub_401040 corresponds to the add function. Later, the mov eax, [ebp
+ var_8] /push eax commands send the last variable into the stack (this is the k variable).
The values of the i and j variables are placed into the ECX and EDX registers, respectively. This
corresponds to the fastcall calling convention typical for the Microsoft Visual C++ compiler.
The documentation supplied with the compiler states that it uses the __fastcall calling
convention whenever possible. As you can see, this is true. If the number of parameters is
increased, then the compiler will pass the remaining parameters in a normal way, namely,
through the stack. This can be easily explained because the procedure that will be called also
needs registers. So, as the number of parameters is increased, the number of general-purpose
registers will not be enough and it will be necessary to create local stack variables.

Listing 3.48 presents the disassembled code of the same program compiled using the Borland C
++ compiler.

Listing 3.48: Disassembled code (Listing 3.46) compiled using the Borland C++ compiler
.text:00401108 _main        proc near       ; DATA XREF: .data:0040A0B8; o
.text:00401108        argc  = dword ptr l0h
.text:00401108        argv  = dword ptr 14h
.text:00401108        envp  = dword ptr 18h
.text:00401108                push    ebx
.text:00401109                push    esi
.text:0040110A                push    edi
.text:0040110B                mov     ebx, OAh
.text:00401110                mov     esi, 14h
.text:00401115                mov     edi, 1Eh
.text:0040111A                mov     ecx, edi
.text:0040111C                mov     edx, esi
.text:0040111E                mov     eax, ebx
.text:00401120                call    sub_401138
.text:00401125                push    eax
.text:00401126                push    offset format   ; Format

.text:0040112B                call    _printf

.text:00401130                add     esp, 8

.text:00401133                pop     edi
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.text:00401134                pop     esi

.text:00401135                pop     ebx

.text:00401136                retn

.text:00401136 _main          endp

As you can see from Listing 3.48, the Borland C++ compiler sends parameters sequentially into
the EAX, EDX, and ECX registers. Note that the Borland's compiler uses register variables in the
EBX, EST, and EDI registers instead of stack variables. In contrast to the Microsoft Visual C++
compiler, the Borland C++ compiler is serious about the __fastcall modifier and doesn't
neglect the instruction for using registers as the number of parameters increases.

Stack Structures

Throughout this chapter, I have provided lots of different listings, in which I try to draw your
attention to the locations of the return address, parameters, and local and temporary variables
within the stack. The main goal of this section is to generalize accumulated experience and
supply new information.

The standard stack structure in the course of a procedure call is shown in Fig. 3.2. This
illustration shows the stages that the stack undergoes. The process of stack modification starts
from the procedure call (stages 1–3), during which the parameters are placed into the stack and
the procedure is called. During stages 4–5, memory is allocated and the registers that will be
used within the procedure, whose values must not be changed after the call, are saved into the
stack.

Figure 3.2: Standard stack structure in the course of a procedure call
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Consider the stages shown in Fig. 3.2 in more detail:
§ Usually, parameters are placed into the stack using reg32 or PUSH DWORD PTR mem

commands, where reg32 is a 32-bit register and mem is the address of the memory area
(direct or indirect). However, another method of placing parameters into the stack is
possible. First, the area for parameters is allocated in the stack. This can be carried out, for
example, as follows: SUB ESP, N. Here, Nn is the number of bytes required for storing
parameters, aligned by the 4-byte boundary. Then, the parameters are loaded into the stack
using standard MOV commands. For example, this task can be carried out as follows: MOV
DWORD PTR [ESP], EAX/MOV DWORD PTR [ESP + 41, EBX, etc. When dealing with
double operands (which are 8 bytes in size), the ESTP command is used to place them
into the stack, for example: FSTP DWORD PTR [ESP]. Thus, 8 bytes from the ST(0) FPU
register will be sent to the stack (see Listing 3.12 and the comments that follow it).

§
The CALL command places the return address into the stack directly after parameters (if
there are any). To correctly return from the procedure, this address must be located on the
top of the stack. In addition, the CALL command jumps to the address specified to it. Now
all work related to stack modification is delegated to the procedure. As a rule, the procedure
starts with the PUSH EBP command. This command immediately assumes further use of
EBP, and this register probably will be used for addressing the stack variable and
parameters. The presence of the Mov EBP, ESP command confirms this assumption. For
what purpose is this necessary? The ESP register is bound to the PUSH and POP
commands that change it automatically. Consequently, if the parameter nearest to the stack
top was located in the start of the procedure at the [ESP + 4] address, then after the
execution of the PUSH command it will be located at the [ESP + 8] address. Thus, the EBP
register is used to fix the reference point, from which locations of the parameters and stack
variables are counted.

§ The next step in the procedure of forming the stack structure is allocation of the memory
area for storing local variables. Note that if the use of local variables is not presumed, then
the compiler skips this step. As a rule, stack allocation is carried out by the SUB ESP, N
command, where N stands for the number of allocated bytes, aligned by the 4-byte
boundary. In some cases, however, it is possible to use the ADD ESP, -N command or
several PUSH commands. The use of the PUSH command is convenient, because within the
same command it is possible to combine stack allocation and variable initialization (see 
Listing 3.36 and the comments that follow it). The sequence of the PUSH EBP/Mov EBP,
ESP/SUB ESP, N commands can be replaced with a single ENTER N command, which,
however, is rarely used by the compilers because of its slowness.

§ Finally, if it is presumed that the EBX, EST, and EDT registers are used in the procedure,
they also must be saved in the stack.

§ In the end of the procedure, the stack must be returned to the state, in which the address of
return from the procedure was located on its top. In addition, it is necessary to restore the 
EBP, EBX, EST, and EDT registers (provided that they were modified). The most common is
the sequence of Mov ESP, EBP/POP EBP commands, which the compiler often replaces
with a single leave command.

§ If the preceding method was strictly observed, then there will be no problems with
recognizing the procedure in the course of disassembling, even if the procedure was called
using indirect call commands (CALL reg32, CALL [reg32], and CALL[mem]). However,
contemporary compilers, because of optimization, abandon the use of the EBP register for
addressing stack variables and parameters (see Listing 3.38 and the comments that follow
it).

§ In my opinion, the most interesting issue is the one related to nested procedures. In C++,
nested functions are not possible. Pascal, in contrast, allows such constructs (Listing 3.49).
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Listing 3.49: Pascal program with nested procedures
program Projectl;
var
a:integer;
procedure procl(al:integer);
var  b, g, d, e:integer;
  procedure proc2(al:integer);
  var c:integer;
  begin
    c := 30;
    writeln(al, b, c, d, e, g);
  end;
begin
   b := 20; g  30; d:= 40; e  := 50;
   proc2(al);
end;
begin
  a := 10;
  procl(a);
end.

Listing 3.50 provides the disassembled starting (main) part of the program (see Listing 3.49)
compiled using Delphi.

Listing 3.50: Disassembled code of the program shown in Listing 3.49, compiled using
Delphi
CODE:004039B4                public start
CODE:004039B4     start:
CODE:004039B4                push    ebp

CODE:004039B5                mov     ebp, esp
CODE:004039B7                add     esp, OFFFFFFFOh
CODE:004039BA                mov     eax, ds:off_4040A8
CODE:004039BF                mov     byte ptr [eax], 1
CODE:004039C2                mov     eax, offset dword_403994
CODE:004039C7                call    sub_403860
CODE:004039CC                mov     ds:dword_40565C, OAh
CODE:004039D6                mov     eax, ds:dword_40565C
CODE:004039DB                call    sub_403938
CODE:004039EO                call    sub_403394

Listing 3.50 shows the starting part of the program (see Listing 3.49). Of the three procedure
calls shown in this listing, one is the call to the procedure directly present in the application
program (procl). This is the sub_403938 procedure. The other two procedures are system
procedures executed when starting (start-up initialization) and when exiting the program. The 
sub_403938 procedure obtains its only parameter through the EAX register. The __fascall
calling convention is "flourishing" in Delphi, although it wasn't declared in the program. I have
even declined optimization when compiling this program. However, as you can see, Delphi
made an independent decision. The dword_40565C name corresponds to the a variable in the
program source code, and it is the one passed to the procedure through the register. Also, pay
attention to the add esp, 0FFFFFFF0h command. I hope that you without trouble can guess
that this is the add esp, -16 command, which is equivalent to sub esp, 16. In other words, 16
bytes are reserved.

Listing 3.51 provides the disassembled text of the compiled procl (sub_403938) procedure.
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Listing 3.51: Disassembled text of the compiled proc1 procedure
CODE=00403938  sub_403938    proc near       ; CODE XREF: CODE:004039DB p
CODE:00403938        var_14  = dword ptr -14h
CODE:00403938        var_10  = dword ptr -10h
CODE:00403938        var_C   = dword ptr -0Ch
CODE:00403938        var_8   = dword ptr -8
CODE:00403938        var_4   = dword ptr -4
CODE=00403938               push    ebp

CODE:0040393E               mov     [ebp + var_14], eax
CODE:00403941               mov     [ebp + var_4], 14h
CODE:00403948               mov     [ebp + var_10], 1Eh
CODE:0040394F               mov     [ebp + var_8], 28h
CODE:00403956               mov     [ebp + var_C], 32h
CODE:0040395D               push    ebp
CODE:0040395E               mov     eax, [ebp + var_14]
CODE:00403961               call    sub_4038DC
CODE:00403966               pop     ecx
CODE:00403967               mov     esp, ebp
CODE:00403969               pop     ebp
CODE:0040396A               retn
CODE:0040396A  sub_403938   endp

Note that four local variables are defined in the procl procedure. However, as you can see, five
local variables are defined in the executable code. The var_14 variable is allocated for storing
the parameter passed to the procedure (mov [ebp + var_14], eax); in other words, it is a
temporary variable. The add esp, 0FFFFFFECh command is equivalent to add esp, -20.
Everything is correct here (there are live variables, and 20 = 4*5).

There are even more interesting issues. For instance, consider the call to the proc2 procedure,
to which the call sub_4038DC command in Listing 3.51 corresponds. Note that this time the
parameter also is passed to the procedure through the EAX register. However, what does the
push ebp command mean? Is it another parameter? In the source code of the program, there
were no additional parameters. Furthermore, this doesn't correspond to the __fascall
convention. Recall that the proc2 procedure is nested, and it must have access to the local
variables of the procl procedure. This is why the EBP register is secretly passed to the proc2
procedure through this value. This is necessary to provide the nested procedure with access to
local variables of the procl procedure. Also, note that the pop ecx command that follows the
procedure call simply releases the stack from this "illegal" parameter.

Listing 3.52 provides the disassembled code of the proc2 procedure (see Listing 3.49).

Listing 3.52: Disassembled code of the proc2 procedure from Listing 3.49
CODE:004038DC  sub_4038DC    proc near     ; CODE XREF: sub_403938 + 29 p
CODE:004038DC        var_8  = dword ptr -8
CODE:004038DC        var_4  = dword ptr -4
CODE:004038DC        arg_0  = dword ptr  8
CODE:004038DC               push    ebp
CODE:004038DD               mov     ebp, esp
CODE:004038DF               add     esp, OFFFFFFF8h
CODE:004038E2               mov     [ebp + var_4], eax
CODE:004038E5               mov     [ebp + var_8], IEh
CODE:004038EC               mov     eax, ds:off_4040A4
CODE:004038F1               mov     edx, [ebp + var_4]
CODE:004038F4               call    sub_402B78
CODE:004038F9               mov     edx, [ebp + arg_0]
CODE:004038FC               mov     edx, [edx - 4]
CODE:004038FF               call    sub_402B78
CODE:00403904               mov     edx, [ebp + var_8]
CODE=00403907               call    sub_402B78



227Chapter 4: The SoftIce Debugger

 

CODE:0040390C               mov     edx, [ebp + arg_0]
CODE:0040390F               mov     edx, [edx - 8]
CODE=00403912               call    sub_402B78
CODE:00403917               mov     edx, [ebp + arg_0]
CODE:0040391A               mov     edx, [edx - 0Ch]
CODE:0040391D               call    sub_402B78
CODE:00403922               mov     edx, [ebp + arg_0]
CODE=00403925               mov     edx, [edx - 10h]
CODE=00403928               call    sub_402B78
CODE:0040392D               call    sub_402BA8
CODE=00403932               pop     ecx
CODE=00403933               pop     ecx
CODE=00403934               pop     ebp
CODE=00403935               retn
CODE=00403935 sub_4038DC    endp

The abundance of procedure calls immediately attracts attention. But you know that in the
source code (see 

Listing 3.49), there is only the writeln function. However, writeln is not a function but an
operator. The compiler transforms this operator into two procedure calls. The first procedure (
sub_402B78) forms some resulting string, which will be printed. The number of calls to this
procedure matches the number of parameters in the writeln operator. When the resulting
string is formed, the sub_402BA8 procedure is called, which outputs the string to the console.

Pay special attention to the add esp, OFFFFFFF8h command. The memory for two stack
variables is reserved. The parameter passed to the procedure is placed into the var_4 variable.
The var_8 variable corresponds to the c local variable, which is assigned the value of 30 (lEh).

In addition to the two local variables, the procedure has the arg_0 parameter, which is nothing
but the EBP value passed from the procl procedure, using which it is possible to access local
variables of the procl procedure.

If you view the source code of the program, you'll immediately note that the proc2 procedure
prints the values of al (the values passed from procl as a parameter), c (local variable of the
procl procedure), and the values of four variables defined in procl.

The previously-considered arg_0 parameter is used for obtaining the values of variables
defined in procl. For example, consider how the value of the b variable is retrieved: mov edx,
[ebp + arg_0]/mov edx, [edx - 4]. Again, parameters are passed through registers. As
relates to the EAX register, some ds:off_4040A4 parameter is placed there, the value of
which is unknown. As you probably can guess, this parameter is required for the operation of
the sub_402B78 procedure.

Identifying Procedures and Functions

To identify a specific procedure, you need to determine the addresses of its start and its end.
Second, it is necessary to determine the number and type (or at least the size) of the passed
parameters, the stack variables used by this procedure, and the type of its return value.
Consider the possibilities are available for completing this task:
§ The procedure call can be used. The CALL addr command explicitly specifies that some

procedure is located at the addr address. However, there are two possible problems:
o An indirect procedure call, such as CALL [EAX], causes difficulties for disassemblers. It

is necessary to either resort to using a debugger or analyze the disassembled text
manually. Furthermore, if the value of the EAX register is subject to change depending on
the values of some other parameters, it becomes problematic to locate all procedures
called using this method.
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o From Section 1.6.1, you know that there are lots of methods of calling procedures. This
can be achieved even using the RET command. If you are dealing with a program written
in Assembly or containing Assembly inserts, and the program's author aims to confuse
potential code investigators, there are lots of possibilities of achieving this goal. However,
if nonstandard procedure calls are used, this might be disclosed by the presence of
commands like ADD ESP, N, SUB ESP, -N, or one or more POP instructions. If you
encounter such patterns, this must inspire you to investigate the code more closely.

§ Functions can be identified by locating the standard function prologue. As a rule, the
standard function prologue is made up of three commands directly following each other: 
PUSH EBP, Mov EBP, ESP, and SUB ESP, N. The final command might be different, for
example, ADD ESP, -N or simply one or more sequential PUSH commands. It also is
possible to do without stack allocation for local and temporary variables. This is the case
when there are no such variables or if registers are used for passing such variables.
Besides this, the procedure might start with the commands for saving the values of the EBX,
EST, and EDT registers. In the course of optimization, the compiler might do without the
standard prologues and address all stack variables and parameters using the ESP register.
Finally, instead of the standard prologue it is possible to use the ENTER N command. The
end of the function is easier to locate when the starting point of that function is known.
However, in some cases the end of the function is the first to be located.

§ The procedure end can be easily located if a standard epilogue is present: Mov ESP, EBP/
POP EBP. Sometimes, this sequence of commands is replaced with the LEAVE command.
The epilogue is followed by the RETN command. In general, any RETN command
(especially RETN N) must make the code investigator vigilant. Having encountered it, you
should always check whether this is the procedure end. This is a good criterion; however, it
is not always applicable. In particular, if the function contains more than one __try/
__except blocks, the Microsoft Visual C++ compiler might generate several standard
epilogues (for optimization). Thus, even the IDA Pro disassembler might be easily confused
in such situations.

§ As mentioned earlier, it is easier to find the procedure end if the procedure start has been
determined. This usually will be the first RETN command encountered. However, it is
possible to exit in the middle of a procedure. In this case, some unconditional jump must
precede the RETN command, which passes control to some location beyond the RETN
command. For example, the pattern might appear as shown in Listing 3.53.

Listing 3.53: 

Sequence of commands typical for exiting in the middle of a procedure
   CMP    EAX,  1
   JNZ    L1
   RETN
L1:

Thus, it is possible to search for the procedure end starting from the Ll (label). If the procedure
has to return something when terminating its execution (when it is a function), then the
command setting the value of the EAX register must be present near its end. Such commands
might appear as XOR EAX, EAX (return false) or MOV EAX, 1 (return true), or these might be
some commands that modify the EAX value (MOV, ADD, SUB, etc.). If the type of the return value
is 8 bytes is size, then this value is returned in the EDX:EAX pair of registers. Finally, values of
the double type are returned in the ST(0) FPU register.
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Note If the return value is a structure,
then the pointer to that
structure, instead of the
structure, is returned in the EAX
register. The structure itself is
created in the calling function.
When the function of the
"structure" type is called, the
pointer to that structure is
passed in the EAX register.
Thus, the function will work with
the structure that has already
been created, and after
completion it will return the
pointer to the same structure.

§ Most procedures and functions have either variables defined in the stack or parameters
passed through the stack. This is an important indication because you will certainly
encounter commands with addressing through the EBP or ESP registers. By carefully
viewing the code above and below the encountered command, it is possible to determine
the procedure start.

§ When stack variables are addressed in a standard way (through the EBP register), it won't
be difficult to determine the amount of stack memory allocated to them (SUB ESP, N or any
similar command). As relates to the parameters passed to the procedure, here the situation
is slightly more complicated, because it is not known beforehand how much memory has
been allocated for them. The easiest way of solving this problem is to find the call to this
procedure, because all parameters are usually loaded into the stack using PUSH commands
or another obvious method (for instance, see Listing 3.13 and the comments that follow it).
If the location, from which the procedure under consideration was called, is not known
beforehand, then it will be necessary to analyze its code. First, it will be necessary to find
the maximum offset in relation to the EBP value in the direction of higher addresses.
Because the return address and old EBP value were loaded into the stack after parameters,
the first parameter (the one with the minimum address) will be located at the [EBP + 8]
address (see Fig. 3.2). Thus, if the maximum offset using the [EBP + N] addressing is
equal to max_off, then the number of bytes allocated for parameters will be equal to
max_off-4. Assuming that all parameters are 32 bits in size and have a simple data type
(these are not arrays or structures), an approximate number of parameters will be equal to 
(max_off-4) /4.

After these theoretical considerations and computations, consider a simple example program
written in C++ (Listing 3.54).

Listing 3.54: C++ program illustrating the procedure of identifying function start and end
#include <stdio.h>
#include <windows.h>
double myfunc(double, __int64, int, BYTE);
void main()
{
        double ff = 10.45;
        __int64 ii = 1000;
        int jj = 200;
        BYTE bb = 50;
        double ss = myfunc(ff, ii, jj, bb);
        printf("%f\n", ff);
};

double myfunc(double f, __int64 i, int j, BYTE b)
{
        double s;
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        s = f + i + j + b;
        printf("%f\n", s);
        return s;
};

The disassembled text of the main function from this program is shown in Listing 3.55.

Listing 3.55: Disassembled code of the main function from Listing 3.54
.text:00401000 _main        proc near        ; CODE XREF: start + 16E p
.text:00401000      var_40  = qword ptr -40h
.text:00401000      var_30  = qword ptr -30h
.text:00401000      var_28  = qword ptr -28h
.text:00401000      var_1C  = dword ptr -1Ch
.text:00401000      var_18  = qword ptr -18h
.text:00401000      var_10  = dword ptr -l0h
.text:00401000      var_C   = dword ptr -0Ch
.text:00401000      var_l  = byte ptr -1
.text:00401000             push    ebp
.text:00401001             mov     ebp, esp
.text:00401003             sub     esp, 28h
.text:00401006             fld     ds:dbl_408108
.text:0040100C             fstp    [ebp + var_28]
.text:0040100F             mov     [ebp + var_10], 3E8h
.text:00401016             mov     [ebp + var_C], 0
.text:0040101D             mov     [ebp + var_1C], 0C8h
.text:00401024             mov     [ebp + var_1], 32h
.text:00401028             mov     al, [ebp + var_l]
.text:0040102B             push    eax
.text:0040102C             mov     ecx, [ebp + var 1C]
.text:0040102F             push    ecx

.text:00401030             mov     edx, [ebp + var_C]

.text:00401033             push    edx

.text:00401034             mov     eax, [ebp + var_10]

.text:00401037             push    eax

.text:00401038             fld     [ebp + var_28]

.text:0040103B             sub     esp, 8

.text:0040103E             fstp    [esp +  40h + var_40]

.text:00401041             call    sub_401070

.text:00401046             add     esp,   18h

.text:00401049             fstp    [ebp + var_18]

.text:0040104C             fid     [ebp + var_28]

.text:0040104F             sub     esp, 8

.text:00401052             fstp    [esp + 30h + var_30]

.text:00401055             push    offset unk_4080FC

.text:0040105A             call    _printf

.text:0040105F             add     esp, 0Ch

.text:00401062             xor     eax, eax

.text:00401064             mov     esp, ebp

.text:00401066             pop     ebp

.text:00401067             retn

.text:00401067 _main       endp

First, identify four local variables defined in the main function. Discard the var_30 and var_40
names, because these are not variables. These are identifiers used by IDA Pro. For local
variables, 40 bytes are allocated. This is too much for five variables. Thus, it is necessary to
investigate these variables in more detail and in due order. The var_28 variable stands for the
ff variable of the double type. Here, everything is clear: The initial value is loaded from the
dbl_408108 constant using the fld/fstp commands. The mov [ebp + var_10], 3E8h/
mov [ebp + var_C], 0 commands load the 1000 (3E8h) value into the ii variable. The
disassembler didn't understand that this was a single 64-bit variable, and it interpreted this data
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item as two different variables. The var_1C variable designates the jj variable. Then, there is
the var_l single-byte variable designating bb. Note that although this is a single-byte variable, it
takes 4 bytes. This variable is followed by 4 more free bytes, and only after this interval does
the var_c variable start. Thus, the compiler has aligned the data by the 8-byte boundary. This
alone appears suspicious and causes the code investigator to assume that instead of two 4-byte
variables there is one 8-byte variable. Now only the ss variable remains. Note that after the call
to the myfunc function that has the double type, there is the fstp [ebp + var_18]
command. This means that the value from the ST(0) FPU register is loaded into the var_18
variable. However, double variables are returned in the ST(0) register. Thus, it is possible to
conclude that var_18 stands for the ss variable. Therefore, everything is OK. All variables have
been identified, and the extra reservation was caused by data alignment.

Another interesting sequence of commands is as follows: mov al, [ebp + var_l] / push
eax. At first glance, it appears that everything is all right here because, although the variable is 1
byte, it is necessary to load a 4-byte value into the stack. However, the most significant bytes of
the EAX register were not cleared. Furthermore, the entire double word is sent to the stack as a
parameter. This is possible only if the function strictly accounts for the parameter being 1 byte in
size. By the way, pay special attention to the order, in which parameters are sent to the stack
(from right to left). It is the calling function that clears the stack. This corresponds to the 
__cdecl calling convention (see Table 3.2). Then all other parameters are sent into the stack.
The ii(var_10, var_c) variable is sent into the stack as two independent 4-byte variables.
The ff variable is sent into the stack using the fstp command, as required. Then there is the
call to the printf function. This isn't anything unusual. However, I would still like to draw your
attention to the following issue: The first parameter of this function is the format string, which
specifies all other parameters of the function. This specification is often helpful for determining
the variable type and size. This is even truer because the C++ library provides several other
functions similar to printf and operating over the format string.

The disassembled code of the myfunc function is provided in Listing 3.56.

Listing 3.56: Disassembled code of the myfunc function from Listing 3.54
.text:00401070       sub_401070    proc near        ; CODE XREF: _main + 41 p
.text:00401070       var_14  = qword ptr -14h
.text:00401070       var_C   = dword ptr -0Ch
.text:00401070       var_8   = qword ptr -8
.text:00401070       arg_0   = qword ptr  8
.text:00401070       arg_8   = qword ptr  l0h
.text:00401070       arg_10  = dword ptr  18h

.text:00401070       arg_14  = byte ptr 1Ch

.text:00401070               push    ebp

.text:00401071               mov     ebp, esp

.text:00401073               sub     esp, 0Ch

.text:00401076               fild    [ebp + arg_8]

.text:00401079               fadd    [ebp + arg_0]

.text:0040107C               fiadd   [ebp + arg_10]

.text:0040107F               movzx   eax, [ebp + arg_14]

.text:00401083               mov     [ebp + var_C], eax

.text:00401086               fild    [ebp + var_C]

.text:00401089               faddp   st(1), st

.text:0040108B               fst     [ebp + var_8]

.text:0040108E               sub     esp, 8

.text:00401091               fstp    [esp + 14h + var_14]

.text:00401094               push    offset byte_408100

.text:00401099               call    _printf

.text:0040109E               add     esp, 0Ch

.text:004010A1               fld     [ebp + var_8]

.text:004010A4               mov     esp, ebp

.text:004010A6               pop     ebp
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.text:004010A7               retn

.text:004010A7  sub_401070   endp

Start the analysis by considering stack variables. There are only two such variables (the var_14
variable is not taken into account): var_8 and var_c. The var_8 variable takes 8 bytes, which
leads to the conclusion that this is nothing but the s variable. This assumption will be further
confirmed. No other variables were declared in the myfunc function. Consequently, the 4-byte
var_c variable is simply a temporary variable.

It is time to consider the function parameters. Strangely, there are only four parameters. Recall
that although there are four parameters, when disassembling the main function IDA Pro
considered there to be five variables, which later are used as parameters. Nevertheless, there
isn't anything difficult here. When the disassembler processed the main function, it didn't have
groundwork for considering var_10 and var_c as a single variable. When processing the
myfunc function, the disassembler has well-grounded reasons for considering arg_8 as a
single 8-byte parameter or the __int64 number (see the fild command).

Now, consider the algorithm used for computing the value of the f + i + j + b expression.
The fild command loads a long integer number (the i number) onto the top of the FPU stack
(namely, into the ST(0) register). The next command, fadd, adds this number to a real
number, f. The result is then loaded into ST(0) and interpreted as real. The next command,
fiadd, adds the real number stored in ST(0) to the 32-bit integer number j. Again, the result is
placed into ST(0). Then the movzx eax, [ebp + arg_14] command places 1 byte into the
EAX register and clears the most significant bytes of the register. This issue has already been
mentioned in comments that follow Listing 3.55. The byte is sent into the stack as part of a
double word, and the calling party doesn't clear the most significant bits, while the called
procedure does clear them; otherwise, error would be inevitable. Later, the var_c variable is
used. The b number is loaded into it (mov [ebp + var_C], eax), after which the var_c
variable is loaded into the ST(0) register and the old value of ST(0) is moved into the ST(1)
register. Finally, there is the faddp st(1), st command, and the result of computing the f +
i + j + b expression is placed into var_8 (the s variable) by the fst [ebp + var_8]
command. The stack is not popped, and the result is still contained in ST(0). Thus, the
sequence of the sub esp, 8/ fstp [esp + 14h + var_14] commands places this result
into the stack for output using the printf function. The final stroke is the fld[ebp + var_8]
command — the value returned by the function. Here, the compiler has made minor error. It
wasn't necessary to use the fstp command, and without it the latter command also wouldn't be
needed.

Buffer Overflow

Buffer overflow is one of the methods often used by hackers for correcting the software at run
time. By skillfully manipulating the input data, the hacker causes buffer overflow and passes
control to the shellcode expertly inserted into the program. Here, only one type of overflow error
will be considered, namely, stack overflow. Usually, stack overflow manifests in programs
written in C++. It consists of intrusion into the executable program code through the program
stack.

The stack overflow technique is mainly used for remote attacks. If you need to intrude the
program that runs on the local computer, there are more powerful tools for achieving this goal.
Besides, cracking some system running on a remote computer requires the intruder to carry out
some preliminary investigations. This is why I decided to include this material in this book, even
though it mainly relates to remote attacks.

Essence of the Problem
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When working with external devices, the program allocates buffers for storing sent and received
data. The received data fill the allocated buffers either completely or partially. The program must
ensure that the received data do not go beyond the buffer limits. If this happens, other data
items of even the executable code might become damaged. If the data being loaded exceed the
boundaries of the buffer allocated to them, this might result in a program malfunction or even in
a total crash. A specific feature of such errors is that they are exceedingly difficult to detect. In
some cases, programmers might gain a false impression that the errors are arbitrary and are
not related to specific actions. Exceeding the array boundaries is a typical example of such
errors.

Most contemporary compilers are capable of generating the code that can check whether the
boundaries of allocated buffers have been exceeded. For example, the Microsoft C++ compiler
provides the /GS command-line options. If this option is used, additional code is generated by
the compiler, which checks all operations to find out whether the buffer limits have been
exceeded. However, only buffers defined in the stack are checked, and this check is superficial.
It doesn't guarantee that the data do not fall into another buffer after exceeding limits of the
allocated one. The essence of the idea of checking the stack for overflow is to place certain
predefined bytes at the boundaries of the allocated buffer. After any operations that write into the
allocated buffer, a special procedure that checks these bytes must be called. If these bytes are
modified, this is evidence that there was a buffer overflow error. This approach requires
additional memory. Furthermore, it considerably slows program execution.

A natural question arises: How can the buffer overflow be exploited by those who try to crack the
program or a system? There are several techniques of penetration:
§ If the buffer is located in the stack, then the most obvious mechanism of intrusion from the

outside is modification of the return address from the function. The return address can be
modified in such a way that it jumps to another function or to the address that also is
located in the stack but contains malicious code instead of normal data. This method is the
one that will be covered later in this section.

§ Another approach is to modify some pointers (including to pointers to functions, the jump
table, etc.) at run time in such a way as to point to code other than that initially intended by
the program developer. This code was previously inserted by the intruder and will run
according to the intruder's plans.

§ Another approach is to modify data addresses in the course of overflow. The next portion of
data will be supplied into a different program location, which would allow the intruder to
insert an external code into the program.

Thus, it is possible to state that software is cracked by buffer overflow in the following two
stages: It is necessary first to insert malicious code and then to pass control to it. In theory, the
first stage might not be needed if the procedure that the hacker requires is part of the program
being investigated. In this case, the only thing that the hacker needs is to pass control to that
procedure at the required moment.

Why do I pay such attention to stack overflow? Windows protects the executable code from
writing there (the topic of self-modification was covered in detail in Section 1.6.2). Also,
Windows protects the data section from executing some code there. The stack is the only
location where it is possible to both write data and execute commands. This fundamental
property of the stack is universally applicable to most operating systems. In other words, it is
possible to fill the stack buffer with executable code and then make the processor execute it.

Practical Example

As an example, consider the simple program provided in Listing 3.57. The getpassword
function checks whether the supplied password is correct and, depending on the password's
correctness, returns either false or true.
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Listing 3.57: Example of a simple program vulnerable to stack overflow
#include <stdio.h>
#include <string.h>
int getpassword(char *);
char *passw = "privet";
int main()
{
       printf("Input password:\n");
       if(!getpassword(passw))printf("You are registered!\n");

       else printf("You are wrong!\n");
       return 0;
};
int getpassword(char *ss) {
       char s[13];
       gets(s) ;
       if (!strcmp(s, ss))return 0;
       else return 1;
}

Fig. 3.3 shows the design of the stack of the program presented in Listing 3.57. This is a
standard arrangement with prologue and epilogue. As you can see, the general stack structure
is divided into the stack structure of the main function and the stack structure of the
getpassword function. Note that addresses decrease from bottom to top. The local variable
shown in this illustration is the s variable. And, although the size of this parameter was specified
to equal 13 bytes, the compiler aligns it by the 4-byte boundary so that the buffer size equals 16
bytes. Data are inserted into the s variable from lower addresses to higher addresses. Thus, the
data that overflow the stack overwrite everything located below. The EBP value is the first to be
overwritten. After it, there is the address of return from the getpassword function (which is the
result longed for by the attacker). If the data go beyond the buffer limits and change the value of
the return address, then the function would return control to a different location. But where to?
This is the most interesting question. The attacker can place into the stack the address of some
function present within the program so that in case of buffer overflow the program would execute
according to the different method (which the programmer didn't expect).

Figure 3.3: The stack structure, with addresses decreasing from bottom to top

It is time to conduct an experiment by changing the return address from the getpassword
function. First, it is necessary to carefully study the disassembled code of the program. Listings
3.58 and 3.59 show the disassembled texts of the main and getpassword functions,
respectively.
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Listing 3.58: Disassembled code of the main function from Listing 3.57
.text:00401000  _main       proc near        ; CODE XREF: start + 16E p
.text:00401000              push    ebp
.text:00401001              mov     ebp, esp
.text:00401003              push    offset aInputPassword
.text:00401008              call    _printf
.text:0040100D              add     esp, 4
.text:00401010              mov     eax, dword_409040
.text:00401015              push    eax
.text:00401016              call    sub_401050
.text:0040101B              add     esp, 4
.text:0040101E              test    eax, eax
.text:00401020              jnz     short loc_401031
.text:00401022              push    offset aYouAreRegister
.text:00401027              call    _printf
.text:0040102C              add     esp, 4
.text:0040102F              jmp     short loc_40103E
.text:00401031  loc_401031:                  ; CODE XREF: _main + 20 j
.text:00401031              push    offset aYouAreWrong
.text:00401036              call    _printf
.text:0040103B              add     esp, 4

.text:0040103E  loc_40103E:                  ;CODE XREF: _main + 2F j

.text:0040103E               xor    eax, eax

.text:00401040               pop    ebp

.text:00401041               retn

.text:00401041  _main        endp

Listing 3.59: Disassembled code of the getpassword function (Listing 3.57)
.text:00401050   sub_401050  proc near        ; CODE XREF: _main + 16 p
.text:00401050        var_10 = byte ptr -l0h
.text:00401050        arg_0  = dword ptr  8
.text:00401050               push    ebp
.text:00401051               mov     ebp, esp
.text:00401053               sub     esp, 10h
.text:00401056               lea     eax, [ebp + var_10]
.text:00401059               push    eax
.text:0040105A               call    gets
.text:0040105F               add     esp, 4
.text:00401062               mov     ecx, [ebp + arg_0]
.text:00401065               push    ecx ; char
.text:00401066               lea     edx, [ebp + var_10]
.text:00401069               push    edx ; char
.text:0040106A               call    _strcmp

.text:0040106F               add     esp, 8

.text:00401072               test    eax, eax

.text:00401074               jnz     short loc_40107A

.text:00401076               xor     eax, eax

.text:00401078               jmp     short loc_40107F

.text:0040107A  loc_40107A:                 ; CODE XREF: sub_401050 + 24 j

.text:0040107A                mov    eax, 1

.text:0040107F  loc_40107F:                 ; CODE XREF: sub_401050 + 28 j

.text:0040107F                mov    esp, ebp

.text:00401081                pop    ebp

.text:00401082                retn

.text:00401082  sub_401050    endp

To start this study, first consider the call to the sub_401050 function, which is nothing but the
designation of the getpassword function. The sequence of the mov eax, dword _409040/
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push eax commands corresponds to sending the pointer containing the reference password
into the stack. The dword_409040 global variable contains the address of this string; in other
words, it is the pointer variable. Thus, the parameter is sent to the stack, then the call
command places there the return address (in this case, this is the 0040101Bh value).

Then pay attention to the test eax, eax command and the conditional jump that follows it:
jnz short loc_401031. This is a normal conditional construct, and the test command
corresponds to the if(!) operator. You have encountered the structure of the main function
many times.

First, note that 16 bytes are allocated for storing local variables in this program. This is because
all data in the stack are aligned by the 4-byte boundary. So, if you want to overflow the stack,
bear in mind the actual size of this buffer.

The lea eax, [ebp + var_10]/push eax sequence of commands simply places the
address of this buffer into the stack. It is assumed that the password will be loaded into that
buffer. This is the key issue. As you should understand (see Fig. 3.3), this buffer is followed by
the content of the EBP register, which, in turn, is followed by the desired return address.

After the call to the gets library function, the strcmp function for comparing strings is called.
This function receives the addresses of two strings from the stack. After the execution of this
function, there is an ordinary conditional construct (test, then jnz). By the way, note that the
strcmp function, like many other string functions, controls the string lengths only by the
terminating null; consequently, buffer overflow cannot influence their operation.

Thus, having carefully considered Listings 3.58 and 3.59, it is possible to proceed further. What
is the main goal? First, try to modify the return address so that the jump by retn from the
getpassword function would pass control to the printf command in the beginning of the
main function. From Listing 3.58, it follows that the jump address is equal to 00401003. Recall
that in the memory the number is written according to the principle "the most significant byte
gets the higher address," and you'll find that the following sequence of bytes must be sent to the
buffer: 03 10 40 00. However, it is necessary to fill first the 16-byte buffer then 4 more bytes
where the EBP value is stored. Because it is difficult to enter the characters with codes 10h and
03h from the command line, it is recommended that you use the following technique. Prepare
the text file with the required string, then use input redirection. Thus, assuming that the program
name is progl.exe and the text file is named pasw.txt, it is necessary to issue the following
command: progl < pasw.txt. For entering characters with codes smaller than 32, it is
possible to use the hiew.exe program (see Section 2.1.3). Well, let the string appear as follows:

   qqqqqqqqqqqqqqqqqqqq  @

Exactly 20 bytes (16 bytes is the size of the string buffer, and 4 bytes are for the contents of EBP
) are filled with arbitrary characters (for simplicity, I suggested simply the q character. Then there
follow the characters with the codes 03h 10h 40h. And where is the character with code 0?
Actually, you do not need it. After all, in the address that you will change, it is present in the
position where it is required. Thus, prepare and execute the progl < pasw.txt command.
The result will be as follows:
   Input password:
   Input password:
   You are wrong!

Thus, the problem has been solved. After the execution of the getpassword function, the jump
passes control to the address specified in the buffer. However, after these strings are displayed,
the dialog box warning you that there was an exception will appear (Fig. 3.4). This is natural and
can be easily explained. During the second pass, different data fall into the buffer and stack is
already corrupted; thus, the application cannot terminate correctly.
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Figure 3.4: The exception reported by Windows XP after an artificially-created buffer
overflow

Note The attacker has serious limitations
when choosing what bytes are sent
into the buffer. For example, the
hacker would fail to send characters
with codes such as 26 or, say, 0 into
the buffer. However, these limitations
are not insurmountable for the
following two reasons:

§ Only a particular case is
considered in this example,
namely, input using the gets
console function. In general,
the buffer might be intended
for arbitrary binary information,
in which case the attacker can
freely choose the information
that will be passed for the
input.

§ The information that will be
sent into the buffer can be
encoded so that it won't
contain "dangerous" codes.
This issue will be described
later in this chapter.

Recall that it is possible to run executable code in the stack. What if you place the program code
into the stack and pass control to that code? This sounds promising! After all, in the primitive
program the buffer size is only 16 bytes. Assume that you are dealing with a buffer that is 16 KB.
It is possible to place a program into that buffer that would do anything you like and on behalf of
a program that probably has a high privilege level in the system. This security hole has been
exploited by crackers for more than 10 years.

What can be placed into the buffer in this particular case? For example, consider the code in 
Listing 3.60.

Listing 3.60: Executable code that can be placed into the vulnerable buffer (Listing 3.57)
MOV  EAX, 0
RETN

Is this code suitable? I have intentionally made an error here. Recall that the RETN command
has already been executed for jumping to this fragment; so instead of RETN it is necessary to
use some kind of JMP command.

If you succeed in achieving this goal, the program will be cracked, because it will always report
any supplied password as correct.

From Listing 3.58 it becomes clear that the jump address must be equal to 0040101B. The
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stack content will not be damaged, and no critical errors will occur.

Disappointingly, the sequence of commands such as MOV EAX, 0/JMP 0040101B is not
suitable for passing it into the stack as a string. This is because of the following:
§ The first command contains zeros. The code o0f the MOV EAX, O command is equal to B8
00000000.

§ In the second command, the jump address is counted in relation to the command that
follows the JMP command. If the starting address of the stack is changed, then this code
fragment won't operate correctly.

Thus, to achieve the formulated goal, the two commands from Listing 3.60 must be transformed
into a sequence of six commands (Listing 3.61).

Listing 3.61: Executable code that would operate correctly in the vulnerable buffer
XOR EAX, EAX         ; 33 CO
XOR ECX, ECX         ; 33 C9
MOV CL, 40H          ; B1 40
SHL ECX, 1OH         ; C1 E1 10
MOV CX, 101BH        ; 66 B9 1B 10
JMP ECX              ; FF E1

The codes of the commands in Listing 3.61 are specified as comments. The best approach to
obtaining the correct codes of all commands is to use some debugger, such as OllyDbg. Thus,
you'll require 15 bytes out of 20 allocated bytes (recall that 16 bytes are allocated for the string
and 4 bytes are allocated for storing EBP). The remaining 5 bytes of the allocated 20 bytes can
contain any information. The return address, which is next, must contain the starting address of
the buffer. The buffer address can be determined using the same debugger. In this particular
example, it turns out to be equal to 0012FEC8. Thus, it is necessary to add 3 more bytes for the
20-byte string that has already been formed: C8 FE 12.

Here is the content of the pasw.txt file: . To avoid
errors, fill the text file using hiew.exe, not using a standard text editor. An attempt at passing
some characters through the clipboard inevitably corrupts the code, although the character
might remain the same. Thus, having prepared the text file, issue the progl < pasw.txt
command. The result will be wonderful:
   You are registered!

Thus, the shellcode has been inserted into the program, making the program register the user.

Now, only one issue needs clarification. As you have seen, there are problems with the input of
characters that can be sent to the program as a string. The input is not always carried out using
the console procedure that treats some characters selectively. If you deal with such an input,
then there is no problem.

However, return to the case of console input. What is the solution to this problem? The answer
is straightforward. It is necessary to encode the sequence of bytes in such a way as to ensure
that the codes incorrectly treated by console input are missing from the string. I won't consider
different methods of encoding here. I prefer the following approach (which might require
additional memory). The main goal of this approach is as follows: All "invalid" bytes must be
encoded (for example, by the XOR command). Each of these bytes must be preceded by a byte
specifying that the next byte that follows it is encoded. For this purpose, it is natural to use the 
NOP command that has the 90H code. The entire fragment must start with the decoder for the
remainder of the code. Decoding consists of removing the NOP bytes and decoding the bytes
that follow them. Because the bytes that console input functions consider invalid or interpret
incorrectly are not numerous, the number of NOP instructions must not be too large.
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3.2.2. Conditional Constructs and Logical Operators

When programming in high-level languages such as C and Pascal, most programmers have
become used to completed conditional constructs (if-else) and logical operators (AND, OR,
etc.). However, there was a time when such possibilities were not available. For instance,
consider Fortran or early versions of Basic. For these, unconditional jump operators, such as 
goto, were helpful, despite strong dislike by ardent supporters of high style in programming.
However, the machine language is entirely built on the basis of conditional and unconditional
jumps. Like it or not, it is impossible to do without them if you need to check some condition.

Simple Constructs

Consider the simple conditional construct shown in Listing 3.62.

Listing 3.62: Simple conditional construct
#include <stdio.h>
void main()
{
        int a, b;

         scanf("%d", &a);
         scanf("%d", &b);
         if (a >= b)
                  printf("a >= b\n");
         else
                  printf("a < b\n");
}

After compiling the program presented in Listing 3.62 using Microsoft Visual Studio and loading
it into the IDA Pro disassembler, you'll obtain the code shown in Listing 3.63.

Listing 3.63: Disassembled code of the program shown in Listing 3.62
.text:00401000  _main        proc near         ; CODE XREF: start + 16E p
.text:00401000         var_8 = dword ptr -8
.text:00401000         var_4 = dword ptr -4
.text:00401000              push    ebp
.text:00401001              mov     ebp, esp
.text:00401003              sub     esp, 8
.text:00401006              lea     eax, [ebp + var_4]
.text:00401009              push    eax
.text:0040100A              push    offset unk_4080FC
.text:0040100F              call    _scanf
.text:00401014              add     esp, 8
.text:00401017              lea     ecx, [ebp + var_8]
.text:0040101A              push    ecx
.text:0040101B              push    offset unk_408100
.text:00401020              call    _scanf
.text:00401025              add     esp, 8
.text:00401028              mov     edx, [ebp + var_4]
.text:0040102B              cmp     edx, [ebp + var_8]
.text:0040102E              jl      short loc_40103F
.text:00401030              push    offset aAB   ; "a >= b\n"
.text:00401035              call    _printf

.text:0040103A              add     esp, 4
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.text:0040103D              jmp     short loc_40104C

.text:0040103F  loc_40103F:                    ; CODE XREF:  _main +  2E j

.text:0040103F              push    offset aAB_0 ; "a<b\n"

.text:00401044              call    printf

.text:00401049              add     esp, 4

.text:0040104C  loc_40104C:                    ; CODE XREF:  _main + 3D |j

.text:0040104C              xor     eax, eax

.text:0040104E              mov     esp, ebp

.text:00401050              pop     ebp

.text:00401051              retn

.text:00401051  _main       endp

Pay special attention to the way, in which the scanf function is called. Because its argument
requires a pointer to a variable, lea eax, [ebp + var_4] /push eax sends the pointer to
the var_4 variable into the stack. Note that Microsoft's compiler treats the var_8 variable in the
same way.

The second important issue is how the complete conditional construct is implemented in the
executable code. Schematically, this can be represented as shown in Listing 3.64.

Listing 3.64: Implementation of a complete conditional structure in the executable code
j1   l1
// a >= b
...
jmp 12
l1:
// a < b
...
12:

As you can see, to implement a complete conditional construct one conditional jump and one
unconditional jump are required. Note that the conditional jump command corresponds to the
condition that is the negation of the one in the original program text. If you remove the else
branch (the incomplete conditional construct) from the program, then the unconditional jump
command (jmp 12) will be missing from the executable code. Finally, if you replace the a >=
b condition with a > b, then the executable code will contain the jle (jump less or equal)
command instead of the jl command. If the source program uses the less-or-equal condition,
for example, a =< b, then the executable code will contain jg or jge commands (for the less
condition). The fact that instead of a direct condition its negation is checked in the executable
code isn't an axiom. Another approach is possible (Listing 3.65).

Listing 3.65: 

Alternative implementation of complete conditional constructs
jge  11
// a < b
...
jmp 12
11:
// a >= b
...
12:

As you can see, there isn't anything abnormal in this approach. You can encounter it when
analyzing the code created by some compilers. However, I'd like to point out again that
decompilation isn't your main goal. You must try to understand the program's operating logic.
For this purpose, you do not need to know exactly, which source code was used to generate a
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specific fragment of the disassembled code.

If variables used within the program being studied are unsigned, then instead of jl(jle) the
jb(jbe) commands are used, and the jg(jge) commands are replaced with ja(jae). In
case of the check for equality (==) or inequality (!=), the jnz and jz commands are used,
respectively. Note that in the previously considered example, the CMP command was used in the
executable code for checking the a > b condition. This is obvious. This command is also used
for checking other conditions: <, <=, >=, ==, and !=. Everything depends on the conditional
check that you'll use later — in other words, on the flag or group of flags that you are checking. If
you check for equality (or inequality) to zero, the TEST command is often used instead of CMP.
Recall that in many programming languages the false value corresponds to 0, and true
corresponds to some nonzero value (1, for example). In this relation, it is instructive to consider
a construct typical for the C++ language (Listing 3.66).

Listing 3.66: 

Typical C++ construct
if(k =  (a = b)))
{
} else
{
}

It is clear that the k variable will be assigned one of the following two values: 1 (if a is equal to b)
or 0 (if a is not equal to b). Here is a fragment of the executable code compiled using the
Microsoft Visual C++ compiler (Listing 3.67).

Listing 3.67: Executable code generated using Microsoft Visual C++ (Listing 3.66)
; Load the a variable into the EAX register.
mov     eax, [ebp + var_4]
; Compute the difference a - b; the variables remain unchanged.
sub     eax, [ebp + var_8]
; Sign inversion is needed to check whether the EAX register contains 0.
neg     eax
; Subtraction takes into account the sign.
; If the EAX register contains a nonzero value,
; then the subtraction result in EAX will be -1;
; otherwise, the EAX register would contain 0.
sbb     eax, eax
; If the EAX register contained -1, the inc command
; will produce 0 (false); otherwise, the result will be 1 (true).
inc     eax
; The value is assigned to the k variable.
mov     [ebp + var_C], eax
; Jump depends on the result in the EAX register.

jz      short loc_401058
...
jmp     short loc_401065
loc_401058:
...
loc_401065:
...

The algorithm of obtaining the value of the k variable is a notable one. As you can see, the CMP
command is not used in this case. Note that the conditional jump is carried out depending on the
value contained in the EAX register after the INC EAX operation. The result of this operation,
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contained in the EAX register, is either 0 (false) or 1 (true).

Comparison of real numbers deserves special attention (Listing 3.68).

Listing 3.68: Sample program illustrating comparison of real numbers
#include <stdio.h>
void main()
{
       double a, b;
       scanf("%Lf", &a);
       scanf("%Lf", &b);
       if (a >= b)
                printf("%Lf\n", a) ;
       else
                printf(""-Lf\n", b);
}

Listing 3.68 presents a simple program for comparing two real numbers of the double type.
From the language syntax point of view, the difference between this program and a similar one
that compares integer variables is minor and relates only to the format of the scanf and
printf functions. However, comparison of real variables must be principally different from
comparison of integer numbers at the level of executable code. Consider Listing 3.69, produced
by IDA Pro.

Listing 3.69: Disassembled code of the program in Listing 3.68 created by IDA Pro
.text:00401000  _main       proc near         ; CODE XREF: start + 16E p
.text:00401000       var_18 = qword ptr -18h
.text:00401000       var_10 = qword ptr -10h
.text:00401000       var_8  = qword ptr -8
.text:00401000              push    ebp
.text:00401001              mov     ebp,  esp
.text:00401003              sub     esp,  10h
.text:00401006              lea     eax, [ebp + var_8]
.text:00401009              push    eax
.text:0040100A              push    offset unk_4090FC
.text:0040100F              call    _scanf
.text:00401014              add     esp, 8
.text:00401017              lea     ecx, [ebp + var_10]
.text:0040101A              push    ecx
.text:0040101B              push    offset unk_409100
.text:00401020              call    _scanf
.text:00401025              add     esp, 8
.text:00401028              fld     [ebp + var_8]
.text:0040102B              fcomp   [ebp + var_10]
.text:0040102E              fnstsw  ax
.text:00401030              test    ah, 1
.text:00401033              jnz     short loc_40104D
.text:00401035              fld     [ebp + var_8]
.text:00401038              sub     esp, 8
.text:0040103B              fstp    [esp + 18h + var_18]
.text:0040103E              push    offset aLf  ; "%Lf\n"
.text:00401043              call    _printf
.text:00401048              add     esp, 0Ch
.text:0040104B              jmp     short loc_401063
.text:0040104D  loc_40104D:                    ; CODE XREF: _main + 33 j
.text:0040104D              fld     [ebp + var_10]
.text:00401050              sub     esp, 8
.text:00401053              fstp    [esp + 18h + var_18]
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.text:00401056              push    offset aLf_0 ; "%Lf\n"

.text:0040105B              call    _printf

.text:00401060              add     esp, 0Ch

.text:00401063  loc_401063:                    ; CODE XREF:  _main +  4B j

.text:00401063              xor     eax, eax

.text:00401065              mov     esp, ebp

.text:00401067              pop     ebp

.text:00401068              retn

.text:00401068 _main        endp

For the moment, you shouldn't see anything unusual in allocating memory for stack variables.
The only issue that deserves special mention is that now variables have the double type and,
consequently, take 8 bytes. Arguments of the scanf function are pointers to variables rather
than actual variables. Hence, the lea (lea eax, [ebp + var_8]/push eax) commands
are used. The use of two registers (EAX and ECX) as temporary variables for storing the pointers
to variables for further pushing into the stack has no special meaning. It would be possible to do
with only one register.

Starting from the 00401028 address, the really interesting commands are encountered. It is
necessary to compare two 8-byte floating-point numbers. Here is the sequence of commands
that carries out this comparison (Listing 3.70).

Listing 3.70: Sequence of commands that compares two 8-byte floating-point numbers
; Load the a variable into ST(0).
fld     [ebp + var_8]
; Compare the content of ST(0) to var_10 (the b variable).
fcomp   [ebp + var_10]
; Save the status word (SW) in the AX register.
fnstsw  ax
; Check bit 0 of the AH register.
test    ah, 1
; Jump if this bit is set.
jnz     short loc_40104D
...

jmp     short loc_401063
loc_40104D:
...
loc_401063:
...

Although the preceding fragment is supplied with comments, some notes still have to be made.
The fcomp command compares two operands, and the result of this comparison is reflected by
the C0, C2, and C3 flags that correspond to bits 8, 9, and 10 of the status word (see Section
1.2.3). Table 3.3 outlines the flag values for different situations of comparison.

Table 3.3: Flag values for different situations of comparison

Checked
condition

C3 flag C2flag CO flag

ST(0) > src 0 0 0

ST(0) < src 0 0 1

ST(0) = src 1 0 0

Operands are
incomparable

1 1 1
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From this table, it follows that if C0 == 0, this corresponds to the >= condition. Hence, the JNZ
(jump if nonzero) command corresponds to printing the message that the b variable is the
greatest. Some compilers use different techniques. For instance, a complier may copy the
coprocessor flags into the flags register using the SAHF command. In this case, the C0 flag is
copied into the CF flag, C2 is copied into PF, and C3 goes into ZF. Later, it is possible to use
conditional jumps. In the case under consideration, this will be the JZ command (instead of JNZ
). What should you do when checking a strict inequality, such as a > b? According to the data
provided in Table 3.3, the checking command would appear as follows: TEST AX, 41H.

Nested Constructs and Logical Operators

In real-world programming, conditional constructs might contain nested logical constructs (
Listing 3.71). Consider how nesting might influence the executable code.

Listing 3.71: Example program containing nested conditional constructs
// Searching for the maximum number out of three numbers
#include <stdio.h>
void main()
{
        int a, b, c;
        scanf("%d", &a);
        scanf("%d", &b);
        scanf("%d", &c);
        if (a > b)
        {
                 if(a > c) printf("%d\n", a) ;
                 else print f("%d\n", c);
        } else {
                 if(b > c) printf("%d\n", b) ;
                 else printf("%d\n", c);
        }
}

The compiler builds the structure of nested conditional constructs according to the same method
as the one shown in Listing 3.63. This method is presented in Listing 3.72.

Listing 3.72: Method of nested conditional structures built by the compiler
jl 11

//  if (1) [9]

// The branch corresponding to a > b
jl 14
// if (2)
// The branch corresponding to a > c

// Output the a value.
...
jmp 12
14:
// else (2)
// The a > c condition is not observed, while the a > b condition is true.
// Output the c value.
...
12:
// The end of the if operator of the first nesting level
jmp 13
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// The start of the else operator of the first nesting level
11:
// else (1)
// The a > b condition hasn't been observed.
jl 15
// if (2)
// The b > c condition is true, while the a > b condition is false.
// Output the b value.
...
jmp 13
15:
// else (2)
// The b > c is condition false, and the a > b condition is false.
// Output the c value.
...
13:
// End of the nested construct

Carefully consider the method presented in Listing 3.72. As you can see, it is clearly mapped to
the method present in the source program (see Listing 3.71). At the same time, any complete
conditional construct can be easily converted into incomplete conditional construct by simply
discarding an appropriate jmp command.

Contemporary programming languages use OR and AND logical operators instead of large
numbers of nested conditional constructs. Using these logical operators, combined conditions
are built. In real-world programming, such combined conditions are sophisticated. Kris
Kaspersky, in his excellent book Hacker Debugging Uncovered, suggests the diagrams
technique for analyzing executable code resulting from complex conditional constructs. This
approach can be helpful when reconstructing a complex conditional construct. In my opinion,
however, it is not always necessary to reconstruct the source code to understand the conditions
implemented in the executable code. After all, programmers often use logical operators more for
making the code compact than for making their programs readable. This doesn't improve
understanding of their programs. Furthermore, most programmers use both logical operators
and nested conditional constructs, which makes it problematic to recover source constructs.

Consider the example in Listing 3.73.

Listing 3.73: Example illustrating recognition of logical operators
.text:00401000  _main       proc near          ; CODE XREF: start + 16E p
.text:00401000       var_C = dword ptr -0Ch
.text:00401000       var_8 = dword ptr -8
.text:00401000       var_4 = dword ptr -4
.text:00401000             push    ebp
.text:00401001             mov     ebp, esp
.text:00401003             sub     esp, 0Ch
.text:00401006             lea     eax, [ebp + var_4]
.text:00401009             push    eax
.text:0040100A             push    offset unk_4080FC
.text:0040100F             call    scanf
.text:00401014             add     esp, 8
.text:00401017             lea     ecx, [ebp + var_8]
.text:0040101A             push    ecx
.text:0040101B             push    offset unk_408100
.text:00401020             call    scanf
.text:00401025             add     esp, 8
.text:00401028             lea     edx, [ebp + var_C]
.text:0040102B             push    edx
.text:0040102C             push    offset unk_408104
.text:00401031             call    scanf
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.text:00401036             add     esp, 8

.text:00401039             mov     eax, [ebp + var_4]

.text:0040103C             cmp     eax, [ebp + var_8]

.text:0040103F             jle     short loc_401047

.text:00401041             cmp     [ebp + var_8], 0

.text:00401045             jg      short loc_401055

.text:00401047  loc_401047:                    ; CODE XREF: _main + 3F j

.text:00401047             mov     ecx, [ebp + var_4]

.text:0040104A             cmp     ecx, [ebp + var_C]

.text:0040104D             jz      short loc_401055

.text:0040104F             cmp     [ebp + var_C], 0

.text:00401053             jnz     short loc_401064

.text:00401055  loc_401055:                    ; CODE XREF: _main + 45 j

.text:00401055             push    offset aYes ; "Yes!\n"

.text:0040105A             call    _printf

.text:0040105F             add     esp, 4

.text:00401062             jmp     short loc_401071

.text:00401064  loc_401064:                    ; CODE XREF: _main + 53 j

.text:00401064             push    offset aNo ; "No!\n"

.text:00401069             call    _printf

.text:0040106E             add     esp, 4

.text:00401071  loc_401071:                    ; CODE XREF: _main + 62 j

.text:00401071             xor     eax, eax

.text:00401073             mov     esp, ebp

.text:00401075             pop     ebp

.text:00401076             retn

.text:00401076 _main       endp

Lots of similar listings have already been provided in this book. Thus, you'll easily determine that
three stack variables of the integer type are used here (12 bytes are reserved, and three
variables of the same type are used). The input of their values using the scanf library function
also isn't anything new. The most interesting are the conditional jumps. First, consider the code
in general. What would you see? First, all conditional jumps can produce one of the two possible
results: printing the "Yes" string (the 00401055 address) or the "No" string (the 00401064
address) using the printf function. Consequently, to all appearances you are dealing with the
if-else conditional construct. Combine all conditions that produce the first result and,
accordingly, combine all conditions that lead to the second result. Thus, the jump to the 
00401055 address takes place when var_4 > var_8 and var_8 > 0. This condition is an
obvious candidate for the role of the following combined condition: a > b && b > 0. Let it be
designated as condition 1. Because the same result is produced when all conditions except for
condition 1 are satisfied, it is possible to assume that you are dealing with the OR logical
operator (although, it is not necessary to take this into account to gain a sound understanding of
the process). The same result is obtained if the var_4 = var_c condition is satisfied. Let it be
condition 2. Finally, the same result will be produced if var_c = 0. This will be condition 3. In
all other cases, the code fragment starting from the 00401064 address is executed. After
completing all of these considerations, it is possible to write a conditional construct using the 
AND and OR logical operators. However, this won't improve your understanding of the code,
because you have already understood the operating logic of this fragment.

Thus, what conclusion can be drawn on the basis of these considerations? This conclusion is as
follows: Conditions related to one another using logical AND can be easily recognized.
Considering them as a combined condition, it is also possible to understand the operating logic
of all other conditions (related to the first one using logical OR).

Conditional Constructs without Jumps

It is necessary to mention that conditional and unconditional jumps reset the command queue,
which slows down the program execution. Bear this in mind when writing a program in
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Assembly. Avoid using jumps whenever it is possible to do without them. Instead, it is possible
to use the following sets of commands: SETcc r/m (conditional setting of the first bit) and
CMOVX (conditional data sending). These commands are described in Chapter 1 (see Table 1.2).
Advanced compilers, such as Visual C++, are aware of this capability. Unfortunately, I failed to
make this compiler use any of the conditional move commands. On the other hand, it turned out
that Visual C++ actively uses conditional bit setting commands.

The idea of using the commands for conditionally setting the first bit of the byte is trivial. Let
some register (for example, EAX) contain the 0 value in the beginning. Then, after using the CMP
command, it is possible to use one of the conditional bit setting commands, for instance, the 
SETLE command (set if lower). After that, execute DEC EAX. Now, if the condition has been
satisfied, EAX contains 0; otherwise, the value contained in EAX is equal to -1 (FFFFFFFFH). If
the operand is equal to 0, then the AND instruction with any value of the second operand won't
change its content. For instance, consider the fragment in Listing 3.74.

Listing 3.74: 

Code fragment illustrating the use of the conditional bit setting commands
.text:00401013       xor       eax, eax
.text:00401015       cmp       edx, 0Ah
.text:00401018       setle     al
.text:0040101B       dec       eax
.text:0040101C       and       eax, OFFFFF200h
.text:00401021       add       eax, 1000h

As can be easily seen, if the EDX <= 0 condition is satisfied, the EAX register contains the
1000H value; otherwise, it will contain the 200H value. This executable code is equivalent to the
if (a > 10) b = 0x200; else b = 0x1000; operator. This code is created by Microsoft's
compiler if the "create fast code" option is set.

Choice Operators

As a rule, a long sequence of incomplete conditional operators is replaced with the choice
operator. Listing 3.75 provides a typical example of using the choice operator. Consider what
Microsoft's compiler would do to this code (Listing 3.76).

Listing 3.75: Typical example of using the choice operator
#include <stdio.h>
void main()
{
        char a;
        scanf("%c", &a);
        switch(a)
        {
                case 'A':
                        printf("A\n");
                        break;

                case 'B':
                        printf("B\n");
                        break;
                default:
                        printf("?\n");
        }
}
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Listing 3.76: Disassembled listing (Listing 3.74) compiled using Microsoft Visual C++
.text:00401000  _main      proc near        ; CODE XREF: start + 16E p
.text:00401000       var_8 = byte ptr -8
.text:00401000       var_l = byte ptr -1
.text:00401000             push    ebp
.text:00401001             mov     ebp, esp
.text:00401003             sub     esp, 8
.text:00401006             lea     eax, [ebp - 1]
.text:00401009             push    eax
.text:0040100A             push    offset unk_4080FC
.text:0040100F             call    _scanf
.text:00401014             add     esp, 8
.text:00401017             mov     cl, [ebp + var_1]
.text:0040101A             mov     [ebp + var_8], cl
.text:0040101D             cmp     [ebp + var_8], 41h
.text:00401021             jz      short loc_40102B
.text:00401023             cmp     [ebp + var_8], 42h
.text:00401027             jz      short loc_40103A
.text:00401029             jmp     short loc_401049
.text:0040102B  loc_40102B:                 ; CODE XREF: _main + 21 j
.text:0040102B             push    offset byte_408100
.text:00401030             call    _printf
.text:00401035             add     esp, 4
.text:00401038             jmp     short loc_401056
.text:0040103A  loc_40103A:                 ; CODE XREF: _main + 27  j

.text:0040103A             push    offset unk_408104

.text:0040103F             call    _printf

.text:00401044             add     esp, 4

.text:00401047             jmp     short loc_401056

.text:00401049  loc_401049:                 ; CODE XREF: _main + 29 j

.text:00401049             push    offset unk_408108

.text:0040104E             call    printf

.text:00401053             add     esp, 4

.text:00401056  loc_401056:                 ; CODE XREF: _main + 38 j

.text:00401056             ; main + 47  j

.text:00401056             xor    eax,  eax

.text:00401058             mov    esp,  ebp

.text:0040105A             pop    ebp

.text:0040105B             retn

.text:0040105B _main       endp

This code is interesting because of a certain redundancy. Two stack variables are defined in the 
main procedure. The var_l variable apparently is intended for storing the a variable defined in
the program source code (see Listing 3.75), because it is used with the scanf function. The
var_8 variable is an auxiliary one. It is used for comparison in commands such as cmp [ebp
+ var_8], 42h. It is possible to use a single variable, var_1. By the way, note that two single-
bit variables are stored in two adjacent 4-byte blocks. This is because of the requirement to
meet the data alignment by the 4-byte boundary.

The method for checking conditions is bulky. This is because the check tests whether the
condition is satisfied. The method in Listing 3.77 would be more elegant.

Listing 3.77: Alternative and more elegant method for checking conditions
cmp    [ebp + var_8], 41h
jnz      11
...
jmp    _break
11:
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cmp    [ebp + var_8], 42h

jnz      12:
...
jmp    _break
12:
//default
...
_break:

Finally, you can encounter the approach shown in Listing 3.78. In particular, Borland C++ 5.0, as
well as the Delphi compiler, processes the choice operator in this way. The Microsoft C++
compiler also behaves in this way, provided that the "create fast code" option is set.

Listing 3.78: Processing the typical choice operator
mov       dl, [ebp + var_l]
sub       dl, 41h
jz        11
dec       dl
jz        12
jmp       13
11:
...
jmp       13
12:
...
13:
...

On the basis of Listing 3.78, the principle of this approach is easily understandable. The
parameter of the switch operator is placed into some temporary variable, which might also be
a register. Assume that the values for equality, to which the variable will be checked, are a1, a2,
..., an (in ascending order). The check is carried out as follows: First, the a1 value is subtracted
from the temporary variable and the variable is tested for equality to zero. Later, the values a2
- a1, a3 - a2, etc., are subtracted from the variable. After each subtraction, the variable is
tested for equality to zero. This approach is especially efficient when all differences (a2 - al,
a3 - a2, etc.) are equal to one. In this case, it is convenient to use the DEC processor
command.

3.2.3. 

Loops

Looping algorithms are a kind of branching in which, depending on the condition, a specific
program fragment is executed multiple times. At the level of Assembly language, a conditional or
unconditional backward jump is assumed to the instructions with smaller addresses.
Contemporary disassemblers and debuggers trace such jumps and mark them in the
disassembled text.

Simple Loops

Consider all possible variants of loop organization in Assembly language. This would allow you
to easily understand how contemporary compilers treat loops. A typical loop structure is shown
in Listing 3.79.
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Listing 3.79: Typical loop structure
...
; Quite often, the JMP L1 instruction is encountered here.
_beg:
; In particular, the commands changing the loop parameter
; appear here.
...
CMP EAX, EBX ; Or, perhaps, check for some other condition.
JZ _end      ; Or, perhaps, some other conditional jump
             ; beyond the loop limits.
; The loop body starts here.
L1:
...
; The loop body - any number of commands.
JMP _beg
_end:

Listing 3.79 demonstrates a typical loop structure that you can encounter when studying the
code generated by various compilers. Note that the jump to the start of the loop body might be
present (JMP L1). If such a jump is present, then the loop body will be executed at least once.
This corresponds to the postcondition loop ideology. If there is no jump to the loop body, then in
general the loop body does not execute even once. This corresponds to the precondition loop
ideology.

A typical example of a postcondition loop is presented in Listing 3.80.

Listing 3.80: Typical example of a postcondition loop
...
_beg:
; Start of the loop body
...
CMP EAX, EBX  ; Or check for some other condition.
JZ _beg       ; Or some other conditional jump to the start of the loop
...

In this case, you are dealing with a typical example of the postcondition loop. However, it would
be an error to consider that the loop type specified in the high-level programming language
would automatically correspond to the loop type in the executable code. Contemporary
compilers do not simply transform operators of high-level programming languages to machine
commands but sometimes inventively reconstruct them (for some cases, the word inventively
should be enclosed in quotation marks). Thus, if you use a precondition loop in your program but
variable values are guaranteed to ensure that the loop will be executed at least once, the
compiler can use the postcondition loop in the machine code.

The FOR, loops present in the main algorithmic languages are variants of precondition loops.
One or more parameters simply participate in formulating the condition. Parameters of such
loops, when executing the loop body (or before the next iteration) obtain some constant
increment (which might be either positive or negative). The presence of a variable, which is
incremented or decremented by a constant value at each iteration, is an important indication that
you are dealing with the FOR, loop.

After this brief introduction, it is natural to consider several practical examples. For instance, 
Listing 3.81 provides the simplest example of using the FOR loop.
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Listing 3.81: Simple example of using the FOR loop
#include <stdio.h>
void main()
{
       int b = 10;
       for(int i = 0; i < 100; i++)
                printf("%d\n", b);
}

Consider how the Microsoft Visual C++ compiler translates this program, provided that the "no
optimization" option was chosen for compilation (Listing 3.82).

Listing 3.82: Disassembled text compiled using Microsoft Visual C++ without
optimization
.text:00401000  _main     proc near        ; CODE XREF: start + 16E p
.text:00401000      var_8 = dword ptr -8
.text:00401000      var_4 = dword ptr -4
.text:00401000            push    ebp
.text:00401001            mov     ebp, esp
.text:00401003            sub     esp, 8
.text:00401006            mov     [ebp + var_4], 0Ah
.text:0040100D            mov     [ebp + var_8], 0
.text:00401014            jmp     short loc_40101F
.text:00401016  loc_401016:                ; CODE XREF: _main + 36 j
.text:00401016            mov     eax, [ebp + var_8]
.text:00401019            add     eax, 1
.text:0040101C            mov     [ebp + var_8], eax
.text:0040101F  loc_40101F:                ; CODE XREF: _main + 14 j
.text:0040101F            cmp     [ebp + var_8], 64h
.text:00401023            jge     short loc_401038
.text:00401025            mov     ecx, [ebp + var_4]
.text:00401028            push    ecx
.text:00401029            push    offset unk_4060FC
.text:0040102E            call    _printf

.text:00401033            add     esp, 8

.text:00401036            jmp     short loc_401016

.text:00401038  loc_401038:                ; CODE XREF:  _main + 23 j

.text:00401038            xor     eax, eax

.text:0040103A            mov     esp, ebp

.text:0040103C            pop     ebp

.text:0040103D            retn

.text:0040103D _main      endp

First, I'd like to draw your attention to local variables. Obviously, var_4 stands for the b variable.
As relates to var_8, it is nothing but the loop parameter. Also, note the mov eax, [ebp +
var_8] /add ax, 1/mov [ebp + var_8], eax commands. They immediately attract
attention and clearly indicate the FOR loop.

Note that Listing 3.82 corresponds exactly to the program operating method provided in Listing
3.81. The jmp short loc_40101F jump reflects that the initial value of the loop parameter
must be 0, and the exit condition of the loop is the equality of the loop parameter to 100. When
implementing such an algorithm in Assembly, it would be possible to do without this jump by
simply assigning the initial value of-1 to the loop parameter.

From Listing 3.82, it is clear that you are dealing with the precondition loop. However, consider
what the result would be if you instructed the compiler to produce compact executable code (
Listing 3.83).
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Listing 3.83: Disassembled text (Listing 3.81) compiled using the "compact code" option
.text:00401000  _main      proc near        ; CODE XREF: start + 16E p
.text:00401000             push    esi
.text:00401001             push    64h
.text:00401003             pop     esi
.text:00401004  loc_401004:                 ; CODE XREF: _main + 13 j
.text:00401004             push    0Ah
.text:00401006             push    offset unk_4060FC
.text:0040100B             call    _printf
.text:00401010             dec     esi
.text:00401011             pop     ecx

.text:00401012             pop     ecx

.text:00401013             jnz     short loc_401004

.text:00401015             xor     eax, eax

.text:00401017             pop     esi

.text:00401018             retn

.text:00401018 _main       endp

Listing 3.83 provides a typical example of the postcondition loop. Note that the role of the loop
parameter is delegated to the ESI register. At the same time, instead of incrementing the
parameter this code decrements it to make it possible to use the condition of comparing this
parameter to zero. This technique is often used by the Microsoft Visual C++ compiler to turn a
precondition loop to a postcondition loop. In this case, the parameter increment is replaced with
the decrement. An interesting issue is that if the for loop is replaced with the while or do-
while loop and the "create compact code" optimization option is preserved, the result will be
exactly the same as the one shown in Listing 3.82.

Consider how the program shown in Listing 3.81 is treated by the Borland C++ compiler (Listing
3.84).

Listing 3.84: Disassembled text (Listing 3.81) compiled using the Borland C++ compiler
.text:00401108  _main      proc near       ; DATA XREF: .data:0040AOB8 o
.text:00401108       argc  = dword ptr 8
.text:00401108       argv  = dword ptr 0Ch
.text:00401108       envp  = dword ptr l0h
.text:00401108             push    ebp
.text:00401109             mov     ebp, esp
.text:0040110B             push    ebx
.text:0040110C             push    esi
.text:0040110D             mov     esi, 0Ah
.text:00401112             xor     ebx, ebx
.text:00401114  loc_401114:                ; CODE XREF: _main + lE j
.text:00401114             push    esi
.text:00401115             push    offset format   ; Format
.text:0040111A             call    _printf

.text:0040111F             add     esp, 8

.text:00401122             inc     ebx

.text:00401123             cmp     ebx, 64h

.text:00401126             jl      short loc_401114

.text:00401128             pop     esi

.text:00401129             pop     ebx

.text:0040112A             pop     ebp

.text:0040112B             retn

.text:0040112B _main      endp

The most interesting issue is that the Borland C++ v. 5.0 compiler interprets the same program
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slightly differently: The precondition loop is transformed to the postcondition loop; however, the
loop parameter continues to be incremented (see Listing 3.84). Moreover, note that Microsoft's
compiler is more accurate when working with registers: It uses only one register (ESI) that must
be stored in the stack.

Loop Optimization

One type of loop optimization was covered in the previous section: conversion of the
precondition loop to the postcondition loop. In addition, it was shown that the Microsoft Visual C+
+ compiler can replace the loop parameter increment with its decrement so that the equality of
this parameter to zero is the loop termination condition. However, there are even more efficient
methods of loop optimization used by advanced compilers. Here, I'll cover the two most
important techniques.

Computation at Compile Time

The programmer often doesn't notice that the result obtained in the course of executing a
looping algorithm is self-evident. Advanced compilers, including Microsoft Visual C++, recognize
such situations and replace looping algorithms with ready-to-use results. Consider the simple
example provided in Listing 3.85.

Listing 3.85: Simple demonstration of computation at compile time optimization
#include <stdio.h>
void main()
{

       int i = 0, s=0, k = 5;
       for(i = 0; i < k; i++) S = S + i;
       printf("%d\n", s);
}

Principally, it is not difficult to evaluate the result of computing the s value: It will be ten. The
Microsoft Visual C++ compiler easily solves this problem. Consider the code that it will produce
as the result of compiling the program in Listing 3.85 using the "create fast code" option (Listing
3.86).

Listing 3.86: Disassembled text of the program in Listing 3.85
.text:00401000  _main    proc near        ; CODE XREF: start + 16E p
.text:00401000           push    0Ah
.text:00401002           push    offset unk_4060FC
.text:00401007           call    printf
.text:0040100C           add     esp, 8
.text:0040100F           xor     eax, eax
.text:00401011           retn
.text:00401011 _main     endp

In Listing 3.86, there are no loops. This reconfirms that the compilation process is generally
irreversible. However, this is not related to understanding the program operating logic.

Loop Unwinding

Loop unwinding (also known as loop unrolling) is a technique based on the principles of
optimizing memory access.
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Listing 3.87 presents a test program demonstrating the loop unwinding technique.

Listing 3.87: Test program demonstrating the loop unwinding technique
#include <stdio.h>
void main()
{
       int a[100];

       int i =  0, s = 0;
       for(i = 0; i < 100; i++) a[i]   = i;
       for(i = 0; i < 100; i++) s += a[i];
       printf("%d\n", s);
}

Listing 3.87 presents a program using the a array. Compile this program using the Microsoft
Visual C++ compiler with the "create fast code" option specified. The disassembled text of the
executable code of this program is shown in Listing 3.88.

Listing 3.88: Disassembled text of the executable code of the program in Listing 3.87
.text:00401000  _main        proc near         ; CODE XREF: start + 16E p
.text:00401000       var_194 = dword ptr -194h
.text:00401000       var_190 = dword ptr -190h
.text:00401000       var_18C = dword ptr -18Ch
.text:00401000       var_188 = dword ptr -188h
.text:00401000       var_184 = dword  ptr -184h
.text:00401000       var_180 = dword ptr -180h
.text:00401000               sub     esp, 190h
.text:00401006               xor     ecx, ecx
.text:00401008               xor     eax, eax
.text:0040100A               lea     ebx, [ebx + 0]
.text:00401010  loc_401010:                   ; CODE XREF: _main + 17  j
.text:00401010               mov     [esp + eax*4 + 190h + var_190], eax
.text:00401013               inc     eax
.text:00401014               cmp     eax, 64h
.text:00401017               jl      short loc_401010
.text:00401019               xor     eax, eax
.text:0040101B               push    esi
.text:0040101C               lea     esp, [esp+0]
.text:00401020  loc_401020:                   ; CODE XREF: _main + 3E j
.text:00401020               mov     esi, [esp + eax*4 + 194h + var_184]
.text:00401024               mov     edx, [esp + eax*4 + 194h + var_180]

.text:00401028               add     edx, esi

.text:0040102A               add     edx, [esp + eax*4 + 194h + var_188]

.text:0040102E               add     edx, [esp + eax*4 + 194h + var_18C]

.text:00401032               add     edx, [esp + eax*4 + 194h + var_190]

.text:00401036               add     eax, 5

.text:00401039               add     ecx, edx

.text:0040103B               cmp     eax, 64h

.text:0040103E               jl      short loc_401020

.text:00401040               push    ecx

.text:00401041               push    offset unk_4060FC

.text:00401046               call    _printf

.text:0040104B               add     esp, 8

.text:0040104E               xor     eax, eax

.text:00401050               pop     esi

.text:00401051               add     esp, 190h

.text:00401057               retn

.text:00401057 main          endp
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For storing a local array, 190h bytes are allocated (which is equal to 400) — in other words, 4
bytes per element.

I'd like to immediately draw your attention to two commands: lea ebx, [ebx] and lea esp,
[esp]. Neither command changes the contents of the registers; the compiler has inserted them
to optimize the execution speed. Earlier in this chapter, I mentioned the optimization technique
of command pairing (see the comments that follow Listing 3.2). In this case, the compiler adds
commands that do not mean anything but correctly divide the commands by pairs.

The loop, in which the values of array elements are specified, is simple. It is located in the listing
from addresses 00401010 to 00401017. Note that addressing of local variables in the stack is
not done using the EBP register for the reasons of optimization. On the contrary, the ESP register
is used for addressing of local variables. The EAX register plays the role of the i variable (this is
an example of using a register variable). Note that in this loop the compiler doesn't use the
technique of replacing the loop parameter increment with the decrement, which was described
earlier. This is because the loop parameter also plays the role of the array index.

Now, consider the next loop, located from the 00401020 to the 0040103E address. The goal of
this loop is to sum all array elements. The sum must be accumulated in the s variable (see
Listing 3.87). As can be easily seen, the role of the s variable is delegated to the ECX register
(for instance, this can be noticed by the call to the printf function). The most important detail
is that the loop is preceded by the PUSH ESI command. The reason for the presence of this
command is obvious: The ESI register is further used as a temporary variable, and this register
must not be changed after execution of the main function. However, do not forget that
addressing is relative to the ESP register and the compiler later corrects the addressing of the
array elements. Thus, when computing the array index, it is necessary to subtract one (or to
subtract four when computing the element address). The result will be as shown in Listing 3.89.

Listing 3.89: 

Computing array elements
[esp + eax*4 + 194h + var_184] = [esp + eax*4 + 4*4], whichcorreqponds to a[i + 3]
[esp + eax*4 + 194h + var_180] = [esp + eax*4 + 5*4], whichcorreqponds to a[i + 4]
[esp + eax*4 + 194h + var_188] = [esp + eax*4 + 3*4], whichcorreqponds to a[i + 2]
[esp + eax*4 + 194h + var_18C] = [esp + eax*4 + 2*4], whichcorreqponds to a[i + 1]
[esp + eax*4 + 194h + var_190] = [esp + eax*4 + 1*4], whichcorresponds to a[i]

In the beginning, the a[i + 3] and a[i + 4] elements are added, and the result is loaded
into the EDX register. Then the a[i + 2], a[i + 1] and a[i] elements are added to the
sum. The resulting sum is added to the ECX register, which, as you know, is the s variable.
Finally, the index and the loop parameter are increased by five instead of one. Thus, it is
possible to state that the compiler has implemented the loop in Listing 3.90.

Listing 3.90: Loop implemented by the compiler
for(i = 0; i < 100; i += 5)
{
       s = s + a[i];
       s = s + a[i + 1];
       s = s + a[i + 2];
       s = s + a[i + 3];
       s = s + a[i + 4];
}

From the algorithmic point of view, this loop is the full equivalent of the loop in Listing 3.87. From
the optimization point of view, it implements loop unwinding, which allows you to considerably
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speed up program execution.

Nested Loops and Loops with Complex Exit Conditions

In the previous section, I considered executable code structures corresponding to the simplest
loops. However, looping algorithms might be complicated by the following factors:
§ Loop nesting

§ Complex exit condition

§ Auxiliary loop control operators, such as break and continue

Consider the following two examples. The first example contains simultaneously complex exit
condition and auxiliary loop control operators (Listing 3.91). I intentionally did not provide the
source code of the C++ program here, because your main goal is to understand the code
operating logic, not to discover how the compiler translated the program source code into the
executable code.

Listing 3.91: Simultaneous complex loop exit condition and auxiliary loop control
operators
.text:00401000  _main      proc near       ; CODE XREF: start + 16E p
.text:00401000       var_C = dword ptr -0Ch
.text:00401000       var_8 = dword ptr -8
.text:00401000       var_4 = dword ptr -4
.text:00401000             push    ebp
.text:00401001             mov     ebp, esp
.text:00401003             sub     esp, 0Ch
.text:00401006             mov     [ebp + var_4], 0
.text:0040100D             mov     [ebp + var_C], 0
.text:00401014             mov     [ebp + var_8], 0
.text:0040101B             jmp     short loc_401026
.text:0040101D  loc_40101D:                 ; CODE XREF: _main + 51 j
.text:0040101D                              ; main + 74 j
.text:0040101D             mov     eax, [ebp + var_8]
.text:00401020             add     eax, 1

.text:00401023             mov     [ebp + var_8], eax

.text:00401026  loc_401026:                 ; CODE XREF: _main + 1B j

.text:00401026             cmp     [ebp + var_8], 2710h

.text:0040102D             jge     short loc_401076

.text:0040102F             cmp     [ebp+var_4], OC350h

.text:00401036             jge     short loc_401076

.text:00401038             mov     ecx, [ebp + var_4]

.text:0040103B             add     ecx, [ebp + var_C]

.text:0040103E             add     ecx, [ebp + var_8]

.text:00401041             mov     [ebp + var_4], ecx

.text:00401044             mov     [ebp + var_4], lEh

.text:0040104B             cmp     [ebp + var_4], 0

.text:0040104F             jz      short loc_401053

.text:00401051             jmp     short loc_40101D

.text:00401053  loc_401053:                 ; CODE XREF: _main + 4F j

.text:00401053             mov     eax, [ebp + var_4]

.text:00401056             cdq

.text:00401057             idiv    [ebp + var_8]

.text:0040105A             mov     [ebp + var_C], eax

.text:0040105D             cmp     [ebp + var_C], 64h

.text:00401061             jnz     short loc_401065

.text:00401063             jmp     short loc_401076

.text:00401065  loc_401065:                 ; CODE XREF: _main + 61 J

.text:00401065             mov     edx, [ebp + var_C]
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.text:00401068             mov     [ebp + var_C], edx

.text:0040106B             mov     eax, [ebp + var_C]

.text:0040106E             add     eax, 1

.text:00401071             mov     [ebp + var_C], eax

.text:00401074             jmp     short loc_40101D

.text:00401076  loc_401076:                 ; CODE XREF: _main + 2D j

.text:00401076                              ; _main + 36 j ...

.text:00401076             xor     eax, eax

.text:00401078             mov     esp, ebp

.text:0040107A             pop     ebp

.text:0040107B             retn

.text:0040107B _main       endp

First, consider the fragment located from the 0040101D to the 00401023 address. This is a
typical loop header, or, to be precise, the part of the loop that increments the value of the loop
parameter. Accordingly, the entry point into the loop is below this fragment. Entry into the loop is
executed by the jmp short loc_40l026 command. You have already encountered such
fragments. Thus, the start of the loop is identified clearly: This is the loc_40101D label. When
viewing the lower part of the listing, pay attention to the jmp short loc_40l0lD command.
Because below it there are no commands that would jump to labels between the 0040101D and
the 00401074 addresses, it is possible to assume that this is the last command of the loop.
Note that principally the loop under consideration could be nested into another loop; however,
the current analysis doesn't relate to this issue. Thus, the loop boundaries have been identified.

Another question arises: What are the loop exit conditions? In essence, it is not important
whether this condition is written in the loop header or the exit is carried out by the break
operator. The issue that does matter is that the exit from the loop is by the 00401076 address.
Thus, you'll see the commands in Listing 3.92.

Listing 3.92: Commands for loop exit
.text:0040102D              jge       short loc_401076
...
.text:00401036              jge       short loc_401076
...
.text:00401063              jmp       short loc_401076

The last jump is slightly below the first two and takes place if the var_c variable is equal to 64h
— in other words, to 100. To all appearances, this is the exit by the break operator. The first
two jumps correspond to the loop header and to the logical AND condition. Thus, without any
trouble it is possible to determine that the loop execution condition can be written as var_8 <
2710h && var_4 < c350h. Note that the var_8 variable is the loop parameter (see
addresses 0040101D-00401023 in Listing 3.91). In essence, only the role of the commands
shown in Listing 3.93 needs to be clarified.

Listing 3.93: Commands whose role in the loop structure needs to be clarified
.text:0040104B             cmp    [ebp + var_4], 0
.text:0040104F             jz     short loc_401053
.text:00401051             jmp    short loc_40101D

If the var_4 variable has a nonzero value, then there will be a jump to the start of the loop. This
cannot be anything other than the continue operator.

Now, consider an example of nested loops. Manipulations of multidimensional arrays are typical
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examples of nested loops. Listing 3.94 presents the disassembled code that fills a two-
dimensional array. It is necessary to mention that this program was compiled using the Microsoft
Visual C++ compiler with the "no optimization" option.

Listing 3.94: Disassembled code that fills a two-dimensional array
.text:00401000  _main         proc near   ; CODE XREF: start + 16E p
.text:00401000       var_198  = dword ptr -198h
.text:00401000       var_194  = dword ptr -194h
.text:00401000       var_190  = dword ptr -190h
.text:00401000              push    ebp
.text:00401001              mov     ebp, esp
.text:00401003              sub     esp, 198h
.text:00401009              mov     [ebp + var_194], 0
.text:00401013              jmp     short loc_401024
.text:00401015  loc_401015:               ; CODE XREF: _main:loc_401078 j
.text:00401015              mov     eax, [ebp + var_194]
.text:0040101B              add     eax, 1
.text:0040101E              mov     [ebp + var_194], eax
.text:00401024  loc_401024:               ; CODE XREF: _main + 13 j
.text:00401024              cmp     [ebp + var_194], 0Ah
.text:0040102B              jge     short loc_40107A
.text:0040102D              mov     [ebp + var_198], 0
.text:00401037              jmp     short loc_401048
.text:00401039  loc_401039:               ; CODE XREF: _main + 76 j
.text:00401039              mov     ecx, [ebp + var_198]
.text:0040103F              add     ecx, 1
.text:00401042              mov     [ebp + var_198], ecx
.text:00401048  loc_401048:               ; CODE XREF: _main + 37 j
.text:00401048              cmp     [ebp + var_198], 0Ah
.text:0040104F              jge     short loc_401078
.text:00401051              mov     edx, [ebp + var_194]

.text:00401057              add     edx, [ebp + var_198]

.text:0040105D              mov     eax, [ebp + var_194]

.text:00401063              imul    eax, 28h

.text:00401066              lea     ecx, [ebp + eax + var_190]

.text:0040106D              mov     eax, [ebp + var_198]

.text:00401073              mov     [ecx + eax*4], edx

.text:00401076              jmp     short loc_401039

.text:00401078  loc_401078:               ; CODE XREF: _main + 4F j

.text:00401078              jmp     short loc_401015

.text:0040107A  loc_40107A:               ; CODE XREF: _main + 2B j

.text:0040107A              xor     eax, eax

.text:0040107C              mov     esp, ebp

.text:0040107E              pop     ebp

.text:0040107F              retn

.text:0040107F _main        endp

It is not difficult to locate nested loops in this listing. The starting point of the nesting loop at the 
00401015 address and the starting point of the nested loop at the 00401039 address can be
noticed easily. I'd like to draw your attention to the jmp short loc_401024 and jmp short
loc_401048 instructions that carry out initial entries into the nesting and into the nested loops,
respectively. Thus, the structure of the nested loops in this case is easy and doesn't require any
additional comments.

The most interesting issue here is how the executable code implements the algorithm assigning
the value to the two-dimensional array. The parameter of the nesting loop is stored in the 
var_198 variable. The remaining var_190 variable points to the starting point of the two-
dimensional array. Thus, after the mov edx, [ebp + var_194] and add edx, [ebp +
var_198] commands, the EDX register will contain the sum of the two index values. If you run a
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few steps forward to the mov [ecx + eax* 4], edx command, which appears like an
operator that assigns the value to the array element, it becomes obvious that array elements are
assigned values equal to the sum of indexes (the values of the parameters of the nesting and
the nested loops). However, look back several commands. What is the meaning of the mov
eax, [ebp + var_194] /imul eax, 28h commands? The index value (consider it to be the
first) is multiplied by the number of bytes in the row of a two-dimensional array (4*10 = 40 =
28h). Then, by executing the lea ecx, [ebp + eax + var_190] command, the address of
the starting point of the current row is loaded into the ECX register. Finally, ecx + eax*4 is the
address of the current element of the two-dimensional array. Thus, the algorithm in Listing 3.94
can be clarified easily.

To complete the description of loops, it is necessary to mention that if the same program
operating over a two-dimensional array is compiled using the Microsoft Visual C++ "create fast
code" option, the result would be interesting. Namely, the nested loop would disappear, because
the compiler would unroll it (see Listing 3.93 and the comments that follow it). The nesting loop
will be transformed from the precondition loop to the postcondition loop.

3.2.4. Objects

Identification of objects and everything related to them is a more complicated problem than the
ones solved earlier. However, you have already encountered most of the material provided here.

After all, methods are functions, and object properties are variables. [10] It is time to consider this
problem in more detail and in due order.

Identifying Objects

Static Objects

First, consider a simple example intended to demonstrate typical program structures that serve
objects. The program in Listing 3.95 has only one class, on the basis of which a single object is
created. Note that this is a global static object. In other words, the compiler must take care to
allocate memory for storing that object. The most important issue in object-oriented
programming is deciding whether the created properties and methods relate to a single object or
to several objects simultaneously. It is necessary to answer the following question: If, for
example, a method (in essence, representing some function) relates to several objects
simultaneously, how does it "know", in relation to which object it has been called from a specific
program location?

Listing 3.95: Simple program demonstrating typical program structures for serving
objects
#include <stdio.h>
class A {
public:
       int b;
       int a;
       int geta(){b = 0; return a;};
       void seta(int);
};
void A::seta(int al)
{
       a = al;
       b = 1;
};
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A Al;
void main()
{
       Al.seta(10);
       int c = Al.geta();
       printf("%d\n", c) ;
}

Listing 3.96 provides the executable code of the main function from Listing 3.95, disassembled
using IDA Pro. The program was compiled using Microsoft Visual C++ with the "no optimization"
option.

Listing 3.96: Disassembled code of the main function from Listing 3.95
.text:00401020  _main      proc near       ; CODE XREF: start + 16E p
.text:00401020       var_4 = dword ptr -4
.text:00401020             push    ebp
.text:00401021             mov     ebp, esp
.text:00401023             push    ecx
.text:00401024             push    0Ah

.text:00401026             mov     ecx, offset unk_4086CO

.text:0040102B             call    sub_401000

.text:00401030             mov     ecx, offset unk_4086CO

.text:00401035             call    sub_401060

.text:0040103A             mov     [ebp + var_4], eax

.text:0040103D             mov     eax, [ebp + var_4]

.text:00401040             push    eax

.text:00401041             push    offset unk_4060FC

.text:00401046             call    _printf

.text:0040104B             add     esp, 8

.text:0040104E             xor     eax, eax

.text:00401050             mov     esp, ebp

.text:00401052             pop     ebp

.text:00401053             retn

.text:00401053  _main      endp

The text presented in Listing 3.96 contains three function calls. The first call is to the printf
library function, so it doesn't make sense to consider it in detail. The sub_401000 and
sub_40l060 functions deserve special attention. In the comments following Listing 3.97, the
code of these functions will be described in more detail. Because the source code of the
program is available (see Listing 3.95), it is possible to tell for certain that these are the calls to
the seta and geta methods, respectively. Note that before calling the method, in both cases,
some memory address is sent into the ECX register: offset unk_4086C0. Click the reference,
and you will find that this memory area is made up of 8 bytes (at least, IDA Pro has decided so).
This must make you vigilant, because the object contains two int properties, which makes
exactly 8 bytes. Thus, already on the basis of preliminary considerations it is possible to
conclude that when calling a method, one parameter is the address of the object, in relation to
which the given method is called (for the Microsoft Visual C++ compiler, the parameter is
passed through the ECX register).

Listing 3.97: Disassembled code (Listing 3.96) corresponding to seta/geta calls (Listing
3.95)
.text:00401000  sub_401000  proc near        ; CODE XREF: _main + B p
.text:00401000        var_4 = dword ptr -4
.text:00401000        arg_0 = dword ptr  8
.text:00401000              push    ebp
.text:00401001              mov     ebp, esp
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.text:00401003              push    ecx

.text:00401004              mov     [ebp + var_4], ecx

.text:00401007              mov     eax, [ebp + var_4]

.text:0040100A              mov     ecx, [ebp + arg_0]

.text:0040100D              mov     [eax + 4], ecx

.text:00401010              mov     edx, [ebp + var_4]

.text:00401013              mov     dword ptr [edx], 1

.text:00401019              mov     esp, ebp

.text:0040101B              pop     ebp

.text:0040101C              retn    4

.text:0040101C  sub_401000  endp

.text:00401060  sub_401060   proc near       ; CODE XREF: _main + 15 p

.text:00401060         var_4 = dword ptr -4

.text:00401060              push    ebp

.text:00401061              mov     ebp, esp

.text:00401063              push    ecx

.text:00401064              mov     [ebp + var_4], ecx

.text:00401067              mov     eax, [ebp + var_4]

.text:0040106A              mov     dword ptr [eax], 0

.text:00401070              mov     ecx, [ebp + var_4]

.text:00401073              mov     eax, [ecx + 4]

.text:00401076              mov     esp, ebp

.text:00401078              pop     ebp

.text:00401079              retn

.text:00401079  sub_401060  endp

Note The pointer to an object used in
a method has a special name
in the C++ language: this.
Using the this pointer, it is
possible to access the class
members, including the closed
ones.

Consider the text of the 

sub_401000 function. As already mentioned, to all appearances this is the seta function. Note
immediately that this function has only one stack variable and one parameter. The stack is
released by the RETN 4 command. The sequence of the push ecx/mov [ebp + var_4],
ecx commands immediately draws attention. This is a nuisance. The push command here is
used to reserve memory for the local variable. At the same time, the variable is assigned the
value stored in the ECX register. The command that follows the PUSH command again assigns
the same value to the variable. Well, the compiler can be excused for this incident, because,
after all, it was not instructed to use optimization. Further operations are the matter of technique:
The value considered the object address is loaded into the EAX register. The mov [eax + 4],
ecx command follows (and ECX now contains the parameter value). In other words, the a object
property is located at the offset of 4 bytes in relation to the start of the object. Then there is the
sequence of the mov edx, [ebp + var_4] /mov dword ptr [edx], 1 commands, which
corresponds to assignment of the value 1 to the b property.

The sub_401060 function doesn't contain anything new. The mov eax, [ecx + 4] command
simply returns the a property of the geta function.

Thus, having considered the example of compilation using the Microsoft Visual C++ compiler, it
is possible to note that when calling a method, it is implicitly passed the pointer to the object, in
the context of which it is called. In this example, a global object was created. However, there will
be no difference when creating an object locally in the stack. Try to conduct this investigation on
your own.

If the program presented in Listing 3.95 is compiled using the Borland C++ v. 5.0 compiler, there
won't be any significant difference. Again, the method will be informed about the object address
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by the passing of an additional parameter. This additional parameter is the last to be passed
through the stack in relation to all other parameters. I won't provide any additional listings here
because they won't teach you anything new.

Dynamic Objects

In real-world programming, new objects are typically created on the fly. The new operator is
intended specially for this purpose. Consider the program from Listing 3.95 rewritten in terms of
dynamically-created objects (Listing 3.98).

Listing 3.98: Example illustrating the use of dynamic objects
#include <stdio.h>
class A {
public:
       int b;
       int a;
       int geta(){b = 0; return a;};
       void seta(int);
};
void A::seta(int al)
{
       a = a1;
       b = 1;
};
void main()
{
       A * A1 = new (A) ;
       Al -> seta(10);
       int c = A1 -> geta();
       printf("%d\n", c) ;
       delete Al;
}

Listing 3.99 presents the disassembled text of the executable code created by the Microsoft
Visual C++ compiler with the "no optimization" option.

Listing 3.99: Disassembled text of the program shown in Listing 3.98
.text:00401020  _main      proc near        ; CODE XREF: start + 16E p
.text:00401020       var_10 = dword ptr -10h
.text:00401020       var_C  = dword ptr -OCh
.text:00401020       var_8  = dword ptr -8
.text:00401020       var_4  = dword ptr -4
.text:00401020             push    ebp
.text:00401021             mov     ebp, esp

.text:00401023             sub     esp, 10h

.text:00401026             push    8

.text:00401028             call    ??2@YAPAXI@Z      ; Operator new(uint)

.text:0040102D             add     esp,   4

.text:00401030             mov     [ebp + var_C], eax

.text:00401033             mov     eax, [ebp + var_C]

.text:00401036             mov     [ebp + var_8], eax

.text:00401039             push    OAh

.text:0040103B             mov     ecx, [ebp + var_8]

.text:0040103E             call    sub_401000

.text:00401043             mov     ecx,   [ebp + var_8]
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.text:00401046             call    sub_401080

.text:0040104B             mov     [ebp + var_4], eax

.text:0040104E             mov     ecx, [ebp + var_4]

.text:00401051             push    ecx

.text:00401052             push    offset unk_4060FC

.text:00401057             call    _printf

.text:0040105C             add     esp,   8

.text:0040105F             mov     edx,   [ebp + var_8]

.text:00401062             mov     [ebp + var_10], edx

.text:00401065             mov     eax, [ebp + var_10]

.text:00401068             push    eax

.text:00401069             call    j__free

.text:0040106E             add     esp, 4

.text:00401071             xor     eax, eax

.text:00401073             mov     esp, ebp

.text:00401075             pop     ebp

.text:00401076             retn

.text:00401076  _main      endp

The abundance of redundant code and redundant stack variables in this code fragment is
surprising. In this case, however, this is of little or no importance. It is important here that after
creation of an object all further actions have principally no differences from the ones
encountered in Listing 3.96. Note that the new and delete operators (the call to the j__free
procedure) are recognized by the IDA Pro disassembler, which makes further analysis a simple
matter.

Virtual Functions

Virtual functions are a kind of payment for the beauty and ease of object-oriented programming
theory. Consider the program shown in Listing 3.100, demonstrating a typical example of
inheritance.

Listing 3.100: Example program demonstrating a typical example of inheritance
#include <stdio.h>
class A {
public:
       int a;
       int seta(int al){a = al; return a;};
       void pa(){printf("%d\n", a);}
};
class B:public A {
public:
       int seta (int al){a = al + 1; return a;};
};
void main()
{
       A* Al;
       Al = new(B);
       Al -> seta(10);
       Al -> pa();
       delete Al;
};

The B class inherits properties and methods of the A class. In this case, the B class has the
seta method that by its name and parameters matches the similar method in class A. If, for
example, you create an object on the basis of the B class, then when the seta method is called,
the method from the B class will be called. This is a well-known inheritance property. The
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situation will be slightly different if you first create the pointer to the object of the base class A
and then create a new object using the new operator on the base of the B class template (see
Listing 3.100). This time, the compiler will orient toward the pointer type. In this case, A1 ->
seta (10) will mean the call to the method of the base class. Listing 3.101 shows the
disassembled code created by the Microsoft Visual C++ compiler using the "no optimization"
option.

Listing 3.101: 

Disassembled code of the program compiled by Microsoft Visual C++ without
optimization
.text:00401000  _main      proc near        ; CODE XREF: start + 16E p
.text:00401000      var_C  = dword ptr -OCh
.text:00401000      var_8  = dword ptr -8
.text:00401000      var_4  = dword ptr -4
.text:00401000             push    ebp
.text:00401001             mov     ebp, esp
.text:00401003             sub     esp, OCh
.text:00401006             push    4
.text:00401008             call    ??2@YAPAXI@Z    ; Operator new(uint)
.text:0040100D             add     esp, 4
.text:00401010             mov     [ebp + var_8], eax
.text:00401013             mov     eax, [ebp + var_8]
.text:00401016             mov     [ebp + var_4], eax
.text:00401019             push    OAh
.text:0040101B             mov     ecx, [ebp + var_4]
.text:0040101E             call    sub_401050
.text:00401023             mov     ecx, [ebp + var_4]
.text:00401026             call    sub_401070
.text:0040102B             mov     ecx, [ebp + var_4]
.text:0040102E             mov     [ebp + var_C], ecx
.text:00401031             mov     edx, [ebp + var_C]
.text:00401034             push    edx
.text:00401035             call    j__free
.text:0040103A             add     esp, 4
.text:0040103D             xor     eax, eax
.text:0040103F             mov     esp, ebp

.text:00401041             pop     ebp

.text:00401042             retn

.text:00401042 _main       endp

.text:00401042

.text:00401050

.text:00401050 sub_401050  proc near        ; CODE XREF: _main + 1E p

.text:00401050      var_4  = dword ptr -4

.text:00401050      arg_0  = dword ptr  8

.text:00401050             push    ebp

.text:00401051             mov     ebp, esp

.text:00401053             push    ecx

.text:00401054             mov     [ebp + var_4], ecx

.text:00401057             mov     eax, [ebp + var_4]

.text:0040105A             mov     ecx, [ebp + arg_0]

.text:0040105D             mov     [eax], ecx

.text:0040105F             mov     edx, [ebp + var_4]

.text:00401062             mov     eax, [edx]

.text:00401064             mov     esp, ebp

.text:00401066             pop     ebp

.text:00401067             retn    4

.text:00401067 sub_401050  endp

.text:00401067

.text:00401070

.text:00401070 sub_401070  proc near       ; CODE XREF: _main + 26 p
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.text:00401070      var_4  = dword ptr -4

.text:00401070             push    ebp

.text:00401071             mov     ebp, esp

.text:00401073             push    ecx

.text:00401074             mov     [ebp + var_4], ecx

.text:00401077             mov     eax, [ebp + var_4]

.text:0040107A             mov     ecx, [eax]

.text:0040107C             push    ecx

.text:0040107D             push    offset unk_4060FC

.text:00401082             call    _printf

.text:00401087             add     esp, 8

.text:0040108A             mov     esp, ebp

.text:0040108C             pop     ebp

.text:0040108D             retn

.text:0040108D sub_401070  endp

This listing doesn't contain anything principally new from the issues investigated in the previous
section (see Listing 3.99). Here, 4 bytes are allocated for creating a new object, and the pointer
to the newly-created object is passed through the ECX register (see the calls to the
sub_401050 and sub_401070 functions). In the functions, the pointer to object is used for
accessing the object property. For example, in sub_401050 the code shown in Listing 3.102
can be located.

Listing 3.102: Fragment of the sub_401050 function (Listing 3.101)
mov    [ebp + var_4], ecx ; The object address is loaded
                          ; into the stack variable.
mov    eax, [ebp + var_4] ; The address is loaded into the EAX register.
mov    ecx, [ebp + arg_0] ; The parameter value is loaded
                          ; into the ECX register.
mov    [eax], ecx         ; The parameter value is assigned to
                          ; the object property.

It is time to consider the concepts of virtual functions and polymorphism. For this purpose,
consider the program in Listing 3.103. In comparison to Listing 3.100, another method, seta1,
has been added to the base class, and the seta and seta1 methods have been made virtual. If
you are acquainted with object-oriented programming, you will immediately guess that in the A1
-> seta (10) and A1 -> seta1(10) calls, the methods of the derived class (the B class)
will be used.

Listing 3.103: Program for studying the concepts of virtual functions and polymorphism
#include <stdio.h>
class A {
public:
       int a;

       virtual int seta(int a1){a = al; return a;};
       virtual int setal(int a1){a = 2*al; return a;};
       void pa(){printf("%d\n", a);}
};
class B:public A {
public:
       int seta(int a1) {a = al + 1; return a;};
       int setal(int al){a = 2*al + 1; return a;};
};
void main()
{
       A* A1;
       A1 = new(B);
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       Al -> seta(10);
       Al -> pa{);
       Al -> setal(10);
       A1 -> pa();
       delete A1;
};

Listing 3.104 shows the disassembled executable code of the main function from Listing 3.103.
As usual, the program was compiled using the Microsoft Visual C++ compiler with the "no
optimization" option.

Listing 3.104: Disassembled code of the main function from Listing 3.103
.text:00401000  _main       proc near       ; CODE XREF: start + 16E p
.text:00401000       var_10 = dword ptr -10h
.text:00401000       var_C  = dword ptr -0Ch
.text:00401000       var_8  = dword ptr -8
.text:00401000       var_4  = dword ptr -4
.text:00401000              push    ebp
.text:00401001              mov     ebp, esp
.text:00401003              sub     esp, 10h
.text:00401006              push    8
.text:00401008              call    ??2@YAPAXI@Z   ; Operator new(uint)

.text:0040100D              add     esp, 4

.text:00401010              mov     [ebp + var_8], eax

.text:00401013              cmp     [ebp + var_8], 0

.text:00401017              jz      short loc_401026

.text:00401019              mov     ecx, [ebp + var_8]

.text:0040101C              call    sub_4010A0

.text:00401021              mov     [ebp + var_10], eax

.text:00401024              jmp     short loc_40102D

.text:00401026  loc_401026:                  ; CODE XREF: _main + 17 j

.text:00401026              mov     [ebp + var_10], 0

.text:0040102D  loc_40102D:                  ; CODE XREF: _main + 24 j

.text:0040102D              mov     eax, [ebp + var_10]

.text:00401030              mov     [ebp + var_4], eax

.text:00401033              push    0Ah

.text:00401035              mov     ecx, [ebp + var_4]

.text:00401038              mov     edx, [ecx]

.text:0040103A              mov     ecx, [ebp + var_4]

.text:0040103D              call    dword ptr [edx]

.text:0040103F              mov     ecx, [ebp + var_4]

.text:00401042              call    sub_401080

.text:00401047              push    OAh

.text:00401049              mov     eax, [ebp + var_4]

.text:0040104C              mov     edx, [eax]

.text:0040104E              mov     ecx, [ebp + var_4]

.text:00401051              call    dword ptr [edx + 4]

.text:00401054              mov     ecx, [ebp + var_4]

.text:00401057              call    sub_401080

.text:0040105C              mov     eax, [ebp + var_4]

.text:0040105F              mov     [ebp + var_C], eax

.text:00401062              mov     ecx, [ebp + var_C]

.text:00401065              push    ecx

.text:00401066              call    j_free

.text:0040106B              add     esp, 4

.text:0040106E              xor     eax, eax

.text:00401070              mov     esp, ebp

.text:00401072              pop     ebp

.text:00401073              retn

.text:00401073  _main       endp
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Note that when creating an object, 8 bytes are allocated (push 8) instead of the 4 bytes
allocated earlier. Running some steps ahead, I'd like to mention that the additional 4 bytes
located in the beginning of the object are allocated for the address of the table of virtual
functions.

In the text, you can see that the check is carried out, ensuring that the new operator has
allocated memory for the object to be created. If the memory allocation function returns zero
(which means that an error has occurred), then the var_10 variable is assigned the value of
zero, which finally must cause an exception (the mov edx, [ecx] command if the ECX register
contains zero).

Pay special attention to the sub_4010A0 function (see Listing 3.106). This is a special function,
which is not present in the program code. Its intention is to place the address of the virtual
functions table into the start of the area allocated for the object to be created. The function will
return the object address — but with the address of the virtual functions table (in the first 4
bytes). Later, the mechanism in Listing 3.105 will be used.

Listing 3.105: Mechanism used for forming the virtual function address
mov    ecx, [ebp + var_4] ; The object's address
mov    edx, [ecx]         ; The contents of the start of the area
                          ; The object is loaded into the EDX register.
                          ; The address of the virtual functions table
mov    ecx, [ebp + var_4]
call   dword ptr [edx]    ; The call to the virtual function

Thus, you can see that the virtual function address, in contrast to a normal function, is formed
dynamically. Any indirect call (no matter what the compiler might be) must make you vigilant,
suspecting a call to a virtual function. In the program being studied, virtual functions are called
twice: call dword ptr [edx] (the call to seta) and call dword ptr [edx + 4] (the
call to setal). The EDX register points to the start of the virtual functions table. The table must
contain the addresses of two virtual functions.

Consider Listing 3.106, where the disassembled text of the sub_4010A0 function is shown. The
main goal of this function is to place the address of the virtual functions table into the start of the
area that stores the object.

Listing 3.106: Disassembled code of the sub_4010A0 function
.text:004010A0  sub_4010A0    proc near     ; CODE XREF: _main + 1C p
.text:004010A0        var_4   = dword ptr -4
.text:004010A0             push   ebp
.text:004010A1              mov    ebp, esp
.text:004010A3              push   ecx
.text:004010A4              mov    [ebp + var_4], ecx
.text:004010A7              mov    ecx, [ebp + var_4]
.text:004010AA              call   ??Oios_base@std@@IAE@XZ
.text:004010AF              mov    eax, [ebp + var_4]
.text:004010B2              mov    dword ptr [eax], offset off_407100
.text:004010B8              mov    eax, [ebp + var_4]
.text:004010BB              mov    esp, ebp
.text:004010BD              pop    ebp
.text:004010BE              retn
.text:004010BE  sub_4010A0  endp

The function presented in the listing has an interesting organization. First, the address of the
virtual functions table is defined and placed into the start of the area where the object is stored.
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These commands are in Listing 3.107.

Listing 3.107: Defining and placing the address of the virtual functions table
...
mov    [ebp + var_4], ecx
...
mov    eax, [ebp + var_4]
mov    dword ptr [eax], offset off_407100
...

The memory area with the off_407100 address stores the virtual functions table. What about
the call to the ??Oios_base@std@@IAE@xz function? Here, it is necessary to understand that
the class hierarchy in the text program has only two levels: the base class, A, and the derived
class, B. Tables of virtual functions are created for each class. The ??
Oios_base@std@@IAE@xz function places the address of the virtual functions table of the
base class into the object. In this case, the address is overwritten with the address of the virtual
functions table of class B. Now assume that another class, c, is added to this hierarchy. This
class is the descendant of class B. Create an object on the basis of the C class: A1=new(C).
How would the compiler treat the tables of virtual functions in this case? Consider Listing 3.108.

Listing 3.108: Virtual functions table in a sophisticated class hierarchy
; The main function
_main proc near
       ...
       call prod
; Now the object contains the address of the
; virtual functions table of class C.
        ...
_main endp
...
prod proc near
       ...
       call proc2
; Now the object contains the address of the
; virtual functions table of class B.
       ...
; Now the object contains the address of the
; virtual functions table of class C.
       ...
       retn
prod endp
       ...
Proc2 proc near
       ...

       call ??Oios_base@std@@IAE@XZ
       ...
;  Now the object contains the address of the
;  virtual functions table of the base class.
       ...
;  Now the object contains the address of the
;  virtual functions table of class B.
       ...
       retn
prod endp
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Carefully consider the method presented in Listing 3.108. From this method, it must be clear
how the addresses of virtual functions are written for the hierarchy of objects with an arbitrary
number of members. In particular, from this listing it follows that the greater the number of
members, the more time required to complete such an operation, because the number of nested
procedures equals the number of classes, including the base class. Also note that the Microsoft
Visual C++ compiler places the virtual functions tables of the parent and child classes one after
another and that the base class has the greatest address (addresses grow from bottom to top).
The functions are placed in the table from bottom to top, according to their declarations in the
program text.

Thus, knowing the address of the virtual functions table, you'll easily locate the text of that
function. For example, Listing 3.109 shows the code of the seta virtual function defined in
class B.

Listing 3.109: Code of the seta virtual function defined in class B
.text:004010C0  sub_4010CO  proc near    ; DATA XREF: .rdata:off_407100 o
.text:004010C0       var_4  = dword ptr -4
.text:004010C0       arg_0  = dword ptr  8
.text:004010C0              push    ebp
.text:004010C1              mov     ebp, esp
.text:004010C3              push    ecx
.text:004010C4              mov     [ebp + var_4], ecx
.text:004010C7              mov     eax, [ebp + arg_0]
.text:004010CA              add     eax, 1

.text:004010CD              mov     ecx, [ebp + var_4]

.text:004010DO              mov     [ecx + 4], eax

.text:004010D3              mov     edx, [ebp + var_4]

.text:004010D6              mov     eax, [edx + 4]

.text:004010D9              mov     esp, ebp

.text:004010DB              pop     ebp

.text:004010DC              retn    4

.text:004010DC sub_4010C0   endp

The text of the seta procedure is clear. First, the object address, as before, is contained in the
ECX register. The arg_0 parameter is the value that must be assigned to the a property (see
Listing 3.103). Finally, when assigning the value, it must be increased by one (Listing 3.110).

Listing 3.110: When assigning the value, it must be incremented by one (Listing 3.109)
add    eax, 1
mov    ecx, [ebp + var_4]
mov    [ecx + 4], eax

From Listings 3.109 and 3.110, it is clear that the a property is located at the offset 4 bytes from
the object start. This is correct, because the first 4 bytes contain the address of the virtual
functions table. If optimization options are specified at compile time, the compiler reduces the
code. For example, the procedures, where the virtual function address is written to the object,
disappear because all operations are carried out directly in the main function (in the example
under consideration). In addition, the address of the last class is immediately written into the
object.

If you use the Borland C++ v. 5.0 compiler, you won't notice any significant differences. The
address of the virtual functions table also is placed in the start of the object. In the course of
initialization, it also is overwritten starting from the base class (or, to be precise, starting from the
class, in which the virtual keyword appeared first) and ending with the current derived class.



270 Disassembling Code IDA Pro and SoftICE

 

Constructors and Destructors

The need for constructors and destructors is the logical consequence of the concept of object-
oriented programming, especially as related to visual programming for the Windows operating
system. There is an urgent need for automating some actions that must be carried out when
objects are created and when they are destroyed. In particular, this relates to initial values of the
object properties that cannot be initialized when they are declared, as was the general practice
with the C programming language. On the other hand, calling the initialization procedure every

time is bad programming style. [11] Until now, I have not used constructors or destructors in the
examples. However, this cannot be said about the compiler. For example, determining the
address of the virtual functions table is exactly the operation that must be carried out
automatically. This means that you have already encountered constructors in this chapter! You
first encountered a constructor in Listing 3.104. This is the sub_4010A0 procedure that was
separately considered in Listing 3.106. The only intention of this procedure is writing the address
of the correct virtual functions table into the start of the object. However, if you define the
constructor explicitly and carry out specific actions there, these actions will be "in the same
company" as the actions for defining the virtual functions table.

Consider the practical example presented in Listing 3.111. In this program, a single class A is
defined, in which there is one variable, one virtual method, and special methods: constructor and
destructor.

Listing 3.111: Practical example illustrating the use of constructors and destructors
#include <stdio.h>
class A {
public:
       int a;
       virtual void pa(){printf("%d\n", a);}
       A(){a = 1; printf("Constructor A\n");};
       ~A(){printf("Destructor A\n");};
};
void main()
{
       A* A1;

       A1 = new(A);
       Al -> pa () ;
       delete A1;
};

The disassembled code of the main function of this program is presented in Listing 3.112. As
before, this code was created using the Microsoft Visual C++ compiler with the "no optimization"
option.

Listing 3.112: Disassembled code of the main function from Listing 3.111
.text:00401000  _main       proc near           ; CODE XREF: start + 16E p
.text:00401000       var_18  = dword ptr -18h
.text:00401000       var_14  = dword ptr -14h
.text:00401000       var_10  = dword ptr -10h
.text:00401000       var_C   = dword ptr -OCh
.text:00401000       var_8   = dword ptr -8
.text:00401000       var_4   = dword ptr -4
.text:00401000              push    ebp
.text:00401001              mov     ebp, esp
.text:00401003              sub     esp, 18h
.text:00401006              push    8
.text:00401008              call    ??2@YAPAXI@Z ; Operator new(uint)
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.text:0040100D              add     esp, 4

.text:00401010              mov     [ebp + var_8], eax

.text:00401013              cmp     [ebp + var_8], 0

.text:00401017              jz      short loc_401026

.text:00401019              mov     ecx, [ebp + var_8]

.text:0040101C              call    sub_401070

.text:00401021              mov     [ebp + var_14], eax

.text:00401024              jmp     short loc_40102D

.text:00401026  loc_401026:                    ; CODE XREF: _main + 17 j

.text:00401026              mov     [ebp + var_14], 0

.text:0040102D  loc_40102D:                    ; CODE XREF: _main + 24 j

.text:0040102D              mov     eax, [ebp + var_14]

.text:00401030              mov     [ebp + var_4], eax

.text:00401033              mov     ecx, [ebp + var_4]

.text:00401036              mov     edx, [ecx]

.text:00401038              mov     ecx, [ebp + var_4]

.text:0040103B              call    dword ptr [edx]

.text:0040103D              mov     eax, [ebp + var_4]

.text:00401040              mov     [ebp + var_10], eax

.text:00401043              mov     ecx, [ebp + var_10]

.text:00401046              mov     [ebp + var_C], ecx

.text:00401049              cmp     [ebp + var_C], 0

.text:0040104D              jz      short loc_40105E

.text:0040104F              push    1

.text:00401051              mov     ecx, [ebp + var_C]

.text:00401054              call    sub_4010CO

.text:00401059              mov     [ebp + var_18],   eax

.text:0040105C              jmp     short loc_401065

.text:0040105E loc_40105E:                     ; CODE XREF: _main +  4D j

.text:0040105E              mov     [ebp + var_18],   0

.text:00401065 loc_401065:                     ; CODE XREF: _main + 5C j

.text:00401065              xor     eax, eax

.text:00401067              mov     esp, ebp

.text:00401069              pop     ebp

.text:0040106A              retn

.text:0040106A _main        endp

The structure of this listing must already be well known to you. However, I'd like to draw your
attention to certain issues that have not been covered in sufficient detail yet. On the basis of all
previous material, it is clear that the sub_401070 function is the constructor. This is confirmed
first by the constructor's proximity to the new operator. Also, important is that after execution of
the new operator the check is carried out if the memory has actually been allocated. Consider all
listings provided in Section 3.2.4 more closely. You'll see that such checks appear only with the
introduction of virtual functions. However, you already know that if virtual functions are present,
the compiler creates a constructor even if it wasn't present in the source code of the program.
This probably is the main indication of the constructor call, because the compiler won't allow a
constructor to execute if the object hasn't been created.

Consider the end of the function. The call to sub_4010C0 immediately attracts attention. Earlier,
in similar programs, there was the call to the j__free function, which was associated with the
delete operator (see Listing 3.99 and the comments that follow it). In this case, you are dealing
with the destructor, which will be considered in detail in Listing 3.116. Note that the compiler
again won't allow the destructor to execute if the object hasn't been created.

As relates to the remaining code, hopefully you'll easily recognize the call dword ptr [edx]
command as a call to the A1 -> pa() virtual function. This mustn't cause you any problems
after you consider all previously provided examples.

Now, consider the contents of the constructor (Listing 3.113).
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Listing 3.113: Disassembled code of the constructor (Listing 3.111)
.text:00401070  sub_401070  proc near           ; CODE XREF: _main + 1C p
.text:00401070        var_4 = dword ptr -4
.text:00401070              push    ebp
.text:00401071              mov     ebp, esp
.text:00401073              push    ecx
.text:00401074              mov     [ebp + var_4], ecx
.text:00401077              mov     eax, [ebp + var_4]
.text:0040107A              mov     dword ptr [eax], offset off_40710C
.text:00401080              mov     ecx, [ebp + var_4]
.text:00401083              mov     dword ptr [ecx + 4], 1
.text:0040108A              push offset aConstructorA ; "Constructor A\n"
.text:0040108F              call    _printf
.text:00401094              add     esp, 4
.text:00401097              mov     eax, [ebp + var_4]
.text:0040109A              mov     esp, ebp
.text:0040109C              pop     ebp
.text:0040109D              retn
.text:0040109D  sub_401070  endp

You must rejoice when viewing this listing. Consider the well-known code fragment (Listing
3.114).

Listing 3.114: Writing the virtual functions table address into the new object instance
mov     [ebp + var_4], ecx
mov     eax, [ebp + var 4]
mov     dword ptr [eax], offset off_40710C

This is nothing other than writing the address of the virtual functions table into the newly-created
object instance. Then there is another easily recognizable pattern (Listing 3.115).

Listing 3.115: Code fragment demonstrating the code of the constructor
; Set the property value (a = 1).
mov     dword ptr [ecx + 4], 1
; The call to the printf function
push    offset aConstructorA ; "Constructor A\n"
call    _printf

This is the code that was placed into the constructor (see Listing 3.111). There isn't anything to
add here because the entire pattern is clear.

Listing 3.116 presents the disassembled code of the destructor (or, to be precise, the procedure,
from which the true destructor will be called) from the program shown in Listing 3.111.

Listing 3.116: Disassembled code of the procedure calling the destructor (Listing 3.111)
.text:004010C0  sub 4010C0 proc near        ; CODE XREF: _main + 54 p
.text:004010C0       var_4 = dword ptr -4
.text:004010C0       arg_0 = dword ptr  8
.text:004010C0             push    ebp
.text:004010C1             mov     ebp, esp
.text:004010C3             push    ecx
.text:004010C4             mov     [ebp + var_4], ecx
.text:004010C7             mov     ecx, [ebp + var_4]
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.text:004010CA             call    sub_4010F00

.text:004010CF             mov     eax, [ebp + arg_0]

.text:00401OD2             and     eax, 1

.text:00401OD5             jz      short loc_4010E3

.text:004010D7             mov     ecx, [ebp + var_4]

.text:004010DA             push    ecx

.text:004010DB             call    j_free

.text:004010EO             add     esp, 4

.text:004010E3  loc_4010E3:               ; CODE XREF: sub_4010CO + 15 j

.text:004010E3             mov     eax, [ebp + var_4]

.text:004010E6             mov     esp, ebp

.text:004010E8             pop     ebp

.text:004010E9             retn    4

.text:004010E9  sub_4010CO endp

First, pay attention to the following two calls in Listing 3.116: sub_4010F0 and j__free. View
sub_4010F0, and you'll immediately notice that it simply contains the text that was placed into
the destructor (see Listing 3.111). Thus, the sub_4010C0 function is intended for calling
procedures required to destroy an object. You have already encountered the j__free function,
and you already know that it is simply an implementation of the delete operator. Finally, the
value 1 sent to the sub_4010C0 function as a parameter is simply an indication that it is
necessary to call the delete operator.

3.2.5. More About Executable Code Investigation

Mathematical Computations

You have encountered mathematical computations many times. Compilers often use different
techniques, such as computation at compile time, to reduce the code size or speed up program
execution. You also already know about the possibility of using FPU commands. In this section,
several other techniques will be covered. First, consider the example program shown in Listing
3.117.

Listing 3.117: Sample program containing a simple numeric computation
#include <stdio.h>
#include <windows.h>
void main()
{
       DWORD a, b, c;
       scanf("%d", &a);
       scanf("%d", &b);
       c=((a + b)/8)*(3*a);
       printf("%d\n", c);
};

Listing 3.117 provides a program that contains a simple arithmetic computation. Consider how
the Microsoft Visual C++ compiler treats this program when the "create fast code" option was
specified at compile time. The disassembled code of the compiled program is shown in Listing
3.118.

Listing 3.118: Disassembled code of the program shown in Listing 3.117
.text:00401000  _main      proc near        ; CODE XREF: start + 16E p
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.text:00401000       var_8 = dword ptr -8

.text:00401000       var_4 = dword ptr -4

.text:00401000             sub     esp, 8

.text:00401003             lea     eax, [esp + 8 + var_8]

.text:00401006             push    eax

.text:00401007             push    offset unk_408100

.text:0040100C             call    _scanf

.text:00401011             lea     ecx, [esp + 10h + var_4]

.text:00401015             push    ecx

.text:00401016             push    offset unk_408100

.text:0040101B             call    _scanf

.text:00401020             mov     ecx, [esp + 18h + var_8]

.text:00401024             mov     edx, [esp + 18h + var_4]

.text:00401028             lea     eax, [edx + ecx]

.text:00401025             shr     eax, 3

.text:0040102E             imul    eax, ecx

.text:00401031             lea     eax, [eax + eax*2]

.text:00401034             push    eax

.text:00401035             push    offset unk_4080FC
,text:0040103A             call    _printf
.text:0040103F             xor     eax, eax
.text:00401041             add     esp, 20h
.text:00401044             retn
.text:00401044 _main      endp

Note that stack variables in this fragment are addressed using the ESP register. Thus, the
var_4 and var_8 stack variables correspond to the a and b variables (see Listing 3.117).
Consider the sequence of commands in Listing 3.119.

Listing 3.119: Code pattern using lea for optimization of mathematical computations
mov    ecx, [esp + 18h + var_8]
mov    edx, [esp + 18h + var_4]
lea    eax, [edx + ecx]

The main issue here is the use of the lea command. Uncommon properties of this command
were already covered in Chapter 1 (see Table 1.2). Now you'll see this command in action. You'll
usually encounter this command when it is necessary to optimize arithmetic operations.

Then there is the shr eax, 3 command. You already know that it is simply an integer divided by
eight (two raised to the power of three). This command is executed much faster than IDIV.
Later, there is the imul eax, ecx command that multiplies the contents of EAX by the contents
of ECX. Finally, you encounter the lea command again: lea eax, [eax + eax*2]. This
command stands for multiplication of the contents of the EAX register by three.

At this point, the section on mathematical computations has been completed. I hope that you'll
easily master on your own other methods of optimizing computations, in particular, using bitwise
commands when investigating source code.

Other Constructs

Handling Exceptions

The mechanisms of exception handling at the level of executable code are complicated.
Furthermore, details of their implementation might considerably differ for different compilers. A
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detailed investigation of these mechanisms goes beyond the goals of this book. My goals are
more modest: They are to make you acquainted with some basic principles of exception
handling and to study how these mechanisms might be reflected in executable code.

Exception handling generated by compilers is based on so-called structured exception handling
(SEH). The SEH mechanism is supported at the level of the Windows operating system. The
foundation for exception handling is the following: When the operating system of the Windows
family runs on an Intel processor, the Fs segment register plays a special role. It points to the

thread environment block (TEB).[12] This block, in turn, contains several substructures, one of
which is the thread information block (TIB). TIB is stored in the beginning of TEB. Finally, the 4-
byte value located in the beginning of the TIB structure represents the address of some
structure that, first, contains the exception handler address and, second, contains the address of
the previous structure of the same type. In reality, the problem is the linked list. This topic will be
covered in detail later in this chapter (see the comments that follow Listing 3.121).

The following conclusions can be drawn on the basis of the preceding information:
§ Each thread has an individual exception handler.

§ Knowing the address, by which the pointer to the exception handler is located, the program
can set its own handler procedure.

In essence, these two facts are the foundation for the exception handling mechanisms used by
compilers creating executable code intended to run under Windows. Although these are easy to
understand, the exception-handling mechanism might be rather complicated.

When describing implementations of the exception handling mechanisms in different compilers,

I mean the __try/__except pair of operators implemented in C++.[13] Consider the example
program presented in Listing 3.120. This program is trivial. The __try block is used to avoid
division by zero when computing the quotient resulting from division of a by b.

Listing 3.120: 

Sample program illustrating the exception handling mechanism
#include  <stdio.h>
#include  <windows.h>
int main()
{
       int a, b;
       scanf("%d", &a);
       scanf("%d", &b);
       __try {
             a = a/b;
             printf("%d\n", a);
             }
       __except(0)
       {
              printf("Error 1! \n");
       };
       return 0;
}

The code of this program disassembled by IDA Pro is presented in Listing 3.121. The program
was compiled using Microsoft Visual C++ with the "create fast code" option.

Listing 3.121: Disassembled code of the program presented in Listing 3.119
.text:00401000  _main       proc near            ; CODE XREF: start + 16E p
.text:00401000       var_20 = dword ptr -20h
.text:00401000       var_lC = dword ptr -1Ch
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.text:00401000       var_18 = dword ptr -18h

.text:00401000       var_10 = dword ptr -1Oh

.text:00401000       var_4  = dword ptr -4

.text:00401000              push    ebp

.text:00401001              mov     ebp, esp

.text:00401003              push    OFFFFFFFFh

.text:00401005              push    offset byte_408110

.text:0040100A              push    offset __except_handler3

.text:0040100F              mov     eax, large fs:0

.text:00401015              push    eax

.text:00401016              mov     large fs:0, esp

.text:0040101D              sub     esp, l0h

.text:00401020              push    ebx

.text:00401021              push    esi

.text:00401022              push    edi

.text:00401023              mov     [ebp + var_18], esp

.text:00401026              lea     eax, [ebp + var 1C]

.text:00401029              push    eax

.text:0040102A              push    offset aD_0     ; "%d"

.text:0040102F              call    _scanf

.text:00401034              lea     ecx, [ebp + var_20]

.text:00401037              push    ecx

.text:00401038              push    offset aD_0     ; "%d"

.text:0040103D              call    _scanf

.text:00401042              add     esp, 10h

.text:00401045              mov     [ebp + var_4], 0

.text:0040104C              mov     eax, [ebp + var_1C]

.text:0040104F              cdq

.text:00401050              idiv    [ebp + var_20]

.text:00401053              mov     [ebp + var_1C], eax

.text:00401056              push    eax

.text:00401057              push    offset aD       ; "%d\n"

.text:0040105C             call    _printf

.text:00401061              add     esp, 8

.text:00401064              jmp     short loc_401079

.text:00401066 ;-----------------------------------------------------

.text:00401066              xor     eax, eax

.text:00401068              retn

.text:00401069 ;-----------------------------------------------------

.text:00401069              mov     esp, [ebp - 18h]

.text:0040106C              push    offset aErrorl  ; "Error 1! \n"

.text:00401071              call    _printf

.text:00401076              add     esp, 4

.text:00401079  loc_401079:                    ; CODE XREF: _main + 64|j

.text:00401079              mov     [ebp+var_4], OFFFFFFFFh

.text:00401080              xor     eax, eax

.text:00401082              mov     ecx, [ebp + var_10]

.text:00401085              mov     large fs:0, ecx

.text:0040108C              pop     edi

.text:0040108D              pop     esi

.text:0040108E              pop     ebx

.text:0040108F              mov     esp, ebp

.text:00401091              pop     ebp

.text:00401092              retn

.text:00401092  _main       endp

Pay attention to the presence of the standard function prologue, although in normal conditions
standard prologues and epilogues are discarded if compilation was carried out with optimization
options. Note that IDA Pro specifies five stack variables even though there were only two of
them in the source code of the program. Briefly viewing the code, it is easy to determine (for
example, by the calls to scanf) that var_1c corresponds to the a variable and var_20
corresponds to the b variable. Although only part of the function code can be enclosed by the
__try block, this block influences the entire function.
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The standard prologue is followed by an interesting sequence of commands (Listing 3.122). This
code fragment deserves special comments.

Listing 3.122: __try block nesting level and exception handling structures
push     OFFFFFFFFh               ; var_4
push     offset byte_408110       ;
push     offset __except_handler3 ; Address of the new exception handler

mov      eax, large fs:0          ; Address of the previous
                                  ; handler structure
push     eax                      ; var_10
mov      large fs:0, esp          ; Address of the new handler

First, some arbitrary constant is sent into the stack. Later, this value will be changed. This value
will determine the nesting level of the __try block. Next, the address of some global memory
cell is placed into the stack. The third element is the address of the exception handler formed by
the compiler. The last three commands are interesting. The address of the old exception
handling structure is placed into the stack, then the address of the entire group composed of 4
double words (this is the new exception handling structure) in the stack is placed into fs: 0. This
operation adds a new record to a linked list. This list might contain the entire chain of exception
handlers. The last structure in the list must contain the value OFFFFFFFFH in the exception
handler address. Also note that the stack contains the old EBP value.

Note the mov [ebp + var_4], 0 instruction. It directly precedes the command that carries out
the division operation. This command specifies the nesting level of the __try block. Note that
the nesting level is determined by the number of __try blocks in the function, whether one
block is nested within another block or not. Trace the content of the var_4 variable because it is
the key to the structure of the function's __try blocks.

The value of the ESP register is saved when the stack of the function is formed completely: mov
[ebp + var_18], esp. This value is used for restoring the stack in the __except block (see
Listing 3.123).

Listing 3.123: Customary sequence that precedes the start of the _except block
jmp      short loc_401079
xor      eax, eax
retn

Without diverting to consider standard Assembly commands and calls to the scanf and
printf functions, proceed with considering the __except block. You won't encounter any
difficulties locating the starting and ending points of this block, because the starting point of this
block is always preceded by the customary sequence of commands shown in Listing 3.123.

These commands will always be present, no matter which optimization variant of the Microsoft
Visual C++ compiler is used. The end of the __except block is defined by the jmp command.

If you resort to the Borland C++ v. 5.0 compiler, the external manifestation of exceptions also will
be clear and easily recognizable, even though a slightly different exception handling mechanism
is used. The first indication is the presence of the exception setting in the beginning of the block
procedure (replacement of the stored value with the FS:0 address). The second indication is the
presence of a typical fragment in the center of the procedure. There is no jump to that fragment,
and the fragment is bypassed by the JMP command. Finally, in the end of the procedure the
command restoring the old FS:0 value must be present.
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Identifying the Main Function and the Start-up Code

Earlier in this chapter, the main function — the function, from which the program starts — was
treated as if there were no problems with determining its address. IDA Pro doesn't have any
trouble with determining the address of the main function in the executable code of a program
compiled using any C++ compiler. However, situations are possible, in which IDA Pro is not
close at hand. Furthermore, there are other programming languages, for which the situation is
not as simple as for C++.

Any program written in any algorithmic programming language is made up of a certain set of
commands. For C++, these are the main or winMain functions. However, it would be an error
to consider that the executable code of the program starts execution exactly from this set of
commands. As a rule, the compiler inserts some start-up code before it, which contains the calls
to library and API functions. This code carries out some preparations: For instance, it requests
the memory from the system, defines the command-line parameters, and obtains the identifier
of the executable module. Only after completing this is control passed to the initial commands
described before. As I have already mentioned, disassemblers (and debuggers) are not always
capable of correctly determining where these commands start.

Note When speaking about the
Microsoft Visual C++ compiler,
for a console application the
start-up codes begin execution
from the mainCRTStartup
function, which passes control
to the main function. For GUI
applications, program execution
starts from the 
WinMainCRTStartup
function. After execution, the
WinMainCRTStartup function
passes control to the winMain
function. There also is a
technique allowing you to
create executable modules that
start execution directly from
the main or from the winMain
function. This allows
considerable reduction of the
executable module size (the
actual size of such a module
becomes smaller than the size
of standard libraries). However,
this is not a common practice,
because in this case the
programmer would intentionally
reject the possibility of using
standard C libraries.

To find the start of the user part of the executable code, it is necessary to know how this call is
executed. First, consider a console application written in the C++ programming language. In
general, the prototype of the main function appears as shown in Listing 3.124.

Listing 3.124: Standard prototype of the main function of a console application in C++
int main( int argc[ , char *argv[ ] [, char *envp[ ] ] ] );

In general, the main function has three input parameters. This is an important indication. For
example, consider a typical call to the main function from the executable code created by the
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Microsoft Visual C++ compiler (Listing 3.125).

Listing 3.125: Typical main function call from executable code from Microsoft Visual C++
mov      eax, dword_40A724
mov      dword_40A728, eax
push     eax
push     dword_40A71C
push     dword_40A718
call     _main
add      esp, OCh

Note that all three parameters turned out to be global variables. This issue is important. Now, it
is necessary to study, which library and API functions are called before and after the call to the 
main function. Armed with this knowledge, you'll be able to easily find the required location
within a program. The call to the GetCorrmandLine API function deserves special mention.
Using this function, it is possible to obtain the command-line parameters. These parameters are
then passed in the second parameter of the main function. What would happen if the main
function doesn't have any parameters or if it has one or two parameters? The answer to this
question is as follows: Nothing would be changed, and the call will be carried out in the same
way. Thus, search criteria also do not change. However, when dealing with the Borland C++
compiler, the situation is more complicated. The call to the main function is carried out by an
indirect call appearing like CALL [ESI + N]. If the disassembler doesn't locate and identify
the main function automatically, the code investigator has to use the debugger. However, all
previously-mentioned considerations related to the preliminary call to library and API functions
(for example, GetCommandILine) are applicable even in this case. Knowing these functions,
you'll be able to locate the required code section and then find CALL [ESI + N] or a similar
call. In this case, it will also be necessary to use the debugger and breakpoints, because manual
analysis of the code aimed at locating the address, by which the call is carried out is a tedious
procedure.

Consider the winMain function. The prototype of this function is provided in Listing 3.126.

Listing 3.126: Prototype of the WinMain function
int WinMain(HINSTANCE hInstance,
    HINSTANCE hPrevInstance,
    LPSTR 1pCmdLine,
    int nCmdShow
);
_____________________________________________

As you can see, this function has four parameters. This indication is an important search
criterion for searching for the start of the program. Listing 3.127 presents a typical fragment
demonstrating the call of the winMain function from the executable module created by the
Microsoft Visual C++ compiler.

Listing 3.127: Typical WinMain call from the executable module from Microsoft Visual C+
+
Push    eax
push    dword ptr [ebp - 20h]
push    esi
push    esi             ; 1pModuleName
call    edi             ; GetMcduleHandleA
push    eax
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call    _WinMain@16     ; WinMain(x, x, x, x)
mov     edi, eax
mov     [ebp - 2Ch], edi
cmp     [ebp - 1Ch], esi
jnz     short loc_401508
push    edi             ; int
call    _exit

The fragment presented in Listing 3.127 is so typical that it is worth memorizing. This search
criterion allows you to find the entry point to the executable code of the program without failure.
The call to winMain function in a module created by the Borland C++ compiler is executed
using the CALL [ESI + N] command, as was the case for the main function. Also, the
GetModuleHandle API function is called before this call.

In Delphi, the execution starts from the main module of the program (BEGIN...END.); however,
before this module there are calls to one or more procedures that initialize start-up. In particular,
one such procedure calls the GetModuleHandle API function.

[
7

]

In high-level programming languages, the commonly-adopted practice is to distinguish between
procedures and functions. From the standpoint of the disassembled text, there is no difference
between these two concepts.

[
8

]

One parameter of the double type must be interpreted as two 32-bit parameters.

[
9

]

The number enclosed in parentheses specifies the nesting level.

[
10

]

Both methods and variables are called class members.

[
11

]

When creating a new object, the programmer might forget to call the initialization procedure or
might call it more than once.

[
12

]

Recall that in the protected mode, segment registers store selectors instead of addresses.
Selectors are numbers in the descriptors table that define addresses.

[
13

]

This is a standard for the C++ programming language; therefore, all C++ compilers support
these operators, although implementations might be different.
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Overview

IDA Pro is an outstanding instrument for investigating executable code. The foundation for code
investigation using IDA Pro is formed by the following features:

§
The powerful toolset built into the disassembler is designed for investigating the executable
code. IDA Pro doesn't draw its own conclusions or assumptions. The privilege of analyzing
heuristically is always delegated to human investigators.

§
Human investigators can participate in heuristic analysis, refine parameters of a specific
program's objects, and introduce modifications. In other words, the user of this instrument
becomes an active participant in the disassembling process.

§
The built-in programming language, which is close to the classical C language in its
structure, allows for considerable extension of the product's functionality.

This excellent product, characterized by outstanding capabilities, was extensively used
throughout this book. The two main goals of this chapter are as follows:

§
Provide a detailed description of the IDA Pro disassembler.

§
Provide comprehensive reference information related to the use of this program. Hopefully,
you will be able to investigate the executable code (at least when studying the program's
capabilities) using the materials of this chapter as a reference, and consulting this book
from time to time.

Unfortunately, information about this debugger is scarce. Sources other than the brief
information provided in the help file supplied with this debugger are hardly available. Thus, I
hope that this chapter will help you master this powerful instrument.

5.1. Introduction to IDA Pro

IDA stands for Interactive Disassembler, although the About window displays a beautiful young
lady. This instrument is so elegant that its name makes you imagine someone like her.
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5.1.1. Getting Started

First, it is necessary to mention that the IDA Pro distribution set includes both console (idaw.exe)
and graphical (idag.exe) variants of the program. All further sections will mainly relate to the GUI
variant.

General Information About Virtual Memory

If you load some executable module into IDA Pro, two files will be created into the directory,
from which you have loaded that module. These will be two auxiliary files with the ID0 and ID1
file name extensions. These are auxiliary virtual memory files used by the IDA Pro debugger for
storing intermediate data. After you unload the previously-loaded module (using the File | Close
menu commands), both files will disappear. The file with the same name as the loaded
executable module and with the ID1 file name extension is used for loading the image of that
executable module. This image is identical to the image loaded into the 32-bit flat memory
model of the Windows operating system. Thus, it becomes possible to ensure that the module
being investigated is identical to the module executed by the operating system. This feature
makes IDA Pro close to an exclusive debugger. For each address, the file stores a 32-bit
characteristic: an 8-bit cell corresponding to the given address and a 24-bit attribute defining
various properties of this cell. In particular, this attribute specifies whether the given memory cell
relates to an instruction or to the data (and, in the latter case, the type of this data item).
Furthermore, this attribute specifies whether there are other objects in the string, such as
comments, cross-references, or labels.

Mechanisms of working with the virtual memory used by IDA Pro are identical to the similar
mechanisms used by the Windows operating system. When accessing an individual cell, the
entire page containing this cell is loaded into the main memory (buffer). If the memory cell is
modified, the entire virtual memory page is rewritten. IDA Pro holds part of the memory pages in
random access memory. Modified cells are periodically flushed to the disk. When it is necessary
to load a page but the page buffer is full, IDA Pro searches the buffer to find the page that was
modified first, flushes it to the disk, and loads the required page into the freed space.

In addition to storing the image of the loadable module, IDA Pro requires memory for information
such as labels, function names, and comments. This information is stored in the file with the ID0
file name extension. In official documentation, this memory is called memory for b-tree.

The Program Interface

General Information

In Fig. 5.1, the main IDA Pro window with the loaded executable program is shown. The
background analysis of the loaded program has been completed, as designated by the message
in the bottom left corner: The initial autoanalysis is finished.
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Figure 5.1: The IDA Pro main window with the loaded executable module

The IDA Pro main window has lots of tabs. By default, there are nine tabs, although in reality
there might be more. You can add new tabs using the Views | Open subviews... menu. There
are two windows that can be duplicates: IDA View and Hex View. Thus, different sections of
code and data can be viewed in different windows. These windows are supplied with suffixes — 
A, B, C, etc. — so that the user can easily distinguish them.

The main window is IDA View. This window displays the main result of executable code
analysis. In this window, the user can participate in further analysis of the code.

When working with the IDA Pro debugger, do not forget that there are three main methods of
controlling this program: menu commands, toolbar buttons, and hotkeys. Hotkeys do not cover
all IDA Pro capabilities; however, there are hotkeys for the most frequently used operations. For
example, if some data block raises your suspicion, you can always convert it into code
(disassemble) by pressing the <C> key (short for CODE). On the other hand, if some block of
Assembly commands seems meaningless, you can always convert it into data by pressing the
<D> key (short for DATA).

IDA Pro uses the following configuration files: Ida.cfg is the common configuration file, idatui.cfg
is the configuration file for the console variant of the program, and idagui.cfg is the configuration
file for the GUI variant of the program. Configuration files must reside in the CFG subdirectory of
the IDA Pro main directory.

Loading the Executable Code

After you load an executable module into IDA Pro, you'll see the main IDA Pro window shown in 
Fig. 5.2. Using this window, you can configure the loading process and the initial analysis. This
window provides lots of configuration settings that will be described in the next few sections. In
most cases, IDA Pro suggests optimal settings so that the user doesn't need to configure
anything. You only need to click the OK button and rely on your luck and the disassembler's
capabilities. However, because these options are used occasionally, I'll provide brief
descriptions.
§ Load file directory/name as contains the list of formats that can be recognized by the

current IDA Pro version for the chosen module. In most cases, IDA Pro recognizes the type
of file chosen for loading. Other options available in this window are set automatically
depending on the chosen type of the loadable module. For example, carry out the following
simple experiment. Disassemble the MS-DOS stub of some PE module (see Section 1.5.1).
To achieve this, choose the MS-DOS executable option from the list. To confirm your
choice, click the Set button. I'd like to point out again that this list corresponds to the choice
of the PE module. PE modules can be interpreted both as normal PE modules and as MS-
DOS programs, or even as binary files. If you choose a new executable (NE) module, for
example, the content of this list will be different.

§ Processor type is a dropdown list that allows you to choose the processor, for which the
chosen module was compiled.

§ Loading segment and Loading offset are fields that allow you to load the module into a
specific segment with a specific offset, which might be useful both for MS-DOS modules
and for binary files. These parameters are not used for PE modules.

§ Enabled is a flag from the Analysis group that allows you to disable the initial analysis of
the executable code. This flag is set by default, which means that the initial analysis will be
carried out after loading.

§ Indicator enabled specifies whether the analysis process indication should be carried out.
By default, this flag is set.

§ Create segments is not used for PE modules. If this flag is set, IDA Pro creates the
required segments.

§ If the Load resources flag is set, the resources of the PE module will be loaded. For binary
modules, this flag is called Load as code segment and is used, for example, for COM
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programs.

§ If the Rename DLL entries flag is not set, IDA Pro provides additional comments for
functions imported by ordinals; otherwise, functions are renamed at the disassembler's
discretion.

§ If the Manual load flag is set, the disassembler will consult the user at every step of the
loading process.

§ Fill segment gaps is a flag important only for NE modules. It instructs the disassembler to
fill the intersegment space, thus creating one large segment.

§ Make imports segment — when this flag is set, it instructs the disassembler to interpret
the .idata section only as related to the imported information. In this case, the
disassembler would ignore the data that might also be contained in this section.

§ Don't align segments instructs the disassembler to align segments. This flag is not used
for the modules under consideration.

§ Kernel optionsl is a button that displays the window enabling the user to configure options
used when analyzing executable code, by setting the flags.
o Using the Create offsets and segments using fixup info flag, you can instruct the

disassembler to use the information from the relocations table in the course of code
analysis.

o Mark typical code sequence as code instructs the disassembler to use typical
processor command sequences in the course of analysis.

o Delete instructions with no xrefs allows the disassembler to ignore microprocessor
instructions, for which there are no cross-references.

o Trace execution flow allows tracing, so that you can discover the processor instructions.

o Create functions if call is present instructs the disassembler to recognize functions by
calls.

o Analyze and create all xrefs is one of the main options that makes the disassembler
use cross-references in the main analysis.

o Use FLIRT signatures instructs the disassembler to use fast library identification and
recognition technology (FLIRT) for recognizing library functions using signatures.

o Create function if data xref data->code32 exists instructs the disassembler to check
the references to executable code in the data area.

o Rename jump functions as j_... allows IDA Pro to rename simple functions containing
only the jmp somewhere command as j_somewhere.

o Rename empty functions as nullsub_... allows IDA Pro to rename functions containing
one RET command as nullsub_....

o Create stack variables instructs the disassembler to create (define) local variables and
parameters of the functions.

o Trace stack pointer instructs IDA Pro to trace the value of the ESP register.

o Create ASCII string if data xref exists instructs the disassembler to consider the data
item referenced as ASCII string if its length exceeds a certain value.

o Convert 32-bit instruction operand to offset instructs the disassembler to consider a
direct data item in the processor instruction as an address, provided that its value falls
into the predefined interval.

o Create offset if data xref to seg32 exists instructs the disassembler to consider values
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stored in the data area as addresses, provided that their values fall into the predefined
interval.

o Make final analysis pass instructs the disassembler to convert all uninvestigated bytes
into data or instructions when carrying out the final stage of the analysis.

§ Kernel options2 is a button that calls another window with another set of flags for the
options used in the course of executable code analysis:
o Locate and create jump tables instructs IDA Pro to draw conclusions about the address

and size of the jump table.

o If the Coagulate data in the final pass flag is off, then only bytes of the code segment
are converted at the last stage of analysis (see the Make final analysis pass flag).

o Automatically hide library functions instructs the disassembler to hide (collapse)
library functions detected using FLIRT.

o Propagate stack argument information instructs the disassembler to save information
about stack parameters of the call in case of future calls (such as a function call from
another function).

o Propagate register argument information instructs the disassembler to save
information about register parameters of the call in case of further calls (such as function
calls from another function).

o Check for Unicode strings allows the disassembler to check the program for the
presence of Unicode strings.

o Comment anonymous library functions instructs the disassembler to mark anonymous
library functions using the library name and the signature, with which a specific function
was detected.

o Multiple copy library function recognition allows the disassembler to recognize
several copies of the same function within a program.

o Create function tails allows you to search for function tails and add themto function
definitions.

§ Processor options is a button that calls the window with the option flags.
o Convert immediate operand of "push" to offset indicates the possibility of converting

the direct operand in the PUSH command to an offset (an address).

o Convert db 90h after "jmp" to "nop" specifies to the disassembler that 90H bytes that
follow the jmP command must be interpreted as NOP commands.

o Convert immediate operand of "rnov reg,..." to offset indicates the possibility of
converting the direct operand in the Mov reg,... command (reg stands for the register)
into an offset (an address).

o Convert immediate operand of "mov memory,..." to offset indicates the possibility of
converting the direct operand in the Mov mem,... command to an offset (an address).

o Disassemble zero opcode instructions gives the disassembler the following
instruction: 00 00 ADD [EAX], AL. By default, this flag is off.

o Advanced analysis of Borland's RTTI (RTTI stands for run-time type information)
allows IDA Pro to check and create RTTI structures.

o Check "unknown_libname" for Borland's RTTI allows the disassembler to check
names marked as unknown_libname for the presence of RTTI structures.

o Advanced analysis of catch/finally block after function allows the disassembler to
search for catch/finally exception processing blocks.
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o Allow references with different segment bases allows the disassembler to specify
references to characters even when the value stored by the specified address is not a
character (doesn't represent a character code).

o Don't display redundant instruction prefixes instructs the disassembler to hide some
command prefixes to improve the listing's readability.

o Interpret int 20 as VxDcall instructs the disassembler to interpret INT 20H as
VxDcall/jump.

o Enable FPU emulation instructions specifies that commands such as INT 3?H must
be interpreted as emulations of arithmetic coprocessor commands.

o If the Explicit RIP-addressing flag is set, it is assumed that relative instruction pointer
(RIP) addressing is used in the program. This flag is in force for 64-bit processors.

§ System DLL directory is a field that specifies the directory where IDA Pro would search for
DLLs, provided that the file with the .ids file name exception corresponds to the given
library.

Figure 5.2: The window controlling executable code loading

The Disassembler Window

Because most work with IDA Pro is carried out in the disassembler window, it is expedient to
consider this window in detail. It is necessary to point out that the developers of this
disassembler have carefully considered representation of the disassembled function and
methods of navigating it. Consider some key aspects related to this topic:
§ Hiding functions — Functions in the disassembler window can be shown in a collapsed form

(hide) or an expanded form (unhide). In the collapsed form, the function is represented by a
single line. This useful feature allows you to considerably improve the disassembled code's
readability. To expand and collapse functions, use the <+> and <-> keys on the numeric
keypad or the View | Unhide and View | Hide menu options.
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§ Indicating jumps — Fig. 5.3 shows the disassembler window. Pay special attention to the
leftmost section of the window. This section is intended for simplifying navigation of the
listing. Commands are marked by dots. If the line doesn't contain a dot, this means that the
string contains a comment. When the user clicks a dot with the mouse, IDA Pro sets a
breakpoint to the respective address. Jumps are designated by continuous or dashed lines.
Continuous lines designate unconditional jumps, and dashed lines correspond to
conditional jumps.

§ Using special comments —Addresses within a program, to which jumps are carried out
(conditional and unconditional jumps or the CALL. command) or referenced, contain special
comments. The comment starts either from CODE XRFF, if the reference has the meaning
of jump to the specified address, or from DATA XREF, if this instruction is referenced as
data (for example, as follows: MOV EAX, OFFSET L1). These comments are called cross-
references because the given address represents the crossing where references from other
program locations meet. The cross-reference mark is followed by a colon, which, in turn, is
followed by the address counted from the start of the function or section, from which this
reference originates. By clicking this address with the mouse, you can call the pop-up
window with the code fragment that refers to the given instruction. The address must
contain the   and   characters that specify the direction to the line of code that references
this instruction. To jump to the line, from which the reference originates, double-click the
address with the mouse. If there are fewer than four references to the given line, they are
listed; otherwise, the references are designated as dots. In this case, you can right-click one
of these addresses and can choose the required item from the Jump to cross reference
context menu. After that, the window will appear with the list of all addresses. This window
will contain the reference to the requested code line. Choose the address you need by
clicking it with the mouse (or by clicking the OK button after positioning the cursor on the
required item), and you'll find yourself at the required position within the listing. The
fragment of the disassembler window containing the cross-references is shown in Fig. 5.4.

§ Designating an address — The listing shown in the disassembler window demonstrates
various methods of designating an address. For example, if you are dealing with an API
function, the name of that function is explicitly specified. In addition, IDA Pro usually bases
the names of references to detected strings on the content of that string. For example, if the
string contains the text You are wrong!, then IDA Pro would designate the reference to
that string as aYouAreWrong. In this case, the prefix means IDA Pro considers this string
an ASCII string. All other names designating function names or data addresses are based
on the prefix and an address. For example, you can encounter the following prefixes:
o sub_ — Function

o locret_ — Address of the return instruction

o loc_ — Instruction address

o off_ — Data specifying the address (offset)

o seg_ — Data specifying the segment address

o asc_ — Address of an ASCII string

o byte_ — Byte address

o word_ — Word address

o dword_ — Double word address

o qword_ — Address of a 64-bit value

o flt_ — Address of a 32-bit floating-point number

o dbl_ — Address of a 64-bit floating-point number

o tbyte_ — Address of an 80-bit floating-point number
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o stru_ — Structure address

o algn_ — Alignment directive

o unk_ — Address of an uninvestigated area

§ Using the context menu — When working with the disassembler window, it is convenient to
use the context menu that pops up when you click the right mouse button within a window.
Some menu items differ for different parts of the listing, such as function names,
instructions, comments, and selected blocks. Some menu items relate to IDA Pro operation
as a debugger (Run to cursor, Add breakpoint, and Add execution trace). These items
will be described later in this chapter. In particular, pay attention to the Rename menu item.
This item allows you to edit command contents (operands).

§ Navigating a listing — The most important issue is navigation of the listing. Jumps to
locations pointed to by cross-references have been already covered. The same approach
(double-clicking the cross-reference with the mouse) can be used for returning (for
example, to the conditional jump, to the CALL command, or to the address in a command
like MOV EAX, OFFSET address). Note that IDA Pro remembers all of your jumps so that
you can always move forward or backward along the chain (as you would follow the links in

an Internet browser) using the following toolbar buttons: .

Figure 5.3: Indication of jumps in the disassembler window

Figure 5.4: Cross-references

Other Windows
§ Hex View — This window contains the hex dump of the loaded module, as well as ASCII

characters corresponding to this dump. This window is an auxiliary one in relation to the
disassembler window and can be easily synchronized with it. To achieve this, it is enough to
click the right mouse button somewhere within the window and choose the Synchronize
with | IDA View... item from the context menu. After switching to the disassembler window,
you'll find yourself in the program location that corresponds exactly to the address in the
dump window. In addition, IDA Pro tracks the addresses, with which you are working, in the
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disassembler window. When you switch to the dump, you automatically jump to the required
location.

§ Exports — This window contains the list of exported functions. It is helpful for working with
DLLs. For normal executable modules, the list is made up of a single element, namely, the 
start function.

§ Imports — This window contains the list of imported functions and the modules, from which
they are imported. When you double-click the imported function, you switch to the
disassembler window and find yourself in the entry point. Thus, you can easily locate all
cross-references to this function within the program.

§ Names — This window contains the list of all imported and library functions, as well as the
names of variables and labels recognized by IDA Pro. On the left side of each name is a
character that defines the name type:
o L — Library function

o F — Regular functions and API functions

o C — Instruction (label)

o A — ASCII string

o D — Data

o I — Imported function

Double-clicking the name with the mouse jumps you to the program location where that name is
used. To create a new name (for example, for the label) and specify the address corresponding
to that name, press <Insert>. The entered name will also appear in the disassembler window.
§ Functions — This window contains the entire list of functions recognized by IDA Pro,

including library functions and imported user functions.

§ Strings — This window contains all strings found by the disassembler. If you double-click a
string, you'll automatically jump to the location within the listing where that string was
defined. By default, only C-style strings are presented in this window. If you right-click this
window and choose the Setup command from the context menu, you can display other
types of strings in this window, for example, Unicode strings or Pascal strings.

§ Structures — This window contains all structures found by the disassembler. To add a new
structure to the list, press <Insert>.

§ Enums— This window is intended for displaying all enumerations located within the
program being investigated.

In addition to the preceding windows, the disassembler can use other windows. In particular,
note the libraries window. In the online help system, this window is called the signatures window.
This window contains the list of signatures used for recognizing library functions. The signatures
window is shown in Fig. 5.5. As you can see, the list specifies the name of the file containing the
function signatures, the number of functions found using these signatures, and the name of the
library to whose functions these signatures were applied. By pressing <Insert>, you can add the
required signature file from the displayed list. The signatures of that file will be immediately used
for recognizing new functions.
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Figure 5.5: The signatures window

Menus and Toolbars

I am not going to provide a detailed explanation of all IDA Pro menu items and all toolbar
buttons. In most cases, you won't encounter any difficulties in studying IDA Pro functional
capabilities on your own. It is only necessary to pay special attention to some important
functions:
§ The File menu items are as follows:
o Open — Load the executable module to be disassembled.

o Load — Load different files: Reload the input file reloads the disassembled module,
Additional binary file loads an additional binary file into the database; IDS file loads the
intrusion-detection system (IDS) file containing the information about the functions of
specific import library (all IDS files located within the IDS directory are loaded
automatically, PDB file loads the PDB file containing debug information, DBG file loads
the file containing debug information, FLIRT signature file loads and applies the
signatures file (the same operation is executed in the signatures window, as shown in Fig.
5.5), and Parse C header file reads the type definitions from the header file for further
declarations of new structures and enumerations (see the description of the Enums and
Structures windows).

o Produce file — Create new files of different structures on the basis of the disassembled
code: a MAP file that can be used by debuggers, an Assembly file (having the ASM file
name extension), an LST file (listing), a listing in the HTML format, etc.

o IDC file — Load and execute the script file (see Section 5.2.1).

o IDC command — Call the window for immediate script execution.

o Save... — Save the current disassembling database in the file with the IDB file name
extension.

o Save as... — Save the current disassembling database under the specified name.

o Close — Close the disassembled file, saving the disassembling database.

§ The Edit menu items are as follows:
o Copy — Copy the selected fragment into the clipboard.

o CODE — Convert the block to the executable code.

o DATA — Convert the selected block to data.

o Struct var... — Convert the block to the selected structure.

o Strings — Convert to a string (string types can be chosen from the submenu).

o Array — Convert to the array with the predefined parameters.
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o Undefine — Mark the selected block as data of an undefined structure.

o Name — Rename.

o Operand type — Specify the operand type.

o Comments — Control comments.

o Segments — Control segments.

o Structs — Control structures.

o Functions — Control functions.

o Other — Perform other functional capabilities, such as specifying the alignment directive,
entering instructions or data, or highlighting with a color.

o Plugins — Use external plug-in modules.

§ The items of the Jump menu are intended for various jumps in the disassembled code,
such as jumping to the specified address, jumping to the specified function (which can be
chosen from the list), jumping to the program's entry point, marking a code line, and
jumping to the specified label.

§ Items of the Search menu are intended for various search operations in the disassembled
text, such as searching for text, searching for the next data block, searching for the next
Assembly instruction, and searching for the next byte sequence.

§ Using items of the View menu, it is possible to customize the look of the IDA Pro
disassembler: Open new windows (Open Subviews), create and delete toolbars (Toolbars
), hide and unhide functions (Hide and Unhide commands, respectively), open the
calculator window, etc.

§ Commands from the Debugger menu allow you to use various IDA Pro debugging
capabilities: control breakpoints (Breakpoints), control watches (Watches), control tracing
(Tracing); view the contents of various registers (General registers, Segment registers,
and FPU registers); etc.

§ The Options menu items allow you to change various IDA Pro settings, some of which
were covered earlier when I described the loading control window.

§ Using items of the Windows menu, you can control IDA Pro windows.

§ The Help menu items allow you to display help topics and obtain technical support.

Program Start-Up Keys

When starting IDA Pro, you can use the following start-up keys:
§ -a — Disable automatic analysis.

§ -A — Start IDA Pro and automatically load the last database.

§ -b#### — Specify the address for loading a module.

§ -B — Start IDA Pro and automatically generate IDB and ASM files.

§ -c — Remove the old disassembling database.

§ -ddirective — Start IDA Pro and specify the loading directive for the first-pass analysis.

§ -Ddirective — Start IDA Pro and specify the loading directive for the second-pass
analysis.

§ -f — Exclude FPU instructions.
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§ -h — Open the IDA Pro help window.

§ -i — Specify the address of the program's entry point.

§ -M — Disable the mouse (for the console variant of loading).

§ -O####— Pass options for the plug-in module, -Oplugl:optl:opt2:opt3, where
plugl is the name of the plug-in module and optl, opt2, and opt3 are module options.

§ -o#### — Specify the database name (used in combination with the -c key).

§ -p — Specify the processor type.

§ -P+ — Pack the database.

§ -P- — Do not pack the database.

§ -R — Load resources from the executable file.

§ -S#### — Execute the specified IDC file.

§ -W#### — Specify the Windows directory.

§ -x — Do not create segments.

§ -? — Display help about IDA Pro start-up keys.

5.1.2. Simple Examples of Code Investigation

In this section, I'll return to the examples written in Assembly language considered in Section 1.6
. The reason I decided to do so is straightforward. Using Assembly, it is easy to model the
required situation to demonstrate specific patterns of code investigation in IDA Pro.

About IDA Pro Capabilities

Easy Examples

In the preceding chapters, lots of examples were considered that illustrate the capabilities of IDA
Pro in analyzing executable code. Consider the program shown in Listing 5.1.

Listing 5.1: Easy Assembly program (see Listing 1.43)
.586P
.MODEL FLAT, STDCALL
includelib e:\masm32\lib\user32.lib
EXTERN        MessageBoxA@16:NEAR
; Data segment
_DATA SEGMENT
TEXT1 DB 'No problem!', 0
TEXT2 DB 'Message', 0
_DATA ENDS
; Code segment
_TEXT SEGMENT
START:
       PUSH OFFSET 0
       PUSH OFFSET TEXT2
       PUSH OFFSET TEXT1
       PUSH 0
       CALL MessageBoxA@16
       MOV ESI, 3
       ADD ESI, OFFSET L2
L2:
       CALL ESI
       RETN
L1:
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       XOR EAX, EAX
       RETN
_TEXT ENDS
END START

You should immediately notice the small trick hidden behind the code fragment, shown in Listing
5.2.

Listing 5.2: Fragment of the program in Listing 5.1 that hides a small trick
     MOV ESI, 3
     ADD  ESI, OFFSET L2
L2:
     CALL ESI
     RETN
L1:

The CALL ESI command jumps to the L1 label. How would IDA Pro react to this situation?
Consider the disassembled code produced by IDA Pro (Listing 5.3).

Listing 5.3: Disassembled listing of the program in Listing 5.1, produced by IDA Pro
.text:00401000 _text                       segment para public 'CODE' use32
.text:00401000                             assume cs:_text
.text:00401000                             ; org 401000h
.text:00401000 assume es:nothing, ss:nothing, ds:_data, fs:nothing, gs:nothing
.text:00401000 ;  -------  S U B R O U T I N E  ------------------------------
.text:00401000                public start
.text:00401000 start          proc near
.text:00401000                push    0               ; uType
.text:00401002                push    offset Caption  ; 1pCaption
.text:00401007                push    offset Text     ; 1pText
.text:0040100C                push    0               ; hWnd
.text:0040100E                call    MessageBoxA
.text:00401013                mov     esi, 3
.text:00401018                add     esi, offset loc_40101E
.text:0040101E loc_40101E:                            ; DATA XREF:
start+18 o
.text:0040101E                call    esi             ; sub_401021
.text:00401020                retn
.text:00401020 start          endp
.text:00401021 ;  -------  S U B R O U T I N E  ------------------------------

.text:00401021

.text:00401021 sub_401021    proc near    ; CODE XREF: start:loc_40101E p

.text:00401021               xor     eax, eax

.text:00401023               retn

.text:00401023 sub_401021    endp

.text:00401023

.text:00401024 ; [00000006 BYTES: COLLAPSED FUNCTION MessageBoxA.

.text:00401024 ; PRESS KEYPAD "+" TO EXPAND]

.text:0040102A              align 200h

.text:0040102A _text        ends

From Listing 5.3, it is evident that IDA Pro clearly traces the value of the ESI register and, thus,
determines the start of the sub_401021 procedure. The arithmetic here is easy. It is only
necessary to add three to the address of the loc_40101E procedure to obtain the exact
address of the called procedure. Having located the start of the procedure, it is easy to
determine its end. In this case, the end of procedure is defined by the RETN command nearest
the start.

Now, modify the program from Listing 5.1. The modified code is shown in Listing 5.4. As it turns
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out, even the slightest modification produces some difficulties with code disassembling.

Listing 5.4: Modified code of the program shown in Listing 5.1
.586P
.MODEL FLAT,STDCALL
includelib e:\masm32\lib\user32.lib
EXTERN        MessageBoxA@16:NEAR
; Data segment
_DATA SEGMENT
TEXT1 DB 'No problem!', 0
TEXT2 DB 'Message', 0
_DATA ENDS
; Code segment
_TEXT SEGMENT

START:
       PUSH OFFSET 0
       PUSH OFFSET TEXT2
       PUSH OFFSET TEXT1
       PUSH 0
       CALL MessageBoxA@16
       MOV  ESI, 3
       ADD  ESI, OFFSET L2
       PUSH ESI
       POP  EDI
L2:
       CALL EDI
       RETN
L1:
       XOR  EAX, EAX
       RETN
_TEXT ENDS
END START

Consider the listing of the disassembled code produced by IDA Pro — after analysis of the
executable code created by the Assembly translator from the program shown in Listing 5.4. The
disassembled result is provided in Listing 5.5.

Listing 5.5: Disassembled text of the program shown in Listing 5.4
.text:00401000 _text                  segment para public 'CODE' use32
.text:00401000                        assume cs:_text
.text:00401000                        ; org 401000h
.text:00401000 assume es:nothing, ss:nothing, ds:_data, fs:nothing, gs:nothing
.text:00401000 ;---------- S U B R O U T I N E  ------------------------------
.text:00401000                   public start
.text:00401000 start             proc near
.text:00401000                   push    0                ; uType
.text:00401002                   push    offset Caption   ; lpCaption

.text:00401007                   push    offset Text      ; lpText

.text:0040100C                   push    0                ; hWnd

.text:0040100E                   call    MessageBoxA

.text:00401013                   mov     esi, 3

.text:00401018                   add     esi, offset loc_401020

.text:0040101E                   push    esi

.text:0040101F                   pop     edi

.text:00401020 loc_401020:                         ; DATA XREF: start+18 o

.text:00401020                   call    edi

.text:00401022                   retn

.text:00401022 start             endp
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.text:00401023 ; ---------  S U B R O U T I N E ------------------------------

.text:00401023                  xor      eax, eax

.text:00401025                  retn

.text:00401026 ; [00000006 BYTES: COLLAPSED FUNCTION MessageBoxA.

.text:00401026 ; PRESS KEYPAD "+" TO EXPAND]

.text:0040102C                  align 200h

.text:0040102C _text            ends

Consider Listing 5.5, which presents the analysis carried out by the IDA Pro disassembler. As
you can see, as a result of slight modifications of the program's source code the procedure
located at the 00401023 address can no longer be recognized by the disassembler. To
understand how the analysis was carried out, it is necessary to consider the algorithm used by
IDA Pro. However, some conclusions can be drawn even without viewing the algorithm. As I
already mentioned, IDA Pro is a careful program. It avoids drawing premature conclusions. In
this case, there is a certain probability that some jump (an indirect one) will be made to the 
loc_401020 label. This jump originates from some different location within a program, in which
case it is probable that the procedure address will be different. This is hard to assess and
evaluate; however, to be on the safe side it is possible to take such a possibility into account and
rely on the interactive work with the user. Nevertheless, consider the code fragment shown in 
Listing 5.6.

Listing 5.6: Code example, for which IDA Pro correctly identifies the procedure address
     PUSH ESI
     POP ESI
L2:
     CALL ESI

In this example, IDA Pro doesn't encounter any difficulties and correctly identifies the procedure
address.

Interactive Work with IDA Pro

Consider examples of interactive work of the code investigator with IDA Pro.

The example shown in Listing 5.7 contains a simple Assembly program. As can be easily seen,
the CALL EDI command is executed by the address corresponding to the L1 label.

Listing 5.7: Simple Assembly program illustrating interactive work of the code
investigator and IDA Pro

.586P

.MODEL FLAT, STDCALL
includelib e:\masm32\lib\user32.lib
EXTERN MessageBoxA@16:NEAR
; Data segment
_DATA SEGMENT
TEXT1 DB 'No problem!', 0
TEXT2 DB 'Message', 0
_DATA ENDS
; Code segment
_TEXT SEGMENT
START:
       MOV ESI, 3
       PUSH ESI
       PUSH OFFSET 0
       PUSH OFFSET TEXT2
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       PUSH OFFSET TEXT1
       PUSH 0
       CALL MessageBoxA@16
       POP  EDI
       ADD  EDI, OFFSET L2
L2:
       CALL EDI
       RETN
L1:
       XOR  EAX, EAX
       RETN
_TEXT ENDS
END START

Translate the program, and then load it into the IDA Pro disassembler. The disassembled code
is presented in Listing 5.8.

Listing 5.8: Disassembled code of the program shown in Listing 5.7
.text:00401000 _text       segment para public 'CODE' use32
.text:00401000             assume cs:_text
.text:00401000             ; org 401000h
.text:00401000 assume es:nothing, ss:nothing, ds:_data, fs:nothing, gs:nothing
.text:00401000 ; ------  S U B R O U T I N E  --------------------------------
.text:00401000
.text:00401000           public start
.text:00401000 start     proc near
.text:00401000           mov     esi, 3
.text:00401005           push    esi
.text:00401006           push    0                   ; uType
.text:00401008           push    offset Caption      ; lpCaption
.text:0040100D           push    offset Text         ; lpText
.text:00401012           push    0                   ; hWnd
.text:00401014           call    MessageBoxA
.text:00401019           pop     edi

.text:0040101A           add     edi, offset loc_401020

.text:00401020

.text:00401020 loc_401020:                      ; DATA XREF: start + 1A o

.text:00401020           call    edi

.text:00401022           retn

.text:00401022 start     endp

.text:00401023           xor     eax, eax

.text:00401025           retn

.text:00401026 ; [00000006 BYTES: COLLAPSED FUNCTION MessageBoxA.

.text:00401026 ; PRESS KEYPAD "+" TO EXPAND]

.text:0040102C           align 200h

.text:0040102C _text     ends

As could be expected, the disassembler doesn't recognize the address, at which the CALL EDI
call will be carried out.

To begin code investigation, create a function at the 00401023 address. It is clear that you are
dealing with some function even without determining the address, at which the CALL EDI call is
carried out. The sequence XOR EAX, EAX\RETN is clear evidence of the presence of the body
of some function. Set the cursor to the first command of the assumed function and press <P> or
use the Edit | Functions | Create function menu commands. IDA Pro will create the function
automatically (Listing 5.9).

Listing 5.9: Function automatically created by IDA Pro
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.text:00401023 sub_401023      proc near

.text:00401023                 xor eax, eax

.text:00401025                 retn

.text:00401025 sub_401023      endp

Now you can use the references to the function in the disassembled text. The disassembler will
automatically encounter your edits and continue analysis with taking into account the corrections
you have introduced. Move to the line of code located at the 00401020 address (CALL EDI).
Press <;> to enter the comment. To achieve this, you can use the Edit | Comments | Enter
comments menu commands. As a result, the window that allows you to enter the comment will
appear (Fig. 5.6). You can enter any comment here.

Figure 5.6: The IDA Pro window that allows the user to enter comments

Comments in IDA Pro have one specific feature: Some comments contain information not only
for the code investigator but also for the disassembler. Enter the following line into the edit
window: DATA XREF: sub_401023. By doing so, you specify that the procedure is called by
the address corresponding to the sub_401023 label. The result obtained is interesting. You are
not simply retrieving the comment, by clicking which it is possible to jump to appropriate
reference. The line with the 0040101 address also is automatically supplied with the comment.
Consider the fragment shown in Listing 5.10.

Listing 5.10: Code fragment illustrating automatic generation of cross-references
.text:00401019     pop   edi
.text:0040101A     add   edi, offset loc_401020 ; DATA XREF: sub_401023
.text:00401020 loc_401020:                      ; DATA XREF: start + 1A o
.text:00401020     call  edi                    ; DATA XREF: sub_401023
.text:00401022     retn

.text:00401022 start   endp

.text:00401023 ; ------ S U B R O U T I N E -----------------------------

.text:00401023

.text:00401023 sub_401023    proc near

.text:00401023          xor  eax, eax

.text:00401025          retn

.text:00401025 sub_401023    endp

Debugging in IDA Pro
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Although debugging is not the primary function of IDA Pro, this function is quite usable and
deserves attention.

After loading an executable module into the IDA Pro disassembler, it is possible to start the
debugger. However, it is necessary to define the first breakpoint beforehand. The simplest way
of doing this is using the command that executes the program to the current cursor position by
using the Debugger | Run to cursor menu command or by pressing <F4>. The best approach

is setting the first breakpoint [1] at the first instruction of the main or WinMain functions, after
which you can use step-by-step tracing to step into procedures (<F7>) or over them (<F8>). It is
also possible to use the Debugger | Start process command (or press <F9>), having
previously set one or more breakpoints. You can set breakpoints directly in the disassembled
code using <F2>, in which case the line where the instruction is located will be highlighted (red
by default). Finally, it is possible to use the Debugger setup window by choosing the Debugger
| Debugger options... menu commands (Fig. 5.7). In the Events group of flags, you can define
events, to which the debugger should react; it is advisable to set the Stop on debugging start
checkbox (the debugger would stop at the instance of its start-up) or the Stop on process entry

points checkbox (the debugger would stop at the first executable instruction of the program [2]).

Figure 5.7: The Debugger setup window

Note The Stop on thread start/exit
checkbox seems somewhat
strange to me. When a process
is created, at least one thread
will be created, usually called
the main thread. However, the
developers have ignored this
issue meaning that this
checkbox refers only to threads
explicitly created in the
program.

Thus, it is clear where to set the first breakpoint. What possibilities are at your disposal when
using IDA Pro as a debugger? The key issues are listed here:
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§ After application start-up, the IDA Pro interface changes. Debug windows will appear that
make it possible to control the debugging process. The View EIP window contains the code
being debugged, the View ESP window contains the stack contents and the current ESP
value, the General registers window contains the current contents of the general-purpose
registers and the flags register, and the Threads window contains information about the
application threads. The debugger always displays in the list the thread where the debug
events take place. In addition, it is possible to open the FPU registers window containing
the contents of the coprocessor registers (this window will be opened automatically if
floating-point instructions are executed). The Modules window displays the list of loaded
modules.

§
You can run the debugged program step by step using the 
Debugger | Step over
 command (<
F8>
) and the 
Debugger | Step into
 command (<
F7>
), execute the program to the first 
return
 command encountered (<
Ctrl>
+<
F7>
), and suspend application execution (
Debugger | Pause process
).

§
You can watch the specified memory cells in the Watch list window (
Debugger | Watches | Watch list
). To specify memory cells for watching, use the 
Debugger | Watches | Add watch
 menu commands.

§
You can use tracing; in other words, you can log the state of the program being debugged
at each debugging step. To control tracing, use the 
Debugger | Tracing 
submenu. All tracing events are displayed in the 
Trace window
. It is possible to display the following tracing events: instruction execution, function
execution, and memory read or write operations.

[
1

]

Recall that earlier in this book, such breakpoints were called nonpermanent breakpoints (see 
Section 4.1.3
).

[
2

]
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I hope you understand that this instruction probably doesn't match the first instruction of the 
main
 or 
WinMain
 functions.

5.2. Built-In IDA Pro Programming Language

The IDA Pro disassembler has a built-in programming language, through which it is possible to
extend the disassembler's functionality by writing small programs for analyzing the disassembled
code.

5.2.1. About the IDA Pro Built-In Programming Language

The built-in IDA Pro programming language is a simplified variant of the classical C. The name
of this language is IDC (short for Interactive Disassembler C). The IDC subdirectory contains
several programs written in this language. IDA Pro uses these programs for analyzing
disassembled texts. All of these programs are easily analyzable, so you can use them for
studying the IDC language.

General Information

There are two methods of executing IDC commands.
§ The first method consists of using the command window. To call the command window, use

either the File | IDC command... menu items or the <Shift>+<F2> shortcut. The command
window is shown in Fig. 5.8. You can use the edit field in this window to enter the sequence
of IDC commands, separating commands with a semicolon. After you enter the commands
and click OK, IDA Pro will interpret the supplied commands and try to execute them. Thus,
using this window, it is possible to write simple programs in the IDC language.

§ A more fundamental approach is creating a file with the IDC file name extension, which
would contain the code written in IDC. To load a program, use the File | Idc file menu. In
this case, the program is compiled and then executed immediately. In addition, the new
window (Fig. 5.9) with buttons for editing and executing a program appears in the main IDA
Pro window.
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Figure 5.8: The command window that allows execution of the sequence of the IDC
language constructs

Figure 5.9: Toolbar for editing and executing an IDC program

Now, consider the program structure and the IDC language syntax.

Program Structure and IDC Language Syntax

Functions

Similar to the C programming language, programs written in IDC are made up of functions. As
usual, program execution starts from the main function. The function structure appears as in
Listing 5.11.

Listing 5.11: Structure of the IDC function
static func(argl, arg2, ...)
{
...
}

All functions must be declared as static. When specifying arguments, it is not necessary to
specify their types because there are only two variable types in IDC: string variables and
numeric variables. Thus, the variable type can be easily determined by the first assignment
operation. All types are converted automatically.

Variables
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All variables are local. They are declared using the auto keyword. Again, there are two types of
variables: numeric and string. The maximum length of a string variable is 255 characters.
Numeric variables are subdivided into two types: 32-bit signed integers and floating-point
numbers. The translator determines the variable type by the first assignment operator that
assigns some value to it.

Type conversion deserves special attention. Consider several typical situations:

First, there is conversion of a string variable to an integer type. If the left part of the string is a
decimal number, the conversion result is equal to that number; otherwise, the result will be zero,
as in Listing 5.12.

Listing 5.12: Fragment of an IDC program illustrating conversion of a string variable to an
integer type

auto a, b, c, d;
c = "w"; d = "q";
a = "451";

b = "123qwert234";
c = a; d = b;
Message("%d:%d\n", c, d);

The program will output the following: 451:123.

Note The Message function of the
IDC built-in language outputs
information into the message
window (or message console).
IDA Pro opens this window at
start-up. In particular, IDA Pro
outputs to this window all
messages about executable
code loading and analysis. The
IDC Message function is an
analogue of the standard 
printf function in C.

Another possibility is conversion of an integer to a string type. This conversion appears unusual
if you are accustomed to the conversion method that simply replaces the number with the string
without changing the value (2345 = "2345"). The idea of conversion is as follows: Each byte of
the number, counted from right to left, is converted to a character in appropriate encoding;
however, it is placed within the resulting string counted from left to right, like in Listing 5.13.

Listing 5.13: Fragment of an IDC program illustrating conversion of an integer to a string
type
auto i1;
auto a;
a = 0x4241;
i1 = "q";
i1 = a;
Message("%s\n", i1);

The AB string will be output as the result of executing this fragment.

You may also see conversion of a string type to a floating-point number. This type is converted
in the same way string data is converted to numeric type.

Finally, there is conversion of floating-point numbers to the string data type. In this case, the
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numbers are converted according to a simple method: Each digit of the number, including the
radix, is converted to the appropriate string character. A certain precision loss, however, is
admissible. For example, see Listing 5.14.

Listing 5.14: IDC program fragment converting floating-point numbers to the string data
type
auto i1;
auto a;
a = " "; i1 = 3.5;
a = char(il);
Message("%s\n", i1);

As a result of executing this fragment, the following string will be output:
   3.5000000000000018318681

Type conversion might occur outside the course of assignment, when the type in the right-hand
part of the assignment operator is converted to the type of the left-hand part of the assignment
operator. Type conversion also takes place in the following cases:
§ If the arithmetic expression contains at least one floating-point data item, then all variables

that participate in this expression will be converted to this type so that the expression will
operate over floating-point numbers.

§ If bitwise operations are executed over the variable, then this variable is considered a
numeric integer variable.

§ The following operations can be executed over numeric variables: assignment, comparison,
addition, subtraction, multiplication, and division. In addition, it is possible to carry out
bitwise operations over integer variables: cyclic shifts (>> and <<), bitwise AND (&), bitwise
OR (|), bitwise NOT (~), and bitwise exclusive OR (^). It is also possible to increment (++)
and decrement (--) integer numbers. String variables allow the following operations:
assignment (=), comparison (==), and concatenation (+).

Main Constructs

The IDC language supports the main C constructs that modify the execution order.
§ Conditional constructs, such as if/else

§ Loops, such as while, do, break, and continue

§ Loops with counters, such as for

§ Operators for returning from functions (return)

The IDC language lacks such C operators as goto and switch.

Directives

The IDC language supports the following preprocessor directives used in C:
§ #define

§ #undef

§ #include
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§ #error

§ #ifdef, #ifndef, #else, #endif

Controlling Strings

The IDC language supports the minimal set of operations for controlling string variables. In
contrast to the C language, in IDC strings are not sequences of characters. Rather, strings are
some closed elements (or objects) of an undefined structure, for which the concatenation
operation and some simple functions are defined.

For the concatenation operation, the + character is defined, for example, as in Listing 5.15.

Listing 5.15: IDC program fragment illustrating the concatenation operation
auto  s1, s2, s3;
s1 = "Hello";
s2 = "world!";
s3 = s1 + " " + s2;
Message("%s\n", s3);

As the result, the Hello world! string will be output to the console.

The main functions for working with strings are as follows:
§ strlen — Return the string length. The only parameter of this command is a string

variable or a constant.

§ strstr — Search the substring within a string. The first argument of this function is the
string to be searched, and the second argument is the substring for searching. The function
returns the number of the character, from which the found substring starts. Numbering of
characters within the string starts from zero. If the specified substring is not found, the
function returns -1.

§ substr — Select and return the specified substring within the string. The first parameter of
this function is the string to be searched. The second and the third parameters are the
starting and the ending characters of the selected fragment, respectively. Character
numbers are counted from zero. The function returns the selected fragment of the string.

§ ltoa — Convert the integer number to a string. The first argument is the numeric variable
or constant, and the second argument specifies the numeral system in which the number
will be represented. The function returns the string representing the supplied number in the
numeral system specified. In case of error, a blank string will be returned.

§ atoll — Convert the string to an integer number. The only argument of this function is the
string. In case of error, this function returns zero.

5.2.2. Built-In Functions and IDC Programming Examples

This section is not a reference on built-in IDC functions, because the IDA Pro online help system
contains a list of these functions. I'll provide a small overview of the functions most important for
analysis of program code. Also, I'll provide several examples of their use. Based on these
examples, you'll be able to write a small program for code analysis on your own.

In addition to the IDA Pro online help system, you can obtain reference information from the idc.
idc file stored in the IDC subdirectory. This file contains constant definitions and function
prototypes, along with brief comments. This file is a header file to include with programs written
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in the IDC language. This is done in a standard manner, using the #include directive. In
addition, the IDC subdirectory contains several simple but useful programs in the IDC language.

Virtual Memory Access

Recall that, before analyzing an executable module, IDA Pro creates virtual memory, to which it
then loads that module. By accessing individual cells of this virtual memory, you access the
program code loaded there. Note that the code loaded into virtual memory is previously
analyzed by IDA Pro.

Navigating the Memory

Consider the program in Listing 5.16, written in the IDC language.

Listing 5.16: Example IDC program illustrating memory access and navigation
#include <idc.idc>
static main()
{
       auto ad;
       ad = 0x401020;
       while(ad <= 0x401041)
       {
              Message("%x\n", ad);
              ad = NextAddr(ad);
       };
}

Everyone accustomed to writing C programs won't encounter any difficulties in understanding
this program. The Message function was covered earlier. It only remains to describe the
NextAddr function. This function has a speaking name: It returns the next linear address in
relation to the value of the function's argument. If such an address doesn't exist, the function
returns —1. For this value, there is the BADADDR constant in the idc.idc file.

The result of executing this function is the column of addresses from 0x401041 to 0x401041,
inclusively. Clearly, the same result will be obtained if you add one to the ad variable at each
loop iteration. Also, there is the PrevAddr function, which is similar to the NextAddr function but
returns the previous address.

Finally, there is another helpful function that can be used to search within the specified byte
sequence (or navigate) within the disassembled text. This is the FindBinary function. The first
argument of this function is the starting address of the search operation. The second argument
is the search-mode flag. The 0 bit of this flag defines the search order (the 0 value is for direct
search order, and the 1 value stands for searching in the inverse order). The first bit sets the
case-sensitive search mode (0 for a case-insensitive search and 1 for a case-sensitive search).
The third argument of the function is the sequence of codes of the searched bytes. When 
written, bytes must be separated by blank characters and must be enclosed in quotation marks.
The current numeral system is used in the course of searching. The function returns the starting
address of the searched substring. If the string hasn't been found, the function returns -1. The
function call appears as follows: ad = FindBinary(0x404020, 0, "34 AF 56 30").

Reading and Writing
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As already mentioned, the NextAddr or PrevAddr function can return -1 if the next or previous
address, respectively, does not exist. This means that the respective address either is not
available or has not been initialized. What should you do if the command simply tries to access
some address? How is it possible to know beforehand whether that address is available? For
this purpose, there is the GetFlags function, the only argument of which is a virtual address.
The function returns the flags of this address (the attribute). The required flags are checked
using the FF_IVL constant (Listing 5.17). The value of this constant is defined in the idc.idc file.

Listing 5.17: Simple IDC program that illustrating memory reading
#include <idc.idc>
static main()
{
auto ad, i;
       for(ad = 0x401020; ad <= 0x401041; ad++)
       {
              Message("%x........", ad);
              if(GetFlags(ad) & FF_IVL)
              {
// Output the value of the byte read from the memory.
                     i = Byte (ad);
                     if (i > 31)

                     Message("%x..,%c\n", i, i);
                     else
                     Message("%x...\n", i);
              } else
              {
// The byte value is undefined.
                     Message("Error!\n");
              }
       }
}

The IDC language provides three functions for reading from virtual memory: Byte, Word, and
Dword. The argument of all three functions is a virtual address. According to their names, these
functions return byte, word, and double word values. The program in Listing 5.17 reads the block
of virtual memory and outputs it into the message window.

The result of executing the program in Listing 5.17 is presented in Listing 5.18.

Listing 5.18: Output of the program presented in Listing 5.17
401020........8b...<
401021........44...D
401022........24...$
401023........4...
401024........6a...j
401025........0...
401026........68...h
401027........0...
401028........10...
401029........40...@
40102a........0...
40102b........6a...j
40102c........0...
40102d........68...h
40102e........ec...ì
40102f........50...P
401030........40...@
401031........0...
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401032........50...P
401033........ff...Ÿ

401034........15...
401035........c8...È
401036........50...P
401037........40...@
401038........0...
401039........6a...j
40103a........0...
40103b........ff...Ÿ
40103C........15...
40103d........0...
40103e........50...P
40103f........40...@
401040........0...
401041........cc...Ì

For writing into virtual memory, three functions are used: PatchByte, PatchWord, and
PatchDword. The first argument of these functions is the virtual memory address, and the
second argument is the value written into the memory. Listing 5.19 shows a simple program that
analyzes the specified memory block and changes the values of some bytes. This program is so
simple that it doesn't need any comments.

Listing 5.19: Simple IDC program that analyzes the specified memory block and patches
some bytes

#include <idc.idc>
static main()
{
auto ad, i, j;
j = 0x91;
       for(ad = 0x401020; ad <= 0x401041; ad++)
       {
              if(GetFlags(ad) & FF_IVL)
              {

              i = Byte(ad);
              if(i == 0x50)PatchByte(ad, j);
       }
    }
}

The Structure of the Listing Line

In a line of IDA Pro listings, you can find the following elements: processor instructions or data
items, comments, labels, or cross-references. These are not the impersonal data, with which
you were dealing in the previous section. On the other hand, specific virtual memory cells are
related to the listing line. These cells store instruction codes or data items.

Consider functions that can be used for analyzing lines of the disassembled listing. I intentionally
use the term "listing line" to join dissimilar elements. These elements are dissimilar, first, in the
locations where they are stored. In contrast to instructions and data, which are located in the
virtual memory (the file with the ID1 file name extension), the other elements listed previously
are stored in special virtual arrays, which are located in the file with the ID0 file name extension.
Nevertheless, they are all line elements, so I joined them within the same section.

Selecting Instructions
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The program presented in Listing 5.20 outputs to the console the Assembly code located in the
specified address range.

Listing 5.20: Simple IDC program that outputs the Assembly code in the specified
address range

#include <idc.idc>
static main()
{
       auto ad, i, j;
       ad = 0x401000;
       while(ad <= 0x401042)
       {

// Represent operands in hex mode.
              OpHex(ad,   -1);
// Output the instruction address.
              Message("%10x ", ad);
// Obtain the operand types.
              i = GetOpType(ad, 0);
              j = GetOpType(ad, 1);
// Output the instruction name.
              Message("%s ", GetMnem(ad));
              if (i > 0)
              {
// Output the  first operand (if present).
                      Message("%s", GetOpnd(ad, 0));
                      if (j > 0)
                      {
// Output the second operand (if present).
                            Message(",%s \n", GetOpnd(ad,1));
                      } else
                            Message("\n");
               } else
                      Message("\n");
// Go to the next instruction.
               ad = NextHead(ad, BADADDR);
       }
}

Consider some of the functions in the preceding listing:
§ The NextHead function is the main function in this program. The first argument of this

function is some virtual address. The second argument is the address that limits the range
of addresses to return. I have used the BADADDR constant, which in this case is interpreted
as a positive integer number — in other words, as FFFFFFFFH (not as -1). The function
returns the address of the first byte of the next instruction or data item. There is a similar
function that returns the address of the previous instruction or data item — PrevHead.

§ The GetMnem function returns the instruction name (a string) located at the specified
address. The argument of this function is the address of the first instruction byte.

§ The GetOpnd function returns the instruction operand in the form of a string value. This
function has two arguments: the instruction address and the number (minus 1) of the
operand in the instruction counted from left to right.

§ For formatting the output table, I had to use the GetOpType function. This function returns
the type of operand in the processor instruction. The first argument of this function is the
instruction address, and the second argument is the number (minus 1) of the operand in the
instruction counted from left to right. If the operand is present, then the value returned by
the function must be greater than zero.
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§ Finally, I used the OpHex function to specify the hex format for outputting numeric operands
(if the corresponding operand is a number). The second argument of the function specifies
the operand number. The -1 value in the function means that it must process all operands
of the instruction.

Listing 5.21 presents the result of executing the program shown in Listing 5.20.

Listing 5.21: Result of executing the program shown in Listing 5.20
401000 push ebp
401001 mov ebp, esp
401003 sub esp, 0Ch
401006 mov dword ptr [ebp - 4], 0Ah
40100d mov dword ptr [ebp - 8], 0Bh
401014 mov dword ptr [ebp - 0Ch], 0Ch
40101b mov eax, [ebp - 0Ch]
40101e push eax
40101f mov ecx, [ebp - 8]
401022 push ecx
401023 mov edx, [ebp - 4]
401026 push edx
401027 call sub_401050
40102c add esp, 0Ch

40102f push eax
401030 push 4060DOh
401035 call _printf
40103a add esp, 8
40103d xor eax, eax
40103f mov esp, ebp
401041 pop ebp
401042 retn

Parsing Data

Consider how to parse the data shown in the disassembled listing. Each data item takes at least
1 byte. The type of data item that starts from the specified address can be determined by the
bits of the attributes byte located at that address. Listing 5.22 provides the list of data types and
flags that correspond to them, as defined in the idc.idc file.

Listing 5.22: Data types and flags of the attributes byte as defined in the idc.idc file
#define FF_BYTE       0x00000000L   // Byte
#define FF_WORD       0xl0000000L   // Word
#define FF_DWRD       0x20000000L   // Dword
#define FF_QWRD       0x30000000L   // Qword
#define FF_TBYT       0x40000000L   // Tbyte
#define FF_ASCI       0x50000000L   // ASCII?
#define FF_STRU       0x60000000L   // Struct?
#define FF_OWRD       0x70000000L   // Octaword (16 bytes)
#define FF_FLOAT      0x80000000L   // Float
#define FF_DOUBLE     0x90000000L   // Double
#define FF_PACKREAL   0xA0000000L   // Packed decimal real
#define FF_ALIGN      0xB000000L    // Alignment directive

The program shown in Listing 5.23 outputs to the console the addresses of data items and their
lengths and types.

Listing 5.23: IDC program that outputs to the console addresses of data items and their
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lengths and types

#include <idc.idc>
static main()
{
       auto ad, i, j;
       ad = Ox4055d6;
       while(ad <= Ox405Aff)
       {
              ad = NextHead(ad, BADADDR);
// Output the instruction address.
              Message("%10x ", ad);
// Obtain the flag value.
              i = GetFlags(ad);
// Check whether this is a data item.
              if(((i & MS_CLS) == FF_DATA))
              {
                     Message("Data: size - %d, type - ", ItemSize(ad), i);
                     if((i & 0xF0000000) == FF_BYTE)
                     {
                            Message("byte\n");
                            continue;
                     }
                     if((i & 0xF0000000) == FF_WORD)
                     {
                            Message("word\n");
                            continue;
                     }
                     if((i & 0xF0000000) == FF_DWRD) {

                     {
                            Message("qword\n") ;
                            continue;
                     }
                     if((i & 0xF0000000) == FF_TBYT)
                     {
                            Message("tbyte\n");
                            continue;
                     }
                     if((i & 0xF0000000) == FF_ASCI)
                     {
                            Message("string ASCII\n");
                            continue;
                     }
                     if((i & 0xF0000000) == FF_STRU)
                     {
                            Message("structure\n");
                            continue;
                     }
                     if((i & 0xF0000000) == FF_OWRD)
                     {
                            Message("octaword\n");
                            continue;
                     }
                     if((i & 0xF0000000) == FF_FLOAT)
                     {
                            Message("float\n");
                            continue;
                     }
                     if((i & 0xF0000000) == FF_DOUBLE)
                     {
                            Message("double\n");
                            continue;
                     }
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                     if((i & 0xF0000000) ==  FF_PACKREAL)
                     {

                            Message("packed decimal real\n");
                            continue;
                     }
                     if((i & 0xF0000000) == FF_ALIGN)
                     {
                            Message("align\n");
                            continue;
                     };
                     Message("??\n");
              }
              else
                     Message("?\n");
       }
}

As you can see, this program uses the previously-mentioned NextHead function, which is the
most convenient one for navigating the disassembled text.

To determine the data type, the flags of the first byte of the data attribute are used. For this
purpose, the table in Listing 5.22 is used. The required bits are selected using the i & 
F0000000h command.

Finally, the length of the data is determined using the ItemSize function. The only argument of
this function is the address of the first byte of the data item.

Listing 5.24 presents the results of executing the program shown in Listing 5.23.

Listing 5.24: Results of executing the program in Listing 5.23
4055d8 Data: size - 160, type - string ASCII
405678 Data: size - 25, type - string ASCII
405698 Data: size - 177, type - string ASCII
405749 Data: size - 3, type - align
40574c Data: size - 35, type - string ASCII
40576f Data: size - 1, type - align
405770 Data: size - 12, type - structure
405a82 Data: size - 66, type - string ASCII
405c84 Data: size - 2, type - word

Other Elements of the Code Line

Other elements of the code line are comments (automatically created or entered by the user),
labels (software labels and variables), and cross-references. You not only can obtain these
elements programmatically but also can add such elements into the line of code.

Listing 5.25 provides a fragment of the idc.idc file, containing the list of all possible elements and
values of the flags of the first byte of an instruction or data item, supplied with my comments.

Listing 5.25: All possible flag elements and values for byte 1 of a data item or instruction
(idc.idc file)

#define FF_COMM 0x00000800L // Has a comment?
                            // Comment
#define FF_REF  0x0000l000L // Has references?
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                            // Cross-reference
#define FF_LINE 0x00002000L // Has the next or previous comment lines?
                            // Line of a multiline comment
#define FF_NAME 0x00004000L // Has a user-defined name?
                            // User-defined label or name
#define FF_LABL 0x00008000L // Has a dummy name?
                            // Label (name)
#define FF_FLOW 0x000l0000L // Execute flow from the previous instruction?
                            // Cross-reference to the previous instruction
#define FF_VAR  0x00080000L // Is a byte variable?
                            // Variable (label for a data item)

The program in Listing 5.26 views the listing generated by IDA Pro and finds programmatic
labels that are later output to the message console. The code lines that contain labels are
supplied with comments (the Label sting).

Listing 5.26: Program that views the IDA Pro listing and finds software labels for console
output

#include <idc.idc>
static main()
{

       auto ad, i, j;
       ad = Ox401cfe;
       while(ad <= 0x401d41)
       {
                ad = NextHead(ad, BADADDR);
// Output the  instruction address.
                Message("%10x ", ad);
                i = GetFlags(ad);
                if(i & FF_LABL)
                {
                       Message("%s  \n", GetTrueName(ad));
                       MakeComm(ad,   "Label!");
                } else Message("\n");
       }
}

The code lines with labels are sought by going from line to line and checking the appropriate bit
of the first byte of the element (an instruction or a data item) using the FF_LABL constant. To
create a comment, the MakeComm function is used. The first argument of this function is the
address of the line, and the second argument is the comment string.

Working with Functions

A function is a listing object that can be made up of several code lines containing instructions.
The function has its starting and ending addresses, as well as other properties (Listing 5.27).
Dividing the disassembled code into functions allows considerable improvement of the listing's
readability and simplifies understanding of the program's operating logic.

Listing 5.27: Fragment of the idc.idc file containing the list of flags defining the function
properties

#define FUNC_NORET    0x0000000lL    // Function doesn't return.
               // The function doesn't return control to the ret command.
#define FUNC_FAR      Ox00000002L    // Far function

                 // The function returns control to the retf instruction.
#define FUNC_LIB      0x00000004L    // Library function
                      // The library function
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#define FUNC_STATIC   0x00000008L    // Static function
                      //A static function
#define FUNC_FRAME    0x000000lOL // Function uses a frame pointer (BP).
                      // The function uses the EBP register as a pointer
                      // to local variables and parameters.
#define FUNC_USERFAR  0x00000020L    // User has specified farness.
                      // The function is defined as far by the user.
#define FUNC_HIDDEN   0x0000004OL    // Hidden function
                      // A hidden (collapsed) function
#define FUNC_THUNK    0x00000080L    // Thunk (jump) function
                      //A stub function containing only
                      // the jump instruction
#define FUNC_BOTTOMBP 0x00000l00L  // BP points to the bottom
                                   // of the stack frame;
                              // the EBP register points to the "bottom"
                                   // of the stack frame.

Listing 5.27 presents the list of flags that define the function properties. This list is a fragment of
the idc.idc file supplied with my comments.

The program in Listing 5.28 outputs to the console names of the functions within the specified
interval of addresses, and it sets comments for library functions.

Listing 5.28: Outputting function names within the address interval; setting library
function comments

#include <idc.idc>
static main()
{
       auto ad, s, i;
       ad = 0x401000;
       while(ad <= Ox4030bc)
       {

                s — GetFunctionName(ad);
                Message("%s\n", s) ;
                i = GetFXmctionFlags(ad);
                if(i & FUNC_LIB)
                {
                       SetFunctionCmt(ad, " This is s library function",
1);
                }
                ad — NextFunction(ad) ;
       }
}

To navigate the functions of the listing generated by IDA Pro, the NextFunction and
PrevFunction functions are used. The only parameter of these functions is an address. Both
functions return an address: The NextFunction function returns the address of the next
function (the one used in the program), and PrevFunction returns the address of the previous
function.

The program outputs to the console all names of all functions it has encountered. They are
returned by the GetFunctionName IDC function. Any address belonging to a function can
serve as a function argument.

For obtaining the function flags, the GetFunctionFlags function is used. The flags were listed
in Listing 5.27.

The program sets comments for all library functions that it has encountered (and which are
considered library functions by IDA Pro). For this purpose, the SetFunctionCmt function is
used. This function has three arguments: function address, string comment, and type comment.
Two types of comments can be set for functions: constant (parameter 0) and repeatable
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(parameter 1). The first comment is present only before the function definition, while the second
type is duplicated in all calls to this function.

User Interface Elements

The IDA Pro disassembler provides the minimum set of functions for automating the input and
output procedures. These are output to the message console (the Message function), which has
been mentioned and used several times, controlling the cursor in the disassembled listing,
several types of dialogs, and several other functions.

The program in Listing 5.29 searches three sequential PUSH instructions within the specified
address range, and moves the cursor to that group of commands. For moving the cursor, the 
Jump command is used, the argument of which is the virtual address.

Listing 5.29: Locating three sequential PUSH commands and moving the cursor to that
group
#include <idc.idc>
static main()
{
       auto ad, s;
       ad = 0x401000;
       while(ad <= 0x4030bc)
       {
             if(GetMnem(ad) == "push" &&
             GetMnem(NextHead(ad, BADADDR)) == "push" &&
             GetMnem(NextHead(NextHead(ad, BADADDR), BADADDR)) == "push")
             {
// Move the cursor to the located address.
                     Jump (ad);
// Exit the loop.
                     break;
              }
              ad = NextHead(ad, BADADDR);
       }
}

Other Possibilities of Code Analysis in IDA Pro

Although I have no room to consider the entire range of the IDC functional capabilities or, to be
more precise, the library of functions provided by IDA Pro, I'd like to cover several interesting
and important issues.

Structures and Enumerations

In the IDA Pro disassembler, there are built-in capabilities that allow you to automatically
recognize and determine such important high-level language constructs as structures and
enumerations. In IDA Pro, both structures and enumerations are characterized by three specific
features that allow you to identify them:
§ Identifier of a structure or enumeration

§ Name of the structure or enumeration
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§ Index of a structure or enumeration

The program presented in Listing 5.30 outputs to the message console the list of identifiers and
names of all structures that IDA Pro has recognized when analyzing the executable code.

Listing 5.30: Outputting names and identifiers of all structures and enumerations
detected by IDA Pro

#include <idc.idc>
static main()
{
       auto n, i, s;
       n = 0;
       while(n != -1)
       {
              i = GetStrucId(n);
              s = GetStrucName(i);
              n = GetNextStruddx (n) ;
              Message("%x %s\n", i, s);
       }
}

The GetNextStrucIdx function returns the next index of the structure in relation to the
specified index. The GetStrucId function returns the structure identifier by its index, and the
GetStrucName function returns the structure name by to its index. It is necessary to bear in
mind that the values of structure or enumeration indexes can change in the course of analysis
because new structures can be added and existing ones can be deleted; identifiers, however,
remain unchanged.

Working with Files

Built-in files allow you to work with structures. Using the GenerateFile function, it is possible
to generate a report file. This function is equivalent to the File | Produce File menu commands.

The IDA Pro disassembler supports a set of functions for controlling files of an arbitrary
structure. This set of functions in general corresponds to the set of standard library functions for
working with files, which are defined in the stdio.h and io.h header files. These functions are as
follows:
§ fopen — Open a file. This function returns the descriptor, which is then used in other

functions.

§ flose — Close the file descriptor.

§ filelength — Return the length of the file previously opened by the fopen file.

§ fgetc — Read one character from the file.

§ fputc — Write one character into the file.

§ f tell — Obtain the current position of the pointer.

§ fseek — Move the pointer to the specified position within a file.
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Appendix List

Appendix 1:

 A Program for Investigating the PE Header

Appendix 2:

 Resources

Appendix 3: CD Contents

The program provided in Listing A1 carries out a simple investigation of the PE header. It
doesn't pretend to be an example of good programming style. My only goal when writing it was
to demonstrate how to work with the structures of PE modules.

Listing A1: Sample program demonstrating methods of working with PE module
structures
#include <windows.h>
include <stdio.h>
HANDLE openf(char * );
DWORD getoffs(DWORD );
HANDLE hf;
DWORD n;
WORD m;
IMAGE_DOS_HEADER id;
IMAGE_NT_HEADERS iw;
IMAGE_SECTION_HEADER is;
IMAGE_SECTION_HEADER ais[100];
IMAGE_IMPORT_DESCRIPTOR im[1000];
IMAGE_THUNK_DATA it[1000];
IMAGE_IMPORT_BY_NAME in;
IMAGE_EXPORT_DIRECTORY ex;
IMAGE_RESOURCE_DIRECTORY rdl;
IMAGE_RESOURCE_DIRECTORY_ENTRY rdel[30];

IMAGE_RESOURCE_DIRECTORY rd2;
IMAGE_RESOURCE_DIRECTORY_ENTRY rde2[500];
IMAGE_COFF_SYMBOLS_HEADER ih;
IMAGE_DEBUG_DIRECTORY idd;
char *subs[] = {"Unknown subsystem\n", "Subsystem driver\n",
"Subsystem GUI\n", "Subsystem console\n", "Subsystem ?\n",
"Subsystem ?\n", "Subsystem OS/2\n", "Subsystem Posix\n"};
char   buf[300], bufl[300];
DWORD im_n = 0, it_n = 0;
DWORD exn[5000];
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WORD exo[5000];
DWORD exa[5000];
// The main function
int main(int argc, char* argv[])
{
 int er = 0, i;
 LARGE_INTEGER 1;
// Check for the presence of parameters.
 if(argc < 2){printf("No parameters!\n"); er = 1; goto _exit};
// The first parameter in the list is the file name.
 printf("File: %s\n", argv[l]);
 if((hf = openf(argv[1])) == INVALID_HANDLE_VALUE)
 {
       printf("No file!\n");
       er = 2;
       goto _exit};
// Determine the file length.
 GetFileSizeEx(hf, &1);
// Read the MS-DOS header.
 if(!ReadFile(hf, &id, sizeof(id), &n, NULL))
 {
       printf("Read DOS_HEADER error 1!\n");
       er = 3;
       goto _exit;};
 if(n < sizeof(id))

 {
       printf("Read DOS_HEADER error 2!\n");
       er = 4;
       goto _exit};
// Check the MS-DOS signature ('MZ')
 if(id.e_magic ! = IMAGE_DOS_SIGNATURE)
 {
       printf("No DOS signature!\n");
       er = 5;
       goto _exit;}
 printf("DOS signature is OK!\n");
 if(id.e_lfanew > l.QuadPart)
 {
       printf("No NT signature!\n");
       er = 6;
       goto _exit;};
// Move the pointer.
 SetFilePointer(hf, id.e_lfanew, NULL, FILE_BEGIN);
// Read the NT header.
 if(!ReadFile(hf, &iw, sizeof(iw), &n, NULL))
 {
       printf("Read NT_HEADER error 1!\n");
       er = 7;
       goto _exit;};
 if(n < sizeof(iw))
 {
       printf("Read NT_HEADER error 2!\n");
       er = 8;
       goto _exit;};
// Check the NT signature ('PE').
 if(iw.Signature != IMAGE_NT_SIGNATURE)
 {
       printf("No NT signature!\n");
       er = 9;
       goto _exit;}

 printf("NT signature is OK!\n");
// Work with the structure.
 printf("Number of sections %d\n", iw.FileHeader.NumberOfSections);
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 printf("Size of optional header %d\n",
       iw.FileHeader.SizeOfOptionalHeader);
 if((iw.FileHeader.Characteristics&0x2000) != 0)
       printf("DLL-modul\n");
 else
 {
 if(((iw.FileHeader.Characteristics&0x1000) != 0))
 printf("System module\n");
       printf("EXE-modul\n");
 };
 if(iw.FileHeader.Machine == 0x014c)printf("Processor Intel\n");
 else printf("Unknown processor\n");
// Read the optional header.
 printf("Linker version %d.%d\n",
   iw.OptionalHeader.MajorLinkerVersion,
   iw.OptionalHeader.MinorLinkerVersion);
 printf("Size of code %d\n", iw.OptionalHeader.SizeOfCode);
 printf("Size of initialized data %d\n",
   iw.OptionalHeader.SizeOfInitializedData);
 printf("Size of uninitialized data %d\n",
   iw.OptionalHeader.SizeOfUninitializedData);
 printf("Address Of Entry Point (RVA) %xh\n",
   iw.OptionalHeader.AddressOfEntryPoint);
 printf("Address of code (RVA) %xh\n", iw.OptionalHeader.BaseOfCode);
 printf("Address of data (RVA) %xh\n", iw.OptionalHeader.BaseOfData);
 printf("Image Base %xh\n", iw.OptionalHeader.ImageBase);
 printf("Size Of Image %xh\n", iw.OptionalHeader.SizeOfImage);
 printf("Size of Headers %xh\n", iw.OptionalHeader.SizeOfHeaders);
 printf("Section Alignment %xh\n", iw.OptionalHeader.SectionAlignment);
 printf("File Alignment %xh\n", iw.OptionalHeader.FileAlignment);
 printf("Size Of Stack Reserve %d\n",
   iw.OptionalHeader.SizeOfStackReserve);

 printf("Size Of Stack Commit %d\n", iw.OptionalHeader.SizeOfStackCommit);
 printf("Size Of Heap Reserve %d\n", iw.OptionalHeader.SizeOfHeapReserve);
 printf("Size Of Heap Commit %d\n", iw.OptionalHeader.SizeOfHeapCommit);
 printf("%s", subs[iw.OptionalHeader.Subsystem]);
// List of sections
// Virtual addresses of some PE tables
 DWORD vi = iw.OptionalHeader.DataDirectory[1].VirtualAddress;
 DWORD ve = iw.OptionalHeader.DataDirectory[0].VirtualAddress;
 DWORD vr = iw.OptionalHeader.DataDirectory[2].VirtualAddress;
 DWORD vg = iw.OptionalHeader.DataDirectory[6].VirtualAddress;
//
printf("Sections:\n");
 printf("    Name   sizev    sizef     adrf     adrv\n");
 printf( ------------------------------------------ \n");
 int j = 0;
 for(i =0; i < iw.FileHeader.NumberOfSections; i++)
 {
       if(!ReadFile(hf, &is, sizeof(is), &n, NULL))
       {
              printf("IMAGE_SECTION_HEADER error!\n");
              er = 10;
              goto _exit;
       };
       printf("%8s %6xh  %6xh  %6xh  %6xh\n",
              is.Name, is.Misc.VirtualSize, is.SizeOfRawData,
              is.PointerToRawData, is.VirtualAddress);
       ais[i].VirtualAddress = is.VirtualAddress;
       ais[i].PointerToRawData = is.PointerToRawData;
 };
 printf("-------------------------------------------\n");
 printf("\n");
// Import table
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 if(!vi)
 {
       printf("No import!\n");

 } else
 {
      printf("Import section offset %xh virtual %xh\n", getoffs(vi), vi);
// Move the pointer.
       SetFilePointer(hf, getoffs(vi), NULL, FILE_BEGIN);
       while(TRUE)
       {
              if(!ReadFile(hf, &im[im_n], sizeof(im[im_n]), &n, NULL))
       {
              printf("IMAGE_IMPORT_DESCRIPTOR error!\n");
              er = 11;
              goto _exit;
       };
              if(im[im_n].Characteristics == 0 && im[im_n].Name == 0)break;
              im_n++;
       };
// Libraries
       printf("Import objects: \n");
       for(i = 0; i < (int)im_n; i++)
       {
       // DLLs go first.
       SetFilePointer(hf, getoffs(im[i].Name), NULL, FILE_BEGIN);
              ReadFile(hf, buf, 100, &n, NULL);
              printf("%s\n", buf);
       // Next are function names.
              if(im[i].OriginalFirstThunk != 0)
              SetFilePointer(hf,
              getoffs(im[i].OriginalFirstThunk), NULL, FILE_BEGIN);
              else
       SetFilePointer(hf, getoffs(im[i].FirstThunk), NULL, FILE_BEGIN);
              it_n = 0;
                printf("Offset of AdresImpArray %xh RVA of AdresImpArray %xh\n",
              getoffs(im[i].FirstThunk), im[i].FirstThunk);
              while(TRUE)
                    {

                      ReadFile(hf, &it[it_n], sizeof(it[it_n]), &n, NULL);
                             if(it[it_n].ul.AddressOfData == 0) break;
                             it_n++;
       };
       for(j =  0; j < (int)it_n; j++)
       {
               if((it[j].ul.AddressOfData&IMAGE_ORDINAL_FLAG32) == 0)
               {
               SetFilePointer(hf,
               getoffs(it[j].ul.ForwarderString + 2),
                      NULL, FILE_BEGIN);
                      ReadFile(hf, buf, 100, &n, NULL);
               printf("     %s %xh %xh\n",
                      buf, getoffs(it[j].ul.ForwarderString + 2),
                      it[j].ul.ForwarderString + 2);
                      } else printf("   Ordinal %d\n",
                      it[j].ul.AddressOfData&0x0000ffff);
               };
       };
        };
// Export table
 printf("\n");
 if(!ve)
 {
        printf("No export!\n");
 } else
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 {
       printf("Export section offset %xh virtual %xh\n", getoffs(ve), ve);
       SetFilePointer(hf, getoffs(ve), NULL, FILE_BEGIN);
       if(!ReadFile(hf, &ex, sizeof(ex), &n, NULL))
       {
              printf("IMAGE_EXPORT_DIRECTORY error!\n");
              er = 12;
              goto _exit;
       };

       SetFilePointer(hf,getoffs(ex.Name), NULL, FILE_BEGIN);
       ReadFile(hf, buf, 100, &n, NULL);
       printf("Export modul: %s\n", buf);
       printf("Number of functions: %d\n", ex.NumberOfFunctions);
       printf("Number of names: %d\n", ex.NumberOfNames);
       printf("Ordinal base %d\n", ex.Base);
// Array of pointers to the names of exported functions
 SetFilePointer(hf, getoffs(ex.AddressOfNames), NULL, FILE_BEGIN);
       for(i =0; i < ex.NumberOfNames; i++)
             ReadFile(hf, &exn[i], 4, &n, NULL);
// Array of pointers to the ordinals of exported functions
 SetFilePointer(hf, getoffs(ex.AddressOfNameOrdinals), NULL, FILE_BEGIN);
       for(i = 0; i < ex.NumberOfNames; i++)
              ReadFile(hf, &exo[i], 2, &n, NULL);
// Array of pointers to the addresses of exported functions
 SetFilePointer(hf, getoffs(ex.AddressOfFunctions), NULL, FILE_BEGIN);
       for(i = 0; i < ex.NumberOfFunctions; i++)
              ReadFile(hf, &exa[i], 4, &n, NULL);
       printf("\n");
       printf("Name of function                Ord     VAdr\n");
       printf("---------------------------------------------\n");
// Input exported function names.
       for(i = 0; i < ex.NumberOfNames; i++)
       {
              SetFilePointer(hf, getoffs(exn[i]), NULL, FILE_BEGIN);
              ReadFile(hf, buf, 300, &n, NULL);
              printf("%30s %4d %8xh\n", buf, exo[i] + ex.Base, exa[exo[i]]);
       };
       printf("------------------------------------------------\n");
 };
// Work with resources.
 printf("\n");
 if(!vr)
 {
       printf("No resource!\n");

} else
{
      DWORD offres = getoffs(vr);
      printf("Resource: offset %xh virtual %xh \n", offres, vr);
      SetFilePointer(hf, offres, NULL, FILE_BEGIN);
             ReadFile(hf, &rdl, sizeof(rdl), &n, NULL);
      // Level 1
      printf("Number of type %d \n", rd1.NumberOfIdEntries);
      // Skip rd.NumberOfNamedEntries records.
      for(i = 0; i < rdl.NumberOfNamedEntries; i++)
             ReadFile(hf, &rdel[i], sizeof(rdel[i]), &n, NULL);
      // Store the list of resource types in an array.
      for(i = 0; i < rd1.NumberOfIdEntries; i++)
             ReadFile(hf, &rdel[i], sizeof(rdel[i]), &n, NULL);
      // Output resource types.
      for(i = 0; i < rd1.NumberOfIdEntries; i++)
             printf("Type identify: %d\n", rdel[i].Name);
      // Level 2
      printf("List of resource:\n")
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      for(i = 0; i < rd1.NumberOfIdEntries; i++)
      {
             SetFilePointer(hf, (rdel[i].OffsetToData &
                    0x7fffffff) + offres, NULL, FILE_BEGIN);
             ReadFile(hf, &rd2, sizeof(rd2), &n, NULL);
             printf("*Type of resource: %d\n", rdel[i].Id);
      for(j = 0; j < rd2.NumberOfNameEntries+rd2.NunberOfIdEntries; j++)
             ReadFile(hf, &rde2[j], sizeof(rde2[j]), &n, NULL);
      for(j = 0; j < rd2.NumberOfNamedEntries + rd2.NumberOfIdEntries; j++)
             {
             if(!(rde2[j].Name & 0x80000000))
               {
               printf(" -Resource identify %d\n", rde2[j].Name);
               }
             else
               {

                SetFilePointer(
                     hf, (rde2[j].Name & 0x7fffffff) + offres,
                     NULL, FILE_BEGIN);
                ReadFile(hf, &m, 2, &n, NULL);
                ReadFile(hf, buf, 2*m, &n, NULL);
                // Conversion from Unicode
                WideCharToMultiByte(
                     CP_UTF7, 0, (LPCWSTR)(buf),
                     m, buf1, 300, NULL, NULL);
                     printf(" -Name of resource: %s\n", buf1);
                }
                };
        };
 };
// Check the debug information.
 printf("\n");
 if (!vg)
 {
       printf("No debug table!\n");
 } else
       {
       DWORD offdbg = getoffs(vg);
       printf("Debug table: offset %xh virtual %xh \n", offdbg, vg);
       SetFilePointer(hf, offdbg, NULL, FILE_BEGIN);
       ReadFile(hf, &idd, sizeof(idd), &n, NULL);
       printf("Type of debug information: %d\n", idd.Type);
       // For COFF information
       if(idd.Type = 1)
       {
       SetFilePointer(hf, idd.PointerToRawData, NULL, FILE_BEGIN);
       ReadFile(hf, &ih, sizeof(ih), &n, NULL);
       printf("RVA of first line number: %xh\n",
              idd.PointerToRawData + ih.LvaToFirstLinenumber);
       }

 }
 if(!iw.FileHeader.PointerToSymbolTable )
 {
       printf("No symbol table!\n");
 } else
       {
       DWORD offsym = getoffs(iw.FileHeader.PointerToSymbolTable);
       printf("Symbol table: offset %xh virtual %xh\n",
              offsym, iw.FileHeader.PointerToSymbolTable);
       };
// Close the file descriptor.
_exit:
 CloseHandle(hf);
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 return er;
};
// The function opens the file for reading.
HANDLE openf(char *nf)
{
 return CreateFile(nf,
 GENERIC_READ,
 FILE_SHARE_WRITE | FILE_SHARE_READ,
 NULL,
 OPEN_EXISTING,
 NULL,
 NULL);
};
// Determine the offset within the PE file at the relative
// virtual address.
DWORD getoffs(DWORD vsm)
{
 DWORD fi = 0;
 if(vsm < ais[0].VirtualAddress) return fi;
 for(int i = 0; i < iw.FileHeader.NumberOfSections; i++)
       {

       if(vsm < ais[i].VirtualAddress && i > 0) {
       fi = ais[i - 1].PointerToRawData + (vsm - ais[i - 1].VirtualAddress);
            break;};
       };
 if(i == iw.FileHeader.NumberOfSections)
       fi = ais[i - 1].PointerToRawData + (vsm - ais[i - 1].VirtualAddress);
 return fi;
 };

Listing A2 presents an example of program output when working with one of the loadable
modules.

Listing A2: Example of output of the program in Listing A1
File: primer42.exe
DOS signature is OK!
NT signature is OK!
Number of sections 4
Size of optional header 224
EXE-modul
Processor Intel
Linker version 5.12
Size of code 1024
Size of initialized data 2048
Size of uninitialized data 0
Address Of Entry Point (RVA) 1000h
Address of code (RVA) 1000h
Address of data (RVA) 2000h
Image Base 400000h
Size of Image 5000h
Size of Headers 400h
Section Alignment 1000h
File Alignment 200h
Size of Stack Reserve 1048576

Size of Stack Commit 4096
Size of Heap Reserve 1048576
Size of Heap Commit 4096
Subsystem GUI
Sections:
    Name      sizev    sizef    adrf    adrv
--------------------------------------------
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   .text       214h     400h    400h   1000h
  .rdata       23eh     400h    800h   2000h
   .data        91h     200h    c00h   3000h
   .rsrc       150h     200h    e00h   4000h
--------------------------------------------
Import section offset 8a4h virtual 20a4h
Import objects:
user32.dll
Offset of AdresImpArray 80ch RVA of AdresImpArray 200ch
     CreateWindowExA 94eh 214eh
     DefWindowProcA 960h 2160h
     DispatchMessageA 972h 2172h
     GetMessageA 986h 2186h
     LoadCursorA 994h 2194h
     MessageBoxA 940h 2140h
     PostQuitMessage 9aeh 21aeh
     RegisterClassA 9cOh 21c0h
     ShowWindow 9d2h 21d2h
     TranslateMessage 9eOh 21e0h
     UpdateWindow 9f4h 21f4h
     LoadMenuA 934h 2134h
     LoadIconA 9a2h 21a2h
     SetMenu 92ah 212ah
kernel32.dll
Offset of AdresImpArray 800h RVA of AdresImpArray 2000h
     ExitProcess al0h 2210h

      GetModuleHandleA aleh 221eh

No export!

Resource: offset e00h virtual 4000h

Number of type 1

Type identify: 4

List of resource:

*Type of resource: 4

 -Name of resource: MENUP

Debug table: offset 850h virtual 2050h

Type of debug information: 1

RVA of first line number: 1000h

Symbol table: offset 420h virtual 1020h

Documents
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http://www.acm.uiuc.edu/sigmil/RevEng/
)

4. Reverse Engineering Team Web site (http://www.reteam.org/)
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berlios.de/)

7. Journal for Software Engineering, Virus-Research, Software-Protection, and Reverse



325Part I: Appendixes

 

Code Engineering (http://www.codebreakers-journal.com/)

The CD contents are divided into directories, with each directory corresponding to the
appropriate chapter or application. Each directory, in turn, is divided into subdirectories that store
the source code of all practical examplex provided in this book.

Listings providing the source code of programs are stored as full projects so that they can be
immediately loaded and compiled in an appropriate programming environment (for example,
Visual C++ or Borland C++). For each program, there also is a ready-to-use executable module.
This relates to the Assembly programs, for which the MASM32 translator is used. Other listings
are ASCII files.

Each subdirectory also contains a read.me file in the ASCII format that provides a brief
description of the listing included and a reference to the corresponding listing inside the book.

.

.alf, 
184

.bss, 
124
, 
238

.crt, 124

.data, 123, 138, 238

.debug, 124

.edata, 124

.icode, 124

.idata, 124, 126

.pdb, 390

.rdata, 124

.reloc, 124

.rsrc, 124

.text, 123

.wpj, 184



326 Disassembling Code IDA Pro and SoftICE

 

_

__cdecl, 
277
__fastcall, 278
__stdcall, 277
__try/__except, 289, 365
_alldiv, 267

1, 3, 6

10-byte number, 
109
16-bit registers, 23
32-bit registers, 25, 92
3DNow registers, 194
64-bit processors, 427

A

AAA, 
32
AAD, 33
AAM, 33
AAS, 33
AC, 23
ADC, 32
ADD, 31
ADDR, 385
Address size prefix, 91
AF, 22
Alignment control flag, 23
Alignment mask, 24
AllocConsole, 64, 65
AM, 24
AMD processors, 43
American Standard Code for Information Interchange, 32
AND, 35
API, 61

functions, 61, 144, 172, 189,231
searching, 388

Arithmetic coprocessor, 18, 44
control word, 47

ARPL, 42
Array size detemining, 252
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ASCII, 32, 33, 243, 429, 491
string, 127, 245

Assembly, 7, 14, 136, 236
programs debugging and disassembling, 136

Auxiliary carry flag, 22
Auxiliary registers, 23

ES, 23
FS, 23
GS, 23

B

Base of the numeral system, 
18
Basic, 278, 306
BCD, 20

packed, 20
unpacked, 20

BD, 26
Biew.exe, 179
Binary digits, 9
Binary notation, 9, 10
Binary numbers:

converting to decimal, 10
Binary-coded decimal, 20
Bit, 9
Blue Screen of Death, 378
Borland C++, 2, 123, 172, 238, 242, 491
BOUND, 39
Breakpoints, 25, 189, 196, 381, 385, 401

sticky, 386
conditional, 386
one-shot, 385
types, 402

BS, 26
BSF, 41
BSOD, 378
BSR, 41
BSWAP, 27
BT, 26, 41
BTC, 41
BTR, 41
BTS, 41
Buffer overflow, 296
Bytes, 9

C
C Builder, 172
C programming language, 7
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C++, 2, 7, 67, 225, 276
CO, 47
C1, 47
C2, 47
C3, 47
Cache disable, 24
CALL, 22, 39
Carry flag, 22
CBW, 34
CD, 24
CDQ, 35
Central processing unit, 187
CF, 22
Choice operator, 320
CLC, 37
CLD, 37

CLI, 
37

CloseHandle, 
160

CMC, 
37

CMOV, 
30
CMOVA/CMOVNBE, 30
CMOVAE/CMOVNB, 30
CMOVB/CMOVNAE, 30
CMOVBE/CMOVNA, 30
CMOVE/CMOVZ, 30
CMOVG/CMOVNLE, 30
CMOVGE/CMOVNL, 30
CMOVL/CMOVNGE, 30
CMOVLE/CMOVNG, 30
CMOVNC, 30
CMOVNE/CMOVNZ, 30
CMOVNO, 30
CMOVNP/CMOVPO, 30
CMOVNS, 30
CMOVO, 30
CMOVP/CMOVPE, 30
CMOVS, 30
CMOVX, 30
CMP, 32, 206
CMPS, 37
CMPXCHG, 32
CMPXCHG8B, 32
CODE, 123
Code execution

in the stack, 151
Code overlapping, 149
Code segment, 23
COFF, 110, 135, 150, 167
COM programs, 424
Comctl32.dll, 62
Command prefix, 91
Command window protocol buffer, 393
Commands for operations over flags, 37
Commands for supporting high-level programming languages, 39
Common object file format, 110
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Compuware, 175
Condition flags, 47
Conditional breakpoints, 386
Conditional constructs:

nested, 314
Conditional jumps, 38, 146

codes, 95
Conditional logging

breakpoints, 197
Configuration table area, 121
Console applications, 63
ConsoleCtrlHandler, 74
Control flow commands, 37
Control registers, 21, 23
Control word, 47
Coprocessor:

emulation flag, 24
instructions, 26
stack, 242
status word, 46

CPU, 187
CPUID, 43
CRO, 23
CR1, 24
CR2, 24
CR3, 24
CR4, 24
CreateDialoglndirect, 388
CreateDialogIndirectParam, 388
CreateDialogParam, 388
CreateWindow, 388
CreateWindowEx, 385, 388
Cross-references, 107
CRT, 124
CS, 23
CTS, 37
CV, 150
CWD, 34
CWDE, 35

D
DAA, 34
DAS, 34
DATA, 123
Data exchange commands, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 49, 50, 52, 53,
54, 56, 57, 58, 59, 60, 61, 100, 103
Data registers, 46
Data types alignment, 236
DataDirectory, 126
DDK, 173
DE, 25
DE flag, 46
Debug:

exception, 26
information, 134
register access detected, 26
registers, 21
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table, 121
Debuggers, 150

kernel-mode, 377
Debugging extensions, 25
Debugging Tools

for Windows, 173
DEC, 32
Decimal fractions, 11
Decimal notation, 9
Decimal numbers:

converting to binary, 10
converting to hex, 12

DeDe, 172, 207
DefWindowProc, 89
Delete, 346
Delphi, 2, 171, 226, 276, 323, 373
Delphi Decompiler, 172, 207
Denormalized:

numbers, 45
operand, 46
operand mask, 47
operation exception, 46

Description strings, 121
DestroyWindow, 89
DF, 23
DialogBoxIndirect, 388
DialogBoxIndirectParam, 388
DialogBoxParam, 84, 388
Direction flag, 23
Disassembled code analysis, 7
Disassemblers, 7, 150

specialized, 171
Disassembling manual, 103
DispatchMessage, 78, 81, 88
DIV, 34
Division by zero, 46

exception, 46
mask, 47

DLL, 62,169
DM, 47
DOS header, 124
DOS modules, 182
DRO, 25
DRO-DR3, 25
DR1, 26
DR2, 26
DR3, 26
DR4, 26

DR5, 
26

DR6, 
26

DR7, 
26

Driver development kit, 
173
DS, 23
Dump, 8
Dumpbin.exe, 138, 167, 178
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Dynamic link library, 62,169

E

EAX, 
22
EBP, 22
EBX, 22
ECX, 22
EDI, 22
EDX, 22
EFLAGS, 37
EIP, 146
ELF format, 179
EM, 24
EMMS, 55
EndDialog, 84
ENTER, 39
Epilogue, 273
ES, 47

flag, 46
ESI, 22
ESP, 22
ET, 24
Evaluation versions cracking, 212
Exception, 46

handling, 365
summary, 46

Exclusive OR, 35
EXE, 110
Executable code analysis, 225
Executable modules patching, 167
Execution breakpoints, 402
Exponent, 18
Export table, 128
Extended real number, 19, 44
Extension type, 24

F
F2XM1, 53
FABS, 52
FADD, 51
FADDP, 51
FAR Manager, 139
Fast library identification and recognition technology, 425
FBLD, 48
FBST, 49
FBSTP, 48, 49
FCLEX, 46,53
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FCMOVB, 49
FCMOVBE, 49
FCMOVE, 49
FCMOVNB, 49
FCMOVNBE, 49
FCMOVNE, 49
FCMOVNU, 49
FCMOVU, 49
FCOM, 49
FCOMI, 50
FCOMIP, 50
FCOMP, 50
FCOMPP, 50
FCOS, 52
FCSH, 52
FDECSTP, 54
FDIV, 51
FDIVR, 52
FDIVRP, 52
FDP, 46
FFREE, 54
FIADD, 51
FICOM, 50
FICOMP, 50
FIDIV, 52
FIDIVR, 52
FILD, 48
FIMUL, 51
FINCSTP, 54
FINIT, 46, 53
FIP, 46
FISUB, 51
FISUBR, 51
Flags register, 21
Flat memory model, 38
FLD, 48, 269
FLD1, 48
FLDCW, 46, 53
FLDENV, 46, 54
FLDL2T, 48
FLDLG2, 48
FLDLN2, 48
FLDPI, 48
FLDTL2E, 48
FLDZ, 48
FLIRT, 425, 426
Float, 19
Floating-point number, 18, 239

long, 109
short, 108

Floating-point unit, 25
FMUL, 51
FMULP, 51
FNCLEX, 53
FNINIT, 53
FNOP, 54
FNSAVE, 54
FNSTENV, 54
FNSTSW, 53
Format specifiers, 275
Fortran, 306
FPATAN, 53
FPREM, 47, 52
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FPREM1, 47, 52
FPTAN, 52
FPU, 25, 240

busy flag, 47
commands, 48, 108, 242
registers, 194
state, 54

FreeConsole, 65
FRNDINT, 52
FRSTOR, 46, 54
FSAVE, 46, 54
FSCALE, 52
FSIN, 53
FSINCOS, 53
FSQRT, 52
FST, 48
FSTCW, 46, 53
FSTENV, 46, 53
FSTP, 48
FSTSW, 46, 53
FSTSWAX, 46
FSUB, 51
FSUBP, 51
FSUBR,51
FSUBRP, 51
FTST, 50
FUCOM, 50
FUCOMI, 50
FUCOMIP, 50
FUCOMP, 50
FUCOMPP, 50
FWAIT, 40, 46, 54

FXAM,
50

FXCH, 
48
, 
49

FXRSTOR, 
25
FXSAVE, 25
FXTRACT, 52
FYL2X, 53
FYL2XP1, 53

G

Gdi32.dll, 
62
GDT, 25, 407
General-purpose registers, 21, 22, 194

EAX, 21
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EBP, 22
EBX, 21
ECX, 22
EDI, 22
EDX, 22
ESI, 22
ESP, 22

GetCommandLine, 372
GetCurrentProcessId, 159
GetMessage, 81
GetModuleHandle, 373
Global descriptor table, 25, 407
GlobalMemoryStatus, 203
Graphical user interface, 62
GUI, 62, 173, 388

applications, 63, 75

H

Hacker's view, 
140, 175, 176
Handler, 74
Hex editors, 175
Hex numbers, 8, 11

converting to binary, 12
converting to decimal, 12

Hex numeral system, 12
Hiew.exe, 140, 175, 176
High-level programming languages, 385
HLT, 40

I
IC, 47
IDA Pro, 65, 67, 79, 142, 143, 170, 206, 214, 227, 228, 295, 419

built-in language, 447
configuration files, 422
loading executable code, 422
prefixes, 429
start-up options, 434
user interface, 421
virtual memory, 420

Ida.cfg, 422
Idagui.cfg, 422
IDC, 447

syntax, 449
Identification command availability flag, 23
IDIV, 34
IDTR, 25
IE flag, 46
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IF, 23
IM, 47
IMAFE_OPTIONAL_HEADER 32

SectionAlignment, 119
IMAGE_DEBUG_DIRECTORY, 135
IMAGE_DEBUG_TYPE_BORLAND, 135

structure, 112,113
IMAGE_EXPORT_DIRECTORY, 128
IMAGE_FILE_HEADER, 117

Characteristics, 117
NumberOfSections, 117
NumberOfSymbols, 117
PointerToSymbolTable, 117
SizeOlOptionalHeaders, 117

IMAGE_IMPORT_DESCRIPTOR, 138
IMAGE_NT_HEADERS, 113, 130, 135

structure, 116
IMAGE_NT_SIGNATURE, 113
IMAGE_OPTIONAL_HEADER32,117

AddressOfEntryPoint, 119
BaseOlCode, 119
BaseOfData, 119
Checksum, 120
DataDirectory, 120
DllCharacteristics, 120
FileAlignment, 119
ImageBase, 119
LoaderFlags, 120
Magic, 119
MajorlmageVersion, 120
MajorLinkerVersion, 119
MajorOperatingSystem Version, 119
MajorSubsystemVersion, 120
MinorlmageVersion, 120
MinorLinkerVersion, 119
MinorOperatingSystem Version, 119
MinorSubsystemVersion, 120
NumberOfRvaAndSizes, 120
SizeOfCode, 119
SizeOfHeaders, 120
SizeOfHeapCommit, 120
SizeOfHeapReserve, 120
SizeOflmage, 120
SizeOflnitializedData, 119
SizeOfStackCommit, 120
SizeOStackReserve, 120
SizeOfUninitializedData, 119
Subsystem, 120
Win32VersionValue, 120

IMAGE_RESOURCE_DIRECTORY, 132
IMAGE_RESOURCE_DIRECTORY_ENTRY, 133
IMAGE_SECTION_HEADER, 122
IMAGE_THUNK_DATA32, 128, 138
IMUL, 34
IN, 30
INC, 32
Indefinite numbers, 45
Inexact result, 46, 47
Infinity control, 47
Input/output:

breakpoints, 402
commands, 30
privilege level, 23
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Instructions for integer arithmetic, 31
Instructions for operations over the stack, 31
INT, 40
Integer binary number, 108
Intel, 14, 18, 43

386, 31

80486, 
44

C++ 4.5 compiler, 
212

i80x86, 
117

processor commands encoding, 
89

Interactive Disassembler C, 447
Internet, 171
Interrupt:

breakpoints, 402
commands, 40
descriptor table, 25
flag, 23

INTO, 40
Invalid operation, 46

exception, 46
mask, 47

INVD, 44
INVLPG, 44
IOPL, 23
IRET, 40
IsDialogMessage, 81, 88

J

JA/JNBE, 
38
JAE/JNB, 38
JB/JNAE, 38
JBE/JNA, 38
JC, 38
JCXZ, 38
JE/JZ, 38
JECXZ, 38
JG/JNLE, 38
JGE/JNL, 38
JL/JNGE, 38
JLE/JNG, 38
JMP, 37, 38, 146
JNC, 38
JNE/JNZ, 38
JNO, 38
JNS, 38
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JO, 38
JP/JPE, 38
JS, 38
Jumps, 146

K

Kernel32.dll, 
62
Kernel-mode debugger, 377

L

LAHF, 
29
LAR, 42
LARGE_INTEGER, 231
LDS, 28
LDT, 407
LDTR, 25
LE format, 179
LE modules, 182
LEA, 28
LEAVE, 264
LEAVE, 39
LES, 28
LFS, 28
LGDT, 41
LGS, 28
LIDT, 41
LLDT, 41
LMSW, 42
Loader32.exe, 377, 381, 390
LoadLibrary, 127
Local descriptor table, 407
Local variables, 259
LOCK, 40
LODS, 36
Logical operations, 35
Long real number, 19, 44
Long word, 44
LOOP, 39
Loop:

control commands, 39
nesting, 334
optimization, 329
organization, 324
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unwinding, 330
LOOPE, 39
LOOPNE, 39
LOOPNZ, 39
LOOPZ, 39
LSL, 42
LSS, 28
LTR, 42
LX format, 179

M

Machine-check enable, 
25
MainCRTStartup, 370
Mantissa, 18
MASKMOVDQU, 61
MASM32, 105, 108, 141, 491
MCE, 25
Memory breakpoints, 402
Memory cells, 9
MessageBox, 84, 137, 155, 203
MessageBoxA, 140
Message-processing loop, 75, 84
Microsoft, 123

Developer Network, 220
Visual C++, 7, 237
Visual Studio .NET, 137

Million instructions per second, 121
MIPS, 121
MMX:

extension, 54
instructions, 26, 55
registers, 25,194

MOD field, 97
MOD R/M byte, 97, 239

structure, 99
Modal dialog, 82
Monitor coprocessor flag, 24
MOV, 27, 43
MOVD, 55
MOVDQ2Q, 60
MOVDQA, 60
MOVDQU, 61
MOVMSKPD, 61
MOVNTDQ, 60
MOVQ, 55
MOVQ2DQ, 60
MOVS, 36
MOVSXB, 27
MOVSXW, 27
MOVZXB, 27
MOVZXW, 28
MP, 24
MSDN, 220
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MS-DOS, 1, 64, 110, 244, 424
loader, 113
programming, 150
stub, 111, 423

MUL, 34
MZ format, 179
MZ signature, 113

N
Nag screen removing, 217
NE, 24

format, 179
modules, 182, 423

NEC, 32
Negative infinity, 45
Negative zero, 44
Nested task flag, 23

Nonmodal dialog handle, 
89

Nonpermanent breakpoint, 
385

NOP, 
40

Normalized form, 
18
Normalized number, 19
NOT, 35
Not write-through, 24
Notation:

binary, 9
decimal, 9

NT, 23
NULL, 243
Number:

normalized, 19
sign, 18

NuMega Lab, 175
Numeral systems:

positional, 10
Numeric data representation in computer memory, 7
Numeric error, 24
NW, 24

O
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OBJ, 
110,123
Objects identifying, 339
OE flag, 46
OF, 23
OllyDbg, 89, 142, 153, 174, 192,213
OM, 47
Operand size prefix, 91
Optimization, 227
OR, 35
OUT, 30
Overflow, 46

exception, 46
flag, 23
mask, 47

P
Packed BCD, 21, 44
PACKSSDW, 55
PACKSSWB, 55
PACKUSWB, 55
PADDB, 56
PADDD, 56
PADDQ, 59
PADDSB, 56
PADDSW, 56
PADDUSB, 56
PADDUSW, 56
PADDW, 56
PAE, 25
Page:

global enable, 25
level write transparent, 24
size extensions, 25

Page-level cache disable, 24
Paging, 24
PAND, 56
PANDN, 56
Parity flag, 22
Pascal, 2, 278
PC, 47
PCD, 24
PCE, 25
PCI, 408
PCMPEQB, 56
PCMPEQD, 56
PCMPEQW, 56
PCMPGTB, 56
PCMPGTD, 56
PCMPGTW, 56
PDB, 150
PE, 23, 63

flag, 46
format, 110, 179
header, 116, 117, 124, 477
module, 110, 134, 423, 477
signature, 113
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PeekMessage, 81
Pentium, 229

4,59
P54C, 54

Performance-monitoring counter enable, 25
Persistent breakpoints, 386
PF, 22
PG,24
PGE, 25
Physical address extension, 25
PID, 385
PM, 47
PMADDWD, 57
PMULHW, 57
PMULLW, 57
PMULUDQ, 59
POP, 22, 31
POPA, 31
POPF, 31
POR, 57
Positive infinity, 44
Positive zero, 44
Postcondition loop, 325
PostQuitMessage, 89
Precision:

control, 47
exception, 46
loss, 12
mask, 47

Precondition loop, 325
Printf, 213, 234, 271
Procedure identifying, 288
Process:

identifier, 385
command code, 91

Processor:
AMD, 43
Intel, 43
synchronization commands, 40

Programming languages:
high-level, 151

Prologue, 273
Protected-mode virtual interrupts, 24
Protection control commands, 41
Protection enabled flag, 23
PSE, 25
PSHIMD, 57
PSHIMQ, 57
PSHIMW, 57
PSHUFD, 60
PSHUFHW, 60
PSHUFLW, 60
PSLLD, 57
PSLLDQ, 59
PSLLQ, 57
PSLLW, 57
PSRAD, 58
PSRAW, 58
PSRLD, 58
PSRLDQ, 60
PSRLQ, 58
PSRLW, 58
PSUBB, 58
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PSUBD, 58
PSUBQ, 59
PSUBSB, 58

PSUBSW, 
58

PSUBUSB, 
58

PSUBUSW, 
58

PSUBW, 
58
PUNPCKHBW, 59
PUNPCKHDQ, 59
PUNPCKHQDQ, 60
PUNPCKHWD, 59
PUNPCKLBW, 59
PUNPCKLDQ, 59
PUNPCKLQDQ, 60
PUNPCKLWD, 59
PUSH, 22, 31
PUSHA, 31
PUSHF, 31
Puts, 213
PVI, 24
PWT, 24
PXOR, 59

Q

QNaN, 
47
QNaNs, 45
Quaternion, 12
QueryPerformanceCounter, 231
QueryPerformance

Frequency, 231
Quiet NaNs, 45

R

R/M field, 
97
RC, 47
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format, 180
RCL/RCR, 35
RDMSR, 43
RDPMC, 43
RDTSC, 43
ReadConsoleInput, 74
Real numbers, 18

fractional, 20
REG/Code field, 97
Register, 272
RegisterClass, 79, 81, 258
Registry, 181, 217

Monitor, 181
Regmon.exe, 181
Relative stack registers, 45
Relative virtual address, 119
Relocation table, 113
REP, 36
Resource Hacker, 180
Resource table, 121
Resume flag, 23
RET, 22, 39
RF, 23
ROL/ROR, 35
Rounding control, 47
RPL field, 42
rtcGetSetting, 219, 221
rtcSaveSetting, 220, 221
RTTI, 426
RTTI structures, 427
Run-time type information, 426
Russinovich, Mark, 181
RVA, 119

S
Safecall, 278
SAHF, 29
SAL/SAR, 35
SBB, 32
Scanf, 368
SCAS, 36
Sections table, 121
Security table, 121
Segment:

registers, 21, 23
replacement prefixes, 91

SEH, 365
SETA/SETNBE, 29
SETAE/SETNB, 29
SETB/SETNAE, 29
SETBE/SETNA, 29
SETC, 29
SETcc, 29
SetConsoleCtrlHandler, 74
SETE/SETZ, 29
SETG/SETNLE, 29
SETGE/SETNL, 29
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SETL/SETNGE, 29
SETLE/SETNG, 29
SETNC, 29
SETNE/SETNZ, 29
SETNO, 29
SETNP/SETPO, 29
SETNS, 29
SETO, 29
SETP/SETPE, 29
SETS, 29
SF, 22

flag, 46
SGDT, 41
Shift operations, 35
SHL/SHR, 36
SHLD/SHRD, 36
Short:

integer, 44
real number, 19, 44

SIB byte, 101
structure, 102

SIDT, 41
Sign flag, 22
Signaling NaNs, 45
Signatures:

MZ, 113
PE, 113

Signed numbers, 16
SLDT, 42
SMSW, 42
SNaN, 47
SNaNs, 45
SoftIce, 2, 175, 377

built-in functions, 414
commands, 391
main window, 378
macrocommands, 394
operating modes, 381
operators, 413
reference information, 384
start-up settings, 383

SS, 23
ST(0)-ST(7), 45
Stack, 151

fault, 46
memory, 266
segment, 23
structure, 45,281
variables, 259

Start-up initialization, 285
STC, 37
STD, 37
STI, 37
STOS, 36
STR, 42
Strcat, 250
String operations, 36
Structure, 253
Structured exception

handling, 365
SUB, 32

Switch, 
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323

Symbol, 
135

Loader, 
377

Symbolic table, 
134
SYSENTER, 43
SYSEXIT, 43
System address registers, 21

T

Table of:

exceptions, 121
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